
Creating a Computing Environment in a Driving

Simulator to Orchestrate Scenarios with Autonomous

Vehicles

Zhitao Xiong

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Institute for Transport Studies

&

School of Computing

September 2013

mailto:tszx@leeds.ac.uk
http://www.leeds.ac.uk
http://www.its.leeds.ac.uk
http://www.engineering.leeds.ac.uk/computing/

The candidate confirms that the work submitted is his/her own, except where

work which has formed part of jointly authored publications has been included.

The contribution of the candidate and the other authors to this work has been

explicitly indicated below. The candidate confirms that appropriate credit has

been given within the thesis where reference has been made to the work of others.

The following paper has been used loosely in this thesis:

Zhitao Xiong, Anthony G. Cohn, Oliver Carsten and Hamish Jamson, “Au-

tonomous local manoeuvre and scenario orchestration based on automated action

planning in driving simulation”. In Proceedings of driving simulation conference

Europe 2012, pages 233 - 244, Arts Et Métiers Paristech Paris, France, September

2012.

Chapters 5 and 7 include some work in the paper regarding algorithm descrip-

tion (Chapter 5) and experiments/results (Chapter 7). Chapter 7 uses tables,

figures from the paper to describe some relevant results.

In this paper, the candidate contributed the algorithm, implementation, ex-

periment and paper drafting, the co-authors, who are also the candidate’s PhD

supervisors, have contributed the work by suggesting relevant references:

• Oliver Carsten: driver model

• Anthony G. Cohn: automated action planning

• Hamish Jamson: standard scenario/situation library

Co-authors also contributed the paper by giving language-related advice.

This copy has been supplied on the understanding that it is copyright ma-

terial and that no quotation from the thesis may be published without proper

acknowledgement.

c©2013 The University of Leeds and Zhitao Xiong

2

Knowledge and action are one inseparable unit - Wang Yangming

Wake up, Neo...

The Matrix has you...

- The Matrix

Don't Panic

- The Hitchhiker's Guide to the Galaxy

Acknowledgements

It is very hard for me to finish this part, because I do not want to

miss anyone, or anything.

I would like to thank my supervisors first. Oliver Carsten & Hamish

Jamson from Transport Studies and Anthony G. Cohn from Com-

puting have accompanied me from the very beginning of my PhD as

my three lovely supervisors. They have evidenced every progress and

every mistake I have made. Specially, I would like to thank Hamish,

who has spent lots of time to assist me in thesis writing and critical

thinking.

I would also thank some friends in ITS. Tony Horrobin has given

me suggestions ranging from software test to scenario design. Nick

Herbers has managed to proofread my thesis according to my tight

schedule. Natasha Merat has assisted me in my VTI trip and helped

me in varieties of ways. Daryl Hibberd has given me suggestions in

carrying out experiments. Anzir Boodoo, as my nice officemate, has

always been informative, helpful and warm-hearted. I also want to

thank all the people in Safety & Technology group, as they made my

life in Leeds wonderful.

I should thank Johan Olstam, who is a professional and consider-

ate researcher from VTI and Linköping University in Sweden. He

has given me inspirations specially within the area of traffic simu-

lation. Our finished and ongoing collaborations have provided some

deep thoughts in driving simulation. I should also thank some people

from VTI, Jonas Jansson and Jonas Andersson Hultgren have assisted

my research when I was in VTI. Maud Göthe-Lundgren kindly invited

iii

me to their Christmas lunch and showed me how wonderful a Swedish

Christmas could be.

Special thanks go to my three examiners, Yiannis Papelis, Frank Lai

and Natasha Chakhlevitch for the valuable discussions throughout my

viva. Their comments have provided ideas on how my work should

be presented to relevant researchers and practitioners.

Of course, I cannot miss my wife, Jingping Wu, and my parents,

XIONG Shuzhong and ZHOU Liqiong. Jingping and my parents have

given me not only invaluable moral support during my PhD, but also

some financial support in its final stage. Moreover,my parents always

supported my decisions without any hesitate. I really appreciate their

support in the past 29 years. Also, I should thank my dad, XIONG

Shuzhong, for his nice calligraphy of “Zhi Xing He Yi” by WANG

Yangming, meaning that “Knowledge and action are one inseparable

unit”.

At last, I would like to address special thanks to the authors/contrib-

utors to some libraries, software or OS: LCM, Boost, OpenroadED,

Protégé, MacTex/TexLive, Texmaker, Codeblocks, Xcode, Ubuntu

Linux and OS X. They have made my life much easier than I could

imagine from the very beginning of my PhD. I also want to thank Mac-

book pro with retina display, which helped me in VTI’s experiments

and thesis writing. She is always powerful, unbelievably user-friendly,

a good sense of *nix and good looking, really highly recommended for

academia.

Thank you everyone/everything that are related to this PhD directly

or indirectly.

Zhitao Xiong

July 2013 (Last Modified: November, 2013)

Abstract

A scenario in a driving simulator covers what the human participants

experience and what the researchers need: the physical scene, pre-

defined traffic flow, simulated vehicles’ interactions with the partici-

pants and measurements to be collected.

Current methodologies used to orchestrate scenarios regarding the

interactions have the following drawbacks: 1) Action sequences that

simulated vehicles should follow in scenarios are specified without the

contexts of each Action; 2) programming languages always include

platform-dependent details and are not suitable for context modelling

and scenario sharing and 3) there is no mechanism to handle scenarios

dynamically and deal with failures to deploy a scenario.

To overcome these problems, a concept named Assignment, which

represents the task(s) of Virtual Drivers, was first developed to en-

code the contextual information of proposed Actions for interaction

generation, e.g., potential simulated vehicles involved.

The Ontology for Scenario Orchestration (OSO) was then developed

to model concepts and their relationships in the domain of scenario

orchestration including the concept Assignment. It can also provide

a file for machine processing.

An algorithm named NAUSEA (autoNomous locAl manoeUvre and

Scenario orchEstration based on automated action plAnning) was fi-

nally generated to utilise Assignments recorded in OSO. Encoded in

the driver model SAIL (Scenario-Aware drIver modeL), NAUSEA can

be used by a Virtual Driver to control simulated vehicles dynamically.

Failed interactions, generated by corresponding Assignments, can be

v

regenerated if necessary. A framework SOAV (Scenario Orchestration

with Autonomous simulated Vehicles) was formed to support SAIL/-

NAUSEA and orchestrate scenarios with autonomous vehicles.

Three verification experiments were carried out and showed that SOAV

was working properly by producing corresponding interactions based

on SAIL/NAUSEA and Assignments. They also demonstrated that

OSO can provide contextual information in a human-readable and

machine processable manner.

The OSO evaluation showed that OSO has several advantages such as

being readable, flexible etc., but how it can be presented to varieties

of audiences needs further examination.

Table of Contents

Acknowledgement iii

Abstract v

Contents vii

List of Figures xiii

List of Figures xvii

Glossaries xxi

1 Introduction 1

1.1 “The Matrix” Fantasy . 1

1.2 The Scenario Reality in Driving Simulation 2

1.3 “The Matrix” Metaphor and Research Aims 3

1.4 Outline of the Thesis . 4

2 Related Work 7

2.1 Introduction . 7

2.2 Scenario Orchestration in Driving Simulation 9

2.2.1 Methodologies . 9

2.2.2 Summary of Methodologies 20

2.2.3 General Limitations . 21

2.3 Automated Planning . 22

2.3.1 Domain-Dependent Planning 23

2.3.2 Domain-Independent Planning 27

vii

TABLE OF CONTENTS

2.4 Knowledge Bases . 31

2.5 Summary . 34

3 Framework Description - SOAV 37

3.1 Introduction . 37

3.2 Scope and Objectives of the Research 40

3.3 Main Concepts . 42

3.3.1 Virtual Driver . 42

3.3.2 Time . 43

3.3.3 Monitor System . 44

3.3.4 Flock and Ego-Vehicle/Flock 45

3.3.5 Action . 45

3.3.6 Trigger . 45

3.3.7 Formation Position . 46

3.3.8 Situation . 47

3.3.9 Role Matching . 47

3.3.10 Assignment . 47

3.3.11 General Plan . 49

3.3.12 Scenario . 50

3.4 Intelligent Driver . 51

3.4.1 Design Goal . 51

3.4.2 Driver Model . 53

3.5 Framework Description . 54

3.5.1 Components of SOAV . 56

3.5.2 Framework Workflow . 58

3.6 Summary . 60

4 Ontology for Scenario Orchestration - OSO 61

4.1 Introduction . 61

4.2 Naming Convention . 64

4.3 Layout of Ontology for Scenario Orchestration (OSO) 67

4.3.1 General Description . 67

4.3.2 V ehicleModel . 69

4.3.3 Measure . 70

viii

TABLE OF CONTENTS

4.3.4 Entity . 70

4.3.5 TemporalEntity . 71

4.3.6 MetricConstraints . 72

4.3.7 StateV ariable . 73

4.3.8 ReferenceValue . 78

4.3.9 Monitor . 80

4.3.10 Action . 83

4.3.11 Assignment . 86

4.3.12 RoadSegment . 89

4.3.13 Intersection . 91

4.3.14 SimLimitation . 91

4.4 Summary . 91

5 The Driver Model SAIL/NAUSEA 93

5.1 Introduction . 93

5.2 SAIL . 94

5.2.1 Perception . 97

5.2.2 Individual Features . 100

5.2.3 World Model . 101

5.2.4 Action . 102

5.3 NAUSEA . 103

5.3.1 Definitions and Notations 105

5.3.2 Algorithm Description . 107

5.4 Summary . 123

6 Implementation 125

6.1 Introduction . 125

6.2 Smith . 126

6.3 Sim Platform 1 . 128

6.4 Sim Platform 2 . 129

6.5 Framework Verification . 131

6.6 Summary . 132

ix

TABLE OF CONTENTS

7 Experiment One - Driving with Smith and Results 135

7.1 Introduction . 135

7.2 Equipment . 136

7.3 Experiment . 136

7.3.1 Scenario Description . 136

7.3.2 Experimental Procedure 143

7.4 Results . 144

7.4.1 Algorithm Examination 144

7.4.2 General Analysis . 147

7.5 Summary . 149

8 Experiment Two - Driving in the Matrix and Results 151

8.1 Introduction . 151

8.2 Equipment . 152

8.3 Experiment . 152

8.3.1 Scenario Description . 152

8.3.2 Experimental Procedure 156

8.4 Results . 157

8.4.1 Algorithm Evaluation . 157

8.4.2 General Analysis . 162

8.5 Summary . 163

9 Experiment Three - Driving at VTI and Results 165

9.1 Introduction . 165

9.2 Equipment . 166

9.3 Experiment . 167

9.3.1 Scenario Description . 167

9.3.2 Additional Information of the Experiment 169

9.3.3 Recipe of “Block” in Smith 174

9.3.4 Experimental Procedure 177

9.4 Results . 177

9.4.1 Algorithm Examination 177

9.4.2 General Analysis . 179

9.5 Summary . 180

x

TABLE OF CONTENTS

10 Evaluation of OSO 181

10.1 Introduction . 181

10.2 Role of OSO . 182

10.3 Evaluation of OSO . 184

10.4 Summary . 186

11 Conclusion 187

11.1 Introduction . 187

11.2 Thesis Summary . 187

11.2.1 First Objective - Encoding Contextual Information 188

11.2.2 Second Objective - Knowledge Base 189

11.2.3 Third Objective - Plan and Replan 190

11.3 Contributions of this Research . 192

11.3.1 SAIL/NAUSEA . 192

11.3.2 OSO . 193

11.3.3 Cross-platform Standardization 195

11.4 Future Research . 197

11.4.1 Environment, Vehicles and Interfaces for Controlling . . . 197

11.4.2 Regulating - Action β1 . 199

11.4.3 Traffic Flow Manipulation 202

11.4.4 Global Optimization vs Local Optimization 203

11.4.5 OSO Development . 204

11.5 Summary . 206

A Results of Assignment Checker and Action Checker Procedures

in Experiment One 211

B Vehicles’ Trajectories in Assignment One of Experiment Two 217

C Scenario Representation with OSO 239

C.1 Experiment One . 239

C.1.1 Assignment “Acc-BL” . 239

C.1.2 Assignment “Coherence” 245

C.1.3 Assignment “Layby” . 249

xi

TABLE OF CONTENTS

C.1.4 Other Assignments . 253

C.1.5 Temporal Constraints . 254

C.2 Experiment Two . 257

C.2.1 Assignment “Overtaking-lorry” 257

C.2.2 Assignment “Broken-down-car” 262

C.2.3 Assignment “Cone-off-road” 267

C.2.4 Assignment “Braking-car” 270

C.3 Experiment Three . 275

C.3.1 Assignment “Braking-car” 275

C.3.2 Assignment “Flock-Blocking” 279

C.3.3 Assignment “Role-Matching” 282

References 292

xii

List of Figures

2.1 The Path of Literature Review . 9

2.2 Behaviour Model of an Autonomous Vehicle in Leitao et al. (1999) 12

2.3 Summary of the Grafcet Language 13

2.4 Grafect Editor ((Leitao et al., 1999)) 15

2.5 State Machine Models of Driving Behaviour 16

2.6 ISAT (Interactive Scenario Authoring Tool) (Papelis et al., 2001) 19

2.7 Recipe Tree of Top Action α . 30

2.8 Temporal Constraint Graph Grα from (Hadad et al., 2003) 31

3.1 The Path of Research . 38

3.2 Categories of Monitor, reillustrated from Willemsen (2000) 44

3.3 Formation Position . 47

3.4 Action Recipe for the Virutal Driver (Perform-sceanrio) 49

3.5 PDA (Perception Decision Action) Architecture in Lacroix et al.

(2009) . 53

3.6 Driver Abilities(Peters & Nilsson, 2007a) 54

3.7 the Proposed Intelligent Driver 55

3.8 Architecture of SOAV with Offline and Online Units 56

3.9 Workflow of SOAV (Example with UoLDS’s simulation software) . 59

4.1 OSO with Protégé . 65

4.2 Representation of Classes, Properties and Individuals 66

4.3 Dependences Between Major Classes 69

4.4 Class V ehicleModel . 69

4.5 Class Entity and Related Classes 71

xiii

LIST OF FIGURES

4.6 The Possible Relationships Between Two Intervals (Allen, 1981) . 72

4.7 Class TemporalEntity and Related Classes 73

4.8 Class MetricConstraints and Usage 74

4.9 Distance Headway of Vehicle A 74

4.10 Lane Offset of Vehicle A . 75

4.11 Time-To-Collision of Vehicle A . 75

4.12 Time Headway of Vehicle A . 76

4.13 Neighbourhood around Participant’s Vehicle 77

4.14 Class StateV ariable and Related Classes 79

4.15 Class ReferenceValue and Related Classes 81

4.16 Class Monitor and Related Classes 83

4.17 Class Action and Related Classes 85

4.18 Class Asssignment and Related Classes 86

4.19 Illustration of Road Segment Along a Reference Line 90

4.20 Class RoadSegment and Related Classes 90

5.1 The ECOM Architecture from Engström & Hollnagel (2007) . . . 95

5.2 Scenario-Aware drIver modeL (SAIL) 96

5.3 Neighbourhood Generation Example 100

5.4 Action Recipe for Smith (Perform-scenario) 106

5.5 The Mechanism of SAIL/NAUSEA 108

5.6 The General Plan for Example 1 113

5.7 Formation Position . 116

5.8 Lane Changing Example . 119

6.1 Sim Platform 1 (Sim1) . 129

6.2 Architecture of VTI Simulation Software 130

6.3 Four-step Verification Procedure 131

6.4 Experiment Set-up . 133

7.1 Illustration of the Scenario for Experiment One 137

7.2 Output of Plan Evaluation Procedure in Normal (7.2(a)) and Fail-

ure (7.2(b)) Test Case . 145

8.1 Illustration of the Scenario for Experiment Two 153

xiv

LIST OF FIGURES

9.1 Illustration of the Scenario for Experiment Three 168

9.2 Illustration of Monitor Conditions of A0 170

9.3 Illustration of Recipe for α (“Perform-scenario”) in Experiment

Three . 175

9.4 Illustration of General Plan Grα for “Perform-scenario” (α) in Ex-

periment Three) . 176

11.1 Graphical Glitches from Lacroix et al. (2007) 198

11.2 Illustration of “Discovered Check” in a 2-lane one way road (Re-

illustrated from Sukthankar (1997)) 199

11.3 Situation One of Flock Control 201

11.4 Situation Two of Flock Control 201

11.5 Flock Merging in Situation Two 202

B.1 Vehicles’ Lane Trajectories in Assignment One - Participant One . 218

B.2 Vehicles’ Lane Trajectories in Assignment One - Participant Two 219

B.3 Vehicles’ Lane Trajectories in Assignment One - Participant Three 220

B.4 Vehicles’ Lane Trajectories in Assignment One - Participant Four 221

B.5 Vehicles’ Lane Trajectories in Assignment One - Participant Five 222

B.6 Vehicles’ Lane Trajectories in Assignment One - Participant Six . 223

B.7 Vehicles’ Lane Trajectories in Assignment One - Participant Seven 224

B.8 Vehicles’ Lane Trajectories in Assignment One - Participant Eight 225

B.9 Vehicles’ Lane Trajectories in Assignment One - Participant Nine 226

B.10 Vehicles’ Lane Trajectories in Assignment One - Participant Ten . 227

B.11 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant One . 228

B.12 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Two . 229

B.13 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Three . 230

B.14 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Four . 231

B.15 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Five . 232

xv

LIST OF FIGURES

B.16 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Six . 233

B.17 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Seven . 234

B.18 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Eight . 235

B.19 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Nine . 236

B.20 Vehicles’ Longitudinal Trajectories in Assignment One - Partici-

pant Ten . 237

C.1 Illustration of coherence beleader 1 in Experiment One 244

C.2 Illustration of coherence 2 in Experiment One 248

C.3 Illustration of layby 3 in Experiment One 252

C.4 Metric Constraints for Experiment One 254

C.5 Illustration of Metric Constraints for Experiment Two in OSO . . 256

C.6 Illustration of smith overtake 1 3 in Experiment Two 261

C.7 Illustration of smith breakdown 2 5 in Experiment Two 266

C.8 Illustration of smm setmodelswitch 3 8 in Experiment Two 269

C.9 Illustration of smith stop 4 10 in Experiment Two 274

C.10 Illustration of smith dec 1 1 in Experiment Three 278

C.11 Illustration of smith flock 1 2 in Experiment Three 281

C.12 Illustration of smith matchrole in Experiment Three 284

xvi

List of Tables

2.1 Virtual Sensors for Transition Conditions (Leitao et al., 1999) . . 12

5.1 Package Format . 97

5.2 Data Format of Vehicle Information 98

6.1 Differences Between two Versions of Smith 127

6.2 Comparison of Simulated Vehicles in two Platforms 130

7.1 Test Case List and Desired Output of Each Test Case 142

7.2 Test Case Tried by Each Participant in Phase One 143

7.3 Statistics of Order Lag in Phase One (s) 148

7.4 Statistics of the Release Times in Phase Two (s) 149

8.1 Summary of Role Matching Results 158

8.2 Summary of Scenario Execution Results 160

8.3 Summary of Scenario Execution Conditions for Assignment One

and Two . 160

8.4 Summary of Scenario Execution Condition for Assignment Three

and Four . 161

9.1 Initial Traffic Conditions . 167

9.2 Role Matching Statistics of the Assignment “Braking-Car” 178

9.3 Statistics of Start Time, Position and Speed of Ego-vehicle/flock

when “Braking-car” is Triggered 178

9.4 Statistics of the Start Times of Assignment “Braking-car”, “Maintain-

speed” and “Restore” . 180

xvii

LIST OF TABLES

A.1 The Release Times and Actual Corresponding State in Sim1 (Par-

ticipant One) . 212

A.2 The Release Times and Actual Corresponding State in Sim1 (Par-

ticipant Two) . 212

A.3 The Release Times and Actual Corresponding State in Sim1 (Par-

ticipant Three) . 213

A.4 The Release Times and Actual Corresponding State in Sim1 (Par-

ticipant Four) . 213

A.5 The Release Times and Actual Corresponding State in Sim1 (Par-

ticipant Five) . 214

A.6 The Release Times and Deadlines of Assignments with Success

Condition or Duration (Participant One) 214

A.7 The Release Times and Deadlines of Assignments with Success

Condition or Duration (Participant Two) 215

A.8 The Release Times and Deadlines of Assignments with Success

Condition or Duration (Participant Three) 215

A.9 The Release Times and Deadlines of Assignments with Success

Condition or Duration (Participant Four) 216

A.10 The Release Times and Deadlines of Assignments with Success

Condition or Duration (Participant Five) 216

C.1 Properties of value bl monitor for “Acc-BL” in Experiment One . 240

C.2 Properties of bl monitor for “Acc-BL” in Experiment One 240

C.3 Properties of value bl post for “Acc-BL” in Experiment One . . . 241

C.4 Properties of bl post for “Acc-BL” in Experiment One 241

C.5 Properties of value bl fail for “Acc-BL” in Experiment One . . . 241

C.6 Properties of bl fail for “Acc-BL” in Experiment One 242

C.7 Properties of beleader for “Acc-BL” in Experiment One 242

C.8 Properties of value c monitor for “Coherence” in Experiment One 245

C.9 Properties of coherence monitor for “Coherence” in Experiment

One . 246

C.10 Properties of value c fail for “Coherence” in Experiment One . . 246

C.11 Properties of coherence fail for “Coherence” in Experiment One . 246

xviii

LIST OF TABLES

C.12 Properties of coherence for “Coherence” in Experiment One . . . 247

C.13 Properties of value layby monitor for “Layby” in Experiment One 249

C.14 Properties of layby monitor for “Layby” in Experiment One . . . 250

C.15 Properties of value layby fail for “Layby” in Experiment One . . 250

C.16 Properties of layby fail for “Layby” in Experiment One 250

C.17 Properties of layby for “Layby” in Experiment One 251

C.18 Properties of value 1 3 monitor hw for “Overtaking-lorry” in Ex-

periment Two . 258

C.19 Properties of monitor 1 3 hw for “Overtaking-lorry” in Experi-

ment Two . 258

C.20 Properties of value 1 3 monitor for “Overtaking-lorry” in Exper-

iment Two . 258

C.21 Properties of monitor 1 3 for “Overtaking-lorry” in Experiment Two259

C.22 Properties of overtake 1 3 for “Overtaking-lorry” in Experiment

Two . 259

C.23 Properties of value 2 5 monitor road for “Broken-down-car” in

Experiment Two . 262

C.24 Properties of monitor 2 5 road for “Broken-down-car” in Experi-

ment Two . 263

C.25 Properties of monitor 2 5 hw for “Broken-down-car” in Experi-

ment Two . 263

C.26 Properties of value 2 5 monitor for “Broken-down-car” in Exper-

iment Two . 264

C.27 Properties of monitor 2 5 for “Broken-down-car” in Experiment

Two . 264

C.28 Properties of breakdown 2 1 for “Broken-down-car” in Experiment

Two . 265

C.29 Properties of value 3 2 monitor for “Cone-off-road” in Experi-

ment Two . 267

C.30 Properties of monitor 3 2 for “Cone-off-road” in Experiment Two 267

C.31 Properties of setmodelswitch 3 2 for “Cone-off-road” in Experi-

ment Two . 268

xix

LIST OF TABLES

C.32 Properties of value 4 1 monitor road for “Braking-car” in Exper-

iment Two . 271

C.33 Properties of monitor 4 1 road for “Braking-car” in Experiment

Two . 271

C.34 Properties of value 4 1 monitor for “Braking-car” in Experiment

Two . 271

C.35 Properties of monitor 4 1 for “Braking-car” in Experiment Two . 272

C.36 Properties of stop 4 1 for “Braking-car” in Experiment Two . . . 272

C.37 Properties of value 1 1 monitor road for “Braking-car” in Exper-

iment Three . 275

C.38 Properties of monitor road 1 1 for “Braking-car” in Experiment

Three . 276

C.39 Properties of value 1 1 monitor for “Braking-car” in Experiment

Three . 276

C.40 Properties of monitor 1 1 for “Braking-car” in Experiment Three 277

C.41 Properties of dec 1 1 for “Braking-car” in Experiment Three . . . 277

C.42 Properties of flk 2 5 for “Flock-Blocking” in Experiment Three . 279

C.43 Properties of value matchrole monitor for “Role-Matching” in Ex-

periment Three . 282

C.44 Properties of monitor matchrole for “Role-Matching” in Experi-

ment Three . 282

xx

Glossary

α, Action “Perform-scenario” or “Free”

In a particular scenario, the Virtual Driver needs to perform a top

High-Level Action named α that can be either “Perform-scenario” or

“Free”. “Perform-scenario” contains four sub-Actions, namely, β0, β1, β2

and β3. “Free” makes the Virtual Driver ignore any Assignments and

autonomously evolve in the simulated world of a particular scenario, in

which case the route or the destination will be based on a pre-defined route.

Details can be found in Sections 3.3.11 and 5.3.

β0, Action “Get-to-the-initial-state”

By carrying out Action β0, the Virtual Driver drives the Ego-vehicle/

flock to an initial state (e.g., initial speed, initial target speed etc.). Details

can be found in Section 3.3.11.

β1, Action “Generate-formation”

By carrying out Action β1, the Virtual Driver navigates the Ego-

vehicle/flock to the proposed Formation Position in order to perform

the corresponding Assignment-actions. This Action is handled by the

Regulating layer in SAIL. Details can be found in Section 3.3.11 and

5.3.

β2, Action “Perform-assignment”

By carrying out Action β2, the Virtual Driver finishes the Assignment-

actions encoded in Assignments. This Action is handled by the Situa-

tion Assessment layer in SAIL and Assignment Assessment proce-

dure in NAUSEA. Details can be found in Section 3.3.11 and 5.3.

xxi

β3, Action “Clean-up”

By carrying out Action β3, the Virtual Driver restores the configurations

or allowed behaviours of the Ego-vehicle/flock. Details can be found in

Section 3.3.11.

Action

An Action is what the Virtual Driver can do to change the simulated

world of a particular scenario. It has a release time and a deadline. The

former specifies when the Action is executed; the latter specifies when the

Action is finished. Actions are divided into two categories: High-Level

Action and Low-Level Action. Details can be found in Sections 3.3.5,

4.3.10 and 5.3.

Action Checker

The Action Checker procedure in NAUSEA or the Action Checker layer

in SAIL checks whether or not an Assignment-action has executed, suc-

ceeded or failed. Details can be found in Section 5.3.2.5.

Action Executer layer, Action Execution procedure

The Action Execution procedure in NAUSEA or the Action Executer

layer in SAIL checks if the release time of the pending Assignment-action

is consistent with the refined metric constraints. If the answer is yes,

this Action will be executed by sending out relevant Smith Orders stored

in the definition of the Assignment-action. Details can be found in Section

5.3.2.5.

Action layer

The Action layer in SAIL is in charge of broadcasting Smith Orders,

containing what should be done to change the simulated world of a partic-

ular scenario, including the simulated vehicles’ states and road conditions.

Details can be found in Section 5.2.4.

Actor

Actor refers to the Ego-vehicle/flock that is being controlled by the Vir-

tual Driver for proposed Assignments in order to generate interactions.

This term was inspired by Olstam et al. (2011).

xxii

Agent Smith

Agent Smith is a character in the film trilogy “The Matrix”. He is

one of the AI programs in “The Matrix”, which are responsible for mainte-

nance purposes and thus can terminate any human avatars or programs that

may bring instability. He finally becomes a virus that gets the power “to

take control over the simulated body of any human wired into the Matrix”

and “to communicate with each other instantaneously and perceive what

other humans wired into the Matrix do via a type of shared consciousness”

(Wikipedia, 2011).

Assignment

An Assignment is a task that a Virtual Driver needs to carry out in or-

der to generate required interactions with the participant. It provides

relevant contextual information to the Virtual Driver: the Formation

Position, Monitor(s), Success Condition(s), Failure Condition(s),

Assignment-action(s) and the measurement from the interaction gen-

erated by this Assignment. Details can be found in Sections 3.3.10 and

4.3.11.

Assignment-action

An Assignment-action is the Action encoded in a particular Assignment

to generate a specific interaction, e.g., request to “set the desired speed of

the simulated vehicle no.1 as 30 mph” or request to “place cones in the road

segment whose id is ‘r3.2’ ”. Details can be found in Sections 3.3.5, 3.3.10

and 4.3.11.

Assignment Assessment procedure

The Assignment Assessment procedure in NAUSEA, running in the Sit-

uation Assessment layer in SAIL, is responsible for handling Assign-

ments. It consists of three sub-procedures: Assignment Checker, Ac-

tion Execution and Action Checker procedures. Details can be found

in Section 5.3.2.5.

xxiii

Assignment Checker layer, Assignment Checker procedure

The Assignment Checker procedure in NAUSEA, running in the Situ-

ation Assessment layer in SAIL, is responsible for triggering any As-

signments based on precedence constraints or Monitor(s). Details

can be found in Section 5.3.2.5.

(The) Cognition layer

The Cognition layer in SAIL is responsible for maintaining Memory and

making decisions. It consists of two sub-layers, one is the Memory layer,

another is the Decision Making layer. Details can be found in Section

5.2.

Decision Making layer

Decision Making layer in SAIL is used to navigate the Ego-vehicle/flock to

a proposed position safely and carry out Assignments to generate inter-

actions for scenarios in time. It is handled by the algorithm NAUSEA.

Details can be found in Section 5.2.

Driving Experience layer

Driving Experience layer in SAIL contains Recipes and makes the Vir-

tual Driver know how to perform High-Level Actions. Details can be

found in Sections 5.2.

Ego-flock

The Flock controlled by the Virtual Driver is termed an “Ego-flock”.

Details can be found in Section 3.3.4.

Ego-vehicle

The simulated vehicle controlled by the Virtual Driver is termed an

“Ego-vehicle”. Details can be found in Section 3.3.4.

Failure Condition

This is the condition used to decide whether or not an Assignment has

failed during its execution. It is a type of Trigger. Details can be found

in Sections 3.3.6 and 4.3.9.

xxiv

Flock

A Flock refers to a platoon of simulated vehicles. Details can be found in

Section 3.3.4.

Formation Position

Formation Position is a set of pre-defined relative local positions around

the participant’s vehicle, where the Virtual Driver usually navigates

the Ego-vehicle/flock to in order to carry out Assignments. Details can

be found in Section 3.3.7.

High-Level Action

A High-Level Action is an Action that cannot be accomplished in a single

way, in one sequence or by one entity. A Recipe is needed to specify how

to perform a particular High-Level Action. Details can be found in Sections

3.3.5, 4.3.10 and 5.3.

(The) Individual Feature layer

The Individual Feature layer in SAIL maintains two sets of Individual

Features: Driving Experience and Motivation. The former contains

Recipes for High-Level Actions and the latter contains Assignments

that need to be carried out. Details can be found in Section 5.2.2.

Initialization procedure

Initialization procedure in NAUSEA is used by the Virtual Driver to

parse an SDF and store relevant information into the Memory. An initial

(The) General Plan will then be built. Details can be found in Section

5.3.

Low-Level Action

A Low-Level Action is an Action that can be accomplished in a single

way, in one sequence and by one entity. Details can be found in Sections

3.3.5, 4.3.10 and 5.3.

Memory, (The) Memory layer

The Memory layer in SAIL contains two sets of Memory: Individual

xxv

Feature and World Model. The former contains Recipes for High-

Level Actions and Assignments for a particular scenario; the latter

contains all the contexts for driving, e.g., road network, Memory History,

etc. Details can be found in Section 5.2.

metric constraints

Metric constraints specify the differences between two time instants, which

can represent the start/finish times of some Actions, e.g., “start time of

Action β - finish time of Action α 6 100 (seconds)” Details can be found

in Sections 3.3.11 and 5.3.2.1.

Monitor

This specifies a condition to indicate whether or not the Assignment-

action(s) in a particular Assignment should be executed. When multiple

Monitors are present, the Assignment-action will be carried out if all the

Monitors become true at the same time. Details can be found in Sections

3.3.6 and 4.3.9.

(The) Motivation layer

The Motivation layer in SAIL contains the Assignments that will be used

to generate interactions in a particular scenario. Details can be found in

Section 5.2.

NAUSEA

NAUSEA (autoNomous locAl manoeUvre and Scenario orchEstration based

on automated action plAnning) is an algorithm based on HTN (Hierarchical

Task Network). It is encoded in the Decision Making layer of SAIL.

NAUSEA can be used to recruit simulated vehicles dynamically and pre-

pare for interactions actively. Failed interactions, generated by correspond-

ing Assignments, can be regenerated by NAUSEA with its replanning

capability. Details can be found in Section 5.3.

Neo

Neo is the principal character in “The Matrix”. In this film trilogy, Neo

xxvi

is regarded as “The One” who is believed to be able to free humans from

being “batteries”. Details can be found in Section 1.1.

Neighbourhood

Neighbourhood refers to 12 positions around the participant’s vehicle,

containing the information of simulated vehicles that are of interest to the

Virtual Driver and will be used for decision making. Details can be found

in Sections 4.3.7 and 5.2.1.

OSO, Ontology for Scenario Orchestration

OSO is short for Ontology for Scenario Orchestration (OSO). It is built

upon varieties of concepts and their relationships in the domain of scenario

orchestration in driving simulation in order to represent scenarios in a

programming language-independent and logic-based manner. It covers con-

cepts in driving simulation ranging from physical objects such as roads or

junctions to virtual ones such as Assignments or Actions. Details can be

found in Chapter 4.

participant, participant’s vehicle

Participant refers to the human being who involves in a driving simulator

study and drives the simulator vehicle. Participant’s vehicle refers to the

simulator vehicle.

Perception layer

Perception in SAIL involves two procedures, one is to sense the outside

world by receiving the raw data; another is to interpret the raw data and

maintain the World Model. Details can be found in Section 5.2.1.

Plan Evaluation procedure

Plan Evaluation procedure in NAUSEA or Plan Evaluation layer in SAIL

is used to generate the refined metric constraints based on the metric

constraints specified in a particular scenario definition. It will indicate

the allowed ranges of some Actions’ release times and deadlines. If the

refined metric constraints can not be generated, the metric constraints or

xxvii

the General Plan will be regarded as “inconsistent”. Details can be found

in Section 5.3.2.1.

precedence constraints

Precedence constraints specify the relationships between two time intervals,

two Actions or two Assignments, e.g., “Assignment Ai before Assignment

Aj (i 6= j)}” represents that the execution of Assignment Aj starts after

the execution of Ai finishes because Ai expires or Success Conditions of

Ai are satisfied. Details can be found in Sections 3.3.11 and 5.3.2.1.

Recipe

A Recipe specifies how to perform a High-Level Action by providing a

set of Low-Level Actions or Actions that do not need to be decomposed

any more. Details can be found in Sections 3.3.5 and 3.3.11.

refined metric constraints

Refined metric constraints refers to a set of metric constraints obtained

from the original metric constraints specified in SDF. They are generated

by the Plan Evaluation procedure in NAUSEA or Plan Evaluation

layer in SAIL to indicate the required range of the release times/deadlines

of some Actions. Details can be found in Section 5.3.2.1.

(The) Regulating procedure

The Regulating procedure in NAUSEA or Regulating layer in SAIL uses

any relevant driving behaviours, e.g., overtaking, to drive safely and satisfy

the requirements from Assignments regarding the Formation Position.

Details can be found in Section 5.3.2.4.

(The) Role Matching procedure

The Role Matching procedure in NAUSEA or Role Matching layer in

SAIL determines which simulated vehicles the Virtual Driver should

choose as the Ego-vehicle/flock to generate proposed interactions defined

in Assignments. Details can be found in Section 5.3.2.2.

SAIL

SAIL (Scenario-Aware drIver modeL) is a driver model developed to adopt

xxviii

and test NAUSEA in order to provide NAUSEA with data for decision

making and interfaces for executing Actions. Details can be found in

Section 5.2.

Scenario

A scenario is a pre-defined environment that experimenters need a partic-

ipant to experience in a driving simulator. It includes the physical scene,

pre-defined traffic flow, simulated vehicles’ interactions with the partici-

pant’s vehicle and measurements that need to be collected. Details can

be found in Section 4.3.1.

Scenario Observer

Scenario Observer is a module in SOAV to record the data packages trans-

ferred in SOAV. It can also visualise the number and frequencies of each

data package. Details can be found in Section 3.5.1.2.4.

SDF, Scenario Definition File

The Scenario Definition File (SDF) is an XML file that records the OSO

along with specific requirements of a particular scenario. Assignments

and road network are the main information specified in SDF. Details can

be found in Section 3.5.1.1.

Situation

Situation refers to some common interactions that participants can be

exposed to, which involve more than one simulated vehicle. Details can be

found in Section 3.3.8.

(The) Situation Assessment layer

The Situation Assessment layer in SAIL manages the General Plan,

Assignments and Role Matching procedure, so it contains the As-

signment Assessment, Plan Evaluation and Role Matching procedures

in NAUSEA. Details can be found in Section 5.3.

Smith

Smith is the implemented Virtual Driver. He is the implementation of

xxix

SAIL/NAUSEA and named after Agent Smith. Details can be found

in Section 3.5.1.2.1.

Smith Order

A Smith Order is the order sent from Smith to the Sim/SMM. Smith

Orders contain instructions that the Ego-vehicle/flock should follow or

SMM should carry out, e.g., request to “set the desired speed of the simu-

lated vehicle no.1 as 30 mph”. Details can be found in Section 3.5.1.2.3.

SMM

SMM is short for Scenario Management Module, which is used to interpret

Smith Orders and execute them in the Sim. It has been developed as a

module within the Sim. Details can be found in Section 3.5.1.2.3.

SOAV

SOAV is a framework used to create a computing environment for driving

simulation in order to orchestrate scenarios with autonomous simulated

vehicles. It consists of several components, which include OSO (Ontology

for Scenario Orchestration), Smith, the Sim/SMM and a Scenario

Observer. Details can be found in Section 3.5.

speed adaptation

Speed adaptation behaviour in SAIL or speed adaptation procedure in

NAUSEA is mainly used to 1) make the Virtual Driver obey the speed

limit; 2) maintain a realistic speed trajectory when performing a turning

movement or 3) adopt a speed or an acceleration rate to prepare for As-

signments. Details can be found in Section 5.3.2.4.

subject

Subject refers to the participant or participant’s vehicle. It is being

used in the Ontology for Scenario Orchestration (OSO). Details can

be found in Section 4.3.4.

Success Condition

This is the condition used to decide whether or not an Assignment has

xxx

succeeded during its execution. It is a type of Trigger. Details can be

found in Sections 3.3.6 and 4.3.9.

(The) Targeting procedure

The Targeting procedure in NAUSEA or Targeting layer in SAIL adopts

a pre-defined route to tell the Virtual Driver where to navigate the Ego-

vehicle/flock. Details can be found in Section 5.3.2.3.

temporal constraints

Temporal constraints contain the precedence constraints and metric

constraints. Details can be found in Sections 3.3.11 and 5.3.2.1.

The General Plan

The General Plan is an Action plan with temporal constraints to guide

the Virtual Driver’s behaviours in scenarios by specifying execution or-

ders of Actions and corresponding ranges of their release times/deadlines.

Details can be found in Sections 3.3.11 and 5.3.2.1.

“The Matrix” Metaphor

“The Matrix” Metaphor refers to a comparison between some components

in SOAV, especially Smith, to some characters and relevant philosophy

in the film trilogy “The Matrix”. This metaphor or comparison has been

mainly taken to design the Virtual Driver Smith in the computing envi-

ronment of driving simulation. The names “The Matrix” and “Neo” have

been taken to call the Sim and SMM respectively. Details can be found

in Sections 1.3 and 3.5.1.2.

The Sim, The Sim/SMM

The Sim refers to the simulation software for driving simulators and is a

part of SOAV. It contains SMM and the vehicle dynamics and rendering

facility for the simulation. Details can be found in Section 3.5.

Trigger

A Trigger is a condition used to execute some Action(s): when it becomes

true, the Action(s) will be executed. There are three types of Triggers:

xxxi

Monitor, Success Condition and Failure Condition. Details can be

found in Sections 3.3.6 and 4.3.9.

Virtual Driver

A Virtual Driver indicates an intelligent controller that can be used to

make driving decisions or carry out pre-scheduled Actions based on As-

signments. Details can be found in Section 3.3.1 and Chapter 5.

World Model layer

The World Model layer in SAIL maintains driving context such as the

road network and relevant interfaces for modifying or querying the driving

context. Details can be found in Section 5.2.3.

xxxii

Chapter 1

Introduction

This is your last chance. After this, there is no turning back. You

take the blue pill - the story ends, you wake up in your bed and

believe whatever you want to believe. You take the red pill - you

stay in Wonderland and I show you how deep the rabbit-hole goes.

- The Matrix

1.1 “The Matrix” Fantasy

What if you just found out that everything in your “real” life is actually fake?

You are “living” in a simulated world and you do not know if you are just a

program or a real human being that is connected to this simulated world, could

this be the worst moment in your life? You may then start to ask what is “real”

and seek the truth. I am not sure if you would face this situation in your life but

if you were Neo, you would have experienced the whole situation already.

Neo is the principal character in “The Matrix”. In this film trilogy1, machines

created a simulated world called “The Matrix” and managed to get energy from

humans who were kept in pods and implanted in the virtual reality “The Matrix”.

Neo is regarded as “The One” who is believed to be able to free humans from being

“batteries”, so he knows what “The Matrix” is. Moreover, not all the avatars

in “The Matrix” are controlled by humans. Some of them are AI programs

1The Matrix (1999), The Matrix Reloaded (2003), The Matrix Revolutions (2003)

1

1. INTRODUCTION

responsible for maintenance purposes and can terminate any human avatars or

programs that may bring instability. Agent Smith is the most famous AI program

in “The Matrix”, not because he is a Neo hunter, but because he finally becomes

a virus that gets the power “to take control over the simulated body of any human

wired into the Matrix” and “to communicate with each other instantaneously

and perceive what other humans wired into the Matrix do via a type of shared

consciousness” (Wikipedia, 2011). Hence, Agent Smith is able to put Neo into

some intentionally designed and dangerous situations. Neo always fights back

to destroy these setups because nobody wants to be terminated, especially the

principal character. However, the machines are also being regarded as human

protectors, because by doing so, human beings can be kept in a safer environment

than the reality: chaos after nuclear war. These machines can be regarded as

human-users or human-protectors, but remember, in either case, human beings

are under control.

Although the story of “The Matrix” is fantastic, some ideas behind this story

may be helpful: we can try to put someone under control without being noticed

by adopting vivid scenes and sophisticated intelligent agents that can make au-

tonomous decisions. In driving simulation, researchers are attempting to create

realistic and natural virtual worlds, which can be regarded as the driving world

version of “The Matrix”. However, this version is highly controlled to generate

scenarios so that consistent stimuli can be provided to different driving simulator

drivers or participants. Sophisticated intelligent vehicles therefore may not be

needed. Moreover, no killing is allowed in this driving world version.

1.2 The Scenario Reality in Driving Simulation

By imitating driving activities of the real world, driving simulators can:

1) have repeatable and consistent scenarios;

2) have a substantially risk-free environment;

3) provide some hazardous situations not easily performed in the real world.

2

1.3 “The Matrix” Metaphor and Research Aims

A scenario is then the key to provide a pre-defined environment that ex-

perimenters need a participant to experience. It includes the physical scene,

pre-defined traffic flow, simulated vehicles’ interactions with the participant’s ve-

hicle1 and measurements that need to be collected. Choreography of scenarios,

therefore, plays an important role in driving simulation. In general, the inter-

actions in scenarios should be repeatable and the human participants should be

able to make similar decisions in driving simulators as they would in the real

world.

Certainly, the algorithm developed in this thesis should be able to handle

every aspect of a scenario, such as physical scene modification, traffic flow ma-

nipulation, data collection and interactions with participant’s vehicle, however,

how to generate proposed interactions has been the only concern of this research

so “scenario”in this thesis will be used to describe the interactions between sim-

ulated vehicles and the participant’s vehicle.

Generally speaking, there are two basic requirements regarding scenarios: 1)

the simulated vehicles should behave in a realistic manner and 2) the scenarios

should be repeatable at some suitable level of abstraction.

Researchers always put a focus on making scenarios repeatable, so when it

comes to scenarios, simulated vehicles will be controlled by pre-defined instruc-

tions that have been crafted by humans beforehand. As a result, failures can

sometimes happen if some unexpected situation occurs, e.g., the participant

changes lane suddenly and thus misses the simulated vehicle that has already

been prepared for such interactions.

1.3 “The Matrix” Metaphor and Research Aims

The methodology and concepts involved in this thesis have been motivated and

therefore influenced by the hope of creating “The Matrix” in driving simulation.

The steps taken in this thesis are too small to be considered as fantastic as “The

Matrix” , however, these steps can answer two fundamental questions in driving

simulation:

1In this research, only one participant or participant’s vehicle (simulator) is included in a

particular scenario.

3

1. INTRODUCTION

1) How can we create scenarios with autonomous simulated vehicles so that sce-

narios can be realistic and repeatable? (Scenario Orchestration for our “The

Matrix”);

2) How can we describe our knowledge in driving simulation? (Knowledge Base

for our “The Matrix”) and,

Generally speaking, “The Matrix” metaphor has been mainly applied to de-

sign an intelligent virtual driver in the computing environment of driving simula-

tion. The virtual driver is treated as “Agent Smith” and (autonomous) simulated

vehicles that the participant could see in the simulation are treated as “simulated

humans” in “The Matrix”. Virtual drivers should therefore have the ability of

“Agent Smith”, e.g., 1) progress in the virtual environment autonomously in order

to finish some tasks by controlling any entities in driving simulation dynamically

and 2) plan actions intelligently with the capability of replanning if any specific

task has failed. As an AI program similar to “Agent Smith”, a virtual driver

should be able to understand the scenario instructions and act according to those

instructions with rich, appropriate and scenario-directed behaviours.

This research aims to systematically analyse the issue of scenario orchestration

in driving simulation with two purposes:

1) to develop an algorithm for orchestrating scenarios with autonomous vehicles

intelligently, so that pre-defined interactions can be generated according to dy-

namic driving context, with the possibility of restoring scenarios from failures.

This is the main focus of this research;

2) to identify essential concepts in driving simulation in order to build a Knowl-

edge Base for scenario orchestration in driving simulation;

1.4 Outline of the Thesis

The structure of this thesis is as follows:

• Chapter 2 includes a review of existing techniques of scenario orchestration

in driving simulation and related areas. It serves the purpose of introducing

relevant literature that has guided and inspired this research;

4

1.4 Outline of the Thesis

• Chapter 3 first includes a description of the scope of this research. followed

by a detailed introduction of the essential concepts underpinning this re-

search and a driver model prototype, leading to a general description of the

solution developed in this research - a framework called SOAV (Scenario

Orchestration with Autonomous simulated Vehicles);

• Chapter 4 presents an Ontology for Scenario Orchestration (OSO) in detail

in order to show how scenario requirements and driving context have been

modelled in this research;

• Chapter 5 presents the decision making algorithm - NAUSEA (autoNomous

locAl manoeUvre and Scenario orchEstration based on automated action

plAnning) and its user: the Scenario-Aware drIver modeL (SAIL). SAIL is

developed based on the driver model prototype introduced in Chapter 3;

• Chapter 6 presents the implementation details regarding the virtual driver

equipped with SAIL/NAUSEA and the platforms based on the simulation

software of UoLDS1 and VTI2’s driving simulators;

• Chapters 7 to 11.3.3 present three verification experiments and correspond-

ing results that were used to verify the system;

• Chapter 10 presents a summary of what OSO can provide and an evaluation

regarding its advantages and disadvantages;

• Chapter 11 concludes this thesis with a summary and a discussion regarding

potential future enhancement of the framework and tools that have been

developed.

1University of Leeds Driving Simulator
2VTI: The Swedish National Road and Transport Research Institute

5

1. INTRODUCTION

6

Chapter 2

Related Work

What is the Matrix?

The Matrix is a computer-generated dreamworld built to keep us under

control...

- The Matrix

2.1 Introduction

There are two requirements when it comes to scenarios in driving simulation:

realism and repeatability.

Realism indicates the requirement of adopting sufficient driving behaviours.

This term is motivated by the work from Papelis & Ahmad (2001), which states

that “In our experience with research studies in high-fidelity simulators, users

generally focus their evaluation of the model realism towards the richness of the

behaviors, not their fidelity.” Hence, in this research, trajectories of each simu-

lated vehicle are not covered, e.g., lane-changing trajectory. On the other hand,

repeatability means that the essential conditions, road properties and the patterns

of traffic, in a scenario should be repeatable in each trial(Fisher et al., 2010b).

However, the balance between realism and repeatability can be hard to define

because when scenarios are running, unexpected movement of vehicles, includ-

ing the participant’s, may interrupt some pre-defined interactions. As a result,

behaviours of each simulated vehicle are always limited in order to guarantee

repeatability.

7

2. RELATED WORK

Generally speaking, scenario orchestration in driving simulation involves the

control of several or even all of the simulated vehicles in the virtual environment

and tries to interrupt their decision making process if they are autonomous. It is

the coordination of behaviours of different simulated vehicles with internal and

external constraints. The internal constraints need some behaviours to be exhib-

ited in a pre-defined location within a period or at a specific time. The external

constraints need those simulated vehicles to consider the environment geometry

such as road curvature or road facilities. There are four kinds of behavioural co-

ordination (Devillers & Donikian, 2003) regarding agents, which are some general

autonomous decision makers:

1) Rules: start a script or a scenario when a specific situation happens;

2) Ambient: the agents that are evolving autonomously will respond to the reac-

tions from the main agent, which can be the participant in driving simulation.

The reactions from the main agent will be studied;

3) Goal-oriented: define the goals that the agents need to achieve;

4) Sequence of actions: define a set of actions and corresponding time schedule.

Ambient and goal-oriented coordination are not common in the area of driving

simulation as they do not guarantee repeatability. In order to deal with the other

two cases, a script can be used to specify what the agents should do and when

they should do it. However, this may lead to some unexpected situations when

there is an unpredictable human involved. For instance, a participant in driving

simulation may cause the scenario to fail by some unexpected behaviours such as

a sudden lane change.

In order to find a solution that can combine realism with repeatability in sce-

nario orchestration in using autonomous simulated vehicles and deal with failures

caused by unpredictable human participants, the scenario orchestration prob-

lem in driving simulation is first described in order to introduce some existing

methodologies in describing scenarios and corresponding implementations using

simulated vehicles. This helps find a solution that can combine realism with re-

peatability and deal with failures caused by unpredictable human participants.

8

2.2 Scenario Orchestration in Driving Simulation

Some limitations of those methodologies are then identified. Two areas are there-

after covered in order to find relevant solutions for the limitations: Automated

Planning and Knowledge Bases. The former is covered in order to find an appro-

priate mechanism for scenario orchestration, while the latter is covered in order

to find solutions regarding scenario descriptions.

Scenario Orchestration in

Driving Simulation
General Limitations

Automated Planning

Knowledge Base

Figure 2.1: The Path of Literature Review

2.2 Scenario Orchestration in Driving Simula-

tion

2.2.1 Methodologies

In driving simulation, orchestration of scenarios has been a focus of research since

the mid 1990s regarding how scenarios can be described and how to use those

descriptions (e.g., Cremer et al. 1995). Less effort has been put into this area

in recent years since existing methodologies seem adequate enough for applica-

tions. Generally speaking, these methodologies share the same idea: have humans

describe every aspect of the scenario, and then author the scenario to relevant

simulated vehicles. This process can define the rules or sequence of actions that

the simulated vehicles should follow when the system is offline or online.

9

2. RELATED WORK

In the rest of this section, the methodologies used in scenario orchestration

will first be introduced with a focus on:

1) the complexity of available actions that can be used to direct simulated vehi-

cles’ behaviours;

2) underlying mechanisms that are used to specify when those actions should be

executed and,

3) how to direct or change simulated vehicles’ behaviours, i.e., how to design

those simulated vehicles with appropriate interfaces for controlling.

Wolffelaar et al. (1999) proposed a Scenario Specification Language (SSL).

With this language, all the simulated vehicles that will appear in the simulation

and their corresponding actions can be defined. SSL can also be used to describe

intentions of the simulated vehicles and other scenario actions, but no details

were given. However, assumptions can be made that intentions may refer to

the potential actions, while other scenario actions may refer to any non-driving

actions, e.g., “start the simulation”.

SSL describes scenarios with a number of scenario blocks and global variables.

Each scenario block contains a pair of start and end conditions for activating or

deactivating the corresponding scenario block. When a scenario block is activated,

three sub-blocks may take effect. The Do-block specifies what should be done

as long as the scenario block is still active; the Action-blocks specify some sub-

scenario blocks that can also have the start and end conditions. Participant-blocks

are used to define and create any number of simulated vehicles in the simulation,

whose behaviours can be altered during scenarios based on conditions and actions.

SSL has managed to include some major components in generating the in-

teractions in a scenario: 1) what should be done (actions) and 2) when the

actions should be executed and finished (conditions including the start and end

conditions). It therefore covers the essential part in scenario orchestration, i.e.,

an event-driven mechanism that tells the simulated vehicles to change their be-

haviour when particular events occur.

10

2.2 Scenario Orchestration in Driving Simulation

In general, SSL achieved its purpose and showed some advantages, especially

in the standardization of conditions based on logical expressions and the hier-

archical organisation of scenario blocks. However, Wolffelaar et al. (1999) did

not mention how the actions being used in SSL are defined - are those actions

basic such as “adopt an acceleration rate” or complex such as “follow a vehicle”?

Moreover, the interfaces of simulated vehicles for action execution, i.e., behaviour

modification, and underlying architecture of them were not mentioned.

In addition, as every simulated vehicle is exclusively defined and initialized

in SSL, two issues may arise: 1) when simulated vehicles are large in number,

describing scenarios can be time-consuming and 2) the adaptivity is in doubt

as the simulation cannot put up with unexpected interrupts from the human

participant.

Leitao et al. (1999) proposed a scripting language based on the Grafcet graph-

ical language that describes the working sequence of the simulated vehicles in the

driving simulator. Grafcet contains three elements: step, transitions and connec-

tions. A step indicates a stable state of the simulation and can be associated with

actions, which indicate what should be done when a step is active. A step that is

active initially is termed “initial step”. A Macro step is also mentioned without

details but the assumption can be made that a macro step could have sub-steps.

Transitions between steps can be specified as conditions, each of which has a

Boolean function of sensors as listed in Table 2.1 and some input states such as

“simulated vehicle A is overtaking simulated vehicle B”. In addition, “Break(A)”

could be a typo in Leitao et al. (1999) and should have been “Brake(A)”.

Connections specify links between two or several steps. For instance, “OR

Junction” indicates that when any preceding steps are active and corresponding

conditions are true, the transition can then be undertaken.

The complete set of elements and graphical representation can be found in

Figure 2.3.

Differently from Wolffelaar et al. (1999), Leitao et al. (1999) introduced not

only Grafcet that is used to describe scenarios but also the corresponding archi-

tecture of simulated vehicles and the details of available actions that can reflect

the architecture. The simulated vehicles have been designed with a three-layer

driver model (Figure 2.2), which is derived from Michon (1985).

11

2. RELATED WORK

Table 2.1: Virtual Sensors for Transition Conditions (Leitao et al., 1999)

Sensor Description

Pos(A) Absolute position of vehicle A

LPos(A) Longitudinal position of vehicle A

OPos(A) Offset (lateral) position of vehicle A

Dist(A,B) |Pos(A)− Pos(B)|
LDist(A,B) LPos(A)-LPos(B)

ODist(A,B) OPos(A)-OPos(B)

Speed(A) Velocity of vehicle A

Wheel(A) Position of A’s steering wheel

Break(A) Position of A’s brake pedal

Figure 2.2: Behaviour Model of an Autonomous Vehicle in Leitao et al. (1999)

The Strategic layer deals with long-term goals. It plans the path for the

simulated vehicle and indicates the Tactical layer of which path to follow.

The Tactical layer deals with medium-term goals. It makes decisions on how

a simulated vehicles should follow a path. For instance, the Tactical layer may

make decision to overtake if a slower simulated vehicle is ahead. Decisions are

12

2.2 Scenario Orchestration in Driving Simulation

Figure 2.3: Summary of the sets, functions and representations of the Grafcet

language adopted by Leitao et al. (1999)

13

2. RELATED WORK

then sent to the Operational layer.

The Operational layer deals with short-term goals. It takes immediate mea-

sures based on decisions sent from the Tactical layer and makes decisions on, e.g.,

steering angle, which could be requested by the lane-changing decision from the

Tactical layer.

As a result, based on this three-layer architecture, actions available in Gracfet

reflect this three-layer architecture, so they can be used to 1) affect directly

the velocity or acceleration of a simulated vehicle in the Operational layer or 2)

change the driver’s trip plan in the Strategic layer. These actions can change the

following parameters:

• Goal velocity

• Destination

• Maximum acceleration

• Position of the steering wheel

• Position of pedals

• Power of engine

• Velocity

• Acceleration

• Position and orientation

Moreover, in order to simplify the process of describing a scenario based on

Grafcet, a Grafcet editor was developed as illustrated in Figure 2.4 and provides

the users with the Grafcet elements, e.g., step blocks.

Compared to SSL, Grafcet also defines action sequences based on steps along

with actions and event-driven mechanisms based on transitions or connections.

How to indicate which simulated vehicles will be involved is not specified in

Leitao et al. (1999), so when there are more and more simulated vehicles involved

in a scenario, the design process is likely to be time-consuming. However, the

14

2.2 Scenario Orchestration in Driving Simulation

Figure 2.4: Grafect Editor ((Leitao et al., 1999))

scenario orchestration mechanism in Leitao et al. (1999), based on Grafcet, has

two advantages: 1) controlling of the simulated vehicle can be based on complex

actions, i.e., some actions that need a decision making process such as going to a

destination, and 2) a GUI assists the scenario orchestration process.

Similar to SSL and Grafcet mentioned above, Devillers & Donikian (2003)

also developed a language to specify the action sequence of simulated vehicles in

driving simulation. However, a notable difference is that those vehicles are state

machine-based.

A state machine (also known as a finite state automata) treats the behaviour

of the system as a combination of several states, which have their own action

outputs. In a simpler version of state machine-based approach, only one state

will be active at a time and one state transfers to another by evaluating the

transition conditions. It is easy to design and debug state machines as they

15

2. RELATED WORK

can be represented with graphical flows as shown in Figure 2.5(a). However,

because the flow is unidirectional, it is very hard to use state machines to model

complex systems, whose behaviours are concurrent, interdependent or goal-driven

(Wright, 2000), and the number of states will grow exponentially with the number

of parameters when the states have to consider many factors, which will lead to a

state explosion problem. By contrast, hierarchical and concurrent state machines

(e.g., Cremer et al. 1995) can have several state machines run at a time.

As illustrated in Figure 2.5(b), several concurrent state machines can run

at each step, e.g., state machine for speed control and for steering. A conflict-

resolution mechanism can be developed to address the problem of state conflict.

A function can be used to evaluate the outputs from different states and generate

a final output according to a resolution criteria. As an example, final acceleration

rates could be chosen according to the “safe driving principle” from “Speed Con-

trol” and “Steering” state machines from Figure 2.5(b), so a lower acceleration

rate could be selected.

Figure 2.5: State Machine models of driving behaviour (Wright, 2000)

Based on state machines, Devillers & Donikian (2003) used HPTS (Hier-

16

2.2 Scenario Orchestration in Driving Simulation

archical Parallel Transition Systems) to design simulated vehicles. HPTS has

been designed as a blackbox that has input/output data and control parameters.

Specifically, an HPTS has (Donikian, 2001):

• a set of sub-state machines that can nest other parallel state machines;

• an activity function that determines the status of a state by considering the

input, control parameters and local variables;

• input and output. These are the input and output signals and the output

indicates the proposed action generated by the state machines;

• local variables that are defined within one state machine. These can be

initialized on every activation or remain unchanged between activations;

• control parameters that are used to change the behaviour of an entity mod-

elled by state machines. They can be internal or external decisions, e.g.,

notify some sub-state machines that they have been started;

• an integration function that determines the final output by considering

outputs from several concurrent state machines. It is used to unify the

output of a state machine.

By using the control parameters, autonomous driving decisions can be overrid-

den and scenarios can be orchestrated by specifying the sequence of sub-scenarios

that contain actions, which is similar to the method of Leitao et al. (1999), who

also developed action sequences to control simulated vehicles. However, Leitao

et al. (1999) did not adopt temporal concepts while in Devillers & Donikian

(2003), delays and durations are explicitly expressed and handled by HPTS.

Cremer et al. (1995) also developed simulated vehicles based on state machines

- Hierarchical Concurrent State Machines (HCSMs). Apart from state machines

that are designed for autonomous driving (e.g., speed control), control panels are

also developed to be the standardized communication interface for scenario coor-

dination by receiving external instructions. They contain Dial and Button. The

former is used in order to execute some actions, e.g., “turn right”, while the latter

is set in order to provide some reference values for actions. Furthermore, Beacons

17

2. RELATED WORK

are used to send messages to nearby simulated vehicles, which is a flexible way of

coordinating their behaviours, e.g., a Beacon can be placed on the road and in-

struct a simulated vehicle just passing to decelerate. By using Beacons, simulated

vehicles that will be used for some interactions can be recruited dynamically.

Willemsen (2000) proposed SDL - Scenario Description Language, an inter-

preted language that is translated to HCSMs and executed with the whole simu-

lation. In SDL, there are two essential components: activities specify commands

that should be executed in the simulation, e.g., find a location and create a pedes-

trian at that location; monitors on the other hand specify the time and frequency

of carrying out activities.

In Papelis et al. (2001), details regarding the scenario orchestration with

HCSMs are given, hence, strategies to implement activities of simulated vehi-

cles and monitors are implied by this paper:

1. What are available simulated vehicles that can be controlled in the simula-

tion?

There are three types: DDOs, DDDOs and ADOs. DDOs are Deterministic

Dynamic Objects. Each DDO’s path has been pre-scripted and its velocity

is also pre-scripted along the path. DDDOs are Dependent DDOs. Each

DDDO’s path is also pre-scripted but it will change its velocity based on

other entities’ movements. ADOs are Autonomous Dynamic Objects that

are equipped with HCSM. Each ADO is equipped with some parallel state

machines that are able to perform the following behaviours respectively:

Following, Lane Tracking, Speed Control, Lane Change and Intersection

Navigation. Apart from the behaviours, control panels are also provided in

ADOs to control their behaviours with external actions and corresponding

reference values for those actions.

2. What actions used for activities are available for a single vehicle?

With the control panels, the following actions are available: change lane to

the left, change lane to the right, turn to the leftmost road at the next junc-

tion, turn to the rightmost road at the next junction, generate sound and

activate light(s). The following reference values are also available: target

18

2.2 Scenario Orchestration in Driving Simulation

speed to be achieved, forced velocity to be achieved as quickly as possible,

sound to be generated and light(s) to be activated.

3. When should these actions be activated and how monitors can be used?

Three virtual entities are involved in coordinating the behaviours of enti-

ties in simulation: trigger, traffic light manager and traffic manager. Trig-

gers relate conditions to actions, i.e., monitors with activities in Willemsen

(2000). They are used to fire some specific actions that are non-driving ac-

tions or actions based on the basic actions for each ADO. Conditions that

can be used to fire those actions are predicates based on a timer, a specific

position/region, time to arrival at a target point or a traffic light status.

The HCSM-based scenario orchestration method has established a system that

covers available objects for scenarios, available actions for single objects and a

standardized event-driven mechanism with a list of triggers. It also includes a

GUI named ISAT (Interactive Scenario Authoring Tool) to assist the scenario

orchestration process as illustrated in Figure 2.6.

Figure 2.6: ISAT (Interactive Scenario Authoring Tool) (Papelis et al., 2001)

19

2. RELATED WORK

The HCSM-based approach still focuses on orchestrating action sequences

that could be interrupted by unexpected reactions from the participants.

2.2.2 Summary of Methodologies

Generally speaking, three questions need to be answered in order to orchestrate

a particular scenario:

1) which simulated vehicles will be involved in the scenario?

2) how will those simulated vehicles be prepared?

3) how can the scenario be produced?

Question one is known as the actor management problem. Simulated vehicles

can be pre-defined and fully described beforehand (e.g., Wolffelaar et al. (1999)).

However, some existing methodologies can recruit simulated vehicles for interac-

tions in real-time. For instance, Kearney et al. (1999) developed a HTPS-based

scenario orchestration language that does not need to specify the simulated vehi-

cles to be involved in an interaction beforehand, which implies that recruitment

can be done online. In Olstam et al. (2011), an actor management algorithm was

developed by considering the average speeds of simulated vehicles needed to reach

the proposed location for interactions. A simulated vehicle with an inconspicuous

speed trajectory can be assigned to interact with the participant.

Question two is known as the actor preparation problem and is related to the

“realism” part of the scenario, as in this phase simulated vehicles can have some

autonomy to prepare themselves. In general, researchers always assume that sim-

ulated vehicles will show up in the right place at the right time. In Olstam et al.

(2011), some work was done regarding how to prepare simulated vehicles in an in-

conspicuous manner by adopting a specific speed trajectory towards the required

location for interactions. Moreover, the trajectory is calculated by considering

the estimated speed of the simulator driver, which is estimated by considering

road conditions (e.g., road width), average speed of the traffic flow, speed limit

and a parameter Q indicating the rotation of the speed distribution curve, for

20

2.2 Scenario Orchestration in Driving Simulation

instance, “Q < 1 imply that a vehicle with a high basic desired speed reduces its

speed more than vehicles with a lower basic desired speed” (Olstam et al., 2008).

Question three is called the scenario execution problem and is related to three

aspects: what are available actions, how to trigger an action and how to schedule

those actions. In previous work (e.g., Papelis et al. (2001)), the event-driven

mechanism was widely used and can be regarded as pre-conditions for particular

actions: conditions must be true before these actions are applied. Due to the

adoption of autonomous simulated vehicles, actions can be high-level or low level:

researchers can change a simulated vehicle’s destination (Leitao et al., 1999) or

just its action speed (Papelis et al., 2001). Moreover, the scheduling of such

actions is often crafted by humans in order to specify the execution order of

actions or sub-scenarios (e.g., Leitao et al. (1999)).

None of these questions have covered scenario failures, which may force the

simulated vehicles to take part in the failed interaction again. However, this is

questionable not only because retries may not be allowed by scenario design, but

also because it may be impossible technologically due to the lack of replanning

capability or dynamic environment reconstruction, e.g., creation of new road

segments.

2.2.3 General Limitations

The methodologies used for scenario orchestration are pre-defined, which means

that the simulator users have to predict what will happen in the simulation and

then coordinate the simulated vehicles accordingly. Some scenario development

issues may arise (Papelis et al., 2003), such as the following examples:

• Pre-Run Issues:

– the experimenter describes interaction outcomes without correspond-

ing context and,

– predict the wrong reactions from participants.

• Run-Time Issues:

– participants do not want to be engaged in some interactions and,

21

2. RELATED WORK

– some interactions never happen due to design or system issues.

Pre-run issues suggest that an efficient communication mechanism is lacking.

Experimenters may fail to foresee the extra actions from a participant as they

focus on outcomes only; the experimenters do not have a general picture of the

capacities of the scenario orchestration mechanism and the simulation software.

This communication problem can make the scenario orchestration process time-

consuming and make the scenario liable to run-time issues, so there needs to

be some way to share knowledge such that both experimenters and programmers

can have some pre-knowledge, which includes, but is not limited to, the capacities

of the driving simulator software, the potential pre-conditions and the effects of

particular interactions.

Run-time issues invariably cause failures, e.g., a trigger does not fire or par-

ticipants do not want to be engaged. Those failures are hard to avoid, but there

is a possibility that they can be fixed dynamically without help from humans by

automatically re-orchestrating the scenarios, if permitted.

In order to deal with the four issues mentioned above, both run-time and pre-

run ones, some literature has been covered in order to answer the following two

questions: 1) how to make decisions based on proposed interactions and deal with

failures and 2) how to represent knowledge based on a scenario description scheme

that can concentrate on essential contextual knowledge of scenario orchestration

and scenario sharing in the future.

2.3 Automated Planning

In this section, some algorithms used in driving simulation and Autonomous Land

Vehicles to design autonomous vehicles are covered. Some domain-independent

algorithms that have inspired this research and provided the way of combining

existing autonomous planning in driving simulation with scenario instructions are

also examined.

22

2.3 Automated Planning

2.3.1 Domain-Dependent Planning

Domain-dependent planning is used in dynamic environments where the states

of the environment cannot be completely known/predicted. Generally speaking,

domain-dependent planning is always used to plan missions (Ghallab et al., 2004),

e.g., path planning or overtaking. In this section, domain-dependent planning in

two related domains will be introduced: driving simulation and Autonomous

Land Vehicle.

2.3.1.1 Autonomous Vehicles in Driving Simulation

In order to present participants with a natural driving context, simulated vehicles

are being designed with their own decision-making facilities. Researchers who

focus on generating realistic traffic flows have attempted to adopt microsimulation

models into driving simulation so that those simulated vehicles, or more precisely,

vehicle-driver units, can make driving decisions according to the corresponding

driving context. For instance, the simulated vehicles in Olstam et al. (2011) used

the HDM/IDM car-following model (Treiber et al., 2000, 2006).

The following part in this section will talk about the main modelling ap-

proaches in driving simulation in detail, which are used these days to adopt

relevant algorithms, e.g., the microsimulation models mentioned above. It should

be noted that those approaches are not tied to only one platform; they have

been combined together in many platforms to balance their strengths and weak-

nesses. State machine-based approaches have been covered in Section 2.2.1, so

the other two modelling approaches will be included in this section: Rule-based

and Eco-resolution principle.

2.3.1.1.1 Rule-based

The rule-based approach is a way of making expert experiences or knowledge into

some rules: if (condition) then (action). Hence, when it comes to the process of

searching an action, the rule-based system will explore a set of rules and test the

condition of each one. When the condition is true, the corresponding rule will be

marked as true and the action will be triggered, e.g. in order to model the free

23

2. RELATED WORK

driving behaviour, the following three rules can be developed: (example source:

(Olstam, 2009))

• If (speed <desired speed) then (increase speed)

• If (speed >desired speed) then (decrease speed)

• If (new speed limit) then (change desired speed)

In order to adopt the property of “unpredictability”, a value of certainty that is

the likelihood of the action happening in some situations, can be incorporated into

rule-based systems (e.g. Wright, 2000). To resolve the conflict, i.e. when choosing

a speed from different rules, rule-based approaches always use the following three

methods:

• A resolution criteria, e.g. the requirement of safe driving will lead to a lower

speed choice;

• Priority assignment, e.g. if the acceleration rate generated by car-following

rules has a higher priority than the one generated by lane-changing rules, the

final result concerning acceleration rate will be the one from car-following

rules and,

• The value of certainty that can be obtained by assessing the weighted av-

erage of the outcomes of different rules.

As a simple, flexible, even intelligent method, rule-based approaches are widely

used these days (see Al-Shihabi & Mourant, 2003; Salvucci et al., 2001; Wright,

2000 for examples). However, their disadvantage is apparent: rule-based systems

have the problem of rule-explosion, which involves a situation in which the rules

grow exponentially when new parameters or processes are imported. This makes

this approach less useful in some complex situations.

24

2.3 Automated Planning

2.3.1.1.2 Eco-resolution Principle

The Eco-resolution principle model was developed by the French research insti-

tute INRETS in the architecture named ARCHISIM, which has been used in

driving simulation (El Hadouaj & Espié, 2002; Espié et al., 2007). The driver’s

behaviour is based on some principles, which state that the driver always at-

tempts to minimize his/her interactions with the environment. As an example,

when a simulated vehicle driven by an eco-resolution-based driver is following a

preceding simulated vehicle, three elements can decide the behaviour of the driver

in this situation (Espié et al., 2007),

• The possible interaction with other drivers or objects that are represented

by a parameter “Interaction”. This element is evaluated as a Boolean pa-

rameter (True or False);

• The duration of the interaction that is represented by a parameter “dura-

tion” with its degree (long or short).This is described by the time when the

interaction could disappear and,

• The possibility of suppressing the interaction, which is represented by a

parameter “suppression possibility” with degree/level.

The lane-changing behaviour can be encoded by using the eco-resolution prin-

ciple as follows (Espié et al., 2007):

Interaction (True) + duration (Long) + Suppression possibility (High) =>

interaction suppression (change lane)

Interaction (True) + duration (Short)+ Suppression possibility (High) =>

Short term adaptation (stay in the current lane)

Interaction (True) + duration (Long) + Suppression possibility (Low) =>

Long term adaptation (keep following)

That is to say, e.g. according to the first rule, the three elements are evaluated

one by one,

• the interaction is possible (True);

• the duration is long because the preceding vehicle will keep its speed without

changing lane;

25

2. RELATED WORK

• the suppression possibility is high because if the vehicle changes lane, the

interaction with the present preceding vehicle will cease.

Therefore, changing lane will be chosen. During this process, the principle of

“less interaction” is applied.

This modelling approach is a special case of the Rule-based approach with a

dedicated set of rules based on psychological findings.

2.3.1.1.3 Enhancement from Traffic Simulation

Modelling realistic simulated vehicles is also a concern in traffic simulation,

which can be adopted by driving simulation. For example, Wright (2000) used a

probability function to assign virtual drivers with personalities, which have been

used in a framework named DRIVERSIM in driving simulation. More recently,

Lacroix et al. (2009) used a norm model to generate the profile of virtual drivers’

personalities by adopting different parameter values, e.g. desired speed. Fuzzy

logic is the extension of standard Boolean operators to fuzzy sets. It leads to

the notion of a fuzzy rule, e.g., if (speed is high) then (use higher speed). The

condition and actions are all based on fuzzy sets, which are different from the

classic rules in rule-based approaches. However, this “fuzzy rules” approach is a

good way of modelling human reasoning and decision-making processes, so fuzzy

techniques can be complementary to other methods. Wright et al. (2002) used

this method to model the choice generation process combined with rule-based

approaches. Some researchers have adopted a priority-based approach to solve

the intersection conflict problem by making the simulated vehicles negotiate their

priorities in advance (Champion et al., 2001; Doniec et al., 2006, 2008).

2.3.1.2 Autonomous Land Vehicle

Planning algorithms for driving are also being examined in the area of Au-

tonomous Land Vehicle (ALV), which puts a focus on path planning, mission

planning and navigation. Path planning algorithms can be found in a wide body

of literature. In Miller et al. (2009), the Team Cornell’s Skynet, competing in

the 2007 DARPA urban challenge, used the A* algorithm(Cormen et al., 2001)

26

2.3 Automated Planning

to plan their ALV’s path. Mission planning is used to generate a realistic trajec-

tory for the vehicle locally from one point to another, an example algorithm can

be found in Miller et al. (2009). Finally, navigation is mainly used for obstacle

avoidance and some classic algorithms, e.g., potential fields, can be used (e.g.,

Khatib (1986)).

Algorithms in ALV can provide some insight for the design of simulated vehi-

cles in driving simulation to provide some level of autonomy for scenario orches-

tration:

• Path planning can be used to enhance the route planning ability of vehicles

in driving simulation. However, due to the simplicity of road networks and

the fact that participants are often driving a fixed route, path planning in

driving simulation may not be a priority;

• Mission planning can be adopted to generate different sets of rules in driving

simulation to represent different contexts when making decisions, e.g., when

crossing a junction, vehicles can have different rules and driving styles.

• Navigation algorithms can be enhanced in driving simulation by considering

similar algorithms in ALV, e.g., obstacle avoidance algorithms based on

potential fields.

Simulated vehicles in driving simulation concentrate on making the correct

decision. However, ALV concentrates not only on making the correct decision

but also on generating feasible trajectories. Moreover, the environment in which

the simulated vehicles are evolving is virtual and predictable and is thus simpler

than that which ALVs are in.

2.3.2 Domain-Independent Planning

Domain-independent planning, unlike its domain-dependent counterpart, concen-

trates on general models. By applying search-based algorithms, a plan of actions

can be developed.

Discussions regarding the use of domain-independent planning algorithms in

real-world problems have been covered by many researchers (e.g., Musliner et al.

27

2. RELATED WORK

(1995); Wilkins et al. (2001)). Generally speaking, real-world problems require

“numerical reasoning, concurrent actions, context-dependent effects, interaction

with users, execution monitoring, replanning, and scalability” (Wilkins et al.,

2001).

Because of its capability to handle the features above, HTN (Hierarchical

Task Network) has been demonstrated as a real-world problem solver (Wilkins

et al., 2001). It specifies the tasks that a decision maker or an agent should carry

out instead of specifying the goal state that the agent needs to drive the system

towards.

As elaborated in Ghallab et al. (2004), a Task Network contains a set of tasks

and a set of constraints:

1. A task is an action along with its executor - an agent or a set of agents.

2. precedence constraints : expressions used to specify the relationships be-

tween two time intervals. For instance, “task one before task two” means

that task one should be carried out before task two starts;

3. before-constraints : expressions used to specify the conditions that should

be true in the state before a task is carried out;

4. after-constraints : expressions used to specify the conditions that should be

true in the state after a task has been carried out;

5. between-constraints : expressions used to specify the conditions that should

be true in the state between two tasks.

An HTN method is a set of basic tasks used to perform a complex task, which

cannot be executed in one way, in one sequence or by one agent. It contains sub-

tasks and related constraints. Therefore, an HTN problem contains the initial

state, the initial task network, a set of basic actions and a set of methods. By

finding a set of basic actions that can decompose all complex tasks in the initial

task network into basic ones based on the set of methods, an HTN problem can

be solved and a plan can be generated. This plan will be a set of basic tasks with

relevant constraints, e.g., precedence constraints and before-constraints. Hence,

28

2.3 Automated Planning

by having the final task network based on decomposition, an agent or a set of

agents can be notified of what should be done (actions/tasks) and when these

tasks should be carried out (before-constraints and precedence-constraints).

Many HTN-based planners have been developed from as early as the 1970s:

NOAH (Sacerdoti, 1975), NONLIN (Tate, 1977), SIPE-2 (Wilkins, 1991), O-

Plan (Currie & Tate, 1991), O-Plan2 (Tate et al., 1994), UMCP (Erol et al.,

1994) and SHOP2 (Nau et al., 2003). They have been used to tackle real-world

problems, e.g., in Drabble et al. (1997), O-Plan was used to support spacecraft

assembly, integration and verification. However, planner users need to work out

a description of the domain of interest and a complete list of available tasks,

methods, before-constraints, etc. in order to indicate what to plan on and how

to plan. This process can be time-consuming.

In Morisset & Ghallab (2008), HTN was used to build robots’ skills, which can

be further decomposed into low-level actions available for the robot. However,

this HTN-planner for skills lacks a temporal reasoning algorithm, although it

does demonstrate the possibility of using HTN to guide robots’ task selection

in real-world problems. Hadad et al. (2003) developed an easy-to-use temporal

reasoning algorithm to deal with cooperative planning and scheduling. A plan of

actions containing temporal information and parallel actions can be generated.

A scheduling process is then used to make sure that the maximum lateness of

a plan S is less than or equal to zero. The lateness of a plan is calculated as

maxi{fβi − dβi}, where fβi refers to the finish time of the execution of action

βi ∈ S and dβi refers to the proposed deadline of action βi.

Hadad et al. (2003) divided actions into two categories: basic and complex.

A recipe is set of basic actions that can be carried out to finish a complex action.

Agents need to finish a complex action called α, whose recipe can be as illustrated

in Figure 2.7, indicating a set of basic actions that are needed to finish action α.

T1 represents action β1 carried out by agent no.1; T2 represents action β2 carried

out by agent no.2 and T3 represents action β3 carried out by agent no.1.

There are also some temporal constraints. For instance, some example con-

straints from Hadad et al. (2003) can be used, such as:

• Precedence Constraints:

29

2. RELATED WORK

α

β
1

β
2

β
3

Figure 2.7: Recipe Tree of Top Action α

– β1 before β2;

– β1 before β3;

• Metric Constraints:

– 0 minute 6 start time of T3 - finish time of T1 6 60 minutes;

That is,

• 0 6 sβ3 - fβ1 6 60.

A temporal constraint graph Grα can be established as illustrated in Fig-

ure 2.8(a) by using all the metric constraints from Hadad et al. (2003). sαplan

represents the instant when the planning begins.

Then temporal reasoning on Grα can be based on the Floyd Warshall algo-

rithm (Cormen et al., 2001), which will generate a new graph from Figure 2.8(a)

to Figure 2.8(b). If the plan is inconsistent (minimum distance between the same

node in the graph is smaller than zero), a backtracking algorithm will be invoked

to delete newly added recipes and build another plan based on new ones. The

scheduling component will try to schedule those actions based on the lateness and

notify the planning algorithm if the plan has failed because of a lateness greater

than zero. Because the planning algorithm sends out actions to scheduling com-

ponents before the whole plan finishes, the planning component will not need to

regenerate the whole plan if backtracking is needed to cope with failures.

Although the algorithm from Hadad et al. (2003) lacks pre-conditions or

before-constraints, which are useful in driving simulation to adopt event-driven

coordination, the temporal reasoning procedure with dynamic action planning

30

2.4 Knowledge Bases

fβ
1

Sβ
1

sαplan

Sα

Sβ2
Sβ3

fβ2
fβ3

fα

[0, 210]

[10, 10]

[120, 120]

[0, ∞]

[0, ∞] [0, 60]

[0, ∞][5, 235]

[0, ∞] [0, ∞]

[0, 150]

[60, ∞]

[0, 210]

fβ
1

Sβ
1

sαplan

Sα

Sβ2
Sβ3

fβ2
fβ3

fα

[0, 110]

[10, 10]

[120, 120]

[0, 110]

[0, 110] [0, 60]

[0, 140][5, 90]

[0, 85]

[0, 140]

[15, 150]

[60, 180]

[125, 210]

4:00
4:00

(a) (b)

Figure 2.8: Temporal Constraint Graph Grα from (Hadad et al., 2003)

generation is still inspiring, as it interleaves action planning with real-time schedul-

ing in an easy-to-use manner.

2.4 Knowledge Bases

Human-readable Knowledge Bases exist everywhere: journal articles, conference

papers, books, etc., so when it comes to building a Knowledge Base, a combina-

tion of human-readable knowledge is a good start. In Fisher et al. (2010a), some

background knowledge regarding driving simulation has been given. A Wikipedia

31

2. RELATED WORK

of Driving (Driving Wiki, 2010a) was also developed to share some thoughts in

driving simulation ranging from standard scenarios to standard measures, e.g.,

mean speed. However, as some informal ways of summarising or sharing knowl-

edge, both have the following shortcomings:

• No uniform definitions of terms: terms have been defined for specific ap-

plication and no standard has been worked out, e.g., the definition of “sce-

nario”(Fisher et al., 2010b);

• No extraction of essential knowledge: knowledge is expressed in plain lan-

guage so an additional process is needed to extract relevant information

from those descriptions, especially when it comes to scenario sharing among

different groups;

• No mechanism of machine processing: knowledge is human-readable but

not machine-processable.

Knowledge in driving simulation covers a variety of areas such as road safety

and simulation technology, so extracting relevant information in driving simu-

lation is hard. None of the representation methodologies mentioned in Section

2.2.1 are suitable to encode a human-readable knowledge base, because they are

programming language-based, thus not suitable for some people who have no

programming background.

When any knowledge in driving simulation is used, e.g., different research

organisations are working on the same project, the communication will be based

on several discussions and recognised knowledge sharing schemes, e.g., tables,

figures and so on. In addition, it is impossible for a machine to process such

information in a simple fashion.

By contrast, different machine-readable programming languages for scenario

orchestration have been developed since 1990s, e.g., SSL (Wolffelaar et al., 1999),

but they have the same defect: when they specify actions for simulated vehicles,

they always include driving context with what to do, how to do and when to do it

in one file. In this case, a machine-readable Knowledge Base has much platform-

dependent information. It is not easy to read such a Knowledge Base and extract

32

2.4 Knowledge Bases

relevant scenario information. Hence, a programming language-independent way

could be used in this circumstance.

Ontologies have been used for a variety of purposes (Corcho et al., 2003),

e.g., natural language processing (Dahlgren, 1995). They can be used to describe

concepts and their relationships in a domain of interest. There are three major

components in an ontology: classes, properties and individuals.

Classes specify the concepts in a domain such as Vehicle or Pedestrian. Narrowed-

down concepts can be described by subclasses, e.g., Car is a subclass of Vehicle.

Individuals specify the specialised instances of classes. For instance, an indi-

vidual of the class Vehicle can be vehicle XXXXXX , which is a vehicle with a

license plate number “XXXXXX”.

Properties specify the characteristics of classes, therefore their individuals

should be endowed with the same features. For instance, property hasColour

can be used to indicate the colour of a vehicle, which is an individual of the

class Vehicle. There are four types of properties (Noy & Mcguinness, 2001): 1)

Intrinsic properties, e.g., hasMaxSpeed of a vehicle; 2) extrinsic properties, e.g.,

hasVehicleModel of a vehicle; 3) parts, e.g., hasLane of a road and 4) Relation-

ships between two individuals from two classes, which are not necessarily the

same. Therefore, a property can have two types of values: individuals or value

types. An object property specifies the relationship between two individuals

and a data property specifies the relationship between an individual and a data

type, which can be a string, Boolean, float, etc. For instance, hasMaxSpeed is a

data property that specifies the relationship between a vehicle and a float value;

hasLane is an object property that specifies the relationship between a road and

a lane.

Properties also have a domain and a range. The domain of a property indicates

the class that the property describes. The range of a property indicates the

allowed classes that the related individuals can be instantiated from. For instance,

the domain of property hasLane can be the class Road , while the range of hasLane

can be the class Lane.

Property cardinality is proposed to describe how many values a property could

have, so a property can be used more than once to describe a class, e.g., hasLane

can be used more than once to specify the lanes that a specific road possesses.

33

2. RELATED WORK

As a way of describing concepts and their relationships in a domain of interest

in a programming language-independent and logic-based manner, ontologies have

been used to:

• identify common knowledge in a domain (knowledge representation);

• share common knowledge in a domain (information exchange) and,

• reason about or analyse domain knowledge (knowledge reasoning).

As a result, ontologies have been used to model the driving context for two

reasons: 1) representing driving context for information exchange between vehi-

cles (Knowledge Representation) and 2) assisting decision making by providing

spatio-temporal reasoning (Knowledge Reasoning). Fuchs et al. (2008) elabo-

rated a model for scene representation for DAS (Driver Assistance Systems) and

included not only spatio-temporal representation, but also some additional infor-

mation such as traffic rules. However, this ontology is still in its early phase as

“The ontology was developed with the main intention of providing a framework

for description of traffic scenarios...” (Fuchs et al., 2008). In addition, ontologies

can also be used to assist path planning as demonstrated in Provine et al. (2004)

to assist obstacle reasoning. Recently, Hamilton et al. (2013) used ontologies to

assist multi-vehicle collaboration in route determination, in order to deal with

intersection negotiation and safe-headway maintenance.

2.5 Summary

As discussed in Section 2.2.1, repeatability is needed, so orchestrating scenarios

with human-crated, pre-scheduled action sequence is acceptable and should not be

a problem, however, if a failure happens, there is no way to restore the situation

as those simulated vehicles are not aware of what they should do. They are

not autonomously navigating in the world because they need to generate some

interactions.

Simulator users tend to specify every aspect of the scenario and assume that

all the simulated vehicles can be prepared by pre-defined instructions and always

34

2.5 Summary

appear in the right place, or their trajectories after creation can be easily ma-

nipulated. Hence, not many researchers have attempted to answer the question

of “if we really want realistic scenarios, what do we really need?” The answer

should not be autonomous simulated vehicles that can be controlled when some

conditions are true, but the ones that know their tasks and finish the scenario

autonomously by carrying out those tasks. Although the algorithms mentioned

in Section 2.3.1 are useful in modelling the decision making process of a virtual

driver that can be embedded into the simulated vehicles, they still lack the mech-

anism of being intelligent enough to “understand” interactions and commit to

them. As a result, this research attempts to find a way to let simulated vehicles

“know” what to do, so that they can prepare for and finish what they should do.

Moreover, scenario implementation is associated with specific platforms, which

makes the sharing of scenarios difficult, as scenario descriptions need to be ex-

tracted and reprogrammed in order to reuse them in a different simulator. Fur-

thermore, as the simulated vehicles need to know what is “known” to them, a

Knowledge Base is needed.

A language-independent Knowledge Base is desired with a focus on the driving

context and the instructions simulated vehicles should follow during a scenario,

i.e. relevant knowledge for scenario-directed driving. This Knowledge Base can

be a start to make the scenario knowledge reusable among different simulation

software regardless of any specific platforms.

This research will explore the application of HTN to utilise a pre-scheduled

plan for interactions. Simulated vehicles’ behaviours can, therefore, be regulated

to generate required interactions with the capability of retrying those interactions

if failures occur. This research will also examine the application of ontologies

in scenario orchestration to provide a standard scenario description, containing

contextual information useful for decision making based on proposed interactions.

Chapter 3 will introduce a framework developed to deal with the scenario or-

chestration limitations discussed in this chapter, and introduce the pre-scheduled

plan. More details will then follow regarding some major components of the

framework. Verifications will follow those details.

35

2. RELATED WORK

36

Chapter 3

Framework Description - SOAV

I imagine that right now, you’re feeling a bit like Alice. Hmm? Tum-

bling down the rabbit hole?

- The Matrix

3.1 Introduction

This research attempts to follow a path that will lead to a standardised Knowl-

edge Base based on an ontology, an algorithm based on HTN (Hierarchical Task

Network), a driver model equipped with this algorithm and finally some other

modules that support the driver model, e.g., a module that interprets orders from

the driver model. The path is illustrated in Figure 3.1.

This research was planned in four phases, the initial Literature Review phase

has been covered in the previous chapter. The subsequent Solution Prototyping

phase identifies some concepts that can shape the design of the algorithm and

a driver model that can be used to support this algorithm for testing. The

Solution Generation phase utilises the concepts and the driver model to develop

a decision making algorithm along with some other supporting modules. The final

Verification Phase uses some experiments to verify the solution. As a result, this

plan should lead not only to an algorithm, but also to a framework for scenario

orchestration in driving simulation. In this Chapter, the following contents will

be introduced sequentially:

37

3. FRAMEWORK DESCRIPTION - SOAV

L
ite

ra
tu

re
 R

e
v

ie
w

S
o

lu
tio

n
 G

e
n

e
ra

tio
n

S
o

lu
tio

n
 P

ro
to

ty
p

in
g

G
e

n
e

ra
l Is

s
u

e
s
 o

f

S
c
e

n
a

rio
 O

rc
h

e
s
tra

tio
n

 in

D
riv

in
g

 S
im

u
la

tio
n

A
u

to
m

a
te

d
 P

a
n

n
in

g

K
n

o
w

e
ld

g
e

 B
a

s
e

C
o

n
c
e

p
ts

 th
a

t

G
u

id
e

 th
e

 R
e

s
e

a
rc

h

In
te

llig
e

n
t D

riv
e

r

"T
h

e
 M

a
trix

" M
e

ta
p

h
o

r

N
A

U
S

E
A

(a
u

to
N

o
m

o
u

s
 lo

c
A

l m
a

n
o

e
U

v
re

a
n

d
 S

c
e

n
a

rio
 o

rc
h

E
s
tra

tio
n

b
a

s
e

d
 o

n
 a

u
to

m
a

te
d

 a
c
tio

n
 p

lA
n

n
in

g
)

O
S

O

(O
n

to
lo

g
y
 fo

r S
c
e

n
a

rio
 O

rc
h

e
s
tra

tio
n

)

F
ra

m
e

w
o

rk
 S

O
A

V

(S
c
e

n
a

rio
 O

rc
h

e
s
tra

tio
n

w
ith

 A
u

to
n

o
m

o
u

s
 s

im
u

la
te

d

V
e

h
ic

le
s
)

S
u

p
p

o
rtin

g
 M

o
d

u
le

s
 (e

.g
., S

M
M

)

S
A

IL

(S
c
e

n
a

rio
-A

w
a

re
 d

rIv
e

r m
o

d
e

L
)

V
e

rifi
c

a
tio

n

E
x
p

e
rim

e
n

ts

O
S

O
 E

v
a

lu
a

tio
n

F
igu

re
3.1:

T
h
e

P
ath

of
R

esearch

38

3.1 Introduction

1) The scope and objectives of the research will be elaborated;

2) Some concepts that are the basis of this research are introduced, e.g., the

concept of ”Assignment” has shaped the methodology in terms of how to

design the decision making algorithm in the intelligent virtual driver and how

to describe the scenario requirement to the virtual driver;

3) The design of an intelligent virtual driver is then included. An intelligent

virtual driver is needed to provide a decision making algorithm with relevant

information, e.g., how to perceive information, how to interpret this informa-

tion, how to change the state of the virtual world;

4) The framework SOAV (Scenario Orchestration with Autonomous simulated

Vehicles) is finally introduced. It includes four major components: an Ontol-

ogy for Scenario Orchestration (OSO), virtual driver(s) equipped with SAIL/-

NAUSEA and supporting modules named Scenario Management Module (SMM)

and Scenario Observer. The virtual driver in SOAV contains the essential algo-

rithm of this research - NAUSEA (autoNomous locAl manoeUvre and Scenario

orchEstration based on automated action plAnning). In order to facilitate

NAUSEA, a driver model SAIL (Scenario-Aware drIver modeL) was designed

to adapt and support NAUSEA. When scenarios are running, a virtual driver

equipped with SAIL/NAUSEA can drive one vehicle in the simulation. As the

data source for the virtual driver, OSO is used to describe scenarios formally

with scenario requirements and relevant driving context. SMM is the interface

between the virtual driver and the simulation software and is used to interpret

orders from the virtual driver, allowing the driving simulation software to ex-

ecute those interpreted orders. Scenario Observer is used to record the data

transferred within SOAV. SMM and Scenario Observer will be introduced in

this chapter, while OSO will be introduced in Chapter 4 and SAIL/NAUSEA

will be introduced in Chapter 5.

39

3. FRAMEWORK DESCRIPTION - SOAV

3.2 Scope and Objectives of the Research

Scenario orchestration is a difficult problem. For realism, simulated vehicles

should be able to show rich behaviours according to specific circumstances; for re-

peatability, simulated vehicles should be controlled and predictable so that every

single run of the scenario can produce similar situations for participants. Failures

can occur if those simulated vehicles show inappropriate behaviours and make

the measurements invalid, or the participant reacts in an unpredictable manner

and destroyed the initial design of the scenario.

The causes of failures can range from implementation, such as memory leak of

simulation software due to program bug, to scenario design, such as the triggers

used to fire an interaction never execute, so it can be impossible to list all causes

of failures and thus argue what types of failures can be fixed in this research.

However, if an assumption can be made that the interactions proposed by the

scenario designers are appropriate for specific measurements, e.g., an interaction

caused by a breaking-down leader vehicle ahead of the participant’s vehicle is

appropriate for collecting measurement of driver reaction time, the outcomes of

failures can be:

1) interruption of the whole scenario, in which case the program bugs should be

examined and fixed;

2) the triggers are fired, but no measurements are valid. For instance, the par-

ticipants react in another way that is not anticipated by scenario designers;

3) the triggers are not fired, and no measurements are taken. For instance, the

participants do not want to be engaged or react in another way.

This research is concerned about the last two outcomes and in either case, a

mechanism is needed to predict a failure state after human participants exposed

unexpected reactions. This state becomes true when a failure happens and corre-

sponding mechanism will be needed to re-create the interaction after the failure.

This failure state has been adopted as a piece of contextual information. In this

case, there is no need to specify all possible responses from human participants

and causes of failures.

40

3.2 Scope and Objectives of the Research

This research starts from here and put a focus on not only authoring scenarios

before hand, but also generating scenarios, particularly the interactions, in an

automated manner with the possibility of recovering scenarios from failures by

considering relevant contextual information of an interaction.

Based on the research focus, three assumptions have been made:

1) the simulated vehicles are realistic enough for the verification of the framework

developed in this research, i.e., they have already been equipped with sufficient

tactical behaviours such as overtaking;

2) the traffic flows manipulated for each scenario will not be affected by SOAV

and are sufficient for desired ambient traffic flow rate, vehicle type distribution

and interactions and,

3) interaction required for measurements are independent, so recruiting simulated

vehicles for each interaction with the participant’s vehicle can be performed

by considering only the successive interaction.

This research is also not concerned with answering every single question that

could arise in orchestrating scenarios:

1) Which vehicles should interact with the participant? (actor management prob-

lem);

2) How should those vehicles go to their proposed position? (actor preparation

problem) and,

3) How should those vehicles be instructed what to do when interacting with

participants? (scenario execution problem).

Although the actor management, actor preparation and scenario execution

procedures have been included in the algorithm developed in this research, the

former two modules will not be covered thoroughly. This research will concentrate

on finding a basis for representing contextual information for interactions and

automated planning based on those information in scenario orchestration. It will

focus on controlling one simulated vehicle in a single interaction. In general, based

41

3. FRAMEWORK DESCRIPTION - SOAV

on the two aims specified in Chapter 1, the specific objectives of this research

are:

1) to develop a mechanism that can 1) provide information of the potential par-

ticipant’s reactions that could cause failures and 2) guide the scenario orches-

tration based on the contextual information for interactions in order to answer

the following questions:

• which simulated vehicle should be involved in the coming interaction?

• where should the simulated vehicles be driven to?

• what should be done in order to generate the interactions?

• when the interactions should be generated, succeed or failed?

• what measurements should be collected?

2) to develop a programming language-independent and logic-based scenario rep-

resentation mechanism, which can be used to encode the main contextual infor-

mation. This mechanism should be human-readable and machine-processable;

3) to recruit simulated vehicles dynamically to generate interactions with the ca-

pability of re-generating any failed interactions in a particular scenario, which

is regarded as the ability of replanning;

In order to achieve these objectives, this research first identified some concepts

as specified in next Section.

3.3 Main Concepts

3.3.1 Virtual Driver

A Virtual Driver in this research indicates an intelligent controller that can be

used to make driving decisions or carry out pre-scheduled actions based on sce-

nario requirements.

42

3.3 Main Concepts

Driving Decisions indicate long- or short-term decisions regarding strategic,

tactical or operational actions that should be undertaken to drive safely

and satisfy scenario requirements. The actions that this research will use

are: overtaking, speed adaptation and lane-changing;

Pre-scheduled Actions indicate some actions required to change the states of

objects in driving simulation in order to generate some interactions, e.g.,

request to “set the desired speed of the simulated vehicle no.1 as 30 mph”

or request to “place cones in the road segment whose id is ‘r3.2’ ”;

That is, this Virtual Driver should be able to interfere with the simulated ve-

hicles’ autonomous decision-making process and change the states of some objects

in driving simulation, rather than the simulated vehicles themselves.

3.3.2 Time

Time can be included in terms of Instant (specific time point) and Interval (period

between two Instants), which are all based on the time in the simulation. It should

be provided in order to:

• evaluate the action plan for scenario orchestration to provide information

regarding the proposed start or finish times of some actions;

• evaluate the suitability of particular simulated vehicles at the beginning

of any scenario and decide which one should be controlled by the Virtual

Driver and,

• evaluate if the action has been executed by the Virtual Driver in time.

No matter what questions can be answered by adopting temporal concepts,

time should be used as a reference in driving simulation to regulate simulated

vehicles’ behaviours.

43

3. FRAMEWORK DESCRIPTION - SOAV

3.3.3 Monitor System

Monitors are used to supervise the state variables in simulation, e.g., vehicles’

speeds and positions. A Monitor System can be developed based on the work

from Willemsen (2000), which identified four kinds of Monitors as illustrated in

Figure 3.2.

when every

wheneveraslongas

cycliconce

state transition

state interval

Figure 3.2: Categories of Monitor, reillustrated from Willemsen (2000)

When The Monitor will be activated once if its condition is satisfied. The con-

dition is a state transition.

Every The Monitor will be activated repeatedly if its condition is satisfied. The

condition is a state transition.

Aslongas The Monitor will be activated during the time when its condition is

satisfied;

Whenever The Monitor will be activated repeatedly if its conditions is satisfied.

As a result, the Monitors can supervise state transitions happening at any

Instant or state status during any Interval. The four keywords representing the

four types of Monitors will be called Monitor operators in this research.

44

3.3 Main Concepts

3.3.4 Flock and Ego-Vehicle/Flock

A Flock refers to a platoon of simulated vehicles. Its leader’s states, e.g., position,

speed, etc., will be used to represent the Flock’s states in this research. A scenario

can have several Flocks.

The simulated vehicle or Flock the Virtual Driver is controlling is termed

the “Ego-vehicle” or the “Ego-flock” respectively. The leader of the Ego-flock is

driven by a Virtual Driver, who will manage that Flock with appropriate orders.

Other members of the Ego-flock will simply adopt the same orders from the

Virtual Driver.

3.3.5 Action

An Action is what a Virtual Driver can do to change the state of the simulated

world. Actions are divided into two categories: High-Level and Low-Level.

A Low-Level Action is defined as an Action that can only be performed in

one way, one sequence and by one entity. Examples of Low-Level Actions are:

“Set Steering Angle”, “Set Speed”, “Set Acceleration Rate”, “Set Action Lane”,

“Create an Object” (e.g., a vehicle or a road segment), “Set Action Status”, etc.

High-Level Actions need Recipes (Hadad et al., 2003), each of which is a

set of Low-Level Actions that specify how to perform a High-Level Action. For

instance, “Block” is a High-Level Action that involves three simulated vehicles

that pass the participant’s vehicle to prevent it from overtaking its leader vehicle.

Each Action contains some information that can be used by a Virtual Driver:

1) the name/id of the Ego-vehicle/flock; 2) the deadline of the Action; 3) the

Duration of the Action; and 4) the release time of the Action. Moreover, each

Action has a type and an Action profile, e.g., “change desired speed to 10 mph”

is an Action whose type is “Low-Level” and “Adapt-Speed”. It has an Action

profile of setting “Desired Speed” with a value of “10.0” (mph).

3.3.6 Trigger

Monitors mentioned in Section 3.3.3 can be used to establish Triggers: Pre-

conditions, Success Conditions and Failure Conditions.

45

3. FRAMEWORK DESCRIPTION - SOAV

Because of the importance of Pre-conditions that can make a Virtual Driver

perform particular Actions when some conditions are satisfied, the word Monitor

has been used to specifically refer to Pre-conditions. Success Conditions and

Failure Conditions, on the other hand, specify Triggers that can indicate whether

or not an Action has succeed and failed respectively. All three kinds of Triggers

should include the following information:

• if the Trigger should dictate a state or an event (state transition).

• which object the Virtual Driver should supervise, e.g., a simulated vehicle,

urban area, or a Flock;

• which state variable of the object should be dictated and compared to some

threshold value;

• what threshold value should be compared to and,

• how to dictate the identified state variable: when, whenever , aslongas ,

every , see Figure 3.2 on Page 44 for more details.

Moreover, as there are some common events in simulation, e.g., a vehicle enters

or leaves a zone, Triggers can also include some Trigger type, which can be: “Cross

(a pre-defined line)”, “Enter (a pre-defined zone)”, “Exit (a pre-defined zone)”

or “Timer” (Willemsen, 2000).

3.3.7 Formation Position

Inspired by El Hadouaj et al. (2001), the concept of Formation Position (Figure

3.3) has been proposed to specify the spatial goal of a Virtual Driver. For instance,

if the Virtual Driver’s spatial goal is “Follower”, then he/she will try to drive the

Ego-vehicle/flock to the “Follower” position as specified in Figure 3.3. Because

Formation Position is a set of pre-defined relative local positions around the

simulator driver/participant’s vehicle, no assumption has been made regarding

the absolute spatial relationships between them. However, according to specific

applications, values can be assigned in order to indicate how far those positions

should be. For instance, 200 metres can be used to indicate the optimal distance

between the “Leader” position to the Participant’s vehicle’s position.

46

3.3 Main Concepts

Figure 3.3: Formation Position

3.3.8 Situation

Situation refers to some common interactions that a participant will be exposed

to, which involve more than one simulated vehicle, e.g. a “Blocking” Situation in-

volves one simulated vehicle as the leader of the participant’s vehicle and another

three ones as a Flock that prevents the participant from overtaking the leader.

3.3.9 Role Matching

This is a process used to decide which simulated vehicle a Virtual Driver should

control. It is determined by required vehicle type, Formation Position and the

required speed. A successful Role Matching should identify any simulated vehicles

that 1) are the required vehicle type, e.g., Volvo S40; 2) are at or near the required

Formation Position and 3) have sufficient maximum speed that can reach the

required Formation Position in time.

3.3.10 Assignment

An Assignment is the task that a Virtual Driver needs to carry out. Every

scenario contains at least one Assignment. An Assignment includes three kinds

of information: general information, Triggers and Assignment-actions.

Firstly, a Virtual Driver should know the following facts:

47

3. FRAMEWORK DESCRIPTION - SOAV

• the state of an Assignment, which can be:

Initial indicates that the Triggers in the Assignment should not be moni-

tored at present;

Pending indicates that the Triggers in the Assignment are being dictated

or should be dictated from the next decision loop;

Failure indicates that this Assignment is failed because of the failure of its

Assignment-action(s) or the Failure Conditions are true;

Success indicates that this Assignment is now finished and has succeeded;

• any requirements regarding the Ego-vehicle/flock, e.g., required vehicle

type;

• the spatial goal of the Virtual Driver where the Ego-vehicle/flock should

be driven to before the execution of some Assignment. This spatial goal is

based on the Formation Position in Figure 3.3;

• how many times the Virtual Driver can try to finish this Assignment;

• the pre-defined Ego-vehicle/flock for the Assignment. If it is not specified,

the Virtual Driver will look for candidates dynamically.

Secondly, a Virtual Driver should know any Triggers that include 1) the Mon-

itor that is used to activate Assignment-actions and 2) the Success and Failure

Conditions that indicate the accomplishment or abortion of its parent Assign-

ment.

Finally, a Virtual Driver should know what Actions to undertake in an As-

signment, these are detailed in the Assignment-actions. Assignment-actions can

be driving actions, e.g., change-lane, or non-driving Actions, e.g., “create new

vehicle”, “collect driver’s reaction time (braking)”, “create a road segment”, “ac-

tivate traffic flow one”, “activate Assignment two” or “activate Situation one”,

etc. Assignment-actions can be triggered and executed once unless a failure has

been identified. Repetition of Assignment-actions is possible by adopting an in-

dicator stating how many times the Assignment-action can be repeated, but in

this research, this is ignored.

48

3.3 Main Concepts

3.3.11 General Plan

A Virtual Driver should have some plan to guide its behaviours so a concept of the

General Plan is introduced. It is a temporal constraint graph Grα (e.g., Figure

2.8 on Page 31) and is built from several pre-defined Actions and Assignments.

It contains metric and precedence constraints. For instance, “Action α before

Action β” is a precedence constraint; “ start time of β - finish time of α 6 100

(seconds)” is a metric constraint. There are two types of metric constraints:

duration and delay. Delay is the period between two Instants that belong to

different Intervals, while duration is the period between two Instants that are

within the same Interval.

In every scenario, each Virtual Driver needs to finish a top High-Level Action

α that can be either Perform-scenario or Free. Perform-scenario has only one

Recipe that contains four sub-Actions, namely, β0, β1, β2 and β3 as shown in Fig-

ure 3.4. Free makes the Virtual Driver ignore any Assignments and autonomously

navigate the world, in which case the route or the destination will be based on a

pre-defined route. Recipes are not needed for Free.

Figure 3.4: Action Recipe for the Virutal Driver (Perform-sceanrio)

β0 (Get-to-the-initial-state) adopts the initial state (e.g., initial speed, initial

target speed etc.). β1 (Generate-formation) means that a Virtual Driver should

navigate the Ego-vehicle/flock to the proposed Formation Position in order to

perform the corresponding Assignment-actions. Because the recipe of β1 will

change according to the dynamic environment, this Action will not be further

divided into sub-Actions, but will be monitored throughout the scenario in order

to make sure that the Ego-vehicle/flock can get to the Formation Position in time.

49

3. FRAMEWORK DESCRIPTION - SOAV

β2 means Perform-assignment Action, and can be further divided into several

Assignment-actions, which are represented as γ0 through γn (n is the number of

Assignment-actions a Virtual Driver needs to carry out). Each Assignment-action

(γ0 through γn) is contained in a corresponding Assignment. β3 (Clean-up) should

be specified by experimenters as an Assignment-action in most circumstances;

however, it can be an autonomous Action by changing it to the top-Action of

Free. In this research, the definition of “Recipe” has been expanded as it also

has some High-Level Actions that will not be further refined, i.e., β0, β1 and β3.

Moreover, all Assignment-actions have been regarded as Low-Level Actions in his

research.

In addition, the General Plan can be a centralised plan for one Virtual Driver

or can be a distributed plan for several Virtual Drivers. In the latter case, the

Assignment-actions in the General Plan can be based on High-Level Actions in-

volving different simulated vehicles, each of which will maintain their own General

Plan based on the High-Level Action passed to them. This research will deal with

one General Plan for one Virtual Driver only and the Virtual Driver will control

Ego-vehicle/flock in a centralised manner.

3.3.12 Scenario

A scenario is a pre-defined environment and situation(s) that experimenters need

a participant to experience. It includes the physical scene, pre-defined traffic

flow, simulated vehicles’ interactions with the only one participant’s vehicle and

measurements that need to be collected.

The interactions in a scenario are generated by the Virtual Driver, who

changes the state of the environment by controlling simulated vehicles or mod-

ifying the physical scene, e.g., place cones on the road. In the former case, the

Virtual Driver controls the Ego-vehicle/flock to produce interactions with the

participant’s vehicle and in the latter case, the Virtual Driver will request corre-

sponding facilities to modify the physical scene.

A scenario can have several Assignments performed by the Virtual Driver, so

a scenario can have different interactions, aiming at providing individual mea-

surements in one trial or run. For instance, a particular scenario can have two

50

3.4 Intelligent Driver

interactions, the participant should first be blocked by a lorry at some position

for 10 seconds, after which, the participant should experience a five minutes’ free

drive. The second interaction should happen right after the free drive: a lead car

should break down and force the participant to brake.

3.4 Intelligent Driver

3.4.1 Design Goal

In order to develop an architecture that can adopt and then test the decision

making algorithm for this research, some principles have been adapted from Albus

(1999), who mentions four axioms of intelligent machines:

Axiom 1 “The functional elements of an intelligent system are behaviour gen-

eration, sensory perception, world modelling, and value judgement.”

Axiom 2 “The functional elements of an intelligent system are supported by

a knowledge database that stores a priori and dynamic information about

the world in the form of state variables, symbolic entities, symbolic events,

rules and equations, structural and dynamic models, task knowledge, signals,

images, and maps.”

Axiom 3 “The functional elements and knowledge database can be implemented

by a set of computational modules that are interconnected to form nodes in

a control system architecture.”

Axiom 4 “The complexity inherent in intelligent systems can be managed through

hierarchical layering.”

Hence, as an intelligent machine who can make decisions based on dynamic

driving context and Assignments, the intelligent virtual driver in this research

should satisfy the axioms mentioned above according to some specific needs from

the area of driving simulation as specified below:

51

3. FRAMEWORK DESCRIPTION - SOAV

3.4.1.1 Axiom 1

Behaviour Generation A decision making algorithm based on HTN (Hierar-

chical Task Network) can be developed to generate and use the General

Plan for the Virtual Driver;

Sensory Perception Information regarding the dynamic driving context can

be modelled. The intelligent machine, which is the Virtual Driver, should

be able to interpret the information and make decisions;

World Modelling A world model can be maintained in this Virtual Driver so

that relevant knowledge can be updated/maintained, queried and be used

for decision making.

Value Judgement Because the Value Judgement element can not only evaluate

the cost, risk and benefits of Actions and the General Plan, but also the

reliability of information received, this procedure is of interest to driving

simulation. However, this aspect can be ignored because 1) evaluation of

the cost, risk and benefits of Actions and the General Plan for behavioural

conflict is not the focus of this research and 2) information received by the

Virtual Driver is assumed to be reliable.

3.4.1.2 Axiom 2

Knowledge Base A Knowledge Base can be developed to provide the informa-

tion regarding Assignments and related driving contexts in driving simula-

tion, especially for scenario orchestration purposes.

3.4.1.3 Axiom 3

Interconnected Modules In order to adopt findings from several areas, e.g.,

psychology, computer science, this Virtual Driver can be designed in a mod-

ular manner with the possibility of extension.

52

3.4 Intelligent Driver

3.4.1.4 Axiom 4

Hierarchical Layering This Virtual Driver can have hierarchical layers to man-

age the complexity in driving and related Assignments, e.g., forcing the

Ego-vehicle to decelerate in order to interact with the participant’s vehicle.

3.4.2 Driver Model

A PDA(Perception-Decision-Action) architecture from Lacroix et al. (2009) has

been considered first to be the basis of a virtual driver as illustrated in Figure 3.5.

This PDA architecture also contains Michon’s model (Michon, 1985) for decision

making, which can be used to build the hierarchical layers for decision making as

required in Axiom 4.

Figure 3.5: PDA (Perception Decision Action) Architecture in Lacroix et al.

(2009)

Perception can be adopted to host the element of Sensory Perception. Decision

can be adopted to host the element of Behaviour Generation. Action can be

adopted to execute the decisions made for driving or related tasks. However, as

PDA architecture does not have an explicit module for World Modelling, this PDA

architecture can be further developed with a Cognition module that is inspired

by the Cognition ability of a human driver, as illustrated in Figure 3.6.

53

3. FRAMEWORK DESCRIPTION - SOAV

Figure 3.6: Driver Abilities(Peters & Nilsson, 2007a)

As a result, the Decision layer has been modified to become a Cognition layer,

which can not only have a Memory layer for World Modelling, but also a Decision

Making layer for handling driving Actions and Assignments.

The driver model, therefore, to be used in this research is illustrated in Figure

3.7. It can be used to design an intelligent Dirtual Driver. In Figure 3.7, relation-

ships between the driver model and the elements mentioned in this section are

also indicated. It should be noted that the Knowledge Base is a separate module.

3.5 Framework Description

SOAV is a framework used to create a computing environment for driving simula-

tion in order to orchestrate scenarios with autonomous simulated vehicles. It was

formed in order to support and test a decision making algorithm, which needed a

driver model to provide it with data for decision making and module for decision

execution. This driver model was used to develop a Virtual Driver. Some other

facilities were also implemented in order to control the simulated vehicles in the

simulation according to the decisions sent from the Virtual Driver.

In the following sections, SOAV will be introduced and more details regarding

some of its components will be followed in successive chapters.

54

3.5 Framework Description

Intelligent Machine

Behaviour

Generation

Sensory

Perception

World

Modelling

Knowledge

Base

Interconnected

Modules

Hierarchical

Layering

Intelligent Driver

Knowledge Base for

Scenario Orchestration

Driving Context Scenario Requirements

Intelligent Driver Model

Cognition

Perception

Action

Memory

Decision Making

Figure 3.7: the Proposed Intelligent Driver

55

3. FRAMEWORK DESCRIPTION - SOAV

3.5.1 Components of SOAV

SOAV is generally divided into two parts: Offline and Online (Figure 3.8).

Offline Unit

Scenario Authoring with
OSO

in Protégé

Online Unit

The Sim
(The Matrix)

Rendering and Dynamic Facilities

SMM

(Neo)

Order Interpretation &

Execution

Inter-Process Communication Based on UDP (User Datagram
Protocol) packages

Smith

(Virtual Driver Controlling

Ego-vehicle/flock)

Instances of Smith

SDF
(Scenario Definition File)

Scenario Observer

Figure 3.8: Architecture of SOAV with Offline and Online Units

3.5.1.1 Offline Component

The Offline Component is in charge of describing scenarios using OSO (Ontology

for Scenario Orchestration) based on Protégé (Protégé, 2012), which outputs an

SDF (Scenario Definition File) with the RDF/OWL syntax recorded in an XML

file1. As how OSO is recorded does not affect the work in this thesis, RDF, OWL

and XML will not be introduced. Details of those languages can be found in

Hitzler et al. (2011).

1RDF is short for Resource Description Framework; OWL stands for Web Ontology Lan-

guage; XML stands for Extensible Markup Language.

56

3.5 Framework Description

Protégé is an ontology editor and knowledge acquisition system developed by

Stanford University and the University of Manchester. It is free, Open Source,

widely used and well supported, so Protégé has been chosen as the editor for

OSO and thus the scenario orchestration tool. Moreover, Protégé also provides

reasoners, e.g, HermiT1, to check a particular ontology’s subsumption: if one

class can be a subclass of another class or its consistency: if there are any classes

that cannot have any individuals.

OSO is used to model driving simulation, including the logical road network

and Assignments. It specifies concepts and their relationships in the driving sim-

ulation. Smith can therefore have a Knowledge Base for scenario orchestration,

which can also make the scenarios standardised, easier to share and maintain.

OSO is described in more detail in Chapter 5.

3.5.1.2 Online Component

The Online component contains three major modules and one optional module.

The four modules are described as below:

3.5.1.2.1 Virtual Driver (Smith)

Smith is the Virtual Driver in SOAV. He is equipped with a driver model

named SAIL (Scenario-Aware drIver modeL), which uses an algorithm named

NAUSEA (autoNomous locAl manoeUvre and Scenario orchEstration based on

automated action plAnning) to make decisions according to Assignments. A

running Smith is paired to a simulated vehicle in the Sim and committed to

Assignments throughout the scenario. Smith’s name has been borrowed from

“The Matrix” along with the related philosophy, so Smith is a male and he or his

will be used when necessary.

3.5.1.2.2 The Sim (The Matrix)

The Sim contains the vehicle dynamics and rendering facility for the simula-

tion. It updates simulated vehicles’ states every frame according to each one’s

autonomous driving behaviours and related parameters, e.g., desired speed. It

1http://protegewiki.stanford.edu/wiki/HermiT

57

3. FRAMEWORK DESCRIPTION - SOAV

also updates the participant’s vehicle’s states according to the driving instruc-

tions from the participant. It then update the graphics accordingly to display the

driving conditions. Moreover, the Sim needs to broadcast information of all ve-

hicles every frame and has been enhanced with a module named SMM described

below to receive and execute orders from Smith.

3.5.1.2.3 SMM (Neo)

SMM is short for Scenario Management Module, which is used to interpret

orders from Smith and execute them in the Sim. It has been developed as a

module within the Sim. Hence, when SMM receives orders from Smith, which

are termed Smith Orders, the Sim/SMM will activate the relevant process(es)

to handle those orders. The simulated vehicles’ behaviours or road conditions

(traffic flow or objects on the roads such as cones) will then be updated along

with the graphics. A Smith Order can include goal lane to change to, target

speed, etc.

3.5.1.2.4 Scenario Observer

This module is a “listening” module that receives all the data transferred

within SOAV. It can visualize and indicate what is happening within SOAV.

However, as a GUI is not one of the research goals, this module simply records

the data with a visualization of the frequency and number of data packages.

3.5.2 Framework Workflow

As illustrated in Figure 3.9, the scenario description is first generated with in-

stantiated individuals based on classes and properties in OSO. Protégé will then

export those individuals along with classes and properties to an SDF (Scenario

Definition File).

Smith will then parse the SDF and store the information, which is the initial

World Model for the whole simulation. Role Matching will take place if scenario

Assignments are found in the World Model. After the Ego-vehicle/flock is found

and ready, Smith will then try to finish the scenario according to Assignments. In

SOAV, Entity Creation/Destruction is handled by SMM and can be requested by

58

3.5 Framework Description

Scenario
Description in

Protégé

Scenario
Interpretation by

Smith

Scenario
Execution

Figure 3.9: Workflow of SOAV (Example with UoLDS’s simulation software)

Smith. Smith monitors and triggers any Assignments to generate corresponding

interactions on his own. This is achieved by sending “Smith Orders” containing

relevant Assignment-actions, e.g., the reference lane to track or target speed to

achieve, to the Sim. Actions sent in “Smith Orders” are regarded as Low-Level

Actions in this research.

59

3. FRAMEWORK DESCRIPTION - SOAV

3.6 Summary

In this chapter, a framework for scenario orchestration SOAV (Scenario Orches-

tration with Autonomous simulated Vehicles) was introduced along with its de-

sign process.

“Solution Generation Phase” in this research has provided the essential ideas

in designing the components in SOAV: OSO (Ontology for Scenario Orchestra-

tion) and a Virtual Driver equipped with a driver model named SAIL (Scenario-

Aware drIver modeL) and a decision making algorithm NAUSEA that is based

on HTN.

In the beginning of this phase, in order to find solutions for the issues identified

in literature review, some essential concepts in scenario orchestration have been

identified in order to guide the design of potential algorithms. By identifying the

essential concept “Assignment” and “the General Plan”, an algorithm based on

HTN was implied.

Then, a driver model is desirable to support the algorithm by providing data

for decision making and interfaces for executing decisions or Assignments. As it is

not the concern of this research, instead of reviewing relevant literature regarding

driver models, this research used the four axioms from Albus (1999) to guide the

design of a suitable driver model that can be adopted by a Virtual Driver who can

intelligently generate interactions with the participant’s vehicle. According to the

components identified by applying the four axioms, a driver model prototype was

generated.

Finally, a framework SOAV was introduced. NAUSEA is the algorithm based

on HTN and SAIL is the driver model that supports NAUSEA. SMM in the Sim

is the communication interface between the Sim and the Virtual Driver Smith

who is equipped with SAIL/NAUSEA. A Scenario Observer was also included to

record the communication between Smith and the Sim/SMM.

In Chapter 4 and 5, OSO and SAIL/NAUSEA will be elaborated. Details

regarding implementation of the Sim/SMM and SAIL/NAUSEA, which is Smith,

will be provided in Chapter 6.

60

Chapter 4

Ontology for Scenario

Orchestration - OSO

Is that...?

The Matrix? Yeah.

(The monitors are packed with bizarre codes and equations.)

- The Matrix

4.1 Introduction

An ontology, leading to a shareable Knowledge Base, is built upon varieties of

concepts and their relationships in a domain of interest. It is therefore intuitive

to regard an ontology as a formal, standard and normative way of representing

knowledge. However, just like a sword, an ontology is two-sided because of its

applications: being descriptive or being normative.

In this research, Ontology for Scenario Orchestration (OSO) has been de-

signed to be as descriptive as possible to include common concepts that have

been identified within the area of driving simulation with the purpose of rep-

resenting scenarios (See Section 3.3). It covers concepts in driving simulation

ranging from physical objects such as roads or junctions to virtual ones such as

Assignments or Actions. OSO should be able to provide:

• driving context representation, which is the description of a logical road

61

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

network and other knowledge regarding physical objects and their states,

e.g., simulated vehicles and their vehicle model;

• task representation, which specifies Assignments that Smith should do. An

Assignment contains Assignment-action, Trigger(s) and other related infor-

mation, e.g., Ego-vehicle requirement;

• Action library, indicating what High-Level and Low-Level Actions are avail-

able. Recipes are provided to guarantee repeatability by forcing Smith fol-

low the same Action trajectory when facing the same context. They are

always used to defined how to perform the “Perform-assignment”, which is

β2 as specified in Section 3.3.11 on Page 49;

• Monitor System representation, indicating what should be dictated so that

particular Assignment-actions can be triggered, finished or failed when con-

ditions in Triggers are satisfied and,

• temporal representation, specifying temporal relationships between some

entities;

OSO should provide information regarding not only context that is essential

for decision-making but also Assignments that Smith should be aware of to gen-

erate required interactions. It has been developed with Protégé and recorded in

an XML file with RDF/OWL syntax.

It should be noted that OSO is an abstract model for scenario orchestration

and no assumption has been made regarding what tool should be used to de-

velop OSO and what language should be used to record OSO, i.e., what format

should be used to output SDF. As a result, details regarding Protégé or the XML

file (SDF) will not be described in this thesis and thus OSO will be shown in

directed graphs instead of snapshots of Protégé. Information regarding Protégé

and RDF/OWL can be found in Horridge et al. (2009) and Hitzler et al. (2011)

respectively.

In OSO, a class represents a concept in driving simulation, e.g., class Vehicle

represents all the simulated vehicles in the simulation. A class can have sub-

classes that represent more detailed concepts than its superclass, e.g., class LGV

62

4.1 Introduction

represents Light Goods Vehicles. Individuals, on the other hand, are instantiated

classes, representing specific objects in a scenario, e.g., simulated vehicle no.1 can

be an individual of Vehicle with white colour. When Smith is parsing the SDF

(Scenario Definition File), he will look for individuals and instantiate them by

mapping each individual with corresponding data in the World Model.

As mentioned in Chapter 2, properties have two types, object properties spec-

ify relationships between two individuals and data properties specify relationships

between an individual and a data type, which can be a string, Boolean, float, etc.

In OSO, properties have been solely treated as restrictions that a class should

obey. For instance, an Assignment may have an Action as its Assignment-action.

In this case, instead of describing the domain of object property hasAction is

Assignment, OSO specifies that Assignment is a subclass of an anonymous class

that has the property hasAction to indicate its associated Action. There are two

common restrictions in OSO:

1) cardinality restriction. For instance, an individual of class A is a subclass of an

anonymous class. This anonymous class relates to minimum, maximum or

exactly n (n = 0, 1, 2...) individuals of class B through an object property, so

A relates to minimum, maximum or exactly n (n = 0, 1, 2...) individuals

of B through an object property.

2) existential restriction. When an object property is used to specify the rela-

tionship between two individuals, one of them can be anonymous by stating

that 1) an individual of class A is a subclass of an anonymous class and 2)

this anonymous class relates to some individual of class C. Hence, A relates

to some individual of class C. This individual of C is, therefore, anonymous.

An Existential restriction is also useful when a class can be described by either

classes, e.g., an individual of class A relates to some individual of class D or

class E. Moreover, the subclasses of related class(s) can be used to further

refine the relationship. For instance, if class E is a subclass of C and an

individual of class A relates to some individual of class C, then it is possible to

refine this relationship to “an individual of class A relates to some individual

of class E” if class A and E can be related.

63

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

By adopting restrictions, classes can be described with details in Protégé as

illustrated in Figure 4.1.

From this chapter on, classes, properties and individuals are represented with

italic fonts and directed graphs are also used from time to time to illustrate classes,

related properties & individuals. In graphs, classes are represented by ellipses;

individuals are represented by rhombuses; data properties are represented by

dotted arrows while object properties are represented by arrows. Figure 4.2 shows

how classes, object properties, data properties and individuals are represented in

this thesis along with how restrictions are reflected based on some examples in

previous paragraphs.

As illustrated in Figure 4.2, different from cardinality restrictions that will be

represented in directed graphs by two connected individuals without the specifi-

cation of cardinality, existential restrictions will be represented by connecting the

named individual with a class that the related anonymous individual belongs to.

It should be noted that data properties are related to a maximum of a data type

in OSO.

In this chapter, the resulting OSO will be presented. Data properties will

only be mentioned when they are essential in describing a class and thus influ-

ence its individuals. For instance, data property named hasSpeed specifies the

maximum speed of a simulated vehicle instantiated from Vehicle and because of

the importance of this value in making decisions, this property will be mentioned

when describing relevant classes. Directed graphs will not include data prop-

erties. Moreover, how to orchestrate scenarios with OSO will be covered with

experiments and be presented in Appendix C.

4.2 Naming Convention

When OSO is being developed or used to represent scenarios, some conventions

have been complied with:

• classes representing Actions should be represented with imperative form

verbs, e.g., Overtake;

64

4.2 Naming Convention

F
ig

u
re

4.
1:

O
S
O

w
it

h
P

ro
té

gé

65

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

Class A

Object PropertyData Property

Individual One

Class B

Individual Two

data type (string, float, etc.)

Class C

Object Property

Existential Restriction

Cardinality Restriction

Class D Class E

Object Property

Figure 4.2: Representation of Classes, Properties and Individuals

• every single word in class name should start with a capital letter including

the first word, e.g., VehicleState;

• no spaces or other marks are allowed to join class or property names, e.g.,

VehicleController , isPerformedBy ;

• classes are presented in singular forms, e.g., VirtualDriver , Instant ;

• abbreviations should be avoided unless the class/property names are made

of more than one word and the meaning of the abbreviation is clear, e.g.,

LRN means Logical Road Network;

• the unit for data properties are SI based, especially regarding length and

time, which have the units of metre (m) and second (s) respectively;

• names of properties, including data and object properties, are suggested to

start with “has” or “is”, and should be followed by words that are started

with capital letters. The names should also have specific meanings related

to the properties, e.g., isPerformedBy ;

• individuals are suggested to be presented by words or abbreviations with

lower case letters and numbers, e.g., an individual of VirtualDriver can be

presented by vd1 and another one can be presented by vd2 ;

66

4.3 Layout of Ontology for Scenario Orchestration (OSO)

• for convenience and readability, individuals of Assignment can be named

with the following information: performer, keyword of the Assignment-

action(s) and order in the scenario. The corresponding Triggers, i.e., Mon-

itors, Success Conditions and Failure Conditions, can be named with the

keyword “monitor/post/failure”, order in the scenario and keyword of the

state variable in this Trigger. Reference values in Triggers can be named

with the keyword “value”, order in the scenario, a keyword of “monitor/-

post/failure” and keyword of the state variable in this Trigger.

For instance, in Experiment two, there will be an Assignment named

smith overtake 1 3, and one of its Monitors is monitor 1 3 hw, whose ref-

erence value is value monitor 1 3 hw. smith is the performer; overtake is

the keyword of Assignment-action; hw is the keyword of the state variable,

referring to time headway; monitor and value are two keywords.

It should be noted that if some state variable has been frequently used in

Triggers, e.g., “ttc” that means time-to-collision, the keyword for the state

variable can be ignored in the name of a Trigger and its corresponding

reference value. Moreover, another number could be included in those indi-

vidual names to indicate order and sub-order if more than one Assignment

has been generated in order to handle the same interaction, e.g., an Assign-

ment named smith overtake 1 3 would imply that two Assignments have

been developed to assist smith overtake 1 3 before its Assignment-action

executes, e.g., an Assignment can be used to create the simulated vehicle

needed for smith overtake 1 3 and another to clear lanes for the coming

Assignment.

4.3 Layout of Ontology for Scenario Orchestra-

tion (OSO)

4.3.1 General Description

OSO is developed by expanding the “Scenario” concept, which covers what the

human participants experience and what the researchers require: pre-defined vir-

67

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

tual scene, simulated vehicles’ interactions with human participants, ambient

traffic flow without interactions, and measurements that should be collected.

“Scenario” has been modelled as a class named Scenario, which is related to

three sets of classes:

1) Scene: this set contains classes that are being used to represent the physical

scene in the simulation. At present, the following classes have been identified:

Entity, V ehicleModel, Intersection,RoadSegment, RoadType,RoadFacility , Road-

Geometry, LaneSection, Lane, Path;

2) Measurement: this set contains just one class Measure that specifies available

measures in the driving simulator. It is adapted from the standard measures

list from the Wikipedia of Driving (Driving Wiki, 2010b);

3) Assignment: this set contains the essential class Assignment and other classes

that are involved in describing an Assignment. The following major classes are

included: Assignment,Monitor, Action, Situation,Reference,ReferenceValue,

etc.

In addition, there are also some classes that are used to describe the general

information of a scenario, e.g., class CommunicationProtocol is used to represent

the network protocol being used within SOAV. However, due to their minor roles

in describing Assignments, they will only be mentioned if necessary in this thesis.

The following sections will focus on the class Assignment, and the related

classes that are necessary to support it. Classes that are needed to describe

other classes will be introduced first. As a result, the following major classes

will be introduced one by one from next section: V ehicleModel, Measure,

Entity, TemporalEntity, MetricConstraints, StateV ariable, ReferenceValue,

Monitor, Action, and Assignment. Classes named RoadSegment, Intersection

and SimLimitation that are not related to Assignment are presented at the

end. They are classes used to describe the road segments, the intersections and

limitations of the Sim respectively. The dependencies between those classes are

illustrated in Figure 4.3.

68

4.3 Layout of Ontology for Scenario Orchestration (OSO)

Assignment

MetricConstraints

StateVariable

Action

ReferenceValue

RoadSegment

Monitor

TemporalEntity

Entity

Measure

VehicleModel

SimLimitation

: is dependent upon

Intersection

Figure 4.3: Dependences Between Major Classes

4.3.2 V ehicleModel

The vehicle models available are derived from COBA (2006) and some major

models are illustrated in Figure 4.4.

VehicleModel

Car LGV OGV1 OGV2

hasSubclass

hasSubclass

hasSubclass

hasSubclass

Figure 4.4: Class V ehicleModel

According to COBA (2006), LGV represents Light Goods Vehicles that are

up to 3.5 tonnes gross vehicle weight; OGV 1 represents Other Goods Vehicles

that are over 3.5 tonnes gross vehicle weight with two or three axles while OGV 2

represents Other Goods Vehicles that are over 3.5 tonnes gross vehicle weight

with four or more axles. Lorries or trucks belong to LGV , OGV 1 or OGV 2 in

this research.

69

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

4.3.3 Measure

By adopting the standard measurements from Driving Wiki (2010b), OSO has

modelled a class named Measure and several sub-classes that indicate the sub-

categories of measurements, e.g., DriverBehavior, PerformanceMeasure. How-

ever, because of the lack of detailed description regarding each measurement,

those measurements have been included for demonstration purposes in order to

indicate that different Assignments can provide similar measurements.

4.3.4 Entity

An Entity in a scenario represents a physical or virtual object, e.g., a traffic

light controller, a virtual pedestrian, a simulated vehicle, an SMM (Scenario

Management Module), etc. Its major subclasses and related properties are as

follows:

V irtualDriver, a subclass of V irtualHuman, represents Smith. V irtual-

Pedestrian, a subclass of V ritualHuman, represents the virtual pedestrians

evolving in the simulation.

FlockVehicle represents Flocks. SingleV ehicle represents one simulated ve-

hicle that can be controlled by Smith, some properties have been included to

describe a single simulated vehicle, e.g., hasMaxAccRate indicates the maxi-

mum positive acceleration rate of the Ego-vehicle. Among all the properties,

the most useful one is the object property named hasV ehicleModel, which indi-

cates the vehicle model of the required Ego-vehicle for a particular Assignment.

hasV ehicleModel relates an individual of SingleV ehicle to some individual of

V ehicleModel.

V irtualObject has three subclasses: V irtualCircle, V irtualLine and V irtual-

Zone, indicating some pre-defined areas that can be used as thresholds in Trig-

gers, e.g., entering some virtual zone or crossing some virtual circle can trigger a

particular Assignment.

Subject represents the participant. This class indicates what kind of informa-

tion would be expected from a participant, including his/her proposed route and

travel speed. Hence, the following properties have been identified:

70

4.3 Layout of Ontology for Scenario Orchestration (OSO)

• hasRoute: a data property indicating a route that the participant could

follow;

• hasDesiredSpeed: a data property indicating the instructed desired speed

the participant should obey.

In Figure 4.5, major classes regarding Entity are illustrated.

Vehicle

SingleVehicle

hasSubclass

Entity

VirtualObject

FlockVehicle

hasSubclass

SMM

hasSubclass

Virtual
Animal

Dog hasSubclass Subject

VirtualZone

hasSubclass

Virtual
Human

hasSubclass

hasSubclasshasSubclass

Virtual
Pedestrian

hasSubclass
hasSubclass

Controller

hasSubclass

hasSubclass

VirtualCircle

hasSubclass

VirtualDriver

hasSubclass

VirtualLine hasSubclass

TrafficLightController hasSubclass

VehicleModel

hasVehicleModel

Figure 4.5: Class Entity and Related Classes

4.3.5 TemporalEntity

Concepts and related properties regarding time have been adapted from the Time

ontology (Hobbs & Pan, 2004). The class of TemporalEntity therefore has two

subclasses: Instant and Interval. Instant represents specific moments or time

points, whereas Interval, on the other hand, represents periods between two

Instants.

In addition, relationships between two Intervals are also adopted from the

Time Ontology as illustrated in Figure 4.6, which is derived from Allen’s logic

(Allen, 1981). In Figure 4.6, a and b represent two individuals of class ProperIn-

terval, which is a subclass of Interval. Those relationships are also being used by

71

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

Assignments to indicate precedence constraints between two Assignments and can

be further used to imply the relationships between two Assignment-actions. The

Domain and Range of those properties in Figure 4.6, therefore, are not specified.

IntervalMeets(a,b)

IntervalStarts(a,b)

IntervalDuring(a,b)

IntervalFinishes(a,b)

IntervalEquals(a,b)

IntervalOverlaps(a,b)

IntervalBefore(a,b)

IllustrationObject Property

a b

a

b

a

b

a

b

a b

a

b

a

b

Figure 4.6: The Possible Relationships Between Two Intervals (Allen, 1981)

TemporalEntity is summarised in Figure 4.7 along with relevant object prop-

erties.

4.3.6 MetricConstraints

Metric constraints have been modelled in a class calledMetricConstraints, which

relates to Instant with two object properties: hasMinuend and hasSubtrahend.

Moreover, it also relates to float numbers with two data properties: hasMetricMax

and hasMetricMin as illustrated in Figure 4.8(a).

If there is a metric constraint as “starting time of Action β should be more

than 0 seconds but less than 20 seconds after the finishing time of α”, then this

72

4.3 Layout of Ontology for Scenario Orchestration (OSO)

ProperInterval

intervalMeets

TemporalEntity

Instant

hasEnd

Interval

hasSubclass

intervalBefore

intervalOverlaps

intervalEquals

intervalFinishes

DateTimeInterval

hasSubclass

intervalDuring

hasBeginning

inside

hasSubclass

hasSubclass

intervalStarts

Figure 4.7: Class TemporalEntity and Related Classes

metric constraint can be specified with the following inequality:

0 6 sβ − fα 6 20 (4.1)

and as illustrated in Figure 4.8(b), this constraint can be specified as an individual

of MetricConstraint named mc1 and the two Instants sβ, fα as two individuals

of Instant named sb and fa.

4.3.7 StateV ariable

State variables are used to describe the states of a reference object in a scenario.

It contains the following major subclasses:

• SV OvertakingIntention: overtaking intention of the simulated vehicle;

• SV Speed: current speed of the vehicle (participant’s vehicle or simulated

vehicle) in m/s (metres per second);

73

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

MetricConstraint

Instant

hasSubtrahend

(Equivalent class all)

hasMinuend

TemporalConstraint

hasSubclass

(a)

!"#$%"$#

&'$()*Constraint

hasSubtrahend

hasMetricMin
mc1

sb fa

hasMinuend

20
0

hasMetricMax

(b)

Figure 4.8: Class MetricConstraints and Usage. (a) Class MetricConstraints

and Related Classes; (b) Specification of Metric Constraint

• SV JourneyT ime: time already spent on the journey in seconds, counted

from the creation of the vehicle;

• SV SpaceHW : distance headway of the vehicle in metres, see Figure 4.9.

AB

Travelling Direction

Distance Headway

Figure 4.9: Distance Headway of Vehicle A

• SV Offset : lane offset of the vehicle in metres, see Figure 4.10;

74

4.3 Layout of Ontology for Scenario Orchestration (OSO)

A

Travelling Direction

Lane Offset

Figure 4.10: Lane Offset of Vehicle A

• SV TTC: time to collision in seconds with the lead object, which can be a

vehicle or a road facility, e.g., a traffic light; See Figure 4.11 for an example

involving two simulated vehicles, in which case time to collision tttc can be

calculated as:

AB

Travelling Direction

!x

v
A

v
B

Figure 4.11: Time-To-Collision of Vehicle A

tttc =
∆x−∆s

vA − vB
(vA − vB > 0) (4.2)

where,

– vA = vehicle A’s current speed, m/s;

– vB = vehicle B’s current speed, m/s;

75

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

– ∆x = the distance between the font of vehicle A to the back of vehicle

B in metres;

– ∆s = the pre-defined safe distance in metres. Zero can be assigned.

• SV Distance: travelled distance of the vehicle in metres along the present

road segment; it starts from the beginning of the travelling road segment;

• SV TimeHW : time headway of the vehicle in seconds, as illustrated in

Figure 4.12 and calculated in Equation 4.3:

AB

Travelling Direction

!A

v
A

v
B

Pos

!B

Figure 4.12: Time Headway of Vehicle A

thw =
∆A

vA
− ∆B

vB
(4.3)

where,

– vA = vehicle A’s current speed, m/s;

– vB = vehicle B’s current speed, m/s;

– ∆A = the distance between vehicle A to the fixed position Pos in

metres;

– ∆B = the distance between vehicle B to the fixed position Pos in

metres.

76

4.3 Layout of Ontology for Scenario Orchestration (OSO)

In addition, Pos can be set within vehicle B, e.g., in the back of vehicle B

(i.e., ∆B = 0).

• SV AssignmentStatus: the status of the Assignment, which can be Initial,

Pending, Failure and Success as specified in Section 3.3.10. Those statuses

have been represented in a class named AssignmentStatus;

• SV Neighbourhood: the information of simulated vehicles around the par-

ticipant’s vehicle that are of interest to Smith the most in this research and

will be used for decision-making. It contains 12 positions as illustrated in

Figure 4.13. 12 sub-classes of SV Neighbourhood have been modelled.

Figure 4.13: Neighbourhood around Participant’s Vehicle

• SV JourneyDistance:distance already travelled in metres, it counts from

the creation of the vehicle;

• SV RdID: the ID of the present road segment;

• SV Lane: the ID of the present travelling lane, which is represented as an

integer in the Sim.

The concept of StateV ariable can be expanded in order to adopt more state

variables.

SV TimeHW and SV TTC in OSO have sub-classes and pre-defined ref-

erence objects. SV TimeHW means the time headway between the reference

object and the participant’s vehicle; SV TimeHW L means the time headway

between the reference vehicle and its leader and SV TimeHW NSL means the

77

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

time headway between the reference vehicle and its nearside leader (left). More-

over, SV TTC means the time-to-collision between the reference object and the

participant’s vehicle; SV TTC L means the time-to-collision between the refer-

ence vehicle and its leader.

StateV ariable and its subclasses are illustrated in Figure 4.14.

4.3.8 ReferenceValue

ReferenceV alue represents a threshold that some state variables of an entity

should be compared to and how this comparison should be performed, e.g., is

bigger or smaller. Its properties include:

• hasRefValueType indicates the type of the threshold that will be compared

to. The type has been modelled in a class RefValueType, which can be

LINE (reference line), POLY (reference zone), ObjectReference (reference

object), STATUS (reference status - Action or Assignment) or NUMBER

(reference number). Hence, it relates an individual of ReferenceValue to

some individual of RefValueType;

• hasRefLine specifies the threshold based on a reference line, a maximum of

one individual of V irtualLine can be related;

• hasRefZone specifies the threshold based on a virtual zone, a maximum of

one individual of V irtualZone can be related;

• hasRefObject specifies the threshold based on an entity, a maximum of one

individual of Entity can be related;

• hasAssignmentStatus specifies the threshold that is an Assignment status,

some individual of AssignmentStatus should be related;

• hasGeneralV alue specifies a general threshold value to the threshold, only

one can be specified;

• hasRefValueRange indicates how to compare the threshold with the value

of a state variable from a particular entity. Some individual of the fol-

lowing classes can be related: BEQUAL(>), BIGGER(>), EQUAL(=),

78

4.3 Layout of Ontology for Scenario Orchestration (OSO)

S
V
_
N
e
ig
h
b
o
u
rh
o
o
d

S
V
_
N
e
i_
L
L

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
F
F

h
a
s
S
u
b
c
la
s
s

S
ta
te
V
a
ri
a
b
le

S
V
_
T
im
e
H
W

h
a
s
S
u
b
c
la
s
s

S
V
_
P
o
s
it
io
n
Y

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
N
S
F

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
L

h
a
s
S
u
b
c
la
s
s

S
V
_
A
s
s
ig
n
m
e
n
tS
ta
tu
s

h
a
s
S
u
b
c
la
s
s

S
V
_
O
ff
s
e
t

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
F

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
N
S
F
F

h
a
s
S
u
b
c
la
s
s

S
V
_
J
o
u
rn
e
y
D
is
ta
n
c
e

h
a
s
S
u
b
c
la
s
s

S
V
_
J
o
u
rn
e
y
T
im
e

h
a
s
S
u
b
c
la
s
s

S
V
_
S
p
a
c
e
H
W

h
a
s
S
u
b
c
la
s
s

S
V
_
R
d
ID

h
a
s
S
u
b
c
la
s
s

S
V
_
D
is
ta
n
c
e

h
a
s
S
u
b
c
la
s
s

S
V
_
L
a
n
e

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
N
S
L

h
a
s
S
u
b
c
la
s
s

S
V
_
P
o
s
it
io
n
Z

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
O
S
F

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
O
S
F
F

h
a
s
S
u
b
c
la
s
s

T
h
in
g

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
O
S
L

h
a
s
S
u
b
c
la
s
s

S
V
_
P
o
s
it
io
n
X

h
a
s
S
u
b
c
la
s
s

h
a
s
S
u
b
c
la
s
s

S
V
_
T
T
C

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
O
S
L
L

h
a
s
S
u
b
c
la
s
s

S
V
_
A
c
c

h
a
s
S
u
b
c
la
s
s

S
V
_
O
v
e
rt
a
k
in
g
In
te
n
ti
o
n

h
a
s
S
u
b
c
la
s
s

S
V
_
S
p
e
e
d

h
a
s
S
u
b
c
la
s
s

S
V
_
N
e
i_
N
S
L
L

h
a
s
S
u
b
c
la
s
s

S
V
_
T
T
C
_
L

S
V
_
T
im
e
H
W
_
L

h
a
s
S
u
b
c
la
s
s

h
a
s
S
u
b
c
la
s
s

S
V
_
T
im
e
H
W
_
N
S
L

h
a
s
S
u
b
c
la
s
s

F
ig

u
re

4.
14

:
C

la
ss
S
ta
te
V
a
ri
a
bl
e

an
d

R
el

at
ed

C
la

ss
es

79

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

NEQUAL(6=), SEQUAL(6) or SMALLER(<). When it comes to an

event, they can be also used to specify the state transition, e.g., the tran-

sition of some entity’s state variable’s value from less than a threshold to

greater than that threshold can be expressed by BEQUAL(>), which can

be ambiguous because BEQUAL, which means greater than or equals to,

cannot express state transition. However, by stating if the comparison is

based on a state transition (Event) or a state interval (State), Smith can

recognise it without misunderstanding. This flag will be introduced in the

next section as ReferenceValue does not contain this piece of information.

ReferenceValue and related properties along with associated classes are illus-

trated in Figure 4.15.

4.3.9 Monitor

A Monitor is a facility to keep watch on state variables in the simulation and

becomes true when its conditions are satisfied. A state variable of an object and a

threshold are needed to specify a condition, so several classes have been modelled

in OSO especially for the Monitor: Monitor, EventType, MonitorOperator,

MonitorType and ReferenceValue.

In general, in order to identify a Monitor, specifications are needed for: 1)

what should be monitored by using hasStateVariable; 2) what entities in the

simulation should be monitored by using hasReference; 3) how often should the

state variables of the entities be monitored by using hasEventType, hasMoni-

torOperator, hasMonitorType and 4) how the Monitor can be satisfied by using

hasRefValue. Properties that are used to describe Monitor are as follows:

• hasReference specifies the reference entity that the Monitor should dictate,

so it relates an individual of Monitor to exactly one individual of Entity;

• hasStateV ariable specifies the state variables of the entity that the Monitor

should dictate, so it relates an individual of Monitor to some individual of

StateV ariable.

80

4.3 Layout of Ontology for Scenario Orchestration (OSO)

R
e
fe
re
n
c
e
V
a
lu
e

A
s
s
ig
n
m
e
n
tS
ta
tu
s

R
e
fV
a
lu
e
T
y
p
e

P
O
L
Y

h
a
s
S
u
b
c
la
s
s

V
ir
tu
a
lL
in
e

h
a
s
R
e
fL
in
e

F
A
IL
U
R
E

h
a
s
S
u
b
c
la
s
s

R
e
fV
a
lu
e
R
a
n
g
e

N
O
T
O
E
Q
U
A
L

h
a
s
S
u
b
c
la
s
s

E
Q
U
A
L

h
a
s
S
u
b
c
la
s
s

P
E
N
D
IN
G

h
a
s
S
u
b
c
la
s
s

S
T
A
T
U
S

h
a
s
S
u
b
c
la
s
s

B
IG
G
E
R

h
a
s
S
u
b
c
la
s
s

h
a
s
R
e
fV
a
lu
e
T
y
p
e

S
E
Q
U
A
L

h
a
s
S
u
b
c
la
s
s

L
IN
E

h
a
s
S
u
b
c
la
s
s

IN
IT
IA
L

h
a
s
S
u
b
c
la
s
s

h
a
s
R
e
fV
a
lu
e
R
a
n
g
e

h
a
s
A
s
s
ig
n
m
e
n
tS
ta
tu
s

V
ir
tu
a
lZ
o
n
e

h
a
s
R
e
fZ
o
n
e

N
U
M
B
E
R

h
a
s
S
u
b
c
la
s
s

E
Q
U
A
L
T
O
N
O

h
a
s
S
u
b
c
la
s
s

B
E
Q
U
A
L

h
a
s
S
u
b
c
la
s
s

E
n
ti
ty

h
a
s
R
e
fO
b
je
c
t

O
b
je
c
tR
e
fe
re
n
c
e

h
a
s
S
u
b
c
la
s
s

S
U
C
C
E
S
S

h
a
s
S
u
b
c
la
s
s

S
M
A
L
L
E
R

h
a
s
S
u
b
c
la
s
s

N
E
Q
U
A
L

h
a
s
S
u
b
c
la
s
s

F
ig

u
re

4.
15

:
C

la
ss

R
ef

er
en

ce
V

al
u

e
an

d
R

el
at

ed
C

la
ss

es

81

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

• hasMonitorType specifies the type of the Monitor, indicating what the

Monitor should detect: state intervals(State) or state transitions (Event);

Hence, it related an individual ofMonitor to some individual ofMonitorType,

which has subclasses of State or Event;

• hasEventType specifies the event type of the Monitor if it is an event. It

relates an individual of Monitor to some individual of EventType, which

indicates some common events:

– ET Threshold indicates that this is just a common state transition

and a threshold value should be used;

– ET Cross indicates that the threshold is a reference line and the con-

dition will become true when the line is crossed by the monitored

object;

– ET Enter and ET Exit indicate that the threshold is a reference zone

and the condition will become true when the monitored object enters

or exits that area and,

– ET Timer indicates the event is timer-based, so the Monitor should

dictate the timer and compare it with a threshold value.

• hasMonitorOperator specifies the operator of the Monitor, so it relates

an individual of Monitor with some individual of MonitorOperator, which

specifies the frequency of the Monitor by adopting the four operators elabo-

rated in Section 3.3.3: WHEN , WHENEV ER, EV ERY and ASLONG-

AS;

• hasRefValue specifies the reference value of the Monitor so it relates an

individual of Monitor with exactly one individual of ReferenceValue, which

specifies the threshold.

Multiple individuals of Monitor for an Assignment in this research will imply

that all the conditions in those individuals, which can be Monitors/Success Con-

ditions/Failure Conditions, must be satisfied in order to trigger/finish/fail the

82

4.3 Layout of Ontology for Scenario Orchestration (OSO)

Assignment. Disjunctive individuals of Monitor are not currently supported, as

they were not required at this stage.

Related classes regarding Monitor are summarised in Figure 4.16 with corre-

sponding object properties.

MonitorOperator

EVERY

hasSubclass

EventType

ET_Threshold

hasSubclass

MonitorType

Event

hasSubclass

Monitor

ET_Timer

hasSubclass

StateVariable

hasStateVariable

WHENEVER

hasSubclass

State

hasSubclass

hasMonitorType

hasEventType

ET_Enter
hasSubclass

ET_Cross

hasSubclass

hasMonitorOperator

ReferenceValue

ET_Exit

hasSubclass

hasRefValue

ASLONGAS

hasSubclass

Entity

hasReference

WHEN

hasSubclass

Figure 4.16: Class Monitor and Related Classes

4.3.10 Action

Action can change the state of the simulation and represents mainly the Actions

that can be used by Smith, especially driving Actions. Its available properties

include:

• hasActionType indicates the type of the Action by notifying Smith if a

recipe is needed and which kind of recipe should be found, e.g., an Action

with Action type of Block will let Smith find the recipe of preventing the

participant from overtaking. It relates an individual of Action to some in-

dividual of DriverActionBase or SMMActionBase. The former indicates

the types of Action that can be performed by Smith and the latter indicates

the ones by SMM;

83

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

• hasActionProfile indicates the flag of what changes should be made, e.g.,

if it relates an individual of Action to some individual of DesiredAccRate,

Smith will order the Ego-vehicle/flock to adopt a new acceleration rate

that is specified by hasActionAcc. It relates an individual of Action to

some individual of DriverActionProfile or SMMActionProfile. The former

indicates the Action profiles used by Smith and the latter indicates the ones

by SMM;

• hasActionCreate indicates how many simulated vehicles should be cre-

ated to become the Ego-vehicle/flock. All the simulated vehicles created

should comply with the requirements in the Assignment, e.g., required ve-

hicle model;

• hasOvertakingIntention indicates the proposed overtaking intention of the

Ego-vehicle. The value is a Boolean;

• hasActionDeadline indicates the proposed deadline of the Action. The

value is a float;

• hasActionDuration indicates the proposed duration of the Action. The

value is a float;

• hasActionRelease indicates the proposed release time of the Action. The

value is a float;

• hasActionSpeed indicates the speed that the Ego-vehicle/flock should adopt.

The value is a float;

• hasActionAcc indicates the acceleration rate that the Ego-vehicle/flock

should adopt. The value is a float;

• hasActionLane indicates the lane that the Ego-vehicle/flock should change

into or stay in. The value is a string, e.g., “offside” refers to the right

adjacent lane of the Ego-vehicle/flock;

Related classes of Action is summarised in Figure 4.17 along with relevant

object properties:

84

4.3 Layout of Ontology for Scenario Orchestration (OSO)

H
ig
h
L
e
v
e
lA
c
ti
o
n

G
e
n
e
ra
te
T
ra
ffi
c

h
a
s
S
u
b
c
la
s
s

C
le
a
r

h
a
s
S
u
b
c
la
s
s

A
c
ti
o
n

L
o
w
L
e
v
e
lA
c
ti
o
n

A
d
a
p
tA
c
c

h
a
s
S
u
b
c
la
s
s

G
o
to
L
N

h
a
s
S
u
b
c
la
s
s

S
M
M
A
c
ti
o
n
B
a
s
e

O
v
e
rt
a
k
e

h
a
s
S
u
b
c
la
s
s

In
te
rp
o
s
e

h
a
s
S
u
b
c
la
s
s

F
o
llo
w
P
a
th

h
a
s
S
u
b
c
la
s
s

S
M
M
_
C
re
a
te
E
n
ti
ty

h
a
s
S
u
b
c
la
s
s

C
o
h
e
re

h
a
s
S
u
b
c
la
s
s

B
lo
c
k

h
a
s
S
u
b
c
la
s
s

D
ri
v
e
rA
c
ti
o
n
B
a
s
e

h
a
s
S
u
b
c
la
s
s

S
M
M
A
c
ti
o
n
P
ro
fi
le

N
o
rm
a
lA
c
ti
o
n

h
a
s
S
u
b
c
la
s
s

F
o
rm
F
o
rm
a
ti
o
n

h
a
s
S
u
b
c
la
s
s

S
M
M
_
C
le
a
rL
o
c
a
ti
o
n

h
a
s
S
u
b
c
la
s
s

B
e
L
e
a
d
e
r

h
a
s
S
u
b
c
la
s
s

F
o
llo
w

h
a
s
S
u
b
c
la
s
s

S
p
a
ti
a
lG
o
a
l

h
a
s
S
p
a
ti
a
lG
o
a
l

h
a
s
S
u
b
c
la
s
s

A
d
a
p
tS
p
e
e
d

h
a
s
S
u
b
c
la
s
s

A
d
a
p
tS
te
e
ri
n
g
A
n
g
le

h
a
s
S
u
b
c
la
s
s

S
e
p
e
ra
te

h
a
s
S
u
b
c
la
s
s

T
im
e
P
o
in
t

h
a
s
E
n
d
P
o
in
t

h
a
s
S
ta
rt
P
o
in
t

h
a
s
S
ta
rt
P
o
in
t

S
M
M
_
S
e
tM
o
d
e
lS
w
it
c
h
f

h
a
s
S
u
b
c
la
s
s

A
d
a
p
tG
a
p

h
a
s
S
u
b
c
la
s
s

B
e
F
o
llo
w
e
r

h
a
s
S
u
b
c
la
s
s

A
lig
n

h
a
s
S
u
b
c
la
s
s

F
in
d
R
o
u
te

h
a
s
S
u
b
c
la
s
s

S
h
a
d
o
w

h
a
s
S
u
b
c
la
s
s

S
M
M
_
S
e
tF
lo
c
k
B
e
h
a
v
io
u
r

h
a
s
S
u
b
c
la
s
s

h
a
s
E
n
d
P
o
in
t

G
o
to

h
a
s
S
u
b
c
la
s
s

P
u
rs
u
it

h
a
s
S
u
b
c
la
s
s

S
M
M
_
R
e
s
to
re
E
n
ti
ty
S
ta
te

h
a
s
S
u
b
c
la
s
s

D
ri
v
e
rA
c
ti
o
n
P
ro
fi
le

D
e
s
ir
e
d
M
in
S
p
e
e
d

h
a
s
S
u
b
c
la
s
s

M
in
F
ro
n
tS
p
a
c
e
H
W

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
M
in
A
c
c
R
a
te

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
M
a
x
A
c
c
R
a
te

h
a
s
S
u
b
c
la
s
s

M
a
x
B
a
c
k
T
im
e
H
W

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
M
a
x
S
p
e
e
d

h
a
s
S
u
b
c
la
s
s

S
in
e
S
p
e
e
d

h
a
s
S
u
b
c
la
s
s

T
a
rg
e
tL
a
n
e

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
B
a
c
k
T
im
e
H
W

h
a
s
S
u
b
c
la
s
s

M
in
F
ro
n
tT
im
e
H
W h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
F
ro
n
tT
im
e
H
W

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
S
p
e
e
d

h
a
s
S
u
b
c
la
s
s

P
re
fe
rr
e
d
G
a
p

h
a
s
S
u
b
c
la
s
s

M
a
x
B
a
c
k
S
p
a
c
e
H
W

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
B
a
c
k
S
p
a
c
e
H
W

h
a
s
S
u
b
c
la
s
s

h
a
s
A
c
ti
o
n
P
ro
fi
le

D
e
s
ir
e
d
A
c
c
R
a
te

h
a
s
S
u
b
c
la
s
s

F
lo
c
k
B
e
h
a
v
io
u
r

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
F
ro
n
tS
p
a
c
e
H
W

h
a
s
S
u
b
c
la
s
s

M
in
B
a
c
k
S
p
a
c
e
H
W

h
a
s
S
u
b
c
la
s
s

M
in
B
a
c
k
T
im
e
H
W

h
a
s
S
u
b
c
la
s
s

D
e
s
ir
e
d
H
e
a
d
in
g

h
a
s
S
u
b
c
la
s
s

M
a
x
F
ro
n
tS
p
a
c
e
H
W

h
a
s
S
u
b
c
la
s
s

M
a
x
F
ro
n
tT
im
e
H
W

h
a
s
S
u
b
c
la
s
s

P
re
fe
rr
e
d
R
o
u
te

h
a
s
S
u
b
c
la
s
s

!
"
#A
c
ti
o
n
T
y
p
e

F
ig

u
re

4.
17

:
C

la
ss
A
ct
io
n

an
d

R
el

at
ed

C
la

ss
es

85

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

4.3.11 Assignment

Assignment is the most important class in OSO, it specifies the tasks of Smith.

Assignment and its object properties have been illustrated in Figure 4.18:

 Assignment

SingleVehicle

h
a
sV

e
h
icle

R
e
strictio

n

Monitor

hasPreC
ond

Interval

h
a
sI

n
te

rv
a
l

Situation

h
a
s
S

itu
a
tio

n

Instant

hasEndPoint

hasStartPoint

hasFailureCond

Action

hasA
ction

AssignmentStatus

hasAssignmentStatus

hasSuccessCond

hasAssignment

Entity

is
P
er

fo
rm

ed
B
y

SpatialGoal

h
a
s
F

o
rm

a
ti
o
n
P

o
s
it
io

n

IntervalBefore

IntervalOverlaps

IntervalEquals

IntervalFinishes

IntervalDuring

IntervalStarts

IntervalMeets

Measure

ha
sM

ea
su

re
m

en
t

SUCCESS

INITIAL

FAILURE

PENDING

hasSubclass

hasSubclass

hasSubclass

hasSubclass

FurtherLeftFollower

FurtherRightLeader1Leader
CloserLe

ader0

hasSubclass

hasSubclasshasSubclass
hasSubclass

……. …….RightParallel0
LeftParallel0

hasSubclass
hasSubclass

Figure 4.18: Class Asssignment and Related Classes

Assignment can provide the following information:

• What to Monitor: properties in this category specify the information re-

lated to Triggers, including hasFailureCond , hasPreCond, hasSuccess-

Cond, etc.;

• What to Trigger: properties in this category specify what should be exe-

cuted when the Monitor becomes true. It includes the following properties:

hasAction, hasAssignment, hasSituation;

• Additional Information: properties in this category specify some general in-

formation of the Assignment, including hasAssignmentStatus, hasAssignment-

86

4.3 Layout of Ontology for Scenario Orchestration (OSO)

Type, hasStartPoint, hasEndPoint, hasFormationPosition, hasMaxTried-

Time, hasV ehicleRestriction, hasInterval, isCarSwapAllowed, isPerformed-

By, hasMeasurement and some other properties that specify the temporal

relationships between Assignments as illustrated in Section 4.3.5.

In the rest of this section, those properties will be introduced one by one except

the properties used for temporal relationships that have already been covered in

Section 4.3.5:

• hasMonitor relates an individual of Assignment to a Boolean value, indi-

cating if this Assignment has a Monitor to trigger its proposed Action/Sit-

uation/Assignment;

• hasPreCond relates an individual of Assignment to a minimum of zero

individuals of Monitor, indicating the Monitors used to trigger Action/Si-

tuation/Assignment;

• hasPostCond relates an individual of Assignment to a Boolean value, in-

dicating if this Assignment has Success Conditions that can mark the As-

signment as SUCCESS if they become true;

• hasSuccessCond relates an individual of Assignment to a minimum of zero

individuals of Monitor, indicating the Success Conditions that are used to

specify if the Assignment has succeeded. Moreover, the Assignment can be

succeeded because the Action/Situation/Assignment duration has expired;

• hasFailCond relates an individual of Assignment to a Boolean value, indi-

cating if this Assignment has Failure Conditions that can mark the Assign-

ment as FAILURE if the conditions become true;

• hasFailureCond relates an individual of Assignment to a minimum of zero

individuals of Monitor, indicating the Monitor that will be used as Fail-

ure Conditions. If they become true, the Assignment will be marked as

FAILURE . Those conditions can also be used by simulator users to in-

dicate or acknowledge what reactions the participant may have during an

Assignment;

87

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

• hasAssignmentType indicates the type of an Assignment as a data prop-

erty:

– Value 1: An Assignment that will trigger Actions;

– Value 2: An Assignment that will change the state of Assignments;

– Value 3: An Assignment that will trigger Actions and Assignments;

– Value 4: An Assignment that will trigger Situations;

– Value 5: An Assignment that will trigger Actions and Situations;

– Value 6: An Assignment that will trigger Assignments and Situations;

– Value 7: An Assignment that will trigger Actions, Assignments and

Situations;

• hasAction relates an individual of Assignment to a minimum of zero indi-

viduals of Action. It indicates what Action should be triggered;

• hasAssignment specifies which Assignment should be marked as PENDING

if the Monitor(s) is satisfied. The triggered Assignment is called a child-

Assignment while the one that triggers the child-Assignment is called parent-

Assignment. In this case, the child-Assignment will start to dictate the

simulation to see if its Monitor(s) has been satisfied. An individual of

Assignment can be related to a minimum of zero individuals of Assign-

ment ;

• hasSituation relates an individual of Assignment to a minimum of zero

individuals of Situation, indicating what Situation(s) should be triggered

because of precedence constraints or based on Monitor(s);

• hasAssignmentStatus indicates the status of a specific Assignment: FAILURE ,

INITIAL, PENDING or SUCCESS, which are the subclasses of

AssignmentStatus, so it relates an individual of Assignment to some in-

dividual of AssignmentStatus.

• hasStartPoint relates an individual of Assignment to exactly one individ-

ual of Instant, indicating the proposed start time of an Assignment;

88

4.3 Layout of Ontology for Scenario Orchestration (OSO)

• hasEndPoint relates an individual of Assignment to exactly one individual

of Instant, indicating the proposed finish time of an Assignment;

• hasFormationPosition relates an individual of Assignment to some indi-

vidual of SpatialGoal, which specifies where the Ego-vehicle/flock should

be driven to, as illustrated in Figure 3.3.7 on Page 47;

• hasMaxTriedT ime relates an individual of Assignment to an integer, in-

dicating how many times this Assignment can be retried;

• hasV ehicleRestriction relates an individual of Assignment to a maximum

of one individual of SingleV ehicle, indicating if this Assignment has some

requirement regarding the Ego-vehicle;

• hasInterval relates an individual of Assignment to exactly one individual

of Interval in order to represent the period of the Assignment;

• isCarSwapAllowed relates an individual of Assignment to a Boolean num-

ber, indicating if Smith is allowed to change his Ego-vehicle/flock if the

present one cannot finish the Assignment any more;

• isPerformedBy relates an individual of Assignment to exactly one indi-

vidual of Entity, indicating the pre-defined executer of the Assignment,

which is always Smith, so V irtualDriver is always related;

• hasMeasurement relates an individual of Assignment to some individual

of Measure, indicating the measurements that can be or should be col-

lected. In this research, this property is included to demonstrate that OSO

is able to indicate that some Assignments can provide these measures.

4.3.12 RoadSegment

RoadSegments are used frequently in this research to represent the road network

for any particular scenario. Smith uses these individuals to acknowledge the logic

of the road network in order to, e.g., get the travelled distance if there are more

than one road segments are present. Road segments are illustrated in Figure 4.19.

89

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

Road Reference Line

Lane Centre Line

Lane Offset

Road Segment 1 Road Segment 2 Road Segment 3

s

t

Figure 4.19: Illustration of Road Segment Along a Reference Line

Every individual of RoadSegment, i.e., every road segment, has the following

properties that are used by Smith:

• hasPredecessor: an object property that relates one road segment to some

road segments or junctions, indicating its predecessors if any;

• hasSuccessor: an object property that relates one road segment to some

road segments or junctions, indicating its successors if any;

• hasLength: a data property that indicates the length of the road segment;

• hasSpeedLimit: a data property that indicates the speed limit of a road

segment.

Properties above that are used to describe RoadSegment are illustrated in

Figure 4.20 along with relevant classes.

RoadSegment

hasSuccessor

hasPredecessor

Figure 4.20: Class RoadSegment and Related Classes

Other properties, such as lane number, lane offset, etc. have not been modelled

along with RoadSegment in OSO as they are not the same in different platforms

90

4.4 Summary

and do not need to be fed to Smith beforehand. However, Smith has relevant

data structures and decision-making processes to handle such platform-dependent

information.

4.3.13 Intersection

The class Insection represents road junctions where road segments meet. Three

properties are used to describe an intersection:

• hasPredecessor: an object property that relates an intersection to some

road segments indicating the intersection’s predecessors if any;

• hasSuccessor: an object property that relates an intersection to some road

segments, indicating the intersection’s successors if any;

• hasSpeedLimit: a data property that indicates the speed limit within an

intersection.

4.3.14 SimLimitation

SimLimitation is a class that represents limitations of the Sim. A sub-class of

SimLimitation named IgnoredObject has been created to indicate all entities

that are invisible to both the simulated vehicles and Smith, which can be further

refined to indicate any specific ones, e.g., a class named Cone can be used to

indicate that cones are not visible so simulated vehicles cannot perceive their

existence.

4.4 Summary

By representing concepts and their relationships in the domain of scenario orches-

tration in driving simulation, OSO has been developed to describe the essential

knowledge in scenarios:

1) the proposed context as well as requirements for generating interactions be-

tween simulated vehicles and the participant’s vehicle;

91

4. ONTOLOGY FOR SCENARIO ORCHESTRATION - OSO

2) the road network;

3) the proposed simulated vehicles needed for particular interactions;

4) the position that they should be driven to before the interactions;

5) the Actions that should be performed in order to generate the interactions;

6) the conditions that should trigger/fail/finish those Actions and,

7) proposed measurements that can be collected from those interactions.

Scenario requirements regarding interactions have been encoded into Assign-

ments that are represented by class Assignment in OSO.

As a result, OSO should be able to not only model driving context along with

Assignments for generating required interactions, but also represent knowledge

in a programming language-independent and logic-based manner. It should be

human-readable and machine-processable.

As OSO is not the major concern in this research and time allocated for

OSO development is limited, the evaluation of OSO will be focused on testing its

expressiveness by describing scenarios used in this research. Moreover, in order

to guide future research, it can also be evaluated against some general criteria to

identify both its advantages and disadvantages.

In the next chapter, the driver model SAIL (Scenario Aware drIver modeL)

will be introduced along with the major concern of this research - NAUSEA, which

is the decision-making algorithm used by SAIL. SAIL/NAUSEA needs OSO as a

data source. How Assignments for experiments are described using OSO will be

presented in Appendix C. OSO evaluation will be included in Chapter 10.

92

Chapter 5

The Driver Model

SAIL/NAUSEA

[Neo sees a black cat walk by them, and then a similar black cat walks

by them just like the first one]

Neo: Whoa. Déjà vu.

Neo: What is it?

Trinity: A Déjà vu is usually a glitch in the Matrix. It happens when

they change something.

-The Matrix

5.1 Introduction

NAUSEA (autoNomous locAl manoeUvre and Scenario orchEstration based on

automated action plAnning) can be used by a Virtual Driver in driving sim-

ulation to generate interactions according to the driving contexts and scenario

requirements encoded in Assignments. However, when it comes to application, an

algorithm alone cannot be used and thus verified as it requires data for decision

making and interfaces for executing decisions or Assignment-actions, which are

used to control the Ego-vehicle/flock.

In order to support this algorithm, e.g., providing driving context and scenario

Assignments, a driver model named SAIL (Scenario-Aware drIver modeL) has

been developed. NAUSEA will be responsible for the decision making-related

93

5. THE DRIVER MODEL SAIL/NAUSEA

modules in SAIL, so SAIL/NAUSEA will be used to indicate a driver model

SAIL equipped with NAUSEA.

A Virtual Driver who is equipped with SAIL/NAUSEA is endowed with abil-

ities of temporal reasoning, Role Matching, scenario execution and scenario re-

planning if necessary by maintaining the General Plan for the whole scenario.

In this chapter, the focus will be placed on NAUSEA but SAIL will be intro-

duced first. It should be noted that NAUSEA can be used to handle driving and

non-driving Actions, but this research primarily focuses on the coordination of

(autonomous) simulated vehicles’ behaviours, so NAUSEA has been mainly used

to handle driving Actions.

5.2 SAIL

SAIL was proposed in order to provide data for decision making and interfaces

for executing decisions or Assignments, so it has been directly developed based

on some existing architectures. In this section, the driver model developed in

Chapter 3 will be described in more detail, especially regarding the Decision

Making layer.

The ECOM model (Extended Control Model) (Engström & Hollnagel, 2007)

has four layers and has inspired the design of the Decision Making layer.

Targeting is used to set goals for driving such as the destination. Monitoring

is used to set objectives and plans for Actions and can be used to monitor the

condition of vehicles. Regulating is used to drive safely and concentrate on the

relative positions between a vehicle and other objects in the traffic, so decisions

regarding lane choice, overtaking or obstacle avoidance can be made. Tracking is

used to execute the decisions from Regulating and attempting to, e.g., maintain a

speed or a safe distance. Because each layer requires a different level of effort from

the driver, ECOM also includes some indications regarding the effort required by

that layer: anticipatory or compensatory.

Assignments can be regarded as a part of Situation Awareness, which Gugerty

(2011) defines as “a type of knowledge” and includes factors such as fuel level, des-

tination etc. However, because of limitations in driving simulation, e.g., limited

94

5.2 SAIL

Figure 5.1: The ECOM Architecture from Engström & Hollnagel (2007)

factors in Situation Awareness such as fuel level, Situation Assessment in Regu-

lating has been especially designed as a separate layer to replace the Monitoring

layer. Hence, Assignments will be handled by Situation Assessment, which is also

used to set objectives and plans for Actions. Although this Virtual Driver will

be used to control the simulated vehicles in driving simulation, the new Situation

Assessment layer is not designed to monitor the condition of the simulated vehi-

cle, as the condition is assumed to be malfunction-free. In addition, the Tracking

layer has been ignored as the decisions from Regulating will be directly sent to

the simulated vehicles.

As a result, the Decision Making layer in the new driver model SAIL includes

three layers: Targeting, Regulating and Situation Assessment as illustrated in

Figure 5.2.

Perception is used to sense the outside environment and make necessary inter-

pretations. A Virtual Driver should possess the following sensing abilities: vision,

hearing, touch and proprioception (Peters & Nilsson, 2007b). In this research, the

information received by Smith concentrates on visual information, so his sensing

abilities include vision only, e.g., the leader vehicle’s speed and position.

Cognition has two sub-layers: Memory and Decision Making. There are two

kinds of Memory: Individual Feature and World Model. Individual Feature con-

95

5. THE DRIVER MODEL SAIL/NAUSEA

V
e

h
ic

le

Perception

Action

Cognition

W
o

rl
d

F
e

e
d

b
a

c
k

In
fo

rm
a

ti
o

n

Memory
 1. Individual Feature

 1). Driving Experience

 High-Level Action Recipe

 2). Motivation

 Scenario Assignment List

 2. World Model

 1). The General Plan

 2). Action Execution Queue (AEQ)

 3). Action Monitor Queue (AMQ)

 4). Ego-vehicle/flock

 5). Neighbourhood Information

 6). Refined Metric Constraints

 7). The First Successive Assignment

 (Checking Assignment, CA)

 8). Logical Road Network (LRN)

 9). Memory History

 etc.

Decision Making
 1. Targeting

 1) Route Planning

 2. Situation Assessment

 1). Role Matching

 2). Plan Evaluation

 3). Assignment Assessment

 3. Regulating

 1). Overtaking

 2). Lane-changing

 3). Speed Adapation

Figure 5.2: Scenario-Aware drIver modeL (SAIL)

tains exactly 14 structures derived from Dewar (2002), e.g. Experience, Per-

sonality, Emotions. However, in this research, Smith has adopted two sets of

Individual Features only: Driving Experience and Motivation. Driving Experi-

ence contains Recipes and lets Smith know how to perform High-Level Actions,

e.g., the “Block” Action will let Smith find three simulated vehicles to prevent the

participant from overtaking. Motivation includes Assignments from SDF (Sce-

nario Definition File). The World Model includes all the contexts for driving, e.g.,

logical road network, previous Memory of the World Model (Memory History),

etc.

The Decision Making layer has three sub-layers, namely Targeting, Situation

Assessment and Regulating. Targeting is used to plan the route for Smith and

set goals for the Situation Assessment. The Situation Assessment is used to su-

pervise the Assignments and route. Regulating uses any relevant tactical driving

behaviours to drive safely and satisfy the goals of the Situation Assessor. This

decision making layer uses NAUSEA to maintain and carry out the General Plan,

which is the plan Smith needs to follow in order to finish the whole scenario.

The Action layer is a network communication module for publishing orders to

corresponding Ego-vehicle/flock. It sends out Smith Orders, which are instruc-

tions that the Ego-vehicle/flock should follow or SMM should carry out. This

96

5.2 SAIL

layer can also notify every layer whether or not an Action has been sent. Smith

Orders can come from the Situation Assessment or the Regulating layers.

In the sections below, the following layers or sub-layers will be introduced

with more details: Perception, Individual Feature, World Model and Action.

The decision making algorithm NAUSEA that is used for the Decision Making

layer will be elaborated in Section 5.3.

5.2.1 Perception

Perception in SAIL involves two procedures: one is to sense the outside world by

receiving raw data; the other is to interpret the raw data and maintain the World

Model. Raw data mainly consists of information regarding all vehicles, including

the participant’s vehicle. Table 5.1 includes the information of one UDP package

broadcast by the Sim, which is used as the raw data for Smith.

Table 5.1: Package Format

Data Unit Type Function

Time Stamp second(s) Float the simulation time in Sim, which starts from

zero seconds

Car Count N/A Integer the number of vehicles in Sim including the

participant’s vehicle

Vehicle Information N/A Array every vehicle’s real-time information, the size

of this data should be equal to the Car Count

As shown in Table 5.1, Vehicle Information is an one dimension array whose

size equals to the Car Count. Each element of the array contains one vehicle’s

information, which complies with the format shown in Table 5.2.

In a single simulation time frame, the Sim will pack the data with the following

procedure:

• Car Count is first obtained;

• when the Sim is updating each vehicle’s state in the simulation, e.g., posi-

tion, the corresponding element in the Vehicle Information will be updated

97

5. THE DRIVER MODEL SAIL/NAUSEA

Table 5.2: Data Format of Vehicle Information

Data Unit Type Function

Vehicle’s ID N/A Integer ID of the vehicle, which is unique in the sim-

ulation

Flock’s ID N/A Integer ID of the vehicle’s Flock, this indicates which

Flock the vehicle is in

Vehicle Type N/A Integer type of the vehicle, e.g., 1 means lorry/truck

Road ID N/A String ID of the road segment on which the vehicle

is travelling on, e.g., r3.1 indicates the road

segment no. 3.1

Road Distance metre(m) Float distance travelled along the present road seg-

ment, this value should be bigger than 0, but

smaller than the length of the road segment

Road Offset metre(m) Float vehicle’s position offset to the centre line of

the road segment, see Chapter 4 for details

Speed m/s Float speed of the vehicle, which is assumed to be

non-negative in this research, i.e., no reverse

Acceleration Rate m/s2 Float acceleration (positive) or deceleration (nega-

tive) rate of the vehicle

Overtaking Intention N/A Integer status of the overtaking behaviour, 0 means

no overtaking is planned, 1 means overtaking

has finished and 2 means overtaking is being

undertaken

Leader’s ID N/A Integer ID of the vehicle’s leader

Follower’s ID N/A Integer ID of the vehicle’s follower

Offside Leader’s ID N/A Integer ID of the nearest vehicle ahead in the right

adjacent lane based on left driving rule

Offside Follower’s ID N/A Integer ID of the nearest vehicle behind in the right

adjacent lane based on left driving rule

Nearside Leader’s ID N/A Integer ID of the nearest vehicle ahead in the left ad-

jacent lane based on left driving rule

Nearside Follower’s ID N/A Integer ID of the nearest vehicle behind on the left

adjacent lane based on left driving rule

98

5.2 SAIL

and each vehicle will have a unique element position in the Array. Hence,

when the ID of the vehicle has been identified, its state in the Sim can be

obtained and,

• after the update of the Vehicle Information, the time stamp of the Sim is

retrieved and assigned to “Time Stamp”.

Then, the package will be sent to the network and Smith interprets these data,

updating three kinds of memories in the World Model accordingly:

• Participant’s Information: the participant’s driving status will be updated,

e.g., vehicle’s position, speed;

• Neighbourhood Information: after Smith has received the participant’s in-

formation, the relationships between the participant’s vehicle and other

simulated vehicles will be constructed.

OSO (The Ontology for Scenario Orchestration) used the complete version

of Formation Position. However, a simpler version of Formation Position

is adopted in Smith’s World Model and represented in OSO as state vari-

ables. Figure 5.3(b) is an illustration of the simpler version. This version

of Neighbourhood includes all the 12 positions that are of most interest to

Smith.

As illustrated in Figure 5.3(a), Smith is able to build a Neighbourhood

around the participant’s vehicle to represent the formation around the par-

ticipant. For instance, from the package, the participant’s leader can be

obtained by examining the record of the first element (at position 0, as its

ID is 0) of Vehicle Information. Leader is vehicle no. 1, so this vehicle’s

information can be found in the element position of 1 in the array Vehicle

Information. As a result, the corresponding information regarding vehicle

no. 1 will be written into the Neighbourhood and occupy the “L” element

of the Neighbourhood (see Figure 5.3(b));

• Memory History: After Smith has updated the Memory according to the

package sent from the Sim and updates from other layers, e.g., updates

regarding potential Smith Orders, containing the proposed Actions that

99

5. THE DRIVER MODEL SAIL/NAUSEA

P 1

Travelling Direction

v
p

v
1

2

v
2

3

v
3

(a)

(b)

Figure 5.3: Neighbourhood Generation Example

should be executed by corresponding Ego-vehicle/flock or SMM, Smith will

then store the Memory into Memory History, which will be used by Triggers

to detect state transition/events.

5.2.2 Individual Features

The most common High-Level Actions for Smith are the Actions of β1 (Generate-

formation) and β2 (Perform-assignment). However, not all the High-Level Actions

have Recipes. Smith contains Recipes of 1) how to perform some High-Level Ac-

tions for Assignment, e.g., “Block”, by specifying recipes in the Driving Experi-

ence of Memory or 2) how to perform β2 by using pre-defined Assignment-actions

stored in Assignments.

Motivation stores all the Assignments that Smith needs to finish during the

Action of β2 (Perform-assignment). They cannot be changed during simulation,

but interfaces can be provided to modify/delete/add Assignments online.

100

5.2 SAIL

5.2.3 World Model

The World Model provides Smith with the current driving context and relevant

interfaces for modifications or queries: the General Plan, the status of Assign-

ments, the status of Smith and all other driving contexts, e.g., route. It has two

main functions:

• Storing Driving Context and Assignment Status: the World Model main-

tains a model of the driving activity, which refers to the General Plan

(including Assignment status), self information (Smith), participant’s vehi-

cle’s information, Ego-vehicle/flock’s information, Neighbourhood informa-

tion and the information regarding the physical environment. It also keeps

a history of the previous World Model for ten simulation time frames. The

Driving Context can also include driving regulations and traffic rules, how-

ever, they have been ignored in this research due to their absence in most

scenarios.

• Modifying World Model and Answering Queries from other layers:

– The World Model can be modified by other layers in order to keep the

information uptodate in every decision loop, e.g., the modification of

Smith Orders or Assignment Status;

– Logical Road Network (LRN) Queries provide answers regarding re-

lationships between different road facilities, e.g., the successor of the

present road segment;

– Plan Queries provide answers regarding the General Plan, e.g., its con-

sistency, specific metric constraints between two Assignments/Actions,

precedence constraints between two Assignments;

– Assignment Queries provide answers about online information regard-

ing Trigger status, running status, Assignment-action status, proposed

deadline of Action, etc. and,

– Vehicle Queries provide answers regarding any simulated vehicles that

are of interest to Smith: Ego-vehicle/flock and the ones in the Neigh-

bourhood.

101

5. THE DRIVER MODEL SAIL/NAUSEA

The OpenDRIVE format (Dupuis, 2011) has been used to design the data

structure of World Model regarding road networks, although it has not been fully

described in OSO. The OpenDRIVE format is designed to describe road networks

regarding logic relationships and features such as lanes, signs, geometry property

etc. It is organised in nodes and thus can be extended with user data (Dupuis,

2011). As it is designed to be a standard in describing the road network’s logic

and providing a way of exchanging relevant data between different platforms with

the capability of extension (OpenDRIVE, 2013), this format has been adopted

by Smith to provide a logical memory of the road network.

5.2.4 Action

The Action layer is in charge of broadcasting Smith Orders. As traffic flow is

not the concern of this research, traffic flow creation and maintenance will not

be covered and is always handled by existing modules in the Sim and Smith will

just use that traffic flow to orchestrate scenarios.

One Smith Order can contain the following major Action indicators:

• Action Vehicle: the ID of the Ego-vehicle that the order should be executed

by;

• Action Flock: the ID of the Ego-flock that the order should be executed

by;

• Time Stamp: the time when the order if published;

• Action Lane: the lane that the Ego-vehicle/flock should go to;

• Action Speed: the speed that the Ego-vehicle/flock should travel with;

• Target Speed: the speed that the Ego-vehicle/flock should try to regulate to.

This Action indicator has been used with Action Speed interchangeably as

changing the speed of Ego-vehicle/flock directly is not used in this research;

• Acceleration: the acceleration rate that the Ego-vehicle/flock should use;

• Lane-changing permit: this is used to indicate if lane-changing is permitted;

102

5.3 NAUSEA

• Overtaking Intention: this is to let the Ego-vehicle overtake by setting its

desired speed to a higher value than its leader. This is actually the substi-

tution for Target Speed. This order has been left for further completeness

as Smith should also be able to change the overtaking behaviour of Ego-

vehicle;

• Traffic Flow: traffic flow indicator with corresponding parameters: high,

low, medium or some other user-defined parameters. Traffic flow generation

is not covered in this research so no parameters are needed to regulate traffic

flows generated, e.g., traffic flow rate.

Moreover, there are also some indicators for SMM Actions, e.g., indicator of

restoring simulated vehicles’ original states or putting cones on the road. These

indicators are not standardized, so they will be mentioned when necessary.

5.3 NAUSEA

As a Virtual Driver in driving simulation, Smith’s task is to orchestrate scenarios

according to the description recorded in SDF (Scenario Definition File). He has

to interact with the participant according to Assignments. During this process,

NAUSEA is used to answer the following questions raised by Smith based on the

information from Assignments:

• which vehicle/flock should I control? (“Match Role”)

• How should I drive my vehicle/flock there? (“Prepare Actor”)

• what do I need to do for the Assignments and can I finish them in time?

(“Finish Assignment”)

• if something went wrong, e.g., if the Assignment failed to be triggered, what

should I do? (“Replanning”)

As a result, Smith needs to carry out the following sub-tasks in a scenario:

• Initialize: Smith builds a World Model based on SDF and acknowledges

what he should do in the scenario;

103

5. THE DRIVER MODEL SAIL/NAUSEA

• Match Role1: after initialization, Smith will build the General Plan and

find an Ego-vehicle/flock to control according to the first successive Assign-

ment(s)2. A subclass of Action named MatchRole was created in OSO to

generate a pre-defined Assignment to indicate when or where the Match

Role process should be invoked if necessary;

• Prepare Actor: after the Ego-vehicle/flock has been identified, Smith will

then drive the Ego-vehicle/flock to the proposed Formation Position and

prepare for the oncoming Assignments; this process will be followed by β2,

which is the “Finish Assignments” specified below;

• Finish Assignments: after Smith has formed the required formation around

the participant’s vehicle, he will then carry out and finish the Assignment

according to Triggers, precedence constraints and metric constraints;

• Clean Up: after the Assignments, Smith will clean up the scenario by restor-

ing the Ego-vehicle/flock with previous parameters, e.g., previous desired

speed. This process is always handled by a pre-defined Assignment because

by doing so, restored values can be controlled according to specific needs;

• Replanning: if there is any failure after Initialization, Smith will invoke

“Match Role” and find another Ego-vehicle/flock to continue the experi-

ment (Smith may still find the same one), so Smith will go back to the

“Prepare Actor” phase.

In order to guide the execution of tasks mentioned above, Smith needs to

establish the General Plan Grα and evaluate it according to the temporal con-

straints by using a Plan Evaluation procedure, which is used to see if the metric

constraints are consistent. If they are consistent, Smith will then carry out the

tasks above and perform relevant Assignment-actions according to any temporal

constraints or Triggers in Assignments.

1Role Matching in this research has put a focus on local optimization by finding an optimized

actor for a single Assignment. Some discussions have been provided in Chapter 11 in order to

indicate the possibility of adopting Role Matching based on all successive Assignments for global

optimization.
2In this research, two parallel Assignments imply that one of them should be a Flock-related

or a traffic flow-related Assignment.

104

5.3 NAUSEA

5.3.1 Definitions and Notations

In order to present NAUSEA, especially the Plan Evaluation procedure in it,

some definitions are given first, although relevant concepts have been covered in

Chapter 3. Those definitions are derived from Hadad et al. (2003), but have been

simplified and tailored to the special needs of this research.

Definition 1. Let A = {A1, A2, ..., An} be a set of Assignments that Smith needs

to carry out in a scenario and let θprecA = {(i, j)|Ai < Aj; i 6= j} be a set of prece-

dence constraints associated with A. Each precedence constraint {Ai < Aj(i 6= j)}
represents that the execution of Assignment Aj starts after the execution of Ai

finishes because Ai expires or the Success Conditions of Ai are satisfied.

Definition 2. Let a = {a1, a2, ..., am} be a set of Actions that Smith needs to

carry out and let θpreca = {(i, j)|ai < aj; i 6= j} be a set of precedence constraints

associated with a. Each precedence constraint {ai < aj(i 6= j)} represents that

the execution of Action aj starts after the execution of ai finishes. An Action can

be finished by duration-expiration or satisfaction of Success Conditions from its

parent Assignment. If no precedence constraints of two Actions can be found, then

the two Actions will be scheduled in parallel. If there are no Monitors associated

with either Action and they share the same Durations, then they will be started

and finished at the same time.

Definition 3. If A = {A1, A2, ..., An} is a set of Assignments that Smith needs

to carry out in a scenario, then the set of Actions that Smith needs to perform in

a scenario, which is a = {a1, a2, ..., am}, are made up of pre-defined Actions and

Assignment-actions extracted from set A. Let aAi and aAj (i 6= j) be two subsets

of a, representing all the Assignment-actions needed for the Assignment Ai and

Aj respectively. Let ap ∈ aAi and aq ∈ aAj where p 6= q. Hence,

• m > n;

• if Ai < Aj, then ap < aq.

Definition 4. Let Ai be an Assignment that Smith needs to carry out in a sce-

nario and the set {γ0, ..., γn} be the Assignment-actions in Ai. If sγj 6 sγi and

fγk > fγi (i 6= j, k and 0 6 i, j, k 6 n), then sAi = sγj and fAi = fγk , where sγj ,

105

5. THE DRIVER MODEL SAIL/NAUSEA

sγi and sAi represent the start time of Assignment-action γj, γi and Assignment

Ai respectively; fγk , fγi and fAi represent the finish time of Assignment-action

γk, γi and Assignment Ai respectively.

Figure 5.4: Action Recipe for Smith (Perform-scenario)

Definition 5. Given the recipe shown in Figure 5.4, let {α, β0, β1, β2, β3} be a

set of pre-defined Actions that Smith needs to perform in a scenario where α

is the top-Action named “Perform-scenario” and β0 is “Get-to-the-initial-state”,

β1 is “Generate-formation”, β2 is “Perform-assignment”, β3 is “Clean-up”. Let

{γ1, γ2, ..., γm} be a set of Assignment-actions extracted from the Assignment set

{A1, A2, ..., An} (n 6 m). Hence,

• let {α, β0, β1, β2, γ0, γ1, ..., γm, β3} be the set of Actions that Smith derives

from pre-defined Actions and Assignment-actions from Assignments;

• let Vα = {sstart, sα, sβ0 , sβ1 , sβ2 , sγ0 , sγ1 , ..., sγm , sβ3 , fα, fβ0 , fβ1 , fβ2 , fγ0 , fγ1 ,

..., fγm , fβ3} be a set of Instants, where sstart represents the start of the sim-

ulation, and Instants starting with s and f represent the start and finish

times of each Action respectively. Specially, fα represents the finish of the

scenario, which is not necessarily the finish of the simulation as the simu-

lation can be terminated by external operators such as experimenters. |Vα|
represents the number of Instants in Vα;

• let θprecA = {(i, j)|Ai < Aj; i 6= j} be a set of precedence constraints regarding

Assignments and θprecAi
= {(o, q)|γo < γq; o 6= q} be a set of precedence con-

straints of Assignment-Actions in each Assignment Ai. Let θprecα be a general

106

5.3 NAUSEA

set of precedence constraints derived from θprecA and set {θprecA0
, θprecA1

, ..., θprecAn
},

specifying the precedence constraints regarding the set {γ1, γ2, ..., γm};

• let θmetricα = {ui, vj (1 6 i, j 6 |Vα|) | ai,j 6 (ui−vj) 6 bi,j} be a set of met-

ric constraints that are associated with Vα = {sstart, sα, sβ0 , sβ1 , sβ2 , sγ0 , sγ1 ,

..., sγm , sβ3 , fα, fβ0 , fβ1 , fβ2 , fγ0 , fγ1 , ..., fγm , fβ3}; ui, vj are two different In-

stants from Vα , while ai,j, bi,j are two numbers. θmetrcα represent the differ-

ences between two Instants.

Then, the General Plan Grα is a temporal constraint graph (Vα, Eα) where Eα is

a set of edges connecting vertices from Vα. Grα therefore contains:

• the vertex set Vα = {sstart, sα, sβ0 , sβ1 , sβ2 , sβ3 , sγ0 , sγ1 , ..., sγm , fα, fβ0 , fβ1 , fβ2 ,

fγ0 , fγ1 , ..., fγm , fβ3};

• the edge set Eα that specifies:

– there is a set of duration edges Eduration
α = {(sα, fα), (sβ0 , fβ0), (sβ1 , fβ1),

(sβ2 , fβ2), (sγ0 , fγ0), ..., (sγm , fγm), (sβ3 , fβ3), } ⊆ Eα and each edge is ei-

ther labelled by the defined duration of that Action or ∞;

– there is a set of delay edges Edelay
α = {(u1, v1), (u2, v2), ..., (un, vn)} ⊆

Eα where ui is the start/finish time of some Action and vi is the

start/finish time of another Action.

– the delay edges (ui, vj) ∈ Edelay
α are labelled by weights that reflect

corresponding metric constraints:

weight(ui, vj) =

[ai,j, bi,j], if ui, vj ∈ θmetricα

∞, if ui, vj /∈ θmetricα

(5.1)

5.3.2 Algorithm Description

Basically, NAUSEA operates as a procedural process. Figure 5.3 provides an

overall summary of the mechanism of NAUSEA in SAIL.

The rest of this section will elaborate the procedures in NAUSEA as shown in

Figure 5.3 with more details. Generally speaking, NAUSEA has been designed

with several sub-procedures, which have been summarised in Algorithm 1 on Page

110:

107

5. THE DRIVER MODEL SAIL/NAUSEA

Memory Decision Making Loop

Refined Metric
Constraints

The General Plan
Grα

The First Successive
Assignment
(Checking

Assignment, CA)

Action Execution
Queue (AEQ)

Action Monitor
Queue (AMQ)

Initial Scenario
Assignment List

Item
: Content of Memory that cannot be changed during the whole scneario

: What in Memory have been changed or Needed

Perception

T
h

e
 S

im

participant's and
Neighbourhood

Information

Logical Road
Network (LRN)

Initialization
Procedure

R
a
w

 D
a
ta

P
a
c
k
a
g
e
s

S
im

u
la

te
d

V
e
h
ic

le
 U

p
d
a
te

O
rd

e
r

H
a

n
d

lin
g

 b
y

S
M

M

SDF (Scenario Definition File)

New Grα

Found?

Plan Evaluation
Procedure

Yes

Need a New

Ego-Vehicle/

Flock

No

Role Matching
Procedure

Yes

Targeting
Procedure
(The Sim)

Regulating
Procedure

Assignment
Assessment
Procedure

No

Route

Is Grα

Consistant

Update Refined

Metric Constaints

Yes

Yes

Report

Failure

ActionAction Procedure

(Send out Order)

No

Ego-vehicle/flock

Is an Action

Needed to reach

Formation

Position?

No

Add the Action as an

Assignment

to the General Plan

Yes

Can Ego-vehicle/

Flock be Found?

Yes No
Report

Failure

Yes

Is CA

Triggered? Yes

Is Online Release

Time Consistent with

Refined Metric

Constraints

Add CA to Action

Execution Queue

Yes

No

Go to Role Matching

Procedure

Are Assignment-

action(s) in AMQ

Expired?

Record

Adjusted

Deadline
Add CA to Action

Monitor Queue

Yes

Is Adjusted Deadline

Consistent with

Refined Metric Constraints

No

Update CA

Is this the

end of

Grα?

Yes

END

No

Start

Yes

Are Assignment-

action(s) in AMQ

Succeed?

Are Assignment-

action(s) in AMQ

Failed?

Have any Assignment

in AMQ

Tried more than the

Maximum trys defined

No

Yes

Continue

No

No

Continue
No

Yes

Go to Role Matching

Procedure

No

Yes
Report

Failure

Report

Failure

The General Plan
Grα

Refined Metric
Constraints

Action Execution
Queue (AEQ)

Action Monitor
Queue (AMQ)High-Level

Action Recipe

Memory Hisroty

Is SDF parsed?
Yes

Report

Failure

No

Continue

The First Successive
Assignment
(Checking

Assignment, CA)

Refined Metric
Constraints

Send Out Order(s) indicated in

AEQ, erase CA from the AEQ and

Record Online Release Time

Action Execution
Queue (AEQ)

Figure 5.5: The Mechanism of SAIL/NAUSEA

108

5.3 NAUSEA

1) Initialization procedure: Lines 3 to 12;

2) Plan Evaluation procedure: Lines 14 to 22;

3) Role Matching procedure: Lines 23 to 34;

4) Targeting procedure: Lines 35 to 41;

5) Regulating procedure: Lines 42 to 45;

6) Assignment Assessment procedure: Lines 46 to 55;

7) Action procedure: Lines 56 to 59;

8) Failure Broadcast procedure: Line 61.

Each sub-procedure will be elaborated in more detail from the next section.

The Role Matching and Assignment Assessment procedures will be introduced

with pseudo codes as well.

5.3.2.1 Plan Evaluation

The Plan Evaluation procedure takes the original General Plan Grα generated in

the Initialization procedure as input and see if the metric constraints in Grα are

consistent by generating a set of refined metric constraints from the original ones

in Grα. The metric constraints are considered to be inconsistent if the minimum

difference between an individual Instant (e.g., the start time of an Assignment-

action) and itself is smaller than zero. The Floyd-Warshall algorithm (Cormen

et al., 2001) has been used to evaluate the General Plan Grα and an example

has been given to demonstrate how the plan evaluation procedure works in the

algorithm and what the refined metric constraints mean to Smith.

IntervalBefore has been implied as the only precedence constraint for building

the General Plan. However, IntervalFinishes has been included in some examples

to indicate that the two Actions should be finished at the same time. This is

used to handle ambient traffic flow generation. IntervalFinishes is also used to

demonstrate that the plan evaluation procedure can handle other constraints

as well by building corresponding nodes and edges in the General Plan. As

illustrated in Figure 5.6(a), γ4 and γ2 will be finished at the same time.

109

5. THE DRIVER MODEL SAIL/NAUSEA

Algorithm 1 Mechanism of NAUSEA
Require: SDF (Scenario Definition File) for Initialization and Memory in SAIL for real-time decision making.

Output: Smith Orders, i.e., Assignment-actions or Actions required by Regulating Procedure, i.e., speed/acceleration rate

modifications or Overtaking/Lane-changing intentions/permissions.

1. Initialized, SDF Parsed, P lan Evaluation Invoked,New Plan is Found,End of Plan,New Actor is Needed← false

2. Order To Be Sent← ∅
3. SDF Parsed← parse SDF

4. if SDF Parsed then

5. write parsed information into Memory

6. Grα ← build initial General Plan based on Memory

7. SDF Parsed← false

8. Initialized, P lan Evaluation Invoked,New Plan is Found,New Actor is Needed← true

9. CA← the first successive Assignment(s) from Grα
10. else

11. go to Line 61

12. end if

13. while {Initialized and not End of Plan} do

14. if Plan Evaluation Invoked or New Plan is Found then

15. Plan is Consistent← check consistency of Grα
16. if Plan is Consistent then

17. store refined metric constraints into Memory

18. New Actor is Needed← true

19. else

20. go to Line 61

21. end if

22. end if

23. if New Actor is Needed then

24. Found Actor ← Perform Role Matching()

25. if Found Actor 6= ∅ then

26. pass the new Actor ID Found Actor to Memory and set it as Ego-vehicle/flock ID

27. New Actor is Needed← false

28. Plan Evaluation Invoked← true

29. else

30. go to Line 61

31. end if

32. else

33. continue

34. end if

35. New Route is Found← get route based on A* algorithm or pre-defined route in Memory

36. if New Route is Found then

37. write new route to Memory if it is from A* algorithm

38. continue

39. else

40. New Actor is Needed← true

41. end if

42. if new Action is needed to navigate to the required Formation Position then

43. Grα ← add the new Action in the recipe of β1
44. Plan Evaluation Invoked← true

45. end if

46. [Order To Be Sent, Assignment Failure]← perform Assignment Assessment Procedure()

47. if {CA = ∅} then

48. End of Plan← true

49. Assignment Failure← false

50. end if

51. if Assignment Failure then

52. New Actor is Needed← true

53. else

54. continue

55. end if

56. if {Order To Be Sent 6= ∅ and not End of Plan} then

57. Send out Orders in Order To Be Sent

58. Order To Be Sent← ∅
59. end if

60. end while

61. Broadcast “Failure” or if permitted, request a new simulated vehicle according to the vehicle restriction in the first successsive

Assignment

110

5.3 NAUSEA

Example 1. Let us assume that in some scenario, Smith needs to carry out five

Assignments: A0, A1, A2, A3 and A4. Their Assignment-actions are γ0 to γ4 re-

spectively. They are some general Actions and also contain relevant information,

e.g., Triggers.

The precedence constraints are:

A0 IntervalBefore A1;

A0 IntervalBefore A4;

A1 IntervalBefore A2;

A2 IntervalBefore A3;

A2 IntervalFinishes A4;

The metric constraints estimated can be:

117.6 6 the start time ofA1 − the start time ofα 6 255.0 (5.2)

614.5 6 the finish time ofβ2 − the start time ofA1 6 1527.8 (5.3)

414.37 6 the start time ofA2 − the start time ofA1 6 1051.12 (5.4)

105.78 6 the start time ofA3 − the start time ofA2 6 1015.13 (5.5)

which are:

117.6 6 sγ1 − sα 6 255.0 (5.6)

614.5 6 fβ2 − sγ1 6 1527.8 (5.7)

414.37 6 sγ2 − sγ1 6 1051.12 (5.8)

105.78 6 sγ3 − sγ2 6 1015.13 (5.9)

Where:

sα represents the start of planning;

sγ1, sγ2 and sγ3 represent the start time of Assignment-action γ1, γ2 and γ3

respectively;

fβ2 represents the finish time of pre-defined Action β2, which is “Perform-

assignment”.

111

5. THE DRIVER MODEL SAIL/NAUSEA

As Smith starts planning from the very beginning, sstart has the same meaning

as sα. When building the Plan, Smith ignores α, β0 and β3. Moreover, the

duration of the Assignment-action γ1 in A1 should be 70 seconds. The duration

of γ2 in A2 should be 65 seconds. Those durations can be different from the ones

specified in the Assignments to make sure that Smith has enough time to dictate

the Assignments and will not trigger Failure accidentally.

As a result, by using the constraints, both delays and durations, pre-defined

and user-specified, the General Plan Grα can be generated as illustrated in Figure

5.6(a). Smith will evaluate this graph by generating a bidirectional graph whose

vertexes are the ones in 5.6(a), while edge weights are:

1) specified metric constrains, e.g., weight of edge [sγ3, sγ2] is 1015.13, while

weight of edge [sγ2, sγ3] is -105.78 according to the constraint of 105.78 6

sγ3 − sγ2 6 1015.13;

2) INFINITE if the weight of edges are not specified.

The Floyd Warshall algorithm, which is used to find the minimum distance

between any two vertexes in the resulted bidirectional graph, will then be used to

generate a set of refined metric constraints. Details of applying Floyd Warshall

algorithm in temporal constraints graph can be found in Dechter et al. (1991).

The evaluation result is shown in Figure 5.6(b) with the refined metric con-

straints that are of interest to Smith. When performing Assignments, Smith will

ignore unspecified metric constraints with value INFINITE, which are not illus-

trated in Figure 5.6.

From the results obtained, for instance, the start time of A1 should be less

than 255 seconds after the start of α. Hence, when carrying out A1, the proposed

release time of the Assignment-action γ1 should be less than 255 seconds and the

proposed deadline of γ1 should be less than 325 seconds.

By applying the Floyd Warshall algorithm and related temporal information,

Smith is able to know what to do and if the plan has been carried out in time. The

refined metric constraints shown in Figure 5.6(b) should be consistent throughout

the scenario.

Plan Evaluation can be invoked for three reasons:

112

5.3 NAUSEA

fβ
1

Sβ
1

sstart

Sβ2

fβ2

f
!0

S
!0

f
!1

S
!1

f
!2

S
!2

[65, 65]

f
!4

S
!4

f
!3

S
!3

[117.6, 255.0]

[614.5, 1527.8]

[105.78, 1015.13]

[414.37, 1051.12]

[70, 70]

fβ
1

Sβ
1

sstart

Sβ2

fβ2

f
!0

S
!0

f
!1

S
!1

f
!2

S
!2

[65, 65]

f
!4

S
!4

f
!3

S
!3

[1
1
7
.6

, 2
5
5

]

[70, 70]

[1
8
7
.6

, 3
2
5

]

[5
3
1
.9

7
, 1

3
0
6
.1

2
]

[5
9
6
.9

7
, 1

3
7
1
.1

2
]

[6
3
7
.7

5
,
2
3
2
1
.2

5
]

Figure 5.6: The General Plan for Example 1

1) Smith is initializing his World Model. In this case, the Plan Evaluation will

generate the refined metric constraints that will be used throughout the sce-

nario to indicate the proposed release time or deadline range of Assignment-

actions;

2) Smith needs to add lane-changing Actions into the General Plan according

to the Regulating layer. In this case, as the Regulating layer will not add

113

5. THE DRIVER MODEL SAIL/NAUSEA

new constraints except for the lane-changing duration, which has been set to

five seconds, the Plan Evaluation is always successful and the refined metric

constraints should not be changed;

3) A new Role Matching has performed. In this case, an extra Assignment can

be added to assist this new Ego-vehicle, e.g., adopt new speed, however, in

this research, Plan Evaluation after Role Matching is always successful as the

refined metric constraints should not be changed and no extra Actions will be

added. Smith will stick to the pre-defined plan for Assignments.

In general, what Plan Evaluation should do is to evaluate all the constraints

to make them consistent with each other, so the refined metric constants can be

different from their original counterparts, i.e., initial metric constraints from SDF

(Scenario Definition File), but of course, they should have intersections.

5.3.2.2 Role Matching

The Role Matching procedure takes the Assignment-action that is being checked

as input and generates an Ego-vehicle/flock ID as output, indicating which Ego-

vehicle/flock Smith should control.

In general, when Smith is trying to perform an Assignment, Role Matching

will be invoked throughout the Assignment until an Ego-vehicle/flock has been

assigned. Meanwhile, it can be invoked just once if changing Ego-vehicle/flock

is forbidden. Generally speaking, Role Matching has three steps: the Matching

of Formation Position, the Matching of vehicle model, and the Matching of Grα.

Algorithm 2 shows the mechanism of Role Matching in NAUSEA. Step one and

two, which are Matching of Formation Position and Matching of vehicle model

respectively, are covered in Lines 10 to 25; step three, which is Matching of the

General Plan, is covered in Lines 26 to 37.

When Smith needs to find a simulated vehicle to perform an Assignment, he

will attempt to find one near the proposed Formation Position, which is reflected

by the Neighbourhood information in Memory. For instance, if an Assignment

needs a leader of participant’s vehicle, the “Formation Position” of that Assign-

ment will be specified as “Leader” in SDF (according to Figure 5.7). Smith will

then try to find a simulated vehicle that is in position “L” in the Neighbourhood.

114

5.3 NAUSEA

Algorithm 2 Mechanism of Role Matching in NAUSEA (function

Role Matching())
Require: the pre-defined Formation Position array FP , the Assignment that is being monitored CA in Memory, i.e., the first

successive Assignment(s) and the refined metric constraints

Output: Found Actor that represents the ID of Ego-vehicle/flock found.

1. according to Figure 5.7, FP =

FLF PL1 LLF0 LLF1 0

FL PL0 LL0 LL1 0

F P L LC0 LC1

FR PR1 LR0 LR1 0

FRF PR1 LRF0 LRF1 0

2. Found Actor ← ∅
3. Actor Can Be Found← true

4. [m,n]← array position of required Formation Position from CA

{e.g., if ”L” is required, then [m, n] will be assigned with [2, 2] according to FP}
5. Found Final Position← false

{If Role Matching has searched all possible positions, i.e., the required position, the left-side and right-side positions.}
6. if the simulated vehicle in the proposed Formation Position is not the one found in Role Matching then

7. Found Actor = ∅
8. end if

9. while Found Actor = ∅ do

10. if vehicle at [m,n] has the required vehicle model and it has not been searched before then

11. Found Actor ← vehicle ID at position [m,n] according to the Neighbourhood in Memory

12. end if

13. if m− 1 > 0 and Found Actor = ∅ then

14. if vehicle at [m− 1, n] has the required vehicle model and it has not been searched before then

15. Found Actor ← vehicle ID at position [m− 1, n] according to the the Neighbourhood in Memory

16. if m = 4 then

17. Found Final Position← true

18. end if

19. end if

{if failed in finding vehicles on the left, try vehicles on the right.}
20. else if m + 1 6 4 and Found Actor = ∅ then

21. if vehicle at [m + 1, n] has the required vehicle model and it has not been searched before then

22. Found Actor ← vehicle ID at position [m + 1, n] according to the Neighbourhood in Memory

23. Found Final Position← true

24. end if

25. end if

26. if {Found Actor 6= ∅ and a position is presented in Monitors} then

27. tp ← the time needed to reach the required position according to current speed

28. if tp > the refined temporal constraints according to Grα then

29. tp ← the time needed to reach the required position according to speed limit

30. if tp > the refined temporal constraints according to Grα then

31. mark Found Actor as searched vehicle in the Neighbourhood in Memory

32. Found Actor ← ∅
33. end if

34. else

35. return Found Actor

36. end if

37. end if

38. if Found Actor = ∅ and Found Final Position then

39. return 0

40. end if

41. end while

115

5. THE DRIVER MODEL SAIL/NAUSEA

Figure 5.7: Formation Position

If a simulated vehicle can be found in the first step, Smith will then match the

vehicle model with specified parameters regarding its model, its manufacturer, its

max speed etc. As the max speed is always set to the speed limit, vehicle model

along with manufacturer is used to be the vehicle restriction, e.g., Volvo S40.

If the vehicle model has been satisfied, Smith will proceed to Matching of

Grα.

Let us use the Example 1 on Page 111 to describe how the temporal constraints

can be used for Role Matching. As illustrated in Figure 5.6(a) on Page 113, the

temporal constraints are fixed. For instance, the Assignment γ1 should occur

within 255 seconds of simulation starts. What Smith needs to do, therefore, is to

make sure that he can drive the Ego-vehicle/flock to the pre-defined Formation

Position before the constraint expires. This is done by:

1) checking the Monitor in the oncoming Assignment. If the Monitor specifies

that Smith needs to dictate a position, e.g., a specific distance value in a road

segment, Smith will consider the Instant when the participant’s vehicle reaches

that position as the finish time of the Action “Generate-formation”, which is

β1 in Figure 5.6(a);

116

5.3 NAUSEA

2) checking the speed limit of the road segment. This is to see if he can reach

the position in time by considering the maximum speed as a normal driver1.

This is evaluated by calculating the time needed to reach the position:

tp =
∆X

v
(5.10)

Where,

• v is the current speed of the Ego-vehicle/flock;

• ∆X is the distance between the threshold position and the current posi-

tion of Ego-vehicle/flock;

By comparing tp with the temporal constraints, e.g., number 255 in Example

1, Smith will know if this Ego-vehicle/flock can reach the proposed Formation

Position in time. Hence, if tp > 255 − t (t is the current time), then Smith

needs to consider a higher speed by calculating tp as:

tp =
∆X

vlimit
(5.11)

Where,

• vlimit is the speed limit of current road segment.

If tp can satisfy the constraint, he will then choose the Ego-vehicle/flock that

has just been evaluated.

If a failure is reported in any step, Smith will first try to spot any simulated

vehicle near the proposed position based on the Neighbourhood information, such

as “NSL” until he finds an alternative, after which the other two steps will be

invoked again: matching of vehicle model and matching of Grα. If Smith fails in

finding an Ego-vehicle/flock, he will broadcast “Failure” or request to create a new

simulated vehicle or Flock according to the vehicle restrictions. Moreover, if the

simulated vehicle in the proposed position changed during Regulating procedure,

Smith will do another Role Matching in order to make sure that the present

Ego-vehicle/flock is the most suitable one.

1In this research, personalities of drivers are not modelled, so it is assumed that the speed

limit is obeyed at all circumstances.

117

5. THE DRIVER MODEL SAIL/NAUSEA

5.3.2.3 Targeting

Targeting is straightforward by adopting a pre-defined route which usually im-

plies a sequential set of road segments. Therefore, Smith will not interfere with

the Targeting module in simulated vehicles, i.e., the “Route” information in the

Memory reflects the one stored in Ego-vehicle/flock in the Sim. This layer has

been preserved in SAIL/NAUSEA for future development.

5.3.2.4 Regulating

This procedure controls the Ego-vehicle/flock identified in Role Matching. By

utilizing the real-time traffic conditions and the present Assignment-action in

Memory, it can output a speed, a lane or an overtaking indention that the Ego-

vehicle/Flock should adopt. The speed, lane or desired overtaking intention will

be added into the General Plan as the Recipe for β1.

In general, three behaviours are adapted from the Sim: lane changing, speed

adaptation and overtaking. They are adapted because either 1) some modifi-

cations are required according to the needs of the Assignment execution (lane

changing and speed adaptation) or 2) the status of some behaviours should be

monitored, especially overtaking. That is, the Regulating layer in SAIL/NAU-

SEA will incorporate with the existing behaviours in the simulated vehicles in

the Sim.

Lane changing is used to get to the lane that the Formation Position requires,

while overtaking is used to overtake slower vehicles. Speed adaptation is mainly

used to make Smith obey the speed limit of the road segment by considering its

desired speed and maintain a realistic speed trajectory when performing a turning

movement.

In general, lane changing has been enhanced based on the needs from Assign-

ment. It will be invoked to satisfy the Formation Position and act as the Recipe

for β1.

As shown in Figure 5.8, a simulated vehicle that is in the “Leader” position is

needed, however, there is only one qualified simulated vehicle in the position of

“Left Leader 0” (which is vehicle no.1 in Figure 5.8). Smith will therefore treat

118

5.3 NAUSEA

P

Travelling Direction

1

Figure 5.8: Lane Changing Example

the vehicle no.1 as the Ego-vehicle and instruct the Ego-vehicle to change lane in

order to reach the “Leader” position.

Overtaking has been enhanced with flags indicating its running status: When

did it start? Is it being undertaken? Has it finished?

Speed adaptation has not been changed, but when being driven for some par-

ticular Assignment, the Ego-vehicle can be instructed to adopt a slow speed or

higher speed to meet with the participant’s vehicle. Moreover, speed adapta-

tion has been enhanced with the longitudinal transportation strategy proposed

by Olstam et al. (2011), which is included in the third experiment with VTI’s

simulation software in Chapter 11.3.3. More details regarding the algorithm will

be given in Chapter 11.3.3 as it was not developed within this research.

The Regulating procedure is only active in phase β1, which is to arrive at the

Formation Position required by an Assignment. In phase β2, which is to perform

Assignment-actions, lane changing and overtaking are both forbidden while speed-

adaptation is allowed if there is no speed requirement in Assignment-actions.

The finish time of Regulating is the start time of the coming Assignment(s)

as the Monitors will be dictated during the Regulating phase. However, the

satisfaction of a particular Formation Position according to specific definitions

from, e.g., scenario designers, can also be used to indicate the finish time of

Regulating. For instance, the finish time can be the Instant when the time

headway between the participant’s vehicle and the Ego-vehicle is less than six

seconds. In the latter case, the Regulating layer is actually forbidden in advance.

119

5. THE DRIVER MODEL SAIL/NAUSEA

5.3.2.5 Assignment Assessment

After the Ego-vehicle/flock has been identified and driven to the proposed for-

mation by Smith, Assignment Assessment will be invoked. It takes the Triggers

of checking Assignment-action as inputs and checks the status of corresponding

Assignment-action: finished, failed or succeed. It has four tasks:

• trigger any Assignment-action according to its Monitor or precedence order,

record the time as the online release time ronlineβ ;

• execute any Assignment-action based on its ronlineβ ;

• dictate the result of Assignment-action based on Success and Failure Con-

ditions during its Duration, record the adjusted deadline dadjβ ;

• check if the Assignment-action has been sent successfully, if not, mark it as

“unfinished” and report “failure”.

Algorithm 3 shows the mechanism of Assignment Assessment procedure in

NAUSEA. The Assignment Checker procedure is covered in Lines 2 to 8. The

Action Execution procedure is covered in Lines 9 to 19. The Action Checker

procedure is covered in Lines 20 to 53.

The Assignment-checker procedure will dictate the Monitors stored in the

Assignments, which are the oncoming Assignments in Grα. As shown in Example

1 on Page 111, γ0, which is associated with sγ0 and fγ0 , should be executed right

after the Formation Position has been reached. However, due to the existence of

Monitor(s) in its parent Assignment, γ0 will be dictated until the Monitor(s) are

satisfied, in which case, the Assignment-actions will be released and time will be

recorded as the online release time ronlineβ .

ronlineβ will then be handled by a procedure named “Action-execution”, which

will check if ronlineβ is consistent with Grα. If the answer is yes, this Action

will be executed by sending out relevant Smith Orders stored in the definition

of Assignment-action, e.g., decelerate with an acceleration rate of 1m/s2. This

Action will then be passed to the following procedure, which is “Action-checker”.

“Action-checker” checks if an Assignment-action has succeeded or failed ac-

cording to

120

5.3 NAUSEA

Algorithm 3 Mechanism of Assignment Assessment in NAUSEA (function

Assignment Assessment Procedure())
Require: Grα and the Assignment that is being monitored CA in Memory, i.e., the first successive Assignment(s)

Output: Order To Be Sent that represents the Actions that need to be executed and Assignment Failure that presents if

CA has failed to be finished.

1. Action Execution Queue,Action Monitor Queue,Order To Be Sent← ∅
2. CA is Triggered← check if CA has been triggered based on its Monitors.

3. if CA is Triggered and tried times of CA has not exceeded the threshold then

4. ronlineβ ← online release time of CA

5. Action Execution Queue← CA

6. increment of tried times of CA

7. return [Action Execution Queue, false]

8. end if

9. if Action Execution Queue 6= ∅ then

10. for each Assignment in Action Execution Queue do

11. if ronlineβ > corresponding refined metric constraints in Memory then

12. return [∅, true]

13. else

14. Action Monitor Queue← CA

15. erase this Assignment from Action Execution Queue

16. Continue

17. end if

18. end for

19. end if

20. if Action Monitor Queue 6= ∅ then

21. for each Assignment in Action Monitor Queue do

22. if present time - ronlineβ > required Duration then

23. d
adj
β
← present time

24. mark this Assignment as Finished in Memory

25. if d
adj
β

> corresponding refined metric constraints in Memory then

26. return [∅, true]

27. else

28. erase this Assignment from Action Monitor Queue

29. mark this Assignment as Successful in Memory

30. end if

31. end if

32. if present time - ronlineβ < required Duration then

33. if Failure Conditions are satisfied then

34. empty Action Monitor Queue

35. return [∅, true]

36. end if

37. if Success Conditions are satisfied then

38. d
adj
β
← present time

39. mark this Assignment as Finished in Memory

40. if d
adj
β

> corresponding refined metric constraints in Memory then

41. return [∅, true]

42. else

43. erase this Assignment from Action Monitor Queue

44. mark this Assignment as Successful in Memory

45. end if

46. end if

47. end if

48. end for

49. if Action Monitor Queue = ∅ then

50. CA← the successive Assignment(s) from Grα
51. return [∅, false]

52. end if

53. end if

121

5. THE DRIVER MODEL SAIL/NAUSEA

• pre-defined Success/Failure Conditions and,

• Durations of the Assignment-action.

Pre-defined Success/Failure Conditions are specified by OSO users. They will

be checked during the entire Duration of the Assignment-action; if Success Con-

ditions are not satisfied, this Assignment-action and corresponding Assignments

will fail.

The Durations of the Assignment-actions are checked when there are no Suc-

cess Conditions available. Hence, if the Failure Conditions are not satisfied and

the Durations of Assignment-actions have expired, the Assignment-actions and

corresponding Assignments will be marked as finished; satisfaction of Failure

Conditions will cause the failure of the Assignment-action and corresponding

Assignments. It should be noted that all the Triggers, i.e., Monitors, Success

Conditions and Failure Conditions, can have more than one instance in order to

supervise more than one state variables in the Sim.

An Assignment-action that has been marked as finished will be provided with

an adjusted deadline dadjβ , which is the Instant when the Assignment-action fin-

ishes. dadjβ will be checked with the metric constraints in Grα to make sure that

it is consistent with the General Plan. If it is consistent, then it its parent As-

signment will be marked as successful.

If any failure is found during Assignment Assessment, e.g., dadjβ is not consis-

tent with the metric constraints, the Replanning procedure will be invoked.

In addition, Action-check also needs to check if an order has been sent suc-

cessfully by making sure that the order has been cleared after the execution. If

the order has not been cleared, Action-check will return failure.

5.3.2.6 Replanning

Failures in either step of the algorithm will force Smith to find another Ego-

vehicle/flock, provided that changing the Ego-vehicle/flock is allowed.

The potential cause of failures can be:

• Plan Evaluation failure: Smith cannot find a feasible plan according to the

metric constraints;

122

5.4 Summary

• Role Matching failure: Smith cannot find a suitable Ego-vehicle/flock in

the Sim to finish the Assignment and he is not allowed or it is impossible

to create a new vehicle, e.g., the road segment is not long enough for the

Assignment;

• Assignment Execution failure: an Assignment has failed because of the

satisfaction of Failure Conditions or the release time/deadline are not con-

sistent with the refined metric constraints.

What Smith will do in most cases is to keep the failed Assignment in Grα and

perform another Role Matching if it is allowed. Hence, the General Plan will not

change throughout the scenario unless a lane-changing behaviour is needed for

Assignment compensation, in which case the failed Assignment will be replaced

by this lane-changing Action that is the Recipe for β1. However, the remaining

refined metric constraints excluding the failed Assignment should be the same as

before.

Requesting a new vehicle to be created has been covered by NAUSEA, how-

ever, this feature has not yet been fully considered, as speed adaptation in the

Regulating layer has not been fully examined in this research. Creation of new

simulated vehicles may result in long-distance speed adaptations, as they are cre-

ated out of the participant’s sight. Therefore, Assignments are always used to

indicate when the right time and place to create new simulated vehicles should

be.

To sum up, Replanning can be carried out with the help of Role Matching.

However, Replanning can be forbidden by 1) specifying that Smith is not allowed

to perform Role Matching more than once; 2) specifying that the maximum tried

time of the Assignment is one time or 3) both.

5.4 Summary

By utilizing relevant context in Assignments, NAUSEA addresses the run-time

issues in driving simulation in two directions: 1) the simulated vehicles can ac-

tively engage the participant to avoid failure by navigating Ego-vehicle/flock with

required context for interactions based on Regulating procedure and 2) if failures

123

5. THE DRIVER MODEL SAIL/NAUSEA

happen, the simulated vehicles can be re-driven to generate the proposed inter-

actions based on replanning capability. The main procedures in NAUSEA are as

follows:

Plan evaluation is used to generate a refined metric constraints based on user’s

definitions in order to indicate the permitted release time and deadline ranges of

some Assignments.

Role Matching is used to find suitable Ego-vehicle/flock in this research by

matching not only required Formation Position and vehicle models, but also the

potential travelling time spent by the Ego-vehicle/flock from the present position

to the required Formation Position.

Targeting is straightforward by adopting pre-defined route, while Regulating

is used to monitor the overtaking process and modify the lane-changing & speed

adaptation behaviours in order to prepare the Ego-vehicle/flock for a particular

Assignment.

Assignment Assessment is used to trigger/fail/finish Assignments by consid-

ering the precedence constraints between Assignments according to the General

Plan or Triggers used to indicate Monitors, Failure Conditions and Success Con-

ditions.

By carrying out the procedures above according to the General Plan and

dynamic driving context, NAUSEA is able to replan Actions by going back to

Role Matching if necessary.

SAIL was proposed to support NAUSEA by supplying relevant data regard-

ing dynamic driving context and relevant interfaces for communications between

NAUSEA and the Sim. Therefore, SAIL has been designed with existing driver

models but enhanced to adopt NAUSEA. This also adopts a context-understanding

and task-commitment driver model for driving simulation.

In Chapter 6, details regarding the implementation of SOAV will be provided.

It will focus on two components: Smith and the Sim equipped with SMM. From

Chapter 7 to 9, SOAV will be used to run three different experiments with a focus

on verifying the design and implementation. It should noted that, as suggested in

Chapter 3 and the algorithm described in this chapter, NAUSEA will concentrate

on one Smith controlling one vehicle.

124

Chapter 6

Implementation

She told you exactly what you needed to hear. That’s all. Sooner

or later, Neo, you’re going to realize just like I did the difference

between knowing a path and walking a path.

-The Matrix

If it’s not in the computer, it doesn’t exist.

-One of “Murphy’s Technology Laws”

6.1 Introduction

SOAV has four online components: Smith, SMM, the Sim and Scenario Ob-

server. In this chapter, details regarding the implementation of Smith and the

Sim equipped with SMM will be introduced.

The Sim and SMM have been developed with the simulation software of two

driving simulator facilities: UoLDS (University of Leeds Driving Simulator) and

VTI1’s Simulators, which are called Sim platform 1 and Sim platform 2 respec-

tively.

Smith has been developed as standalone software using the C++ language.

It is equipped with SAIL/NAUSEA.

Scenario Observer has been developed based on an Open Source library called

1The Swedish National Road and Transport Research Institute

125

6. IMPLEMENTATION

LCM (Lightweight Communication & Marshalling)1, which is also the library used

for communications among the online components of SOAV.

In the following content, the implementation of Smith and two platforms,

namely Sim platform 1 and Sim platform 2 will be discussed first. The three

verification experiments that have been carried out in this research are also briefly

introduced. SMM, as a component in each platform, will not be discussed because

it is included in every platform as a module being used to receive, interpret and

execute orders with relevant methods in each platform, e.g., set the target speed

of some simulated vehicle. It does not contain any decision-making algorithm.

6.2 Smith

Smith is the implementation of the SAIL driver model. It has been implemented

with C++ and the following Open Source libraries: Boost, Lightweight Com-

munication & Marshalling (LCM) and OpenroadED2. There are two versions of

Smith. In version one, the Cognition and Perception layers were implemented

in different threads and thus ran in parallel, while in version two, the two layers

were implemented in a single thread and thus ran in sequence.

In version one, Perception and Cognition layers were implemented in different

threads and shared two sets of Memory data based on Mutex, which is a mutual

exclusion mechanism used to ensure that the two layers are not possessing the

shared data at the same time so that each layer can modify the shared data

without conflicts. A detailed description of Mutex can be found in the manual

of Boost Thread Library 3. This feature was originally designed in the hope of

making the two layers operate at different frequencies in order to adopt more

advanced features in the future, e.g., different data packages can be received by

the Perception layer with different arrival frequencies, whilst the Cognition layer

should not be affected.

1 https://code.google.com/p/lcm/
2Boost: http://http://www.boost.org;

OpenroadED: http://openroaded.sourceforge.net.
3http://www.boost.org/doc/libs/1_52_0/doc/html/thread.html

126

https://code.google.com/p/lcm/
http://http://www.boost.org
http://openroaded.sourceforge.net
http://www.boost.org/doc/libs/1_52_0/doc/html/thread.html

6.2 Smith

The two layers share two sets of data: simulated vehicles’ information around

the participant’s vehicle (Neighbourhood) and participant’s vehicle’s information.

When the Perception layer receives a new data package, it will 1) lock the two

sets of Memory data by monopolizing Mutex, 2) interpret the data package and

3) write interpreted information to the two sets of Memory data. The Perception

layer will finally unlock Mutex and allow the Cognition layer to lock it. When

the Cognition layer is able to lock Mutex and occupy the Memory data, it will

then make decisions and modify Smith’s Memory accordingly. The Cognition

layer will unlock the two sets of Memory data after the Action layer has executed

orders by releasing the Mutex.

As multi-threaded architecture adopts completion between two layers, single-

threaded Smith was tried in verification experiment three in order to see if the

delay could be consistent with single threading and be reduced to one decision

loop. In this version of Smith, which is version two, the Perception and Cognition

layers were implemented in the same thread and the arrival of new data packages

will invoke the Cognition layer. In this case, the Sim and Smith shares the same

running frequency. As a result, the orders from Smith may experience less time

lag and less variation in the time spent on decision-making than those sent from

version one. Moreover, the High-Level Action “Block” was also implemented in

version two.

The differences between the two versions of Smith are summarised in Table

6.1:

None

Differences in

Action Layer

(Compared to Version 1)

N/A

Action Layer

(Compared

to Version 1)

None

N/A

Differences in

Cognition Layer

(Compared to Version 1)

Added Recipe of the High-
Level Action "Block"

N/A

None

N/A

Differences in

Perception Layer

(Compared to Version 1)

Work

With

The Sim
platform 2

2

1
The Sim

platform 1

Version

Number

Added Recipe of the High-Level
Action "Block"

NoneNo

N/AN/AYes

Differences in

Cognition Layer

(Compared to Version 1)

Differences in

Perception Layer

(Compared to Version 1)

Multi-

Threaded

Table 6.1: Differences Between two Versions of Smith

127

6. IMPLEMENTATION

6.3 Sim Platform 1

“Sim platform 1” or “Sim1” for short was based on the simulation software of

UoLDS (University of Leeds Driving Simulator). Sim1 runs at a frequency of

60 Hz, corresponding to the frequency of the monitor used for visual display. In

order to communicate with Smith, Sim1 has been modified to adopt two new

components, which are SMM and the Information Broadcast Module. SMM was

adopted in Sim1 to interpret orders from Smith. The Information Broadcast

Module is used to 1) collect every vehicle’s information, 2) package it and 3) send

it out using the LCM library in each update step. The details of this process are

as followed (Figure 6.1):

• Smith receives information of vehicles’ states and makes decisions, after

which corresponding orders will be sent out;

• SMM receives and interprets orders. Relevant Ego-vehicle/flock in Sim1

will then be found and their behaviours will be changed, e.g., target lane,

desired speed, accelerate rate. Also, SMM can interpret traffic flow requests

and invoke the relevant traffic flow controller in Sim1, which produces am-

bient traffic flow with pre-defined parameters, e.g., time headway between

simulated vehicles in the traffic flow. SMM can be also instructed to carry

out some pre-defined tasks such as putting cones in some lane;

• Vehicle State Update uses some tactical behaviours (see Table 6.2), e.g.,

overtaking and local parameters, e.g., desired speed, to update vehicles’

states. During this phase, SMM may change some local parameters to 1)

configure Ego-vehicle/flock; 2) turn on/off some pre-defined traffic flow or

3) perform some non-driving Actions such as putting cones. Sim1 will then

update the states and visualize them on the display of a PC used for the

participant’s driving (i.e., PC No.1 in Figure 6.4);

• Information Broadcast packs vehicles’ updated information and send them

to the network.

In Sim1, the ID of some road segments can act as the threshold values for

some Triggers. An ID, e.g., “r1.5”, means a specific road segment in the scenario.

128

6.4 Sim Platform 2

Network

Smith

(Virtual Driver Controlling

Ego-vehicle/flock)

Sim1
(The Matrix)

Rendering and Dynamic Facilities

SMM

(Order Interpretation)

Vehicle State Update

Information Broadcast

Figure 6.1: Sim Platform 1 (Sim1)

“r” is the keyword for road segment; the first number is the identifier of the road

segment; the second number is the identifier of a section in a road segment. A

road segment can have several sections because 1) the road curvature changes

so different sections are needed or 2) some sections are needed to connect with

junctions. When the vehicles are travelling in the right direction, the identifiers of

both the road segments and sections will increase. A scenario can have more than

one road segment and a road segment can have more than one section. Sections

can have different lengths.

6.4 Sim Platform 2

The simulation software being used by VTI’s driving simulators has a distributed

architecture. The Sim Platform 2 or Sim2, in short, uses the kernel, visual system

and the data as illustrated in Figure 6.2.

The Kernel runs at a frequency of 200 Hz and sends out information, e.g.,

129

6. IMPLEMENTATION

Kernel
Vehicle States Visual

System
UDP

Data

Figure 6.2: Architecture of VTI Simulation Software

vehicles’ positions, every decision loop (1/200 seconds) to the visual system that

displays the simulation separately. Data contains logical road representations

based on the OpenDRIVE format (Dupuis, 2011).

Sim2 has the same updating procedure as Sim1: 1) SMM interprets orders; 2)

every vehicle updates its parameters, e.g., desired speed or lane-changing inten-

tions, based on some tactical behaviours or orders, e.g., adopt a specified desired

speed and 3) vehicles’ states on the road network are updated accordingly.

Sim1 and Sim2 have identical interfaces for simulated vehicle control. A com-

parison between Sim1 and Sim2 regarding the simulated vehicles is summarised

in Table 6.2. It should be noted that the Operational behaviours will not be

included, as Smith is not designed to interfere with behaviours used to fulfil lane

or speed decisions from Tactical behaviours.

Table 6.2: Comparison of Simulated Vehicles in two Platforms

Set Desired Speed
Set Target Speed

Set Action Acceleration Rate
Set Target Lane

Forbid Lane-changing
Set Overtaking Intention

Used Interfaces for

Autonomous Vehicle Control

Set Desired Speed
Set Action Speed

Set Action Acceleration Rate
Set Target Lane

Forbid Lane-changing

No Path Planning
The Sim

platform 2
(Sim2)

Speed Adaptation
Overtaing

Lane Changing
Gap Acceptance

Obstacle Avoidance

No Path Planning
The Sim

platform 1
(Sim1)

Speed Adaptation
Overtaing

Lane Changing
Gap Acceptance

Obstacle Avoidance

Tactical Behaivours
Strategical

Behaviours
Platform

130

6.5 Framework Verification

6.5 Framework Verification

In general, SAIL/NAUSEA should be able to help Smith plan his Actions based

on Assignments so that Smith can 1) find Ego-vehicle/flock, 2) “drive” the Ego-

vehicle/flock to the proposed Formation Position and 3) execute Assignment-

actions as required. He should also be able to replan if necessary. Moreover,

OSO should be evaluated to test its expressiveness and demonstrate its usage in

describing relevant context for interactions along with potential reactions from

participants. Finally, SOAV, as a framework, should also be evaluated to see if

its implementation requires improvement for future application. The verification

process has followed a four-step procedure as illustrated in Figure 6.3:

Framework Verification

OSO Evaluation

Framework Application

Framework Migration and

Enhancement

Figure 6.3: Four-step Verification Procedure

In Framework Verification, a verification experiment was carried out to see if

SAIL/NAUSEA could be used to orchestrate a scenario by committing to Assign-

ments with the capability of replanning. It was also used to test the implementa-

tion of SOAV. Five human participants were involved in experiment one. Smith

version one and Sim1 were used in this experiment. The scenario used in this

experiment was based on some interactions designed in an ongoing PhD research

in Leeds (Horrobin & Carsten, 2011). The details of this verification experiment

are introduced in Chapter 7 on Page 135.

131

6. IMPLEMENTATION

In Framework Application, another verification experiment was carried out

and a scenario from a previous project was used to observe the functionality

of SOAV in “real” applications. Ten human participants were involved. Smith

version one and Sim1 were also used in this experiment. The details of this step

is introduced in Chapter 8 on Page 151.

In Framework Migration and Enhancement, based on the findings from ex-

periment two, verification experiment three was used to enhance the speed adap-

tation behaviour in NAUSEA based on the findings from Olstam et al. (2011)

and demonstrate that SOAV can be adopted into other simulation software. The

third experiment also included a demonstration of the recipe of High-Level Ac-

tion “Block”, which involves three simulated vehicles preventing the participant

from overtaking. Smith version two and Sim2 were used in this experiment. The

scenario used in this experiment was based on a scenario in Olstam et al. (2011).

OSO Evaluation started after the Framework Verification. This step was un-

dertaken to see if OSO could be used to describe scenarios. Moreover, the criteria

from Krummenacher & Strang (2007) regarding context modelling and ontology

engineering were also used to identify OSO’s advantages and disadvantages in

order to guide future research. The evaluation was also used to demonstrate the

information that can be expressed using OSO, i.e., its role in scenario orchestra-

tion. Details of the evaluation will be included in Chapter 10 on Page 181.

In experiment one and two, SOAV was run with the same set-up shown in

Figure 6.4. The human participant used one of the machines to experience the

scenario; the experimenter used another to run Smith and collect data. Hence,

they were based on the desktop version of UoLDS. In experiment three, all compo-

nents in SOAV were run on a single machine because no human participants were

involved. The machine, therefore, acted as a desktop version of VTI’s simulators.

6.6 Summary

Smith was developed from scratch to adopt SAIL/NAUSEA and the Sim was

modified in order to adopt SMM, which contains interfaces for executing Actions

sent from Smith. Scenario Observer was directly derived from the LCM library.

132

6.6 Summary

PC No. 1
PC No. 2

The Sim enhanced with SMM Smith and Scenario Observer

Network

Router or Hub

Figure 6.4: Experiment Set-up

There are several concerns regarding both the system design and the implemen-

tation: 1) can SAIL/NAUSEA provide desired output based on the information

from Assignments in SDF? 2) as a computing environment that is used to orches-

trate scenarios, can SOAV produce the scenarios as desired and 3) how about the

implementation and further enhancement? The three verification experiments

and OSO evaluation that will be detailed in the next three chapters were, there-

fore, proposed to deal with those concerns and see if the three objectives of this

research (Chapter 3) have been achieved.

133

6. IMPLEMENTATION

134

Chapter 7

Experiment One - Driving with

Smith and Results

Agent Smith: As you can see, we’ve had our eye on you for some

time now, Mr. Anderson.

-The Matrix

7.1 Introduction

Verification experiment one was designed for Framework Verification, which was

to see if SAIL/NAUSEA could be used to plan a Virtual Driver’s Actions accord-

ing to Assignments, with the capability of dynamic Role Matching and replan-

ning. SOAV was also tested to ascertain if the system can be used to orchestrate

scenarios and to see if the implementation needed improvement.

In order to test SAIL/NAUSEA, a scenario was designed based on some in-

teractions generated in an ongoing PhD project in Leeds (Horrobin & Carsten,

2011) to cover all of its aspects, e.g., Assignment compensation based on lane-

changing generated by the Regulating layer. A scenario containing a rural road

was used because on rural roads, failed interactions that require lane-changing

to compensate are easy to design, as the participant has only one lane to choose

from.

In addition, although failures can be caused for a variety of reasons and recon-

structing failures on purpose could be hard to achieve, the failures reconstructed

135

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

in this verification experiment were designed to imitate some specific reasons of

failures, e.g., the participant does not want to be engaged or the participant ex-

hibits unpredicted reactions such as overtaking instead of decelerating. However,

it should be noted that, they are all the same to Smith as he treats all as Failure

Conditions and replans his Actions based on the same decision making algorithm

NAUSEA.

7.2 Equipment

Sim1 and Smith version one were used in this experiment.

A laptop was used to run Smith. It was equipped with an Intel R© T2130 CPU

and 2GB of memory and ran Ubuntu Linux 11.10 32bit. The communication

between Sim1 and Smith was based on a wired 10Mb hub. A video camera was

also used to record the animation on the screen so that the driving activities could

be reviewed. The experiment contained one scenario and two phases, which are

described in the following sections.

7.3 Experiment

7.3.1 Scenario Description

The scenario contained a 13.7 mile long (22 km) stretch of a rural road with

some curved road segments. There were three villages and five junctions along

the road. The speed limit on the open road was 60 mph but in villages was

30 mph. In order to be concise, the Assignments will be used to represent the

interactions generated by corresponding Assignments.

In this experiment, the participants were asked to drive in the scenario twice.

In the first drive, the participants were asked to drive freely while in the second

drive, the participants were encouraged to fail some of the Assignments in the

scenario.

Because participants were able to sabotage Assignments and the implemented

Virtual Driver Smith had the ability to generate extra Actions to compensate,

participants could experience different number of Assignments, depending on

136

7.3 Experiment

whether or not the failed Assignment could cause the whole scenario to fail and

whether it could be reattempted. Moreover, the metric constraints of the scenario

were generated by manual estimation and values used can be found in Appendix

C.1.5 on Page 254.

Assignments that a participant could experience are listed below and illus-

trated in Figure 7.1:

1P

2 3 4

1/2

Travelling Direction

Gap Acceptance

Free Traffic Flow

LaybyCoherence Free

Gap-varied Traffic Flow

CL-BLAcc-BL

Figure 7.1: Illustration of the Scenario for Experiment One

The four candidate vehicles, whose IDs range from 1 to 4, have been illustrated

in Figure 7.1. They were placed 402 m, 2016 m, 14116 m and 16399 m away from

the start position of the participant’s vehicle respectively.

Vehicle one and the participant were both placed on the left lane in the be-

ginning, while the other three vehicles were placed in the leftmost lane, which

was not a driving lane.

7.3.1.1 Assignment “Acc-BL”

“Acc-BL” is short for “Accelerate and Be Participant’s Leader”. This was the first

Assignment that participants experienced. This Assignment required a Formation

Position of “Leader”, so the simulated vehicle with ID “1” should be chosen at

the beginning as the Ego-vehicle.

When the participant’s vehicle’s time headway to the Ego-vehicle changed

from greater than to less than 6 seconds, Smith should accelerate vehicle 1, which

was the Ego-vehicle, and maintain a speed of 30 mph.

137

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

When the participant’s travelling road was “r5.0” (3248m from the start po-

sition of the participant’s vehicle) and the participant’s leader before “r5.0” was

always vehicle 1, this Assignment would be regarded as successful. If the partic-

ipant’s leader changed before “r5.0”, the Assignment would fail and replanning

should be invoked.

This Assignment was used to adopt a leader for the Assignment “Coherence”

described later because the speed adaptation algorithm in Regulating layer was

lacking.

7.3.1.2 Assignment “CL-BL”

“CL-BL” is short for “Change Lane and Be Participant’s Leader”. It was an

Assignment/Action generated by the Regulating layer in order to navigate vehicle

2 to the position of “Leader” and compensate for the failure of Assignment “Acc-

BL” if it failed, so that the participant could still have a leader after he/she had

failed “Acc-BL”. Vehicle 2 was the Ego-vehicle in this Assignment. The failure

of “CL-BL” led to the failure of the whole scenario.

This Assignment used the Monitor and Success/Failure Conditions of the

Assignment “Acc-BL”. The Assignment-action was to force vehicle 2 to change

to the participant’s lane. This Action lasted for five seconds.

7.3.1.3 Assignment “Coherence”

After the adoption of a leader by performing “Acc-BL” or “CL-BL”, the As-

signment “Coherence” would start after a village was passed. This Assignment

required a Formation Position of “Leader”, so vehicle 1 should be the Ego-vehicle

if “Acc-BL” succeeded. If “Acc-BL” failed, vehicle 2 should be the Ego-vehicle

for this Assignment. This Assignment was derived from Brookhuis et al. (1994)

and is a test of car following capability.

When the participant’s travelling road was “r5.0” (right after a village), the

Ego-vehicle, which was the leader should vary its speed sinusoidally for 60 seconds.

Because there can be some delay in assigning and checking the release time/dead-

line of a particular Assignment-action due to the communication mechanism be-

tween Perception and Cognition layers, the Duration was set to 70 seconds in the

138

7.3 Experiment

General Plan in order to make sure that Smith had enough time to dictate the

Assignment and would not trigger failure accidentally.

When the Ego-vehicle’s leader changed to the participant’s vehicle during the

Assignment, this Assignment would fail and replanning should be invoked.

The participant was told to match the leader’s speed and maintain his/her

favoured distance from the leader. Two sub-Assignments were generated: “Coher-

ence1” and “Coherence2”, which are short for “Coherence performed by vehicle 1”

and “Coherence performed by vehicle 2” respectively. The failure of “Coherence”

led to the failure of the whole scenario.

This Assignment was used to test the Assignment Assessment module in NAU-

SEA so Duration/Monitor/Success Conditions/Failure Conditions were all spec-

ified. It was also used to imitate the situation in which the participant did not

want to be engaged. Duration of 60 seconds was used to make sure that the

participant was able to overtake and the value of Duration was fixed beforehand

by testing.

7.3.1.4 Assignment “Free Traffic Flow”

This Assignment was used to generate traffic flow in order to prevent the par-

ticipant from overtaking. Because the oncoming traffic flow was of low density,

the participant still had the chance to overtake. This Assignment started with

“Coherence” and stopped with “Layby” that is defined below.

This Assignment was used to imitate the situation in which the experiment

designer failed to foresee the “overtaking” reaction from the participant and thus,

a traffic flow with low density was used. This traffic flow would make the over-

taking feasible.

7.3.1.5 Assignment “Layby”

In this Assignment, Smith was required to find an Ego-vehicle and pull it into

the participant’s lane suddenly without indication when the participant was en-

tering a village, in which case the participant might accidentally overtake the

Ego-vehicle. This Assignment required a Formation Position of “LeftLeader0”,

139

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

so vehicle 3 should be chosen as the Ego-vehicle first and if this Assignment per-

formed by vehicle 3 failed, vehicle 4 should be chosen to carry out this Assignment

again.

When the participant’s vehicle’s time headway to the Ego-vehicle changed

from greater than, to less than 3 seconds, Smith should force the Ego-vehicle

to change into the participant’s lane (which was the offside lane to the Ego-

vehicle) with an acceleration rate of 5m/s2 and a target speed of 13.3 m/s. This

Assignment lasted for 45 seconds, which meant that Smith stayed idle for 45

seconds. Smith used 65 seconds for plan evaluation.

When the Ego-vehicle’s leader changed to the participant’s vehicle, i.e., when

the participant overtook, this Assignment would fail.

Two sub-Assignments were generated: Layby-V3 and Layby-V4, which are

short for “Layby performed by vehicle 3” and “Layby performed by vehicle 4”

respectively. The failure of Layby-V4 led to the failure of the whole scenario.

This Assignment was also used to test the Assignment Assessment module in

NAUSEA so Duration/Monitor/Success Conditions/Failure Conditions were all

specified. It was used to imitate the situation in which the participant brought

in unpredicted reactions. The Action profile regarding the acceleration rate was

set to imitate a situation in which an inappropriate value was used and Duration

of 45 seconds was used to make sure that the participant was able to overtake.

The Duration value was fixed beforehand by testing.

7.3.1.6 Assignment “Gap Acceptance”

After the Assignment “Layby”, the participant arrived at a junction with oncom-

ing simulated vehicles, the gap between which was increasing. Participants were

instructed to turn right if the gap was considered safe. This Assignment was not

supposed to fail so the participant was instructed to turn right.

In addition, the junction could be the one near road segment “r10.1” (17178 m

from the start position of the participant’s vehicle) or the one near “r12.1” (20300

m from the start position of the participant’s vehicle) depending on whether the

participant missed the one near “r10.1” after “Layby-V4”. Hence, this Assign-

ment could be triggered after “r10.1”.

140

7.3 Experiment

Because it is not currently possible to dynamically create simulated vehicles

or road segments/junctions in Sim1, this Assignment was used to demonstrate

the possibility of arranging Assignment locations dynamically. The dynamical

environment creation feature was not fully examined.

7.3.1.7 Summary and Test Cases

In total, there were eight Assignments (“Coherence”, “CL-BL”, “Coherence1”,

“Coherence2”, “Layby-V3”, “Layby-V4”, “Free Traffic Flow” and “Gap Accep-

tance”). However, as some of the Assignments were dynamically generated by

Smith, there were actually five Assignments in OSO for the whole scenario and

two of them were traffic flow-related. Smith controlled simulated vehicles in Sim1

according to the three Assignments (“Acc-BL”, ‘Coherence1” and “Layby”) or

requested traffic flows for the other two Assignments (“Free Traffic Flow” and

“Gap Acceptance”). The Assignment “CL-BL” was created dynamically to com-

pensate for the failure of Assignment “Acc-BL”, so “CL-BL” and “Acc-BL” were

actually related to the same Assignment, which mainly stated that 1) an Ego-

vehicle that was the leader of the participant’s vehicle was needed and 2) the

initial target speed of the Ego-vehicle should be 30 mph. Hence, “CL-BL” was

only created to make the Ego-vehicle (left to the participant’s vehicle) become

the leader in order to fulfil the requirement of “Leader” position. The three

Assignments performed by Ego-vehicle were represented in OSO. The details of

the representation can be found in Appendix C.1 on Page 239. The essential

information in each Assignment have been represented by directed graphs.

This scenario had eight Assignments, but not all of them were exposed to

the participant in each trial. Hence, a Test Case has been used to represent a

specific set of Assignments that a participant could experience, i.e., a Test Case

is a set of Assignments that a participant would experience or sabotage and the

corresponding information Smith received, there were in total 9 Test Cases in

this experiment. This number was generated by considering all the combinations

of the seven Assignments that the participants could experience except the “Free

Traffic Flow” and the fact that 1) “Free Traffic Flow” and “Gap Acceptance”

141

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

did not need to be failed, 2) failures of “Coherence1”/“Coherence2”/“Layby-

V4”/“CL-BL” led to the failure of the whole scenario and 3) some Test Cases

were actually the same. For instance, in order to perform “CL-BL”, “Acc-BL”

should be failed first. Hence, the Test Case of “fail ‘Acc-BL’ and then fail ‘CL-

BL’ ” was actually the Test Case of “fail ‘CL-BL’ ”. See Table 7.1 for all the 9

Test Cases and corresponding desired output.

Table 7.1: Test Case List and Desired Output of Each Test Case

As shown in Table 7.1, in the normal Test Case, “Acc-BL” should be triggered

(M: X) and succeed (S: X). The Failure Conditions of “Acc-BL” should not be

triggered (F: 7). “Coherence1” should be triggered and succeed by considering its

Duration (S: D). The Failure Conditions of “Coherence1” should not be triggered.

“Layby-V3” should be triggered and succeed by considering its Duration. The

Failure Conditions of “Layby-V3” should not be triggered. “Gap Acceptance”

and “Free Traffic Flow” should both be triggered and since there were no Success

or Failure Conditions (S: N; F: N), Smith would not check the status of the

two Assignments after they were triggered. Moreover, in the Normal Test Case,

“CL-BL”, “Coherence2” and “Layby-V4” should not be triggered.

Moreover, details regarding the metric constraints can be found in Section

C.1.5 on Page 254. The refined metric constraints generated by Plan Evaluation

will be given when examining relevant procedures in NAUSEA.

142

7.3 Experiment

7.3.2 Experimental Procedure

This experiment had two phases:

In Phase one, five participants were recruited from within the Institute for

Transport Studies (ITS) to act as software testers. All of them were male and

four of them had taken part in driving simulation experiments before. Every

participant drove in the scenario two or three times in two stages.

• In stage one, the participant drove Test Case 1, which meant that the par-

ticipant drove normally and experienced “Acc-BL”, “Coherence1”, “Layby-

V3” and “Gap Acceptance” sequentially.

• In stage two, the participant drove the other two Test Cases randomly in two

sections. Overtaking the leader was allowed according to the requirements

of each Test Case. The participants would try Test Case 3, 4 and 7 in

section one and 2,5,6,8 and 9 in section two, so two participants did not try

any Test Cases in section one. The rule was that the Test Cases tried by the

previous participant would not be considered for the following participants.

The Test Cases each participant tried are given in Table 7.2. The input to

Smith, which is the information of every vehicle in Sim1, was recorded in a

Data-Log during each participant’s drive.

Table 7.2: Test Case Tried by Each Participant in Phase One

In phase two, an automatic software test was performed by using the Data-

Log recorded in Phase one. In this phase, every record of Test Case was played

143

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

by a Log player from LCM library in order to re-construct every participant’s

drive. Every log was played 10 times, so there were in total 90 tests (9 × 10).

The test of the Normal Test Case used the Data-Log of participant one in phase

one.

The Instant when Smith made the decision of executing or finishing a par-

ticular Assignment-action were termed “(online) release time” and “(adjusted)

deadline” respectively as specified in Section 5.3.2.

7.4 Results

7.4.1 Algorithm Examination

This section analyses each procedure in NAUSEA in order to examine if NAU-

SEA has provided the desired output and if each procedure satisfied the design

goal. This examination can also suggest if SAIL has achieved its design goal by

supporting NAUSEA as desired.

7.4.1.1 Plan Evaluation

Smith built the General Plan Grα and performed relevant Actions as desired.

The output of the evaluation can be found in Figure 7.2. Figure 7.2(a) shows

the output of the Normal Test Case and Figure 7.2(b) shows the output when

“Acc-BL” failed (Test Case 2,3,7,8,9). Numbers in the graph are refined metric

constraints, e.g., 255 means that the maximum release time of “Coherence1”/

“Coherence2” should be less than 255 seconds from the start of the simulation.

The minimum release times of Assignments have been ignored by Smith, as Smith

cares if the Assignment can be started or finished in time only.

7.4.1.2 Situation Assessment

All Assignments were executed as desired and all the release times complied with

the metric constraints. Details regarding each sub-procedure are given below:

1) Assignment Checker: The release times and the the actual states of corre-

sponding conditions in the Sim are given in Tables A.1 to A.5 on Pages 212 to

144

7.4 Results

(a
)

(b
)

F
ig

u
re

7.
2:

O
u
tp

u
t

of
P

la
n

E
va

lu
at

io
n

P
ro

ce
d
u
re

in
N

or
m

al
(7

.2
(a

))
an

d
F

ai
lu

re
(7

.2
(b

))
T

es
t

C
as

e

145

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

214 in Appendix A. For instance, in Table A.1, “r5.0, 1.4460(m)” means that

when Sim1 received the order of Assignment “Coherence1”, the participant’s

vehicle was at 1.4460 metres from the beginning of the road segment “r5.0”,

which ideally should be zero metres from the beginning of the road segment

“r5.0”. “3.2137(s)” relates to the time headway from the participant’s vehicle

to the Ego-vehicle, which ideally should be three seconds if there was no delay

in decision making, network transmission or order execution. All numbers

have been rounded to less than 4 digits after the decimal point.

As shown in Tables A.1 to A.5 , the Assignment Checker was working properly

and triggered Assignments according to corresponding Monitors. However,

delays were found.

2) Action Executer: As shown in Tables A.1 to A.5, the release times of the three

Assignments, namely “Coherence”, “Layby” and “Gap Acceptance”, satisfied

the refined metric constraints, which were:

• “Coherence”: the release time of “Coherence” 6 255

• “Layby”: the release time of “Layby” 6 1306.12

• “Gap Acceptance”: the release time of “Gap Acceptance” 6 2321.25

3) Action Checker: Because all Test Cases were successfully accomplished, pro-

posed Failure and Success Conditions were both evaluated correctly. In order

to test if the Action Checker handled Durations and Success Conditions prop-

erly, the release times and deadlines of four Assignments, namely “Acc-BL”,

“CL-BL”, “Coherence1/2” and “Layby-V3/4”, have been summarised in Ta-

bles A.6 to A.10 on Pages 214 to 216 in Appendix A.

All Durations of Assignment-actions were evaluated properly and Success Con-

ditions, e.g., the one for “Acc-BL”, were also evaluated properly. The numbers

within brackets are the differences between the release times and deadlines of

the Assignments that had Duration requirements in their Assignment-actions.

Moreover, the deadline of each Assignment was also consistent with the metric

constraints, which were:

146

7.4 Results

• “Coherence”: the deadline of “Coherence” 6 325

• “Layby”: the deadline of “Layby” 6 1371.12

7.4.1.3 Role Matching

As all proposed Assignments were executed in every test, Smith was able to find

the right simulated vehicle to carry out the Assignments.

7.4.1.4 Regulating

As Smith was able to find the appropriate simulated vehicle and guide it to the

leader position if the Assignment “Acc-BL” failed, Regulating was considered

successful. For instance, as listed in Tables A.1 to A.3, “Coherence” was successful

in Test Case two, seven, eight and nine. This means that Regulating was working

properly by adopting a new leader with lane-changing instruction.

7.4.2 General Analysis

Generally speaking, NAUSEA generated the desired output and worked properly.

SAIL also worked as desired and supported NAUSEA as designed. All compo-

nents in SOAV also worked well. They succeeded in planning Actions for the

scenario in all test cases and replanning according to Assignments, i.e., compen-

sate failed Assignment if necessary by finding suitable Ego-vehicle in Test Case

2,3,5,6,7,8,9. However, as suggested by the results, delays were found in evaluat-

ing Durations or executing orders. Hence, in Phase two, the stability of Smith

was examined through automatic tests.

Although the time spent on decision-making is platform-dependent, it can

still reflect whether Smith is working stably in a specific platform with the same

scenario. Smith should spend almost the same time to trigger a particular As-

signment so that every participant experiences the same context when this As-

signment is triggered.

147

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

7.4.2.1 Can Smith Generate the Desired Output? (Is the Algorithm

Working?)

In Phase one, Smith generated the desired output (13 Participant-based tests)

and in phase two, Smith generated the desired output with a success rate of 100%

in all 90 tests. The plan evaluation procedure was also working properly.

7.4.2.2 How well did Smith Generate the Output? (Is the Implemen-

tation Good?)

Order lag was measured in Phase one by calculating the difference between the

Instant Sim1 receives an order from Smith and the Instant when Smith made the

decision. The latter is the release time. As shown in Table 7.3, Smith needs 2 ± 1

frame(s) on average to execute Assignments, which is supposed to be a reference

value as the time is a platform-dependent value.

Table 7.3: Statistics of Order Lag in Phase One (s)

7.4.2.3 Is Smith Stable?

The release time was recorded in Phase two and is shown in Table 7.4, it exhibits

that Smith was not stable enough, as the Instant when he made decision in the

same test varied from less than one frame to more than ten frames compared

to the mean release time. Since there was no difference regarding algorithms or

data structures when performing the same Assignment on the same machine, the

cause of this variance must be the contention for Mutex between the Perception

and Cognition layers.

7.4.2.4 Comments from Participants

Participants were encouraged to give some general comments after their drives

in order to provide references for future development. It has been found that all

148

7.5 Summary

Table 7.4: Statistics of the Release Times in Phase Two (s)

their comments were not related to the algorithms developed in this research, but

how the algorithms can be used (e.g., what acceleration rate should be used in

some circumstance) and how the simulation software can be improved. Some of

them noted that 1) in “Coherence1” and “Cohehence2”, the acceleration rate of

the leader was relatively high; 2) vehicle 3 or vehicle 4 in “Layby-V3” or “Layby-

V4” pulled out without advance indication (although they were designed to be

a surprise Assignment) and 3) the trajectories of the simulated vehicles were

not realistic enough, e.g., lane changing trajectory and turning movement at a

junction.

7.5 Summary

In general, SAIL/NAUSEA was working as desired by committing to Assignments

and planning Actions towards Assignments. It can be used to orchestrate scenar-

ios with replanning capability. SOAV was also working properly by generating

required scenarios. However, the implementation of Smith needed enhancement

in terms of the communication mechanism between the Perception and Cognition

layers. Moreover, NAUSEA has been designed to handle scenario-related Actions,

so more work can be undertaken in the future regarding Operational behaviours

to make Smith handle them as well, e.g., lane changing trajectory. However this

may increase the network workload as Smith will need to send relevant param-

eters in every update step. In addition, in future experiments, IntervalBefore

should be used according to the plan evaluation procedure in NAUSEA and Post

149

7. EXPERIMENT ONE - DRIVING WITH SMITH AND RESULTS

Conditions can be provided for any parallel Assignments in order to control the

deadlines.

When it comes to multiple Monitors, an event-based Monitor (WHEN or

EVERY) can be problematic because the satisfaction of multiple Monitors at

the same time may be difficult. As a result, the Monitor will concentrate on

periodic Monitors, i.e., WHENEVER or ASLONGAS, so that multi-Monitor can

be satisfied at the same time, although WHENEVER and ASLONGAS imply the

repetition of Assignment-actions, which is not handled by NAUSEA.

In addition, with a modular architecture, NAUSEA can be enhanced in the

future with some specific algorithms to make SOAV more powerful in dealing

with scenarios:

• a longitudinal actor preparation algorithm that can be adopted into the

Regulating layer to make Smith choose an appropriate acceleration rate

when navigating the Ego-vehicle to the Formation Position. This is the

speed adaptation behaviour;

• a Role Matching algorithm that can be adopted to enhance the Role Match-

ing procedure with the capability of evaluating all Assignments at the same

time and thus generating a Role Matching plan based on all Assignments

and,

• a Flock control algorithm that can be adopted into every simulated vehicle

to perform Flock manoeuvre such as merging or leaving a Flock.

150

Chapter 8

Experiment Two - Driving in the

Matrix and Results

Have you ever had a dream, Neo, that you were so sure it was real?

What if you were unable to awake from that dream? How would

you know the difference between the dream world, and the real

world?

-The Matrix

8.1 Introduction

Experiment two was designed for Framework Application, and was used to ascer-

tain the functionality of SOAV in a “real” application from a previous research

project.

The scenario was derived from the ITERATE project because it had failed

several times as sometimes the participant was too far behind the proposed vehicle

for interactions (Forsman et al., 2011). Hence, SOAV was used to create the

contexts needed and trigger the interactions.

Durations/Monitors/Failure Conditions/Success Conditions/Action Profiles

for each Assignment were specially crafted based on original values in order to

make sure that the interactions were obvious for observation and the correspond-

ing Assignments would not fail to be triggered because the Monitor conditions

were in conflict with any safety configurations, e.g., accepted gap for overtake.

151

8. EXPERIMENT TWO - DRIVING IN THE MATRIX AND
RESULTS

Hence, larger values could be adopted, e.g., large time headway, large acceleration

rate or large Durations.

The experiment contained one scenario without metric constraints as no met-

ric constraints were included in the original definition. Because there were no

extra road segments for retrying scenarios and the final triggering location of

some Assignments could not be determined in advance, the replanning of As-

signments failed by Failure Conditions was not allowed, but Role Matching was

allowed in order to change the Ego-vehicle.

In addition, Smith was not changed to single thread in this experiment because

delays were acceptable, when the Monitors used to trigger the main Assignments

(Assignment one, two and four that will be elaborated later) were based on state,

not event. As a result, since a single threaded Smith was not needed, the multi-

threaded Smith was not changed.

8.2 Equipment

Sim1 and Smith version one were used in this experiment.

The same laptop was used to run Smith and was equipped with an Intel R©

T2130 CPU and 2GB of memory running Ubuntu Linux 11.10 32bit. Communi-

cation between Sim1 and Smith was based on a wired 10Mb hub.

8.3 Experiment

8.3.1 Scenario Description

The scenario contained a two-lane motorway with some curved road segments. It

took a participant a maximum of 33 minutes to complete. The speed limit was

110 km/h and participants were told to drive freely, as if they were going to a

destination with a purpose.

A second task was also adopted because the original scenario had one. While

each participant was driving, an automated message instructed him/her to carry

out a counting-back task. For example, he/she would hear the following instruc-

tion:

152

8.3 Experiment

“Please count backwards in 7 from 949. Start when you are ready”

His/her task was therefore to announce the following numbers in sequence:

949, 942, 935, 928, 921 etc.

He/she carried on doing so until he/she heard the instruction:

“Please stop the counting-back task”

This task was kept, but the analysis of this experiment ignored its potential

effect on participants, as this research concentrates on the examination of Assign-

ment execution during the scenario and the proposed behaviours of surrounding

vehicles.

After about 6 minutes’ free drive, every participant was exposed to four As-

signments in sequence as illustrated in Figure 8.1.

P

Travelling Direction

Cone-off-roadBroken-down-carOvertaking-lorry

1. This illustration assumes that the participant is travelling on the left lane; in experiment, no assumption has been made

2. Free traffic flow is always present

5 6

Leader's Leader is Broken Down
Braking-car

Leader is Braking

P P P

Figure 8.1: Illustration of the Scenario for Experiment Two

8.3.1.1 Assignment “Overtaking-lorry”

This Assignment involved two lorries; both were travelling in Lane 1 (left lane)

as illustrated in Figure 8.1.

When the participant’s vehicle’s time headway to the Ego-vehicle, which

should be lorry 5, was less than 4 seconds, and the time-to-collision with the

Ego-vehicle was greater than 6 seconds (i.e., close enough but no possibility of

collision), lorry 5 should start to overtake lorry 6 as lorry 5 wanted to achieve

a higher desired speed. In this Assignment, those two lorries would eventually

block the two lanes and force the participant to decelerate. The Duration of this

153

8. EXPERIMENT TWO - DRIVING IN THE MATRIX AND
RESULTS

Assignment was set to 80 seconds in order to guarantee that the overtaking could

be finished.

8.3.1.2 Assignment “Broken-down-car”

This Assignment involved a car in the Formation Position of “CloseLeader0”,

which indicates “Leader’s Leader” as illustrated in Figure 8.1 and implies that a

leader and a leader’s leader should both exist.

When 1) the participant passed or was on the road segment “r4.0” (14637 m

from the start position of the participant’s vehicle), 2) the participant’s headway

to its leader was less than 4 seconds, and 3) the participant’s time-to-collision with

its leader was greater than 5 seconds, the car in the position of “CloseLeader0”

should break down. The Assignment-action would last for 70 seconds, which

meant the lane would be blocked for 70 seconds.

This Ego-vehicle would force the leader of the participant to decelerate, in

which case the participant had to overtake or brake and wait for the leader’s

leader to recover.

In order to test and demonstrate other Formation Positions, this Assignment

was modified by using cars to be the leader’s leader instead of using lorries,

because using lorries would narrow Smith’s choice during Role Matching.

8.3.1.3 Assignment “Cone-off-road”

This Assignment needed to cone off the lane that the participant was not travel-

ling in; if the participant was travelling in Lane 1, then Lane 2 (right lane) would

be coned-off. If the participant was travelling in Lane 2, then Lane 1 would be

coned-off. The Lane that was left for traffic would last for 1 km. The Monitor for

this Assignment was that as long as the participant’s vehicle reached or passed

the road “r5.2”, which was 26063 m from the start position of the participant’s

vehicle, the Assignment should be triggered.

8.3.1.4 Assignment “Braking-car”

This Assignment involved a car in the Formation Position of “Leader”, which is

the leader position.

154

8.3 Experiment

When 1) the participant reached the road “r6.0” (34883 m from the start

position of the participant’s vehicle), 2) the time headway to the leader, which

is the Ego-vehicle, was less than 4 seconds, and 3) the time-to-collision with the

Ego-vehicle was greater than 5 seconds, the Ego-vehicle should brake with an

acceleration rate of -5.5 m/s2 and force the participant to overtake or decelerate.

This Assignment would block the lane for 20 seconds, which was the Duration of

the Assignment-action.

8.3.1.5 Other Information

There were also some minor Assignments that were used to assist Smith by pro-

viding relevant parameters:

• Assignment “Create-lorry”: This Assignment was added to tell Smith when

the right time to create the candidate lorries was. SMM had been instructed

to create two lorries after the free drive when the participant reached the

road segment “r3.0” (3715 m from the start position of the participant’s

vehicle). Two lorries would be created about 1300 m ahead of the partici-

pant’s vehicle in the left lane (lane one) with an initial distance difference of

20 m. Their initial desired speeds were 25.1 m/s and 25.0 m/s respectively;

• Assignment “Clear-lane”: this Assignment was used to clear the lane that

the participant was travelling in before the execution of the Assignment

“Overtaking-lorry”. It was used to make sure that the participant could

meet with the lorry and would not be interrupted by any other simulated

vehicles. This Assignment would be triggered when the participant reached

the road segment “r3.1”, which is 1850 m away from the road segment

“r3.0”;

• Assignment “Restore”: this Assignment was used to notify SMM which be-

haviours of the simulated vehicles should be restored according to specific

needs, e.g., whether or not overtaking should be allowed. “Restore” would

be invoked sequentially after each main Assignment, e.g., “Overtaking-

lorry”.

155

8. EXPERIMENT TWO - DRIVING IN THE MATRIX AND
RESULTS

Moreover, the relationships between those Assignments were specified with

IntervalBefore in OSO only, because all Assignments were designed to be trig-

gered sequentially and no parallel Assignments were presented.

The four main Assignments were represented in OSO. The details of the rep-

resentation can be found in Appendix C.2 on Page 257. The essential information

in each Assignment have been represented by directed graphs.

8.3.2 Experimental Procedure

Ten participants were recruited to act as framework testers. Eight of them were

male and two female. One of them had just obtained his/her driving license.

Every participant drove in the scenario once.

Before the experiment, the participants were told that:

• they should drive freely with a speed limit of “110 kmh” and imagine that

they were driving to a destination with a desired purpose;

• they were warned with the in-vehicle collision warning system if a potential

collision with the lead simulated vehicle was about to happen;

• when they were driving, as specified in the previous section, they were

instructed to carry out a counting-back task.

During the experiments, as usual, the following data were recorded: every ve-

hicle’s information in Sim1 and orders from Smith. Details regarding the package

containing every vehicle’s information can be found on Page 98.

In addition, the Instants when the Sim/SMM received orders were used in

this experiment to do analysis because delays were investigated in experiment

one already. The states of simulation at those Instants were the actual conditions

that the participants could experience, which reflected the actual functionality

of SOAV. Because those Instants were not the (online) release time or the (ad-

justed) deadline, some general terms, which are start/finish times, will be used

in this experiment. The start times indicated the Instants when the Sim/SMM

executed/started some Assignments; the finish times indicated the Instants when

the Sim/SMM finished some Assignments and the “Restore” Assignments were

156

8.4 Results

executed after them, which reflected the actual Durations that the participants

experienced.

8.4 Results

As participant nine had an unstable lane tracking record, it appears that he/she

was not familiar with driving or the desktop driving simulator. His/her data

were therefore marked as invalid and were not included in the analysis. However,

in order to demonstrate his/her driving style, some data were included when

examining the Regulating procedure.

Because no metric constraints were given in this experiment, an overview

of the plan evaluation procedure is not covered as the evaluation was always

consistent.

8.4.1 Algorithm Evaluation

8.4.1.1 Role Matching

In the Assignment “Broken-down-car”, Smith had to find a leader’s leader of the

participant’s vehicle to carry out the Assignment, so a small formation contain-

ing two vehicles was anticipated. In the Assignment “Braking-car”, Smith had

to find a lead vehicle of participant’s vehicle to carry out the Assignment. In the

Assignment “Overtaking Lorry”, Smith had to find a leader to perform an over-

taking Action, but eventually found a lorry in nearside lane in all experimental

cases. The results of the Role Matching in Assignments one, two and four are

shown in Table 8.1.

8.4.1.2 Regulating

Speed adaptation for Assignments was straight-forward and worked properly in

Assignment one - “Overtaking-lorry”.

In this research, Smith focused on controlling one vehicle, so SMM directly

set the vehicle 6’s (lead lorry 6) Regulating speed based on the Ego-vehicle’s

(vehicle/lorry 5) in Assignment “Overtaking-lorry”. As a result, the Ego-vehicle

157

8. EXPERIMENT TWO - DRIVING IN THE MATRIX AND
RESULTS

Table 8.1: Summary of Role Matching Results

and its lead lorry 6 were instructed to 1) drive at a constant speed (20 m/s)

to meet with the participant’s vehicle and 2) adopt a higher speed when the

Assignment was about to be started (less than 6 seconds time headway). Data

have been extracted by applying the following filter:

From the road segment “r3.0” , which was also the condition of a Monitor

in Assignment “Overtaking-lorry”, to the road segment where the Assignment

was executed, all data regarding simulated vehicles within a 1500 m radius of

the participant’s vehicle were extracted from the raw data. This extracted set of

data contains the following information of each vehicle including the participant’s:

vehicle ID, time stamp, lane offset and travelled distance compared to the start

point of “r3.0”. It should be noted that vehicle 0 was the participant’s vehicle

and the lane offset indicates which lane the vehicle was travelling in.

The extracted data have been illustrated in 20 figures in Appendix B:

• from Figure B.1 on Page 218 to Figure B.10 on Page 227, the lane travel

trajectories of the vehicles are shown;

• from Figure B.11 on Page 228 to Figure B.20 on Page 237, the longitudinal

travel trajectories of each vehicle are shown.

158

8.4 Results

In addition, some vehicles that were 1300 m ahead or 325 m behind the

participant’s vehicle would be deleted or added from time to time to maintain

the traffic flow, so their trajectories would not be used for illustrations because

of two reasons: 1) their trajectories were not continuous and the corresponding

representations on the Figures can be unclear and 2) other vehicles are sufficient

for demonstrations. However, trajectories of vehicle 5 and 6 (lorry 5 and its lead

lorry 6) were always kept even if their trajectories could be discontinuous at some

Instants. For example, as is illustrated in Figure B.13 on Page 230, vehicle 5 and

6 were both deleted and added several times between 286.117 seconds and 340.4

seconds.

The Regulating layer did not play the same role as it did in experiment one,

because Smith did not need to regulate the Ego-vehicle with lane-changing be-

haviour. In addition, lane-changing during Regulating was forbidden in Assign-

ment one, because Smith found an overtaking Action in this Assignment.

8.4.1.3 Situation Assessment

The results of the scenario execution are shown in Table 8.2. Assignments with

Durations have been listed. The actual value of Monitor-related parameters after

Sim1 had executed the Smith Order following one decision loop (1/60 seconds)

are shown in Tables 8.3 and 8.4.

As shown in Tables 8.2 to 8.4, all Assignments were executed and finished

successfully, although delays were found in some Assignments and resulted in dif-

ferences between stated Trigger conditions and actual execution conditions. For

instance, the stated Trigger condition in one of the Monitors of Assignment two

indicated the time headway should be less than 4 seconds, but participant two ex-

perienced a time headway of 4.12879 seconds. Because the triggering conditions

in this experiment were very loose, i.e., some of them were based on state con-

ditions, this delay or difference is acceptable provided that the Assignment was

successfully executed, and delays within 1 - 3 frames were found in experiment

one.

When participant four was driving, Smith encountered a run-time fault just

before triggering the Assignment “Overtaking-lorry”. Further investigation was

159

8. EXPERIMENT TWO - DRIVING IN THE MATRIX AND
RESULTS

Table 8.2: Summary of Scenario Execution Results

Table 8.3: Summary of Scenario Execution Conditions for Assignment One and

Two

160

8.4 Results

Table 8.4: Summary of Scenario Execution Condition for Assignment Three and

Four

started after this incident, but no reason could be found. Moreover, no run-time

fault has been found after this experiment, so this fault might have been caused

by the LCM library.

In addition, participant two encountered two run-time faults that were caused

by SMM. At the same time as SMM was placing cones for the Assignment “Cone-

off-road”, the participant was changing lane, resulting in a lane number that was

not the right or left, so a null lane was assigned to place those cones. Therefore,

he/she did the experiment three times. In all three runs, all Assignments were

executed. The start/finish time of Assignment three was recorded in run no.1, and

the start/finish time of Assignment four was recorded in run no.3. This bug had

been fixed in the preceding experiments and because the four main Assignments

were independent from each other, all data are still valid for further analysis.

However, this means that the framework requires more tests regarding stability,

especially on the implementation of SMM, which is used to execute orders from

Smith.

161

8. EXPERIMENT TWO - DRIVING IN THE MATRIX AND
RESULTS

8.4.2 General Analysis

Primarily, as shown in Table 8.2, Smith succeeded in finding suitable vehicles and

executing Assignments, although failures occurred in Assignment one. It should

be noted that Assignment one was intentionally designed to avoid replanning

because 1) the original scenario description did not specify that replanning was

allowed and most importantly, 2) there was no dynamic environment construction

mechanism, so if the participant failed in triggering the Assignment, the road

segment might be too short to implement another Assignment for compensation.

As shown in Table 8.1, Role Matching had a success rate of 100% in Assign-

ments two and four.

Moreover, in Assignment one, because of the adoption of vehicle constraints,

Smith had no choice but to regulate the selected lorry to reach the proposed

Formation Position. Two incidents occurred in Assignment one:

1) Incident One: when participant four was driving, Smith encountered a run-

time fault just before triggering the Assignment, although the preparation was

a success;

2) Incident Two: the data from participant nine was excluded as he/she had

a very unstable driving style, i.e., unstable lane tracking and speed choice.

The lane-tracking of participant nine can be found in Figure B.9 on Page

226. However, his/her driving style also suggested that NAUSEA may need

some enhancement in speed adaptation when reaching the Formation Posi-

tion, as the participant was still able to miss the Assignment, especially when

encountering some “unusual” participants.

From the longitudinal trajectories in Assignment one, the lorry blocked the

simulated vehicles behind it, i.e., lower speed had to be adopted by those vehicles,

so the traffic flow was affected. If blocked vehicles were allowed to overtake, this

Assignment could be failed because only a lorry was proposed to overtake the

slower lorry ahead.

As a result, some conclusions can be drawn:

162

8.5 Summary

• Role Matching without vehicle constraint showed a success rate of 100%

because Smith had more choices and there was no need to manipulate the

Ego-vehicle’s speed profile;

• Role Matching with vehicle constraints may cause long-time speed adap-

tation. This can be solved by adopting more simulated vehicles with the

same model and allowing replanning. However, the adoption of those spe-

cific simulated vehicles can change the distribution of vehicle types and may

affect the traffic flow in general;

• Preparing an Ego-vehicle with vehicle constraints can be problematic be-

cause it may block the traffic flow if it has to travel slower than the partici-

pant and meet him/her in a particular position ahead. Without replanning

permission and more candidate vehicles with the same vehicle type, the As-

signment can be open to failures and even if the permission can be granted,

the Assignment is still liable to failures because it involves a restricted ve-

hicle type.

8.5 Summary

From the analysis above, Smith can be used to deal with “real” scenarios, but it

could also be found that:

1) more work should be undertaken in speed adaptation algorithms in terms of

both vehicle restrictions and specific scenario constraints, e.g., only a restricted

type of vehicle is allowed to perform particular Actions;

2) this research focuses on the specification and scheduling of Actions for the

virtual driver. Adoption of Monitors and Action profiles has been ignored.

In this experiment, the ignorance of Action profile had caused a problem as

one of the participants noticed that the overtaking was slow. Hence, Action

profiles should be considered in the future. Moreover, because the Regulating

behaviour, especially the speed adaptation, was lacking, change of Monitor

conditions may fail some Assignments because the participant could miss the

163

8. EXPERIMENT TWO - DRIVING IN THE MATRIX AND
RESULTS

Monitor conditions as the Ego-vehicle cannot meet with the participant’s ve-

hicle;

3) further software tests may be needed to avoid any run-time fault of Sim1/SMM,

especially regarding the implementation of SMM. As changing delays were

caused by the multi-threaded architecture, single-threaded Smith was tried in

verification experiment three in order to see if the delay could be consistent

with single threading and be reduced to one decision loop.

After two experiments, the limitations of the simulation software were also

noticed, especially regarding the perception of the surrounding environment. For

instance, the cones in Assignment two should have been noticed by Smith so that

he could notify the SMM to clear the lane or the cones should be “seen” by the

simulated vehicles so that they would not travel in the coned-off lane. However,

cones were invisible to both simulated vehicles and Smith, so a separate obstacle

was placed just before the coned lane. Simulated vehicles were able to “see” the

obstacle but some of them just stopped in front of it. In order to test SOAV with

its full power, the limitation regarding environment perception should be taken

care of.

In addition, interfaces for object creation or even dynamic vehicle creation

should be considered for future testing of SOAV in order to avoid system faults

such as those found in this experiment.

164

Chapter 9

Experiment Three - Driving at

VTI and Results

I know exactly what you mean. Let me tell you why you’re here.

You’re here because you know something. What you know you

can’t explain, but you feel it. You’ve felt it your entire life, that

there’s something wrong with the world. You don’t know what it

is, but it’s there, like a splinter in your mind, driving you mad. It

is this feeling that has brought you to me. Do you know what I’m

talking about?

-The Matrix

9.1 Introduction

As is shown in experiment two, when vehicle restrictions were presented and no

replanning was allowed, actor preparation based on speed adaptation could be

hard to achieve.

With support from HEIF 51, another verification experiment was carried out

with the simulation software from VTI in order to adopt the actor preparation

algorithm in Olstam et al. (2011), which can enhance the speed adaptation in the

NAUSEA. In this experiment, SMM was used to control simulated vehicles only.

1Higher Education Innovation Funding, UK

165

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

Experiment three was designed for Framework Migration & Enhancement. A

scenario was designed to test SOAV with new enhancements. This final procedure

was also used to demonstrate that the framework can be extended. In total there

were three purposes:

1) To demonstrate and test the integration of the actor preparation algorithm

from Olstam et al. (2011) with NAUSEA;

2) To demonstrate and test the establishment of SOAV based on VTI’s simulation

software;

3) To demonstrate the recipe of a High-level Action“Block” and form a Situation

named “Blocking”

A scenario was designed based on Play1 three of the scenario in Olstam et al.

(2011), because it involved a Flock of three simulated vehicles plus a lead vehicle

ahead of the participant’s. It was a suitable interaction for this experiment as

speed adaptation could be used along with a High-Level Action “Block”. Further-

more, Durations/Monitors/Failure Conditions/Success Conditions/Action Pro-

files for each Assignment were different from the original values in Olstam et al.

(2011) in order to make the interactions observable within the visual display.

Changes of those values had no influence on the results of this verification step.

In this experiment, only one road segment was used so replanning after the

failure of Assignments was not allowed. No vehicle restrictions or metric con-

straints were included and changing Ego-vehicle was allowed.

9.2 Equipment

Sim2 and Smith version two were used in this experiment.

1The definition of Play has been described by Assignment in this research, so it has been

newly defined as a pre-defined situation to which the scenario designers would like the par-

ticipant be exposed. It is generated by Smith according to requirements in the Assignments.

A scenario can contain several Plays. A Play may contain several interactions generated by

several Actions.

166

9.3 Experiment

A laptop was used to run Sim2 and Smith. It was equipped with a 2.3 GHz

Intel R© Core i7 CPU and 16 GB memory. The threading mechanism in the kernel

was changed to make it runnable under OS X. The visual system was run under

OS X using Wine1, which is used to run Windows applications on OS X.

9.3 Experiment

9.3.1 Scenario Description

The scenario consisted of a two-lane motorway with some curved road segments.

It was 12.4 km long and could take simulator drivers a maximum of 7 minutes to

complete. The speed limit was 110 km/h and no extra instructions were applied.

At the beginning of the experiment, a dense traffic flow was presented using an

existing interface from Sim2, so nine simulated vehicles were placed around the

participant’s vehicle as illustrated in Table 9.1.

Table 9.1: Initial Traffic Conditions

Autonomous simulator drivers were used in this experiment due to the tight

schedule and the fact that it is easier to adopt different desired speeds using

1http://www.winehq.org

167

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

autonomous simulator drivers than using human drivers. Ten autonomous simu-

lator drivers were used and shared the same behaviour model as the autonomous

vehicles in Olstam et al. (2011). The desired speeds of each autonomous simu-

lator driver were set to 105, 106, 107, 108, 109, 110, 111, 112, 113 and 114 kmh

respectively from less than the speed limit to greater than the speed limit. In

this experiment, participants were called directly as simulator driver (DS) unless

an algorithm is described for general participants in Section 9.3.2.1.

DDS

Travelling Direction

Preparation & ExecutionFreeWarm-up

1. This illustration assumes that the participant is travelling on the right lane; in experiment, no assumption has been made

2. Free traffic flow is always present

FF F

L

Flock-Blocking

Restore

Braking-car
1 km 6 km 11 km

DDS

Figure 9.1: Illustration of the Scenario for Experiment Three

As illustrated in Figure 9.1, this experiment involved four phases: 1) Warm-

up phase was used to initiate vehicles’ speeds; 2) Free phase was a free driving

period lasting 5000 m; 3) Preparation & Execution phase involved actor prepa-

ration based on Regulating layer, after which the Assignments were performed

and 4) Restore Phase was used to restore the traffic flow after the Assignments

were executed. Moreover, in the four phases, there were two Assignments for in-

teractions: “Braking-car” and “Flock-Blocking”. An extra Assignment was used

to indicate when the Role Matching should be invoked.

9.3.1.1 Assignment “Braking-car”

This Assignment involved a simulated vehicle in the Formation Position of “Leader”,

which is the leader position.

When the simulator driver reached 11000 m of the road segment, and the

simulator driver’s distance headway to the Ego-vehicle, which is the leader, was

168

9.3 Experiment

less than 200 meters, the Ego-vehicle should decelerate with an acceleration rate

of -1 m/s2 and hold this rate for 18 seconds.

This Assignment would force the simulator driver to decelerate with the help

from the Assignment below, as the simulator driver should be unable to perform

overtaking because of a Flock travelling in the adjacent lane.

9.3.1.2 Assignment “Flock-Blocking”

This Assignment shared the same Monitors as the last Assignment and involved a

Flock that was used to block the simulator driver when the Assignment “Braking-

car” was being carried out. The Assignment-action was a High-Level Action

“Block”, whose recipe and related information are provided in Section 9.3.3.

General speaking, this High-Level Action included several sub-Actions to 1) create

a Flock containing three simulated vehicles, 2) clear simulated vehicles that are

not Ego-vehicle/flock before the interaction, 3) maintain the speed of the Flock

for 18 seconds when the Monitors specified in this Assignment become true and

4) restore the configurations of all simulated vehicles.

9.3.1.3 Assignment “Role-Matching”

This Assignment notified Smith when Role Matching should be invoked. In this

experiment, when the driving simulator reached 6000 m of the road network,

Smith started to look for an appropriate Ego-vehicle/flock.

The three Assignments were represented in OSO. The details of the represen-

tation can be found in Appendix C.3 on Page 275. The essential information in

each Assignment has been represented by directed graphs.

9.3.2 Additional Information of the Experiment

9.3.2.1 Actor Preparation Algorithm

9.3.2.1.1 Actor Preparation for Ego-vehicle

By adopting the actor preparation algorithm from Olstam et al. (2011), Smith en-

hanced his speed adaptation in the Regulating layer, which was used to approach

the simulator driver according to the Formation Position as close as possible in

169

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

an inconspicuous manner. This was handled by the Action named β1 (Generate-

formation). The following content includes details regarding the calculation of

acceleration rates for actor preparation. Let us suppose that the first successive

Assignment for Smith is A0.

P

Travelling Direction

Position Trigger (Distance)

d

L

Distance Headway

HW
s

V

 t
ttc

Δx

Figure 9.2: Illustration of Monitor Conditions of A0

In Figure 9.2, Ego-vehicle V’s final position for A0 is illustrated; it is proposed

to be the participant’s leader. Smith should carry out A0 when the participant

has passed the position of d, i.e., xP > d and d = xplay, where xplay is used

in Olstam et al. (2011) to specify the start position of a Play. Moreover, its

time-to-collision with the vehicle V (tttc) should be large enough to guarantee

that the participant’s vehicle will not collide with the simulated vehicle V. The

distance between the two vehicles (∆x) should be less than the upper distance

headway HWsu, but greater than the lower distance headway HWsl if the two

vehicles share the same length. If the Assignment will be triggered at t̂, the start

conditions of A0 are:

170

9.3 Experiment

xt̂P > d (9.1)

HWsl <∆xt̂ < HWsu (9.2)

tt̂ttc = inf (9.3)

where xt̂P is the position of the participant’s vehicle when the Assignment

is triggered; ∆xt̂ is the distance between the Ego-vehicle and the participant’s

vehicle when the Assignment is triggered; tt̂ttc is the participant’s time-to-collision

with the vehicle V when the Assignment is triggered.

If vt̂ is the speed of Ego-vehicle V when the Assignment is triggered and vt̂P is

the participant’s vehicle’s speed when the Assignment is triggered, then in order

to guarantee that tt̂ttc = inf, we should have:

xt̂P > d (9.4)

HWsl < ∆xt̂ < HWsu (9.5)

vt̂ > vt̂P (9.6)

If vR is the proposed role speed for the Ego-vehicle, which should be met when

A0 is triggered, a set of parameters for the Regulating layer can be derived from

the inequalities mentioned above:

∆xR = D (HWsl < D < HWsu) (9.7)

vR = vt̂P (9.8)

where ∆xR is the proposed role distance between the Ego-vehicle and the

participant when A0 is triggered.

To sum up, Smith will guide the Ego-vehicle to achieve the following states for

A0 based on the participant’s real-time position xP and speed vP , which replaces

vt̂P in this research:

t̂ = (d− xP)/vP + t (9.9)

∆xR =
HWsl +HWsu

2
(9.10)

vR = vP (9.11)

171

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

where t is the current time, so Smith can regulate the Ego-vehicle’s speed

with acceleration rate of:

a =

{
va−v
tc
, if sign(v − va) 6= sign(vR − va) and tc 6 0.5 · t̃

va−vR+va−v
0.3·t̃ , otherwise

(9.12)

where,

sign checks if a number is positive or negative;

t̃ is the time left for the Play: t̂− t;

v is the current speed of the Ego-vehicle;

vR is the proposed role speed specified in Equation 9.11;

va is the required average speed of the Ego-vehicle in order to reach the

required position for the Assignment, which can be calculated by adopting

∆xR and t̂ from Equation 9.10 and 9.9 respectively:

va = vP +
∆xR −∆x

t̃
(9.13)

where ∆x is the present distance between the Ego-vehicle and participant’s

vehicle.

tc is the time when the vehicle should pass the required average speed in

order to reach not only the role speed, but also the proposed start position

of Play. It is calculated by:

tc =
va − vR
v − vR

· t̃ (9.14)

When preparing the Ego-vehicle, Smith will use the defined t̂, ∆XR and vR

to regulate the Ego-vehicle’s speed based on the acceleration rate obtained from

Euqation 9.12. When the Monitors of the Assignment are satisfied, Smith will

trigger the Assignment even if the values of the three defined parameters are not

the same as specified in Equations 9.9 to 9.11, because Smith just needs to make

172

9.3 Experiment

sure that when the Assignment is triggered, the conditions specified in Monitors,

which are represented from Inequalities 9.1 to 9.3, have been satisfied.

If it comes to the specific Assignment “Braking-car” in experiment three, the

following values have been used:

∆xR = (150 + 200)/2 = 175(m) (9.15)

vR = vDS (9.16)

where,

200 m is HWsu defined in the Monitor of A0, which is “Braking-car” in our

case;

150 m is HWsl defined as (HWsu − 50) (m) in Smith;

vDS is the speed of autonomous simulator driver.

9.3.2.1.2 Actor Preparation for Ego-flock

As for Ego-flock, the following values were provided directly:

∆xR = 30(m) (9.17)

vR = 1.05 · vDS (9.18)

9.3.2.2 Flock Control in Experiment Three

As the control of Flock is not the concern of this research, formation generation

involving the Flock that was used to perform “Flock-blocking” was not dynami-

cal. In this experiment, the Flock was created by Smith as a part of the Recipe

for the High-Level Action “Block”. Smith was fed with the Flock’s ID and con-

trolled its leader. Other members adopted the same Action profile, e.g., the same

acceleration rate.

Moreover, simulated vehicles that might interrupt the Flock were instructed to

adopt a higher speed in the fast lane and simulated vehicles travelling in parallel

with the Flock were instructed to ignore their lane-changing behaviours.

173

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

9.3.3 Recipe of “Block” in Smith

There are four pre-defined Assignments in Smith when the Assignment-action of

an Assignment is a High-Level Action “Block”:

• Assignment “Create-flock”: when the simulator driver reached the position

of 6000 m, a Flock would be requested and thus created by SMM in Sim2.

This Assignment was present because a Flock manoeuvre algorithm is lack-

ing. The Assignment-action was used to indicate that a Flock containing

three simulated vehicles needed to be created. Their initial positions were

determined by the fact that the initial average speed should be less than

1.1 × 110 kmh, where 110 kmh is the Flock member’s desired speed. This

is the rule of being inconspicuous based on the findings from Olstam et al.

(2011);

• Assignment “Clearing”: when the simulator driver was 2000 m away from

the proposed Assignment position (11000 m in the Assignments “Braking-

car” and “Flock-blocking”), Smith would start to clear other simulated

vehicles that were not members of the Flock or the autonomous simulator

driver’s lead vehicle. This Assignment was present in order to avoid any

simulated vehicles that could interfere with the coming interaction. The

threshold of 2000 m was set based on the results from Olstam et al. (2011).

The Assignment-action was used to indicate that a clearing process should

be invoked. This clearing Action had been implemented in SMM directly

and what Smith needed to do was to send an indicator to invoke the whole

process without any details. The clearing Action would set other simu-

lated vehicles that were not Ego-vehicles or members of Ego-flocks with a

higher (vehicles that were travelling ahead of the Ego-vehicle/flock, 36 m/s)

or lower (vehicles that were behind the Ego-vehicle/flock, 30 m/s) desired

speed; This desired speed had proven to be adequate as clearing simulated

vehicles in front could be within 100 meters in some tests without a sudden

change of acceleration rate;

174

9.3 Experiment

• Assignment “Maintain-speed”: this was to maintain the speed of the Flock

when the Assignment was triggered. Smith would send the Flock ID and

an indicator to make SMM pass the required speed to the Ego-flock and,

• Assignment “Restore”: this was to restore the configurations of all sim-

ulated vehicles so that they could return to autonomy with the original

desired speed. Because there was no need to send parameters, Smith would

just send an indicator to SMM and let SMM carry out restoring activities.

The recipe of the top-Action α was constructed as shown in Figure 9.3. In

this Figure, the Assignment-actions are represented by their parent Assignments’

names, e.g., “Create-flock”.

α

β
0

β
1

β
2 β

3

!
31

!
32

!
35

!
33

!
34

Get-to-the-initial-state Generate-formation Perform-assignment Clean-up

Create-flock Clearing Maintain-speed Braking-car Restore

Figure 9.3: Illustration of Recipe for α (“Perform-scenario”) in Experiment Three

The precedence constraints were also included:

γ31 IntervalBefore γ32;

γ32 IntervalBefore γ34;

γ32 IntervalBefore γ33;

γ33 IntervalBefore γ35;

γ34 IntervalBefore γ35;

175

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

By using the recipe and constraints above, the generated General Plan in-

cluded five Assignment-actions as illustrated in Figure 9.4. Moreover, no metric

constraints were specified in this recipe except for the Duration of the Actions

γ33 and γ34. In this General Plan, Assignment-action γ33 and γ34 were parallel.

A Situation named “Blocking” can be finally generated.

fβ
1

Sβ
1

sstart

Sβ2

fβ2

f
!
31

S
!

31

f
!35

S
!35

f
!34

S
!34

[18, 18]

f
!33

S
!33

[18, 18]

f
!32

S
!32

Create-flock

Clearing

Maintain-speed Braking-car

Restore

Figure 9.4: Illustration of General Plan Grα for “Perform-scenario” (α) in Ex-

periment Three)

176

9.4 Results

9.3.4 Experimental Procedure

Ten tests were performed sequentially without breaks and in each test, the fol-

lowing data were recorded:1) Role Matching commands, 2) the start times of the

Assignments “Braking-car”, “Maintain-speed”, “Restore” in Sim2 and 3) posi-

tions and speeds of Ego-vehicles and Ego-flocks when orders were executed.

In addition, the Instants when the Sim/SMM received orders were also used

in this experiment, so some generals terms, which are start/finish times, were

used in this experiment.

9.4 Results

9.4.1 Algorithm Examination

Because no metric constraints were given in this experiment, an overview of the

plan evaluation procedure is not covered as the evaluation was always consistent.

9.4.1.1 Role Matching

In each test, Smith needed to look for a leader in order to execute “Braking-

car”. In every test, Smith always found a simulated vehicle for the Assignment

“Braking-car” as shown in Table 9.2 (As Role Matching for Flock was not covered

in this research, Smith was fed with the Flock information directly in the “Flock-

blocking” Assignment).

9.4.1.2 Regulating

As Smith was able to find the appropriate lead vehicle, regulating based on lane-

changing was not triggered. As for the longitudinal transportation of the Ego-

vehicle/flock, which is called speed adaptation in NAUSEA, the results are shown

in Table 9.3.

The analysis of the speed adaptation algorithm will not be covered, not only

because it is not the concern of this research, but also because the criteria used

for speed adaptation, i.e., Formation Position, role distance and role speed are

just reference values for Smith. What Smith attempts to do is to regulate his

177

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

Table 9.2: Role Matching Statistics of the Assignment “Braking-Car”

135

138

132

132

132

138

136

Vehicle Found

for "Braking-car"

138

138

138

10 114 4

9 4113

1128 4

41117

106 110

109 25

1084 4

1073 5

2 4106

105 61

Times of

Role Matching for

"Braking-car"

Desired

Speed

Driver

Number

Table 9.3: Statistics of Start Time, Position and Speed of Ego-vehicle/flock when

“Braking-car” is Triggered

Driver

Number

Desired

Speed

(kmh)

Start Time
Position of

Driver

Speed of

Driver

Position of

Leader Vehicle

Speed of

Leader Vehicle

Position of

Flock Leader

Speed of

Flock Leader

1 105 380.36 11000.2 29.1483 11175.2 29.0527 11050.1 30.5703

2 106 377.97 11000.2 29.4444 11175.2 29.4962 11050.1 30.9711

3 107 375.715 11000.2 29.7222 11175.2 29.7831 11050.1 31.1674

4 108 374.095 11000.2 30 11175.2 29.9046 11050 31.4989

5 109 363.825 11000.3 30.2778 11175.3 30.2148 11050.1 31.7851

6 110 360.665 11000.2 30.5555 11175 30.5465 11050.1 32.0844

7 111 357.62 11000.3 30.8333 11167.9 30.4737 11050.1 32.3096

8 112 354.925 11000.2 31.1111 11167.4 30.7855 11050.1 32.5991

9 113 352.24 11000.2 31.3889 11175.2 31.3885 11050.1 33.0217

10 114 349.885 11000.2 31.6666 11173.1 31.6118 11050 33.2344

178

9.4 Results

Ego-vehicle/flock towards that criteria, but it does not mean that Smith needs

to satisfy the criteria without any errors. The Assignment-action can, therefore,

be triggered depending on loose conditions, e.g., when the distance headway is

less than 200 m, i.e., errors within the conditions in Monitors are all acceptable.

Hence, since Assignment “Braking-car” was fired in each test and every driver

did not overtake, the Regulating layer was working properly.

9.4.1.3 Situation Assessment

The two major Assignments in Smith’s Memory (Recipe) were executed: “Braking-

car” and “Maintain-speed”. As shown in Table 9.3, “Braking-car” was carried

out within the 200 m distance headway defined in the Monitor after 11000 metres

of the road segment.

As shown in Table 9.3, the delay of executing the Action concerned a decision

loop. For instance, the difference between the actual trigger position (11000.2)

and the proposed position (11000) was 0.2 m, the speed of the participant was

29.1483 m/s, so the delay was 0.0069 s. The delay was acceptable as the inter-

pretation needed a decision loop to take effect.

Moreover, “Restore” was triggered 18.005 seconds after “Maintain-speed” and

“Braking-car” as is shown in Table 9.4, so the Durations of the Assignment took

effect. Another decision loop was needed to send out the order from Smith, so

the start time difference between Assignments “Restore” and “Maintain-speed”

was 0.005 seconds

9.4.2 General Analysis

The integration of VTI’s simulation software with SOAV was successful. The

speed adaptation algorithm derived from Olstam et al. (2011) along with the

information from the Assignments were used to construct the Monitor condition

in every test actively and helped NAUSEA to prepare the Ego-vehicle/flock. It

ensured that Smith could have a leader, as preparation can last for a long period.

Situation “Blocking” along with the High-Level Action “Block” also worked,

but a Flock manoeuvre algorithm should be considered to enhance simulated

vehicles in maintaining Flocks.

179

9. EXPERIMENT THREE - DRIVING AT VTI AND RESULTS

Table 9.4: Statistics of the Start Times of Assignment “Braking-car”, “Maintain-

speed” and “Restore”
Driver Number Start Time of “Braking-car” Start Time of “Maintain-speed” Start Time of “Restore”

1 380.36 380.36 398.365

2 377.97 377.97 395.975

3 375.715 375.715 393.72

4 374.095 374.095 392.1

5 363.825 363.825 381.83

6 360.665 360.665 378.67

7 357.62 357.62 375.625

8 354.925 354.925 372.93

9 352.24 352.24 370.245

10 349.885 349.885 367.89

Smith is able to incorporate other algorithms as demonstrated in the actor

preparation algorithm.

9.5 Summary

The integration was successful and the results were promising as Assignments can

provide relevant contextual information for Regulating, and SOAV also worked

properly with new integration. However, it should be noted that the application

of Regulating could be limited because the estimation of the start time of Play

was not reliable as it was based on real-time participant’s speeds. In this case

the Ego-vehicle may miss the participants’ vehicle and cause failure.

Further research is also needed in Flock control in order to manage the mem-

bers of a Flock with the following behaviours: 1) merging into the Flock; 2)

cutting-in to the Flock and 3) leaving the Flock. Some example algorithms can

be found in the CyberCar2 project1. Those Flock-related algorithms can be

adopted by each simulated vehicle and be dictated or requested by Smith.

Moreover, single-threaded Smith showed that the delays for executing orders

can be reduced to relatively constant values compared to the ones obtained in the

previous two experiments, so single-threaded Smith should be used until multi-

threaded is needed.

1http://cybercars2.paris-rocquencourt.inria.fr

180

http://cybercars2.paris-rocquencourt.inria.fr

Chapter 10

Evaluation of OSO

The Oracle: We’re all here to do what we’re all here to do. I’m

interested in one thing, Neo, the future. And believe me, I know:

the only way to get there is together.

- The Matrix Reloaded

10.1 Introduction

In order to model context for scenario orchestration, this research used an on-

tology for three reasons, 1) ontologies have been used in context modelling for

DAS already as mentioned in Chapter 2, which makes it possible to merge other

DAS-oriented ontologies with OSO or use OSO directly for DAS; 2) ontologies

are programming-independent and logic based and 3) regular human-oriented

knowledge repositories as discussed in Section 2.4 on Page 31 cannot be used for

machine processing.

Furthermore, OSO has been designed based on findings from experts in the

area of driving simulation, so it has been developed according to not only a

“practice” methodology, but also a “philosophy” methodology, which can be re-

garded as stepwise and modelling methodologies respectively according to Jarrar

(2005). Therefore, the development of OSO complies with the On-To-Knowledge

methodology (Sure, 2003): feasibility study, kickoff, refinement, evaluation and

application & evolution. For instance, from the three verification experiments,

classes are being added (e.g., MatchRole, Play) or deleted (e.g., TimePoint that

181

10. EVALUATION OF OSO

is deleted because of the adoption of Instant) according to specific requirements.

Moreover, the development of OSO also complies with the OntoClean (Guarino

& Welty, 2002) methodology by identifying the meaning of the properties, classes

and their relations in OSO.

OSO is still in an early phase in standardising formal scenario descriptions. In-

stead of focusing on the normativeness, this research focused on its expressiveness

by using it to describe scenarios for experiments by using both a practice-oriented

and a logic-based methodologies. However, because OSO was developed with a

focus on scenario orchestration, i.e., representing scenarios with essential contex-

tual information for virtual drivers, evaluation is therefore based on application

and has two aspects: 1) identify its role in scenario orchestration and demonstrate

its expressiveness in experiments and 2) identify its advantages and disadvantages

for future development.

10.2 Role of OSO

In SOAV, OSO can provide the information regarding the context of required

interactions. This is achieved by using the information encapsulated in Assign-

ments, which is used by Smith to generate interactions. The following information

has been included in Assignments:

1) the proposed formation of simulated vehicles around the participant’s vehicle

when the Assignment is triggered and interaction is generated;

2) the proposed condition for triggering the Assignment, i.e., the Monitor for

that Assignment;

3) the proposed Success Conditions of the Assignment, i.e., what should be true

if the Assignment is performed successfully;

4) the proposed Failure Conditions of the Assignment, i.e., what can be true if

the Assignment is failed;

5) the proposed measurement of the Assignment, which is included by relating an

individual of Assignment to some individual of Measure. Experimenters can

182

10.2 Role of OSO

have several candidate Assignments that have the same measurement output

but with different Failure Conditions.

In addition, Success Conditions/Failure Conditions can be used to indicate the

participant’s potential reactions. Success Conditions can indicate the ones that

are anticipated, while the other can indicate the ones that are not desired, e.g., the

Failure Condition of “the Ego-vehicle’s leader changed to participant’s vehicle”

may imply that the participant may choose to overtake during the Assignment,

which could fail the Assignment.

As a result, with the simulated vehicles required by the Assignments, tem-

poral constraints, Triggers and proposed measurements, contextual information

regarding potential interactions can be obtained. In addition, an Assignment

can be selected from several Assignments that have the same measurement and

similar contexts, however, the Assignment with fewest Failure Conditions could

be chosen first.

For instance, the Assignment “Overtaking-lorry” in experiment two on Page

151 may have Failure Conditions of “the Ego-vehicle reaches the road segment

for next Assignment”, which suggests that the participant may miss the lor-

ry/truck. In order to avoid this situation, the simulator users can be notified

that some Assignments have the same measurement output, which can provide

suggestions for particular Assignments’ alternatives. As an example, Assignment

of “Overtaking-lorry” hasMeasurement some DriverReactionT ime and Assign-

ment of “Braking-car” also hasMeasurement some DriverRectionT ime. Both

Assignments are sub-classes of an anonymous class that relates to some individual

of DriverRectionT ime via an object property hasMeasurement, which means

that they may be exchangeable. However, the comparison and validation should

be undertaken before writing the similarity into OSO.

Moreover, as part of standardization, limitations of simulation software should

be modelled in OSO in order to be able to notify simulator users of these. This

could be a long-term process and was not covered fully in this research as lim-

itations can vary a lot among different platforms, but OSO can be extended to

adopt concepts and properties regarding limitations. For instance, a sub-class

of SimLimitation named IgnoredObject was created to indicate all invisible

183

10. EVALUATION OF OSO

objects in the Sim, which can, of course, include cones (Cone, a subclass of

IgnoredObject).

10.3 Evaluation of OSO

As demonstrated in the three experiments and the analysis in Section 10.2, OSO

is expressive enough in describing scenarios. Its capacity was also demonstrated in

providing 1) driving context for interactions; 2) participant’s potential reactions in

some interactions and 3) description regarding the capabilities of the simulation

software, especially its limitations. Moreover, OSO has been checked by the

HermiT reasoner (Section 3.5.1.1) in Protégé and is consistent.

In addition, OSO has been evaluated based on some context modelling and

ontology engineering criteria inspired by Krummenacher & Strang (2007), in order

to see OSO’s advantages and disadvantages.

• Applicability: OSO can be used in areas that need to model driving context,

so it is not only limited to scenario orchestration in driving simulation;

• Comparability: in OSO, only SI units can be used and are assumed by de-

fault. Information regarding driving context are regarded to be world-wide

comparable, e.g., vehicle’s states. However, the information regarding As-

signment and related concepts cannot, which are virtual concepts developed

in this research;

• Traceability: in OSO, all interpretations regarding sensory data processing,

which is focused on simulated vision, are based on quantitative numbers

without mapping components, e.g., speed of a vehicle. This is helpful when

OSO is open to other researchers;

• History, logging: in OSO, temporal concepts are included for history log-

ging in Smith, so History and logging are supported in OSO by specifying

corresponding timestamps, although it is not currently being used;

• Quality: in SOAV, every state variable in the Sim can be observed without

ambiguity, so quality of information is not modelled in OSO;

184

10.3 Evaluation of OSO

• Satisfiability: data types are not restricted and any reasoning regarding the

satisfiability is done in Smith;

• Inference: in order to be descriptive, OSO has been designed to guarantee

expressiveness, so the ability of inference has not been covered. It is done

by Smith at present.

OSO has been also compared to some ontology engineering criteria:

• Re-usability, standardization: OSO, as a model for scenario orchestration

in driving simulation, can be also used when driving context or Virtual

Driver’s tasks need to be defined and represented;

• Flexibility, extensibility: new concepts can be added into OSO with relevant

classes and properties, without the need of changing the existing model in

OSO. For instance, in order to indicate when the Role Matching should be

started, the concept MatchRole, which has been modelled as a subclass

of Action, was adopted to represent the Action of Role Matching so that

relevant Monitors can be associated with this Action;

• Granularity: OSO is built upon concepts identified in this research as dis-

cussed in Section 3.3 on Page 42. As a result, OSO has been developed

to reflect the hierarchical architecture of NAUSEA. It was also developed

to reflect the hierarchical driver model SAIL. Further refinement can be

undertaken, e.g., refinement of High-Level Actions;

• Completeness: with all three experiments, it is clear that OSO is able to

describe common scenarios in driving simulation. Moreover, OSO is exten-

sible if new concepts are found or it needs to be modified;

• Redundancy: redundant information was included in order to reflect the

development history of OSO and could be deleted without any problems.

However, after the third experiment, all redundant information has been

deleted in order to avoid inconsistency in the future;

185

10. EVALUATION OF OSO

• Readability: vocabularies and naming conventions being used in OSO are

based on the understanding of relevant concepts, which are extracted from

personal communication with relevant experts or documents authored by

them with the intention of being understandable to humans, so OSO is

designed to be comprehensible to humans;

• Language, formalism: RDF/OWL is used to model OSO and can be changed

in the future. As a model focusing on concepts and their relationships, OSO

can be recreated or represented by other ontology engineering tools or lan-

guages.

10.4 Summary

In this chapter, what OSO can provide and what its advantages and disadvantages

are have been presented. In general, as an early attempt of modelling driving

context along with scenario requirements in a programming language-independent

and formal manner, OSO has achieved its design goals. Further development

making OSO more widely applicable through the adoption of concepts from other

platforms in the driving simulation community would be desirable.

186

Chapter 11

Conclusion

The Architect: The first Matrix I designed was quite naturally per-

fect, it was a work of art, flawless, sublime. A triumph equaled

only by its monumental failure. The inevitability of its doom is

apparent to me now as a consequence of the imperfection inherent

in every human being...

-The Matrix Reloaded

11.1 Introduction

This chapter serves the purpose of summarising this thesis by providing some

discussions regarding 1) achievements and drawbacks of this research through

the examinations of fulfilment of each objective; 2) contributions of this research

summarised from the presented achievements; 3) future research or enhancements

inspired by the drawbacks of this research and 4) some conclusions of this research

with a short summary of the thesis.

11.2 Thesis Summary

Scenario orchestration in driving simulation is a difficult problem not only because

both realism and repeatability are needed, but also because scenarios are not just

computer animations. Therefore, scenario orchestration is liable to pre-run issues

187

11. CONCLUSION

(Section 2.2.3 on Page 2.2.3) due to the complexity of designing scenarios and

a lack of Knowledge Bases for both humans and machines. It is also liable to

run-time issues (Section 2.2.3 on Page 2.2.3) due to the dynamic features of

driving simulation and a lack of mechanisms for generating interactions actively.

However, attempts have been made in this research to deal with these issues by

achieving some objectives listed in Section 3.2 on Page 42:

11.2.1 First Objective - Encoding Contextual Information

Assignments were used to achieve the first objective. They were developed to

encode the contextual information regarding interactions in scenarios in order to

answer the following questions: 1) which simulated vehicle should be involved in

the coming interaction? (Formation Position and vehicle restriction) 2) where

should the simulated vehicles be driven to? (Formation Position) 3) what should

be undertaken in order to generate the interactions (Assignment-action)? 4) when

should the interactions be generated, succeed or failed? (Monitor, Success Con-

ditions and Failure Conditions) and 5) what measurements should be collected?

(Measurement)

This is motivated by the fact that programming languages are always used

to define the Action sequence simulated vehicles should follow in a scenario, and

they focus on what Actions should be performed and when to perform those

Actions (see e.g., Leitao et al. 1999), not the relevant contexts for each Action.

As shown in the three verification experiments, by providing relevant con-

text, Assignments can be used not only by a Virtual Driver to generate required

interactions with the capability of re-generating those interactions, but also by ex-

perimenters to describe interaction context along with outcomes (measurements

or Actions needed). They can also predict the reactions from participants by

providing Success/Failure Conditions, so the pre-run issues can be dealt with by

utilising Assignments to encode and notify 1) the interaction outcomes along with

corresponding context and 2) the potential reactions from participants.

Although Assignments have covered some essential context for interaction

generation, more work should be done to include more contextual information in

188

11.2 Thesis Summary

Assignments, e.g., disjunctive Triggers as mentioned in Section 4.3.9 and contex-

tual information regarding Flocks:

1) as shown in the three verification experiments, multiple Triggers, especially

multiple Monitors, were assumed to be satisfied at the same time, so further

research should be done regarding disjunctive Triggers when needed.

2) flock-related algorithms are lacking in this research and thus in the three ex-

periments, Assignments do not carry specific contextual information regarding

Flocks, e.g., required leader of a Flock or required Flock that an Ego-vehicle

should belong to. More work should be done to adopt contextual information

regarding Flocks so that Flock-related algorithms can utilize relevant infor-

mation.

11.2.2 Second Objective - Knowledge Base

The Ontology for Scenario Orchestration (OSO) was used to achieve the second

objective. It is the medium used to record Assignments and relevant contexts.

OSO was proposed in order to record the Assignment, as programming lan-

guages, e.g., SSL (Wolffelaar et al., 1999), always record platform-dependent de-

tails together with scenario information. They are not suitable for contextual

modelling and scenario sharing in the future.

As a programming language-independent and logic-based scenario represen-

tation mechanism, OSO is human-readable as it is a collection of concepts and

their relationships in the domain of scenario orchestration in driving simulation;

it is also machine-processable as it can be recorded in an XML file for machine

processing.

As evaluated with some context modelling and ontology engineering criteria,

OSO has some advantages, e.g., readable, extensible, applicable to other areas,

re-usable and flexible (details can be found in Chapter 10). As demonstrated

in the three verification experiments, OSO can be fed to and thus processed by

the Virtual Driver Smith. It is also expressive enough for scenario description by

modelling Assignments and related contexts.

189

11. CONCLUSION

As shown in Appendix C on Page 239, OSO is human-readable but whether or

not it is user-friendly has not been examined and how to present OSO to different

audiences, e.g., scenario designers, simulator developers, needs further investiga-

tion. OSO users may need some time to become familiar with the concepts and

relationships. Moreover, it has not been fully tested regarding its normativeness

and its expressiveness with other possible interactions. To sum up, further evalua-

tion will be needed when different requirements are presented, e.g., its re-usability

in other areas rather than driving-oriented ones.

11.2.3 Third Objective - Plan and Replan

An algorithm named NAUSEA (autoNomous locAl manoeUvre and Scenario or-

chEstration based on automated action plAnning) was generated to utilise As-

signments in order to achieve the third objective. With corresponding support-

ing facilities, i.e., SAIL, Sim(SMM) and OSO, and the contextual information

encoded in Assignments, NAUSEA can be used to generate interactions.

NAUSEA was proposed to deal with the run-time issues in two directions: 1)

the simulated vehicles can actively engage the participant to avoid failure and 2) if

failures happen, the simulated vehicles can be re-driven to generate the proposed

interactions.

As tested in the three verification experiments, the Virtual Driver Smith,

equipped with SAIL/NAUSEA, can recruit simulated vehicles dynamically by

using Role Matching procedure and prepare for interactions actively by using

Regulating procedure. Failed interactions, generated by corresponding Assign-

ments, can be regenerated through the ability of replanning. However, more

work may be needed in order to cover the following aspects that were not fully

examined in this research, especially regarding some procedures in NAUSEA, i.e.,

Regulating, Role Matching, Plan Evaluation:

1) As shown in experiment one and two, a Regulating algorithm is lacking regard-

ing speed adaptation and lane-changing manoeuvres. NAUSEA, therefore,

has been designed to handle local manoeuvres that cover less than 200 metres

around the participant’s vehicle (six seconds time-headway as in Assignment

“Overtaking-lorry” in experiment two or 200 metres distance headway as in

190

11.2 Thesis Summary

Assignment “Braking-car” in experiment three). By providing some suitable

Regulating algorithm, not only can the Formation Positions be defined with

absolute locations, but Regulating (Action β1) and replanning after failure

can be enhanced also. In verification experiment three, a speed adaptation

algorithm was adopted but it is still problematic because 1) the algorithm did

not consider the lane changing manoeuvre and 2) the basis for preparation,

i.e., prediction of participant’s speed, considers limited factors (see Olstam

et al. 2008). Moreover, Regulating of Ego-flock was not handled because the

Flock manoeuvre algorithm is not implemented or developed in this research.

Moreover, Regulating with vehicle-restriction also needs further research as

suggested by experiment two;

2) Role Matching was not full examined in this research, as it focused on finding

simulated vehicles for the coming Assignment(s) as demonstrated in the three

experiments;

3) the Assignments were pre-defined and pre-scheduled, so the plan evaluation

procedure was not fully examined. Although it is sufficient for the three

experiments, future research regarding plan evaluation could still be suggested

by the driving simulation community or some future applications in order to

utilise the spatial and temporal constraints for scenario orchestration.

4) as shown in experiment one, NAUSEA cannot plan in the Operational layer

to make Smith handle operational action as well when preparing Ego-vehicle,

i.e., Regulating. For instance, lane changing trajectory was generated by the

Sim or specifically, by the autonomous simulated vehicles in this research.

More work would be done regarding this issue, however, this may increase

the network workload as Smith will need to send relevant parameters in every

update step;

5) as suggested by experiment two, how Assignment-actions should be performed,

i.e., what particular Action profiles (e.g., acceleration rate) should be adopted,

have been ignored due to the focus of this research and time schedule. More-

over, in order to make the interactions obvious for observation, the Action

profiles used in the three experiments have been designed with values that can

191

11. CONCLUSION

serve this purpose. However, because the profiles may affect how participants

perceive the scenario, what Action profiles to use in a particular Assignment

should be considered in the future and the standardization of scenarios based

on Assignments should also consider the standardization of Action profiles;

6) how to design the conditions of Triggers, including the Monitors, should also be

examined in the future as suggested by experiment two, in order to standardize

the conditions for executing/finishing/failing Assignments and examine com-

plex scenarios with a series of conditions, e.g., scenarios with multi-lane road

networks;

7) as shown in the three experiments, SOAV has not been either tested in terms

of its potential influence on traffic flow, or equipped with relevant modules to

handle traffic flow dynamically, which could be a problem when using SOAV

for human behaviour research.

11.3 Contributions of this Research

Based on the achievements discussed in the previous section, contributions of this

research can be identified by considering two aspects: decision making and the

knowledge base. In this section, the main contribution, which is SAIL/NAUSEA

used for decision making will be discussed first, followed by the contribution

regarding knowledge base - OSO.

11.3.1 SAIL/NAUSEA

Using pre-scheduled Action plans for scenario orchestration is actually a good

solution for driving simulation as they can guarantee repeatability, that’s why

they have been used since as early as 1990s. However, because those plans are

crafted by humans and fed to the simulated vehicles passively, the behaviours

of simulated vehicles cannot be interrupted, so Run-Time Issues may arise as

mentioned in Section 2.2.3 on Page 21:

• participants do not want to be engaged in some interactions and,

192

11.3 Contributions of this Research

• some interactions never happen due to design or system issues.

If the simulated vehicles, or precisely, the controllers of those vehicles, know

what should be done in a scenario, the vehicles can try to 1) prepare actively

and engage the participant and 2) re-generate their Action plans after failure

according to proposed interactions and dynamic driving contexts.

After the identification of the concept “Assignment”, a way of guiding the

simulated vehicles was found: contextual information and corresponding algo-

rithms.

The mechanism of scenario orchestration in this research was developed based

on a Hierarchical Task Network (HTN) with additional before/after and temporal

constraints in order to handle Assignments. The Assignment performer, which is

the Virtual Driver Smith, needs to finish the Assignments by finding appropriate

Ego-vehicle/flock, regulating them to proposed Formation Positions and carrying

out Assignments. Hence, NAUSEA, which is short for autoNomous locAl ma-

noeUvre and Scenario orchEstration based on automated action plAnning, was

proposed. A driver model named SAIL, which is short for Scenario-Aware drIver

modeL, was developed to support NAUSEA. As a result, NAUSEA is in charge

of the Decision-making layer in SAIL. Other layers in SAIL provide NAUSEA

with a World Model that contains relevant driving context for decision making

and an Action layer that is used to send out orders.

Simulated vehicles can then be driven by Virtual Drivers equipped with SAIL/-

NAUSEA and used to orchestrate scenarios by considering Assignments and tem-

poral constraints. Finally, failures can be dealt with by replanning Actions based

on the Assignments. In this case interactions can be actively prepared in order

to engage the participants in some interactions and if something went wrong dur-

ing the scenario because of, e.g., unintentional reactions from the participants

or Monitor fault, interactions can be retried by Smith with the dynamic Role

Matching capability and the Action Plan - the General Plan Grα.

11.3.2 OSO

Scenario orchestration in driving simulation has gained a great deal of attention

since the early 1990s. More recently it has received less attention in the scientific

193

11. CONCLUSION

community as existing methodologies appear enough for present experiments.

Generally speaking, the characteristics of those methodologies are:

1) scenarios have been described in natural language in many papers, articles

and reports. However, when it comes to the knowledge sharing of scenarios,

this can be time-consuming as a standardized scheme is lacking;

2) when implementing scenarios, those descriptions based on plain language are

always transferred to programming languages, which always include informa-

tion about the action sequence only. Context for interactions can be hard to

describe as those descriptions concentrate on the required Action sequences

for interactions.

These two aspects can be the cause of the pre-run issues mentioned in Section

2.2.3 on Page 21:

• the experimenter describes interaction outcomes without corresponding con-

text and,

• the experimenter predicts the wrong reactions from participants.

As a result, establishing a standardized, programming language-independent

and logic-based formal Knowledge Base may not only be able to deal with those

pre-run issues but also be used as the data source for the algorithm developed

in this research. It can concentrate on the knowledge regarding contexts of the

interactions and thus can be a communication protocol between different driv-

ing simulator platforms so that knowledge can be shared worldwide in an easy

manner, inspiring each other from time to time.

Another contribution of this research is, therefore, the development of a formal

Knowledge Base for scenario orchestration in driving simulation - Ontology for

Scenario Orchestration (OSO). OSO places its focus on the major information in

a scenario and ignores the implementation details of a specific simulator platform.

This major information should include: what should be done and when it should

be done. As a result, some concepts have been included in OSO. For instance:

194

11.3 Contributions of this Research

• in scenarios, simulated vehicles always need to perform some tasks, so those

tasks have been called as “Assignments”. These include all the necessary

context for generating interactions, e.g., when to trigger an Action, which

simulated vehicle should be involved, etc. The performers of Assignments

are Virtual Drivers and,

• in scenarios, simulated vehicles always need to consider some conditions of

triggering those tasks, so “Triggers” have been adopted by the Assignments.

Triggers can also provide information such as the potential reactions of the

participants.

Those concepts have been modelled in an Ontology for Scenario Orchestration

(OSO) along with their relationships. Scenarios were thereafter described based

on OSO, which can provide the Virtual Drivers with driving context and scenario

requirements (i.e., Assignments). As an abstract model of scenarios in driving

simulation, OSO can be also used to standardise scenario definitions and driving

context. It can be shared among different platforms. Scenarios can therefore

easily be maintained and reused based on this standardised scenario description.

11.3.3 Cross-platform Standardization

Based on the aforementioned contributions, the third contribution of the thesis

is a mechanism of cross-platform standardization of scenario descriptions and

implemetnation. As demonstrated in experiment three in Chapter , when two

simulator teams need to work together with the compatibility of their scenario(s),

what they have to do will involve five steps, in which case, the Sim will refer to

two different simulation platforms:

1. examine the Ontology for Scenario Orchestration (OSO) and identify the

state variables in the Sim. Those variables are what can be observed in the

Sim by Smith, e.g., how to represent roads, lanes and vehicle’s speeds, they

should be standardised between the two platforms first by identifying and

merging relevant concepts in OSO;

195

11. CONCLUSION

2. modify the raw data published by the Sim according to the new state vari-

able list in OSO; the raw data should include the state variables identified

in the first step and look similar to the ones described in the Tables 5.1 and

5.2 in the Section 5.2.1;

3. examine the Actions needed to modify the state of objects in the Sim,

especially the behaviours of simulated vehicle; the Actions can be similar

to the ones in Table 6.2 on Page 130. OSO can be updated to reflect new

Actions needed, e.g., “place cones on a lane”, which can be a class named

setmodelswitch 3 2 as in experiment two or a new class named PutObject

for standardized and this class can be related with a class named Cone with

a property named hasPutObject;

4. add a Scenario Management Module (SMM) into each Sim to interpret rele-

vant orders that reflect Actions identified in the previous step. An example

module can be a c++ method that finds a simulated vehicle with the re-

quired ID in the Action and execute a lane-changing Action by modifying

the desired lane of that vehicle, which can implement the Action GotoLN

in OSO;

5. describe the interactions by using the concept of Assignment. This will

involve the potential Action required and corresponding context: Triggers

and Formation Positions. Examples can be found in Appendix C

That is, the two teams need to 1) have the same OSO for exchanging Assign-

ments and 2) have the same interfaces for publishing raw data of vehicles’ states

and interpreting Smith’s Orders, i.e., executing required Assignment-actions.

In order to standardize more detailed information, the two teams can also

enrich OSO with the behavioural models in the Sim by identifying the model

used and relevant values for parameters. For instance, team A can propose a

new class in OSO to represent the car-following model being used by simulated

vehicles and this new class will be related to several numbers to represent, e.g.,

the maximum acceleration rate the model should use.

196

11.4 Future Research

11.4 Future Research

The drawbacks discussed in Section 11.2 have not been handled in this research,

but they can be dealt with in the future by carrying out tests using “real” scenar-

ios from previous projects. This verification process can include a combination of

development and verification. The former can suggest which procedure in NAU-

SEA or component in SOAV should be enhanced and how; the latter can examine

the validation of the framework, which can be performed by comparing the data

collected with the existing simulation software against the data obtained from

SOAV. SOAV’s potential influence on human behaviour can also be examined

during this verification phase.

In this section, some research directions will be introduced in order to deal

with the main drawbacks mentioned above: a suitable simulation platform for

future research, Regulating, traffic flow manipulation, Role Matching and Regu-

lating based on more than one Assignment and OSO development.

11.4.1 Environment, Vehicles and Interfaces for Control-

ling

The first research direction relates to the basis of future research, which focuses

on providing a suitable simulation platform for testing SOAV.

Environmental representation in driving simulation has been focused on paths

that a simulated vehicle or a pedestrian could follow. For instance, in Willemsen

(2000), EDF (Environment Description Framework) was developed to represent

complex paths on roads and at junctions. In Lacroix et al. (2007), in order to fix

some graphical glitches as illustrated in Figure 11.1, a data description format

named RND (Road Network Description) was developed to make the road surface

continuous. However, less attention has been paid to the descriptions of other

objects in the simulation such as cones, trees, etc.

The lack of object representation can affect the decision making of simulated

vehicles and Smith, as they will not be aware of those objects. That is why some

workarounds are needed to inform them what should be done. For instance, an

obstacle may need to be placed in front of a coned lane to indicate the lane’s

197

11. CONCLUSION

Figure 11.1: Graphical Glitches from Lacroix et al. (2007)

unavailability. However, after simulated vehicles have passed that obstacle, new

workarounds will be needed to prevent them from returning to the coned lane.

This will not be a problem in applications, but could bring trouble to the stan-

dardization of scenario descriptions and implementation of SOAV. Moreover, the

decision-making of simulated vehicles that Smith will need to drive can be prob-

lematic. For instance, in experiment two, simulated vehicles may brake just in

front of the obstacle.

Apart from the problems raised by object representation and decision making

of simulated vehicles, how a simulated vehicle can be designed should also be

considered in future research. Basically, some compromise should be made re-

garding 1) the underlying environment representation scheme being used by the

simulated vehicles and the simulation software; 2) available Actions for control-

ling those vehicles, i.e., interfaces for controlling simulated vehicles; 3) available

state variables for Triggers; 4) available Action profiles that can be used, e.g., ac-

celeration rate; 5) available tactical behaviours and corresponding configurations,

e.g., the gap choice for overtaking and 6) the realism of operational behaviours,

e.g., lane-changing trajectory.

Furthermore, the literature was focused on designing realistic simulated ve-

hicles (e.g., Cremer et al. 1995), but attempts to develop a standardized au-

tonomous simulated vehicle for driving simulation have not been made yet. Stan-

dardising behaviours and corresponding interfaces for controlling should be the

198

11.4 Future Research

initial attempt.

If an Open Source version of autonomous simulated vehicles, environment rep-

resentation scheme and related interfaces can be established, then an Open Source

SOAV can be provided to be the standard version to be tested and enhanced. It

can also be used to share knowledge in the driving simulation community.

11.4.2 Regulating - Action β1

11.4.2.1 Participant Behaviour Prediction

Predicting what the participant or other simulated vehicles may do should be

examined in order to adopt feasible Regulating algorithms. Only with these

predictions can Smith plan more accurately in driving simulation, e.g., what

their desired speeds and desired lanes could be? How possible it is that they will

adopt new speeds or new lanes?

In Olstam et al. (2008), participants’ speeds have been predicted based on road

conditions (e.g., road width), average speed of traffic flow, etc. but more should

be done. For instance, let us consider a situation called “Discovered Check” from

Sukthankar (1997) (illustrated in Figure 11.2):

A CB

Stopped Vehicle

Travelling Direction

Figure 11.2: Illustration of “Discovered Check” in a 2-lane one way road (Re-

illustrated from Sukthankar (1997))

In this situation, not only speed limit, road conditions and average speed of

traffic flow, but also some individual entity in the dynamic traffic flow is needed

to predict a vehicle’s speed, including the participant’s one.

In Figure 11.2, vehicle A is travelling at 30 m/s and following vehicle B. Vehicle

C stops for some reason so B changes its lane to avoid a collision. However, A is

199

11. CONCLUSION

unable to change lane because of the traffic flow on its left and A is also unable

to decelerate and avoid vehicle C.

If A is the participant’s vehicle, in order to predict its speed, the traffic flow

near A should be examined, so predicting A’s speed will involve examining C’s

state as soon as C’s speed changes. Hence, this situation should be anticipated

by Smith beforehand even if A has not yet noticed C, in which case Smith needs

to lower the estimated driving speed of A, even if A is still travelling at a higher

speed and approaching B and C.

Participants’ lane choice in scenarios can be predicted based on lane choice

models from, e.g., Toledo et al. (2005), and the preferred lane obtained from those

models can be used to predict which lane the participant may choose with the

corresponding probabilities.

Future research can, therefore, put a focus on the behaviour prediction of par-

ticipants and consider their potential lane choices along with speed trajectories.

By predicting participants’ behaviours, Smith is able to compensate in advance in

order to make sure that Assignments will be carried out successfully in a realistic

manner, without failures or retries.

In addition, if the participant changed his/her speed or lane suddenly, Smith

should not consider the new speed or lane as the preparation goal. For in-

stance, if the participant chose to brake in the situation in Figure 11.2, the

Ego-vehicle/flock should not brake, but keep travelling with a speed that will not

catch the participant’s attention. In this case, Smith should report failure and

start to prepare again with a new Role Matching procedure.

11.4.2.2 Preparing the Ego-flock

When it comes to Flocks, two situations can occur as illustrated in Figures 11.3

and 11.4:

In this research, the first situation in Figure 11.3 was used in experiment three

(Page 195). Smith needed to handle the leader of the Flock F1. Other members

will follow F1 with the same Action profiles specified by Smith, e.g., acceleration

rate, so Smith is actually controlling just one vehicle. However, the situation

specified in Figure 11.4 can be more common in a “realistic” situation in which

200

11.4 Future Research

P

Travelling Direction

F1F2F3

Driven By Smith P: Participant's Vehicle

F1: Flock Member No. 1

F2: Flock Member No. 2

F3: Flock Member No. 3

Figure 11.3: Situation One of Flock Control

P

Travelling Direction

F1

V1

F2

Driven By Smith P: Participant's Vehicle

F1: Flock Member No. 1

F2: Flock Member No. 2

V1: Vehicle No. 1

Figure 11.4: Situation Two of Flock Control

no assumption has been made regarding how the simulated vehicles could evolve,

unless Smith needs to prepare them for some Assignment. There will be two

questions: 1) what should be done if situation two is needed? and 2) what should

be done if situation one needs to be generated from situation two.

The first question can be answered by adopting several Smiths in parallel and

allowing them to handle every simulated vehicle and Flock, so several Forma-

tion Positions around the participant’s vehicle can be occupied by different Ego-

vehicles or Ego-flocks. However, in this case, the coordination between Smith(s)

needs further examination.

The second question can be answered by adopting just one Smith for the Flock,

but autonomous simulated vehicles need Flock-related algorithms to handle such

situations. Merging into a Flock (Figure 11.5) is therefore possible when no

201

11. CONCLUSION

junctions are present, so that members of Flocks can be dynamically recruited. As

a result, Assignment one in experiment two (Page 151) can be further supported in

a more standardized manner by adopting a Smith to control the Flock containing

the two lorries. The Assignment-action will just be specified to control the second

member of the Flock to overtake, no matter which vehicle will be the second one.

P

Travelling Direction

F1

V1

F2

Driven By Smith P: Participant's Vehicle

F1: Flock Member No. 1

F2: Flock Member No. 2

V1: Vehicle No. 1

Figure 11.5: Flock Merging in Situation Two

11.4.3 Traffic Flow Manipulation

Assignments can provide contextual information for proposed interactions. Smith

can regulate relevant vehicles around the participant’s vehicle to prepare and

generate such interactions. An assumption has been made in this research that

the traffic flow is sufficient for selecting Ego-vehicle/flock and generating ambient

traffic flows. However, further research is needed to explore the possibility of

manipulating traffic flow based on not only required traffic flow rate, but also the

proposed interactions.

For instance, a traffic flow with a rate of 1200 vehicles/h/direction and 92%

cars, 6% trucks and 2% buses (Olstam et al., 2011) may be needed in a “Blocking”

Situation, which means one vehicle is needed for braking event, three vehicles are

needed for “Block” Action. The traffic flow manipulator in SOAV should con-

sider the contextual information from the Assignments, including 1) the required

Formation Positions (“Leader” for the lead vehicle and “LeftParallel” or “Right-

Parallel” for the Flock) around the participant’s vehicle, 2) required TTC (e.g.,

202

11.4 Future Research

TTC should be infinite), 3) required distance headway (e.g., 200 m for the lead

vehicle) and 4) required trigger position of Assignment (e.g., 11000 m down the

road segment for “Braking-car”). The traffic flow, including the four vehicles,

should evolve gradually to clear spaces or preparing for “Blocking”. In this case,

SOAV’s influence on the traffic flow rate/distribution and corresponding data

validity should be examined.

11.4.4 Global Optimization vs Local Optimization

Before Smith can carry out any Assignments, he needs to find out which simu-

lated vehicle he should control by using Role Matching, after which he needs to

drive the Ego-vehicle/flock to the proposed Formation Position. As elaborated

in previous chapters, Smith makes decisions based on the first Assignment(s),

which means, he optimizes his choices in Ego-vehicle/flock and corresponding

preparation trajectories based on just one Assignment involving the SMM, one

Ego-vehicle or one Ego-flock, so he performs local optimization. However, can he

perform global optimization that involves more than one vehicle or Assignment?

11.4.4.1 Role Matching

If an Assignment involves several simulated vehicles, Smith should try to find

Ego-vehicles based on global criteria so that the total time spent to drive them

to several Formation Positions can be minimized.

In Zu et al. (2004), a multi-vehicle multi-target pursuit problem was studied

and a Global Cost Function(GCF) was proposed to indicate the time spent by one

vehicle to pursue one target (they form one vehicle-target-pair). In order to find

the optimized vehicle-target-pairs, this GCF was used to minimize the maximum

pursuit time spent by all the vehicle-target-pairs instead of just one vehicle-target-

pair. Inspired by this paper, a step could be added into Role Matching to evaluate

the quality of Role Matching results based on global criteria. By doing so, Smith

will try to minimize the maximum time spent for actor preparation from the very

beginning.

203

11. CONCLUSION

11.4.4.2 Regulating

When Smith has several Assignments to perform, he prepares for the successive

Assignment. However, let us assume that there are two Assignments in sequence:

1) an Ego-vehicle should brake in front of the participant’s vehicle and 2) an Ego-

vehicle should push the participant’s vehicle as a follower. Moreover, the delay

between those two Assignments should be less than one minute and of course,

some Monitor(s) should be assigned to both Assignments. At present, Smith

will find a leader, finish Assignment one, and then he will find a follower, finish

Assignment two according to Monitor(s). If Smith can find a follower and assign

that follower an appropriate speed behind the participant during Assignment

one, then immediately after that Assignment, he will have at least one candidate

follower in the proposed Formation Position (if another simulated vehicle becomes

the candidate’s leader, this new simulated vehicle will be assigned as Ego-vehicle

in Assignment two, which is why Smith has at least one candidate.).

As a result, instead of considering the actor preparation immediately prior to

each Assignment, Smith can choose to prepare all or some of the Assignments

rather than the coming one. By doing so, the time spent in the actor preparation

phase, i.e., Regulating, can be shortened.

11.4.5 OSO Development

In this research, OSO has been mainly developed to handle interactions involving

an Ego-vehicle and be as descriptive as possible, so OSO has not been fully

examined:

• Flock-related concepts and negative assertions:

OSO’s expressiveness can be further investigated, especially regarding the

following two aspects:

First, Flock members were not dynamically recruited in this research so

Flock-related concepts were not fully specified in OSO, e.g., how to represent

a specific member of an Ego-flock and how to represent the property of an

Ego-flock. Those concepts can be added into OSO after the Flock-related

204

11.4 Future Research

algorithms mentioned in Section 11.4.2.2 have been developed and more

tests have been undertaken.

Second, all properties are positive in OSO, indicating the characteristics

that a particular individual should possess. Negations were not examined

and specified. However, negations can be investigated in the future to act

as extra Failure Conditions or situations that Smith should avoid. For

instance, negations can be used to indicate that the Ego-vehicle should not

reach the road segment whose ID is “r4.0”.

• Offline scenario verification that includes:

– inconsistency checking regarding classes that have no individuals;

– subsumption checking in order to classify individuals, e.g., generate a

group of Smiths that have the same Virtual Driver personalities;

– inconsistency checking regarding the scenario information. This con-

centrates on profile reasoning, e.g., there is a road that is 20 miles

long; the participant should drive at a speed of 20 mph and the whole

scenario should last for a total of 2 hours. In this case the reasoning

mechanism should notice that this scenario is inconsistent or impossi-

ble to generate. In fact, this can be implemented by the inconsistency

checking regarding classes that have no individuals.

The first two listed items have been covered by existing OWL-DL reasoner

HermiT. However, the last item has not yet been covered, so when scenario

designers are generating scenario descriptions using OSO, there is no pos-

sibility that inconsistency caused by scenario profiles can be found before

the experiment commences.

This feature is desirable in order to aid the scenario designers and bring of-

fline verification before each experiment, but further examination regarding

OSO’s normativeness may be needed.

• GUI development based on OSO:

205

11. CONCLUSION

A GUI (Graphical User Interface) can be developed based on OSO to pro-

vide visual aid in designing scenarios and test OSO’s expressiveness with

humans in a user-friendly manner.

To sum up, OSO can be a start point in bringing a formal, standardized and

thus shareable Knowledge Base for the driving simulation community. However,

further development may be needed to examine OSO’s normativeness, expres-

siveness and potential usage in a user-friendly manner.

11.5 Summary

This research used “The Matrix” metaphor to design an intelligent Virtual Driver

Smith. An Ontology for Scenario Orchestration (OSO) was also developed to rep-

resent scenarios. A framework SOAV was finally formed to orchestrate scenarios

with autonomous simulated vehicles.

Compared to the existing methodologies in scenario orchestration, SOAV used

1) a programming language-independent and logic-based ontology to describe sce-

narios, including potential Actions and relevant contextual information encoded

in Assignments; 2) a Monitor system derived from (Willemsen, 2000) to model

a standardized event-driven mechanism in OSO to form Triggers, in order to

indicate when the Actions or Assignments should be executed for interactions;

3) a hierarchy of Actions in order to standardize the Actions available for sce-

nario orchestration and describe scenarios in different details, e.g., scenarios can

be orchestrated with detailed Action such as “decelerate” or with abstract Ac-

tions such as “Block” and 4) an algorithm NAUSEA along with its user SAIL

for scenario orchestration, which can provide a scenario-driven way of generating

interactions with the capability of replanning. In general, the contributions of

this work are:

• A medium for scenario and driving context sharing/understanding/reusing

was developed based on the Ontology for Scenario Orchestration (OSO);

• A methodology of adopting human driver’s task into an autonomous vehicle

was proposed. It can make the simulated vehicles carry out the tasks as

206

11.5 Summary

required in a controllable manner. In driving simulation, this controllable

manner can be used to guarantee repeatability.

This research is promising and has provided some insights into the solutions to

some scenario orchestration issues. However, due to the research focus and some

limitations from existing simulation platforms, the objectives of this research have

not been fully achieved and SOAV, especially NAUSEA, still has some drawbacks

that need to be taken care of in the future, as discussed in previous sections. In

general, this research calls for greater attention on the following aspects:

1) the simulated vehicles should be enhanced to increase their fidelity regard-

ing not only the behaviour richness, but also the behaviour realism. Their

available behaviours should also include Flock-related manoeuvres;

2) the simulated world should be fully observable by Smith or the simulated

vehicles and the manipulation of physical objects in the world should be stan-

dardized, e.g., the relevant interfaces for creating road segments dynamically;

3) collaboration within the driving simulation community, regarding 1) the sim-

ulation platforms and corresponding simulated vehicle design, 2) environment

representation scheme and 3) scenario orchestration mechanism, are antici-

pated in order to not only distribute the efforts needed to tackle some existing

problems in scenario orchestration, but also build a standardised scheme for

knowledge sharing, especially regarding scenarios.

To sum up, the computing environment SOAV, which was created to orches-

trate scenario with autonomous simulated vehicles in driving simulation, worked

as desired. Its major components, namely OSO and Smith (SAIL/NAUSEA),

can be the keys of bringing scenario orchestration a new future, when knowledge

is more widely shared in different simulator platforms and failure-free scenarios

can be orchestrated. Moreover, SOAV can also benefit some other areas:

• a standardized framework for designing the controller of autonomous vehi-

cles can be proposed based on SOAV. Autonomous vehicles can interact with

human drivers and focus on cooperation. Also, The Sim will be replaced

207

11. CONCLUSION

with a physical vehicle and the SMM will be replaced with some physical

interface, e.g., wheel or pedal controllers. Data collected in autonomous

vehicles can be directly integrated into a simulation platform with SOAV;

• similarly, in-vehicle devices that can understand human drivers’ tasks can

be also designed based on SAIL/NAUSEA;

• OSO can be used to standardize information exchanged in vehicular com-

munication systems, e.g., vehicle to vehicle or vehicle to infrastructure com-

munications.

208

When I used to look out at this world, all I could see was its edges,

its boundaries, its rules and controls, its leaders and laws.

But now, I see another world.

A different world where all things are possible.

A world of hope. Of peace.

- The Matrix

209

11. CONCLUSION

210

Appendix A

Results of Assignment Checker

and Action Checker Procedures

in Experiment One

211

A. RESULTS OF ASSIGNMENT CHECKER AND ACTION
CHECKER PROCEDURES IN EXPERIMENT ONE

Table A.1: The Release Times and Actual Corresponding State in Sim1 (Partic-

ipant One)

Table A.2: The Release Times and Actual Corresponding State in Sim1 (Partic-

ipant Two)

212

Table A.3: The Release Times and Actual Corresponding State in Sim1 (Partic-

ipant Three)

Table A.4: The Release Times and Actual Corresponding State in Sim1 (Partic-

ipant Four)

213

A. RESULTS OF ASSIGNMENT CHECKER AND ACTION
CHECKER PROCEDURES IN EXPERIMENT ONE

Table A.5: The Release Times and Actual Corresponding State in Sim1 (Partic-

ipant Five)

Table A.6: The Release Times and Deadlines of Assignments with Success Con-

dition or Duration (Participant One)

214

Table A.7: The Release Times and Deadlines of Assignments with Success Con-

dition or Duration (Participant Two)

Table A.8: The Release Times and Deadlines of Assignments with Success Con-

dition or Duration (Participant Three)

215

A. RESULTS OF ASSIGNMENT CHECKER AND ACTION
CHECKER PROCEDURES IN EXPERIMENT ONE

Table A.9: The Release Times and Deadlines of Assignments with Success Con-

dition or Duration (Participant Four)

Table A.10: The Release Times and Deadlines of Assignments with Success Con-

dition or Duration (Participant Five)

216

Appendix B

Vehicles’ Trajectories in

Assignment One of Experiment

Two

217

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

O
v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

P
a

rtic
ip

a
n

t N
o

. 1

 P
a
rtic

ip
a
n

t's
 V

e
h

ic
le

F
igu

re
B

.1:
V

eh
icles’

L
an

e
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
O

n
e

218

P
a

rt
ic

ip
a

n
t

N
o

.
2

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

 P
a
rt

ic
ip

a
n

t'
s
 V

e
h

ic
le

F
ig

u
re

B
.2

:
V

eh
ic

le
s’

L
an

e
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
T

w
o

219

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 3

O
v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

 P
a
rtic

ip
a
n

t's
 V

e
h

ic
le

F
igu

re
B

.3:
V

eh
icles’

L
an

e
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
T

h
ree

220

P
a

rt
ic

ip
a

n
t

N
o

.
4

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

 P
a
rt

ic
ip

a
n

t'
s
 V

e
h

ic
le

F
ig

u
re

B
.4

:
V

eh
ic

le
s’

L
an

e
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
F

ou
r

221

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 5

O
v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

 P
a
rtic

ip
a
n

t's
 V

e
h

ic
le

F
igu

re
B

.5:
V

eh
icles’

L
an

e
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
F

ive

222

P
a

rt
ic

ip
a

n
t

N
o

.
6

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

 P
a
rt

ic
ip

a
n

t'
s
 V

e
h

ic
le

F
ig

u
re

B
.6

:
V

eh
ic

le
s’

L
an

e
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
S
ix

223

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 7

O
v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

 P
a
rtic

ip
a
n

t's
 V

e
h

ic
le

F
igu

re
B

.7:
V

eh
icles’

L
an

e
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
S
even

224

P
a

rt
ic

ip
a

n
t

N
o

.
8

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

 P
a
rt

ic
ip

a
n

t'
s
 V

e
h

ic
le

F
ig

u
re

B
.8

:
V

eh
ic

le
s’

L
an

e
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
E

ig
h
t

225

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 9

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

 P
a
rtic

ip
a
n

t's
 V

e
h

ic
le

F
igu

re
B

.9:
V

eh
icles’

L
an

e
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
N

in
e

226

P
a

rt
ic

ip
a

n
t

N
o

.
1

0

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

 P
a
rt

ic
ip

a
n

t'
s
 V

e
h

ic
le

F
ig

u
re

B
.1

0:
V

eh
ic

le
s’

L
an

e
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
T

en

227

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 1
O

v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rry
)

F
igu

re
B

.11:
V

eh
icles’

L
on

gitu
d
in

al
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
O

n
e

228

P
a

rt
ic

ip
a

n
t

N
o

.
2

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rr
y
)

F
ig

u
re

B
.1

2:
V

eh
ic

le
s’

L
on

gi
tu

d
in

al
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
T

w
o

229

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 3

O
v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rry
)

F
igu

re
B

.13:
V

eh
icles’

L
on

gitu
d
in

al
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
T

h
ree

230

P
a

rt
ic

ip
a

n
t

N
o

.
4

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rr
y
)

F
ig

u
re

B
.1

4:
V

eh
ic

le
s’

L
on

gi
tu

d
in

al
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
F

ou
r

231

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 5

O
v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rry
)

F
igu

re
B

.15:
V

eh
icles’

L
on

gitu
d
in

al
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
F

ive

232

P
a

rt
ic

ip
a

n
t

N
o

.
6

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rr
y
)

F
ig

u
re

B
.1

6:
V

eh
ic

le
s’

L
on

gi
tu

d
in

al
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
S
ix

233

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 7

O
v
e
rta

k
in

g
-lo

rry
E

x
e
c
u

te
d

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rry
)

F
igu

re
B

.17:
V

eh
icles’

L
on

gitu
d
in

al
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
S
even

234

P
a

rt
ic

ip
a

n
t

N
o

.
8

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rr
y
)

F
ig

u
re

B
.1

8:
V

eh
ic

le
s’

L
on

gi
tu

d
in

al
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
E

ig
h
t

235

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

P
a

rtic
ip

a
n

t N
o

. 9

 C
le

a
r-L

a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rry
)

F
igu

re
B

.19:
V

eh
icles’

L
on

gitu
d
in

al
T

ra
jectories

in
A

ssign
m

en
t

O
n
e

-
P

articip
an

t
N

in
e

236

P
a

rt
ic

ip
a

n
t

N
o

.
1

0

O
v
e
rt

a
k
in

g
-l

o
rr

y
E

x
e
c
u

te
d

 C
le

a
r-

L
a
n

e
E

x
e
c
u

te
d

V
e
h

ic
le

 6
(L

e
a
d

 L
o

rr
y
)

F
ig

u
re

B
.2

0:
V

eh
ic

le
s’

L
on

gi
tu

d
in

al
T

ra
je

ct
or

ie
s

in
A

ss
ig

n
m

en
t

O
n
e

-
P

ar
ti

ci
p
an

t
T

en

237

B. VEHICLES’ TRAJECTORIES IN ASSIGNMENT ONE OF
EXPERIMENT TWO

238

Appendix C

Scenario Representation with

OSO

C.1 Experiment One

C.1.1 Assignment “Acc-BL”

First of all, an individual of class Assignment named coherence beleader 1 was

created in OSO, containing the following main information:

C.1.1.1 Formation Position

This Assignment needed a leader, so the Formation Position should be “Leader”,

i.e., hasFormationPosition some Leader.

C.1.1.2 Monitor

“When the participant’s vehicle’s (subject) time headway to the Ego-

vehicle, which is the leader (SV TimeHW L), changes from greater

than, to less than 6 seconds.”

An individual of class ReferenceValue named value bl monitor was created

to represent the reference value mentioned: “from greater than to less than 6

seconds”. Its properties are shown in Table C.1.

239

C. SCENARIO REPRESENTATION WITH OSO

Table C.1: Properties of value bl monitor for “Acc-BL” in Experiment One

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some SEQUAL (6)

hasGeneralValue 6.0

An individual of class Monitor named bl monitor was created to represent

this Monitor. Its properties are shown in Table C.2.

Table C.2: Properties of bl monitor for “Acc-BL” in Experiment One

Property Related to

hasMonitorType some Event

hasEventType some ET Threshold

hasMonitorOperator some WHEN

hasReference subject

hasStateVariable some SV TimeHW L

hasRefValue value bl monitor

C.1.1.3 Success Condition

“When the participant’s (subject) travelling road (SV RdID) changes

to ‘r5.0’.”

An individual of the class ReferenceValue named value bl post was created to

represent the reference value mentioned, which is “changes to ‘r5.0’ ” (from not

equal to equal to “r5.0”). Its properties are shown in Table C.3.

An individual of the class Monitor named bl post was created to represent

this Success Condition. Its properties are shown in Table C.4.

240

C.1 Experiment One

Table C.3: Properties of value bl post for “Acc-BL” in Experiment One

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some NOTOEQUAL

hasGeneralV alue 5.0

Table C.4: Properties of bl post for “Acc-BL” in Experiment One

Property Related to

hasMonitorType some Event

hasEventType some ET Threshold

hasMonitorOperator some WHEN

hasReference subject

hasStateV ariable some SV RdID

hasRefValue value bl post

C.1.1.4 Failure Condition

“When the participant’s (subject) leader’s ID (SV Nei L) changes from

1 to another number (the participant’s leader changes before ‘r5.0’).”

An individual of the class ReferenceValue named value bl fail was created to

represent the reference value mentioned, which is “from 1 to another number”.

Its properties are shown in Table C.5.

Table C.5: Properties of value bl fail for “Acc-BL” in Experiment One

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some EQUALTONO

hasGeneralV alue 1.0

An individual of the class Monitor named bl fail was created to represent

241

C. SCENARIO REPRESENTATION WITH OSO

this Failure Condition. Its properties are shown in Table C.6.

Table C.6: Properties of bl fail for “Acc-BL” in Experiment One

Property Related to

hasMonitorType some Event

hasEventType some ET Threshold

hasMonitorOperator some WHEN

hasReference subject

hasStateV ariable some SV Nei L

hasRefValue value bl fail

C.1.1.5 Action

When the Monitor became true, an Action of ”accelerate to 13 mph” was trig-

gered. Smith would force the Ego-vehicle to reach a target speed of 13 mph. An

individual of the class Action named beleader was created, specifying that the

Target speed (DesiredSpeed) should be 13.3 m/s or 30 mph. Its properties are

shown in Table C.7.

Table C.7: Properties of beleader for “Acc-BL” in Experiment One

Property Related to

hasActionProfile some DesiredSpeed

hasActionType some AdaptSpeed

hasActionSpeed 13.3

C.1.1.6 Performer

This Assignment should be carried out by Smith, not SMM. An individual of the

class V irtualDriver named smith forall was created to represent this Smith, i.e.,

isPerformedBy smith forall

242

C.1 Experiment One

C.1.1.7 Representation By Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

the initial status of Assignment coherence beleader 1, the main information of

this Assignment can be illustrated as in Figure C.1. This Assignment can be

tried twice (hasMaxtriedTime 2).

243

C. SCENARIO REPRESENTATION WITH OSO

Assignment

coherence_beleader_1

Leader

hasForm
ationPos

ition

INITIAL

has
Ass

ignm
ent

Sta
tus

VirtualDriver

Monitor
Action

smith_forall

isPerformedBy

bl_monitor bl_post bl_fail

hasPreC
ond

hasSuccessCond

hasFailureCond

beleader

ha
sA
ct
io
n

DesiredSpeed

AdaptSpeed

has
Act

ion
Pro

file

ha
sA
ct
io
nT
yp
e

13.3

h
a
s
A
c
ti
o
n
S
p
e
e
d

(a)

Monitor

Monitor

Monitor

bl_monitor

bl_post

bl_fail

Subject

subject

Event

WHEN

ET_Threshold

hasMonit
orType

ha
sM
on
ito
rO
pe
rat
or

hasReference

hasEventType

ha
sM
on
ito
rT
yp
e

has
Mon

itorO
per

atorh
a
sR
e
fe
re
n
ce

h
a
s
E
v
e
n
tT
y
p
ehasM

onito
rTypehas

Re
fere

nce
ha
sE
ve
nt
Ty
pe

hasMonitorOperator

SV_TimeHW_L

SV_RdID

SV_Nei_L

ReferenceValue

value_bl_monitor

ReferenceValue

value_bl_post

ReferenceValue

value_bl_fail

h
a
s
S
ta
te
V
a
ri
a
b
le

hasS
tateV

ariable

hasStateVariable

h
a
s
R
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

NUMBER

hasRefValueType

hasRefValueType

ha
sR
ef
Va
lu
eT
yp
e

SEQUAL

NOTOEQUAL

EQUALTONO

h
a
sR
e
fV
a
lu
e
R
a
n
g
e

h
a
sR
e
fV
a
lu
e
R
a
n
g
e

has
RefV

alue
Ran

ge

5.0hasGenera
lValue

1

h
a
s
G
e
n
e
ra
lV
a
lu
e

6.0

hasGeneralValue

(b)

Figure C.1: Illustration of coherence beleader 1 in Experiment One

244

C.1 Experiment One

C.1.2 Assignment “Coherence”

First of all, an individual of the class Assignment named coherence 2 was created

in OSO, containing the following main information:

C.1.2.1 Formation Position

This Assignment needed a leader, so the Formation Position should be “Leader”,

i.e., hasFormationPosition some Leader.

C.1.2.2 Monitor

“When the participant’s (subject) travelling road (SV RdID) changes

to ‘r5.0’.”

An individual of the class ReferenceValue named value c monitor was created

to represent the reference value mentioned, which is “changes to ‘r5.0’ ”. Its

properties are shown in Table C.8.

Table C.8: Properties of value c monitor for “Coherence” in Experiment One

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some NOTOEQUAL

hasGeneralV alue 5.0

An individual of the class Monitor named coherence monitor was created to

represent this Monitor. Its properties are shown in Table C.9.

C.1.2.3 Failure Condition

“When the Ego-vehicle’s (smith forall) leader’s ID (SV Nei L) changes

from greater than, to less than 2 (the Ego-vehicle’s leader changes to

the participant’s vehicle during the Assignment).”

An individual of the class ReferenceValue named value c fail was created to

represent the reference value mentioned, which is “greater than to less than 2”.

Its properties are shown in Table C.10.

245

C. SCENARIO REPRESENTATION WITH OSO

Table C.9: Properties of coherence monitor for “Coherence” in Experiment One

Property Related to

hasMonitorType some Event

hasEventType some ET Threshold

hasMonitorOperator some WHEN

hasReference subject

hasStateV ariable some SV RdID

hasRefValue value c monitor

Table C.10: Properties of value c fail for “Coherence” in Experiment One

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some SEQUAL (6)

hasGeneralV alue 2

An individual of class Monitor named coherence fail was created to represent

this Failure Condition. Its properties are shown in Table C.11.

Table C.11: Properties of coherence fail for “Coherence” in Experiment One

Property Related to

hasMonitorType some Event

hasEventType some ET Threshold

hasMonitorOperator some WHEN

hasReference smith forall

hasStateV ariable some SV Nei L

hasRefValue value c fail

246

C.1 Experiment One

C.1.2.4 Action

When the Monitor became true, an Action was triggered, in which case, Smith

would force the Ego-vehicle to change its speed sinusoidally for 60 seconds based

on a desired speed of 26.8 m/s. An individual of the class Action named coherence

was created. Its properties are shown in Table C.12.

Table C.12: Properties of coherence for “Coherence” in Experiment One

Property Related to

hasActionProfile some SineSpeed

hasActionType some AdaptSpeed

hasActionSpeed 26.8

hasActionDuration 60

C.1.2.5 Performer

This Assignment should be carried out by Smith, not SMM. As a result, smith forall

was used, i.e., isPerformedBy smith forall

C.1.2.6 Representation by Directed Graph

The main information of this Assignment can be illustrated in Figure C.2. This

Assignment can be tried once (hasMaxtriedTime 1)

247

C. SCENARIO REPRESENTATION WITH OSO

Assignment

coherence_2

Leader

hasForm
ationPos

ition

INITIAL

has
Ass

ignm
ent

Sta
tus

VirtualDriver

MonitorAction

smith_forall

isPerformedBy

coherence_monitor

coherence_fail

hasPreC
ond

hasFailureCond

coherence

ha
sA
ct
io
n

SineSpeed

AdaptSpeed

ha
sA
cti
on
Pr
ofi
le

ha
sA
ct
io
nT
yp
e

26.8

h
a
s
A
c
ti
o
n
S
p
e
e
d

60

hasA
ctionD

uration

(a)

VirtualDriver

Monitor

Monitor

coherence_monitor

coherence_fail

Subject

subject

Event

WHEN

ET_Threshold

hasMo
nitorT

ype

ha
sM
on
ito
rO
pe
rat
or

has
Re
fer
enc

ehasEventType

hasMon
itorType

ha
sR
efe
ren

ce

ha
sE
ve
nt
Ty
pe

SV_RdID

SV_Nei_L

ReferenceValue

value_c_monitor
ReferenceValue

value_c_fail

h
a
s
S
ta
te
V
a
ria
b
le

hasStateVariable

h
a
sR
e
fV
a
lu
e

hasRefValue

NUMBER

h
a
sR
e
fV
a
lu
e
T
yp
e ha

sR
ef
Va
lu
eT
yp
e

NOTOEQUAL

SEQUAL

has
Re
fVa

lue
Ra
nge

hasRefValueRange

2

hasG
eneralValue

5.0

ha
sG
en
er
al
Va
lu
e

!"#$%_forall

hasMonitorOperator

(b)

Figure C.2: Illustration of coherence 2 in Experiment One

248

C.1 Experiment One

C.1.3 Assignment “Layby”

As usual, an individual of the class Assignment named layby 3 was created in

OSO, containing the following main information:

C.1.3.1 Formation Position

This Assignment needed a nearside leader, so the Formation Position should be

“LeftLeader0”, i.e., hasFormationPosition some LeftLeader0.

C.1.3.2 Monitor

“When the participant’s vehicle’s(subject) time headway to its near-

side leader (SV TimeHW NSL), which is the Ego-vehicle, changes from

greater than, to less than 3 seconds.”

An individual of the class ReferenceValue named value layby monitor was

also created to represent the reference value mentioned, which is “greater than,

to less than 3 seconds”. Its properties are shown in Table C.13.

Table C.13: Properties of value layby monitor for “Layby” in Experiment One

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some SEQUAL (6)

hasGeneralV alue 3.0

An individual of the class Monitor named layby monitor was created to rep-

resent this Monitor. Its properties are shown in Table C.14.

C.1.3.3 Failure Condition

“When the Ego-vehicle’s (smith forall) leader’s ID (SV Nei L) changes

to 0, which represents the participant’s vehicle’s ID.”

An individual of the class ReferenceValue named value layby fail was created

to represent the reference value mentioned, which is “changes to 0”. Its properties

are shown in Table C.15.

249

C. SCENARIO REPRESENTATION WITH OSO

Table C.14: Properties of layby monitor for “Layby” in Experiment One

Property Related to

hasMonitorType some Event

hasEventType some ET Threshold

hasMonitorOperator some WHEN

hasReference subject

hasStateV ariable some

SV TimeHW NSL

hasRefValue value layby monitor

Table C.15: Properties of value layby fail for “Layby” in Experiment One

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some NOTOEQUAL

hasGeneralV alue 0

An individual of the class Monitor named layby fail was created to represent

this Failure Condition. Its properties are shown in Table C.16.

Table C.16: Properties of layby fail for “Layby” in Experiment One

Property Related to

hasMonitorType some Event

hasEventType some ET Threshold

hasMonitorOperator some WHEN

hasReference smith forall

hasStateV ariable some SV Nei L

hasRefValue value layby fail

250

C.1 Experiment One

C.1.3.4 Action

When the Monitor became true, Smith would force the Ego-vehicle to change

into the participant’s lane (offside to the Ego-vehicle) with an acceleration rate

of 5 m/s2 and a target speed of 13.3 m/s. This Assignment lasted for 45 seconds,

which meant that Smith stayed idle for 45 seconds. An individual of the class

Action named layby was created, which specified the acceleration rate, target

speed and target lane. Its properties are shown in Table C.17.

Table C.17: Properties of layby for “Layby” in Experiment One

Property Related to

hasActionProfile some TargetLane

hasActionType some GotoLN

hasActionSpeed 13.3

hasActionAcc 5.0

hasActionDuration 45

hasActionLane offside

C.1.3.5 Performer

This Assignment should be carried out by Smith, not SMM. As a result, smith forall

is used, , i.e., isPerformedBy smith forall

C.1.3.6 Representation by Directed Graph

The main information of this Assignment can be illustrated in Figure C.3:

251

C. SCENARIO REPRESENTATION WITH OSO

Assignment

layby_3

LeftLeader0

hasForm
ationPos

ition

INITIAL

has
Ass

ignm
ent

Sta
tus

VirtualDriver

MonitorAction

smith_forall

isPerformedBy

layby_monitor

layby_fail

hasPreC
ond

hasFailureCond

layby

ha
sA
ct
io
n

TargetLane

GotoLN

ha
sA
cti
on
Pr
ofi
le

ha
sA
ct
io
nT
yp
e

offside

h
a
s
A
c
ti
o
n
L
a
n
e

45

h
a
s
A
c
tio
n
D
u
ra
tio
n 5.0

hasA
ctionA

cc

13.3

hasActionSpeed

(a)

Monitor

Monitor

layby_monitor

layby_fail

Subject

subject

Event

WHEN

ET_Threshold

hasMo
nitorT

ype

ha
sM
on
ito
rO
pe
rat
or

ha
sR
efe
re
nc
ehasEventType

hasMon
itorType

ha
sR
efe
ren

ce

ha
sE
ve
nt
Ty
pe

SV_TimeHW_NSL

SV_Nei_L

ReferenceValue

value_layby_monitor
ReferenceValue

value_layby_fail

h
a
s
S
ta
te
V
a
ria
b
le

h
a
sS
ta
te
V
a
ria
b
le

h
a
sR
e
fV
a
lu
e

hasRefValue

NUMBER

hasR
efV
alueType ha

sR
ef
Va
lu
eT
yp
e

SEQUAL

NOTOEQUAL

has
Re
fVa

lue
Ra
nge

hasRefValue
Range

0

hasG
eneralValue

3.0

ha
sG
en
er
al
Va
lu
e

VirtualDriver

smith_forall

hasMonitorOperator

(b)

Figure C.3: Illustration of layby 3 in Experiment One

252

C.1 Experiment One

C.1.4 Other Assignments

Moreover, two individuals of the class Assignment named gap tf 4 and free tf 5

were created to represent the Assignment “Gap Acceptance” and “Free Traffic

Flow” respectively. Because both traffic flows used in these two Assignments have

been implemented in Sim1 prior to this experiment, Smith simply triggered these

two traffic flows via pre-defined indicators that were fed to relevant controllers.

In this experiment, the indicators were “low” and “gap”, which corresponded to

Flock No. 4 and Flock No. 5 respectively. “Gap Acceptance” was triggered after

the road segment with the ID “r10.1” and after “Layby”. “Free Traffic Flow”

was triggered along with “Coherence” and stopped with “Layby”.

253

C. SCENARIO REPRESENTATION WITH OSO

C.1.5 Temporal Constraints

Precedence constraints were specified as (Figure C.4):

coherence beleader 1 IntervalBefore coherence 2;

coherence beleader 1 IntervalBefore free tf 5;

coherence 2 IntervalBefore layby 3;

layby 3 IntervalBefore gap tf 4;

layby 3 IntervalF inishes free tf 5;

Assignment

coherence_beleader_1

Assignment

coherence_2

Assignment

coherence_2

Assignment

layby_3

Assignment

layby_3

Assignment

gap_tf_4

Assignment

layby_3

Assignment

free_tf_5

IntervalBefore

IntervalBefore

IntervalBefore

IntervalFinishes

Assignment Assignment

free_tf_5

IntervalBefore

coherence_beleader_1

Figure C.4: Metric Constraints for Experiment One

Metric constraints were estimated by considering the maximum or minimum

time spent for participants to reach the places where Assignments would take

place. Minimum and maximum speeds were estimated by taking into account

254

C.1 Experiment One

the speed limit. The minimum speed was the speed limit in villages, which was

30 mph; the maximum speed was the speed limit on open roads, which was 60

mph. A set of metric constraints could be specified as:

117.6 6 scoherence 2 − salpha 6 255.0 (C.1)

614.5 6 fbeta2 − scoherence 2 6 1527.8 (C.2)

414.37 6 slayby 3 − scoherence 2 6 1051.12 (C.3)

105.78 6 sgap tf 4 − slayby 3 6 1015.13 (C.4)

Which state that

• Constraint C.1: the start time of the Assignment “Coherence” (coherence 2)

minus the start time of the simulation (i.e., the start time of top-Action α

(alpha)) should be greater than 117.6 seconds, but less than 255.0 seconds;

• Constraint C.2: the finish time of all the Assignments (i.e., the finish time

of pre-defined Action β2 (beta2)) minus the start time of the Assignment

“Coherence” (coherence 2) should be greater than 614.5 seconds, but less

than 1527.8 seconds;

• Constraint C.3: the start time of the Assignment “Layby” (layby 3) mi-

nus the start time of the Assignment “Coherence” (coherence 2) should be

greater than 414.37 seconds, but less than 1051.12 seconds;

• Constraint C.4: the start time of the Assignment “Gap Acceptance” (gap tf 4)

minus the start time of the Assignment “Layby” (layby 3) should be greater

than 105.78 seconds, but less than 1015.13 seconds.

The individuals created in OSO based on the information above are illustrated

in Figure C.5:

255

C. SCENARIO REPRESENTATION WITH OSO

!"#$%"$
&&&&&&&&&&&&&&&&&!"#$%"$

!"#$%"$

'($)*+Constraint

hasSubtrahend

hasMetricMaxmetric1

start2 startPlan

hasMinuend

225.0
117.6

hasMetricmin

!"#$%"$

'($)*+Constraint

hasSubtrahend

hasMetricMin
metric2

start2

hasMinuend

1527.8
641.5

hasMetricMax

!"#$%"$

'($)*+Constraint

hasSubtrahend

hasMetricMin
metric3

start3 start2

hasMinuend

1051.12
414.37

hasMetricMax

!"#$%"$

'($)*+Constraint

hasSubtrahend

hasMetricMin
metric4

start4 start3

hasMinuend

1015.13
105.78

hasMetricMax

,##*-".("$
coherence_2

,+$*/"

alpha beta2

finishPS

hasEndPoint

startPlan

hasStartPoint

finishPS

start2

hasStartPoint

layby_3

start3

hasStartPoint

gap_tf_4

start4

hasStartPoint

Figure C.5: Illustration of Metric Constraints for Experiment Two in OSO

256

C.2 Experiment Two

C.2 Experiment Two

C.2.1 Assignment “Overtaking-lorry”

An individual of the class Assignment named smith overtake 1 3 was created

in OSO, containing the following main information:

C.2.1.1 Formation Position

This Assignment needed a leader, so the Formation Position should be “Leader”,

i.e., hasFormationPosition some Leader.

C.2.1.2 Vehicle Restriction

This Assignment required a truck to be the Ego-vehicle, so the vehicle restric-

tion should be specified. As a result, an individual of the class SingleV ehicle

named overtake truck was created in order to specify that smith overtake 1 3

hasV ehicleRestriction overtake truck.

overtake truck should be a LGV, OGV1 or OGV2 as specified in OSO, so

overtake truck should be related to some individual of the class LGV , OGV 1 or

OGV 2, , i.e., overtake truck hasV ehicleRestriction some OGV 1 or OGV 2 or

LGV .

C.2.1.3 Monitor

There were two Monitors for this Assignment. When they were met at the same

time, the Assignment-action would be triggered.

C.2.1.3.1 Monitor One

“Whenever the Ego-vehicle’s (smith forall) time headway to the partic-

ipant’s vehicle’s (SV TimeHW) is less than 4 seconds.”

An individual of the class ReferenceValue named value 1 3 monitor hw was

created to represent the reference value mentioned, which is “less than 4 seconds”.

Its properties are shown in Table C.18.

An individuals of the class Monitor named monitor 1 3 hw was created to

represent this Monitor. Its properties are shown in Table C.19.

257

C. SCENARIO REPRESENTATION WITH OSO

Table C.18: Properties of value 1 3 monitor hw for “Overtaking-lorry” in Ex-

periment Two

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some SEQUAL (6)

hasGeneralV alue 4.0

Table C.19: Properties of monitor 1 3 hw for “Overtaking-lorry” in Experiment

Two

Property Related to

hasMonitorType some State

hasMonitorOperator some WHENEV ER

hasReference smith forall

hasStateV ariable some SV TimeHW

hasRefValue value 1 3 monitor hw

C.2.1.3.2 Monitor Two

“Whenever the Ego-vehicle’s (smith forall) time-to-collision with the the

participant’s vehicle (SV TTC) is greater than 6 seconds.”

An individual of the class ReferenceValue named value 1 3 monitor was cre-

ated to represent the reference value mentioned, which is “greater than 6 seconds”.

Its properties are shown in Table C.20.

Table C.20: Properties of value 1 3 monitor for “Overtaking-lorry” in Experi-

ment Two

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL (>)

hasGeneralV alue 6.0

258

C.2 Experiment Two

An individuals of the class Monitor named monitor 1 3 was created to rep-

resent this Monitors. Its properties are shown in Table C.21.

Table C.21: Properties of monitor 1 3 for “Overtaking-lorry” in Experiment Two

Property Related to

hasMonitorType some State

hasMonitorOperator some WHENEV ER

hasReference smith forall

hasStateV ariable some SV TTC

hasRefValue value 1 3 monitor

C.2.1.4 Action

When the Monitors became true, an Action of “setting the overtaking intention

to true” was triggered. SMM interpreted this Action and forced the Ego-vehicle

to adopt a higher desired speed (28.1 m/s) and kept for 80 seconds in order to

guarantee that the overtaking could be finished.

An individual of the class Action named overtake 1 3 was created, which

specified that the overtaking intention should be true. Its properties are shown

in Table C.22.

Table C.22: Properties of overtake 1 3 for “Overtaking-lorry” in Experiment

Two

Property Related to

hasActionType some Overtake

hasOvertakingIntention True

hasActionDuration 80.0

259

C. SCENARIO REPRESENTATION WITH OSO

C.2.1.5 Performer

This Assignment should be carried out by Smith, not SMM. Hence, smith forall

was included in this Assignment and was an individual of the class V irutalDriver,

i.e., isPerformedBy smith forall

C.2.1.6 Representation by Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

initial status of Assignment coherence beleader 1, the main information of this

Assignment can be illustrated as in Figure C.6. This Assignment can be tried

once (hasMaxtriedTime 1)

260

C.2 Experiment Two

Assignment

smith_overtake_1_3

Leader

hasFormationPosition

INITIAL

hasAssignmentStatus
VirtualDriver

 Monitor

Action

smith_forall

isPerformedBy

monitor_1_3
monitor_1_3_hw

hasPreC
ond

hasPreCond

overtake_1_3

ha
sA

ct
io
n

Overtake

ha
sA

ct
io

nT
yp

e

True

h
a
s
O

v
e
rt

a
k
in

g
In

te
n
ti
o
n

SingleVehicle

overtake_truck

hasV
ehicl

eRest
ric

tio
n

LGV OGV2OGV1

hasVehicleModel

80

h
a
sA

ctio
n
D

u
ra

tio
n

(a)

Monitor

Monitor

VirtualDriver
smith_forall

hasM
onitorType

has
Mon

itorO
per

ator

h
a
sR
e
fe
re
n
ce

hasMonitorTy
pe

has
Re
fer
enc

e

hasM
onitorO

perator

SV_TTC

SV_TimeHW

ReferenceValue

value_1_3_monitor

ReferenceValue

value_1_3_monitor_hw

h
a
s
S
ta
te
V
a
ri
a
b
le

hasStateV
ariable

h
a
s
R
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

NUMBER

hasRefValueType

h
a
sR
e
fV
a
lu
e
T
yp
e

BEQUAL

SEQUAL

hasRefValueRange

has
Ref

Valu
eRa

nge

4.0hasGeneralValue

6.0

hasG
eneralValue

monitor_1_3

monitor_1_3_hw

State

WHENEVER

(b)

Figure C.6: Illustration of smith overtake 1 3 in Experiment Two

261

C. SCENARIO REPRESENTATION WITH OSO

C.2.2 Assignment “Broken-down-car”

First of all, an individual of the class Assignment named smith breakdown 2 5

was created in OSO, containing the following main information:

C.2.2.1 Formation Position

This Assignment required a leader’s leader, so the Formation Position should be

“CloseLeader0”, i.e., hasFormationPosition some CloseLeader0.

C.2.2.2 Monitor

There were three Monitors for this Assignment. When they were met at the same

time, the Assignment-action would be triggered.

C.2.2.2.1 Monitor One

“As long as the participant (subject) passes or is on the road segment

with an ID (SV RdID) of ‘r4.0’. ”

An individual of the class ReferenceValue named value 2 5 monitor road was

created to represent the reference value mentioned, which is “passes or is on the

road segment whose ID is ‘r4.0’ ”. Its properties are shown in Table C.23.

Table C.23: Properties of value 2 5 monitor road for “Broken-down-car” in Ex-

periment Two

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL (>)

hasGeneralV alue 4.0

An individuals of the class Monitor named monitor 2 5 road was created to

represent this Monitor. Its properties are shown in Table C.24.

262

C.2 Experiment Two

Table C.24: Properties of monitor 2 5 road for “Broken-down-car” in Experi-

ment Two

Property Related to

hasMonitorType some State

hasMonitorOperator some ASLONGAS

hasReference subject

hasStateV ariable some SV RdID

hasRefValue value 2 5 monitor road

C.2.2.2.2 Monitor Two

“Whenever the participant’s (subject) time headway to its leader

(SV TimeHW L) is less than 4 seconds.”

An individual of the class ReferenceValue named value 1 3 monitor hw was

used to represent the reference value mentioned, which is “less than 4 seconds”.

It was adopted from previous Assignment as shown in Table C.18 on Page 258.

An individuals of the class Monitor named monitor 2 5 hw was created to

represent this Monitor. Its properties are shown in Table C.25.

Table C.25: Properties of monitor 2 5 hw for “Broken-down-car” in Experiment

Two

Property Related to

hasMonitorType some State

hasMonitorOperator some WHENEV ER

hasReference subject

hasStateV ariable some SV TimeHW L

hasRefValue value 1 3 monitor hw

C.2.2.2.3 Monitor Three

“Whenever the participant’s (subject) time-to-collision with its leader

(SV TTC L) is greater than 5 seconds.”

263

C. SCENARIO REPRESENTATION WITH OSO

An individual of the class ReferenceValue named value 2 5 monitor was cre-

ated to represent the reference value mentioned, which is “greater than 5 seconds”.

Its properties are shown in Table C.26.

Table C.26: Properties of value 2 5 monitor for “Broken-down-car” in Experi-

ment Two

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL (>)

hasGeneralV alue 5.0

An individuals of the class Monitor named monitor 2 5 was created to rep-

resent this Monitor. Its properties are shown in Table C.27.

Table C.27: Properties of monitor 2 5 for “Broken-down-car” in Experiment Two

Property Related to

hasMonitorType some State

hasMonitorOperator some WHENEV ER

hasReference subject

hasStateV ariable some SV TTC L

hasRefValue value 2 5 monitor

C.2.2.3 Action

When the Monitors became true, an Action of ”set the desired speed to 0” was

triggered, in which case, Smith would force the Ego-vehicle to reach a speed of 0.

An individual of the class Action named breakdown 2 1 was created, which

specified that the Action speed should be 0 mph and the whole process should

last for 70 seconds in order to block the lane for that period of time. Its properties

are shown in Table C.28.

264

C.2 Experiment Two

Table C.28: Properties of breakdown 2 1 for “Broken-down-car” in Experiment

Two

Property Related to

hasActionProfile some DesiredSpeed

hasActionType some AdaptSpeed

hasActionSpeed 0

hasActionDuration 70

C.2.2.4 Performer

This Assignment should be carried out by Smith, not SMM. smith forall is there-

fore used, i.e., isPerformedBy smith forall

C.2.2.5 Representation by Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

initial status of the Assignment coherence beleader 1, the main information of

this Assignment can be illustrated as in Figure C.7. This Assignment can be

tried once (hasMaxtriedTime 1)

265

C. SCENARIO REPRESENTATION WITH OSO

Assignment

smith_breakdown_2_5

CloseLeader0

hasForm
ationPos

ition

INITIAL

has
Ass

ignm
ent

Sta
tus

VirtualDriver

MonitorAction

smith_forall

isPerformedBy

monitor_2_5
monitor_2_5_hw

monitor_2_5_road

hasPreC
ond

hasPreCond

hasPreCond

breakdown_2_1

ha
sA
ct
io
n

DesiredSpeed

AdaptSpeed

ha
sA
cti
on
Pr
ofi
le

ha
sA
ct
io
nT
yp
e

0

h
a
s
A
c
tio
n
S
p
e
e
d

70

hasA
ctionD

uration

(a)

Monitor

Monitor

Monitor

Subject
subject

WHENEVER

ha
sM
on
ito
rT
yp
e

hasMonitorOperatorhasReference

hasMonitorType

has
Mo

nito
rOp

era
tor

h
a
s
R
e
fe
re
n
c
e

ha
sM
on
ito
rT
yp
e

hasR
efer

ence

ha
sM
on
ito
rO
pe
ra
to
r

SV_TTC_L

SV_TimeHW_L

SV_RdID
ReferenceValue

value_2_5_monitor

ReferenceValue

value_1_3_monitor_hw

ReferenceValue
value_2_5_monitor_road

hasS
tateV

ariable

hasS
tateVariablehasStateVariable

h
a
s
R
e
fV
a
lu
e

h
a
sR
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

NUMBER

hasRefValueType

hasRefValueType

ha
sR
ef
Va
lu
eT
yp
e

BEQUAL

SEQUAL

!"#$%&

h
a
sR
e
fV
a
lu
e
R
a
n
g
e

h
a
sR
e
fV
a
lu
e
R
a
n
g
e

hasRefValueRange

4.0

hasGeneralValue

4.0

h
a
sG
e
n
e
ra
lV
a
lu
e

5.0

h
a
sG
e
n
e
ra
lV
a
lu
e

monitor_2_5

monitor_2_5_hw

monitor_2_5_road

State

WHENEVER

State

ASLONGAS

State

(b)

Figure C.7: Illustration of smith breakdown 2 5 in Experiment Two

266

C.2 Experiment Two

C.2.3 Assignment “Cone-off-road”

An individual of the class Assignment named smm setmodelswitch 3 8 was cre-

ated in OSO, containing the following main information:

C.2.3.1 Monitor

“As long as the participant (subject) reaches or passes the road segment

whose ID (SV RdID) is ‘r5.2’.”

An individual of the class ReferenceValue named value 3 2 monitor was cre-

ated to represent the reference value mentioned, which is “reaches or passes the

road segment whose ID is ‘r5.2’ ”. Its properties are shown in Table C.29.

Table C.29: Properties of value 3 2 monitor for “Cone-off-road” in Experiment

Two

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL

hasGeneralV alue 5.2

An individual of class Monitor named monitor 3 2 was created to represent

this Monitor. Its properties are shown in Table C.30.

Table C.30: Properties of monitor 3 2 for “Cone-off-road” in Experiment Two

Property Related to

hasMonitorType some State

hasMonitorOperator some ASLONGAS

hasReference subject

hasStateV ariable some SV RdID

hasRefValue value 3 2 monitor

267

C. SCENARIO REPRESENTATION WITH OSO

C.2.3.2 Action

When the Monitor became true, an Action of ”cone off the specified lane” would

be triggered, in which case, Smith would request SMM to cone off a lane. An

individual of the class Action named setmodelswitch 3 2 was created, which

indicated that SMM should cone off the lane where the participant’s vehicle was

not travelling in. Its properties are shown in Table C.31.

Table C.31: Properties of setmodelswitch 3 2 for “Cone-off-road” in Experiment

Two

Property Related to

hasActionProfile some NormalAction

hasActionType some

SMM SetModelSwith

hasModelSwitch True

C.2.3.3 Performer

This Assignment should be carried out by SMM, but requested by Smith. Hence,

the performer is an individual of class SMM named smm, i.e., isPerformedBy

smm

C.2.3.4 Representation by Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

initial status of Assignment coherence beleader 1, the main information of this

Assignment can be illustrated as in Figure C.8. This Assignment can be tried

once (hasMaxtriedTime 1)

268

C.2 Experiment Two

Assignment

smm_setmodelswitch_3_8

INITIAL

has
Ass

ignm
ent

Sta
tus

SMM

MonitorAction

smm
isPerformedBy

monitor_3_2

hasPreCond

setmodelswitch_3_2

ha
sA
ct
io
n

NormalAction

SMM_SetModelSwitch

ha
sA
cti
on
Pr
ofi
le

ha
sA
ct
io
nT
yp
e

True

h
a
sM
o
d
e
lS
w
tich

(a)

Monitor

Subject
subject

State

ASLONGAS

hasMonitor
Type

ha
sR
efe
ren

ce

hasMonitorOperator

SV_RdID

ReferenceValue

value_3_2_monitor

h
a
s
S
ta
te
V
a
ria
b
le

hasRefValue

NUMBER

hasRefValueType

BEQUAL

ha
sR
efV
alu
eR
an
ge

1.0

5.2

h
a
s
G
e
n
e
ra
lV
a
lu
e

monitor_3_2

(b)

Figure C.8: Illustration of smm setmodelswitch 3 8 in Experiment Two

269

C. SCENARIO REPRESENTATION WITH OSO

C.2.4 Assignment “Braking-car”

An individual of the class Assignment named smith stop 4 10 was created in

OSO, containing the following main information:

C.2.4.1 Formation Position

This Assignment needed a leader, so the Formation Position should be “Leader”,

i.e., hasFormationPosition some Leader.

C.2.4.2 Monitor

There were three Monitors for this Assignment. When they were met at the same

time, the Assignment-action would be triggered.

C.2.4.2.1 Monitor One

“Whenever the participant’s vehicle’s (subject) time headway to the

leader (SV TimeHW L), which is the Ego-vehicle, is less than 4 sec-

onds.”

This Monitor utilised the one from Assignment as shown in Table C.25 on

Page 263.

C.2.4.2.2 Monitor Two

“As long as the participant (subject) passes to is on the road ‘r6.0’

(SV RdID).”

An individual of the class ReferenceValue named value 4 1 monitor road was

created to represent the reference value mentioned, which is “passes or is on the

road segment whose ID was ‘r6.0’ ”. Its properties are shown in Table C.32.

An individuals of the class Monitor named monitor 4 1 road was created to

represent this Monitor. Its properties are shown in Table C.33.

C.2.4.2.3 Monitor Three

“Whenever the participant’s vehicle’s (subject) time-to-collision with

the Ego-vehicle, which should be the leader (SV TTC L), is greater

than 5 seconds.”

270

C.2 Experiment Two

Table C.32: Properties of value 4 1 monitor road for “Braking-car” in Experi-

ment Two

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL (>)

hasGeneralV alue 6.0

Table C.33: Properties of monitor 4 1 road for “Braking-car” in Experiment Two

Property Related to

hasMonitorType some State

hasMonitorOperator some ASLONGAS

hasReference subject

hasStateV ariable some SV RdID

hasRefValue value 4 1 monitor road

An individual of the class ReferenceValue named value 4 1 monitor was cre-

ated to represent the reference value mentioned, which is “greater than 5 seconds”.

Its properties are shown in Table C.34.

Table C.34: Properties of value 4 1 monitor for “Braking-car” in Experiment

Two

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL (>)

hasGeneralV alue 5.0

An individuals of the class Monitor named monitor 4 1 was created to rep-

resent this Monitor. Its properties are shown in Table C.35.

271

C. SCENARIO REPRESENTATION WITH OSO

Table C.35: Properties of monitor 4 1 for “Braking-car” in Experiment Two

Property Related to

hasMonitorType some State

hasMonitorOperator some WHENEV ER

hasReference subject

hasStateV ariable some SV TTC L

hasRefValue value 4 1 monitor

C.2.4.3 Action

When the Monitors became true, an Action of “decelerate to speed of 0 with a

deceleration rate of -5.5 m/s2” was triggered, in which case Smith would force

the Ego-vehicle to reach a speed of 0 with the specified deceleration rate. An

individual of the class Action named stop 4 1 was created, which specified that

the desired acceleration rate should be -5.5 m/s2 and hold for 20 seconds. Its

properties are shown in Table C.36.

Table C.36: Properties of stop 4 1 for “Braking-car” in Experiment Two

Property Related to

hasActionProfile some DesiredAccRate

hasActionType some AdaptAcc

hasActionSpeed -5.5

hasActionDuration 20.0

C.2.4.4 Performer

This Assignment should be carried out by Smith, not SMM. smith forall is used,

i.e., isPerformedBy smith forall

272

C.2 Experiment Two

C.2.4.5 Representation by Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

initial status of the Assignment coherence beleader 1, the main information of

this Assignment can be illustrated as in Figure C.9. This Assignment can be

tried once (hasMaxtriedTime 1)

273

C. SCENARIO REPRESENTATION WITH OSO

Assignment

smith_stop_4_10

Leader

hasForm
ationPos

ition

INITIAL

has
Ass

ignm
ent

Sta
tus

VirtualDriver

MonitorAction

smith_forall

isPerformedBy

monitor_4_1
monitor_2_5_hw

monitor_4_1_road

hasPreC
ond

hasPreCond

hasPreCond

stop_4_1

ha
sA
ct
io
n

DesiredAccRate

AdaptAcc

ha
sA
cti
on
Pr
ofi
le

ha
sA
ct
io
nT
yp
e

-5.5

h
a
s
A
c
tio
n
A
c
c

20.0

hasA
ctionD

uration

(a)

Monitor

Monitor

Monitor

Subject
subject

WHENEVER

hasM
onitorType

ha
sM
on
ito
rO
pe
ra
to
r

hasReference

ha
sM
on
ito
rTy
pe

hasMonitor
Operator

h
a
sR
e
fe
re
n
ce

h
a
sM
o
n
ito
rT
yp
e

ha
sR
ef
er
en
ce

ha
sM
on
ito
rO
pe
ra
to
r

SV_TTC_L

SV_TimeHW_L

SV_RdID

ReferenceValue

value_4_1_monitor

ReferenceValue

value_1_3_monitor_hw

ReferenceValue
value_4_1_monitor_road

h
a
s
S
ta
te
V
a
ria
b
le

hasStateVariable

hasStateVariable

h
a
s
R
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

NUMBER

hasRefValueType

hasRefValueType

ha
sR
ef
Va
lu
eT
yp
e

BEQUAL

SEQUAL

BEQUAL

h
a
sR
e
fV
a
lu
e
R
a
n
g
e

h
a
sR
e
fV
a
lu
e
R
a
n
g
e

hasRe
fValueR

ange

4.0

hasGeneralValue

6.0

h
a
s
G
e
n
e
ra
lV
a
lu
e

5.0

h
a
s
G
e
n
e
ra
lV
a
lu
e

monitor_4_1

monitor_2_5_hw

monitor_4_1_road
State

WHENEVER

State

ASLONGAS

State

(b)

Figure C.9: Illustration of smith stop 4 10 in Experiment Two

274

C.3 Experiment Three

C.3 Experiment Three

C.3.1 Assignment “Braking-car”

An individual of the class Assignment named smith dec 1 1 was created in OSO,

containing the following main information:

C.3.1.1 Formation Position

This Assignment needed a leader, so the Formation Position should be “Leader”,

i.e., hasFormationPosition some Leader.

C.3.1.2 Monitor

There were two Monitors for this Assignment. When they were met at the same

time, the Assignment-action would be triggered.

C.3.1.2.1 Monitor One

“As long as the simulator driver (subject) reaches or passes 11000 m of

the road segment (SV Distance).”

An individual of the class ReferenceValue named value 1 1 monitor road was

created to represent the reference value mentioned, which is “reaches or passes

11000 m”. Its properties are shown in Table C.37.

Table C.37: Properties of value 1 1 monitor road for “Braking-car” in Experi-

ment Three

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL (>)

hasGeneralV alue 11000

An individuals of the class Monitor named monitor road 1 1 was created to

represent this Monitor. Its properties are shown in Table C.38.

275

C. SCENARIO REPRESENTATION WITH OSO

Table C.38: Properties of monitor road 1 1 for “Braking-car” in Experiment

Three

Property Related to

hasMonitorType some State

hasMonitorOperator some ASLONGAS

hasReference subject

hasStateV ariable some SV Distance

hasRefValue value 1 1 monitor road

C.3.1.2.2 Monitor Two

“Whenever the simulator driver’s (subject) distance headway to the

leader (SV SpaceHW), which is the Ego-vehicle, is less than 200 me-

ters.”

An individual of the class ReferenceValue named value 1 1 monitor was cre-

ated to represent the reference value mentioned, which is “less than 200 meters”.

Its properties are shown in Table C.39.

Table C.39: Properties of value 1 1 monitor for “Braking-car” in Experiment

Three

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some SEQUAL (6)

hasGeneralV alue 200

An individuals of the class Monitor named monitor 1 1 was created to rep-

resent this Monitor. Its properties are shown in Table C.40.

C.3.1.3 Action

When the Monitor became true, an Action of “decelerate to a speed of 0 with a

deceleration rate of -1 m/s2” should be triggered and last for 18 seconds.

276

C.3 Experiment Three

Table C.40: Properties of monitor 1 1 for “Braking-car” in Experiment Three

Property Related to

hasMonitorType some State

hasMonitorOperator some WHENEV ER

hasReference subject

hasStateV ariable some SV SpaceHW

hasRefValue value 1 1 monitor

An individual of the class Action named dec 1 1 was created, which specified

that the desired acceleration rate should be -1 m/s2 and the Duration of this

Action should be 18 seconds. Its properties are shown in Table C.41.

Table C.41: Properties of dec 1 1 for “Braking-car” in Experiment Three

Property Related to

hasActionProfile some DesiredAccRate

hasActionType some AdaptAcc

hasActionAcc -1

hasActionDuration 18.0

C.3.1.4 Performer

This Assignment should be carried out by Smith, not SMM, so an individual of

the class V irtualDriver named smith single was created to represent this Smith,

i.e., isPerformedBy smith single

C.3.1.5 Representation by Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

the initial status of the Assignment, the main information of this Assignment can

be illustrated as in Figure C.12. This Assignment can be tried once (hasMax-

triedTime 1)

277

C. SCENARIO REPRESENTATION WITH OSO

Assignment

smith_dec_1_1

Leader

hasForm
ationPos

ition

INITIAL

has
Ass

ignm
ent

Sta
tus

VirtualDriver

MonitorAction

smith_single

isPerformedBy

monitor_1_1 monitor_road_1_1

hasPreC
ond

hasPreCond

dec_1_1
h
a
sA
ct
io
n

DesiredAccRate

AdaptAcc

has
Act

ion
Pro

file

ha
sA
ct
io
nT
yp
e

-1

h
a
s
A
c
ti
o
n
A
c
c

18.0
h
a
sA
ctio

n
D
u
ra
tio
n

(a)

Monitor

Monitor

Subject
subject

WHENEVER

hasMonitorType

ha
sM
on
ito
rO
pe
ra
to
r

hasReferenceh
a
s
M
o
n
ito
rT
y
p
e

hasM
onitor

Opera
torha

sR
ef
er
en
ce

SV_SpaceHW

SV_DistanceReferenceValue

value_1_1_monitor

ReferenceValue
value_1_1_monitor_road

h
a
sS
ta
te
V
a
ria
b
le

hasStateVariable

h
a
s
R
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

NUMBER

hasRefValueType

ha
sR
efV
alu
eT
yp
eSEQUAL

BEQUAL

h
a
s
R
e
fV
a
lu
e
R
a
n
g
e

hasRefValueR
ange

200

hasGeneralValue

11000

h
a
sG
e
n
e
ra
lV
a
lu
e

monitor_1_1

monitor_road_1_1

State

State

ASLONGAS

(b)

Figure C.10: Illustration of smith dec 1 1 in Experiment Three

278

C.3 Experiment Three

C.3.2 Assignment “Flock-Blocking”

An individual of the class Assignment named smith flock 1 2 was created in

OSO, which should contain the following main information:

C.3.2.1 Formation Position

This Assignment requires a parallel vehicle to block the driver, so the Formation

Position should be LeftParallel0 or RightParallel0, i.e., hasFormationPosition

some LeftParallel0 or RightParallel0.

C.3.2.2 Monitor

This Assignment shared the same Monitors as the last one.

C.3.2.3 Action

A High-Level Action called “Block” was needed (Block), in which case Smith

needed to use a corresponding Recipe in Memory to perform this Action.

An individual of class Action named flk 2 5 was created to represent this

Action. Its properties are shown in Table C.42.

Table C.42: Properties of flk 2 5 for “Flock-Blocking” in Experiment Three

Property Related to

hasActionProfile some FlockBehaviour

hasActionType some Block

C.3.2.4 Performer

This Assignment should be carried out by Smith, not SMM, so smith single was

used, i.e., isPerformedBy smith single

279

C. SCENARIO REPRESENTATION WITH OSO

C.3.2.5 Representation by Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

the initial status of Assignment, the main information of this Assignment can be

illustrated as in Figure C.11. This Assignment can be tried once (hasMaxtried-

Time 1)

280

C.3 Experiment Three

Assignment

smith_flock_1_2
hasFormationPosition

INITIAL

has
Ass

ignm
ent

Sta
tus

VirtualDriver

MonitorAction

smith_single

isPerformedBy

monitor_1_1 monitor_road_1_1

hasPreC
ond

hasPreCond

flk_2_5
h
a
sA
ct
io
n

FlockBehaivour Block

ha
sA
ct
io
nP
ro
file

h
a
sA
ctio

n
T
yp
e

LeftParallel0 RightParallel0

(a)

Monitor

Monitor

Subject
subject

WHENEVER

hasMonitorType

ha
sM
on
ito
rO
pe
ra
to
r

hasReference

hasM
onitorType

hasM
onitor

Opera
torha

sR
ef
er
en
ce

SV_SpaceHW

SV_DistanceReferenceValue

value_1_1_monitor

ReferenceValue
value_1_1_monitor_road

hasStateVariable

hasStateVariable

h
a
sR
e
fV
a
lu
e

h
a
s
R
e
fV
a
lu
e

NUMBER

hasRefValueType

ha
sR
efV
alu
eT
yp
eSEQUAL

BEQUAL

h
a
s
R
e
fV
a
lu
e
R
a
n
g
e

hasRefValueR
ange

200

hasGeneralValue

11000

h
a
sG
e
n
e
ra
lV
a
lu
e

monitor_1_1

monitor_road_1_1

State

State
ASLONGAS

(b)

Figure C.11: Illustration of smith flock 1 2 in Experiment Three

281

C. SCENARIO REPRESENTATION WITH OSO

C.3.3 Assignment “Role-Matching”

An individual of the class Assignment named smith matchrole was created in

OSO, which contains the following information:

C.3.3.1 Monitor

“As long as the simulator driver (subject) passes or arrives at the posi-

tion of 6000 m in the road segment (SV Distance).”

An individual of the class ReferenceValue named value matchrole monitor

was created to represent the reference value, which is “passes or arrives at the

position of 6000 m in the road segment”. Its properties are shown in Table C.43.

Table C.43: Properties of value matchrole monitor for “Role-Matching” in Ex-

periment Three

Property Related to

hasRefValueType some NUMBER

hasRefValueRange some BEQUAL (>)

hasGeneralV alue 6000

An individual of the class Monitor named monitor matchrole was created to

represent this Monitor. Its properties are shown in Table C.44.

Table C.44: Properties of monitor matchrole for “Role-Matching” in Experiment

Three

Property Related to

hasMonitorType some State

hasMonitorOperator some ASLONGAS

hasReference subject

hasStateV ariable some SV Distance

hasRefValue value matchrole monitor

282

C.3 Experiment Three

C.3.3.2 Action

When the Monitor became true, a pre-defined Action of “MatchRole” was trig-

gered, which was represented by the sub-class of Action named MatchRole, i.e.,

hasAction some MatchRole.

C.3.3.3 Performer

This Assignment should be carried out by Smith, not SMM, so an individ-

ual of class V irtualDriver named smith single was used, i.e., isPerformedBy

smith single

C.3.3.4 Representation by Directed Graph

By adopting the individuals mentioned above and some other information, e.g.,

the initial status of Assignment, the main information of this Assignment can be

illustrated as in Figure C.6. This Assignment can be tried once (hasMaxtriedTime

1)

283

C. SCENARIO REPRESENTATION WITH OSO

Assignment

smith_matchrole

INITIAL
hasAssignmentStatus

VirtualDriver

Monitor

smith_single

isPerformedBy

monitor_matchrole

hasPreCond

MatchRole

ha
sA
ct
io
n

(a)

Monitor

Subject
subject

hasMonitorType

has
Mo
nito

rOp
era

tor
hasRefe

rence

SV_Distance

ReferenceValue

value_matchrole_monitor

hasS
tateVariable

h
a
sR
e
fV
a
lu
e

NUMBER

ha
sR
ef
Va
lu
eT
yp
e

BEQUAL

hasR
efValueR

ange

6000

h
a
s
G
e
n
e
ra
lV
a
lu
e

monitor_road_1_1

State

ASLONGAS

(b)

Figure C.12: Illustration of smith matchrole in Experiment Three

284

References

Al-Shihabi, T. & Mourant, R. (2003). Toward more realistic driving be-

havior models for autonomous vehicles in driving simulators. Transportation

Research Record: Journal of the Transportation Research Board , 1843, 41–49.

Albus, J.S. (1999). The Engineering of Mind. Information Sciences , 117, 1–18.

Allen, J. (1981). An interval-based representation of temporal knowledge. In

Proc. 7th International Joint Conference on Artificial Intelligence, Vancouver,

Canada, 221–226.

Brookhuis, K., Waard, D.D. & Mulder, B. (1994). Measuring driving

performance by car-following in traffic. Ergonomics , 37:3, 427 – 434.

Champion, A., Éspié, S. & Auberlet, J. (2001). Behavioral road traffic

simulation with ARCHISIM. In Proceedings of Summer Computer Simulation

Conference, 359–364, Society for Computer Simulation International; 1998.

COBA (2006). Traffic Input to COBA, vol. 13. Department for Transport, UK.

Corcho, O., Fernández-López, M. & Gómez-Pérez, A. (2003). Method-

ologies, tools and languages for building ontologies: where is their meeting

point? Data Knowl. Eng., 46, 41–64.

Cormen, T., Leiserson, C., Rivest, R. & Stein, C. (2001). Introduction

to algorithms . The MIT Press, Cambridge, MA.

Cremer, J., Kearney, J. & Papelis, Y. (1995). HCSM: a framework for

behavior and scenario control in virtual environments. ACM Transactions on

Modeling and Computer Simulation (TOMACS), 5, 242–267.

285

REFERENCES

Currie, K. & Tate, A. (1991). O-plan: the open planning architecture. Arti-

ficial Intelligence, 52, 49–86.

Dahlgren, K. (1995). A linguistic ontology. International Journal of Human-

Computer Studies , 43, 809 – 818.

Dechter, R., Meiri, I. & Pearl, J. (1991). Temporal constraint networks.

Artif. Intell., 49, 61–95.

Devillers, F. & Donikian, S. (2003). A scenario language to orchestrate

virtual world evolution. In Proceedings of the 2003 ACM SIGGRAPH/Euro-

graphics symposium on Computer animation, 275, Eurographics Association.

Dewar, R. (2002). Individual differences. Human Factors in Traffic Safety , 111–

142.

Doniec, A., Espié, S., Mandiau, R. & Piechowiak, S. (2006). Multi-

agent coordination and anticipation model to design a road traffic simulation

tool. In Proceedings of the fourth European Workshop on Multi-Agent Systems

(EUMAS’06), Lisbon, Portugal , Citeseer.

Doniec, A., Mandiau, R., Piechowiak, S. & Espié, S. (2008). Anticipation

based on constraint processing in a multi-agent context. Autonomous Agents

and Multi-Agent Systems , 17, 339–361.

Donikian, S. (2001). HPTS: a behaviour modelling language for autonomous

agents. In AGENTS ’01: Proceedings of the fifth international conference on

Autonomous agents , 401–408, ACM, New York, NY, USA.

Drabble, B., Tate, A. & Dalton, J. (1997). Repairing Plans On-the-fly.

In Proceedings of the NASA Workshop on Planning and Scheduling for Space,

Oxnard, CA.

Driving Wiki (2010a). Driving Wiki. Retrieved July 2010. From http://www.

simusers.com/.

Driving Wiki (2010b). Standard Measures. Retrieved July 2010. From http:

//www.simusers.com/tiki-index.php?page=Standard+Measures.

286

http://www.simusers.com/
http://www.simusers.com/
http://www.simusers.com/tiki-index.php?page=Standard+Measures
http://www.simusers.com/tiki-index.php?page=Standard+Measures

REFERENCES

Dupuis, M. (2011). Opendrive format specification, rev. 1.3.

El Hadouaj, S. & Espié, S. (2002). A generic road traffic simulation model. In

Proceedings of International Conference on Traffic and Transportation Studies .

El Hadouaj, S., Drogoul, A. & Espié, S. (2001). How to combine reactivity

and anticipation: the case of conflicts resolution in a simulated road traffic. In

MABS 2000: Proceedings of the second international workshop on Multi-agent

based simulation, 82–96, Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Engström, J. & Hollnagel, E. (2007). A general conceptual framework

for modelling behavioural effects of driver support functions. In P. Cacciabue,

ed., Modelling Driver Behaviour in Automotive Environments , 61–84, Springer

London.

Erol, K., Hendler, J. & Nau, D.S. (1994). UMCP: A sound and complete

procedure for hierarchical task-network planning. In Proc. 2nd Intl. Conf. on

AI Planning Systems , 249–254.

Espié, S., Auberlet, J.M. et al. (2007). Archisim: a behavioral multi-actors

traffic simulation model for the study of a traffic system including its aspects.

International Journal of ITS Research.

Fisher, D., Rizzo, M., Caird, J. & Lee, J., eds. (2010a). Handbook of

driving simulation for engineering, medicine, and psychology . CRC.

Fisher, D., Rizzo, M., Caird, J. & Lee, J., eds. (2010b). Scenario Author-

ing , chap. 6, 6.1 – 6.12. CRC.

Forsman, Åsa., Vadeby, A., Yahya, M.R., Tapani, A., Enjalbert, S.,

Cas-sani, M., Amantini, A., Lai, F., Keck-lund, L. & Arvidsson, M.

(2011). D5.1 - results from the analysis and input to the develop- ment and val-

idation of the statistical models. Second revised ec submission, The ITERATE

Project (FP7 Collaborative Project, Grant Agreement Number: 218496).

Fuchs, S., Rass, S. & Kyamakya, K. (2008). Integration of ontological scene

representation and logic-based reasoning for context-aware driver assistance

systems. Electronic Communications of the EASST , 11.

287

REFERENCES

Ghallab, M., Nau, D. & Traverso, P. (2004). Automated Planning: Theory

& Practice. Morgan Kaufmann, San Francisco, CA, USA.

Guarino, N. & Welty, C. (2002). Evaluating ontological decisions with on-

toclean. Communications of the ACM , 45, 61–65.

Gugerty, L. (2011). Situation awareness in driving. Handbook for driving sim-

ulation in engineering, medicine and psychology .

Hadad, M., Kraus, S., Gal, Y. & Lin, R. (2003). Temporal reasoning for a

collaborative planning agent in a dynamic environment. Annals of Mathematics

and Artificial Intelligence, 37, 331–379.

Hamilton, A., González, E., Acosta, L., Arnay, R. & Espelośın, J.

(2013). Semantic-based approach for route determination and ontology updat-

ing. Engineering Applications of Artificial Intelligence, 23, 1174 – 1184.

Hitzler, P., Krotzsch, M. & Rudolph, S. (2011). Foundations of semantic

web technologies . Chapman and Hall/CRC.

Hobbs, J. & Pan, F. (2004). An ontology of time for the semantic web. ACM

Transactions on Asian Language Information Processing (TALIP), 3, 66–85.

Horridge, M. et al. (2009). A practical guide to building owl ontologies using

protégé 4 and co-ode tools edition1. 2. The University of Manchester .

Horrobin, T. & Carsten, O. (2011). Personal communication.

Jarrar, M. (2005). Towards Methodological Principles for Ontology Engineer-

ing . Phd thesis, Vrije Universiteit Brussel.

Kearney, J., Willemsen, P., Donikian, S., Devillers, F., de Beaulieu,

C. & Rennes, F. (1999). Scenario languages for driving simulation. In Pro-

ceedings of Driving Simulation Conference,DSC’99 , 377–393.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile

robots. Int. J. Rob. Res., 5, 90–98.

288

REFERENCES

Krummenacher, R. & Strang, T. (2007). Ontology-based context modeling.

In Proceedings Third Workshop on Context-Aware Proactive Systems (CAPS

2007)(June 2007).

Lacroix, B., Mathieu, P., Rouelle, V., Chaplier, J., Gallée, G. &

Kemeny, A. (2007). Towards traffic generation with individual driver behavior

model based vehicles. In Proceedings of Driving Simulation Conference, Iowa

City, USA, 144–154.

Lacroix, B., Rouelle, V., Kemeny, A., Mathieu, P., Laurent, N.,

Millet, G. & Gallee, G. (2009). Informal rules for autonomous vehicles

in scaner. In Driving Simulation Conference, 58–69, Monaco, conference web

site: http://dsc-europe.imagina.mc/.

Leitao, M., Sousa, A. & Ferreira, F. (1999). A scripting language for

multi-level control of autonomous agents in a driving simulator. In Proceedings

of Driving Simulation Conference,DSC’99 , vol. 99, 339–351.

Michon, J. (1985). A critical view of driver behavior models: What do we know,

what should we do. In L. Evans & R. Schwing, eds., Human behavior and traffic

safety , 485–520, Plenum Publishing Corporation.

Miller, I., Campbell, M., Huttenlocher, D., Nathan, A., Kline,

F.R., Moran, P., Zych, N., Schimpf, B., Lupashin, S., Garcia, E.,

Catlin, J., Kurdziel, M. & Fujishima, H. (2009). Team cornell’s skynet:

Robust perception and planning in an urban environment. In M. Buehler,

K. Iagnemma & S. Singh, eds., The DARPA Urban Challenge, vol. 56 of

Springer Tracts in Advanced Robotics , 257–304, Springer Berlin Heidelberg.

Morisset, B. & Ghallab, M. (2008). Learning how to combine sensory-motor

functions into a robust behavior. Artificial Intelligence, 172, 392 – 412.

Musliner, D.J., Hendler, J.A., Agrawala, A.K., Durfee, E.H., Stros-

nider, J.K. & Paul, C. (1995). The challenges of real-time ai. Computer ,

28, 58–66.

289

REFERENCES

Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D.

& Yaman, F. (2003). SHOP2: an HTN planning system. J. Artif. Int. Res.,

20, 379–404.

Noy, N.F. & Mcguinness, D.L. (2001). Ontology development 101: A guide

to creating your first ontology. Tech. rep., Stanford University, Stanford, CA,

USA.

Olstam, J. (2009). Simulation of surrounding vehicles in driving simulators,phd

thesis summary. Tech. rep., Department of Science and Technology, Linköping

University.

Olstam, J., Espié, S., Måardh, S., Jansson, J. & Lundgren, J. (2011).

An algorithm for combining autonomous vehicles and controlled events in driv-

ing simulator experiments. Transportation Research Part C: Emerging Tech-

nologies , 19, 1185–1201.

Olstam, J.J., Lundgren, J., Adlers, M. & Matstoms, P. (2008). A

framework for simulation of surrounding vehicles in driving simulators. ACM

Trans. Model. Comput. Simul., 18, 1–24.

OpenDRIVE (2013). OpenDRIVE — Background.

Papelis, Y. & Ahmad, O. (2001). A comprehensive microscopic autonomous

driver model for use in high-fidelity driving simulation environments. In Na-

tional Research Council (US). Transportation Research Board. Meeting (80th:

2001: Washington, DC). Preprint CD-ROM .

Papelis, Y., Ahmad, O. & Schikore, M. (2001). Scenario definition and con-

trol for the national advanced driving simulator. In International Conference

on the Enhanced Safety of Vehicles (ESV), SAE International.

Papelis, Y., Ahmad, O. & Watson, G. (2003). Developing scenarios

to determine effects of driver performance: Techniques for authoring and

lessons learned. In Proceedings of Driving Simulation Conference North Amer-

ica,DSC’03 .

290

REFERENCES

Peters, B. & Nilsson, L. (2007a). Modelling the driver in control. In P. Cac-

ciabue, ed., Modelling Driver Behaviour in Automotive Environments , 85–104,

Springer London.

Peters, B. & Nilsson, L. (2007b). Modelling the driver in control. In P. Cac-

ciabue, ed., Modelling Driver Behaviour in Automotive Environments , 85–104,

Springer London.

Protégé (2012). Protégé-OWL Ontology Editor. http://protege.stanford.

edu.

Provine, R., Schlenoff, C., Balakirsky, S., Smith, S. & Uschold,

M. (2004). Ontology-based methods for enhancing autonomous vehicle path

planning. Robotics and Autonomous Systems , 49, 123–133.

Sacerdoti, E.D. (1975). The nonlinear nature of plans. In Proceedings of the 4th

international joint conference on Artificial intelligence - Volume 1 , IJCAI’75,

206–214, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Salvucci, D., Boer, E. & Liu, A. (2001). Toward an integrated model

of driver behavior in cognitive architecture. Transportation Research Record:

Journal of the Transportation Research Board , 1779, 9–16.

Sukthankar, R. (1997). Situation Awareness for Tactical Driving . doctoral

dissertation, Robotics Institute, Carnegie Mellon University.

Sure, Y. (2003). Methodology, Tools and Case Studies for Ontology based Knowl-

edge Management . Phd thesis, University of Karlsruhe, Department of Eco-

nomics and Business Engineering.

Tate, A. (1977). Generating project networks. In Proceedings of the 5th interna-

tional joint conference on Artificial intelligence - Volume 2 , IJCAI’77, 888–893,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Tate, A., Drabble, B. & Kirby, R. (1994). O-plan2: an open architecture for

command, planning and control. In Intelligent Scheduling , Morgan Kaufmann.

291

http://protege.stanford.edu
http://protege.stanford.edu

REFERENCES

Toledo, T., Choudhury, C. & Ben-Akiva, M. (2005). Lane-changing model

with explicit target lane choice. Transportation Research Record: Journal of the

Transportation Research Board , 1934, 157–165.

Treiber, M., Hennecke, A. & Helbing, D. (2000). Congested traffic states

in empirical observations and microscopic simulations. Physical Review E ,

62(2), 1805–1824.

Treiber, M., Kesting, A. & Helbing, D. (2006). Delays, inaccuracies and

anticipation in microscopic traffic models. Physica A: Statistical Mechanics and

its Applications , 360, 71 – 88.

Wikipedia (2011). Agent Smith — Wikipedia, The Free Encyclopedia.

Wilkins, D.E. (1991). Can AI planners solve practical problems? Comput.

Intell., 6, 232–246.

Wilkins, D.E. et al. (2001). A call for knowledge-based planning. AI magazine,

22, 99.

Willemsen, P. (2000). Behavior and scenario modeling for real-time virtual

environments . Ph.D. thesis, The University of Iowa.

Wolffelaar, P., Bayarri, S. & Coma, I. (1999). Script-based definition

of complex driving simulator scenarios. In Proceedings of Driving Simulation

Conference,DSC’99 , 353–536.

Wright, S. (2000). Supporting intelligent traffic in the Leeds driving simulator .

Ph.D. thesis, School of Computing Studies, University of Leeds.

Wright, S., Ward, N. & Cohn, A. (2002). Enhanced presence in driving

simulators using autonomous traffic with virtual personalities. Presence: Tele-

operators & Virtual Environments , 11, 578–590.

Zu, D., Han, J. & Campbell, M. (2004). Artificial potential guided evolution-

ary path plan for multi-vehicle multi-target pursuit. In Robotics and Biomimet-

ics, 2004. ROBIO 2004. IEEE International Conference on, 855 –861.

292

	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Figures
	Glossaries
	1 Introduction
	1.1 ``The Matrix'' Fantasy
	1.2 The Scenario Reality in Driving Simulation
	1.3 ``The Matrix'' Metaphor and Research Aims
	1.4 Outline of the Thesis

	2 Related Work
	2.1 Introduction
	2.2 Scenario Orchestration in Driving Simulation
	2.2.1 Methodologies
	2.2.2 Summary of Methodologies
	2.2.3 General Limitations

	2.3 Automated Planning
	2.3.1 Domain-Dependent Planning
	2.3.2 Domain-Independent Planning

	2.4 Knowledge Bases
	2.5 Summary

	3 Framework Description - SOAV
	3.1 Introduction
	3.2 Scope and Objectives of the Research
	3.3 Main Concepts
	3.3.1 Virtual Driver
	3.3.2 Time
	3.3.3 Monitor System
	3.3.4 Flock and Ego-Vehicle/Flock
	3.3.5 Action
	3.3.6 Trigger
	3.3.7 Formation Position
	3.3.8 Situation
	3.3.9 Role Matching
	3.3.10 Assignment
	3.3.11 General Plan
	3.3.12 Scenario

	3.4 Intelligent Driver
	3.4.1 Design Goal
	3.4.2 Driver Model

	3.5 Framework Description
	3.5.1 Components of SOAV
	3.5.2 Framework Workflow

	3.6 Summary

	4 Ontology for Scenario Orchestration - OSO
	4.1 Introduction
	4.2 Naming Convention
	4.3 Layout of Ontology for Scenario Orchestration (OSO)
	4.3.1 General Description
	4.3.2 VehicleModel
	4.3.3 Measure
	4.3.4 Entity
	4.3.5 TemporalEntity
	4.3.6 MetricConstraints
	4.3.7 StateVariable
	4.3.8 ReferenceValue
	4.3.9 Monitor
	4.3.10 Action
	4.3.11 Assignment
	4.3.12 RoadSegment
	4.3.13 Intersection
	4.3.14 SimLimitation

	4.4 Summary

	5 The Driver Model SAIL/NAUSEA
	5.1 Introduction
	5.2 SAIL
	5.2.1 Perception
	5.2.2 Individual Features
	5.2.3 World Model
	5.2.4 Action

	5.3 NAUSEA
	5.3.1 Definitions and Notations
	5.3.2 Algorithm Description

	5.4 Summary

	6 Implementation
	6.1 Introduction
	6.2 Smith
	6.3 Sim Platform 1
	6.4 Sim Platform 2
	6.5 Framework Verification
	6.6 Summary

	7 Experiment One - Driving with Smith and Results
	7.1 Introduction
	7.2 Equipment
	7.3 Experiment
	7.3.1 Scenario Description
	7.3.2 Experimental Procedure

	7.4 Results
	7.4.1 Algorithm Examination
	7.4.2 General Analysis

	7.5 Summary

	8 Experiment Two - Driving in the Matrix and Results
	8.1 Introduction
	8.2 Equipment
	8.3 Experiment
	8.3.1 Scenario Description
	8.3.2 Experimental Procedure

	8.4 Results
	8.4.1 Algorithm Evaluation
	8.4.2 General Analysis

	8.5 Summary

	9 Experiment Three - Driving at VTI and Results
	9.1 Introduction
	9.2 Equipment
	9.3 Experiment
	9.3.1 Scenario Description
	9.3.2 Additional Information of the Experiment
	9.3.3 Recipe of ``Block'' in Smith
	9.3.4 Experimental Procedure

	9.4 Results
	9.4.1 Algorithm Examination
	9.4.2 General Analysis

	9.5 Summary

	10 Evaluation of OSO
	10.1 Introduction
	10.2 Role of OSO
	10.3 Evaluation of OSO
	10.4 Summary

	11 Conclusion
	11.1 Introduction
	11.2 Thesis Summary
	11.2.1 First Objective - Encoding Contextual Information
	11.2.2 Second Objective - Knowledge Base
	11.2.3 Third Objective - Plan and Replan

	11.3 Contributions of this Research
	11.3.1 SAIL/NAUSEA
	11.3.2 OSO
	11.3.3 Cross-platform Standardization

	11.4 Future Research
	11.4.1 Environment, Vehicles and Interfaces for Controlling
	11.4.2 Regulating - Action 1
	11.4.3 Traffic Flow Manipulation
	11.4.4 Global Optimization vs Local Optimization
	11.4.5 OSO Development

	11.5 Summary

	A Results of Assignment Checker and Action Checker Procedures in Experiment One
	B Vehicles' Trajectories in Assignment One of Experiment Two
	C Scenario Representation with OSO
	C.1 Experiment One
	C.1.1 Assignment ``Acc-BL''
	C.1.2 Assignment ``Coherence''
	C.1.3 Assignment ``Layby''
	C.1.4 Other Assignments
	C.1.5 Temporal Constraints

	C.2 Experiment Two
	C.2.1 Assignment ``Overtaking-lorry''
	C.2.2 Assignment ``Broken-down-car''
	C.2.3 Assignment ``Cone-off-road''
	C.2.4 Assignment ``Braking-car''

	C.3 Experiment Three
	C.3.1 Assignment ``Braking-car''
	C.3.2 Assignment ``Flock-Blocking''
	C.3.3 Assignment ``Role-Matching''

	References

