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Abstract

As computing power increases and data relating to elementary chemical and phys-

ical processes improves, the use of computational modelling as a design tool in

environmental and safety engineering is becoming increasingly important. Sensitiv-

ity analysis (SA) and uncertainty analysis (UA) can help to gain a better physical

insight into the model and they can highlight possible discrepancies between exper-

imental results and model predictions. Global methods are the best approach for

this purpose, however using current methodologies their calculation consumes large

amounts of computational effort. Therefore, efficient methods for global UA and

SA based on an approach called high dimensional model representation (HDMR)

are developed in this work. Two commonly used HDMR methods, cut-HDMR and

random sampling (RS)-HMDR, are introduced and compared against each other by

applying them to an analytical test function and a case study investigating the flow

field in a 3D street canyon using a micro-scale Reynolds averaged computational

fluid dynamics (CFD) model. It is shown that discrepancies between experimental

velocity and turbulence profiles and model predictions exist and that this is not

only due to the uncertainties in the four considered input parameters. It is also

demonstrated that RS-HDMR has various advantages over cut-HDMR and there-

fore it is used for all further studies exclusively. Extensions to the existing set of

RS-HDMR tools are developed in order to make this approach even more suitable for

the requirements that arise in environmental and safety engineering. The extended

RS-HDMR approach is then applied to other case studies. The focus is on a turbu-

lent atmospheric plume of nitrogen oxides reacting with background ozone' using a

Lagrangian stochastic model. Uncertainties in 22 physical and chemical parameters

are investigated. It is shown that the mixing model used within the Lagrangian

scheme has a significant influence on the predicted concentrations. Furthermore, a
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model of sulphur-nitrogen chemistry interactions in a one dimensional low pressure

premixed methane flame is studied considering uncertainties in 176 parameters (rate

constants and enthalpies of formation). Here, it is illustrated that only a few input

parameters affect the predicted final nitrogen oxide mole fraction under fuel rich

conditions and that the ranking of the important parameters critically depends on

the uncertainty ranges chosen. Low temperature isothermal cyclohexane oxidation

under fuel rich conditions is also investigated considering uncertainties in 238 rate

constants. This case study has been a challenge for the extended HDMR method

because significant higher order effects exist. The experimental form of reactant

consumption (quadratic autocatalysis) could not be recovered taking into account

the uncertainties in the rate constants only and therefore wall losses of important

radicals were included in the chemical scheme. In this way it was possible to recover

the experimental form of reactant consumption. The application of the extended

RS-HDMR method has also led to the development of the software package GUI-

HDMR which is freely available and can be easily applied by interested users. A

summary of software features is provided.
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1 Introduction

The use of computational modelling as a design tool is increasing within engineer-

ing applications. Models can often reduce the burden of expensive experimental

programmes within the design process and can be used to explore situations and

parameter regions that cannot be reached by experiment. The model, depending on

its purpose and field of application, will combine many different processes. However,

it is up to the modeller to decide which processes to include and how to parameterise

them. The difficulty is in defining the values of parameters because not all of them

will be precisely known. Some parameters will only be defined in terms of a range of

values with several orders of magnitude. Consequently, these uncertainties have to

be taken into account during the modelling process. Due to the uncertainties in the

input parameters the model response is also assigned with uncertainty. A quantifi-

cation of model accuracy and the confidence that can be placed in model predictions

is therefore crucial in many areas of engineering applications. In this work the focus

is on two areas: urban air pollution modelling and combustion modelling. These

two fields are of course interconnected since most of the pollution in urban areas is

caused by emissions from transport and industrial sources.
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1.1 Motivation

Nowadays transport plays a fundamental role in the lives of societies and individuals.

However, on the other hand motor vehicles are a major contributor to ground level

concentrations for most of the pollutants in urban areas. According to Krzyzanowski

et al. (2005), monitoring data are published by the World Health Organization

(WHO), traffic-related air pollution affects a number of health outcomes such as

mortality, morbidity, allergic illness, cancer, pregnancy, birth outcomes and male

fertility. Furthermore, transport-related air pollution increases the risk of death and

of non-allergic respiratory symptoms and disease. A review focused on recent studies

of air pollution and health is given in Brunekreef & Holgate (2002).

The monitoring of air quality in urban areas is essential and decisions have to be

made in order to improve the air quality, especially in so called hot spots (areas with

high concentrations). Several guidelines and standards exist for ozone (03), nitrogen

dioxide (N02) and particulate matter recommended by the World Health Organiza-

tion (World Health Organization 2000) and the European Union (EU) (Commission

of the European Communities 2005). Modelling air pollution would provide a possi-

bility to predict concentrations for future years taking into account emission controls

and new or changed source emissions. Furthermore, scenario testing could be un-

dertaken to determine source contributions and control strategies.

To assess the air quality in urban areas a combination of measurement and modelling

is required. A number of measurement sites exist in the UK, which are published

by the Department for Environment, Food and Rural Affairs (Defra). The aim of

modelling air quality is to estimate the concentration of a pollutant at a point or

an area, for example near a busy road. For the prediction of the concentration of a

certain pollutant one has to have information about emissions from road traffic, me-

teorological conditions and local street geometry. Due to the complexity of chemical
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reactions in the atmosphere and the complexity of pollutant emission sources and

emission rates the modelling is not a straight forward process and not all emissions

from all sources can actually be measured. Therefore, a lot of parameters have to

be estimated which increases the uncertainty in the modelling process.

Chemical mechanisms describing the combustion of fossil fuels can be very complex.

For some well known systems such as methane combustion, elementary reaction rates

have been extensively measured using experiments and evaluated rate data has been

published for the majority of important reactions (Hughes et al. 2001a, Hughes et

al. 2001c). However, for other fuels the elementary pathways are less well understood

and significant uncertainties exist in the mechanisms describing complex fuels such

as gasoline, kerosene or diesel (Battin-Leclerc 2008, Hughes et al. 2008, Pilling 2008).

It is also often the case that at early design stages, many process parameters can only

be estimated or are not known at all, so that any procedures to select alternatives for

further development have to incorporate uncertainties. Much research is undertaken

to develop cleaner and more efficient combustion technologies in order to reduce

the CO2, NOx and particulate emissions. A shift from hydrocarbon fossil fuels

to bio-fuels (derived from recently dead biological material) is highly desirable (van

Thuijl et al. 2003). However, bio-fuels are mixtures of hundreds of different chemical

compounds and many of them have never been previously investigated (Cathonnet

2003). Consequently, a large number of uncertainties have to be taken into account

in order to model the combustion process.

Models used for the prediction of air pollutants vary in complexity from relatively

simple statistical models to highly complex models such as computational fluid dy-

namic (CFD) models (Andria et al. 2000). Statistical models calculate a relation-

ship between measured concentrations and pollutant emissions and extrapolate this

to other locations and into the future based on estimated emissions. The more

complex CFD models attempt to recreate mathematically the actual processes of
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pollutant emission and transport in the atmosphere. CFD modelling approaches

to represent flow and dispersion in urban areas are becoming more and more com-

mon, especially due to increasing computing power. Examples of micro-scale CFD

models include the CHENSI (Sini et al. 1996), MIMO (Ehrhard et al. 2000) and

MISKAM (Eichhorn 1996) models. Furthermore, CFD models have various advan-

tages over empirically based models. For example, CFD models can predict the

concentration of pollutants over a domain rather than at a specific point. However,

they are computationally more expensive to run than statistical models and they

have a large number of parameters which may be subject to uncertainties (Collett

& Oduyemi 1997, Vardoulakis et al. 2003).

In order to make predictions of concentrations, chemical kinetics have to be in-

corporated in a computationally efficient way within reactive flow models. Since

decisions are derived from the results of the models it is a big concern whether a

model and its results are correct. This concern is addressed through model valida-

tion and model verification (Jakeman et al. 2006). Verification refers to a process

to assure that the model is correct and validation of the model refers to the general

comparison of modelling results against monitoring data. Discrepancies between

measured concentrations and results from a CFD model are due to a number of rea-

sons, for example uncertainties in the traffic flow (such as speed and proportion of

the vehicles), uncertainties in the emission for vehicles, meteorological data uncer-

tainties, uncertainties in the turbulence parameters, uncertainties in reaction rates

etc (Vardoulakis et al. 2002). An important part of the model validation process is

carried out by sensitivity analysis and uncertainty analysis.
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. 1.2 Aim and Objectives

Sensitivity analysis (SA) and uncertainty analysis (UA) playa crucial role in im-

proving the confidence in air pollution models and chemical sub-models particularly

if they are used in a decision making context. Traditional methods for sensitivity

and uncertainty analysis are no longer practical because of the complexity of most

models in environmental and safety engineering and their large number of uncertain

parameters.

The aim of this PhD study is therefore the development of efficient methods for global

sensitivity and uncertainty analysis based on a set of tools called high dimensional

model representation (HDMR) (Rabitz et al. 1999). In particular, the developed

methods should be easy to use, applicable to a wide range of models and should

be able to deal with complex models in a computationally efficient way. Their

effectiveness will be demonstrated for a variety of analytical test functions and a

range of applications within environmental and safety engineering. Applications

include the study of:

• the flow field in a 3D street canyon using a micro-scale CFD model,

• a reactive atmospheric turbulent plume using a Lagrangian stochastic model,

• the sulphur-nitrogen chemistry interactions within a one dimensional premixed

methane flame model (high temperature),

• isothermal cyclohexane oxidation under fuel rich conditions (low temperature).

One objective of this work is to achieve a better physical insight into these models by

applying the HDMR method. Discrepancies between experimental results and simu-

lations can be investigated. Furthermore, important parameters can be highlighted

and ranked by their importance. This enables the user to focus on key parameters
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and uncertainty ranges for these parameters can be revised and improved. If the

experimental results can not be recovered by the simulations taking into account

the uncertainties in the inputs, then this might be an indication of problems within

the model physics (e.g. missing reactions in the chemical scheme) or that important

assumptions have not been met when setting up the model (e.g. a too small model

resolution). By applying the HDMR method to the above mentioned case studies

it is hoped a better understanding of the model will be gained so that more trust

can be placed in its predictions and to highlight potential weaknesses of the model

so that improvements can be made.

Special attention is paid in this work to the comparison of two different HDMR

approaches in order to identify the one which is most suitable for a large range of

applications. Another objective is the development of a software package with a

graphical user interface based on the HDMR approach so that global uncertainty

and sensitivity analysis can be performed in an easy way by all interested users.

1.3 Outline of the Thesis

An overview of widely used methods for uncertainty and sensitivity analysis is given

in chapter 2. The main focus here is on global methods which are able to explore

the whole input parameter space. The most important sampling based and variance

based methods are described and compared against each other. Advantages and

disadvantages are highlighted and the need for a new approach is emphasised.

Chapter 3 introduces the high dimensional model representation (HDMR) method.

The principles of the approach are explained and two different HDMR approaches

are presented: cut-HDMR, which depends on the value at a specific reference point

and RS-HDMR, which depends on the average value over the whole domain. Vari-
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ous methods are suggested in order to assess the accuracy of the constructed HDMR

expansion, which can also be used as a surrogate. This is crucial since the calcula-

tion of the sensitivity indices is entirely based on the HDMR component functions.

The calculation of the sensitivity indices for first-order and higher order effects is

stated for both HDMR approaches and the importance of the plots of the HDMR

component functions is highlighted.

An optimisation method for the RS-HDMR approach as an extension to the existing

set of HDMR tools is developed in chapter 4. This is followed by a comparison of

the cut-HDMR and the RS-HDMR approach using the analytical Ishigami function.

Both approaches are also applied in order to perform global sensitivity analysis

on a computational fluid dynamics (CFD) model simulating the turbulent air flow

in a 3D street canyon. Consequently, the performance of the cut-HDMR and RS-

HDMR approach are studied and advantages and disadvantages of both methods are

highlighted. Four uncertain parameters are considered, among them the background

wind direction and the roughness lengths for inflow, wall and surface. Discrepancies

between the experimental results and the model simulations are investigated and

the effects of the input parameters on various model output such as the turbulent

kinetic energy (TKE) and the wind components at measuring points in the street

canyon are studied. It is hoped that for example the inflow roughness length has

only very little effect on the TKE in the street canyon, because it is very difficult

to determine. The background wind direction is usually determined quite far away

from the measuring site and here it is also hoped that its influence on the assigned

model outputs is only small. The prediction of the TKE and the wind components

in the street canyon is very important, because the flow field can also be used in

connection with dispersion models to calculate concentrations and concentration

fluctuations of pollutants.

Another extension for the RS-HDMR approach is developed in chapter 5 in order
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to further improve the method particularly for cases where a large number of un-

certain input parameters (Le. >20) is investigated. The improved method is tested

on the analytical Sobol' g-function and then sensitivity analysis is performed on two

case studies. The first focuses on a Lagrangian stochastic model which is used to

investigate a reactive turbulent atmospheric plume. The HDMR method is applied

in order to study the uncertainties in 22 physical and chemical parameters and their

possible interactions. A comparison with experimental results (a wind tunnel study)

is made and discrepancies are highlighted. It is also of concern whether or not the

simple mixing scheme applied here is suitable for accurately predicting concentra-

tions and how the number of particles used in the Lagrangian simulations influences

the results. The effectiveness of the HDMR tools is also demonstrated for a case

study of sulphur-nitrogen chemistry in a one dimensional premixed methane flame

model under high temperature. Uncertainties in rate constants and thermodynamic

data are considered leading to a study of 176 input parameters. There is a lack

of consensus in the literature as to the nominal values and uncertainty ranges for

the thermodynamic data. Therefore, it is investigated in three scenarios how dif-

ferent parameter ranges will affect their importance on the predicted final NO mole

fraction.

In chapter 6 the focus is on systems with significant higher order effects, Le. where

a pair of parameters acts together upon the model output. A two step algorithm is

proposed where a screening method is used in order to identify unimportant parame-

ters first. The HDMR method is then applied with a reduced input space dimension.

The performance of this two step approach is illustrated using the analytical Sobol'

g-function, followed by a case study which focuses on the low temperature isother-

mal cyclohexane oxidation under fuel rich conditions. Uncertainties in 238 rate

constants are considered. The analysis aims to investigate the important features

of the oxidation process as well as possible factors underlying qualitative discrepan-
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des between simulations and experiments. The particular feature of interest is the

characteristic of quadratic autocatalysis which is observed experimentally and leads

to the maximum rate of reaction occurring at 50% oxygen consumption.

Chapter 7 introduces the software GUI-HDMR which has been developed on the

basis of the HDMR approach. The software combines RS-HDMR tools and exten-

sions developed in this work in one Matlab package equipped with a graphical user

interface. A short documentation of the software is given so that it can be applied

by interested users.

Limitations of the HDMR method and future work is discussed in chapter 8 and a

summary and conclusions are given in chapter 9.
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2 Uncertainty and Sensitivity

Analysis

According to Jakeman et al. (2006) the development and evaluation of environ-

mental models should include discussions of model accuracy, limitations for a given

application and scope for model improvement. An important part of the model eval-

uation process should therefore include some assessment of the impact of the lack

of knowledge regarding model inputs on the predicted outputs of the model. This is

generally achieved by sensitivity analysis (SA) and uncertainty analysis (UA). Un-

certainty analysis investigates the uncertainty in the model output given the defined

uncertainties in the model input. If enough is known about the model inputs it can

be used to provide error bars on the model predictions. One useful purpose of this

is to establish whether, within the error bars, the model is capable of reproducing

measured values of target outputs. If the model physics is appropriate then uncer-

tainty analysis methods provide a measure of confidence that can be placed in the

predicted outputs. The main purpose of SA is to estimate the effects of each model

input, either in isolation or through combined effects, on the model output and to

identify the main contributors to the output uncertainty. This helps to identify

where attempts to improve the model predictability should be focused.

This chapter aims to give an overview of what sensitivity analysis is and how to
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perform it. A classification of different techniques is presented. Uncertainty analysis

is not explicitly discussed in this work. However, uncertainty and sensitivity analysis

are closely linked and are often performed together. A short review of the most

commonly used global SA methods is given.

2.1 Overview of Sensitivity Analysis Methods

Sensitivity analysis does not simply deal with uncertainties in the input param-

eters, it is mainly used to increase the confidence in the model and its predic-

tions (Saltelli 2000). According to Hamby (1994) SA may be conducted for several

reasons such as the need to determine: which parameters require additional research

for strengthening the knowledgebase, which parameters are insignificant and may be

eliminated from the final model or which parameters contribute most to the output

variability. Generally, SA tries to provide an understanding of how the model out-

put responds to changes in the inputs. A good introduction to sensitivity analysis

is given in the book of Saltelli et al. (2000).

There are a wide range of methods and tools available in order to perform sensitivity

analysis. A classification of five different SA techniques is made in Campolongo et

al. (2000b):

1. Factor screening,

2. Differential analysis,

3. Monte Carlo analysis,

4. Response surface method (RSM),

5. Fourier amplitude sensitivity test (FAST).
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A similar categorisation is given in (Helton 1993), which states one informal approach

(factor screening) and four formal approaches (differential analysis, Monte Carlo

analysis, RSM and FAST).

Another classification of SA methods can be given in accordance with Campolongo

et al. (2000b) depending on the setting (see also figure 2.1):

1. Local SA (e.g. differential analysis),

2. Factor screening (e.g. one at a time (OAT) design, Morris method),

3. Global SA (e.g. Monte Carlo analysis, RSM, method of Sobol', FAST).

Sensitivity Analysis (SA)

(Section 2.2) (Section 2.4)

• Finite-difference
approximation

• One at a time design

• Morris Method

Variance based SA Sampling based SA

• Method of Sobol' • Monte Carlo analysis

• Fourier amplitude sensitivity • Response surface method (RSM)
test (FAST)

Figure 2.1: Possible classification of sensitivity analysis methods.

Local SA methods focus on the impact of a parameter variation in the vicinity of

a single point. The sensitivity is often characterised through gradients. Local SA

methods will not be discussed in detail in this work, however a short overview and

summary is given in section 2.2.
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Factor screening can be classified as a local or a global method depending on its set

up and is discussed in section 2.3.

Global SA methods investigate the impact of a parameter over the whole range of its

uncertainty. They can be further divided in two classes: (1) sampling based methods,

which generate a mapping from uncertain inputs to uncertain outputs (e.g. Monte

Carlo analysis, RSM) and (2) variance based methods, which use partial variances

as an indicator of importance of an input factor (e.g. method of Sobol', FAST).

Global SA methods are presented in section 2.4.

2.2 Local Methods

Commonly, only local sensitivity analysis is performed within model evaluation be-

cause of the complexity and computational expense of most environmental models.

Local SA is usually carried out by calculating the partial derivatives of the output

function with respect to the input parameters (Saltelli 2000). The input parameters

can be varied within a small interval around the nominal value in order to compute

the derivatives numerically or in certain cases partial derivatives can be defined in

terms of common model outputs.

The simplest way in calculating local sensitivities is by using the finite-difference

approximation (also known as brute force method or indirect method) (Turanyi &

Rabitz 2000). Here, one parameter is slightly changed at a time and a new model run

is performed. The sensitivity measures are the partial derivatives 8y/8xi (also called

first-order local sensitivities) which can be approximated by the finite-difference:

i= 1,... ,n. (2.1)

The calculation of the local sensitivities requires n+ 1 simulations of the model. In
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Turanyi & Rabitz (2000) it is stated that in most cases a 1% perturbation of the

parameter Xi is a good choice.

Local methods provide only information related to a single point (e.g. at a nominal

point or best estimate for a parameter) and do not cover the whole input parameter

space. These methods are most appropriate where the uncertainties in the input

space are small Le. the parameters are well known, or where the model is not

highly non-linear. If uncertainties in the input space are significant, then sensitivities

calculated at the nominal point are often not representative of all regions of the input

space (especially if the model is highly non-linear). In addition, knowledge of the

influence of interactions between parameters is not explored using local SA methods.

More information and reviews of other local SA methods can be found for example

in Rabitz et al. (1983), Turanyi (1990) or Tomlin et al. (1997).

2.3 Screening Methods

Screening methods aim to identify unimportant parameters and to rank potentially

important ones. They are usually applied in cases where the input space dimension is

very high (Campolongo et al. 2000a). However, screening methods can not quantify

the partial contributions to the overall variance or how much a given factor is more

important than another one (Campolongo et al. 1999). Due to their easy set up

and their relatively small computational requirements, they are usually applied first

in a two step algorithm. When the input space dimension is narrowed down (Le.

by fixing the parameters, which were identified as unimportant), a second method

(Le. Sobol's method as described in section 2.4.5 or the HDMR method which is

introduced in chapter 3) can be applied in order to calculate sensitivity indices.

Several screening techniques have been proposed in the literature. In this work the
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focus is only on two of them: The one at a time (OAT) design (mostly a local SA

method) and the Morris method (global SA method).

2.3.1 One at a Time (OAT) Design

Conceptually the simplest way of performing sensitivity analysis is to vary just one

parameter at a time while the others remain fixed. The impact of changing the value

of each parameter is evaluated in turn (Daniel 1973).

In the standard OAT design, the nominal value (best estimate) is used for each of

the parameters and then usually two extreme values are proposed to represent the

range of likely values for each parameter (the nominal value is usually in the middle

between the two extremes). First, the model is simulated with all parameters at

their nominal values. Then, successively the extreme input parameter values are

applied and the magnitude of the difference between the outputs (all parameters at

their nominal values - one parameter at its extreme value) are compared in order

to find the parameters that significantly affect the model output (Campolongo et

al. 2000a).

The computational effort is quite small with only 2n + 1 required model runs (n

is the number of the input parameters). However, one significant drawback of this

method is that interactions between parameters cannot be estimated. In addition

to this, many OAT experiments are local, because factors are only changed over a

small interval around their nominal value. Consequently, the model behaviour is

only investigated locally around the selected point (Campolongo et al. 2000a).



16

2.3.2 Morris Method

The one at a time design proposed by Morris (1991) counts as a global sensitiv-

ity experiment since it aims to cover the entire space over which the input factor

may be varied. The method determines an importance ranking for parameters in

terms of their mean effect on output variance as well as determining those pa-

rameters with linear additive effects and non-linear interactions. One factor at

a time is varied over the space of the input parameters with p values in the set

{a, 1/(p -1), 2/(p -1), ... ,1}which results in a p-level grid for the region of experi-

mentation. In practical applications these values are re-scaled to values from within

their uncertainty ranges. The elementary effect of the ith factor at a given point x

is defined as:

(2.2)

where ~ is a predetermined multiple of 1/(p - 1). The total computational effort

required is r(n + 1), where n is the number of input parameters and r the number

of trajectories. One trajectory contains n + 1 runs where each parameter has been

changed according to the sampling strategy. An example for two parameters is

shown in figure 2.2. The mean effect across r indicates the overall importance of a

parameter and is given by:

(2.3)

In the literature (Le. Campolongo et al. (1999)) it is stated, that r is typically in the

range between 5 and 15. However, this is not a reliable statement. It would make

much more sense to investigate whether or not the calculated value of the mean in
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Figure 2.2: Example of a trajectory for two parameters (n = 2) and a four-level grid
(p = 4).

equation (2.3) has reached convergence. This could be checked for the parameters,

which were identified as potentially important. If the mean does not converge, then

more trajectories have to be added, which consequently makes the Morris method

more expensive. In chapter 6 the Morris method is applied to an analytical test

function and to a real case study (low temperature isothermal cyclohexane oxidation

under fuel rich conditions). Even in the test case scenario, ten trajectories have not

proven to be enough to achieve convergence. In the case study, 100 trajectories were

not sufficient in order to produce a reliable parameter ranking.

Additionally, the calculation of the standard deviation of the elementary effects

gives an indication of non-linearities or parameter interactions (Morris 1991). How-

ever, the Morris method does not distinguish non-linear from interaction effects

(Campolongo & Braddock 1999). An overall measure of the interactions of a par-

ticular parameter with the rest of the model is given, but it does not give specific

information as to which part of the rest of the model it is interacting with. To over-

come this problem an extended Morris method has been developed by Campolongo



18

s.~
§
..Ec-

Global quantitative
methods

(e.g. Sobol')

Extended
Morris method

Morris method

Cost(n,model)

Figure 2.3: Overview of various classes of SA methods according to two properties:
the amount of information produced in terms of the model sensitivity
and the computational cost of the method. The computational cost
is measured in terms of the number of required model evaluations and
depends on the number of input parameters n and the complexity of the
model (adapted from Campolongo et al. (1999)).

& Braddock (1999) in order to develop information on two-factor interactions, which

on the other hand leads to an increase in model runs required.

An improved sampling strategy for the Morris method has also been developed

by Campolongo et al. (2007) in order to cover the input space more efficiently. A

large number of trajectories (up to 1000) is generated first and than a smaller number

(e.g. r = 10) is chosen with the highest spread, which is based on a distance measure

(e.g. Euclidean distance).

Note that the Morris method provides sensitivity measures that are only qualita-

tive (Campolongo et al. 1999). To obtain a quantitative measure (e.g. in order to

show how much more one parameter is important than another one), other methods

have to be applied which usually require more model runs. The relationship between

the computational cost of the method and the amount of information produced in
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terms of the model sensitivity is shown in figure 2.3.

2.4 Global Methods

In order to explore the input parameters and their potential interactions over the

whole input space, global SA methods are required. One global SA method, the

Morris method, has been introduced already in the latter section in connection

with screening methods. This section aims to provide a short review of the most

commonly applied global SA methods. The focus is on two sampling based and two

variance based approaches.

2.4.1 Overview

Global sensitivity analysis methods can be divided into sampling based methods and

variance based methods. Sampling based methods for uncertainty and sensitivity

analysis involve the generation and explorations of a mapping from uncertain inputs

to uncertain predicted outputs (Helton & Davis 2002, Helton et al. 2006). In this

work the focus is on two sampling based methods: the Monte Carlo (MC) method

(or Monte Carlo analysis) and the response surface method (RSM) (Box & Wilson

1951, Box 1954). Both methods are based on Monte Carlo simulations, where a

deterministic model (original model or surrogate) is iteratively evaluated using a

set of random numbers as inputs. Variance based analysis uses partial variances

as an indicator of the importance of the input factors Xi. Two such methods, the

method of Sobol' (Sobol' 2001) and the Fourier amplitude sensitivity test (FAST)

(Cukier et al. 1973), are introduced in section 2.4.5 and 2.4.6. Both methods offer

an approach to determine variance based sensitivity indices, which are global and

model independent.
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Useful reviews of global SA methods can be found in Helton & Davis (2000a),

Helton & Davis (2000b) and Saltelli et al. (2000). Although global methods may

provide far more insight for non-linear models, they can require large numbers of

model runs. In addition, the interpretation of such global sensitivity tests can be

difficult because of the number of parameters involved and the potential complexity

of the causal relationships (Jakeman et al. 2006). It is clear that more general

methods for the analysis of non-linear responses and parameter interactions would

be useful within the field of environmental and safety models. Such methods must

be computationally efficient and capable of determining sensitivity indices that can

be used for importance ranking of potentially large numbers of input parameters in

an automatic way.

2.4.2 Sampling

Even variance based methods (e.g. the method of Sobol', introduced in section 2.4.5)

involve Monte Carlo simulations. Due to the large variety of applications for MC

simulations and because of their overall importance for uncertainty and sensitivity

analysis this section focuses on different sampling methods first, before the focus is

on individual global SA methods.

Monte Carlo simulations require sampling procedures. The generation of the random

samples is a crucial task and the success of a Monte Carlo calculation depends on

the quality of the random samples (Niederreiter 1992). Three different sampling

procedures are discussed here: random sampling, Latin hypercube sampling and

quasi-random sampling.
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Random Sampling

A sample of the desired size N is generated from the joint probability distribution of

the input parameter. Each sample point is selected independently of all other sample

points. Random numbers generated by a computer code are pseudo-random, because

a deterministic algorithm is used (Niederreiter 1992). The generated sequence is

actually not random (hence they are called pseudo-random), however they share

many properties with completely random numbers.

Latin Hypercube Sampling

The idea of Latin hypercube sampling (McKay et al. 1979) is to ensure the full

coverage of the range of each input parameter. A square grid (Latin square) is used,

which contains only one sample for each column and each row (also see example in

figure 2.4). Hence, one has to first decide how many sample points to use. Once

a Latin hypercube sequence has been generated it can not be extended by simply

adding more sample points to it.

The range of each input parameter Xi is divided in N intervals and one random

sample is generated for each of the intervals

(O,1/N),(1/N,2/N), ...,((N - 1)/N,1) (2.4)

for each of the parameters. Afterwards the samples of each input parameter are

randomly permuted.

An example on how to construct a Latin hypercube sequence for two input pa-

rameters with a sample size of N = 4 is given in figure 2.4. Table 2.1 presents

the corresponding data set for the two input parameters Xl and X2' The first two

columns in table 2.1 show the random values for each of the two inputs for the four
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Figure 2.4: Example of a Latin hypercube sequence for two parameters (n = 2) and
a samples size of N = 4.

Random values for Random permutation for
Xl X2 Xl X2

0.04 0.23 0.04 0.65
0.47 0.29 0.73 0.79
0.73 0.65 0.47 0.29
0.95 0.79 0.95 0.23

Table 2.1: Generation of a Latin hypercube sequence for two parameters (n = 2)
and four' intervals (N = 4).

intervals and the last two columns show the random permutation.

Quasi-Random Sampling

Quasi-random sequences are totally deterministic and are based on low discrepancy,

hence they are also called low discrepancy sequences. The discrepancy is a measure

for the uniformity (high uniformity equals low discrepancy) of a sequence and is

computed by comparing the actual number of sample points in a given volume

of multidimensional space with the number of sample points that should be there
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assuming a uniform distribution (Morokoff & Cafiisch 1995). Successive sample

points are added in a position as far away as possible from the other sample points

so that clustering (groups of points close to each other) can be avoided. The best

known low discrepancy sequences are: Halton (Halton 1960), Faure (Faure 1992),

Sobol' (Sobol' 1967) and Niederreiter (Niederreiter 1987, Niederreiter 1988). The

principles of the Halton, Faure and Sobol' sequences are discussed in the following.

Halton sequence The Halton sequence (Halton 1960) is the simplest of the low

discrepancy sequences. To generate a Halton sequence a consecutive set of non-

negative integers is transformed into numbers in the interval [0,1) (zero is included

in the sequence, but it is open at one because the sequence never reaches one). This

can be described in a two step procedure (Galanti & Jung 1997):

1. The integers are expanded in an arbitrary base p, where p is a prime number

greater than or equal to two. This means, that each integer is converted into

the base p number system. For example, the integer four is represented by 100

(4 = 1 .22 +O·21+ 0 . 2°) in the base 2 system.

2. The base p number is transformed into a number in the interval [0,1) by

reflecting about the decimal point. For example, the base two number 100

becomes 0.001. The binary fraction 0.001 represents ~ (0· 211 + o· b+ 1· ~ =
~). Thus the corresponding Halton number for integer four is ~.

Each successive Halton number fills in the gaps of the existing sequence. Therefore,

one does not need to define the sample size N in advance. In the multidimensional

Halton sequence a different base p (prime number) is used for each of the dimensions.

For example, the first dimension uses base two, the second dimension uses base three,

the third dimension base five and so on. The Halton algorithm and a more detailed
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example of how to generate a two dimensional Halton sequence is given in Galanti

& Jung (1997).

Faure Sequence The Faure sequence (Faure 1992) is similar to the Halton se-

quence, but with two differences. Firstly, it uses the same base for each dimension.

This base is the smallest prime number that is greater than or equal to the num-

ber of dimensions in the input parameter space. Secondly, the Faure numbers are

reordered within each dimension (otherwise sequences would be identical across all

dimensions) .

Sobol' Sequence The Sobol' sequence (Sobol' 1967), like the Faure sequence, has

the same base for all dimensions and it uses reordering of the sample points within

each dimension. However, the Sobol' sequence uses only base two for all dimensions.

This reduces the computational time especially when finer grid points are gener-

ated. The reordering task is more complex, because the same base is used across all

dimensions.

Galanti & Jung (1997) state that the Sobol' sequence outperforms both Faure and

Halton sequence. They demonstrated, that on average the Sobol' sequence exhibits

better convergence properties than either the Faure or Halton sequence.

Comparison of Sampling Methods

Figure 2.5 shows the distribution of random, Latin hypercube and quasi-random

(Halton sequence and Sobol' sequence) points for a sample size of N = 1024 in two

dimensions. For both random sampling and Latin hypercube sampling (figure 2.5a

and 2.5b), there are areas that are empty of points and areas where a clustering of

points is clearly visible. The 1024 sample points of the two quasi-random sequences
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Figur 2.5: (a) 1024 random sampling points, (b) 1024 Latin hypercube sampling
points, (c) 1024 points of the Halton sequence, (d) 1024 points of the
Sobol' sequence. All sampling procedures are based on a uniform distri-
bution in the interval [0,1].

(figur 2.5c and 2.5d) cover the unit square more uniformly than the points of the

random s qu nces. In general it can be said that the more evenly the points are dis-

tributed throughout the domain, the more accurate the simulation. A good overview

and comparative assessment of random and quasi-random sampling methods can be

found in (Galanti & Jung 1997).

The efficiency of the quasi-random sequences can be demonstrated by using a simple
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test model with two input parameters:

f{x) = Xl + x~ (2.5)

where Xl and X2 are uniformly distributed within [0,1]. The four different sequences

as shown in figure 2.5 are then used to simulate the model and the output values

f(x) are recorded. The arithmetic mean J can be approximated by

N

J ~ ~ L f{x{s»)
s=l

(2.6)

for N samples x{s) = (xis), x~s) ... , x~») ~ith s = 1,2, ... ,N. The variance D of the

model output can be approximated by

N

D ~ ~ L.: f2(X{s}) - r.
s=l

(2.7)

Figure 2.6 presents the mean and the variance of the model output for the simple

test model. The "real" mean calculated by

J = 11f(x)dx = 0.7 (2.8)

is quickly reached if using the Halton or the Sobol' sequence. Approximately 200

samples are already enough to get very c,loseto the mean and the value converges

after that. The random sequence, as shown in figure 2.5a, delivers the worst per-

formance. For a small sample size (e.g. N < 200) the approximated mean is far

off the real value. The mean only converges after applying more than 800 samples.

The performance of Latin hypercube sampling is better than using random sampling

but is still worse than using any of the quasi-random sequences. As for the random

sequence, more than 800 samples are required in order to reach convergence.
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Figure 2.6: Plot of (a) the mean and (b) variance for the simple test model using
different sampling procedures.

The estimated variance is presented in figure 2.6b. The "real" variance is calculated

by

D = t' [f(x) - 1]2 dx = 139.la 900
(2.9)

The performance of the four different sequences in order to estimate the variance

is similar to the performance in order to estimate the mean. The Sobol' sequence

outp rforms the random and the Latin hypercube sequence and using the simple

test function it has also shown to be better than the Halton sequence. These results

are in accordance with the study by Galanti & Jung (1997). Therefore, the Sobol'

sequence will be used in this work as the quasi-random sequence of choice.

In Bratley et al. (1992) it is argued that in high dimensional problems (n > 12)

quasi-random methods do not have an advantage over random methods anymore.

However, Kucherenko (2007) argues that this is not true in general. The Sobol'

method to estimate global sensitivity indices (see section 2.4.5) in connection with

quasi-random sampling is used by Kucherenko (2007) in order to predict the ef-

ficiency of quasi-Monte Carlo algorithms (MC using quasi-random sampling). A
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classification of some important types of integrable functions is developed:

• Type A: functions with not equally important parameters,

• Type B: functions with equally important parameters and with dominant low

order terms,

• Type C: functions with equally important parameters and with dominant in-

teraction terms.

Kucherenko (2007) shows that for functions of type A and B quasi-Monte Carlo is

superior to Monte Carlo even in the high dimensional case. Only for functions of

type C does quasi-Monte Carlo looses its advantage over Monte Carlo.

2.4.3 Monte Carlo Analysis

In general, Monte Carlo analysis involves five basic components (Helton & Davis

2000a, Helton & Davis 2000b):

1. Selection of the range and distribution for each of the input parameters,

2. Generation of a sample for the inputs in consistency with their distributions,

3. Evaluation of the model output for each sample point (mapping),

4. Presentation of uncertainty analysis results,

5. Determination of sensitivity analysis results.

Selection of the Range and Distribution

The selection of the distribution for the input parameters is described as the most

important step, because these distributions determine both the uncertainty in the
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model output f(x) and the sensitivity of f(x) to the elements of the model input

x (Helton & Davis 2000a, Helton & Davis 2000b). If enough data is available, then

it might be possible to estimate distribution and distribution parameters. Some

guiding principles are given for example in Firestone et al. (1997).

If not enough data is available, then usually a crude distribution such as uniform or

normal is assumed for the input parameters. The uniform distribution has a constant

probability. The probability density function for a continuous uniform distribution

on the interval [a, b] is given by:

o for x < a

P(x) = b~a for a $ x $ b

o for z » b

(2.10)

The general formula for the probability density function of the normal distribution

is:

(2.11)

where J-l is the mean (location parameter) and (J is the standard deviation (scale

parameter). A plot of the probability density function for the uniform and normal

distribution is shown in figure 2.7.

Sampling

Three different sampling strategies are considered here in connection with the Monte

Carlo method and have been described in section 2.4.2. If quasi-random sampling

is applied, then the method is also known as quasi-Monte Carlo analysis.
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Figure 2.7: (a) Uniform distribution with a = 2 and b = 4, (b) Normal distribution
with jJ, = 0 and (J = 1.

Mapping

The third step of the Monte Carlo analysis is the evaluation of the model output for

each of the samples. In spite of its simplicity this is the most time consuming part

of the MC analysis, since the sample size N can easily exceed 103.

Uncertainty Analysis

Presentation of the uncertainty results include characteristics such as mean, stan-

dard deviation, variance, probability density function (pdf), cumulative distribution

function (cdf), complementary cumulative distribution function (ccdf) and box plot.

Box plots and cdf show much more than means and standard deviation and are

therefore preferable (Helton & Davis 2000a, Helton & Davis 2000b).

Probability density functions are used throughout this work to describe the char-

acteristics of the model output and for example to describe the distribution of the

input parameters. Both pdf and cdf are also used to assess the accuracy of the
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HDMR metamodel (see for example section 3.3.1).

Sensitivity Analysis

Sensitivity analysis is usually more demanding than uncertainty analysis, since SA

explores the effects of elements of the input x on the elements of the output f(x).

A number of approaches exist and most of them will only be named in this con-

text: scatter plots, regression analysis, correlation coefficient, rank transformation,

variance decomposition, etc. Most of these approaches are explained for example in

Helton & Davis (2000a) or in Mendenhall et al. (2003). Scatter plots and correlation

coefficients are often used in this work and some more details are therefore given in

the following paragraphs.

Scatter Plots Scatter plots are one of the most straightforward techniques for sen-

sitivity analysis. They are used to provide a graphical display of the relationship

between two variables (their correlation), the input parameter Xi and the output

f(x). The data points of these two variables are displayed in a two-dimensional

graph with the response variable usually on the y-axis. Scatter plots may reveal

relationships between the model input and the model output, such as non-linear re-

lationships and thresholds (Helton 1993). The pattern shown in the scatter plot can

provide the following information about the relationship between the two variables:

• Strength,

• Shape (linear or non-linear),

• Direction (positive or negative),

• Presence of outliers.



32

1.4

1.2

a)

_.......,_0.8
~
.......0.6

0.4

0.2 0.4 0.6
Xi

0.8 b)

-----..0.8
~
.......0.6

0.4

0.2

0.2 0.4 0.6 0.8

Figure 2.8: Scatter plots showing (a) a strong positive linear relationship, (b) a
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Som xamples of scatter plots are given in figure 2.8 and 2.9. The two scatter plots

in figure 2.8 show a strong linear relationship between the input Xi and the model

output f(x). Th scatter plot in figure 2.9a represents a non-linear relationship

with a monotonic behaviour. The scatter plot in figure 2.9b shows also a non-
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linear relationship between the input Xi and the output f(x), however with a non-

monotonic behaviour.

One significant drawback of using scatter plots is, that one needs to examine a large

number of plots, at least one for each input parameter. This is especially problematic

if the model possesses a large input parameter space and various outputs. The

drawbacks of using scatter plots are discussed in more detail in connection with

introducing the plots of the HDMR component functions in section 3.4.3 and in

section 4.3.4 when the plots HDMR component functions are compared with scatter

plots.

Pearson Correlation Coefficient The Pearson correlation coefficient (or Pearson

product moment coefficient of correlation) is a measure of the strength of the lin-

ear relationship between two variables (e.g. input and output). It is defined as

(Mendenhall et al. 2003):

(2.12)

with

N

f = ~L!(X(B)),
8=1

(2.13)

for the range from +1 to -1. A correlation of +1 means that there is a perfect positive

linear relationship between the two variables. A correlation of -1 means that there

is a perfect negative linear relationship between the two variables. A correlation of

o means there is no linear relationship between the two variables.

The square of the correlation coefficient r2 (also known as the coefficient of deter-
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mination) is the fraction of the variance in the output f(x) that is accounted for by

a linear fit of the input parameter Xi to f(x). The value of r2 is in the range from

o to 1. For example, a r value of 0.9815, which has been calculated in this case on

the basis of the data set shown in the scatter plot in figure 2.8a, results in a r2 value

of 0.9633. This means that 96.33% of the total variation in the output f(x) can be

explained by the linear relationship between the input Xi and f(x).

Scatter plot figure: 2.8a 2.8b 2.9a 2.9b
r 0.9815 -0.9812 0.7297 -0.0107
r2 0.9633 0.9627 0.5325 0.0001

Table 2.2: Pearson correlation coefficients calculated for the data sets presented by
the scatter plots in figure 2.8 and 2.9.

The remaining rand r2 values for the data sets presented in the scatter plots from

figure 2.8 and figure 2.9 are given in table 2.2. The strong linear relationship shown

in the scatter plots in figure 2.8a and 2.8b is confirmed by the high absolute value of

rand r2. The sign for the r value also indicates a positive or negative relationship.

The strong relationship (non-linear, monotonic) presented by the scatter plot in

figure 2.9a can not be confirmed by calculating the Pearson correlation coefficient.

The r2 suggests that only 53.25% of the total variance is caused by the input Xi.

This is because a linear relationship is assumed between the input and the output.

The Pearson correlation coefficient calculated for the data set shown in figure 2.9b is

nearly zero, even if there is a strong relationship (non-linear, non-monotonic) visible

in the scatter plot.

The Pearson correlation coefficient is easy to calculate and simple to understand.

However, it gives only the correct answer if the model is linear. This is a significant

drawback of this method and if one can not assure that the model of investigation

is linear the sole use of the Pearson correlation coefficient can provide misleading

answers.
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Spearman Rank Correlation Coefficient In principle, the Spearman rank correla-

tion coefficient r s is simply a special case of the Pearson product moment coefficient.

However, the input data set for Xi and the output data set for f(x) are converted

into rankings Xi and j(x) before calculating the coefficient. If there are no ties in

either of the data sets of the input and the output, then the expression for rs reduces

to the simpler expression (Mendenhall et al. 2003):

(2.14)

for the range from +1 to -1. The Spearman rank correlation coefficient has basically

the same meaning as the Pearson correlation coefficient, but can also cope with non-

linear (albeit monotonic) relationships between the input and the output. However,

Campolongo et al. (2000b) states that care must be employed when interpreting the

results of analysis based on rank transformation, since any conclusion drawn using

ranks does not translate easily to the original model.

Scatter plot figure: 2.8a 2.8b 2.9a 2.9b
0.9809 -0.9820 0.9027
0.9621 0.9643 0.8149

-0.0032
0.0000

Table 2.3: Spearman rank correlation coefficients calculated for the data sets pre-
sented by the scatter plots in figure 2.8 and 2.9.

Table 2.3 presents the rs and r; values based on the data shown in the scatter plots

in figure 2.8 and figure 2.9. For the two linear cases in figure 2.8a and 2.8b one gets

nearly the same values as by using the Pearson correlation coefficient. The Spearman

rank correlation coefficient can also handle monotonic non-linear relationships and

therefore the values for rB and r; based on the data set displayed in figure 2.9a

are higher than using the Pearson correlation coefficient. However, as well as the

Pearson correlation coefficient, the Spearman rank correlation coefficient fails to
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identify the strong non-linear (non-monotonic) relationship shown by the scatter

plot in figure 2.9b. If one can not guarantee that the assumptions made by applying

the correlation coefficient are correct, then one can not rely on the calculated rs and

r; values.

2.4.4 Response Surface Method (RSM)

The basic idea of this methodology is to develop a response surface approximation to

the original model. In this way a metamodel is constructed, which can then be used

as a surrogate for the original model in order to perform uncertainty and sensitivity

analysis. The term metamodel is used throughout this work when referring to the

model approximation. According to Helton (1993) the response surface method

involves six steps:

1. Selection of the range and distribution for each of the input parameters,

2. Development of an experimental design to define the combination of parame-

ters for which the model will be evaluated,

3. Evaluation of the model output for each design point,

4. Construction of a response surface approximation to the original model,

5. Uncertainty analysis using the surrogate for the original model,

6. Sensitivity analysis using the surrogate for the original model.

Selection of Range and Distribution

The first step is similar to the first step in Monte Carlo analysis. It is necessary to

determine at least the range of the input parameters Xi at this stage, since this will
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have an impact on the selection of the design points in the second step. For the

uncertainty analysis in step five the distribution of the input parameters Xi will also

be required.

The complexity of the response surface model is controlled by the complexity of the

original model. Therefore, the aim is not to add parameters to the response surface

unnecessarily (Downing et al. 1985). A screening method, such as the one at a time

design as discussed in section 2.3, can be used to determine the most influential

parameters. The screening would take place after assigning the range for each of the

input parameters.

Development of an Experimental Design

An experimental design is selected to define the combination of parameters for which

the model will be evaluated. Different types of experimental designs are available

such as factorial design or fractional factorial design (Box et al. 1978). Several other

design methods especially for computer experiments are discussed for example in

Sacks et al. (1989b) and Sacks et al. (1989a). The design chosen depends on many

factors: the number of independent parameters under consideration, the possible

presence of non-linear effects, the possible importance of parameter interactions and

the computational expense of the model (Helton 1993).

Model Evaluation

The model is evaluated for each of the design points. In contrast to the Monte

Carlo method described in section 2.4.3 the points are not random. They have been

chosen using an experimental design which assures that a specific structure exists

between the values of individual input parameters Xi. Again, this can be the most

time consuming part depending on the number of simulations to be performed and

LEEDS UNIVERSITY LIBRARY
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the individual run time of the model.

Construction of a Response Surface

The results from the model evaluations are used to construct a response surface

approximation to the real model. This is usually based on least square methods

using either a first-order model

n

f(x) ~ bo+L biXi
i=l

(2.15)

or a second-order model

n n

f(x) ~ bo + L bix, + L biiX~ + L bijXiXj.
i=l i=l l$i<j$n

(2.16)

It is also possible to use polynomials or splines for the approximation.

Uncertainty Analysis

Two different approaches can be used to estimate the uncertainty in y = f(x)

(Downing et al. 1985, Helton 1993). Using the first approach and a first-order

model, the expected value E of the output can be approximated by:

n

E(y) ~ bo +L biE(Xi).
i=l

(2.17)

If the input parameters are uncorrelated, than the variance D of the output can be

calculated as follows
n

D(y) ~ bo+Lb~D(Xi)'
i=l

(2.18)

The second approach would be to use the same methods as stated in step four

of the Monte Carlo analysis (section 2.4.3). However, in this case the response
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surface approximation is used instead of the original model. The computational

effort involving the surrogate is much smaller and therefore a large sample size N

can be applied to present the results of the uncertainty analysis.

Sensitivity Analysis

If a first-order model is used to construct the response surface, then the following

normalisation can be used to assess the sensitivity of the model output y = f(x) to

the individual parameters Xi (Helton 1993):

(2.19)

(2.20)

where S D stands for the standard deviation.

The coefficient in equation (2.19) biE(Xi)/ E(y) represents the importance of the

input parameter Xi with respect to equal-sized perturbations from their expected

values. The coefficient in equation (2.20) biSD(Xi)/ SD(y) indicates the importance

of the input parameter Xi with respect to perturbations from their expected values

that are equal to fixed fractions of their standard deviations (Helton 1993).

It is also possible to apply standard methods for sensitivity analysis as used in

connection with Monte Carlo analysis (section 2.4.3, step five) such as scatter plots

or correlation coefficients. However, instead of using the original model the response

surface approximation is used as a surrogate.

More detailed information regarding the response surface method can be found in

Box (1954), Box & Draper (1987), Myers et al. (1989) and Khuri & Cornell (1996).
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2.4.5 Method of Sobol'

Sobol' developed the most general global SA method by introducing sensitivity in-

dices (Sobol' 1993, Sobol' 2001, Sobol' & Kucherenko 2005). The method of Sobol'

is a variance-based method based on the decomposition of f(x) into summands of

increasing dimensionality in the unit cube K" = [0,1]n:

n

f(x) = fo +L fi(Xi) + L fij(Xi, Xj) + ... + !I2...n(Xll X2,· .. ,xn). (2.21)
i=l l~i<j~n

Equation (2.21) is known as ANOVA decomposition or ANOVA representation

(ANOVA - Analysis Of Variances) with the following properties (Sobol' 2001):

1. Integral null property: the integral of every summand fil, ...,i. (Xil .•. Xi.) over

any of its independent parameters is zero

2. Orthogonality: because of equation (2.22) any two different summands fil, ...,i.

and fh, ...,jt are orthogonal

for at least one index differing in {il, ... , is} and {jll." ,jt}.

All terms of the ANOVA decomposition (2.21) can be calculated via multidimen-
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sional integrals:

fo - in f(x)dx

fi - 11

•••11

f(x)dxi - fo

fij - 11

•••11

f(x)dxij - Ii - h - 10

(2.24)

(2.25)

(2.26)

The constant fo is derived by integrating over all indices, fi is derived by integrating

over all indices but Xi (indicated by dx') and so on.

The total variance D can be obtained from

(2.27)

and the partial variances Di1,...,i. can be calculated from each of the terms in equation

(2.21):

D, - ]" J.'(x,)dx,

o; - 11 11 Ii; (Xi, xj)dxidXj

(2.28)

(2.29)

Squaring and integrating equation (2.21) over the whole domain K" results in:

n

D =LD, + L Dij + ... + D1,2, ... ,n.
i=1 l~i<j~n

(2.30)
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The sensitivity indices are defined as

D· .S. . - '£1, ... ,1."
tl,···,t~ - D ' (2.31)

so that all its terms sum to one:

n

LSi + L Sij + ... + Sl,2,...,n= 1.
i=l l~i<j~n

(2.32)

The first-order sensitivity index Si measures the main effect of the input parameter

Xi on the output, or in other words the fractional contribution of Xi to the variance

of I(x). The second-order sensitivity index Sij measures the interaction effect of Xi

and Xj on the output and so on (Chan et al. 2000).

Based on the sensitivity indices calculated by equation (2.31) it is possible to rank

the input parameters according to their importance.

Computation of the Partial Variances

The integrals in equations (2.28) and (2.29) can be approximated via Monte Carlo

integration (Homma & Saltelli 1996, Chan et al. 2000).

The approximation of the zeroth-order term 10 of the ANOVA-decomposition (2.24)

for a given sample size N is straight forward:

(2.33)

where x(s) is a sample point in the multi-dimensional space K" with s = 1,2, ... ,N.
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The total variance D can then be estimated by:

N

D ~ ~ 2: f2(X(s)) - fg.
s=1

(2.34)

The evaluation of the first-order partial variances is given in Homma & Saltelli

(1996):

u. - [f.'(X,)dx, = [ [[ ... [ f(x)dx' - for dz, (2.35)

- fg - 2foL f(x)dx +[ [[ ...[ f(X)dX'] 2 dz, (2.36)

- 11...11feu, xi)f(v, xi))dxidudv - fg (2.37)

where u' and Vi are projections of x on K" - 1 = K" minus the parameter Xi. The

integrals can be estimated by Monte Carlo integration which leads to:

N

o, ~ ~ 2::f(Ui,Xi)(s) f(Vi,Xi)(s) - fg.
8=1

(2.38)

The Monte Carlo integration in order to estimate Dij is given by:

N12:.. () .. () 2D·· ~ - f(qt} X· x·) 8 x fer'} X· x·) 8 - D· - D· _ f
t} N ' " } , " } '} J 0 •

8=1

(2.39)

The variables qij and rij are projections of x on K" - 2 = K" minus the two inputs

Xi and Xj'

Two sampling matrices, containing two different sets of random values, have to

be provided for the calculation of the partial variances, both with the dimension

N x n. For the computation of D, the output evaluated using the inputs from

the first sampling matrix (also known as the base matrix) is multiplied with the
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output evaluated using the inputs from the second sampling matrix (known as the

resampling matrix), where the ith column is kept constant. The same applies for the

computation of Dij, however in this case the ith and jth column are kept constant

in the two matrices.

To obtain the total variance and all the partial variances (full characterisation of

the system), altogether 2n Monte Carlo integrals have to be evaluated. For each

Monte Carlo integral different input matrices have to be provided. For example the

computation of D, calls for different input matrices than the calculation of Dj (the

first input matrix [N x (u', Xi)] is identical, however the second matrix [N x (Vi, Xi)]

differs for the calculation of D, and Dj). This is a significant drawback of the

described method (Homma & Saltelli 1996).

The required number of model runs to estimate the sensitivity indices is (Rabitz &

Ali§ 1999):
L ,

N.~ n.
~ (n-i)!i!
,::0

(2.40)

where L is the order of the ANOVA decomposition. The full characterisation of the

model requires

(2.41)

model runs. For example, if one wants to investigate a model with only four input

parameters using a second-order ANOVAdecomposition (which allows the investiga-

tion of up to second-order effects), N· (1+4+6) model runs are required according

to equation (2.40). The number of samples N can be quite high (~ 103), however

assuming N = 1000 means that a total of 11 000 model runs are required in order

to estimate the sensitivity indices up to second-order.

Using this example it becomes obvious, that unless the dimension of the model

input n and the dimension L is very small, far too many model runs are required.
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Therefore, a more efficient approach to estimate the sensitivity indices is described

in section 3.4 when the high dimensional model representation (HDMR) method is

introduced.

2.4.6 Fourier Amplitude Sensitivity Test (FAST)

The Fourier amplitude sensitivity test (FAST) was created in the 19708 (Cukier

et a1. 1973, Schaibly & Shuler 1973, Cukier et a1. 1975) and offers an alternative

approach to calculate the same sensitivity indices as the Sobol' method described

in the previous subsection. A summary of the FAST method is given in Chan et a1.

(2000) and Helton (1993).

If assuming a uniform distribution for all the inputs Xi, then the expected value E

and the variance D of the model output y = f(x) can be calculated over multidi-

mensional integrals as

E(y) - hn f(x)dx

D(y) - kn [f(x - E(y)]2 dx

(2.42)

(2.43)

where Jl!I is the entire domain of the input x.

The basic idea of the FAST approach is to convert the multidimensional integrals

over all the uncertain model inputs x = (XI, ... , xn) (equation (2.42) and (2.43))

into a one dimensional integral in s by using the transformation function G,

(2.44)

for i = 1, ... ,n with s E (-7r, 7r) and a set of integer frequencies {Wi}.

The multidimensional integral in (2.42) can now be expressed as a one dimensional
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integral and the expected value of the model output y = f(x) is given by:

1 171"E(y) = 27r -71" f(s)ds (2.45)

with

(2.46)

Further, the variance D is now given by:

(2.47)

By using the properties of the Fourier series as given in Cukier et al. (1973) the

variance can be approximated by:

00

D{y) ~ 2 ~~)AZ+ B~)
k=l

(2.48)

where Ak and Bk are the Fourier coefficients stated as:

1 171"27r -71" f(s) cos(ks)ds

1 171"Bk - 27r -71" I(s) sin{ks)ds.

(2.49)

(2.50)

The first-order partial variances Di{Y) can be approximated by

00

Di(Y) ~ 2L(AL; + B~wJ
k=l

(2.51)

where Wi is the integer associated with G, in the conversion from a multidimensional

integral to a one-dimensional integral {see also equations (2.45)-(2.46)).

Usually the maximum harmonic M (also known as interference factor (Saltelli et
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al. 1999)) considered is taken to be four or six (Cukier et al. 1975). Thus, Di(Y) can

be further approximated by

M

Di(Y) = 2 I)ALi + B~wJ
k=l

(2.52)

The frequency Wi for each input parameter can be determined according to Cukier

et al. (1975):

Wi - Wi-l + dn+1-i, i = 2, ... ,n

(2.53)

(2.54)

where On and dn are listed in table VI of their paper.

The calculation of the total variance D and the partial variances D, allows an esti-

mate for the first-order sensitivity indices:

S, _ Di(Y)
,- D(y) (2.55)

The minimum number of sample points required to compute Di(Y) is given in Cukier

et al. (1975) as

N = 4wmax -14 (2.56)

with Wmax the maximum frequency amongst the set of Wi. Saltelli et al. (1999) states

the minimum sample size at

N= 2Mwmax+ 1 (2.57)

and Fang et al. (2003) uses

N = 5wmax + 1 (2.58)

in order to define the sample size. Cukier et al. (1975) have derived an empirical
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relation between the sample size N and the number of parameters n. This relation

is found to be (for M = 4):

N ~ 2.6n2.5 (2.59)

Due to symmetry properties the required number of model runs is only N /2 (Cukier

et al. 1975).

In general classic FAST (as introduced by Cukier et al. (1973)) is computationally

more efficient than the method of Sobol', because the evaluation of the first-order

sensitivity indices can be carried out for all factors using only one set of runs (Saltelli

et al. 1999). For example, the minimum number of model runs required for a model

with four input parameters would only be 42, according to equation 2.59 and con-

sidering the symmetric properties. However, the number of required model runs

directly depends on the number of input parameters n (see empirical relation in

equation (2.59)). For instance, considering a model with 30 parameters the required

number of model runs would already exceed 6000.

By using classic FAST only the first-order terms Si can be explored. This makes

the approach insufficient if the sum of the first-order indices is much less than one

(Sobol' 2001). An extended FAST was introduced by Saltelli et al. (1999) and

can be used to calculate the total effect indices TS(i) as well. However, the total

effect indices do not provide a complete characterisation of the system. The total

effect index TS(i) is defined as the sum of all sensitivity indices involving the input

parameter in question. It is therefore more reliable than the first-order index, if one

is interested in the overall effect of each input parameter upon the output. However,

the FAST method loses its attractive feature, that only one set of samples is required

in order to calculate all indices. Using extended FAST a new set of samples will be

needed to evaluate each of the total effect indices TS(i) (Saltelli et al. 1999).
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2.5 Summary

A variety of methods for global sensitivity analysis have been introduced in this

chapter. Each method has its advantages and disadvantages. A detailed comparison

of the Monte Carlo analysis, FAST and RSM can be found for example in Helton

(1993) or Helton & Davis (2003).

Screening methods, which can be local or global depending on their set up, are very

easy to implement and their low computational requirements make them often a first

choice in order to produce a parameter ranking. However, they can not quantify

how much a given factor is more important than another. In order to obtain a

quantitative measure, other methods are required. Also, for certain types of model

systems their convergence properties can be poor, increasing their computational

requirements.

Monte Carlo analysis is probably the conceptually simplest approach among the

methods discussed here for global sensitivity analysis and therefore widely used. The

two main advantages of this method are the full coverage of the range of each input

parameter and the large variety of uncertainty and sensitivity analysis techniques

available. Different sampling procedures can be applied such as Latin hypercube

sampling or quasi-random sampling. Particularly the quasi-Monte Carlo approach

(MC analysis using quasi-random sampling) achieves a significantly higher accuracy

than the Monte Carlo method using random sampling (Niederreiter 1992). A major

drawback of the Monte Carlo analysis is in the large number of model runs required.

Therefore, it has limited applicability for computationally expensive models. An-

other drawback is the difficulty in interpreting the results (e.g. scatter plots) for a

large number of parameters.

The response surface method (RSM) uses a surrogate of the original model in order to



50

perform sensitivity and uncertainty analysis. Thus, this methodology is even appli-

cable for models, which are expensive to run. However, there are several drawbacks

of the response surface method. One point is that the development of an appropriate

experimental design can cause difficulties, because the form of the model might not

be known (Helton 1993). It is also possible, that many outputs have to be consid-

ered which could require different experimental designs. Another point is that only

a few values are used for each input parameter as design points. A major drawback

is that the response surface method works only for a limited number of input pa-

rameters (typically less than ten) and a few distinct output variables (Helton 1993).

Depending on the model which is used to create the response surface, the relation-

ship between the input and output variables is only linear or quadratic, which may

be insufficient for some non-linear models. Even if the use of a surrogate promises a

less expensive method for uncertainty and sensitivity analysis, the results are only

as good as the response surface approximation of the real model.

Sobol's method is based on the variance decomposition and is used for the calculation

of sensitivity indices. The whole range of the input parameters is covered and the

full model is used for the estimation of the total and partial variances. A significant

drawback of Sobol's method is in the high number of required model runs, because

for each estimation (e.g. each first-order sensitivity index Si) a different set of

samples is required.

The Fourier amplitude sensitivity test (FAST) method offers an alternative approach

to calculate sensitivity indices. The full range of the input parameters is considered

and the original model is used for the estimation of expected value and variance.

Only one set of samples is required in order to calculate all first-order sensitivity in-

dices, which makes FAST computationally more efficient than the method of Sobol'.

However, the FAST method is quite complicated and difficult to explain and only

the first-order indices can be determined if using classic FAST. Extended FAST en-
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ables the calculation of total sensitivity indices TS(i), however it requires a new set

of samples to evaluate each of the TS(i).

After reviewing traditional methods for global SA it can be said that there is a need

for more general methods for the analysis of non-linear responses and parameter

interactions within the field of environmental and safety engineering. Methods are

required, which are computationally efficient and can handle a large number of in-

put parameters at the same time. Traditional methods can not fulfil all of these

requirements. The more recently developed High Dimensional Model Representa-

tion (HDMR) method provides a promising approach in order to cope with a large

input space dimension very efficiently. The method produces a detailed mapping of

the input parameter space to selected outputs which is fundamental to global SA.

Sensitivity indices can be calculated in an automatic way that can then be directly

used in importance ranking and to explore parameter interactions. The HDMR

method is introduced in the next chapter and its effectiveness is demonstrated using

various analytical test functions and case studies from the field of environmental

and safety engineering in the chapters 4 to 6.
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3 High DimensionalModel

Representation (HDMR)

Sensitivity analysis in general tries to reveal the relationship between the model

inputs and the model outputs. This is usually done by Monte Carlo methods or

variance-based approaches as described earlier in chapter 2. These methods aim

to deduce the contribution of the input parameters to the output uncertainties.

Another approach is to produce a detailed mapping of the input parameter space

upon the output, which can be fundamental to overall model analysis (Rabitz &

Ali§ 2000). Without any simplification the identification of the input-output rela-

tionship of a system with a high dimensional input would be computationally too

expensive. The high dimensional model representation (HDMR) method introduced

by Rabitz et al. (1999) can dramatically reduce the computational effort needed for

the mapping and was mainly developed to express the input-output relationship of

a complex model with a large number of input parameters.

HDMR is an expansion with a hierarchical form in terms of the input parameters

(Rabitz et al. 1999, Rabitz & Ali§ 1999, Li et al. 2000). The mapping between the

input parameters Xl!' .. , Xn and the output f(x) = f(Xl, ... ,xn) in the domain Er"
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can be written in the following form:

n

f(x) = fo +L fi(Xi) + L fij(Xi, Xj) + ... + !I2 ...n(XI, X2,· .. , xn). (3.1)
i=l l~i<j~n

Here fo denotes the mean effect (zeroth-order), which is a constant. The function

fi(Xi) is a first-order term giving the effect of parameter Xi acting independently

(although generally non-linearly) upon the output f(x). The function lij(xi, Xj)

is a second-order term describing the cooperative effects of the parameters Xi and

Xj upon the output f(x). The higher-order terms reflect the cooperative effects of

increasing numbers of input parameters acting together to influence the output f(x).

If there is no interaction between the input parameters, then only the zeroth-order

term 10 and the first-order terms li(xi) will appear in the HDMR expansion.

The notation of zeroth-, first-, second-order, etc. in the HDMR expansion should

not be confused with the terminology of a Taylor series: the HDMR expansion is ex-

act and always of finite order (Rabitz & Ali§ 2000). Li et al. (2001b) highlights that

HDMR expansions possess faster convergence properties than Taylor series and the

relationship between both approximation methods is shown. The Taylor series has

an infinite number of terms whereas the HDMR expansion has only a finite number

of terms, and it is stated that each HDMR component function can be composed of

an infinite subclass of the full multidimensional Taylor series. Therefore, it is likely

that a truncated HDMR expansion gives a better approximation of I(x) than any

truncated Taylor series. Furthermore, it is argued that high-order HDMR compo-

nent functions are usually smaller than low-order ones. This will be investigated

when the HDMR method is applied to various case studies in the chapters 4 to 6.

The HDMR expansion is computationally very efficient if higher order input param-

eter effects are weak and can therefore be neglected. For many systems a HDMR
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expression up to second-order

n

f(x) ~ fa +L fi(xi) + L fij(xi, Xj)
i=l l$i<j$n

(3.2)

already provides satisfactory results and a good approximation of f(x) (Li et al.

2001b). Therefore, the main focus in this work will be on an up to second-order

HDMR expansion.

There are two commonly used HDMR expansions: cut-HDMR, which depends on

the value of f(x) at a specific reference point x as described in the next section, and

RS-HDMR, which depends on the average value of f(x) over the whole domain and

is explained in section 3.2.

3.1 Cut-HDMR

The cut-HDMR expansion can be constructed, when ordered sampling of the output

f(x) is possible. A reference point x = (Xl, ... , Xn) has to be selected first. This

could be in the simplest case the midpoint for each of the parameter ranges (see

also comments in section 3.1.1). The component functions of the cut-HDMR with

respect to the reference point x possess the following forms (Wang et al. 2001, Wang

et al. 2005):

fa - f(x) (3.3)

fi(xi) - f(xi, Xi) - fa (3.4)

fij(xi, Xj) - f(xi,Xj,Xij) - fi(xi) - f;(Xj) - fa (3.5)
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where

fi(Xi, x)

fii(Xi, xi' x)

(Xl, ... , Xi-I, Xi, XHl, ... ,Xn)

(Xl!'" ,Xi-I, Xi, XHI,··· ,Xi-I, xi' Xi+I, ... ,Xn)

(3.6)

(3.7)

The notation fi(Xi, x) = (Xl! ... ,Xi-I, Xi, XHl!' .. ,xn) denotes that all input param-

eters are at their reference point values except Xi. The same applies for fii(Xi, xi' x).

In this case all input parameters are at their reference point values except Xi and

The 10 term is a constant representing the output response of the system at the

reference point X. The higher-order component functions are calculated along its

parameter axis through the reference point X, only the last term !I2 ...n(XI, X2,' .. , xn)

in equation (3.1) is evaluated from the difference between I(x) and all the other

component functions. The input-output response of the model is evaluated along

lines, surfaces, subvolumes and so on in the input space dimension. Thus, the higher

order terms of the HDMR expansion are determined as "cuts" through the reference

point and therefore the method is named cut-HDMR. Figure 3.1 shows an example

of cut-lines and cut-surfaces for two input parameters, if using the midpoint as a

reference point.

The cut-HDMR component functions are usually numerically represented as low-

dimensional look-up tables. The value of I(x) for an arbitrary point x can be

calculated by the following two steps:

1. Perform a low-dimensional interpolation over the HDMR expansion terms

fi(Xi), fii(Xi, xi), ... with respect to the input values of the given point x,

2. Sum all interpolated values of the higher-order HDMR terms (first-order up
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Figure 3.1: (a) Calculation of h(Xl) along the xl-axis through the reference point,
(b) calculation of !2(X2) along the x2-axis through the reference point,
(c) calculation of h2(Xl! X2) along the surface of Xl and X2 through the
reference point.

to highest-order) and then add the zeroth-order term as well.

A second-order cut-HDMR expansion requires the storage of the component func-

tions in numerical tables for the first-order terms fi(Xi) and the second-order terms

fij(Xi, Xj). The interpolation in order to calculate the value for an arbitrary point x

has to be performed for a one-dimensional and two-dimensional function. A linear

interpolation between the grid points is usually sufficient, however other methods

such as spline interpolation can also be used. The general meaning and interpreta-

tion of the component functions is given in section 3.4.3.

The required number of model runs to construct the cut-HDMR component func-

tions up to the Lth order is given by:

L'"' n' -L.J ( _ ·0)' ., (m)'n z .z.
i=O

(3.8)

where m is the number of sample points taken along each axis (Rabitz & Ali§ 2000).

The lower order terms are subtracted in the process to determine the component

functions and therefore the calculation of the model response at the reference point
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is not required for the higher-order terms, since the value of the expansion is zero

at this point (see equation (3.3)-(3.5)). Thus, the number of necessary model runs

can even be reduced and is now given by:

(3.9)

For example, a second-order cut-HDMR expansion (L = 2) with five input param-

eters (n = 5) and 11 grid points (m = 11) used for each of the parameter ranges

would require N = 1051 model runs (1 zeroth order + 50 first order + 1000 second

order). It can be seen that the sampling effort directly depends on the number of

input parameters and the number of grid points. This means that the cut-HDMR

method can become computationally expensive if investigating models with a large

input space dimension, especially if one is also interested in the higher-order effects.

3.1.1 Reference Point

In the convergence limit, the cut-HDMR is invariant to the choice of reference point

x. In practice the reference point x is usually chosen within the neighbourhood of

the point of interest in the input space (Wang et al. 2005).

However, Sobol' (2003) investigated a class of models where a careless choice of the

reference point x can spoil the approximation. Therefore, he suggests a method on

how to determine the reference point more wisely.

First of all the model output f(x) is calculated for a moderate number N of quasi-

random trial points uniformly distributed in R". Then a crude estimate of the mean

can be calculated:
N

f; ~ ~ l:f(x(8»).
8=1

(3.10)
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The reference point x is selected as the trial point x(so) whose output is nearest to

f· .
JO·

(3.11)

The selection of the reference point requires N additional model runs which increases

the computational effort of the cut-HDMR method. However, these additional model

runs can also be used to assess the accuracy of the constructed HDMR metamodel

as discussed in section 3.3.

3.1.2 Multicut-HDMR

If the input space dimension is too large, then the HDMR function expansion may

not converge and cut-HDMR will not be able to accurately approximate the model

output f(x) by using only one single reference point x. To address this problem

the Multicut-HDMR technique has been introduced in Li et al. (2004). Multicut-

HDMR allows the use of multiple reference points which leads to an improvement in

the accuracy of the metamodel. However, it also leads to an increase in the number

of sample points required. Multicut-HDMR is not further discussed here and more

detailed information can be obtained from Li et al. (2004).

3.2 RS-HDMR

In contrast to cut-HDMR, RS-HDMR requires a set of random sample points N

over the entire domain B". The component functions are determined through an

averaging process. First of all, the input parameters Xi are rescaled such that 0 ~

Xi ~ 1 for all i. The output function is then defined in the unit hypercube K" =

{(Xl! ... , xn), i = 1, ... ,n}. The component functions of RS-HDMR possess the
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following forms (Li et al. 2002a):

fo - in f(x)dx (3.12)

fi(xi) - in-l f(x)dxi - fo (3.13)

fij(xi, Xj) - 1 f(x)dxij - fi(xi) - fi(Xj) - fo (3.14)
Kn-2

where dx' stands for the product dX1dx2... dz., without dz, and dxij stands for

the same product, however without dz, and dzj. The last term !I2 ...n(XI, X2, ... , xn)

in equation (3.1) is evaluated from the difference between f(x) and all the other

component functions.

For the evaluation of fo, N samples of the n-dimensional input vector

X(s) - (x(s) x(s) x(s»)
- l' 2 ... , n , s=1,2, ... ,N (3.15)

are randomly generated uniformly distributed in K" so that fo can be approximated

by the average value of f(x) for all x(s):

fo - 1 f(x)dx
Kn

N

~ ~ ~f(x(8»).
8=1

(3.16)

(3.17)

The calculation of the higher order component functions can be obtained in various

ways and is described in the following section.
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3.2.1 Computation of the Higher Order Component Functions

The higher order component functions can be determined using two different ap-

proaches. The first uses direct determination, which requires sampling the output

on a regular net in order to evaluate the integrals in equations (3.13) and (3.14) via

Monte Carlo approximation. The second approach uses analytical basis functions

or kernel smoot hers in order to approximate the higher order component functions.

Direct Determination

The component functions are provided numerically at discrete values of the input

parameters in low-dimensional look-up tables. The construction of the tables makes

the evaluation of the integrals in the equations (3.12)-(3.14) necessary, which can be

carried out by Monte Carlo approximation (Li et al. 2002a, Li et al. 2002b).

The direct determination of the first-order component function fi(Xi) requires dif-

ferent sets of random samples of f(Xi, xi) at

s = 1,2, ... ,N. (3.18)

The input parameter Xi is fixed at m distinct values so that mN random samples

are required to construct the fi(Xi) table:

fi(Xi) - Ln-l f(x)dxi - fa
N N~~L f((Xi, xi)(s)) - ~ L f(x(S)).
8=1 s=l

(3.19)

(3.20)

The second-order component functions fij(Xi, Xj) are constructed similarly with dif-
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ferent sets of random samples of f(Xi, xi' xij) at

(3.21)

for s = 1,2, ... ,N with m distinct values for Xi and xi it takes m2N samples to

construct the second-order term fij(Xi, Xj):

fij(Xi, Xj) - r f(x)dxii - fi(Xi) - /j(Xj) - fo
JKn-2

N N
~ ~ Lf((Xi,Xixij)(S)) - ~ Lf((Xi,Xi)(s))-

s=1 s=1
1 N 1 N
N L!((Xj,xj)(s)) - N L!(x(s»).

s=1 s=l

(3.22)

(3.23)

The required number of samples to construct the RS-HDMR expansion up to second-

order is given by

N N
n(n -1)m2N

+nm + 2 (3.24)

which makes the direct approach prohibitively expensive (Li et al. 2002a). For

example, if considering a model with five input parameters (n = 5), 11 distinct

values (m = 11) for each of the inputs and a set of 1000 random samples for x(S),

(Xi, Xi)(S) and (Xi, Xj, xij)(s), then it would require a total of 1266000 model runs

(1000 zeroth-order + 55000 first-order + 1210000 second-order).

Approximation of the Component Functions

The sampling effort can be dramatically reduced by approximating the RS-HDMR

component functions by either a set of suitable analytical functions or numerically

by using kernel smoothers (Li et al. 200la).
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In this work the focus is only on the analytical approximation of the component

functions, where orthonormal polynomials, spline functions or simple polynomials

can be used as basis functions (Li et al. 2002a). The RS-HDMR component functions

now read as

k

!i(Xi) I"'J La~CPr(Xi) (3.25)I"'J

r=l
I I'

fij(xi, Xj) I"'J L L /3~{'PP(Xi)CPq(Xj) (3.26)I"'J

p=l q=l

where k, 1, l' represent the order of the polynomial expansion, Q~ and /3:4 are constant

coefficients to be determined and CPr(Xi), 'Pp(Xi) and cPq(Xj) are the basis functions.

Using a second-order RS-HDMR expansion, the model output can now be expressed

as
n kif

f(x) ~ fo + l:l:Q~CPr(Xi) + l: l:l:/3!{CPP(Xi)cPq(Xj). (3.27)
i=l r=l l:::;i<j:::;np=l q=l

The coefficients a~and /3:4 can be determined by minimisation of

(3.28)

(3.29)

which leads to a linear equation

Ay=b (3.30)

where A is a constant nonsingular matrix, b is a vector whose elements are integrals

over a product of f (x) and the basis functions and y is the vector of coefficients for
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the basis functions (Li et al. 2002 a).

For example, the (r, r')-entry for the matrix A to determine the coefficient a~ is

given by

r, r' = 1,2, ... , k. (3.31)

If applying a polynomial expansion order of k = 2, one would get the following linear

equation in order to obtain the a~coefficients:

_ [ ID: 'PI (Xi)'Pl(Xi)dxi ID: 'P2(Xi)'Pl(Xi)dxi ]

10 'Pl(Xi)'P2(Xi)dxi 10 'P2(Xi)'P2(Xi)dxi
'-----~~------

b A

.[:!]
~

y

(3.32)

In Li et al. (2002a) it is also demonstrated that the approximation of the HDMR

component functions by orthonormal polynomials provides the best accuracy if com-

pared with splines and normal polynomials. Therefore, the focus of this work will

be on orthonormal polynomials only.

Orthonormal Polynomials Polynomials are orthogonal in the domain [a, b] if they

satisfy the following conditions:

lb 'Pk(x)dx - 0

lb 'Pk(X)'PI(X)dx - 0

k = 1,2, ... (3.33)

k =f I. (3.34)

Additionally, if the polynomials have the unit norm

k=1,2, ... (3.35)

(3.36)
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then they are called orthonormal.

Different orthogonal polynomials are known, such as Jacobi, Chebyshev or Legendre

polynomials (Hochstrasser 1972) and could potentially be used as basis functions.

In this work Legendre polynomials are used to provide the set of orthonormal ba-

sis functions. Legendre polynomials are orthogonal in the domain [-1, 1]. Because

orthonormal polynomials are required for the domain [0,1] (for the RS-HDMR ap-

proach the inputs Xi are rescaled between 0 and 1), one can use the shifted Legendre

polynomials, which are also widely applied in optimal control theory (see for example

Horng & Chou (1986) or Wang & Chang (1985)):

'PI (x) - V3(2x -1) (3.37)

'P2(X) - 6V5 ( x2 - X + ~) (3.38)

'P3(X) v'7(3 32 3 1) (3.39)- 20 X - -x + -x - -
2 5 20

The calculation of the orthonormal basis using shifted Legendre polynomials is il-

lustrated in the appendix (section A.2) and a list of up to tenth-order polynomials

is provided.

Due to the orthonormal character of the basis functions the matrix A in equation

(3.30) is the identity matrix which allows the computation of the Q~ coefficients as
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follows:

ai - 11 h(xi)r.pr(Xi)dxi (3.40)r

ai - 11[1 I(x)dxi - 101 r.pr(xi)dxi (3.41)r o Kn-l

!i(Xi)

- 111 f(x)r.pr(Xi)dxidxi - 1011r.pr(Xi)dxi (3.42)
o x--» 0

0

- 1 I(x)r.pr(xi)dx. (3.43)
Kn

Using Monte Carlo integration for the approximation of the high dimensional integral

one gets:

(3.44)

The estimation of the /3;/q coefficients is similar and leads to:

(jij - 1f(x) r.pp(Xi) r.pq(Xj)dx. (3.45)pq
Kn

N
,..... ~L f(X(8))r.pp(X~8))r.pq(X)8)). (3.46),.....

8=1

By using analytical basis functions only one set of random samples N is required in

order to determine all RS-HDMR component functions. This is a dramatic reduction

of the sampling effort in comparison to the direct approach. Moreover, it is only

necessary to store the expansion coefficients a~ and j3i~. The value of f(x) for an

arbitrary point x can then be calculated by the following two steps:

1. Calculate the HDMR expansion terms li(Xi), fij(Xi, Xj), ..• with respect to

the input values of the given point x by using the analytical equations of the

shifted Legendre polynomials and the corresponding expansion coefficients,
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2. Sum all calculated values of the higher-order HDMR terms (first-order up to

highest-order) and then add the mean (zeroth-order term).

The approximation of the HDMR component functions by orthonormal polynomials

does not involve the storage of data in numerical tables and no interpolation is

required.

3.2.2 Variance Reduction Methods

The determination of the expansion coefficients for the analytical basis functions (see

equation (3.44) and (3.46)) is carried out by Monte Carlo integration. The error of

the Monte Carlo integration controls the accuracy of the RS-HDMR metamodel and

therefore it is necessary to assure that this error is kept small.

Before introducing methods which are able to control the accuracy of the RS-HDMR

metamodel one needs to focus on some details of the Monte Carlo integration process.

The theoretical foundations of the Monte Carlo integration can be found in Kalos

& Whitlock (1986) or Robert & Casella (2004). The following summary is based on

the one given in Li et al. (2003b).

Monte Carlo Integration

The random variable

N

FN = ~ L F(x(8»)
8=1

(3.47)

with the function F(x) and the independent random parameters x = (Xl! X2,' •• ,xn)

with a uniform probability density function has the following expectation value
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E(FN) =1F(x)dx.
Kn

(3.48)

The variance D and the standard deviation (standard error) a are given by:

D(FN)
1

(3.49)- ND(F(x))

U(FN) - VD(FN) (3.50)

1
- y'Nu(F(x)). (3.51)

The value FN can be used as an estimate (empirical average) of the integral in

equation (3.48). From equation (3.51) it is obvious that the Monte Carlo integration

error (standard deviation zr) can be reduced by either increasing the sample size N

or by decreasing the variance of F (x).

According to Li et al. (2003b) the required sample size N to achieve a good accuracy

of the expansion coefficients is mainly dependent on the order of the component

function and not so much on the dimension of the input parameter vector x. This

means, that the determination of the higher order RS-HDMR component functions

generally requires additional samples. A few hundred samples might be sufficient in

order to calculated the first order component functions fi(Xi). However, to achieve

a good accuracy for the second order component functions fij(Xi, Xj) thousands of

samples may be required (Li et al. 2003b). For practical applications the sample size

N is often restricted by time and cost considerations and therefore an increase in the

sample size is not always affordable. Another way to improve the accuracy of the

Monte Carlo integration is to reduce the variance of the integrand. This is achieved

by variance reduction methods and two methods are introduced in the following

sections: the correlation method and the ratio control variate method.
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Correlation Method

The correlation method for variance reduction of Monte Carlo integration is intra-

duced in Kalos & Whitlock (1986) and was suggested for use in RS-HDMR by Li

et al. (2003b). The determination of the expansion coefficients becomes an iterative

process. For example, consider the integral for the coefficient a:~ (equation 3.43):

(3.52)

In order to reduce the variance of the integrand f(X)<Pr(Xi) a reference function h(x)

is introduced which satisfies two conditions:

1. f(x) - h(x) is almost constant or vanishes in the whole domain,

2. The integral

(3.53)

is analytically known.

The introduction of h(x) leads to:

The variance comes only from the first term in equation (3.54). As f(x) - h(x) is

almost constant or zero it is expected that the variance of the integrand of the first

term in equation (3.54) is smaller than the variance of the integrand in equation 3.52.

A truncated RS-HDMR expansion (for example up to second-order) can be used as

h(x):



69

n k l r
h(x) = fo + L L Q~~r(Xi) + L L L,B:,{~P(Xi)~q(Xj). (3.55)

i=1 r=1 19<j$n p=1 q=1

The coefficients Q~ and ,B;/q are the initial values and can be determined by direct

Monte Carlo integration as given in equations (3.43) - (3.46). If the truncated RS-

HDMR expansion is a good approximation of f(x), then the difference f(x) - h(x)

should be very small. In Li et al. (2003b) it is shown that

(3.56)

This leads to the approximation of a~ by Monte Carlo integration

N

a~~ ~ L (J(X(B») - h(X(B»)) ~r(X~8») + Q~

8=1

(3.57)

with better accuracy than given by equation 3.44.

The approximation of .B~ is similarly and leads to

N '
J3~ ~ ~ L (J(X(8») - h(X(8»)) ~p(X~8»)~q(xy») +,B;/q

8=1

(3.58)

The first terms in equations 3.57-3.58 are corrections for the initial values Q~ and

,Bijq. The resulting values a~and J3;{ can be reused again as new initial values for the

construction of a new h(x) which leads to an even smaller difference f(x) - h(x).

The procedure in how to determining the expansion coefficients can be summarised

in the following steps:

1. Define h(x) by using for example a second-order HDMR expansion (equa-

tion (3.55)) and determine its expansion coefficients by direct Monte Carlo
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integration:

N

ct~ ~ ~ L f(X(8))'PT(X~8))
8=1

N

j3~ ~ ~ L f(X(8))'Pp(X~8))'Pq(XJ8))
8=1

(3.59)

(3.60)

2. Calculate a correction for the initial values ct~ and j3~ by using equation (3.57)

and (3.58).

3. Set the calculated corrections as the new initial values:

-i (iaT - T

j3~ - (3iipq

(3.61)

(3.62)

4. Go back to step 2 and repeat a pre-defined number of times or until a defined

convergence criterion is reached.

In this way the determination of the expansion coefficients becomes an iteration

procedure which is expected to be convergent if the initial value h(x) is close to

f(x) and if the sample size N is large enough.

Ratio Control Variate Method

The ratio control variate method applied by Li & Rabitz (2006) for RS-HDMR

is even more stable under iteration than the correlation method. The approach

is similar, however instead of using the difference of f(x) - h(x) as presented in

equation 3.54 for the calculation of a~, the ratio of f(x) and h(x) is used so that

(3.63)



71

Again, a truncated RS-HDMR expansion can be used as h(x). The approximation

of a~by Monte Carlo integration leads to

(3.64)

The approximation of /3;k is given by:

(3.65)

Similar to the correlation method the expansion coefficients a~ and j3i~ are deter-

mined iteratively and the initial values Q~ and P;k are calculated by direct Monte

Carlo integration.

3.3 Accuracy of the HDMR Metamodel

After the metamodel has been constructed using either the cut-HDMR or RS-HDMR

approach, it is necessary to validate its accuracy. A good accuracy of the metamodel

ensures that one can rely on the constructed HDMR expansion and shows that the

model behaviour has been captured well. Another important reason for assessing

the accuracy is that the calculation of the sensitivity indices (see section 3.4) relies

entirely on the constructed metamodel.

If cut-HDMR has been used to construct the metamodel, then an additional set of

samples (e.g. N = 1000 using random sampling) is required in order to show the

accuracy. The additional set of samples becomes necessary because the cut-HDMR

component functions are calculated along grid lines, grid planes and so on (see

section 3.1 for details). Therefore, the solution at the grid points for the metamodel
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is exact and the set of ordered samples which has been used for the construction of

the cut-HDMR expansion cannot be used to assess its accuracy. The calculation of

the metamodel response for an arbitrary point involves interpolation over the low

dimensional numerical tables (see two step algorithm in section 3.1) which leads to

an error. The error mainly depends on the grid size and the more grid points are

used the smaller the error and the more accurate the metamodel will be.

If the metamodel has been constructed using the RS-HDMR approach in connection

with analytical basis functions, one does not require an additional set of random

samples in order to assess the accuracy. The same set can be used to show the

accuracy of the metamodel, because the RS-HDMR approach uses a set of random

(or quasi-random) samples for the construction of its component functions. One set

of random samples is used for fitting the polynomials for all component functions (see

section 3.2.1). However, if one wants to assure that the metamodel is tested against

a set of samples which has not been used for the construction of the component

functions, then an additional set of random samples is required (e.g. N = 1000).

The RS-HDMR approach does not involve interpolation procedures like cut-HDMR,

however the calculation of the expansion coefficients (see equation (3.44) and (3.46))

is based on Monte Carlo integration which controls the accuracy of the metamodel

(see also section 3.2.2).

In the following section, five different methods are introduced to verify the accuracy

of the constructed HDMR metamodel. All methods can be applied in connection

with both approaches (cut-HDMR and RS-HDMR) and are based on one set of

random (or quasi-random) samples.
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3.3.1 Probability Density Function Estimate and Empirical

Cumulative Distribution Function

A common way of presenting the accuracy of the constructed HDMR expansion

is to compare the statistics of the response from the metamodel and the original

model. This can be achieved by using the probability density function (pdf) estimate

and/or the empirical cumulative distribution function (cdf) as applied for example

in Balakrishnan et al. (2005). If the characteristics have been well captured, then the

pdf/cdf of the metamodel and the original model should show good agreement. A

large number of random samples (Le. N = 10000) can be used in order to construct

the pdf/cdf from the response of the metamodel because its computational running

time is far less than the one of the original model.

An example for a pdf-plot is shown in figure 3.2. It is illustrated that in this case

a first-order HDMR metamodel is not capable of capturing the model behaviour.

The two pdfs show significant differences. The pdf produced on the basis of the

model output has two modes and in contrast the pdf constructed on the basis of the

response from the first-order metamodel has only one mode. However, when using a

second-order HDMR metamodel (figure 3.2b) then both pdfs show a nearly perfect

match. This affirms the high accuracy of the second-order HDMR metamodel.

The cdf-plot using the same data set is presented in figure 3.3 and confirms that

a first-order HDMR metamodel is not sufficient to capture the behaviour of the

original model. Again, when using the second-order metamodel both plots overlap

(figure 3.3b) nearly perfectly.

Both, pdf-plot and cdf-plot, are only graphical methods to illustrate the accuracy

of the HDMR metamodel. However, it is also possible to determine a quantitative

measure based on the plots, for example by calculating the surrounded area of the
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Figure 3.2: Example probability density function (pdf) estimate using a (a) first-
and (b) second-order HDMR metamodel.
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Figure 3.3: Example empirical cumulative distribution function (cdf) using a (a)
first- and (b) second-order HDMR metamodel.

two curves.

The shift between two densities (surrounded area) has also been used in Borgonovo

(2007) to introduce a new uncertainty importance measure. Here, the influence

of th ntire input distribution on the entire output distribution is evaluated by
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measuring the difference between the unconditional and conditional pdfs.

3.3.2 Residual Variance

A very simple way of showing whether or not the model behaviour has been captured

well by the HDMR metamodel is by calculating the residual variance. First, the

variance of the model output is calculated and then compared with the variance

of the response from the metamodel. If the variance produced by the metamodel

is much smaller than the variance of the model output, than the accuracy of the

metamodel is not satisfactory. Only if all the variance produced by the original

model can be explained by the HDMR metamodel, can its accuracy be assumed to

be sufficient. However, one has to ensure that a large enough sample size is used

when calculating the variance so that convergence has been reached.

3.3.3 Relative Error

Another very common way of assessing the accuracy of the metamodel is by calcu-

lating the relative error (RE), which is defined as

(3.66)

with
n

j(x(s)) = fo +L fi(x~s))
i=l

(3.67)

for an up to first-order HDMR expansion, and

n
j(x(s)) = fo +L fi(x~s)) + L fij(x~S), X]s))

i=l l:5i<j:5n
(3.68)

for an up to second-order HDMR expansion.
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The relative error is given in % and is usually calculated in the range of 1% RE

up to 20% RE. Table 3.1 shows an example for the representation of the accuracy

in terms of the relative error. The table illustrates that for example if using the

first-order HDMR expansion, only 10.5% of the tested samples are within the 5%

RE range. However, the accuracy significantly improves if using the second-order

HDMR metamodel and now 92.8% of the tested samples are within the 5% RE

range.

HDMR metamodel I 1% RE (%) 5% RE (%) 10% RE (%)
1st-order 2.3
2nd-order 71.3

10.5
92.8

19.4
95.8

Table 3.1: Relative error for the HDMR metamodel.

Despite its common usage, the relative error is not always a reliable measure. For

example, if many of the output values f(x) have very small absolute values, then

the relative error may become very large even if the absolute error is quite small.

Consequently, not many of the tested samples will be within the given relative error

range, even if the metamodel provides a reasonably good approximation of the model

output. Therefore, Li et al. (2006) suggests to define a threshold for the very small

values. If the response of the metamodel is within the threshold, then this should

be seen as a correct answer. Another possibility would be to use the absolute error

instead of the relative error for small output values. Special care has also to be taken

if the model output value is exactly zero. In this case one has to assign a value for

the relative error or use the absolute error instead.

3.3.4 Scatter Plots and Coefficient of Determination

In order to prevent the drawbacks of using the relative error measure one can also

use a scatter plot in order to illustrate the accuracy of the metamodel graphically.
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Here, the model output is plotted against the response of the HDMR metamodel.

If the plot produces a straight line (f(x(s)) ~ j(x(s)) for s = 1, ... ,N), then the

model behaviour is very well captured by the metamodel.
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Figure 3.4: Example scatter plot for the model output and (a) the first-order HDMR
metamodel and (b) the second-order HDMR metamodel.

Figure 3.4 shows an example of such a scatter plot and illustrates the relationship

between the model output and a first- and second-order HDMR metamodel. The

first-order metamodel cannot represent the model output sufficiently, shown by the

fact that the sample points do not form a straight line. In contrast to this the

second-order metamodel represents the model behaviour very well and all sample

points are in line.

The quality of the metamodel can also be expressed by calculating the coefficient

of determination r2 (square of the Pearson correlation coefficient) between f(x(s»)

and j(x(s») for s = 1, ... ,N. The r2 value for the dataset shown in figure 3.4a is
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0.7551 and for figure 3.4b it is 0.9999, indicating that a second-order HDMR model

can be used as a surrogate. However, one of the advantages of using a scatter plot

is, that it can illustrate in which output ranges the metamodel fails to capture the

behaviour of the real model. In the example shown in figure 3.4 the first-order

HMDR metamodel provides reasonably good results for output values between one

and six. However, especially the extreme values can not be captured by the first-

order HDMR expansion. This would lead to the assumption that the extreme values

are mainly affected by parameter interactions, since the second-order metamodel is

able to represent the model output over the entire range.

3.3.5 Sample Plots

Another simple way in presenting the accuracy of the HDMR metamodel for a

small number of sample points is to plot the model output and the response of

the metamodel for a few random input combinations in one figure. An example

is given in figure 3.5 and it is shown that a first-order HDMR metamodel is not

sufficient to represent the model behaviour. Especially for large absolute values

is the difference between the model response and the metamodel quite big. The

second-order metamodel produces a very good representation of the model output

and the response of the model and the metamodel shows a good match for the 100

random input combinations.

The plot of individual sample points is only good for illustration purposes because

of the small number of samples involved. In addition, other methods such as the

relative error or a pdf plot should be used as well since here a large sample size can

be considered.
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Figure 3.5: Comparison of the response from the original model and (a) the first-
order HDMR metamodel and (b) the second-order HDMR metamodel.

3.4 Sensitivity Analysis Using HDMR

One the HDMR metamodel has been constructed and its accuracy has been val-

idated using one or more of the methods introduced in the latter section, global

sensitivity analysis can be performed. This can be done in the traditional way as it

is p rformed for xample in connection with Monte Carlo analysis (see section 2.4.3)

by using the cut-HMDR or RS-HDMR metamodel instead of the original model. Es-

pecially if the model is computationally expensive, the metamodel provides a fast

fully functional equivalent and a large number of model runs can be performed in a

small amount of time. Scatter plots, correlation coefficients etc. can then easily be

applied involving only the HDMR metamodel.

Another possibility would be to use the constructed metamodel instead of the orig-
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inal model within the method of Sobol' (see section 2.4.5) in order to calculate

variance based sensitivity indices. Again, the computational effort is far less, be-

cause the metamodel is very quick to simulate. However, the HDMR expansion

also allows to calculate variance based sensitivity indices, which are in principle the

same as introduced by Sobol', easily from its structure. This can be achieved in a

very efficient way without the need for further model runs (either original model or

metamodel).

The next two sections describe how to determine sensitivity indices directly from

the cut-HDMR and RS-HDMR expansion. The calculation is based on the ANOVA

decomposition. Cut-HDMR can be converted into the ANOVA decomposition and

RS-HDMR already gives the ANOVA decomposition.

3.4.1 Sensitivity Indices based on cut-HDMR

There are several relationships between cut-HDMR and ANOVA-HDMRI. The re-

lationship between the component functions of ANOVA-HDMR and cut-HDMR is

given in Rabitz & Ali§ (2000):

(3.69)

An efficient two step approach to calculate the ANOVA-HDMR component functions

involving the cut-HDMR functions can be given as follows (Rabitz & Ali§ 2000):

1. Evaluate the cut-HDMR component functions as stated in section 3.1 and

1ANOVA-HDMR is a specific member of high dimensional model representation and is the same
as the ANOVA decomposition used in statistics (Rabitz et al. 1999, Rabitz & Ali§ 1999)
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approximate the function f(x) by

n

f(x) ~ fcut(x) = s: +L frt(Xi) + L ft;t(Xi' Xj) + ... (3.70)
i=1 l:Si<j~n

2. Compute the ANOVA-HDMR expansion of fcut(x):

ffNOVA - 1 fcut(x)dx (3.71)
Kn

fiANOV A(Xi) - 11...11
fcut(x)dxi _ ffNOV A (3.72)

!:~NOVA(X' x.) - 11...11
fcut(x)dxij - fiANOVA(Xi)'J l' J

_f/NOVA(Xj) _ ffNOVA (3.73)

where dx' means integrating over all indices but Xi and so on.

The calculation of the cut-HDMR component functions does not require any in-

tegrations at all and the integration involved using the second step only calls for

integrations of dimensions 1, ... ,L (where L is the order of the cut-HDMR expan-

sion). These integrals can be calculated with only a few points very accurately using

quadrature techniques (Rabitz et al. 1999, Rabitz & Ali§ 2000). On the other hand

the calculation of the ANOVA-HDMR as introduced in section 2.4.5 involves many

Monte Carlo integrals using a large number of sample points, which is very time

consuming.

The ratio of the computational costs of the cut-HDMR to that of the ANOVA-

HDMR is given by (Rabitz & Ali§ 2000):

p= ~L _n_!_N
L.ti=o (n-i)!i!

~L _n!_( _ 1)i
L...ti=O (n-i)!i! m (3.74)
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Usually a cut-HDMR expansion up to second order (£=2) is sufficient. Assuming

that m ~ 10 and N » 103 the ratio will satisfy p « 1. In this way, the intro-

duced two step algorithm based on the cut-HDMR component functions provides

an efficient alternative approach to the method of Sobol' in calculating the ANOVA

decomposition.

Once the terms of the ANOVA decomposition are determined, one can continue to

calculate the partial variances and sensitivity indices as described by equations (2.28)-

(2.31) in section 2.4.5 for the method of Sobol'. An example for the conversion of

the cut-HDMR component functions into ANOVA component functions and the cal-

culation of the partial variances is given in the appendix in section A.1 for a model

with four input parameters.

In contrast to the method of Sobol' and equation (2.27), the total variance D is

calculated as the sum of the partial variances. If a second-order HDMR expansion

is used, then the total variance is simply the sum of all first- and second-order partial

variances:
n

D= I:Di + I: o.;
i=l l$i<j$n

(3.75)

This also implies, that all first- and second-order sensitivity indices add up to exactly

one (see equation (2.31)-(2.32)). However, care must be taken because this can lead

to a wrong assumption, for example, in cases where higher-order effects (2:3) are

present but not considered if using only a second-order HDMR expansion. Therefore,

it is crucial to ensure that the accuracy of the cut-HDMR metamodel is sufficient,

so that the behaviour of the real model can actually be represented by a HDMR

expansion which neglects such higher order effects.

It is also possible to perform additional model runs using one set of random samples

x(s) = (x~s), x~s) ... , x~») with s = 1,2, ... ,N in order to estimate the total variance
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as
N

D ~ ~ I:f2(X(s») - fg.
s=1

(3.76)

In this case potential higher order effects are not neglected. However, one has to

consider the computational effort in performing those additional model runs.

3.4.2 Sensitivity Indices based on RS-HDMR

The RS-HDMR component functions are independent and give unique physical in-

formation on the relationships amongst the model input parameters for their actions

on the output properties. This means, that the individual component functions of

the RS-HDMR expansion have a direct statistical correlation interpretation, that

permits the model output variance D to be decomposed into its input parameter

contributions (Li et al. 2002b):

D - in [f(x) - 1]2 dx (3.77)

- 1 [J(x) - fo]2 dx (3.78)
Kn

- L. [tf,(X') + l~t1~nMX"Xj) +..rdx (3.79)

- t1fl(xi)dx + I:1fi~(Xi' Xj)dx + ... (3.80)
i=1 x; l$i<j$n x;

n 11 1111- I: fi2(xi)dxi + I: fi~(Xi' Xj)dxidXj + ... (3.81)
i=l 0 l$i<j$n 0 0
n

- I:Di+ I: Dij + ... (3.82)
i=l l$i<j$n

The overall variance of the model output D can be determined using Monte Carlo

integration and one set N of random samples x(s) = (xls), x~s) ... ,x~») with s =
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1,2, ... ,N:

D - f [J(x) - fo]2 dxJKn
N~ ~L f2(xC8}) - fJ
8=1

(3.83)

(3.84)

where fa is the zeroth-order term of the RS-HDMR expansion:

fa - in f(x)dx
N

~ ~ Lf(xC8»).
8=1

(3.85)

(3.86)

If the RS-HDMR component functions are approximated by orthonormal polynomi-

als as described in subsection 3.2.1, then the partial variances Di, Dij, ••• can be

calculated as follows:

(3.87)

,
Ii lj

- LL (/3:4)2
p=1 q=1

(3.88)

Note that only one set of random samples N is necessary to obtain the overall

variance and all partial variances.

The RS-HDMR expansion already provides the ANOVA decomposition and addi-
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tionally a very detailed input-output mapping which can be used for other purposes

as well (e.g. black-box metamodel). The ANOVA decomposition as described in

subsection 2.4.5 only provides the possibility to determine the partial variances and

sensitivity indices, but not the component functions itself.

3.4.3 Plot of the HDMR Component Functions

Global sensitivity analysis on the basis of the HDMR component functions is not

only computationally more efficient than the method of Sobol' (or other traditional

methods), another advantage is in the possibility of exploring the component func-

tions of the HDMR expansion. The component functions have a physical meaning

and can be plotted to show the influence of one parameter (first-order component

function) or the interactive effect of a pair of parameters (second-order component

function) upon the model output over the whole parameter range.

0.6

0.5 0.4

0.4 0.2,...-.,.
C'I
f.l......... 0.3 ~ 0..... .....

f.l f.l
'-" '-"
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Figure 3.6: (a) Example of a first-order cut-HDMR component function and (b) a
second-order cut-HDMR component function with linear interpolation
between the exact solutions (indicated by the red circles) using m = 11
grid points.

An example plot of a first-order and second-order cut-HDMR component function is
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presented in figure 3.6. The solution is exact at the grid points and a linear interpo-

lation has been performed in between. The accuracy of the component functions can

be improved by increasing the number of grid points m for each parameter range.
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Figure 3.7: (a) Example of a first-order RS-HDMR component function and (b)
a second-order RS-HDMR component function using second-order or-
thonormal polynomials.

Figure 3.7 shows an example of a first- and second-order RS-HDMR component

function. Here the graph may not contain any exact points, because orthonormal

polynomials are used to approximate the component functions via a fitting proce-

dure. In this chapter it has been shown that the fitting error (Monte Carlo integra-

tion error) can be reduced by either increasing the sample size N and/or by applying

a variance reduction method.

The sensitivity indices can provide a ranking of the most important parameters and

they can show how much one parameter or parameter interaction is more impor-

tant than another one. However, they cannot provide the amount of information

that is available by investigating the plot of the first- and second-order component

functions. The plot reveals the kind of relationship (linear, non-linear, monotonic,

non-monotonic, etc.) which exists between the input (or combination of inputs) of
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interest and the output. Unlike scatter plots, the first-order component functions are

not obscured by the influence of the other parameters, because the HDMR method

is able to isolate the effect of one parameter or parameter interactions.

The isolated effect of one parameter (plot of the first-order component function)

is shown over the whole uncertainty range. This can be used to demonstrate the

sensitivity of this parameter at certain smaller intervals within the whole range.

In this way the plot of the HDMR first-order component functions reveals also

information which are comparable with the ones obtained from local sensitivity

analysis (e.g. gradient at a certain point).

The advantages of using the plot of the component functions instead of scatter plots

is further discussed when applying the HDMR method to the case studies in the

chapters 4-6.

3.5 Summary

The HDMR method is a novel and promising approach in order to perform global

sensitivity analysis very efficiently. It was mainly developed to express the input-

output relationship of a complex model with a large number of input parameters.

Two different HDMR approaches have been introduced: cut-HDMR, which depends

on the value of f(x) at a specific reference point x and RS-HDMR, which depends

on the average value of f(x) over the whole domain.

3.5.1 HDMR Approaches

Cut-HDMR can be applied when ordered sampling of the output f(x) is possible.

A reference point x has to be selected first. Some guidelines on how to determine
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the reference point were given. The component functions are calculated along lines,

surfaces, subvolumes and so on using a defined grid for each of the parameters.

The values are stored numerically in low dimensional look-up tables. A low dimen-

sional interpolation has to be performed within the tables in order to calculate the

metamodel response for an arbitrary point x. The number of required model runs

strongly depends on the number of input parameters. This is a significant drawback,

particularly, if one is interested in investigating higher order effects (2:: 2) which can

require a large number of model runs.

RS-HDMR requires only one set of random (or quasi-random) samples. The compo-

nent functions can be approximated by analytical basis functions such as orthonor-

mal polynomials. The optimal coefficients (expansion coefficients) for these polyno-

mials are calculated via Monte Carlo integration. Two variance reduction methods,

correlation and ratio control variate, were introduced in order to reduce the Monte

Carlo integration error. It is only required to store the expansion coefficients and

analytical functions in order to calculate the metamodel response for an arbitrary

point x.

Various approaches were described to assess the accuracy of the constructed cut-

HDMR or RS-HDMR metamodel. All methods are based on a set of random sam-

ples. For cut-HDMR, additional model runs have to be performed in order to assess

its accuracy. For RS-HDMR the same set of random samples can be applied, which

has been used to construct the metamodel. Sometimes it is advisable to use more

than one of the methods introduced in order to validate the constructed metamodel

(e.g. one graphical method such as the probability function estimate + coefficient

of determination).

Variance based sensitivity indices can be calculated using either of the two HDMR

approaches without requiring any further model runs. The cut-HDMR component
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functions can be converted into the ANOVA decomposition. The partial variances

are calculated by squaring and integrating over the ANOVA component functions

and the total variance is simply assumed to be the sum of all partial variances.

This assumption is only reasonable if one can ensure that the model behaviour is

fully captured by the cut-HDMR metamodel. RS-HDMR already gives the ANOVA

decomposition and if orthonormal polynomials are used for the approximation of

the component functions, then the partial variances can easily be obtained from the

expansion coefficients. The total variance is calculated by Monte Carlo integration

over the whole domain.

3.5.2 HDMR in Comparison to Other Global SA Methods

The HDMR method allows the calculation of variance based sensitivity indices,

which are in principle the same as the Sobol' sensitivity indices (section 2.4.5), in

a more efficient way. For example, if using a second-order RS-HDMR expansion it

is possible to estimate all first- and second-order sensitivity indices with only one

set of random samples. The method of Sobol requires one set of samples for the

estimation of each of the first- and second-order sensitivity indices. For instance,

if investigating a model with only four input parameters and assuming a sample

size of N = 1000, the method of Sobol' would require a sampling effort of 11 times

(1 zeroth-order + 4 first-order + 6 second-order) the sample size (UN = U 000

required model runs), whereas the RS-HDMR method could estimate all sensitiv-

ity indices up to second-order from the one set of samples (1000 required model

runs). Unlike the method of Sobol' the HDMR approach allows the construction of

a metamodel, which can be used as a surrogate. In this way the HDMR method

has something in common with the response surface method (section 2.4.4). Both

methods develop an approximation to the full model. However, unlike the RSM
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the HDMR method does not require assumptions about the model behaviour and it

also works with a large number of input parameters. Compared with RSM, which

commonly uses only linear and quadratic terms, HMDR is able to provide a more

accurate model approximation. The HDMR method is based on the variance de-

composition approach and the partial variances and sensitivity indices can easily be

calculated from the HDMR expansion without the need to perform further model

runs. The RSM method does not provide this possibility. Further, the plot of the

HDMR component functions up to second-order can reveal important information

about the input-output relationship. The influence of one parameter (first-order) or

pair of parameters (second-order) upon the output is shown over the whole param-

eter range. Unlike scatter plots, the plot of the first-order component functions is

not obscured by the influence of other parameters, because the HDMR method is

able to isolate the independent effect of a single parameter. None of the introduced

global SA methods in section 2.4 provide this feature.

Monte Carlo analysis (section 2.4.3) is conceptually a very simple approach and

therefore widely used. However, the HDMR method is also conceptually simple and

straight forward. A large variety of uncertainty and sensitivity analysis methods are

available for Monte Carlo analysis. All these tools can also be applied in connection

with the HDMR method if using the HDMR metamodel as a surrogate. The compu-

tational expense to simulate the metamodel is very small and large numbers of model

runs can be performed. Monte Carlo analysis does not directly allow the calculation

of variance based sensitivity indices or the investigation of parameter interactions.

The use of the Pearson correlation coefficient and the Spearman rank correlation co-

efficient which are often applied in Monte Carlo analysis require assumptions about

the input-output relationship (linear or monotonic non-linear respectively). Sensi-

tivity indices do not require these assumptions and their application is therefore

universal. The Fourier amplitude sensitivity test (section 2.4.6) also provides the
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possibility to calculate sensitivity indices. However, the concept is relatively com-

plicated and classic FAST allows only the determination of the first-order indices.

Extended FAST provides the possibility to calculate total effect indices, but they do

not provide a complete characterisation of the system.

The HDMR method provides more information in terms of the model sensitivity than

any other global method discussed in this work (section 2.4) and it usually requires

only moderate computational costs. In the followingchapters the set of HDMR tools

will be extended and tested using analytical functions and case studies.
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4 Comparison of cut-HDMR and

RS-HDMR in Practice

Two HDMR approaches, cut-HDMR and RS-HDMR, have been introduced in the

last chapter. This chapter aims to assess and compare the performance of the two

HDMR approaches using an analytical test function and a case study. The Ishigami

function has been chosen as the analytical test model because of its highly non-

linear and non-monotonic behaviour. The case study focuses on the simulation of

the turbulent flowfield in a 3D street canyon using a micro-scale computational fluid

dynamics (CFD) model. Before the HDMR methods are applied, the RS-HDMR

approach is extended by an optimisation algorithm, which automatically chooses the

best polynomial order for the approximation for each of the component functions.

4.1 Optimisation Method for RS-HDMR

The RS-HDMR approach as described in section 3.2 uses the same polynomial order

for all first- and second-order component functions respectively. However, because

the HDMR component functions are independent, the order of the polynomial ap-

proximation should be chosen separately for each component function. If the input-

output relationship, represented by a component function, is highly non-linear, then
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higher-order polynomials are theoretically the best choice for the approximation.

On the other hand it has to be taken into account, that higher-order polynomials

have more terms than lower-order polynomials, and each term has its own Monte

Carlo integration error. This can lead to a poor approximation, especially if using

only a small sample size N. Therefore, it might be better to use lower-order poly-

nomials in connection with a small sample size N, even if the relationship is highly

non-linear. If increasing the sample size N, then a higher-order polynomial might be

more suitable for the same component function. However, if the input-output rela-

tionship for a parameter or parameter interaction is only linear, then it is sufficient

to approximate the corresponding component function by a first-order polynomial

independently of the sample size N. Sometimes the contribution of a certain RS-

HDMR component function to the overall value of I(x) is zero and could therefore

even be excluded from the HDMR expansion function completely. Otherwise one

would only add the Monte Carlo integration error to the HDMR expansion, which

could decrease the overall accuracy of the metamodel especially if the sample size

N is small.

Number of terms in:
Polynomial order Ii Eli lij E/ij Eli + E/ij
First (linear) 1 4 1 6 10

Second 2 8 4 24 32
Third 3 12 9 54 66

Tenth 10 40 100 600 640

Table 4.1: Number of terms required for the approximation of the RS-HDMR com-
ponent functions considering a model with four input parameters and a
second-order HDMR expansion.

If the component functions are approximated by higher-order polynomials, then

the number of terms in the HDMR expansion grows significantly, especially for

the second-order component functions. Table 4.1 presents the number of terms in
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the HDMR expansion up to second-order assuming a model has only four input

parameters and if using the same polynomial order for all component functions. For

example, if using third-order polynomials exclusively for all component functions,

then 66 expansion coefficients (see equations (3.44)- (3.46)) have to be estimated by

Monte Carlo integration. This means there are 66 possible sources for a Monte Carlo

integration error. This could be reduced if the "right" polynomial order is chosen for

each of the component functions, and if component functions are excluded if they

do not contribute to the overall output value.

In order to decide which component function is approximated best by which poly-

nomial order, an optimisation algorithm based on the least square method was de-

veloped as an extension to the already existing set of RS-HDMR tools. The idea

is to calculate the sum of the square errors using the results of the original model

runs (set of samples of the size N) and the approximation of the component func-

tions by either polynomials of up to a certain maximum order (here we assume a

maximum order of ten) or by excluding the component function. The smallest sum

of square error indicates the best approximation order for the corresponding com-

ponent function. For a second-order RS-HDMR expansion the optimisation process

can be carried out in two steps:

1. Compute the optimal polynomial expansion order for all first-order component

functions:

(4.1)

with

(4.2)

2. Compute the optimal polynomial expansion order for all second-order compo-
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nent functions using the results of the first step:

with
n ki

j(x(s)) = /0 +L L a~<Pr(x~s))
i=l r=l

(4.4)

and

li,l; E {I, ... , ID}

li, [j = D
(4.5)

The computational effort to calculate the optimal order for all polynomials is low and

therefore its calculation is worthwhile in order to improve the accuracy of the final

metamodel. The optimisation method and its application have also been published

in Ziehn & Tomlin (2DD8b).

4.2 Test Model: Ishigami Function

Before applying the cut-HDMR method as described in section 3.1 and the RS-

HDMR method as described in section 3.2 with the optimisation approach developed

in the latter section to a case study, their performance is first tested using a widely

used analytical model- the Ishigami function (Ishigami & Homma 1990). This has

the advantage of providing the opportunity to calculate the variance based sensitivity

indices analytically and compare them against the results estimated by the HDMR

method.
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4.2.1 Properties of the Ishigami Function

The Ishigami function (Ishigami & Homma 1990) is an artificial analytical model

with three input parameters:

(4.6)

where Xi is uniformly distributed within (-7r, 7r) and the constants a = 7, b = O.l.

The model is highly non-linear, non-monotonic and possesses significant parameter

interactions. The sensitivity indices can be calculated analytically on the basis of

the ANOVA decomposition (see method of Sobol' in section 2.4.5) and are given in

table 4.2. One interesting fact about the model is the dependence on X3, which has

no additive effect (first-order) on the model output but contributes via interaction

with Xl.

0.4424 0.3139 o I 0.7563 I 0 0.2437 o I 1.0000

Table 4.2: First- and second-order sensitivity indices for the Ishigami function cal-
culated analytically.

As shown in table 4.2 the total variance of the model output can be explained by

first- and second-order effects and therefore the sum of all first- and second-order

sensitivity indices equals exactly one. This is an ideal test case for the cut-HDMR

and RS-HDMR methods, because a second-order HDMR expansion should be able

to capture all partial variances and both methods should be able to estimate the

sensitivity indices shown in table 4.2 very accurately.
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4.2.2 Application of cut-HDMR

The cut-HDMR approach was applied as described in section 3.1. The midpoint of

each of the parameter ranges has been chosen to be the reference point x. To show

the performance and accuracy of the cut-HDMR method, different grid sizes m have

been tested. The necessary sampling effort depends directly on the grid size and

can be calculated using equation (3.9).

N 301 1261 4921 19441 analytical
m 11 21 41 81
81 0.3115 0.3130 0.3137 0.3138 0.3139
82 0.4028 0.4316 0.4396 0.4417 0.4424
83 0 0 0 0 0

E8i 0.7143 0.7446 0.7533 0.7555 0.7563
812 0 0 0 0 0
813 0.2857 0.2554 0.2467 0.2445 0.2437
823 0 0 0 0 0

E8i + 813 1.0000 1.0000 1.0000 1.0000 1.0000
EAE 0.0840 0.0234 0.0060 0.0016 0.0000

Table 4.3: First- and second-order sensitivity indices and the sum of their absolute
errors (AE) for the Ishigami function using the cut-HDMR approach.

In order to compare the accuracy of the sensitivity indices estimated by the HDMR

approach and sensitivity indices calculated analytically, the sum of the absolute error

(AE) has been calculated for first-order

(4.7)

and for second-order

(4.8)

where S, and 8ij are the analytical values and Si and Sij are the estimated values.

As illustrated by table 4.3 a grid size of m = 11 (N = 301) is already enough
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a) b)

Figure 4.1: First-order component function (a) for input parameter Xl and (b) for
input parameter X2 using a grid size of m = 21.

to produce the correct ranking for the importance of the parameters. However,

the individual sensitivity indices estimated, especially for parameter X2 and for the

parameter interactions between Xl and X3, are still different by a considerably large

amount to the analytical ones CL: AE = 0.0840). A larger grid size is necessary in

order to get more accurate estimates for the sensitivity indices 52 and 513 which

results in a smaller absolute error (2::AE = 0.0234). However, this leads to much

larger sample sizes N and for a grid size of m = 81 already N = 19441 samples are

required. This makes the cut-HDMR method computationally quite expensive.

The plot of the first-order cut-HDMR component functions for parameters Xl and

X2 is shown in figure 4.1. Linear interpolation has been used between the cut-

points, where the solution is exact. The plot of the second-order component function

showing the interactive effect of parameter Xl and X3 is presented in figure 4.2. It can

be seen that parameter X3 has to be at the lower or upper end of its range in order

to interact with parameter Xl. Again, a linear interpolation has been performed

between the cut-points.
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Figure 4.2: Second-order component function for input parameters Xl and X3 using
a grid size of m = 21.

Another drawback of the cut-HDMR method is that the sum of the sensitivity indices

is always one (see table 4.3). This is due to the fact, that the overall variance is

simply calculated as the sum of all partial variances. This makes it difficult for the

user to decide whether or not the "real" overall variance has completely been captured

by the metamodel. To prevent this, it is necessary to use an additional set of samples

(random or quasi-random) in order to calculate the overall variance independently

(see quation 3.76). If the estimated partial variances are then normalised by the

overall variance (calculated using the additional set of samples), then the user gets

a more r alistic estimate of the sensitivity indices.

4.2.3 Application of RS-HDMR

The RS-HDMR method has been applied including the optimisation approach which

has been introduced in section 4.1. The maximum polynomial order for the approxi-

mation of the first-order component functions was set to be eight, and the maximum
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order for the approximation of the second-order component functions was set to be

five. Different sample sizes N have been investigated using the quasi-random Sobol'

sequence.

N 256 512 1024 2048 analytical
81 0.3182 0.3171 0.3115 0.3142 0.3139
82 0.4401 0.4391 0.4426 0.4421 0.4424
83 0.0011 0 0 0 0

E8i 0.7594 0.7562 0.7541 0.7563 0.7563
812 0 0 0 0 0
813 0.2180 0.2418 0.2431 0.2439 0.2437
823 0 0 0 0 0

E8i + 813 0.9774 0.9980 0.9973 1.0002 1.0000
EAE 0.0334 0.0094 0.0032 0.0008 0.0000

Table 4.4: Sensitivity indices first- and second-order and the sum of their absolute
errors (AE) for the Ishigami function using the RS-HDMR approach (in-
cluding optimisation of the polynomial order).

Table 4.4 presents the first- and second-order sensitivity indices estimated using var-

ious sample sizes. A sample size of N = 256 is already sufficient in order to identify

the correct ranking of the parameters and parameter interactions. The first-order

sensitivity indices for Xl and X2 are very accurate already, if compared with the

analytical values and the sum of all absolute errors is only EAE = 0.0334. The

sensitivity index for X3 is supposed to be zero, since X3 has no additive effects. How-

ever, for a small sample size the HDMR method overestimates the contribution for

input parameter X3 by a very small amount (0.11% instead of 0%). The contri-

bution of the interaction of Xl and X3 is slightly underestimated. The component

functions for !I2(Xl, X2) and h3(X2, X3) have been excluded from the HDMR expan-

sion by the optimisation algorithm. In total 99.74% of the overall variance can be

explained by the second-order HDMR expansion. On increasing the sample size,

the individual values for the sensitivity indices become even more accurate and the

component function for X3 is also correctly excluded.
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Figure 4.3: First-order component function (a) for input parameter Xl (approxi-
mated by a 7th order polynomial) and (b) for input parameter X2 (ap-
proximated by a 8th order polynomial) using N = 512.

Th plot of the first-order component functions is shown in figure 4.3. It is demon-

strated that in particular for !2(X2) the plot is much smoother than that obtained

using th cut-HDMR approach (see figure 4.1 for comparison). This is because RS-

HDMR us s orthonormal polynomials to represent the component functions. The

catt r plots are also shown in figure 4.3 for comparison and it can be seen that par-

ti ularly for figure 4.3a the relationship between the input Xl and the model output

would not b as clearly visible if only investigating the scatter plot. The HDMR

method is able to isolate the independent effect of one parameter (or parameter

int ractions) and therefore the plot of the component functions gives much more de-

tail d information about th input-output relationship. The plot of the second-order

ompon nt function !13(XI, X3) is illustrated in figure 4.4.
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Figure 4.4: Second-order component function for input parameters Xl and X3 ap-
proximated by 4th order polynomials using N = 512.

4.2.4 Discussion and Conclusions

Both HDMR approaches, cut-HDMR and the extended RS-HDMR, are able to cope

with the non-linear and non-monotonic behaviour of the Ishigami function. The first-

and second-order sensitivity indices could be estimated with a very large accuracy if

compared with the analytical values. The RS-HDMR method required only N = 256

model runs in order to provide a very good estimate for the first- and second-

order sensitivity indices (2:AE = 0.0334). The cut-HDMR method on the other

hand could not provide the same accuracy at this small sample size (m = 11, N =

301) and the sum of the absolute error for the estimation of the first- and second-

order s nsitivity indices is much higher (2:AE = 0.0840). The number of grid

points m had to be increased in order to obtain a better estimate for the sensitivity

indices. Using m = 21 and N = 1261 the absolute error reduces to 2: AE = 0.0234.

However, the sampling effort of cut-HDMR is already five times higher than the

one using RS-HDMR in order to achieve a comparable accuracy for the estimated
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sensitivity indices.

Both HDMR approaches provide the possibility to plot the component functions up

to second-order. In this way, the relationship between a selected parameter or pa-

rameter interaction and the model output becomes visible over the whole parameter

range.

4.3 Case Study: Simulation of the Turbulent Flow

Field in a 3D Street Canyon

Global sensitivity analysis using cut-HDMR and RS-HDMR is carried out in this

section on the k-€ closure computational fluid dynamics model (CFD) MISKAM

(Eichhorn 1996, Ries & Eichhorn 2001). The investigations allow a detailed repre-

sentation of the effects of changing input parameters on the defined model outputs.

The scenario studied is that of a complex street canyon in the city of York, UK.

The results of this work have also been published in Ziehn & Tomlin (2008b) and

Benson et al. (2008) and were presented at the 11th International Conference on

Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

(HARMO) (Ziehn & Tomlin 2007b, Benson et al. 2007).

4.3.1 Introduction

The improvement of air quality in urban areas is an important goal in order to reduce

health related problems. Local authorities must monitor a range of pollutants and

attempt to control their concentrations to levels below specified national standards

(Department for Environment, Food and Rural Affairs (DEFRA) 2007). Due to the

cost of real time monitoring equipment, on street measured data is often sparse. A
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range of empirical and computational models are therefore usually employed during

the screening of air quality, providing high resolution spatial coverage. If reliable,

model predictions can help to site longer term monitoring equipment in potential hot

spot areas, and to evaluate a range of proposed strategies for the future improvement

of air quality. In order to reliably inform decision making, the model should be able

to represent monitored pollutant concentrations during evaluation, as well as the

impact of the main factors leading to elevated pollutant concentrations.

There has been significant progress in the development of suitable modelling strate-

gies for predicting pollution dispersion at the local scale in recent years. A particular

feature that has received attention is the influence of local building topologies on the

flow and turbulence patterns that are established within networks of urban streets

(Nakamura & Oke 1988, Louka et al. 2000, Dixon et al. 2006). Although empiri-

cal models may provide representation of some of these types of features, such as

street canyon recirculation (Berkowicz 2000), there is a growing acknowledgement

that in order to properly resolve 3-dimensional flow structures, computational fluid

dynamics (CFD) models will be required. Such CFD models range from highly de-

tailed representation of turbulent processes such as found in Direct Numerical Sim-

ulation (DNS) (Moin & Mahesh 1998) and Large Eddy Simulation (LES) (Liu &

Barth 2002, Baker et al. 2004) to Reynolds Averaged Navier Stokes (RANS) models

which include parameterisations of turbulent mixing e.g. MISKAM (Eichhorn 1996).

It is fair to say that at the present time only the RANS approach provides the rapid

simulation times required by operational models. However, since the models include

parameterisations of important features, their evaluation benefits from the inclusion

of sensitivity studies that highlight the impact of uncertain input parameters on

predicted flow fields.

Most investigations on air pollution in urban areas have been focused on the street

canyon. A street canyon is the simplest street configuration made up by a relatively
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fa} Isolatld roughness flow

(c) Skimming flow

Figure 4.5: Flow regimes associated with perpendicular background winds in street
canyons with different aspect ratios (Oke 1988).

narrow street between buildings that line up continuously along both sides (Oke

1988, Sini et al. 1996). The in-canyon flow patterns depend on the geometry of the

street canyon, particularly the aspect ratio (building height to street width HjW).

Three different flow regimes (figure 4.5) can be described for street canyons when the

above-roof flow is perpendicular (900 to the street canyon alignment) (Oke 1988).

Figure 4.5a shows "isolated roughness" flowwhich occurs for widely spaced buildings

(Le. HjW < 0.3), figure 4.5b presents "wake interference" flow for buildings that

become more closely spaced (Le. HjW ~ 0.5) and figure 4.5c shows "skimming"

flow which is characterised by a single vortex circulation within the canyon (Le.

HjW ~ 1.0) (Hunter et al. 1992, Vardoulakis et al. 2003).

It is computationally feasible to develop a RANS model for real city geometries

which contains street canyons and other forms such as street intersections (Dixon et
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al. 2006). Important features of such models will include the use of an appropriate

grid resolution to resolve building geometries, as well as proper definitions of model

boundary conditions. These include the velocity and turbulence profiles coming into

the model domain and profiles at the model surfaces such as near walls and roofs.

The amount of computational grid points required to resolve the near wall turbulent

structures in street canyons using for example LES are too large. Additionally, the

walls of atmospheric boundary layers flows are not smooth but consist of rough-

ness elements. A computational mesh which resolves all the individual roughness

elements is impossible (Bechmann et al. 2007). In order to solve the problems of

the rough wall, approximate boundary conditions are necessary. Therefore, RANS

models such as MISKAM use boundary conditions based on idealised empirical re-

lationship known as the log-law. However, the parameters describing the flow close

to the boundary are subject to uncertainties since they are difficult to estimate or

measure over complex surfaces (Ro & Hunt 2007).

4.3.2 Model Description

A large field study was conducted in 2003 in the City of York, UK (Boddy et

al. 2005). One aim of the study was to investigate the influence of background

meteorology and building topologies on flow and turbulence patterns within urban

street canyons. One of the canyons under investigation was Gillygate. Gillygate is a

relatively narrow street with an aspect ratio (HjW) of approximately 0.8leading to

recirculating flowunder a range of background wind directions. The "skimming" flow

of the type as shown in figure 4.5c provides minimal ventilation of the canyon and

is ineffective of removing pollutants (Berkowicz 2000). A schematic illustration of

the flow and dispersion conditions in street canyons is shown in figure 4.6. It can be

seen that the pollutants emitted from traffic in the street are primarily transported
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towards the leeward side (upwind building). The traffic flow along Gillygate is quite

high with significant periods of congestion and it therefore represents a potential

pollution hot spot.

Roof level wind V>
8ackgrrund pd lution

Figure 4.6: Schematic of the recirculating flow showing the transport of pollutants
to the leeward side of the street canyon (Berkowicz 2000).

During the field experiment the in-street wind data were measured using Gill ultra-

sonic anemometers at different locations within the street. This study concentrates

on data from two of the anemometers referred to as G3 and G4. Both anemometers

were attached to a lamp post at heights of 5.5m and 5.7m respectively on opposite

sides of the street canyon. The background wind speed and direction were measured

using an anemometer attached to a mast in a nearby car park at a height of 19.5m.

The flow field within the Gillygate street canyon was simulated using the micro-

scale k-e model MISKAM (Eichhorn 1996, Ries & Eichhorn 2001). MISKAM con-

sists of a 3-dimensional non-hydrostatic flow model and an Eulerian dispersion

model. This study takes only the first stage into account: the simulation of the
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flow field. A comprehensive user guide (Eichhorn 2008) which aslo explains the

MISKAM software in more detail can be found on the following website: http:

//www.lohmeyer.de/eng/Software/default.htm.

12

10

6

6

4

2

o
x in m

Figure 4.7: Grid and building configuration around Gillygate as used in MISKAM.

Figure 4.7 shows the grid and the building configuration of Gillygate and the sur-

rounding area that were used for the simulation with MISKAM. The building heights

in m are indicated in the legend. The measurement points are marked as G3, G4

(anemometer in-street data, one on each side of the road) and Mast (background

wind speed and direction). A non-equidistant grid was used to enable a higher

resolution within the area of interest (Gillygate). The grid has a resolution of 89

points (270m) in the x-direction by 124points (400m) in the y-direction by 28 point

(100m) in the z-direction. The compass in figure 4.7 represents direction from and

is oriented with respect to the street canyon.

The model assumes a logarithmic wind profile and neutral static stability at the

http:////www.lohmeyer.de/eng/Software/default.htm.
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inflow boundaries. The logarithmic wind profile (law of the wall) is a mathematical

relationship used to approximate the general logarithmic profile of wind speeds as

they increase with increasing distance from the ground:

U. I (Z + ZO)U=- n
f'i, Zo

(4.9)

where u is the mean wind speed at the height Z above the surface, Zo is the surface

roughness length, u. is the friction velocity and f'i, is the von Karman's constant.

The assumptions made in this parameterisation are that the boundary grid point is

in the region that has constant Reynolds stress and a logarithmic velocity profile.

The roughness length (zo) is not a physically measurable length, rather a length

scale describing the surface roughness. It can be considered as the height at which

the horizontal wind speed equals zero. A high roughness length refers to a surface

with for example buildings and trees and a low roughness length refers to a rather

plain terrain. One difference between the standard law of the wall (Oke 1987) and

equation (4.9) is that equation (4.9) uses z + Zo instead of simply z. This is because

if the height of the first grid point is the same as the roughness length then the log

law cannot be applied (Benson et al. 2008).

If the model domain is very large, then the sensitivity to the inflow roughness length

should be small, because the flow will adjust over the real roughness elements re-

solved within the model. However, this has computational implications and hence

the model usually covers a restricted domain. It is therefore important to investigate

the sensitivity of the model to the assumed inflow roughness length at the inflow

boundary.

A comparison of the normalised flowcomponents of the mean wind against the back-

ground wind direction Urn (mean wind speed measurement at the mast) for both the
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Figure 4.8: Normalised velocity components against background wind direction from
experimental data and model data for G4 (model data for the u compo-
nent are not shown). Experimental data: D u component, 0 v compo-
nent, • w component. The experimental data are 15min averages from
the field campaign and standard deviation of data is shown as error bars
(Dixon et al. 2006).

field and model (MISKAM) data is shown in figure 4.8 for the measurement point

G4. The along-street wind component v shows good agreement with the experimen-

tal data for background wind directions between 2900 and 1200, however between

450 and 600 the modelled data are slightly outside the error bars of the experimental

data. There is a disagreement between the model response and the experimental

data for the along-street wind component v for background winds between 2050 and

2850• Here, the model underestimates the normalised wind component. This can be

explained by the effect of a tree near the mast, which is probably causing the back-

ground wind speed to be under-recorded. Therefore, the normalised values of the

experimental values are higher (Dixon et al. 2006). For background winds between

1200 and 1650 the model overestimates the flow along the street.

Figures 4.9 and 4_10 present the comparison of experimental data and model results
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Figure 4.9: Normalised TKE against background wind direction () from experimental
data and model data for G3. The scatter for the model data is caused
by the uncertainties in the roughness parameters (Benson et al. 2008).
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Figure 4.10: Normalised TKE against background wind direction () from experimen-
tal data and model data for G4. The scatter for the model data is
caused by the uncertainties in the roughness parameters (Benson et
al. 2008).
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for the turbulent kinetic energy TKE at the measuring points G3 and G4. For

background winds between 2000 and 2700 the model underestimates the normalised

TKE for both measuring points. This again can be explained by the effects of the

tree near the mast, which slows down the flow compared to the true background

flow. For all other background wind directions the agreement between experimental

data and model results is quite good for G3 (figure 4.9). However, there is only poor

agreement between the data at the measuring point G4 (figure 4.10), even taking

into account the uncertainties in the model input parameters (table 4.5). For most

of the background wind directions the model overestimates the TKE. This may be

due to the fact that G4 is located quite close to the wall, suggesting the possibility

of excessive TKE generation at the wall surfaces (Benson et al. 2008). This is also

confirmed by the cross-section shown in figure 4.11 presenting the mean TKE and the

u, w wind vectors for a background wind direction of 900• The re-circulating flow

pattern is clearly visible and high TKE can be found close to the windward wall

showing how critical the location of the measurement point in the model is (Benson

et al. 2008).

As it could be shown there is disagreement between the experimental data and the

model for the normalised TKE and the wind components for various background

wind directions at G4. Uncertainty and sensitivity analysis can help to explain the

disagreement. However, if inconsistencies are very large, then the differences might

come from the model physics or resolution rather than from parameter uncertainties.

A particular feature of interest within urban street canyons is the presence of a

cross canyon vortex under background wind directions that have a significant cross

canyon component (see also figure 4.6 and 4.11). In this study we therefore focus on

background wind directions that are close to perpendicular (900
) to Gillygate and

explore the sensitivity of selected model outputs to small changes in wind direction

as well as the input roughness parameters.
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Figure 4.11: Street canyon un-normalised TKE and wind vector cross-section for a
background wind direction of 900 (Benson et al. 2008).

The input parameters under consideration with ranges are shown in table 4.5. A

uniform distribution is assumed for all parameters. The inflow roughness length

is used by MISKAM to create a ID wind profile which is then applied horizontally

across the entire model domain. A roughness length can also be defined for buildings

(wall roughness length) and the ground (surface roughness length) and is assumed

to b uniform for the whole domain. The surface of the ground is assumed to be

rougher than the surface for buildings because of the existence of potential objects

such as cars, peopl etc. in a typical street. According to the MISKAM manual the

maximum value for each of th roughness parameters is recommended to be half of

the size of the smallest distance to the wall grid point which is 50cm is this study.

The inflow roughness length is therefore restricted to the maximum value allowed

although typical values for a small town would normally be considered larger (e.g.

60-100cm (StuIl1988)). Thus, the model's constraint on the inflow roughness length

may limit the TKE at the inflow boundary which could lead to lower street canyon

values (Benson et al. 2008).
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Input parameter Uncertainty range
Xl Inflow roughness length
X2 Surface roughness length
X3 \Vall roughness length
X4 Background wind direction ()

[5 50]cm
[0.5 501cm
[0.5 101cm
[80 1001°

Table 4.5: Input parameters and uncertainty ranges used in this study.

The selected outputs of interest are the wind components u, v, w normalised by the

background wind speed Urn at G4 (YI-Y3), the normalised turbulent kinetic energy

(TKE/U~) at G4 (Y4) and the normalised turbulent kinetic energy (TKE/U~) at

the mast (Y5)' These outputs have been selected because the velocity and turbulence

fields are also used for dispersion modelling (see example the Lagrangian stochastic

plume model in section 5.4) in order to calculate concentrations and concentration

fluctuations. Therefore, it is of interest to explore their uncertainties and to identify

important parameters. An accurate prediction of pollutants and potential hot spot

areas is only possible if the flow field is reliable.

A preliminary evaluation of the :MISKAM model for the York study area was dis-

cussed in Dixon et al. (2006) where the sensitivities to inflow roughness length and

model resolution were explored using a small ensemble of model simulations. The

aim of this study is to establish and test techniques that will allow global sensitivity

analysis of the model to be performed in a computationally efficient way. This will

also allow to study the model physics in a more detailed way and will help to explain

the discrepancies between experimental results and simulations.

4.3.3 Results

A fully functional metamodel is first constructed, using both HDMR approaches

(cut-IIDMR and RS-HD~fR) for comparison. On the basis of these metamodels

uncertainty and global sensitivity analysis can be performed in a computationally
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efficient way. The sensitivity indices are calculated up to second-order to show the

cooperative effects of two parameters acting together.

Construction of the Metamodel

The cut-HDMR method calls for a quantisation of the input variables and 11 equally

spaced grid points were chosen for each of the inputs. The reference point x was

selected as the midpoint in each of the four input parameter ranges. According to

equation (3.9) 41 model runs are necessary to construct a first-order metamodel and

641 model runs for a second-order metamodel. The results of the simulations are

stored in low-dimensional look-up tables with respect to the chosen sampling points.

The first-order metamodel requires only one-dimensional look-up tables (for the

representation of the component functions fi(Xi)) and the second-order metamodel

one and two-dimensional look-up tables (for the representation of the component

functions fi(xd and fij(x"Xj))' The value of f(x) for an arbitrary point x can

be calculated by applying low-dimensional interpolation over the HDMR expansion

terms fi(xi) and fiAx" Xj) with respect to the input values of the given point x.

An example of the accuracy of the first- and second-order model replacement is

shown in figure 4.12 for one output and 100 random points, which are different to

the ones chosen to construct the model replacement. Another possibility to express

the accuracy of the model replacement is the calculation of the relative error (RE)

as shown in equation (3.66). The results for an ensemble of 2000 random points are

presented in table 4.6.

The first-order metamodel assumes that the output is only influenced by additive

effects, which means that the input parameters are acting independently. As shown

in figure 4.12 and table 4.6, the accuracy of a first-order cut-HDMR metamodel is

not satisfactory for all of the outputs. Therefore, a second-order metamodel was
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Output 1st-order metamodel 2nd-order metamodel
5% RE 10% RE 20% RE 5% RE 10% RE 20% RE

G4 ctu; 84.9% 94.3% 98.8% 98.1 % 100% 100%
G4 ctu; 79.7% 92.2% 98.5% 100% 100% 100%
G4 w/Urn 93.2% 99.6% 100% 100% 100% 100%
G4 TKE/U~ 92.1 % 99.2% 100% 100% 100% 100%
Mast TKE/U~ 94.4% 99.4% 100% 100% 100% 100%

Table 4.6: Percentage of points within a given relative error for the cut-HDMR meta-
model.

Or---_,-----.-----,----~----,_----,_--_,----_.----_,----~

I
···· 0 MISKAM model r

" 1st-order cut-H DM_!}
_0.4l__-__J_--_l__-___j_--_l_-~--_[_-~=======:::J
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1
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b) 0 Sample points

Figure 4.12: Comparison of the output response from the MISKAM model and (a)
the first-order and (b) the second-order cut-HDMR metamodel for the
normalised wind component v/Urn at the measurement point G4.

constructed, which includes the cooperative effects of two input parameters acting

together upon the output. The second-order cut-HDMR expansion provides very

accurate results in comparison with the ones obtained from the real model runs.

The RS-HDMR approach in connection with the approximation of the component
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functions by orthonormal polynomials requires only one set of random samples.

Different sample sizes N have been investigated. In this study a sample size of

N = 512 using Sobol's quasi-random sampling method (Sobol' 1967) is applied to

determine the coefficients for the orthonormal polynomials. A maximum order of

three has been chosen for the approximation of the first- and second-order component

functions in connection with the optimisation approach as introduced in section 4.1.

0.1 0.03
,,,,,, " 1st-order ploynomial

0.08 - - - 2nd-order polynomial
0.02-- 3rd-order polynomial

o Exact solution
0.06

0.01

0.04

---- 0
"" -H 0.02 ~'-'"

~ ..:: -0.01
0

-0.02
" " ,,', 1st-order ploynomial

-0.04
- - - 2nd-order polynomial
-- 3rd-order polynomial

o Exact solution
-0.06 ' -0.04

a) 80 85 90 95 100 b) 80 85 90 95 100
X4 (background wind direction) Xl (inflow roughness lenght)

Figure 4.13: Comparison of different order approximations for first-order component
functions for input parameter (a) X4 (background wind direction) and
(b) Xl (inflow roughness length) and model output G4 w/Um.

Figur 4.13 presents examples of the first-order component functions for two outputs.

Th figur shows how the approximation of the component functions would look if

orthonormal polynomials different of orders were used. As shown in figure 4.13a, the

first-order component function f4(X4) for the output G4 w/Um is best approximated

by a third-order polynomial. In contrast, the first-order component function h(Xl)

for the same output (figure 4.13b) is best approximated by a second-order polyno-

mial. In this case the approximation of the component function by a third-order

polynomial results in a poorer accuracy, because a third-order polynomial has more
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terms, each with its own Monte Carlo integration error. Therefore, if the third-

order terms and the sample size N are quite small it is possible that the increased

integration error outweighs any improvement in the overall fit. Experiments have

confirmed, that if using a larger sample size (e.g. N = 1024) the approximation with

a third-order polynomial gives slightly better results than the approximation with

a second-order polynomial. The optimisation approach introduced in section 4.1

produces the same results for these examples in an automatic way, and the optimal

order for all of the orthonormal polynomials used to approximate the RS-HDMR

component functions can be found in table 4.7.

Output It 12 [s /4 1t2 !t3 !t4 123 124 !a4
1 G4 «tu; 2 2 2 3 1 1 2 2 2 2
2 G4 v/Um 2 2 2 2 1 1 2 2 1 2
3 G4 w/Um 2 2 2 3 1 1 2 2 2 1
4 G4 TKE/U! 2 2 2 3 1 3 2 3 2 2
5 Mast TKE 2 2 3 3 1 3 1 3 2 2

Table 4.7: Order of polynomials used for the approximation of first and second-
order component functions of the MISKAM flow model using a sample
size N = 512.

Output lst-ordcr model replacement 2nd-order model replacement
5%RE 10% RE 20% RE 5%RE 10% RE 20%RE

1 G4 «tu; 89.8% 97.5% 99.6% 99.2% 100% 100%
2 G4 V/Um 79.1% 93.5% 98.8% 99.9% 100% 100%
3 G4 w/Um 93.7% 99.8% 100% 99.4% 100% 100%
4 G4 TKE/U! 92.8% 99.5% 100% 98.8% 100% 100%
5 Mast TKE 93.8% 99.4% 100% 96.7% 99.8% 100%

Table 4.8: Percentage of points within a given relative error for the RS-HDMR model
replacement using a sample size of N = 512 and optimal-order polynomi-
als.

It can be seen that the component functions for a certain output are approximated

using different polynomial orders. No component functions are found to be excluded.



119

All first-order component functions are represented by either second-order or third-

order polynomials which indicates that the first-order response to all parameters

is non-linear for all of the outputs. This has implications for the use of standard

statistical tests such as Pearson correlations, because a certain relationship (e.g.

linear) is assumed between the input and the output.

Table 4.8 shows the accuracy of the first- and second-order RS-HDMR metamodel if

using optimal-order polynomials and a sample size of N = 512. The results obtained

by applying cut-HDMR and RS-HDMR are very similar, and both approaches re-

quire nearly the same computational effort to construct a second-order metamodel

for this case of four input parameters.
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Figure 4.14: Comparison of the statistics between the MISKAM flow model and the
second-order cut-HDMR metamodel.
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Figure 4.15: Scatter plot of X4 (background wind direction) and (a) output G4 w/Urn
(normalised vertical wind velocity) and (b) Mast TKE/U~.

Uncertainty and Sensitivity Analysis

The fully functional metamodel of the MISKAM flowmodel based on the cut-HDMR

and RS-HDMR approaches can now be used to perform uncertainty and global sen-

sitivity analysis. Figure 4.14 shows the probability density function (pdf) estimate

for outputs Yl (G4 u/Um) and Y2 (G4 v/Urn) of the MISKAM flow model. A total

of 4 000 samples were used to perform the real model runs and another set of 4 000

random samples to calculate the output response of the second-order cut-HDMR

metamodel for comparison. The statistics show very good agreement implying that

the metamodel can be used instead of the MISKAM flow model in, for example,

Monte Carlo type analysis. A large sample size can be applied because the meta-

model is much less expensive to run than the real model. It is worth noting that the

set of 4 000 real model runs performed here for evaluation purposes required parallel

computing facilities.
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For comparison, figure 4.15 shows two example Monte Carlo scatter plots using the

metamodel. From figure 4.15a it is clear that a strong relationship exists between

background wind angle and the output G4 w/Um. This is expected since the orienta-

tion of the background wind strongly affects the strength of the recirculation vortex

within the canyon. The response can be seen to be non-linear. This is an important

quite a distance away from the street canyon.

finding, because the measurement of the background wind is usually obtained at

The amount of scatter in figure 4.15b is quite large across the parameter range,

suggesting that this output has a low first-order sensitivity to background wind

direction. The exact shape of the first-order response is difficult to assess within the

scatter.

o Exact solution at grid point
-- Linear approximation0.1 '---~~-----'--'--~--~--'

0.08

0.02

-o.o~o 85 90 95 100 b)
a) X4 (background wind direction)

o

-5
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- Linear approximation

85 90 95 100
X4 (background wind direction)

Figure 4.16: First-order component function (a) for input parameter X4 (background
wind direction) and output G4 w/Um and (b) for input parameter X4

(background wind direction) and output Mast TKE/U~.

Figure 4.16 shows the corresponding first-order component functions from the cut-

HDMR expansion. The component function in (a) describes the impact of the input
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Figure 4.17: Second-order component function for input parameters Xl (inflow
roughness length) and X4 (background wind direction) and output G4
TKEjU';.

parameter X4 (background wind direction) upon the output G4 wjUm, acting inde-

pendently and the first-order component function in (b) gives the effect of parameter

X4 (background wind direction) upon the output Mast TKEjU';. The examples show

that a strong non-linear relationship exists between the background wind angle and

the normalis d v rtical velocity and the TKE respectively at the measurement loca-

tion. Th s cond-order component function in figure 4.17 presents the cooperative

eff cts of the parameters Xl (inflow roughness length) and X4 (background wind di-

rection) upon th output G4 TKEjU!. The examples illustrate how much easier

the component functions are to interpret than standard scatter plots.

In addition, the relationship between the HDMR component functions and the

ANOVA decomposition can be used to calculate the partial variances and the sen-

sitivity indices. A two step algorithm was given in section 3.4.1 if applying the

cut-HDMR approach. The integrals in equation (3.71) and (3.72) were computed

using the exact solutions at each of the grid points in connection with trapezoidal
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numerical integration. Squaring and integrating over the ANOVA expansion func-

tions provides the partial variances. The calculation of the partial variances on the

basis of the RS-HDMR component functions is even simpler, since it only involves

the expansion coefficients as described in equations (3.87) and (3.88).

Parameter Si, Sij Output:
1 2 3 4 5
G4 G4 G4 G4 Mast
-uu; -to: w/Um TKE/U! TKE

Xl Inflow roughness length SI 0.0739 0.0075 0.1508 0.3197 0.4964
X2 Surface roughness length S2 0.0414 0.0043 0.0757 0.1664 0.0116
X3 Wall roughness length S3 0.1816 0.0435 0.0015 0.3474 0.3110
X4 Background wind direction S4 0.6773 0.9139 0.7506 0.1194 0.1700

LSi 0.9743 0.9692 0.9787 0.9529 0.9889

Xl,X2 S12 0.0015 0.0001 0.0002 0.0007 0.0002
Xl,X3 S13 0.0009 0.0008 0.0015 0.0011 0.0048
Xl,X4 S14 0.0062 0.0134 0.0045 0.0353 0.0020
X2,Xa S23 0.0010 0.0001 0.0003 0.0004 0.0003
X2,X4 S24 0.0077 0.0014 0.0030 0.0081 0.0030
Xa,X4 S34 0.0083 0.0150 0.0118 0.0014 0.0009

LSii 0.0257 0.0308 0.0213 0.0471 0.0111

ESi + ESii. 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.9: First- and second-order sensitivity indices calculated on the basis of cut-
IIDMR using 641 model runs.

The first-order and second-order sensitivity indices determined on the basis of the

cut-lIDMR and the RS-HDMR component functions are given in table 4.9 and 4.10

respectively. Doth approaches lead to very similar results with regard to the first

and second-order sensitivity indices. However, there is one distinct difference. When

using the cut-IIDMR approach up to second-order, the overall variance D is assumed

to be just the sum of the first- and second-order partial variances. Because of this all

sensitivity indices for a certain output add up exactly to one. However, this means

that higher-order effects, as far as they would exist, are not included in the overall

variance. In fact it can be assumed that there are no crucial higher-order effects in

the presented example of the MISKA11 flow model, because the second-order cut-

HDMR metamodel provides very accurate results and the statistics nearly perfectly
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Parameter Si, s., Output:
1 2 3 4 5
G4 G4 G4 G4 Mast
«tu; »ni; w/Urn TKE/U,; TKE

Xl Inflow roughness length Sl 0.0878 0.0107 0.1677 0.2868 0.4773
X2 Surface roughness length S2 0.0414 0.0062 0.0881 0.1846 0.0146
X3 Wall roughness length S3 0.1557 0.0493 0.0006 0.3222 0.3285
X4 Background wind direction S4 0.7036 0.9406 0.7813 0.1127 0.1525

ESi 0.9884 1.0069 1.0377 0.9063 0.9729
X1,X2 S12 0.0006 0.0000 0.0002 0.0002 0.0002
X1,X3 S13 0.0006 0.0003 0.0004 0.0061 0.0097
X1,X4 S14 0.0074 0.0118 0.0043 0.0345 0.0020
X2,X3 S23 0.0004 0.0001 0.0005 0.0045 0.0041
X2,X4 S24 0.0067 0.0012 0.0024 0.0089 0.0032
X3,X4 S34 0.0063 0.0154 0.0127 0.0010 0.0009

ESij 0.0220 0.0288 0.0206 0.0553 0.0201

ESi + ESij 1.0104 1.0357 1.0583 0.9616 0.9931

Table 4.10: First- and second-order sensitivity indices calculated on the basis of RS-
HDMR using 512 model runs.

match the statistics of the real model. When using the RS-HDMR approach the

overall variance D can be estimated using the one set of samples N = 512 and

equation (3.84). The sum of all the sensitivity indices does not add up to exactly

one, however it is very close to one. The small discrepancy is due to the Monte Carlo

integration error caused by the determination of the expansion factors Q~ and IJ,4
(see equations 3.4,t and 3.46). The Monte Carlo integration error can be reduced

by using a larger sample size N and/or by applying variance reduction methods as

described in section 3.2.2. This would improve the accuracy of the metamodel and

therefore result in even more precise sensitivity indices. Experiments regarding this

have shown that the value of the sensitivity indices would not change significantly,

however the sum of all the sensitivity indices adds up even closer to one.

The sensitivity indices in table 4.9 and 4.10 can be ranked to show which input

parameter (or interaction of two input parameters) contributes most to the overall

variance. For example, output Yl (wind component u/Um at G4) is mainly influenced

by the background wind direction X4 (rank: 1) and by the wall roughness length
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X3 (rank: 2). It is further influenced by the inflow roughness length Xl (rank:

3) and the surface roughness length X2 (rank: 4). All interactions (second-order

effects) are negligible for output YI. In fact all outputs are mostly affected by input

parameters acting independently. Only for output Y4 (normalised TKE at G4) does

the interaction of two parameters (Xl and X4) have a significant influence on the

overall variance.

Note that the considered outputs are normalised by the background wind speed Urn

measured at the mast. This is necessary in order to compare the results of the sim-

ulations with experimental data, because the experimental data has large variations

in mean wind speed Urn between different measuring periods (Benson et al. 2008).

However, the sensitivities presented in table 4.9 and 4.10 are combinations of the ef-

fects of different outputs at separate model locations which makes the interpretation

more difficult. For example, the normalised TKE at G4 is mainly influenced by the

inflow roughness length Xl (28.68% using RS-HDMR) and the wall roughness length

X3 (32.22% using RS-I1DMR). However, if looking at the un-normalised TKE at G4

(as presented in Denson et al. (2008)) the influence of the wall roughness length is

much stronger and contributes by over 60% to the overall variance of TKE at G4.

This is more realistic and confirms that for sensitivity analysis the un-normalised

values for the wind components and TKE are actually better suited. In both cases

(normalised and un-normalised) TKE at G4 is influenced by the inflow roughness

length. However, the TKE in the street canyon should not very strongly be influ-

enced by the inflow roughness and if it does it may be an indication that the model

domain is not big enough (Dixon et al. 2006, Benson et al. 2008).

From table 4.9 and 4.10 it can be seen that the normalised wind components u, v, w

are strongly influenced by the background wind direction (X4) which contributes by

around 70%, 94% and 78% (obtained from RS-HDMR) respectively. The sensi-

tivity of this parameter shows how important it is to specify the background wind
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direction accurately. It also shows the limitations of determining the background

wind direction far away from the measurement site. On the other hand, the inflow

roughness length has only a small influence on the normalised wind components

u, v, w which is a good feature of the model.

Due to the fact that the measuring point G4 is located so close to the wall, it is not

surprising to see a strong influence of the wall roughness length on the normalised

TKE. This would also explain the relatively poor agreement between experimental

data and model data as shown in figure 4.10. The agreement between the normalised

TKE from experimental data and model data is much better for the measuring point

G3 (figure 4.9) which is located further from the wall. However, both figures 4.10 and

4.9 show only a fairly low degree of scatter, which suggests that if the background

wind direction is well specified, then the output variability is quite low.

4.3.4 Discussion

It could be shown in this case study that the detailed input-output mapping pro-

duced by the lIDMR method can be used for fundamental overall analysis of the

model and for a computationally efficient determination of the sensitivity indices,

including those of higher order. Special attention should be paid to the plots of the

component functions, since they reveal useful information about the input-output

relationship of the model and can be used for sensitivity analysis instead of more

widely used scatter plots. In general scatter plots try to reveal the relationship be-

tween two variables (e.g. input and output). If the scatter plot shows a non-random

structure a relationship is assumed to exist between the variables. Often, regression

methods are used to establish the strength of the relationship. However, the exam-

ples shown here highlight the fact that often, the first-order sensitivity indices are

highly non-linear. Measures such as the Pearson correlation cannot therefore be reli-
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ably applied to standard outputs and either non-linear functions of the outputs must

be developed, as in Manomaiphiboon & Russell (2004), or rank correlations must be

used (MacDougall et aL 2005). In addition, it is sometimes very difficult to identify

a relationship in the pattern of the scatter plot as demonstrated by the example in

figure 4.15b. In some cases the scatter plot may appear to show a relationship that

is caused by other variables than the one of interest. The interpretation of scatter

plots is therefore problematic whereas the plots of the HDMR component functions

up to second-order (e.g. see figures 4.16 and 4.17) show exactly how one input pa-

rameter or a pair of input parameters affect the output. By calculating the absolute

magnitude of the component functions it becomes trivial to produce an importance

ranking based on the sensitivity indices. In addition, the metamodel constructed

on the basis of the IIDMR method can also be used as a surrogate in Monte Carlo

analysis. This provides the ability to use traditional uncertainty and sensitivity

analysis methods and for example to compute output probability distributions as

shown in figure 4.14. The computational effort involving the metamodel is quite low

and therefore a large sample size can be applied to provide output statistics.

4.3.5 Comparison of cut-HDMR and RS-HDMR

Both HDMR approaches provide the possibility to construct a fully functional second-

order metamodcl with nearly the same computational effort for the number of input

parameters tested here. The cut-HDMR method requires ordered sampling. The

component functions are numerically presented in low-dimensional look-up tables

over its variables. The RS-HDMR method uses one set of random samples in order

to determine its component functions which are approximated by analytical basis

functions. One advantage of the cut-HDMR method is that only 41 model runs

were sufficient to construct a first-order metamodel of the MISKAM flow model.
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The RS-HDMR method requires the whole set of 512 model runs to obtain compa-

rable accuracy for the first-order model replacement. However, a drawback of the

cut-HDMR method is that the number of model runs increases with the input space

dimension {see equation (3.9)). Therefore, for larger numbers of input parameters

it may become less efficient than RS-HDMR. Another drawback is in the storage of

the component functions since they are provided in numerical look-up tables. How-

ever, for most applications this may not be prohibitive since only up to second-order

tables have been required for applications to date. Exact component functions are

provided at the points stored in the look-up table, however interpolation is required

in order to determine the output response for an arbitrary point x. The RS-HDMR

method instead requires only the storage of the expansion coefficients. No interpo-

lation is involved and only the analytical polynomial functions have to be calculated

at a given point x. There is however, no guarantee that the metamodel is exact

anywhere since a fitting error may always be present. Nevertheless, the example has

shown that using optimal-order polynomials, fitting errors and Monte Carlo integra-

tion errors can be kept small. In addition, the estimation of the sensitivity indices is

easily achieved if the RS-HDMR approach is used in connection with orthonormal

polynomials {seeequations (3.87) and (3.88)).

4.3.6 Conclusions

The complexity of the street scale turbulent flow model restricts its application

in connection with traditional global uncertainty and sensitivity methods such as

Monte Carlo analysis since a large number of model runs are required. One run

of the MISKA11 flow model can take up to about 40 min on a 3 GHz PC. Local

SA methods are not suitable, because of the high non-linearity of the input-output

relationships and parameter interactions. HDMR methods have been shown to pro-
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vide a straightforward approach to explore the input-output mapping. Both HDMR

approaches provide an efficient way to calculate the sensitivity indices (in this study

up to second-order) without the need for large numbers of model runs. In partic-

ular, the exploration of the interactive effects between input parameters makes the

HDMR method extremely attractive for global sensitivity analysis. Because HDMR

methods treat the model essentially as a black box, they could potentially be used

for a wide range of applications in environmental modelling. The HDMR method is

especially suitable for computationally expensive models with a large input space di-

mension. If ordered sampling of the inputs is possible, then the Cut-HDMR method

can be applied. Otherwise the RS-HDMR approach provides a possibility to calcu-

late the component functions by using only one set of random samples. As shown

for this example an HMDR expansion up to second-order is usually sufficient to

represent the real model.

4.4 Summary

The RS-IIDMR tools have been extended by an optimisation algorithm to calculate

the optimal polynomial order for the approximation of the component functions.

This is a very useful approach and can increase the accuracy of the metamodel

significantly. The optimal order is automatically determined under consideration of

a maximum order provided by the user. Component functions can also be excluded

from the HDMR expansion if they do not contribute to the overall output value.

Doth IIDMR approaches, cut-HDMR and extended RS-HDMR, have been first ap-

plied to an analytical model (Ishigami function) with three uncertain input param-

eters. In this case the sensitivity indices could be calculated analytically and com-

pared with the estimates based on the HDMR component functions. Both HDMR

approaches were able to provide very good estimates for the first- and second-order
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sensitivity indices. The RS-HDMR approach has been shown to be more efficient

than the cut-HDMR approach and only N = 256 model runs were required to con-

struct the metamodel and to calculate the partial variances. In the next stage a

micro-scale CFD model simulating the flow and turbulence in a 3D street canyon

has been investigated. Four uncertain parameters were considered. Both HDMR

approaches performed very well and a total of N = 512 (RS-HDMR) and N = 641

(cut-HDMR) model runs were sufficient in order to construct a very accurate second-

order metamodel and to calculate the sensitivity indices. Based on these results

important findings regarding the model behaviour and physics have been made.

For example, it has been shown that the wind components u, v, w within the street

canyon are very sensitive to changes in the background wind direction. This demon-

strates the limitations of determining the background wind direction far away from a

pollution hot spot location where model simulations are used as part of an air quality

management strategy. However, if the wind direction is well specified the analysis

showed the model simulations to be fairly robust for the measurement location G3

which was far enough away from the street canyon wall.

As a result it can be said that the RS-HDMR approach has advantages over the

cut-I1DMR approach. RS-HDMR requires only one set of random or quasi-random

samples and the number of required samples N does not directly depend on the

input space dimension n. Further, RS-HDMR does not require the storage of date

in look-up tables or interpolation methods. Only the expansion coefficients have

to be stored. The total variance is calculated on the basis of the random sample.

Cut-HDMR would require an additional set of samples in order to calculate the total

variance in this way. RS-HDMR is the more promising approach especially with the

focus on models with a large input space dimension (e.g. n ~ 10) and therefore it

will be solely used in connection with the case studies in the following two chapters.
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5 Application of RS-HDMR for

Systems with a Large Number of

Input Parameters

The main focus of this chapter is on the investigation of systems with a large input

space dimension (Le. n ~ 10). Another extension to the existing set of RS-HDMR

tools is presented in the next section. A threshold is introduced, which allows ex-

clusion of unimportant component functions from the HDMR expansion. In this

way large input space dimensions can be explored more efficiently. The extended

RS-HDMR method is then tested using the analytical Sobol' g-function (Saltelli &

Sobol' 1!)!)5).First- and second-order sensitivity indices are explored and compared

with analytically calculated values. Further, the focus is on two practical applica-

tions. A reactive plume model is investigated in order to study the combined effects

of uncertainties in the physical and chemical parameters. The second case study fo-

cuses on a one-dimensional low-pressure premixed methane flame model doped with

sulphur and nitrogen species. Here, the effects of uncertainties in rate constants and

thermodynamic data are investigated.
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5.1 Threshold to Exclude Component Functions

The standard RS-HDMR approach has already been extended by an optimisation

method introduced in section 4.1, which automatically chooses the best polynomial

order for the approximation of each of the component functions. Here, this method

is further extended by excluding unimportant component functions from the HDMR

expansion. The idea of this approach is to reduce the number of component func-

tions to be approximated by polynomials and therefore to reduce the number of

parameters so that screening methods (see section 2.3) can be avoided. Component

functions can be excluded, if they do not contribute to the overall output value and

furthermore, a threshold can be defined to exclude component functions with only

a very small contribution. This is particularly useful if a model has a large number

of input parameters and only a few of them are important. The component func-

tions of the HDMR expansion are approximated by orthonormal polynomials and

the coefficients for these polynomials are computed by Monte Carlo integration. If

a component function has only a very small influence on the output value, then it

might be the case that the Monte Carlo integration error leads to an overestimation

of the importance of the component function being considered. One might mainly

include the Monte Carlo integration error in the HDMR expansion, rather then the

real effect of this parameter or parameter interaction. This is especially true if the

sample size N is only small and if higher order polynomials are used. In those

cases it would be better to exclude these unimportant parameters and parameter

interactions from the HDMR expansion by setting a threshold. For a second-order

HDMR expansion a separate threshold can be defined for the exclusion of first- and

second-order component functions.

To apply thresholds within the HDMR framework the sum of the square errors El

between the real model response and the mean fa is calculated
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N

El =I:[J(X(s)) - fo]2
s=l

(5.1)

as well as the sum of square errors E2 between the real model response and the

optimal polynomial approximation

N 2
E2i =I:[f(x(S)) - (fo + fi(x~S)))]

s=l

(5.2)

for each of the first-order component functions fi(xi). If the optimisation method

described in section 4.1 is used to calculate the optimal order for the polynomial

approximation, then El and E2i are already available and do not have to be cal-

culated again. Following this, the relative error between El and E2i is calculated

and compared with the threshold. If the relative error is smaller than the defined

threshold, then the corresponding first-order component function will be excluded

from the HDMR expansion. This process is similar for the exclusion of the second

order component functions. However, here we use

N

fa +I:fi(X~s))
i=l

(5.3)

instead of fa for El and

N

fa +I:fi(X~s)) + fij(X~s), xJs))
i=l

(5.4)

instead of fa + fi(X~s)) for the calculation of E2i.
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5.2 Test Model: Sobol' g-function

The aim of this section is to demonstrate the usefulness of the threshold for excluding

component functions from the HDMR expansion, which has been introduced in the

last section. The Sobol' g-function (Saltelli & Sobol' 1995) is used as an analytical

test model.

5.2.1 Properties of the Sobol' g-function

The Sobol' g-function (Saltelli & Sobol' 1995) is defined as

n

f(x) = II gi(Xi),
i=l

(5.5)

where

(5.6)

The input parameter Xi is uniformly distributed within (0,1). The value of ai de-

termines the role for the corresponding input parameter Xi, the higher the value of

ai the lower the sensitivity of the input parameter Xi. Here we consider 20 input pa-

rameters using ai = {O,1,4.5,9,99, ... , 99}. The spectrum of the first four values for

ai has been chosen according to Campolongo et al. (2000b). In addition to this, 16

parameters have been added with a; = 99 in order to provide the high dimensional

input space for this test case. The sensitivity indices can be calculated analytically

on the basis of the ANOVA decomposition (see method of Sobol' in section 2.4.5)

and the analytical values for the first-order sensitivity indices are given in table 5.!.

It is clear that only the first four parameters (Xl to X4) can have an effect on the

variance of the model output f(x), since ai has low values in those cases. Therefore,

the first-order sensitivity indices for parameters five to 20 are zero.
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81 82 83 84 1 E8i
0.7165 0.1791 0.0237 0.007210.9265

Table 5.1: First-order sensitivity indices for the Sobol' g-function calculated analyt-
ically.

Table 5.2 presents the analytical values for the second-order sensitivity indices.

Here, only the interactions of the first four parameters (Xl to X4) have an influence

on the model output.

812 813 814 823 824 834 1 E8ij
0.0597 0.0079 0.0024 0.0020 0.0006 0.0001 I 0.0726

Table 5.2: Second-order sensitivity indices for the Sobol' g-function calculated ana-
lytically.

As shown in table 5.1 the first-order sensitivity indices add up to nearly 93%, which

means that higher-order effects account for only around 7% of the overall variance.

Parameter Xl is clearly the most important one (al = 0) and parameter X4 is the

least important one (a4 = 9) out of the first four input parameters. The interaction

between parameter Xl and X2 is with nearly 6% the most important second-order

effect. All the other cooperative effects are negligible.

5.2.2 Application of RS-HDMR

The RS-HDMR approach is now applied in order to estimate the first- and second-

order sensitivity indices. The maximum order for the approximation of the HDMR

component functions is set to ten for first-order and three for second-order. The

threshold for the exclusion of unimportant component functions was set to 0.5%.

Different sample sizes N have been investigated using the quasi-random Sobol' se-

quence.
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N 256 512 1024 2048 analytical
81 0.6637 0.7026 0.7094 0.7118 0.7165
82 0.1784 0.1766 0.1774 0.1784 0.1791
83 0.0249 0.0259 0.0242 0.0234 0.0237
84 0.0073 0.0071 0.0072
E8i 0.8670 0.9051 0.9182 0.9207 0.9265
812 0.0283 0.0531 0.0573 0.0597
813 0.0068 0.0075 0.0077 0.0079
814 0.0020 0.0020 0.0024
823 0.0021 0.0020
E8ij 0 0.0351 0.0625 0.0691 0.0726

E8i +E8ij 0.8670 0.9402 0.9808 0.9898 0.9991

Table 5.3: First- and second-order sensitivity indices for the Sobol' g-function using
the RS-HDMR approach with various samples sizes N.

Table 5.3 shows that even a small sample size of N = 256 is already enough to

obtain the correct ranking for the three most important parameters. The threshold

ensures that only these three component functions are approximated by orthonormal

polynomials. The remaining 17 parameters are excluded from the HDMR expansion.

Without applying a threshold another 11 parameters would have been approximated

by polynomials where mainly the Monte Carlo integration error would have been

added. Due to the small sample size, none of the higher-order effects can be accu-

rately estimated. Thus, none of the second-order component functions are included

in the HDMR expansion. The Monte Carlo integration error is too high in these

cases so that the consideration of the approximated second-order component func-

tions would not lead to an improvement in the accuracy of the HDMR metamodel.

Again, the exclusion of the second-order component functions is controlled by the

threshold.

An increase in the sample size N leads to a smaller Monte Carlo integration error

and even second-order component functions can now be accurately estimated and

included in the HDMR expansion. A sample size ofN = 2048 gives almost the exact
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first- and second-order sensitivity indices for the first four parameters if compared

with the analytical values. By defining the value of the threshold the user can influ-

ence the complexity of the HDMR expansion. If one is only interested in the most

important parameters and parameter interactions, then the value of the threshold

should be greater than 1%. For example, a threshold of 2% in this test case would

only include parameter Xl and X2 and the interaction of those two parameters into

the HDMR expansion. All the other parameters and parameter interactions would

have been excluded.

a) 0.2 0.4 0.6
Xl

0.8

Figure 5.1: First order component function (a) for input parameter Xl (approxi-
mated by a 10th order polynomial) and (b) for input parameter X2 (ap-
proximated by a 6th order polynomial) using a sample size of N = 1024.

The plot of the component functions for the two most important parameters Xl and

X2 is shown in figure 5.1. Here it can be seen why the Sobol' g-function is a tough test

case for the RS-HDMR method. The relationship between the input parameter and

the output is described by a non-monotonic V-shape curve with a non differentiable

point. Higher order polynomials are required in order to approximate this shape.

However, higher-order polynomials have more terms than lower-order polynomials

and are therefore more likely to be effected by the Monte Carlo integration error. The
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V-shape is most significant for parameter Xl (figure 5.1a). Therefore, the accuracy

of the first order sensitivity index SI for this parameter is not as accurate as for

the other ones if using only a small sample size of N = 256. Only if using a larger

sample size (N 2: 512) can the coefficients for the higher order polynomials be

determined more accurately which results in a better estimate for the sensitivity

index SI (table 5.3).

5.2.3 Discussion

By using the Sobol' g-function as a test case it can be demonstrated, that the RS-

HDMR method can handle a large input space dimension. The method is able to

identify the most important parameters and parameter interactions including their

ranking with only small computational effort (e.g. N = 512). The highly non-

linear and non-monotonic relationship between the input parameters and the model

output could be approximated by orthonormal polynomials. However, higher-order

polynomials (up to tenth-order) were required in order to deal with the complicated

V-shape of the input-output relationship.

5.3 Introduction to Chemical Kinetics

The case studies investigated in this chapter partially involve complicated chemical

mechanisms. The models provide interesting test cases for global sensitivity anal-

ysis using the HDMR method since a large number of uncertain parameters are

considered and the mechanisms are usually highly non-linear. In the first case study

the focus is on the effects of uncertainties in both, physical and chemical parame-

ters and possible interactions. The second case study focuses on a more complex

chemical scheme and investigates the effects of uncertainties in rate parameters and
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thermodynamic parameters.

Studies are most often undertaken in order to develop reaction mechanisms which

are accurate enough to be used within design applications or models informing envi-

ronmental decision making. For example, atmospheric chemistry plays an important

role in air pollution modelling. The formation of important secondary pollutants in

the atmosphere such as nitrogen dioxide (N02) and ozone (03) can be described

via chemical reactions and must therefore be part of any modelling system used for

evaluating strategies to improve air quality. Combustion chemistry plays a impor-

tant part in our daily life, e.g. burning fossil fuels for heating and for generating

electricity, transportation systems (ground vehicles and aircraft) and industrial pro-

cesses. However, the downside associated with using combustion for energy creation

is in environmental pollution. Primary pollutants, such as nitrogen oxides, carbon

monoxide and sulphur oxides are directly emitted in the atmosphere. This relates to

health hazards, smog, acid rain, global warming and ozone depletion (Turns 2000).

In order to predict the concentrations of primary and secondary pollutants it is

important to be able to accurately model the complicated chemical processes in

combustion and the atmosphere.

In order to get a better understanding of the chemical mechanisms and the param-

eters involved in these cases studies, this section aims to give a short overview of

the principles in chemical kinetics. Chemical kinetics addresses the rate at which

reactants are consumed and products and heat are formed. The time variable is

introduced and rate of change of concentration of reactants or products with respect

to time is followed. A good introduction into chemical kinetics can be found in

Espenson (1995) or Upahyay (2006). Atmospheric Chemistry is discussed in detail

for example in Seinfeld & Pandis (1998).
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5.3.1 Rate of Reaction

The rate of reaction 'is the rate at which the reactants are transformed into the

products of the reaction. It is the change in the concentration of the reactant and

product that occurs during a given period of time:

Rate = _ d[Reactant] = d[Product]
dt dt (5.7)

Here, [Reactant] and [Product] are the molar concentrations of reactant and product,

respectively (Upahyay 2006).

5.3.2 Rate Law

A rate law is a mathematical equation that describes the progress of the reaction.

There are two forms of a rate law for chemical kinetics: the differential rate law and

the integrated rate law.

The differential rate law links the rate of reaction to the concentrations of the various

species in the system. Differential rate laws can take on many different forms,

especially for complicated chemical reactions. Each rate law contains a constant, k,

called the rate constant which determines the speed of reaction given the reactant

concentrations (Espenson 1995).

Rate Law for Zero-Order Reaction

A reaction is known as zero-order reaction when the rate of reaction is independent

of the concentration of materials. The rate of reaction k is a constant. When the

limiting reactant is completely consumed, the reaction stops abruptly.
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The rate law for the general reaction

kA ---+ Product (5.8)

can be written as
d[A]

Rate= ----;It = k. (5.9)

Rate Law for First-Order Reaction

A first-order reaction depends on the concentration of only one reactant and can be

represented in the general form

kA ---+ Product (5.10)

with the rate law
d[A]

Rate = -Tt = k[A]. (5.11)

Rate Law for Second-Order Reaction

A second-order reaction depends on the concentrations of one second-order reactant,

or two first-order reactants.

The rate law for the general reaction

kA +B ---+ Product (5.12)

is
d[A]

Rate = -Tt = k[A][B]. (5.13)
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5.3.3 Pressure Dependence of Reactions

Some reactions have an order which changes with pressure: they are third-order at

low pressure and second-order at high pressure (Seinfeld & Pandis 1998). The rate

of formation of a product in the general system

A + B ~ Productt
kr

Productt +M ~ Product +M

(5.14)

(5.15)

is

d[Product] kaks[A][B][M]
-

dt ks[M] + kr
(5.16)

with M a third body and t denotes vibrational excitation of the product (Seinfeld

& Pandis 1998).

If k; » ks[M] then the reaction is third-order

d[Product] = kaks [A][B][M]
dt kr

(5.17)

and if k; « k, [M] then the reaction is second-order

d[Product] = ka[A][B].
dt

(5.18)
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5.3.4 Temperature Effect - Arrhenius Equation

The rate constant k introduced with the rate law in the previous section is often not

constant but temperature dependent. It is well-known that raising the temperature

of reactants can increase the reaction rate. This relationship between the rate a

reaction proceeds and its temperature is determined by the Arrhenius equation,

which was first proposed by van't Hoff and then extended by Arrhenius to:

(5.19)

where A is a constant (known as frequency factor, Arrhenius factor or pre-exponential

factor), E is the activation energy, T the temperature, n a dimensionless exponent

of temperature and R the gas constant (Upahyay 2006).

5.3.5 Photolysis

In atmospheric photochemistry the photon with energy hi/ ( where 11 is the photons

frequency) is a reactant in a chemical reaction (Seinfeld & Pandis 1998). For example

the photolysis of N02 is given by:

N02 + hu --+ NO+ 0 (5.20)

The chemical compound is broken down by photons. The photon must have enough

energy to break the bond. The photon's energy depends on its wave length and the

shorter the wave length the higher its energy.

The rate constants in an atmospheric photolysis reaction are not temperature de-

pendent, however they depend on the solar zenith angle (angle between the local

zenith and the line of light to the sun). The variation of the photolysis rate with so-
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lar zenith angle z can be described by an expression of the following form (Saunders

et al. 2003):

J = l(cos(z))m exp( -n sec(z)). (5.21)

The coefficients 1,m, n can be calculated for each process by fitting the J values to

the appropriate functions of the solar zenith angle. Values for 1,m, n can be found

for example in Saunders et al. (2003).

5.3.6 Chemical Thermodynamics

Chemical thermodynamics is concerned with the heat exchange accompanying trans-

formations, such as mixing, phase transitions and chemical reactions. This includes

calculations of such quantities as the heat capacity, enthalpy and entropy. Typically

a thermodynamic database within modelling packages such as CHEMKIN (Kee et

al. 1985) supply this type of information as NASA polynomial expressions comprising

14 coefficients (Gordon & McBride 1971, Burcat 1984, Burcat & McBride 1997, Bur-

cat & Ruscic 2005) fitted for two different temperature ranges.

The NASA polynomials can be used to calculate the following functions for the heat

capacity C~(T), the enthalpy HO(T) and the entropy SO(T):

HO(T) T T2 T3 T4 a6
RT =al+a2"'2+a3"3+a44+asS+ T (5.23)

SO(T) T2 T3 T4
~ = a1lnT+ a2T+a3"2 + a4"3 +as4 + a7 (5.24)
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5.3.7 Summary

Chemical mechanisms as they are used in models for environmental and safety engi-

neering are made up of complex couplings between species via reactions of the types

introduced here which can lead to complicated non-linearities. The difficulty is usu-

ally in assigning values for the rate constants and photolysis rates because sometimes

a wide range of values can be found in the literature. However, in other cases they

have to be estimated because no studies are available. This may result in large un-

certainty ranges for these parameters which have to be included when investigating

the chemical mechanism. An atmospheric chemical mechanism compromising four

species and eight reactions is introduced and investigated in the following section.

5.4 Case Study: Reactive Plume Model

An accurate prediction of concentrations and concentration fluctuations dispersing

from a variety of sources such as traffic or fossil fuel burning power plants is funda-

mental to applications as for example the formation of secondary pollutants. In order

to be able to predict concentrations of reactive pollutants in the atmosphere, models

have to be developed which contain complex physical and chemical processes. The

dispersion of plumes in urban areas is complicated because of the local topograph-

ical structures (e.g. densely packed buildings) which results in complex turbulent

wind flows that can be difficult to model. Consequently, modelling the fluctuations

in an urban area requires an accurate description of the in-street flow as well as

a dispersion model that can account for the widespread inhomogeneities (Dixon &

Tomlin 2007). The simulation of the turbulent flowfield in an urban area (in partic-

ular a 3D street canyon) has already been investigated in section 4.3. A Lagrangian

particle modelling framework is chosen here for the dispersion model. Due to the



146

lack of available data on secondary pollutants in simplified urban environments, it

will be tested first for a reacting plume scenario where wind tunnel data has been

obtained. The longer term plan will be to extend the framework to models of urban

areas through linking with MISKAM.

In this case study a combined Lagrangian stochastic model with micro mixing and a

chemical sub-model is used to investigate a reactive plume of nitrogen oxides (NOx)

released into a turbulent grid flowdoped with ozone (03). Sensitivities to the model

input parameters are explored for high NOx model scenarios. A wind tunnel ex-

periment is used to provide the simulation conditions for the first case study where

photolysis reactions are not included and the main uncertainties occur in the pa-

rameters defining the turbulence scales, the source size a and the reaction rate of

NO (nitric oxide) with 03• At the next stage photolysis reactions are included in a

chemical scheme consisting of eight reactions between species NO, 0, 03 and N02•

The extended RS-HMDR method is used to investigate the effects of uncertainties in

the various model inputs resulting from the parameterisation of important physical

and chemical processes in the reactive plume model, on the simulation of primary

and secondary chemical species concentrations. Both independent and interactive

effects of the parameters are studied. In total 22 parameters are assumed to be

uncertain, among them the turbulence parameters, temperature dependant rate pa-

rameters, photolysis rates, temperature, fraction of NO in total NOx at the source

and background concentration of 03. The results of this case study were also pre-

sented at the 12th International Conference on Harmonisation within Atmospheric

Dispersion Modelling for Regulatory Purposes (HARMO) (Ziehn et al. 2008a).
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5.4.1 Introduction

Lagrangian stochastic models are now widely used to model mean concentrations and

concentration fluctuations in atmospheric plumes (Franzese 2003, Sawford 2004, Cas-

siani et al. 2005). The theoretical basis and a review of Lagrangian stochstic models

can be found in Wilson & Sawford (1996) In this study a combined Lagrangian

stochastic model with a micro mixing sub-model (Dixon & Tomlin 2007) is used.

This model was not only designed for open terrain simulations but also for predicting

concentration fluctuations in urban areas. It is based on the marked particle model

which uses the formulation of Thomson (1987) for inhomogeneous turbulent flows.

The increments of velocity Ui and position Xi of each particle can be written as:

(5.25)

(5.26)

where ai and bij are the drift and diffusion terms which are functions of position x

and turbulent velocity u, dt is the time step and dWj are components of Gaussian

white noise. The diffusion term bij is set to

(5.27)

where Co is a constant (structure function coefficient), 8ij the Kronecker delta and €

the dissipation rate of turbulent kinetic energy k. The simplest and most common

micro-mixing model is the Interaction by Exchange with the Mean (IEM) model,

which is included here to calculate the evolution of the particle's concentration:

dC 1- = --(C - (C))
dt tm

(5.28)
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where t-. is the mixing time scale and (C) is the local ensemble mean. In order to

close the model the mixing time scale tm has to be specified and is related to the

turbulence time scale using
ktm=a-
e

(5.29)

where a is a constant (mixing time scale coefficient). The turbulent flow field (k,

€ and velocity) can be obtained for example from a MISKAM simulation. The

model has been tested for a passive tracer against the open terrain wind tunnel

data of Fackrell & Robins (1982) where the mean concentration and fluctuation

intensity could be reproduced (Dixon & Tomlin 2007). The model was also coupled

with the urban flowmodel MISKAM (Eichhorn 1996) and compared with the wind

tunnel simulations of a two dimensional street canyon by Pavageau & Schatzmann

(1999), also showing good agreement (Dixon & Tomlin 2007). A wider application

of the model will depend on its reliability in different situations. One would hope

that the turbulence parameters would not lead to large uncertainties in simulated

concentrations. This has not been tested yet and moreover there is some argument

in the literature about the values the turbulence parameters should adopt, which

will be further discussed in section 5.4.2. Another concern is the application of

the simple micro-mixing model. It is know that using the IEM model the mean

concentration field is influenced by the micro-mixing (Cassiani et al. 2005), which is

a significant drawback. However, the IEM model is computationally less demanding

and useful for a large variety of applications. Global sensitivity analysis will help

to investigate how strongly the simulated concentrations are effected by the mixing

time scale when using the simple IEM model.

The Lagrangian stochastic model by Dixon & Tomlin (2007) can also be applied for

reacting gas concentrations. Particles are initially placed randomly throughout the

domain, with concentration assigned only to those particles that pass through the
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source. The mixing model is then used to simulate the spread of concentration be-

tween neighbouring particles which is crucial to accurately predict the concentration

fluctuations. Operator splitting is used so that after each flow and mixing time-step

a chemical reaction step is performed, in this case using a stiff equation solver (a

Rosenbrock method). The chemical rate equations and the Jacobian matrix have to

be provided in the code.

It is important to investigate the combined effects of important physical and chem-

ical parameters, because the simulated concentrations downwind from the source

are influenced by both dispersion (atmospheric turbulence) and chemical reactions.

Limited sensitivity studies exploring the impact of the turbulent parameters on

passive plume dispersion were carried out in Dixon & Tomlin (2007) but only for a

selected ensemble of simulations. The current work extends this previous analysis by

applying the model to a reactive plume scenario and by extending sensitivity studies

to the use of global sensitivity methods which can explore large regions of the input

parameter space and the combined effects of physical and chemical parameters.

5.4.2 Model Validation and Uncertainty Analysis

The wind tunnel experiment by Brown & Bilger (1996) is used to provide the

first case study for a reacting plume. The nominal mean axial velocity of the

flow is (j = 0.5 m S-I. The flow field is doped with 03 (background [03] =

2.45. 1013molecule cm-3) and wellmixed. The velocity of the point source is matched

to (j and consists of N2 doped with NO (source [NO]= 1.26.1016 molecule cm'P).

The reactants undergo the reaction NO+03 --+ N02+02. Photolysis reactions are

not included due to the absence of ultraviolet light. Using the nominal values for the

source size (0' = 0.008m, assuming a Gaussian distribution), the mixing time scale

coefficient (a: = 0.75) and the structure function coefficient (co = 5) obtained from



150

x 1013

10

• x=2.2m simulation
0 x=2.2m experimenta

9 • x=3.8m simulation
0 x=3.8m experimenta

8 • x=4.8m simulation
0 x=4.8m experimenta

7

C')-
6I

Eo
0 5E---)(
0 4Z

3 0 0

2

-8.5 0.4 0.5-0.4 -0.1 0.3

Figure 5.2: Radial profile of mean [NOx] at x = 2.2 m, x = 3.8 m and x = 4.8 m from
the point source obtained form simulations using the nominal values for
a, exand Co and from wind tunnel experiments. Error bars are based on
400 simulations varying a, exand Co in their assigned ranges.
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Dixon & Tomlin (2007), the model gives a good representation of the radial profile

of the concentration of conserved scalar NOx = NO + N02 compared to the wind

tunnel experiment. However, the simulated profile is slightly narrower especially at

longer distances from the point source as shown in figure 5.2. The results from the

simulations show a very good match with the experimental data around the plume

centre for both radial profiles of NOx.

Error bars are also shown in figure 5.2 based on 400 simulations, where Co has

been varied between [3 ... 6], exbetween [0.6 ... 3] and a between [0.008 ... 0.016jm.
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Co Reference
4.3 ± 0.3
3.0± 0.5
5.5,6.4
5.0± 0.5

Rizza et al. (2006)
Du (1997)
Lien & D'Asaro (2002)
Reynolds (1998)

Table 5.4: Range of values for the structure function coefficient Co as found in the
literature.

The structure function coefficient Co determines the effective turbulent diffusion in

velocity space, and plays an important role in Lagrangian dispersion modelling. As

pointed out in Rizza et al. (2006) a wide range of values are found in the literature,

which have been determined in different ways and using different assumptions. The

range for Co used here is estimated on the basis of a number of earlier studies such as

Rizza et al. (2006), Lien & D'Asaro (2002) and Du (1997) (see also table 5.4). The

lower value of three and the proposed universality of Co suggested in Du (1997) were

questioned by Reynolds (1998) and therefore it is of interest to explore the impact

of uncertainties in this parameter. The possible range for Q describing the mixing

time scale is based on Cassiani et al. (2005) who reviewed the range of values used in

the literature in table 1 of their paper. The range for (J is estimated to represent the

uncertainty in the effect of near field mixing on the initial source width. The error

bars in figure 5.2 therefore represent the limits of uncertainty in the predictions of

NOx profiles based on the ranges of previous estimates for the turbulence constants.

Figure 5.2 shows that although the peak values are represented we do not recover the

experimental values at the plume edge for the radial NOx profiles. The figure also

shows that the nominal values selected give a good representation of the experimental

data but that if broad input ranges are considered then the range of predictions is

quite large. This is not a desirable feature and it indicates a high degree of sensitivity

to the input parameters which will be explored further using sensitivity analysis in

the following section.
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5.4.3 Extended Chemical Mechanism

At the next stage the chemical reaction scheme has been extended in order to provide

a more realistic atmospheric scenario. Eight reactions between the species NO, 0,

03 and N02 have been included and photolysis has also been considered for 03 and

N02:

R1 0+02+N2 ~ 03+N2 R5 0+N02~NO

R2 0+02+02 ~ 03+02 R6 NO+03 ~N02

R3 0+03~ R7 03~0

R4 O+NO+M ~ N02 +M R8 N02~NO+0

M=02+N2

A concentration of [N2] = 2.03.1019 molecule cm-3 and [02] = 5.45 ·101S molecule

cm-3 has been used. The reaction scheme leads to the following four rate equa-

tions which are implemented in the Lagrangian stochastic model and solved by a

Rosenbrock (Rosenbrock 1963) stiff solver:

d[NO] -k4[0][NO] + k5[0][N02] - k6[NO][03] + ks[N02] (5.30)-
dt
d[O]

- -kdO] - k2[0] - k3[0][03] - k4[0][NO] - k5[0][NO] ... (5.31)
dt

+k7[03] + ks[N02]
d[03] kdO] + k2[0] - k3[0][03] - k6[NOH03] - k7[03] (5.32)-dt

d[N02] k4[O][NO] - k5[O][N02] + k6[NO][03] - ks[N02] (5.33)-dt

The physical and chemical processes in the reactive plume are then investigated

in order to study the effects of possible uncertainties in the parameters. In total

22 parameters are assumed to be uncertain, among them Co, a and (1 as above, as
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well as the chemical reaction rate parameters for each reaction (A-factor, activation

energy E and temperature coefficient for Arrhenius parameters or photolysis rate),

temperature, background [03] and fraction of NO in total NOx at the source. Ac-

cording to the Environment Agency! combustion processes emit a mixture of nitric

oxide NO (90 %) and nitrogen dioxide N02 (10 %). This ratio is questioned for ex-

ample by Carslaw et al. (2007). It is therefore of interest to investigate the effects

of uncertainties in the NO fraction.

The ranges for the uncertain parameters were defined according to a minimum and

maximum value, assuming equal probability throughout the ranges. The maximum

and minimum values for the Arrhenius parameters are in accordance with Atkinson

et al. (2004). The uncertainty ranges for the photolysis rates are obtained from

Shetter et al. (1992) and Shetter et al. (1996) who used a chemical actinometer for

the measurement. Uncertainties for the temperature were assumed to be within the

range of [273 ... 293]K. The range for NO fraction in the source (initial concentration

[NO] = 1.26.1016 molecule cm=") was varied from 100% to 80 % in order to assess

the impact of uncertainties of primary N02 in NOx sources which is also of relevance

to transport related emissions of NOx (Carslaw et al. 2007). The concentration for

ozone has been varied in between [7.350.1011 ••• 1.225.1012] molecule cm-3• The

ozone concentration has been chosen to be lower than the one in the experiment of

Brown & Bilger (1996) in order to provide a more realistic atmospheric scenario. An

overview of the ranges for all 22 parameters can be found in table 5.5. The very high

initial NO concentration has also been lowered to [NO]= 1.26.1015 molecule cm"

in a second scenario.

Ihttp://wwv.environment-agency.gov.uk/

http://Ihttp://wwv.environment-agency.gov.uk/
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5.4.4 Results

The RS-HDMR method has been applied in order to perform global sensitivity anal-

ysis and to calculate variance based sensitivity indices for the 22 input parameters

based on the uncertainty ranges described in section 5.4.3. The outputs of interest

for the sensitivity analysis are the concentrations of the conserved scalar NOx and

03 at the plume centre at different distances x away from the point source. A quasi-

random sequence of up to N = 512 has been used in connection with the HDMR

analysis and for the calculation of the sensitivity indices. The maximum order for

the approximation of the component functions was chosen to be ten for first-order

and three for second-order. Additionally, a threshold of 1% has been applied in

order to exclude unimportant component functions from the HDMR expansion.

r2 value in % for output:
N NOx NOx NOx 03 03 03

(x = 2.2) (x = 4.8) (x = 5.8) (x = 2.2) (x = 4.8) (x = 5.8)
128
Ist-order 94.26 94.94 94.06 95.39 93.26 93.86
2nd-order 93.41 94.89 93.93 95.19 90.84 90.81
256
Ist-order 98.49 98.44 98.65 96.81 96.18 95.56
2nd-order 98.50 98.32 98.63 96.81 96.18 95.12
512
Ist-order 98.55 98.93 98.98 97.33 96.73 96.54
2nd-order 98.56 98.91 98.98 97.33 96.73 96.46

Table 5.6: Accuracy of the RS-HDMR metamodel (first- and second-order) in terms
of the coefficient of determination r2 for all considered model outputs
(peak NOx and 03 concentrations at different distances (x in m) away
from the source) using different sample sizes N.

The accuracy of the results for the sensitivity analysis also depends on the set up

of the Lagrangian stochastic model. Various numbers of particles (50000 up to

1000000) and different simulation end times (200 - 1200 s) have been tested and

the mean concentrations after each time step were recorded. It was found that
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a large number of particles (1000 000) has to be used in connection with a long

simulation end time of t = 1200 s (12 000 time steps) to ensure that the mean

concentrations reach convergence. This is definitely a drawback of the applied La-

grangian stochastic model, because the computational effort (run time of the model)

increases significantly if using such a large number of particles and time steps. One

simulation of the Lagrangian stochastic model using 1 000 000 particles takes about

20 hours on a 3 GHz PC. Therefore, the simulations had to be performed on the high

performance computer facilities offered by the White Rose Grid 2 at the University

of Leeds where up to 30 simulations could be run in parallel.

5.5
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Figure 5.3: Accuracy of the RS-HDMR metamodel based on N = 512 model runs
for [NOx] at the plume centre (x = 4.8m) showing (a) the scatter plot
between the original model response and the first-order RS-HDMR meta-
model (r2 = 98.93 %) and (b) the probability density function estimate
for both the original model and the first-order RS-HDMR metamodel.

Due to the large computational requirements, a small sample size of N = 128 has

been applied first in order to construct the HDMR metamodel. The accuracy of the

2http://www.wrgrid.org.uk

http://2http://www.wrgrid.org.uk
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metamodel can be expressed by calculating the square of the Pearson correlation

coefficient (r2 value, see section 3.3.4) for the predicted output and the model output.

As it can be seen from table 5.6 a small sample size of N = 128 is already enough

to generate a reasonably accurate metamodel indicated by the r2 value which is for

all considered outputs greater than 93%. An increase in the sample size N results

in an even more accurate HDMR metamodel and a sample size of N = 512 seems

to be sufficient for all considered outputs. Table 5.6 shows that there is hardly any

difference in the accuracy if using a first- or second-order HDMR expansion. This

indicates already that parameter interactions are negligible for all six investigated

outputs. The accuracy of the constructed HDMR metamodel can also be shown

with the help of a scatter plot or the probability density function (pdf) estimate as

presented in figure 5.3. It is shown, that the data in the scatter plot in figure 5.3a

form a straight line and the amount of scatter is quite small, indicating that a first-

order HDMR metamodel approximates the original model very well. This is also

confirmed by the plot of the pdf in figure 5.3b showing a nearly perfect match for

both the original model and the metamodel.

Parameter Si Si Si
(x = 2.2m) (x = 4.8m) (x = 5.8m)

Structure function coefficient Co 0.7976 0.7941 0.7903
Mixing time scale coefficient a 0.1853 0.1918 0.1937
ESi 0.9843 0.9874 0.9844

Table 5.7: First-order sensitivity indices for [NOx] at the plume centre at different
distances x away from the point source using the RS-HDMR approach
with a samples size of N = 512.

Table 5.7 presents the first-order sensitivity indices for [NOx]. Since NOx is a con-

served tracer and the initial [NOx] is the same as in section 5.4.2, then these results

effectively provide a sensitivity analysis of the variance expressed by the error bars

in figure 5.2. No interactions between parameters (second-order effects) could be



158

found and only two parameters have an influence on the output variability. Hence,

the HDMR expansion consists of only two first-order component functions.
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Figure 5.4: First-order component functions and scatter plots for (a) the structure
function coefficient Co and (b) the mixing time scale coefficient a with
respect to [NOx] at the plume centre for x = 2.2 m. The mean fa is
added to t. for comparison with the scatter plot.

The structure function coefficient Co is the most important parameter and is respon-

sible for 80 % of the variance in peak [NOx]. The mixing time scale coefficient a

accounts for around 19% of the overall variance. The sensitivity to the two param-

eters is similar for all three investigated distances x from the point source. There

is a low sensitivity to the initial source size. HDMR component functions for each

parameter allow the investigation of individual effects in more detail. The compo-

nent functions for Co and a with respect to the NOx concentration at the plume

centre and for x = 2.2 m are shown in figure 5.4. Scatter plots from a Monte Carlo

simulation based on randomly selected input parameters are also shown for com-

parison. This highlights the advantage of the HDMR component functions, since

they show directly the effect of each parameter on the selected output. It can be
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Figure 5.5: Error bars for peak [NOx] at 2.2 m from the point source using a: Co =
[3 ... 6] and b: Co = [4 ... 6].

seen that a strong positive linear relationship exists between Co and [NOx], whereas

the effect of a is negative and nonlinear. The experimental value of [NOx] at the

plume centre is also highlighted in figure 5.4a and demonstrates that even taking

into account uncertainties in other parameters, the experimental concentration is

not recoverable with a value of Co smaller than four. This is in agreement with the

studies by Reynolds (1998) who questioned a value as low as three for the structure

function coefficient. With these findings it would make sense to narrow down the

uncertainty range for Co to [4 ... 6] to see how this would effect the uncertainty in

the model output. It can be assumed that reducing the uncertainty range for the

most important parameter would also lead to a smaller uncertainty range for the

[NOx] at the plume centre. This is confirmed by figure 5.5 showing the error bars

for peak [NOx] at x = 2.2 m away from the source for both uncertainty ranges of Co·

The model runs using the new uncertainty range can be performed using the HDMR

metamodel. One advantage of the HDMR method is that a fully functional surro-

gate (here a first-order HDMR expansion is sufficient) is also constructed, which can
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be used for further simulations and studies instead of the computationally expensive

original model. This is very useful in this case, because the simulations with the

original model are very time consuming (e.g. 20 hours for one run).

The mixing time scale coefficient Cl has a significant influence on peak [NOxJ (see

table 5.7). This indicates, that the IEM mixing model breaks one of the desirable

properties of a mixing model, namely that the mean concentration should not be

effected by the mixing model, although it contributes less than 20% to the overall

variance.

Parameter Si
(x = 2.2m)

X20 El R for NO + 03 ---+ N02

X12 Mixing time scale coefficient Cl

X21 Background concentration for 03
X22 Fraction of NO in total [NOx]
XlO Temperature
Xll Structure function coefficient Co
X7 A-factor for NO + 03 ---+ N02

0.4144 (1)
0.2971 (2)
0.1058 (3)
0.0590 (4)
0.0340 (5)
0.0288 (6)
0.0252 (7)

Si
(x = 4.8m)

Si
(x = 5.8m)

0.4381 (1)
0.2644 (2)
0.0754 (4)
0.0797 (3)
0.0363 (5)
0.0357 (6)
0.0263 (7)

0.4410 (1)
0.2538 (2)
0.0721 (4)
0.0859 (3)
0.0371 (5)
0.0367 (6)
0.0266 (7)

0.9699 0.96340.9651

Table 5.8: First-order sensitivity indices for [03] at the plume centre at different
distances x away from the point source for very high initial NO concen-
trations using the RS-HDMR approach with a samples size of N = 512.
The numbers in brackets indicate the ranking of the parameter.

Table 5.8 shows the first-order sensitivity indices for [03] for the very high [NOx]

scenario. In total seven parameters are responsible for the variance of the output.

The most important parameter is the activation energy term EI R for the reaction

NO + 03 ---+ N02, which contributes more than 40 % to the overall variance. Now

that interactions between turbulent mixing and chemical reactions are included, the

most important turbulence parameter becomes Cl which defines the mixing time

scale. Parameter interactions were not found as shown by the total first-order sen-

sitivity coefficients adding to almost one. The importance of the parameters, and
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Figure 5.6: First-order component functions and scatter plots for (a) El R for NO +
03 ~ N02 and (b) the mixing time scale coefficient 0: with respect to
[03] at the plume centre for x = 2.2 m. The mean fa is added to I, for
comparison with the scatter plot.

even the ranking, changes with growing distance x from the source. For example, the

fraction of NO in total [NOx] becomes more important at further distances x from

the source and its rank changes from 4 to 3. The plot of the component functions

for the two most important parameters is presented in figure 5.6. The relationship

between El R for the reaction NO + 03 ~ N02 and [03] is nearly linear (positive)

whereas the relationship between 0: and [03] is fairly non-linear (positive).

Table 5.9 shows a comparison of the first-order sensitivity indices calculated based

on a sample size of N = 128 and N = 512 for the 03 concentration at the plume

centre for the very high [NOxl scenario. It can be seen, that even if using a very small

sample size the HDMR method is able to produce a reliable parameter ranking which

is identical for both sample sizes. The individual values for the sensitivity indices

differ quite a lot for some of the parameters for the two sample sizes and the sum of
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First-order sensitivity indices Si
N= 128 N=512

Xi (X = 2.2) (x = 4.8) (x = 5.8) (x = 2.2) (x = 4.8) (x = 5.8)
X20 0.3681 0.3506 0.4078 0.4144 0.4381 0.4410
X12 0.2492 0.2152 0.2127 0.2971 0.2646 0.2538
X21 0.0875 0.0579 0.0591 0.1058 0.0754 0.0721
X22 0.0683 0.0914 0.1036 0.0590 0.0797 0.0859
XlO 0.0352 0.0332 0.0403 0.0340 0.0363 0.0371
Xu 0.0278 0.0317 0.0310 0.0288 0.0357 0.0367
X7 0.0253 0.0272 0.0182 0.0252 0.0263 0.0266
ESi 0.8677 0.8185 0.8787 0.9699 0.9651 0.9634

Table 5.9: First-order sensitivity indices for [03] at the plume centre at different
distances x away from the point source using the RS-HDMR approach
with a samples size of N = 128 and N = 512.

Parameter Si Si Si
(x = 2.2m) (z = 4.8m) (x = 5.8m)

X21 Background concentration for 03 0.6943 (1) 0.6097 (1) 0.5942 (1)
X20 E/R for NO + 03 ~ N02 0.1373 (2) 0.1838 (2) 0.1941 (2)
X12 Mixing time scale coefficient Q 0.0905 (3) 0.1097 (3) 0.1110 (3)
Xu Structure function coefficient Co 0.0132 (4) 0.0205 (4) 0.0224 (4)
X22 Fraction of NO in total [NOx] 0.0111 (5) 0.0154 (5) 0.0165 (5)
XlO Temperature 0.0109 (6) 0.0145 (6) 0.0153 (6)
X7 A factor for NO + 03 ~ N02 0.0089 (7) 0.0121 (7) 0.0127 (7)
ESi 0.9742 0.9720 0.9725

Table 5.10: First-order sensitivity indices for [03] at the plume centre at different
distances x away from the point source for lower initial NO concentration
using the RS-HDMR approach with a samples size of N = 512. The
numbers in brackets indicate the ranking of the parameter.

the first-order sensitivity indices adds up only to less than 90%. However, one can

already identify the most important parameters with only reasonable computational

effort.

In a second scenario the very high initial NO concentration has been lowered to

[NO]= 1.26.1015 molecule cm=' and the results are presented in table 5.10 in form

of the first-order sensitivity indices for [03], Now the background concentration
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for 03 becomes the most important parameter, contributing by around 60 % to the

overall variance. The second most important parameter is the activation energy

term E/ R for the reaction NO + 03 --+ N02, which had been the most important

parameter in the very high [NOx] scenario. The importance of the mixing time scale

coefficient et is now much smaller and contributes only by around 10%.

5.4.5 Conclusions

The variance in the mean concentration of the conserved scalar [NOx] at the plume

centre is as expected only influenced by the turbulence parameters. The sensitivity

to those parameters is constant throughout the investigated distances x from the

point source with the structure function coefficient dominating the output variance.

This is a significant result because there is considerable lack of agreement in the

literature about the universality and value of this parameter. It could be shown

that the mixing time scale coefficient et has a lower but still significant influence

on the mean concentrations. This is clearly a disadvantage of using the simple

IEM model as a mixing modeL The application of the HDMR method has also

suggested that the uncertainty range for the structure function coefficient Co has

originally been chosen to be too wide. A comparison with experimental values

(wind tunnel experiment by Brown & Bilger (1996)) has shown that the uncertainty

range for Co can be reduced, because low values for Co do not allow the recovery

of the experimental values. This has also highlighted the advantages of using the

HDMR approach. On the one hand the effects of the uncertain parameters can be

investigated over a large range (plot of the first-order HDMR component function).

On the other hand new uncertainty ranges (as long as they are within the original

range) can be assigned and the effects investigated without performing new model

runs. This is because the HDMR metamodel can also be used as a surrogate and
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a large number of simulations based on the HDMR metamodel can be performed

almost instantly. The computational running time of the original model is quite high

(e.g. 20 hours for one simulation) because a large number of particles (1 000000)

had to be used in order to reach convergence for the mean concentrations.

The variance in mean [03] is influenced by both physical and chemical parameters.

A total of seven parameters contribute independently to the overall variance with

the mixing time scale coefficient now being the dominant turbulence parameter and

the activation energy for the reaction NO + 03 ----+ N02 dominating the kinetic

sensitivities for the very high [NOx] scenario. If the initial NO concentration is

chosen to be lower, then the background concentration for 03 becomes the most

important parameter. The influence of mixing time scale coefficient is even smaller,

which is a positive result and demonstrates that the simple IEM mixing model is

sufficient in this case. Parameter interactions could not be identified and therefore

a first-order HDMR expansion can be used to calculate the sensitivity indices. It

has been shown that the HDMR approach is very efficient and in this case study

128 model runs were sufficient in order to identify the most important parameters

and their ranking. A total of N = 512 model runs have been performed in order to

construct an even more accurate HDMR metamodel which results in more accurate

sensitivity indices. However, this did not change the importance ranking of the

parameters identified already using only 128 model runs.

5.5 Case Study: Premixed Methane Flame Model

The effectiveness of the HDMR tools is demonstrated for a case study of a one di-

mensional low pressure premixed methane flame model doped with trace sulphur

and nitrogen species. Uncertainties in rate constants and thermodynamic data for

the SOx extension are considered, leading to a study of 176 input parameters. Us-
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ing the HDMR tools, the use of screening methods such as the Morris method (see

section 2.3.2), which aim to identify unimportant parameters beforehand, can gener-

ally be avoided. However, in certain cases, a combination of a screening method and

HDMR is computationally more efficient than using HDMR alone. Due to the non-

linearity of the model, three different scenarios are investigated in order to highlight

the importance of the uncertainty ranges chosen. The results have also been pre-

sented at the 5th International Conference on Sensitivity Analysis of Model Output

(SAMO) (Ziehn & Tomlin 2007a) and been published in Ziehn & Tomlin (2008a)

5.5.1 Introduction

The use of complex chemical mechanisms is increasing within models describing a

range of important chemical processes including combustion. Parameters describing

the rates of chemical reactions and thermodynamics within such mechanisms can

often be very uncertain. Highlighting the main parameters contributing to predic-

tive uncertainty of the resulting models is therefore an important part of model

development. It can help to focus kinetic studies on key parameters that affect the

accuracy of the model with respect to validation data. Combustion models provide a

challenge for uncertainty analysis since they usually contain a large number of uncer-

tain parameters, many of which are derived from a limited number of experimental

or theoretical studies, or are estimated based on structural additivity relationships

by considering similar functional groups (Benson 1976). The uncertainty ranges

can therefore be quite large for many parameters, and in addition, there is often

a lack of consensus within the literature as to accepted nominal values as well as

uncertainty ranges. This calls into question the use of local sensitivity information

such as is usually available within commercial modelling packages (e.g. CHEMKIN

(Kee et al. 1985)), since these give information in a small region of parameter space
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close to the suggested nominal values. The exploration of wider input parameter

ranges requires global sensitivity methods. However, the use of traditional methods

for global uncertainty and sensitivity analysis such as Monte Carlo simulations be-

comes problematic due to the computational expense of the model and the difficulty

in interpreting the results (e.g. scatter plots) for large parameter sets.

If the input space dimension is large then traditionally a screening method such as

the Morris method (Morris 1991) is applied first, in order to identify unimportant

parameters. In a second step a sampling or variance based method can be applied

using only the potentially important parameters. The current study will investigate

whether the extended HDMR method (HDMR tools including the optimisation ap-

proach and the threshold) is able to handle a large input space dimension without

the need to apply a screening method beforehand.

The case study chosen to demonstrate the methods is a one dimensional low pressure

premixed methane flame model doped with trace sulphur and nitrogen containing

species and modelled using the CHEMKIN package PREMIX (Kee et al. 1991).

Premixed flames are the simplest flames and a common method for mechanism

evaluation since they can be modelled using a ID reaction transport model. A

range of experimental data sets exist for various problem types. If species profiles

have been obtained in experiments then ID flames provide a useful way of exploring

detailed high temperature chemistry and thermodynamics and transport properties

within the mechanisms.

It is known that trace amounts of sulphur in the fuel can have an impact on

the extent of nitrogen oxide emissions (Hampartsoumian et al. 1998, Hughes et

al. 200la, Nimmo et al. 1998). Therefore suitable models describing the interac-

tion of sulphur containing compounds with other species within flames are required.

Sulphur chemistry is however, quite poorly understood at high temperatures, with
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many reaction rates and thermochemical parameters being estimated in previous

studies. An assessment of the resulting uncertainty in predictions of nitrogen oxide

emissions is therefore of interest. The model also provides an interesting case study

for the application of global sensitivity methods, since there is a lack of consensus

in the literature as to the nominal values and uncertainty ranges for certain of its

input parameters (Tomlin 2006). It therefore serves to highlight the importance of

using global methods for the investigation of non-linear combustion models. Three

model scenarios using different parameter uncertainty ranges are presented in order

to explore this point.

5.5.2 Model Description

The mechanism under investigation is a sulphur chemistry scheme, which is linked

to an updated version of the Leeds methane/Nf); mechanism (Hughes et al. 2001c,

Hughes et al. 2001b). More detailed information can also be found on the Univer-

sity of Leeds website (http://wVl.chem.leeds.ac .uk/Combustion/Combustion.

html). The focus is on the influence of sulphur containing compounds on the forma-

tion of nitrogen oxides (Hampartsoumian et al. 1998). The SOx extension, is basi-

cally the same as used in Tomlin (2006), which was based on the scheme of Alzueta

et al. (2001) and Glarborg et al. (1996). A total of 176 uncertain parameters are

considered within the sulphur scheme, 153 of which are A-factors for the forward

reaction rates of each elementary reaction, and 23 are enthalpies of formation (~Hf)

which are calculated using NASA polynomials (see section 5.3.6). The reaction

rates are expressed in standard Arrhenius form using units of cm3 molecule"! s-l

for second-order rate constants. Reactions are treated as reversible, with reverse

rates calculated from the appropriate equilibrium constants. In the current study

all parameters are varied at the same time (or one at a time in case of the Mor-
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ris method) in contrast to the earlier study of Tomlin (2006) which considered the

rate parameters and thermodynamic parameters separately. The potential for inter-

actions between the rate and thermodynamic parameters for the SOx extension is

therefore explored in this study.
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Figure 5.7: Comparison between model simulations and experimental measurements
for the relative change in NO concentration on the addition of varying
amounts of S02 to the fuel (Tomlin 2006).

For the modelling process the CHEMKIN package (Kee et al. 1985) is applied,

which is commonly used for a range of applications including chemical mechanism

validation in simplified flow environments. The simulation has been performed for

a one dimensional low pressure flame (40 Torr) using PREMIX (Kee et al. 1991).

Full details of the model scenario can be found in Tomlin (2006) but it should

be pointed out that in this study we focus on the fuel-rich scenario with a flame

stoichiometry of 4> = 1.6 and 0.5% of S02 and 1.3% of NH3 added to the flame. In

this case, the mechanism using the nominal parameter values tends to over predict

the relative increase in NO mole fractions at the end of the flame on the addition of

S02, compared to the experiments of Hughes et al. (2001a) as shown in figure 5.7.

The final NO mole fraction within the burnt gas region is considered as the target



169

output variable within the following sensitivity studies. We are therefore exploring

the main sources of uncertainty in predicting the final NO concentrations in the

flame.

5.5.3 Investigated Scenarios and Experimental Setup

The output of interest for the methane/Nf); mechanism including the SOx extension

is the NO mole fraction in the burnt gas region of the flame. The uncertainty ranges

for the 153 A-factors were taken from data evaluations where possible (Atkinson et

al. 1997) as explained in Tomlin (2006). Unfortunately, this was the case for only

18% of the rate parameters. The majority of the parameters were derived from

a low number of measurements (18%), measurements with no evaluation (7%),

single theoretical studies (8%) or were estimates (49%) (Tomlin 2006). In many

cases uncertainty ranges had to be assumed. For example, where data were derived

from a single theoretical study or were estimated, a uncertainty factor of ten was

used above and below the nominal value. Where parameters were derived from a low

number of measurements a factor of two was applied. Due to the lack of information

the uncertainty ranges for all input parameters were determined according to a

minimum and maximum value assuming equal probability throughout the ranges. In

contrast to the studies in Tomlin (2006), where rate parameters and thermodynamic

parameters were considered separately, all parameters (153 A-factors + 23 enthalpies

of formation) are varied in this study at the same time. This allows the investigation

of possible interaction between rate and thermodynamic parameters for the sulphur

scheme.
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Scenarios

For the 23 enthalpies of formation three different sets of parameters are considered

here (table 5.11). In the first case equal uncertainties of ±10kJmol-1 are applied

to all 23 parameters. Here it is assumed that no information about the uncertainty

of these parameters is available and hence a conservative estimate for the parameter

ranges is adopted. In the second case the ranges were adapted according to those

quoted in the Burcat table (Burcat & Ruscic 2005) if the uncertainty was listed,

which was the case for half of the parameters. Table 5.12 presents the calculated

D.Hf at 298K using the original NASA polynomial values along with the source of

quoted polynomial data. The uncertainty ranges were applied across all tempera-

tures. However, the Burcat table suggests to vary the enthalpy of formation for SN

by ±105 kJ mol", which is a very large range. Therefore, a third case has been con-

sidered, where the range for the enthalpy of formation for SN was updated according

to the study of Peebles & Marshall (2002). They suggest a higher nominal value

with only a variation of ±2 kJ mol:", In this case the upper value of the range was

adapted to the upper value suggested by Peebles & Marshall (2002) which results

in an uncertainty range for the enthalpy of formation for SN of +13kJ mol-I. The

range still includes the nominal value suggested in the Burcat table. All three in-

vestigated scenarios consider the same uncertainty ranges for the 153 A-factors and

differ only in the ranges for the 23 enthalpies of formation. The intention behind

including these three scenarios is to highlight issues that arise when conflicting infor-

mation on input parameter ranges is available for non-linear models. This situation

is not unique to sulphur chemistry within combustion mechanisms, but is commonly

found in many comprehensive reaction schemes. In many cases, suggested nominal

values can vary from different sources and therefore the modeller is forced to use

judgement in deciding on upper and lower limits for the parameter. This can have

consequences for parameter importance rankings as highlighted by the following
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Scenario Uncertainty ranges for ~Hf
1 ± 10kJ mol 1 for all 23 parameters
2 According to Burcat table (~Hf SN = ±105 kJ mol=")
3 According to Burcat table and study by Peebles & Marshall (2002)

(~HfSN = +13kJmol-1)

Table 5.11: Overview of the three scenarios using different sets of parameter ranges
for the 23 enthalpies of formation.

results.

HDMR Setup

The RS-HDMR method and its extensions were applied to all three scenarios in

order to estimate sensitivity indices and to show how a difference in the parameter

ranges can affect the importance ranking of the parameters. An up to second-order

HDMR expansion was found to be sufficient to produce an accurate metamodel in

all cases. For the sampling process Sobol's quasi-random method (Sobol' 1967) was

applied using a sample size of N = 1024, which means that 1024 model runs have

to be performed in order to construct the HDMR expansion. This sounds quite a

lot, however considering the large input space dimension of n = 176 this really is

not. Other methods which are able to calculate sensitivity indices would require

considerably more model runs. For example, the Fourier amplitude sensitivity test

(FAST) would theoretically require more than half a million model runs according to

equation (2.59) only for estimating the first-order effects. Extended FAST is able to

calculate the total sensitivity indices TS(i), however a new set of samples is required

for each TS(i). The method of Sobol' is probably out of the question, since it would

require N· (1 + 176+ 15400) model runs in order to estimate the sensitivity indices

up to second-order. Assuming N = 1000 this would result in more than 15 million

model runs.



172

Uncertainty range
~Hf (298) in ±kJmol-1

Species in k.lmol"! Source for all temperatures
S 277.01 Burcat & Ruscic (2005) 0.25
SH 139.34 Glarborg et al. (1996) 0.52
H2S -20.50 Burcat & Ruscic (2005) 10.00
SO 5.01 Burcat & Ruscic (2005) 1.30
S02 -296.87 Burcat & Ruscic (2005) 0.21
S03 -395.80 Burcat & Ruscic (2005) 0.71
HS02 -20.50 Glarborg et al. (1996) 10.00
HOSO -236.33 Glarborg et al. (1996) 10.00
HOS02 -391.23 Glarborg et al. (1996) 10.00
SN 263.61 Burcat & Ruscic (2005) 105.00
S2 128.50 Glarborg et al. (1996) 0.30
CS 280.36 Burcat & Ruscic (2005) 25.00
COS -138.41 Burcat & Ruscic (2005) 1.00
HSO -22.59 Glarborg et al. (1996) 10.00
HOS 0.01 Glarborg et al. (1996) 10.00
HSOH -119.33 Glarborg et al. (1996) 10.00
H2SO -47.11 Glarborg et al. (1996) 10.00
HOSHO -269.89 Glarborg et al. (1996) 10.00
HS2 104.61 Burcat & Ruscic (2005) 10.47
H2S2 15.90 Burcat & Ruscic (2005) 10.00
CS2 116.95 Burcat & Ruscic (2005) 1.00
H2SO4 -732.73 Burcat & Ruscic (2005) 10.00
HSOO -255.88 Burcat & Ruscic (2005) 10.00

Table 5.12: Nominal values and uncertainty ranges for the enthalpies of formation for
Scenario 2. A reference is given for the nominal values. The uncertainty
ranges were taken from those quoted in the Burcat table (Burcat &
Ruscic 2005) if the parameter was listed. For all other parameters an
uncertainty range of ±10 kJ mol"? has been assumed.

The maximum polynomial order for the approximation of the first-order component

functions was set to be ten, and for the second-order terms it was set to be five.

The optimal polynomial order for each of the component functions is then auto-

matically calculated by the optimisation method as described in section 4.1. It is

also possible to exclude component functions from the HDMR expansion, which can

happen in two cases: First, if the component function does not contribute at all
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to the overall output value, and second, if the component function has only a very

small contribution. To control the exclusion of component functions with a small

contribution a threshold can be defined and applied as described in section 5.1. The

aim of excluding component functions from the HDMR expansion is to reduce the

number of parameters so that one does not require a screening method beforehand.

5.5.4 Results and Discussions

First, an RS-HDMR metamodel was constructed for all three scenarios. Since the

construction of the metamodel is similar in all three scenarios, only the details for

the third scenario (uncertainty ranges of the enthalpy of formation according to the

Burcat table and assuming +13 kJ mol"! for the enthalpy of formation for SN) are

presented here.

Use of Threshold to Construct the HDMR Expansion for Scenario 3

The full second-order HDMR expansion would consist of a total number of 15577

component functions (1 zeroth-order term + 176 first-order terms + 15400 second-

order terms). To reduce the number of terms in the HDMR expansion a threshold

can be applied so that only component functions which have a significant contribu-

tion towards the overall output value are considered. For example, using a thresh-

old of 1% for the first- and second-order component functions, only five of the

176 first-order component functions and none of the 15400 second-order component

functions are approximated by optimal-order polynomials. Therefore, the resulting

HDMR expansion consists of only six terms (1 zeroth-order + 5 first-order terms +

o second-order terms).

The accuracy of the constructed HDMR metamodel can be shown by calculating
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the relative error (see section 3.3.3). The same set of samples which has been used

to construct the HDMR component functions (Sobol' sequence with N = 1024)

can also be used for the calculation of the relative error. However, in order to

test the metamodel with a set of samples which have not been involved in the

construction of the HDMR expansion, additional real model simulations are required

and another 2000 model runs have been performed for this purpose. Applying the

threshold of 1%, the resulting first-order metamodel gives 99.05% of the tested

samples within the 5% RE range. This supports the view that it is possible to build

an accurate metamodel by including only five parameters. In this way we can already

identify the five most important parameters, which are the A-factors for the forward

reaction rates for SO +NH = NO + SH, SO +N = NO + S, SO + OH = S02 +H

and SH +NH = NS +H2 and ~Hf SO. It is actually quite surprising that only five

of the 176considered uncertain parameters drive the uncertainty in the model output

and that parameter interactions are negligible.

The optimisation method as described in section 4.1 automatically calculates the

optimal order for the polynomial approximation of the five first-order component

functions. The polynomial order indicates the kind of relationship we can expect

for the parameter-output relationship. Two of the component functions were ap-

proximated by first-order polynomials, indicating a linear relationship. The other

three component functions were approximated by higher-order polynomials, indicat-

ing a non-linear relationship. None of the second-order component functions were

approximated by polynomials and therefore one can assume that any parameter

interactions are so small that they were excluded because of the 1% threshold.

If the threshold is decreased, then more component functions will be included in

the HDMR expansion. For example, a threshold of 0.001% gives 51 first-order

component functions and four second-order component functions. For the first-order

RS-HDMR metamodel 99.50% of the tested samples are within the 5% RE range
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and for the second-order metamodel 99.65 %. The accuracy can also be presented

by using a scatter plot for the response of the metamodel and the original model or

by comparing their empirical probability density functions as shown in figure 5.8.

It is illustrated that the data points in figure 5.8a form a straight line with only

a low amount of scatter. The coefficient of determination is r2 = 98.50, which

confirms the high accuracy of the first-order HDMR metamodel. The plot of the

pdfs in figure 5.8b shows a very good match between the original model and the

metamodel. The choice of the threshold depends on the aim of the investigation. A

larger threshold will provide only the most important component functions so that

one is able to identify the most important parameters. A smaller threshold ensures

that less important component functions are also included.
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The r ults d monstrat that the application of a threshold in order to select HDMR
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component functions enables one to reduce the number of HDMR terms (and there-

fore the number of parameters) dramatically. The accuracy of the metamodel for

the 0.001% threshold provides confidence in the constructed HDMR expansion and

thus the calculated sensitivity indices. The use of a threshold provides a similar

function to the use of a screening method, since one excludes unimportant param-

eters before actually calculating the sensitivity indices and the parameter ranking.

However, unlike the two step algorithm where a screening method is used to identify

unimportant parameters in the first step, and then a second method is used to cal-

culate the sensitivity indices in a reduced input space dimension, here only a single

set of model runs is used and only one method.

Sensitivity Indices and Component Functions for Scenario 3

Table 5.13 presents the five highest ranked first-order sensitivity indices and the

four second-order sensitivity indices for the third scenario if using a sample size

of N = 1024 and a threshold of 0.001% as described previously. Since only four

of the second-order component functions have been approximated by polynomials,

only four second-order effects are seen in the table. Using these selected input

ranges, the most important parameter is the A-factor for the forward reaction rate

of SO + NH = NO + SH which contributes almost 60% to the overall variance of

the model output. The top five first-order sensitivity indices already add up to 0.97

and therefore account for most of the output variance. They are also the same five

parameters that were identified using the higher threshold of 1%. This also suggests

a low importance for parameter interactions. As seen in table 5.13, the second-order

effects are quite small and almost negligible. No significant interactions between the

thermodynamic parameters and rate parameters were found.

All first- and second-order sensitivity indices add up to 0.9826 indicating that the
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Parameter Xi Rank
SO + NH = NO + SH
SO+N=NO+S
SO + OH = S02 + H
LlHr SO
SH + NH = NS + H2
ESi

1
2
3
4
5

0.5956
0.2758
0.0735
0.0140
0.0111
0.9784

Parameter Xi Parameter Xj

SO + OH = S02 + H
SH+H = H2+S
S + CS2 = CS + S2
H2S+ M = H2+ S + M
s:»,
ESi +ESij

SO+NH = NO+ SH
SH+NH = NS+H2
HS2 + H + M = H2S2+ M
S+N02 = NO+SO

0.0018
0.0015
0.0005
0.0004
0.0042
0.9826

Table 5.13: First- and second-order sensitivity indices for scenario 3. When a reac-
tion is indicated, the parameter is the A-factor for the forward reaction
rate.

majority of the output variance has been accounted for. An increase in the sample

size N in order to construct the HDMR expansion would lead to an even higher

accuracy of the metamodel. However, experiments using various sample sizes up to

N = 8192 have shown that this does not change the values of the sensitivity indices

significantly and that the ranking of the most important parameters is the same.

Plots of the four most important first-order component functions for scenario 3 are

presented in figure 5.9. For comparison, the equivalent scatter plot for each param-

eter is also shown. This highlights the potential difficulty in interpreting scatter

plots, since the scatter caused by variability in all other parameters, can often ob-

scure the response of the parameter of interest. All four scatter plots (figure 5.9a-d)

show a non-random structure, which suggests that a relationship exists between the

input parameter and the model output. However, sometimes it is rather difficult to

see whether or not this relationship is linear or nonlinear. The plot of the corre-

sponding first-order component functions (here the mean fa is added to make the
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plots comparable with the scatter plots) gives a much more detailed picture of the

relationship between the input parameter and model output.
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Figur 5.9: First-order component functions and scatter plots for (a) SO + NH =
NO + SH, (b) SO + N = NO + S, (c) SO + OH = S02 + H, (d) SO (sce-
nario 3).

In figures 5.9a and 5.9b a non-linear relationship is shown which is approximated by

a second-order polynomial (figure 5.9a) and a third-order polynomial (figure 5.9b)

respectively. Th relationship between the A-factor for the forward rate for reaction

SO + OH = S02 + H and the NO mole fraction as shown in figure 5.9c is highly non-

linear and therefore approximated by a higher order polynomial (ninth-order). The
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shape of this relationship would not be so clearly visible if analysing only the scatter

plot. The nominal value for the A-factor for this reaction is 1.077.1017 cm3mol"! S-1

and the figure shows that the gradient of the first-order HDMR component function

changes substantially around this value. It should be acknowledged that the uncer-

tainty range used here is much wider than that recommended by the study of Blitz

et al. (2000) but has been chosen as such since the nominal value is sourced from

a single experimental study over a limited temperature range. For A-factor values

lower than the nominal value the gradient is steep, indicating a strong sensitivity in

this region. At values higher than the nominal value, the gradient is much lower,

indicating a lower sensitivity. The gradient of the first-order component function

indicates the first-order local sensitivity coefficient for the parameter at a particular

nominal value assuming there are no higher order effects. This example demon-

strates that the local sensitivity coefficient for this parameter changes substantially

around the nominal value. This supports the view that global sensitivity informa-

tion is required in order to fully evaluate the mechanism, since the local first-order

sensitivity coefficient would be highly dependant on the nominal value chosen.

In contrast, the relationship between the change in the enthalpy of formation for SO

and the model output is linear (in figure 5.9d) and is therefore approximated by a

first-order polynomial. In this case the local first-order sensitivity coefficient does

not change throughout the parameter range. It should be highlighted again that the

polynomial order for the approximation of the component functions is automatically

chosen by an optimisation algorithm (see section 4.1).

It is also possible to plot the second-order HDMR component functions (3D plot) to

show the interactive effect of two parameters. However, since the second-order effects

are very small, only one plot showing the interaction of the A-factors for reaction

SO + OH = S02 +H and SO +NH = NO + SH upon the output (figure 5.10) is

presented for demonstration purposes.
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Prior Application of a Screening Method for Scenario 2

The construction of the HDMR metamodel and the calculation of the sensitivity

indic s for the first scenario (equal uncertainty ranges for all 23 enthalpies of forma-

tion param ters) is identical to the third scenario presented in the above sections.

How v r, the construction of the HDMR expansion for the second scenario where

th un rtainty rang s w r adapted according to the Burcat table was more diffi-

cult. A sampl size of N = 1024 was not sufficient to gain a satisfactory accuracy

of th m tamod 1. It was necessary to increase the sample size up to N = 4096

in ord r to obtain r liabl results. This of course requires more computational time

since a higher numb r of mod 1runs have to be performed. The necessary increase

in the sampl size N in comparison to scenarios 1and 3 is probably due to the large

uncertainty range of ±105 kJ mol' used for 6.Hf SN. This leads to a much larger

region of parameter space which has to be used in the polynomial fitting.

Du to the large sample size required it is of interest to investigate an alternative
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RS-HDMR
(N=1024)

RS-HDMR
(N=4096)

Screening + RS-HDMR
(N=1780+1024)

1st-order 5% RE
2nd-order 5% RE

85.85%
86.25%

90.40%
94.80%

89.90%
95.30%

Table 5.14: Relative Error calculated for a set of 2000 random samples for the meta-
model based on RS-HDMR and a combination of Screening and RS-
HDMR.

RS-HDMR Screening + RS-HDMR
(N=4096) (N=1780+1024)

Parameter Si (Rank) Si (Rank)
~Hf SN 0.3815 (1) 0.3855 (1)
SO + NH = NO + SH 0.3700 (2) 0.3719 (2)
SO+N = NO+S 0.1344 (3) 0.1365 (3)
SO + OH = S02 + H 0.0410 (4) 0.0386 (4)
~Hf SO 0.0086 (5) 0.0087 (5)
ESi 0.9524 0.9590
ESi + ESij 0.9695 0.9755

Table 5.15: First-order sensitivity indices for scenario 2. Where a reaction is indi-
cated, the parameter is the A-factor for the forward reaction rate.

approach where a screening method (the Morris method described in section 2.3.2)

is applied beforehand in order to identify unimportant parameters. This can be used

to reduce the number of parameters studied and effectively reduce the dimension

of the fitting space. For the Morris method ten trajectories (r = 10) were used

leading to N = 1780 model runs. Ten trajectories were enough in order to identify

the most important parameters. However a reliable parameter ranking based on the

Morris results could not be obtained, because ten trajectories were not sufficient to

reach convergence for the mean of the elementary effects. A total of 47 potentially

important parameters could be identified on the basis of the highest mean effect

across the ten trajectories. The extended HDMR method was then applied using a

sample size of N = 1024 using only the 47 pre-selected parameters. The results in
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terms of model accuracy and the values for the sensitivity indices are nearly exactly

the same as calculated using the HDMR involving all 176 uncertain parameters but

using a sample size of N = 4096 (see table 5.14 and 5.15). This demonstrates that

the development of the metamodel (Le. the polynomial optimisation) was improved

by reducing the dimension of the fitting space for a small sample size. In this case

the combination of the screening and the HDMR method led to a decrease in the

number of model runs required from N = 4096 to N = 1780 + 1024. Hence,

whilst the extended HDMR method was capable of handling the large input space

dimension effectively, in certain cases savings could be made by the prior application

of a screening method. This may be valuable for situations where the basic model

is computationally expensive and a limited number of simulations can be afforded.

The importance of a prior screening is discussed in detail in the following chapter,

when the main focus is on investigations of systems which not only have a large

input space dimension, but also significant higher order effects. It is shown, that in

those cases a parameter screening is advisable.

Comparison of all Three Scenarios

Table 5.16 shows a comparison of the five highest ranked first-order sensitivity in-

dices calculated for each of the three scenarios. It shows that a different ranking

is calculated for each of the three scenarios. In scenario 1 the two most important

parameters are the enthalpy of formation for SO and S02, which are both nearly

equally important. A fairly high degree of uncertainty has been assigned to these

parameters within scenario 1 which leads to their significant contribution to the

overall output variance. Within the second and third scenarios a much lower degree

of uncertainty as suggested by Burcat & Ruscic (2005) has been adopted for these

enthalpies of formation and therefore they appear lower in the importance ranking.
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In the second scenario ~Hf SN becomes the most important parameter due to its

extremely large range of uncertainty as suggested by Burcat & Ruscic (2005). The

enthalpy of formation for SO is now only ranked fifth and the component function

for ~Hf S02 has been excluded from the HDMR expansion. The only change be-

tween scenarios 2 and 3 is ~Hf SN. In the third scenario the ranking changes again

and the A-factor for the reaction rate for SO + NH = NO + SH becomes the most

important parameter with ~Hf SN no longer highly ranked.

Scenario 1 Scenario 2 Scenario 3
(~Hf = ±lOKJ) (~Hf SN = ±105KJ) (~Hf SN = +13KJ)

Parameter Si (Rank) Si (Rank) Si (Rank)
SO + NH = NO + SH 0.2297 (3) 0.3631 (1) 0.5956 (1)
SO+N = NO+S 0.1007 (4) 0.1219 (3) 0.2758 (2)
SO + OH = S02 + H 0.0255 (5) 0.0316 (4) 0.0735 (3)
~HfSO 0.3082 (1) 0.0101 (5) 0.0140 (4)
SH + NH = NS + H2 0.0035 0.0019 0.0111 (5)
~Hf S02 0.2874 (2) 0 0
~HfSN 0.0001 0.3479 (2) 0.0001
ESi 0.9771 0.8904 0.9784
ESi + ESij 0.9842 0.9055 0.9826

Table 5.16: First-order sensitivity indices for all three scenarios. Where a reaction
is indicated, the parameter is the A-factor for the forward reaction rate.

The comparison in table 5.16 shows that the importance of the parameters is crit-

ically dependent on the uncertainty ranges chosen. For example, ~Hf SN only

becomes important if using the large uncertainty range of ±105 kJ mol-1 as sug-

gested by the Burcat table (Burcat & Ruscic 2005). To further investigate the

output response over the full parameter range the corresponding first-order compo-

nent function for scenario 3 is plotted (figure 5.11a). The figure demonstrates why

this parameter only becomes important when considering a large uncertainty range.

The local sensitivities in the ranges as used for scenarios 1 and 3 are very small as

indicated by the gradient of the component function between the vertical lines in
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Figure 5.11: (a) First-order component function Ii and (b) scatter plots for SN (sce-
nario 2). The mean fo is added to Ii to make the plot comparable with
the scatter plot.

the figure. However, the region from -105 kJ mor ' to approximately -25 kJ mol-I,

whi h is only cover d by the large uncertainty range of ±105 kJ mol-I, shows a very

ste p gradient which explains the high sensitivity of this parameter in scenario 2.

Figur 5.11b shows the scatter plot for the same input parameter for comparison.

Ag in, th plot of th fir t-order component function gives us a much better idea

of how the input parameter affects the output than the scatter plot. This example

h lp t d m n trat th pow r of the HDMR method and the value of being able

to vi uali th r pon of th output to individual parameters across the whole

param ter range. If only s nsitivity indices and the final importance ranking are

used then th hang in 10 al sensitivity coefficients across the parameter ranges

ar not apparent. Th compon nt functions allow the user to evaluate the poten-

tial response to the param ter if different uncertainty ranges were adopted. Given

th lack of consensus between different sources for thermochemical parameters, this

featur of HDMR is particularly valuable.



185

5.5.5 Conclusions

The RS-HDMR method provides a straightforward approach for the global sensitiv-

ity analysis of chemical kinetic models. However, an extension to the existing set

of HDMR tools is necessary in order to explore the large input space dimensions

that commonly result from the study of comprehensive kinetic schemes. The opti-

misation method (section 4.1) in cooperation with excluding component functions

from the HDMR expansion via a threshold (section 5.1) has been proven to be very

useful. The general outcome of this study is that the extended RS-HDMR method

can handle a large input space dimension efficiently. In this case a sample size of

N = 1024 was sufficient in order to construct an accurate metamodel and to calcu-

late sensitivity indices for scenarios 1 and 3. Only in certain cases (here for scenario

2) was it computationally more efficient to apply a screening method beforehand.

However, the use of the combined screening plus HDMR method, and the HDMR

method used on its own, led to the same accuracy of the metamodel and to the

same sensitivity indices. The use of the two step approach affected only the com-

putational cost, but for this reason may be relevant in cases where the underlying

model simulations are expensive.

The analysis of the plots of the first-order component functions has been found to

be very helpful in order to explore the shape of the relationship between the input

parameters and the target output. Whereas it is sometimes quite difficult to identify

the relationship when using scatter plots, the HDMR component functions isolate

the response to an individual parameter in the case of first-order component func-

tions, or pairs of parameters in the case of second-order ones. This feature of HDMR

becomes particularly useful where several uncertainty ranges are suggested for a par-

ticular parameter by different expert studies. The study shows that the final ranking

of the input parameters is critically dependent on the input ranges chosen. This fea-
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ture suggests that a unified framework where parameter ranges can be agreed and

consistently updated as new experimental and theoretical studies become available

would be a valuable contribution to model evaluation exercises. Such a framework

is one of the aims of the PrIMe data model web based co-laboratory (Djurisic et

al. 2007). However, the HDMR component functions express the output response

over the whole of the input range and can therefore be used to investigate the out-

put response over particular regions of the input parameter space. A very important

feature of the HDMR method is that a metamodel can be constructed with wide

parameter ranges first. Then, if the ranges are narrowed down by subsequent stud-

ies, the metamodel can be used as a surrogate in order to update the output pdf

or error bars without having to recompute the original model again. This is partic-

ularly useful if the original model is computationally expensive to run. This point

could be illustrated in the previous case study (section 5.4) describing a reactive

plume where the range of one parameter has been narrowed down after the model

simulations had been performed already.

Several parameters in the present study exhibited highly non-linear responses within

particular regions of their input space. This calls into question the use of local sensi-

tivity indices for the evaluation of parameter importance in such non-linear models.

On the other hand, the gradient of the HDMR first-order component functions can

be used as an indication for the local sensitivity over wide parameter ranges. How-

ever, this is only correct if higher order effects are small, because for calculating

the local sensitivity the partial derivative of the whole response is taken and not

only of the first-order component function. Global sensitivity analysis can help to

identify important parameters that contribute to the overall output variance and

require better categorisation by further thermo-kinetic studies. The methods pre-

sented here therefore provide valuable tools for the evaluation and improvement of

chemical kinetic models.
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5.6 Summary

Another important extension to the existing set of HDMR tools has been developed

in this chapter. Unimportant component functions, which have only a very small

contribution towards the overall output value, can be excluded from the HDMR

expansion via a pre-defined threshold. Thus, the number of the component functions

approximated by orthonormal polynomials can be reduced. This is very useful if

investigating models with a large number of input parameters in order to further

increase the accuracy of the HDMR metamodel and successively the accuracy of the

sensitivity indices.

The application of the threshold has been tested using the analytical Sobol' g-

function with 20 input parameters. Unimportant first- and second-order component

functions were correctly excluded from the HDMR expansion. This ensures, that

those component functions which are affected by the Monte Carlo integration error

are not considered for the construction of the metamodel. The extended HDMR

method could cope very well with the non-linear and non-monotonic behaviour of

the Sobol' g-function and a sample size of N = 512 was sufficient in order to iden-

tify the most important first- and second-order effects and their ranking. However,

higher order polynomials (up to tenth-order) were required in order to accurately

approximate the component functions. This is due to the complicated V-shape of

the input-output relationship which also has a non-differential point.

A short introduction into chemical kinetics has been given, because the two case

studies presented in this chapter contain complex chemical mechanisms. First,

a reactive turbulent atmospheric plume model was investigated, highlighting the

combined effects of uncertainties in physical and chemical parameters. In total 22

uncertain parameters were considered. No interactions between parameters could

be found and a sample size of N = 512 was sufficient in order to produce a very
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accurate metamodel. The HDMR analysis revealed that only two parameters are

responsible for the large uncertainty in the peak NOx concentration. Comparisons

with experimental data revealed that the uncertainty range for the structure func-

tion coefficient Co could be narrowed down, which is also in agreement with various

studies in the literature. It could also be shown that the mixing time scale coefficient

a has a lower but still significant influence on the mean passive tracer concentration

field, which is a shortcoming of the interaction by exchange with the mean (IEM)

model. The second case study focused on a one-dimensional low-pressure premixed

methane flame model with sulphur-nitrogen chemistry interactions. Uncertainties

in rate constants and thermodynamic data for the sulphur scheme were considered,

leading to a study of 176 input parameters. Three different scenarios have been

investigated using different uncertainty ranges for the 23 thermodynamic parame-

ters. It could be shown that the ranking of the parameters is critically dependent

on the input ranges chosen. The HDMR analysis allows to explore the shape of the

relationship between the input parameter and the output for different input ranges

and it becomes clear in what ranges a certain parameter is most sensitive. The

HDMR metamodel can also be used as a surrogate and when investigating parame-

ter ranges which are narrower than the original ones, the HDMR metamodel can be

used instead of performing a new set of simulations. This is particularly useful if the

original model is computationally expensive to run. In comparison to other global

sensitivity analysis methods such as the method of Sobol' or the Fourier amplitude

sensitivity test (FAST), the HDMR method is very efficient. For two scenarios a

sample size of N = 1024 was sufficient to construct an accurate metamodel. Only

for one scenario was it computationally more efficient to apply a combined screening

plus HDMR approach. The importance of parameter screening is further highlighted

in the next chapter when the focus is on systems which have significant parameter

interactions.
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6 Application of RS-HDMR for

Systems with Significant

Parameter Interactions

The aim of this chapter is to investigate the application of the HDMR method for

systems with a large number of input parameters and with significant parameter

interactions. The exploration of parameter interactions usually requires much more

samples than the investigation of the first-order effects. Especially in connection

with a large input space dimension this can easily lead to a required sample size

of N > 10000. Therefore, it might be computationally more efficient to follow

a two step procedure. First a screening method such as the Morris method (see

section 2.3.2) is applied in order to identify unimportant parameters. Then, the

HDMR approach is used in connection with the reduced input space.

6.1 Need for Screening

It could be shown in the latter chapter of this work, that the HDMR method and its

extensions can handle a large input space very efficiently. However, as shown in the

case study in section 5.5 for the premixed methane flame model, it can sometimes
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be computationally more efficient to apply a screening method beforehand in order

to reduce the number of parameters. It is worth noticing that the case studies

investigated in the latter chapter did not have significant higher order effects and a

first-order HDMR expansion has been proven to be sufficient in order to cover the

model behaviour and the variance of the model output. If one deals with models

with a large input space dimension (Le. greater than 20) where additional parameter

interactions cause a significant amount of the variance in the output and one is

interested in exploring them, then it is computationally more efficient to apply a

screening method, such as the Morris method (see section 2.3.2) beforehand. Thus,

unimportant parameters can be excluded and the HDMR method is then applied

using only the reduced input space. This makes the RS-HDMR approach much more

efficient for exploring parameter interactions, because the fitting of the polynomials

takes place in a lower dimension.

The two step algorithm (screening + RS-HDMR) is tested in the following section

using the analytical Sobol' g-function with 50 parameters, where parameter inter-

actions account for more than 20% of the overall variance in the model output.

Section 6.3 focuses on a case study, where the HDMR method is applied in order

to investigate the process of cyclohexane oxidation under low temperature fuel rich

conditions. Here a total of 238 uncertain parameters are considered and significant

parameter interactions are present.

6.2 Test Model: Sobol' g-function

The Sobol' g-function has already been introduced and applied in section 5.2 as an

analytical test case in order to highlight the efficiencyof the RS-HDMR method and

its extensions. Here, the same function is used a test model ones again, but with a

different configuration. The aim is to show, that a combination of the Morris screen-
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ing method and the RS-HDMR method is a very efficient approach especially for

systems with a large input space dimension and significant parameter interactions.

6.2.1 Properties of the Sobol' g-function

One very handy feature of the Sobol' g-function (see equation (5.5)) is, that the input

parameter space can be arbitrarily extended and the importance of each parameter

can be controlled by the value of ai (see equation (5.6)). Here, we consider 50 input

parameters using ai = {4.5, 4.5,1,0,1,9,0,9,99, ... ,99}. The spectrum of ai has

been chosen according to Ratto et al. (2007). The value of ai determines the role

for the corresponding input parameter Xi, the higher the value of ai the lower the

sensitivity of the input parameter Xi'

0.0096 0.0096 0.0727 0.2906 0.0727 0.0029 0.2906 0.0029 I 0.7516

Table 6.1: First-order sensitivity indices (first eight parameters) for the Sobol' g-
function calculated analytically.

847 834 837 845 857 I E8ij
0.0969 0.0242 0.0242 0.0242 0.0242 I 0.2209

Table 6.2: Selected second-order sensitivity indices for the Sobol' g-function calcu-
lated analytically.

The analytical values for the first-order sensitivity indices are presented in table 6.1.

Only the first eight parameters (i = 1..8) and their interactions have an effect on

the output and therefore table 6.1 focuses only on those parameters. The two most

important parameters are X4 and X7, which are equally important (a4 = a7 = 0) and

each of them contributes by about 29% to the overall output variance. The sum

of the first-order effects covers 75.16% of the output variance. The second-order
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sensitivity indices based on the analytical calculation are shown in table 6.2. Only

the five highest interactions are shown. The most important parameter interaction

takes place between parameter X4 and X7 and contributes by nearly 10% to the

variance of the output. The sum of the second-order effects contributes by 22.09%.

This means, that 97.25% of the entire model variance can theoretically be captured

if using a second-order HDMR expansion.

6.2.2 Application of RS-HDMR

The RS-HDMR method and its extensions are now applied using the whole input

space dimension (n = 50) in order to estimate the first- and second-order sensitivity

indices. Only the first eight parameters (Xl - xs) of the 50 in total have an influence

on the output. A threshold of 0.1% has been applied to the first- and second-order

component functions in order to exclude unimportant parameters. This results in

the approximation of only eight first-order component functions (or six in the case

of N = 1024). Consequently, the first-order sensitivity indices are only calculated

for the first eight parameters as shown in table 6.3. Because the fitting of the

polynomials takes place in such a high dimension, it is not possible to accurately

estimate the second-order effects if using only a small sample size. As shown in

table 6.3 the sample size N has to be at least 4096 in order to get an estimate

for most of the five highest second-order sensitivity indices. 8192 runs are required

to estimate all of the five highest second-order sensitivity indices. The sensitivity

indices of the less important parameter interactions are not shown due to the lack

of space. Most of the 1225 second-order component functions have been excluded

anyway, because their contribution is smaller than the applied threshold would allow.

However, all estimated second-order sensitivity indices (approximately 20, depending

on the sample size N) are included in ESij.
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N 1024 2048 4096 8192 analytical
SI 0.0000 0.0109 0.0100 0.0100 0.0096
S2 0.0134 0.0153 0.0128 0.0098 0.0096
S3 0.0606 0.0662 0.0684 0.0708 0.0727
S4 0.2230 0.2580 0.2702 0.2804 0.2906
S5 0.0636 0.0683 0.0701 0.0707 0.0727
S6 0.0044 0.0033 0.0031 0.0030 0.0029
S7 0.2320 0.2596 0.2697 0.2801 0.2906
S8 0.0000 0.0041 0.0035 0.0033 0.0029

ESi 0.6134 0.6873 0.7104 0.7309 0.7516
S4,7 0.0818 0.0858 0.0969
S3,4 0.0228 0.0224 0.0242
S3,7 0.0199 0.0212 0.0242
S45 0.0207 0.0242,
S5,7 0.0241 0.0212 0.0242
t:« 0.1945 0.2133 0.2209

ESi + ESij 0.6134 0.6873 0.9048 0.9442 0.9725

Table 6.3: First-order (first eight inputs) and second-order (selected input combina-
tions) sensitivity indices for the Sobol' g-function using the RS-HDMR
approach.

From table 6.3 it can be seen that the RS-HDMR method is able to handle the

large input space dimension. The most important first-order effects can be explored

by using only a relatively small sample size of N = 1024. However, in order to

investigate parameter interactions the sample size N has be at least 4096. This is a

considerably large sample size and in order to achieve such a large number of model

runs for practical applications it may be necessary to run the model in a parallel

environment (e.g. computer cluster) particularly when the model is computationally

expensive to simulate. However, other methods for global sensitivity analysis, such as

the Fourier amplitude sensitivity test (FAST) and the method of Sobol' require much

more model runs. Classic FAST is only able to calculate first-order sensitivity indices

and according to equation (2.59) more than 20000 model runs would be necessary.

The method of Sobol' is able to calculate first- and second-order sensitivity indices,

however this would lead N· (1+ 50+ 1225) model runs. Assuming N = 1000 the
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method of Sobol would require more than one million model runs.

6.2.3 Combination of Screeningand RS-HDMR

In order to investigate the efficiencyof the combined screening plus HDMR approach,

the Morris method is now applied first to identify potentially important parameters.

The values of the unimportant parameters are then fixed and only the values of the

potentially important parameters are varied in connection with the HDMR method.

Morris Method

The Morris method as introduced in section 2.3.2 has been applied to the Sobol'

g-function with 50 input parameters. Ten trajectories (r = 10) have been used

in order to calculate the mean effect and the standard deviation. Each trajectory

contains n + 1 = 51 runs where each parameter has been changed according to the

sampling strategy. The results of the Morris analysis can be seen in figure 6.1, where

the standard deviation is plotted against the mean.

As shown in figure 6.1, the Morris method has identified eight potentially important

parameters (Xl to xs) under the guideline that the higher the mean, the higher

the effect of the parameter. A low standard deviation indicates that the effect

of the concerning parameter is only linear. A high standard deviation indicates

either non-linear effects or parameter interactions. Parameters X4 and X7 have been

identified as the most important parameters, however according to the analytical

values in table 6.1 they should be equally important and therefore their mean effect

and standard deviation should be the same. This indicates, that ten trajectories

are probably not enough in order to calculate a good average for the mean and

standard deviation. However, here the interest is not in obtaining the exact ranking
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Figure 6.1: Results of the Morris analysis using r = 10 trajectories (N = 510). Only
the first eight parameters Xl - Xs are potentially important. Parameters
Xg - X50 are identified as unimportant.

of those parameters. The main focus is in reducing the input space dimension by

id ntifying th unimportant parameters and Xg - X50 have been correctly identified

as not important.

If on wants to produce a more reliable parameter ranking on the basis of the

Morris analysis, more trajectori s have to be used which also means an increase in

the sampl size N. Figure 6.2 shows the results of the Morris method using 10,

50 and 100 traj ctories. It can be seen that the mean and standard deviation for

the effects of the parameters which are equally important are actually quite different

from each other, especially for the two most important ones. Only for the case where

100 trajectories are used, are the mean effect and standard deviation for the two

most important parameters X4 and X7 nearly equal as one would expect. However,
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Figure 6.2: Results of the Morris analysis using 10, 50 and 100 trajectories.

the use of 100 trajectories is computationally quite expensive and requires a sample

size of N = 5100. Considering this, the Morris method is not really efficient for

this purpos , but has been shown to be efficient for screening out unimportant

parameters.

RS-HDMR

Parameters Xl to X8 have been identified as potentially important by the Morris

method, which leaves 42 out of the 50 parameters as unimportant. The HDMR

method is now applied by varying only the first eight parameters (ai with values

between 0 and 9), the other parameters remain fixed at their nominal values. Re-

ducing the dimensionality of the problem allows an easier fitting of the polynomials

for the HDMR component functions even for smaller sample sizes N. Because of

the smaller input space dimension the HDMR method can now calculate the first-
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and second-order sensitivity indices very accurately even for smaller sample sizes.

Table 6.4 shows, that 1024 samples are already enough to produce the correct rank-

ing for the first- and second-order sensitivity indices. Applying the HDMR software

using 4096 samples produces almost the exact sensitivity indices if compared with

the analytical values.

N 512 1024 2048 4096 analytical
81 0.0145 0.0129 0.0104 0.0098 0.0096
82 0.0000 0.0124 0.0141 0.0127 0.0096
83 0.0667 0.0667 0.0697 0.0707 0.0727
84 0.2467 0.2671 0.2791 0.2834 0.2906
8s 0.0779 0.0746 0.0734 0.0731 0.0727
86 0.0053 0.0034 0.0028 0.0029 0.0029
87 0.2412 0.2643 0.2775 0.2828 0.2906
88 0.0051 0.0038 0.0036 0.0033 0.0029
E8i 0.6575 0.7053 0.7303 0.7386 0.7516
84,7 0.0504 0.0844 0.0918 0.0918 0.0969
83,4 0.0143 0.0218 0.0200 0.0238 0.0242
83,7 0.0113 0.0181 0.0211 0.0241 0.0242
84,s 0.0167 0.0256 0.0184 0.0241 0.0242
8S,7 0.0122 0.0249 0.0215 0.0241 0.0242
s:»: 0.1127 0.1840 0.1955 0.2215 0.2209

E8i +E8ij 0.7702 0.8893 0.9258 0.9602 0.9725

Table 6.4: First-order (first eight inputs) and second-order (selected input combi-
nations) sensitivity indices for the Sobol' g-function using the combined
screening + RS-HDMR approach.

Figure 6.3a presents the plot of the first-order component function !4(X4), which

is approximated by a tenth-order polynomial. The component function is able to

capture the extreme non-linear behaviour of the model. The scatter plot is also

shown for comparison. The most important second-order effect contributes by over

9% to the overall variance and the corresponding component function is shown in

figure 6.3b.
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Figure 6.3: (a) First-order component function and scatter plot for parameter X4, (b)
second-order component function for the parameter interaction between
X4 and X7 for the Sobol' g-function using a sample size of N = 4096.

6.2.4 Discussion

The Sobol' g-function using 50 input parameters and the spectrum of ai applied

h re i a difficult t st case for global sensitivity analysis methods. However, the RS-

HDMR method was able to correctly identify all of the important first-order effects

and m t of th important second-order effects by using a sample size of N = 4096.

h n th r method such as FAST (which can only provide first-order

n itivi y indi ) or th m thod of Sobol' would theoretically require. Due to the

appli ati n of th thr hold, a larg number of unimportant first- and second-order

ompon nt fun ti n could b xcluded from the HDMR expansion. This has further

improv d th accuracy of th m tamodel and the estimated sensitivity indices. The

prior ppli tion of acre ning method for the Sobol' g-function with 50 parameters

ha b n prov n to b computationally mor efficient. The Morris method required

only N = 510 runs in ord r to id ntify eight potentially important parameters. The

HDMR m thod could th n accurat ly estimate the most important first- and second-

ord r sensitivity indic s based on the reduced input space dimension using only
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N = 2048 model runs. In particular, the estimation of the parameter interactions

(second-order effects) is more efficient in a smaller input space dimension. The

application of the threshold still plays an important role, since many unimportant

parameter interactions can be removed from the HDMR expansion even if the total

number of parameters has already been narrowed down by the application of the

screening method.

6.3 Case Study: Cyclohexane Oxidation

The focus in this study is on the investigation of the low temperature part of a

chemical mechanism. This is different to the ID premixed methane flame study

in 5.5 where the focus was on the high temperature part. Here it was assumed that

the flames are at steady state and the solutions are time independent. In general

either burner stabilised flames or freely propagating flames are used to test the high

temperature parts of a mechanism by evaluating their abilities to model species pro-

files, temperature profiles or flame speeds. In order to explore the low temperature

behaviour of a mechanism either ignition behaviour can be explored for example in

a closed vessel, shock tubes or rapid compression machines or flow reactors can be

used to look at product analysis. Generally low temperature chemistry is more com-

plex (Le. more species and reactions have to be considered) but is very important

in terms of engine applications (controlled ignition) for example for gasoline engines

(induced ignition) or diesel engines (autoignition) and safety applications (uncon-

trolled ignition) (Pilling 1997). Because of the complexity and the wide range of

applications for low temperature chemistry it is of interest to explore if global sen-

sitivity analysis methods such as the HDMR method can be applied for all these

different cases and if there are differences in terms of responses.

This case study presents a global sensitivity analysis of simulations of low temper-
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ature isothermal cyclohexane oxidation under fuel rich conditions. A combination

of the Morris method and the extended RS-HDMR method is applied. The anal-

ysis aims to investigate the important features of the oxidation process, as well as

possible factors underlying qualitative discrepancies between simulations and exper-

iments. The particular feature of interest is the characteristic of quadratic autocatal-

ysis which is observed experimentally and leads to the maximum rate of reaction

occurring at 50% consumption of the deficient reactant (oxygen), with the fuel con-

sumption exerting only a weak dependence. The kinetic mechanisms tested do not

exhibit this characteristic when simulating the experimental conditions. The mod-

els also exhibit shorter induction times than those observed in the experiment. The

results of this case study have also been presented at the 32nd International Sympo-

sium on Combustion (Ziehn et al. 2008b) and been submitted for publication (Ziehn

et al. 2008c).

6.3.1 Introduction

Cyclohexane is an important surrogate compound for the use of cycloalkanes in

transportation fuels with around 10% in petrol, 15 - 70% in kerosene and up to

35% in diesel (McEnally & Pfefferle 2005, Silke et al. 2007). The oxidation of

this class of hydrocarbons has been subject to several studies in the recent years.

A summary and review of detailed low-temperature oxidation models is given in

Battin-Leclerc (2008).

The oxidation of cyclohexane in fuel rich conditions presents also an autoignition

hazard which is of concern in chemical process industries (Porter 2007). However,

the kinetics of isothermal cyclohexane oxidation in fuel rich mixtures is poorly un-

derstood and not well captured in numerical simulations. The application of the

HDMR method for global uncertainty and sensitivity analysis can help to investi-
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gate the important features of the oxidation process and may be able to explain

possible reasons for qualitative discrepancies between simulations and experiments.

Engine related experimental studies of the oxidation and autoignition of cyclohex-

ane have been performed for example in a rapid compression machine over the

compressed gas temperature range 670 - 870K in Lemaire et al. (2001) and kinetic

studies have been performed in a perfectly stirred, isothermal reactor at 807K and

1050K in El Bakali et al. (2000). Following these studies, numerical modelling of

the cyclohexane oxidation process has been performed at both low and high tem-

peratures for example by Silke et al. (2007) or Buda et al. (2006).

t

Figure 6.4: Theoretical curve of isothermal quadratic autocatalysis in a closed ves-
sel (Snee & Griffiths 1989).

Due to the lowminimum ignition temperature of MIT = 543K (Jackson 1951) cyclo-

hexane presents an industrial autoignition hazard. It is therefore necessary to assess

the performance of the oxidation mechanism in these conditions. The oxidation stud-

ies performed in fuel rich conditions (Snee & Griffiths 1989) are of particular interest

because they show very clearly the characteristics of quadratic autocatalysis (see fig-

ure 6.4) leading to the maximum rate of reaction occurring at 50% consumption of

the deficient reactant (oxygen), with the fuel consumption exerting only a very weak
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dependence. Klai & Baronnet (1993) have reported the same autocatalytic profile

for oxygen consumption during experimental studies of cyclohexane oxidation in a

closed vessel at 635 K. It is of concern that zero-dimensional, numerical simulations

using comprehensive models for cyclohexane (Silke et al. 2007, Buda et al. 2006)

with existing kinetic data do not capture this fundamental kinetic property in a

satisfactory way (see also figure 6.5).
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Figur 6.5: Exp rim ntal (Sn & Griffiths 1989) (dashed lines) and numerically
imulated fractional O2 consumption (a) EXGAS mechanism (Buda et
1. 2006) (b) Silke mechanism (Silke et al. 2007) (c) Sample simulation

u ing quasi-random inputs for A-factors (d) Sample simulation using
quasi-random inputs for A-factors and wall losses. All simulations at
T = S03K.

Accurat mod lling of cyclohexan oxidation is relevant to its commercial uses, and
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comparison with available experimental data provides an important opportunity for

evaluation of proposed mechanisms. The attention in this work is on the ability

of the EXGAS generated cyclohexane scheme (Buda et al. 2006) to simulate the

important kinetic features of alkane oxidation described above. Where discrepancies

with experimental data are found, their possible sources are explored using global

sensitivity methods. These allow the influence of uncertainties within the input

parameters on output predictions to be investigated. The importance of parameters

in terms of their contribution to the output variance can be ranked, helping to focus

further kinetic studies on key parameters affecting model accuracy with respect to

validation data, or to identify potential problems in the model structure. The latter

may arise for example, from reaction steps that are missing from the mechanism.

HDMR methods have not yet been applied to models of low temperature oxidation

kinetics. However, they have been successfully used to investigate the uncertainties

for the high temperature part of a 1D premixed methane flame model (section 5.5).

As already pointed out low temperature chemistry is usually more complex and the

current case study therefore extends the scope of the methods and demonstrates their

applicability to evaluating the main kinetic drivers of alkane oxidation, potentially

highlighting sources of qualitative discrepancies with experiments (Snee & Griffiths

1989). Providing focus for future kinetic studies of key reaction steps is crucial, since

as noted in Silke et al. (2007), cyclohexane is one of the simplest cycloalkanes, and

its mechanistic data could be used in establishing rules for rate data estimation of

relevance to larger fuels.
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6.3.2 Evaluation of the Mechanism and Initial Comparison with

Experiment

The present study focuses on the modelling of the isothermal kinetic response of

fuel-rich mixtures as investigated experimentally in Snee & Griffiths (1989). The

foundation of the low temperature scheme applied here originates from Buda et al.

(2006) and comprises 499 species in 1025 reversible reactions and 1298 irreversible

reactions. The mechanism was generated by the software EXGAS, which can be

used to perform the automatic generation of detailed kinetic models for the gas-

phase oxidation and combustion of linear and branched alkanes. The main features

of the EXGAS software are described in Buda et al. (2005). The mechanism has

been evaluated previously in Porter (2007) by constructing the equimolar cyclohex-

ane+air p - Ta ignition diagram and comparing it to the experimental cool flame

boundaries in a closed vessel (Bonner & Tipper 1965). The qualitative structure

of the cool flame boundaries as measured in the experiment is well captured by

the p - Ta diagram generated using the EXGAS mechanism. However, as has been

noted in other cases (Hughes et al. 2006), the critical pressures tended to be under

predicted, leading to the conclusion that the mechanism is too reactive in this region

of operating conditions (Porter 2007).

For the global sensitivity studies, simulations of a reduced EXGAS scheme are used,

comprising 60 species and 238 reactions (Fairweather et al. 2005). In the reduced

scheme, reversible reactions from the original scheme are expressed as irreversible

pairs since this is required for the purposes of redundant reaction removal. The

238 reaction scheme therefore represents the mechanism in irreversible form. The

scheme was reduced to its skeletal form because using the comprehensive scheme

would prohibit the subsequent HDMR analysis due to the numbers of simulations

required to investigate higher numbers of input parameters, as well as the increased
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cost of each simulation. The reduction was achieved using the automated application

of local Jacobian and rate sensitivity based methods based on modifications of the

well established KINALC software (Turanyi 1997). Its validity has been assessed

against the full mechanism over a wide range of temperature and pressure conditions

(Porter 2007, Hughes et al. 2008) and the species profiles and carbon fluxes produced

by the skeleton scheme have been shown to match well those of the full scheme for

the conditions studied here.

Taking the initial stoichiometry,

(6.1)

the initial mixture approximated well to cyclohexane + "air" in 1 : 2 molar propor-

tions, and was chosen to make direct comparisons with experimental results obtained

at 1atm (Snee & Griffiths 1989).

As outlined above, one would expect that for quadratic autocatalysis, the maxi-

mum rate of reaction ¥t, where e is the fractional extent of reaction of the primary

reactant, would occur at 50% reactant consumption. The characteristic sigmoidal

curve of ~ versus t (illustrated schematically in figure 6.4) is observed widely in ex-

periments, including for cyclohexane oxidation (Snee & Griffiths 1989) as shown in

figure 6.5. However, the curves produced by the EXGAS model fail to show this im-

portant qualitative characteristic, and O2 consumption accelerates until its virtual

depletion. Isothermal conditions have been chosen specifically to remove the possi-

ble influence of uncertainties in the description of heat transfer processes. Therefore

thermal effects cannot underlie this discrepancy and understanding the kinetic origin

of this phenomenon requires further investigation. It is also clear that the time to

-(¥t)max for O2 are not well represented by the model. Again, the model appears to

be over reactive in comparison to experimental data. Equivalent simulations using
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the scheme of Silke et al. (2007) show a qualitatively similar acceleration (figure 6.5),

and although this scheme appears to be less reactive than the EXGAS scheme under

these conditions, it is still faster than the experiment as shown in the figure. The

qualitative discrepancy is therefore not limited to a single reaction mechanism.

6.3.3 Selected Inputs and Outputs for Sensitivity Analysis

In order to explore these qualitative and quantitative discrepancies within the model,

the selected target outputs are the time to - (~)max for O2 (yd, and the percentage

of O2 remaining at the time of the maximum rate (Y2). Using the nominal values

within the reaction scheme, Y2 is almost zero whereas the experiments indicate it

should be close to 50%. Global uncertainty techniques can establish whether the

scheme is capable of reproducing the qualitative nature of the experimental profiles

within certain bounds of uncertainty of the input parameters. If it cannot, then

there may be key kinetic steps or physical processes missing from the model.

The inputs explored are the A-factors for the 238 irreversible reaction rates. The

importance of wall losses for key radicals is also explored subsequently. A criti-

cal step in the evaluation of parameter importance is to define appropriate input

distributions. Since a large number of parameters within the cyclohexane scheme

were derived from estimates, input ranges were defined according to a minimum and

maximum value, assuming equal probability throughout the ranges. In this study

we are exploring qualitative discrepancies and therefore we have assumed conserva-

tively large uncertainties of a factor five above and below the nominal value for each

A-factor. It is accepted that in certain cases, where data evaluations are available,

that this range may be an overestimation. However, in order to evaluate whether the

qualitative behaviour can be recovered, for the large number of estimated reaction

rates such uncertainties are justifiable.
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6.3.4 Results

Since the number of uncertain parameters is considerably large, the Morris method is

applied first in a two step algorithm. Screening methods are usually computationally

less expensive, because only a low number of model simulations is required. The

downside of applying the Morris method is, that it can not quantify how much

one parameter is more important than another one. Additionally, in cases where

interactions between parameters exist, the method fails to identify to which part of

the model a parameter is interacting with. However, unimportant parameters can

be identified and the RS-HDMR method is then used in the second step within a

reduced input space dimension.

Parameter Screening Using the Morris Method

The Morris screening method (see section 2.3.2 and Hughes et al. (2006)) determines

an importance ranking for parameters in terms of their mean effect on output vari-

ance as well as determining parameters with linear additive effects and non-linear

interactions. It does not however provide the functional dependency of the output

on individual parameters or parameter pairs as provided by the HDMR expansion.

The Morris plot for output Yl (time at point of inflexion for O2) is presented in

figure 6.6 and for output Y2 (02 ratio) in figure 6.7 for isothermal simulations at

503 K and 1atm.

The Morris analysis for output Y2 identifies the same parameters as potentially im-

portant as the Morris analysis for output Yl, but with a different ranking. A lower

threshold of 1% of the highest mean effect across all parameters was used to ex-

clude unimportant parameters in both cases. A subset of 33 A-factors were found

to be important for the combined outputs which were used for further analysis. 100

trajectories (r = 100) have been used which leads to N = 23900 model simulations.
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Figure 6.6: Morris plot for output Yl (time at point of inflexion) using 100 trajec-
tories. Th ten most important parameters ranked by their mean are
labell d.

Although this is not particularly efficient, it ensures that the correct number of po-

tentially important param ters is identified. This cannot be achieved if using only a

small numb r of traj ctori s ( .g. r=10) as suggested by Campolongo et al. (1999).

It has to be highlight d, that ev n if using 100 trajectories the mean effect d; (see

equation 2.3) do not conv rge. How ver, because the HDMR method is applied in

a s ond t p it is not of importance here to obtain a reliable ranking for the most

important param t r . The main focus is on identifying the unimportant parame-

ters and pot n ially important ones and this can be achieved with 100 trajectories

v n if th m an ff ct d; does not converge. Hughes et al. (2006) experienced a

imilar problem wh n applying the Morris method to investigate the uncertainties

in rat param ters on the ignition delay time for the low temperature combustion

of propane. A s t of 1000 trajectories was required in this case in order to ensure
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Figure 6.7: Morris plot for output Y2 (02 ratio) using 100 trajectories. The ten most
important parameters ranked by their mean are labelled.

conv rg ne . Consequ ntly, it seems to be a common problem that a large number

of Morri run is required if inv stigating uncertainties in rate parameters for the

low t mp rature part of a chemical mechanism. This also confirms the comments

mad in s tion 2.3.2 wh n the Morris method was introduced, that it is important

to as ss th conv rg nee of the mean effect and that a general guide line for the

numb r of traj ctori s of 5 ~ r ~ 15 is not sensible.

It is worth pointing out that the Morris method explores the wider input space and

is th r for mor appropriate for initial parameter screening than local sensitivity

m thods. For xampl, a potential case may arise where the scheme shows low

sensitivity to a parameter around its nominal value, but increasing sensitivity away

from this value towards the edges of its range. Using a local method, this parameter

would be screened out of the subsequent global HDMR analysis. Using the Morris
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method, the whole of the input space of the parameter would be explored and hence

the parameter would be retained if its average effect was above the chosen threshold.

Table 6.5 presents the 20 most important reactions according to the Morris analysis

for the combined outputs using the ranking for output Y2.

No. Reaction
RI C6Hll 00 + H02 ---+ C6HllOOH + O2
R2 C6H12+ OH ---+ C6Hll +H20
R3 2C6Hll 00 ---+ C5HlOCO+ C6HllOH + O2
R4 2C6Hll 00 ---+ 2C6Hll 0 + O2
R5 CH2CHO + O2 ---+ HCHO + OH + CO
R6 C6HllOOH ---+ C6Hll 0 + OH
R7 C6Hll + O2 ---+ C6HlO+ OOH
R8 CH2CHO + OOH ---+ O2 + CH3CHO
R9 CHOC4HsCOOOH ---+ OH + 3CH2CHO
RIO C6H12+ OOH ---+ C6Hll + H202
Rll CH2CHO + O2 ---+ CH2CO+OOH
R12 C6Hll +O2 ---+ C6Hll 00
R13 HCHO + OH ---+ CHO + H20
R14 200H ---+ H202 +O2

R15 CH2CO + OH ---+ CH20H + CO
R16 CH2CO + OH ---+ CH3 + CO2

R17 C6H12+ C6Hll 00 ---+ C6Hll + C6HUOOH
R18 CH3DO ---+ CH30 + O2

R19 OOH +HCHO ---+ CHO + H202
R20 C6HlOOH ---+ C2H3 + C2H4 + CH3CHO

Table 6.5: Potentially important reactions. The reaction number refers to the rank-
ing from the Morris analysis for output Y2.

HDMR Analysis and Sensitivity Indices

The HDMR analysis is focused on isothermal simulations at 503K and 1atm using

the 33 parameters identified by the Morris method, although the results are simi-

lar for other temperatures relating to the experimental profiles in Snee & Griffiths

(1989). Table 6.6 and table 6.7 present the five most significant first and second-

order sensitivity indices for output Yl and output Y2 respectively. The results are
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Parameter Xi

No. Reaction
R4
R6
R9
R3
R17
E8i

2C6Hll 00 ---+ 2C6Hl1 0 + O2
C6HUOOH ---+ C6Hl10 + OH
CHOC4HsCOOOH ---+ OH + 3CH2CHO
2C6Hll 00 ---+ C5HlOCO + C6Hll OH +O2
C6H12+ C6Hll 00 ---+ C6Hll + C6Hll OOH

0.1955
0.1588
0.1282
0.0932
0.0759
0.7447

Parameter Xi

R4
R3
R4
R6
R9
s:»:
E8i +E8ij

Parameter Xj

R6
R4
R17
R9
R17

0.0377
0.0268
0.0221
0.0142
0.0141
0.1944
0.9391

Table 6.6: First- and second-order sensitivity indices using N - 131072 and 33
inputs for output Yl (time at point of inflexion). Parameters Xi and Xj

are the A-factors for the forward reaction rate.

Parameter Xi

No.
R4
RI
R3
R2
R12
E8i

Reaction
2C6Hll 00 ---+ 2C6Hl10 +O2
C6Hll 00 +H02 ---+ C6Hll OOH + O2
2C6Hll 00 ---+ C5HlOCO+ C6Hl1OH +O2

C6H12+ OH ---+ C6Hl1 + H20
C6Hll +O2 ---+ C6Hl100

0.1544
0.0875
0.0283
0.0131
0.0088
0.3104

Parameter Xi

R3
RI
RI
RI
RI
E8ij

E8i +E8ij

Parameter Xj

R4
R4
R3
R2
R12

0.1190
0.0616
0.0299
0.0194
0.0141
0.3607
0.6711

Table 6.7: First- and second-order sensitivity indices using N - 131072 and 33
inputs for output Y2 (02 ratio). Parameters Xi and Xj are the A-factors
for the forward reaction rate.
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based on a quasi-random sample of the size N = 131072. This is a very large sample

size, however it proved to be necessary in order to have enough confidence in the es-

timated sensitivity indices. Various samples of increasing sizes (512,1024,2048, ... )

were used first and the accuracy of the constructed metamodel was assessed. Due

to the fact that a satisfactory accuracy could not be reached for both outputs Yl

and Y2 the sample size was successively increased. However, even if using a large

sample size ofN = 131072 it was found that not the whole output variance could be

explained by considering only up to second-order effects (second-order RS-HDMR

expansion). It can be assumed that the estimated sensitivity indices up to second-

order are trustworthy, because the accuracy of the metamodel and the values of the

sensitivity indices for the most important parameters converged. This also means

that higher order effects (~ 3) are present which can not be accounted for if using

a second-order HDMR expansion. This is in contrast to the applications of HDMR

to sulphur chemistry in the premixed methane flame model under high temperature

in section 5.5, where mostly first-order effects were observed and a smaller sample

size could be used to efficiently calculate these effects.

Table 6.8 presents the accuracy of the first- and second-order HDMR metamodel

for increasing sample sizes N for both model outputs in terms of the coefficient of

determination r2. A small sample size of N = 512 is sufficient in order to estimate

the most important first-order effects (Si) for both outputs. The accuracy of the

first-order HDMR metamodel does not significantly change even when a large sample

size N = 131072 is used. However, a much larger sample size is necessary in order

to estimate the second-order effects (Sij) and N = 4096 samples are required in

order to identify the most important parameter interactions. The values of highest

ranked second-order sensitivity indices does not change significantly when further

increasing the sample size up to N = 131072.

The accuracy of the constructed HDMR metamodel based on N = 131072 is also
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r2 value in % for output:
N Yl time at point of inflexion Y2 O2 ratio
512
1st-order 75.07 26.49
2nd-order 84.64 31.11
1024
1st-order 76.87 27.59
2nd-order 91.37 38.90
2048
1st-order 76.91 26.91
2nd-order 90.64 39.47
4096
1st-order 76.29 25.86
2nd-order 89.03 54.34

131072
1st-order 75.94 27.01
2nd-order 94.28 60.31

Table 6.8: Accuracy of the RS-HDMR metamodel (first- and second-order) in terms
of the coefficient of determination r2 for both model outputs (yl time at
the point of inflexion and Y2 O2 ratio) using different sample sizes N.

shown in figure 6.8 in terms of a scatter plot and in figure 6.9 by comparing the

pdf for both model outputs. In general, the accuracy of the metamodel is better for

output Yl (time at point of inflexion) and as shown in the scatter plot in figure 6.8c

a second-order HDMR expansion provides a reasonable approximation of the model

output indicated by the low amount of scatter and by the coefficient of determination

r2 = 94.28%. This is also confirmed by the comparison of the pdf's (figure 6.9c)

which show a good match. In contrast to the other case studies, in this work the pdf

for output Yl is not Gaussian shaped, it is skewed with a long tail. It can also be

seen, that the majority of the performed model simulations have a very small time

to - (~)max of around 75s. Only a couple of input parameter combinations allow

a time to -(~)max of over 600s which is still far too small if compared with the

experiment. The pdf for the first-order HDMR metamodel presented in figure 6.9a
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Figur 6. : Accuracy of the RS-HDMR metamodel for N = 131072 based on the
att r plot (1000 random points) for (a) the time at point of inflexion

using a first-order HDMR metamodel (b) the O2 ratio using a first-order
HDMR metamodel, (c) the time at point of inflexion using a second-order
HDMR metamodel and (d) the O2 ratio using a second-order HDMR
m tamod 1.

ha Gau sian lik shap and the tail is missing. This indicates, that higher-order

ffects ar "within" the tail and it would suggest that model outputs with a tailed

distribution are eff cted by parameter interactions. This will be further investigated

in section 8.1 when the focus is on the exploration of higher order ~ 3 effects. A

second-order HDMR expansion is definitely not sufficient in order to construct a

metamod 1for output Y2 (02 ratio) as shown by the scatter plot in figure 6.8d. The
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Figur 6.9: Accura y of the RS-HDMR metamodel for N = 131072 based on the
probability density function (pdf) using 1000 random points for (a) the
tim at point of infl xion using a first-order HDMR metamodel (b) the

2 ratio using a first-order HDMR metamodel, (c) the time at point of
infl xion using a s cond-order HDMR metamodel and (d) the O2 ratio
using a cond-ord r HDMR metamodel.

cloud of atter is till quite big and the coefficient of determination r2 = 60.31%

confirm th poor accuracy. Th majority of the points are close to zero, which

means that oxygen is fully consumed at -(~)max. Only a couple of points are in

the region of 20% O2 ratio, which is still far from the experimental results (50%).

Th pdf plot in figure 6.9b,d shows a very pointy distribution with a very long tail.



216

The HDMR metamodel is not able to match this distribution and it is assumed that

significant higher order effects (2: 3) exist, which of course can not be captured by

a second-order HDMR expansion.

As shown in table 6.7, first-order effects account for almost 75% of the variability

of Yl but only 31% of Y2. For Yl, the sum of first- and second-order effects describes

94% of the output variance and therefore higher order effects are deemed to be

insignificant. For Y2, the sum of first- and second-order effects describes only 67%

of the output variance and in this case effects of higher order are present. This

is also in contrast to the statement by Li et al. (2001b) that usually higher order

HDMR component functions are smaller than low order ones. It has been true for

all the other investigated case studies in chapters 4 and 5, but it does not seem to

apply for this low temperature chemistry example.

The calculation of the higher order effects (2: 3) requires prohibitively large numbers

of model runs and is therefore not discussed here. Any additional parameters that

contribute only to these higher order effects would have been highlighted by the

Morris analysis. However, the highly ranked parameters from the Morris analysis

are present within the main first- and second-order effects. The presence of second

and higher order effects indicates significant parameter interactions.

The largest first-order sensitivity for both outputs is assigned to the A-factor for

the reaction of cyclohexylperoxy radicals (C6HllOO) to form the cyclohexylalkoxy

radical (C6Hll 0). Within the EXGAS mechanism this reaction forms a major flux

of carbon atoms under low temperature conditions as indicated in figure 6.10. The

second ranked parameter in terms of Yl is the A-factor for the secondary route to

C6HllO via cyclohexyl peroxide (C6HllOOH). Following the formation of C6HllO,

a series of fast reactions take place leading to O2 consumption and the formation of

the lumped aldohydroperoxide. The A-factor for this reaction of aldohydroperox-
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Figure 6.10: Carbon element flux analysis for isothermal oxidation using the 60
species 238 reactions mechanism: 1:2 cyclohexane in air, 470K, 1atm.
Arrow thickness scaled to magnitude of element flux (Porter 2007).

ide also has a high first-order sensitivity with respect to Yl. The time to -(~)max

is therefore controlled by the route on the right of the flux diagram under these

low temperature conditions (figure 6.10). At low temperatures and in agreement
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with Snee & Griffiths (1989), within our simulations the isomerisation reactions of

C6HnOO have less significant carbon fluxes (figure 6.10), than at the higher tem-

peratures studied in Silke et al. (2007), since they have strong positive temperature

dependences. At T = 503K, there are no significant sensitivities of either output to

their A-factors (tables 6.6 and 6.7). One additional reaction of importance for Y2 is

C6Hn 00 +H02 ~ C6Hll OOH +O2 (RI). This has the second highest first-order

sensitivity coefficient for Y2 but also acts cooperatively with several other parame-

ters to give significant second-order effects. Overall, peroxy-peroxy reactions seem

to exhibit high sensitivities for both outputs and therefore are critical in determining

the overall reactivity of the scheme at the temperatures studied.

HDMR Component Functions and Scatter Plots

Whilst the sensitivity indices give a useful overall picture of the parameters that

contribute most to the output variance, they do not allow the exploration of the

effect of each parameter across its input range. As shown in other case studies (e.g.

high temperature premixed flame model in section 5.5), the indices themselves are

also highly dependant on the uncertainty ranges chosen for the parameters, which in

most cases have to be estimated. One advantage of the HDMR component functions

is that for each parameter they allow individual effects or paired effects to be inves-

tigated automatically across the chosen input range. The shapes of the component

functions demonstrate how sensitivities change across the range. Significant first-

order component functions with respect to Yl are shown in figure 6.11. The A-factor

for 2C6Hll 00 ~ 2C6Hll 0 +O2 (R4) had the highest overall first-order sensitiv-

ity index, but it can be seen that its sensitivity varies significantly across the input

range. At the upper end of the range the parameter exhibits very low sensitivity,

but at lower values, the sensitivity becomes strongly negative. The rate constant

used in the Nancy EXGAS scheme is 1.046 .1Q-13e(365/T) cm-3 molecule"! S-1 and
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Figur 6.11: First-order component function fi for (a) 2C6Hl1 00 ---t 2C6Hl1 0 +
O2, (b) C6Hl100H ---t C6Hl10 + OH and scatter plot for (c)
CHOC4HsCOOOH ---t OH + 3CH2CHO and output Yl (time at point
of infl xion). In (c) the mean fa is added to t. for comparison with
scatt r plot.

figur 6.11a implies that as th A-factor drops below its nominal value it has a strong

n gativ s nsitivity. Th low temperature (atmospheric chemistry) measurements

of Lightfoot et al. (1992) suggest a rate of 0.769 .1Q-13e(-lS4/T) cm-3 molecule=' S-l

which is about a factor of four lower than the Nancy EXGAS parameter value at

temperature ranges would dearly be useful.

503K. Given the high sensitivity to this reaction, further kinetic studies across wide
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Figure 6.12: First-order component function fi for (a) 2C6H1100 ---t 2C6H110 +
O2, (b) C6H 11 00 + HO2 ---t C6H1100 H + O2 and scatter plot for (c)
2C6HllOO ---t CSHlOCO+ C6HnOH + O2 and output Y2 (02 ratio).
In (c) the mean fa is added to fi for comparison with scatter plot.

Figur s 6.11b,c show similar non-linear negative sensitivities for A-factors for re-

actions C6H11OOH ---t C6H110 + OH (R6) and CHOC4HsCOOOH ---t OH +
3CH2CHO (R9), highlighting the overall sensitivity to the rates through the alkoxy

radical and aldohydroperoxide to final products. The scatter plot from a standard

Monte Carlo simulation based on randomly selected input parameters is also shown

in figure 6.l1c. This highlights the advantage of the HDMR component functions,

since they show directly the effect of each individual parameter on the selected
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output, which is obscured in the scatter plot by that of other parameters.

Figure 6.12 shows the component functions for the highest ranked parameters with

respect to Y2. Again the A-factor for reaction 2C6HllOO -+ 2C6HllO + 02 (R4)

shows a highly non-linear negative first-order effect, although the component func-

tion shows that this saturates with respect to Y2 at high values of the A-factor. The

A-factor for C6HllOO +H02 -+ C6HllOOH + O2 (RI) also shows a non-linear

negative sensitivity with respect to the 02 ratio. This reaction has also been stud-

ied previously because of its importance in the troposphere, with the rate suggested

by Rowley et al. (1992) being faster than the rate used in the EXGAS scheme by

over a factor of two. Studies at higher temperatures of relevance to combustion

would be very useful. Figure 6.12c indicates a positive sensitivity to the A-factor for

2C6Hll 00 -+ CSRIOCO+ C6Hn OR +O2 (R3). This route is competitive to that

through the alkoxy radical and an increase in its rate would have a positive effect

on the O2 ratio at the point of maximum reaction rate. The reason may be that

a displacement to this channel reduces the build up of 02-consuming intermediates

that are formed through the formation of the alkoxy radical. C6Hll OH produces

the vinoxy radical, but via reactions involving the radical pool rather than 02 con-

suming reactions. The relative product channels for the reaction of C6Hll 00 seem

therefore to be critical in terms of the rate of O2 consumption.

This point can be further explored through the consideration of second-order sensi-

tivities. The combined effect of reactions R3,R4 is seen (table 6.7) to have a major

contribution to the output variance for Y2. Figure 6.13 further explores this through

the second-order component function for reactions R3,R4. It shows that a strong

effect on Y2 could occur by shifting the relative rates of these two reactions in favour

of reaction R3. The maximum value of Y2 simulated across all131 072 runs was how-

ever 41% (figure 6.5(c)). Table 6.9 shows the parameter configuration (sample of

the Sobol' sequence) for the four most important parameters which led to the maxi-
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Figure 6.13: Second-order component function fij(Xi, Xj) for Y2 (02 ratio) for Xi:

2C6Hll 00 ----+ C5HlOCO + C6Hll OH + O2 and Xj: 2C6Hll 00 ----+

2C6Hl1 0 + O2.

mum valu of Y2. The values of parameter R4 (A-factor for reaction 2C6Hll 00 ----+

to th low r limit of their uncertainty ranges. This is in accordance with their input-

output r lati n hips presented in figure 6.12a, b which suggests that a higher O2 ratio

would b po sibl if these parameters values are chosen closer to their lower limits.

Th valu for parameter R3 (A-factor for 2C6Hl1 00 ----+ C5HlOCO+C6Hll OH+02)

i do th upper limit of its unc rtainty range. Again, this is in accordance with the

input-output r lationship shown in figure 6.12c. In this case a positive relationship

xists and a high r O2 ratio would be possible if this parameter is chosen closer to

its upper limit.

So it is pos ibl to recover an S-shaped curve at 503 K within the uncertainty limits

for th A-factor, but the 50 % O2 consumption at - (~)max is still not quite recov-

r d and th induction tim is still shorter than the experiment. This indicates, that

th r may b r actions missing in the chemical mechanism, which will be further

investigated in th following section.
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Parameter Minimum Maximum Nominal Value Set-up
R4 2.092.10 14 5.230. 10-13 1.046. 10-13 2.583. 10-14
RI 6.642. 10-14 1.661 . 10-12 3.321 . 10-13 1.072.10-13
R3 4.650. 10-15 1.163.10-13 2.325 . 10-14 1.067. 10-13
R2 2.558.10-17 6.395.10-14 2.492. 10-16 2.558.10-17

Table 6.9: Set-up (four most important parameters) which led to the maximum value
(41%) of Y2. Parameters are the A-factors for the forward reaction rate
in cm-3 molecule"! S-1.

Possible Effect of Wall Losses

The influence of wall losses has been highlighted in previous work as a possible

reason for the over reactivity of alkane oxidation mechanisms (Hughes et al. 2006).

A second set of simulations was therefore performed where ten additional reactions

were added to the skeletal mechanism, adding ten additional inputs (wall loss rates)

to the 33 A-factors discussed above. Wall losses were added for peroxy radicals and

peroxide species, in line with previous work (Hughes et al. 2006). Tests indicated

that other radicals were too reactive for wall losses to be significant. The lower limit

for each wall loss rate was zero and the upper limit was determined according to

~ (Baldwin & Howarth 1982), where d is the vessel diameter and c is the radical

average molecular velocity, with wall loss efficiencies (-y) of 10-3 for the peroxy

radicals and 10-5 for the peroxide species. This is a conservatively large upper limit

for an unstirred reactor under isothermal conditions but allows the possible effect of

highly uncertain wall loss rates to be fully explored.

An example simulation from the quasi-random samples is shown in figure 6.5(d),

indicating that the inclusion of wall losses can have the effect of increasing the

induction time. However, table 6.10 and table 6.11 indicate that few of the wall

losses exhibit strong first-order sensitivities for either output. The loss rate for

C6Hu 00 has the strongest first-order effect and acts cooperatively within second-
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Parameter Xi

No. Reaction
R6
R17
R9
R34
R4
ESi

C6HllOOH ---+ C6HllO + OH
C6H12+ C6Hll 00 ---+ C6Hll + C6Hll OOH
CHOC4HsCOOOH ---+ OH + 3CH2CHO
C6Hll 00 ---+ wall
2C6HllOO ---+ 2C6HllO +O2

0.0613
0.0562
0.0145
0.0144
0.0139
0.1799

Parameter Xi

R6
R17
R6
ESij
ESi +ESij

Parameter X j

R17
R34
R34

0.0346
0.0205
0.0144
0.1489
0.3288

Table 6.10: First- and second-order sensitivity indices using N = 131072 and 43
inputs for output Yl (time at point of inflexion). Parameters Xi and Xj

are the A-factors for the forward reaction rate.

Parameter Xi

No. Reaction
R4
RI
R3
R6
R43
ESi

2C6Hll 00 ---+ 2C6Hll 0 +O2
C6Hll 00 +H02 ---+ C6Hll OOH + O2
2C6Hll 00 ---+ C5HlOCO+ C6Hll OH + O2
C6Hll OOH ---+ C6Rll 0 + OR
C6Rll OOR ---+ wall

0.1486
0.0273
0.0223
0.0158

Parameter Xi

0.2441

R3
R4
RI
R4
RI
x»:
ESi +ESij

Parameter Xj

R4
R6
R4
R43
R3

0.0935
0.0514
0.0224
0.0155
0.0104
0.3274
0.5715

Table 6.11: First- and second-order sensitivity indices using N = 131072 and 43
inputs for output Y2 (02 ratio). Parameters Xi and Xj are the A-factors
for the forward reaction rate.
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order sensitivities as does that for C6Hl1OOH. The inclusion of wall losses clearly

leads to significant higher order interactions between parameters, which is potentially

due to their higher significance at lower radical concentrations, which in turn depends

on the values of the A-factors chosen.

The inclusion of wall losses does lead to a higher number of simulations with values

of Y2 close to 50% and realistic induction times. Wall losses are clearly of poten-

tial importance and their interaction with other parameters should be more fully

explored in further work.

6.3.5 Conclusions

It is clear from the component functions for both outputs that there are strong

negative sensitivities for reactions of C6Hll 00 that lead to significant carbon fluxes

through the alkoxy radical. This suggests that if this route was slower, the time

to maximum reaction rate would be longer and the maximum reaction rate would

not occur at complete oxygen consumption. In contrast, positive sensitivities were

found for the rate of formation of C5HlOCOand C6Hll OH from C6Hll 00. The

low temperature product channels for reactions of the cyclohexylperoxy radical are

therefore an important area for future kinetic studies. The effects of wall reactions of

peroxy and peroxide species were not found to outweigh the impact of the main A-

factors, but including wall losses led to significant higher order interactions between

input parameters which forms an interesting area for further research.

The two step approach (Morris method + RS-HDMR) was able to highlight impor-

tant parameters and parameter interactions (for two inputs). However, even if taking

into account the uncertainties in the rate parameters the long time to - (~) max and

an O2 ratio of 50 % as suggested by the experimental results could not be recovered.

This suggested, that there were reactions missing in the scheme and therefore wall
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losses were included by adding ten additional reactions. This inclusion of the wall

losses led to a higher number of simulations with realistic induction times and a O2

ratio close to 50%.

The low temperature application of the alkane oxidation mechanism investigated in

this study has been a challenge for the application of the HDMR method. In previous

studies (e.g. sulphur-nitrogen chemistry interaction in the premixed methane flame

model, section 5.5) first-order effects dominated the model output. Second-order

effects (interaction between two parameters) were only small or could be neglected.

Therefore, a second-order HDMR expansion could be used to accurately approximate

the model output. In this study significant parameter interactions were discovered.

The HDMR method has proven again to be very efficient in order to explore the first-

order effects and N = 512 model runs were sufficient to obtain a reliable estimate

for the most important first-order sensitivity indices. The exploration of the second-

order effects was more demanding and N = 4096 model runs seemed to be sufficient

in order to identify the most important parameter interactions between two inputs.

However, it was not possible to construct an accurate HDMR metamodel for both

outputs Yl and Y2 on the basis of a second-order HDMR expansion even by increasing

the sample size to N = 131072. The values of the first- and second-order sensitivity

indices did not change significantly on further increasing the sample size. This

indicated that higher order effects > 3 were present, which cannot be incorporated

if using only a second-order HDMR expansion. Therefore, it might be necessary

to expand the HDMR approach so that potential third order effects can also be

investigated. This will be discussed in section 8.l.

It has been shown in this work that it is likely that higher order effects may cause

the tail in the probability density function (pdf) for the model output. All other

case studies investigated in chapters 4 and 5 have shown that the model output had

a more Gaussian like distribution and in all these cases first-order effects dominated
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the model behaviour. In order to apply the HDMR method more efficiently for a

system with a tailed distribution it might be useful to transform the model output by

using for example log(y) to obtain a more Gaussian like shape. The transformation

of the model output will also be further discussed in section 8.1.

6.4 Summary

The importance of parameter screening has been highlighted in this chapter. A

two step approach has been introduced, where the Morris method is used first in

order to identify unimportant parameters. However, the Morris method can only

provide sensitivity measures that are qualitative. Therefore, the RS-HDMR method

is used in a second step considering only the pre-selected potentially important

input parameters. Thus, the input space dimension is reduced and the fitting of the

polynomials is more accurate for a given sample size, especially for the approximation

of the second-order component functions.

The proposed two-step approach has been tested using the analytical Sobol' g-

function with 50 parameters, whereas only eight of them have an influence on the

output variance. Around 75% of the model output variance is caused by first-order

effects, 22% are caused by second-order effects. The RS-HDMR method was applied

first considering all 50 input parameters. It could be shown that it is possible to

accurately estimate the first- and second-order sensitivity indices, however a large

sample size of N = 8 192 was required. In order to investigate whether or not the

computational effort could be reduced, the two-step approach has been applied. The

Morris method was able to correctly identify the eight important parameters using

only N = 510 model runs. However, using only ten trajectories (r = 10) the Morris

method could not produce a reliable ranking for these parameters. Considering the

identified eight parameters, the HDMR method was able to estimate the first- and
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second-order sensitivity indices using only N = 2 048 model runs. It could be shown

that the estimation of the parameter interactions in particular is much more efficient

in a smaller input space dimension. In total N = 2558 (510 + 2048) model runs

were required using the two-step approach (Morris method + HDMR), in contrast

to the N = 8192 required model runs using HDMR alone, to reach approximately

the same accuracy for the sensitivity indices estimates.

The case study in this chapter focused on low temperature isothermal cyclohexane

oxidation under fuel rich conditions. Uncertainties in 238 rate constants were con-

sidered. Since the number of uncertain parameters is so large, the Morris method

was applied first in order to identify unimportant parameters. As a result a subset

of 33 potentially important parameters could be found. However, 100 trajectories

resulting in N = 23900 model runs were still required for this purpose. As discussed

in section 6.3.4 even this large number of trajectories was not sufficient to obtain

convergence for the mean effects. Hence, a reliable parameter ranking could not be

obtained. The slow convergence of the Morris method was also observed by Hughes

et al. (2006) when investigating the uncertainties in rate parameters on the ignition

delay time for the low temperature oxidation of propane. Here, 1000 trajectories

had to be used in order to reach convergence. The slow convergence is probably due

to the existence of significant higher order effects.

The extended RS-HDMR method was then applied using only the 33 identified

parameters. Due to the existence of significant higher order effects up to N = 13107

model runs were performed. Since the model output variance could not completely

be explained by a second-order HDMR expansion it is likely that higher order (> 3)

effects exist. Therefore, the accuracy of the HDMR metamodel could not be used to

justify the accuracy of the estimated sensitivity indices. Instead, various sample sizes

(up to N = 13107) have been used for the estimation of the sensitivity indices to

show that the values and the ranking do not significantly change on further increases
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in sample size. In this way it can be assumed, that the calculated first- and second-

order sensitivity indices are indeed a good estimate. Another ten parameters have

been added to the ones identified by the Morris method in order to investigate the

influence of potential wall losses. This led to further increases in the contribution of

the higher order effects, but it also showed that the experimental results could be

recovered for certain input combinations.

The existence of higher order effects is challenging for global sensitivity analysis

methods. Theoretically, the HDMR method is able to consider higher order effects

;:::3, however it has to be investigated how efficiently this can be achieved. In this

chapter (and in the other case studies) it has been shown that the HDMR method is

very efficient when investigating first-order effects and even second-order effects can

be estimated with reasonable efficiency. However, because a second-order HDMR

expansion has been used, higher order effects ~ 3 could not have been investigated.

In cases where such higher order effects are present it might be worth to calculate the

total effect indices T S( i) as well, which are defined as the sum of all sensitivity indices

involving the input parameter in question. One method to estimate total sensitivity

indices would be the extended FAST method (Saltelli et al. 1999), however extended

FAST requires a new set of samples to evaluate each of the total effect indices and

it is questionable how efficient this will be.
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7 GUI-HDMR Software

The usefulness of the RS-HDMR approach has been shown in this work by using

analytical test functions and various case studies. In order to make the RS-HDMR

tools and the extensions developed here easily available for all interested users,

a software package has been developed. GUI-HDMR is a freely available Matlab

toolbox with a graphical user interface. This chapter aims to give a short overview

of its scope. A more detailed set of user documentation can be found in appendix B.

7.1 Introduction

The HDMR method provides a straightforward and efficient approach to explore the

input-output mapping of a model. Furthermore, variance based sensitivity indices

can be determined in an automatic way in order to rank the importance of input

parameters and to explore the influence of parameter interactions. Two extensions

to the existing set of RS-HDMR tools have been developed in this work in order to

further improve the method and to make it more applicable for complex models with

a large number of input parameters. An optimisation algorithm has been introduced

in section 4.1 to automatically calculate the best polynomial for the approximation

of the component functions. Further, a threshold has been introduced in section 5.1

which allows the exclusion of unimportant component functions from the HDMR
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expansion. The HDMR method can also be used as part of a two step approach,

where the Morris method (section 2.3.2) is applied first to identify unimportant

parameters.

Although the RS-HDMR method is conceptually simple, the application is not al-

ways that easy since many HDMR tools and extensions exist. Therefore, the GUI-

HMDR software (Ziehn & Tomlin 2008c) has been developed to combine RS-HDMR

tools and their extensions in one Matlab package equipped with a graphical user in-

terface. This makes the HDMR method and its extensions easily available for users in

all application fields without requiring comprehensive knowledge of global SA meth-

ods. The user has to supply only one set of input values (random or quasi-random)

and the corresponding output values. Therefore, the application of the GUI-HDMR

software is not restricted to a certain type of model and can be used independently

from the type of platform used as long as the standard Matlab package is provided.

7.1.1 Graphical User Interface (GUI)

The GUI-HDMR software provides a main window from where the calculations can

be started and progress shown. Three other windows can be accessed from the main

window: a set up window, a window showing the optimal polynomial orders and the

accuracy of the metamodel and a window for sensitivity analysis.

The set up window is used to load the sample input and output files into the

workspace. If one wants to verify the constructed metamodel with a different sam-

ple set than the one used for constructing the metamodel, then a different set of

sample input and output files can be provided for the accuracy test. Optionally the

ranges for the input parameters can be loaded in order to produce the plots with the

correct ranges. In the settings section one has to state the number of samples to be

used in order to construct the HDMR metamodel and the number of samples to be
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used for the accuracy test. The maximum polynomial order for the approximation

of the component functions can be defined separately for first- and second-order.

Orthonormal polynomials up to tenth order are supported. (Note that the compu-

tational time increases if using higher order polynomials. This is especially true for

the second order component functions, because a large number of expansion coeffi-

cients have to be calculated). A variance reduction method can be chosen and the

number of iterations can be entered for the calculation of the a and {3 expansion

coefficients (see equations (3.44) and (3.46)). It is also possible to apply a thresh-

old which ensures that only the component functions having a contribution larger

than the threshold are considered. The threshold is given in % and is explained in

section 5.1.

After the calculations have been finished and the metamodel has been successfully

constructed, the results window gives an overview of how many component func-

tions have been approximated and by what polynomial order. Furthermore the

relative error can be calculated to show the accuracy of the first- and second-order

metamodel.

The sensitivity analysis window presents the ranking of the five most important pa-

rameters (based on the first-order sensitivity indices, see equation (3.87) and (2.31)).

The ranking of the five most import parameter interactions (based on the second-

order sensitivity indices, see equation (3.88)-{2.31)) can also be displayed. Addi-

tionally all component functions can be plotted and compared with scatter plots.

It is also possible to save all produced plots as Portable Network Graphics (.png),

Portable Document Format (. pdf) and Encapsulated PostScript (. eps).

Finally, the whole Matlab workspace can be saved and loaded into the GUI-HDMR

software again for further analysis and plots.
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7.1.2 Script Based Approach

The proposed GUI-HDMR software can also be used without the graphical user

interface by calling the corresponding functions in a Matlab m-file. Various template

files are provided. A simple example without using variance reduction methods and

without applying a threshold is given in the user documentation appendix B.

7.2 Summary

The HDMR method is shown to be a very powerful tool in order to estimate variance

based sensitivity indices. Only one set of Monte Carlo samples is required. For a

more uniform coverage of the input space, and optimal convergence with sample

size, a quasi-random sequence such as the Sobol' sequence is recommended.

The GUI-HDMR software has been tested in this work using two different analytical

functions: the Ishigami function and the Sobol' g-function. Both models are highly

non-linear, non-monotonic and have significant parameter interactions. The soft-

ware has also been used for the case studies in chapters 4-6. It has been illustrated

that even high input space dimensions can be investigated due to the HDMR exten-

sions such as the optimisation method and application of a threshold for component

function exclusion. However, if the model has significant parameter interactions it

is computationally more efficient to apply a screening method beforehand in order

to reduce the dimensionality and to improve the accuracy of the polynomial fitting.

The proposed GUI-HDMR software provides a very handy tool for global sensitivity

analysis of complex models. The graphical user interface allows an easy set up and

analysis of the results. The user has to provide only two external files containing

the sample input values and the sample output values of the model runs. Therefore,

the use of the GUI-HDMR software is not restricted to a certain type of model or a
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specific platform but can be used for a large range of applications in all fields.
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8 Limitations and Extensions of the

RS-HDMR Approach and Future

Work

The usefulness of the HDMR approach for global sensitivity analysis has been il-

lustrated in this work using various analytical test functions and case studies. Two

commonly used HDMR approaches, cut-HDMR and RS-HDMR, have been inves-

tigated. The main focus has been on the application of the RS-HDMR approach

because here the computational effort (number of simulations) does not directly de-

pend on the input space dimension n. Furthermore, RS-HDMR does not require

the storage of data in look-up tables or interpolation methods. However, despite its

effectiveness and universality in terms of fields of application, some limitations of the

RS-HDMR approach, as introduced in chapter 3, exist and are therefore discussed

in this chapter.

8.1 Investigation of Higher 0 rder Effects

In this work the HDMR expansion has been used only up to second-order. Li et

al. (2001b) argues, that for many systems a HDMR expression up to second-order
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already provides satisfactory results and a good approximation of f(x). However,

it could be shown in the case study in section 6.3 (low temperature cyclohexane

oxidation) that higher order effects (> 3) were present. For most scenarios the sum

of the first- and second-order effects could only explain less than 70% of the overall

variance of one of the model outputs. In this case it is clearly highly desirable to

investigate the higher order effects (2: 3) as well in order to identify the missing

important parameter interactions. The investigation of such higher order effects

usually requires a large number of additional model runs which would make the

HDMR approach computationally more expensive (Li et al. 2003b). For RS-HDMR

this is due to the fact, that higher order component functions have more terms

than lower order ones and each term has its own Monte Carlo integration error (see

also section 4.1). For example, if assuming third-order orthonormal polynomials,

then three terms have to be estimated for each first-order component function, nine

terms for each second-order component function and 27 terms for each third-order

component function.

Two approaches are introduced here in order to deal with higher order effects. The

first uses a transformation of the model output so that a second-order HDMR ex-

pansion can efficiently be applied for the transformed data set. The second approach

focuses on the inclusion of third-order effects into the HDMR expansion based on

the products of the first- and second-order component functions.

8.1.1 Transformation of the Model Output

The investigations in the case study in section 6.3 have shown that higher order

effects might be responsible for a tailed distribution of the model output. Other

investigated case studies in this work did not have significant higher order effects

and the distribution of considered outputs had a Gaussian like shape. In order to
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apply the HDMR method more efficiently to systems with significant higher order

effects, it can be useful to transform the model output by using for example the log(y)

transformation. This can reduce the tail and the procedure will be demonstrated

here using the simple test model:

f(x) = exp(exptz , + x~)). (8.1)

The output distribution for f(x) is presented in figure 8.1 and its long tail is clearly

visible. The RS-HDMR method has been applied to this model using a sample size

of N = 2048 in order to estimate the sensitivity indices which are presented in ta-

ble 8.1. The second-order effect (parameter interaction between Xl and X2) accounts'

for over 50% of the output variance. Therefore, a first-order HDMR metamodel can

not accurately approximate the model behaviour and as illustrated in figure 8.la it

fails to recover the long tail in the output distribution. The second-order HDMR

metamodel incorporates the important parameter interactions and as shown in fig-

ure 8.1b it allows the recovery of the tail of the distribution. This confirms the

assumption, that parameter interactions may cause a tailed output distribution.

Method 81 82 812 8
Analytical (non-transformed output) 0.1001 0.3249 0.5750 1.0000
RS-HDMR (N = 2048) 0.1020 0.3302 0.5764 1.0086
Analytical (transformed output) 0.4257 0.5308 0.0435 1.0000
RS-HDMR (N = 256) 0.4306 0.5354 0.0429 1.0089

Table 8.1: First- and second-order sensitivity indices calculated analytically and es-
timated based on RS-HDMR for the non-transformed and transformed
model output.

The model output (equation (8.1)) is now transformed using for example log(y).

This kind of transformation is often used in data analysis and has also been applied

in connection with the HDMR method, for example in Ratto (2008), where the
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Figure 8.1: Accuracy of the RS-HDMR metamodel for N = 2048 based on the
probability density function (pdf) using 1000 random points (a) using
a first-order HDMR metamodel and (b) using a second-order HDMR
metamodel.

HDMR expansion was constructed using the log( -y) transformation. The proba-

bility density function for the transformed output is presented in figure 8.2 and it

can be seen that the tail of the pdf is very much reduced. A small sample size of

N = 256 is now sufficient in order to construct a very accurate HDMR metamodel

and to estimate the sensitivity indices (table 8.1). Here it can be seen, that the

transformation of the model output also reduces the sampling effort.

On the one hand the transformation of the model output results in a distribution

with a smaller tail, but on the other hand it also "removes" most of the parameter

interaction between Xl and X2. This interaction accounts now for only around 4 %

inst ad of over 50 % for the non-transformed output (table 8.1). This has implica-

tions when interpreting the results of a transformed model output and one has to

be aware that the results are only correct for the transformed output and do not

necessarily relate to the original model output anymore. However, if the purpose
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Figure 8.2: Accuracy of the RS-HDMR metamodel (transformed output using
log(y)) for N = 256 based on the probability density function (pdf)
using 1000 random points (a) using a first-order HDMR metamodel and
(b) using a second-order HDMR metamodel.

is to identify key parameters, the use of output transformations could be extremely

us ful.

8.1.2 Inclusion of Third-Order Effects

The inv stigation of high r order effects (~ 3) usually requires a large number of

mod 1 runs as highlighted earlier. For example, the third-order terms can be calcu-

lat d as follows (Li et al. 2003 b):
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m m' mil

fijk(Xi, Xj, Xk) ~ L L L 'YZ~'PP(Xi)'Pq(Xj)'Pr(Xk)
p=l q=l r=1

(8.3)

where dxijk is the product dXlIdX2, ... , dz., without dXi, dXj, dXk and m, m', mil are

the orders of the orthonormal polynomials.

The expansion coefficient 'Y:k~ can be obtained by Monte Carlo integration:

'YZ~ - r f(x)'Pp(xi)'Pq(Xj)'Pr(xk)dxJKn
N~ ~L f(x(s))'Pp(x;s))'Pq(xJs))'Pr(x1s))
s=1

(8.4)

(8.5)

with x(s) = (xis), x~s), ... , x~)) and s = 1,2, ... ,N. Due to the high number of

terms in each third-order component function the computational error might be

large particularly for small sample sizes N.

In Li et al. (2003a) the so called low-order term product (lp)-RS-HDMR method is

introduced to approximately represent the higher order RS-HDMR component func-

tions as products of the lower order functions. It is possible to express the higher

order (2: 2) component functions solely as products of the first-order component

functions. Hence, it is only required to compute the first-order RS-HDMR compo-

nent functions which may require only a few hundred samples (Li et al. 2003b). The

higher order component functions are no longer explicitly computed. It is also pos-

sible to express the higher order (2: 3) component functions as products of the first-
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and second-order component functions. More details and the mathematical foun-

dations of (lp)-RS-HDMR along with an illustration of its utility in an atmospheric

chemical kinetics model can be found in Li et al. (2003a).

8.1.3 Conclusions

The simple example in section 8.1.1 has demonstrated, that a transformation such as

log(y) can be used to remove or reduce the tail of a model output distribution. The

HDMR method can then be applied very efficiently requiring only a small number

of model runs. For more complex models with higher order effects (;:::3) this would

possibly prevent the need to use a HDMR expansion greater than second-order.

However, it has also been pointed out, that the interpretation of results based on

the transformed data may cause difficulties. An efficient approach to include third-

order effects into the HDMR expansion has been introduced in section 8.1.2. Here,

only the theoretical idea was presented and it has to be tested in future work how

efficient this approach really is and how well it works for analytical test functions

and case studies.

8.2 Non-Uniform Input Distributions

In all investigated case studies in this work it has been assumed that the input

parameters possess a uniform distribution. This is a valid assumption, if no other

information is available. However, in some cases the user might have prior knowl-

edge about the input parameter distribution and this should be included in the

process of calculating the sensitivity indices. For example, for rate constants the

log-normal distribution is often used and the heats of formation can be assigned

with a normal distribution, so that the reverse rate constants are also log-normal
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distributed (Phenix et al. 1998).

The formulation of RS-HDMR for uniform distributions cannot directly be applied

to data with a non-uniform distribution. Hence, the RS-HDMR approach has been

extended in Wang & Georgopoulos (2003) in order to work with non-uniform input

distributions. Weighted orthonormal polynomials related to the pdf are introduced

to approximate the RS-HDMR component functions. Different pdfs result in special

formulas for the weighted orthonormal polynomials. The general formulas of RS-

HDMR can be constructed, treating uniform RS-HDMR as a special case.

According to Wang & Georgopoulos (2003) the component functions of RS-HDMR

with the input parameters having the pdf Wi(Xi) are defined as follows:

fo - L.gw,(x,)I(x)dx (8.6)

fi(Xi) - L.-,Jt.wk(xk)I(x)dx' - I. (8.7)

fij(Xi, Xj) - 1 IT wk(xk)f(x)dxij - fi(Xi) - h(Xj) - fo (8.8)
Kn-2 k-1 k:f' .-, 1,3

Weighted orthonormal polynomials with the following properties can be used to

approximate the RS-HDMR component functions:

11 Wi(Xi)cp~(xi)dx - 0 for all r, i (8.9)

11 Wi(Xi) [cp~(Xi)]2 dx - 1 for all r, i (8.10)

11 Wi(Xi)cp~(Xi)cp~(xi)dx - 0 p=/=q (8.11)
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The formulas for calculating the expansion coefficients Q, /3, ... (see equations (3.44)-

(3.46)) are the same as those for uniform RS-HDMR, because the sampling is drawn

from the guidance by the weights ui, (Xi). More detailed information regarding the

RS-HDMR method with non-uniformly distributed input parameters can be found

in Wang & Georgopoulos (2003).

8.3 Non-Independent Input Parameters

In the formulations of the HDMR component functions, as introduced in chapter 3,

all input parameters were considered to be independent. Clearly, this restricts the

application of the HDMR method and systems whose input parameters may not be

independent can not be treated in this way. According to Zsely et al. (2008), corre-

lations are common in kinetic and thermodynamic parameters. Rate parameters are

correlated when obtained by fitting using a small mechanism and enthalpies of for-

mation are correlated because they are obtained from measured reaction enthalpies.

The work of Zsely et al. (2008) shows that it is important to consider potential cor-

relations in input parameters when performing uncertainty and sensitivity analysis

since the output uncertainty and the input-output relationships depends on these

assumptions.

The HDMR method has been extended by Li et al. (2006) to treat systems with

non-independent input parameters. The resulting formulae for the HDMR compo-

nent functions are the same as the original ones except that the probability density

functions are replaced by conditional probability density functions. In this way the

HDMR component functions with independent input parameters are just a special

case of the general treatment (Li et al. 2006).
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8.4 Extensions and Improvements of the GUI-HDMR

Software

The GUI-HDMR software (Ziehn & Tomlin 2008c) has been developed to combine

RS-HDMR tools and their extensions (see section 4.1 and 5.1) in one Matlab package

equipped with a graphical user interface. The software has been tested in this work

using non-linear and non-monotonic analytical functions and it has been applied in

the case studies in chapters 4-6.

The current version of the GUI-HDMR software uses only the relative error as a

measure for the accuracy of the constructed metamodel. As already discussed in

section 3.3 the relative error is not always the best choice in order to assess the ac-

curacy of the HDMR metamodel. Therefore, it is planned to implement the r2-value

(coefficient of determination) into the GUI-HDMR software to provide an additional

measure for the accuracy of the metamodel. A scatter plot (model output versus re-

sponse of the metamodel) for the first- and second-order HDMR expansion can also

highlight regions in the output ranges where the HDMR metamodel fails to capture

the behaviour of the real model. Additionally, the statistics of the real model and

the metamodel can be compared by plotting its probability density function (pdf)

estimate and/or the empirical cumulative distribution function (cdf). Therefore, pdf

plot and scatter plot will also be included in the GUI-HDMR software.

The calculation of the optimal order (see section 4.1) and the threshold (section 5.1)

are based on least square methods. In the next version of the GUI-HDMR software

it is planned to use a statistical measure, such as the F-test, instead of the least

square method in order to further improve those algorithms.

Variance reduction methods have been introduced in section 3.2.2 in order to reduce

the Monte Carlo integration error when estimating the expansion coefficients (see
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equations 3.57 - 3.58) for the orthonormal polynomials. In this way the calculation of

the expansion coefficients becomes an iteration procedure. The GUI-HDMR software

provides the possibility to enter a maximum number of iterations for the estimation

of the a and !3 coefficients. However, in a next version of the software this is planned

to be extended by a convergence criterion, so that the maximum number of iterations

is only performed in case the convergence criterion is not fulfilled.

It is also planned to extend the HDMR expansion used in the GUI-HDMR software

up to third-order (as described in section 8.1.2) so that third-order effects (inter-

action between three parameters) can be investigated. Further, it is planned to

consider non-uniform distributions for the input parameters such as normal or log-

normal by implementing the approach described in section 8.2 into the GUI-HDMR

software. The treatment of non-independent input parameters (see section 8.3) will

also be included.

Other possible ideas for extensions and improvements of the GUI-HDMR software

have come from users of the software, which include an option to rotate the surface

plots of the second-order HDMR component functions and to provide the possibility

to save the plots of all the component functions in the Matlab format (. fig) as well.

8.5 Summary

The HDMR method as introduced in chapter 3 and the extensions developed for the

RS-HDMR approach in section 4.1 and 5.1 provide already a universal approach for

global sensitivity analysis for a large number of models in all fields. However, the

application of the HDMR method was restricted to systems whose input parameters

possess a uniform distribution and are independent. These limitations have been

discussed and HDMR extensions addressing and solving these issues have already
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been published and successfully applied. The investigation of higher order effects

(L 2: 3) has also been discussed and (lp)-RS-HDMR (Li et al. 2003a) has been

introduced, which offers a more efficient approach for calculating higher order effects.

One aim for future work would be to include these extensions in the GUI-HDMR

software. Other potential extensions and improvements of the GUI-HDMR software

have also been discussed.
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9 Summary and Conclusions

Uncertainty analysis and sensitivity analysis form an important part of the model

evaluation process and should therefore be applied in order to increase the accu-

racy and reliability of computer models in environmental and safety engineering.

However, after reviewing traditional methods for global sensitivity analysis, such

as Monte Carlo analysis, it can be said that these methods do not fulfil all the

requirements needed. The computational running time for a model can be large

and the input space dimension for the uncertain parameters can be very high (e.g.

238 uncertain parameters for the cyclohexane oxidation model). Additionally, the

model behaviour can be highly non-linear and parameter interactions might exist.

Therefore, methods are required, which are able to handle all these difficulties and

provide a quantitative measure in order to produce a reliable ranking of important

parameters and parameter interactions.

A very common measure of the importance of parameters and parameter interac-

tions is provided by variance based sensitivity indices, which were first introduced

by Sobol' (1993). The determination of the sensitivity indices is based on the Anal-

ysis of Variance (ANOVA) decomposition, where the partial variances, caused by

individual uncertain parameters or parameter interactions, are normalised by the

overall variance. However, following the method of Sobol' the computation of the

partial variances is computationally very expensive, because for the determination of
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each partial variance a different set of random (or quasi-random) samples is required.

A more efficient approach in calculating the variance based sensitivity indices was

introduced by Rabitz et aL (1999). The cut-HDMR was proposed, where the com-

ponent functions are calculated along its variable axis through a reference point.

The component functions are usually represented as low-dimensional look-up tables.

In comparison to the method of Sobol' the sampling effort could be reduced, how-

ever one significant drawback of cut-HDMR is, that the number of model runs still

directly depends on the number of uncertain parameters. Therefore, the cut-HDMR

approach is only applicable for systems with a small number of input parameters.

Consequently, the random sampling (RS)-HDMR approach has been introduced

by Li et aL (2002a), where the component functions are approximated byorthonor-

mal polynomials. Here, the number of required model runs no longer directly de-

pends on the input space dimension and all partial variances can be estimated using

only one set of random or quasi-random samples. In addition to the calculation

of the sensitivity indices, cut-HDMR and RS-HDMR methods allow the plotting

of individual component functions showing the effects of parameters and parameter

interactions over the whole input range.

The performance of cut-HDMR and RS-HDMR has been compared in this work

using the Ishigami function, a non-linear and non-monotonic analytical test model

with three input parameters. Both HDMR approaches were able to correctly es-

timate the first- and second-order sensitivity indices. Furthermore, both methods

have been applied to investigate the turbulent flow field in a 3D street canyon in

the city of York using the micro-scale k - e closure computational fluid dynamics

(CFD) model MISKAM. Four main input parameters have been addressed which

are the roughness lengths (inflow, surface and wall) and the background wind direc-

tion. Various outputs have been selected, among them the wind components and

the turbulent kinetic energy (TKE) at certain measuring points. A small sample
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size of N = 512 (RS-HDMR) and N = 641 (cut-HDMR) was sufficient in order to

construct a very accurate metamodel based on a second-order HDMR expansion. It

was shown that most of the first-order effects are non-linear. For some of the output

parameters, interactions could be identified, which were responsible for more than

5% of the overall output variance. Based on the uncertainty and sensitivity analysis

results important insights into the model physics could be gained. For example,

it has been shown that the inflow roughness length has a strong influence on the

TKE in the street canyon, although not on the mean velocities. This might indicate,

that the model domain needs to be large enough to resolve the effects of upwind

roughness elements, even if dispersion within the street canyon is the main aim of

the study. The HDMR analysis has also revealed that the wind components in the

street canyon are strongly influenced by the background wind direction. The high

sensitivity of this parameter shows how important it is to specify the background

wind direction very accurately at the study site. This also illustrates the impact

of practical limitations in determining a local reference background wind direction

for pollution hot spot sites. Although both HMDR approaches performed very well

when applied to the test function and the case study, RS-HDMR has proven to be

the more promising approach. Therefore, the rest of the work has focused solely on

the RS-HDMR method.

Two extensions to the existing set of RS-HDMR tools have been developed: The

first is an optimisation approach, which automatically calculates the optimal order

of the polynomials used for the approximation of the component functions. The

second introduces a threshold which allows unimportant component functions to be

excluded from the HDMR expansion. The usefulness of these extensions has been

shown in this work in connection with analytical test functions and various case

studies.

One important analytical test function applied in this work is the Sobol' g-function.
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The Sobol' g-function is highly non-linear and non-monotonic and has often been

used in the literature as a test model for calculating variance based sensitivity in-

dices. One handy feature of the Sobol' g-function is, that the number of input

parameters can be arbitrarily extended and the importance of each of the input

parameters can be controlled by a constant. In this work, the Sobol' g-function has

been used with a total of 20 and 50 input parameters. The RS-HDMR method with

its developed extensions performed very well and first- and second-order sensitivity

indices could be estimated very accurately. However, in the case where the Sobol'

g-function has been used with 50 input parameters it has been found computation-

ally more efficient to apply the Morris method (a screening method) first in order

to identify unimportant parameters. The RS-HDMR method has then been applied

with the reduced input space dimension (eight potentially important parameters)

and sensitivity indices could be calculated using only a small number of model runs.

Without prior screening an accurate estimation of the most important first- and

second order sensitivity indices required at least N = 4096 model runs whereas the

combination of the screening method + RS-HDMR required only N = 2558 model

runs (N = 510 for the Morris method + N = 2 048 RS-HDMR) in order to achieve

about the same accuracy. The RS-HDMR method with the extensions developed in

this work is able to handle the highly non-linear Sobol' g-function function, how-

ever if the input space dimension is very large (Le. ;:::50) then a combination of a

screening method and RS-HDMR is computationally more efficient.

The RS-HDMR method and its extensions have also been used in this work to

investigate a reactive plume of nitric oxide (NO) in a turbulent grid flow doped with

ozone (03) by applying a combined Lagrangian stochastic model with a micro mixing

sub-model. A chemical reaction scheme (including photolysis) consisting of eight

reactions between the species NO, 0, 03 and N02 has been implemented and the

effects of uncertainties in temperature dependent rate parameters, photolysis rates,
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temperature and NO:N02 ratio at the source on the predicted pollutant profiles

were studied. In total 22 parameters were assumed to be uncertain. The outputs of

interest were the NOx and 03 concentration at the plume centre. A very accurate

metamodel has been constructed using only N = 512 samples and a second-order

HDMR expansion. No significant parameter interactions could be identified and the

overall variance of the model output could therefore be explained by parameters

acting independently.

The application of the HDMR method has revealed that the mixing time scale co-

efficient a has a significant influence on the mean concentrations. This is clearly a

disadvantage of using the simple interaction by exchange (IEM) model as a mixing

model, because the mean concentration should not be affected by the micro mixing.

It has also been shown that the uncertainty range for the structure function coeffi-

cient Co has originally been chosen too wide based on existing literature studies. A

comparison with experimental values has shown that the uncertainty range for Co

can be reduced, because low values for Co do not allow the recovery of the experi-

mental values. This has highlighted the advantages of using the HDMR approach.

On the one hand the effects of the uncertain parameters can be investigated over

a large range (plot of the first-order HDMR component function). On the other

hand new uncertainty ranges (as long as they are within the original range) can be

assigned and the effects investigated without performing new model runs. This is

because the HDMR metamodel can also be used as a surrogate and a large number

of simulations based on the HDMR metamodel can be performed almost instantly.

The computational running time of the Lagrangian stochastic model is quite high

(e.g. 20 hours for one simulation) because a large number of particles (1000000)

had to be used in order to reach convergence for the mean concentrations.

Furthermore, the RS-HDMR method was applied to a one dimensional low pressure

premixed methane flame model used to investigate the influence of fuel sulphur and



252

nitrogen on the emission of nitrogen oxides within the flame. A one dimensional

steady state reaction advection diffusion model has been used where uncertainties

in rate constants and thermodynamic data were considered. This led to a study of

176 input parameters (153 reaction rates and 23 enthalpies of formation). The final

NO mole fraction within the burnt gas region was considered as the target model

output. It was shown that despite the large number of input parameters, screening

methods could be generally avoided by applying a threshold to exclude unimportant

component functions. A sample size of N = 1024 was sufficient in order to con-

struct an accurate metamodel and to calculate variance based sensitivity indices up

to second-order. However, in one case, a combination of a screening approach and

HDMR was shown to be computationally more efficient. Three different scenarios

have been investigated where the uncertainty ranges for the 23 enthalpies of forma-

tion were changed according to different sources in the literature. The parameter

importance ranking based on the first-order sensitivity indices was shown to be crit-

ically dependent on the uncertainty ranges chosen. In this high temperature study

only a few of the 176 considered parameters had a significant influence on the model

output and no significant parameter interactions were identified for this case.

The fourth case study investigated in this work focused on global sensitivity anal-

ysis of simulations of low temperature isothermal cyclohexane oxidation under fuel

rich conditions. A well mixed non steady state box model with highly complex

chemistry has been applied. The analysis was used to investigate the important

features of the oxidation process, as well as possible factors underlying qualitative

discrepancies between simulations and experiments. The chemical scheme compro-

mised 60 species and 238 reactions, where the input parameters representing the

temperature independent part of the rate constants (A-factors) were considered to

be uncertain, Le. 238 parameters. The selected target outputs were the time for the

maximum rate of reaction for O2 consumption and the percentage of O2 remaining
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at the time for the maximum rate. It was revealed that the model had significant

higher-order effects and the calculation of the second-order sensitivity indices would

have required a large number of samples N, especially in connection with the large

input space dimension. Therefore, the Morris method was used in order to exclude

unimportant parameters and as a result the HDMR method was applied using 33

potentially important parameters. It could be shown that even if taking into ac-

count the uncertainties in the rate parameters the long amount of time required

for the maximum rate of reaction for O2 consumption and the high percentage of

O2 remaining as suggest by the experimental results could not be recovered. This

suggested that there were reactions missing in the scheme and consequently wall

losses were included by adding ten additional reactions. The inclusion of wall losses

led to a higher number of simulations with realistic induction times and higher O2

percentage remaining.

When investigating a high temperature combustion case study (premixed methane

flame model) it could be shown that only a few first-order effects dominated the

model output. Second-order effects (interaction between two parameters) were only

small or could be neglected. Therefore, a second-order HDMR expansion could be

applied to accurately approximate the model output using only a small number of

model runs. The low temperature combustion application (cyclohexane oxidation)

has been a challenge for the application of the HDMR method, because of significant

parameter interactions. The HDMR method has been proven again to be very

efficient in order to explore the first-order effects and N = 512 model runs were

sufficient to obtain a reliable estimate for the most important first-order sensitivity

indices. The exploration of the second-order effects was more demanding and N =

4096 model runs seemed to be sufficient in order to identify the most important

parameter interactions between two inputs. However, it was not possible to construct

an accurate HDMR metamodel for both outputs on the basis of a second-order
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HDMR expansion even by increasing the sample size to N = 131072. The values of

the first- and second-order sensitivity indices did not change significantly on further

increasing the sample size. This indicated that higher order effects 2: 3 were present,

which cannot be incorporated if using only a second-order HDMR expansion. For

such cases it might be necessary to expand the HDMR approach so that potential

third-order effects can also be investigated.

It has been shown in this work that it is likely that higher order effects may cause

a tailed distribution of the model output. The three case studies investigated in

chapters 4 and 5 (street canyon flow model, Lagrangian stochastic model, high

temperature flame model) have shown that the model output had a more Gaussian

like distribution without a tail and in all these cases first-order effects dominated the

model behaviour. Only the case study in chapter 6 (low temperature cyclohexane

oxidation) has shown a tailed output distribution. Due to the fact that only in

the low temperature combustion case study significant higher order effects could

be identified, it has been assumed that higher order effects may be responsible for

a tailed distribution of the model output. This assumption was supported by the

investigation of a simple test model, which also had mainly higher order effects and

a tailed output distribution. In order to apply the HDMR method more efficiently

for a system with a tailed output distribution it might be useful to transform the

model output by using for example log(y) to obtain a more Gaussian like shape.

This has been demonstrated for the simple test model, and it was shown that the

transformation of the model output results in a distribution with a smaller tail

and that only a small sample size is required in order to estimate the sensitivity

indices. However, on the other hand the transformation also "removes" most of the

parameter interactions. This has implications when interpreting the results of a

transformed model output and one has to be aware that the results are only correct

for the transformed output and complex inverse transformation would be required
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for interpretation with respect to the original model output.

The application of the RS-HDMR approach to test functions and case studies has led

to the development of the GUI-HDMR software. The software combines RS-HDMR

tools and its extensions in one Matlab package equipped with a graphical user inter-

face. This makes the RS-HDMR method easily available for all interested users in

various fields. User documentation of the software is given in appendix B. Possible

extensions of the software, such as the investigation of higher order effects (2:: 3),

consideration of non-uniform input distributions and non-independent input param-

eters have been discussed because of their practical relevance. If enough data is

available, then it might be possible to estimate the distribution of input parameters.

In this work a uniform distribution has been assumed for all uncertain parameters,

because parameter ranges were only defined by a minimum and maximum value.

However, if it is possible to obtain the distribution for the model inputs, then this

information should be included into the uncertainty and sensitivity analysis. Fur-

thermore, it has been assumed in this work that model inputs are independent. A

recent study by Zsely et al. (2008) has shown that correlations are common in kinetic

and thermodynamic parameters. Consequently, this kind of information should also

be included into uncertainty and sensitivity analysis studies.

It has been demonstrated in this work that the RS-HDMR method is a very powerful

tool in order to estimate variance based sensitivity indices. Only one set of random

or quasi-random samples is required. The method can cope with non-linearities and

a high input space dimension. If the input space dimension is very large (Le. > 50)

then a screening method can be used in combination with RS-HDMR. In most

of the case studies and test functions investigated in this work a sample of N :5

1024 was sufficient in order to accurately estimate sensitivity indices. Only when

investigating higher order effects a larger sample size was required. The performed

model runs are basically Monte Carlo simulations. They are independent from each
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other and can therefore easily be performed within a parallel environment (e.g.

high performance computing facilities) in order to speed up the overall simulation

time. The constructed HDMR metamodel can also be used as a surrogate instead

of the original model for example when input ranges have been altered (as long as

they are within the original range). In this way no additional model runs have to

be performed which can result in a enormous amount of time being saved if the

original model is computationally expensive to evaluate (e.g. MISKAM model: up

to 40min, Lagrangian stochastic model: up to 20hours for one simulation on a

3GHz PC). Special attention should be paid to the plots of the HDMR component

functions, since they reveal useful information about the input output relationship

of the model. They can also be used for sensitivity analysis instead of more widely

used scatter plots. The plots of the HDMR component functions up to second-order

show exactly how one input parameter or pair of input parameters affect the output

over the whole range of uncertainty. In particular they demonstrate the sensitivity

relationship of parameters away from their nominal values and therefore provide

useful information to link with further detailed studies of individual parameters

(e.g. ab initio studies).

The RS-HDMR method treats the model as a black box and can therefore be applied

in all sorts of fields. Potential fields of application for future work could be in the

development of bio fuel models and the improvement of surrogate models. Here,

the chemical mechanisms describing multi-step chemistry can often be very large.

For example, the modelling of ethanol, which is used in combination with gasoline,

includes the description of over 380 reactions involving 56 species (Marinov 1998).

The chemical mechanism for n-heptane, which is considered a surrogate for liquid

hydrocarbon fuels and can be used in combination with a methyl ester to represent a

bio fuel type, features over 650 reactions and over 100 species (Lindstedt & Maurice

1995). The parameters describing the rates of the chemical reactions can often
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be very uncertain, with the parameters sometimes being rough estimates of their

true value. Due to the fact that there are so many parameters and very accurate

calculations of each one can be time consuming, it is important to highlight the main

parameters contributing to predictive uncertainty for the purpose of improving the

model. It has been shown in this work, that the application of the RS-HDMR

method can help to highlight key reactions and species so that these parameters can

be calculated more accurately. This could also work in the opposite direction so

that reactions are highlighted that are not included in current kinetic mechanisms

and the sensitivity to their addition could be investigated.

The case studies in this work have demonstrated that it is possible to investigate

important characteristics such as ignition behaviour (low temperature) and product

formation (high temperature) of complex chemical mechanisms by applying HDMR

methods. In the field of atmospheric modelling it is planned to combine the CFD.
model MISKAM with the Lagrangian stochastic model in order to predict pollu-

tant concentrations and concentration fluctuations in urban areas. Both models

have been investigated separately in this work and important physical insights have

been gained. However, in order to accurately predict pollutants and potential hot

spots in urban areas both flow and dispersion have to be modelled together. As

demonstrated in this work, the HDMR method can help to highlight discrepancies

between experimental data and model simulations and is able to show where model

improvements are required.
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A Mathematical Background and

Additional Information

A.l Example for the Conversion of cut-HDMR

Component Functions

Considering a model with four input parameters, the first-order ANOVA expansion

function ffNOVA(X1) would be calculated as follows:

ffN°V A(Xl) = ff'(x,) +l'f;;'dx, +l'fIT'dx3 +l'J1'4'dX4 (A.l)

-11 fFtdx1 -1111

f~tdx1dX2 -1111

fITtdxldX3

- 1111 fITtdxl dX4

and for the second-order ANOVA expansion function f~NOVA(XI,X2) one would get

f~NOVA(Xl' X2) = f~t(Xl' X2) +1111 f~tdx1dx2 -11 fITtdx2 (A.2)

-11 f~tdxl

The integrals in equation (A.1) and (A.2) can be computed using the exact solutions
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at each of the grid points in connection with trapezoidal numerical integration.

Squaring and integrating over the ANOVA component functions provides the partial

variances, for example:

Dl - 11N(Xl)dxl

D12 - 1111fr2(Xl, X2)dxldx2

(A.3)

(A.4)

The overall variance D is just the sum of all partial variances. Because a second-order

cut-HDMR expansion is used in this work, the sum includes only first- and second-

order partial variances. This means, that higher order effects ( ~ third-order), as

far as they exist, are not considered.

A.2 Shifted legendre Polynomials

The shifted Legendre Polynomials are orthogonal in the domain [0,1] and can be

generated from the Rodrigues formula (Hochstrasser 1972):

(A.5)

or more conveniently from the sum formula

k [ . (2k - j)! 1 k .R x - -1 ) x -)
k( ) - j=O ( ) j! ((k _ j)!)2 (A.6)

where k is the order of the polynomial.

In order to obtain orthonormality the shifted Legendre polynomials have to be mul-
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tiplied by the factor V2k + 1. This leads to the following list of orthonormal polyno-

mials, which provides the basis for the approximation of the RS-HDMR component

functions:

<Pl(X) - V3(2x - 1) (A.7)

<P2(X) - 6V5 (X2 - X + ~) (A.8)

<P3(X) v'7(3 32 3 1) (A.9)- 20 x - -x + -x - -
2 5 20

<P4(X) v'9(14 3 9 2 1 1 ) (A.lO)- 140 -x - x + -x - -x + -
2 14 7 140

<P5(X) JU (2 5 4 8 3 1 2 1 1 ) (A.ll)- 630 -x - x + -x - -x + -x - -
5 9 3 21 630

<P6(X) Vi3 (22 6 22 5 4 8 3 2 2 1- 3150 -x --x +x --x +-x --x···75 25 15 15 75

+31
1
50) (A.12)

<P7(X) v'i5 (13 7 13 6 5 25 4 25 3 1 2- 16632 -x --x +x --x +-x --x ...
63 18 36 .99 22

1 1) (A.13)+297x - 16632

<ps(x) v'i7 (15 s 30 7 6 6 5 75 4 10 3- 84084 -x - -x + x - -x + -x - -x ...
98 49 7 182 91

15 2 6 1) (A.14)+1001x - 7007x+ 84084

<pg(x) v'i9 (17 9 51 s 48 7 6 3 5 3 4- 420420 -x - -x + -x - x + -x - -x + ...
147 98 49 5 14

4332 3 1) (A.15)91x - 637x + 14014x - 420420

<PlO(X) - 51(184756x10 - 923780x9+ 1969110xs- 2333760x7•••

+1681680x6- 756756x5+ 21021Ox4- 34320x3+ 2970x2•••

-llOx + 1) (A.16)
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B GUI-HDMR Software

Documentation

The software GUI-HDMR was developed to combine existing RS-HDMR tools and

developed RS-HDMR extensions and to make them easily available for all users. The

software is written in Matlab and requires the basic Matlab package. A second-order

HDMR expansion is used which allows the investigation of parameter interactions.

The software comes with a graphical user interface (GUI), but can also be used

without the aUI as a script based approach. In both cases the user has to supply

only two files. The first one contains the rescaled input values (0 ~ Xi < 1) which

were used to run the model and the second one contains the corresponding output

values. Doth files have to be provided as ASCII files within a matrix format. The

rows represent the sample number (1 ... N) and the columns stand for the different

inputs (i = 1... n) or the number of considered outputs respectively. If only one

output is considered then the output file is simply a column vector.

The set of input values can be any Monte Carlo sample (if the input parameters.
can be controlled) or measured values (if using experimental data). If the input

parameters can be controlled, then a quasi-random sampling method such as the

Sobol' sequence (Sobol' 1967) is preferable. This guarantees that the input space

is covered more uniformly than by using random values and it provides a better
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convergence rate (Kucherenko 2007).

Additionally a second set of input and output values may be provided in the same

format as the first set. In order to assess the accuracy of the constructed metamodel

the relative error (RE) is calculated for a number of samples. If a different set of

input and output values is provided, then the metamodel is tested against values

which were not used to construct the HDMR expansion. If no second set is provided,

then the same set of input and output values is used for the accuracy test. Optionally

one can also provide the original input parameter ranges in order to produce the

plots of the component functions with the correct ranges instead of the rescaled

ones.

A fully functional metamodel can be constructed using only the one set of sam-

ples provided. Additionally sensitivity indices of first- and second-order can be

calculated. Component functions of first- and second-order can also be plotted and

compared with scatter plots.

B.l Graphical User Interface (GUI)

After uncompressing the file gui_hdmr _software. zip the graphical user interface

of the GUI-HDMR software can be started by typing gui_hdmr into the Matlab

command window 1. The main window as shown in figure B.1 will open. From

the main window calculations can be started and progress is shown. Three other

windows can be accessed from the main window: The Setup window, the Results

window showing the optimal polynomial orders and the accuracy of the metamodel

and the Global Sensitivity Analysis window.

In case a previous HDMR analysis has been performed using the GUI-HDMR soft-

1Please ensure that you are in the right folder or that the path is set within Matlab.
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) GUJ-HDMR Vel's. 1.0 ...:..0 X
~__ • -l....... • ...

File Help

Setup------ ---,

RS-HDMR.---- -v-r

Figure B.1: GUI-HDMR main window.

ware and results have been saved, the result file can be loaded by choosing File -

Load results. The Open dialog will appear and a result file with the ending .mat

can be selected. If the selection is confirmed by clicking Open the result file will be

loaded in th Matlab workspace and all data are available within the GUI-HDMR

software.

B.1.1 Setup

From the main window the Setup window (figure B.2) can be accessed by clicking

the Setup button on the left. In the Setup window, the sample input and output

files which are based on the performed model runs can be loaded and different

settings for the HDMR analysis can be applied. The sample input file is loaded

by choosing File - Open - Input-File (for HDMR analysis) and the sample

output file by choosing File - Open - Output-File (for HDMR analysis). The
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set of samples provided by these two files is used to construct the HDMR expansion

(metamodel) up to second order and to calculate the variance based sensitivity

indices. Optionally, a second set of input and output samples can be loaded in order

to perform an accuracy test based on the relative error. In this case the metamodel

is tested against values which were not used to construct the HDMR expansion. The

additional set of input and output samples is loaded by choosing File - Open _

Input-File (for accuracy test) and File - Open - Output-File (for accuracy

test) respectively. It is also possible to load a file containing the original input

parameter ranges by choosing File - Open - Input Ranges (for plots) in order

to plot component functions with the real ranges instead of the rescaled ones. In

each of the cases the Open dialog will appear and the corresponding file can be

selected and confirmed by clicking Open.

After loading the input and output files, a summary will be shown in the "Sample

files" section of the Setup window stating the number of inputs and outputs and the

number of samples provided in each file.

Various settings can now be defined within the Setup window in the "Settings"

sections. The sample size N can be set which is used for the construction of the

HDMR expansion. The maximum sample size N corresponds with the number of

samples supplied in the input and output files. Additionally, the number of samples

can be defined which are used for the accuracy test (calculation of the relative error,

see also section B.1.3) and the scatter plots (see also section B.1.4 ).

The optimisation method (see section 4.1) which automatically calculates the opti-

mal order for each of the polynomials is included in the GUI-HDMR software and

one can set a maximum polynomial order for the approximation of the first and

second order component functions. Up to tenth order polynomials are supported by

the Software.
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I GUI-HDMR Verso 1.0 - Setup ~~,p I~

File Help .",

, Sampie fi les

Sample input-file (for HDMR analyis): 22 Inputs and 10000 Samples
Sampie output-fi Ie (for HDMR analys is~ 4 Outputs and 2048 Samples

Sample input-file (optional, for accuracy test): no file loaded yet
Sample output-file (optional, for accuracy test): no file loaded yet

Input ranges (optional, for plots): no file loaded yet

,- Settings

Number of samples to use for HDMR: I 1024 JNumber of samples to use for accuracy test + scatter plots: I 1000
Max order for approximation of 1st-order component functions:

L 10
Max order for approximation of 2nd-order component functions: I 5
Variance reduction method : llUio.<:.QIlUoJ", ...J.
Number of iterations for lst-order component functions: t SO
Number of iterations for 2nd-order component functions: I 50 -1
Do you want to use a threshold? ~s ..~
Value of threshold for 1st-order component functions (in %): 1 0.001 J
Value of threshold for 2nd-order component functions (in %): I 0.001 J

~u.!W K.

Figur B.2: GUI-HDMR setup window. Input and output files can be loaded and
tting can be applied for the HDMR analysis.

A varian r duction m thod (s section 3.2.2) in order to control the Monte Carlo

int gra i n rror can also be applied. The user has the choice between two ap-

orrelation method and the ratio control variate method. In both

th numb r of it rations can be set for the first and second order HDMR

in lly a thr shold (s ection 5.1) can be applied, which is used to exclude unim-

portant mpon nt fun tions from the HDMR expansion. The threshold is given in

o/c and is particularly u ful if the model has a high number of input parameters.

By pr ing th Default button at the lower left corner of the Setup window the

standard tting will b applied. In this case no variance reduction method and no

thr shold is u d. By pressing the OK button the settings will be saved and the
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Setup window is closed.

B.1.2 Construction of the HDMR Expansion

After loading the input and output files and applying all the settings, a summary

is shown in the "Setup" section of the main window. The HDMR analysis is started

by pressing the Run button. The progress of the calculation is shown in the "RS-

HDMR" section of the main window (figure B.1).

I GUI-HDMR Vel's. 1.0 - Setup 0 X-
File Help .,.-- --
r- Sample files

Sample input-file (for HDMR analvis); 22 Inputs and 10000 Samples
Sample output-file (for HDMR analysis) 4 Outputs and 2048 Samples

Sample input-file (optional, for accuracy test): no file loaded yet
Sample output-file (optional, for accuracy test): no file loaded yet

Input ranges (optional, for plots): no file loaded yet

r- Settings

Number of samples to use for HDMR: I 1024 I
Number of samples to use for accuracy test + scatter plots: 1000
Max order for approximation of 1st-order component functions: 10
Max order for approximation of 2nd-order component functions: 5
Variance reduction method : ratICt~!I~r9J :~
Number of iterations for 1st-order component functions: 10
Number of iterations for 2nd-order component functions: 10 _1

Do 'yOuwant to use a threshold? ,ws : ..:' _-d
Value of threshold for 1st-order component functions (in %): 1
Value of threshold for 2nd-order component functions (in '16): I 1

f.c.tauJJ 0

Figure B.3: GUI-HDMR main window. The summary of the settings is shown and
the progress of the calculation.

If a varianc reduction method has been applied, then the current number of the

iteration process and the total number of iterations (figure B.3) is also shown for the

calculation of the optimal order for the first and second order component functions.
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After the calculations have been completed the results can be saved by choosing File

- Save results. This will create a MAT-file called workspace. mat in the current

folder. This file can be loaded into the software again for further analysis (Le. in

order to create plots of the component functions).

Please note, that if a higher maximum polynomial order (~ 5) has been assigned

for the approximation of the second order component functions, then the whole

calculation process might be more time consuming, especially in connection with a

large input space dimension and if using a variance reduction method with a large

number of iterations.

8.1.3 Results

The results of the constructed HDMR expansion are accessible by pressing the Re-

sults button in the main window after the calculations have been finished or after

a results file has been loaded. The Results window (figure BA) states the num-

ber of component functions which have been approximated by polynomials and by

what order for first order and second order (by pressing 1st-order and 2nd-order

respectively from the "Results" menu on the left hand side).

It is also possible to verify the accuracy of the constructed first and second order

HDMR metamodel. If an additional set of sample inputs and outputs has been

provided (see section B.1.1), then the relative error is calculated using a set of

samples which has not been used for the construction of the HDMR expansion.

Otherwise, the metamodel is tested against the same set of samples which has been

used for its construction. By pressing 1st-order in the "Accuracy" menu on the

right hand side the relative error (absolute error divided by the magnitude of the

exact value) is calculated for the first order HDMR metamodel using the number of

samples as defined in the setup (see section B.1.1). Clicking on 2nd-order in the
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l GUJ-HDMR Vel's. 1.0 - Results _ .D ,X~
File Help .,.

.- First-order component functions for output: 1

Results 16 out of 22 first-order component functions are computed to be non-zero

I•. ls~~rQ~.J Component functions approximated by

112nd~rde~
1st-order polynomials: 3
2nd-order polynomials: 3

Accuracy
3rd-order polynomials: 0
4th-order polynomials: 2

Ii ~t~rder:J 5th -order polynom ial s: 2
6th-order polynomials: 2

Ir:znct--Pl~~ 7th -order polynom ial s: 0
8th-order polynomials: 0
9th-order polynomials: 2

Output: 10th-order polynomials: 2

r-r-
[Ace""'" - Relative &'0'

li·;"Exi!: .. J 196RE: 49.5 % 1096RE: 10096

5% RE: 98.896 2096RE: 10096

Figure B.4: GUI-HDMR results window. The optimal order is shown for the com-
ponent functions which were approximated by polynomials. In order to
assess the accuracy of the HDMR metamodel the relative error is also
stated.

"Accuracy" menu provides the relative error for the second order HDMR metamodel.

The relative error is given in the "Accuracy - Relative Error" section. It is stated

how many of the tested samples (in %) are within an a range of 1%,5 %, 10 % and

20 % of the relative error.

If more than one output has been considered (sample output file has more than one

columns), then the output of interest can be chosen by typing in the corresponding

number in the "Output:" field on the left corner. The results and the relative error

are then shown for the selected output.

The Results window can be closed by clicking the Exit button and one gets back to

the main window.
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B.1.4 Sensitivity Analysis

The Global Sensitivity Analysis window is opened by pressing the SA button in

the main window. If clicking the 1st-order button in the "Results" menu on the

right a ranking of the five most important input parameters (first order effects) is

constructed and displayed in the "Sensitivity Indices section" (figure B.5). Each of

the five parameters is identified by its input number (number of the column in the

input sample file) and the first order sensitivity index Si is given. The sum of all

first order sensitivity indices is also calculated and displayed.

File Help

, GUI HDMR vers. 1.0 . Global Sensitivity AnalysIs - 0 X

Ruulu

Outpllt:

1

Rank.ing 1, 2, 4. 5.3.

Input
Si

Sum Si - 0.%4111 12 13 21 5
0.7973 0,161S 0.0035 0,0010 0,0002

~ts-------------- ,
ZX lOu )(;10"" "." ... , """"""" .."""" Input:

C£:J
l'pIlt:

[JI]

~ynomial Order,
Sobol Inde>< :
r"2 flnrson:
r"2S~rm.n :

~ynomi.1 Order: 4
Soocl Index : 0.1615 (2.)
r"2 flnrson : 0.1398 (2.)
r"2 Spearman: 0,1249 (2.)

1
0.7973(1,)
0.8166 (1.)
0.8272 (1,)

igur B.5: GUI-HDMR sensitivity analysis window: The ranking of the five most
important parameters based on the first order sensitivity indices is
shown. Additionally all component functions can be plotted.

By licking th 2nd-order button in the "Results" menu on the right a ranking

of th five most important input parameter interactions (the second order effects)

is constructed and displayed in the "Sensitivity Indices" section (figure B.6). Each



270

of the five parameter interactions is identified by its input number combination

(number of the column in the input sample file) and the second order sensitivity

index Sij is given. Additionally, the sum of all second order sensitivity indices and

the sum of all first and second order sensitivity indices is calculated and displayed.

File Help

CUI HDMI.! VCI·~. ).0 Global Sellsltivity AnalysIs _ Ci X

5@nsitivitylndices-2ndOfder·--- --,

Ranking 1. 4. 5.2. 3.

Input
Sij

~s ~~ ~u ~u ~U
0.0109 0.oo40 0.oo29 O.OO19 0.oo12

Sum Si • 0.9641
Sum Sij • 0.0398
Si + Sij • 1.oo38

~ts--------- ,

Output:

ITl

Input 1:

CIJ
Input 2:

I 15:1

10

Input 1:

CO
Input 2:

CD

~1Y"omial Order:
Sobol Inde><:

4
0.0040 (2.)

"s 0 0

PoIyr>omill Order:
Sobol Index :

5
0.0109 (1.)

Figure B.6: GUI-HDMR sensitivity analysis window: The ranking of the five most
important parameter interactions based on the second order sensitivity
indices is shown. Additionally all component functions can be plotted.

Each of the compon nt functions can also be plotted in order to illustrate the re-

lationship b twe n a certain input parameter (or combination) and the considered

output. The plot of the first order effects can be accessed by clicking 1st-order in

the "Plots" menu on the left hand side. Then, one has three options:

1. By pressing the Scatter button next to the right or left diagram a scatter plot

is created.

2. By pressing the HDMR button the first order RS-HDMR component function
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is plotted showing the effect of one parameter acting independently upon the

output.

3. By pressing the Both button the scatter plot and the plot of the first order

component function (in this case the mean 10 is added to component function

li(Xi)) are combined in one plot for comparison.

In all three cases the input of interest can be selected in the "Input:" field next to

the plot.

Additionally, for each of the plots the following information is given:

1. The polynomial order which has been used to approximate the corresponding

component function.

2. The first order sensitivity index and its rank (displayed in brackets).

3. The r2 value using the Pearson correlation coefficient and its rank (displayed

in brackets).

4. The r2 value using the Spearman rank correlation coefficient and its rank

(displayed in brackets).

The plots of the second order component functions can be accessed by clicking 2nd-

order in the "Plots" menu on the left hand side. The input combination of interest

can be chosen be editing the "Input 1:" and "Input 2:" field next to the plots. By

pressing the HDMR button the plots can be created individually.

If a file for the input ranges has been provided in the Setup window, then all plots

are created using the original input parameter ranges. Otherwise, all plots are given

for the rescaled input values between 0 and 1.
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Again, if more than one output has been considered (sample output file has more

than one column), then the output of interest can be chosen by typing in the cor-

responding number in the "Output:" field on the left corner. The sensitivity indices

and plots are then shown for the selected output.

All constructed plots of the first and second order component functions (and/or

scatter plots) can be saved in three different formats: Portable Network Graphics

(png), Portable Document Format (pdf) and Encapsulated PostScript (eps). To do

so one has to choose File - Save plot a (left) in order to save the current plot in

the left figure or File - Save plot b (right) to save the current plot in the right

figure.

The Save dialog will appear and a file name can be chosen. If the selection is

confirmed by clicking Save the plot will be saved in three different versions with the

endings .png, .pdf and . eps.

B.2 Script Based Approach

The proposed GUI-HDMR software can also be used without the graphical user

interface by calling the corresponding functions in a Matlab m-file. Various template

files are provided.

B.2.1 Simple Example

A simple example in order to calculate the sensitivity indices without using variance

reduction methods and without applying a threshold would look like this:

clear all;

% load sample input and output
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sample_input-load('input_values.txt');
sample_output-load('output_values.txt');

X Number of samples to be used
N - 1024;
sample_input-sample_input(l:N.:);
sample_output-sample_output(l:N,:):

Ye set maximum polynomial order
mu_lst - 10:
max_2nd - 6;

Ye calculate fO, alpha and beta
[alpha.fO]-sub_alpha_lst(sample_input,sample_output.mu_lst);
[beta_numbers] - sub_beta_numbers;
[beta]-sub_beta_2nd(sample_input.sample_output.beta_numbers.mu_2nd);

Ye calculate optimal polynomial order
[opt_lst]-sub_opt_order_lst(fO.alpha.sample_input ,sample _output.mu_1st);
[approxlst] - sub_comp_opt_1st(alpha.fO.opt_1st.sample_input.sample_output);
[opt_2nd]-sub_opt_order_2nd(beta.sample_input.sample_output ••••

approxlst,beta_numbers.mu_2nd);

Ye calculate first and second order sensitivity indices
[D,D1,D1j,S1,S1j] - sub_sens1t1vity_indices(alpha.beta.opt_lst ••••

opt_2nd.sample_input,sample_output):

The sample size N has to be smaller or equal to the number of samples provided

by the two files. At first the mean (fo) and the expansion coefficients (a and {3) for
•

the orthonormal polynomials are calculated up to the maximum order provided by

max_1st and max_2nd. Then the optimal order for all of the component functions

is calculated and finally the overall variance (D), the partial variances (Di,Dij) and

the sensitivity indices (Si,Sij) are computed.
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8.2.2 Template Files

Four template files are provided in order to calculate the first and second order

variance based sensitivity indices:

1. template_simple.m

Similar to the code shown in the latter section. No variance reduction methods

are used and no threshold is applied.

2. template_ th. m

A threshold is applied and can be defined separately for first and second order

to exclude unimportant component functions.

3. template_ varred. m

A variance reduction method is applied. The user can choose between the

correlation method and the ratio control variate method. The number of

iterations can be set separately for first and second order.

4. template_varred_th.m

Doth, a variance reduction method and a threshold, are applied.
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