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Abstract

The recent popularity of Field Programmable Gate Array (FPGA) technology has made the syn-

thesis of Hardware Description Language (HDL) programs into FPGAs a very attractive topic for

research. In particular, the correctness in the synthesis of an FPGA programming file from a source

HDL program has gained significant relevance in the context of safety or mission-critical systems.

The results presented here are part of a research project aiming at producing a verified compiler

for the Handel-C language. Handel-C is a high level HDL based on the syntax of the C language

extended with constructs to deal with parallel behaviour and process communications based on

CSP.

Given the complexity of designing a provably correct compiler for a language like Handel-

C, we have adopted the algebraic approach to compilation as it offers an elegant solution to this

problem. The idea behind algebraic compilation is to create a sound reasoning framework in

which the a formal model of the source Handel-C program can be embedded and refined into a

formal abstraction of the target hardware. As the algebraic rules used to compile the program are

proven to preserve the semantics, the correctness of the entire compilation process (i.e., semantic

equivalence between source and target programs) can be argued by construction, considering each

programming construct in isolation, rather than trying to assert the correctness of the compilation

in a single step.

Regarding hardware synthesis, the algebraic approach has already been applied to subsets of

Occam and Verilog. Our work builds on some ideas from these works but focuses on the more

complex timing model imposed by Handel-C. Moreover, our work covers features like shared

variables, multi-way communications and priorities which, to our knowledge, have never been

addressed within the framework of algebraic compilation.

Finally, one characteristic of the algebraic approach is that the basic reduction laws in the

reasoning framework are postulated as axioms. As an invalid axiom would allow us to prove

invalid results (up to the extent of being able to prove a false theorem) we are also concerned about

the consistency of the basic postulates in our theory. We addressed this by providing denotational

semantics for Handel-C and its reasoning extensions in the context of the Unifying Theories of

Programming (UTP). Our UTP denotational semantics not only provided a model for our theory

(hence, proving its consistency) but also allowed us to prove all the axioms in the compilation

framework.
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Chapter 1

Introduction

Software development is notoriously error prone [Leveson and Turner 1993; Lann 1997], to the

extent that malfunctioning and incorrect programs have become a part of our everyday lives. In

particular, there are numerous examples of cases where software errors brought enormous financial

losses to businesses [Newman 2002] and society in general [MacKenzie 2001]. As a consequence,

various approaches have been used to make software more reliable.

One of the most widely used approaches to ensure software correctness is testing [Gelperin and

Hetzel 1988; Beizer 1990; Myers and Sandler 2004; Hierons et al. 2009]. It consists of running

software on input data that is believed to be representative of what can be encountered in practice,

and comparing the actual behaviour of programs to the expected behaviour. Unfortunately, the

degree of testing that can be performed in most of the cases cannot guarantee the required level

of reliability. The main reason for the insufficient effectiveness of software testing is the large

number of possible execution paths in programs and discontinuous behaviour of software systems.

In particular, testing on just some of the possible inputs is usually not enough because software

is discrete, and knowing the behaviour on some input may provide almost no assurance on the

correctness of the behaviour on similar input.

On the other hand, the required level of software reliability can potentially be achieved with

formal methods [Bergstra and Klop 1985; Pfleeger and Hatton 1997; Davis 2005]. Contrary to

testing, formal methods provide a mathematical model of a system that allows the properties and

behaviour of a given design to be predicted through mathematical/mechanical reasoning. Thus

formal methods can potentially move the construction and validation of software (away from ex-

periment and adjustment) towards prediction and calculation. The development of reliable systems

using formal methods comprises many stages from the original requirements down to the hardware

in which programs will run. Many methods, theories, techniques and tools have been developed

to deal with adjacent stages of the development process. For example correct generation of pro-

grams from specifications, the translation of programs into machine code and sometimes even to

a hardware implementation level.

Programming languages constitute a fundamental step in this process, aiming at making pro-

gramming easier and less error prone. The price of this is the need to use a compiler or an inter-

preter, which is another, usually complex (and equally error-prone) piece of software. Reliability

13



14 CHAPTER 1. INTRODUCTION

of interpreters is beyond the scope of this work, so we will only refer to compilation. When we

compile a program, we would like to be sure that the compiled program does exactly what the

source one describes. Ideally, we would like to be able to show, by formal arguments, that the

output produced by a compiler is equivalent to (or a refinement of) the source code.

The question of compiler correctness, as well as the rigorous specification of programming

languages, is a big issue for software developers and users. An error introduced during the compi-

lation process due to either incorrect implementation of the compiler or a misinterpretation of the

programming language specification can cause severe problems, especially if it occurs in a safety-

critical application. Moreover, all the effort invested at previous development stages to guarantee

the software correct can be just wasted by a faulty compiler.

Compiler construction theory is one foundation for high-level languages and, as such, has been

subject of study for many years [Aho et al. 1986; Aho and Ullman 1972; Davie and Morrison 1982;

Tremblay and Sorenson 1985]. Within this field, one of the most important goals is to certify the

correctness of the implementation of a given programming language compiler. In this context,

by correct we mean that the compiler must be proved to preserve the behaviour (or semantics) of

the source when it is translated into a target program. To achieve compiler correctness, several

formal approaches have been devised and explored. The most relevant ones that can be mentioned

are based on different formalisms, such as weakest precondition calculus [Dijkstra 1976], higher-

order logics [Gordon and Melham 1993], action semantics [Mosses 1996] and algebraic reduction

rules [Hoare 1985].

On the other hand, the performance and major industrial adoption [Hartenstein 1997; Raje

2004; Wright and Arens 2005; Joost and Salomon 2005] of Field Programmable Gate Arrays

(FPGA) has made the compilation of Hardware Description Languages (HDLs) a very attrac-

tive topic for research. FPGAs are now present not only in every-day-use devices but also in

controllers for spacecraft, defence systems, high-speed trains, medical systems and so on. In this

particular context of mission- or life-critical systems, it is fundamental to ensure, not only the

correctness when specifying the system at HDL level (e.g., validation against requirements and

verification/proof of desired properties) but also that the generated hardware is semantically equi-

valent to the HDL level program (i.e., the hardware behaves in the same way, and preserves all the

properties that were valid at the original specification-level program).

This work addresses the issue of compiler correctness for HDLs. By correctness we mean a

compiler that is guaranteed to produce a translation (hardware components in this particular case)

that is semantically an improvement (i.e., a refinement) of the source specification.

1.1 Alternatives towards program and compiler correctness

Software testing approaches do not provide the level of confidence required in most safety-critical

environments [Butler and Finelli 1991]. Formal methods involve the use of mathematical tech-

niques for inferring the properties and behaviour of programs, thus potentially providing greater

levels of confidence in software correctness.

This section describes the major formal approaches to establishing the correctness of the com-



1.1. ALTERNATIVES TOWARDS PROGRAM AND COMPILER CORRECTNESS 15

pilation process or some aspects of it. In particular, formal verification, proof-carrying code and

the algebraic compilation methods are covered. The list of methodologies described in this section

is certainly not comprehensive, it is just presenting the approaches that, to our understanding, are

the most promising ideas in the field.

1.1.1 Formal verification

Formal verification consists of formally establishing the correctness of a program P by providing:

(i) a definition of what we mean by correct and (ii) a method for establishing that a program P

satisfies the correctness criteria for all possible inputs. As compilers are themselves programs,

formal verification can be applied to them to establish their correctness. The inputs of a compiler

are other programs and its outputs are the same programs converted into a different form.

Compilers are usually written in high-level programming languages, which cannot be executed

directly. This implies that, before being executed, compilers have to be transformed into binary

machine code (i.e., be compiled themselves), and the correctness of the machine code should be

proven with respect to the compilation specification. It is the object code that we would finally

like to be correct.

Because of its complexity, the task of proving the correctness of the object code is typically

left out in most works concerned with compiler verification. As result, verification of even a very

simple compiler for a very simple source and target programming languages can already be too

difficult, as establishing the correctness of commercial programming languages compilers’ code is

prohibitively expensive.

There are numerous examples of partial verification of the compilation of sequential [Polak

1981], object oriented (Java) [Berghofer and Strecker 2003; Klein and Nipkow 2003; Goos 2002],

concurrent [Young 1988; 1989], high-level assembly [Moore 1989], compiler back-ends [Oliva

1994] and functional [Goerigk et al. 1996] languages. Furthermore, there has been research to-

wards the verification of optimisations in a general framework [Goerigk 2002] and for embedded

systems [Glesner et al. 2002]. Unfortunately, in most of these works, proving the correctness of the

final machine code is left out, or is informally addressed. In this sense, one of the most remarkable

results in compiler verification has been achieved in Verifix [Goerigk et al. 1996], which aimed at

the construction of provably correct compilers for ComLisp, a subset of Common Lisp.

On the other hand, the most remarkable work in this context is a fully verified compiler from

ComLisp to binary transputer [Barron 1978] code was implemented using ComLisp itself as the

language [Dold and Vialard 2001; Goerigk and Simon 1999; Hoffmann 1998]. The compilation is

carried out through transformations into a series of intermediate languages specified by means of

operational semantics. On top of this, the PVS [Owre et al. 2001] system was chosen to support

verification of the compilation specification and the construction process of the compiler in the

source language. The ComLisp implementation was compiled with some arbitrary Common Lisp

compiler and then applied to itself (i.e., compiler bootstrapping). Thus, the final executable code

was generated according to the compilation specification and its compliance was then syntactically

checked [Hoffmann 1998]. Despite quite simple source language and limited compiler complexity,

“the size and complexity of the verification task in constructing a correct compiler is immense”
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[Dold and Vialard 2001]. Even though it took several years to create this compiler, ComLisp can

be regarded as state-of-the-art technology, and its verified compiler as one of the most successful

results in the field of compiler correctness verification.

On the other hand, there have been successful cases of correct-by-construction compilers –

the compiler is built correctly rather than producing a compiler and then trying to verify it – for

Java [Stark et al. 2001] and a C-like programming subset [Stepney 1993; 1998]. In the case of the

correct compiler for Java, Generalised State Machines are used as the underlying formalism and

all constructs are given semantics in those terms. A correct compiler capable of addressing most

constructs (with exception of threads) is derived from the operational semantics for the language

and its correctness is argued informally. On the other hand, the work on C-like languages uses

Z [Woodcock and Davies 1996] as the semantic domain for both operational and denotational

semantics for the language. Again, a correct compiler is derived from the operational semantics

and its correctness is formally argued first manually and later on by means of an embedding in the

PVS proof system [Stepney et al. 1991]. The main limitation of this work lies in the fact that it

assumes termination (hence, the semantic framework can only reason about partial correctness).

This is a limitation inherited from Z that does not provide a least fixed point operator for schemas,

pre-empting the possibility of reasoning about the termination of recursion.

1.1.2 Proof-carrying code

Proof-carrying code (PCC) [Necula 1997; Necula and Lee 1998; Colby et al. 2000] is a completely

different and independent approach compared to formal verification. Instead of establishing a

correspondence between the source and compiled programs, proof-carrying code is used to certify

safety properties (i.e., properties ensuring certain undesirable behaviour is never allowed) on the

target (compiled) program. PCC does not remove the necessity of verification, but suggests the

program producers supply with the program an explicit proof of the program properties. Thus,

the consumers of the program can be sure of the safety of a program obtained from an untrusted

person without any verification or run-time check on their side.

The PCC approach consists of: (i) defining a safety policy that precisely specifies the condi-

tions that the execution of a given program should meet in order to be considered safe; (ii) ge-

nerating a proof that the program adheres to the safety policy (generated by a code producer);

and (iii) validating the binary (together with the proof) on the consumer side. The validation of

a proof is quick and driven by a straightforward algorithm. Therefore, the consumer must trust

only the implementation of this simple algorithm in addition to the soundness of the safety policy.

The PCC approach can be considered as an extension to formal verification in establishing some

properties of programs that have been settled beforehand, such as termination, lack of deadlock,

or type-safety.

The work described in [Colby et al. 2000] investigates the problem of preserving properties

provided by the design of a high-level programming language after being compiled into assembly

language. In particular, programs in Java are type safe, but after compilation into native machine

code there is no guarantee that type-safety properties are still maintained by the final code. The

paper defines the safety policy corresponding to type safety for a subset of the Java language and
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Source Language
compile
−−−−−−→

γ
Target Language

φ

y yψ
Source semantics

encode
−−−−−→

δ
Target Semantics

Figure 1.1: Morris correctness diagram

shows how a compiler can produce a proof that the compiled programs comply with the type-safety

properties.

Since only particular properties of a compiled program are considered, the formal specification

of the target languages can be very specific – in order to express and prove the required properties.

In the same manner as translation validation, proof-carrying code can exploit the proof-checking

approach, when only the correctness of a small and simple proof-checker remains crucial to the

correctness of the overall process of establishing properties of a compiled program.

1.1.3 Algebraic compilation

The seminal work regarding algebraic correct compilation was proposed by Burstall and Landin

[1969]. Their work presents an algebraic framework in order to prove the correctness of an expres-

sion compiler. The goal is achieved by means of successive transformations (i.e., homomorphisms)

between algebras modelling different representations of the expression being compiled.

In general, traditional approaches to compilation are based in the idea of correctness expressed

as the commutativity of a diagram1 like the one presented in Figure 1.1, where the nodes are alge-

bras [Cohn 1981] and the arrows homomorphisms. This kind of diagram was firstly introduced by

Burstall and Landin but its usage was reinforced by Morris [1973]. Later on, Thatcher et al. [1979]

reformulated the diagram of Figure 1.1 in the framework of initial algebra semantics [Goguen et al.

1977].

An alternative approach to the algebraic verification of compilers is the one based in the idea of

a normal form. In general, a normal form is a “highly restricted subset of a programming language”

[Hoare and He 1998], usually achieved by removing many of the operators of the language and by

imposing a fixed order of application of the others. The most common usage of normal forms is

a means to reduce the question of semantic equivalence into, the much easier to check, syntactic

equality. Nevertheless, the main interest regarding normal forms from the axiomatic reasoning

point of view lays in its usefulness to prove completeness of a certain set of rules. The rules are

regarded as complete if they are sufficiently comprehensive to derive a corresponding normal form

from any given program, a task that is much simpler than to prove completeness in the traditional

logical sense.

The verification approach based in the idea of normal form was initially proposed by Hoare

[1990] and captures the compilation process by the predicate C p s f m Ψ. It states that the code

stored in m with start address s and finish address f is a correct translation of the source program

1The commutativity of the diagram is defined as the equivalence between (ψ ◦ γ) and (δ ◦ φ).



18 CHAPTER 1. INTRODUCTION

p, where Ψ is a symbol table mapping the global variables of p to their corresponding addresses

in the machine’s memory space. C, on the other hand, is defined by

C p s f m Ψ =df
∗

Ψ v I s f m

where v is a preorder relation that captures the notion of improvement (or refinement), Ψ and
∗

Ψ

are a pair of simulation functions establishing the link between the specification and the concrete

data and control spaces; and I is an interpreter for the target language.

The compilation C is specified by a set of theorems (algebraic rules), one for each program-

ming construct in the language that progressively transform source-language constructs into target-

language ones. The theorems are proven to preserve the semantics of the constructs during the

transformation and, as they have the form of Horn Clauses [Demoen 2005], the transformation can

be mechanized through logic programming [Bowen 1993].

1.1.3.1 Compilation of imperative constructs

The first application of the algebraic approach to sequential programming was proposed by Sam-

paio [1993; 1997] for a generic imperative programming language including procedures (suppor-

ting parameters), variable scoping, recursion and iteration. The approach is based in the idea of

reduction to a normal form but it adds several relevant features:

• Abstraction. The approach is abstract in two ways. Firstly, the source language contains

most of the features common to imperative sequential programming languages like sequen-

tial composition, iteration, variable scoping, procedural parameters, conditionals and asser-

tions. In this way, the approach is general enough to easily cover the most common features

of any imperative language. Secondly, the normal form chosen for the target language is an

abstraction of a machine’s architecture: it contains a program-counter-based execution cycle

and an addressable memory space. This allows the compiler to not to be bound to particular

architectures and makes the compilation strategy applicable to a wide range of hardware

platforms.

• Uniformity. The whole compilation process is formalized within a single semantic frame-

work. In particular, the author extended the generic (source) imperative language with a

specification language and a reasoning language (axiomatic reduction rules). As this exten-

ded language is able to capture all the stages in the compilation (including the compilation

rules), the preservation of the semantics is ensured by construction: all the stages in the

compilation share the same semantic framework, and the reduction rules are proven to be

semantics-preserving.

• Machine support (mechanization). The algebraic nature of the approach allowed its for-

malisation using the OBJ3 term rewriting system [Goguen and Winkler 1988], providing a

practical test bed for the practical applicability of the ideas presented.
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As another application of the same approach, Barros and Sampaio [1994] presented some ideas

towards a provably correct hardware/software partitioning. The proposal used Occam as both the

source and target languages, where the algebraic transformations were justified using the laws of

Occam programming [Roscoe and Hoare 1988].

In later work, Silva et al. [1997a;b; 1999; 2004] extended the original formulation and pre-

sented a five-phase compilation approach for hardware/software co-design. The most interesting

feature of this idea is the inclusion of heuristics in a formal environment that pursues correctness.

This is possible because of the orthogonality that the framework provides between the “decision”

stages (the ones that involve heuristics), and the transformational phases. This orthogonality also

allows the exchange of heuristics (to optimize the outcome according to a different criterion) wi-

thout needing to revalidate the correctness of the compiler.

In [Hoare et al. 2000], a proof of correctness is provided for a version of Dijkstra’s language

[Dijkstra 1976] (including sequential composition, recursion and variable declarations and sco-

ping), based on its operational semantics. The authors capture the operational semantics of the

language in a normal form shaped to mimic a sequential interpreter as a loop that executes one

step of the operational semantics at a time until there are no more actions to perform. Each pos-

sible step is an assignment that updates the data control state of the program. The authors also

provide a proof of the fact that the interpretation of a program (i.e., its normal form) has the same

meaning as the program itself.

Finally, an algebraic compiler for the object oriented paradigm of programming has been pro-

posed by Duran et al. [2001; 2003a;b]. The proposed source language is a subset of the Java

language (including, among other features, inheritance, visibility rules and dynamic creation of

objects). The definition of methods was also covered, with a sub language specially tailored for

this purpose (based in Morgan’s language [Morgan 1990]). In order to be able to cope with the

dynamic creation of objects, the original normal form proposed by Sampaio [1993] was extended

with a stack and explicit stack-handling primitives.

Thanks to the algebraic nature of the approach, the translation mechanism has been automated

[Oliveira et al. 2002] and the soundness of the rules used in the derivation proven correct [Borba

et al. 2004] with respect to weakest precondition semantics for the language [Cavalcanti and Nau-

mann 2000].

1.1.3.2 Hardware compilation

Work has also been undertaken by He and others to transform programs written in a subset of

Occam into a normal form suitable for an implementation in hardware [He et al. 1993; Bowen

et al. 1994]. In this work, a circuit is represented as a program with the particularity of having the

state of the “program” formed by the control and data paths of the generated hardware.

The translation is completed by defining a normal form comprised of an assumption about the

activation of the generated circuits; an execution loop; and an assertion that determines the final

state of the computation. A simplification of timed processes is also used to model the state change

of both the control and the data path of the circuits. With the algebraic rules provided in this work,

the authors show how an arbitrary source program can be reduced to this special normal form.
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The translation from the normal form into net-lists (a special list of gates and latches that is one

of the most common forms of hardware description) is regarded as “trivial” and only addressed

informally.

Another approach towards hardware synthesis based on the same principle was proposed by

Iyoda and He [2001b]; He [2002]. In this work, the authors describe an algebraic approach towards

the compilation of Verilog programs into hardware descriptions. The approach has also been me-

chanized in Prolog [Iyoda and He 2001a] and has been extended to cope with hardware/software

partitioning [Qin et al. 2002]. The main weakness of this work is the much reduced subset of

Verilog that it addresses (absence of loops or recursive constructs). As a solution to the lack of

treatment of iterative constructs, the authors proposed the integration of their work with a hard-

ware compilation scheme proposed by Bowen and He [2001]. Unfortunately, no follow-up of this

idea has been found in the literature to the extent of our knowledge.

1.2 Our approach to compilation

The approach to compilation presented in this work follows the normal-form based algebraic com-

pilation strategy described in the previous section. The main reason for our choice lies in the li-

mited success of approaches based in a posteriori formal verification and the inability of PCC to

provide full coverage of all aspects regarding the correctness of a compiler (mainly due to the fact

that PCC was not devised as a verification technique). Furthermore, we have selected the algebraic

approach over other successful cases of correctness by construction using formal methods men-

tioned in Section 1.1.1, because we are pursuing a framework where our proofs can be conducted

purely by algebraic means and where we can reason about non-terminating programs. Finally, the

algebraic technique has been successfully applied to the hardware compilation of Occam [Barrett

1992] and subsets of Verilog [Thomas and Moorby 1998].

In the context of our compiler, all normal forms are state-machine representations of the source

program. Each of our state-machine-based normal forms is an iteration over a set of steps descri-

bing how the machine progresses throughout its execution. In turn, steps represent the combina-

torial and variable updates that can be carried out within a single clock cycle. The normal form

follows the source program’s control flow by means of guarding the execution of each step by a

condition capturing the specific control state in which the step should be activated.

In the process of gradually transforming the source code into its compiled form, we want to

allow the possibility of any of the intermediate normal forms to introduce improvements to the

program. This notion of a program being better than another one is known as refinement and it is

formally defined as a relationship between programs denoted by the symbol v. P v Q stands for

any possible behaviour of Q being a possible behaviour of P. Our compilation process can then be

formally stated as the following sequence of transformations:

source program
v

compilation
theorems

first normal form
v

compilation
theorems

. . .
v

compilation
theorems

final normal form
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By following the normal-form based compilation strategy, our approach shares the aforemen-

tioned benefits of this kind of the algebraic techniques: abstraction, uniformity and mechanisation.

There are, however, shortcomings in the general usage of the algebraic approach to compiler de-

sign. Sampaio [1997] identifies four main limitations to this approach:

1. The difficulty in the implementation of debuggers for the compiled program. This is a conse-

quence of the difference in the level of abstraction that is introduced by the reduction theo-

rems leading to refinement. In turn, this makes the traceability of the object program back

to source code very complicated, if not impossible.

On the other hand, the main concern of this work is correctness in a context where the source

program will be developed within rigorous development environments. In this context, the

compiled program acts as the implementation and the source program as the specification.

As the compiler is known to be correct, any errors in the compiled code must be contained

within the original source program, where other techniques can be used to identify and

eliminate them.

Finally, if debugging is an unavoidable need, it is still possible to use commercial simu-

lators and compilers for the language to debug the source program until the desired level

of confidence is reached. Once the source program is ready for its production, our correct

compilation approach can be applied to produce the release form of the compiled program.

2. The lack of existing algebraic treatment of optimisations. In our context, some simplifica-

tions are carried out along with the compilation process. Nevertheless, in order to be able

to compete with the optimised output of existing commercial tools, an optimisation stage

should be added before the actual generation of hardware. We regard this as a future exten-

sion of our work.

3. The possible differences arising from the final normal form representation and the actual

target machine. This limitation arose in the context of the compilation of imperative pro-

grams due to the fact their normal forms are abstractions of an interpreter executing the

program instructions. In this context there is a possibility that there will be a semantic gap

between the interpreter-based abstractions, and the actual machines executing the code pro-

duced by the compiler. In our work, the synthesised components implementing the source

program are comprised by very basic, well-understood hardware components2. As the nor-

mal form is directly mapped to these components with very clear semantics, we believe this

limitation does not apply to our work.

4. The correctness of the basic laws in the reasoning language. The basic laws in the reasoning

language are postulated as axioms expressing the relationship between the operators of the

language. The method of postulating axioms is questioned as incorporating an inconsistent

2There has been a great amount of research in this field in the last years. For an overview of the available techniques
and results, the reader is referred to [Kropf 1997; Srivas et al. 1997; Perry and Foster 2005].
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law would allow one to prove any result, including the correctness of an inaccurate compiler.

We address this problem by providing a denotational semantics for the input language and

its reasoning extensions in the context of the Unifying Theories of Programming (UTP). Our

UTP denotational semantics not only provides a model for our theory but also allows us to

prove all the axioms in the compilation framework.

The following sections present an overview of our source and reasoning languages, as well as

the basic principles by which we can embed the former within the latter. We also explore the main

definitions and most relevant features of the normal forms used in our compiler, and illustrate the

general aspects of the technique with an example.

1.2.1 Our input language

We have decided to adopt Handel-C [Celoxica Ltd. 2002a] as the input language for our compiler.

Handel-C is a Hardware Description Language (HDL) based on the syntax of the ANSI C [ISO

1999] language extended with constructs to deal with parallel behaviour and process communi-

cations based on CSP [Hoare 1983]. The language is designed to target synchronous hardware

components with multiple clock domains, usually implemented in Field Programmable Gate Ar-

rays (FPGAs).

Our preference of Handel-C over other more popular HDL languages (such as VHDL [IEEE

1993], Verilog or Occam) is based in the following reasons: (i) Handel-C features the combina-

tion of shared variables in a context of parallel processes and communications that has not been

addressed in any verified compiler; (ii) it contains most of the features present in state-of-the-art

HDLs, allowing our work to be general enough to be extended to other languages in this group;

and (iii) being a “high-level programming language with hardware output” [Kamat et al. 2009] it

is suitable for reasoning within the algebra of programs without the need of introducing too many

hardware-level concepts.

For this work, we have adopted the simplified subset of Handel-C presented in Figure 1.2.

Most constructs in the language can be built by combining constructs in our subset, with exception

of function calls, pointers and hardware-optimisation features. There is no dynamic allocation of

memory in Handel-C so the usage of pointers is as a mean of referring to statically created data

objects or functions. In this sense, we believe the treatment of pointers will not be a significant

contribution to contents of this thesis. On the other hand, functions and hardware optimisations

are means to achieve a better utilisation of the available space and features within the FPGA. We

regard the treatment of these constructs as future extensions, more details on our ideas on how to

incorporate them to this work are presented in Chapter 7.

As described in the language documentation by Celoxica Ltd. [2002a], programs are com-

prised of at least one main function and, possibly, some additional auxiliary functions. Multiple

main functions within the same file produce the parallel execution of their bodies. It is possible to

produce the same effect in our reduced subset by means of the parallel operator.

All C-based constructs in Handel-C behave as defined in ANSI-C [Kernighan and Ritchie

1988] but with some additional restrictions regarding the clock-based, synchronous nature of the
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〈program〉 ::= main(){ 〈statements〉 }

〈statements〉 ::= 〈statement〉 # 〈statements〉

| 〈statements〉 ‖HC 〈statements〉

| if 〈boolean expression〉 then 〈statements〉 else 〈statements〉

| while 〈boolean expression〉 do 〈statements〉

| 〈statement〉

〈statement〉 ::= 〈variable list〉 :=
HC 〈expression list〉

| delay
| 〈comm-guard〉

| priAlt {〈case-guards〉}

〈case-guards〉 ::= case 〈comm-guard〉: 〈statements〉 # break # 〈case-guards〉

| case 〈comm-guard〉: 〈statements〉 # break
| default: 〈statements〉

〈comm-guard〉 ::= 〈channel name〉?〈variable name〉

| 〈channel name〉!〈expression〉

Figure 1.2: Restricted syntax for Handel-C programs

language. The evaluation of expressions is performed by means of combinatorial circuitry, and

it is completed within the clock cycle in which they are initiated thus expressions are considered

to be evaluated “for free” [Page and Luk 1991] due to this semantic interpretation. This way of

evaluating conditions affects the behaviour of all constructs in the language regarding the time they

take to complete. In the case of selection, the branch selected for execution will start execution

within the same clock cycle in which the whole construct is initiated. The while construct starts

its body in the same clock cycle in which the looping condition is evaluated. The whole construct

terminates within the same clock cycle in which its condition becomes false. Assignment, on the

other hand, happens at the end of the clock cycle. The expressions that denote the values to be

used to update variables must be side-effect free (this is a Handel-C restriction). Furthermore,

as the combinatorial gates used to implement functions always produce a result, we assume all

expressions are total and terminating3.

From the remaining non-C constructs, parallel composition of statements executes in a real

parallel fashion as it refers to independent pieces of hardware running in the same clock domain.

delay leaves the state unchanged, but takes a whole clock cycle to finish. Input and output have

the standard blocking semantics [Hoare 1983]: if the two parts are ready to communicate, the

3In case the treatment of partial expressions is necessary, our theory can easily be extended to incorporate this notion
by means of using the technique introduced by Hoare and He [1998, Page 78].
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value outputted at one end is assigned to the variable associated with the input side. Both sides

of the communication take one full clock cycle to successfully communicate. A process trying to

communicate over a channel without the other side being ready will block (delay) for a single clock

cycle and attempt the communication again in the next clock cycle until it is able to synchronise.

Finally, the priAlt construct attempts each of its alternatives in order until: (a) one of them holds

true and the corresponding actions are activated; (b) it reaches a default guard, in which case it

unconditionally initiates the sub-program associated with it; or (c) it reaches the end of the guard

list without being able to activate any guard, which implies the fact that there was no default
clause. In the case of (c) the priAlt construct delays for a whole clock cycle and attempts the same

strategy again in the next clock cycle.

1.2.2 The reasoning language

The reasoning language is comprised by three sub-languages integrated under the same semantic

framework: (a) the source language; (b) the laws and constructs intended for reasoning about

programs; and (c) the normal forms, including the one capturing our target language. Figure 1.3

shows the aspects of our reasoning language that capture the main programming constructs in the

context of shared variables and parallelism. In our description of the language operators, we use x

to stand for an arbitrary program variable, b for a boolean expression and P and Q for programs.

II1 one clock-cycle delay

(x :=
snc e)1 one clock-cycle assignment

P; Q sequential composition

P ‖M̂ Q shared-variables parallel composition

P� b� Q selection: if b then P else Q

b ∗ P iteration: while b do P

Figure 1.3: Programming constructs in the reasoning language

Even though the precise semantics of these constructs will be given in Chapter 3, we present

here an informal description of their meaning:

• II1 is the program that keeps the variables constant, and takes one clock-cycle to terminate.

• (x :=
snc e)1 is a one clock-cycle update of x with the value of expression e.

• P; Q stands for the execution of P followed by Q.

• P ‖M̂ Q describes the parallel execution of P and Q. Both, P and Q will receive private

copies of their shared variables. At the end of every clock cycle, the local copies will be

merged by means of the predicate M̂ and the resulting value will be passed on to P and Q as

the initial value of their private copies for the next clock cycle.

• P� b� Q stands for the selection of P or Q depending on the value of condition b.
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• b ∗ P executes the program P while condition b holds. When b does not hold, the whole

construct terminates immediately leaving the state unchanged.

There is a clear correspondence between a major part of the restricted subset of Handel-C we

use as the input of our compiler and the programming constructs within the reasoning language.

This relationship is formalised by means of the denotational semantics for Handel-C we introduce

in Chapter 4. In this way, we formally establish the link between the source language and pro-

gramming constructs defined above, effectively producing an embedding [Boulton et al. 1993] of

Handel-C in the reasoning language. We take advantage of this link, together with the fact that

we also have precise UTP semantic definitions for the reasoning language, to achieve one of the

contributions of this work: the formal proof of the basic compilation axioms.

The second aspect of our reasoning language comprises the specification constructs and the

algebraic laws used to characterise these operators. Figure 1.4 presents a comprehensive list of the

operators in the specification space of the reasoning language. Again, let x stand for an arbitrary

program variable, b for a boolean condition, ch for a channel; and a, P and Q for programs (or

specifications). An informal account of these operators is given below, yet their definitions and

II the program with no effect

x :=
snc e assignment

P ‖ Q disjoint parallel composition

var x open scope for variable x

end x close scope for variable x

> miracle

⊥ abort

b>S assumption (II� b� >)

b⊥S assertion (II� b� ⊥)

b −→sncP guarded command (P� b� II1)

b ∗ P� Q iterated selection ((b ∗ P); Q)

in-req(ch) input request over channel ch

out-req(ch) output request over channel ch

rd(ch) checks whether there has been an input request on ch or not

wr(ch) checks whether there has been an output request on ch or not

in(ch) function returning the value being transmitted over ch

out(ch, e) sends the value e over ch

case a; b ? P | Q case construct (a; (P� b� Q))

Figure 1.4: The specification space

algebraic laws are presented in detail in Chapters 3 and 4.

• II is the program that finishes immediately and has no effect over the environment.
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• x :=
snc e is an immediate assignment of the value e to variable x. In the context of hardware,

we regard this assignment as the transferral of value e into wire x. Note that x cannot be a

flip-flop because these kind of devices take a whole clock cycle to perform an update.

• P ‖ Q stands for the parallel execution of P and Q when they do not have variables in

common.

• The pair var x and end x are used as dynamic scope delimiters for a given variable x.

• Miracle (>) stands for the program with the most defined behaviour that can satisfy any

specification. This is a very useful theoretical concept when reasoning about programs but

it is, clearly, infeasible since it cannot be implemented.

• Abort (⊥) is the opposite extreme to miracle and it has the most undefined behaviour pos-

sible: it may terminate with an arbitrary result or it may even not terminate. Following

Hoare [1983] we identify abort with all programs that might diverge before performing any

action visible to its environment.

• The program b>S models an assumption: it can be ignored if b holds (i.e., it reduces to II),

and it behaves like miracle otherwise. An important consequence of its behaviour when b

does not hold is that it frees the implementation from any commitment as miracle (>) will

satisfy any requirement for it.

• Similarly, b⊥S models an assertion that behaves like II if b holds or like abort (⊥) otherwise.

• b −→sncP is the synchronous version of Dijkstra’s guarded command [Dijkstra 1976]: it behaves

like P if b holds, it reduces to II1 otherwise. This behaviour in the case where b does not hold

can be explained in the context of hardware components, where even though P does not get

activated, the program variables need to be preserved and, as mentioned before, establishing

a flip-flop’s value (even if it is the same variable held there already) takes a whole clock

cycle to be completed.

• b ∗ P � Q is a particular form of the iteration construct presented in Figure 1.3: it operates

like the standard iteration b ∗ P while b holds, then it transfers the control Q. Due to the

way in which we encode information in the normal forms for the compilation, our compiler

only accepts programs with loops that can be converted into this form. For further details

see Section 4.2.2.

• The actions in-req(ch) and out-req(ch) model the program’s readiness to perform an in-

put/output over channel ch at the current clock cycle.

• The condition rd(ch) / wr(ch) characterises whether there is a reader/writer (i.e., a process

performing an input/output) operating on channel ch at the current clock cycle.

• The action in(ch) / out(ch, e) implements a non-blocking unbuffered communication proto-

col over channel ch. in(ch) returns the value being transmitted over channel ch during the
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current clock cycle without verifying if any process has actually performed an output to it.

Conversely, out(ch, e) will force the transmission of e over channel ch even if there is no

process ready to receive it.

• case a; b ? P | Q is a particular form of the case construct that performs the actions in a

before evaluating b. Control is transferred to P if b holds or to Q otherwise.

The final aspect of the reasoning language comprises the normal forms used along the compi-

lation process. Our compiler’s first normal form eliminates the C-based structure of the program

by means of expressing it in a state-machine-based representation. The most relevant aspects of

this representation are:

• Encoding of the control flow within the state of the machine. In practical terms this implies

the introduction of state variables and the association of unique values to each possible

control-flow state.

• Each construct is encoded as a set of one clock-cycle steps. Each step is guarded by a control

condition capturing the exact control state in which the action should be activated.

• Steps in the normal form are combined by means of the ‖M̂ operator described before. Seve-

ral steps can be active at any given clock cycle, making the state machine capable of parallel

behaviour.

Along the thesis, we abbreviate the first normal form and write

a : [s,
(
b1
−→

sncP1 ‖M̂ b2
−→

sncP2
)
, f ]

where:

• a is a list of control variables governing the execution of the normal form;

• s is a condition describing the initial control state of the machine;

• (b1
−→

sncP1 ‖M̂ b2
−→

sncP2) is the set of steps the machine can perform. b1 and b2 are conditions

guarding the activation of each of the steps, as with s, they are control-based conditions.

This set of steps will be iterated until no step can be activated (denoted by the condition

b1 ∨ b2).

• f is a condition reflecting the final control state the machine should be in when it terminates.

As mentioned before, the normal forms can be expressed in terms of operators from the reasoning

language. The above semantic description of the first normal form can be expressed as:

var a; s>S ; (b1 ∨ b2) ∗
(
b1
−→

sncP1 ‖M̂ b2
−→

sncP2
)

; f⊥S ; end a

In turn, our second (and final) normal form keeps the underlying state-machine representation,

yet aims at simplifying the elements used in the normal form so they can be directly mapped into
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well-understood hardware components. The most relevant transformations carried out from the

first- to the second-normal form are as follows:

• Isolation of expressions used in the right-hand side of assignments for their implementation

in combinatorial logic.

• Introduction of wires to interconnect and transfer values between the different operational

units being generated in the FPGA.

• Simplification of the parallel by merge combination of steps into disjoint-alphabet parallel

assignments.

Perhaps the most interesting consequence of the simplification of the parallelism carried out

to reach our second and final normal form is that it only contains a single step of the form:

w :=
snc fw(v); (v :=

snc fv(w))1

where:

• fw(v) is a function updating the wires w based on the program and control variables in v.

• fv(w) is a function selecting which of the values carried by w should be used to update the

program and control variables in v.

The actions on the left of the sequential composition are meant to be implemented in combinatorial

logic, while the update of the program and state variables on the right modifies registers and will

take one clock cycle to be completed. In the same way we have abbreviated the first normal form,

the notation we introduce to denote our second normal form is as follows:

a,w : [s, b ∗ (P) , f ]

where:

• a, s and f have the same interpretation they had in the first normal form;

• w is the list of wires used in the normal form to carry values among the different components

when mapped into hardware, they are implicitly assumed to initially hold the value false.

• b is the looping condition of the normal form. It is the same condition used to control the

execution loop in the normal form (b1 ∨ b2 in our first normal form above);

• P is a second normal form step as described above;

As with our first normal form, the behaviour of the second normal form can be described in terms

of operators from the reasoning language:

var a,w; (s)>S ; b ∗ P; ( f )⊥S ; end a,w
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1.2.3 The approach through a simple example

In this section we give an overview of the compilation approach outlined above based on a single

assignment:

x :=
HC e

This program should assign the value of the expression e to x and terminate after one clock

cycle. Following our compilation strategy, this behaviour can be implemented by means of the

following normal form:

a : [a = s,
(
a = s→ (x, a :=

snc e, f )1
)
, a = f ]

Expanding our definition of normal form, we obtain the underlying state machine representing our

simple program:

var a;

(a = s)>S ;

∗ ((a = s)→ (x, a :=
snc e, f )1);

(a = f )⊥S ;

end a

This machine can be further refined to introduce wires to carry the value produced by expression

e (calculated by combinatorial logic) into the memory-capable devices holding x (e.g., an FPGA

implementation of a flip-flop). A similar strategy can be applied to the control variable a to obtain

the following second-normal-form representation of our program:

a,w1,w2 : [a = s, (a = s) ∗

 w1
:=
snc (e� a = s� x) ‖ w2

:=
snc ( f � a = s� a);

(x, a :=
snc w1,w2)1

 , a = f ]

From our definition of the second normal form we can present the state machine corresponding to

the original program:

var w1,w2, a;

(a = s)>S ;

(a = s) ∗

 w1
:=
snc (e� a = s� x) ‖ w2

:=
snc ( f � a = s� a);

(x, a :=
snc w1,w2)1

 ;

(a = f )⊥S ;

end w1,w2, a



30 CHAPTER 1. INTRODUCTION

1.2.4 The semantics of the reasoning language

We have already mentioned that the correctness results from the algebraic compilation technique

may be invalidated by the introduction of an incorrect axiom in the set of algebraic laws the

compiler is based on. In this thesis we address this possible problem by means of providing a

denotational semantics model for the reasoning language that we use to prove the validity and

consistency of the axioms used in the compiler.

The goal is to provide a semantic framework in which it is possible to reason about synchro-

nous, parallel programs with shared-variables. As there are several existing hardware description

languages with most or all the features required, our initial intention was to try to apply the same

mathematical domain used in their semantics as the semantic framework for our work. Perhaps the

most widely used hardware description language is VHDL [Ashenden 1999]. There are several

operational [Goossens 1995; Nicola and Hennessy 1984; De Nicola and Pugliese 1994], denota-

tional [Breuer et al. 1994b;a] and logical [Breuer et al. 1995] semantic models for it. The standard

defining VHDL [IEEE 1993] informally describes the meaning of all the language’s constructs

by means of the effect they have over an interpreter (i.e., the standard describes the simulation

semantics for the language). Unfortunately, all the semantic models mentioned above follow this

interpreter-based approach, making all of them unsuitable for proving the kind of algebraic laws

needed for our compiler. Furthermore, VHDL is a language meant to give the designer a great

deal of control over the hardware being generated. From the language perspective, this means

the constructs tend to reflect the hardware structure rather than the kind of high-level program-

ming features we are interested in our input and reasoning languages (e.g. selection, assignment,

sequential composition, iteration, etc.).

Occam [Barrett 1992] is a higher-level language that can be used to generate hardware. Deno-

tational semantics based on the failures-divergences model [Roscoe 1997] have been proposed for

the language [Roscoe 1985; Roscoe et al. 1993]. In addition to these, an axiomatic characterisation

of the language was proposed in [Roscoe and Hoare 1988], together with a proof of equivalence

between this and its denotational semantics. Even though this semantic approach seems to be

more in line with our needs, there are two main drawbacks if we were to use this denotational

model as the foundation for our reasoning language: (a) the lack of explicit representation of time;

and (b) the fact that variables cannot be shared among parallel processes. Furthermore, a direct

consequence of observation (b) is that there is no need for synchronisation as a mechanism to keep

variables consistent among parallel processes.

Handel-C, on the other hand, presents all the features we are interested in, and its underlying

synchronicity forces any semantic model for the language to account for the clock-cycle-based

timing structure of all constructs. Several operational [Butterfield 2001; Butterfield and Woodcock

2002; 2005b] and denotational [Butterfield and Woodcock 2005a; Butterfield 2007; Butterfield

et al. 2007; Perna and Woodcock 2007] semantic models have been proposed for Handel-C. In all

of these works, the semantics are represented in terms of sequences indexed by clock-cycle where

each element in the sequence is a collection of sub-atomic events describing the steps the hardware

carries out to compute and store results. Unfortunately, this “operational” nature of the semantics
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incorporates too many implementation details, hindering the possibility of performing any of the

proofs about the reasoning language we intend to conduct.

Given the fact that the existing semantics for HDLs did not provide us with the kind of semantic

domain we need for our work, we considered two additional formalisms as possible semantic

domains: Higher-Order Logic (HOL) [Gordon and Melham 1993] and the weakest precondition

(wp) calculus [Dijkstra 1975; 1976]. In the case of HOL, it has been extensively used in the

specification, generation and verification of hardware components [Melham 1993; Iyoda 2007;

Berghofer and Strecker 2003; Klein and Nipkow 2003], and in the verification of HDLs themselves

[Boulton et al. 1993; Perna and Woodcock 2008]. However, HOL only offers very basic direct

support for programming constructs [Norrish and Slind 2007, Chapter 2] like the ones required in

our context and this will force us to define a whole theory of programming within HOL. This is

not a good choice for us as there are other alternatives where there is existing support for most of

the programming constructs we want to include in our framework.

On the other hand, our reason for considering the wp-calculus lies in the fact that it was used

as the semantic foundation for an algebraic compiler for an object-oriented language [Cavalcanti

and Naumann 2000; Duran et al. 2001]. The main limitation we observe over the wp-calculus as

the semantic framework for our work is its poor integration with other theories within the same

semantic domain. For example, one of the possible extensions of our work is to include pointers

in our input language. In these regards, we would like to have a way of linking our semantics with

a theory of pointers rather than having to re-formulate the entire semantic framework.

In the light of the observations and weaknesses with all the approaches mentioned above,

we selected the Unifying Theories of Programming (UTP) [Hoare and He 1998] as the semantic

domain for our reasoning language. Our choice for the UTP is mainly based in two factors. Firstly,

the UTP provides definitions for all the operators needed in our work. In this way, theories in the

UTP do not need to re-define them: they only need to show the operators are closed in the theory

(i.e., the result of combining constructs in the theory is itself within the theory). This means that

even if we define a new theory for our context (as we do in Chapter 3), we only need to analyse how

the programming operators behave under the conditions imposed by the new theory. Secondly, all

programming constructs are defined as predicates and a single notion of refinement is used across

all theories (i.e., reverse logical implication under universal closure over all known variables). This

makes each of the UTP theories a lattice [Davey and Priestley 2002] and it is possible to establish

links among them by means of Galois connections [Erne et al. 1992]. This is one of the key aspects

of the UTP as it allows an easy integration and exchange of results between different theories and

programming paradigms.

Within the UTP, our initial intention was to use the theory of designs (see Chapter 2) as the

semantic domain for our reasoning framework since it contains all the features required in our

context together with a comprehensive set of algebraic laws that are of great advantage for our

reasoning language. While trying to prove additional laws needed in our context, we discovered

a series of limitations that hindered the usability of the design theory as the semantic foundation

for our reasoning framework. This is mainly related with assertional reasoning after clock-cycle

boundaries. We solve this and other problems by restricting the theory of designs with additional
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conditions that allow the kind of assertional reasoning we need for synchronous, parallel programs

with shared variables. We use this new theory of synchronous designs (see Chapter 3) not only

as the semantic domain to prove the laws in the reasoning language, but also to give semantics to

Handel-C (described in Chapter 4) which is in line with the needs of our work.

1.3 Objective and contributions of this work

This thesis aims at producing a verified compilation approach for the Handel-C programming

language. The compilation strategy translates a formal model of the source program into a formal

abstraction of the hardware to be implemented in FPGA devices.

In the light of the objective above, the main contributions of this thesis are as follows:

• A theory of synchronous designs in the UTP. A semantic framework that allows the rea-

soning and proving of algebraic laws in the context of synchronous, shared-variable, parallel

programs.

• Semantic model for the reasoning language. A shallow embedding [Boulton et al. 1993]

of the compilation framework in the UTP theory of synchronous designs. From this un-

derlying semantic model we have proved (rather than just postulated) the basic axioms of

the compiler, hence addressing one of the major weaknesses of the algebraic compilation

approach.

• UTP semantics for Handel-C. A formal semantics for the Handel-C language that we use to

show a number of algebraic laws and equivalence relationships about Handel-C programs.

As the reasoning language is embedded in the UTP theory of synchronous designs, our

semantics for Handel-C also acts as the link to have the source language embedded in the

reasoning language.

• Verified hardware synthesis for Handel-C. A correct-by-construction compiler from a

comprehensive subset of Handel-C into net-list descriptions of hardware using the algebraic

approach to compilation.

1.4 Thesis structure

This thesis is divided into three parts. Preliminaries are the necessary topics that must be co-

vered to place the research in context. The second part, Handel-C, its semantics and extensions

for reasoning, presents our semantic model for the Handel-C language in the Unifying Theories

of Programming [Hoare and He 1998]. It also proves the basic properties about the reasoning

language operators that will serve to prove the compilation theorems. The third part, Reducing

Handel-C to net-lists, is concerned with the formulation of the normal forms used in the compi-

lation, the reduction theorems that establish the link between them and the mapping of the final

normal form into hardware.
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Chapter 2 gives a background on the UTP and presents its two most basic theories: the al-

phabetised relational calculus and the theory of designs. This chapter also covers the definition

of the basic operators that will be used across all theories together with the healthiness conditions

associated to them. The discussion then focuses on the laws and theorems that can be proved from

the different operators and that will be useful in later chapters.

Chapter 3 presents the limitations of the theory of designs as a semantic domain in the context

of synchronous, shared-variables, parallel environments addressed in this work. These issues are

addressed by means of introducing a new theory by deriving the appropriate healthiness conditions

to be imposed over the theory of designs. The rest of this chapter explores the meaning of the basic

operators in the context of our new theory and shows how the basic compilation axioms can be

proved within this semantic framework

Chapter 4 begins by providing denotational semantics for our input language (i.e., the restric-

ted subset of Handel-C described in the previous section) in the theory of synchronous designs

introduced in Chapter 3. We finish the chapter by defining the additional reasoning constructs

described in Figure 1.4. Most of these constructs will be used in the compilation of Handel-C

constructs with complex behaviour (e.g., priAlt, iteration and the communication primitives).

Chapter 5 describes the normal forms we use in our compilation and provides the reduc-

tion theorems for all the sequential aspects of Handel-C together with the parallel composition

construct. The chapter also illustrates the compilation strategy with a set of examples and presents

the strategy to map the final normal form into hardware.

Chapter 6 addresses the compilation of the input, output and priAlt constructs into hardware

following the same approach used for the sequential aspects of Handel-C. The chapter also illus-

trates the compilation of the communication primitives and the priAlt construct with an example.

Finally, Chapter 7 presents the conclusions and future possibilities for this work. In this chapter

we also explore in more detail the published work that is most closely related to this thesis.
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Chapter 2

Unifying Theories of Programming

“A computer program is identified with

the strongest predicate describing every relevant

observation that can be made of the behaviour

of a computer executing that program”

— C.A.R. Hoare

This chapter is devoted to the formalism we intend to use as the domain for the denotational

semantics for Handel-C: The Unifying Theories of Programming (UTP). The relevance of this

chapter lies in the fact that it presents the foundation from which the operators of the reasoning

language for hardware components can be defined, and their algebraic laws can be verified.

Section 2.1 presents a broad outline of the UTP and the way in which the different theories are

related to each other. In Section 2.2 we explore the most basic idea in the UTP: the alphabetised

relational calculus. We also define basic programming operations, such as sequential composition

and conditional that all the other subsequent theories will use. We conclude this section by briefly

describing the main limitation of the alphabetised relational calculus: its inability to deal with

diverging behaviour.

To solve the issues in the alphabetised relational calculus, further restrictions and additional

observations are incorporated to define the design sub-theory, as described in Section 2.3. In this

section we also define operators to combine designs, such as different forms of parallel compo-

sition and also show how the definitions from the previous section are closed under the design

theory. We also explore filtering predicates (known as healthiness conditions) associated to the

design theory and the additional laws that can be proved in this more restricted context.

The UTP encompasses theories other than these mentioned above, such as the reactive pro-

cesses theory used to give semantics to formalisms like CSP [Hoare 1983] and higher-order/declarative

programming that is used to unify functional languages such as Haskell [Hudak et al. 1992]. Ne-

vertheless, for the purpose of this thesis we intend to introduce only those concepts from the UTP

that are needed for the compilation of Handel-C programs. The interested reader is referred to

[Hoare and He 1998; Woodcock and Cavalcanti 2004; Cavalcanti and Woodcock 2006] for further

details about additional theories within the UTP.

37
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2.1 An overview of the Unifying Theories of Programming

The Unifying Theories of Programming are the result of a research effort towards finding a unified

framework to explain and relate different programming paradigms, from imperative and sequential,

to functional and parallel.

The key idea of the UTP is to use the same underlying mathematical model to give semantics to

the main features of each programming paradigm. In this way, different languages and paradigms

can be reduced to this common semantic framework, and be compared with each other. Programs

are interpreted as relations between an initial and a subsequent (intermediate or final) observation

of the behaviour of program execution.

In the UTP, each programming paradigm is associated with a theory. Each theory can, in

turn, be identified by its three main elements: an alphabet, a signature, and a set of healthiness

conditions.

A theory’s alphabet is a set of variable names that provides the vocabulary for the theory in

question. It identifies observational variables whose values are relevant to characterise system

behaviours. The initial observations of each of these variables are undecorated and compose the

input alphabet (in α) of a relation. Subsequent observations are decorated with a dash and compose

the output alphabet (out α) of a relation. The alphabet of each theory also contains special variables

relevant to the description of its programs. For example, in the theory of designs [Hoare and He

1998, Chapter 3], the boolean variable ok captures whether the program has started or not. The

observation ok′, on the other hand, has the same interpretation but with respect to the program’s

termination.

On the other hand, a theory’s signature describes the syntax denoting the objects of the theory.

The meaning of every specification is given as a predicate that is restricted to the selected alphabet

and signature.

Finally, the healthiness conditions precisely characterise the objects of interest in the theory

from the whole set of predicates expressible by the syntax. Healthiness conditions are predicates

restricting which programs belong to the theory of interest and they are useful in the unification

of theories, differentiation of paradigms into families, clarification of choices in a programming

language design, and so forth.

The following two sections provide more details about the two theories that serve as the se-

mantic foundation for our work: the alphabetised relational calculus and the theory of designs.

2.2 Alphabetised relational calculus

This section briefly describes the most basic approach used to express programs as boolean pre-

dicates within a suitable alphabet. The material we present here is meant to be introductory and

only covers the features necessary in later sections. For a complete account of the contents in this

section we refer the interested reader to [Hoare and He 1998, Chapter 2].

The alphabetised relational calculus is the most basic UTP theory and provides the definitions

for most of the programming operators that will be used by all subsequent (and subset) theories.
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As indicated by its name, programming constructs in this theory are formalised as an alphabet-

predicate pair, where the predicate’s free variables are all members of the alphabet. Furthermore,

the predicates in the theory establish the relationship between undecorated variables (i.e., the ini-

tial state) and their decorated counterparts (i.e., the final state). The standard predicate calculus

operators can be used to combine alphabetised predicates. Their definitions, however, have to

specify the alphabet of the combined predicate.

The alphabetised relational calculus provides definitions for most of the imperative-programming

constructs (e.g., selection, sequential composition, assignment, etc.). The selection construct pro-

vides the possibility of choosing one of two possible programs for execution in accordance with

the truth value of a condition. In the alphabetised relational calculus, this need is addressed by

means of an infix syntax version of the conditional operator. Informally, P� b�Q stands for P if

b else Q. More formally, the definition of the conditional operator is as follows.

Definition 2.2.1. Conditional

P� b� Q =df (b ∧ P) ∨ (¬b ∧ Q)

provided αb ⊆ αP = αQ

We will sometimes want to use the conditional construct within expressions, making P and

Q expressions themselves (rather than predicates as in the definition above). When used as a

expression, our definition for the conditional construct is as follows:

Definition 2.2.2. Conditional operator for expressions

e1 � true� e2 =df e1

e1 � false� e2 =df e2

Being able to control the flow of the program, we are now interested in describing the effects of

a list of predicates once executed in sequence. Let P and Q be predicates describing the behaviour

of two programs, the construct P; Q describes the program that first executes P and, when P

has finished, starts Q. The key aspect of this way of composing programs is that there is an

intermediate state, just after P finishes and before Q starts, where the final state of P is passed on

as the initial state of Q. This intermediate state should not be observable, as it is just a “stepping

stone” that links the execution of P with the one of Q. The UTP definition of this operator captures

this notion by existentially quantifying this intermediate step:

Definition 2.2.3. Sequential composition

P; Q =df ∃v0 • P[v0/v′] ∧ Q[v0/v]

provided v0 is a fresh variable and outα(P) = inα(Q) = v

Regardless of the complexity of its definition, sequential composition satisfies the expected

algebraic laws of associativity and distributivity through the conditional construct.
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Law 2.2.4. P; (Q; R) = (P; Q); R

Law 2.2.5. (P� b� Q); R = (P; R)� b� (Q; R)

We have presented ways of combining programs by means of the conditional and sequential

composition constructs, but we have not explained the elements that programs are constructed

from. In the imperative paradigm, assignment is the most basic action a program can perform. An

assignment of the form x := e causes the final value of x to be equal to the value of expression

e. As we use dashed variables to refer to the after value of a variable, the effect of the above

assignment can be described as x′ = e.

The informal definition above is correct in the sense it matches one side of the operational

intuition of an assignment: to update the value of the appropriate variable. On the other hand, we

also expect an assignment to leave all other variables unchanged. We have already mentioned that

one of the distinguishing features in the UTP is that every predicate has an alphabet. In the case of

the assignment construct, the alphabet allows us to state the fact that all variables not mentioned

in the assignment remain unchanged. More formally, assignment is defined as follows:

Definition 2.2.6. Assignment

x := e =df (x′ = e ∧ v′ = v)

where α(x := e) = {x, v}

It is useful, mostly for reasoning about languages and programs, to have a command that has

no effect. This command always terminates and leaves the value of all variables unchanged. For

a given alphabet A = {v, v′}, we can easily express the semantics of the construct with no effect as

the assignment v := v. If we denote this construct with the symbol II, we can define its meaning

as follows.

Definition 2.2.7. Skip

IIA =df (v′ = v)

The main characteristic of II (i.e., having no effect whatsoever over the program) is precisely

captured by the fact it is the unit for sequential composition:

Law 2.2.8. Provided P terminates we have:

P; IIαP = P = IIαP; P

On the other hand, the non-deterministic choice P u Q stands for a program that may behave

either like P or like Q, the choice being totally arbitrary. In the UTP, this behaviour between two

predicates can be simply described as disjunction.

Definition 2.2.9. Non-deterministic choice

P u Q =df P ∨ Q
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provided α(P) = α(Q)

Another distinguishing feature of the UTP is its concern with correctness in the program deve-

lopment process. In this regards, “every possible observation of any run of the program will yield

values which make the specification true” [Hoare and He 1998, Chapter 1.5]. In other words, the

behaviour of an implementation always implies its specification. If we denote universal quanti-

fication over all variables in the alphabet by means of surrounding the quantified expression by

square brackets we find that:

Definition 2.2.10. Refinement

P v Q if and only if [Q⇒ P]

From the above definition it is easy to see that the refinement ordering is a partial order: re-

flexive, anti-symmetric, and transitive. Moreover, the set of alphabetised predicates with a parti-

cular alphabet A is a complete lattice [Davey and Priestley 2002] under the refinement ordering.

The definition of refinement also allows us to prove a key result in the refinement calculus: that

reducing non-determinism leads to refinement.

Law 2.2.11. P u Q v P

It follows from the result above that a component P can be made less deterministic by adding

the possibility of it behaving like Q. An increase in a program’s non-determinism is, in general,

undesirable as it makes the program less predictable, more difficult to control and, ultimately, more

likely to go wrong. Pushing this argument to the extreme, the worst component of all is the one

that is totally unpredictable. This program can only be captured by the weakest predicate true
(with alphabet A): this is the program that aborts and behaves arbitrarily.

Definition 2.2.12. Abort

⊥ =df true

It is straightforward to show that abort is the weakest element in the implication ordering;

hence it is the bottom element of the predicate lattice ordered by implication (refinement). The top

element, on the other hand, is denoted >, and is the strongest predicate false: this is the program

that performs miracles and implements every specification.

Definition 2.2.13. Miracle

> =df false

The fact that abort and miracle are, respectively, the bottom and top elements of the predicate

lattice are captured by the following two laws, which hold for all P with alphabet A.

Law 2.2.14. ⊥ v P

Law 2.2.15. P v >
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In turn, the least upper bound operator in our predicate lattice is not defined in terms of the

relational model, but by law 2.2.16 below.

Law 2.2.16. P v (
�

S ) if and only if (P v X for all X ∈ S )

the dual of the operator defined above is defined over the conjunction of all relations in a set S

denoted
⊔

S and describes the least upper bound of a set S . Its definition is by means of the dual

of Law 2.2.16 with the implications in the opposite direction:

Law 2.2.17. (
⊔

S ) v P if and only if (X v P for all X ∈ S )

The final programming feature we are interested in discussing is scopes for program variables.

Variable blocks are split into the commands var x, which declares and introduces x in scope, and

end x, which, in turn, removes x from scope. Their definitions are presented below, where A is an

alphabet containing x and x′.

Definition 2.2.18.

var x =df ∃x • IIA

Definition 2.2.19.

end x =df ∃x′ • IIA

From this definition and the notion of sequential composition, it is easy to show that variable

declaration and undeclaration act like existential quantification over their scopes, as shown by the

results below.

Law 2.2.20. var x; P =df ∃x • P

Law 2.2.21. P; end x =df ∃x′ • P

Up to this point we have presented a theory capable of describing most of the constructs present

in languages belonging to the imperative-sequential paradigm. Our goal is now to define the mea-

ning to be assigned to diverging behaviour. The natural choice at this point would be to associate a

diverging program with abort (the worst possible predicate in the theory). This definition achieves

its purpose in the sense that the meaning of a diverting loop is completely non-deterministic. Un-

fortunately, it is not possible to prove that ⊥ is a left zero for sequential composition (i.e., Law

⊥; P = ⊥) the theory of alphabetised propositional calculus. In the context of the semantics for

iteration, this means the theory allows programs to recover from, for example, a non-terminating

loop. This result clearly contradicts reality for sequential programming, where a non-terminating

loop will iterate for ever and never recover to be able to produce valid computations again.

Unfortunately, there is no clear way to address this problem in the general framework of al-

phabetised predicates. The solution is to restrict ourselves to a subset theory, where we are only

interested in predicates of the form (P ` Q) where P and Q are the program’s precondition and

postcondition respectively. The next section addresses this theory in detail.
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2.3 The design theory

As mentioned in the previous section, the theory of alphabetised relations has the problem that

it allows, for example, non-terminating loops to be ignored. The solution to this problem in the

UTP is to restrict the theory to a subset of the alphabetised predicates in which we are able to

reason about termination. In the new theory, a new observational variable, called ok, is used

to record information about the start and termination of programs. ok records that the program

has started, and ok′ records that it has terminated. These are special variables, in the sense that

they are included in the design’s alphabet, but they cannot appear in code or in preconditions and

postconditions.

Predicates satisfying the restrictions above are called designs and the main advantage of having

predicates in the design form is that they can be split into precondition–postcondition pairs. When

implementing a design, we are allowed to assume that the precondition holds and the program

has started, but we have to fulfil the postcondition and ensure the program terminates. In the

case the precondition does not hold or the program was not started, we are neither committed to

establish the postcondition nor to make the program terminate. A design with precondition P and

postcondition Q, for predicates P and Q not containing ok or ok′, is written (P ` Q) and it is

defined as follows.

Definition 2.3.1. Design

(P ` Q) =df (ok ∧ P⇒ ok′ ∧ Q)

2.3.1 Miracle, abort and refinement revisited

In the design theory, abort has precondition false and is never guaranteed to terminate:

Definition 2.3.2. The design abort

⊥D =df (false ` true)

Notice that because of the underlying implication in the definition of designs, there are infinite

characterisations for abort in the design theory (as false⇒ P for any predicate P). However, only

two of them are taken as the definition of the design abort, as shown in the following definition.

Theorem 2.3.3. Characterisation of abort

⊥D = (false ` P)

for any predicate P

An immediate consequence of the above definition is that abort becomes a left zero for se-

quential composition. In this way the problem of the alphabetised relational theory does not exist

in the design theory. This fact is summarised by the following law.

Law 2.3.4. ⊥D; P = ⊥D
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On the other hand, the miraculous program in the design theory has precondition true, and

establishes the impossible: false. In fact, as it achieves the impossible, the miraculous design is

the design that cannot be started.

Theorem 2.3.5. The miraculous design

>D =df (true ` false) = ¬ok

As mentioned before, the concept of refinement, defined as the implementation implying the

specification, remains constant in all UTP theories described in this thesis. An interesting (and

reassuring) result about the design theory is the fact that refinement amounts to either weakening

the precondition, or strengthening the postcondition in the presence of the precondition. This is

established by the result below.

Theorem 2.3.6. Design refinement

(Q1 ` Q2) v (P1 ` P2) if and only if [Q1 ⇒ P1] ∧ [(Q1 ∧ P2)⇒ Q2]

2.3.2 Healthiness conditions

We can identify up to four healthiness conditions on a program P in the design theory: H1 re-

quires that observations cannot be made before P has started; H2 states that P cannot require

non-termination, (i.e., it is always possible for P to terminate); H3 requires P’s precondition to be

just a condition (instead of a predicate); and H4 imposes the restriction that for every initial value

of the observational variables on the input alphabet, there exist final values for the variables of the

output alphabet (i.e., P is feasible). Their precise characterisation is presented in the definition

below:

Definition 2.3.7.

H1 P = (ok ⇒ P)

H2 [P[false/ok′]⇒ P[true/ok′]]

H3 P = P; IID

H4 P;⊥D = ⊥D

The interpretations presented above are clear from the definitions of the healthiness conditions

and the expansions of the operators involved. For further information regarding the details of this

claim, refer to [Hoare and He 1998, Chapter 3].

2.3.3 Assignment, skip, sequential composition and conditional

In this new setting, it is necessary to redefine assignment and skip, as the definitions introduced

in the previous section are not designs. In both cases, the definition as a design has precondition

true and the propositional version of the construct as postcondition. More formally, we define the

design skip and assignment as follows.



2.3. THE DESIGN THEORY 45

Definition 2.3.8. Design skip

IID =df (true ` II)

Definition 2.3.9. Design assignment

x := e =df (true ` x′ = e ∧ v′ = v)

As in the alphabetised relational calculus, IID is the left unit for sequential composition. Un-

fortunately, it is not always the case that IID is also the right unit for sequential composition. Only

H3 designs satisfy that IID is their unit for sequential composition1.

Law 2.3.10. IID; P = P

The sequential composition of two assignments to the same variable is easily combined into a

single assignment.

Law 2.3.11. x := e; x := f (x) = x := f (e)

In the case of assignment, sequential composition has ⊥D and >D as right zeroes and IID as right

unit.

Law 2.3.12. x := e;⊥D = ⊥D

Law 2.3.13. x := e;>D = >D

Law 2.3.14. x := e; IID = x := e

It is also possible to commute the order of a sequence of assignments provided they do not depend

on each other.

Law 2.3.15. If e1 does not depend on y and e2 does not depend on x then:

(x := e1; y := e2) = (y := e2; x := e1)

Assignment to multiple variables is defined as the simultaneous update of each of the in-

dividual variables involved. Multiple assignment is commutative and, when updating different

variables, it can also be expressed as a sequence of individual assignments

Law 2.3.16. (x, y := e1, e2) = (y, x := e2, e1)

Law 2.3.17. If x , y and e2 does not mention x we have that:

(x := e1; y := e2) = (x, y := e1, e2)

1To keep the presentation compact, we have decided to only postulate the laws and theorems in this part of the thesis.
The proof of the laws and theorems from this and all subsequent chapters can be found in the appendices at the end of
the thesis.
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All program operators from the previous section are closed under the design theory (i.e., when

applied to designs the result is also a design). The theorems below capture this fact for the condi-

tional and sequential composition combinators. In the case of the conditional construct, when

the choice between two designs depends on a condition b, then so do the precondition and the

postcondition of the resulting design.

Theorem 2.3.18. Design conditional

(P1 ` P2)� b� (Q1 ` Q2) = (P1 � b� Q1 ` P2 � b� Q2)

A sequence of designs (P1 ` P2) and (Q1 ` Q2) only terminates when P1 is feasible and P2

is guaranteed to establish Q1. On termination, it establishes the sequential composition of the

postconditions.

Theorem 2.3.19. Design sequential composition

(P1 ` P2); (Q1 ` Q2) = (¬(¬P1; true) ∧ ¬(P2;¬Q1) ` P2; Q2)

The selection between two designs based on a condition satisfies a number of familiar algebraic

laws. The most basic property of a conditional is that its left branch is executed if the condition is

known to hold; otherwise, the other branch is selected.

Law 2.3.20. P� true� Q = P

Law 2.3.21. P� false� Q = Q

If both branches of the selection construct are the same program the choice is irrelevant and the

conditional can be eliminated.

Law 2.3.22. P� b� P = P

The conditional construct satisfies a special form of the commutativity property: we can swap the

branches but the condition upon which we are performing the selection needs to be inverted.

Law 2.3.23. P� b� Q = Q� ¬b� P

The sequential composition operator distributes leftward through the conditional.

Law 2.3.24. (P� b� Q); S = (P; S )� b� (Q; S )

In the case where an assignment is followed by a conditional, we can push the assignment inside

both branches of the conditional provided we make sure the condition is evaluated with the value

the assignment was modifying.

Law 2.3.25. x := e; P� b(x)� Q = (x := e; P)� b(e)� (x := e; Q)

The selection between two assignments to the same variable can be reduced to a single assignment

where the condition has been pushed into the expression on the right hand side.
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Law 2.3.26. (x := e1 � b� x := e2) = x := (e1 � b� e2)

The following laws allow the simplification of nested conditionals.

Law 2.3.27. (P� b� Q)� b� S = P� b� S = P� b� (Q� b� S )

Law 2.3.28. (P� b� Q)� c� R = P� b ∧ c� (Q� c� R)

Law 2.3.29. P� b� (Q� c� R) = (P� b� Q)� c� (P� b� R)

Law 2.3.30. (P� b� Q)� c� R = (P� c� R)� b� (Q� c� R)

Law 2.3.31. P� b� (P� c� Q) = P� (b ∨ c)� Q

Law 2.3.32. P� (s ∧ b)� (Q� (s ∧ ¬b)� R) = P� (s ∧ b)� (Q� s� R)

Regarding the sequential composition of designs, it is easy to show it is associative and it also

has miracle as a left zero.

Law 2.3.33. P; (Q; R) = (P; Q); R

Law 2.3.34. >D; P = >D

2.3.4 Scope and program variables

Even though the scope delimiters var and end are the same in the design theory as they were

in the alphabetised predicate calculus (i.e., existential quantification of the undashed and dashed

variable of interest respectively), it is possible express them as designs. The following definitions

can be shown to be equivalent to Definitions 2.2.18 and 2.2.19 respectively.

Definition 2.3.35. Design start of scope

var x =df (true ` var x)

Definition 2.3.36. Design end of scope

end x =df (true ` end x)

As expected, opening and immediately closing the scope of a variable has no effect whatsoever

over the program. On the other hand, closing the scope of an existing variable and immediately

opening it again produces a loss of information (and hence, increases the non-determinism).

Law 2.3.37. var x; end x = II

Law 2.3.38. end x; var x v II

The results from Law 2.3.38 can be further strengthened provided we follow the closing and ope-

ning of the scope of a variable x with an independent assignment to it.
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Law 2.3.39. If x is not free in e then we have that:

(end x; var x := e) = (x := e)

An assignment to a variable just before the end of its scope is completely irrelevant.

Law 2.3.40. (x := e; end x) = end x

The effect of introducing a variable in scope is to incorporate the variable name to the alphabet

and also to initialise the variable to an arbitrary value. This non-determinism can be reduced by

initialising the variable after its declaration.

Law 2.3.41. var x v var x; x := e

A sequence of variable declarations (undeclarations) can be subsumed into a single declaration

(undeclaration) of the list of variables.

Law 2.3.42. var x; var y = var x, y

Law 2.3.43. end x; end y = end x, y

The order of declaration (undeclaration) of variables is irrelevant.

Law 2.3.44. var x, y = var y, x

Law 2.3.45. end x, y = end y, x

Up to this point we have presented a mechanism that when given a program P that contains x

and x′ in its alphabet, allows us to remove them from the alphabet. Some times it is necessary to

be able to perform the converse operation: to be able to produce a program that does have x or x′

in its alphabet from a program Q that does not contain them. Since Q does not update the value of

x, it makes sense to assume the value of x is kept constant. The following definition captures this

notion.

Definition 2.3.46. Alphabet extension

(P1 ` P2)+x =df (P1 ` P2 ∧ x′ = x)

provided x < α(P1 ` P2)

With the definition above we can now introduce the following laws that describe the process

of expanding a variable’s scope over a process that does not mention the variable.

Law 2.3.47. If P does not mention x then

P; var x = var x; P+x

Law 2.3.48. If P does not mention x then:

end x; P = P+x; end x
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It is possible to end the scope of a variable x just before an assignment to it, provided the value

assigned does not depend on the value of x.

Law 2.3.49. Provided P is H3 and e does not mention x we have:

P; (x := e) = (P; end x)+x; (x := e)

2.3.5 Assertions and assumptions

The assumption of a condition b, denoted by b> can be regarded as conditional where: the whole

construct terminates immediately leaving the state unchanged (i.e., it behaves like skip) if the

condition is true, or it behaves like miracle otherwise.

Definition 2.3.50. Assumption

b> =df IID � b� >D

On the other hand, the assertion b⊥ also behaves like skip when b holds, but it behaves like abort

otherwise.

Definition 2.3.51. Assertion

b⊥ =df IID � b� ⊥D

By introducing these two constructs, the UTP theory allows assertional reasoning within any

language that can be given semantics using the theory of designs. This is one of the great advan-

tages of the UTP as a unifying mechanism for programming languages.

Up to this point we have defined the assumption and assertion construct in terms of more

basic constructs. In certain circumstances it will be useful to be able to express assertions and

assumptions as a design. The following two theorems provide the design form for these two

constructs.

Theorem 2.3.52. Design characterisation of assumption

b> = (true ` II � b� false)

Theorem 2.3.53. Design characterisation of assertion

b⊥ = (b ` II)

Assuming a false condition leads to miraculous behaviour, while asserting a false condition leads

to abortion.

Law 2.3.54. false> = >D

Law 2.3.55. false⊥ = ⊥D
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The following laws allow the simplification of sequences of assertions and assumptions within our

language.

Law 2.3.56. b>; b> = b>

Law 2.3.57. b⊥; b⊥ = b⊥

Law 2.3.58. b⊥; b> = b⊥

Law 2.3.59. b>; b⊥ = b>

Law 2.3.60. b>; c> = (b ∧ c)>

Law 2.3.61. b⊥; c⊥ = (b ∧ c)⊥

Law 2.3.62. (b ∨ c)>; b> = b>

Also, the sequential composition of assumptions commutes.

Law 2.3.63. b>; c> = c>; b>

Assertion is refined by skip and skip is, in turn, refined by assumption2.

Law 2.3.64. b> w IID w b⊥

Asserting or assuming the value of a variable x is equal to an expression e has no effect if they are

performed just after an assignment setting x to that value.

Law 2.3.65. If e1 does not mention x then:

(x, y := e1, e2) = (x, y := e1, e2); (x = e1)⊥

Law 2.3.66. If e1 does not mention x then:

(x, y := e1, e2) = (x, y := e1, e2); (x = e1)>

Assumption and assertion commute with assignment provided their condition does not depend on

the value modified by the assignment.

Law 2.3.67. If b does not depend on x then

x := e; b> = b>; x := e

Law 2.3.68. If b does not depend on x then

x := e; b⊥ = b⊥; x := e

2From this observation it is possible to conclude that (b⊥, b>) is a simulation in line with [Hoare and He 1998,
Chapter 4]
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It is also possible to shift an assertion about the value of a variable x before and after a more

general predicate P, provided it keeps the value of x constant.

Law 2.3.69. Provided P is H3 and H4 we have:

P+x; (x = e)⊥ = (x = e)⊥; P+x

Two variables that have been made equal by an assignment can be exchanged when used in the

condition of an assertion.

Law 2.3.70. x := y; (y = e)⊥ = x := y; (x = e)⊥

It is possible to assume the value of the condition inside the branches of a conditional.

Law 2.3.71. P� b� Q = (b>; P)� b� ((¬b)>; Q)

The following laws allow the simplification of the conditional construct based on knowledge pro-

vided by assertions or assumptions.

Law 2.3.72. b>; (P� b� Q) = b>; P

Law 2.3.73. (¬b)⊥; (P� b ∨ c� Q) = (¬b)⊥; (P� c� Q)

Law 2.3.74. b>; (P� b ∨ c� Q) = b>; P

Law 2.3.75. (¬b)>; (P� b� Q) = (¬b)>; Q

Law 2.3.76. b⊥; (P� c� Q) = (b⊥; P)� c� (b⊥; Q)

Law 2.3.77. b>; (P� c� Q) = (b>; P)� c� (b>; Q)

Law 2.3.78. Provided ¬(b ∧ c) we have:

b>; (P� c� Q) = b>; Q

To introduce a variable followed by an assumption about the value it holds is equivalent to intro-

ducing the variable followed by an assignment of that value to the variable.

Law 2.3.79. var x; (x = e)> = var x; x := e

2.3.6 Recursion and iteration

If X stands for the recursive program we are constructing and F(X) describes the behaviour of the

program for a given context F, then µX•F(X) is a solution to the equation X = F(X). Furthermore,

it is the least solution. The following two laws capture these notions.

Law 2.3.80. µX • F(X) = F(µX • F(X))

Law 2.3.81. F(Y) v Y ⇒ µX • F(X) v Y
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The construct (b ∗ P) is a syntactic abbreviation of the more conventional iteration construct

while b do P

and it is defined as the least fixed point of the equation: (P; X)� b� IID. More formally:

Definition 2.3.82. Loop

b ∗ P = µX • (P; X)� b� IID

If the loop’s condition does not hold at the beginning of its execution, it reduces to skip. On the

other hand, if the condition does hold, its body gets executed at least once.

Law 2.3.83. (¬b)>; b ∗ P = (¬b)>

Law 2.3.84. (¬b)⊥; b ∗ P = (¬b)⊥

Law 2.3.85. b>; b ∗ P = b>; P; (b ∗ P)

When a loop terminates, its condition is necessarily false.

Law 2.3.86. b ∗ P = (b ∗ P); (¬b)⊥

If P preserves a certain condition, then so does b ∗ P.

Law 2.3.87. Provided c⊥; P = c⊥; P; c⊥ we have:

c⊥; (b ∗ P) = c⊥; (b ∗ P); c⊥

2.3.7 Disjoint-alphabet parallelism

Parallel composition is initially defined in the UTP as the conjunction of the predicates describing

the behaviour of the individual components that are placed in parallel [Hoare and He 1998, Chapter

1]. In order to avoid interference between the parallel processes it is necessary for the variables in

each of the parallel processes’ alphabet to be different from each other. This notion is known as

alphabet disjointness and it is defined as follows:

Definition 2.3.88. Disjoint alphabets

αP ∩ αQ = ∅

A consequence of modelling concurrency as conjunction is that it allows each process to start

and finish independently from each other. This is not a very desirable feature as parallel program-

ming usually requires synchronisation on start and termination. A consequence of the synchro-

nicity at the beginning and end of the parallel execution is that if one of the parallel processes

diverges, then the whole parallel program diverges. Unfortunately, capturing parallel composition

as conjunction fails at capturing this behaviour.

The solution is in the design theory and its finer degree of control over termination. The

parallel composition of two disjoint designs P and Q is defined as:
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Definition 2.3.89. Disjoint alphabet parallelism

(P1 ` P2) ‖ (Q1 ` Q2) =df (P1 ∧ Q1 ` P2 ∧ Q2)

provided αP ∩ αQ = ∅, P = (P1 ` P2) and Q = (Q1 ` Q2).

Disjoint-alphabet parallelism is commutative, associative and it has unit IID and zero ⊥D.

Law 2.3.90. P ‖ Q = Q ‖ P

Law 2.3.91. P ‖ (Q ‖ R) = (P ‖ Q) ‖ R

Law 2.3.92. (IIA ‖ P) = P+A

Law 2.3.93. ⊥D ‖ P = ⊥D

Disjoint-alphabet parallelism distributes over conditional.

Law 2.3.94. (P� b� Q) ‖ R = ((P ‖ R)� b� (Q ‖ R))

For the following law we need to introduce the notion of a descending chain: an infinite

disjunction of weakening predicates, generally used to model the process of successive approxi-

mation. More formally, a set of predicates E = {Ei | i ∈ N} is a descending chain for a predicate P

provided

E0 = false

[Ei w Ei+1] for all i ∈ N

P =
∨

i

Ei

Taking advantage of the definition above, it is also possible to show that disjoint-alphabet paralle-

lism distributes over least upper bounds.

Law 2.3.95. For any descending chain S = {S n | n ∈ N} we have that:

(
⊔

S ) ‖ R =
⊔

n

(S n ‖ R)

Sequential composition can be exchanged with disjoint-alphabet parallelism under certain

conditions. This law essentially states the order of application of parallel and sequential com-

position is irrelevant to the final result. This property is sometimes called the abides property3.

Law 2.3.96. If both P and Q are H4 we have that:

(P; R) ‖ (Q; S ) = (P ‖ Q); (R ‖ S )

3The word “abides” can be seen as a contraction of “above-besides”, which gives the 2-dimensional interpretation of
this property where parallel and sequential composition are performed horizontally and vertically respectively. In this
setting, the property states that any order or execution (i.e., rows first followed by columns or vice versa) will produce
the same result.
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The disjoint-alphabet parallel operator can be reduced to sequential composition, provided the

right alphabet extensions are in place.

Law 2.3.97. If P and Q are H3 and H4, then:

P ‖ Q = P+αQ; Q+αP = Q+αP; P+αQ

The parallel execution of two individual assignments is equivalent to a multiple assignment.

Law 2.3.98. (x := e1 ‖ y := e2) = x, y := e1, e2

The scope of a variable can be reduced to just one of the parallel branches (provided the other

branch does not mention that variable).

Law 2.3.99. Provided Q does not mention x we have:

var x; (P ‖ Q) = (var x; P) ‖ Q

Law 2.3.100. Provided Q does not mention x and P and Q are H3, we have:

(P ‖ Q); end x = (P; end x) ‖ Q

2.3.8 Parallel by merge

So far we have presented a form of parallelism that relies on the parallel processes being disjoint.

The assumption of disjointness enables a very simple definition for the parallel operator that can

be implemented by means of real parallel execution or by arbitrary interleaving of the parallel

processes. Nevertheless, it is rarely the case that we are in a disjoint-variable environment when

we are dealing with commercial programming languages or hardware.

With shared-variables, the parallel composition operator requires a mechanism for dealing

with the effects of simultaneous updates to the same variables. In the UTP, this is achieved by

means of creating local copies of the shared variables for each of the parallel processes. In this

way, each process can freely modify their own private copy of the shared store without the risk

of inconsistencies. When both processes have terminated, the local copies are joined by a merge

predicate that calculates the effect on the shared variables from the values in their local copies.

The creation of local copies of a list of shared variables m is achieved by substituting m′ by

i.m′ (where i is an index), transforming a parallel process of the form P(m,m′) into the renamed

P(m, i.m′). In this way, the output alphabet of P no longer mentions m′, hence it cannot interfere

with other parallel processes modifying m′. The substitution described above is achieved by means

of a separating simulation, the definition of which is as follows.

Definition 2.3.101. Separating simulation

Ui(m) =df var i.m := m; end m
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From the above definition it is possible to identify a number of useful algebraic properties

about the separating simulation predicate. Firstly, the order in which the shared variables are

renamed is not relevant. Moreover, the separation of a list of variables can be done in a single step

or one at a time. The following two laws characterise these two properties.

Law 2.3.102. Provided x and y are different variables we have:

U0(x, y) = U0(y, x)

Law 2.3.103. Provided x and y are different variables we have:

U0(x, y) = U0(x); U0(y)

The separating simulation construct defined before allows us to rename the variables of parallel

processes so they can be combined with the disjoint-alphabet parallel operator. The missing step

is the mechanism for merging the final value of the local copies that each process was modifying.

The merging predicate is usually denoted by M and it updates m from the values in 0.m and 1.m.

In this context, the definition of parallel by merge is as follows:

Definition 2.3.104. Parallel by merge

P ‖M Q =df ((P; U0(m)) ‖ (Q; U1(m))); M

The M predicate is clearly domain specific, as each domain will require a different way of

calculating the final value for the shared variables from the local copies. Instead of treating each

possible definition, Hoare and He [1998, Chapter 7] present a set of validity properties for M.

Definition 2.3.105. Valid merge

1. M is symmetric in its input 0.m and 1.m:

(0.m, 1.m := 1.m, 0.m); M = M

2. M is associative

(0.m, 1.m, 2.m := 1.m, 2.m, 0.m); M3 = M3

provided M3 = ∃x, t • M(ok,m, 0.m, 1.m, x, t) ∧ M(t,m, x, 2.m,m′, ok′)

3. M is idempotent in its input 0.m and 1.m

(0.m, 1.m := m,m); M = II

The validity requirements capture the minimal set of properties a merge function M must satisfy if

commutativity, associativity and II-identity are to be proved for a parallel by merge operator based

on M. For further details, the reader is referred to [Hoare and He 1998, theorem 7.2.10].
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As mentioned above, provided M is a valid merge, a set of laws similar to the one satisfied

by disjoint-alphabet parallel operator can be proved for the parallel by merge operator. Disjoint-

alphabet parallelism is commutative, associative and it has pseudo-unit IID and zero ⊥D.

Law 2.3.106. P ‖M Q = Q ‖M P

Law 2.3.107. P ‖ (Q ‖M R) = (P ‖M Q) ‖M R

Law 2.3.108. (IIA ‖M P) v P+A

Law 2.3.109. true ‖M P = true

Disjoint-alphabet parallelism distributes over conditional and least upper bounds.

Law 2.3.110. (P� b� Q) ‖M R = ((P ‖ R)� b� (Q ‖ R))

Law 2.3.111. For any descending chain S = {S n | n ∈ N} we have that:

(
⊔

S ) ‖M R =
⊔

n

(S n ‖M R)

A restricted version of the abudes principle holds for parallel by merge.

Law 2.3.112. Provided x := e does not mention m we have that:

(x := e; P) ‖M Q = (x := e); (P ‖M Q)

Regarding the healthiness conditions in the design theory, the following theorem shows that pro-

vided M preserves healthiness conditions H1 to H4, then the healthiness conditions that P and Q

satisfy will be preserved by the parallel by merge operator.

Theorem 2.3.113. ‖M preserves H1 to H4.

2.3.8.1 The merge predicate

The goal of this section is to define a particular merge operator for Handel-C programs. We will

also show our operator is valid (i.e., it satisfies the valid merge criteria from the UTP).

We take advantage of two domain-specific facts about Handel-C: (a) its synchronous nature

ensures that M will be joining the results of two parallel processes that perform their actions

within a single clock cycle; and (b) Handel-C semantics allows at most one write to any shared

variable per clock cycle4. Our definition of M merges the results from P ‖M Q by updating the

shared variable m with the value in the local copies of m that changed during the parallel execution

of P and Q. If none of the parallel processes modified its local copy of m, then M keeps m constant.

4This is a natural restriction given the hardware-oriented nature of Handel-C and the fact that flip-flops do not allow
simultaneous writes.
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Definition 2.3.114. Merge operator

M(ok,m, 0.m, 1.m,m′, ok′) =df (ok′ = ok) ∧ m′ =


(m� m = 1.m� 1.m)

� m = 0.m�

(0.m� m = 1.m� (1.m u 0.m))


From the above definition it is easy to show that M is symmetric and that it reduces to skip when

both of the copies to be merged are equal to the original value for the shared variable. For the rest

of this thesis we will sometimes omit some/all of the arguments passed to M when they are clear

from the context. Furthermore, we will not mention ok and ok′ any further in this thesis, as they

correspond to the theory’s observational variables with the same name.

Law 2.3.115. (0.m, 1.m := 1.m, 0.m); M = M

Law 2.3.116. (0.m, 1.m := m,m); M = II

From Definition 2.3.114, it is important to notice that we have “totalised” the definition of M in

order to cover the (impossible) case where the two parallel processes modify m. According to our

definition, the result of multiple assignments to the same variable during the same clock-cycle is

the internal choice of updating the store with either of the values being assigned. This unexpected

non-determinism can be explained at the hardware level by the unpredictable value that will be

stored in a register when it is fed with more than one value at the same time. The consequence

of this “extended” behaviour allows M to be associative on its input, as shown by the following

result.

Law 2.3.117. (0.m, 1.m, 2.m := 1.m, 2.m, 0.m); M3 = M3

From the three results above, M is a valid merge predicate. A shared-variables parallel operator

with our merge predicate has the properties defined in the previous section. In addition to the

validity properties, M also satisfies the following two laws:

Law 2.3.118. (0.m = v); M(v, 0.m, 1.m,m′) = (m′ = 1.m)

Law 2.3.119. (0.m, 1.m := v, v); M(m, 0.m, 1.m,m′) = m′ = v

The following theorem provides us with the result that combined with theorem 2.3.113 ensures

our parallel by merge operator preserves the design theory’s healthiness conditions.

Theorem 2.3.120. M preserves H1 to H4.

Finally, our definition of M makes it resemble the behaviour of a selector. By selector we

mean a deterministic function that will select from a set of values according to the one that is

different from a reference value. More formally:

Definition 2.3.121. A deterministic selection function

SELECT (m, 0.m, 1.m) =df (m� m = 1.m� 1.m)� m = 0.m� 0.m
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The fact that M behaves like a selector is established by the following theorem of a refinement

relationship between M and an assignment using the selector function defined before.

Theorem 2.3.122. Selection function – M equivalence

M(m, 0.m, 1.m,m′) v m := SELECT (0.m, 1.m,m)

2.3.9 Synchronous, shared-variable parallelism

In this section we address the main limitation of the other forms of parallelism presented up to this

point: that no process can ever reliably access the results produced by all other processes in the

system. By definition, processes synchronise when they communicate with each other and agree

on the value for the variables shared among them.

In the context of the UTP, each process can synchronise with its environment by means of

committing its updated values for the shared variables for them to be merged. At the beginning

of the next clock cycle, all synchronous processes update their local copies of the shared variables

with the value calculated by the merging predicate.

It is clear that the additional behaviour introduced by programs that need to synchronise cannot

be handled by the parallel by merge approach as described in the previous section. In the UTP

[Hoare and He 1998, Chapter 7] this limitation is solved by means of incorporating three new

variables: a clock-cycle counter c; and, for each shared variable m, the sequences m.in and m.out.

If m is the variable the process works on during the clock-cycle c, then x.outc is the value the

process is committing to be merged (i.e., the value of m at the end of the clock cycle). On the other

hand, x.inc is the merged value for m that all processes receive (and should set their local copies

of m to) at the beginning of clock-cycle c + 1.

The relationship between m, m.in and m.out described above is maintained by means of the

synchronisation operation sync. This operation is also responsible for keeping the clock-cycle

counter set to the right value.

Definition 2.3.123. The synchronisation operation

sync = (true ` c,m,m.outc := c + 1,m.inc,m)

The merge operation from the previous section is used to calculate the value of the shared

variables from the values in the local copies at the end of each clock-cycle. As outlined in the

previous section, parallel by merge is defined as

(P ‖M Q) = ((P; U0(m)) ‖ (Q; U1(m))); M

hence the merging is performed once the parallel execution has terminated. In this context, the fact

that P and Q may perform more than one clock-cycle makes the application of M insufficient to

calculate the merged values at each of the synchronisation points. Furthermore, not only the value

of m should be calculated by the merge, but also the merged values for c and the m.out sequence.
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What is necessary at this point is a new merge predicate that is capable of merging the whole

behaviour of two programs. The new merge predicate should apply the M at all the synchroni-

sation points that arose while the two processes were executed in isolation and return the merged

behaviour that will result from their parallel execution.

Assuming parallel processes with the same duration (i.e., same number of clock-cycles), the

merging of sequences of synchronisation actions is addressed by the final merge M̂D predicate.

Definition 2.3.124. Final merge

M̂D =df (0.c = 1.c)⊥; c := 0.c ∧

M(m, 0.m, 1.m,m′) ∧{
M((m� i = c� ini−1), 0.outi, 1.outi, out′i | c ≤ i < 0.c)

}
∧{

II{outi} | i < c
}
;

end 0.c, 1.c, 0.out, 1.out

where {Pi | l ≤ i < n} stands for the parallel expression Pl ∧ Pl+1 ∧ · · · ∧ Pn−1.

The first line of the above definition calculates the final value of the clock under the assumption

that both branches had taken the same amount of clock cycles. The second line applies the merge

predicate M to calculate the final value of m. The third line states that at each synchronisation

point, the value of m.out is computed on the assumption that m had the value input on the previous

sync (if any). The fourth line ensures the values in the sequence at times before the current parallel

process executed are kept constant. The final line finishes the scope of the variables introduced by

the separating simulations.

The parallel-by-final-merge defined above satisfies Laws 2.3.106 to 2.3.111, like its asynchro-

nous counterpart from the previous section. Furthermore, the abides principle gets specialised to

incorporate synchronisation points.

Law 2.3.125. (P; sync; R) ‖M̂D
(Q; sync; S ) = (P ‖M Q); sync; (R ‖M̂D

S )

We have mentioned the m.in sequence and we have described how the sync action uses it

to receive the values that should be used after each process has synchronised. This operational

understanding of the m.in sequences can be easily specified in the relational calculus: the initial

value of the m.in sequence should be the same as the final (merged) value of the m.out sequence.

The definition of parallel by merge of synchronous processes with shared variables is as follows.

Definition 2.3.126. Shared variables

(shared m; P) =df var m.in,m.out, c; (m.out, c := 〈〉);

(P ∧ (m.in = m.out′)); end m.in,m.out, c

2.3.10 Normal forms

A collection of increasingly complex and general normal forms are presented in the UTP [Hoare

and He 1998, Chapter 5]. Normal forms are defined to cope with assignment, non-determinism,
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non-termination and recursion, with the goal of covering the complete set of programming constructs,

and to address general aspects of the theory in a more precise way.

In this section we present only the normal forms dealing with assignment and recursion. We

use the results from the assignment normal form in the transformation from first to second normal

form in Section 5.2.3 while the results from the recursion-capable normal form are useful when

dealing with recursion in the next chapter.

2.3.10.1 Assignment normal form

The first normal form we are interested in describing is the total assignment, in which all the

program’s variables appear on the left hand side in a certain order, and all expressions on the right

hand side are well defined.

Definition 2.3.127. Assignment normal form

x, y, ..., z := e, f , ..., g

A partial assignment can be transformed into a total one by adding the identity assignment to the

missing variables:

Law 2.3.128. (x, y, · · · := e, f , . . . ) = (x, y, . . . , z := e, f , . . . , z)

The list of variables in a total assignment can be permuted provided the expressions on the right-

hand side of the assignment are subjected to the same permutation.

Law 2.3.129. (x, . . . , y, z, · · · := e, . . . , f , g, . . . ) = (x, . . . , z, y, · · · := e, . . . , g, f , . . . )

As captured by Law 2.3.11, it is possible to substitute a variable by the value assigned to it in the

precedent statement. Based on this result, the following law allows the elimination of sequential

composition from the normal form.

Law 2.3.130. (v := g; v := h(v)) = (v := h(g))

Similarly, the following result is based in Law 2.3.26 to provide a mechanism to eliminate the

conditional statement.

Law 2.3.131. ((v := g)� b� (v := h)) = (v := (g� b� h))

2.3.10.2 Recursion-capable normal form

The introduction of recursion into the language permits the construction of a program whose de-

gree of non-determinism cannot be expressed by finite means. The solution is to express the

program as an infinite sequence of expressions

S = {S i | i ∈ N}

where each S i is in finite normal form as defined in the previous section. In this way we can

express all the possible behaviours of the program S together with some impossible ones as well.
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To solve this problem, we request that each S i+1 is potentially stronger than its predecessor (i.e.,

S i+1 w S i,∀i ∈ N). The exact behaviour of the program is captured by the least upper bound of

the whole sequence. This is the normal form for programs that contain recursive behaviour:

Definition 2.3.132. Recursion-capable normal form⊔
i

S i

 or more briefly
(⊔

S
)

The distribution laws that allow us to eliminate the other operators of the language are as follows:

Law 2.3.133. (
⊔

S ) u P =
⊔

i(S i u P)

Law 2.3.134. P� b� (
⊔

S ) =
⊔

i(P� b� S i)

Law 2.3.135. (
⊔

S ); P =
⊔

i(S i; P)

Law 2.3.136. Provided P is a finite normal form, we have that:

P; (
⊔

S ) =
⊔

i

(P; S i)

The following laws are required to eliminate the operators of the language when both of their

arguments are in the normal form.

Law 2.3.137. (
⊔

S )� b� (
⊔

T ) =
⊔

i(S i � b� Ti)

Law 2.3.138. (
⊔

S ); (
⊔

T ) =
⊔

i(S i; Ti)

The final law allows us to express recursion normal form, provided the recursive function preserves

the order structure and least upper bounds (i.e., it is continuous).

Law 2.3.139. Provided F is continuous we have that:

µX • F(X) =
⊔

i

Fi(true)
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Part II

Handel-C, its semantics and extensions
for reasoning
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Chapter 3

A theory of synchronous designs

“Notations are a frequent complaint... but the real problem

is to understand the meaning and properties of the symbols

and how they may and may not be manipulated, and to gain

fluency in using them to express new problems, solutions and proofs”

— C.A.R. Hoare

The goal of this chapter is to provide a semantic framework in which it is possible to reason

about shared-variables, synchronous, parallel programs. As outlined in Chapter 1, our initial in-

tention was to use the theory of designs from the UTP described in the previous chapter as the

semantic domain for our reasoning framework. The main motivations for this choice were the

fact that the design theory contains all the programming features described above together with a

comprehensive set of laws that would be of great advantage in our context. However, while trying

to prove some additional laws needed in our context we discovered a series of limitations that hin-

dered the usability of the design theory as the semantic foundation for our reasoning framework.

Section 3.1 explains these limitations in detail, yet they can be summarised as follows:

1. The final merge operator used to define the parallel by merge construct cannot handle pro-

grams of different length.

2. The semantics of assignment in Handel-C cannot simply be the assignment design in the

UTP. Moreover, the semantics of the assignment construct in Handel-C needs to denote the

advance in time (assignment takes one clock cycle) and be independent of the context in

which it is placed (i.e., in sequential or parallel composition).

3. In the context of shared variables, it is not possible to assume x = e right after assigning e

to x provided x is a local variable. More formally, it does not hold in the design theory that:

(var x; P; x := e; sync; Q; end x) = (var x; P; x := e; sync; (x = e)>; Q; end x)

To address these limitations, we take the UTP approach and introduce additional observation

variables and healthiness conditions to the theory of designs to define our own synchronous theory.

65
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The new observation variables represent: (a) the clock-cycle counter (necessary to keep track of

time and synchronisation points); and (b) clock-indexed sequences keeping the history of each

variable in the program. The new healthiness conditions, in turn, ensure that: (i) the time always

progresses forward (i.e., no “time travelling”); (ii) history is preserved (i.e., the past cannot be

modified); and (iii) the synchronisation mechanism is controlled only by the theory and not by any

of the individual processes.

As expected, the addition of new observation variables and healthiness conditions mentioned

above restricts the theory of designs and creates a whole new theory. If we are to use a new

theory as the reasoning language for our compiler we would normally need to provide definitions

of all programming operators we are interested in and prove all the laws we will later on use for

reasoning. Fortunately, we can take advantage of the “unifying” approach of the UTP and use

the healthiness conditions as the link bridging the gap between the theory of designs and our new

theory1. In this way, all basic constructs in the new theory are the “healthy” versions of their design

counterparts and operators only need to be shown to be closed under the healthiness conditions. On

the other hand, we still need to prove the validity of the algebraic laws for the reasoning language

in the new theory. Luckily, a considerable number of this proofs follow from their design-based

equivalent or can be proved using the same proof strategy. Section 3.2 describes the foundations of

the theory of synchronous designs, its observations and healthiness conditions. In Section 3.3 we

show that most of the results from Section 2.3 still hold in the new theory and provide additional

laws that are needed in later chapters.

3.1 Limitations of the theory of design in our context

The first issue arising from trying to use the theory of designs to model programs in our context is

the requirements imposed to achieve parallel behaviour: only processes that take the same amount

of time can be put in parallel using the results from Section 2.3.9. We do not want to restrict

ourselves to this type of parallel behaviour as most programming languages in our context do not

pose any restrictions on how processes can be composed in parallel. In fact, it is common practice

to have a never-terminating server process (like a driver for a hardware device) in parallel with

other finite-length processes that act as its clients.

On the other hand, the fact that we intend to reason in a context where the time model is desi-

gned to mimic synchronous behaviour and that most variables are shared, suggests our semantics

should take advantage of the synchronous, shared-variable parallel environment from Definition

2.3.126. In this context, the second shortcoming of using the theory of designs as our reasoning fra-

mework is that synchronisation is only meant to happen within parallel environments. Our context

comprises languages where synchronisation permeates all constructs independently of them being

executed in sequence or in parallel. Furthermore, our interest in the synchronisation action (de-

noted as sync in the theory of designs) is not only based on its functionalities as the means of

keeping all processes having consistent copies of the shared variables. We are also interested in

1Technically, the new healthiness conditions together with the design healthiness conditions H1 ◦H2 form a Galois
connection between the lattice of designs and the lattice of predicates in our synchronous theory.
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the capabilities of this construct as the main (and only) way of controlling the way in which time is

recorded in our model (i.e., the clock cycle counter). For example, the semantics of x :=
HC e requires

not only that all other processes to be notified of the new value for x but also to signal that a whole

clock cycle has passed while performing this update.

An obvious solution to this problem is to assume the scope of the shared variables and the

synchronous environment encompasses the whole program. In this way, assignments of the form

x :=
HC e can always be described by the expression (x := e; sync). The problem arising within the

synchronous context is that law

(x :=
HC e) = (x :=

HC e) # (x = e)> (3.1)

no longer holds in the theory. This fact can be explained in the context of parallel programs. If we

consider the program ((x :=
HC e1) ‖HC (x :=

HC e2)), it is not always true that it is equivalent to the program

((x :=
HC e1 # (x = e1)>) ‖HC (x :=

HC e2)). In particular, Law (3.1) should not hold as both assignments are

trying to update x and, in general, it is not clear which value will be produced after the merge takes

place.

On the other hand, if x is not a shared variable across parallel processes, there is no reason for

this law to not to hold. From the semantics perspective, if we try to prove Law (3.1) we can follow

the reasoning below:

(x :=
HC e)

= {Proposed semantics for Handel-C assignment}

x := e; sync

= {Definition 2.3.123 and law 2.3.11}

c, x, x.outc := c + 1, x.inc, e

From this point it is necessary to bind x.inc with the value of e if we are to prove that x =

e after the assignment. If we recall from Definition 2.3.126, expressions in the shared context

are subject to the additional condition that x.in = x.out′, hence if our program is of the form

(shared x; (x :=
HC e); P) we can follow a reasoning path similar to the one presented above and reach

a situation where

((c, x, x.outc := c + 1, x.inc, e); P) ∧ x.in = x.out′

If we were able to obtain (c, x, x.outc := c+1, x.inc, e)∧ x.in = x.out′ from the above equation,

we could actually prove Law (3.1). In order to achieve that, we need to be able to show that

((P; Q) ∧ x.in = x.out′) = (P ∧ x.in = x.out′); (Q ∧ x.in = x.out′) (3.2)

Unfortunately, the result described in equation 3.2 does not hold for the general case as it requires

additional restrictions on c, x.out and x.in that are not met in the theory of designs.

An alternative semantic framework in our context is the UTP theory of reactive processes
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[Hoare and He 1998, Chapter 8]. This theory is expressive enough to cover all our needs, as it was

originally devised to cope with non-deterministic behaviour and blocking communications. In fact,

it can be regarded as covering a superset of the required features for our context. On the other hand,

it is the ability to cope with refusals and waiting states makes the reactive theory too detailed for

us and, thus, unnecessarily complex to reason with in our synchronous yet deterministic context.

The semantic domain we are looking for is a new theory that lies in between the design and the

reactive processes theories. We follow the same approach used in the UTP to further restrict the

design theory to a new theory where the missing properties from this section can be shown to hold2.

The next section presents our main contribution in this direction: a new theory of synchronous

processes with shared variables. The new theory addresses all the issues mentioned in this section,

and provides a comprehensive set of algebraic laws that enable us to reason about synchronous

parallel programs with shared variables.

3.2 The theory of synchronous designs

The fact that we are dealing with shared-variables in a synchronous environment, indicates a so-

lution based on the ideas presented in the shared environments from Definition 2.3.126. We first

note that the key features of this definition are the clock counter c and the sequences x.in and x.out.

Our theory of synchronous programs includes these same variables, but with two main differences:

• Global observational variables. c, x.in and x.out are observational variables and no longer

take part in the “implicit” lists of variables such as v in the definition of assignment. Like

ok and ok′, these variables have global scope that is implicitly opened and closed before and

after the whole program respectively.

• Implicit initialisation and binding. The new variables are implicitly initialised (c = 0 and

x.out = 〈〉) before the beginning of the program , while x.in to x.out′ are implicitly bound

by the expression x.in = x.out′ at the end of the program.

As with the design theory, we are not interested in all the predicates that can be expressed in

the context of the syntax described above. In particular, we are only interested in programs that

can advance the clock cycle counter forward, that do not modify the history of each variable x kept

in the corresponding x.out sequence and that keep x.in constant as described by the healthiness

conditions below:

Definition 3.2.1. Core synchronous healthiness conditions

S1 P = P ∧ (c ≤ c′)

S2 P = P ∧ x.out ≤ x.out′

S3 P = P ∧ x.in′ = x.in

2This same approach was used to solve the limitations of the alphabetised relational calculus when dealing with
non-termination. In that case, the solution was to introduce the ok and ok′ observations and to incorporate healthiness
conditions, leading to the definition of the theory of designs.
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Note that operator ≤ is overloaded in the above definition: it denotes the standard ordering for

numbers (i.e., “less than or equal to” relation) in S1, yet it stands for “sequence prefix” in S2. On

the other hand, it is common practice in the UTP to consider healthiness conditions not only as a

predicate (i.e., “is P healthy?”) but also as a function that “makes P healthy”. In this context, we

will use the notation S to refer to the simultaneous application of the three healthiness conditions

described above:

Definition 3.2.2. Synchronous healthiness condition

S = S1 ◦ S2 ◦ S3

All of our healthiness conditions are conjunctive: they are functions from predicates to pre-

dicates defined by the form H(P) = P ∧ ψ (i.e., P is a fixed point of H). A large number of

healthiness conditions used to characterise UTP theories are defined by a conjunction of this form

(e.g., the theory of reactive processes [Hoare and He 1998, Chapter 8] used for giving semantics to

ACP [Bergstra and Klop 1985], CSP [Hoare 1983] and its extensions, like the semantics of Circus

[Woodcock and Cavalcanti 2001] as described in [Woodcock and Cavalcanti 2002]).

In general, a number of properties are satisfied by conjunctive-healthy (CH) predicates, inde-

pendently of the particular definition of ψ. Harwood, Woodcock and Cavalcanti [Harwood et al.

2008] explored, among other results, the closure of conjunctive-healthy predicates regarding the

programming operators described in the previous sections. Some of the most relevant results of

their work that are used in this thesis are presented below. We begin by establishing that the core

UTP operators defined in the alphabetised relational calculus (Chapter 2) are closed within the sub-

theory delimited by conjunctive healthiness conditions. In particular, the sequential composition

of S-healthy predicates is S-healthy.

Theorem 3.2.3. Sequential composition

[S(P) ∧ S(Q)⇒ S(P; Q)]

Furthermore, the conjunction, disjunction and selection of S-healthy predicates are also S-healthy.

Theorem 3.2.4. Conjunction, disjunction and selection closure

[S(P) ∧ S(Q)⇒ S(P ∧ Q) ∧ S(P ∨ Q) ∧ S(P� b� Q)]

Provided the body of a recursive program is S-healthy, then the whole recursive program is S-

healthy.

Theorem 3.2.5. Recursive S-healthy programs

[S(P)⇒ µX • (P; X)� b� II]

It is important to notice that any theory of conjunctive-healthy predicates is disjoint from the

theory of designs: on abortion, a design provides no guarantees while a conjunctive-healthy pre-
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dicate requires ψ to hold. Furthermore, it is possible to link the theory of designs with a theory of

CH-healthy predicates by taking CH as the approximate relationship between designs and CH-

healthy predicates. In the context of S-healthy predicates, we can instantiate this general result to

the following theorem:

Theorem 3.2.6. Galois connection with the theory of designs

P v H1 ◦H2(Q) if and only if S(P) v Q

where P is a design and Q is S-healthy

A direct consequence of this result is that predicates in the design theory can be used to find

their approximated counterparts in the synchronous designs lattice. For example, the skip pro-

gramming construct in the synchronous theory is just IID made S-healthy:

Definition 3.2.7. Synchronous skip

II =df S(IID)

In addition to the general results that can be derived from S being a CH healthiness condition,

our formulation also satisfies other properties that proved very useful later on in this chapter.

Theorem 3.2.8. II ⇒ S(true)

It is also straightforward to conclude that II is S-healthy.

Theorem 3.2.9. S(II) = II

The healthiness conditions are transitive when combined by means of the sequential composition

operator.

Theorem 3.2.10. S is transitive

S(true); S(true) = S(true)

The healthiness conditions preserve the refinement ordering: they are monotonic regarding v.

Theorem 3.2.11. S is monotonic

(P v Q)⇒ (S(P) v S(Q))

provided P and Q are UTP designs.

S distributes over conjunction and disjunction.

Theorem 3.2.12. S distributes over conjunction

S(P ∧ Q) = S(P) ∧ S(Q)
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Theorem 3.2.13. S distributes over disjunction

S(P ∨ Q) = S(P) ∨ S(Q)

If we have the conjunction of an S-healthy predicate with another predicate, then the whole predi-

cate is S-healthy.

Theorem 3.2.14. S extends over conjunction

P ∧ S(Q) = S(P ∧ Q)

3.2.1 H3 in the synchronous theory

As mentioned in Section 2.3, H3 is satisfied only by those designs where the precondition does

not mention dashed variables (i.e., the precondition is a condition instead of a more general predi-

cate). Algebraically, H3-healthy predicates have the design skip as their right unit for sequential

composition.

In the context of S-healthy designs, the conjunctive healthiness conditions mentioning dashed

variables makes it impossible to eliminate all after variables from the preconditions. On the other

hand, the healthiness conditions only restrict the values of c′, x.in′ and x.out′. Thus, it should be

possible to formulate a notion similar to H3 provided the observational variables in the precondi-

tion can be “ignored”. As in the case of H3, the notion can be precisely captured by having the

theory’s skip construct as right unit for sequential composition. More formally, the notion of H3
has its equivalent notion in the lattice of S-healthy designs by means of SH3 defined as follows.

Definition 3.2.15. Lifted H3

SH3 P = P; II

provided P is S-healthy.

As expressed before, the precondition of SH3-healthy designs does not mention dashed va-

riables other than c′, x.in′ and x.out′. The following theorem captures this notion more precisely.

Theorem 3.2.16.
An S healthy design S(P1 ` P2) is SH3 if and only if its precondition does not mention

dashed variables other than the observations c, x.out and x.in.

As with the design theory, we need to show that SH3 is closed under the basic operators of

the language (i.e., sequential composition, selection and recursion). Regarding sequential compo-

sition, provided P and Q are SH3-healthy, then P; Q is SH3-healthy.

Theorem 3.2.17. SH3 sequential composition closure

P; Q = SH3(P; Q)

provided P and Q are SH3-healthy.
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Similarly, provided P and Q are SH3-healthy, the selection of either of them is also SH3-

healthy.

Theorem 3.2.18. SH3 conditional closure

P� b� Q = SH3(P� b� Q)

provided P and Q are SH3-healthy.

To show that recursion is also closed under SH3, we take the same approach used by Hoare

and He [1998, Chapter 3.1] to show that the least fixed point of a design is also a design. The

programming operators defined so far are monotonic and closed within the SH3 lattice. The fact

that all operators map SH3-healthy designs to SH3-healthy designs and that recursion is solely

built up from constructs with this property, is enough to show that recursion preserves SH3.

3.3 Recasting the design theory

In this section we revise the definitions and algebraic properties of all operators we introduced in

chapter 2 in the light of our conjunctive healthiness conditions and the synchronous context. We

also take the chance to explore additional algebraic properties of some of the operators as they are

needed in later chapters where the compilation process is addressed.

We also provide new definitions for alphabet extension and parallel composition. These are the

only definitions we needed to re-formulate. All other definitions only needed to be “lifted” from

the design theory to satisfy the healthiness conditions. The new definition of alphabet extension is

necessary to denote the effect a program has on the trace x.out when forced to keep a fresh variable

x constant. As the design theory did not keep track of the variable histories it did not need to take

this detail into account.

The need for a different treatment of parallel composition lies in the fact that there is no basic

definition for it in the alphabetised propositional calculus. Instead, a definition was postulated

in the theory of designs. In our context, the definition needs to be slightly modified in order to

account for the fact that the predicates being composed in parallel need to be S-healthy.

3.3.1 Miracle, abort and refinement in the synchronous designs theory

As mentioned before, S can be seen as an approximate relationship between designs and their

S-healthy counterparts. From this observation, it is easy to see that we can obtain the S-healthy

equivalent of the significant elements (like the top and bottom of the lattice) by means of calcu-

lating their image through S. The presence of conjunctive healthiness conditions require the pre-

dicates to remain healthy even when they cannot be started or their precondition is not satisfied.

Furthermore, designs are required to satisfy the healthiness condition even when they diverge.

In the case of the top of the design lattice, it is the design that performs miracles and it cannot

be started, yet it needs to maintain the healthiness conditions.
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Definition 3.3.1. Synchronous miracle

> =df S(>D)

The bottom of the synchronous lattice is the diverging design with the restriction that unhealthy

behaviour is not allowed.

Definition 3.3.2. Synchronous abort

⊥ =df S(⊥D)

Refinement follows the same notion shared by all UTP theories: the behaviour of an implemen-

tation should imply its specification closed under their universally quantified alphabet. Moreover,

the monotonicity of the healthiness condition regarding refinement gives the same intuitive view

of refinements in the theory of designs: we introduce refinement by either weakening the precon-

dition, or strengthening the postcondition in the presence of the precondition. This is established

by the result below.

Theorem 3.3.3. Synchronous designs refinement

S(Q1 ` Q2) v S(P1 ` P2) if and only if [Q1 ⇒ P1] ∧ [(Q1 ∧ P2)⇒ Q2]

All predicates in the synchronous theory refine the synchronous abort and are, in turn, refined by

miracle.

Law 3.3.4. > w S(P)

Law 3.3.5. ⊥ v S(P)

3.3.2 Sequential composition

We have already shown that sequential composition is closed under S and SH3-healthy predicates.

Moreover, we have shown that if P and Q are S◦H1◦H2-healthy (i.e., they are S-healthy designs),

the result is also S ◦ H1 ◦ H2-healthy. In this section we focus on the algebraic properties that

characterise the sequential composition of synchronous designs.

The combination of two S-healthy designs is a new S-healthy design of the form described

below.

Theorem 3.3.6. Sequential composition of S-healthy designs

S(P1 ` P2); S(Q1 ` Q2) = S(¬(S(¬P1); S(true)) ∧ ¬(S(P2); S(¬Q1)) ` S(P2); S(Q2))

This result states that provided the healthy precondition P1 can be established (this is denoted

by the expression ¬(S(¬P1); S(true)) above) and that the S-healthy execution of P2 does not lead

to a state where the precondition Q1 cannot be satisfied (¬(S(P2); S(¬Q1))), the sequential com-

position of S-healthy designs behaves like the sequential composition S(P2); S(Q2). A significant
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consequence of theorem 3.2.16, is that provided P and Q are SH3, we can simplify the above

result by replacing ¬(S(¬P1); S(true)) simply by ¬S(¬P1).

Algebraically speaking, to precede a program P by the miraculous program results altogether

in a miracle, thus, > is a left zero for sequential composition.

Law 3.3.7. >; S(P) = >

As with designs, a program P cannot recover from divergence. More precisely, ⊥ is a left zero for

sequential composition.

Law 3.3.8. ⊥; S(P) = ⊥

Sequential composition of S-healthy designs has II as left unit and, provided the predicate on the

left is SH3, also as its right unit.

Law 3.3.9. II; S(P1 ` P2) = S(P1 ` P2)

Law 3.3.10. Provided P is SH3 we have:

S(P); II = S(P)

Sequential composition of S-healthy designs distributes through the least upper bound operator.

Law 3.3.11. (
⊔

S ); P =
⊔

i(S i; P)

Law 3.3.12. Provided P is in finite normal form, we have:

P; (
⊔

S ) =
⊔

i

(P; S i)

3.3.3 Assignment

As with the skip construct, our definition of assignment in the synchronous theory is the image of

assignment in the design theory through the healthiness condition S.

Definition 3.3.13. Synchronous assignment

x :=
snc e =df S(x := e)

An interesting observation (and useful result in many proofs) is that, when the observations c, x.out

and x.in are not explicitly modified by an assignment, the healthiness condition is absorbed by the

propositional assignment. This observation follows from the fact that this kind of assignment

keep the clock-cycle counter and the history variables constant, trivially satisfying the healthiness

conditions.

Theorem 3.3.14. Provided x is not an observation variable we have that:

S(x := e) = x := e
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A direct consequence of Definition 3.3.13 and theorem 3.3.14 is that the synchronous assignment

construct is SH3 as described by the following theorem.

Theorem 3.3.15. The assignment construct is SH3

A sequence of assignments to the same variable can be simplified to a single assignment.

Law 3.3.16.
(
x :=
snc e; x :=

snc f (x)
)

= x :=
snc f (e)

A simultaneous assignment can be performed by interleaving its individual assignments, provided

certain conditions are met.

Law 3.3.17. If x , y and e2 does not mention x we have that:

(x :=
snc e1; y :=

snc e2) = (x, y :=
snc e1, e2)

The order of the list of variables in a multiple assignment is irrelevant and can be permuted,

provided the list of expressions in the right hand side is permuted in the same way.

Law 3.3.18. (x, y :=
snc e1, e2) = (y, x :=

snc e2, e1)

A sequence of independent assignments can be executed in any order provided the expressions

used in the assignments do not depend on the variables being updated.

Law 3.3.19. Provided x , y, e1 does not depend on y and e2 does not depend on x then:

(x :=
snc e1; y :=

snc e2) = (y :=
snc e2; x :=

snc e1)

3.3.4 Conditional

An unfortunate consequence of the way in which sequential composition operates is that conjunc-

tive healthiness conditions (including S) do not distribute through it. This means that, in general,

it is not possible to show that S(P; Q)⇒ S(P) ∧ S(Q) (the other direction of this implication does

hold, as shown by theorem 3.2.3). Conditional, on the other hand, is defined in terms of the dis-

junction connective. This fact enables the conjunctive healthiness conditions to distribute through

the selection operator, as shown by the following lemma.

Theorem 3.3.20. Selection of S designs

S(P)� b� S(Q) = S(P� b� Q)

We have already established (see Section 3.2) that the selection between two S-healthy designs

is itself S-healthy. The following theorem provides us with its characterisation as an S-healthy

design.

Theorem 3.3.21. Design characterisation of S selection

S(P1 ` P2)� b� S(Q1 ` Q2) = S(P1 � b� Q1 ` P2 � b� Q2)
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Provided P, Q and R are S-healthy, the selection of S-healthy designs satisfies the basic pro-

perties about the conditional showed in Section 2.3.3.

Law 3.3.22. P� b� Q = Q� ¬b� P

Law 3.3.23. P� b� P = P

Law 3.3.24. P� true� Q = P

Law 3.3.25. P� false� Q = Q

Law 3.3.26. (P� b� Q)� b� R = P� b� R = P� b� (Q� b� R)

Law 3.3.27. (P� b� Q)� c� R = (P� b ∧ c� (Q� c� R))

Law 3.3.28. x :=
snc e1 � b� x :=

snc e2 = x :=
snc (e1 � b� e2)

Law 3.3.29. (P� c� Q)� b� R = (P� b� R)� c� (Q� b� R)

Law 3.3.30. P� b� (P� c� Q) = P� (b ∨ c)� Q

Law 3.3.31. ¬(s ∧ b) ∧ (P� (s ∧ ¬b)� Q) = ¬(s ∧ b) ∧ (P� s� Q)

Law 3.3.32. x :=
snc e; (P� b(x)� Q) = (x :=

snc e; P)� b(e)� (x :=
snc e; Q)

Law 3.3.33. (P� b� Q); R = (P; R)� b� (Q; R)

3.3.5 Assertion and assumption

The notions in this section are similar to the ones defined in Section 2.3.5 but with the results lifted

to the synchronous design theory. The following two results capture this notion in the definitions

of the synchronous assumption and assertion constructs.

Definition 3.3.34. Assumption in the synchronous environment

b>S = II� b� >

Definition 3.3.35. Assertion in the synchronous environment

b>S = II� b� ⊥

A reassuring result is that we can obtain the same definitions if we take the design view of an

assertion/assumption and make it S-healthy.

Theorem 3.3.36. Design assumption – synchronous assumption equivalence

b>S = S(b>)
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Theorem 3.3.37. Design assertion – synchronous assertion equivalence

b>S = S(b>)

Assuming (asserting) a false condition leads to miracle (abort).

Law 3.3.38. false>S = >

Law 3.3.39. false⊥S = ⊥

The assertion of a condition b is refined by II (the assertion may result in abort if b does not

hold, while II always terminates). II is, in turn, refined by assuming a condition b.

Law 3.3.40. b>S w II w b⊥S

The following laws allow the simplification of sequences of assertions and assumptions.

Law 3.3.41. b>S ; b⊥S = b>S

Law 3.3.42. b⊥S ; b>S = b⊥S

Law 3.3.43. b>S ; b⊥S w II

Law 3.3.44. b⊥S ; b>S v II

Law 3.3.45. b>S ; c>S = (b ∧ c)>S

Law 3.3.46. b>S ; c>S = c>S ; b>S

Law 3.3.47. b⊥S ; c⊥S = (b ∧ c)⊥S

Law 3.3.48. (b ∨ c)>S ; b>S = b>S

Law 3.3.49. b⊥S ; b⊥S = b⊥S

Law 3.3.50. b>S ; b>S = b>S

The assumption and assertion constructs are SH3-healthy.

Law 3.3.51. b>S ; II = b>S

Law 3.3.52. b⊥S ; II = b⊥S

It is always possible to assume or assert the condition x = e after an assignment updating x to the

value e (provided e does not mention x).

Law 3.3.53. Provided e1 does not mention x or y we have:

(x, y :=
snc e1, e2) = (x, y :=

snc e1, e2); (x = e1)>S

Law 3.3.54. Provided e1 does not mention x or y we have:

(x, y :=
snc e1, e2) = (x, y :=

snc e1, e2); (x = e1)⊥S
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Two variables that have been made equal by an assignment can be exchanged when used in a

condition inside an assertion.

Law 3.3.55. (x :=
snc y; (y = e)⊥S ) = (x :=

snc y; (x = e)⊥S )

If the variables in the assignment are not mentioned in an assumption, the order between them can

be swapped.

Law 3.3.56. Provided b does not depend on x we have that:

x :=
snc e; b>S = b>S ; x :=

snc e

When evaluating a conditional, it is possible to assume the value of the condition inside each of its

branches.

Law 3.3.57. P� b� Q = (b>S ; P)� b� ((¬b)>S ; Q)

The following laws allow the simplification of the conditional construct based on knowledge pro-

vided by assertions or assumptions.

Law 3.3.58. b>S ; (P� b� Q) = b>S ; P

Law 3.3.59. (¬b)>S ; (P� b� Q) = (¬b)>S ; Q

Law 3.3.60. Provided ¬(b ∧ c) we have:

b>S ; (P� c� Q) = (b>S ; Q)

Law 3.3.61. Provided P and Q are S-healthy we have:

c>S ; (P� b ∧ c� Q) = c>S ; (P� b� Q)

Assumptions and assertions distribute rightwards with respect to the conditional construct.

Law 3.3.62. b>S ; (P� c� Q) = (b>S ; P)� c� (b>S ; Q)

Law 3.3.63. b⊥S ; (P� c� Q) = (b⊥S ; P)� c� (b⊥S ; Q)

3.3.6 Dynamic scope

Being able to reason about variables and their scope will be crucial in later chapters when the

compilation of Handel-C programs is addressed. As the whole reasoning framework is based on

synchronous designs, we need to provide means of controlling variable blocks in this theory. A

remarkable fact of the UTP and how its theories relate to each other is the fact that we can define

the scope delimiters in the synchronous theory by means of the same constructs introduced in the

alphabetised relational calculus but with the additional restriction that the healthiness conditions

must also hold.
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Definition 3.3.64. Start scope

var x =df S(var x)

Definition 3.3.65. End scope

end x =df S(end x)

The following theorems show that var and end are, as in the design and predicate calculus

theories, nothing more than existential quantification.

Theorem 3.3.66. Provided P is S-healthy and x is not an observational variable we have:

var x; P = ∃x • P

Theorem 3.3.67. Provided P is SH3-healthy and P does not mention x′, and x is not an observa-

tional variable we have:

P; end x = ∃x′ • P

Note that an interesting consequence of the result above is that for any S-healthy predicate P,

we can replace P; end x with its the propositional end of scope for x: P; end x. This is allowing

us to directly use the design dynamic scope delimiters in our synchronous theory, however, we

decided to keep our new notation to syntactically reinforce the fact that all predicates are S-healthy.

On the other hand, the propositional constructs to open and close the scope of a variable absorb

the healthiness conditions.

Theorem 3.3.68. S(var x) = var x

Theorem 3.3.69. S(end x) = end x

All basic laws about the scope delimiters we introduced in Section 2.3.4 still hold for their

synchronous counterparts. We recast them here for clarity and in order to be able to reference

them in later sections.

Law 3.3.70. var x; end x = II

Law 3.3.71. end x; var x v II

Law 3.3.72. x :=
snc e; end x = end x

Law 3.3.73. var x v (var x; x :=
snc e)

Law 3.3.74. var x; (x = e)>S = (var x; x :=
snc e)

Law 3.3.75. var x; var y = var x, y

Law 3.3.76. end x; end y = end x, y
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Law 3.3.77. var x, y = var y, x

Law 3.3.78. end x, y = end y, x

Law 3.3.79. If x is not free in e then

(end x; var x :=
snc e) = (x :=

snc e)

Law 3.3.80. Provided P is SH3 and neither e nor S mention x we have:

(P; x :=
snc e) = ((P; end x)+x; x :=

snc e)

The next law enables us to expand the beginning of scope of a variable local to both branches of a

conditional.

Law 3.3.81. Provided b does not mention x we have:

var x; (P� b� Q) = (var x; P)� b� (var x; Q)

Up to this point we have presented an algebraic way of controlling the scope of variables in

the particular case of the selection construct. In order to be able to present the laws that allow the

manipulation of variable scopes over sequential composition, we need a mechanism to extend the

alphabet of a given predicate P in our synchronous theory.

In Section 2.3.4 we showed how to extend the alphabet of a design (P1 ` P2) to include a new

variable x by means of making its postcondition keep the value of x constant (i.e., (P1 ` P2)+x =

(P1 ` P2 ∧ x′ = x)). Unfortunately, this way of extending the alphabet is not enough in the theory

of synchronous designs as it does not account for the advance of time and the effect it has on x’s

history. To see why, let’s consider the case of the simple program

y :=
snc e1; sync (3.3)

where x is not in the alphabet. If we expand the definition of sync (3.3.124), apply Law 3.3.16

and our definition of alphabet extension from the previous chapter we obtain:

S(true ` c, y, y.outc := c + 1, y.inc, e1 ∧ x′, x.out′ = x, x.out)

The problem with this result is that neither x nor x.out are being updated in the right way in

order for synchronisation to take place. A correct alphabet extension that takes into account the

effects of synchronisation should extend the alphabet of equation (3.3) to obtain:

S(true ` c, y, y.outc, x, x.outc := c + 1, y.inc, e1, x.inc, x)

that is, x′ = x has to be lifted in the synchronous theory to also establish that x has been kept

constant during all clock cycles the process with extended alphabet has been executing. The fol-

lowing definition describes our new alphabet extension operator that achieves this goal.
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Definition 3.3.82. Alphabet extension

S(P1 ` P2)[x] =df S(P1 ` P2 ∧ E(x, c′))

where E(x, c′) is defined as follows:

Definition 3.3.83. Alphabet extension predicate

E(x, c′) =df (x′, x.out′c, x.in
′ =

(
(x.inc′−1, x)� c < c′ � (x, x.outc)

)
, x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
Definition 3.3.83 captures the core notion of our alphabet extension mechanism. When the pro-

cess of which the alphabet is being extended does not advance the clock cycle counter, alphabet

extension behaves like the design’s alphabet extension regarding x but it also states the history in

x.out should remain constant (after all, there is nothing to be added to it). On the other hand, if the

process advances the clock cycle, x and x.out are forced to take the values set to them by the syn-

chronisation mechanism (remember the sync action within P does not synchronise on x). Finally,

in both cases x.outc+1 . . . x.outc′−1 are set to the corresponding input value for x in the clock cycle.

In more general terms, the effects of alphabet extension can be captured in the following S-

healthy design:

Definition 3.3.84.

ED(x, x′, c, c′) =df S(true ` (x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

It is be useful to capture the notion of alphabet extension as the sequential composition of two

S-healthy designs. The main difficulty is that the definition of alphabet extension for a process

P requires access to both the initial and final clock-cycle count of P (i.e., to the contents of the

c and c′ variables). Because of the way in which sequential composition is defined, it is easy to

allow P’s subsequent predicate to have access to P’s final clock-cycle count. There is no way,

however, to have access to P’s initial value of c, as it gets hidden in the sequential composition.

The solution is to introduce a new variable 0.c to store the final value of c while executing P and,

after that, to make the value of c′ equal to c. Provided the value of c at the beginning of P is c0, and

if we follow the modified P by a predicate Q, then the sequential composition definition produces

Q[c0, 0.c/c, c′] as we wanted. We use the outlined mechanism described before in the following

definition of alphabet extension in the synchronous design theory.

Law 3.3.85. Provided P = (P1 ` P2) is a SH3, S-healthy design we have:

S(P)[x] = S(P1 ` P2; var 0.c := c; end c)+x,c; ES (x)

where ES (x) is defined as follows:
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Definition 3.3.86. Design alphabet extension

ES (x) =df S(true ` (E(x, 0.c) ∧ c := 0.c); end 0.c)

The alphabet extension of a process that does not advance the clock cycle-counter is nothing

but alphabet extension in the design theory.

Law 3.3.87. Provided P is S-healthy and that P = P ∧ c′ = c we have:

P[x] = P+x

A straightforward consequence is that our new synchronous alphabet extension reduces to the

design’s alphabet extension when applied to II

Law 3.3.88. II[x] = II+x = II

Alphabet extension distributes over conditional and it leads to refinement when distributed over

sequential composition.

Law 3.3.89. (P� b� Q)[x] = (P[x] � b� Q[x])

Law 3.3.90. Provided P and Q are S-healthy we have:

(P; Q)[x] v (P[x]; Q[x])

Pushing the alphabet extension operation into a loop’s body also leads to refinement.

Law 3.3.91. Provided P is SH3-healthy we have:

(b ∗ P)[x] v b ∗ P[x]

As with the design theory, the scope of a variable can be extended over a S-healthy design. If

the design does not synchronise with its environment (and, hence, it does not advance the clock-

cycle counter), the expansion of scope operates in the same way it does for designs.

Law 3.3.92. If P is SH3 and S-healthy, it does not perform sync events and neither P nor S
mention x then we have that:

P; var x; Q = var x; P[x]; Q

Law 3.3.93. If P and Q are SH3-healthy, P does not perform any sync events and neither P nor

S mention x′ then we have that:

Q; end x; P = Q; P[x]; end x

On the other hand, if the process P we are trying to incorporate in the scope of a variable x

does synchronise, then the expansion of the scope of x over P leads to refinement. The reason
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for the introduction of refinement is the restriction alphabet extension places on the trace x.out.

Before the alphabet was extended to include x in P, the only restriction on x.out was imposed by

S23: x.out ≤ x.out′. After extending the alphabet, P not only has to satisfy S2, but also imposes

the restriction that x.out has to be extended as if all the synchronisation actions would have had

updated it as well.

Law 3.3.94. If P is SH3-healthy, it does perform at least one sync event and neither P nor S
mention x then we have that:

P; var x; Q v var x; P[x]; Q

Law 3.3.95. If P and Q are SH3-healthy, P does perform at least one sync event and neither P

nor S mention x′ then we have that:

end x; P v P[x]; end x

3.3.7 Iteration

Provided P is S-healthy, the iteration construct (b∗P) in the synchronous design theory is defined as

the least fixed point of the equation: X = (P; X)�b�II. Note that as with sequential composition

and selection, the least fixed point operator remains the same as the one used in all other theories.

After all, the least fixed point is an operator over boolean predicates describing programs and the

programs in the synchronous theory are nothing more than particularly restricted predicates of the

same kind. More formally:

Definition 3.3.96. Iteration

b ∗ P =df µX • (P; X)� b� II

The fact that the underlying definition of the iteration construct is defined in terms of fix-points

of recursive equations is highlighted by the fact it satisfies the unfolding rule.

Law 3.3.97. (b ∗ P) = (P; (b ∗ P))� b� II

If the looping condition does not hold initially, the loop reduces to skip.

Law 3.3.98. (¬b)>S ; (b ∗ P) = (¬b)>S

Law 3.3.99. (¬b)⊥S ; (b ∗ P) = (¬b)⊥S

On the other hand, if the condition does hold, the loop’s body gets executed at least once.

Law 3.3.100. b>S ; (b ∗ P) = b>S ; P; (b ∗ P)

On termination, the condition on which the iteration was looping is always false.

3Remember the synchronous theory requires that whole program to be S-healthy with respect to all variables in the
system, regardless of whether they are in scope or not.
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Law 3.3.101. (b ∗ P) = (b ∗ P); (¬b)⊥S

If P preserves a given condition c, then so does its iterated form (b ∗ P).

Law 3.3.102. Provided
(
c⊥S ; P

)
=

(
c⊥S ; P; c⊥S

)
we have:

c⊥S ; (b ∗ P) = c⊥S ; (b ∗ P); c⊥S

An iteration followed by a predicate Q can be expressed as a particular form of recursion.

Law 3.3.103. (b ∗ P); Q = µX • (P; X)� b� Q

The following result provides a very useful way of splitting the execution of a loop.

Law 3.3.104. b ∗ P; (b ∨ q) ∗ P = (b ∨ q) ∗ P

It is possible to expand the scope of a variable from inside the body of a loop and this leads to

refinement.

Law 3.3.105. Provided P is S-healthy and b does not mention x we have:

(b ∗ (var x; P; end x)) v var x; (b ∗ P); end x

3.3.8 Disjoint-alphabet parallelism

Up to this point, we have derived the effects of the programming operators in the synchronous

theory by means of lifting their operands through healthiness conditions and then applying the

basic definition of the operators from the design theory. In this way, we are able to derive theorems

describing the result of the same operators in the synchronous theory. Unfortunately, the same

approach cannot be followed in the case of the disjoint-alphabet parallel operator as there is no

definition for it in the alphabetised predicate calculus. The solution is to provide a new definition

for this operator in our theory.

Ideally, we would like to define the disjoint-alphabet parallel execution of programs S(P1 ` P2)

and S(Q1 ` Q2) as S(P1∧Q1 ` P2∧Q2). Unfortunately, the presence of the healthiness conditions

pre-empts the possibility of the alphabets of P and Q from being disjoint, as our definition would

require. In fact, S-healthy designs necessarily share the variables c and x.out for all x in the

program’s alphabet. On the other hand, the only context in which this operator will be used is

within parallel by merge, after the shared variables have been renamed by means of the separating

simulations. Thus, c and x.out are shared among parallel processes; hence, they also need to be

renamed. In this sense, a program

S(P); U0(m, c, x.out)

can be reduced to the equivalent form

S(P)[0.m, 0.c, 0.x.out/m′, c′, x.out′]
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As S(P) = P ∧ (x.in′ = x.in) ∧ (c ≤ c′) ∧ (x.out ≤ x.out′), the renaming will not only modify

the occurrences of m′, c′ and x.out′ in P but will also affect the healthiness conditions. To keep

the presentation compact, we introduce the notation P[i] which denotes the renaming of all shared

variables m′ in predicate P to i.m′. More formally:

Definition 3.3.106. Predicate renaming

P[i] =df P[i.m′/m′]

Based on the observations above and assuming that P and Q are renamed alphabet-disjoint designs,

we can define the disjoint-alphabet parallel composition as follows:

Definition 3.3.107. Disjoint-alphabet parallel execution of renamed S-healthy designs

S[0](P[0]) ‖ S[1](Q[1]) =df S[0] ◦ S[1](P[0] ‖ Q[1])

As with the selection operator, the application of the healthiness conditions can be separated

from the application of the disjoint-parallel operator. In this way, the parallel operator is just

combining designs (that will afterwards be made S-healthy). In this way, our new definition for

disjoint parallel behaviour satisfies the same laws the parallel composition operator for designs

does:

Law 3.3.108. S[0](P[0]) ‖ S[1](Q[1]) = S[1](Q[1]) ‖ S[0](P[0])

Law 3.3.109. S[0](P[0]) ‖ (S[1](Q[1]) ‖ S[2](R[2])) = (S[0](P[0]) ‖ S[1](Q[1])) ‖ S[2](R[2])

Law 3.3.110. (S[0](P[0]) ‖ S[1](IID[1])) = S[0] ◦ S[1](P[0])

Law 3.3.111. S[0](P[0]) ‖ S[1](⊥D) = S[0] ◦ S[1](⊥D)

Law 3.3.112. S(P� b� Q) ‖ S[2](R[2]) = ((S(P) ‖ S[2](R[2]))� b� (S(Q) ‖ S[2](R[2])))

Law 3.3.113. For any descending chain S = {S n | n ∈ N} we have that:

(
⊔

S ) ‖ S[0](R[0]) =
⊔

n

(S n ‖ S[0](R[0]))

Law 3.3.114. Provided x and y are different we have:

S[0](x := e1) ‖ S[1](y := e2) = S[0] ◦ S[1](x, y := e1, e2)

3.3.9 Parallel by merge

As already discussed in the previous section, the parallel execution of S-healthy designs needs to

be able to handle that at least the c, x.in and x.out variables will be shared among them. In the

case of parallel by merge, we have already described the mechanism of generating local copies of

the shared variables for each process, produce their parallel execution by means of the alphabet-

disjoint parallel operator and, afterwards, merge the local copies to calculate the final value of the
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shared variables. Being able to treat the observations c and x.out as shared variables, the definition

for parallel-by-merge is mostly the same as it was in the theory of designs:

Definition 3.3.115. Parallel by merge

P ‖M Q =df ((P; U0(m, c, out)) ‖ (Q; U1(m, c, out)))+m,c,out ; M

provided m and out are, respectively, the list of shared and all “.out” variables in the program

The parallel by merge operator in the synchronous theory satisfies a similar set of laws to its

counterpart in the design theory. Provided P, Q and R are S-healthy, it is possible to show that ‖M
is commutative, associative, it has II as a pseudo-unit and ⊥ as its zero. It also distributes through

the least-upper bound operator.

Law 3.3.116. P ‖M Q = Q ‖M P

Law 3.3.117. P ‖M(Q ‖M R) = (P ‖M Q) ‖M R

Law 3.3.118. (II ‖M P) v P

Law 3.3.119. (⊥ ‖M P) = ⊥

Law 3.3.120. (P� b� Q) ‖M R = ((P ‖M R)� b� (Q ‖M R))

Law 3.3.121. For any descending chain P = {Pn | n ∈ N} we have that:

(
⊔

P) ‖M R =
⊔

(P ‖M R)

It is possible to relate two assignments to the same variable being executed in asynchronous

parallel by merge to an assignment using the selection function described in Section 2.3.8.1. In

practical terms, this implies that we can turn parallel assignments to x into a single assignment of

the form x :=
snc e where e uses the selection function to merge the two updates. More formally:

Law 3.3.122. x :=
snc e1 ‖M x :=

snc e2 v x :=
snc SELECT (e1, e2, x)

Finally, parallel by merge preserves SH3.

Theorem 3.3.123. Parallel by merge – SH3 preservation

(P ‖M Q); II = (P ‖M Q)

provided P and Q are (SH3)-healthy designs.

3.3.10 Synchronous parallel by merge

To describe synchronous, parallel behaviour with shared variables we need to define how parallel

processes synchronise with each other. The design theory already has a way to achieve this with

the design sync. Our definition just lifts sync into the synchronous theory by making it S-healthy.
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Definition 3.3.124. The S-healthy synchronisation predicate

sync(x) = S(sync(x))

As sync is just an assignment, it is easy to show that it is SH3-healthy.

Theorem 3.3.125. The sync construct is SH3

SH3(sync)

On the other hand, extending the alphabet of the synchronisation action on a set of variables α

(sync(α)) with the variable x is equivalent to a synchronisation over the extended alphabet α∪{x}.

Law 3.3.126. sync(α)[x] = sync(α ∪ {x}) = sync

For the reminder of this section we will frequently need to refer to a shared variable x and

its associated history variable x.out. In order to keep the presentation compact, we introduce the

following notation.

Definition 3.3.127. Shared variable with history

...
x =df x, x.out

Having a way for each process to signal when it is ready to synchronise and to keep a history of

its updates to their copies of the shared variables, we now need to define the final merge predicate

that will calculate how these individual updates get reflected in the actual shared variables.

This has already been addressed in Section 2.3.9 by means of the final merge predicate M̂.

Unfortunately, one of the requirements of the UTP definition of M̂ has is that the two parallel

processes must take the same amount of clock-cycles. As already pointed out in Section 3.1, we

want our theory to allow the combination of any two processes in parallel, no matter how many

clock cycles each of them take. In order to cope with this additional flexibility, we introduce a new

definition of the final merge predicate.

Definition 3.3.128. Final merge

M̂(
...
x,

...
0.x,

...
1.x,

...

x′) =df

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);

c := max(0.c, 1.c)

∧ M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′)

∧ M(x, 0.x.outc, 1.x.outc, x.out′c)� c < max(0.c, 1.c)� (x.out′c = x.outc)

∧ {M(x.ini−1, (0.outi � 0.c ≥ i� x.ini−1), (1.outi � 1.c ≥ i� x.ini−1),

x.out′i | c < i < max(0.c, 1.c)}

∧ {II{x.outi}|i < c})


;

end 0.c, 1.c, 0.x, 1.x, 0.x.out, 1.x.out
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where x0.c,1.c = (x� c = max(0.c, 1.c)� x.inmax(0.c,1.c)−1).

The above definition can be understood line-by-line as follows:

1. The first line in the definition above appends the final value of the local copy of x just after

the last position in its ‘history’ variable. In this way, the merge predicate ensures that the

last updates performed by the shorter process (if any) are not lost if the process terminates

without synchronising. Although not necessary, this operation is performed over both pro-

cesses and the reason for this redundancy is the fact that it is not possible, in general, to

know which process will be the shortest of the two (i.e., take less clock cycles to terminate).

2. The second line in our definition of M̂ deals with the merging of the clock cycle counter. Its

merged value is set to the largest of the counters from the parallel processes.

3. In the third line, the merge predicate is used to calculate the value of the shared variable

x. The reference value in the merge (i.e., the first argument to M) is the special value

“x0.c,1.c”: it returns x if both processes terminate without performing any synchronisation,

or the merged value for x in the clock cycle just before the parallel composition terminates

otherwise.

The rationale behind this choice is that the value of x is calculated by selecting the updated

value (from either of the two parallel processes) that is different from the value held in x in

the previous clock cycle. If both processes take zero clock cycles, the reference value for

x is the value left in x by the process executing just before the parallel processes. If either

of the processes takes at least one clock-cycle, the reference value for the merge predicate

should be the merged value one clock cycle before the termination of the parallel processes.

The second and third arguments to the merge predicate make sure the processes’ local copies

of x are not used by M, unless the process was actually active during the last clock cycle of

the parallel execution. For example, consider the case of P ‖M̂ Q where P takes four clock

cycles to finish and Q takes only two. The final value of x should be calculated based on

values in the local copies for x as produced at clock-cycle four. Given that Q finished two

clock-cycles before that, it is not clear what the value of 1.x would be at clock-cycle four: its

value is unconstrained. Our definition of M̂ detects this problem (i.e., 1.c is clearly smaller

than max(0.c, 1.c) in this example) and solves it by selecting the value in 0.x to update x.

4. Lines four and five in our definition apply the merge predicate to all the intermediate syn-

chronisation points that happened during the parallel execution. The values to be merged

are taken from the local copies of x.outi, as long as the corresponding process was actually

executing during clock cycle i. Also, the first line in our definition appended the final value

of x to the x.out sequence for both processes. The way in which the arguments are passed

to the merge predicate in line five makes M use this ‘extended history’ value if necessary.

Using the same example again, when merging the values at clock cycle three, the value from

Q will be 1.x. This is precisely the value Q may have modified after its last synchronisation

point at the end of clock cycle two. On the other hand, if Q did not perform any action after
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synchronising at clock cycle two, then 1.x = x.in2 and 1.x.out2 = x.in2. This is exactly the

value that will make M select the value from P (i.e., the value stored in 0.x.out).

5. Line six in our definition ensures that the values in the history previous to the execution of

the parallel operator (i.e., those associated with clock-cycles lower than c) are kept constant.

6. Line seven finishes the scope of the local variables introduced by the separating simulations

that are used as “working copies” by each of the parallel processes.

For some of the proofs in the following sections it will be useful to decompose our definition

of M̂ into the part that deals with updating the shared store x, the part that updates its observational

history x.out and the part that updates the clock cycle counter c. Our first definition below deals

with the observational aspects of the final merge predicate updating x.out.

Definition 3.3.129.

Rhist(x, 0.x, 1.x, x′) =df

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);

∧ M(x, 0.x.outc, 1.x.outc, x.out′c)� c < max(0.c, 1.c)� (x.out′c = x.outc)

∧ {M(x.ini−1, (0.outi � 0.c ≥ i� x.ini−1), (1.outi � 1.c ≥ i� x.ini−1),

x.out′i | c < i < max(0.c, 1.c)}

∧ {II{x.outi}|i < c})


;

The following definition allows us to separate all the aspects of M̂ dealing with x and its associated

history variable x.out.

Definition 3.3.130.

R(x, 0.x, 1.x, x′) =df Rhist(x, 0.x, 1.x, x′) ∧

M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′)

The following theorem shows the equivalence between our original formulation and the combina-

tion of the different aspects defined above.

Theorem 3.3.131. Final merge alternative formulation

M̂ = R(x, 0.x, 1.x, x′); c := max(0.c, 1.c); end 0.c, 1.c, 0.x, 1.x, 0.x.out, 1.x.out

As with the design-based theory of synchronous processes, our final merge predicate satisfies

all the properties in order to be a valid operator. First of all, M̂ is symmetric on its input.

Law 3.3.132. (
...

0.x,
...

1.x:=
...

1.x,
...

0.x); M̂ = M̂

Provided we define

M̂3 =df ∃
...
x •M̂(

...
x,

...
0.x,

...
1.x,

...
x) ∧ M̂(

...
x,
...
x,

...
2.x,

...

x′)
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we have that M̂ is associative in the sense of the following law.

Law 3.3.133. (
...

0.x,
...

1.x,
...

2.x:=
...

1.x,
...

2.x,
...

0.x); M̂3 = M̂3

We now can define the parallel execution of synchronous designs with shared variables. Provi-

ded m is the list of shared variables and P and Q are S-healthy, we define the synchronous parallel

by merge operator ‖M̂ as follows:

Definition 3.3.134. Parallel by final merge

P ‖M̂ Q =df ((P; U0(c,
...
m)) ‖ (Q; U1(c,

...
m)))+c,

...
m; M̂

Our definition of the parallel-by-final-merge4 operator allows us to prove a set of algebraic

laws similar to the one we proved for the parallel combinator for disjoint processes. In particular,

‖M̂ is commutative and associative, it has II as a pseudo-unit and ⊥ as its zero. It also distributes

through conditional and the least upper bound operator.

Law 3.3.135. P ‖M̂ Q = Q ‖M̂ P

Law 3.3.136. P ‖M̂ (Q ‖M̂ R) = (P ‖M̂ Q) ‖M̂ R

Law 3.3.137. (II ‖M̂ II) = II

Law 3.3.138. (II ‖M̂ P) v P

Law 3.3.139. (⊥ ‖M̂ P) = ⊥

Law 3.3.140. (P� b� Q) ‖M̂ R = ((P ‖M̂ R)� b� (Q ‖M̂ R))

Law 3.3.141. For any descending chain S = {S n | n ∈ N} we have:

(
⊔

S ) ‖M̂ R =
⊔

i

(S i ‖M̂ R)

The specialised distribution of sequential composition over ‖M̂D
described in Section 2.3.9 also

holds in our theory.

Law 3.3.142. Provided that neither P nor Q perform any sync actions we have:

(P ‖M Q); sync; (R ‖M̂ S ) = (P; sync; R) ‖M̂ (Q; sync; S )

Assumption distributes rightwards over synchronous-parallel by merge.

Law 3.3.143. b>S ; (P ‖M̂ Q) = (b>S ; P) ‖M̂ (b>S ; Q)

If one of the parallel S-healthy designs finishes by performing an assertion of the form (x = e)⊥S
and the other branch has its alphabet extended to incorporate x, then the whole program can be

simplified by extracting the assertion and performing it after the parallel region terminates.
4Notice that the definition of parallel-final-merge is nothing but parallel-by-merge with a larger set of shared va-

riables (we now need to account for c and x.out) and a different merge predicate (i.e., one that can handle the merging
of the additional variables).
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Law 3.3.144. (P; (x = e)⊥S ) ‖M̂ Q[x] = (P ‖M̂ Q[x]); (x = e)⊥

An assignment that synchronises with the environment can be composed in parallel-by-final-merge

with sync without affecting the semantics of the program.

Law 3.3.145. (x :=
snc e; sync) = (x :=

snc e; sync) ‖M̂ sync

The following law allows the simplification of the synchronous parallel-by-final-merge execution

of a pair assignments when certain conditions are met.

Law 3.3.146. Provided x and y are different variables and that e2 does not depend on x we have:

(x :=
snc e1; sync) ‖M̂ (y :=

snc e2; sync) = (x, y :=
snc e1, e2); sync

For simplicity reasons, we have kept track of the shared alphabet implicitly and used the sym-

bol ‖M̂ to denote the parallel-by-final-merge operator over a shared alphabet m. In the remaining

part of this section we will use the notation ‖m
M̂

to refer to the parallel-by-final-merge with shared

alphabet m. In these terms, extending the alphabet of (P ‖M̂ Q) to include a fresh variable x is

refined by extending the alphabet of P and Q and treating x as a shared variable.

Law 3.3.147. Provided P and Q are S-healthy we have:

(P ‖m
M̂

Q)[x] v (P[x] ‖
m,x
M̂

Q[x])

Extending the scope of a variable that is local to one of the parallel branches to encompass the

whole parallel program leads to refinement.

Law 3.3.148. Provided P and Q are SH3-healthy, we have:

(var x; P; end x) ‖m,c
M̂

Q v var x; (P ‖m,c,x
M̂

Q[x]); end x

3.3.11 Guarded commands

In general, the notation (b→ P) stands for Nelson’s notion of guarded commands [Nelson 1989]:

if the guard b is true, the whole command behaves like P; otherwise, it behaves miraculously. Our

notion of a synchronous guarded command (b −→sncP) construct is defined in a slightly different way:

it behaves like Nelson’s in the case where the condition holds; it does nothing but synchronise with

the environment otherwise.

Definition 3.3.149. Synchronous guarded command

b −→sncP =df P� b� sync

provided P is S-healthy.

The following two laws characterise algebraically the result of executing a guarded command in

environments where the value of its condition is known.
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Law 3.3.150. (b>S ; b −→sncP) = (b>S ; P)

Law 3.3.151. ((¬b)>S ; b −→sncP) = ((¬b)>S ; sync)

The nested application of guarded commands can be simplified to a single guarded command

where the condition is the conjunction of the two guards.

Law 3.3.152. b1
−→

sncb2
−→

sncP = (b1 ∧ b2) −→sncP

The parallel-by-merge combination of guarded commands is itself a guarded command.

Law 3.3.153. Provided P and Q are of the form (v :=
snc e; sync) we have:

b→ P ‖M̂ c→ Q = (b ∨ c) −→
snc (b→ P ‖M̂ c→ Q)

The parallel by merge combination of several guards can be simplified provided certain conditions

are met.

Law 3.3.154. Provided ¬(b ∧ c) and P is of the form (v :=
snc e; sync) we have:

b>S ; (
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = b>S ; b −→sncP

Law 3.3.155. Provided P and Q are of the form (v :=
snc e; sync) we have:

b −→snc (P ‖M̂ Q) = (b −→sncP) ‖M̂ (b −→sncQ)

Law 3.3.156. Provided P is of the form (v :=
snc e; sync) we have:

(b1
−→

sncP) ‖M̂ (b2
−→

sncP) = (b1 ∨ b2) −→sncP

Law 3.3.157. Provided P and Q are of the form (v :=
snc e; sync) we have:

((s ∧ b) −→sncP) ‖M̂ ((s ∧ ¬b) −→sncQ) = s −→snc (P� b� Q)

Provided c holds and that P preserves c, the condition of a loop of the form b ∗ P can be extended

to (b ∧ c).

Law 3.3.158. Provided (c>S ; P) = (c>S ; P; c>S ) and that P is S healthy, we have:

c>S ; b ∗ P = c>S ; (b ∧ c) ∗ P

Extending the alphabet of (b −→sncP) is equivalent to extending the alphabet of P.

Law 3.3.159. (b −→sncP)[x] = b −→sncP[x]
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3.3.12 Feedback loop

One of the main reasons for introducing the theory of synchronous designs was to be able to

assert/assume the value assigned to a variable across synchronisation points when there are no

other parallel processes modifying the variable. More formally, we want the theory of synchronous

designs to satisfy the following law stating that, when no other process is modifying x, we have

that:

(x :=
snc e; sync) = (x :=

snc e; sync; (x = e)>S )

In Section 3.1 we claimed the above result can be proved in the presence of the feedback loop.

So far, we have defined the feedback loop between x.in and x.out as the equation x.in = x.out′.

The intuition behind this definition is that the equality linking x.in to x.out′ is a point-wise equality

over all indexes in the sequence. For the results in this section, we will sometimes need to address

this point-wise equality in a more precise way:

Definition 3.3.160. Sequence equality

s =
[i .. k] t =df

∧
j∈[i .. k]

s j = t j

With sequence equality defined in this way it is possible to formulate a number of properties that

will be useful in this and later sections. Provided i ≤ k, a sequence equality expression in the range

[0 . . k] always encompasses an expression over the smaller range [0 . . i].

Law 3.3.161. Provided i ≤ k we have:

(s =
[0 .. i] t) ∧ (s =

[0 .. k] t) = (s =
[0 .. k] t)

Provided that 0 ≤ i ≤ k, a sequence equality expression over the range [0 . . k] can be partitioned

into two sequence-equality expressions over the ranges [0 . . i] and [i . . k].

Law 3.3.162. Provided i ≤ c0 and c0 ≤ k we have:

(s =
[i .. k] t) = (s =

[i .. c0] t) ∧ (s =
[c0 .. k] t)

Extending the range in a sequence equality expression places additional restrictions over the pro-

gram and, hence, it leads to refinement.

Law 3.3.163. Provided i ≤ j ≤ k we have:

(s =
[i .. j] t) v (s =

[i .. k] t)

Returning to our goal of proving that the results of an assignment can be assumed after the syn-

chronisation action, which now can be formalised and proved.

Law 3.3.164. (x :=
snc e; sync) ∧ (x.in =

[0 .. c′] x.out′) = (x :=
snc e; sync; (x = e)>S ) ∧ (x.in =

[0 .. c′] x.out′)
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As mentioned in the beginning of this chapter, all programs in the theory of synchronous

designs have an implicit feedback loop of the form (x.in =
[0 .. c′] x.out′) establishing the kind of link

we need between x.in and x.out. Nevertheless, the feedback loop defined in this way is only

enough to conduct the proof above provided the program is comprised of a single assignment. If

we are to handle more general programs, we need a way to distribute the effects of the feedback

loop throughout the program. Distributing the feedback loop over conditional is straightforward,

as shown by the following law.

Law 3.3.165. (P� b�Q)∧ (x.in =
[0 .. c′] x.out′) = (P∧ (x.in =

[0 .. c′] x.out′))� b� (Q∧ (x.in =
[0 .. c′] x.out′))

The case of sequential composition is, however, more complicated. The main problem of the

feedback sequential composition lies in the restriction that the feedback loop must hold, even if

the synchronous design fails to be started or its precondition is not satisfied. In this situation,

the fact that the healthiness conditions in the synchronous theory are also required to hold in the

non-successful cases is what allows us to prove the following law:

Law 3.3.166. Provided P and Q are S-healthy designs we have:

(P; Q) ∧ (x.in =
[0 .. c′] x.out′) = P ∧ (x.in =

[0 .. c′] x.out′); Q ∧ (x.in =
[0 .. c′] x.out′)

It is sometimes useful to be able to extend the scope of a feedback loop from an S-healthy design

Q to include another design P when they are in sequential composition P; Q. The rationale behind

this law is that the feedback loop is binding x.in to x.out′ over all clock-cycles from the beginning

of the whole program in which P and Q are included (i.e., clock-cycle count 0). This is the key to

prove the following law.

Law 3.3.167. Provided P and Q are S-healthy designs we have:

P;
(
Q ∧ (x.in =

[0 .. c′] x.out′)
)

= P ∧ (x.in =
[0 .. c′] x.out′); Q ∧ (x.in =

[0 .. c′] x.out′)

The following law allows us to take advantage of the fact that P is a SH3-healthy design in order

to eliminate II whilst still preserving the feedback loop.

Law 3.3.168. Provided P is a SH3-healthy design, we have:

P; II ∧ (x.in =
[0 .. c′] x.out′) = P ∧ (x.in =

[0 .. c′] x.out′)

The feedback loop also distributes through iteration.

Law 3.3.169. Provided P is S and H3 we have:

((b ∗ P) ∧ (x.in =
[0 .. c′] x.out′)) = b ∗ (P ∧ (x.in =

[0 .. c′] x.out′))

With the set of laws above it is possible to distribute the feedback loop over all programming

constructs in our language except the parallel combinators. That is because the definition of

parallel-by-merge relies on the x.in sequence being bound to its actual values after the parallel
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execution has been resolved and the values for x.out have already been merged. The consequence

of not having such a law, allows us to distribute the feedback loop over non-parallel fragments of

the program only. This result is reassuring as we have already pointed out the laws that need the

feedback loop can only take place outside parallel regions of the program. Based on the previous

results, it is also possible to show that provided (x = e) holds before the execution of P[x] then it is

possible to assume the same condition after P[x].

Law 3.3.170. Provided P is S-healthy, P does not mention x and x is not an observational variable

we have:

((x = e)>S ; P[x]) ∧ (x.in =
[0 .. c′] x.out′) = ((x = e)>S ; P[x]; (x = e)>S ) ∧ (x.in =

[0 .. c′] x.out′)

Similarly, provided it is possible to assert (x = e) after the execution of the loop (b∗P)[x] as shown

by the following law.

Law 3.3.171. Provided P is SH3 healthy we have:

((x = e)>S ; (b ∗ P)[x]) ∧ (x.in =
[0 .. c′] x.out′) v

((x = e)>S ; (b ∧ x = e) ∗ P[x]) ∧ (x.in =
[0 .. c′] x.out′)

3.4 Chapter summary

This chapter covered the following topics:

• Limitations of the design theory as the semantic framework for synchronous, parallel
programs with shared-variables. The main issues with the design theory as the semantic

framework for the reasoning language are related with its limited capacity for assertional

reasoning when trespassing clock cycle boundaries.

• New theory for reasoning about synchronicity. New observations for keeping track of

the clock-cycle and history of each of the variables in the program where introduced. The

new theory is completed by means of healthiness conditions ensuring that: (a) time only

progresses forward; (b) the variable’s history is preserved; and (c) the synchronisation me-

chanism is only controlled by the theory rather than by any of the processes.

• Programming and reasoning constructs for synchronous programs. Following the UTP

approach, all constructs in the new theory were obtained by means of making the correspon-

ding designs satisfy the healthiness conditions of the synchronous theory.

• Basic operators in the reasoning language. Most operators in the new theory (i.e., se-

quential composition, selection, iteration) use the same definitions provided for them in

alphabetised relational calculus. This chapter shows these operators are closed under the

healthiness conditions of the synchronous theory and provided theorems that described how

to calculate their results.
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• Synchronous parallel-by-merge. A new definition for parallel-by-merge (together with

a new merge operator) was introduced in order to allow the theory to cope with parallel

processes that take different amounts of clock-cycles to terminate.

• Synchronous alphabet extension. The need to account for the updates in the history of

the variables in the extended alphabet led to the introduction of the new alphabet extension.

The new definition states that P[x] not only finishes by requesting that x remains constant,

but also that x’s history reflects this same fact during all clock cycles in which P has been

executing.

• Synchronous guarded commands. Our definition is similar to Nelson’s guarded com-

mands but synchronises with the environment in case the condition does not hold. This last

fact not only captures the synchronous nature of our domain in a better way, it also allows

the usage of parallel-by-merge as the combinator for guarded commands in our compilation

normal forms (see Section 5.1).

• Extended set of reasoning laws. On top of re-validating all laws presented for the theory

of designs, new results were proved in the synchronous theory accounting for: assertional

reasoning over clock boundaries; alphabet extension for shared-variables, parallel construct;

dynamic scope in synchronous contexts; guarded command combination and simplification.

The constructs, operators and algebraic laws presented in this chapter serve as the core rea-

soning language for our compiler. The next chapter applies this theory to provide semantics for

Handel-C and introduces additional constructs needed for reasoning about loops and communica-

tions.



Chapter 4

Handel-C and its reasoning language

“If you are faced by a difficulty or a controversy in science,

an ounce of algebra is worth a ton of verbal argument.”

— J.B.S. Haldane

The synchronous theory introduced in the previous chapter provides the definitions of the ope-

rators and constructs needed for basic reasoning about synchronous programs. In this chapter we

focus on showing how the synchronous theory forms the core of our reasoning language and pro-

vide extensions for reasoning about special constructs in the context of our compiler for Handel-C.

One of the main aspects of this chapter is the introduction of denotational semantics for

Handel-C. The formalism we have adopted for this task is the theory of synchronous designs

described in the previous section. The semantics is, in turn, used in three main ways: (a) to dis-

cover and prove properties about Handel-C programs; (b) to prove equivalences between different

constructs in the language that will be useful in the compilation chapters; and (c) to establish the

link between Handel-C and the reasoning language.

The other objective of this chapter is to introduce additional reasoning constructs that will be

used in the compilation process. On top of the extended constructs we have already presented

in the previous section (e.g., abort, miracle, assertions and assumptions) this section introduces

additional operations that allow a finer degree of control over iteration, communications and prio-

ritised choice. The main importance of these extended constructs is that they allow the splitting

of the complex behaviour of the communications and priorities primitives into simpler actions.

Furthermore, the formulation in terms of the new constructs allows the operational details of in-

put/output and priAlt to be abstracted out from the algebraic formulation. In this way, we can

provide compilation laws for these constructs that are elegant and simpler to verify.

4.1 Handel-C semantics in the UTP

Handel-C programs are comprised of at least one main function and, possibly, some additional

functions. Multiple main functions within the same program produce the parallel execution of

their bodies under the same clock domain.

97
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All C-based constructs in Handel-C behave as defined in ANSI-C [Kernighan and Ritchie

1988] but with some additional restrictions regarding the clock-based, synchronous nature of the

language. In this sense, the evaluation of expressions is performed by means of combinatorial cir-

cuitry and it is completed within the clock cycle in which it is initiated (expressions are considered

to be evaluated “for free” [Celoxica Ltd. 2002a] due to this semantic interpretation). Assignment,

on the other hand, happens at the end of the clock cycle.

The fact that the assignment construct modifies the variables at the end of the clock cycle

makes the updated value available to be read by other processes by the beginning of the next clock

cycle. This notion is equivalent to the synchronisation action in the theory of synchronous designs

(the definition of sync not only makes the results available to other processes, but also signals

the end of the current clock cycle). Based on this observation, the semantics of assignment in

Handel-C are described by the following definition.

Definition 4.1.1. Handel-C assignment

�
x :=

HC e
�

=df x :=
snc
~e� ; sync

The sequential composition of two Handel-C programs P and Q takes no time to transfer

the control to Q once P has finished. This behaviour can be precisely described by sequential

composition in the UTP, as captured by the following definition.

Definition 4.1.2. Sequential composition in Handel-C

~P # Q� =df ~P� ; ~Q�

The combinatorial way of evaluating conditions affects the timing of all the constructs in

Handel-C. In the case of selection, the branch selected for execution (depending on the condi-

tion) will start execution within the same clock cycle in which the whole construct is initiated. In

the UTP we can achieve the same semantic effect by means of the conditional construct, as shown

by the following definition.

Definition 4.1.3. Conditional in Handel-C

�
if c then P else Q

�
=df ~P�� ~c�� ~Q�

While active, the while construct starts executing its body in the same clock cycle its condi-

tion evaluates to true. Similarly, it terminates within the same clock cycle in which its condition

becomes false. As with the sequential composition and conditional constructs, the semantics can

be defined in terms of the equivalent UTP construct.

Definition 4.1.4. While construct in Handel-C

~while b do P� =df ~b� ∗ ~P�
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Handel-C also provides other, non C-based constructs meant to take advantage of the under-

lying synchronous hardware the program is targeting. The most basic construct in this category

is the delay construct, that leaves the state unchanged but takes a whole clock cycle to terminate.

This behaviour is easily stated in our theory by a process that behaves like II and then synchronises

with the environment. Due to the fact that skip is a left unit for sequential composition, we can

simplify the semantic expression for delay and define it as follows.

Definition 4.1.5. Handel-C delay

�
delay

�
=df sync

The remaining, non-C constructs in Handel-C behave like they do in CSP [Hoare 1983]. In

the case of parallel composition, statements are executed in a true parallel way as they denote

independent pieces of hardware running within the same clock domain. As expected, the semantics

of this construct are given in terms of the synchronous-parallel operator defined in the previous

chapter.

Definition 4.1.6. Parallel composition in Handel-C

�
P ‖

HC Q
�

=df ~P� ‖M̂ ~Q�

Finally, input and output have the standard blocking semantics: if the two parts are ready to

communicate, the value outputted at one end is assigned to the variable associated with the input

side. Both sides of the communication take one full clock cycle to successfully communicate. A

process trying to communicate over a channel without the other side being ready will block (delay)

for a single clock cycle and try again.

In the semantics, we define the input and output commands to rely upon a set of special va-

riables that are not included in the list of program variables. The special set of variables associated

to a given channel ch include ch?, ch! and ch standing, respectively, for the requests for inputting,

outputting and the value to be transmitted over ch. We also assume that ch?, ch! (the requests

for communication) will remain in the logical value false unless they are used. This assumption

is consistent with the hardware implementation of communications, where the requests are wires

that remain in a “low state” unless they are explicitly fed with current when the request is done.

We also introduce the fixed, but arbitrary value ARB. As with the false logical value for the

communication requests, this value will be the default value for all channels when they are not

being used. This is the same kind of refinement implemented at the hardware level where the

value of this kind of bus is supposedly unconstrained but physically implemented by means of

having all wires comprising the bus being set to low. One important remark is that ARB is a value

outside the type of values being transmitted over the bus. This observation will be used in the

reduction to second normal form described in Chapter 6.

The final merge predicate presented in Chapter 3 accounts for these modifications by taking

the initial value at the beginning of the clock cycle as the reference value when merging wires.

This is exactly the same principle used for the “standard” variables in the program (we compare
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against x.ini−1 which is the value a given to each variable x at the beginning of each clock cycle i).

In this case, the value assigned at the beginning of the clock cycle is constant and known, so we

can simplify the equations to include this knowledge.

In this context, the semantics of the input/output primitives can be stated as follows:

Definition 4.1.7. The input construct

~ch?m� =df µX • ch? :=
snc true; ((m :=

snc ch.inc; sync)� ch!.inc = true� sync; X)

Definition 4.1.8. The output command

~ch!e� =df ch!, ch :=
snc true, ~e� ; µX • (sync� ch?.inc = true� sync; ch!, ch :=

snc true, ~e� ; X)

The semantics of the prioritised choice construct is defined by a two-level semantic function.

At the top level, we introduce the variable res as a mean to capture the current state of the priAlt
construct. The res variable holds the value true if a previous guard was ready to communicate

(and hence, the priAlt is ready to terminate); otherwise, it holds the value false. At the hardware

level, res is implemented as a chain of communication requests, where the next request is placed

only if the previous request was not granted.

Definition 4.1.9. Top level semantics for the priAlt construct

�
priAlt {P}

�
=df

var res :=
snc false; µX • ~P� ; (II� res� sync; X); end res

Even though each of the case expressions within a priAlt is syntactically like input/output

command, they do not behave like those constructs. Input/output guards (i.e., when input/output

commands are used as conditions in case expressions) behave like input/output commands if the

communication is possible. Otherwise, the whole case expression reduces to skip and the control

is transferred to the next case statement.

The lower level semantics deal with each of the case statements inside a priAlt. Naturally,

the semantic expressions depend on the external variable res for their execution. If the external

variable indicates the priAlt is ready to terminate, the whole case statement behaves like skip.

Otherwise, it verifies the case’s condition and updates res according to the result of the evaluation.

In the case of input/output guards, the actions performed in the semantics are similar to the

ones presented when describing input/output commands outside the priAlt construct but without

the recursive call.

Definition 4.1.10. Semantics for input guards

~case ch?m: P # break� =df

II� res� (ch? :=
snc true; (res,m :=

snc true, ch.inc; sync; ~P�+res � ch!.inc � II))
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Definition 4.1.11. Semantics for output guards

~case ch!val: P # break� =df

II� res� (ch!, ch :=
snc true, val; (res :=

snc true; sync; ~P�+res � ch?.inc � II))

Finally, executing a default guard when the priAlt is still to be resolved produces the termina-

tion of the priAlt (i.e., it sets res to true and executes the actions associated to it).

Definition 4.1.12. Semantics for the default clause

�
default: P

�
=df II� res� (res :=

snc true; ~P�+res)

As mentioned before, the shallow embedding we have used to give semantics to Handel-C

allows us to take direct advantage of most of the laws we have already shown in the synchronous

designs theory. Being able to prove laws that are consistent with the operational intuition behind

Handel-C operators provides reassuring evidence that our semantic model correctly captures the

actual behaviour of the constructs in the language.

The rest of this section is devoted to showing some of the laws that can be proved from the

semantics as defined above. Sequential composition is associative, it has II as left unit and ⊥ as

left zero.

Law 4.1.13. P # (Q # S ) = (P # Q) # S

Law 4.1.14. (II # P) = P

Law 4.1.15. (⊥ # P) = ⊥

Parallel composition is commutative, associative and it has II as ‘pseudo-unit’ (i.e., it leads to

refinement) and ⊥ as zero.

Law 4.1.16. P ‖

HC Q = Q ‖

HC P

Law 4.1.17. P ‖

HC (Q ‖

HC S ) = (P ‖

HC Q) ‖HC S

Law 4.1.18. (P ‖

HCII) v P

Law 4.1.19. (P ‖

HC⊥) = ⊥

It is possible to extract an assignment out of a parallel branch, provided the other branches delay

or perform other assignments.

Law 4.1.20. x :=
HC e # (P ‖

HC Q) = (x :=
HC e # P) ‖HC (delay # Q)

Law 4.1.21. x, y :=
HC e1, e2 # (P ‖

HC Q) = (x :=
HC e1 # P) ‖HC (y :=

HC e2 # Q)

When communication is possible, it can be replaced by assignment.

Law 4.1.22. (ch?x # P) ‖HC (ch!e # Q) = (x, ch?, ch!, ch :=
HC e, true, true, e) # (P ‖

HC Q)
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Law 4.1.23. (ch?x # P) ‖HC (ch!e # Q) ‖HC (ch?y #R) = (x, y, ch?, ch!, ch :=
HC e, e, true, true, e) # (P ‖

HC Q ‖

HC R)

An arbitrary-depth priAlt with a default clause can be expressed in terms of simpler binary

priAlts with default guards.

Law 4.1.24.

���������������priAlt


case ch1?x: P1 # break#

〈guard list〉#

default: Pn


��������������� =

���������������priAlt


case ch1?x: P1 # break#

default:

��������priAlt

 〈guard list〉#

default: Pn


��������

���������������

A priAlt construct with a single input (output) guard reduces to a single input (output) com-

mand.

Law 4.1.25. Provided that P is a SH3, S-healthy design and it does not mention res we have that:

priAlt {case ch?x: P # break} = ch?x # P

4.2 The reasoning language

The synchronous theory introduced in Chapter 3 provides the definitions and semantic domain

for our reasoning language. Furthermore, the laws and theorems proved for the synchronous

theory constitute the basic axioms from where we can show the compilation theorems of Handel-C

programs into hardware descriptions.

As the constructs and laws in the reasoning language have already been presented in the thesis

(Chapters 1 and 3 respectively), the focus of this section is on defining and providing semantics

to the additional constructs that are used in the reduction of Handel-C programs to normal form.

We begin by introducing a compact notation that allows us to explicitly control the advance in the

clock cycle counter. In section 4.2.2, we introduce an extended iteration operator that allows us not

only to specify what the body of the loop is, but also to specify which actions are to be performed

after the looping condition becomes false. In the next chapter we require this kind of iterating

selection to perform at least one time-consuming action once the looping condition becomes false.

This more restrictive form of the complete iteration is the only kind of loop our compiler accepts

in its input.

The next topic of this section deals with the input and output commands. The behaviour of

these constructs is very complex, as it involves recursion and the recursion depends on whether the

communication was successful or not. To address this issue, we introduce additional constructs to

the language that, together, account for the behaviour of the input/output commands. In this way,

it is possible to consider each of the independent aspects of an input/output command in isolation

by means of decomposing them into more primitive actions. The key advantage of this approach is

that it allows us to separate the algebraic aspects of the input/output constructs from their semantic

expressions.

Finally, we introduce a particular form of the case statement. Our modified version of the case

construct allows us to perform some actions before checking for the condition for each individual

case. As the conditions for each case statement are based on the possibility of performing commu-

nications over channels, we can take advantage of the primitive actions we already introduced for
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input/output commands. The key contribution of this subsection is the possibility of expressing

the priAlt construct in terms of the primitives for input/output together with our modified case

construct.

4.2.1 Timed constructs

It is common practice when reasoning about timed systems to have a construct that explicitly

represents the action of advancing the clock cycle. In the synchronous theory, this can be easily

achieved by means of performing a sync action as described in the following definition.

Definition 4.2.1. One clock cycle skip

II1 =df sync

From the definition above, it is straightforward to show that it is equivalent to the semantic

expression associated to the delay construct, as shown by the following theorem.

Theorem 4.2.2. delay = II1

Similarly, we can define an assignment that takes one clock cycle to finish as shown by the

following definition.

Definition 4.2.3. One clock cycle assignment

(x :=
snc e)1 =df (x :=

snc e); sync

As in the case of the delay construct, the one-clock-cycle assignment defined above is equiva-

lent to assignment in Handel-C.

Theorem 4.2.4. x :=
HC e = (x :=

snc e)1

From the above definitions it is possible to show that the law allowing us to assume (assert)

the value assigned to a variable is also valid for the timed assignment defined above provided the

variable is local.

Law 4.2.5. (var x; P; (x := e)1; Q; end x) = (var x; P; (x := e)1; (x = e)>S ; Q; end x)

Law 4.2.6. (var x; P; (x := e)1; Q; end x) = (var x; P; (x := e)1; (x = e)⊥S ; Q; end x)

These results are similar to law 3.3.164 but we have removed the requirement of having an

explicit feedback loop for x as we are in the synchronous designs theory and all variables have an

implicit feedback loop associated to them. The variable’s local scope ensures there is no other pro-

cess updating variable x, eliminating the possible conflicts arising from parallel processes updating

the same variable.
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4.2.2 Iterating selection

When programming in the imperative paradigm, programs rarely perform iterations as their fi-

nal construct. Furthermore, it is very common to find that some actions are performed after the

execution of loops in order to collect or manipulate the results produced while the iteration was

executing.

In order to capture this frequent combination of constructs we introduce a new operator in our

reasoning language. The new operator is an extended form of the selection construct that iterates

its then branch while the selecting condition holds. As soon as the condition becomes false, the

iterating selection transfers control to its else branch and terminates.

Definition 4.2.7. Iterating selection

b ∗ (P)� Q =df (b ∗ P); Q

Notice that by means of law 3.3.103, the above definition can be expressed in terms of the least

fix point operator as follows:

Theorem 4.2.8.

b ∗ (P)� Q =df µX • (P; X)� b� Q

The fact that the iterating selection construct behaves like a loop while its condition is true and

switches to the other branch as soon as the looping condition becomes false is fully characterised

by the following algebraic laws:

Law 4.2.9. (b)>; b ∗ (P)� Q = (b)>; P; b ∗ (P)� Q

Law 4.2.10. (¬b)>; b ∗ (P)� Q = (¬b)>; Q

4.2.3 Communication primitives

Input and output in Handel-C have a complex behaviour that implements blocking semantics by

means of attempting the communication at the beginning of their execution. If the communication

is possible, the value provided as input gets transmitted over internal buses and assigned to the

variable waiting for it at the other end of the channel.

As expected, the transfer of values only takes place provided the processes at both ends of the

channel are ready to communicate. The arbitration mechanism in charge of detecting that both

processes are ready to communicate is defined in terms of dedicated wires that signal a process’

readiness to perform an input/output operation. In section 4.1 we took advantage of this operational

intuition behind the communication primitives to define the semantics of the input and output

constructs.

Our first intention when defining the reasoning language for these constructs was to use an

approach based on the wires used to signal and control the input and output mechanisms. Unfortu-

nately, the application of this idea to individual input/output commands in the program leads to a
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non-functioning program. To see why, consider the case where we apply the replacement to one of

the input commands in the program. Immediately after this, all other output commands in the pro-

gram will stop being able to interact with it as they operate at a different level of abstraction (i.e.,

they do not refer to wires, they operate at the channel level). Furthermore, these transformations

will have to be coordinated with the introduction of data refinement, as declarations of channels

will have to be replaced by the underlying means used for the communication (i.e., wires used in

the arbitration mechanism and buses for the transfer of information).

One possible solution to this problem is to perform all the above mentioned transformations

(data and control refinement) at once to the program as a whole (in a way similar to the one

proposed in Morgan’s refinement calculus [Morgan 1990]). Even though this approach produces

the effect we want while preserving the functionality of the program, it has two disadvantages: (a)

it is not compositional (as we need to address program as a whole); and (b) it is not possible to

verify its correctness regarding our semantics for Handel-C (as we are replacing the constructs by

the semantic expressions themselves!).

The fundamental problem with the approaches mentioned above is that we are being forced to

perform too many transformations in a single step (i.e., data and control refinement) when we only

intend to achieve a higher degree of operational control over the actions performed by input/output

commands (i.e., we only intend to perform control refinement). The reason for this coupled refine-

ment lies in the fact that our more detailed operational control over the communication primitives

are formulated in terms of the wires and buses used in the implementation.

The solution is to formulate primitives that still operate over channels (rather than over the un-

derlying wires and buses) but that address the different actions that comprise the whole behaviour

of the input and output constructs. From this observation, the first operation we want to introduce

represents the action of one side of the channel (either the reader or the writer) being ready to

communicate. We capture these actions with the new commands: in-req(ch) and out-req(ch).

Following the notation introduced in section 4.1, we define the semantics of these new constructs

as follows:

Definition 4.2.11. Input request semantics

�
in-req(ch)

�
=df ch? :=

snc true

Definition 4.2.12. Output request semantics

�
out-req(ch)

�
=df ch! :=

snc true

On the other hand, we also introduce a way of checking whether the reader (writer) is present

at the other end of a channel ch. We denote these new constructs with the boolean conditions

rd(ch) and wr(ch) respectively. The following definitions provide a more precise semantics for

these two constructs:
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Definition 4.2.13. Input-ready condition

~rd(ch)� =df ch?.inc = true

Definition 4.2.14. Output-ready condition

~wr(ch)� =df ch!.inc = true

Finally, we introduce a command that represents the two actions involved in the communi-

cation over a channel ch. The operation in(ch) returns the value being transmitted over channel

ch at the present clock cycle (i.e., once the circuit has reached a stable state) and the command

out(ch, e) denotes the action of sending the value e over channel ch.

Definition 4.2.15. Primitive input

~in(ch)� =df ch.inc

Definition 4.2.16. Primitive output

~out(ch, e)� =df ch :=
snc
~e�

It is important to notice the differences between the standard Handel-C input construct ch?x

and the new in(ch) primitive. The former is a complex command that is able to handle the cases

where the communication is possible (effectively assigning the input value to x) as well as the case

when there is no input over ch during the current clock cycle (by performing a one-clock cycle

delay and attempting the communication again). The latter, on the other hand, captures the value

over the channel regardless of whether there has been an input to the channel or not (retrieving an

undefined value). Moreover, in(ch) only models the action of reading the current value held in the

channel ch. There is no notion of assigning this value to a variable as in ch?x.

A similar difference holds between ch!e and out(ch, e). In the case of out(ch, e), the value e is

forced into the channel ch without any verification of whether there is another process to receive

the value or not (i.e., it implements a non-blocking, unbuffered channel). On the other hand, ch!e
follows a protocol that ensures blocking semantics of communication over channel ch.

These differences are precisely characterised by the following equivalence laws relating Handel-

C’s input and output commands to particular combinations of the primitives described above.

Law 4.2.17. ch?x = µX • in-req(ch); ((x := in(ch))1 � wr(ch)� delay; X)

Law 4.2.18. ch!e = µX • out-req(ch); out(ch, e); (delay� rd(ch)� delay; X)

The basic communication primitives described above satisfy a number of additional algebraic

properties. Firstly, it is possible to commute the order between a request and its opposite condition:

Law 4.2.19. (wr(ch))>S ; in-req(ch) = in-req(ch); (wr(ch))>S

Law 4.2.20. (rd(ch))>S ; out-req(ch) = out-req(ch); (rd(ch))>S
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The out(ch, e) command does not affect the reading portion of the channel:

Law 4.2.21. (¬rd(ch))>S ; out(ch, e) = (¬rd(ch))>S ; out(ch, e); (¬rd(ch))>S

Provided that a request or output operation is the first action on both branches of a conditional,

it can be pulled out of the conditional construct (note that the condition in the selection construct

does not depend on the requests being extracted from the branches).

Law 4.2.22. (in-req(ch); P)� wr(ch)� (in-req(ch); Q) = in-req(ch); (P� wr(ch)� Q)

Law 4.2.23. (out-req(ch); P)� rd(ch)� (out-req(ch); Q) = out-req(ch); (P� rd(ch)� Q)

Law 4.2.24. (out(ch, e); P)� rd(ch)� (out(ch, e); Q) = out(ch, e); (P� rd(ch)� Q)

To keep the presentation compact, we will take advantage of the symmetry of input/output and

for the remaining of this section DIR will represent a generic direction that remains constant for

the whole extent of the law in which it appears.

Sequences of more than one request over the same channel may arise during the same clock

cycle. Their joint effect is the same as the one corresponding to the last one of them.

Law 4.2.25. ¬DIR-req(ch); DIR-req(ch) = DIR-req(ch)

Law 4.2.26. DIR-req(ch);¬DIR-req(ch) = ¬DIR-req(ch)

A request for input/output over a channel ch followed by a one-clock-cycle assignment that does

not depend on ch can be performed in parallel.

Law 4.2.27. in-req(ch); (v :=
snc e)1 = in-req(ch)1 ‖M̂ (v :=

snc e)1

Law 4.2.28. out-req(ch); (v :=
snc e)1 = out-req(ch)1 ‖M̂ (v :=

snc e)1

The following laws allow us to eliminate the request for input (output) and its associated condition.

Law 4.2.29. Provided there are no external requests for communication over ch we have that:

(s1 ∨ s2) −→snc in-req(ch)1 ‖M̂ b −→snc (v :=
snc e)1 = b −→snc (v :=

snc e)1[(s1 ∨ s2)/rd(ch)]

Law 4.2.30. Provided there are no external requests for communication over ch we have that:

(s1 ∨ s2) −→sncout-req(ch)1 ‖M̂ b −→snc (v :=
snc e)1 = b −→snc (v :=

snc e)1[(s1 ∨ s2)/wr(ch)]

Law 4.2.31. Provided that ch = ARB, and there are no external requests for communication over

ch we have that:

s1
−→

sncout(ch, e1)1 ‖M̂ s2
−→

sncout(ch, e2)1 ‖M̂ b −→snc (v :=
snc e)1 v

b −→snc (v :=
snc e)1[SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB))/in(ch)]
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At the hardware level, wires that are not latched acquire the false logical value at the end of

the clock cycle. They remain in this state unless a process explicitly sets them to the true logical

state. The following two laws capture this notion for the case where no process is setting the wires

to the true value:

Law 4.2.32. Provided there are no external in-req(ch) events we have that:

(v :=
snc e)1 = (v :=

snc e)1[false/rd(ch)]

Law 4.2.33. Provided there are no external out-req(ch) events we have that:

(v :=
snc e)1 = (v :=

snc e)1[false/wr(ch)]

4.2.4 Nested conditionals: the case statements

In this section we are interested in expressing multi-alternative selection constructs that contain a

list of guarded commands that are checked in a waterfall way. In this sense, it easy to see that a

sequence of case statements of the form

case b1: P1 # break # case b2: P2 # break

can be seen as a nested conditional expression

P1 � b1 � (P2 � b2 � II)

Even though the above observation would allow us to describe the behaviour of constructs

like switch in C and ALT in Occam [Barrett 1992] we are interested in defining a more general

construct where each case statement contains a sequence of actions to be executed before evalua-

ting the case’s condition. Once the actions are executed, the case’s condition is evaluated and the

associated program is executed provided the condition holds. If the guard is not true, control is

transferred and the second process gets activated. More formally, we define a case statement as

follows:

Definition 4.2.34. Case statement

case a; cond ? P | Q =df a; (P� cond � Q)

It is also possible to have compound cases that are triggered in a ‘waterfall’ way:

Definition 4.2.35. Nested case

case a1; c1 ? P1 | (case a2; c2 ? P2 | Q) =df a1; (P1 � c1 � a2; (P2 � c2 � Q))

Based on the possibility of writing nested cases, we introduce the generalised case statement,

that allows an arbitrary number of guarded actions:



4.2. THE REASONING LANGUAGE 109

Definition 4.2.36. Generalised case

case



a1; g1 ? P1 |

...

an; gn ? Pn |

P


=df case a1; g1 ? P1 | (case a2; g2 ? P2 | ... | case an; gn ? Pn | P)

From the definitions above, we can prove a number of algebraic laws that fully characterise

the behaviour of the case statement. The case where the first guard is known to hold, resolves im-

mediately, performing the prelude-actions followed by the actions in the true part of the condition:

Law 4.2.37. Provided (g1)>S commutes with a we have that:

g>; case (a; g ? P1 | P2) = g>; a; P1

Similarly, we can simplify the case of a guarded statement when the first condition is known to

not to hold. In this case, only the prelude-actions of the first case statement are executed, followed

by the expression in the false branch of the conditional.

Law 4.2.38. Provided (¬g1)>S commutes with a we have that:

(¬g)>; case (a; g ? P1 | P2) = (¬g)>; a; P2

The following two results are particular cases of laws 4.2.37 and 4.2.38 where the actions in

the false branch are themselves case expressions.

Law 4.2.39. Provided (g1)>S commutes with a1 we have that:

(g1)>S ; case (a1; g1 ? P1 | · · · | an; gn ? Pn | P) = (g1)>S ; a1; P1

Law 4.2.40. Provided (¬g1)>S commutes with a1 we have that:

(¬g1)>S ; case (a1; g1 ? P1 | a2; g2 ? P2 | . . . ) = (¬g1)>S ; a1; case (a2; g2 ? P2 | . . . )

4.2.4.1 Prioritised choice

The priAlt operator in Handel-C behaves like a C switch construct but with two fundamental

differences: (a) the conditions activating each case statement are based on the possibility of com-

municating values over some of the program’s channels; and (b) if none of the cases was allowed

to execute and there was no default guard, the whole construct delays for a whole clock cycle and

tries again.

Even though input/output guards in case expressions differ in behaviour from their counterparts

outside the priAlt construct, there is still the need for the arbitration mechanism to determine

whether the communication can take place or not. In this sense, both input/output commands and

guards still need to signal to the environment their readiness to communicate over their channels
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and also need to be able to receive the outcome of the arbitration mechanism to either activate

their associated programs or to transfer control to the subsequent case statement. As expected, the

atomic actions used to decompose input and output commands in the previous section allow us to

describe the actions within case statements.

Following the approach introduced in the previous section, we will abstract from the direction

in which each channel is used by each individual case in order to keep the presentation compact

and to be able to concentrate in the algebraic treatment of the priAlt construct. In this sense

we introduce the function req that captures the requests corresponding to each of the possible

communication guards inside a priAlt construct. More precisely, we define the function req as

follows:

Definition 4.2.41.

req(ch?x) =df in-req(ch)

req(ch!e) =df out-req(ch); out(ch, e)

We also need a function to extract the condition that makes an input/output command hold

when used as a guard inside a priAlt construct. We capture this notion in the function chk:

Definition 4.2.42.

chk(ch?x) =df wr(ch)

chk(ch!e) =df rd(ch)

As the above definitions are just wrappers over the primitive actions introduced for input/output

commands, they satisfy a similar set of properties to their counterparts in the previous section. We

only present here the ones that will be needed in later sections to treat req and chk at the algebraic

level, without the need for expanding their definitions.

The function req and an assumption based on chk commute when put in sequence (note that

as they refer to the same communication g, this law is just summarising laws 4.2.19 and 4.2.20).

Law 4.2.43. (chk(g))>; req(g) = req(g); (chk(g))>

If we are requesting the communication associated with a communication guard g regardless of

the value of the communicating condition, then the request can be extracted from the conditional:

Law 4.2.44. (req(g); P)� chk(g)� (req(g); Q) = req(g); (P� chk(g)� Q)

Finally, we need a function mapping an input/output guard into the actions that are performed

when the guard holds true. The function act captures this notion:

Definition 4.2.45.

act(ch?x) =df (x :=
snc in(ch))1

act(ch!e) =df II1
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Armed with these definitions, we can state the main equivalence laws between the priAlt
construct and the modified case expression introduced in this section.

Law 4.2.46. Prialt with default clause equivalence

priAlt



case g1: P1 # break#
...

case gn: Pn # break#

default: Pd


= case



req(g1); chk(g1) ? act(g1); P1 |

...

req(gn); chk(gn) ? act(gn); Pn |

Pd


Law 4.2.47. Prialt without default clause equivalence

priAlt


case g1: P1 # break;
...

case gn: Pn # break

 = µX • case



req(g1); chk(g1) ? act(g1); P1 |

...

req(gn); chk(gn) ? act(gn); Pn |

II1; X


4.3 Chapter summary

In this chapter we have covered the following topics:

• Semantics for Handel-C. Semantics for all constructs in the input language were given in

the context of the theory of synchronous designs described in Chapter 3. Several properties

about Handel-C programs and equivalence laws between different constructs were shown to

hold from the semantics. The fact that the semantics are given in the same framework used

to give semantics to the reasoning language builds the link between the Handel-C and its

representation within the reasoning language.

• The reasoning language. The reasoning language presented in Chapter 1 was given se-

mantics within the theory of synchronous designs. Furthermore, the basic reasoning laws

are those proved in Chapter 3. An extended set of reasoning construct was also presented in

this chapter with the goal of (a) simplify the notation in the reasoning language; and (b) pro-

vide a mechanism to gain more control over communications and prioritised choice without

including implementation details in the reasoning language. Finally, equivalence laws were

provided among the new primitives and the original Handel-C communication constructs.

In the next chapter we address the compilation of Handel-C within the framework of the rea-

soning language. The proofs and definitions in the reminder of the thesis are conducted purely by

algebraic means, as all semantic details have been enclosed within this and the previous chapters.
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Part III

Reducing Handel-C to netlists

113





Chapter 5

Normal forms and compilation

“The primary goal of theorists [. . . ] is to prove a collection of laws

which is sufficiently comprehensive that any other inequation between programs can

be derived from the laws alone by algebraic reasoning”

— C.A.R. Hoare and Jifeng He

The aim of this work is to produce a compiler from Handel-C into its corresponding, and

semantically equivalent, normal form implementation. In the context of our compilation process,

each normal form is a state machine representation of the original Handel-C program. Our first

normal form captures the source program control state by means of a set of control variables. In

turn, each of the constructs in the program is represented as a parallel set of actions guarded by the

appropriate combination of the control variables.

In our second (and final) normal form we split the calculation of the values of expressions from

the process of updating the program variables with those values. Wires are introduced to capture

and transfer the value of expressions (intended to be calculated by means of combinatorial logic at

the hardware level) into the memory-capable devices used to implement the program’s variables.

5.1 First normal form: one clock cycle parallel choice

The goal of our first normal form is to capture Handel-C’s control flow in a state machine. We

achieve this effect by means of introducing new variables a1, . . . , an and associating the program’s

control states to different values for them.

Each construct in the program is then represented as a set of one-clock cycle long steps. Let a

be the list of the machine control variables, P be a one-clock cycle long predicate describing the

effect of the step both, over a and the store of the machine; and k be the state of the normal form

described by this step, then we can formally define a step as follows:

Definition 5.1.1. Step

(a = k) −→sncP

115
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In practical terms, our formulation of steps as defined above can only represent very simple

Handel-C programs (i.e., those comprised by a single assignment or a delay construct). In order to

capture more complex behaviour, we need a way of representing combinations of steps. This can

be achieved by means of providing a way of representing the choice between two or more steps.

In general, the choice between two guarded commands is denoted by

b −→sncP1 2 c −→sncP2

and it provides a very elegant way of modelling a given mechanism that can deterministically

perform only one of n possible actions, depending on its current state. The necessary condition,

however, is that all guards must be disjoint. In case the guards are not disjoint, there is the chance

that more than one guard will become true at a given time, leading to the introduction of non-

determinism in the system.

This way of combining steps has been successfully used in the compilation of sequential pro-

gramming languages [Nelson and Manasse 1992; Sampaio 1993; Silva et al. 1997b; Duran et al.

2001]. From this observation it is easy to see that this choice operator will also be sufficient to

describe the C-based aspects of Handel-C by means of associating a unique value to each control

state and guarding each step with the appropriate control-based conditions. In this way, a sequence

of assignments of the form

x :=
HC e1 # y :=

HC e2

can be represented as the state machine

var a; a :=
snc s1;

(a = s1 ∨ a = s2) ∗
(
a = s1

−→

snc (x, a :=
snc e1, s2)1

)
2

(
a = s2

−→

snc (y, a :=
snc e2, f )1

)
;

end a

Handel-C also allows the description of parallel programs. In the context of our formulation in

terms of state machines, this means several steps activating at the same time. Modelling this kind

of behaviour is clearly not possible in the context of the choice operator described above given its

inherently sequential nature. One possible alternative is to capture the parallel execution of steps

b −→sncP ‖M̂ c −→sncQ

by means of combining the actions P and Q in parallel and guarding this new parallel step with

the conjunction of b and c as follows:

(b ∧ c) −→snc (P ‖M̂ Q)

This solution has been adopted for the compilation of Occam into Hardware [He et al. 1993]

but, unfortunately, it has two main disadvantages:
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1. Even though the actions within every step take advantage of the real parallelism available

in the hardware, the state machine capturing the Handel-C program being compiled is still

sequential in nature (i.e., only one step is active at any given clock cycle).

2. The solution described above is encoding parallelism by producing a product state machine

of (b −→sncP) and (c −→sncQ). Even though this is a mathematically elegant solution, it produces an

exponential increment in the number of control states and, consequently, in the number of

steps in the resulting machine. This exponential increase is the consequence of the explicit

representation of all possible combinations between the steps of the two parallel machines

that this technique needs to produce. This solution is not acceptable if we take into ac-

count that the usual target for Handel-C programs are FPGA devices with limited physical

resources available.

Our solution is to promote the parallel behaviour to the state machine level and allow the

possibility of several steps to be active at any given time. A natural way of implementing this idea

is by means of replacing the choice operator mentioned above with the parallel by merge construct:

Definition 5.1.2. Parallel step combination

(
b −→sncP

)
‖M̂

(
c −→sncQ

)
Due to the way in which we have defined our guarded commands (if the condition does not

hold, the whole guarded command reduces to sync), if b and c above are disjoint, our combination

operator behaves exactly like the traditional choice operator described earlier in this section. In

this way we are not only able to cater for parallel behaviour (by means of having more than one

step active at a given time) but also to describe sequential behaviour when the conditions in the

steps are disjoint.

Finally, thanks to Law 3.3.153 we know that steps are closed under the ‖M̂ combinator (i.e.,

the ‖M̂-combination of steps is itself a step). This property allows us to postulate our lemmas and

theorems for a single step and refer to binary (or more complex) steps only when needed for clarity

purposes.

5.1.1 Reasoning about steps

As expected, the activation of a given step can only occur if the machine is in a control state satis-

fying the step’s guard. When the step is a compound step (i.e., a product of the combination of two

or more steps), its activation is the set of states that may trigger the activation of any of the indivi-

dual steps that comprise it. More formally, we define the activations for a step b(a1, a2, . . . , an) −→sncA

as the set of values for the control variables a1, a2, . . . , an that would make condition b hold.

Definition 5.1.3. Activations

act
(
b(a1, a2, . . . , an) −→sncA

)
=df {〈v1, v2, . . . , vn〉 | b(v1, v2, . . . , vn)}
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Similarly, the set of continuations of a step are those values that the control variables can take

after the execution of the step. If A(a′1, . . . , a
′
n, z
′) is the action part of the step, a′1, . . . , a

′
n are the

final values of the machine’s control variables after the execution of A and z is the list of program

variables; the set of continuations are the possible after values for the control variables a′1, . . . , a
′
n

that could be produced by the execution of A.

Definition 5.1.4. Continuations

cont
(
b −→sncA(a′1, a

′
2, . . . , a

′
n, z
′)
)

=df
{
〈v1, . . . , vn〉 | A(v1, v2, . . . , vn, z′)

}
As mentioned before, guarding steps with disjoint conditions is the key to achieving non-

parallel behaviour. Two steps P and Q that do not share any activation state cannot be active at

the same time and are regarded as disjoint. More formally, we define two steps to be disjoint as

follows:

Definition 5.1.5. Disjointness

dis j (P,Q) =df act (P) ∩ act (Q) = {}

When a step P pre-empts the execution of another step Q we say that P inhibits Q. This notion

can be easily formalised by requiring that the continuations of P are disjoint from the activations

of Q, as shown by the following definition.

Definition 5.1.6. Inhibition

inh (P,Q) =df cont (P) ∩ act (Q) = {}

Algebraically, in a context where a is the list of control variables, a step P inhibiting another

step Q can be characterised by the following fix-point equivalence:

Law 5.1.7. Provided inh (P,Q), then we have:

inh (P,Q)⇒ P = P; (a < act (Q))⊥S

5.1.2 Iterated steps

So far we have presented ways to combine several steps together and to analyse the possible

interaction among them. In this section we concentrate on defining the concept of iteration for a

set of steps and analysing its properties.

The iteration of a set of steps connected by the parallel choice operator (Definition 5.1.2) is

defined by a loop that has the set of steps as its body and the disjunction of their guards as its

looping condition.

Definition 5.1.8. Step iteration

∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = b ∨ c ∗ (

(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)
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Being itself a loop, the iteration of steps satisfies the unfolding mechanism.

Law 5.1.9. ∗(b −→sncP) = (P� b� II); ∗(b −→sncP)

Due to Law 3.3.153 the result above also applies to sets of parallel steps (as the whole set of steps

can be represented as a single step). Furthermore, if the conditions of the set of steps are disjoint,

we can further simplify the Law 5.1.9 as described by the following law.

Law 5.1.10. Provided ¬(b ∧ c) then we have:

b>S ; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = b>S ; P; ∗(

(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

The body of an iterated step with condition b can be extended with another step c −→sncQ provided b

and c cannot hold simultaneously.

Law 5.1.11. Provided ¬(b ∧ c) and P takes at least one clock cycle, then we have:

∗(b −→sncP) = b ∗ (
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

If the body of an iterated step is self-inhibiting, the loop can be altogether eliminated.

Law 5.1.12. Provided inh
(
b −→sncP, b −→sncP

)
we have:

∗(b −→sncP) = P� b� II

The following law shows how information about activation and inhibition of steps can be extracted

outside of iterated steps.

Law 5.1.13. Provided inh (P,Q) then we have:

(a < act (Q))⊥S ; ∗P = (a < act (Q))⊥S ; ∗P; (a < (act (Q) ∪ act (P))⊥S

The joint iteration of steps b −→sncP and c −→sncQ can be serialised (by means of performing the iteration

of the former step first) provided c −→sncQ inhibits b −→sncP.

Law 5.1.14. Provided ¬(b ∧ c) and inh
(
c −→sncQ, b −→sncP

)
then we have:

∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = ∗(b −→sncP); ∗(c −→sncQ)

The result above can be further extended provided we know that b −→sncP is self-inhibiting (once it

has been separated into an independent loop for serialisation, it will execute at most once due to

Law 5.1.12). Provided we can also ensure b holds, we can use this information to ensure P is

executed exactly once.

Law 5.1.15. Provided ¬(b ∧ c), inh
(
b −→sncP, b −→sncP

)
and inh

(
c −→sncQ, b −→sncP

)
we have:

b>S ; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = b>S ; P; ∗(c −→sncQ)
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The iteration of steps with the same guard distributes over parallel by merge.

Law 5.1.16. Provided P and Q take one clock cycle to terminate we have:

∗(
(
b −→sncP

)
‖M̂

(
b −→sncQ

)
) = ∗(b −→sncP) ‖M̂ ∗(b

−→

sncQ)

5.1.3 First Normal Form

The goal of this section is to define the first normal form for our compiler and to show how to

reduce all the primitive constructs in our subset of Handel-C to it.

In the reasoning language defined in previous sections, a program of the form:

var a; s>S ; b ∗ P; f⊥S ; end a

can be interpreted as the description of a state machine where:

• The variable a represents the control variables governing the execution of the machine the

normal form represents. The control variables in a do not exist at the source level and are

relevant to this particular normal form; hence they are introduced as local variables with

scope to the normal form only.

• s is an assumption about the control state in which the normal form is started. In general, s

requires a to have a particular initial value. If the machine is started in a state not satisfying

s, then it behaves miraculously (freeing the implementation from dealing with such cases).

• b ∗ P expresses the behaviour of the program represented by the normal form. In general, P

is expressed as the guarded choice b1
−→

sncP1 ‖M̂ . . . ‖M̂ bn
−→

sncPn. In this case, the form b ∗ P is

achieved by having b = b1 ∨ · · · ∨ bn.

We require each Pi to be of the form (v :=
snc e)1 for an appropriate list of variables v and

corresponding list of expressions e. We also constrain Pi to be independent from the value

of a. In practical terms, a-independence implies that Pi’s behaviour does not depend on the

value of a but that it assigns a new value to it. In algebraic terms, the independence from the

value of a can be characterised by the fix-point law:

(a :=
snc e; P) = P

Note that we do not impose this restriction to the conditions guarding each Pi. In fact, all

bis in our compilation into normal form will be conditions depending on the control values

held in a.

• f captures the value the machine’s control variables should hold at the end of the execution

of b ∗ P. If the execution of b ∗ P failed to establish f the machine behaves like the worst

possible process ⊥.
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Note that when b ∗ P has terminated, the condition b no longer holds so we have

b ∗ P; f⊥S = b ∗ P;¬b⊥S ; f⊥S = b ∗ P; (¬b ∧ f )⊥S

allowing us to assume f = (¬b ∧ f ) and, consequently, ¬(b ∧ f ). This fact is used in some

of the compilation theorems (e.g., Lemma 5.1.18) to show the semantic correspondence

between the programming constructs and their normal form representations.

In order to keep the presentation compact and facilitate the manipulation of programs we will

abbreviate our normal form by means of the following notation:

Definition 5.1.17. Normal form

a : [s,
(
b −→sncP

)
, f ] =df var a; s>S ; ∗b −→sncP; f⊥S ; end a

Taking advantage of the knowledge that P is comprised of steps of the form

b1
−→

sncP1 ‖M̂ . . . ‖M̂ bn
−→

sncPn

and apply definitions 5.1.2 and 5.1.8 to write:

c : [a,
(
b1
−→

sncP1 ‖M̂ . . . ‖M̂ bn
−→

sncPn
)
, f ]

as a syntactic shorthand for:

c : [a,
(
(b1 ∨ · · · ∨ bn) −→

snc

(
b1
−→

sncP1 ‖M̂ . . . ‖M̂ bn
−→

sncPn
))
, f ]

5.1.4 Normal form reduction theorems

We have already introduced the definition of the state machine we will use as our first normal form

together with the kind of actions it can perform (i.e., the machine steps). We will now concentrate

on defining a complete set of compilation rules allowing us to reduce any program constructed

from our subset of Handel-C into the first normal form.

Following the ideas used by Sampaio [1997]; Iyoda and He [2001b]; Duran et al. [2001]; He

[2002], it is possible to prove that an arbitrary program can be reduced to normal form by means of

proceeding by structural induction over the input language’s constructs. In particular, it is sufficient

to show how each primitive command can be written in normal form and that all the operators in

the language (when applied to operands in normal form) yield a result expressible in normal form.

Even though some of the theorems in this section state straightforward results, they have this

status because they show how the source language operators can be reduced to normal form. Fur-

thermore, the theorems in this section express transformations that are architecture independent in

the sense that there is no direct mapping into hardware (i.e. FPGA) elements at this level of abs-

traction. In Section 5.2 we address this issue and introduce further transformations that generate

code in a representation where hardware elements can be easily identified and derived from the

normal form.
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5.1.4.1 Skip, assignment and delay

If the initial state of a machine is equal to its final state, the machine does not perform any action.

In the context of our normal form, a machine that is started in its final state has, by definition,

terminated already and will just ignore the set of actions inside its execution loop. The following

lemma takes advantage of this observation to provide a normal form representation for the skip

construct.

Lemma 5.1.18. Normal form encoding of II

II v a : [a = s,
(
b −→sncP

)
, a = s]

for any valid step b −→sncP

Proof.

a : [a = s,
(
b −→sncP

)
, a = s]

= {Definition 5.1.17}

var a; (a = s)>S ; ∗(b −→sncP); (a = s)⊥S ; end a

= {Law 3.3.98 (remember that ¬(b ∧ f ) in the normal form, then (a = s)⇒ ¬b)}

var x; (a = s)>S ; (a = s)⊥S ; end a

w {Laws 3.3.43 and 3.3.70}

II �

In order to encode the delay construct in normal form we need a way of stating a machine

that takes one clock cycle to terminate and leaves the program variables unchanged (i.e., delay is

just an empty multiple assignment to all the program variables). From the point of view of our

normal form, this effect can be achieved by a machine with a single step that (a) keeps the program

variables constant; (b) sets the control state to the machine’s final value; and (c) takes a whole

clock cycle to perform those updates.

Theorem 5.1.19. delay v a : [a = s,
(
a = s −→snc (v, a :=

snc v, f )1
)
, a = f ]

Proof.

a : [a = s,
(
a = s −→snc (v, a :=

snc v, f )1
)
, a = f ]

= {Definition 5.1.17}

var a; (a = s)>S ; ∗(a = s −→snc (v, a :=
snc v, f )1); (a = f )⊥S ; end a

= {Laws 3.3.100 and 4.2.6}

var a; (a = s)>S ; (v, a :=
snc v, f )1; (a = f )⊥S ; ∗(a = s −→snc (v, a :=

snc v, f )1); (a = f )⊥S ; end a

= {Laws 3.3.98 (by definition, s , f ) and 4.2.6(twice)}

var a; (a = s)>S ; (v, a :=
snc v, f )1; end a
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w {Laws 3.3.72 and 3.3.95}

var a; (a = s)>S ; end a; (v :=
snc v)1

= {Laws 3.3.74, 3.3.70 and 3.3.9}

(v :=
snc v)1

= {Definition 2.3.8 and theorem 4.2.2}

delay �

In a similar way, the assignment construct uses the same structure used in the previous theorem

to encode delay in normal form but updating the appropriate list of variables.

Theorem 5.1.20. x :=
HC e v a : [a = s,

(
a = s −→snc (x, a :=

snc e, f )1
)
, a = f ]

Proof.

Similar to theorem 5.1.19 with (x :=
snc e)1 instead of (v :=

snc v)1. �

Having defined a way to express the basic Handel-C constructs in normal form, we turn our

attention into showing how the programming operators can combine normal forms together and

produce results that are in normal form.

5.1.4.2 Sequential composition

Our strategy to reduce sequential composition into normal form follows the one used by Hoare,

He and Sampaio [Hoare et al. 1993] in the context of the compilation of imperative programs. The

reduction of the sequential composition P; Q assumes both arguments are in normal form, they

share the same control variables and that the final state of P coincides with the initial state of Q.

The execution loop of the resulting normal form comprises the sets of steps of P and Q.

We first consider the compilation of a particular case of sequential composition where the set

of steps in the normal form on the right includes that of the one on the left.

Lemma 5.1.21. Simple sequential composition

a : [s,
(
b1
−→

sncP
)
, f0] ; a : [ f0,

 b1
−→

sncP

‖M̂ b2
−→

sncQ

 , f ] v a : [s,

 b1
−→

sncP

‖M̂ b2
−→

sncQ

 , f ]

Proof.

a : [s,
(
b1
−→

sncP
)
, f0]; a : [ f0,

(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ]

= {Definition 5.1.17}

var a; (a = s)>S ; ∗(b1
−→

sncP); (a = f0)⊥S ; end a;

var a; (a = f0)>S ∗
(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)

; (a = f )⊥S ; end a
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v {Laws 3.3.71 and 3.3.43}

var a; (a = s)>S ; ∗(b1
−→

sncP); ∗
(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)

; (a = f )⊥S ; end a

= {Law 5.1.11}

var a; (a = s)>S ; b1 ∗ (b1
−→

sncP ‖M̂ b2
−→

sncQ); ∗
(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)

; (a = f )⊥S ; end a

= {Law 3.3.104}

var a; (a = s)>S ; ∗
(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)

; (a = f )⊥S ; end a

= {Definition 5.1.17}

a : [s,
(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ] �

Extending the set of steps in the execution loop of a normal form leads to refinement.

Lemma 5.1.22. Normal form guarded approximation

a : [s,
(
b1
−→

sncP
)
, f ] v a : [s,

(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ]

Proof.

a : [s,
(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ]

w {Lemma 5.1.21}

a : [s,
(
b1
−→

sncP
)
, f ]; a : [ f ,

(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ]

w {Lemma 5.1.18 and law 3.3.10}

a : [s,
(
b1
−→

sncP
)
, f ] �

The reduction theorem for the general case of the sequential composition of two normal forms

is a direct consequence of the two lemmas presented above.

Theorem 5.1.23. Sequential composition

a : [s,
(
b1
−→

sncP
)
, f1]; a : [ f1,

(
b2
−→

sncQ
)
, f ] v a : [s,

(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ]

Proof.

a : [s,
(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ]

w {Lemma 5.1.21}

a : [s,
(
b1
−→

sncP
)
, f1]; a : [ f1,

(
b1
−→

sncP ‖M̂ b2
−→

sncQ
)
, f ]

w {Lemma 5.1.22}

a : [s,
(
b1
−→

sncP
)
, f1]; a : [ f1,

(
b2
−→

sncQ
)
, f ] �
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5.1.4.3 The conditional construct

Handel-C semantics requires the evaluation of the condition and the activation of the first action

in the selected branch within the fist clock cycle of the conditional construct’s execution.

In the context of our normal form, changes in the control flow of the program are encoded by

changing the control state of the state machine (i.e., by means of updating the values in the state

variables). Unfortunately, updating the control variables take a whole clock cycle (consider the

fact that variables are stored in flip-flops that take a whole clock cycle to reach a stable state) and

this will violate the semantics of the conditional construct.

A possible way round this problem is to require that P and Q use the same set of control

variables and have the same condition guarding the first step. In this way we have that

P = a : [s,
(
s −→sncP1 ‖M̂ b1

−→

sncP2
)
, f ]

and

Q = a : [s,
(
s −→sncQ1 ‖M̂ b2

−→

sncQ2
)
, f ]

The compilation of a program of the form (P� b�Q) into normal form could then be formu-

lated by means of performing the selection between P1 and Q1 within the actions of the first step.

This idea leads to a compilation schema of the form:

P� b� Q v a : [s,
(
s −→sncP1 � b� Q1 ‖M̂ b1

−→

sncP2 ‖M̂ b2
−→

sncQ2
)
, f ]

Even though this compilation schema achieves the desired effect in terms of the timing restric-

tions of the conditional construct, it opens the possibility of erroneous behaviour if either of the

branches ever returns to the initial state during its execution. For example consider the case where

P is a simple implementation of the program while c do (x :=
HC x + 1):

P = a : [s,
(
s −→snc (x, a :=

snc (x + 1, s)� c� (x, f ))1
)
, f ]

then, if we are to compile the program (P � x = 0 � Q) using the approach described above we

have:

P� b� Q v a : [s,

 s −→snc
(
(x, a :=

snc (x + 1, s)� c� (x, f ))1 � x = 0� Q1
)

‖M̂ b2
−→

sncQ2

 , f ]

In the case of this program running in a context where x = 0, the left branch associated with P

will be selected for execution and it will establish a = s and x = 1. In the next iteration, x = 0 will

not hold and Q1 will be selected for execution. In this way, our implementation of the conditional

construct initially selected P for execution but switched to executing Q after one clock cycle!

This problem arises because we are pushing the resolution of the conditional into the first step

of a possibly re-entrant state machine. The solution is to ensure that P and Q have an initial state

that is unreachable after it has been executed. The next result shows that we can add a new (and
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unique) entry point to a normal form and that this addition refines the initial normal form:

Lemma 5.1.24. Entry point state addition

a : [(a = s1),

 (a = s1) −→sncP1

‖M̂ b −→sncP

 , f ] v a : [a = s,
(
a = s −→sncP1 ‖M̂ (a = s1) −→sncP1 ‖M̂ b −→sncP

)
, f ]

provided s is a fresh control state

Proof.

Let S =df (a = s1) −→sncP1 ‖M̂ b −→sncP in:

a : [s1,
(
(a = s1) −→sncP1 ‖M̂ b −→sncP

)
, f ]

= {Definition 5.1.17}

var a; ((a = s1))>S ; ∗
(
(a = s1) −→sncP1 ‖M̂ b −→sncP

)
; f⊥S ; end a

= {Definition 5.1.8, then laws 3.3.100, 3.3.58}

var a; ((a = s1))>S ; S ; ∗
(
(a = s1) −→sncP1 ‖M̂ b −→sncP

)
; f⊥S ; end a

= {Laws 3.3.74 and 3.3.16}

var a; S [s1/a]; ∗P; f⊥S ; end a

= {S is a step→ S is a-independent, law 3.3.23}

var a; (S � a = s� S ); ∗
(
(a = s1) −→sncP1 ‖M̂ b −→sncP

)
; f⊥S ; end a

v {Laws 3.3.4, 3.3.7, 3.3.9 and 3.3.33}

var a; (II� a = s� >); S ; ∗
(
(a = s1) −→sncP1 ‖M̂ b −→sncP

)
; f⊥S ; end a

= {Definition 3.3.34}

var a; a = s>S ; S ; ∗P; f⊥S ; end a

= {inh
(
a = s −→sncS , a = s −→sncS

)
, inh

(
P, a = s −→sncS

)
, law 5.1.15}

var a; a = s>S ; ∗
(
a = s −→sncS ‖M̂ (a = s1) −→sncP1 ‖M̂ b −→sncP

)
; f⊥S ; end a

= {Definition 5.1.17}

a : [a = s,
(
a = s −→sncP1 ‖M̂ (a = s1) −→sncP1 ‖M̂ b −→sncP

)
, f ] �

The next lemma allows us to simplify a normal form with a single starting point provided it

depends on a condition that is known to hold.

Lemma 5.1.25. Entry point simplification

b>S ; a : [s,
(
s −→sncP1 � b� P2 ‖M̂ b2

−→

sncQ
)
, f ] = b>S ; a : [s,

(
s −→sncP1 ‖M̂ b2

−→

sncQ
)
, f ]

provided s −→snc (P1 � b� P2) is self-inhibiting and inh
(
b2
−→

sncQ, s −→snc (P1 � b� P2)
)
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Proof.

b>S ; a : [s,
(
s −→sncP1 � b� P2 ‖M̂ b2

−→

sncQ
)
, f ]

= {Definition 5.1.17}

b>S ; var a; a = s>S ; ∗
(
s −→sncP1 � b� P2 ‖M̂ b2

−→

sncQ
)

; a = f⊥S ; end a

= {Proviso and law 5.1.15}

b>S ; var a; a = s>S ; P1 � b� P2; ∗
(
b2
−→

sncQ
)

; a = f⊥S ; end a

= {Laws 3.3.92, 3.3.46 and 3.3.58}

var a; a = s>S ; b>S ; P1; ∗
(
b2
−→

sncQ
)

; a = f⊥S ; end a

= {Laws 3.3.92 and 3.3.46, then proviso and law 5.1.15}

b>S ; var a; a = s>S ; ∗
(
s −→sncP1 ‖M̂ b2

−→

sncQ
)

; a = f⊥S ; end a

= {Definition 5.1.17}

b>S ; a : [s,
(
s −→sncP1 ‖M̂ b2

−→

sncQ
)
, f ] �

The compilation of (P�b�Q) into first normal form is the result of firstly extending P and Q

to make them single-entry by means of Lemma 5.1.24 and then applying the technique described

at the beginning of this section to push the resolution of the condition inside the first step.

Theorem 5.1.26. Conditional

a : [s1,
(
s1
−→

sncP1 ‖M̂ b1
−→

sncQ1
)
, f ]� b� a : [s2,

(
s2
−→

sncP2 ‖M̂ b2
−→

sncQ2
)
, f ] v

a : [s,

s −→snc (P1 � b� P2) ‖M̂

 s1
−→

sncP1 ‖M̂ b1
−→

sncQ1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncQ2


 , f ]

provided s is a fresh control state and that the encodings of P and Q in normal form are single-

entry.

Proof.

We first observe that as ¬(s ∧ (s1 ∨ b1 ∨ s2 ∨ b2)) (we have selected s to be a fresh control

state), the first step of the normal form is unreachable once it has been executed. Algebraically,

inh
(
s1
−→

sncP1 ‖M̂ b1
−→

sncQ1, s −→sncP
)

and

inh
(
s2
−→

sncP2 ‖M̂ b2
−→

sncQ2, s −→sncP
)

for any process P. Furthermore, as P1 and P2 cannot mention the control state s (again, we have

chosen it to satisfy this condition) then s −→snc (P1 � b� P2) is self inhibiting.
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a : [s,

s −→snc (P1 � b� P2) ‖M̂

 s1
−→

sncP1 ‖M̂ b1
−→

sncQ1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncQ2


 , f ]

= {Law 3.3.23}

a : [s,


s −→snc (P1 � b� P2)

‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncQ1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncQ2

 , f ]� b� a : [s,


s −→snc (P1 � b� P2)

‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncQ1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncQ2

 , f ]

= {Law 3.3.57 and Lemma 5.1.25 (observation above ensures precondition)}

a : [s,


s −→sncP1

‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncQ1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncQ2

 , f ]� b� a : [s,


s −→sncP2

‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncQ1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncQ2

 , f ]

w {Lemma 5.1.22}

a : [s,

s −→sncP1 ‖M̂

 s1
−→

sncP1

‖M̂ b1
−→

sncQ1


 , f ]� b� a : [s,

s −→sncP2 ‖M̂

 s2
−→

sncP2

‖M̂ b2
−→

sncQ2


 , f ]

w {Lemma 5.1.24}

a : [s1,
(
s1
−→

sncP1 ‖M̂ b1
−→

sncQ1
)
, f ]� b� a : [s2,

(
s2
−→

sncP2 ‖M̂ b2
−→

sncQ2
)
, f ] �

5.1.4.4 Iteration

When trying to provide a normal form encoding for the iteration construct, we face the problem

of the immediate (i.e., combinatorially rather than in a new clock cycle) change of control state

that arises when the while condition becomes false and the loop terminates. In this case, control is

passed within the same clock cycle to the construct that follows the while in the sequential order

imposed by the program.

This is a similar situation to the one we encountered when reducing the conditional construct

to normal form. Recasting from the previous section, we solved the combinatorial change in the

control flow by means of pushing conditional actions (taken from the actions that must follow the

evaluation of the condition) into the same state where the condition is evaluated1.

In the context of the iteration construct, actions to happen when the loop’s condition becomes

false are indicated by placing them in sequential composition after the while construct. This

means the iteration construct does not carry any information regarding the actions that will follow

its execution. This automatically pre-empts us from solving the problem with the same idea we

used to reduce the selection construct to normal form.

On the other hand, if we require all loops in the program to be followed by a combination

of constructs that takes at least one clock cycle we can apply Law 3.3.103 and Definition 4.2.7 to

encode them as an iterating selection as defined in Section 4.2.2. The main advantage of expressing

1Consider, for example, the case of the selection construct (if c then P else Q). We can always extract the behaviour
that follows from the conditional point c from P or Q depending on the value of the condition.
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loops in this way is that information about the actions to be performed when the loop terminates is

contained within the iterating selection construct. In this way, we can compile this particular kind

of iteration using the strategy described in the previous section for the reduction of the conditional

construct to normal form.

The requirement that loops are followed by at least one time-consuming action is, in general,

satisfied in most programs written in Handel-C. On the other hand, it is possible to write valid

programs that do not satisfy this condition by performing an iteration in the following cases:

1. just before terminating its execution:

P; while b do Q

2. at the end of one of the parallel branches:

(while b do Q) ‖M̂ P

3. at the end of a conditional branch:

(while b do Q)� c� P

In all these cases the user will be forced to place a time consuming action after the while
construct if the program is to be compiled using our approach.

We have conducted a pilot study taking sample Handel-C programs as described in [Aubury

et al. 1996]. The examples range from a simple accumulator to a multi-module histogram equali-

ser. Our pilot study does not intend to provide formal evidence that our request for while constructs

to be followed by a time-consuming action will always be trivially satisfied or that we will always

be able to transform a program automatically to meet this form. The main aim of the study was

to provide some insight on how often our requirement will force the modification of the source

program in order to meet our requirements.

Only one of the example programs, a parallel implementation of a 4-places queue, was found

not to be in the format required by iterated selection. The code of the queue implements a server

that is meant to run forever (i.e., until the hardware breaks or is disconnected) thus the code follows

the structure

main(){while true do Q}

matching a particular form of case 1 described above. In this case, a delay construct can be easily

added after the while construct and, as the new delay will never be executed, the semantics of the

program are not changed.

From the evidence above, we decided that our compiler will only have the iterating selection

construct as mechanism to implement loops. The user may need, in some cases, to change the

source program to match our requirement and these changes may lead to some minor performance
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losses. On the other hand, our compiler is intended to be used in the context of safety-critical

systems where, in most cases, correctness is a more relevant requirement than performance.

5.1.4.5 Iterating selection

The reduction of the iterating selection construct to normal form follows a similar approach to the

one presented for the selection construct by adding a new unique initial state where the looping

condition is evaluated. The main difference in the case of the iterating selection is that the new

state is set to be the final state of the iteration’s body. In this way, we ensure the looping condition

gets evaluated every time an execution of the loop’s body terminates, which exactly matches the

semantics of the looping part of the iterating selection.

We begin by proving a result similar to recursion unfolding for normal forms: when the itera-

tion’s condition hold, the body of the loop executes once and the loop starts again. The following

lemma captures this notion by extracting the normal form corresponding to the loop’s body and

putting it in sequence with the complete loop. The presence of assumptions and assertions weakens

the usual equality of the unfolding law into refinement.

Lemma 5.1.27.

b>S ; a : [s1,
(
s1
−→

sncP1 ‖M̂ b1
−→

sncS 1
)
, f1]; a : [ f1,


f1 −→sncP1 � b� P2

‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2

 , f ] v

b>S ; a : [ f1,
(

f1 −→sncP1 � b� P2 ‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1 ‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ]

Proof.

Let P = f1 −→sncP1 � b� P2 ‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1 ‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2 in:

b>S ; a : [s1,
(
s1
−→

sncP1 ‖M̂ b1
−→

sncS 1
)
, f1]; a : [ f1, P, f ]

= {Definition 5.1.17, then law 3.3.100}

b>S ; var a; (a = s1)>S ; P1; ∗(s1
−→

sncP1 ‖M̂ b1
−→

sncS 1); (a = f1)⊥S ; end a;

var a; (a = f1)>S ; ∗P; (a = f )⊥S ; end a

v {Laws 3.3.71, 3.3.44 and 3.3.74}

b>S ; var a; a :=
snc s1; P1; ∗(s1

−→

sncP1 ‖M̂ b1
−→

sncS 1); ∗P; (a = f )⊥S ; end a

= {P1 is a-independent and it performs an assignment to a, laws 3.3.16 and 3.3.92}

var a; b>S ; P1; ∗(s1
−→

sncP1 ‖M̂ b1
−→

sncS 1); ∗P; (a = f )⊥S ; end a

v {Law 3.3.58, then laws 3.3.92, 3.3.40 and 5.1.11}

b>S ; var a; (a = f1)>S ; (P1 � b� P2); (s1 ∨ b1) ∗ P; ∗P; (a = f )⊥S ; end a

= {Laws 3.3.104 and 3.3.100}

b>S ; var a; (a = f1)>S ; ∗P; (a = f )⊥S ; end a
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= {Definition 5.1.17}

b>S ; a : [ f1,
(

f1 −→sncP1 � b� P2 ‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1 ‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ] �

On the other hand, when the looping condition does not hold, the iterating selection construct

selects the else branch for execution. As with Lemma 5.1.27, the following result can be seen as

the normal form equivalent of the unfolding law (in the case where the looping condition does not

hold).

Lemma 5.1.28.

(¬b)>S ; a : [s2,
(
s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ] v (¬b)>S ; a : [ f1,


f1 −→sncP1 � b� P2

‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2

 , f ]

Proof.

Let P = f1 −→sncP1 � b� P2 ‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1 ‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2 in:

(¬b)>S ; a : [s2,
(
s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ]

v {Lemma 5.1.22, definition 5.1.17, then law 3.3.100}

(¬b)>S ; var a; (a = s2)>S ; P2; ∗P; (a = f )⊥S ; end a

= {Law 3.3.74, P1 is a-independent, 3.3.92}

var a; (¬b)>S ; P2; ∗P; (a = f )⊥S ; end a

v {Law 3.3.58, then laws 3.3.92 and 3.3.40}

(¬b)>S ; var a; (a = f1)>S ; (P1 � b� P2); ∗P; (a = f )⊥S ; end a

= {Law 3.3.100 and definition 5.1.17}

(¬b)>S ; a : [ f1,
(

f1 −→sncP1 � b� P2 ‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1 ‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ] �

The compilation of the iterating selection into first normal form is a direct consequence of the

two lemmas described above and the least fix-point law.

Theorem 5.1.29.

b ∗
(
a : [s1,

(
s1
−→

sncP1 ‖M̂ b1
−→

sncS 1
)
, f1]

)
� a : [s2,

(
s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ] v

a : [ f1,


f1 −→sncP1 � b� P2

‖M̂ s1
−→

sncP1 ‖M̂ b1
−→

sncS 1

‖M̂ s2
−→

sncP2 ‖M̂ b2
−→

sncS 2

 , f ]
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Proof.

RHS = RHS

≡ {Laws 3.3.23 and 3.3.57}

RHS = (b>S ; RHS )� b� ((¬b)>S ; RHS )

≡ {Lemmas 5.1.27 and 5.1.28, law 3.3.57}

RHS w (a : [s1,
(
s1
−→

sncP1 ‖M̂ b1
−→

sncS 1
)
, f1]; RHS )� b�

a : [s2,
(
s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ]

⇒ {Law 2.3.81}

RHS w µX • ((a : [s1,
(
s1
−→

sncP1 ‖M̂ b1
−→

sncS 1
)
, f1]; X)� b�

a : [s2,
(
s2
−→

sncP2 ‖M̂ b2
−→

sncS 2
)
, f ])

≡ {Theorem 4.2.8}

RHS w LHS �

5.1.4.6 Parallel composition

The reduction to normal form of P ‖M̂ Q (where P and Q are already in first normal form) takes

advantage of the fact that the combination of steps is performed by the same operator used to

combine P and Q in parallel. This is a major improvement from other approaches used to combine

normal forms in parallel by means of the cross-product machine of P and Q [He et al. 1993].

The key to our parallel encoding is the fact that P and Q have independent control variables. In

this way, we can avoid control-interference between the steps of the two machines when combined

together in a single normal form. Unfortunately, this same independence between P and Q could

potentially produce incorrect behaviour. To see why, consider the program

((x :=
HC e1 # y :=

HC e2) ‖HC z :=
HC e2) # (P ‖

HC Q)

In this case, the normal form reduction strategy will generate a normal form for (x :=
HC e1 #y :=

HC e2)

depending on a control variable a0 and another one for (z :=
HC e2) depending on a1.

a0 : [a0 = s0,
(
a0 = s0

−→

snc (x, a0
:=
snc e1, s1)1 ‖M̂ a0 = s1

−→

snc (y, a0
:=
snc e2, s2)1

)
, a0 = s2] ‖M̂

a1 : [a1 = s3,
(
a1 = s3

−→

snc (z, a1
:=
snc e3, s4)1

)
, a1 = s4]

As we are to re-use control variables (FPGA devices are constrained in resources thus the

need to keep the size of our normal form as compact as possible), P and Q will also have control

variables a0 and a1 respectively. Furthermore, the way in which sequential composition merges

two normal forms together will make the final control values for a0 and a1 after executing ((x :=
HC e1 #

y :=
HC e2) ‖HC z :=

HC e2) to be the initial values for the normal form encoding of (P ‖

HC Q). If the compilation

strategy does not add any sort of control to ensure the simultaneous activation of P and Q, a1 will

be set to the value s4 after one clock cycle and this will lead to the activation of the first step of Q
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while P will only be activated one clock cycle later (due to the extra clock cycle required for a0 to

reach the value s2).

To solve this potential problem, we ensure simultaneous initiation of all parallel branches by

means of forcing a common initial step (cross-product like) between the actions in the first steps

of P and Q. The state-based condition guarding this new step requires the introduction of a fresh

state for both control variables. The need for fresh control states for this new initial state is based

on the fact that any of the parallel branches could return to its initial state (consider, for example,

the case of one of the branches being an iteration).

Theorem 5.1.30 below applies these notions in the compilation of parallel composition to

normal form. The key effect of this theorem is to encode the parallel execution of the two normal

forms as the parallel execution of their steps by means of Law 5.1.16. The proof of the theorem

provides more details in this direction.

Theorem 5.1.30.

a1 : [a1 = s1.1,
(
b1
−→

sncP1
)
, a1 = f1] ‖M̂ a2 : [a2 = s2.1,

(
b2
−→

sncP2
)
, a2 = f2] v

a1, a2 : [(a1 = s1 ∧ a2 = s2), P, (a1 = f1 ∧ a2 = f2)]

where:

• s1 and s2 are fresh control states (i.e., they are not reachable from P1 or P2)

• (b1
−→

sncP1) = (s1.1
−→

sncP1.1 ‖M̂ b1
−→

sncP1.2)

• (b2
−→

sncP2) = (s2.1
−→

sncP2.1 ‖M̂ b2
−→

sncP2.2)

• P =

 (a1 = s1 ∧ a2 = s2) −→sncP1.1 ‖M̂ b1
−→

sncP1 ‖M̂

(a1 = s1 ∧ a2 = s2) −→sncP2.1 ‖M̂ b2
−→

sncP2


Proof.

Observation 1: Let b = b1 ∨ b2 then we have:

b −→snc (b1
−→

sncP1)

= {b = b1 ∨ b2 and law 3.3.152}

(b1 ∨ b2) ∧ b1
−→

sncP1

= {Absorption of conjunct}

b1
−→

sncP1

Similarly, b −→snc (b2
−→

sncP2) = b2
−→

sncP2

Observation 2: Because b1 → P1 is a step of our first normal form we know it takes exactly

one clock cycle (remember this step belongs to one of the parallel branches already in normal

form). Thus, it is easy to see that b1 → P1 ‖M̂ (¬b1 ∧ b2)→ (c1
:=
snc f )1 also takes one clock cycle.

Similarly, b2 → P2 and b2 → P2 ‖M̂ (b1 ∧ ¬b2)→ (c2
:=
snc f )1 take exactly one clock cycle.
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Observation 3: s1 ∧ s2
−→

sncP1.1 ‖M̂ s1 ∧ s2
−→

sncP2.1 is self-inhibiting. The reason for this is that

s1 and s2 are not among the possible control states P1.1 and P2.1 can reach (in fact, s1 and s2 are

fresh control states we have introduced).

a1, a2 : [(a1 = s1 ∧ a2 = s2), P, (a1 = f1 ∧ a2 = f2)]

= {Definition 5.1.17, observation 1}

var a1, a2; ((a1 = s1 ∧ a2 = s2))>S ;

∗

 (a1 = s1 ∧ a2 = s2) −→sncP1.1 ‖M̂ b −→snc (b1
−→

sncP1) ‖M̂
(a1 = s1 ∧ a2 = s2) −→sncP2.1 ‖M̂ b −→snc (b2

−→

sncP2)

 ; (a1 = f ∧ a2 = f )⊥S ; end a1; a2

= {¬((a1 = s1 ∧ a2 = s2) ∧ b), law 5.1.14}

var a1, a2; ((a1 = s1 ∧ a2 = s2))>S ;

∗ ((a1 = s1 ∧ a2 = s2) −→sncP1.1 ‖M̂ (a1 = s1 ∧ a2 = s2) −→sncP2.1);

∗ (b −→snc (b1
−→

sncP1) ‖M̂ b −→snc (b2
−→

sncP2)); (a1 = f ∧ a2 = f )⊥S ; end a1; a2

= {Laws 5.1.9, 3.3.143, 3.3.58 and 5.1.16, observation 1}

var a1, a2; ((a1 = s1 ∧ a2 = s2))>S ; P1.1 ‖M̂ P2.1;

∗ ((a1 = s1 ∧ a2 = s2) −→sncP1.1 ‖M̂ (a1 = s1 ∧ a2 = s2) −→sncP2.1);(
∗(b1

−→

sncP1) ‖M̂ ∗(b2
−→

sncP2)
)

; (a1 = f1 ∧ a2 = f2)⊥S ; end a1; a2

w {Law 3.3.40, observation 3 then law 5.1.12}

var a1, a2; P1.1 ‖M̂ P2.1;
(
∗(b1

−→

sncP1) ‖M̂ ∗(b2
−→

sncP2)
)

; (a1 = f1 ∧ a2 = f2)⊥S ; end a1; a2

= {Neither a1 nor a2 appears in the right-hand side of (P1.1 ‖M̂ P2.1), law 3.3.16}

var a1, a2; (a1, a2
:=
snc s1.1, s2.1); P1.1 ‖M̂ P2.1;(

∗(b1
−→

sncP1) ‖M̂ ∗(b2
−→

sncP2)
)

; (a1 = f1 ∧ a2 = f2)⊥S ; end a1; a2

= {Laws 3.3.74, 3.3.47, 3.3.144(twice)}

var a1, a2; (a1 = s1.1 ∧ a2 = s2.1)>S ; P1.1 ‖M̂ P2.1;(
(∗(b1

−→

sncP1); (a1 = f1)⊥S ) ‖M̂ (∗(b2
−→

sncP2); (a2 = f2)⊥S )
)

; end a1; a2

w {Laws 3.3.143, 3.3.45, 3.3.40, 3.3.142 (observation 2 ensures one sync event)}

var a1, a2;


(
(a1 = s1.1)>S ; P1.1; ∗(b1

−→

sncP1); (a1 = f1)⊥S
)

‖M̂

(
(a2 = s0.2)>S ; P2.1; ∗(b2

−→

sncP2); (a2 = f2)⊥S
)
 ; end a1; a2

= {Law 3.3.100}

var a1, a2;


(
(a1 = s1.1)>S ; ∗(b1

−→

sncP1); (a1 = f1)⊥S
)

‖M̂

(
(a2 = s0.2)>S ; ∗(b2

−→

sncP2); (a2 = f2)⊥S
)
 ; end a1; a2
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w {Law 3.3.148}

(var a1; (a1 = s1.1)>S ; ∗(b1
−→

sncP1); (a1 = f1)⊥S ; end a1) ‖M̂
(var a2; (a2 = s0.2)>S ; ∗(b2

−→

sncP2); (a2 = f2)⊥S ; end a2)

= {Definition 5.1.17}

a1 : [a1 = s1.1,
(
b1
−→

sncP1
)
, a1 = f1] ‖M̂ a2 : [a2 = s2.1,

(
b2
−→

sncP2
)
, a2 = f2] �

5.1.5 Extending the control variables of a normal form

In the previous section we assumed all normal forms will have the same number of control va-

riables. On the other hand, our compilation strategy for the parallel construct produces a normal

form with an extended set of control variables every time it is used. For example, the simple

parallel program

(y :=
HC e1

‖

HC z :=
HC e2)

compiles into the following first normal form:

y :=
HC e1

‖

HC z :=
HC e2

= {Definitions 4.1.1, 4.1.6}

y :=
snc e1 ‖M̂ z :=

snc e2

v {Theorem 5.1.20, change name of control variables}

a1 : [a = s1.1,
(
a1 = s1.1

−→

snc (y, a1
:=
snc e1, f1)1

)
, a1 = f1] ‖M̂

a2 : [a2 = s2.1,
(
a2 = s2.1

−→

snc (z, a2
:=
snc e2, f2)1

)
, a2 = f2]

v {Theorem 5.1.30, let s = (a1 = s1 ∧ a2 = s2) and f = (a1 = f1 ∧ a2 = f2)}

a1, a2 : [s,


s −→snc (y, a1

:=
snc e1, f1)1 ‖M̂ s −→snc (z, a2

:=
snc e2, f2)1 ‖M̂

a1 = s1.1
−→

snc (y, a1
:=
snc e1, f1)1 ‖M̂

a2 = s2.1
−→

snc (z, a2
:=
snc e2, f2)1

 , f ]

= {Law 3.3.153, propositional calculus, unreachable steps (laws 5.1.14, 5.1.13 and 3.3.99)}

a1, a2 : [s,
(
s −→snc (y, z, a1, a2

:=
snc e1, e2, f1, f2)1

)
, f ]

If we are now interested in the program

x :=
HC e0 # (y :=

HC e1
‖

HC z :=
HC e2)

we have that:

x :=
HC e0 # (y :=

HC e1
‖

HC z :=
HC e2)
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= {Definitions 4.1.1, 4.1.6}

x :=
snc e0; (y :=

snc e1 ‖M̂ z :=
snc e2)

v {Theorem 5.1.20 and observation above}

a1 : [a1 = s0,
(
a1 = s0

−→

snc (y, a1
:=
snc e1, s1.1)1

)
, a1 = s1.0];

a1, a2 : [s,
(
s −→snc (y, z, a1, a2

:=
snc e1, e2, f1, f2)1

)
, f ]

The problem here is that our theorem for sequential composition requires both normal forms to

have the same set of control variables. The solution is to extend the alphabet of the first normal

form to include a2 and to make it assume the initial value the parallel normal form is expecting on

it. In general terms, the strategy consists of expanding the normal form to contain the missing

control variables. The new control variables are then initialised to the value expected by the

subsequent normal form (implementing the parallel construct). The strategy described above can

be formally described as follows:

Theorem 5.1.31. Control variable extension

a1 : [a1 = s1,
(
b1
−→

sncP1 ‖M̂ b2
−→

sncP2
)
, a1 = f ] v

a1, a2 : [a1 = s1 ∧ a2 = s2,
(
b1
−→

sncP1[a2] ‖M̂ b2
−→

sncP2[a2]
)
, a1 = f ∧ a2 = s2]

provided a2 is the required additional control variable to be kept constant at value s2.

Proof.

a1 : [a1 = s1,
(
b1
−→

sncP1 ‖M̂ b2
−→

sncP2
)
, a1 = f ]

= {Definition 5.1.17, laws 3.3.9 and 3.3.70}

var a2; end a2; var a1; (a1 = s1)>S ; (b1 ∨ b2) ∗ (b1
−→

sncP1 ‖M̂ b2
−→

sncP2); (a1 = f )⊥S ; end a1

v {Laws 3.3.73, 3.3.74, 3.3.95 and 3.3.76, predicate calculus then law 3.3.102}

var a2; (a2 = s2)>S ;(
var a1; (a1 = s1)>S ; (b1 ∨ b2) ∗ (b1

−→

sncP1 ‖M̂ b2
−→

sncP2); a1 = f⊥S
)
[a2]

; (a2 = s2)⊥S ; end a1, a2

v {Laws 3.3.90, 3.3.87, 3.3.92, 3.3.92, 3.3.75, 3.3.47 and 3.3.45}

var a1, a2; (a1 = s1 ∧ a2 = s2)>S ;(
(b1 ∨ b2) ∗ (b1

−→

sncP1 ‖M̂ b2
−→

sncP2)
)
[a2]

; (a1 = f ∧ a2 = s2)⊥S ; end a1, a2

v {Laws 3.3.171, 3.3.91, 3.3.147 and 3.3.159}

var a1, a2; (a1 = s1 ∧ a2 = s2)>S ;

((b1 ∨ b2) ∧ a2 = s2) ∗ (b1
−→

sncP1[a2] ‖M̂ b2
−→

sncP2[a2]); (a1 = f ∧ a2 = s2)⊥S ; end a1, a2
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= {Definition 5.1.17}

a1, a2 : [a1 = s1 ∧ a2 = s2,
(
b1
−→

sncP1[a2] ‖M̂ b2
−→

sncP2[a2]
)
, a1 = f ∧ a2 = s2] �

Note that the modification to the precedent normal form will not affect the behaviour of the

normal form representing the parallel assignment. In fact, the latter will only activate its first step

when both a1 = f and a2 = s2. The way we have constructed the normal form ensures that a1 = f

will hold only after the normal form representing x :=
HC e0 has finished.

5.2 Parallel-by-merge elimination

Given Handel-C’s shared-variable nature, when several normal forms are put together it is highly

possible that more than one of them will be updating the same variable. Furthermore, due to the

semantics of our guarded commands, all program variables are updated by each step, even when

they are not activated2. This simultaneous attempt to update the program variables is one of the

reasons that led us to introduce parallel by merge as the combinator for steps in our fist normal

form. As mentioned before, the idea behind our parallel by merge operator is that each of the

parallel processes has a private copy of the shared resources that it is allowed to modify and that

all copies get synchronised at the end of each clock cycle.

Unfortunately, the much simpler parallelism provided by hardware devices cannot directly per-

form all these actions natively (i.e., the parallel behaviour the FPGA can produce is not expressive

enough to directly execute processes in parallel-by-merge). This fact forced us to provide a way of

simplifying the parallelism present in our first normal form into a form that can be directly mapped

to the lower level parallelism available in hardware devices.

Our strategy to is to generate hardware mimicking the implementation of parallel-by-merge

to compensate for the actions the FPGA cannot perform. Given the level of abstraction and com-

plexity of the execution of P ‖M̂ Q, this process is only possible for simple cases of P and Q.

Fortunately, steps in our first normal form can be expressed as just conditional, one-clock cycle as-

signments (see next section for details), allowing us to simplify parallel-by-merge with the strategy

described above. A consequence of this final observation is that parallel-by-merge elimination can

only be performed once the whole program has been reduced to first normal form, forcing us to

introduce a second normal form in order to be able to serialise the compilation process.

The goal of this section is to describe our second normal form and the strategy that allows us

to simplify the first normal form parallel behaviour.

5.2.1 Second normal form

In a general state machine, expressions are evaluated combinatorially and their results are then

used to update the variables in the device’s memory at the end of the clock cycle. Furthermore,

2Remember that guarded commands reduce to II; sync when their condition does not hold. This means the step is
trying to set all variables to be equal to themselves during that clock cycle.
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dedicated hardware is used to compute the value of expressions and the results are then transmitted

via wires to the flip-flops storing the program variables.

In our first normal form, all this behaviour is encoded within machine steps that are, in essence,

guarded multiple assignments. In fact, each step calculates an update value for each of the shared

variables at every clock cycle. The final value for a variable x at the end of each clock cycle is

calculated by means of merging the values provided by all the steps modifying it. On the other

hand, the value calculated by each step to update x is, most of the times, the previous value of the

variable itself (this is the case when the guard is not satisfied and the whole step is reduced to II1).

The goal of this section is to reduce the normal form from the previous section into a new

normal form comprising a single step. Let w be a list of special wire variables and v the list of

program variables including the normal form control variables. The step for our second normal

form is defined as follows:

Definition 5.2.1. Second normal form step

w :=
snc fw(v); (v :=

snc fv(w))1

where:

• fw(v) is a function updating the wires w based on the program and control variables in v.

• fv(w) is a function updating the program and control variables in v using the values carried

within the wires in w.

In turn, our second normal form also declares the wires that transmit values from the combina-

torial logic calculating the value of expressions into the storage area where variables are stored. As

with our first normal form, the execution of the second normal form is dependant on the variables

and wires holding particular initial values. The assumption about the initial value for the wires is

that they are equal to the logical value false and the buses have the value ARB. More formally, we

define the second normal form for the compilation as follows.

Definition 5.2.2. Second normal form

a,w : [s, b ∗ (P) , f ] =df var a,w; (s)>S ; b ∗ P; ( f )⊥S ; end a,w

where P is a second normal form step, as described by Definition 5.2.1.

The rest of this section is devoted to show how to reduce the steps from the first normal form

into the single step required by our second normal form. The results in Section 5.2.2 reduce all

steps into a single step similar to the one in Definition 5.2.1 but with local wires. Finally, Section

5.2.3, extends the scope of the wires and presents the final transformation to reduce to second

normal form.

5.2.2 Simplifying guarded multiple assignments

A simple inspection of the theorems in the previous section is enough to show that all steps in our

first normal form are guarded assignments of the form b −→snc (v :=
snc e)1 where v is a list of variables.
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In this section we first show how to transform guarded simultaneous assignments (i.e., when v is a

list of variables) into the parallel by merge composition of single-variable assignments. After that,

we show how to reduce steps further to a point where they are in the form described in Definition

5.2.1 but with the scope of the relevant wires local to the step.

We first observe that a guarded multiple assignment can be described as the parallel by merge

composition of guarded assignments to each of its individual variables. More formally:

Lemma 5.2.3. Transforming guarded multiple assignments

b −→snc (x, y :=
snc e1, e2)1 = b −→snc (x :=

snc e1)1 ‖M̂ b −→snc (y :=
snc e2)1

provided x and y are different variables

Proof.

Straightforward from Definition 4.2.3 and law 3.3.155. �

In this way we can express all steps in our first normal form as guarded, single-variable assign-

ments. The next step is to push the guard inside the expression and transform it into a conditional

assignment. The following lemma captures this notion more precisely.

Lemma 5.2.4. Simplifying guarded, single variable, assignments

b −→snc (x :=
snc e)1 = (x :=

snc e� b� x)1

Proof.

b −→snc (x :=
snc e)1

= {Definitions 3.3.149 and 3.2.7}

(x :=
snc e)1 � b� (x :=

snc x)1

= {Law 3.3.28}

(x :=
snc e� b� x)1 �

Having a way of simplifying the steps in the normal form into single assignments, we are

in good position to separate the evaluation of expressions from the actual update of the program

variables with those values. This is achieved by means of introducing additional wires and trans-

forming every step into the combination of two parts: (a) a modified version of the original step

where updates are stored in the recently introduced wires, in sequential composition with (b) a

process copying the value of the wires into the globally accessible store. Lemma 5.2.5 achieves

the partitioning described above.

Lemma 5.2.5. Single step parallel transformation

(x :=
snc e1)1 v var i.x; (i.x :=

snc e1); (x :=
snc i.x)1; end i.x
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Proof.

var i.x; i.x :=
snc e1; (x :=

snc i.x)1; end i.x

= {Laws 3.3.16 and 3.3.72}

var i.x; (x :=
snc e1)1; end i.x

w {Laws 3.3.94 and 3.3.70}

(x :=
snc e1)1 �

Finally, we can address the elimination of the complex parallel by merge we have used as the

combinator for our steps. As shown in Section 2.3.8.1, the merge predicate M(x, i.x, j.x, x.in′)

can be expressed as a deterministic selection function of the form SELECT (x, i.x, j.x). With this

observation in mind, Lemma 5.2.6 shows how to reduce the parallel by merge execution of two

steps in the form above back to the form established by Lemma 5.2.5.

Lemma 5.2.6.

 (var i.x :=
snc e1; (x :=

snc i.x)1; end i.x) ‖M̂
(var j.x :=

snc e2; (x :=
snc j.x)1; end j.x)

 v

var i.x, j.x;

(i.x, j.x :=
snc e1, e2); (x :=

snc SELECT (x, i.x, j.x))1;

end i.x, j.x


Proof.

(var i.x :=
snc e1; (x :=

snc i.x)1; end i.x) ‖M̂ (var j.x :=
snc e2; (x :=

snc j.x)1; end j.x)

v {Laws 3.3.148, 3.3.75 and 3.3.76}

var i.x, j.x; (i.x :=
snc e1; (x :=

snc i.x)1) ‖M̂ ( j.x :=
snc e2; (x :=

snc j.x)1); end i.x, j.x

v {Laws 3.3.16, 3.3.10, 3.3.142 and 3.3.146, theorem 2.3.122}

var i.x, j.x; (x :=
snc SELECT (x, e1, e2))1); end i.x, j.x

= {Laws 3.3.16 and 3.3.72}

var i.x, j.x; (i.x, j.x :=
snc e1, e2); (x :=

snc SELECT (x, i.x, j.x))1; end i.x, j.x �

5.2.3 Reaching second normal form

The previous two sections presented the different stages followed in the transformation from first

to second normal form. In summary, the transformation is as follows:

1. The separation of multiple assignment within a step into guarded single-variable assign-

ments executed in parallel-by-merge (Lemma 5.2.3).

2. The transformation of guarded assignments into conditional assignments (Lemma 5.2.4).

3. The introduction of wires and the separation of variable assignments into the combinatorial

calculation of the value of expressions and the actual update of the program variables. These
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wires used to transmit the values from the combinatorial logic into the memory-capable

hardware storing the program variables (Lemma 5.2.5).

4. The elimination of parallel-by-merge as the combinator of steps (Lemma 5.2.6).

The only missing aspect in the reduction to second normal form is the promotion of the de-

claration of the wires to outside the execution loop. As wires are special cases of variables, their

scope can be expanded by means of Law 3.3.105, leading to refinement. The complete sequence

of transformations is summarised by the following theorem, showing how to transform programs

from first to second normal form.

Theorem 5.2.7. First- to second-normal-form transformation

a : [s,
(
b −→sncP

)
, f ] v a,w : [s, b ∗

(
w :=
snc fw(v); (v :=

snc fv(w))1
)
, f ]

where P = b1
−→

snc (v1
:=
snc g1)1 ‖M̂ . . . ‖M̂ bn

−→

snc (vn
:=
snc gn)1

Proof.

a : [s,
(
b −→sncP

)
, f ]

= {Definitions 5.1.17 and 5.1.8}

var a; s>S ; b ∗ b −→sncP; f⊥S ; end a

= {Lemmas 5.2.3 and 5.2.4 (where e1 = v1 � b1 � g1, . . . , en = vn � bn � gn)}

var a; s>S ; b ∗
(
(v1

:=
snc e1)1 ‖M̂ . . . ‖M̂ (vn

:=
snc en)1

)
; f⊥S ; end a

= {Lemmas 5.2.5 and 5.2.6 (w = 〈w1, . . . ,wn〉, v = 〈v1, . . . , vn〉 and fw(v) = 〈e1, . . . , en〉)}

var a; s>S ; b ∗
(
var w; w :=

snc fw(v); (v :=
snc fv(w))1; end w

)
; f⊥S ; end a

v {Laws 3.3.105, 3.3.92, 3.3.75, 3.3.93 and 3.3.76}

var a,w; s>S ; b ∗
(
w :=
snc fw(v); (v :=

snc fv(w))1
)

; f⊥S ; end a,w

= {Definition 5.2.2}

a,w : [s, b ∗
(
w :=
snc fw(v); (v :=

snc fv(w))1
)
, f ] �

5.3 The compilation strategy in action

The goal of this section is to illustrate how the compilation process described in the previous

section works with some examples.

Example 5.3.1. Assignments in parallel

Consider now the slightly more complicated pair of assignments that are executed in parallel:

(x :=
HC e1) ‖HC (y :=

HC e2)
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The above program produces the parallel update of x and y (assumed to be distinct variables), with

values e1 and e2 respectively) and terminates after one clock cycle. In our first normal form, this

is achieved by combining two assignment normal forms using theorem 5.1.30.

a0, a1 :


(a0 = s0) ∧ (a1 = s1),(

(a0 = s0) ∧ (a1 = s1) −→snc (x, y, a0, a1
:=
snc e1, e2, f0, f1)1

)
,

(a0 = f0) ∧ (a1 = f1)


This first normal form can be further simplified and transformed into second normal form by

means of introducing wires and separating the calculation of e1, e2 and the next control state from

the actual updates of x, y, a0 and a1:

var a0, a1,wa0 ,wa1 ,wx,wy;

((a0 = s0) ∧ (a1 = s1))>S ;

(a0 = s0) ∧ (a1 = s1) ∗





wa0
:=
snc f0 � (a0 = s0) ∧ (a1 = s1)� a0 ‖

wa1
:=
snc f1 � (a0 = s0) ∧ (a1 = s1)� a1 ‖

wx
:=
snc e1 � (a0 = s0) ∧ (a1 = s1)� x ‖

wy
:=
snc e2 � (a0 = s0) ∧ (a1 = s1)� y


;

(a0, a1, x, y :=
snc wa0 ,wa1 ,wx,wy)1


;

((a0 = f0) ∧ (a1 = f1))⊥S ;

end a0, a1,wa0 ,wa1 ,wx,wy

Example 5.3.2. Sequential composition of parallel and non-parallel normal forms

We now address the compilation of a parallel assignment followed by a simple assignment:

(x :=
HC e1

‖

HC y :=
HC e2) # x :=

HC x + y

The above program expands our previous example to use the values assigned to x and y to

update x itself. The program terminates after two clock cycles with y = e2 and x = e1 + e2. The

equivalent program in our first normal form is as follows:

a0, a1 :



(a0 = s0) ∧ (a1 = s1), (a0 = s0) ∧ (a1 = s1) −→snc (x, y, a0, a1
:=
snc e1, e2, f0, f1)1

‖M̂ (a0 = f0) ∧ (a1 = f1) −→snc (x, a0
:=
snc x + y, f2)1

 ,
(a0 = f2) ∧ (a1 = f1)


Note that the control variables for x :=

HC x + y have been extended to incorporate a1 (our normal

form compilation strategy initially generated a normal form for this construct that had a0 as its
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only control variable). It is also important to notice that the last step keeps y and a1 constant

(i.e., y, a1
:=
snc y, a1) as the the assignment operator performs this additional assignments implicitly.

We can now transform the state machine above into second normal form to eliminate parallel by

merge:

var a0, a1, 0.wa0 , 1.wa0 ,wa1 , 0.wx, 1.wx,wy;

((a0 = s0) ∧ (a1 = s1))>S ;


(a0 = s0) ∧ (a1 = s1)

∨

(a0 = f0) ∧ (a1 = f1)

 ∗





0.wa0
:=
snc f0 � (a0 = s0) ∧ (a1 = s1)� a0 ‖

1.wa0
:=
snc f2 � (a0 = f0) ∧ (a1 = f1)� a0 ‖

wa1
:=
snc f1 � (a0 = s0) ∧ (a1 = s1)� a1 ‖

0.wx
:=
snc e1 � (a0 = s0) ∧ (a1 = s1)� x ‖

1.wx
:=
snc x + y� (a0 = f0) ∧ (a1 = f1)� x ‖

wy
:=
snc e2 � (a0 = s0) ∧ (a1 = s1)� y


;



a0
:=
snc SELECT (a0, 0.wa0 , 1.wa0) ‖

a1
:=
snc wa1 ‖

x :=
snc SELECT (a0, 0.wx, 1.wx) ‖

y :=
snc wy


1



;

((a0 = f2) ∧ (a1 = f1))⊥S ;

end a0, a1, 0.wa0 , 1.wa0 ,wa1 , 0.wx, 1.wx,wy

Example 5.3.3. Sequential composition within parallel branches

Our final example illustrates the real parallelism that can be achieved in our normal form. The

program is a sequence of assignments in parallel with a single assignment:

(x :=
HC e1 # x :=

HC x + y) ‖HC y :=
HC e2

The above program illustrates two notions: (a) the fact that shared variables can be used to

transmit values across parallel branches; and (b) our compilation strategy for parallel composition

allows the different parallel branches to execute independently from each other. Expanding the

semantics of the above program and applying theorems 5.1.20, 5.1.23 and 5.1.30 we can reduce

the above program into the following first normal form:

a0, a1 :



(a0 = s0) ∧ (a1 = s1), (a0 = s0) ∧ (a1 = s1) −→snc (x, y, a0, a1
:=
snc e1, e2, s0 + 1, s0 + 1)1

‖M̂ (a0 = s0 + 1) −→snc (x, a0
:=
snc x + y, s0 + 2)1

 ,
(a0 = s0 + 2) ∧ (a1 = s0 + 1)


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The second step in the normal form above models the assignment x :=
HC x + y in the original

program. It is important to notice that the condition guarding this step only refers to the value of

a0, allowing any possible step depending on a1 to be executed in parallel with it. The fact that

the control value s0 + 1 is unique and will only be assigned to a0 after the previous step has been

executed ensures a correct ordering of execution among the different steps in the normal form.

Again, we can eliminate the parallel by merge from the above state machine by means of

reducing it to second normal form:

var a0, a1, 0.wa0 , 1.wa0 ,wa1 , 0.wx, 1.wx,wy;

((a0 = s0) ∧ (a1 = s1))>S ;


(a0 = s0) ∧ (a1 = s1)

∨

a0 = s0 + 1

 ∗





0.wa0
:=
snc s0 + 1� (a0 = s0) ∧ (a1 = s1)� a0 ‖

1.wa0
:=
snc s0 + 2� a0 = s0 + 1� a0 ‖

wa1
:=
snc s0 + 1� (a0 = s0) ∧ (a1 = s1)� a1 ‖

0.wx
:=
snc e1 � (a0 = s0) ∧ (a1 = s1)� x ‖

1.wx
:=
snc x + y� a0 = s0 + 1� x ‖

wy
:=
snc e2 � (a0 = s0) ∧ (a1 = s1)� y


;



a0
:=
snc SELECT (a0, 0.wa0 , 1.wa0) ‖

a1
:=
snc wa1 ‖

x :=
snc SELECT (a0, 0.wx, 1.wx) ‖

y :=
snc wy


1



;

((a0 = s0 + 2) ∧ (a1 = s0 + 1))⊥S ;

end a0, a1, 0.wa0 , 1.wa0 ,wa1 , 0.wx, 1.wx,wy

5.4 Mapping the normal form into hardware

The goal of this section is to define a way of mapping our second normal form into a hardware

description suitable for programming a Field Programmable Gate Array (FPGA). An FPGA is

an integrated circuit designed to be configured by the customer or designer after manufacturing.

FPGAs contain programmable logic components called logic blocks, and a hierarchy of reconfi-

gurable interconnects that allow the blocks to be connected to each other. Logic blocks can be

configured to perform any task that could be performed in hardware, from complex combinational

functions to simple logic gates. In most FPGAs, the logic blocks also include memory elements,

which may be simple flip-flops or more complete blocks of memory.

The simplest way to achieve this goal is to provide a way of expressing our final normal form as

a low-level hardware description in VHDL, Verilog or any other architectural HDL. This approach

has been successfully applied to generate hardware implementations of high level functions in ML

or variants of Haskell [Iyoda 2007; Claessen and Pace 2002]. In the case of our compiler, the first

and second normal forms resemble, in structure, the standard implementation of state machines



5.4. MAPPING THE NORMAL FORM INTO HARDWARE 145

in VHDL [Abdel-hamid et al. 2004]. The problem of this approach is the already mentioned lack

of suitable denotational semantics for VHDL (see Section 1.2.4) that could be integrated with our

approach. Furthermore, the synthesis of this kind of VHDL architectural descriptions would have

to be verified if we are to maintain our goal of a correct compiler for Handel-C.

Another common strategy to achieve this goal would be to select an FPGA provider (e.g.,

Xilinx, Altera or Actel) and show how to map the final normal form into the vendor’s proprietary

net-list language. This approach is based on the assumption that hardware components that can

be instantiated in the net-list are correctly implemented and simple enough for their semantics to

be straightforward. Even though this strategy has proven itself efficient and successful [Iyoda and

He 2001b;a; Susanto and Melham 2001] it binds the compiler to a specific vendor and limits the

number of tools that can be used afterwards when synthesising hardware (mainly optimisation and

place and route algorithms).

Based on the limitations of the two approaches described before, we have decided to provide

a way of mapping our final normal form into generic, basic hardware components (the same kind

of components available in most proprietary net-list languages). In this way, we take advantage of

the successful experiences of previous hardware-generating tools without binding our compiler to

a specific vendor.

5.4.1 Generating hardware for the final normal form’s step

As described in Section 5.2, our second normal form is expressed in terms of the iteration of a

single step in the following format:

(
w1

:=
snc (e1 � c1 � x) ‖ · · · ‖ wn

:=
snc (en � cn � x)

)
; (x :=

snc SELECT (x, SELECT (x, . . . ,wn−1),wn))1

The hardware-mapping of this kind of step can be split into two main stages. Firstly, we need

to associate hardware to the combinatorial aspects of the expression above (i.e., the sub-expression

on the left of the sequential composition within the step). This particular part of the step can be

precisely described as the parallel composition of independent updates to wires of the form:

w :=
snc (e� c� v)

where v is one of the program/control variables and c is a control-based condition. The generation

of hardware for this aspect of the combinatorial part of a clock cycle can be described as follows:

1. Generate combinatorial hardware to calculate the value expression e.

2. Generate combinatorial logic to evaluate condition c.

3. Use the allocated wires w, wv, we and wc and associate them with w, the value of register v

and the evaluations of e and c respectively (see Section 5.4.2.3 for details on how the wires

are allocated).

4. Instantiate a two-way multiplexor to select from the value calculated for e and the value of

v. The wires introduced in step (3) are used to transfer the values from the corresponding
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source hardware into the multiplexer. The multiplexer is controlled by the result of the

evaluation of c (transferred to the multiplexer by means of wire wc). The outcome of the

multiplexer is to be transported by wire w.

The implementation of expressions in combinatorial logic is achieved by means of combining

functional units (i.e., adders, subtracters) and logical gates. The whole process is illustrated in

more detail in Figure 5.1.

Figure 5.1: Hardware mapping of combinatorial part of a step

The remaining part of the normal form’s step deals with the updating of the program and

control variables stored in memory-capable devices within the FPGA. From the generic step des-

cribed above, this part can be seen as the parallel combination of one-clock cycle assignments of

the form:

(v :=
snc SELECT (v,w1,w2))1

Taking into account that the allocation of wires wv, w1 and w2 has already been performed by

the combinatorial aspects of the machine, the process of generating hardware for this part of the

step can be outlined as follows:

1. Use allocated wire wSELECT(v) to transmit the merged value that will be used to update v.

2. Generate a SELECT block (see below). The inputs for this instance would be wv (reference

value), and w1 and w2 (wires transmitting the results of two processes trying to update v in

the program). The output of the selector is carried into the memory cell storing v by means

of the wSELECT(v) wire introduced in step (1).

The selection function was defined as the predicate (see Definition 2.3.121):

SELECT (v, 0.v, 1.v) =df (v� v = 1.v� 1.v)� v = 0.v� 0.v

It is easy to see that when 1.v = v, the sub expression (v� v = 1.v� 1.v) is always equal to 1.v,

allowing us to simplify the above definition into the form:

SELECT (v, 0.v, 1.v) =df 1.v� v = 0.v� 0.v
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Figure 5.2: Generated hardware for the sequential part of the step

From this simplified definition, the SELECT function can be implemented in hardware as shown in

Figure 5.3 (assuming the multiplexer selects s1 when its control has the logical value true).

Figure 5.3: Implementation of the SELECT function

Finally, nested selection functions of the form

SELECT (v, SELECT (v,w1,w2),w3)

are implemented in hardware by means of chaining the binary implementation of the selection

function described above. The additional wire wSELECT(w1,w2) is used to transfer the intermediate

result of the inner application of the selection function into the containing one. The same approach

can be generalised for selection functions of deeper nesting.

All the wires used for the transferral of values between combinatorial fragments will be allo-

cated when treating the remaining aspects of the normal form (see Section 5.4.2.3).

5.4.2 Encoding the rest of the second normal form

Having a way of encoding the step describing the execution of our machine, we now concentrate on

the remaining aspects of the second normal form we have not yet mapped into hardware. Recasting

from our definition for the second normal form

a,w : [s, ca ∗ (P) , f ] =df var a,w; (s)>S ; ca ∗ P; ( f )⊥S ; end a,w
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Figure 5.4: Multiple-argument SELECT function

where P is a second normal form step, as described by Definition 5.2.1, we need to address the

hardware generation of the following aspects:

1. The execution loop

2. The assumptions and assertions controlling the execution loop’s initial and final state.

3. The declaration of basic wires and storage for program variables.

The following subsections address the generation of hardware for the different aspects of the

normal form mentioned above.

5.4.2.1 The execution loop

A state machine like the one described by our normal forms (i.e., a machine with an internal storage

and where the next state depends on the stored values and, possibly, on some inputs) can be seen

as having two disjoint sets of behaviours: (a) an active phase where the control state matches

one or more of the conditions activating part of the combinatorial logic (effectively deriving in

the calculation of a new state and changing the machine’s control flow); and (b) a passive phase

where there is no combinatorial behaviour associated to the current state and the machine remains

in the same control state. In this context, a key observation is that once (b) is reached, the machine

will remain in the same control state attempting to make progress at every clock cycle until the

machine breaks or it is powered off.

It is easy to see that the execution loop in our normal form describes the behaviour of the ma-

chine when it is in the state (a) above, where the (b) part is implicit in the normal form. Note that,

provided we denote the control conditions associated with (a) and (b) with ca and cb respectively,

then we have that ¬(ca ∧ cb) (as (a) and (b) are disjoint). In this way, the normal form above can

be seen as the equation

a,w : [s, ca ∗ (P) , f ] =df var a,w; (s)>S ; ca ∗ P; cb ∗ II1; ( f )⊥S ; end a,w
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and thanks to Laws 5.1.14 and 3.3.145 it can be further reduced to

a,w : [s, ca ∗ (P) , f ] =df var a,w; (s)>S ; (ca ∨ cb) ∗ P; ( f )⊥S ; end a,w

The key consequence of the result above is that the normal form precisely captures the be-

haviour of a state machine when implemented in hardware. Furthermore, no hardware needs to

be generated to explicitly capture the iterated step of the normal form, as this behaviour will be

implicitly accomplished by the way in which the hardware is generated.

To illustrate this idea, let us consider the simple example we introduced in Chapter 1:

x :=
HC e

that generates the following expanded final normal form

var wc,wa,wx, a;

(a = s)>S ;

(a = s) ∗


wc

:=
snc a = s;

wx
:=
snc (e� wc � x) ‖ wa

:=
snc ( f � wc � a);

(x, a :=
snc wx,wa)1

 ;

(a = f )⊥S ;

end wc,wa,wx, a

The execution of the above normal form spends the first clock cycle setting x to the value

calculated from evaluating e and a to f . In the following clock cycle (and every other clock cycle

after that one), the machine does nothing but keeping x and a constant. This same behaviour is

achieved by the hardware generated for the normal form, as shown in Figure 5.5.

Figure 5.5: Compiled iterated step for x :=
HC e
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5.4.2.2 Assumptions and assertions

The assumption at the beginning of the normal form ensures the machine starts by executing its

first step(s). The semantics of the assumption construct ensures that if the machine is not started

in that particular control state, the behaviour of the whole normal form will be miraculous. As it

is not possible to implement a miracle, we need a way of transforming the assumption of initial

values into a different construct we can implement. Fortunately, Law 3.3.74 establishes the very

useful equivalence

var x; (x = e)>S = var x; x :=
snc e

This law is telling us that assuming a new variable x will have a special initial value e is equivalent

to actually initialising x to e. This is exactly what we are looking for as we can now eliminate the

miraculous behaviour we were not able to represent at the hardware level.

On the other hand, the assertion at the end of the execution loop was only introduced in the

normal form for the sake of reasoning and combination of normal forms. This information is no

longer necessary when mapping the normal form into hardware so it can be safely abstracted out.

The desired effect can be achieved by refining our normal form by means of Law 3.3.40:

(x = e)>S v II

and the fact that II is the left unit for sequential composition. The two observations above allow

us to refine our second normal form

a,w : [a = s, b ∗ (P) , a = f ] =df var a,w; (a = s)>S ; b ∗ P; (a = f )⊥S ; end a,w

into the simpler form:

var a,w; (a :=
snc s); b ∗ P; end a,w

The hardware encoding of the initial assumption and final assertion in this new version of the

normal form only requires us to set the initial values of the registers storing the control variables

to the values required to trigger its first step.

5.4.2.3 Wire and storage allocation

The allocation of wires and storage for program and control variables follows from the definition of

our final normal form as the list of variables and wires to be allocated is explicitly declared. There

are, however, two issues that deserve clarification when allocating hardware for these aspects of

our final normal form:

1. Wire-completeness. In the generation of the hardware associated with the combinatorial and

sequential part of the step we have referred to wires that have not been explicitly described

in the transformation from first to second normal form (e.g., the wire transferring the result
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of the evaluation of the control-condition for each step). These ‘missing’ wires have only

been omitted from the normal form in order to keep it in a format that is easier for the reader

to understand. For example, it is easy to see that the combinatorial part of a step of the form:

w :=
snc (e� a = 0� x)

can be refined, by means of Lemma 5.2.5 into the more explicit form

var wa; wa
:=
snc a = 0; w :=

snc (e� wa � x); end wa

allowing us to introduce the omitted wires and to keep the format required in the steps for

the second normal form.

2. Memory allocation. Modern FPGA devices provide three ways of storing information: (a)

synthesised memory blocks in specifically designed slices within the FPGA (i.e., implement

a memory-capable register using the FPGA’s logic); (b) allocate memory in one of the RAM

blocks connected to the FPGA; or (c) distributed RAM, built by means of LookUp Table

memory units within the FPGA. Even though the ideal solution would be to save as much

programmable space as possible from the FPGA by using the RAM blocks for program and

control variables, there is a limit in the number of parallel accesses that can be performed

in RAM blocks. This restriction makes strategies (b) and (c) unfeasible in our context as an

arbitrary number of variables need to be read and updated at each clock cycle.

5.5 Putting it all together: a sequence of assignments into hardware

In this section we illustrate the hardware-mapping strategy described above with a simple example.

The code we have selected to compile into hardware is the following sequence of assignments:

x :=
snc e # y :=

snc x + 1

The above program can be reduced to first normal form using theorems 5.1.20 and 5.1.23:

a : [a = s,

 (a = s) −→snc (a, x :=
snc s + 1, e)1

‖M̂ (a = s + 1) −→snc (a, y :=
snc s + 2)1

 , (a = s + 2)]
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Following theorem 5.2.7 we can simplify the parallelism in the normal form:

var a,wa1,wa2,wx,wy;

(a = s)>S


a = s

∨

a = s + 1

 ∗




wa1
:=
snc s0 + 1� a = s� a ‖

wa2
:=
snc s0 + 2� (a = s + 1)� a ‖

wx
:=
snc e� a = s� x ‖

wy
:=
snc x + 1� (a = s + 1)� y


;

(
(a :=

snc SELECT (a0,wa1,wa2)) ‖ (x :=
snc wx) ‖ (y :=

snc wy)
)
1


;

(a = s + 2)⊥S
end a,wa1,wa2,wx,wy

Our compilation theorems together with the simplification of the initial assumption and final as-

sertion, reduce the above program into the following form:

var aw, xw, yw,wc1,wc2,we,wx+1,ws+1,ws+2,wSELECT(a),wx,wy,wa1,wa2, a :=
snc s;

(a = s) ∗




aw

:=
snc a ‖ xw

:=
snc x ‖ yw

:=
snc y ‖

wc1
:=
snc aw = s ‖ wc2

:=
snc aw = s + 1 ‖

we
:=
snc e ‖ wx+1

:=
snc xw + 1 ‖ ws+2

:=
snc s + 2

 ;

 wx
:=
snc (we � wc1 � xw) ‖ wy

:=
snc (wx+1 � wc2 � yw) ‖

wa1
:=
snc (ws+1 � wc1 � aw) ‖ wa2

:=
snc (ws+2 � wc2 � aw)

 ;

wSELECT(a)
:=
snc SELECT (aw,wa1,wa2);

(x, y, a :=
snc wx,wy,wSELECT(a))1



;

end aw, xw, yw,wc1,wc2,we,wx+1,ws+1,ws+2,wSELECT(a),wx,wy,wa1,wa2, a

Using the approach described in the previous section, the above modified second normal form

can be mapped into the hardware as described by Figure 5.6.

5.6 Chapter summary

In this chapter we have covered the following topics:

• First normal form. Our first normal form was defined to resemble a state-machine encoding

of the source program. The first normal form is comprised by an assumption about its initial

step, an iteration over a set of steps that carry out the computations in the program, and

an assertion about the control state the machine should be in when it finishes executing.

Parallelism is encoded in the normal form by means of allowing more than one execution

step to be active at any given clock cycle.
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Figure 5.6: Hardware output for the program x :=
snc e # y :=

snc x + 1

• Second normal form. The main reason for introducing our second normal form is to sim-

plify the parallelism from the first normal form and make it amenable for implementation in

hardware devices. To achieve this goal, all steps in the first normal are merged into a single

computation describing the combinatorial and sequential aspects of an execution’s clock-

cycle. The different control paths followed by the execution are represented in the second

normal form’s step by means of conditional expressions and the selection of the right values

used to update the program variables.

• Hardware generation from our second normal form. Given the high level of detail and

high resemblance to hardware of the second normal form, its correct mapping into FPGAs

is argued based in the usage of basic, well-understood hardware components: (a) combina-

torial logic (adders, subtracters, logic gates and multiplexers) to encode the combinatorial

aspects of the step; (b) flip-flops to store the program and control variables; and (c) wires to

inter-connect the different blocks.

The next chapter completes our algebraic treatment of Handel-C’s compilation by showing

how the communication primitives and the priAlt construct can be reduced to the same set of

normal forms.
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Chapter 6

Communications and prioritised choice

“The psychological profiling [of a programmer] is mostly

the ability to shift levels of abstraction, from low level to high level.

To see something in the small and to see something in the large”

— Donald Knuth

Up to this point, we have addressed the hardware compilation of the C-based aspects of

Handel-C together with its parallel construct. In this section we extend our approach to address

the missing features from our subset of Handel-C: communications and prioritised choice.

The key to compiling the input, output and priAlt constructs with the algebraic approach is

to be able to abstract their wire-based implementation details and to decompose them into more

primitive operations over channels. We begin this section by showing how the compilation theo-

rems can take advantage of the extended primitives over channels defined in chapter 4 to reduce

the communication primitives to first normal form.

To address the reduction of the first normal form encoding of the communication primitives

into second normal form we adopt the strategy of re-using the compilation theorems introduced in

the previous section. Clearly, the main limitation towards achieving this goal is the fact that the

existing compilation theorems can only handle particular forms of guarded multiple assignments.

We address this limitation by means of introducing additional normal form transformations that

allow us to formulate the communication primitives as assignments guarded by particular condi-

tions.

6.1 First normal form encoding of the communication primitives

The reduction of the basic communication primitives into first normal form takes advantage of the

equivalences stated in Laws 4.2.17 and 4.2.18:

ch?x = µX • in-req(ch); ((x := in(ch))1 � wr(ch)� delay; X)

155
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and

ch!e = µX • out-req(ch); out(ch, e); (delay� rd(ch)� delay; X)

The compilation follows the strategy of encoding the recursive right hand side of the above

expression in our first normal form (using the same primitive actions over channels) and then

using the equivalences above to establish the link between the normal form and the actual input

and output commands.

The compilation strategy for prioritised choice uses a similar strategy but based on the equiva-

lence between the priAlt construct and the extended case construct presented in Chapter 4.

6.1.1 Input

The compilation of the input command into first normal form follows the refinement relationship:

ch?x v a : [a = s,
(
a = s −→snc (in-req(ch); x, a :=

snc ( f , in(ch))� wr(ch)� (s, x))1
)
, a = f ]

As in the case of the compilation of sequential composition into first normal form, we isolate

particular cases in the execution of the input command within simpler lemmas that allows us to

provide an elegant structure to the proof of its reduction theorem into normal form.

Our first lemma states the relationship between the abstract effects of a successful input com-

mand and the execution of our proposed normal form in the same situation. The normal form is a

refinement of the execution of the input command due to the presence of control variables and the

values they need to hold while the normal form is in operation.

Lemma 6.1.1. Input normal form simplification 1

(wr(ch))>; in-req(ch); (x :=
snc in(ch))1 v

(wr(ch))>;

a : [a = s,
(
s = a −→snc in-req(ch); x, a :=

snc ( f � wr(ch)� s), (in(ch)� wr(ch)� x)1
)
, a = f ]

Proof.

Let P =
(
s = a −→snc in-req(ch); x, a :=

snc ( f � wr(ch)� s), (in(ch)� wr(ch)� x)1
)

in:

(wr(ch))>; a : [a = s,
(
s = a −→sncP

)
, a = f ]

= {Definitions 5.1.17, law 3.3.100}

(wr(ch))>S ; var a; (a = s)>S ; P; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Expansion of P and laws 3.3.92, 3.3.46, 4.2.19}
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var a; (a = s)>S ; in-req(ch); (wr(ch))>S ;
(
a, x :=

snc f � wr(ch)� s, in(ch)� wr(ch)� x
)
1 ;

∗ (a = s −→sncP); (a = f )⊥S ; end a

= {Laws 3.3.58, 3.3.92, 3.3.46, 4.2.19}

(wr(ch))>S ; var a; (a = s)>S ; in-req(ch);
(
a, x :=

snc f , in(ch)
)
1 ; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Law 4.2.6}

(wr(ch))>S ; var a; (a = s)>S ; in-req(ch);

(a, x :=
snc f , in(ch))1; (a = f )⊥S ; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Laws 3.3.99, 3.3.49 and 4.2.6}

(wr(ch))>S ; var a; (a = s)>S ; in-req(ch); (a, x :=
snc f , in(ch))1; end a

= {Law 3.3.72}

(wr(ch))>S ; var a; (a = s)>S ; in-req(ch);
(
x :=
snc in(ch)

)
1 ; end a

w {Laws 3.3.40, 3.3.94, 3.3.70}

(wr(ch))>S ; in-req(ch); (x :=
snc in(ch))1 �

When the communication is not possible, the effects of the input command during the first

clock cycle followed by our input normal form are refined by the execution of the input normal

form in the same context. Again, the relationship is refinement rather than equality due to the fact

that the left-hand side of our lemma does not restrict the value of the control variable a during the

first clock cycle.

Lemma 6.1.2. Input normal form simplification 2

(¬wr(ch))>; in-req(ch); (x :=
snc x)1;

a : [a = s,
(
s = a −→snc in-req(ch); x, a :=

snc ( f � wr(ch)� s), (in(ch)� wr(ch)� x)1
)
, a = f ] v

(¬wr(ch))>;

a : [a = s,
(
s = a −→snc in-req(ch); x, a :=

snc ( f � wr(ch)� s), (in(ch)� wr(ch)� x)1
)
, a = f ]

Proof.

Let
(
P = s = a −→snc in-req(ch); x, a :=

snc ( f � wr(ch)� s), (in(ch)� wr(ch)� x)1
)

in:

(¬wr(ch))>S ; a : [a = s,
(
a = s −→sncP

)
, a = f ]

= {Definitions 5.1.17, law 3.3.100}

(¬wr(ch))>S ; var c; (c = s)>S ; P; ∗(c = s −→sncP); (c = f )⊥S ; end c
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= {Value of P and laws 3.3.92, 3.3.46, 4.2.19}

var c; (c = s)>S ; in-req(ch); (¬wr(ch))>S ;
(
c, x :=

snc f � wr(ch)� s, in(ch)� wr(ch)� x
)
1 ;

∗ (c = s −→sncP); (c = f )⊥S ; end c

= {Laws 3.3.58, 3.3.92, 3.3.46, 4.2.19}

(¬wr(ch))>S ; var c; (c = s)>S ; in-req(ch);
(
c, x :=

snc s, x
)
1 ; ∗(c = s −→sncP); (c = f )⊥S ; end c

w {Laws 4.2.6, 3.3.40, 3.3.92}

(wr(ch))>S ; in-req(ch); var c; (c, x :=
snc f , x)1; (c = s)⊥S ; ∗(c = s −→sncP); (c = f )⊥S ; end c

w {Laws 3.3.73 and 3.3.94}

(wr(ch))>S ; in-req(ch); (x :=
snc x)1; var c; (c = s)⊥S ; ∗(c = s −→sncP); (c = f )⊥S ; end c

= {Definition 5.1.17}

(¬wr(ch))>S ; a : [a = s,
(
s = a −→sncP

)
, a = f ] �

With the results above we can easily prove the reduction theorem for the input construct to first

normal form.

Theorem 6.1.3. Input normal form

ch?x v a : [a = s,
(
a = s −→snc (in-req(ch); x, a :=

snc ( f , in(ch))� wr(ch)� (s, x))1
)
, a = f ]

Proof.

RHS = RHS

≡ {Laws 3.3.23 and 3.3.57}

RHS = ((wr(ch))>S ; RHS )� wr(ch)� ((¬wr(ch))>S ; RHS )

≡ {Lemmas 6.1.1 and 6.1.2, then law 3.3.57}

RHS w (in-req(ch); (x :=
snc in(ch))1)� wr(ch)� (in-req(ch); (x :=

snc x)1; RHS )

≡ {Law 4.2.22}

RHS w in-req(ch); (x :=
snc in(ch))1 � wr(ch)� ((x :=

snc x)1; RHS )

⇒ {Law 2.3.81}

RHS w µX • in-req(ch); (x :=
snc in(ch))1 � wr(ch)� ((x :=

snc x)1; X)

≡ {Law 4.2.17}

RHS w LHS �

6.1.2 Output

The compilation of the output command follows the same strategy we used for the input com-

mand. The main reduction theorem that establishes the refinement relationship between the output
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command and its first-normal form formulation is stated as follows:

ch!e v a : [a = s,
(
a = s −→sncout-req(ch); out(ch, e); (v, a :=

snc v, ( f � rd(ch)� s))1
)
, a = f ]

Our first result is the output counterpart of Lemma 6.1.1 and it describes the refinement induced

by the normal form encoding of the input command in the context of successful communication.

Lemma 6.1.4. Output normal form simplification 1

(rd(ch))>S ; out-req(ch); out(ch, e); delay v

(rd(ch))>S ;

a : [a = s,
(
a = s −→sncout-req(ch); out(ch, e); (v, a :=

snc v, ( f � rd(ch)� s))1
)
, a = f ]

Proof.

Let P =
(
out-req(ch); out(ch, e);

(
a, x :=

snc f � rd(ch)� s, x
)
1

)
in:

(rd(ch))>S ; a : [a = s,
(
a = s −→sncP

)
, a = f ]

= {Definitions 5.1.17, law 3.3.100}

(rd(ch))>S ; var a; (a = s)>S ; P; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Value of P and laws 3.3.92, 3.3.46, 4.2.20}

var a; (a = s)>S ; out-req(ch); (rd(ch))>S ;
(
a, x :=

snc f � rd(ch)� s, x
)
1 ;

∗ (a = s −→sncP); (a = f )⊥S ; end a

= {3.3.58, 3.3.92, 3.3.46, 4.2.19}

(rd(ch))>S ; var a; (a = s)>S ; out-req(ch);
(
a, x :=

snc f , x
)
1 ; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Law 4.2.6}

(rd(ch))>S ; var a; (a = s)>S ; out-req(ch);

(a, x :=
snc f , x)1; (a = f )⊥S ; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Laws 3.3.99, 3.3.49 and 4.2.6}

(rd(ch))>S ; var a; (a = s)>S ; out-req(ch); (a, x :=
snc f , x)1; end a

= {Law 3.3.72}

(rd(ch))>S ; var a; (a = s)>S ; out-req(ch);
(
x :=
snc x

)
1 ; end a

w {Laws 3.3.40, 3.3.94 and 3.3.70, theorem 4.2.2}

(rd(ch))>S ; out-req(ch); delay �

Similarly to Lemma 6.1.2, the following result captures the relationship between the output

command and our normal form encoding in the context where the communication is not possible

during the first clock cycle.
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Lemma 6.1.5. Output normal form simplification 2

(¬rd(ch))>S ; out-req(ch); out(ch, e); delay;

a : [a = s,
(
a = s −→sncout-req(ch); out(ch, e); (v, a :=

snc v, ( f � rd(ch)� s))1
)
, a = f ] v

(¬rd(ch))>S ;

a : [a = s,
(
a = s −→sncout-req(ch); out(ch, e); (v, a :=

snc v, ( f � rd(ch)� s))1
)
, a = f ]

Proof.

Let
(
P = out-req(ch); out(ch, e);

(
a, x :=

snc f � rd(ch)� s, x
)
1

)
in:

(¬rd(ch))>S ; a : [a = s,
(
a = s −→sncP

)
, a = f ]

= {Definitions 5.1.17, law 3.3.100}

(¬rd(ch))>S ; var a; (a = s)>S ; P; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Expansion of P and laws 3.3.92, 3.3.46, 4.2.20 and 4.2.21}

var a; (a = s)>S ; out-req(ch); (¬rd(ch))>S ; out(ch, e); (¬rd(ch))>S ;(
a, x :=

snc f � rd(ch)� s, x
)
1 ; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Laws 3.3.58, 3.3.92, 3.3.46, 4.2.19 and 4.2.21}

(¬rd(ch))>S ; var a; (a = s)>S ; out-req(ch); out(ch, e);
(
a, x :=

snc s, x
)
1 ;

∗ (a = s −→sncP); (a = f )⊥S ; end a

w {Laws 4.2.6 and 3.3.40}

(rd(ch))>S ; out-req(ch); out(ch, e); var a; (a, x :=
snc f , x)1;

(a = s)⊥S ; ∗(a = s −→sncP); (a = f )⊥S ; end a

w {Laws 3.3.73 and 3.3.94}

(rd(ch))>S ; out-req(ch); (x :=
snc x)1; var a; (a = s)⊥S ; ∗(a = s −→sncP); (a = f )⊥S ; end a

= {Theorem 4.2.2, law 3.3.9 and definition 5.1.17}

(¬rd(ch))>S ; out-req(ch); out(ch, e); delay; a : [a = s,
(
a = s −→sncP

)
, a = f ] �

The theorem describing the first normal form encoding of the output construct can be proved

from the above results as follows:

Theorem 6.1.6. Output normal form

ch!e v a : [a = s,
(
a = s −→sncout-req(ch); out(ch, e); (v, a :=

snc v, ( f � rd(ch)� s))1
)
, a = f ]
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Proof.

RHS = RHS

≡ {Laws 3.3.23 and 3.3.57}

RHS = ((wr(ch))>S ; RHS )� wr(ch)� ((¬wr(ch))>S ; RHS )

≡ {Lemmas 6.1.4 and 6.1.5, then law 3.3.57}

RHS w (out-req(ch); out(ch, e); delay)� wr(ch)� (out-req(ch); out(ch, e); delay; RHS )

≡ {Laws 4.2.23 and 4.2.24}

RHS w out-req(ch); out(ch, e); (delay� wr(ch)� delay; RHS )

⇒ {Law 2.3.81}

RHS w µX • out-req(ch); out(ch, e); (delay� wr(ch)� delay; X)

≡ {Law 4.2.17}

RHS w LHS �

6.1.3 Default-clause prioritised choice priAlt

We begin by tackling the compilation of the binary version of the priAlt construct with default

clause. As the n-way priAlt construct with default clause can be expressed as nested binary

priAlts (law 4.1.24), this result is enough to translate any priAlt with a default clause to first

normal form.

Our compilation strategy consists of generating a normal form where the first step contains a

case statement like the one described in Chapter 4. The case construct attempts the communication

for each alternative in a waterfall fashion. If either of the alternatives becomes true, the case

statement also activates the actions that correspond to the first clock cycle of execution of that

alternative. The rest of the normal form corresponds to steps associated to the sub-programs

within each case. More formally:

priAlt

 case g: a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] # break;

default: a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ]

 v
a : [s,

 s −→snc (case req(g); chk(g) ?
(
act(g) ‖ (a :=

snc s1)1
)
| P2)

‖M̂ s1
−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3

 , f ]

The proof of this result is structured following the same outline we have used to prove the

basic communication primitives. We begin by showing the effect of executing our normal form

encoding of the priAlt construct when the first communication is possible.
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Lemma 6.1.7.

(chk(g))>; req(g); act(g); a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] v

(chk(g))>; a : [s,

 s −→snc (case req(g); chk(g) ?
(
act(g) ‖M̂ (c :=

snc s1)1
)
| P2)

‖M̂ s1
−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3

 , f ]

Proof.

RHS

w {Lemma 5.1.22, definition 5.1.17, laws 3.3.100 and 3.3.40}

(chk(g))>S ; var a; (case req(g); chk(g) ?
(
act(g) ‖M̂ (a :=

snc s1)1
)
| P2);

∗
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)

; (a = f )⊥S ; end a

= {Laws 3.3.92 then definition 4.2.34 followed by law 4.2.43}

var a; req(g); (chk(g))>S ;(
(act(g) ‖M̂ (a :=

snc s1)1)� chk(g)� P2
)

; ∗
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)

; (a = f )⊥S ; end a

= {Laws 3.3.58, 4.2.5,3.3.92 and 4.2.43}

(chk(g))>S ; req(g); var a;

(act(g) ‖M̂ (a :=
snc s1)1); (a = s1)>S ; ∗

(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)

; (a = f )⊥S ; end a

w {Laws 3.3.73 and 3.3.92}

(chk(g))>S ; req(g); act(g); var a; (a = s1)>S ; ∗
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)

; (a = f )⊥S ; end a

= {Definition 5.1.17}

LHS �

Similarly, when the first alternative cannot be activated, the default clause gets triggered.

Lemma 6.1.8.

(¬chk(g))>S ; req(g); a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ] v

(¬chk(g))>S ; a : [s,

 s −→snc (case req(g); chk(g) ?
(
act(g) ‖M̂ (a :=

snc s1)1
)
| P2)

‖M̂ s1
−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3

 , f ]

Proof.

Let G1 =
(
s −→sncP2

)
and G2 =

(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)

in:

(¬chk(g))>S ; a : [s,

 s −→snc (case req(g); chk(g) ?
(
act(g) ‖M̂ (a :=

snc s1)1
)
| P2)

‖M̂ s1
−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3

 , f ]
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w {Lemma 5.1.22, definition 5.1.17 and law 3.3.100}

(¬chk(g))>S ; var a; (a = s)>S (case req(g); chk(g) ?
(
act(g) ‖ (a :=

snc s1)1
)
| P2);

∗
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)

; (a = f )⊥S ; end a

= {Laws 3.3.92, 3.3.46, then definition 4.2.34 followed by law 4.2.43}

var a; req(g); (a = s)>S ; (¬chk(g))>S ;
((

act(g) ‖ (a :=
snc s1)1

)
� chk(g)� P2

)
;

∗
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)

; (a = f )⊥S ; end a

= {Laws 3.3.22, 3.3.58, 4.2.5, 3.3.92 and 4.2.43}

(¬chk(g))>S ; req(g); var a; (a = s)>S ; P2; ∗
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)

; (a = f )⊥S ; end a

= {Law 3.3.45, definition 3.3.149}

(¬chk(g))>S ; req(g); var a; (a = s)>S ; s −→sncP2; ∗
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)

; (a = f )⊥S ; end a

= {s < cont (G2)⇒ inh (G1,G1) ∧ inh (G2,G1) then law 5.1.15, definition 5.1.17}

(¬chk(g))>S ; req(g); a : [s,
(
s −→sncP2 ‖M̂ s2

−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ]

w {Lemma 5.1.24}

(¬chk(g))>S ; req(g); a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ] �

With the above results we are now in condition to prove the compilation theorem that states

how the priAlt construct gets reduced to first normal form.

Theorem 6.1.9. Normal form encoding of priAlt (with default clause)

priAlt

 case g: a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] # break;

default: a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ]

 v
a : [s,

 s −→snc (case req(g); chk(g) ?
(
act(g) ‖M̂ (a :=

snc s1)1
)
| P2)

‖M̂ s1
−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3

 , f ]

Proof.

RHS

= {Laws 3.3.23, 3.3.57}

((chk(g))>S ; RHS )� chk(g)� ((¬chk(g))>S ; RHS )

w {Lemmas 6.1.7 and 6.1.8, then law 3.3.57}

(req(g); act(g); a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ])� chk(g)�

(req(g); a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ])
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= {Law 4.2.44 then definition 4.2.34}

case

 req(g); chk(g) ? act(g); a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] |

a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ]


= {Theorem 4.2.46}

LHS �

6.1.4 Non-default-clause priAlt

As there is no way of expressing the case of the priAlt construct without a default clause as a

binary operator, we need to provide a general theorem that comprises all cases. Fortunately, the

structure for the construct is symmetric, so we will base the proof of the reduction rules on the

case of a prialt with two guards. The proof for larger cases follows the same structure.

The normal form encoding of the non-default priAlt also uses the case construct to capture

the behaviour during the first clock cycle. The main difference with the normal form associated to

the default-clause priAlt described before is the fact that an additional (unconditional) alternative

is added in case all previous alternatives have failed. This additional clause makes the first step

repeat itself in the next clock cycle (by means of setting the control variables to the initial state of

the normal form). More precisely, the compilation rule is described as follows:

priAlt

 case g1: a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] # break;

case g2: a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ] # break

 v

a : [s,


s −→snccase


req(g); chk(g) ?

(
act(g) ‖M̂ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖M̂ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


, f ]

We begin by proving similar lemmas to the ones associated to the priAlt construct with default

clause. The first lemma accounts for the execution of the non-default priAlt when the communi-

cation inside its first alternative is possible.

Lemma 6.1.10.

(chk(g))>S ; req(g); act(g); a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] v

(chk(g))>S ; a : [s,


s −→snccase


req(g); chk(g) ?

(
act(g) ‖M̂ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖M̂ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


, f ]
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Proof.

Similar to Lemma 6.1.7. �

Our next lemma is similar to the previous one but it describes the case where the priAlt fails

when trying to activate its first case but it succeeds to activate its second alternative.

Lemma 6.1.11.

(¬chk(g))>S ; (chk(g1))>S ;

req(g); req(g1); act(g1); a : [s1,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ] v

(¬chk(g))>S ; (chk(g1))>S ;

a : [s,


s −→snccase


req(g); chk(g) ?

(
act(g) ‖M̂ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖M̂ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


, f ]

Proof.

Let P =


s −→snccase


req(g); chk(g) ?

(
act(g) ‖ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


in:

RHS

w {Definition 5.1.17 and laws 3.3.100, 3.3.40}

(¬chk(g))>S ; (chk(g1))>S ; var a;

case


req(g); chk(g) ?

(
act(g) ‖M̂ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖M̂ (a :=

snc s2)1
)
|

(a :=
snc s)1

 ; ∗P; (a = f )⊥S

= {Laws 3.3.46, 4.2.40 and 4.2.39}

(¬chk(g))>S ; (chk(g1))>S ; var a; req(g); req(g1);
(
act(g1) ‖ (a :=

snc s2)1
)

; ∗P; (a = f )⊥S
w {Laws 3.3.94, 4.2.6, 3.3.73, then definition 5.1.17}

(¬chk(g))>S ; (chk(g1))>S ; req(g); req(g1); act(g1); a : [s2, (P) , f ]

w {Lemma 5.1.22}

(¬chk(g))>S ; (chk(g1))>S ; req(g); req(g1); act(g1); a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ] �

Our final lemma captures the case where none of the alternatives can be activated and the

priAlt construct delays for a whole clock cycle before trying all its alternatives again.
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Lemma 6.1.12.

(¬chk(g))>S ; (¬chk(g1))>S ; req(g); req(g1); II1;

a : [s,


s −→snccase


req(g); chk(g) ?

(
act(g) ‖M̂ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖M̂ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


, f ] v

(¬chk(g))>S ; (¬chk(g1))>S ;

a : [s,


s −→snccase


req(g); chk(g) ?

(
act(g) ‖M̂ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖M̂ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


, f ]

Proof.

Let P =


s −→snccase


req(g); chk(g) ?

(
act(g) ‖M̂ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖M̂ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


in:

RHS

w {Definition 5.1.17 and laws 3.3.100, 3.3.40}

(¬chk(g))>S ; (¬chk(g1))>S ; var a;

case


req(g); chk(g) ?

(
act(g) ‖ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖ (a :=

snc s2)1
)
|

(a :=
snc s)1

 ; ∗P; (a = f )⊥S

= {Laws 3.3.92, 3.3.46, 4.2.40 and 4.2.38}

(¬chk(g))>S ; (¬chk(g1))>S ; var a; req(g); req(g1); (a :=
snc s)1; ∗P; (a = f )⊥S

w {Laws 3.3.94, 4.2.6, 3.3.73, then definition 5.1.17}

(¬chk(g))>S ; (¬chk(g1))>S ; req(g); req(g1); II1; a : [s, (P) , f ]

= {Definition of P}

LHS �

The compilation theorem relating the non-default priAlt construct to its corresponding normal

form can now be proved using the results above.
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Theorem 6.1.13. Non-default priAlt first normal form

priAlt

 case g1: a : [s1,
(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] # break;

case g2: a : [s2,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ] # break

 v

a : [s,


s −→snccase


req(g); chk(g) ?

(
act(g) ‖ (a :=

snc s1)1
)
|

req(g1); chk(g1) ?
(
act(g1) ‖ (a :=

snc s2)1
)
|

(a :=
snc s)1


‖M̂ s1

−→

sncP1 ‖M̂ b2
−→

sncR ‖M̂ s2
−→

sncP2 ‖M̂ b3
−→

sncP3


, f ]

Proof.

RHS = RHS

≡ {Laws 3.3.23(twice) and 3.3.57}

RHS =
(
chk(g)>; RHS

)
� chk(g)�((

(¬chk(g))>S ; chk(g1)>; RHS
)
� chk(g1)�

(
(¬chk(g))>S ; (¬chk(g1))>S ; RHS

))
≡ {Lemmas 6.1.10, 6.1.11, 6.1.12, then law 3.3.57}

RHS w
(
req(g); act(g); a : [s1,

(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ]

)
� chk(g)�

(
(
req(g); req(g1); act(g1); a : [s1,

(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ]

)
� chk(g1)�

(req(g); req(g1); II1; RHS ))

⇒ {Laws 2.3.81 and 4.2.44}

RHS w µX • req(g);
(
act(g); a : [s1,

(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ]

)
� chk(g)�

req(g1); (
(
act(g1); a : [s1,

(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ]

)
� chk(g1)� II1; X)

≡ {Definition 4.2.34}

RHS w µX • case


req(g); chk(g) ? act(g); a : [s1,

(
s1
−→

sncP1 ‖M̂ b2
−→

sncR
)
, f ] |

req(g1); chk(g1) ? act(g1); a : [s1,
(
s2
−→

sncP2 ‖M̂ b3
−→

sncP3
)
, f ] |

II1; X


≡ {Theorem 4.2.47}

RHS w LHS �

6.2 Second normal form: eliminating communication primitives

In Section 5.2 we have shown how to eliminate parallel by merge from a normal form where each

step is a guarded multiple assignment. Clearly, this technique cannot be directly applied to the

communication-based normal forms described in this chapter. The main limiting factor towards

being able to reuse the compilation theorems from the previous chapter is the presence of the

communication requests, conditionals and transmission primitives used in the the normal form

encoding of input, output and priAlt.
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In this section we provide simplification rules that allow us to re-formulate the channel opera-

tions and case construct used in the communication normal forms in terms of guarded assignments.

The key idea behind our strategy is that a step of the form

b −→snc in-req(ch); P

where P does not depend on the input request over ch can be expressed as the composition:

b −→snc in-req(ch)1 ‖M̂ b −→sncP

From this alternative formulation it is clear that a request for input over channel ch will be

issued when b holds. In this context b ⇔ in-req(ch) ⇔ rd(ch), allowing us to use b instead

of rd(ch) in the normal form. A similar strategy can be applied with out-req(ch) – wr(ch) and

out(ch, e) – in(ch) pairs. The rest of this section is devoted to describing the strategy described

above in further detail.

6.2.1 Simplifying steps from input and output

The first transformation to our normal form allows us to split the actions within a step in order to

expose input and output requests. In this way, we separate the control flow (requests from input

and output) from the data flow (transfer of values) within communicating steps.

Law 6.2.1. Input normal form re-structuring

a : [a = s,
(
a = s −→snc (in-req(ch); x, a :=

snc ( f , in(ch))� wr(ch)� (s, x))1
)
, a = f ] =

a : [a = s,


a = s −→snc in-req(ch)1 ‖M̂

a = s −→snc (x :=
snc in(ch)� wr(ch)� x)1 ‖M̂

a = s −→snc (a :=
snc f � wr(ch)� s)1

 , a = f ]

Proof.

a : [a = s,
(
a = s −→snc (in-req(ch); x, a :=

snc ( f , in(ch))� wr(ch)� (s, x))1
)
, a = f ]

= {Definition 5.1.17, law 3.3.146}

var a; (a = s)>S ;

a = s −→snc
(
in-req(ch); ((x :=

snc in(ch)� wr(ch)� x)1 ‖M̂ (a :=
snc f � wr(ch)� s))1

)
;

(a = f )⊥S ; end a

= {Law 4.2.27}

var a; (a = s)>S ;

a = s −→snc
(
in-req(ch)1 ‖M̂ (x :=

snc in(ch)� wr(ch)� x)1 ‖M̂ (a :=
snc f � wr(ch)� s)1

)
;

(a = f )⊥S ; end a
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= {Law 3.3.155, definition 5.1.17}

a : [a = s,


a = s −→snc in-req(ch)1 ‖M̂

a = s −→snc (x :=
snc in(ch)� wr(ch)� x)1 ‖M̂

a = s −→snc (a :=
snc f � wr(ch)� s)1

 , a = f ] �

A similar transformation can be applied to steps within output normal forms:

Law 6.2.2. Output normal form re-structuring

a : [a = s,
(
a = s −→sncout-req(ch); out(ch, e); (v, a :=

snc v, ( f � rd(ch)� s))1
)
, a = f ] =

a : [a = s,


a = s −→sncout-req(ch)1 ‖M̂

a = s −→sncout(ch, e)1 ‖M̂

a = s −→snca :=
snc ( f � rd(ch)� s)1

 , a = f ]

Proof.

Similar to the proof of law 6.2.1. �

Assuming the whole program uses only one channel and, two inputs from that channel (to

variables x and y respectively)1, we can apply the transformations described in Laws 6.2.1 and

6.2.2, to get our program in the following form:

a : [s,

 s1
−→

snc in-req(ch)1 ‖M̂ s2
−→

snc in-req(ch)1 ‖M̂

s3
−→

snca :=
snc (s3 � rd(ch)� f3)1 ‖M̂ P

 , f ]

where P does not perform any in-req(ch). Notice we have highlighted the parts of the normal

form where the input request is issued (two of them, because we are performing two inputs) and

the portion of the normal form that depends on a reader to perform output into the channel. The

guarded commands performing the remaining actions for the input and output commands are ‘hid-

den’ within P.

Our intention is now to eliminate all occurrences of in-req(ch) and rd(ch) from the normal

form. Notice that the first line is indicating (by means of a guarded command) under which control

states the request for input will be issued. If we consider that rd(ch) will only hold true provided

at least a process is willing to perform an input into the channel, we should be able to replace the

condition rd(ch) by the conditions guarding the issue of the input request. The following theorem

captures this notion.

1Both assumptions (a single channel in the program and a two input commands) are in place only to keep the
presentation compact, the same approach will be valid for a larger number of channels (by means of considering them
one at a time) and input/output commands.
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Lemma 6.2.3. Input request and condition elimination

a : [s,



P ‖M̂

s1
−→

snc in-req(ch)1 ‖M̂

s2
−→

snc in-req(ch)1 ‖M̂

s3
−→

snca :=
snc ( j� rd(ch)� s3)1


, f ] = a : [s,

 P[s1 ∨ s2/rd(ch)]

‖M̂ s3
−→

snca :=
snc ( j� (s1 ∨ s2)� s3)1

 , f ]

Proof.

a : [s,

 s1
−→

snc in-req(ch)1 ‖M̂ s2
−→

snc in-req(ch)1 ‖M̂

s3
−→

snca :=
snc ( j� rd(ch)� s3)1 ‖M̂ P

 , f ]

= {Law 3.3.156}

a : [s,
(
(s1 ∨ s2) −→snc in-req(ch)1 ‖M̂ s3

−→

snca :=
snc (s3 � rd(ch)� f3)1 ‖M̂ P

)
, f ]

= {Law 4.2.29}

a : [s,
(
(s3

−→

snca :=
snc ( j� rd(ch)� s3)1 ‖M̂ P) [(s1 ∨ s2)/rd(ch)]

)
, f ]

= {Propositional calculus}

a : [s,
(
s3
−→

snca :=
snc ( j� (s1 ∨ s2)� s3)1 ‖M̂ P

)
, f ] �

We can a apply a similar approach to eliminate all occurrences of out-req(ch), and wr(ch)

from the normal form.

Lemma 6.2.4. Output request and condition elimination

a : [s,



P ‖M̂

s1
−→

sncout-req(ch)1 ‖M̂

s2
−→

sncout-req(ch)1 ‖M̂

s3
−→

snc (a :=
snc j� wr(ch)� s3)1 ‖M̂

s3
−→

snc (x :=
snc in(ch)� wr(ch)� x)1


, f ] = a : [s,


P[s1 ∨ s2/wr(ch)] ‖M̂
s3
−→

snca :=
snc ( j� b� s3)1 ‖M̂

s3
−→

snc (x :=
snc in(ch)� b� x)1

 , f ]

where b = (s1 ∨ s2).

Proof.

Similar to proof of law 6.2.3, but using law 4.2.30. �

To complete the simplification of the input and output commands we need to devise a way of

dealing with the functions actually writing to and reading from a channel ch (i.e., out(ch, e) and

in(ch) respectively). The idea for this simplification is that processes outputting to the channel will

only effectively transmit data when their guard is activated. As more than one writer has access

to the channel (even though they should not write during the same clock cycle), the value being

transmitted over the channel will have to be selected from the appropriate source. This selected

value can be then directly fed to the variable receiving data from the channel. These ideas are more

formally captured by our final simplification theorem for channels.
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Lemma 6.2.5. Channel transmission primitives elimination

a : [s,



s1
−→

sncout(ch, e1)1 ‖M̂

s2
−→

sncout(ch, e2)1 ‖M̂

s3
−→

snc (x :=
snc in(ch)� d � x)1 ‖M̂

s4
−→

snc (y :=
snc in(ch)� d � y)1 ‖M̂

P


, f ] v

a : [s,


s3
−→

snc (x :=
snc (SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB)))� d � x)1 ‖M̂

s4
−→

snc (y :=
snc (SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB)))� d � y)1 ‖M̂

P

 , f ]

where d = (s1 ∨ s2) and v = (e1 � s1 � e2).

Proof.

a : [s,



s1
−→

sncout(ch, e1)1 ‖M̂

s2
−→

sncout(ch, e2)1 ‖M̂

s3
−→

snc (x :=
snc in(ch)� d � x)1 ‖M̂

s4
−→

snc (y :=
snc in(ch)� d � y)1 ‖M̂

P


, f ]

v {Law 4.2.31, propositional calculus}

a : [s,


s3
−→

snc (x :=
snc (SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB)))� d � x)1 ‖M̂

s4
−→

snc (y :=
snc (SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB)))� d � y)1 ‖M̂

P

 , f ] �

After applying theorems 6.2.3, 6.2.4 and 6.2.5, the steps produced by input or output com-

mands are transformed into one-clock cycle assignments. From this point, the results from Section

5.2.2 can be applied to reduce these commands to second normal form.

6.2.2 Simplifying steps from prioritised choice

Based on the way in which we have reduced prioritised choice to first normal form, it is evident

that all non-assignment constructs will only arise within the first step in the normal form associated

to the priAlt construct. The techniques from the previous section will allow us to eliminate the

communication primitives so we only need to find a way of eliminating the case expression from

the right hand side of the guarded command in the first step.

The foundation for our strategy for case expressions elimination is that they are, in essence,

a combinatorial action (in particular, an input or output request) followed by a conditional. In

this context we only need to find a way of simplifying guarded commands where the guarded

expression is a condition. It turns out that this is not a problem as we can express constructs of the
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form

b1
−→

snc (P� b2 � Q)

in the parallel form

(b1 ∧ b2) −→sncP ‖M̂ (b1 ∧ ¬b2) −→sncQ

(law 3.3.157). The following lemma applies this notion to the context of case statements:

Lemma 6.2.6. Case statement elimination

s −→snccase

 req(g); chk(g) ?
(
act(g)1 ‖M̂ (a :=

snc s1)1
)
|

P

 =



s −→sncreq(g)1 ‖M̂

(s ∧ chk(g)) −→sncact(g)1 ‖M̂

(s ∧ chk(g)) −→snc (a :=
snc s1)1 ‖M̂

(s ∧ ¬chk(g)) −→sncP


Proof.

s −→snccase
(
req(g); chk(g) ?

(
act(g)1 ‖M̂ (a :=

snc s1)1
)
| P

)
= {Definition 4.2.34}

s −→sncreq(g);
((

act(g)1 ‖M̂ (a :=
snc s1)1

)
� chk(g)� P

)
= {Laws 4.2.27 and 4.2.28}

s −→sncreq(g)1 ‖M̂ s −→snc
((

act(g)1 ‖M̂ (a :=
snc s1)1

)
� chk(g)� P

)
= {Law 3.3.157}

s −→sncreq(g)1 ‖M̂ (s ∧ chk(g)) −→snc
(
act(g)1 ‖M̂ (a :=

snc s1)1
)
‖M̂ (s ∧ ¬chk(g)) −→sncP

= {Law 3.3.155}

s −→sncreq(g)1 ‖M̂ (s ∧ chk(g)) −→sncact(g)1 ‖M̂ (s ∧ chk(g)) −→snc (a :=
snc s1)1 ‖M̂ (s ∧ ¬chk(g)) −→sncP �

Note that, in case the whole step was a nested case statement (i.e., P is a case expression), then

the last step in our simplified normal form will have the form

(s ∧ ¬chk(g)) −→snccase (req(g); chk(g) ? A1 | A2)

this will allow us to keep applying Lemma 6.2.6 until the case expression is completely eliminated.

6.2.3 Dealing with impossible communications

So far we have provided a way of dealing with input, output and prioritised choice that relies on

the fact that every program contains at least one in-req(ch) to match up with the occurrences of the

rd(ch) construct in the program (and, similarly, an out-req(ch) to match the condition wr(ch)). It

is possible, however, to write a program that has an input/output command without its counterpart.
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In this case, the moment the control flow reaches the input/output command, the program will

iterate forever (trying to communicate, failing, delaying one clock cycle and trying again).

In our compiler, the first normal form version of the same program will also diverge. However,

when trying to transform the program into second normal form, the laws from Section 6.2.1 and

6.2.2 will not be enough to eliminate the communicating conditions associated with this unmatched

input/output commands. More formally, the compilation will not be able to proceed any further

after the reduction reaches a state of the form:

a : [s,
(
s1
−→

snc (y :=
snc v1 � chk(ch)� v2)1 ‖M̂ P

)
, f ]

where P is the parallel by merge combination of guarded multiple assignments and it does not

engage in any req(ch) event2. We can take advantage of the knowledge that the chk(ch) condition

will never hold in order to simplify the program. The following lemma states this fact more

accurately.

Lemma 6.2.7. Impossible communication simplification

a : [s,
(
s1
−→

snc (y :=
snc v1 � chk(ch)� v2)1 ‖M̂ P

)
, f ] = a : [s,

(
s1
−→

snc (y :=
snc v2)1 ‖M̂ P[false/chk(ch)]

)
, f ]

provided that P does not engage in any req(ch) event and that the normal form encompasses the

whole program.

Proof.

a : [s,
(
s1
−→

snc (y :=
snc v1 � chk(ch)� v2)1 ‖M̂ P

)
, f ]

= {Definitions 3.3.149 and 3.2.7, law 3.3.28}

a : [s,
(
(y :=
snc (v1 � chk(ch)� v2)� s1 � y)1 ‖M̂ P

)
, f ]

= {Assumption (P does not engage in any req(ch) event), laws 4.2.32 and 4.2.33}

a : [s,
(
((y :=

snc (v1 � chk(ch)� v2)� s1 � y)1 ‖M̂ P)[false/chk(ch)]
)
, f ]

= {Predicate calculus, law 3.3.25}

a : [s,
(
(y :=
snc v2 � s1 � y)1 ‖M̂ P[false/chk(ch)]

)
, f ]

= {Definitions 3.3.149 and 3.2.7, law 3.3.28}

a : [s,
(
s1
−→

snc (y :=
snc v2)1 ‖M̂ P[false/chk(ch)]

)
, f ] �

6.3 Putting it all together

In this section we briefly illustrate usage of the compilation theorems outlined in this section for

the reduction of the communication primitives and the priAlt construct into second normal form.

2Note here that there might be more than one step depending on chk(ch) that cannot be resolved. The case above is
presented with illustrative purposes only, and it is kept simple with this idea in mind. The technique described to deal
with this case will as well apply for the case with more than one step depending on chk(ch)



174 CHAPTER 6. COMMUNICATIONS AND PRIORITISED CHOICE

The example we will compile is the parallel composition of an input command with a priAlt
construct containing an input and an output command:

ch?x ‖

HC priAlt

 case ch1?x: delay # break#

case ch!0: delay # break



We begin by reducing the input and the priAlt commands into normal form:

al : [al = s,
(
al = s −→snc (in-req(ch); al, x :=

snc ( f , in(ch))� wr(ch)� (s, x))1
)
, al = f ]

‖

HC

ar : [ar = s,


ar = s −→snccase


in-req(ch1); wr(ch1) ? (x, ar

:=
snc in(ch1), s1)1 |

out-req(ch); out(ch, 0); rd(ch) ? (ar
:=
snc s2)1 |

(ar
:=
snc s)1


‖M̂ ar = s1

−→

snc (ar
:=
snc f )1 ‖M̂ ar = s2

−→

snc (ar
:=
snc f )1


, ar = f ]

Reducing the parallel composition operator into normal form and making

b1 = (al = s0 ∧ ar = s0)

and

b1 = (al = f ∧ ar = f )

we obtain:

al, ar : [b1,



b1
−→

snc (in-req(ch); al, x :=
snc ( f , in(ch))� wr(ch)� (s, x))1 ‖M̂

b1
−→

snccase


in-req(ch1); wr(ch1) ? (x, ar

:=
snc in(ch1), s1)1 |

out-req(ch); out(ch, 0); rd(ch) ? (ar
:=
snc s2)1 |

(ar
:=
snc s)1


al = s −→snc (in-req(ch); al, x :=

snc ( f , in(ch))� wr(ch)� (s, x))1 ‖M̂

ar = s −→snccase


in-req(ch1); wr(ch1) ? (x, ar

:=
snc in(ch1), s1)1 |

out-req(ch); out(ch, 0); rd(ch) ? (ar
:=
snc s2)1 |

(ar
:=
snc s)1


‖M̂ ar = s1

−→

snc (ar
:=
snc f )1 ‖M̂ ar = s2

−→

snc (ar
:=
snc f )1



, b2]
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Applying law 6.2.1 and Lemma 6.2.6 (twice) we get:

al, ar : [b1,



b1
−→

snc in-req(ch)1 ‖M̂ b1
−→

snc (al, x :=
snc ( f , in(ch))� wr(ch)� (s, x))1 ‖M̂

b1
−→

snc in-req(ch1)1 ‖M̂

b1 ∧ wr(ch1) −→snc (x, ar
:=
snc in(ch1), s1)1 ‖M̂

b1 ∧ ¬wr(ch1) −→sncout-req(ch)1 ‖M̂

b1 ∧ ¬wr(ch1) −→sncout(ch, 0)1 ‖M̂

b1 ∧ ¬wr(ch1) ∧ rd(ch) −→snc (ar
:=
snc s2)1 ‖M̂

b1 ∧ ¬wr(ch1) ∧ ¬rd(ch) −→snc (ar
:=
snc s)1 ‖M̂

al = s −→snc in-req(ch)1 ‖M̂ ar = s −→snc in-req(ch1)1 ‖M̂

ar = s −→snc (al, x :=
snc ( f , in(ch))� wr(ch)� (s, x))1 ‖M̂

ar = s ∧ wr(ch1) −→snc (x, ar
:=
snc in(ch1), s1)1 ‖M̂

ar = s ∧ ¬wr(ch1) −→sncout-req(ch)1 ‖M̂

ar = s ∧ ¬wr(ch1) −→sncout(ch, 0)1 ‖M̂

ar = s ∧ ¬wr(ch1) ∧ rd(ch) −→snc (ar
:=
snc s2)1 ‖M̂

ar = s ∧ ¬wr(ch1) ∧ ¬rd(ch) −→snc (ar
:=
snc s)1 ‖M̂

ar = s1
−→

snc (ar
:=
snc f )1 ‖M̂ ar = s2

−→

snc (ar
:=
snc f )1



, b2]

If we now apply Lemmas 6.2.3 and 6.2.4 , letting b3 = (b1 ∧ ¬wr(ch1)) ∨ (ar = s ∧ ¬wr(ch1)) we

obtain:

al, ar : [b1,



b1
−→

snc (al, x :=
snc ( f , in(ch))� b3 � (s, x))1 ‖M̂

b1 ∧ wr(ch1) −→snc (x, ar
:=
snc in(ch1), s1)1 ‖M̂

b1 ∧ ¬wr(ch1) −→sncout(ch, 0)1 ‖M̂

b1 ∧ ¬wr(ch1) ∧ (b1 ∨ al = s) −→snc (ar
:=
snc s2)1 ‖M̂

b1 ∧ ¬wr(ch1) ∧ ¬(b1 ∨ al = s) −→snc (ar
:=
snc s)1 ‖M̂

ar = s −→snc (al, x :=
snc ( f , in(ch))� b3 � (s, x))1 ‖M̂

ar = s ∧ wr(ch1) −→snc (x, ar
:=
snc in(ch1), s1)1 ‖M̂

ar = s ∧ ¬wr(ch1) −→sncout(ch, 0)1 ‖M̂

ar = s ∧ ¬wr(ch1) ∧ (b1 ∨ al = s) −→snc (ar
:=
snc s2)1 ‖M̂

ar = s ∧ ¬wr(ch1) ∧ ¬(b1 ∨ al = s) −→snc (ar
:=
snc s)1 ‖M̂

ar = s1
−→

snc (ar
:=
snc f )1 ‖M̂ ar = s2

−→

snc (ar
:=
snc f )1



, b2]

Applying Lemma 6.2.5 and making

v = (SELECT (x, 0� (b1 ∧ ¬wr(ch1))� x, 0� (ar = s ∧ ¬wr(ch1))� x))



176 CHAPTER 6. COMMUNICATIONS AND PRIORITISED CHOICE

we obtain:

al, ar : [b1,



b1
−→

snc (al, x :=
snc ( f , v)� b3 � (s, x))1 ‖M̂

b1 ∧ wr(ch1) −→snc (x, ar
:=
snc in(ch1), s1)1 ‖M̂

b1 ∧ ¬wr(ch1) ∧ (b1 ∨ al = s) −→snc (ar
:=
snc s2)1 ‖M̂

b1 ∧ ¬wr(ch1) ∧ ¬(b1 ∨ al = s) −→snc (ar
:=
snc s)1 ‖M̂

ar = s −→snc (al, x :=
snc ( f , v)� b3 � (s, x))1 ‖M̂

ar = s ∧ wr(ch1) −→snc (x, ar
:=
snc in(ch1), s1)1 ‖M̂

ar = s ∧ ¬wr(ch1) ∧ (b1 ∨ al = s) −→snc (ar
:=
snc s2)1 ‖M̂

ar = s ∧ ¬wr(ch1) ∧ ¬(b1 ∨ al = s) −→snc (ar
:=
snc s)1 ‖M̂

ar = s1
−→

snc (ar
:=
snc f )1 ‖M̂ ar = s2

−→

snc (ar
:=
snc f )1



, b2]

Finally, applying Lemma 6.2.7 and predicate calculus we can update

v = (SELECT (ARB, 0� b1 � ARB, 0� ar = s� ARB))

also

b3 = (b1 ∨ ar = s)

and simplify the above formula to:

al, ar : [b1,



b1
−→

snc (al, x :=
snc ( f , v)� (b1 ∨ ar = s)� (s, x))1 ‖M̂

b1 ∧ (b1 ∨ al = s) −→snc (ar
:=
snc s2)1 ‖M̂

b1 ∧ ¬(b1 ∨ al = s) −→snc (ar
:=
snc s)1 ‖M̂

ar = s −→snc (al, x :=
snc ( f , v)� (b1 ∨ ar = s)� (s, x))1 ‖M̂

ar = s ∧ (b1 ∨ al = s) −→snc (ar
:=
snc s2)1 ‖M̂

ar = s ∧ ¬(b1 ∨ al = s) −→snc (ar
:=
snc s)1 ‖M̂

ar = s1
−→

snc (ar
:=
snc f )1 ‖M̂ ar = s2

−→

snc (ar
:=
snc f )1



, b2]

The condition in the third step is unfeasible (i.e., the whole step can be eliminated by means of

Definition 3.3.149, Laws 3.3.25 and 3.3.145). It is also possible to simplify the condition in the

second step and the actions in the first and fourth steps can be resolved using the information in

the guard:
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al, ar : [b1,



b1
−→

snc (al, x :=
snc f , 0)1 ‖M̂

b1
−→

snc (ar
:=
snc s2)1 ‖M̂

ar = s −→snc (al, x :=
snc f , 0)1 ‖M̂

ar = s ∧ (b1 ∨ al = s) −→snc (ar
:=
snc s2)1 ‖M̂

ar = s ∧ ¬(b1 ∨ al = s) −→snc (ar
:=
snc s)1 ‖M̂

ar = s1
−→

snc (ar
:=
snc f )1 ‖M̂ ar = s2

−→

snc (ar
:=
snc f )1


, b2]

Finally, the first and second step can be merged into a single step (as they have the same guard),

and steps three to five are unreachable (they can be eliminated by means of Laws 5.1.14, 5.1.13

and 3.3.99) leading us to the final normal form:

al, ar : [b1,

 b1
−→

snc (al, ar, x :=
snc f , f , 0)1

‖M̂ ar = s2
−→

snc (ar
:=
snc f )1

 , b2]

Notice that:

1. Consistently with the semantics, the normal form performs the transmission over ch and the

update of x with the value 0 during the first clock cycle. During the second clock cycle, the

normal form just delays and terminates its execution.

2. The impossible communication over channel ch1 did not lead to an infinite loop. In this

case, the fact that the communication over ch1 was inside a priAlt with other alternatives

just leads to the elimination of the branches attempting to use ch1.

3. The fact that all the information necessary to resolve the control path of the program was

available in the source code allowed the simplification of the normal form and the elimina-

tion of unnecessary alternatives.

6.4 Chapter summary

In this chapter we have covered the following topics:

• Algebraic reduction of the communication constructs to first normal form. The reduc-

tion of input and output to first normal form is achieved by means of the basic communica-

tion primitives introduced in Chapter 4. The main advantage of this approach is the fact that

it is fully algebraic and it allows reasoning at the right level of abstraction (i.e., still referring

to channels rather than their implementation as wires and data buses).
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• Compilation of the priAlt construct to first normal form. The reduction to first normal

form is achieved by means of the basic communication primitives, the case expression in-

troduced in Chapter 4 and their equivalence with the different forms of the priAlt construct.

• Compilation of input,output and priAlt from first to second normal form. Our approach

for the transformation from first to second normal form in the context of communication

and prioritised choice is to re-use the reduction strategy used for the other programming

constructs. To make this possible, all primitive communication constructs and case state-

ments are reduced to conditional assignments (the input to the reduction strategy to second

normal form presented in Chapter 5).



Chapter 7

Conclusions

“Begin thus from the first act, and proceed;

and, in conclusion, at the ill which thou hast done,

be troubled, and rejoice for the good”

— Pythagoras

In this work we develop a verified compilation framework for the compilation of Handel-C

[Celoxica Ltd. 2002a] into hardware using an algebraic approach. The compilation process is

formalised within a new UTP [Hoare and He 1998] semantic framework: that of a synchronous,

shared-variables language with capabilities for parallel behaviour and communications primitives.

Within this framework, a formal model of the Handel-C is gradually transformed – by means of

semantic-preserving reduction laws – into a formal abstraction of the target hardware components.

The process of reducing Handel-C into gate-level descriptions of hardware is characterised

by a succession of transformations between different normal forms. As our target architecture is

FPGA devices, there is no default structure or behaviour our normal forms are to mimic. Instead,

we choose to design our normal forms to represent descriptions of state machines at different

levels of abstraction. In this way, our final normal form is a low-level net-list description that can

be implemented directly on an FPGA.

By formalising the compilation task as the successive reduction to different normal forms we

have been able to capture the process in an incremental way using the normal forms as intermediate

representations of the source code and identifying each of them with clearly defined compilation

phases: the reduction of source programs into state machine and the simplification of parallel

behaviour. One crucial aspect of our work is the fact that the first normal form allows the encoding

of parallel behaviour in an a simple and efficient way. The efficiency in the encoding directly

translates in a better applicability of our approach to industrial-scale projects, where the sheer

size of the source code does not allow the limited resources of the FPGA to be wasted due to the

compiler generating unnecessary hardware.

The simplicity of our first normal form, on the other hand, is the key feature that allows the

simplification of parallelism performed in the second normal form. In particular, the fact that every

computational step in our normal takes exactly one clock cycle and the regularity within a step

179
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(i.e., a step is nothing else but a guarded assignment) is what allows otherwise infeasible reduction

rules to hold in our context (e.g., the so called ‘abides’ property between ‖M̂ and iteration as

described in law 5.1.16). Encoding the program constructs in this way, however, forces the normal

form to advance the clock cycle counter every time a change in control flow of the program is

required. This restriction is the main reason why our compiler cannot handle iteration (remember

our compilation technique only addresses a restricted form of iteration we call iterated selection).

Even though we have chosen Handel-C as the source language for our hardware compiler, we

believe our source language comprises many features that are common to programming languages

intended to be compiled into hardware. In fact, the kind of shared-variable parallelism used in

Handel-C is much less restrictive, hence more complex to compile, than its counterparts in Sys-

temC [Grotker 2002] or Verilog [Thomas and Moorby 1998]. From this observation, most of our

compilation techniques can be directly re-used in the compilation of these languages. Furthermore,

the uniform treatment of time we follow in this work makes our technique applicable to compile

parallel, high level programming languages (e.g., Occam) directly into hardware.

The usual approach to algebraic compilation [Sampaio 1997] involves having a reasoning lan-

guage as an algebraic structure whose axioms and reduction laws characterise the semantics of the

language. We follow this approach as it has several advantages regarding modularity, simplicity

and clarity. There is, however, the latent risk of postulating an incorrect axiom and allowing the

possibility of proving the correctness of a faulty compiler. To avoid this problem, we have created

a UTP [Hoare and He 1998] semantic model for languages with the programming features present

in Handel-C (see Chapter 3). Our semantic model is not only the model and semantic foundation

for our theory, but it is also the link allowing us to embed Handel-C within our reasoning lan-

guage by providing a denotational semantics for Handel-C in terms of the reasoning language’s

constructs.

On top of the role in the context of this work, our theory of synchronous designs addresses

one of the fields that, to the best of our knowledge, have not been covered with a dedicated UTP

theory. Most efforts to address hardware [Butterfield 2007] or, in more general terms, synchro-

nous systems [Pu et al. 2005; Butterfield et al. 2007] in the Unifying Theories of Programming

have been based on the theory of reactive processes [Hoare and He 1998, Chapter 9]. In all of

these works, synchronisation is controlled by means of processes entering a waiting state that is

inherited from un-timed, non-determinism capable, process algebras like CSP, ACP or CCS. Even

though this is a valid semantic framework for reasoning about synchronous systems, we believe

that in fully deterministic contexts where the notion of time is more precise (e.g., as in the case

of hardware-oriented programming languages), the semantic framework could benefit from this

information in order to obtain a theory where it is simpler to reason and prove algebraic laws.

Our theory of synchronous designs takes full advantage of this observation, allowing us to prove a

comprehensive set of laws and theorems about synchronous systems.

The fact that our theory of synchronous designs is based on conjunctive healthiness conditions

would allow to seamlessly extend it in order to accommodate additional programming features that

already have their semantics formulated in terms of conjunctive healthiness conditions (e.g., the

theory of pointers [Harwood et al. 2008; Smith and Gibbons 2008] or object oriented programming
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[Smith and Gibbons 2007]).

Regardless of its comparison with other UTP theories, the theory of synchronous designs pro-

vides a very efficient way of describing (i.e., providing semantics) programming languages with

a synchronous underlying model. In this regards, the high level of abstraction of the synchro-

nous theory – achieved mainly through our extended parallel operator for processes with shared

variables – allows the elimination of operational details, producing semantics that are better suited

for reasoning and proving algebraic properties of the language.

The main weakness of the UTP and, consequently, of our theory, is its lack of support tools.

As a consequence of this, all developments and proofs in this thesis have been carried out “by

hand”. On the other hand, the UTP itself together with all its algebraic reasoning laws makes this

limitation a possibility for gaining further insight both in the theory being used and also in the

model being constructed. Furthermore, the comprehensive support for programming constructs,

together with the possibility of integrating additional programming features (by means of exten-

ding an existing theory or, as in our case, creating a completely new one) makes the approach more

convenient in this context than other formalism with highly developed proving engines like HOL

[Gordon and Melham 1993]. Finally, work has been carried out in order to provide mechanical

support for the UTP by means of an embedding in ProofPower [Artan 2000] by Oliveira et al.

[2006]; Zeyda and Cavalcanti [2009].

Regarding the design and construction of compilers using the algebraic approach, we believe

the approach is not sufficiently mature yet to be a commercially viable solution. Although the

mathematics involved in the task are not very deep, the amount of reasoning required to assert and

show the correctness of a compiler might scare practitioners with a more practical background.

A possible way forward is by having separate teams facing the task: one of computer scientists

to continue the search for general theorems to support and enable the compilation of the missing

features/programming languages; and another one of practitioners actually implementing this ideas

in a suitable programming language.

Finally, the mapping from the actual source program into its model in the reasoning language

(and, similarly, from the final normal form into the target architecture) cannot be formalised and,

consequently, cannot be verified. This is a problem of provably correct systems in general, as

there will always be a gap between any mathematical model and its implementation. Even if all

the stages in the compilation process are proved correct, it is actually a mathematical model of

them what is, in the end, verified. The purpose of pursuing formal verification is to gain a better

insight into the problem and reduce the occurrence of errors, their total absence can never be

proved.

This rest of this chapter summarises the main contributions of this thesis, its limitations and

closely related research addressing how our work compares to other algebraic compilers for Hard-

ware Description Languages. The chapter closes with a discussion of possibilities for future work

and extensions.
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7.1 Summary of contributions

We outline a summary of the contributions of this work below.

A theory of synchronous, parallel programs with shared variables. Our theory imposes ad-

ditional restrictions (i.e., healthiness conditions) to the UTP theory of designs [Hoare and He

1998, Chapter 3] in order to make it suitable for reasoning about synchronous parallel programs

with shared variables. The new theory is defined following the conjunctive healthiness conditions

approach introduced by Cavalcanti and Woodcock [2006]. We have also added additional obser-

vational variables to record the progression of time and history of variables that enable the theory

to handle synchronous behaviour in conjunction with shared variables. The most relevant features

and contributions of the new theory are presented below.

• Assertional reasoning over clock cycle boundaries. The impossibility of asserting the value

of variables after synchronisation points is one of the main limiting factors that pre-empts

the usage of the simpler theory of designs as the semantic framework for our work. Our

additional healthiness conditions and treatment of synchronicity allow us to prove that

(x :=
snc e; sync) = x :=

snc e; sync; (x = e)⊥S

when there is no other process modifying x during that clock cycle1. This is one of the key

results in order to be able to show the correctness of the compilation theorems.

• A different-length, parallel-by-merge operator. A common feature of the parallel-by-merge

operators in the UTP theories is that they can only handle parallel processes that take

the same amount of clock-cycles to terminate. This is an unreasonable restriction in the

context of Hardware Description Languages, where any pair of arbitrary programs (even

non-terminating ones) can be combined in parallel. Our theory solves this problem by in-

troducing a new merge predicate that accounts for the difference in duration of the parallel

processes while satisfying the same set of properties of the original UTP merge operator.

• Dynamic scope and alphabet extension in a context of variables with history. The inclusion

of a mechanism to record the variable’s history hinders the applicability of the UTP opera-

tors used to control the scope of variables. We include new operators for dynamic scope and

alphabet extension that account not only for the history of variables but also for the additio-

nal healthiness conditions in our theory. From the reasoning perspective, the need for these

new definitions makes the extension of a variable’s scope lead to refinement when it is done

over clock-cycle boundaries.

• Algebraic characterisation of programming constructs and operators. As shown in Chapters

5 and 6, the set of algebraic laws presented in our theory is sufficient to reason about syn-

1Note that this law does not hold when multiple processes are trying to modify x simultaneously. For an example,
consider the case of (x :=

snc e1; sync) ‖M̂ (x :=
snc e2; sync) where it is not clear what the value of x should be after the

parallel assignment.
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chronous programs with shared variables. Furthermore, it is possible to use the synchronous

theory as the underlying formalism in which to give semantics to Handel-C programs.

In comparison with the UTP theory of designs, most properties about the programming

operators hold in the same form or as refinements in our new theory. On the other hand,

the fact that our theory keeps track of the history of variables automatically invalidates the

property that

P;⊥ = ⊥

(abort is a right zero for sequential composition). In consequence, all properties about desi-

gns that depended on this condition (e.g., disjoint-alphabet parallelism can be expressed as

sequential composition) do not hold in our theory.

For our algebraic Handel-C compiler, the theory of synchronous designs acts as the semantic

foundation for our reasoning language. In this way, we are not only able to show the validity of

the basic axioms in the reasoning language, but we can also ensure that there is at least one model

that can satisfy them.

UTP semantics for Handel-C. Our semantics is based on the theory of synchronous designs

described in Chapter 3. Our Handel-C semantics is an improvement on other denotational seman-

tics of the language [Butterfield 2007; Butterfield et al. 2007; Butterfield and Woodcock 2006;

2005a] regarding their simplicity towards the discovery/proof of algebraic laws. Other seman-

tics are either based on ad-hoc formalisms not suitable for proving algebraic properties or are

based on a deep embedding of state machines in the UTP reactive theory, which introduces non-

deterministic behaviour and refusals that are not necessary in the context of Handel-C2. The main

contribution of our UTP semantics for Handel-C are as follows:

• Algebraic laws and equivalence relationships proved about Handel-C programs. The set of

algebraic laws about Handel-C serves this work in two ways: (i) it allows to prove equiva-

lences between different constructs and operators that simplify the compilation into hard-

ware, as described in Chapter 6; and (ii) it provides reassurance on the correctness of the

semantics, as the results captured by the laws are consistent with the expected behaviour of

Handel-C.

• A formal link between Handel-C and our reasoning language. Since Handel-C and the rea-

soning language share the same semantic domain (i.e., the theory of synchronous designs) it

is straightforward to show that our source language is embedded within our reasoning lan-

guage. There is evidence in the literature of this kind of link between denotational models

and refinement frameworks for the same language [Cavalcanti and Naumann 2000], yet this

is the first time the UTP has been used as the semantic foundation for an algebraic compiler.

2As Handel-C is a programming language with no constructs for program specification, it does not contain the non-
deterministic choice operator; thus there is no need to account for this construct and the mathematical elements involved
in its semantics (i.e., refusals).
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• Characterisation of the communication primitives and priAlt in terms of more basic ope-

rators. The main advantage of our decomposition of these constructs is that it allows their

treatment via algebraic laws that still operate over channels without the need to resort to

lower-level implementation details.

Verified hardware synthesis for Handel-C. We show how the algebraic approach to compila-

tion is used to produce a correct-by-construction compiler for Handel-C into hardware. The main

contributions of this part of the thesis are as follows:

• Highly parallel normal form. Our normal form is based on the idea of a machine executing

one-clock-cycle steps. The way in which steps are combined allows more than one of them

to be activated at any given clock cycle. Parallelism is captured directly at the control-flow

level of our normal form; hence minimising the hardware required to implement parallel

behaviour. Other hardware compilation approaches are based on normal forms that address

parallel behaviour by means of generating particular forms of the cross product among the

machines that are composed in parallel. This is highly inefficient as it produces hardware

for all possible interactions between the two machines, even those combinations that are not

possible. Our approach is more suitable than these cross-product-based techniques, if we

consider that the target of our compiler is FPGA devices, where the size of the generated

hardware is crucial.

• Verified synthesis for parallel behaviour with shared variables. To the best of our know-

ledge, all existing works in the literature either do not address this problem at all, or take

place in contexts where the alphabet is partitioned among parallel processes (e.g., Occam).

• Algebraic compilation of priAlt and communications in a shared-variables context. We

provide a fully compositional treatment of these constructs and ways of simplifying the

communications patterns in certain cases where the program contains enough information to

do so. A distinguishing feature of our work is the fact that all communication primitives are

transformed into conditional assignments when the program reaches its final normal form;

hence simplifying and minimising the hardware necessary to implement these constructs.

• The reduction of Handel-C programs to a single assignment. If we consider the constructs in

Handel-C it is easy to see that all programs that can be generated are, in essence, sequences

of assignments. In this context, the control-flow of a Handel-C program can be seen as a

selection mechanism deciding which assignment is performed at which clock-cycle. It is a

reassuring result that our compiler can derive this underlying essence of Handel-C programs

whilst compiling them into hardware.

• Simpler and more efficient (in terms of resource utilisation) generated code before optimi-

sations when compared to commercial alternatives. If we compare the before-optimisations

results of our compiler with the output of the commercial compiler for Handel-C [Celoxica

Ltd. 2002b] it is clear that our code: (a) has a much simpler structure, as the generated

hardware by commercial tools follows the imperative-structure of the original Handel-C



7.2. LIMITATIONS 185

program; and (b) is more compact, as the timing in our synthesised hardware is controlled

implicitly by the updates to registers performed in our single-assignment normal form. Re-

garding (b), the code generated by commercial tools requires the introduction of additional

flip-flops in order to maintain the timing and synchronicity of the generated code. In the

hardware generated with our approach, time and synchronicity is controlled implicitly by

the fact that control variables are stored in flip-flops and the behaviour of the whole program

is captured as the iteration of a conditional one-clock-cycle assignment.

7.2 Limitations

The compilation of synchronous, parallel programs with shared-variables is a complex task, espe-

cially when it is performed with the additional goal of a formal proof of correctness in mind. Our

approach goes a long way towards overcoming many of those difficulties, yet there are limitations

to the results of this thesis.

Multi-clock-cycle expression evaluation. One of the assumptions of our work is that all expres-

sions can be evaluated by means of combinatorial logic within a single clock-cycle. This is the

case for all expressions involving addition, subtraction and logical operations. Other more com-

plex operations, like multiplication and division, can still be performed within a single clock-cycle

but they require the frequency of the clock to be significantly reduced. In commercial applica-

tions, expressions involving these time-consuming operations are split across several clock-cycles

by means of pipelined implementations. Unfortunately, complex data-flow analysis is required

in order to be able to correctly switch to this more efficient implementation and our compilation

approach is currently not capable of performing them. In case performance is a crucial factor, a

Handel-C description of a pipelined implementation of these operations may be a suitable alter-

native, at the expense of the user performing all the data dependency analysis at the source-code

level.

Suboptimal implementation of the SELECT function that selects the values to update the pro-
gram/control variables. This is not a limitation arising from our mapping of the normal form

into hardware, but a consequence of the definition of the merge predicate in the semantics of our

reasoning language. If one analyses our definition of the SELECT function (see Section 2.3.8.1),

it is possible to find it requires the comparison of the values held in a variable with the possible

values to update it. This is the mechanism we use in the semantics to detect whether any of the

processes writing to a variable x had modified it during the current clock-cycle. On the other hand,

in the second normal form we have expressions of the form

(
(w1

:=
snc e1 � c1 � x) ‖ (w2

:=
snc e2 � c2 � x) . . .

)
; (x :=

snc SELECT (x,w1,w2))1

where w1 will carry an update value for x only when condition c1 holds. In this context, there is no

need for the comparison between w1 and x, and we could simply implement the expression above
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as

(
(w1

:=
snc e1) ‖ (w2

:=
snc e2) . . .

)
; (x :=

snc (e1 � c1 � (e2 � c2 � x)))1

The second expression is a more efficient way of achieving the same result, as the selection of

values to update x is not based on comparing the value of x with w1 and w2, but on simply eva-

luating a condition. Unfortunately, due to the way assignment is defined in our theory, it is not

possible to derive the above simplification in the current state of the semantics for our reasoning

language. In order to improve this aspect of the thesis, our semantics would need to be modified

in order to have a more concrete way of determining whether a process has changed the value of a

variable or not. Due to time restrictions and the limited impact this modification will have towards

the main objective of this thesis (i.e., correctness of the compilation), we regard its solution as a

future extension of our work.

Treatment of the while construct. In order to be able to compile programs into normal form we

impose that all while constructs must be followed by at least one clock-cycle consuming statement.

As mentioned in Section 5.1.4.5, this is a restriction arising from the way we encode combinatorial

changes in the control-flow within our first normal form. The user is required to find a suitable part

of the program (or add a delay construct) that can be executed after each while construct that does

not satisfy the above criteria. This change potentially leads to decreased efficiency in the whole

program. In this direction: (a) our pilot study suggests that these changes are rarely necessary in

most programs (see Section 5.1.4.4 for further details); and (b) we expect our compiler to be used

in contexts where the emphasis is on program correctness and a minor loss in performance can be

tolerated in exchange for a correct outcome from the compiler.

7.3 Closely related work

We have mentioned and briefly described related work throughout the different chapters of this

thesis. In this section we focus on closely related work and consider their differences with our

approach. There have been two major research projects on applying the algebraic technique to

compile both Occam and Verilog into hardware.

7.3.1 Occam

In [He et al. 1992; 1993; Bowen et al. 1994], He and others propose algebraic transformation rules

to transform a subset of Occam into a normal form suitable for an implementation in hardware.

This seminal work addresses a subset of Occam including communications, parallelism and alter-

nation. The compilation down to hardware resembles our approach, as their normal form is based

on control and state variables. Two mappings are stored within the normal form: one determining

the next state based on the current one; and another one associating the current control state to

the value for the program and control variables. Their hardware-generation phase follows a simi-

lar approach to ours as well. Latches (i.e., memory) are allocated to store the control and state
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variables, while the mappings are implemented by combinatorial means. In comparison with our

work, the main differences lay in the following facts:

The lack of a time model for Occam. This allowed He and Paige to define a time model where

conditions take a whole clock-cycle to be computed. In this context, their state-based normal form

encoding becomes much simpler, as they do not need to deal with conditionals being resolved in

combinatorial time. This approach is not an option in our context as the timing of the constructs

is defined by Handel-C semantics, which is different from Occam’s, and cannot be altered without

leading to incorrect behaviour in the generated hardware.

On the other hand, He, Bowen and Paige also include additional laws to address the control of

time and to introduce assumptions and assertions into the language. In line with the concepts in

our work, the clock-cycle counter is controlled by means of the action II1 (the action of taking one

clock cycle and keeping all variables constant). Nevertheless, they also postulated

II v II1

as one of their basic laws. In a context of shared variables, this law could lead to inconsistent

behaviour due to the possible change in the timing of the program. For example, consider the

fragment

ch?x ‖ ch!e

which is equivalent to the assignment x := e. However, we can apply the refinement law above

together with the fact that II is the left unit for sequential composition in Occam to refine the

original program into the equivalent form

ch?x ‖ (II1; ch!e)

In Occam, this transformation is semantics-preserving because there are no shared variables and;

thus, the effects of delaying the execution of one of the parallel branches has no effects regarding

its environment. On the other hand, this way of manipulating the time structure of the program

is not possible in the context of Handel-C programs, as a delayed action in one of the parallel

branches may lead to a change in the control flow in the others.

The lack of shared-variables in Occam. The main consequence of this feature is the additional

freedom regarding the timing of the program mentioned above. On the other hand, this feature

of Occam also allows a much simpler algebraic treatment of parallel programs due to the more

comprehensive set of laws made available to the compilation process. The fact that variables are

not shared among parallel processes makes it possible to:

• Eliminate the need to keep track of the history of variables. Avoiding this additional com-

plication (necessary in our context) increases the number of properties of the whole set of

constructs in the reasoning language. For example, the law stating that ⊥ is the right zero
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for sequential composition (i.e., (P;⊥) = ⊥) can only be proved in a context where history

is not recorded.

• Have a simpler parallel operator. In algebraic terms, this means the possibility of executing

parallel processes concurrently or by any possible interleaving of their actions. Furthermore,

as there is no separation of variables or merging at the end of the parallel operator, II is the

unit for parallel composition (i.e., (II ‖ P) = P); hence allowing a simple treatment of

parallel behaviour when the different branches take different amounts of clock-cycles to

terminate.

Encoding of parallelism in the normal form. As mentioned in Section 7.1, their approach to

compiling parallel composition is to construct the “product” machine of the two normal forms (i.e.,

to calculate all possible control combinations when the two normal forms execute concurrently).

Even though this is an elegant mathematical solution to the problem, it is inefficient in terms of

resource utilisation as the approach must cover all possible combinations of control states, even if

they will never be executed. This is not a feasible solution in the context of our work, where the

target are highly-restricted devices in terms of available hardware resources.

Reasoning language. Their reasoning language is a superset of the programming laws for Oc-

cam proposed by Roscoe and Hoare [1988] and differs from ours in a number of ways, mainly

regarding the algebraic treatment of miracle within parallel contexts. When analysing these diffe-

rences we found a few conflicting laws that may lead to problems when using them as the reasoning

language for the compiler. For instance, the law

II ‖ (ch?x; P) = stop

suggests a treatment of parallelism similar to [Hoare 1983] where parallel processes are forced to

have the same alphabets and to synchronise on all of their variables. On the other hand, Occam

does not have a notion of alphabets associated to processes and, moreover, it only allows a single

pair of input/output commands in the whole program. In the light of this observation, let us

consider R = (ch!v; S ) then

(II ‖ (ch?x; P)) ‖ R

is not equivalent to

II ‖ ((ch?x; P) ‖ R)

contradicting the associative property of parallel composition in Occam [Roscoe and Hoare 1988].

It is also not clear how the authors guarantee that their parallel operator allows processes of dif-

ferent length when they provide a spreadsheet principle similar to the one presented in our work

yet their parallel operator does not have II as a unit.
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In summary, there are major differences between Occam and Handel-C (mainly due to an un-

clear time model and the lack of shared variables) that would make the techniques developed by

He and others [He et al. 1992; 1993; Bowen et al. 1994] unsuitable in our context. Furthermore,

some of the basic compilation laws for Occam do not hold in our context of synchronous, parallel

programs with shared-variables (for example, abort being the right zero for sequential composi-

tion). Finally, our work provides an additional level of confidence regarding its correctness as we

have created a denotational model (see Chapter 3) from where we have proved all of our reasoning

laws.

7.3.2 Verilog

Another approach towards hardware synthesis based on the algebraic approach was proposed by

Iyoda and He [Iyoda and He 2001b; He 2002]. In this work, the authors describe an axiomatic

approach towards the compilation of Verilog programs into hardware descriptions.

The first step, reduction to assignment normal form, consists of the normalisation of assign-

ment by transforming each individual variable assignment into a total assignment (i.e., an assign-

ment that updates the value of the variable being modified and keeps constant the rest of identifiers

in the program). Rules are also provided in order to simplify assignments when combined by

sequential composition or conditionals.

The second step, reduction to conditional normal form, provides rules in order to deal with

variable’s values being preserved over clock-cycle edges (i.e., variables that cannot be synthesized

into combinatorial logic but into memory-based components). These rules capture the notion of

execution paths occurring during the program execution by using conditional constructs, highligh-

ting the variables that are not modified along them.

Finally, rewriting rules are applied after these two stages in order to perform the transformation

into Xilinx’s net-list format (XNF). This step consists, mainly, in mapping all expressions into net-

list form by defining their operators as symbols and assigning the involved names to wires in the

generated hardware. The approach has also been mechanized in Prolog [Iyoda and He 2001a] and

also extended to cope with hardware/software partitioning [Qin et al. 2002].

In comparison with our work, Iyoda and He address a small subset of Verilog that does not in-

clude iteration. On top of this, Verilog does not allow shared variables, leading to the same kind of

simplifications applied when compiling Occam into Hardware. Finally, the wires and connection

schema among different hardware components are not derived algebraically but produced by the

above mentioned production rules, making the verification of this aspect of their work less formal.

7.4 Future work

The research presented in this thesis can be developed and extended along the following lines:

Extending the translatable subset of Handel-C. There are two major kinds of constructs in

Handel-C that have been left out of this work: pointers and hardware optimisation keywords.

Harwood and others [Harwood et al. 2008] have proposed a UTP theory of pointers based on
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conjunctive healthiness conditions. This could be taken as the starting point to extend our semantic

framework and the reasoning language to incorporate pointers and pointer arithmetic to our input

language.

Regarding hardware optimisation keywords, these are usually carried along with the code and

passed as additional constraints to the optimisation/place & route stages. In this context, the reaso-

ning language will have to be extended with additional constructs in order to incorporate this kind

of information for later stages to take advantage of it.

Algebraic treatment of optimisations and place & routing. A natural extension of our work

towards a complete (and industrially attractive) tool chain from Handel-C down to FPGAs is to

add correct implementations of the optimisation and place & route routines. From the point of

view of the optimiser, a whole set of rules should be added to allow the simplification of our

final normal form to eliminate: (a) redundant hardware; (b) allocation of RAM when possible

(the above mentioned extension of the reasoning language to carry this information along the

compilation process will be necessary in this context); (c) splitting of the calculation of multi-cycle

expressions (e.g., those involving multiplication or division) into a pipelined implementation.

In turn, the implementation of place & route algorithms is highly dependant of the specific

FPGA that will be programmed with the output of our compiler. This means a verified ‘back-

end’ for our compiler will have to be implemented for each specific architecture that needs to

be addressed as a target. The usage of heuristics is very common at this stage, as some of the

routing problems among different components can be NP-complete; hence it cannot be addres-

sed with standard techniques. In this sense, the hardware/software co-design described by Silva

et al. [1997a; 2004] is an interesting initial point to address these aspects within the algebraic

framework.
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Appendix A

Proofs from Chapter 2

This appendix provides the details about the proofs of the laws and theorems stated in chapter 2.

Note that as chapter 2 intends to provide an overview of the UTP, some of the results presented

there are taken directly from the work by Hoare and He [1998]. Hence, the proofs we provide here

are of those laws and theorems that have been added to the original UTP theory for this thesis.

Results that have been taken directly from the UTP are not proved here, as the proofs are available

in [Hoare and He 1998; Woodcock and Cavalcanti 2004].

Law 2.2.11 P u Q v P

Proof.

[P⇒ P]

⇒ {Propositional calculus}

[P⇒ (P ∨ Q)]

≡ {Definition 2.2.9}

[P⇒ P u Q]

= {Definition 2.2.10}

P w P u Q �

Law 2.3.13 x := e;>D = >D

Proof.

x := e;>D

= {Theorem 2.3.5, definition 2.3.9, theorem 2.3.19}

(true ∧ ¬(x := e;¬true)) ` (x := e; false)

= {Definitions 2.2.6 and 2.2.3, propositional calculus}

(true ∧ ¬false ` false)

= {Propositional calculus, theorem 2.3.5}

193
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>D �

Law 2.3.14 x := e; IID = x := e

Proof.

x := e; IID

= {Definitions 2.3.9 and 2.3.8}

(true ` x := e); (true ` II)

= {Theorem 2.3.19 and propositional calculus}

(true ` x := e; II)

= {Law 2.2.8, definition 2.3.9}

x := e �

Law 2.3.30 (P� b� Q)� c� R = (P� c� R)� b� (Q� c� R)

Proof.

(P� b� Q)� c� R

= {Laws 2.3.23 and 2.3.29}

(R� ¬c� P)� b� (R� ¬c� Q)

= {Law 2.3.23}

(P� c� R)� b� (Q� c� R) �

Law 2.3.32 P� (s ∧ b)� (Q� (s ∧ ¬b)� R) = P� (s ∧ b)� (Q� s� R)

Proof.

P� (s ∧ b)� (Q� (s ∧ ¬b)� R)

= {Laws 2.3.23 and 2.3.28}

Q� s ∧ ¬b ∧ ¬(s ∧ b)� (R� ¬(s ∧ b)� P)

= {Propositional calculus ((s ∧ ¬b ∧ ¬(s ∧ b)) = (s ∧ ¬b))}

Q� (s ∧ ¬b)� (R� ¬(s ∧ b)� P)

= {Propositional calculus ((s ∧ ¬(s ∧ b)) = (s ∧ ¬b))}

Q� s ∧ ¬(s ∧ b)� (R� ¬(s ∧ b)� P)

= {Law 2.3.28}

(Q� s� R)� ¬(s ∧ b)� P

= {Law 2.3.23}

P� (s ∧ b)� (Q� s� R) �
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Law 2.3.49 Provided that P is H3 and e does not mention x we have that:

(P; x := e) = ((P; end x)+x; x := e)

Proof.

P; x := e

= {Theorem 2.3.19, P is H3, propositional calculus}

(P1 ` P2; x := e)

= {Definition 2.2.3 and assumption: x is not free in e}

(P1 ` ∃x0, y0 • P2[x0, y0/x′, y′]; x := e[y0/y′])

= {x0 is not free in x := e}

(P1 ` ∃y0 • (∃x0 • P2[x0, y0/x′, y′]); x := e[y0/y′])

= {Change bound variable, restrict scope}

(P1 ` ∃y0 • (∃x′ • P2)[y0/y′]; x := e[y0/y′])

= {Definition 2.2.19}

(P1 ` ∃y0 • (P2; end x)[y0/y′]; x := e[y0/y′])

= {One-point rule}

(P1 ` ∃y0, x0 • x0 = x ∧ (P2; end x)[y0/y′]; x := e[y0/y′])

= {Substitution}

(P1 ` ∃y0, x0 • (x′ = x ∧ (P2; end x)[y0/y′])[x0/x′]; x := e[y0/y′])

= {Substitution}

(P1 ` ∃y0, x0 • (x′ = x ∧ P2; end x)[y0, x0/y′, x′]; x := e[y0/y′])

= {Definition 2.3.46}

(P1 ` ∃y0, x0 • (P2; end x)+x[y0, x0/y′, x′]; x := e[y0/y′])

= {Theorem 2.3.19}

(P; end x)+x; x := e �

Law 2.3.56 b>; b> = b>

Proof. Straightforward from law 2.3.60 and idempotence of conjunction. �

Law 2.3.57 b⊥; b⊥ = b⊥

Proof. Direct from law 2.3.61 and idempotence of conjunction. �

Law 2.3.58 b⊥ = b⊥; b>

Proof.

b⊥; b>
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= {Theorem 2.3.52 and 2.3.53}

(IID � b� ⊥D); (IID � b� >D)

= {Laws 2.3.24, 2.3.10, 2.3.4}

(IID � b� >D)� b� ⊥D

= {Law 2.3.27 and theorem 2.3.53}

b⊥ �

Law 2.3.59 b>; b⊥ = b>

Proof.

Similar to the proof of law 2.3.58. �

Theorem 2.3.52 Design characterisation of assumption

b> = (true ` II � b� false)

Proof.

b>

= {Definitions 2.3.50, 2.3.8 and theorem 2.3.5}

(true ` II)� b� (true ` false)

= {Theorem 2.3.18}

(true� b� true ` II � b� false)

= {Law 2.3.22, definition 2.2.13}

(true ` II � b� false) �

Theorem 2.3.53 Design characterisation of assertion

b⊥ = (b ` II)

Proof.

b⊥

= {Definitions 2.3.51, 2.3.8 and theorem 2.3.3}

(true ` II)� b� (false ` true)

= {Theorem 2.3.18}

(true� b� false ` II � b� true)

= {Definition 2.2.1, propositional calculus}

((b ∨ false) ` b ∧ II)

= {Propositional calculus, definition 2.3.1}
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ok ∧ b⇒ ok′ ∧ b ∧ II

= {Propositional calculus, definition 2.3.1}

(b ` II) �

Law 2.3.60 b>; c> = (b ∧ c)>

Proof.

b>; c>

= {Theorem 2.3.52}

(IID � b� false); (IID � c� false)

= {Laws 2.3.24,2.3.34,2.3.10}

(IID � c� false)� b� false

= {Law 2.3.28}

IID � c ∧ b� (false� b� false)

= {Law 2.3.20 and theorem 2.3.50}

(b ∧ c)> �

Law 2.3.61 b⊥; c⊥ = (b ∧ c)⊥

Proof.

b⊥; c⊥

= {Theorem 2.3.53}

(b ` II); (c ` II)

= {Theorem 2.3.19}

(¬(¬b; true) ∧ ¬(II;¬c) ` II; II)

= {Definition 2.2.3, propositional calculus and law 2.3.10}

(b ∧ c ` II)

= {Theorem 2.3.53}

(b ∧ c)⊥ �

Law 2.3.62 (b ∨ c)>; b> = b>

Proof. Trivial from law 2.3.60 and absorption of conjunction. �

Law 2.3.63 b>; c> = c>; b>

Proof. Trivial from property 2.3.60 and commutativity of conjunction. �

Law 2.3.64 b> w IID w b⊥
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Proof.

b>

= {Theorem 2.3.52}

(true ` II � b� false)

w {Law 2.2.15}

(true ` II � b� II)

= {Law 2.3.22 then definition 2.3.8}

IID

= {Law 2.3.22}

IID � b� IID

w {Law 2.2.14}

IID � b� true

= {Definition 2.3.51}

b⊥ �

Law 2.3.67 If b does not depend on x then x := e; b> = b>; x := e

Proof.

x := e; b>

= {Definition 2.3.50}

x := e; (IID � b� >D)

= {Laws 2.3.25, 2.3.14, 2.3.13}

x := e� b[e/x]� >D

= {Assumption (b does not mention x), laws 2.3.34, 2.3.10 and 2.3.24}

(II � b� >D); x := e

= {Definition 2.3.50}

b>; x := e �

Law 2.3.68 If b does not depend on x then x := e; b⊥ = b⊥; x := e

Proof.

Similar to the proof of 2.3.67 but using law 2.3.12 instead of 2.3.13. �

Law 2.3.69 Provided that P is H3 and H4 we have that:

P+x; (x = e)⊥ = (x = e)⊥; P+x
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Proof.

P+x; (x = e)⊥

= {P is a design, definition 2.3.46 and theorem 2.3.53}

(P1 ` P2 ∧ x′ = x); (x = e ` II)

= {Theorem 2.3.19 and assumption (P is H3)}

(P1 ∧ ¬(P2 ∧ x′ = x;¬(x = e)) ` P2 ∧ x′ = x; II)

= {Definition 2.2.3 and predicate calculus}

(P1 ∧ ¬(P2 ∧ ¬(x = e); true) ` P2)

= {¬(x = e) does not mention dashed variables, predicate calculus}

(P1 ∧ ¬(¬(x = e) ∧ (P2; true)) ` P2 ∧ x′ = x)

= {Propositional calculus}

((P1 ∧ x = e) ∨ (P1 ∧ ¬(P2; true)) ` P2 ∧ x′ = x)

= {Propositional calculus}

((P1 ∧ x = e) ∨ ¬(P1 ⇒ (P2; true)) ` P2 ∧ x′ = x)

= {H4(P1 ` P2) ≡ [P1 ` (P2; true)], propositional calculus}

((P1 ∧ x = e) ` P2 ∧ x′ = x)

= {Propositional calculus, law 2.3.10}

((x = e ∧ ¬(II;¬P1) ` II; (P2 ∧ x′ = x))

= {Theorem 2.3.19 and propositional calculus}

(x = e ` II); (P1 ` P2 ∧ x′ = x)

= {P is a design, definition 2.3.46 and theorem 2.3.53}

(x = e)⊥; P+x �

Law 2.3.70 x := y; (y = e)⊥ = x := y; (x = e)⊥

Proof.

x := y; (y = e)⊥

= {Theorem 2.3.53 and law 2.3.25}

(x := y; IID)� (y = e)[y/x]� (x := y;⊥D)

= {Propositional calculus}

(x := y; IID)� (x = e)[y/x]� (x := y;⊥D)

= {Inverse steps}

x := y; (x = e)⊥ �

Law 2.3.71 P� b� Q = (b>; P)� b� ((¬b)>; Q)
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Proof.

(b>; P)� b� ((¬b)>; Q)

= {Definition 2.3.50, laws 2.3.24, 2.3.10 and 2.3.34}

(P� b� >D)� b� (Q� ¬b� >D)

= {Law 2.3.27 (twice)}

P� b� Q �

Law 2.3.72 b>; (P� b� Q) = b>; P

Proof.

b>; (P� b� Q)

= {Definition 2.3.50, laws 2.3.24, 2.3.10 and 2.3.34}

(P� b� Q)� b� >D

= {Laws 2.3.27, 2.3.34 and 2.3.24}

(IID � b� >D); P

= {Definition 2.3.50}

b>; P �

Law 2.3.73 (¬b)⊥; (P� b ∨ c� Q) = (¬b)⊥; (P� c� Q)

Proof.

(¬b)⊥; (P� b ∨ c� Q)

= {Definition 2.3.51 and laws 2.3.24, 2.3.10, 2.3.4}

(P� b ∨ c� Q)� ¬b� ⊥D

= {Law 2.3.28}

P� (b ∨ c) ∧ ¬b� (Q� ¬b� ⊥D)

= {Propositional calculus}

P� c ∧ ¬b� (Q� ¬b� ⊥D)

= {Law 2.3.28}

(P� c� Q)� ¬b� ⊥D

= {Laws 2.3.24, 2.3.10 and 2.3.4, then theorem 2.3.53}

(¬b)⊥; (P� c� Q) �

Law 2.3.74 b>; (P� b ∨ c� Q) = b>; P

Proof. Similar to the proof of law 2.3.73. �
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Law 2.3.75 (¬b)>; (P� b� Q) = (¬b)>; Q

Proof. Direct from laws 2.3.23 and 2.3.72. �

Law 2.3.76 b⊥; (P� c� Q) = (b⊥; P)� c� (b⊥; Q)

Proof.

b⊥; (P� c� Q)

= {Definition 2.3.51}

(IID � b� ⊥D); (P� c� Q)

= {Laws 2.3.24, 2.3.10, 2.3.4}

(P� c� Q)� b� ⊥D

= {Law 2.3.30}

(P� b� ⊥D)� c� (Q� b� ⊥D)

= {Laws 2.3.10, 2.3.4}

(IID; P� b� (⊥D; P))� c� (IID; Q� b� (⊥D; P))

= {Law 2.3.24 and definition 2.3.51}

(b⊥; P)� c� (b⊥; Q) �

Law 2.3.77 b>; (P� c� Q) = (b>; P)� c� (b>; Q)

Proof.

Similar to the proof of 2.3.76, but using that >D is also a left zero for sequential composition

(law 2.3.34). �

Law 2.3.78 Provided that (b ∧ c = f alse) we have that:

b>; (P� c� Q) = b>; Q

Proof.

b>; (P� c� Q)

= {Definition 2.3.50}

(IID � b� >D); (P� c� Q)

= {Laws 2.3.24, 2.3.10, 2.3.34}

(P� c� Q)� b� >D

= {Law 2.3.28}

P� b ∧ c� (Q� b� >D)

= {Proviso (b ∧ c = f alse) and law 2.3.21}

Q� b� >D
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= {Laws 2.3.10, 2.3.34 and 2.3.24}

(IID � b� >D); Q

= {Definition 2.3.50}

b>; Q �

Law 2.3.79 var x; (x = e)> = var x; x := e

Proof.

var x; (x = e)>

= {Definitions 2.3.35, 2.3.50, theorem 2.3.19 and propositional calculus}

(true ` var x; (x = e)>)

= {Definitions 2.2.18, 2.3.50, 2.2.13 and 2.2.1}

(true ` ∃x • (x = e ∧ II) ∨ ((¬x = e) ∧ false))

= {Propositional calculus, definition 2.2.7}

(true ` ∃x • x = e ∧ x′ = x)

= {One-point rule}

(true ` x′ = e)

= {Spurious quantifier}

(true ` ∃x • x′ = e)

= {Definitions 2.2.18 and 2.2.6}

(true ` var x; x := e)

= {Definitions 2.3.35, 2.3.50, theorem 2.3.19 and propositional calculus}

var x; x := e �

Law 2.3.85 b>; b ∗ P = b>; P; (b ∗ P)

Proof.

b>; b ∗ P

= {Definition 2.3.82, law 2.3.80}

b>; (P; b ∗ P)� b� IID

= {Law 2.3.72}

b>; P; (b ∗ P) �

Law 2.3.99 Provided that x is free in P and Q does not mention x we have that:

var x; (P ‖ Q) = (var x; P) ‖ Q
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Proof.

var x; (P ‖ Q)

= {Definitions 2.3.35 and 2.3.89}

(true ` var x); (P1 ∧ Q1 ` P2 ∧ Q2)

= {Theorem 2.3.19, definition 2.2.18}

(¬(∃x • ¬(P1 ∧ Q1)) ` ∃x • (P2 ∧ Q2))

= {Assumption (Q does not mention x), propositional calculus}

(¬((¬Q1) ∨ (∃x • ¬P1)) ` (∃x • P2) ∧ Q2)

= {Propositional calculus}

(¬(∃x • ¬P1) ∧ Q1 ` (∃x • P2) ∧ Q2)

= {Definitions 2.3.89 and 2.2.18, propositional calculus}

(true ∧ ¬(var x;¬P1) ` (var x; P2)) ‖ Q

= {Theorem 2.3.19 and definitions 2.3.35}

(var x; P) ‖ Q �

Law 2.3.100 Provided that x is free in P, Q does not mention x and P and Q are H3, we have

that:

(P ‖ Q); end x = (P; end x) ‖ Q

Proof.

(P ‖ Q); end x

= {Definitions 2.3.89 and 2.3.36}

(P1 ∧ Q1 ` P2 ∧ Q2); (true ` end x)

= {Theorem 2.3.19 and definition 2.2.19}

(¬(¬(P1 ∧ Q1); true) ∧ ¬(P2 ∧ Q2;¬true) ` ∃x′ • P2 ∧ Q2)

= {Propositional calculus, assumption and quantifier contract scope}

(¬(¬(P1 ∧ Q1); true) ` (∃x′ • P2) ∧ Q2)

= {Assumption P and Q are H3→ P ‖ Q is also H3}

(P1 ∧ Q1 ` (∃x′ • P2) ∧ Q2)

= {Assumption P is H3}

(¬(¬P1; true) ∧ Q1 ` (∃x′ • P2) ∧ Q2)

= {Propositional calculus, definitions 2.3.89 and 2.3.36}

(¬(¬P1; true) ∧ ¬(P2;¬true) ` ∃x′ • P2) ‖ Q

= {Theorem 2.3.19 and definition 2.2.19}
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(P; end x) ‖ Q �

Law 2.3.102 Provided that x and y are different variables we have that:

U0(x, y) = U0(y, x)

Proof.

U0(x, y)

= {Definition 2.3.101}

var 0.x, 0.y := x, y; end x, y

= {Laws 2.3.44, 2.3.45 and 2.3.16}

var 0.y, 0.x := y, x; end y, x

= {Definition 2.3.101}

U0(y, x) �

Law 2.3.103 Provided that x and y are different variables we have that:

U0(x, y) = U0(x); U0(y)

Proof.

U0(x, y)

= {Definition 2.3.101}

var 0.x, 0.y := x, y; end x, y

= {Laws 2.3.42, 2.3.43}

var 0.x; var 0.y; (0.x, 0.y := x, y); end x; end y

= {Law 2.3.11}

var 0.x; var 0.y; (0.x := x)+0.y; (0.y := y)+0.x; end x; end y

= {Laws 2.3.48 and 2.3.47}

var 0.x; (0.x := x); end x; var 0.y; (0.y := y); end y

= {Definition 2.3.101}

U0(x); U0(y) �

Theorem 2.3.122 Selection function – M equivalence

M(m, 0.m, 1.m,m′) v m := SELECT (0.m, 1.m,m)
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Proof.

M(m, 0.m, 1.m,m′)

= {Definition 2.3.114, laws 2.2.11 and 2.3.22}

m′ = ((m� m = 1.m� 1.m)� m = 0.m� 0.m)

= {Definitions 2.3.121 and 2.2.6}

m :=
snc SELECT (0.m, 1.m,m) �

Law 2.3.106 P ‖M Q = Q ‖M P

Law 2.3.107 P ‖ (Q ‖M R) = (P ‖M Q) ‖M R

Law 2.3.108 (IIA ‖M P) = P+A

Law 2.3.109 true ‖M P = true
Law 2.3.110 (P� b� Q) ‖M R = ((P ‖ R)� b� (Q ‖ R))

Law 2.3.111 For any descending chain S = {S n | n ∈ N} we have that:

(
⊔

S ) ‖M R =
⊔

n

(S n ‖M R)

Law 2.3.112 Provided that x := e does not mention m we have that:

(x := e; P) ‖M Q = (x := e); (P ‖M Q)

Proof.

The proofs of laws 2.3.106 to 2.3.112 follow from the merge operator satisfying laws 2.3.115

to 2.3.116 and [Hoare and He 1998, theorem 7.2.10] �

Law 2.3.115 (0.m, 1.m := 1.m, 0.m); M = M

We begin by showing M can be re-written in a more convenient fashion:

Lemma A.0.1. Merge function (equivalent formulation)

M(m, 0.m, 1.m,m′) =df (m = 0.m ∧ m = 1.m ∧ m′ = m) ∨

(m = 0.m ∧ m , 1.m ∧ m′ = 1.m) ∨

(m , 0.m ∧ m = 1.m ∧ m′ = 0.m)∨

(m , 0.m ∧ m , 1.m ∧ m′ = (1.m u 0.m))

Proof.

Straightforward from definitions 2.3.114, 2.2.1 and 2.2.6. �

Based on this result, the proof of law 2.3.115 goes as follows:

Proof.

(0.m, 1.m := 1.m, 0.m); M(m, 0.m, 1.m,m′)
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= {Law 2.3.11 and lemma A.0.1}

(m = 1.m ∧ m = 0.m ∧ m′ = m) ∨ (m = 1.m ∧ m , 0.m ∧ m′ = 0.m) ∨

(m , 1.m ∧ m = 0.m ∧ m′ = 1.m) ∨ (m , 1.m ∧ m , 0.m ∧ m′ = (0.m u 1.m))

= {Propositional calculus (∧-comm, ∨-comm) and u-comm}

(m = 0.m ∧ m = 1.m ∧ m′ = m) ∨ (m = 0.m ∧ m , 1.m ∧ m′ = 1.m) ∨

(m , 0.m ∧ m = 1.m ∧ m′ = 0.m) ∨ (m , 0.m ∧ m , 1.m ∧ m′ = (1.m u 0.m))

= {Lemma A.0.1}

M(m, 0.m, 1.m,m′) �

Law 2.3.116 (0.m, 1.m := m,m); M = II

Proof.

Straightforward from definition 2.3.114, law 2.3.11 and predicate calculus. �

Law 2.3.117 (0.m, 1.m, 2.m := 1.m, 2.m, 0.m); M3 = M3

Proof.

We begin by reducing M3 to a more amenable form:

M3

= {Definition of M3, lemma A.0.1}
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∃x •



(m = 0.m ∧ m = 1.m ∧ x = m ∧ m = x ∧ m = 2.m ∧ m′ = m) ∨

(m = 0.m ∧ m = 1.m ∧ x = m ∧ m = x ∧ m , 2.m ∧ m′ = 2.m) ∨

(m = 0.m ∧ m = 1.m ∧ x = m ∧ m , x ∧ m = 2.m ∧ m′ = x) ∨

(m = 0.m ∧ m = 1.m ∧ x = m ∧ m , x ∧ m , 2.m ∧ m′ = (2.m u x)) ∨

(m = 0.m ∧ m , 1.m ∧ x = 1.m ∧ m = x ∧ m = 2.m ∧ m′ = m) ∨

(m = 0.m ∧ m , 1.m ∧ x = 1.m ∧ m = x ∧ m , 2.m ∧ m′ = 2.m) ∨

(m = 0.m ∧ m , 1.m ∧ x = 1.m ∧ m , x ∧ m = 2.m ∧ m′ = x) ∨

(m = 0.m ∧ m , 1.m ∧ x = 1.m ∧ m , x ∧ m , 2.m ∧ m′ = (2.m u x)) ∨

(m , 0.m ∧ m = 1.m ∧ x = 0.m ∧ m = x ∧ m = 2.m ∧ m′ = m) ∨

(m , 0.m ∧ m = 1.m ∧ x = 0.m ∧ m = x ∧ m , 2.m ∧ m′ = 2.m) ∨

(m , 0.m ∧ m = 1.m ∧ x = 0.m ∧ m , x ∧ m = 2.m ∧ m′ = x) ∨

(m , 0.m ∧ m = 1.m ∧ x = 0.m ∧ m , x ∧ m , 2.m ∧ m′ = (2.m u x)) ∨

(m , 0.m ∧ m , 1.m ∧ x = (1.m u 0.m) ∧ m = x ∧ m = 2.m ∧ m′ = m) ∨

(m , 0.m ∧ m , 1.m ∧ x = (1.m u 0.m) ∧ m = x ∧ m , 2.m ∧ m′ = 2.m) ∨

(m , 0.m ∧ m , 1.m ∧ x = (1.m u 0.m) ∧ m , x ∧ m = 2.m ∧ m′ = x) ∨

(m , 0.m ∧ m , 1.m ∧ x = (1.m u 0.m) ∧ m , x ∧ m , 2.m ∧ m′ = (2.m u x))


= {∃-assoc, one-point rule, propositional calculus and equality substitution}

(m = 0.m ∧ m = 1.m ∧ m = 2.m ∧ m′ = m) ∨

(m = 0.m ∧ m = 1.m ∧ m , 2.m ∧ m′ = 2.m) ∨

(m = 0.m ∧ m , 1.m ∧ m = 2.m ∧ m′ = 1.m) ∨

(m = 0.m ∧ m , 1.m ∧ m , 2.m ∧ m′ = (1.m u 2.m)) ∨

(m , 0.m ∧ m = 1.m ∧ m = 2.m ∧ m′ = 0.m) ∨

(m , 0.m ∧ m = 1.m ∧ m , 2.m ∧ m′ = (0.m u 2.m)) ∨

(m , 0.m ∧ m , 1.m ∧ m = 2.m ∧ m′ = (0.m u 1.m)) ∨

(m , 0.m ∧ m , 1.m ∧ m , 2.m ∧ m′ = (0.m u 1.m u 2.m))

The proof the associative property follows:

(0.m, 1.m, 2.m := 1.m, 2.m, 0.m); M3(m, 0.m, 1.m, 2.m,m′)

= {Law 2.3.11 and M3 expansion above}

(m = 1.m ∧ m = 2.m ∧ m = 0.m ∧ m′ = m) ∨

(m = 1.m ∧ m = 2.m ∧ m , 0.m ∧ m′ = 0.m) ∨

(m = 1.m ∧ m , 2.m ∧ m = 0.m ∧ m′ = 2.m) ∨

(m = 1.m ∧ m , 2.m ∧ m , 0.m ∧ m′ = (2.m u 0.m)) ∨

(m , 1.m ∧ m = 2.m ∧ m = 0.m ∧ m′ = 1.m) ∨
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(m , 1.m ∧ m = 2.m ∧ m , 0.m ∧ m′ = (1.m u 0.m)) ∨

(m , 1.m ∧ m , 2.m ∧ m = 0.m ∧ m′ = (1.m u 2.m)) ∨

(m , 1.m ∧ m , 2.m ∧ m , 0.m ∧ m′ = (1.m u 2.m u 0.m))

= {Propositional calculus (∧-comm, ∨-comm) and u-comm}

(m = 0.m ∧ m = 1.m ∧ m = 2.m ∧ m′ = m) ∨

(m = 0.m ∧ m = 1.m ∧ m , 2.m ∧ m′ = 2.m) ∨

(m = 0.m ∧ m , 1.m ∧ m = 2.m ∧ m′ = 1.m) ∨

(m = 0.m ∧ m , 1.m ∧ m , 2.m ∧ m′ = (1.m u 2.m)) ∨

(m , 0.m ∧ m = 1.m ∧ m = 2.m ∧ m′ = 0.m) ∨

(m , 0.m ∧ m = 1.m ∧ m , 2.m ∧ m′ = (0.m u 2.m)) ∨

(m , 0.m ∧ m , 1.m ∧ m = 2.m ∧ m′ = (0.m u 1.m)) ∨

(m , 0.m ∧ m , 1.m ∧ m , 2.m ∧ m′ = (0.m u 1.m u 2.m))

= {M3 expansion}

M3(m, 0.m, 1.m, 2.m,m′) �

Theorem 2.3.120 M preserves H1 to H4.

Proof.

The above claim can be interpreted as: provided that P = (P1 ` P2) is H1 to H4 then

P+m; M+0.m,1.m is also H1 to H4. From this observation we have that:

P+m; M+0.m,1.m

= {Assumption P = (P1 ` P2), definition 2.3.46}

(P1 ` P2 ∧ m′ = m); M ∧ 0.m′, 1.m′ = 0.m, 1.m

= {Definition 2.3.1, propositional calculus, disjunctivity of sequential composition}

(¬ok; M ∧ 0.m′, 1.m′ = 0.m, 1.m) ∨

((¬P1 ∧ m′ = m); M ∧ 0.m′, 1.m′ = 0.m, 1.m) ∨

((ok′ ∧ P2 ∧ m′ = m); M ∧ 0.m′, 1.m′ = 0.m, 1.m)

= {Definition 2.2.3}

(∃ok0, 0.m0, 1.m0,m0 • ¬ok ∧ M[m0/m] ∧ 0.m′, 1.m′ = 0.m0, 1.m0) ∨

(∃ok0, 0.m0, 1.m0,m0 • ¬P1[0.m0, 1.m0/0.m′, 1.m′] ∧ m0 = m ∧

M[m0/m] ∧ 0.m′, 1.m′ = 0.m0, 1.m0) ∨

(∃ok0, 0.m0, 1.m0,m0 • (ok0 ∧ P2[m0, 0.m0, 1.m0/m′, 0.m′, 1.m′] ∧ m0 = m ∧

M[m0/m] ∧ 0.m′, 1.m′ = 0.m0, 1.m0))

= {One-point rule, P is H3}
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¬ok ∨ ¬P1 ∨ (∃ok0 • (ok0 ∧ P2 ∧ M(m, 0.m′, 1.m′,m′)))

= {ok0 = ok′}

¬ok ∨ ¬P1 ∨ (ok′ ∧ P2 ∧ M(m, 0.m′, 1.m′,m′))

= {Propositional calculus}

(ok ∧ P1 ⇒ (ok′ ∧ P2 ∧ M(m, 0.m′, 1.m′,m′)))

From this point, it is easy to see that the resulting expression is H1 and H2. Also, as P is H3,

then P1 does not mention dashed variables. Then, the resulting expression is also H3. The result

is also H4 because the resulting expression is only adding a restriction on m′. The result of M is

to select either 0.m or 1.m. As P2 is H4, we know a witness for m′ exists. �
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Appendix B

Proofs from Chapter 3

Theorem 3.3.6 Sequential composition of S-healthy designs

S(P1 ` P2); S(Q1 ` Q2) = S(¬(S(¬P1); S(true)) ∧ ¬(S(P2); S(¬Q1)) ` S(P2); S(Q2))

Proof.

S(P1 ` P2); S(Q1 ` Q2)

= {Definition 2.3.1 and propositional calculus}

S(¬ok) ∨ S(¬P1) ∨ S(ok′ ∧ P2); S(Q1 ` Q2)

= {Disjuntivity of sequential composition}

S(¬ok); S(Q1 ` Q2) ∨ S(¬P1); S(Q1 ` Q2) ∨ S(ok′ ∧ P2); S(Q1 ` Q2)

= {Definition 2.2.3}

∃ok0, v0 • S(¬ok)[ok0, v0/ok′, v′]; S(Q1 ` Q2)[ok0, v0/ok, v] ∨

∃ok0, v0 • S(¬P1)[ok0, v0/ok′, v′]; S(Q1 ` Q2)[ok0, v0/ok, v] ∨

∃ok0, v0 • S(ok′ ∧ P2)[ok0, v0/ok′, v′]; S(Q1 ` Q2)[ok0, v0/ok, v]

= {S does not mention ok and ok′, quantifier contract scope, predicate calculus}

∃v0 • S(¬ok)[v0/v′] ∧ S(∃ok0 • Q1 ` Q2)[v0/v] ∨

∃v0 • S(¬P1)[v0/v′] ∧ S(∃ok0 • Q1 ` Q2)[v0/v] ∨

∃v0 • S(P2)[v0/v′] ∧ S(Q1 ` Q2)[true, v0/ok, v]

= {For any design P we have (∃ok • P) = true, definition 2.3.1 and propositional calculus}

¬ok ∧ ∃v0 • S(true)[v0/v′] ∧ S(true)[v0/v] ∨

∃v0 • S(¬P1)[v0/v′] ∧ S(true)[v0/v] ∨

∃v0 • S(P2)[v0/v′]; S(¬ok)[true, v0/ok, v] ∨ S(¬Q1)[v0/v] ∨ S(ok′ ∧ Q2)[v0/v]

= {Theorem 3.2.10, propositional calculus, disjunctivity of sequential composition}

S(¬ok) ∨ (S(¬P1); S(true)) ∨

∃v0 • (S(P2)[v0/v′]; S(¬Q1)[v0/v]) ∨ (S(P2)[v0/v′]; S(ok′ ∧ Q2)[v0/v])

211
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= {∃-associtivity, definition 2.2.3}

S(¬ok) ∨ (S(¬P1); S(true)) ∨ (S(P2); S(¬Q1)) ∨ S(ok′ ∧ (S(P2); S(Q2)))

= {Theorem 3.2.13, propositional calculus}

S(ok ∧ ¬(S(¬P1); S(true)) ∧ ¬(S(P2); S(¬Q1))⇒ ok′ ∧ (S(P2); S(Q2)))

= {Definition 2.3.1}

S(¬(S(¬P1); S(true)) ∧ ¬(S(P2); S(¬Q1)) ` S(P2); S(Q2)) �

Theorem 3.2.8

II ⇒ S(true)

Proof.

Trivial from definition 2.2.7 and the fact that x.out′ = x.out ⇒ x.out ≤ x.out′. �

Theorem 3.2.9 S(II) = II

Proof.

S(II)

= {Definition 3.2.2}

II ∧ S

= {Definitions 3.2.2, 2.2.7 and 3.2.1; propositional calculus}

c′, x′, x.in′, x.out′, v′ = c, x, x.in, x.out ∧ x.in′ = x.in ∧ x.out ≤ x.out′ ∧ c ≤ c′

= {Propositional calculus}

c′, x′, x.in′, x.out′, v′ = c, x, x.in, x.out

= {Definition 2.2.7}

II �

Theorem 3.2.10 S is transitive S(true); S(true) = S(true)

Proof.

Straightforward from definitions 3.2.2, 3.2.1 and 2.2.3, and transitivity of sequence prefix. �

Theorem 3.2.11 S is monotonic

(P v Q)⇒ (S(P) v S(Q))

provided P and Q are designs in the sense of the previous chapter.

Proof.

S(P) v S(Q)
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≡ {Definition 3.2.2}

P ∧ S v Q ∧ S

≡ {Definition of refinement}

[Q ∧ S⇒ P ∧ S]

≡ {Predicate calculus}

[Q ∧ S⇒ P]

⇐ {Predicate calculus}

[Q⇒ P]

≡ {Definition of refinement}

P v Q �

Theorem 3.2.12 S distributes over conjunction

S(P ∧ Q) = S(P) ∧ S(Q)

Proof.

S(P ∧ Q)

= {Definition 3.2.2}

(P ∧ Q) ∧ S

= {Propositional calculus}

(P ∧ S) ∧ (Q ∧ S)

= {Definition 3.2.2}

S(P) ∧ S(Q) �

Theorem 3.2.13 S distributes over disjunction

S(P ∨ Q) = S(P) ∨ S(Q)

Proof.

S(P) ∨ S(Q)

= {Definition 3.2.2}

(P ∧ S) ∨ (Q ∧ S)

= {Propositional calculus}

(P ∨ Q) ∧ S

= {Definition 3.2.2}

S(P ∨ Q) �
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Theorem 3.2.14 S extends over conjunction

P ∧ S(Q) = S(P ∧ Q)

Proof.

P ∧ S(Q)

= {Definition 3.2.2}

P ∧ Q ∧ S

= {∧-associative, definition 3.2.2}

S(P ∧ Q) �

Theorem 3.2.16 Synchronous assumption and precondition

A S healthy design S(P1 ` P2) is SH3 iff its precondition does not mention dashed variables other

than the observations c, x.out and x.in.

Proof.

S(P1 ` P2) = S(P1 ` P2); II

= {Theorem 3.3.6, predicate and propositional calculus}

S(P1 ` P2) = S(¬(S(¬P1); S(true)) ` S(P2))

= {Propositional calculus}

S(P1 ` P2) = S(¬(S(¬P1); S(true)) ` S(P2))

= {Definition 2.3.1 and propositional calculus}

S(¬S(¬P1) ` S(P2)) = S(¬(S(¬P1); S(true)) ` S(P2))

= {Design equality, propositional calculus}

S(¬P1) = S(¬P1); S(true)

= {Predicate calculus}

S(P1) = S(P1); S(true) �

Theorem 3.2.17 SH3 ◦ S sequential composition closedness

P; Q = SH3(P; Q)

provided P and Q are SH3-healthy.

Proof.

P; Q

= {Assumption (Q is SH3 ◦ S)}

P; (Q; II)
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= {Law 2.2.4}

(P; Q); II

= {Definition 3.2.15}

SH3(P; Q) �

Theorem 3.2.18 SH3 ◦ S conditional closedness

P� b� Q = SH3(P� b� Q)

provided P and Q are SH3-healthy.

Proof.

P� b� Q

= {Assumption (P and Q are SH3 ◦ S)}

(P; II)� b� (Q; II)

= {Law 3.3.33}

(P� b� Q); II

= {Definition 3.2.15}

SH3(P� b� Q) �

Law 3.3.4 > w S(P)

Proof.

true

≡ {Law 2.2.15}

false w P

⇒ {Theorem 3.2.11}

S(false) w S(P)

≡ {Definition 3.3.1}

> w S(P) �

Law 3.3.5 ⊥ v S(P)

Proof.

true

≡ {Law 2.2.14}

true v P

⇒ {Theorem 3.2.11}
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S(true) v S(P)

≡ {Definition 3.3.2}

⊥ v S(P) �

Law 3.3.7 >; S(P) = >

Proof.

>; S(P)

= {Definitions 3.3.1 and 3.2.2, theorem 2.3.5 and propositional calculus}

¬ok ∧ S; P ∧ S

= {Definition 2.2.3, S does not mention ok or ok′}

∃ok0, v0 • ¬ok ∧ S[v0/v′] ∧ P[ok0, v0/ok, v] ∧ S[v0/v]

= {Propositional calculus}

¬ok ∧ ∃v0 • S[v0/v′] ∧ S[v0/v] ∧ (∃ok0 • P[ok0, v0/ok, v])

= {For any design P we have (∃ok • P) = true, definition 2.3.1 and propositional calculus}

¬ok ∧ ∃v0 • S[v0/v′] ∧ S[v0/v]

= {Definition 2.2.3 and theorem 3.2.10}

¬ok ∧ S

= {Theorem 2.3.5 then definitions 3.3.1 and 3.2.2}

> �

Law 3.3.8 ⊥; S(P) = ⊥

We begin by proving the following lemma:

Lemma B.0.2. For a design P we have:

¬ok ∧ P = ¬ok

Proof.

¬ok ∧ P

= {P is a design}

¬ok ∧ (ok ⇒ P)

= {Propositional calculus}

¬ok ∧ (false⇒ P)

= {Propositional calculus}

¬ok �
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We can now prove law 3.3.8:

Proof.

⊥; S(P)

= {Definitions 3.3.2 and 3.2.2}

true ∧ S; P ∧ S

= {Propositional calculus}

S; P ∧ S

= {Relational calculus, ok, ok′ not free in S}

S; (∃ok • P) ∧ S

= {Lemma B.0.2}

S; true ∧ S

= {Propositional calculus}

S; S

= {Theorem 3.2.10 and propositional calculus}

S(true)

= {Definition 3.3.2}

⊥ �

Law 3.3.9 II; S(P1 ` P2) = S(P1 ` P2)

Proof.

II; S(P1 ` P2)

= {Definition 3.2.7, theorem 3.3.6, propositional calculus}

S(¬(S(II); S(¬P1)) ` S(II); S(P2)

= {Theorem 3.2.9, law 2.2.8}

S(¬S(¬P1) ` S(P2))

= {Definition 2.3.1 and propositional calculus}

S(¬ok ∨ S(¬P1) ∨ (ok′ ∧ S(P2))

= {Theorems 3.2.14 and 3.2.13, S-idempotent}

S(¬ok ∨ ¬P1 ∨ (ok′ ∧ P2))

= {Propositional calculus, definition 2.3.1}

S(P1 ` P2) �

Law 3.3.10 Provided P is SH3 we have that

S(P); II = S(P)
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Proof.

Straightforward from algebraic characterisation of SH3. �

Law 3.3.11 (
⊔

S ); P =
⊔

i(S i; P)

Proof.

Straightforward from the fact that S is monotonic and it is conjunctive (hence it distributes

over generalised disjunction). The distributivity of P is ensured by law 2.3.135. �

Law 3.3.12 Provided P is a finite normal form, we have:

P; (
⊔

S ) =
⊔

i

(P; S i)

Proof.

Straightforward from a similar argument to the one used in the proof of law 3.3.11. The

distributivity of P is ensured by law 2.3.136. �

Theorem 3.3.14 Provided x < {c, x.in, x.out} we have:

S(x := e) = x := e

Proof.

Similar to the proof of theorem 3.2.9. �

Theorem 3.3.15 The assignment construct is SH3

Proof.

x :=
snc e; II

= {Definitions 3.3.13 and 3.2.7}

S(true ` x := e); S(true ` II)

= {Theorem 3.3.6 and propositional calculus}

S(true ` S(x := e); S(II))

= {Theorems 3.2.9 and 3.3.14, law 2.2.8}

S(true ` x := e)

= {Definition 3.3.13}

x :=
snc e �

Law 3.3.16
(
x :=
snc e; y :=

snc f (x)
)

= y :=
snc f (e)

Proof.

x :=
snc e; y :=

snc f (x)

= {Definition 3.3.13}
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S(true ` x := e); S(true ` y := f (x))

= {Theorem 3.3.6 and propositional calculus}

S(true ` S(x := e); S(y := f (x)))

= {Theorem 3.3.14 and law 2.3.11}

S(true ` y := f (e))

= {Definition 3.3.13}

y :=
snc f (e) �

Law 3.3.17 If x , y and e2 does not mention x we have:

(x :=
snc e1; y :=

snc e2) = (x, y :=
snc e1, e2)

Proof.

(x :=
snc e1; y :=

snc e2)

= {Definition 3.3.13}

S(true ` x := e1); S(true ` y := e2)

= {Propositional and predicate calculus, theorem 3.3.14}

S(true ` x := e1; y := e2)

= {Law 2.3.17 and definition 3.3.13}

x, y :=
snc e1, e2 �

Law 3.3.18 (x, y :=
snc e1, e2) = (y, x :=

snc e2, e1)

Proof.

Similar to the proof of law 3.3.16. �

Law 3.3.19 If e1 does not depend on y and e2 does not depend on x then:

(x :=
snc e1; y :=

snc e2) = (y :=
snc e2; x :=

snc e1)

Proof.

Similar to the proof of law 3.3.16. �

Theorem 3.3.20 Selection of S designs

S(P)� b� S(Q) = S(P� b� Q)

Proof.

S(P)� b� S(Q)

= {Definition 2.2.1}
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(b ∧ S(P)) ∨ (¬b ∧ S(Q))

= {Theorem 3.2.14}

S(b ∧ P) ∨ S(¬b ∧ Q)

= {Theorem 3.2.4}

S((b ∧ P) ∨ (¬b ∧ Q))

= {Definition 2.2.1}

S(P� b� Q) �

Theorem 3.3.21 Design characterisation of S selection

S(P1 ` P2)� b� S(Q1 ` Q2) = S(P1 � b� Q1 ` P2 � b� Q2)

Proof.

S(P1 ` P2)� b� S(Q1 ` Q2)

= {Theorem 3.3.20}

S((P1 ` P2)� b� (Q1 ` Q2))

= {Theorem 2.3.18}

S(P1 � b� Q1 ` P2 � b� Q2) �

Law 3.3.22 P� b� Q = Q� ¬b� P

Proof.

S(P)� b� S(Q)

= {Theorem 3.3.20}

S(P� b� Q)

= {Law 2.3.23}

S(Q� ¬b� P)

= {Theorem 3.3.20}

S(Q)� ¬b� S(P) �

Law 3.3.23 P� b� P = P

Law 3.3.24 P� true� Q = P

Law 3.3.25 P� false� Q = Q

Law 3.3.26 (P� b� Q)� b� R = P� b� R = P� b� (Q� b� R)

Law 3.3.27 (P� b� Q)� c� R = (P� b ∧ c� (Q� c� R))
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Law 3.3.28 x :=
snc e1 � b� x :=

snc e2 = x :=
snc (e1 � b� e2)

Law 3.3.29 (P� c� Q)� b� R = (P� b� R)� c� (Q� b� R)

Law 3.3.30 P� b� (P� c� Q) = P� (b ∨ c)� Q

Law 3.3.31 ¬(s ∧ b) ∧ (P� (s ∧ ¬b)� Q) = ¬(s ∧ b) ∧ (P� s� Q)

Proof.

The proofs of laws 3.3.23 to 3.3.31 follow the same approach used to prove law 3.3.22 (i.e.,

we extract S by means of theorem 3.3.20 and then apply the equivalent design-equivalent law to

complete the proof). �

Law 3.3.32 x :=
snc e; (P� b(x)� Q) = (x :=

snc e; P)� b(e)� (x :=
snc e; Q)

Proof.

x :=
snc e; (P� b(x)� Q)

= {Theorem 3.3.21 and definition 2.3.9}

S(true ` x := e); S(P1 � b(x)� Q1 ` P2 � b(x)� Q2)

= {Theorem 3.3.6 and propositional calculus}

S(¬(S(x := e); S(¬(P1 � b(x)� Q1))) ` S(x := e); S(P2 � b(x)� Q2))

= {Propositional calculus, theorems 3.2.4 and 3.3.14}

S(¬(x := e; (S(¬P1)� b(x)� S(¬Q1))) ` x := e; (S(P2)� b� S(Q2)))

= {Law 2.3.25}

S(¬((x := e; S(¬P1))� b(e)� (x := e; S(Q1))) ` (x := e; S(P2))� b(e)� (x := e; S(Q2)))

= {Propositional calculus}

S(¬(x := e; S(¬P1))� b(e)� ¬(x := e; S(¬Q1)) ` (x := e; S(P2))� b(e)� (x := e; S(Q2)))

= {Theorems 3.3.14 and 3.3.21}

S(¬(S(x := e); S(¬P1)) ` S(x := e); S(P2))� b(e)�

S(¬(S(x := e); S(¬Q1)) ` S(x := e); S(Q2))

= {Definition 2.3.9, theorem 3.3.6 and propositional calculus}

(x :=
snc e; P)� b(e)� (x :=

snc e; Q) �

Law 3.3.33 (P� b� Q); R = (P; R)� b� (Q; R)

Proof.

(P� b� Q); R

= {Definition 2.2.1}
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(b ∧ P) ∨ (¬b ∧ Q); R

= {Disjunctivity of sequential composition}

(b ∧ P; R) ∨ (¬b ∧ Q; R)

= {Definition 2.2.3}

(∃v0 • b[v0/v′] ∧ P[v0/v′] ∧ R[v0/v]) ∨ (∃v0 • ¬b[v0/v′] ∧ Q[v0/v′] ∧ R[v0/v])

= {Condition does not refer to dashed variables, quantifier contract scope}

(b ∧ ∃v0 • P[v0/v′] ∧ R[v0/v]) ∨ (¬b ∧ ∃v0 • Q[v0/v′] ∧ R[v0/v])

= {Definition 2.2.3}

(b ∧ (P; R)) ∨ (¬b ∧ (Q; R))

= {Definition 2.2.1}

(P; R)� b� (Q; R) �

Theorem 3.3.36 Design assumption – synchronous assumption equivalence

b>S = S(b>)

Proof.

S(b>)

= {Theorems 2.3.52 and 3.3.20}

S(IID)� b� S(¬ok)

= {Definitions 3.2.7 and 3.3.1}

II� b� >

= {Definition 3.3.34}

b>S �

Theorem 3.3.37 Design assertion – synchronous assertion equivalence

b>S = S(b>)

Proof.

S(b⊥)

= {Theorems 2.3.53 and 3.3.20}

S(IID)� b� S(true)

= {Definitions 3.2.7 and 3.3.2}

II� b� ⊥

= {Definition 3.3.34}
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b⊥S �

Law 3.3.38 (false)>S = >

Proof.

(false)>S
= {Theorem 3.3.36}

S(false>)

= {Law 2.3.54}

S(¬ok)

= {Definition 3.3.1}

> �

Law 3.3.39 (false)⊥S = ⊥

Proof.

Similar to proof of law 3.3.38. �

Law 3.3.40 b>S w II w b⊥S

Proof.

b>S

= {Definition 3.3.34}

II� b� >

w {Law 3.3.4}

II� b� II

= {Law 3.3.23}

II

w {Laws 3.3.23 and 3.3.5}

II� b� ⊥

= {Definition 3.3.35}

b⊥S �

Law 3.3.41 b>S ; b⊥S = b>S

Proof.

b>S ; b⊥S

= {Definition 3.3.34, laws 3.3.33, 3.3.9 and 3.3.7}
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b⊥S � b� >

= {Definition 3.3.35 and law 3.3.26}

II� b� >

= {Definition 3.3.34}

b>S �

Law 3.3.42 b⊥S ; b>S = b⊥S

Proof.

Similar to the proof of law 3.3.41. �

Law 3.3.43 b>S ; b⊥S w II

Proof. Straightforward from laws 3.3.41 and 3.3.40. �

Law 3.3.44 b⊥S ; b>S v II

Proof. Straightforward from laws 3.3.42 and 3.3.40. �

Law 3.3.45 b>S ; c>S = (b ∧ c)>S

Proof.

b>S ; c>S

= {Definition 3.3.34}

(II� b� >); (II� c� >)

= {Laws 3.3.33, 3.3.9 and 3.3.7}

(II� c� >)� b� >

= {Law 3.3.27}

II� c ∧ b� (>� b� >)

= {Law 3.3.23, definition 3.3.34 and propositional calculus}

(b ∧ c)>S �

Law 3.3.46 b>S ; c>S = c>S ; b>S

Proof.

Direct from law 3.3.45 and commutativity of conjunction. �

Law 3.3.47 b⊥S ; c⊥S = (b ∧ c)⊥S

Proof.

Similar to the proof of law 3.3.45. �

Law 3.3.48 (b ∨ c)>S ; b>S = b>S
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Proof.

(b ∨ c)>S ; b>S

= {Law 3.3.45}

((b ∨ c) ∧ b)>S
= {Propositional calculus}

b>S �

Law 3.3.49 b⊥S ; b⊥S = b⊥S

Proof.

Similar to the proof of law 3.3.48. �

Law 3.3.50 b>S ; b>S = b>S

Proof.

Similar to the proof of law 3.3.48. �

Law 3.3.51 b>S ; II = b>S

Proof.

b>S ; II

= {Definition 3.3.34 and law 3.3.33}

(II; II)� b� (>; II)

= {Laws 3.3.9 and 3.3.7, definition 3.3.34}

b>S �

Law 3.3.52 b⊥S ; II = b⊥S

Proof.

Similar to the proof of law 3.3.51. �

Law 3.3.53 Provided e1 does not mention x or y we have:

(x, y :=
snc e1, e2) = (x, y :=

snc e1, e2); (x = e1)>S

Proof.

(x, y :=
snc e1, e2); (x = e1)>S

= {Definition 3.3.34}

(x, y :=
snc e1, e2); (II� x = e1 � >)

= {Law 3.3.32}
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(x, y :=
snc e1, e2; II)� (x = e1)[e1, e2/x, y]� (x, y :=

snc e1, e2;>)

= {Assumption (e1 does not mention x or y), propositional calculus}

(x, y :=
snc e1, e2; II)� e1 = e1 � (x, y :=

snc e1, e2;>)

= {Propositional calculus, law 3.3.24}

x, y :=
snc e1, e2; II

= {Theorem 3.3.15, law 3.3.10}

x, y :=
snc e1, e2 �

Law 3.3.54 Provided e1 does not mention x or y we have:

(x, y :=
snc e1, e2) = (x, y :=

snc e1, e2); (x = e1)⊥S

Proof.

Similar to the proof of law 3.3.53. �

Law 3.3.55 (x :=
snc y; (y = e)⊥S ) = (x :=

snc y; (x = e)⊥S )

Proof.

x :=
snc y; (y = e)⊥S

= {Theorems 3.3.37 and 2.3.53, definition 3.3.13}

S(true ` x := y); S(y = e ` II)

= {Theorem 3.3.6 and propositional calculus}

S(¬(S(x := y); S(¬y = e)) ` S(x := y); S(II))

= {Theorem 3.3.14, definitions 2.2.3 and 3.2.2, propositional calculus}

S(¬(¬(y = e[y/x]) ∧ S[y/x]) ` S(x := y); S(II))

= {Propositional calculus}

S(¬(¬(x = e[y/x]) ∧ S[y/x]) ` S(x := y); S(II))

= {Inverse steps}

S(¬(S(x := y); S(¬x = e)) ` S(x := y); S(II))

= {Theorem 3.3.6 and propositional calculus}

S(true ` x := y); S(x = e ` II)

= {Theorems 3.3.37 and 2.3.53, definition 3.3.13}

x :=
snc y; (x = e)⊥S �

Law 3.3.56 Provided b does not depend on x we have:

x :=
snc e; b>S = b>S ; x :=

snc e
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Proof.

x :=
snc e; b>S

= {Definition 3.3.34, law 3.3.32}

(x :=
snc e; II)� b(x)� (x :=

snc e;>)

= {Assumption (b does not mention x), law 3.3.10 and predicate calculus}

x :=
snc e� b� >

= {Laws 3.3.9, 3.3.7 and 3.3.33}

(II� b� >); x :=
snc e

= {Definition 3.3.34}

b>S ; x :=
snc e �

Law 3.3.57 P� b� Q = (b>S ; P)� b� ((¬b)>S ; Q)

Proof.

(b>S ; P)� b� ((¬b)>S ; Q)

= {Definition 3.3.34}

((II� b� >); P)� b� ((II� ¬b� >); Q)

= {Laws 3.3.33, 3.3.9 and 3.3.7}

(P� b� >)� b� (Q� ¬b� >)

= {Law 3.3.26}

P� b� Q �

Law 3.3.58 b>S ; (P� b� Q) = b>S ; P

Proof.

b>S ; (P� b� Q)

= {Definition 3.3.34, laws 3.3.33, 3.3.9 and 3.3.7}

(P� b� Q)� b� >

= {Laws 3.3.26, 3.3.9 and 3.3.7}

(II; P)� b� (>; P)

= {Law 3.3.33, definition 3.3.34}

b>S ; P �

Law 3.3.59 (¬b)>S ; (P� b� Q) = (¬b)>S ; Q

Proof.

Similar to the proof of law 3.3.58. �
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Law 3.3.60 Provided (b ∧ c = false) we have:

b>S ; (P� c� Q) = (b>S ; Q)

Proof.

b>S ; (P� c� Q)

= {Definition 3.3.34, laws 3.3.33, 3.3.9 and 3.3.7}

(P� c� Q)� b� >

= {Law 3.3.27}

(P� c ∧ b� Q)� b� >

= {Assumption, law 3.3.25}

Q� b� >

= {Laws 3.3.9, 3.3.7 and 3.3.33, then definition 3.3.34}

b>S ; Q �

Law 3.3.61 Provided P and Q are S-healthy we have:

c>S ; (P� b ∧ c� Q) = c>S ; (P� b� Q)

Proof.

c>S ; (P� b� Q)

= {Definition 3.3.34, laws 3.3.33, 3.3.9 and 3.3.7}

(P� b� Q)� c� >

= {Law 3.3.27}

(P� b ∧ c� Q)� c� >

= {Laws 3.3.9, 3.3.7 and 3.3.33, definition 3.3.34}

c>S ; (P� b ∧ c� Q) �

Law 3.3.62 b>S ; (P� c� Q) = (b>S ; P)� c� (b>S ; Q)

Proof.

b>S ; (P� c� Q)

= {Definition 3.3.34, laws 3.3.33, 3.3.9 and 3.3.7}

(P� c� Q)� b� >

= {Definition 2.2.1, propositional calculus}

((c ∧ b ∧ P) ∨ (¬c ∧ b ∧ Q) ∨ (¬b ∧ >)

= {Propositional calculus}
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((c ∧ b ∧ ((b ∧ P) ∨ (¬b ∧ >))) ∨ (¬c ∧ b ∧ ((b ∧ Q) ∨ (¬b ∧ >))) ∨ (¬b ∧ >)

= {Definition 2.2.1, propositional calculus}

(b ∧ (c ∧ (P� b� >)) ∨ (¬c ∧ (Q� b� >))) ∨ (¬b ∧ >)

= {Definition 2.2.1}

((P� b� >)� c� (Q� b� >))� b� >

= {Laws 3.3.9, 3.3.7 and 3.3.33, then definition 3.3.34}

(b>S ; P)� c� (b>S ; Q) �

Law 3.3.63 b⊥S ; (P� c� Q) = (b⊥S ; P)� c� (b⊥S ; Q)

Proof.

Similar to the proof of law 3.3.62. �

Theorem 3.3.66 Provided P is S-healthy and x is not an observational variable we have:

var x; P = ∃x • P

Proof.

var x; P

= {Definition 3.3.64, theorem 3.3.6 and propositional calculus}

S(¬(S(var x); S(¬P1)) ` S(var x); S(P2))

= {Theorem 3.3.68, definitions 2.2.18 and 2.3.1}

S(¬ok ∨ ∃x • S(¬P1) ∨ (ok′ ∧ ∃x • S(P2)))

= {Assumption: x is not an observational variable, quantifier expand scope, exists-associativity}

∃x • S(¬ok ∨ S(¬P1) ∨ (ok′ ∧ S(P2)))

= {Theorems 3.2.14, 3.2.13 and S itempotent}

∃x • S(¬ok ∨ ¬P1 ∨ (ok′ ∧ P2))

= {Propositional calculus, definition 2.3.1 and assumption (P is S)}

∃x • P �

Theorem 3.3.67 Provided P is SH3 ◦ S-healthy and P1 does not mention x′, and x is not an

observational variable we have:

P; end x = ∃x′ • P

Proof.

P; end x

= {Definition 3.3.65, theorem 3.3.6 and propositional calculus}
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S(¬S(¬P1) ` S(P2); S(end x))

= {Theorem 3.3.69, definitions 2.2.19 and 2.3.1}

S(¬ok ∨ S(¬P1) ∨ (ok′ ∧ ∃x′ • S(P2)))

= {Assumption, propositional calculus}

∃x′ • S(¬ok ∨ S(¬P1) ∨ (ok′ ∧ S(P2)))

= {Theorems 3.2.14, 3.2.13 and S itempotent}

∃x′ • S(¬ok ∨ ¬P1 ∨ (ok′ ∧ P2))

= {Propositional calculus, definition 2.3.1 and assumption (P is S)}

∃x′ • P �

Theorem 3.3.68 S(var x) = var x

Proof.

The variables introduced with the dynamic scope operators cannot be observational variables

(ok, x.out, x.in, c and their dashed variables in our theory), hence the proof is similar to the proof

of theorem 3.2.9. �

Theorem 3.3.69 S(end x) = end x

Proof.

The variables introduced with the dynamic scope operators cannot be observational variables

(ok, x.out, x.in, c and their dashed variables in our theory), hence the proof is similar to the proof

of theorem 3.2.9. �

Law 3.3.70 var x; end x = II

Proof.

var x; end x

= {Definitions 3.3.64 and 3.3.65}

S(var x); S(end x)

= {Definitions 2.3.35 and 2.3.36}

S(true ` var x); S(true ` end x)

= {Theorem 3.3.6 and propositional calculus}

S(true ` S(var x); S(end x))

= {Theorems 3.3.68 and 3.3.69, law 2.3.37}

S(true ` II)

= {Definitions 2.3.8 and 3.2.7}

II �

Law 3.3.71 end x; var x v II
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Proof.

Similar to the proof of law 3.3.70, but using law 2.3.38 instead of 2.3.37. �

Law 3.3.72 x :=
snc e; end x = end x

Proof.

x :=
snc e; end x

= {Definitions 3.3.13, 3.3.65 and 2.3.36}

S(true ` x := e); S(true ` end x)

= {Theorem 3.3.6 and propositional calculus}

S(true ` S(x := e); S(end x))

= {Theorems 3.3.14 and 3.3.69, law 2.3.40}

S(true ` end x)

= {Definition 3.3.65}

end x �

Law 3.3.73 var x v (var x; x :=
snc e)

Proof.

Similar to the proof of law 3.3.70, but using law 2.3.41 instead of 2.3.37. �

Law 3.3.74 var x; (x = e)>S = (var x; x :=
snc e)

Proof.

var x; (x = e)>S
= {Definitions 3.3.64 and theorem 3.3.36}

S(true ` var x); S(true ` II � x = e� false)

= {Theorem 3.3.6 and propositional calculus}

S(true ` S(var x); S(II � x = e� false))

= {Theorems 3.3.20, 3.3.68, 3.3.14 and propositional calculus}

S(true ` var x; (II � x = e� false))

= {Definition 2.3.50 and law 2.3.79, propositional calculus}

S(true ` var x; x := e)

= {Theorems 3.3.68 and 3.3.14, propositional calculus}

S(¬(S(var x); S(false)) ` S(var x); S(x := e))

= {Theorem 3.3.6 and 3.3.14, propositional calculus and definitions 3.3.13 3.3.64}

var x; x :=
snc e �
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Law 3.3.75 var x; var y = var x, y

Proof.

var x; var y

= {Definition 3.3.64, theorem 3.3.6 and propositional calculus}

S(true ` S(var x); S(var y))

= {Theorem 3.3.68 and law 2.3.42}

S(true ` var x, y)

= {Definition 3.3.64}

var x, y �

Law 3.3.76 end x; end y = end x, y

Proof.

Similar to proof of law 3.3.75. �

Law 3.3.77 var x, y = var y, x

Proof.

Similar to proof of law 3.3.75. �

Law 3.3.78 end x, y = end y, x

Proof. Similar to proof of law 3.3.75. �

Law 3.3.79 If x is not free in e then

(end x; var x :=
snc e) = (x :=

snc e)

Proof.

end x; var x :=
snc e

= {Definitions 3.3.65, 3.3.64 and theorem 3.3.6}

S(true ` S(end x); S(var x); S(x := e))

= {Theorems 3.3.14, 3.3.68 and 3.3.69}

S(true ` end x; var x; x := e)

= {Law 2.3.39 and definition 3.3.13}

x :=
snc e �

Law 3.3.80 Provided P is SH3 and neither e nor S mention x we have:

(P; x :=
snc e) = ((P; end x)+x; x :=

snc e)
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Proof.

Similar to the proof of law 2.3.49. �

Law 3.3.81 Provided b does not mention x we have:

var x; (P� b� Q) = (var x; P)� b� (var x; Q)

Proof.

var x; (P� b� Q)

= {Definition 2.2.1 and theorem 3.3.66}

∃x • (b ∧ P) ∨ (¬b ∧ Q)

= {Quantifier associativity}

(∃x • b ∧ P) ∨ (∃x • ¬b ∧ Q)

= {Assumption: b does not mention x, quantifier contract scope}

(b ∧ ∃x • P) ∨ (¬b ∧ ∃x • Q)

= {Definition 2.2.1 and theorem 3.3.66}

(var x; P)� b� (var x; Q) �

Law 3.3.85 Provided P = (P1 ` P2) is a SH3, S-healthy design we have:

S(P)[x] = S(P1 ` P2; var 0.c := c; end c)+x,c; ED(x)

where ES (x) is defined as follows:

ES (x) =df S(true ` (E(x, 0.c) ∧ c := 0.c); end 0.c)

Proof.

S(P1 ` P2; var 0.c := c; end c)+x,c; ED(x)

= {Definitions 2.2.3, 2.2.18, 2.2.19 and predicate calculus}

S(P1 ` P2[0.c′/c′] ∧ c′, x′ = c, x); ED(x)

= {Definition 3.3.86, theorems 3.3.6 and 3.3.14 and propositional calculus}

S(¬S(¬P1; S(true)) ` (S(P2)[0.c′/c′] ∧ c′, x′ = c, x);

((x′, x.out′c, x.in
′ = ((x.in0.c−1, x)� c < 0.c� (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < 0.c
}
∧ c′ = 0.c); end 0.c)

= {Assumption (P is SH3), definition 2.2.3 and one-point rule (P does not mention x,

it trivially keeps S2 by performing an implicit x.out′ = x.out)}

S(P1 ` ∃c0, 0.c0 • S(P2)[0.c0/c′] ∧ c0 = c ∧

((x′, x.out′c0
, x.in′ = ((x.in0.c0−1, x)� c0 < 0.c0 � (x, x.outc0), x.in)) ∧
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{
x.out′i = x.ini−1 | c0 < i < 0.c0

}
) ∧ c′ = 0.c0)

= {One-point rule}

S(P1 ` S(P2) ∧ (x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
)

= {Definition 3.3.83}

S(P1 ` P2 ∧ E(x, c′))

= {Definition 3.3.82}

P[x] �

Law 3.3.87 Provided that P is S-healhty and that P = P ∧ c′ = c we have:

P[x] = P+x

Proof.

P[x]

= {Assumption and definition 3.3.82}

S(P1 ` P2 ∧ c′ = c ∧ ((x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
))

= {Propositional calculus}

S(P1 ` P2 ∧ c′ = c ∧ (x′, x.out′c, x.in
′ = x, x.outc, x.in) ∧

{
II{x.outi} | i < c

}
)

= {P is S, propositional calculus and definition 2.3.46}

P+x �

Law 3.3.88 II[x] = II+x = II

Proof.

Straightforward from law 3.3.87. �

Law 3.3.89 (P� b� Q)[x] = (P[x] � b� Q[x])

Proof.

(P� b� Q)[x]

= {Theorem 3.3.21, definition 3.3.82}

S(P1 � b� Q1 ` (P2 � b� Q2) ∧ E(x, c′))

= {Definition 2.2.1, propositional calculus}

S(P1 � b� Q1 ` (b ∧ P2 ∧ E(x, c′)) ∨ (¬b ∧ Q2 ∧ E(x, c′)))

= {Definition 2.2.1}

S(P1 � b� Q1 ` (P2 ∧ E(x, c′))� b� (Q2 ∧ E(x, c′)))
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= {Theorem 3.3.21, definition 3.3.82}

P[x] � b� Q[x] �

Law 3.3.90 Provided P and Q are S-healthy we have:

(P; Q)[x] v (P[x]; Q[x])

We begin by proving the following lemma:

Lemma B.0.3.

(P; Q) ∧ E(x, c′) =

(∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ ((x0, x.out.sc, x.in.s = ((x.inc0−1, x)� c < c0 � (x, x.outc)), x.in) ∧

{x.out.si = x.ini−1 | c < i < c0} ∧
{
x.out.s′i = x.outi | i < c ∨ i ≥ c0

}
) ∧

Q[v0, c0/v, c]((x′, x.out′c0
, x.in′ = ((x.in.sc′−1, x0)� c0 < c′ � (x0, x.out.sc0)), x.in.s) ∧{

x.out′i = x.in.si−1 | c0 < i < c′
}
∧

{
x.out′i = x.out.si | i < c0

}
))

provided P and Q are S-healthy.

Proof.

By case split on the relationship between c, 0.c and c′ (P and Q are S1→ c ≤ c0 ≤ c′)

Case c = c0 = c′

∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ ((x0, x.out.sc, x.in.s = ((x.inc0−1, x)� c < c0 � (x, x.outc)), x.in) ∧

{x.out.si = x.ini−1 | c < i < c0} ∧ {x.out.si = x.outi | i < c ∨ i ≥ c0}) ∧

Q[v0, c0/v, c]((x′, x.out′c0
, x.in′ = ((x.in.sc′−1, x0)� c0 < c′ � (x0, x.out.sc0)), x.in.s) ∧{

x.out′i = x.in.si−1 | c0 < i < c′
}
∧

{
x.out′i = x.out.si | i < c0

}
)

= {c = c0 = c′, propositional calculus}

∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ ((x0, x.out.sc, x.in.s = x, x.outc, x.in) ∧ x.out.s′ = x.out) ∧

Q[v0, c0/v, c] ∧ ((x′, x.in′ = x0, x.in.s) ∧ x.out′ = x.out.s)

= {One-point rule, quantifier contract scope}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧ ((x′, x.in′ = x, x.in) ∧ x.out′ = x.out)

= {c = c0 ∧ c0 = c′, predicate calculus}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧

((x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

= {Definitions 2.2.3, and 3.3.83}
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(P; Q) ∧ E(x, c′)

Case c < c0 ∧ c0 = c′

∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ ((x0, x.out.sc, x.in.s = ((x.inc0−1, x)� c < c0 � (x, x.outc)), x.in) ∧

{x.out.si = x.ini−1 | c < i < c0} ∧ {x.out.si = x.outi | i < c ∨ i ≥ c0}) ∧

Q[v0, c0/v, c] ∧ ((x′, x.out′c0
, x.in′ = ((x.in.sc′−1, x0)� c0 < c′ � (x0, x.out.sc0)), x.in.s) ∧{

x.out′i = x.in.si−1 | c0 < i < c′
}
∧

{
x.out′i = x.out.si | i < c0

}
)

= {c < c0 ∧ c0 = c′, propositional calculus}

(∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ (x0, x.out.sc, x.in.s = x.inc′−1, x, x.in)∧

{x.out.si = x.ini−1 | c < i < c0} ∧ {x.out.si = x.outi | i < c ∨ i ≥ c0}) ∧

Q[v0, c0/v, c] ∧ ((x′, x.out′c0
, x.in′ = (x0, x.out.sc0 , x.in.s) ∧ x.out′ = x.out.s))

= {One-point rule, quantifier contract scope}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧ (x′, x.in′ = x.inc′−1, x.in) ∧

x.out′c = x ∧
{
x.out′i = x.ini−1 | c < i < c′

}
∧

{
x.out′i = x.outi | i < c

}
= {c < c0 = c′, predicate calculus}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧

((x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

= {Definitions 2.2.3 and 3.3.83}

(P; Q) ∧ E(x, c′)

Case c = c0 ∧ c0 < c′

∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ ((x0, x.out.sc, x.in.s = ((x.inc0−1, x)� c < c0 � (x, x.outc)), x.in) ∧

{x.out.si = x.ini−1 | c < i < c0} ∧ {x.out.si = x.outi | i < c ∨ i ≥ c0}) ∧

Q[v0, c0/v, c] ∧ ((x′, x.out′c0
, x.in′ = ((x.in.sc′−1, x0)� c0 < c′ � (x0, x.out.sc0)), x.in.s) ∧{

x.out′i = x.in.si−1 | c0 < i < c′
}
∧

{
x.out′i = x.out.si | i < c0

}
)

= {c = c0 ∧ c0 < c′, propositional calculus}

(∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ (x0, x.in.s = x, x.in) ∧ x.out.s = x.out ∧

Q[v0, c0/v, c] ∧ (x′, x.out′c0
, x.in′ = x.in.sc′−1, x0, x.in.s) ∧{

x.out′i = x.in.si−1 | c < i < c′
}
∧

{
x.out′i = x.out.si | i < c

}
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= {One-point rule, quantifier contract scope}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧

(x′, x.out′c, x.in
′ = x.inc′−1, x, x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
x.out′i = x.outi | i < c

}
= {c = c0 ∧ c0 < c′, predicate calculus}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧

((x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

= {Definitions 2.2.3 and 3.3.83}

(P; Q) ∧ E(x, c′)

Case c < c0 < c′

∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ ((x0, x.out.sc, x.in.s = ((x.inc0−1, x)� c < c0 � (x, x.outc)), x.in) ∧

{x.out.si = x.ini−1 | c < i < c0} ∧ {x.out.si = x.outi | i < c ∨ i ≥ c0}) ∧

Q[v0, c0/v, c] ∧ ((x′, x.out′c0
, x.in′ = ((x.in.sc′−1, x0)� c0 < c′ � (x0, x.out.sc0)), x.in.s) ∧{

x.out′i = x.in.si−1 | c0 < i < c′
}
∧

{
x.out′i = x.out.si | i < c0

}
)

= {c < c0 < c′, propositional calculus}

(∃v0, c0, x0, x.in.s, x.out.s•

P[v0, c0/v′, c′] ∧ (x0, x.out.sc, x.in.s = x.inc0−1, x, x.in) ∧

{x.out.si = x.ini−1 | c < i < c0} ∧ {x.out.si = x.outi | i < c ∨ i ≥ c0}) ∧

Q[v0, c0/v, c] ∧ (x′, x.out′c0
, x.in′ = x.in.sc′−1, x0, x.in.s) ∧{

x.out′i = x.in.si−1 | c0 < i < c′
}
∧

{
x.out′i = x.out.si | i < c0

}
= {One-point rule, quantifier contract scope, predicate calculus}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧

(x′, x.out′c0
, x.in′ = x.inc′−1, x.inc0−1, x.in) ∧{

x.out′i = x.ini−1 | c0 < i < c′
}
∧{

x.out′i = x.ini−1 | c < i < c0
}
∧ (x.out′c = x) ∧

{
x.out′i = x.outi | i < c

}
= {c < c0 = c′, predicate calculus}

(∃v0, c0 • P[v0, c0/v′, c′] ∧ Q[v0, c0/v, c]) ∧

((x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

= {Definitions 2.2.3 and 3.3.83}

(P; Q) ∧ E(x, c′) �
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With these result we can now prove law 3.3.90:

Proof.

Observation: For any variables P1, Q, R, S and P2 we have that

(P1 ∧ ¬(Q ∧ R); S ` P2)

= {Propositional calculus}

(P1 ∧ (¬Q ∨ ¬R); S ` P2)

w {Removing the alternative of ¬R strengthens the precondition and leads to refinement}

(P1 ∧ (¬Q); S ` P2)

P[x]; Q[x]

= {Theorem 3.3.6 and definition 3.3.82}

S(¬(S(¬P1); S(true)) ∧ ¬(S(P2 ∧ E(x, c′)); S(¬Q1)) ` S(P2 ∧ E(x, c′)); S(Q2 ∧ E(x, c′)))

w {Observation above (R = E(x, c′)) and theorem 2.3.6}

S(¬(S(¬P1); S(true)) ∧ ¬(S(P2); S(¬Q1)) `

(P2 ∧ ((x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
));

(Q2((x′, x.out′c, x.in
′ = ((x.inc′−1, x)� c < c′ � (x, x.outc)), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)))

= {Definitions 2.2.3 and 2.2.7}

S(¬(S(¬P1); S(true)) ∧ ¬(S(P2); S(¬Q1)) ` (∃v0, c0, x0, x.in.s, x.out.s•

P2[v0, c0/v′, c′] ∧ ((x0, x.out.sc, x.in.s = ((x.inc0−1, x)� c < c0 � (x, x.outc)), x.in) ∧

{x.out.si = x.ini−1 | c < i < c0} ∧ {x.out.si = x.outi | i < c ∨ i ≥ c0}) ∧

Q2[v0, c0/v, c]((x′, x.out′c0
, x.in′ = ((x.in.sc′−1, x0)� c0 < c′ � (x0, x.out.sc0)), x.in.s) ∧{

x.out′i = x.in.si−1 | c0 < i < c′
}
∧ {x.outi = x.out.si | i < c0})))

= {Lemma B.0.3}

S(¬(S(¬P1); S(true)) ∧ ¬(S(P2); S(¬Q1)) ` (S(P2); S(Q2)) ∧ E(x, c′))

= {Theorem 3.3.6 and definition 3.3.82}

(P; Q)[x] �

Law 3.3.91 Provided P is SH3 ◦ S-healthy we have:

(b ∗ P)[x] v b ∗ P[x]



239

Proof.

Let

F(X) = (P; X)� b� II

G(X) = (P[x]; X)� b� II

We first show that

Fi(⊥)[x] v Gi(⊥)

For i = 0 we have:

F0(⊥)[x]

= {Definition of F0 and predicate calculus}

⊥

= {Definition of G0}

G0(⊥) �

For i = n + 1 we have:

Fn+1(⊥)[x]

= {Definition of Fi+1}

((P; Fn(⊥))� b� II)[x]

v {Laws 3.3.89, 3.3.88, 3.3.90}

(P[x]; Fn(⊥)[x])� b� II

v {Inductive hypothesis}

(P[x]; Gn(⊥))� b� II

= {Definition of Gn+1}

Gn+1(⊥)

With this result we now prove that (b ∗ P)[x] v b ∗ P[x]:

(b ∗ P)[x]

= {Law 3.3.85}

((b ∗ P); U0(c))+x,c; ED(x)
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= {Law 2.3.139 (all operators in the language are continuous)}

(

⊔
i

Fi(true)

 ; U0(c))+x,c; ED(x)

= {Law 3.3.11, alphabet extension distributes over lub}⊔
i

(
(Fi(true); U0(c))+x,c; ED(x)

)
= {Law 3.3.85}⊔

i

Fi(⊥)[x]

v {Observation above}⊔
i

Gi(⊥)

= {Law 2.3.139 and definition of G}

b ∗ P[x]

Law 3.3.92 If P is SH3 and S-healthy, it does not perform sync events and neither P nor S
mention x then we have:

P; var x; Q = var x; P[x]; Q

Proof.

var x; P[x]; Q

= {Definition 3.3.64, assumption: P does not perform sync actions (c′ = c), law 3.3.87}

S(true ` var x); S(P1 ` P2 ∧ (x′, x.out′, x.in′ = x, x.out, x.in)); Q

= {Theorem 3.3.6, propositional calculus}

S(¬(S(var x); S(¬P1)) ` S(var x); S(P2 ∧ x′ = x)); Q

= {Theorem 3.3.68, definition 2.2.18}

S(¬(∃x • S(¬P1)) ` ∃x • S(P2 ∧ x′ = x)); Q

= {Assumption: P and S do not mention x, superfluous quantifier, one point rule}

S(¬(S(¬P1)) ` S(P2)); Q

= {Assumption (P is S-healthy), definitions 2.3.1 and 2.2.3}

∃x0, v0 • P[v0, x0/v′, x′]; Q[v0, x0/v, x]

= {P does not mention x′, quantifier contract scope, definition 2.2.3}

P;∃x0 • Q[x0/x]

= {Change variable name, theorem 3.3.66}

P; var x; Q �

Law 3.3.93 If P and Q are SH3 ◦ S-healthy, P does not perform any sync events and neither P
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nor S mention x′ then we have:

Q; end x; P = Q; P[x]; end x

Proof.

Q; P[x]; end x

= {Assumptions, law 3.3.87 and definition 3.3.65}

Q; S(P1 ` P2 ∧ x′ = x); S(true ` end x)

= {Theorem 3.3.6 and propositional calculus}

Q; S(¬S(¬P1) ` S(P2 ∧ x′ = x); S(end x))

= {Theorem 3.3.69, definition 2.2.19}

Q; S(¬S(¬P1) ` ∃x′ • S(P2 ∧ x′ = x))

= {Assumption: neither P nor S mention x′, propositional calculus, one-point rule}

Q; S(¬S(¬P1) ` S(P2))

= {Assumption (P is S-healthy), definitions 2.3.1 and 2.2.3}

∃v0, x0 • Q[v0, x0/v′, x′]; P[v0, x0/v, x]

= {P does not mention X or x′, quantifier contract scope, definition 2.2.3}

∃x0 • Q[x0/x′]; P

= {Change variable name, theorem 3.3.67}

Q; end x; P �

Law 3.3.94 If P is SH3 and S, it does perform at least one sync event and neither P nor S
mention x then we have:

P; var x; Q v var x; P[x]; Q

Proof.

var x; P[x]; Q

= {Definitions 3.3.64 and 3.3.82}

(true ` var x); (P1 ` P2 ∧ E(x, c′)); Q

= {Theorem 3.3.6, propositional calculus}

S(¬(S(var x); S(¬P1)) ` S(var x); S(P2 ∧ E(x, c′))); Q

= {P performs at least one sync→ c′ > c, definition of E(x, c′) and propositional calculus}

S(¬(S(var x); S(¬P1)) ` S(var x); S(P2 ∧

(x′, x.out′c, x.in
′ = x.inc′−1, x, x.in) ∧

{
x.out′i = x.ini−1 | c < i < c′

}
∧

{
II{x.outi} | i < c

}
)); Q

= {Theorem 3.3.68, definition 2.2.18}
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S(¬(∃x • S(¬P1)) ` ∃x • S(P2 ∧ (x′, x.out′c, x.in
′ = x.inc′−1, x, x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)); Q

= {One-point rule, P2 is S3 and trivially satisfies ∀i < c • x.out′i = x.outi}

S(¬(S(¬P1)) ` S(P2 ∧ x.out′c = x ∧
{
x.out′i = x.ini−1 | c < i < c′

}
)); Q

w {P2 ∧ Q⇒ P, monotonicity of designs, theorem 2.3.6}

S(¬(S(¬P1)) ` S(P2)); Q

= {Assumption (P is S-healthy), definitions 2.3.1 and 2.2.3}

∃x0, v0 • P[v0, x0/v′, x′]; Q[v0, x0/v, x]

= {P does not mention x′, quantifier contract scope, definition 2.2.3}

P;∃x0 • Q[x0/x]

= {Change variable name, theorem 3.3.66}

P; var x; Q �

Law 3.3.95 If P and Q are SH3 ◦ S-healthy, P does perform at least one sync event and neither

P nor S mention x′ then we have:

Q; end x; P v Q; P[x]; end x

Proof.

Q; P[x]; end x

= {Definitions 3.3.82 and 3.3.65, assumption and propositional calculus}

Q; S(P1 ` P2 ∧ (x′, x.out′c, x.in
′ = x.inc′−1, x, x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
); S(true ` end x)

= {Theorem 3.3.6, propositional calculus}

Q; S(¬S(¬P1) ` S(P2 ∧ (x′, x.out′c, x.in
′ = x.inc′−1, x, x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
); S(end x))

= {Theorem 3.3.69 and definition 2.2.19}

Q; S(¬S(¬P1) ` ∃x′ • S(P2 ∧ (x′, x.out′c, x.in
′ = x.inc′−1, x, x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
))

= {One-point rule, P2 is S3 and trivially satisfies ∀i < c • x.out′i = x.outi}

Q; S(¬S(¬P1) ` S(P2 ∧ x.out′c = x ∧
{
x.out′i = x.ini−1 | c < i < c′

}
))

w {P2 ∧ Q⇒ P2, definition of design refinement}

Q; S(¬S(¬P1) ` S(P2))

= {Assumption (P is S-healthy), definitions 2.3.1 and 2.2.3}

∃v0, x0 • Q[v0, x0/v′, x′]; P[v0, x0/v, x]
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= {P does not mention X or x′, quantifier contract scope, definition 2.2.3}

∃x0 • Q[x0/x′]; P

= {Change variable name, theorem 3.3.67}

Q; end x; P �

Law 3.3.97 b ∗ P = (P; b ∗ P)� b� II

Proof.

Straightforward from definition 3.3.96 and law 2.3.80. �

Law 3.3.98 (¬b)>S ; b ∗ P = (¬b)>S

Proof.

(¬b)>S ; b ∗ P

= {Definition 3.3.34, laws 3.3.33, 3.3.9 and 3.3.7}

(b ∗ P)� ¬b� >

= {Law 3.3.97 and 3.3.25}

II� ¬b� >

= {Definition 3.3.34}

(¬b)>S �

Law 3.3.99 (¬b)⊥S ; b ∗ P = (¬b)⊥S

Proof.

Similar to proof of law 3.3.98. �

Law 3.3.100 b>S ; b ∗ P = b>S ; P; (b ∗ P)

Proof.

b>S ; b ∗ P

= {Law 3.3.97}

b>S ; ((P; b ∗ P)� b� II)

= {Law 3.3.58}

b>S ; (P; b ∗ P) �

Law 3.3.101 b ∗ P = (b ∗ P); (¬b)⊥S

Proof.
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Let F(X) =df (P; X)� b� II, we are interested in proving that

∀n ∈ N • Fn(⊥) = Fn(⊥); (¬b)⊥S

We conduct the proof by induction on n:

Base case (n = 0):

F0(⊥)

= {Definition Fx}

⊥

= {Law 3.3.8 and definition of Fx}

F0(⊥); (¬b)⊥S

Induction hypothesis: Fn(⊥) = Fn(⊥); (¬b)⊥S
Step case (n + 1):

Fn+1

= {Definition Fx and definition of F}

(P; Fn(⊥))� b� II

= {Inductive hypothesis, law 3.3.57}

(b>S ; P; Fn(⊥); (¬b)⊥S )� b� ((¬b)>S ; II)

= {Laws 3.3.52, 3.3.41, 3.3.57}

((b>S ; P; Fn(⊥))� b� (¬b)>S ); (¬b)⊥S
= {Law 3.3.57 and definition of Fx and F}

Fn+1(⊥); (¬b)⊥S

With this result we can now prove that: b ∗ P = (b ∗ P); (¬b)⊥S

(b ∗ P); (¬b)⊥S
= {Definitions 2.3.82 and F above, law 2.3.139 (all operators are continuous)}

(
⊔

i

Fi(true)); (¬b)⊥S

= {Law 2.3.135}⊔
i

(Fi(true); (¬b)⊥S )

= {Observation above}
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⊔
i

Fi(true)

= {Law 2.3.139 and definition of F}

b ∗ P �

Law 3.3.102 Provided c⊥S ; P = c⊥S ; P; c⊥S we have:

c⊥S ; (b ∗ P) = c⊥S ; (b ∗ P); c⊥S

Proof.

Let F(X) =df (P; X)� b� II, we are interested in proving that

∀n ∈ N • (¬c)⊥S ; Fn(⊥) = (¬c)⊥S ; Fn(⊥); (¬c)⊥S

We conduct the proof by induction on n:

Base case (n = 0):

(¬c)⊥S ; F0(⊥)

= {Definition Fx}

(¬c)⊥S ;⊥

= {Law 3.3.8 and definition of Fx}

(¬c)⊥S ; F0(⊥); (¬c)⊥S

Induction hypothesis: (¬c)⊥S ; Fn(⊥) = (¬c)⊥S ; Fn(⊥); (¬c)⊥S
Step case (n + 1):

(¬c)⊥S ; Fn+1

= {Definition Fx and definition of F}

(¬c)⊥S ; ((P; Fn(⊥))� b� II)

= {Law 3.3.63 and inductive hypothesis}

((¬c)⊥S ; P; (¬c)⊥S ; Fn(⊥); (¬c)⊥S )� b� ((¬c)⊥S ; II)

= {Laws 3.3.52, 3.3.49 and 3.3.33}

(((¬c)⊥S ; P; Fn(⊥))� b� (¬c)⊥S ); (¬c)⊥S
= {Laws 3.3.52, assumption, 3.3.63}

(¬c)⊥S ; ((P; Fn(⊥))� b� II); (¬c)⊥S
= {Definitions of Fx and F}

(¬c)⊥S ; Fn+1(⊥); (¬c)⊥S
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With this result we can now prove that: (¬c)⊥S ; (b ∗ P) = (¬c)⊥S ; (b ∗ P); (¬c)⊥S

(¬c)⊥S ; (b ∗ P); (¬c)⊥S
= {Definitions 2.3.82 and F above, law 2.3.139 (all operators are continuous)}

(¬c)⊥S ; (
⊔

i

Fi(⊥)); (¬c)⊥S

= {Laws 2.3.135 and 2.3.136 (we can always express an assertion as a finite normal form)}⊔
i

((¬c)⊥S ; Fi(⊥); (¬b)⊥S )

= {Observation above}⊔
i

((¬c)⊥S ; Fi(⊥))

= {Laws 2.3.136 and 2.3.139 and definition of F}

(¬c)⊥S ; (b ∗ P) �

Law 3.3.103 (b ∗ P); Q = µX • (P; X)� b� Q

Proof.

Let

F(X) =df (P; X)� b� II

and

G(X) =df (P; X)� b� Q

we are interested in proving that:

∀n ∈ N • Fn(⊥); Q = Gn(⊥)

We conduct the proof by induction on n:

Base case (n = 0):

F0(⊥); Q

= {Definition Fx}

⊥; Q

= {Law 3.3.8 and definition of Gx}
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G0(⊥)

Induction hypothesis: Fn(⊥); Q = Gn(⊥)

Step case (n + 1):

Fn+1; Q

= {Definition Fx and definition of F}

(P; Fn(⊥))� b� II); Q

= {Laws 3.3.33}

(P; Fn(⊥); Q)� b� Q

= {Inductive hypothesis}

(P; Gn(⊥))� b� Q

= {Definitions of Gx and G}

Gn+1(⊥)

With this result we can now prove that: µX • (P; X)� b� Q = (b ∗ P); Q

µX • (P; X)� b� Q

= {Definition of G, law 2.3.139 (all operators are continuous)}⊔
i

Gi(⊥)

= {Result above}⊔
i

(Fi(⊥); Q)

= {Laws 2.3.136 and 2.3.139 and definition of F}

(µX • (P; X)� b� II); Q

= {Definition 3.3.96}

(b ∗ P); Q �

Law 3.3.104 b ∗ P; (b ∨ q) ∗ P = (b ∨ q) ∗ P

Proof.

We follow the proof outline of the same law in the context of the design theory [Hoare and He

1998, Page 126]. We begin by defining S (X) =df (P; X)� b� (b ∨ c) ∗ P. From law 3.3.103 we

have:

LHS = µS
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so we only need to show (b ∨ c) ∗ P = µS .

(b ∨ c) ∗ P = (b ∨ c) ∗ P

≡ {Law 3.3.23}

(b ∨ c) ∗ P = ((b ∨ c) ∗ P)� b� ((b ∨ c) ∗ P)

≡ {Laws 3.3.57 and 3.3.100}

(b ∨ c) ∗ P = (P; (b ∨ c) ∗ P)� b� ((b ∨ c) ∗ P)

⇒ {Law 2.3.81}

(b ∨ c) ∗ P w µX • (P; X)� b� ((b ∨ c) ∗ P)

≡ {Definition of muS above}

(b ∨ c) ∗ P w µS

To prove equality, we need to prove both directions in the refinement, so we have:

µS = µS

≡ {Definition of µS and law 2.3.80}

µS = (P; µS )� b� (b ∨ c) ∗ P

≡ {Law 3.3.97}

µS = (P; µS )� b� (P; (b ∨ c) ∗ P)� (b ∨ c)� II

≡ {Result above ((b ∨ c) ∗ P w µS )}

µS w (P; µS )� b� (P; µS )� (b ∨ c)� II

≡ {Law 3.3.30}

µS w (P; µS )� (b ∨ c)� II

⇒ {Law 2.3.81}

µS w µX • (P; X)� (b ∨ c)� II

≡ {Definition 3.3.96}

µS w (b ∨ c) ∗ P �

Law 3.3.105 Provided P is S-healthy and b does not mention x we have:

b ∗ (var x; P; end x) v var x; (b ∗ P); end x

Proof.

var x; b ∗ P; end x = var x; b ∗ P; end x

≡ {Definition 2.3.82, law 2.3.80}

var x; b ∗ P; end x = var x; ((P; b ∗ P)� b� II); end x
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≡ {Laws 3.3.33 and 3.3.81}

var x; b ∗ P; end x w (var x; P; (b ∗ P); end x)� b� (var x; II; end x)

≡ {Laws 3.3.71, 3.3.9 and 3.3.70}

var x; b ∗ P; end x w (var x; P; end x; var x; (b ∗ P); end x)� b� II

⇒ {Law 2.3.81}

var x; b ∗ P; end x w µX • (var x; P; end x; X)� b� II

≡ {Definition 2.3.82}

var x; b ∗ P; end x w b ∗ (var x; P; end x) �

Law 3.3.108 S[0](P) ‖ S[1](Q) = S[1](Q) ‖ S[0](P)

Law 3.3.109 S[0](P) ‖ (S[1](Q) ‖ S[2](R)) = (S[0](P) ‖ S[1](Q)) ‖ S[2](R)

Law 3.3.110 (S[0](P) ‖ S[1](IID)) = S[0] ◦ S[1](P)

Law 3.3.111 S[0](P) ‖ S[1](⊥D) = S[0] ◦ S[1](⊥D)

Law 3.3.112 S(P� b� Q) ‖ S[2](R) = ((S(P) ‖ S[2](R))� b� (S(Q) ‖ S[2](R)))

Law 3.3.113 For any descending chain S = {S n | n ∈ N} we have:

(
⊔

S ) ‖ S[2](R) =
⊔

n

(S n ‖ S[2](R))

Law 3.3.114 S[0](x := e1) ‖ S[1](y := e2) = S[0] ◦ S[1](x, y := e1, e2)

The proofs of laws 3.3.108 to 3.3.114 are straightforward from definition 3.3.107 and laws

2.3.90 to 2.3.98 respectively.

Renaming the c, x.in and x.out variables in a S-healthy predicate has the effect of renaming the

healthiness conditions as well. Fortunately, the merge function M, when applied to c and point-

wise to x.out, restores the healthiness conditions to their state before the renaming. This fact will

be useful in proving many properties about parallel by merge. The following laws capture this

notion more precisely.

Law B.0.4.

S[0] ◦ S[1](true); M = S(true)

Proof.

For the proof, we will show the case of S1. The proof of the other healthiness conditions

follow a similar schema.
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S1[0] ◦ S1[1](true); M(c, 0.c, 1.c.c′)

= {Definitions 3.2.1 and 3.3.106}

(c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′)

= {Case split}

c = 0.c′ ∧ (c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′) ∨

c = 1.c′ ∧ (c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′) ∨

c , 0.c′ ∧ c , 1.c′ ∧ (c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′)

= {Predicate calculus, law 2.3.119}

(c ≤ 0.c′ ∧ c ≤ 1.c′); c′ = 1.c ∨

(c ≤ 0.c′ ∧ c ≤ 1.c′); c′ = 0.c ∨

(c ≤ 0.c′ ∧ c ≤ 1.c′); c′ = 0.c u 1.c

= {Definition 2.2.3, one-point rule, predicate calculus}

∃0.c0 • c ≤ 0.c0 ∧ c ≤ c′ ∨

∃1.c0 • c ≤ c′ ∧ c ≤ 1.c0 ∨

(∃0.c0 • c ≤ 0.c0 ∧ c ≤ c′) u (∃1.c0 • c ≤ c′ ∧ c ≤ 1.c0)

= {Propositional calculus (in all cases, a sufficient witness is just c}

c ≤ c′

= {Definition 3.2.2}

S1(true)

�

Law B.0.5. Provided P does not mention the variables in the healthiness conditions we have:

S[0] ◦ S[1](P); M = S(P)

Proof.

For the proof, we will show the case of S1. The proof of the other healthiness conditions

follow a similar schema.

S1[0] ◦ S1[1](P); M(c, 0.c, 1.c.c′)

= {P does not mention the variables in S1[0] ◦ S1[1], predicate calculus}

P ∧ S1[0] ◦ S1[1](true); M(c, 0.c, 1.c.c′)

= {Law B.0.4}
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P ∧ S1(true)

= {Definition 3.2.2}

S(P) �

Law B.0.6. Provided P mentions the variables in the merge predicate we have:

S[0] ◦ S[1](P); M = S(S[0] ◦ S[1](P); M)

Proof.

For the proof, we will show the case of S1. The proof of the other healthiness conditions

follow a similar schema.

S1[0] ◦ S1[1](P); M(c, 0.c, 1.c.c′)

= {Definition 3.2.1 and predicate calculus}

(P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′)

= {Case split}

c = 0.c′ ∧ (P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′) ∨

c = 1.c′ ∧ (P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′) ∨

c , 0.c′ ∧ c , 1.c′ ∧ (P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′); M(c, 0.c, 1.c.c′)

= {Predicate calculus, law 2.3.119}

(P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′); c′ = 1.c ∨

(P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′); c′ = 0.c ∨

(P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′); c′ = 0.c u 1.c

= {Definition 2.2.3}

∃0.c0, 1.c0 • (P[0.c0, 1.c0/0.c′, 1.c′] ∧ c ≤ 0.c′ ∧ c ≤ 1.c′) ∧ c′ = 1.c0 ∨

∃0.c0, 1.c0 • (P[0.c0, 1.c0/0.c′, 1.c′] ∧ c ≤ 0.c′ ∧ c ≤ 1.c′) ∧ c′ = 0.c0 ∨

∃0.c0, 1.c0 • (P[0.c0, 1.c0/0.c′, 1.c′] ∧ c ≤ 0.c′ ∧ c ≤ 1.c′) ∧ c′ = 0.c0 u 1.c0

= {One-point rule, predicate calculus}

∃0.c0 • P[0.c0/0.c′] ∧ c ≤ 0.c0 ∧ c ≤ c′ ∨

∃1.c0 • P[1.c0/1.c′] ∧ c ≤ c′ ∧ c ≤ 1.c0 ∨

∃0.c0 • P[0.c0/0.c′] ∧ c ≤ 0.c0 ∧ c ≤ c′ ∨

∃1.c0 • P[1.c0/1.c′] ∧ c ≤ c′ ∧ c ≤ 1.c0

= {Propositional calculus}
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

∃0.c0 • P[0.c0/0.c′] ∧ c ≤ 0.c0 ∧ c ≤ c′ ∨

∃1.c0 • P[1.c0/1.c′] ∧ c ≤ c′ ∧ c ≤ 1.c0 ∨

∃0.c0 • P[0.c0/0.c′] ∧ c ≤ 0.c0 ∧ c ≤ c′ ∨

∃1.c0 • P[1.c0/1.c′] ∧ c ≤ c′ ∧ c ≤ 1.c0


∧ c ≤ c′

= {Inverse steps}

(S1[0] ◦ S1[1](P); M(c, 0.c, 1.c.c′)) ∧ c ≤ c′

= {Definition 3.2.2}

S1(S1[0] ◦ S1[1](P); M(c, 0.c, 1.c.c′)) �

Law B.0.7.

S[0] ◦ S[1](P1 ` P2); M = S(¬(S[0] ◦ S[1](¬P1); M) ` S[0] ◦ S[1](P2); M)

Proof.

S[0] ◦ S[1](P1 ` P2); M

= {Definition 2.3.1, propositional calculus}

(S[0] ◦ S[1](¬ok) ∨ S[0] ◦ S[1](¬P1) ∨ S[0] ◦ S[1](ok′ ∧ P2)); M

= {Disjunctivity of sequential composition}

S[0] ◦ S[1](¬ok); M ∨ S[0] ◦ S[1](¬P1); M ∨ S[0] ◦ S[1](ok′ ∧ P2); M

= {Laws B.0.5 and B.0.6, predicate calculus}

S(¬ok) ∨ S(S[0] ◦ S[1](¬P1); M) ∨ S(ok′ ∧ S[0] ◦ S[1](P2); M)

= {Propositional calculus}

S(ok ∧ S(S[0] ◦ S[1](¬P1); M)⇒ ok′ ∧ S[0] ◦ S[1](P2); M)

= {Definition 2.3.1}

S(¬(S[0] ◦ S[1](¬P1); M) ` S[0] ◦ S[1](P2); M) �

Law 3.3.116 P ‖M Q = Q ‖M P

Proof.

P ‖M Q

= {Definition 3.3.115, P and Q are S-healthy}

((S(P); U0(m, c, x.out)) ‖ (S(Q); U1(m, c, x.out))); M

= {Laws 2.3.90, 2.3.115}

((S(Q); U1(m, c, x.out)) ‖ (S(P); U0(m, c, x.out))); (0.m, 1.m := 1.m, 0.m); M

= {Definition 2.2.3 and predicate calculus}

((S(Q); U0(m, c, x.out)) ‖ (S(P); U1(m, c, x.out))); M
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= {Definition 3.3.115, P and Q are S-healthy}

Q ‖M P �

Lemma B.0.8.

(S[0](P[0]) ‖ S[1](R[1])); M; U3(m) ‖ S[2](Q[2]) =

(S[0](P[0]) ‖ S[1](R[1]) ‖ S[2](Q[2])); M; U3(m)

Proof.

(S[0](P[0]) ‖ S[1](R[1])); M; U3(m) ‖ S[2](Q[2])

= {Law B.0.7 and separating simulation}

S[3](¬(S[0] ◦ S[1](¬P1[0] ∨ ¬R1[1])); M[3] ` S[0] ◦ S[1](P2[0] ∧ R2[1]); M[3]) ‖

S[2](Q[2])

= {Definition 3.3.107}

S[2] ◦ S[3](¬(S[0] ◦ S[1](¬P1[0] ∨ ¬R1[1]); M[3]) ∧ Q1[2] `

(S[0] ◦ S[1](P2[0] ∧ R2[1]); M; U3(m)) ∧ Q2[2])

= {Definition 2.3.1, propositional calculus, theorem 3.2.13}

S[2] ◦ S[3](¬(S[0] ◦ S[1](¬P1[0] ∨ ¬R1[1]); M[3]) ∧ ¬S[3](¬Q1[2]) `

(S[0] ◦ S[1](P2[0] ∧ R2[1]); M; U3(m)) ∧ Q2[2])

= {Theorem 3.2.14, definition 2.2.3 and Q2 does not mention the variables in M; U3(m)}

S[2] ◦ S[3](¬(S[0] ◦ S[1](¬P1[0] ∨ ¬R1[1]); M[3]) ∧ ¬S[3](¬Q1[2]) `

S[0] ◦ S[1](P2[0] ∧ R2[1] ∧ Q2[2]); M; U3(m))

= {Law B.0.5, propositional calculus}

S[2] ◦ S[3](¬((S[0] ◦ S[1](¬P1[0] ∨ ¬R1[1]); M[3]) ∨ (S[0] ◦ S[1](¬Q1[2]); M[3])) `

S[0] ◦ S[1](P2[0] ∧ R2[1] ∧ Q2[2]); M; U3(m))

= {Disjunctivity of sequential composition}

S[2] ◦ S[3](¬(S[0] ◦ S[1](¬P1[0] ∨ ¬R1[1] ∨ ¬Q1[2]); M; U3(m)) `

S[0] ◦ S[1](P2[0] ∧ R2[1] ∧ Q2[2]); M; U3(m))

= {Law B.0.7, propositional calculus}

S[0] ◦ S[1] ◦ S[2](P1[0] ∧ R1[1] ∧ Q1[2] ` P2[0] ∧ R2[1] ∧ Q2[2]); M; U3(m)

= {Definition 3.3.107}

(S[0](P[0]) ‖ S[1](R[1]) ‖ S[2](Q[2])); M; U3(m) �

Law 3.3.117 P ‖M(Q ‖M R) = (P ‖M Q) ‖M R

Proof.
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Let st =df x, x.out in:

(P ‖M Q) ‖M R

= {Definition 2.3.104}

((((P; U0) ‖ (Q; U1))+c,st; M̂; U0) ‖ (R; U2))+c,st; M[2.x/1.x]

= {Definition 3.3.107 and lemma B.0.8}

(((P; U0) ‖ (Q; U1)) ‖ (R; U2))+c,st; (M̂; U0)+c,st; M[2.x/1.x]

= {Definition 2.2.3 and M3}

((P; U0) ‖ (Q; U1) ‖ (R; U2))+c,st; M̂3

= {Law 2.3.117}

((P; U0) ‖ (Q; U1) ‖ (R; U2))+c,st; (0.st, 1.st, 2.st := 1.st, 2.st, 0.st); M̂3

= {Definition 2.2.3 and predicate calculus}

((P; U2) ‖ (Q; U0) ‖ (R; U1))+c,st; M̂3

= {Law 3.3.108}

((Q; U0) ‖ (R; U1) ‖ (P; U2))+c,st; M̂3

= {Inverse argument}

(Q ‖M R) ‖M P

= {Law 3.3.116}

P ‖M(Q ‖M R) �

Law 3.3.118 (II ‖M P) v P

We begin by observing that, provided P does not mention 0.m we have:

S1[0] ◦ S1[1](P[1]); M = S1(P)

We will show the proof for S1, the remaining healthiness conditions follow the same approach.

S1[0] ◦ S1[1](P[1]); M(c, 0.c, 1.c, c′)

= {Definitions 3.2.1 and definition 2.3.114}

P[1.c′/c′] ∧ c ≤ 0.c′ ∧ c ≤ 1.c′; M(c, 0.c, 1.c, c′)

= {Case split}

(c′ = 1.c′ = 0.c′) ∧ P[1.c′/c′] ∧ c ≤ 0.c′ ∧ c ≤ 1.c′; M(c, 0.c, 1.c, c′) ∨

(c′ = 0.c′ ∧ c′ , 1.c) ∧ P[1.c′/c′] ∧ c ≤ 0.c ∧ c ≤ 1.c′; M(c, 0.c, 1.c, c′) ∨

(c′ = 1.c ∧ c′ , 0.c′) ∧ P[1.c′/c′] ∧ c ≤ 0.c′ ∧ c ≤ 1.c′; M(c, 0.c, 1.c, c′) ∨

(1.c′ , 0.c′ ∧ c′ , 1.c′) ∧ P ∧ c ≤ 0.c′ ∧ c ≤ 1.c′; M(c, 0.c, 1.c, c′)

= {Definition 2.2.3, law 2.3.118 and predicate calculus}
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P[1.c′/c′] ∧ c = 1.c′ ∧ c = 0.c′; c′ = c ∧ c′ = 0.c ∧ c′ = 1.c ∨

P[1.c′/c′] ∧ c ≤ 1.c′ ∧ c ≤ 0.c′; c′ = 1.c ∨

P[1.c′/c′] ∧ c ≤ 1.c′ ∧ c ≤ 0.c′; c′ = 0.c ∨

P[1.c′/c′] ∧ c ≤ 1.c′ ∧ c ≤ 0.c′; c′ = 0.c u 1.c

= {Definition 2.2.9, disjunctivity of sequential composition, subsumption}

P[1.c′/c′] ∧ c = 1.c′ ∧ c ≤ 0.c′; c′ = c ∧ c′ = 0.c ∧ c′ = 1.c ∨

P[1.c′/c′] ∧ c ≤ 1.c′ ∧ c ≤ 0.c′; c′ = 1.c ∨

P[1.c′/c′] ∧ c ≤ 1.c′ ∧ c ≤ 0.c′; c′ = 0.c

= {Definition 2.2.3}

∃1.c0, 0.c0 • P[1.c0/c′] ∧ c ≤ 1.c0 ∧ c ≤ 0.c0 ∧ c′ = c0 ∨

∃1.c0, 0.c0 • P[1.c0/c′] ∧ c ≤ 1.c0 ∧ c ≤ 0.c0 ∧ c′ = 1.c0 ∨

∃1.c0, 0.c0 • P[1.c0/c′] ∧ c ≤ 1.c0 ∧ c ≤ 0.c0 ∧ c′ = 0.c0

= {One-point rule}

(P ∧ c ≤ c′) ∨ (P ∧ c ≤ c′) ∨
(
∃1.c0 • P[1.c0/c′] ∧ c ≤ 1.c0 ∧ c ≤ c′

)
v {Propositional calculus (P ∧ (1.c0 = c′)⇒ P), one-point rule}

(P ∧ c ≤ c′) ∨
(
P ∧ c ≤ c′

)
= {Propositional calculus, definition 3.2.1}

S1(P)

Law 3.3.119 ⊥ ‖M P = ⊥

Proof.

⊥ ‖M P

= {Definitions 3.3.2, 3.3.115 and 3.3.107}

S[0] ◦ S[1](⊥D ‖ P[1]); M

= {Laws 2.3.93, theorem 2.3.3}

S[0] ◦ S[1](true); M

= {Law B.0.4 and defintion 3.3.2}

⊥ �

Law 3.3.120 (P� b� Q) ‖M R = ((P ‖M R)� b� (Q ‖M R))

In order to keep the presentation compact, we will omit the variables affected by the separating

simulations when this information is clear from the context.

Proof.

(P� b� Q) ‖M R
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= {Definition 3.3.115, P, Q and R are S}

(((P� b� Q); U0 ‖ (R; U1)); M

= {Law 3.3.33, 2.3.94}

(((P; U0) ‖ (R; U1))� b� ((Q; U0) ‖ (R; U1))); M

= {Law 3.3.33}

(((P; U0) ‖ (R; U1)); M)� b� (((Q; U0) ‖ (R; U1)); M)

= {Definition 3.3.115, P, Q and R are S}

(P ‖M R)� b� (Q ‖M R) �

Law 3.3.121 For any descending chain P = {Pn | n ∈ N} we have:

(
⊔

P) ‖M R =
⊔

(P ‖M R)

Proof.

(
⊔

P) ‖M R

= {Definition 3.3.115}

(((
⊔

P); U0) ‖ (R; U1)); M

= {Laws 3.3.11 and 2.3.95}

(((
⊔

(P; U0) ‖ (R; U1))); M

= {Laws 3.3.11}⊔
(((P; U0) ‖ (R; U1)); M)

= {Definition 3.3.115}⊔
(P ‖M R) �

Law 3.3.122 x :=
snc e1 ‖M x :=

snc e2 v x :=
snc SELECT (e1, e2, x)

Proof.

x :=
snc e1 ‖M x :=

snc e2

= {Definitions 2.3.104, 3.3.13 and 2.3.101}

((S(true ` x := e1); var 0.x := x; end x) ‖

(S(true ` x := e2); var 1.x := x; end x))+x; M(x, 0.x, 1.x, x′)

= {Theorem 3.3.6, predicate and propositional calculus}

(S[0](true ` 0.x := e1) ‖ S[1](true ` 1.x := e2)); M(x, 0.x, 1.x, x′)

= {Definition 2.3.89, propositional calculus and definition 3.3.13}

S[0] ◦ S[1](true ` 0.x, 1.x :=
snc e1, e2); M(x, 0.x, 1.x, x′)

= {Definition 2.2.3, propositional calculus}
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S(true ` M(x, e1, e2, x′))

v {Theorem 2.3.122}

x :=
snc SELECT (0.x, 1.x, x) �

Theorem 3.3.123 Parallel by merge – SH3 preservation

(P ‖M Q); II = (P ‖M Q)

provided P and Q are SH3, S-healthy designs.

Proof.

(P ‖M Q); II

= {Definitions 3.3.115 and 2.3.101, P and Q are S-healthy designs, predicate calculus}

(S[0](P[0]) ‖M S[1](Q[1])); M; II

= {Definition 3.3.107, law B.0.7}

S(¬(S[0] ◦ S[1](¬(P1[0] ∧ Q1[1])); M) ` S[0] ◦ S[1](P2[0] ∧ Q2[1]); M); II

= {Theorem 3.3.6, propositional calculus, theorem 3.2.9}

S(¬(S(S[0] ◦ S[1](¬(P1[0] ∧ Q1[1])); M); S(true)) ` S(S[0] ◦ S[1](P2[0] ∧ Q2[1]); M); II)

= {Propositional calculus, disjunctivity of sequential composition, P and Q are SH3}

S(¬(S(S[0] ◦ S[1](¬P1[0]); S[0] ◦ S[1](true); M ∨

S[0] ◦ S[1](¬Q1[1]); S[0] ◦ S[1](true); M); S(true)) `

S(S[0] ◦ S[1](P2[0] ∧ Q2[1]); M); II)

= {Laws B.0.4 and 2.2.8}

S(¬(S(S[0] ◦ S[1](¬P1[0]); S(true) ∨ S[0] ◦ S[1](¬Q1[1]); S(true)); S(true)) `

S(S[0] ◦ S[1](P2[0] ∧ Q2[1]); M))

= {Disjunctivity of sequential composition, theorem 3.2.10}

S(¬(S(S[0] ◦ S[1](¬P1[0]) ∨ S[0] ◦ S[1](¬Q1[1])); S(true)) `

S(S[0] ◦ S[1](P2[0] ∧ Q2[1]); M))

= {Law B.0.4}

S(¬(S(S[0] ◦ S[1](¬P1[0]) ∨ S[0] ◦ S[1](¬Q1[1])); S[0] ◦ S[1](true); M) `

S(S[0] ◦ S[1](P2[0] ∧ Q2[1]); M))

= {Inverse steps}

S(¬(S(S[0] ◦ S[1](¬(P1[0] ∧ Q1[1])); M)) ` S(S[0] ◦ S[1](P2[0] ∧ Q2[1]); M))

= {Definition 2.3.1, propositional calculus}

S(S[0] ◦ S[1](¬(P1[0] ∧ Q1[1])); M ` S[0] ◦ S[1](P2[0] ∧ Q2[1]); M)

= {Law B.0.7, definitions 3.3.107 and 2.3.101}
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(S[0](P[0]) ‖M S[1](Q[1])); M

= {Definition 3.3.115, P and Q are S-healthy}

P ‖M Q �

Theorem 3.3.125 The sync construct is SH3

SH3(sync)

Proof.

Straightforward from definition 3.3.124 and theorem 3.3.15. �

Law 3.3.126 sync(α)[x] = sync(α ∪ {x}) = sync

Proof.

Provided v is the set of variable names in α we have:

sync(v)[x]

= {Definitions 3.3.124 and 3.3.82}

S(true ` c, v, v.outc := c + 1, v.inc, v ∧

(x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

= {Definitions 2.3.9 and 2.2.6, propositional calculus}

S(true ` c′, v′, v.out′c = c + 1, v.inc, v ∧ (x′, x.out′c = (x.inc′−1, x) ∧
{
II{x.outi} | i < c

}
))

= {Propositional calculus, definition 2.2.6}

S(true ` c, v, v.outc, x, x.outc := c + 1, v.inc, v, x.inc, x)

= {Definition 3.3.124}

sync(v, x)

= {The extended alphabet α contains v as well as x}

sync �

Theorem 3.3.131 Final merge alternative formulation

M̂ = R(x, 0.x, 1.x, x′); c := max(0.c, 1.c); end 0.c, 1.c, 0.x, 1.x, 0.x.out, 1.x.out

Proof.

Straightforward from law 2.3.11 and definition 3.3.130. �

Law 3.3.132 (
...

0.x,
...

1.x:=
...

1.x,
...

0.x); M̂ = M̂

Proof.

Straightforward from M’s symmetry and the fact that max is commutative. �
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Law 3.3.133 (
...

0.x,
...

1.x,
...

2.x:=
...

1.x,
...

2.x,
...

0.x); M̂3 = M̂3

Proof.

This result follows from is a simple but laborious case split on the possible combinations of c,

0.c and 1.c. �

Law 3.3.135 P ‖M̂ Q = Q ‖M̂ P

Proof.

P ‖M̂ Q

= {Definition 3.3.134}

((P; U0(c,
...
m)) ‖ (Q; U1(c,

...
m)))+c,

...
m; M̂

= {Laws 3.3.108, and 3.3.132}

((Q; U1(c,
...
m)) ‖ (P; U0(c,

...
m)))+c,

...
m; (

...
0.m,

...
1.m:=

...
1.m,

...
0.m); M̂

= {Definition 2.3.101 and predicate calculus}

(Q[1] ‖ P[0])+c,
...
m); (

...
0.m,

...
1.m:=

...
1.m,

...
0.m); M̂

= {Propositional calculus}

(Q[0] ‖ P[1])+c,
...
m; M̂

= {Predicate calculus and definition 2.3.101}

((Q; U0(c,
...
m)) ‖ (P; U1(c,

...
m)))+c,

...
m; M̂

= {Definition 3.3.134}

Q ‖M̂ P �

Law 3.3.136 P ‖M̂ (Q ‖M̂ R) = (P ‖M̂ Q) ‖M̂ R

For this proof we will need a similar set of results as provided in laws B.0.4 to B.0.7.

Lemma B.0.9.

S[0] ◦ S[1](true); M̂ = S(true)

Proof.

The proof that M̂ restores S1 is similar to the proof of law B.0.4 but using max instead of

M. The part of the proof dealing with S2 is straightforward from the fact that M̂ applies M to

calculate the point-wise value for x.out and that M satisfies the property we are trying to prove

(law B.0.4). �

Lemma B.0.10. Provided P does not mention the variables in the healthiness conditions we have:

S[0] ◦ S[1](P); M̂ = S(P)

Proof.

Similar to the proof of lemma B.0.9. �
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Lemma B.0.11. Provided P mentions the variables in the merge predicate we have:

S[0] ◦ S[1](P); M̂ = S(S[0] ◦ S[1](P); M̂)

Proof.

Similar to the proof of lemma B.0.9. �

Lemma B.0.12.

S[0] ◦ S[1](P1 ` P2); M̂ = S(¬(S[0] ◦ S[1](¬P1); M̂) ` S[0] ◦ S[1](P2); M̂)

Proof.

This proof follows the same outline of the proof of law B.0.7 but using lemma B.0.11 instead

of B.0.6. �

With these results we can prove a similar result to the one expressed in lemma B.0.8 for the M

predicate:

Lemma B.0.13.

(S[0](P[0]) ‖ S[1](R[1])); M; U3(m) ‖ S[2](Q[2]) =

(S[0](P[0]) ‖ S[1](R[1]) ‖ S[2](Q[2])); M; U3(m)

Proof.

This proof follows the same outline of the proof of lemma B.0.8 but using the corresponding

results from this section. �

We can now prove that ‖M̂ is associative:

Proof.

Let st =df x, x.out in:

(P ‖M̂ Q) ‖M̂ R

= {Definition 3.3.134}

((((P; U0) ‖ (Q; U1))+c,st; M̂; U0) ‖ (R; U2))+c,st; M[2.x/1.x]

= {Definition 3.3.107 and lemma B.0.13}

(((P; U0) ‖ (Q; U1)) ‖ (R; U2))+c,st; (M̂; U0)+c,st; M[2.x/1.x]

= {Definition 2.2.3 and M3}

((P; U0) ‖ (Q; U1) ‖ (R; U2))+c,st; M̂3

= {Law 2.3.117}

((P; U0) ‖ (Q; U1) ‖ (R; U2))+c,st; (0.st, 1.st, 2.st := 1.st, 2.st, 0.st); M̂3
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= {Definition 2.2.3 and predicate calculus}

((P; U2) ‖ (Q; U0) ‖ (R; U1))+c,st; M̂3

= {Law 3.3.108}

((Q; U0) ‖ (R; U1) ‖ (P; U2))+c,st; M̂3

= {Inverse argument}

(Q ‖M̂ R) ‖M̂ P

= {Law 3.3.116}

P ‖M̂ (Q ‖M̂ R) �

Law 3.3.137 (II ‖M̂ II) = II

Proof.

II ‖M̂ II

= {Definition 3.3.134, predicate calculus}

S[0] ◦ S[1](IID[0] ‖ IID[1]); M̂

= {Law 3.3.110, definition 2.3.8}

S[0] ◦ S[1](true ` II{0.c,1.c,0.m,1.m}); M̂

= {Definition 2.3.1, propositional calculus, disjunctivity of sequential composition}(
S[0] ◦ S[1](¬ok); M̂

)
∨

(
S[0] ◦ S[1](ok′ ∧ II{0.c,1.c,0.m,1.m}); M̂

)
= {Theorem 3.2.12, lemma B.0.10}

S(¬ok) ∨
(
S(ok′) ∧ (S[0] ◦ S[1](II0.c,1.c,0.m,1.m {0.c, 1.c, 0.m, 1.m}); M̂)

)
= {Theorem 3.2.8, definition 3.3.128 and predicate calculus}

S(¬ok) ∨
(
S(ok′) ∧ II

)
= {Theorems 3.2.12 and 3.2.13}

S(¬ok ∨ (ok′ ∧ II))

= {Propositional calculus, definitions 2.3.1, 2.3.8 and 3.2.7}

II �

Law 3.3.138 (II ‖M̂ P) v P

Proof.

Similar to proof of law 2.3.108. �

Law 3.3.139 ⊥ ‖M̂ P = ⊥

Proof.

⊥ ‖M̂ P
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= {Definitions 3.3.134, 2.3.101 and propositional calculus}

(S[0](true) ‖ S[1](P[1])); M̂

= {Definition 3.3.107, law 2.3.93}

S[0] ◦ S[1](true); M̂

= {Definition 3.3.128 predicate calculus}

S(true)

= {Definition 3.3.2}

⊥ �

Law 3.3.140 (P� b� Q) ‖M̂ R = ((P ‖M̂ R)� b� (Q ‖M̂ R))

Proof.

(P� b� Q) ‖M̂ R

= {Definition 3.3.134}

(((P� b� Q); U0(
...
m, c)) ‖ (R; U1(

...
m, c))); M̂

= {Law 2.3.24}

((P[0]� b� Q[0]) ‖ R[1]); M̂

= {Law 2.3.94}

((P[0] ‖ R[1])� b� (Q[0] ‖ R[1])); M̂

= {Law 2.3.24}

((P[0] ‖ R[1]); M̂)� b� (Q[0] ‖ R[1]); M̂)

= {Definition 3.3.134}

(P ‖M̂ R)� b� (Q ‖M̂ R) �

Law 3.3.141 For any descending chain S = {S n | n ∈ N} we have: (
⊔

S ) ‖M̂ R =
⊔

i(S i ‖M̂ R)

Proof.

(
⊔

S ) ‖M̂ R

= {Definition 3.3.134}

(((
⊔

S ); U0) ‖ (R; U1)); M̂

= {Law 2.3.135}⊔
i

(S i; U0)

 ‖ (R; U1)

 ; M̂

= {Law 2.3.95}⊔
i

((S i; U0) ‖ (R; U1))

 ; M̂
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= {Law 2.3.135}⊔
i

(((S i; U0) ‖ (R; U1)); M̂)

= {Definition 3.3.134}⊔
i

(S i ‖M̂ R) �

Law 3.3.142 Provided neither P nor Q perform any sync actions we have:

(P ‖M Q); sync; (R ‖M̂ S ) = (P; sync; R) ‖M̂ (Q; sync; S )

Proof.

This proof follows the same outline presented in [Hoare and He 1998, page 184]. �

Law 3.3.143 b>S ; (P ‖M̂ Q) = (b>S ; P) ‖M̂ (b>S ; Q)

Proof.

(b>S ; P) ‖M̂ (b>S ; Q)

= {Definition 3.3.34, laws 3.3.33, 3.3.9, 3.3.7}

(P� b� ⊥) ‖M̂ (Q� b� ⊥)

= {3.3.140 (twice)}

((P ‖M̂ Q)� b� (⊥ ‖M̂ Q))� b� ((P ‖M̂ ⊥)� b� (⊥ ‖M̂ ⊥))

= {3.3.26 (twice), 3.3.139}

(P ‖M̂ Q)� b� ⊥

= {Laws 3.3.33, 3.3.9, 3.3.7 then definition 3.3.34}

b>S ; (P ‖M̂ Q) �

Law 3.3.144 (P; (x = e)⊥S ) ‖M̂ Q[x] = (P ‖M̂ Q[x]); (x = e)⊥

Proof.

(P ‖M̂ Q[x]); (x = e)⊥S
= {Definition 3.3.134}

((P; U0) ‖ (Q[x]; U1))+m,c,
...
x; M̂m,c,x; (x = e)⊥S

= {Definitions 3.3.82 and 3.3.128, predicate calculus, law 3.3.16}

((P; U0) ‖ (Q[x]; U1))+m,c,
...
x;

M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out; end 0.x, 1.x, 0.x.out, 1.x.out; (x = e)⊥S
= {Laws 2.3.40, 2.3.48 and 2.3.11}

((P; U0) ‖ (Q[x]; U1))+m,c,
...
x; M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out;

(0.x = e)⊥S ; end 0.x, 1.x, 0.x.out, 1.x.out
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= {Definition 3.3.107, lemma B.0.9, theorem 3.3.6 and predicate calculus}

S(¬(S[0] ◦ S[1](¬(P1[0] ∧ Q1[1])); M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out) `

S[0] ◦ S[1](¬(P2[0] ∧ (Q2[1] ∧ E(x, c′)));

M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out; (0.x = e)>);

end 0.x, 1.x, 0.x.out, 1.x.out

= {Law 2.3.67, lemma B.0.9}

S[0] ◦ S[1](P1[0] ∧ Q1[1] ` (P2[0] ∧ Q2[1] ∧ E(x, c′)); (0.x = e)>);

M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out

end 0.x, 1.x, 0.x.out, 1.x.out

= {Definition 2.2.3, propositional calculus}

S[0] ◦ S[1](P1 ∧ Q1 ` (P2; (0.x = e)>) ∧ Q2); M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out

end 0.x, 1.x, 0.x.out, 1.x.out

= {Definition 3.3.107, predicate calculus and theorem 3.3.6}

((P; U0; (0.x = e)⊥S ) ‖ (Q[x]; U1))+m,c,
...
x;

M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out; end 0.x, 1.x, 0.x.out, 1.x.out

= {Laws 2.3.70 and 2.3.69}

((P; (x = e)⊥; U0) ‖ (Q[x]; U1; var
...

1.x))+m,c,
...
x;

M̂m,c ∧ x := 0.x ∧ x.out := 0.x.out; end 0.x, 1.x, 0.x.out, 1.x.out

= {Inverse steps}

(P; (x = e)⊥S ) ‖M̂ Q[x] �

Law 3.3.145 (x :=
snc e; sync) = (x :=

snc e; sync) ‖M̂ sync

Proof.

(x :=
snc e; sync) ‖M̂ sync

= {Definition 3.3.134}

((x :=
snc e; sync; U0(x, c)) ‖ (sync; U1(x, c))); M̂

= {Definitions 3.3.13 and 3.3.124, law 3.3.16}

((S(x, x.outc, c := x.inc, e, c + 1); U0(x, c)) ‖

(S(x, x.outc, c := x.inc, x, c + 1); U1(x, c))); M̂

= {Definition 3.3.128, laws 3.3.114, 3.3.16}

S

true `
c := c + 1 ∧ M(x.inc+1−1, x.inc, x.inc, x′)

∧ M(x, e, x, x.out′c) ∧ {II{x.outi}|i < c}

 ; end 0.c, 1.c, 0.x, 1.x, 0.x.out, 1.x.out

= {Predicate calculus, laws 2.3.119 and 2.3.118}

S(true ` c′ = c + 1 ∧ x′ = x.inc ∧ x.out′c = e)
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= {Law 3.3.16}

S(true ` x := e); S(true ` c, x, x.outc := c + 1, x.inc, x)

= {Definitions 3.3.13 and 3.3.124}

x :=
snc e; sync �

Law 3.3.146 Provided x and y are different variables and that e2 does not depend on x we have:

(x :=
snc e1; sync) ‖M̂ (y :=

snc e2; sync) = (x, y :=
snc e1, e2); sync

Proof.

(x :=
snc e1; sync) ‖M̂ (y :=

snc e2; sync)

= {Definitions 3.3.13 and 2.3.9}

(x, y :=
snc e1, y); sync ‖M̂ (x, y :=

snc x, e2); sync

= {Laws 3.3.10, 3.3.142 and 3.3.137; theorem 3.3.125 and law 3.3.10}

((x, y :=
snc e1, y) ‖M(x, y :=

snc x, e2)); sync

= {Definition 3.3.115, predicate calculus}

S(true ` M(x, e1, x, x′) ∧ M(y, y, e2, y′)); sync

= {Law 2.3.119(twice), definitions 2.3.9 and 3.3.13}

(x, y :=
snc e1, e2); sync �

Law 3.3.147 Provided P and Q are S-healthy we have:

(P ‖m
M̂

Q)[x] v (P[x] ‖
m,x
M̂

Q[x])

We will first show some auxiliary results that will help us structuring the proof of the result

above in a more elegant way.

It is possible to split the effect of alphabet extension when combined with the variable being

renamed by a separating simulation.

Lemma B.0.14. Provided P is S-healthy we have:

P[x]; U0(c,
...
x) = P; U0(c); ED(x, x′, c, 0.c); U0(

...
x)

Proof.

P[x]; U0(c,
...
x)

= {Definition 3.3.82 and 2.3.101}

S(P1 ` P2 ∧ (x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
);

var 0.c,
...

0.x:= c,
...
x; end c,

...
x
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= {Definition 2.2.3, law 2.3.103 and propositional calculus}

S[0](P1[0] ` (P2 ∧ (x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
); U0(c); U0(

...
x))

= {Propositional and predicate calculus}

S[0](P1[0] ` (P2; U0(c); (x′, x.out′c, x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{x.outi} | i < c

}
); U0(

...
x))

= {Definition 2.2.3 and definition 3.3.84}

P; U0(c); ED(x, x′, c, 0.c); U0(
...
x) �

Alphabet extension can be pushed half-way through a separating simulation.

Lemma B.0.15.

var
...

0.x; ED(x, 0.x, c, 0.c); end
...
x= ED(x, x′, c, 0.c); U0(

...
x)

Proof.

ED(x, x′, c, 0.c); U0(
...
x)

= {Definition 2.3.101 and law 2.3.47}

var
...

0.x; ED(x, x′, c, 0.c)
+

...
0.x;

...
0.x:=

...
x; end

...
x

= {Definitions 3.3.84 and 2.2.3, propositional calculus}

var
...

0.x; (true ` ((x′, x.out′c, x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{x.outi} | i < c ∨ i ≥ 0.c

}
∧

...
0.x
′
=

...
0.x) ;

(
...

0.x′,=
...
x)); end

...
x

= {Law 2.3.11}

var
...

0.x; S(true ` ((0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
) ;

(
...

0.x′,
...

x′=
...
x,
...
x)); end

...
x

= {Definition 3.3.84}

var
...

0.x; ED(x, 0.x, c, 0.c); end
...
x �

Applying the final merge predicate to two processes where the alphabet has been extended to

include x is equivalent to applying the merge and extending the alphabet afterwards.
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Lemma B.0.16.

(0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = (x.in1.c−1, x)� c < 1.c� (x, x.outc), x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

R(x, 0.x, 1.x, x′)+c; c := max(0.c, 1.c)


= c := max(0.c, 1.c)[x]

Proof.

By case analysis on c = max(0.c, 1.c)

Case c = 0.c = 1.c:

((0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = (x.in1.c−1, x)� c < 1.c� (x, x.outc), x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);

M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′)∧

{M(x.ini−1, (0.outi � 0.c ≥ i� ini−1),

(1.outi � 1.c ≥ i� ini−1), x.out′i ) | c < i < max(0.c, 1.c)}∧

M(x, 0.x.outc, 1.x.outc, x.out′c)� c < max(0.c, 1.c)� (x.outc := x.outc)∧{
IIx.outi | i < c

}
)


;

c := max(0.c, 1.c)

= {c = 0.c = 1.c, propositional calculus}

(0.x′, 0.x.out′, 0.x.in′ = x, x.out, x.in) ∧ (1.x′, 1.x.out′, 1.x.in′ = x, x.out, x.in);

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);

M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′)∧

{M(x.ini−1, (0.outi � 0.c ≥ i� ini−1),

(1.outi � 1.c ≥ i� ini−1), x.out′i ) | c < i < max(0.c, 1.c)}∧

M(x, 0.x.outc, 1.x.outc, x.out′c)� c < max(0.c, 1.c)� (x.outc := x.outc)∧{
IIx.outi | i < c

}


;

c := max(0.c, 1.c)

= {Law 2.3.11 and propositional calculus}

(M(x, x, x, x′) ∧ x.out := x.out); c := max(0.c, 1.c)

= {Laws 2.3.119 and 2.3.11, propositional calculus}
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c := max(0.c, 1.c)

= {c = 0.c = 1.c, propositional calculus}

c′ = max(0.c, 1.c) ∧

(x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
= {Definition 3.3.82}

c := max(0.c, 1.c)[x]

For the remaining case (c < max(0.c = 1.c)) we will further split on the relationship between

0.c and 1.c. In particular, the proof explores the cases where 1.c is greater than c and all the

possible values of 0.c (i.e., 0.c = 1.c, c < 0.c < 1.c and c = 0.c ∧ 0.c < 1.c). The remaining

sub-cases are symmetric and we do not show them here.

Sub-case 0.c = 1.c ∧ c < 0.c:

((0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = (x.in1.c−1, x)� c < 1.c� (x, x.outc), x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);

M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′)∧

{M(x.ini−1, (0.outi � 0.c ≥ i� ini−1),

(1.outi � 1.c ≥ i� ini−1), x.out′i ) | c < i < max(0.c, 1.c)}∧

M(x, 0.x.outc, 1.x.outc, x.out′c)� c < max(0.c, 1.c)� (x.outc := x.outc)∧{
IIx.outi | i < c

}


;

c := max(0.c, 1.c)

= {0.c = 1.c ∧ c < 0.c, propositional and predicate calculus}

((0.x′, 0.x.out′c, 0.x.in
′ = x.in0.c−1, x, x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = x.in1.c−1, x, x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
); M(x.in0.c−1, 0.x, 1.x, x′) ∧ {M(ini−1, 0.outi, 1.outi, x.out′i ) | c < i < 0.c}∧

M(x, 0.x.outc, 1.x.outc, x.out′c) ∧
{
IIx.outi | i < c

}
 ;

c := max(0.c, 1.c)

= {Law 2.3.11 and propositional calculus}

(M(x.in0.c−1, x.in0.c−1, x.in0.c−1, x′) ∧ {M(ini−1, ini−1, ini−1, x.out′i ) | c < i < 0.c}∧
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M(x, x, x, x.out′c) ∧
{
IIx.outi | i < c

}
); c := max(0.c, 1.c)

= {Law 2.3.119, predicate calculus and law 2.3.11}

((c′, x′, x.out′c = 0.c, x.in0.c−1, x) ∧ {M(ini−1, ini−1, ini−1, x.out′i ) | c < i < 0.c})

= {c′ = 0.c}

(c′, x′, x.out′c = 0.c, x.inc′−1, x) ∧ {M(ini−1, ini−1, ini−1, x.out′i ) | c < i < c′}

= {0.c = 1.c ∧ c < 0.c, propositional calculus}

(c′ = max(0.c, 1.c) ∧

(x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

= {Definition 3.3.82}

c := max(0.c, 1.c)[x]

Sub-case c < 0.c < 1.c:

((0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = (x.in1.c−1, x)� c < 1.c� (x, x.outc), x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);

M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′)∧

{M(x.ini−1, (0.outi � 0.c ≥ i� ini−1),

(1.outi � 1.c ≥ i� ini−1), x.out′i ) | c < i < max(0.c, 1.c)}∧

M(x, 0.x.outc, 1.x.outc, x.out′c)� c < max(0.c, 1.c)� (x.outc := x.outc)∧{
IIx.outi | i < c

}


; c := max(0.c, 1.c)

= {c < 0.c < 1.c, propositional and predicate calculus}

((0.x′, 0.x.out′c, 0.x.in
′ = x.in0.c−1, x, x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = x.in1.c−1, x, x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

M(x.in1.c−1, x.in1.c−1, 1.x, x′)∧

{M(x.ini−1, 0.x.outi, 1.x.outi, x.out′i ) | c < i < 0.c}∧

M(x.in0.c−1, x.in0.c−1, 1.x.out0.c, x.out′i )∧

{M(x.ini−1, x.ini−1, 1.x.outi, x.out′i ) | 0.c < i < 1.c}∧

M(x, 0.x.outc, 1.x.outc, x.out′c) ∧
{
IIx.outi | i < c

}
)


; c := max(0.c, 1.c)

= {Predicate calculus, law 2.3.11}
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

M(x.in1.c−1, x.in1.c−1, x.in1.c−1, x′)∧

{M(x.ini−1, x.ini−1, x.ini−1, x.out′i ) | c < i < 0.c}∧

M(x.in0.c−1, x.in0.c−1, x.out0.c−1, x.out′i )∧

{M(x.ini−1, x.ini−1, x.ini−1, x.out′i ) | 0.c < i < 1.c}∧

M(x, x, x, x.out′c) ∧
{
IIx.outi | i < c

}
)


; c := max(0.c, 1.c)

= {Law 2.3.119, predicate calculus, law 2.3.11}

(c′, x′, x.out′c = 1.c, x.in1.c−1, x) ∧
{
x.out′i = x.ini−1 | c < i < 1.c

}
= {c′ = 1.c and c < 0.c < 1.c, propositional calculus}

c′ = max(0.c, 1.c) ∧ (x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
= {Definition 3.3.82}

c := max(0.c, 1.c)[x]

Sub-case c = 0.c ∧ 0.c < 1.c:

((0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = (x.in1.c−1, x)� c < 1.c� (x, x.outc), x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);

M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′)∧

{M(x.ini−1, (0.outi � 0.c ≥ i� ini−1),

(1.outi � 1.c ≥ i� ini−1), x.out′i ) | c < i < max(0.c, 1.c)}∧

M(x, 0.x.outc, 1.x.outc, x.out′c)� c < max(0.c, 1.c)� (x.outc := x.outc)∧{
IIx.outi | i < c

}


;

c := max(0.c, 1.c)

= {c = 0.c ∧ 0.c < 1.c, propositional and predicate calculus}

((0.x′, 0.x.out′c, 0.x.in
′ = x, x.outc, x.in) ∧

(1.x′, 1.x.out′c, 1.x.in
′ = x.in1.c−1, x, x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

(0.x.out0.c, 1.x.out1.c := 0.x, 1.x);
M(x.in1.c−1, x.in1.c−1, 1.x, x′)∧

{M(x.ini−1, x.ini−1, 1.x.outi, x.out′i ) | c < i < 1.c}∧

M(x, 0.x.outc, 1.x.outc, x.out′c) ∧
{
IIx.outi | i < c

}
 ; c := max(0.c, 1.c)

= {Predicate calculus, law 2.3.11}
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
M(x.in1.c−1, x.in1.c−1, x.in1.c−1, x′)∧

{M(x.ini−1, x.ini−1, x.ini−1, x.out′i ) | c < i < 1.c}∧

M(x, x, 1.x.outc, x.out′c) ∧
{
IIx.outi | i < c

}
)

 ; c := max(0.c, 1.c)

= {Law 2.3.119, predicate calculus, law 2.3.11}

(c′, x′, x.out′c = 1.c, x.in1.c−1, x) ∧
{
x.out′i = x.ini−1 | c < i < 1.c

}
= {c′ = 1.c}

(c′, x′, x.out′c = 1.c, x.inc′−1, x) ∧
{
x.out′i = x.ini−1 | c < i < c′

}
= {c < 0.c < 1.c, propositional calculus}

(c′ = max(0.c, 1.c) ∧

(x′, x.out′c, x.in
′ = (x.inc′−1, x)� c < c′ � (x, x.outc), x.in) ∧{

x.out′i = x.ini−1 | c < i < c′
}
∧

{
II{x.outi} | i < c

}
)

= {Definition 3.3.82}

c := max(0.c, 1.c)[x] �

Lemma B.0.17.

S[0] ◦ S[1](IID); c := max(0.c, 1.c)[x] =

(S[0](ED(x, 0.x, c, 0.c)) ‖ S[1](ED(x, 1.x, c, 1.c))); R(x, 0.x, 1.x, x′)+c; c := max(0.c, 1.c)

Proof.

(S[0](ED(x, 0.x, c, 0.c)) ‖ S[1](ED(x, 1.x, c, 1.c))); R(x, 0.x, 1.x, x′)+c; c := max(0.c, 1.c)

= {Definitions 3.3.84 and 3.3.107}

S[0] ◦ S[1]((true ` (0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = (x.in1.c−1, x)� c < 1.c� (x, x.outc), x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
));

R(x, 0.x, 1.x, x′)+c; c := max(0.c, 1.c)

= {Definition 2.2.3, predicate calculus}

S[0] ◦ S[1]((true ` (0.x′, 0.x.out′c, 0.x.in
′ = (x.in0.c−1, x)� c < 0.c� (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < 0.c
}
∧

{
II{0.x.outi} | i < c ∨ i ≥ 0.c

}
∧

(1.x′, 1.x.out′c, 1.x.in
′ = (x.in1.c−1, x)� c < 1.c� (x, x.outc), x.in) ∧{

1.x.out′i = x.ini−1 | c < i < 1.c
}
∧

{
II{1.x.outi} | i < c ∨ i ≥ 1.c

}
);

R(x, 0.x, 1.x, x′)+c; c := max(0.c, 1.c))

= {Lemma B.0.16}

S[0] ◦ S[1](true ` c := max(0.c, 1.c)[x])
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= {Definition 2.2.3, predicate calculus}

S[0] ◦ S[1](IID); c := max(0.c, 1.c)[x] �

Lemma B.0.18.

M̂m,c
[x] ; end

...
0.x,

...
1.xv S[0] ◦ S[1](ED(x, 0.x, c, 0.c) ‖ ED(x, 1.x, c, 1.c)); M̂m,c,x

Proof.

M̂m,c
[x] ; end

...
0.x,

...
1.x

v {Theorem 3.3.131 and law 3.3.90}

(R(m, 0.m, 1.m,m′)+c)[x]; (c := max(0.c, 1.c))[x]; end 0.m, 1.m, 0.c.1, c,
...

0.x,
...

1.x

= {Law 3.3.87 and lemma B.0.17}

R(m, 0.m, 1.m,m′)+c,x,x.in,x.out; S[0] ◦ S[1](ED(x, 0.x, c, 0.c) ‖ ED(x, 1.x, c, 1.c));

R(x, 0.x, 1.x, x′)+c; c := max(0.c, 1.c); end 0.m, 1.m, 0.c.1, c,
...

0.x,
...

1.x

= {The variables in S[0] ◦ S[1](ED(x, 0.x, c, 0.c) ‖ ED(x, 1.x, c, 1.c))

are not mentioned in R(m, 0.m, 1.m,m′), law 2.3.15}

S[0] ◦ S[1](ED(x, 0.x, c, 0.c) ‖ ED(x, 1.x, c, 1.c)); R(m, 0.m, 1.m,m′)+c,x,x.in,x.out;

R(x, 0.x, 1.x, x′)+c; c := max(0.c, 1.c); end 0.m, 1.m, 0.c.1, c,
...

0.x,
...

1.x

= {Definition 3.3.128}

S[0] ◦ S[1](ED(x, 0.x, c, 0.c) ‖ ED(x, 1.x, c, 1.c)); M̂m,c,x �

We can now prove law 3.3.147 Provided P and Q are S-healthy we have:

(P ‖m
M̂

Q)[x] v (P[x] ‖
m,x
M̂

Q[x])

Proof.

(P ‖m
M̂

Q)[x]

v {Definition 3.3.134, law 3.3.90}

(((P; U0(c,
...
m)) ‖ (Q; U1(c,

...
m)))+c,

...
m)[x]; M̂[x]

= {Laws 3.3.87, 2.3.37 and 2.3.48}

((P; U0(c,
...
m)) ‖ (Q; U1(c,

...
m)))+c,

...
m,

...
x; var

...
0.x; var

...
1.x; M̂[x]; end

...
0.x,

...
1.x

v {Lemma B.0.18}

(((P; U0(c,
...
m)) ‖ (Q; U1(c,

...
m)))+c,

...
m,

...
x; var

...
0.x; var

...
1.x;

S[0] ◦ S[1](ED(x, 0.x, c, 0.c) ‖ ED(x, 1.x, c, 1.c)); M̂m,c,x

= {Predicate calculus}

(((P; U0(c,
...
m)) ‖ (Q; U1(c,

...
m)))+c,

...
m,

...
x;
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((var
...

0.x; ED(x, 0.x, c, 0.c)) ‖ (var
...

1.x; ED(x, 1.x, c, 1.c))); M̂m,c,x

= {Predicate calculus}

((P; U0(c,
...
m); var

...
0.x; ED(x, 0.x, c, 0.c)) ‖

(Q; U1(c,
...
m); var

...
1.x; ED(x, 1.x, c, 1.c)))+c,

...
m,

...
x; M̂m,c,x

= {M̂m,c,x contains an assignment to
...
x; P,Q, separating simulations and

alphabet extension do not mention x′ in their preconditions, law 2.3.49}

((P; U0(c,
...
m); var

...
0.x; ED(x, 0.x, c, 0.c)) ‖

(Q; U1(c,
...
m); var

...
1.x; ED(x, 1.x, c, 1.c)))+c,

...
m,

...
x; end

...
x; M̂m,c,x

v {Predicate calculus}

((P; U0(c,
...
m); var

...
0.x; ED(x, 0.x, c, 0.c); end

...
x)) ‖

(Q; U1(c,
...
m); var

...
1.x; ED(x, 1.x, c, 1.c); end

...
x))+c,

...
m,

...
x; M̂m,c,x

= {Lemma B.0.15, definition 2.3.101}

((P; U0(c,
...
m); ED(x, x′, c, 0.c); U0(

...
x)) ‖

(Q; U1(c,
...
m); ED(x, x′, c, 1.c); U1(

...
x)))+c,

...
m,

...
x; M̂m,c,x

= {Lemma B.0.14}

(P[x]; U0(c,
...
m); U0(

...
x) ‖ (Q[x]; U1(c,

...
m); U1(

...
x)))+c,

...
m,

...
x; M̂m,c,x

= {Law 3.3.90, definition 3.3.134}

P[x] ‖
m,x
M̂

Q[x] �

Law 3.3.148 Provided P and Q are SH3 ◦ S-healthy, we have:

(var x; P; end x) ‖m,c
M̂

Q v var x; (P ‖m,c,x
M̂

Q[x]); end x

Proof.

(var x; P; end x) ‖m,c
M̂

Q

v {Laws 2.3.37, 2.3.41}

(var x; P; var
...

0.x :=
...
x; end

...
0.x; end x) ‖m,c

M̂
(Q; var

...
1.x; end

...
1.x)

v {Laws 3.3.70, 3.3.94, 3.3.93 and 2.3.41}

(var x; P; var
...

0.x :=
...
x; end

...
0.x; end x) ‖m,c

M̂
(var x; Q[x]; var

...
1.x :=

...
x; end

...
1.x; end x)

= {Definition 3.3.134}

((var x; P; var
...

0.x :=
...
x; end

...
0.x; end x; U0(c,

...
m)) ‖

(var x; Q[x]; var
...

1.x :=
...
x; end

...
1.x; end x; U1(c,

...
m)))+c,

...
m; M̂m,c

v {Law 3.3.93 and predicate calculus}

var x; ((P; var
...

0.x :=
...
x; end

...
0.x; end x; U0(c,

...
m)) ‖

(Q[x]; var
...

1.x :=
...
x; end

...
1.x; end x; U1(c,

...
m)))+c,

...
m; end x; M̂m,c; end

...
0.x,

...
1.x
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= {Definition 2.3.101, law 2.3.103 (separating simulations rename all .out variables already)}

var x; ((P; U0(c,
...
m,

...
x)) ‖ (Q[x]; U1(c,

...
m,

...
x)))+c,

...
m; end x; M̂m,c; end

...
0.x,

...
1.x

= {Theorem 3.3.131}

var x; ((P; U0(c,
...
m,

...
x)) ‖ (Q[x]; U1(c,

...
m,

...
x)))+c,

...
m; end x; R(m, 0.m, 1.m,m′);

Rhist(x, 0.x, 1.x, x′); c := max(0.c, 1.c); end
...

0.m,
...

1.m, 0.c, 1.c; end
...

0.x,
...

1.x

= {Laws 3.3.93, 3.3.72}

var x; ((P; U0(c,
...
m,

...
x)) ‖ (Q[x]; U1(c,

...
m,

...
x)))+c,

...
m; R(m, 0.m, 1.m,m′);

Rhist(x, 0.x, 1.x, x′); M(x0.c,1.c, (0.x� 0.c ≥ 1.c� x0.c,1.c), (1.x� 1.c ≥ 0.c� x0.c,1.c), x′);

end x; c := max(0.c, 1.c); end
...

0.m,
...

1.m, 0.c, 1.c; end
...

0.x,
...

1.x

v {Laws 3.3.95, 3.3.93 and 2.3.11, definition 3.3.130}

var x; ((P; U0(c,
...
m,

...
x)) ‖ (Q[x]; U1(c,

...
m,

...
x)))+c,

...
m; R(m, 0.m, 1.m,m′);

R(x, 0.x, 1.x, x′); c := max(0.c, 1.c); end
...

0.m,
...

1.m, 0.c, 1.c; end
...

0.x,
...

1.x; end x

= {Theorem 3.3.131}

var x; ((P; U0(c,
...
m,

...
x)) ‖ (Q[x]; U1(c,

...
m,

...
x)))+c,

...
m; M̂m,x,c; end x

= {Definition 3.3.134}

var x; (P ‖m,c,x
M̂

Q[x]); end x �

Law 3.3.150 (b>S ; b −→sncP) = (b>S ; P)

Proof.

b>S ; b −→sncP

= {Definition 3.3.149}

b>S ; (P� b� sync)

= {Law 3.3.58}

b>S ; P �

Law 3.3.151 ((¬b)>S ; b −→sncP) = ((¬b)>S ; sync)

Proof.

Similar to law 3.3.150. �

Law 3.3.152 b1
−→

snc

(
b2
−→

sncP
)

= (b1 ∧ b2) −→sncP

Proof.

b1
−→

snc

(
b2
−→

sncP
)

= {Definition 3.3.149}

(P� b2 � sync)� b1 � sync

= {Law 3.3.22}
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sync� ¬b1 � (sync� ¬b2 � P)

= {Law 3.3.30}

sync� ¬b1 ∨ ¬b2 � P

= {Propositional calculus, law 2.3.23 and definition 3.3.149}

(b1 ∧ b2) −→sncP �

Law 3.3.153 Provided P and Q are of the form (v :=
snc e; sync) we have:

b→ P ‖M̂ c→ Q = (b ∨ c) −→
snc (b→ P ‖M̂ c→ Q)

Proof.

(b ∨ c) −→
snc (b→ P ‖M̂ c→ Q)

= {Definition 3.3.149}

((P� b� sync) ‖M̂ (Q� c� sync))� b ∨ c� sync

= {Laws 3.3.140 and 3.3.145 (proviso ensures P and Q are in the right form}

(((P ‖M̂ Q)� c� P)� b� (Q� c� sync))� b ∨ c� sync

= {Law 3.3.30}

(((P ‖M̂ Q)� c� P)� b� (Q� c� sync))� b �

((((P ‖M̂ Q)� c� P)� b� (Q� c� sync))� c� sync)

= {Law 3.3.26 (twice)}

((P ‖M̂ Q)� c� P)� b� (Q� c� sync)

= {Laws 3.3.140 and 3.3.145 (proviso ensures P and Q perform at least one sync}

(P� b� sync) ‖M̂ (Q� c� sync)

= {Definition 3.3.149}

b→ P ‖M̂ c→ Q �

Law 3.3.154 Provided (b ∧ c = false) and P is of the form (v :=
snc e; sync) we have:

b>S ; (b→ P ‖M̂ c→ Q) = b>S ; b −→sncP

Proof.

b>S ; (b→ P ‖M̂ c→ Q)

= {Assumption (b ∧ c = false), propositional calculus}

(b ∧ ¬c)>S ; (b→ P ‖M̂ c→ Q)

= {Laws 3.3.47, 3.3.143}

b>S ; (((¬c)>S ; b −→sncP) ‖M̂ ((¬c)>S ; c −→sncQ))
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= {Laws 3.3.151, 3.3.143, 3.3.47 and assumption}

b>S ; (b −→sncP ‖M̂ sync)

= {Definition 3.3.149 and law 3.3.140}

b>S ; ((P ‖M̂ sync)� b� (sync ‖M̂ sync))

= {Law 3.3.145 (twice), definition 3.3.149}

b>S ; b −→sncP �

Law 3.3.155 Provided P and Q are of the form (v :=
snc e; sync) we have:

b −→snc (P ‖M̂ Q) = (b −→sncP) ‖M̂ (b −→sncQ)

Proof.

(b −→sncP) ‖M̂ (b −→sncQ)

= {Definition 3.3.149}

(P� b� sync) ‖M̂ (Q� b� sync)

= {Laws 3.3.140 and 3.3.145 (assumption ensures proviso)}

(P ‖M̂ (Q� b� sync))� b� (Q� b� sync)

= {Laws 3.3.140 and 3.3.27}

((P ‖M̂ Q)� b� (P ‖M̂ sync))� b� sync

= {Law 3.3.27 and definition 3.3.149}

b −→snc (P ‖M̂ Q) �

Law 3.3.156 Provided P is of the form (v :=
snc e; sync) we have:

(b1
−→

sncP) ‖M̂ (b2
−→

sncP) = (b1 ∨ b2) −→sncP

Proof.

(b1
−→

sncP) ‖M̂ (b2
−→

sncP)

= {Definition 3.3.149}

(P� b1 � sync) ‖M̂ (P� b2 � sync)

= {Laws 3.3.140 and 3.3.145}

((P� b1 � sync) ‖M̂ P)� b2 � (P� b1 � sync)

= {Laws 3.3.140 and 3.3.145, predicate calculus}

(P� b1 � P)� b2 � (P� b1 � sync)

= {Laws 3.3.23 and 3.3.30}

P� (b1 ∨ b2)� sync
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= {Definition 3.3.149}

(b1 ∨ b2) −→sncP �

Law 3.3.157 Provided P and Q are of the form (v :=
snc e; sync) we have:

((s ∧ b) −→sncP) ‖M̂ ((s ∧ ¬b) −→sncQ) = s −→snc (P� b� Q)

Proof.

((s ∧ b) −→sncP) ‖M̂ ((s ∧ ¬b) −→sncQ)

= {Definition 3.3.149, laws 3.3.140 and 3.3.145}

(P ‖M̂ (Q� (s ∧ ¬b)� sync))� s ∧ b� (Q� (s ∧ ¬b)� sync)

= {s ∧ b⇒ ((s ∧ ¬b) = false), laws 3.3.25 and 3.3.145}

P� s ∧ b� (Q� (s ∧ ¬b)� sync)

= {Law 3.3.31}

P� s ∧ b� (Q� s� sync)

= {Law 3.3.27 and definition 3.3.149}

s −→snc (P� b� Q) �

Law 3.3.158 Provided (c>S ; P) = (c>S ; P; c>S ) and that P is S healthy, we have:

c>S ; b ∗ P = c>S ; (b ∧ c) ∗ P

Proof.

Let:

F(X) = P; X � b� II

G(X) = P; X � b ∧ c� II

We first show that:

c>S ; Fi(true) = c>S ; Gi(true)

by induction on i:

Case i = 0:

c>S ; F0(⊥)

= {Definition of F0(⊥)}



278 APPENDIX B. PROOFS FROM CHAPTER 3

c>S ;⊥

= {Definition of G0(⊥)}

c>S ; G0(true) �

Case i = n+1:

c>S ; Fn+1(⊥)

= {Definition of Fi(⊥)}

c>S ; ((P; Fn(⊥))� b� II)

= {Laws 3.3.61 and 3.3.62}

((c>S ; P; Fn(⊥))� b ∧ c� (c>S ; II))

= {Assumption}

(c>S ; P; c>S ; Fn(⊥))� b ∧ c� (c>S ; II)

= {Inductive hypothesis}

(c>S ; P; c>S ; Gn(⊥))� b ∧ c� (c>S ; II)

= {Assumption, law 3.3.62}

c>S ; ((P; Gn(⊥))� b ∧ c� II)

= {Definition of Gi+1(⊥)}

c>S ; Gn+1(⊥)

With this result we can prove that c>S ; b ∗ P = c>S ; (b ∧ c) ∗ P:

c>S ; b ∗ P

= {Definition 2.3.82, definition of F, law 2.3.139 (all operators are continuous)}

c>S ;
⊔

i

Fi(true)

= {Law 2.3.136}⊔
i

c>S ; Fi(true)

= {Observation above}⊔
i

c>S ; Gi(true)

= {Laws 2.3.136 and 2.3.139, definition of G}

c>S ; (b ∧ c) ∗ P

Law 3.3.159 (b −→sncP)[x] = b −→sncP[x]

Proof.

(b −→sncP)[x]
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= {Definition 3.3.149}

(P� b� sync)[x]

= {Laws 3.3.89 and 3.3.126, definition 3.3.149}

b −→sncP[x] �

Law 3.3.161 Provided i ≤ k we have:

(s =
[0 .. i] t) ∧ (s =

[0 .. k] t) = (s =
[0 .. k] t)

Proof.

Straightforward from the fact that (s =
[0 .. i] t) gets subsumed by (s =

[0 .. k] t). �

Law 3.3.162 Provided i ≤ c0 and c0 ≤ k we have:

(s =
[i .. k] t) = (s =

[i .. c0] t) ∧ (s =
[c0 .. k] t)

Proof.

Direct from the fact that (s =
[i .. c0] t) and (s =

[c0 .. k] t) together account for (s =
[i .. k] t). �

Law 3.3.163 Provided i ≤ j ≤ k we have:

(s =
[i .. j] t) v (s =

[i .. k] t)

Proof.

Straightforward from the fact that (s =
[i .. j] t)⇒ (s =

[i .. k] t) (as it imposes additional requirements on

s = t) and the definition of refinement. �

Law 3.3.164 (x :=
snc e; sync) ∧ (x.in =

[0 .. c′] x.out′) = (x :=
snc e; sync; (x = e)>S ) ∧ (x.in =

[0 .. c′] x.out′)

Proof.

(x :=
snc e; sync) ∧ (x.in =

[0 .. c′] x.out′)

= {Laws 3.3.166 and 3.3.167}

x :=
snc e; sync ∧ (x.in =

[0 .. c′] x.out′)

= {Definition 3.3.124, law 3.3.16}

S(true ` c, x, x.outc := c + 1, x.inc, e) ∧ (x.in =
[0 .. c′] x.out′)

= {Definition 2.3.1, propositional calculus}

S(true ` c, x, x.outc := c + 1, x.inc, e ∧ (x.in =
[0 .. c′] x.out′)) ∧ (x.in =

[0 .. c′] x.out′)

= {Propositional calculus, definition 2.3.1}

S(true ` c, x, x.outc := c + 1, e, e) ∧ (x.in =
[0 .. c′] x.out′)

= {Definition of assignment, law 3.3.53}

(S(true ` c, x, x.outc := c + 1, e, e); (x = e)>S ) ∧ (x.in =
[0 .. c′] x.out′)
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= {Law 3.3.166, definition 2.3.1, propositional calculus}

S(true ` (c, x, x.outc := c + 1, e, e) ∧ (x.in =
[0 .. c′] x.out′)) ∧ (x.in =

[0 .. c′] x.out′);

(x = e)>S ∧ (x.in =
[0 .. c′] x.out′)

= {Propositional calculus, definition 2.3.1 and law 3.3.166}

(S(true ` c, x, x.outc := c + 1, x.inc, e); (x = e)>S ) ∧ (x.in =
[0 .. c′] x.out′)

= {Law 3.3.16, definition 3.3.124}

(x :=
snc e; sync; (x = e)>S ) ∧ (x.in =

[0 .. c′] x.out′) �

Law 3.3.165 (P�b�Q)∧ (x.in =
[0 .. c′] x.out′) = (P∧ (x.in =

[0 .. c′] x.out′))�b� (Q∧ (x.in =
[0 .. c′] x.out′))

Proof.

(P� b� Q) ∧ (x.in =
[0 .. c′] x.out′)

= {Definition 2.2.1}

((b ∧ P) ∨ (¬b ∧ Q)) ∧ (x.in =
[0 .. c′] x.out′)

= {Propositional calculus}

(b ∧ P ∧ (x.in =
[0 .. c′] x.out′)) ∨ (¬b ∧ Q ∧ (x.in =

[0 .. c′] x.out′))

= {Definition 2.2.1}

(P ∧ (x.in =
[0 .. c′] x.out′))� b� (Q ∧ (x.in =

[0 .. c′] x.out′)) �

Law 3.3.166 Provided P and Q are S-healthy we have:

(P; Q) ∧ (x.in =
[0 .. c′] x.out′) = P ∧ (x.in =

[0 .. c′] x.out′); Q ∧ (x.in =
[0 .. c′] x.out′)

Proof.

P ∧ (x.in =
[0 .. c′] x.out′); Q ∧ (x.in =

[0 .. c′] x.out′)

= {Assumption (P and Q are S))}

P ∧ (x.in′ = x.in) ∧ (x.in =
[0 .. c′] x.out′); Q ∧ (c ≤ c′) ∧ (x.out ≤ x.out′) ∧ (x.in =

[0 .. c′] x.out′)

= {Definition 2.2.3}

∃v0, x0, x.in0, x.out0, c0•

P[v0, x0, x.out0, c0/v′, x′, x.out′, c′] ∧ (x.in0 = x.in) ∧ (x.in =
[0 .. c0] x.out0) ∧

Q[v0, x0, x.out0, x.in0, c0/v, x, x.out, x.in, c] ∧

(c0 ≤ c′) ∧ (x.out0 ≤ x.out′) ∧ (x.in0
=

[0 .. c′] x.out′)

= {Propositional calculus, law 3.3.161, quantifier contract scope}

(∃v0, x0, x.in0, x.out0, c0 • P[v0, x0, x.out0, c0/v′, x′, x.out′, c′] ∧ (x.in0 = x.in) ∧

Q[v0, x0, x.out0, x.in0, c0/v, x, x.out, x.in, c] ∧

(c0 ≤ c′) ∧ (x.out0 ≤ x.out′)) ∧ (x.in =
[0 .. c′] x.out′)
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= {Definition 2.2.3}

((P ∧ (x.in′ = x.in)); (Q ∧ (c ≤ c′) ∧ (x.out ≤ x.out′))) ∧ (x.in =
[0 .. c′] x.out′)

= {Assumption (P and Q are S)}

(P; Q) ∧ (x.in =
[0 .. c′] x.out′) �

Law 3.3.167 Provided P and Q are S-healthy we have:

P; Q ∧ (x.in =
[0 .. c′] x.out′) = P ∧ (x.in =

[0 .. c′] x.out′); Q ∧ (x.in =
[0 .. c′] x.out′)

Proof.

P ∧ (x.in =
[0 .. c′] x.out′); Q ∧ (x.in =

[0 .. c′] x.out′)

= {Assumption (P and Q are S))}

P ∧ (x.in′ = x.in) ∧ (x.in =
[0 .. c′] x.out′); Q ∧ (c ≤ c′) ∧ (x.out ≤ x.out′) ∧ (x.in =

[0 .. c′] x.out′)

= {Definition 2.2.3}

∃v0, x0, x.in0, x.out0, c0•

P[v0, x0, x.out0, c0/v′, x′, x.out′, c′] ∧ (x.in0 = x.in) ∧ (x.in =
[0 .. c0] x.out0) ∧

Q[v0, x0, x.out0, x.in0, c0/v, x, x.out, x.in, c] ∧

(c0 ≤ c′) ∧ (x.out0 ≤ x.out′) ∧ (x.in0
=

[0 .. c′] x.out′)

= {Law 3.3.161}

(∃v0, x0, x.in0, x.out0, c0 • P[v0, x0, x.out0, c0/v′, x′, x.out′, c′] ∧ (x.in0 = x.in) ∧

Q[v0, x0, x.out0, x.in0, c0/v, x, x.out, x.in, c] ∧

(c0 ≤ c′) ∧ (x.out0 ≤ x.out′) ∧ (x.in0
=

[0 .. c′] x.out′))

= {Definition 2.2.3}

(P ∧ (x.in′ = x.in)); (Q ∧ (c ≤ c′) ∧ (x.out ≤ x.out′) ∧ (x.in =
[0 .. c′] x.out′))

= {Assumption (P and Q are S)}

P; Q ∧ (x.in =
[0 .. c′] x.out′) �

Law 3.3.168 Provided P is SH3 and a S-healthy design, we have:

P; II ∧ (x.in =
[0 .. c′] x.out′) = P ∧ (x.in =

[0 .. c′] x.out′)

Proof.

P; II ∧ (x.in =
[0 .. c′] x.out′)

= {Law 3.3.167}

P ∧ (x.in =
[0 .. c′] x.out′); II ∧ (x.in =

[0 .. c′] x.out′)

= {Law 3.3.166}
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(P; II) ∧ (x.in =
[0 .. c′] x.out′)

= {Theorem 3.3.10}

P ∧ (x.in =
[0 .. c′] x.out′) �

Law 3.3.169 Provided P is S-healthy we have:

((b ∗ P) ∧ (x.in =
[0 .. c′] x.out′)) = b ∗ (P ∧ (x.in =

[0 .. c′] x.out′))

Proof. Let F = P� b� II, then we have:

(b ∗ P) ∧ (x.in =
[0 .. c′] x.out′))

= {Definition 2.3.82, definition of F above and law 2.3.139 (all operators are continuous)}⊔
i

Fi(⊥)

 ∧ (x.in =
[0 .. c′] x.out′)

= {Laws 3.3.168 and 2.3.135}⊔
i

(Fi(⊥) ∧ (x.in =
[0 .. c′] x.out′))

= {Law 2.3.139, definition of F and definition 2.3.82}

b ∗ (P ∧ (x.in =
[0 .. c′] x.out′)) �

Law 3.3.170 Provided P is S and neither P nor S mention x we have:

((x = e)>S ; P[x]) ∧ (x.in =
[0 .. c′] x.out′) = ((x = e)>S ; P[x]; (x = e)>S ) ∧ (x.in =

[0 .. c′] x.out′)

In order to prove this result, we first show three lemmas that help structuring the proof.

Lemma B.0.19.

(∃x0 • x = e ∧ E(x, c0)[x0, 0.x.out/x′, x.out′] ∧ (¬x0 = e) ∧ (x.in =
[0 .. 0.c] 0.x.out)) = false

Proof.

∃x0 • x = e ∧ E(x, c0)[x0, 0.x.out/x′, x.out′] ∧ (¬x0 = e) ∧ (x.in =
[0 .. 0.c] 0.x.out)

= {Definition of E(x, c′) then case analysis on c = c0}

Case c = c0

∃x0 • x = e ∧ (x.in =
[0 .. 0.c] 0.x.out) ∧ (x0, 0.x.outc, x.in′ = (x.inc0−1, x)� c < c0 � (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < c0
}
∧

{
0.x.out′i = x.outi | i < c

}
∧ ¬(x0 = e)

= {Case c = c0, propositional calculus}

∃x0 • x = e ∧ (x.in =
[0 .. 0.c] 0.x.out) ∧ (x0, 0.x.outc, x.in′ = x, x.outc, x.in) ∧ ¬(x0 = e) ∧
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{
0.x.out′i = x.outi | i < c

}
= {Contradiction: x0 = e and ¬(x0 = e)}

false

Case c < c0:

∃x0 • x = e ∧ (x.in =
[0 .. 0.c] 0.x.out) ∧ (x0, 0.x.outc, x.in′ = (x.inc0−1, x)� c < c0 � (x, x.outc), x.in) ∧{

0.x.out′i = x.ini−1 | c < i < c0
}
∧

{
0.x.out′i = x.outi | i < c

}
∧ ¬(x0 = e)

= {Case c < c′, propositional calculus}

∃x0 • x = e ∧ (x.in =
[0 .. 0.c] 0.x.out) ∧ (x0, 0.x.outc, x.in′ = x.inc0−1, e, x.in) ∧{

0.x.out′i = x.ini−1 | c < i < c0
}
∧

{
0.x.out′i = x.outi | i < c

}
∧ ¬(x0 = e)

= {Propositional calculus}

∃x0 • x = e ∧ (x.in =
[0 .. 0.c] 0.x.out) ∧ (x0, x.in′ = x.inc0−1, x.in) ∧

0.x.out = x.out0...c−1
a 〈e〉 a 〈x.inc, . . . , x.inc0−1〉 ∧ ¬(x0 = e)

= {Propositional calculus (x.in =
[0 .. c0] 0.x.out)}

∃x0 • x = e ∧ (x.in =
[0 .. 0.c] 0.x.out) ∧ (x0, x.in′ = x.inc0−1, x.in) ∧

0.x.out = x.out0...c−1
a 〈e〉 a 〈0.x.outc, . . . , 0.x.outc0−1〉 ∧ ¬(x0 = e)

= {Propositional calculus (x.inc′−1 = x.outc′−1)}

∃x0 • x = e ∧ (x.in =
[0 .. 0.c] 0.x.out) ∧ (x0, x.in′ = x.inc0−1, x.in) ∧

0.x.out = x.out0...c−1
a 〈e〉 a 〈e, . . . , e〉 ∧ ¬(x0 = e)

= {(x0 = x.inc0−1) ∧ (x.inc0−1 = 0.x.outc0−1)⇒ x0 = e (contradiction)}

false �

Lemma B.0.20. Provided neither P nor S mention x we have:

(x = e ∧ (S(P2 ∧ E(x, c′)); S(¬x = e)) ∧ (x.in =
[0 .. c′] x.out′)) = false

Proof.

(x = e ∧ (S(P2 ∧ E(x, c′)); S(¬x = e)) ∧ (x.in =
[0 .. c′] x.out′)

= {Definition 2.2.3, assumption}

(x = e ∧ (x.in =
[0 .. c′] x.out′) ∧

(∃x0, c0, v0 • P2[c0, v0/c′, v′] ∧ E(x, c′)[x0, c0/v0, c′] ∧

(¬x0 = e) ∧ S[c0, v0/c′, v′] ∧ S[c0, v0/c, v])

= {Propositional calculus}

x = e ∧ (x.in =
[0 .. c′] x.out′) ∧ (∃c0, x.out0, v0 • P2[c0, v0, x.out0/c′, v′, x.out′] ∧

S[c0, v0, x.out0/c′, v′, x.out′] ∧ S[c0, v0, x.out0/c, v, x.out] ∧
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(∃x0 • x = e ∧ E(x, c0)[x0, x.out0/x′, x.out′] ∧ (¬x0 = e) ∧ (x.in =
[0 .. 0.c] 0.x.out)))

= {Lemma B.0.19 and propositional calculus}

false �

Lemma B.0.21.

(x = e ∧ P[x] ∧ (x.in =
[0 .. c′] x.out′)) = (x = e ∧ (P[x]; (x = e)>S ) ∧ (x.in =

[0 .. c′] x.out′))

Proof.

(x = e ∧ (P[x]; (x = e)>S ) ∧ (x.in =
[0 .. c′] x.out′))

= {Theorem 3.3.6, definitions 2.3.1 and 3.3.82, propositional calculus}

x = e ∧ S(S(¬ok) ∨ S(¬P1); S(true) ∨ (S(P2 ∧ E(x, c′)); S(¬x = e)) ∨

(ok′ ∧ S(P2 ∧ E(x, c′)); S(II))) ∧ (x.in =
[0 .. c′] x.out′)

= {Theorem 3.2.9, law 2.2.8 and propositional calculus}

x = e ∧ S(S(¬ok) ∨ S(¬P1); S(true) ∨ (ok′ ∧ S(P2 ∧ E(x, c′))) ∨

(x = e ∧ (S(P2 ∧ E(x, c′)); S(¬x = e)) ∧ (x.in =
[0 .. c′] x.out′))) ∧ (x.in =

[0 .. c′] x.out′)

= {Lemma B.0.20 and propositional calculus}

x = e ∧ S(S(¬ok) ∨ S(¬P1); S(true) ∨ (ok′ ∧ S(P2 ∧ E(x, c′)))) ∧ (x.in =
[0 .. c′] x.out′)

= {Theorem 3.2.14, propositional calculus, definition 2.3.1}

x = e ∧ S(P1 ` P2 ∧ E(x, c′)) ∧ (x.in =
[0 .. c′] x.out′)

= {Definition 3.3.82, P is S}

x = e ∧ P[x] ∧ (x.in =
[0 .. c′] x.out′) �

With these results we can now prove the result we wanted:

((x = e)>S ; P[x]) ∧ (x.in =
[0 .. c′] x.out′) = ((x = e)>S ; P[x]; (x = e)>S ) ∧ (x.in =

[0 .. c′] x.out′)

Proof.

((x = e)>S ; P[x]) ∧ (x.in =
[0 .. c′] x.out′)

= {Definition 3.3.34, laws 3.3.33, 3.3.7, 3.3.9 and 3.3.165}

(P[x] ∧ (x.in =
[0 .. c′] x.out′))� x = e� (> ∧ (x.in =

[0 .. c′] x.out′))

= {Definition 2.2.1, lemma B.0.21}

((P[x]; (x = e)>S ) ∧ (x.in =
[0 .. c′] x.out′))� x = e� (> ∧ (x.in =

[0 .. c′] x.out′))

= {Laws 3.3.165, 3.3.7, 3.3.9 and 3.3.33}

((II� x = e� >); P[x]; (x = e)>S ) ∧ (x.in =
[0 .. c′] x.out′)

= {Definition 3.3.34}
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((x = e)>S ; P[x]; (x = e)>S ) ∧ (x.in =
[0 .. c′] x.out′) �

Law 3.3.171 Provided P is H3 and S we have:

((x = e)>; (b ∗ P)[x]) ∧ (x.in =
[0 .. c′] x.out′) v ((x = e)>; (b ∧ x = e) ∗ P[x]) ∧ (x.in =

[0 .. c′] x.out′)

Proof.

((x = e)>; (b ∗ P)[x]) ∧ (x.in =
[0 .. c′] x.out′)

v {Laws 3.3.91, 3.3.166 and 3.3.167}

(x = e)>; (b ∗ P[x]) ∧ (x.in =
[0 .. c′] x.out′)

= {Laws 3.3.169 and 3.3.158 (law 3.3.170 ensures proviso)}

(x = e)>; (b ∧ x = e) ∗ P[x] ∧ (x.in =
[0 .. c′] x.out′)

= {Laws 3.3.169, 3.3.167 and 3.3.166}

((x = e)>; (b ∧ x = e) ∗ P[x]) ∧ (x.in =
[0 .. c′] x.out′) �
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Appendix C

Proofs from Chapter 4

Unless stated otherwise, the proofs of the laws in this section are a direct consequence of the

semantics described in section 4.1 and the corresponding property in the underlying operator in

the synchronous theory.

Law 4.1.13 P # (Q # S ) = (P # Q) # S

Law 4.1.14 (II # P) v P

Law 4.1.15 (⊥ # P) = ⊥

Law 4.1.16 P ‖

HC Q = Q ‖

HC P

Law 4.1.17 P ‖

HC (Q ‖

HC S ) = (P ‖

HC Q) ‖HC S

Law 4.1.18 (P ‖

HCII) = P

Law 4.1.19 (P ‖

HC⊥) = ⊥

Law 4.1.20 x :=
HC e # (P ‖

HC Q) = (x :=
HC e # P) ‖HC (delay # Q)

Law 4.1.21 x, y :=
HC e1, e2 # (P ‖

HC Q) = (x :=
HC e1 # P) ‖HC (y :=

HC e2 # Q)

Law 4.1.22

(ch?x # P) ‖HC (ch!e # Q) = (x, ch?, ch!, ch :=
HC e, true, true, e) # (P ‖

HC Q)

Law 4.1.23

(ch?x # P) ‖HC (ch!e # Q) ‖HC (ch?y # R) = (x, y, ch?, ch!, ch :=
HC e, e, true, true, e) # (P ‖

HC Q ‖

HC R)

287
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Law 4.1.24���������������priAlt


case ch1?x: P1 # break#

〈guard list〉#

default: Pn


��������������� =

���������������priAlt


case ch1?x: P1 # break#

default:

��������priAlt

 〈guard list〉#

default: Pn


��������

���������������

We begin by proving that a priAlt command with a default guard does not iterate. This is not

a novel result as priAlts with default clauses are defined to not to iterate. The importance of this

result is that we can actually show this behaviour from the semantics.

Lemma C.0.22. Provided that P is a list of case statements, we have that:��������priAlt

 case ch1?x: P1 # break#

default: P2


�������� = ch1? :=

snc true; m :=
snc ch1.inc; sync; P1 � ch1!.inc � P2

Proof.

For the proof let’s consider P = case ch1?x: P1 # break # default: P2. priAlts with deeper case

lists can be proved in a similar way.

�
priAlt {P}

�
= {Assumption, definitions 4.1.9, 4.1.10 and 4.1.12}

var res :=
snc false; µX•

II� res� (ch? :=
snc true; (res,m :=

snc true, ch.inc; sync; P1+res � ch!.inc � II));

II� res� (res :=
snc true; P2+res);

II� res� sync; X;

end res

= {Law 2.3.80}

var res :=
snc false;

II� res� (ch? :=
snc true; (res,m :=

snc true, ch.inc; sync; P1+res � ch!.inc � II));

II� res� (res :=
snc true; P2+res);

II� res� sync;
�
priAlt {P}

�
;

end res

= {Laws 3.3.32 and 3.3.25}

var res;

res :=
snc false; (ch? :=

snc true; (res,m :=
snc true, ch.inc; sync; P1+res � ch!.inc � II));

II� res� (res :=
snc true; P2+res);

II� res� sync;
�
priAlt {P}

�
;
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end res

= {Laws 3.3.32 and 3.3.16 and predicate calculus}

var res; ch? :=
snc true;

(m :=
snc ch.inc; sync; P1+res; res :=

snc true� ch!.inc � res :=
snc false);

II� res� (res :=
snc true; P2+res);

II� res� sync;
�
priAlt {P}

�
;

end res

= {Laws 3.3.33, 3.3.32 and 3.3.25, predicate calculus}

var res; ch? :=
snc true;

(m :=
snc ch.inc; sync; P1+res; res :=

snc true� ch!.inc � (P2+res; res :=
snc true));

II� res� sync;
�
priAlt {P}

�
;

end res

= {Laws 3.3.33, 3.3.32 and 3.3.16}

var res; (ch? :=
snc true; m :=

snc ch.inc; sync; P1+res � ch!.inc � P2+res); res :=
snc true; end res

= {Laws 2.3.40, predicate calculus and definitions 4.1.10 and 4.1.12}

ch? :=
snc true; m :=

snc ch.inc; sync; P1 � ch!.inc � P2 �

We can now prove law 4.1.24:

Proof.

�
priAlt {case ch1?x: P1 # break # case ch2?y: P2 # break # default: P3}

�
= {Lemma C.0.22}

ch1? :=
snc true; (x :=

snc ch1.inc; sync; P1)� ch1!.inc �

(ch2? :=
snc true; (y :=

snc ch2.inc; sync; P2)� ch2!.inc � P3)

= {Lemma C.0.22}

ch1? :=
snc true; (x :=

snc ch1.inc; sync; P1)� ch1!.inc ��
priAlt {case ch2?y: P2 # break # default: P3}

�
= {Lemma C.0.22}�

priAlt
{
case ch1?x: P1 # break # default:

�
priAlt {〈guard list〉 # default: Pn}

�}�
�

Law 4.1.25 Provided that P is a SH3, S-healthy design and it does not mention res we have that:

priAlt {case ch?x: P # break} = ch?x # P

Proof.

Let
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F(X) = II� res� (ch?, res,m :=
snc true, true, ch.inc; sync; P� ch!.inc � ch? :=

snc true; sync; X)

G(X) = ch?,m :=
snc true, ch.inc; sync; P� ch!.inc � ch? :=

snc true; sync; X

We begin by observing that:

var res := false; Fn(⊥); end res = Gn(⊥)

We show this result by induction on n:

Base case (n = 0):

var res := false; F0(⊥); end res

= {F0(⊥) = ⊥, law 3.3.8 and predicate calculus}

⊥

= {G0(⊥) = ⊥}

G0(⊥)

Inductive hypothesis: var res := false; Fi(⊥); end res = Gi(⊥)

Inductive step (n = i+1):

var res := false; Fi+1(⊥); end res

= {Definition of Fn(⊥)}

var res := false;

II� res� (ch?, res,m :=
snc true, true, ch.inc; sync; P� ch!.inc � ch? :=

snc true; sync; Fi(⊥));

end res

= {Laws 3.3.32, 3.3.16, 3.3.25}

var res;

(ch?, res,m :=
snc true, true, ch.inc; sync; P� ch!.inc � res, ch? :=

snc false, true; sync; Fi(⊥));

end res

= {Definitions 2.2.18, 2.2.19 and 2.2.1, propositional calculus}

(var res; ch?, res,m :=
snc true, true, ch.inc; sync; P; end res)

� ch!.inc �

(var res; res, ch? :=
snc false, true; sync; Fi(⊥); end res)

= {Laws 3.3.17, 2.3.47, 2.3.48 and 2.3.40}

(ch?,m :=
snc true, ch.inc; sync; var res; end res; P)
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� ch!.inc �

(ch? :=
snc true; sync; var res; res :=

snc false; Fi(⊥); end res)

= {Inductive hypothesis, laws 3.3.70 and 3.3.9}

(ch?,m :=
snc true, ch.inc; sync; P)� ch!.inc � (ch? :=

snc true; sync; Gi(n))

= {Definition of Gn(⊥)}

Gi+1(⊥)

With this result we can show that:

priAlt {case ch?x: P # break}

= {Definitions 4.1.9 and 4.1.10}

var res :=
snc false; µX • II� res�

(ch? :=
snc true; (res,m :=

snc true, ch.inc; sync; P� ch!.inc � II)); (II� res� sync; X);

end res

= {Laws 3.3.33, predicate calculus}

var res :=
snc false; µX • II� res�

(ch? :=
snc true; (res,m :=

snc true, ch.inc; sync; P� ch!.inc � II); II� res� sync; X);

end res

= {Laws 3.3.33, predicate calculus}

var res :=
snc false; µX • II� res�

(ch? :=
snc true; (res,m :=

snc true, ch.inc; sync; P; II� ch!.inc � II; sync; X)); end res

= {Assumption (P is SH3), laws 3.3.10, 3.3.9}

var res :=
snc false; µX • II� res�

(ch? :=
snc true; (res,m :=

snc true, ch.inc; sync; P� ch!.inc � sync; X)); end res

= {Predicate calculus}

var res :=
snc false; µX • II� res�

(ch? :=
snc true; res,m :=

snc true, ch.inc; sync; P� ch!.inc � ch? :=
snc true; sync; X); end res

= {Definition of F above, laws 2.3.139, 2.3.136 and 2.3.135}⊔
var res :=

snc false; F(⊥); end res

= {Result above}⊔
G(⊥)

= {Law 2.3.139 and definition of G above}

µX • ch? :=
snc true; (m :=

snc ch.inc; sync; P� ch!.inc � sync; X)

= {Law 3.3.103, predicate calculus, definition 4.1.7}

ch?x # P �
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Theorem 4.2.2 delay = II1

Proof.

Straightforward from definitions 4.2.1 and 4.1.5. �

Theorem 4.2.4 x :=
HC e = (x := e)1

Proof.

Straightforward from definitions 4.2.3 and 4.1.1. �

Law 4.2.5 (var x; P; (x := e)1; Q; end x) = (var x; P; (x := e)1; (x = e)>S ; Q; end x)

Proof.

Straightforward from the fact that the law is in the context of the theory synchronous designs

(this provides the feedback loop for the variable x) and the fact that the variable is local (it will not

be shared by any other program executing in sequence or in parallel with the program where the

variable is declared. The result follows directly from law 3.3.164. �

Law 4.2.6 (var x; P; (x := e)1; Q; end x) = (var x; P; (x := e)1; (x = e)⊥S ; Q; end x)

Proof.

Similar to the proof of law 4.2.5. �

Law 4.2.9 (b)>; b ∗ P� Q = (b)>; P; b ∗ (P)� Q

Proof.

Straightforward from definition 4.2.7 and law 3.3.100. �

Law 4.2.10 (¬b)>; b ∗ P� Q = (¬b)>; Q

Proof.

Straightforward from definition 4.2.7 and law 3.3.98. �

Law 4.2.17 ch?x = µX • in-req(ch); ((x := in(ch))1 � wr(ch)� delay; X)

Proof.

Straightforward from definitions 4.1.7, 4.2.11, 4.2.14 and 4.2.15. �

Law 4.2.18 ch!e = µX • out-req(ch); out(ch, e); (delay� rd(ch)� delay; X)

Proof.

Straightforward from definitions 4.1.8, 4.2.12, 4.2.13 and 4.2.16. �

Law 4.2.19 (wr(ch))>S ; in-req(ch) = in-req(ch); (wr(ch))>S

Proof.

Straightforward from definitions 4.2.14 and 4.2.11, and law 3.3.56. �

Law 4.2.20 (rd(ch))>S ; out-req(ch) = out-req(ch); (rd(ch))>S
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Proof.

Straightforward from definitions 4.2.13 and 4.2.12, and law 3.3.56. �

Law 4.2.21 (¬rd(ch))>S ; out(ch, e) = (¬rd(ch))>S ; out(ch, e); (¬rd(ch))>S

Proof.

(¬rd(ch))>S ; out(ch, e); (¬rd(ch))>S
= {Definitions 3.3.34 and 4.2.16, law 3.3.32}

(¬rd(ch))>S ; ((ch :=
snc e; II)� ¬rd(ch)[e/ch]� (ch :=

snc e;>))

= {Predicate calculus, rd(ch) does not mention ch}

(¬rd(ch))>S ; (ch :=
snc e� ¬rd(ch)� >)

= {Definition 3.3.34; laws 3.3.33 and 3.3.7}

(ch :=
snc e� ¬rd(ch)� >)� ¬rd(ch)� >

= {Laws 3.3.26, 3.3.7 and 3.3.63}

(II� ¬rd(ch)� >); ch :=
snc e

= {Definitions 3.3.34 and 4.2.16}

(¬rd(ch))>S ; out(ch, e) �

Law 4.2.22 (in-req(ch); P)� wr(ch)� (in-req(ch); Q) = in-req(ch); (P� wr(ch)� Q)

Proof.

Straightforward from definitions 4.2.11 and 4.2.14 and law 3.3.32. �

Law 4.2.23 (out-req(ch); P)� rd(ch)� (out-req(ch); Q) = out-req(ch); (P� rd(ch)� Q)

Proof.

Straightforward from definitions 4.2.12 and 4.2.13 and law 3.3.32. �

Law 4.2.24 (out(ch, e); P)� rd(ch)� (out(ch, e); Q) = out(ch, e); (P� rd(ch)� Q)

Proof.

Straightforward from definitions 4.2.16 and 4.2.13 and law 3.3.32. �

Law 4.2.25 ¬DIR-req(ch); DIR-req(ch) = DIR-req(ch)

Proof.

Direct from definitions 4.2.11 and 4.2.12 and law 3.3.16. �

Law 4.2.26 DIR-req(ch);¬DIR-req(ch) = ¬DIR-req(ch)

Proof.

Similar to proof of law 4.2.25. �

Law 4.2.27 in-req(ch); (v :=
snc e)1 = in-req(ch)1 ‖M̂ (v :=

snc e)1
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Proof.

in-req(ch); (v :=
snc e)1

= {Definitions 4.2.3, 4.2.11}

ch? :=
snc true; v :=

snc e; sync

= {Law 3.3.16, predicate calculus}

true→ (ch?, v :=
snc true, e); sync

= {Law 3.3.155}

true→ (ch? :=
snc true); sync ‖M̂ true→ (v :=

snc e); sync

= {Predicate calculus, Definitions 4.2.3, 4.2.11}

in-req(ch)1 ‖M̂ (v :=
snc e)1 �

Law 4.2.28 out-req(ch); (v :=
snc e)1 = out-req(ch)1 ‖M̂ (v :=

snc e)1

Proof.

Similar to the proof of law 4.2.27. �

Law 4.2.29 Provided there are no external requests for communication over ch we have that:

(s1 ∨ s2) −→snc in-req(ch)1 ‖M̂ b −→snc (v :=
snc e)1 = b −→snc (v :=

snc e)1[(s1 ∨ s2)/rd(ch)]

Proof.

(s1 ∨ s2) −→snc in-req(ch)1 ‖M̂ b −→snc (v :=
snc e)1

= {Definitions 3.3.149 and 4.2.11}

((ch?c
:=
snc true; sync)� (s1 ∨ s2)� sync) ‖M̂ (v :=

snc e)1 � b� sync

= {Law 3.3.9, definition 3.3.124, predicate calculus}

(ch?c
:=
snc (s1 ∨ s2); sync) ‖M̂ ((v :=

snc e)1 � b� sync)

= {Laws 3.3.140, 3.3.145 and 3.3.146}

((ch?c, v :=
snc (s1 ∨ s2), e); sync)� b� (ch?c

:=
snc (s1 ∨ s2); sync))

= {ch?c
:=
snc (s1 ∨ s2) is executed unconditionally, b does not depend on ch?c, definition 3.3.149}

ch?c
:=
snc (s1 ∨ s2); b −→snc (v :=

snc e)1

= {ch?c
:=
snc (s1 ∨ s2) is S3, no external requests over ch, synchronous theory}(

ch?.outc :=
snc (s1 ∨ s2) ∧ (ch?.in′ = ch?.in); b −→snc (v :=

snc e)1
)
∧ (ch?.in =

[0 .. c] ch?.out′)

= {Law 3.3.166, predicate calculus, inverse steps}

ch?.inc
:=
snc (s1 ∨ s2); b −→snc (v :=

snc e)1

= {Law 3.3.16 and definition 4.2.13}

b −→snc (v :=
snc e)1[(s1 ∨ s2)/rd(ch)] �



295

Law 4.2.30 Provided there are no external requests for communication over ch we have that:

(s1 ∨ s2) −→sncout-req(ch)1 ‖M̂ b −→snc (v :=
snc e)1 = b −→snc (v :=

snc e)1[(s1 ∨ s2)/wr(ch)]

Proof.

Similar to the proof of law 4.2.29. �

Law 4.2.31 Provided that ch = ARB, and there are no external requests for communication over

ch we have that:

s1
−→

sncout(ch, e1)1 ‖M̂ s2
−→

sncout(ch, e2)1 ‖M̂ b −→snc (v :=
snc e)1 v

b −→snc (v :=
snc e)1[SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB))/in(ch)]

Proof.

s1
−→

sncout(ch, e1)1 ‖M̂ s2
−→

sncout(ch, e2)1 ‖M̂ b −→snc (v :=
snc e)1

= {Definition 4.2.16}

s1
−→

snc (ch :=
snc e1)1 ‖M̂ s2

−→

snc (ch :=
snc e2)1 ‖M̂ b −→snc (v :=

snc e)1

= {Definition 3.3.149, law 3.3.28, assumption (ch = ARB)}

(ch :=
snc (e1 � s1 � ARB))1 ‖M̂ (ch :=

snc (e2 � s2 � ARB))1 ‖M̂ b −→snc (v :=
snc e)1

v {Similar reasoning to the one applied in proof of law 4.2.29}

(ch.outc :=
snc SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB)); b −→snc (v :=

snc e)1

= {Law 3.3.16 and predicate calculus}

b −→snc (v :=
snc e)1[SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB))/ch.outc]

= {Synchronous theory, P is S2, predicate calculus}

b −→snc (v :=
snc e)1[SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB))/ch.inc]

= {Definition 4.2.15}

b −→snc (v :=
snc e)1[SELECT (ARB, (e1 � s1 � ARB), (e2 � s2 � ARB))/in(ch)] �

Law 4.2.32 Provided there are no external in-req(ch) events we have that:

(v :=
snc e)1 = (v :=

snc e)1[false/rd(ch)]

Proof.

(v :=
snc e)1

= {Definitions 3.3.13 and 3.3.124, theorem 3.3.6, predicate calculus}

S(true ` v′ = e; sync)

= {Assumption (no external in-req(ch) events), 3.3.124 and 4.2.11, law 3.3.16}

S(true ` v′ = e; sync ∧ ch?.out′c = false)
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= {Synchronous theory (ch?.in =
[0 .. c] ch?.out), definition 2.3.1 and predicate calculus}

(v :=
snc e; sync)[false/ch?.inc]

= {Definitions 4.2.13 and 4.2.1}

(v :=
snc e)1[false/rd(ch)] �

Law 4.2.33 Provided there are no external out-req(ch) events we have that:

(v :=
snc e)1 = (v :=

snc e)1[false/wr(ch)]

Proof.

Similar to proof of law 4.2.32. �

Law 4.2.37 g>; case (a; g ? P1 | P2) = g>; a; P1

Proof.

Direct from definitions 4.2.36 and 4.2.34 together with law 3.3.58. �

Law 4.2.38 (¬g)>; case (a; g ? P1 | P2) = (¬g)>; a; P2

Proof.

Direct from definitions 4.2.36 and 4.2.34 together with law 3.3.59. �

Law 4.2.39 (g1)>S ; case (a1; g1 ? P1 | · · · | an; gn ? Pn | P) = (g1)>S ; a1; P1

Proof.

Direct from definitions 4.2.36 and 4.2.34 together with law 3.3.58. �

Law 4.2.40 (¬g1)>S ; case (a1; g1 ? P1 | a2; g2 ? P2 | . . . ) = (¬g1)>S ; a1; case (a2; g2 ? P2 | . . . )

Proof.

Direct from definitions 4.2.36 and 4.2.34 together with law 3.3.59. �

Law 4.2.43 (chk(g))>; req(g) = req(g); (chk(g))>

Proof.

By case analysis on g together with laws 4.2.19 and 4.2.20. �

Law 4.2.44 (req(g); P)� chk(g)� (req(g); Q) = req(g); (P� chk(g)� Q)

Proof.

Direct by case analysis on g, definitions 4.2.42 and 4.2.41 and laws 4.2.22 , 4.2.23 and 4.2.24.

�
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Law 4.2.46 Prialt with default clause equivalence

priAlt



case g1: P1 # break#
...

case gn: Pn # break#

default: Pd


= case



req(g1); chk(g1) ? act(g1); P1 |

...

req(gn); chk(gn) ? act(gn); Pn |

Pd


Proof.

From law 4.1.24 it is enough to show the validity of this law for the case of a priAlt with one

case expression and a default statement. To keep the proof concise, we will assume the first guard

performs an input over channel ch1 (a similar proof will also hold for an output guard).

priAlt {case ch1?x: P1 # break # default: P2}

= {Lemma C.0.22}

ch1? :=
snc true; (m :=

snc ch1.inc; sync; P1 � ch1!.inc � P2)

= {Definitions 4.2.11, 4.2.14, 4.2.15, 4.2.3 and 4.2.34}

case
(
in-req(ch1); wr(ch1); (m :=

snc in(ch))1 ? P2
)

�

Law 4.2.47 Prialt without default clause equivalence

priAlt


case g1: P1 # break;
...

case gn: Pn # break

 = µX • case



req(g1); chk(g1) ? act(g1); P1 |

...

req(gn); chk(gn) ? act(gn); Pn |

II1; X


Proof.

Similar to the proof of law 4.1.25. �
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Appendix D

Proofs from Chapter 5

Law 5.1.9 ∗(b −→sncP) = (P� b� II); ∗(b −→sncP)

Proof.

∗ (b −→sncP)

= {Definitions 5.1.8 and 3.3.96}

µX • (b −→sncP; X)� b� II

= {Law 3.3.57, predicate calculus and definitions 5.1.8 and 3.3.96}

(b>S ; P; ∗(b −→sncP))� b� (¬b)>S
= {Law 3.3.98}

(b>S ; P; ∗(b −→sncP))� b� ((¬b)>S ; ∗(b −→sncP))

= {Laws 3.3.57 and 3.3.33}

(P� b� II); ∗(b −→sncP) �

Law 5.1.10 Provided ¬(b ∧ c) then we have:

b>; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = b>; P; ∗(

(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

Proof.

b>; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Laws 3.3.153, 5.1.9}

b>; ((
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)� b ∨ c� II)); ∗(

(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Laws 3.3.58 and 3.3.154}

b>; b −→sncP; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Law 3.3.150}

b>; P; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) �

299
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Lemma D.0.23. ∗(b −→sncP) = b ∗ (b>S ; b −→sncP)

Proof.

∗ (b −→sncP)

= {Definitions 5.1.8 and 3.3.96}

µX • (b −→sncP; X)� b� II

= {Laws 3.3.57 and 3.3.50}

µX • (b>S ; b>S ; b −→sncP; X)� b� ((¬b)>S ; II)

= {Laws 3.3.57}

µX • (b>S ; b −→sncP; X)� b� II

= {Definition 3.3.96}

b ∗ (b>S ; b −→sncP) �

Law 5.1.11 Provided ¬(b ∧ c) and P takes at least one clock cycle, then we have:

∗(b −→sncP) = b ∗ (
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

Proof.

∗ (b −→sncP)

= {Lemma D.0.23}

b ∗ (b>S ; b −→sncP)

= {Assumption (¬(b ∧ c)), propositional calculus}

b ∗ ((b ∧ ¬c)>S ; b −→sncP)

= {Law 3.3.154}

b ∗ ((b ∧ ¬c)>S ; (b −→sncP ‖M̂ c −→sncQ)

= {Inverse steps}

b ∗ (
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) �

Law 5.1.12 Provided inh
(
b −→sncP, b −→sncP

)
we have:

∗(b −→sncP) = P� b� II

Proof.

∗ (b −→sncP)

= {Law 5.1.9}

(b −→sncP� b� II); b ∗ (b −→sncP)

= {Assumption (b −→sncP is self-inhibiting), laws 5.1.7 and 3.3.57}
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((b>S ; b −→sncP; (¬b)⊥S )� b� (¬b)⊥S ); b ∗ (b −→sncP)

= {Laws 3.3.33, 3.3.150 and 3.3.99}

b>S ; P; (¬b)⊥S � b� (¬b)⊥S
= {Laws 5.1.7 and 3.3.57 }

P� b� II �

Law 5.1.13 Provided inh (P,Q) then

(c < act (Q))⊥; ∗P = (c < act (Q))⊥; ∗P; (c < (act (Q) ∪ act (P))⊥

Proof.

(c < act (Q))⊥; ∗P

= {Law 3.3.102}

(c < act (Q))⊥; ∗P; (c < act (P))⊥

= {Assumption (inh (P,Q)), laws 5.1.7 and 3.3.102}

(c < act (Q))⊥; ∗P; (c < act (Q))⊥; (c < act (P))⊥

= {Law 3.3.47 and propositional calculus}

(c < act (Q))⊥; ∗P; (c < (act (Q) ∪ act (P))⊥ �

Law 5.1.14 Provided ¬(b ∧ c) and inh
(
c −→sncQ, b −→sncP

)
then we have

∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = ∗(b −→sncP); ∗(c −→sncQ)

Proof.

∗ (
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Law 3.3.104 (twice)}

(b ∗ (
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)); (c ∗ (

(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)); ∗(

(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Assumption (¬(b ∧ c)), law 5.1.11 (twice)}

∗ (b −→sncP); ∗(c −→sncQ); ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Laws 3.3.101, 5.1.13}

∗ (b −→sncP); ∗(c −→sncQ); (¬b ∧ ¬c)⊥; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Laws 3.3.99, 3.3.101 and 5.1.13}

∗ (b −→sncP); ∗(c −→sncQ) �

Law 5.1.15 Provided ¬(b ∧ c), inh
(
b −→sncP, b −→sncP

)
and inh

(
c −→sncQ, b −→sncP

)
then we have:

b>; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
) = b>; P; ∗(c −→sncQ)
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Proof.

b>; ∗(
(
b −→sncP

)
‖M̂

(
c −→sncQ

)
)

= {Law 5.1.14 (assumption matches the law’s assumptions)}

b>; ∗(b −→sncP); ∗(c −→sncQ)

= {Assumption (inh
(
b −→sncP, b −→sncP

)
), law 5.1.12}

b>; b −→sncP; ∗(c −→sncQ)

= {Law 3.3.150}

b>; P; ∗(c −→sncQ) �

Law 5.1.16 Provided P and Q take a single clock cycle we have: ∗(
(
b −→sncP

)
‖M̂

(
b −→sncQ

)
) =

∗(b −→sncP) ‖M̂ ∗(b
−→

sncQ)

Proof.

The proof follows a similar proof from [Hoare and He 1998, page 139]. Let:

F(X) =df (b −→sncP; X)� b� II

G(X) =df (b −→sncP; X)� b� II

S (X) =df (
(
b −→sncP

)
‖M̂

(
b −→sncQ

)
; X)� b� II

We want to show that Fn(⊥) ‖M̂ Gn(⊥) = S n(⊥) by induction on n:

Base case (n = 0):

Fn(⊥) ‖M̂ Gn(⊥)

= {F0(⊥) = ⊥ for any F}

⊥ ‖M̂ ⊥

= {Law 3.3.139}

⊥

= {F0(⊥) = ⊥ for any F}

S 0(⊥)

Inductive case (n = i + 1):

Fi+1(⊥) ‖M̂ Gi+1(⊥)

= {Definition of F and G}(
(b −→sncP; Fi(⊥))� b� II

)
‖M̂

(
(b −→sncQ; Gi(⊥))� b� II

)
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= {Laws 3.3.57, 3.3.150 and 3.3.140 (twice)}((
(P; Fi(⊥)) ‖M̂ (Q; Gi(⊥))

)
� b�

(
(P; Fi(⊥)) ‖M̂ II

))
� b�

((
(Q; Gi(⊥))� b� II

))
= {Laws 3.3.26, 3.3.142 (P and Q take exactly one clock cycle)}(

(P ‖M̂ Q); (Fi(⊥) ‖M̂ Gi(⊥))
)
� b� II

= {Inductive hypothesis, definition of S }

S i+1(⊥)

With this result we can now prove that:

∗ (b −→sncP) ‖M̂ ∗(b
−→

sncQ)

= {Definitions of F and G, law 2.3.139}⊔
i

Fi(⊥)

 ‖M̂
⊔

j

G j(⊥)


= {Law 3.3.141 (twice), diagonalisation}⊔

i

(
Fi(⊥) ‖M̂ Gi(⊥)

)
= {Observation above}⊔

i

(
S i(⊥)

)
= {Definition of S and theorem 2.3.139}

∗ (
(
b −→sncP

)
‖M̂

(
b −→sncQ

)
) �
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Università di Roma “La Sapienza”.

Demoen, B. [2005], ‘Programming in Prolog. using the ISO standard’, Theory and Practice in

Logic Programming 5(3), 391–395.



308 BIBLIOGRAPHY

Dijkstra, E. W. [1975], ‘Guarded commands, nondeterminacy and formal derivation of programs’,

Communications of the ACM 18(8), 453–457.

Dijkstra, E. W. [1976], A Discipline of Programming, Series in Automatic Computation, Prentice

Hall.

Dold, A. and Vialard, V. [2001], A mechanically verified compiling specification for a Lisp compi-

ler, in ‘Conference on Foundations of Software Technology and Theoretical Computer Science

2001’, Springer-Verlag, London, UK, pp. 144–155.

Duran, A., Cavalcanti, A. and Sampaio, A. [2003a], A refinement strategy for the compilation

of classes, inheritance and dynamic binding (extended version), Technical report, Computing

laboratory, University of Kent at Canterbury.

Duran, A., Cavalcanti, A. and Sampaio, A. [2003b], A strategy for compiling classes, inheritance,

and dynamic binding, in ‘Formal Methods Europe 2003’, Springer-Verlag, Pisa, Italy, pp. 301–

320.

Duran, A., Sampaio, A. and Cavalcanti, A. [2001], ‘Formal bytecode generation for ROOL virtual

machine’, IV WMF- Workshop on Formal Methods .

Erne, M., Koslowski, J., Melton, A. and Strecker, G. E. [1992], A primer on galois connections, in

‘York Academy of Science’.

Gelperin, D. and Hetzel, B. [1988], ‘The growth of software testing’, Communications of the ACM

31(6), 687–695.

Glesner, S., Geiß, R. and Boesler, B. [2002], ‘Verified code generation for embedded systems’,

Electronic Notes in Theoretical Computer Science 65(2).

Goerigk, W. [2002], ‘Towards acceptability of optimizations: An extended view of compiler cor-

rectness’, Electronic Notes in Theoretical Computer Science 65(2).

Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., von Henke, F., Hoffmann, U., Langmaack,

H., Pfeifer, H., Ruess, H. and Zimmermann, W. [1996], ‘Compiler correctness and implementa-

tion verification: The verifix approach’. Compiler Correctness and Implementation Verification:

The Verifix Approach. In CC ’96 Intermational Conf. on Compiler Construction 1996 (poster

session).

Goerigk, W. and Simon, F. H. [1999], Towards rigorous compiler implementation verification, in

‘Collaboration between Human and Artificial Societies’, pp. 62–73.

Goguen, J. A., Thatcher, J. W., Wagner, E. G. and Wright, J. B. [1977], ‘Initial algebra semantics

and continuous algebras’, Journal of the ACM 24(1), 68–95.

Goguen, J. and Winkler, T. [1988], Introducing OBJ3, Technical Report SRI-CSL-88-9, SRI In-

ternational, Menlo Park.



BIBLIOGRAPHY 309

Goos, G. [2002], ‘Compiler verification and compiler architecture’, Electronic Notes in Theoreti-

cal Computer Science 65(2).

Goossens, K. G. W. [1995], Reasoning about VHDL using operational and observational seman-

tics, in P. E. Camurati and H. Eveking, eds, ‘Correct Hardware Design Methodologies’, Vol.

987, Springer Verlag, pp. 311–327.

Gordon, M. and Melham, T., eds [1993], Introduction to HOL: a theorem proving environment for

higher order logic, Cambridge University Press.

Grotker, T. [2002], System Design with SystemC, Kluwer Academic Publishers, Norwell, MA,

USA.

Hartenstein, R. [1997], The microprocessor is no more general purpose: why future reconfigurable

platforms will win, in ‘Proceedings of the Second Annual IEEE International Conference on

Innovative Systems in Silicon’.

Harwood, W., Cavalcanti, A. L. C. and Woodcock, J. C. P. [2008], A Theory of Pointers for

the UTP, in J. S. Fitzgerald, A. E. Haxthausen and H. Yenigun, eds, ‘Theoretical Aspects of

Computing’, Vol. 5160 of Lecture Notes in Computer Science, Springer-Verlag, pp. 141 – 155.

He, J. [2002], An algebraic approach to the Verilog programming., in ‘10th Anniversary Collo-

quium of UNU/IIST’, pp. 65–80.

He, J., Bowen, J., and Page, I. [1992], A provably correct hardware implementation of Occam,

Technical report, ProCoS II - Oxford University.

He, J., Page, I. and Bowen, J. [1993], Towards a provably correct hardware implementation of

Occam, in L. Pierre, ed., ‘Correct Hardware Design and Verification Methods’, Springer-Verlag,

pp. 214–225.

Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland, R., Derrick, J., Dick, J., Gheorghe, M.,
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