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Abstract 

In this study, polystyrene latex particles sterically stabilised using a diblock 

copolymer; poly(methyl methacrylate – block - poly(2-dimethylaminoethyl 

methacrylate) (pMMA-b-pDMAEMA) are investigated for use as emulsifiers, their 

adsorption to an oil-water interface, their effect on droplet size control via rotary 

membrane emulsification and fabrication of smart colloidosome microcapsules. The 

particles are synthesized using emulsion polymerisation and the particle size can be 

controlled by changing the polymer block length and reaction temperature.  

Emulsion studies using these latex particles show that both the pH and electrolyte 

concentrations affect emulsion stability to oil coalescence. At high pH’s, stable 

emulsions are formed due to the affinity of the particles to the interface. At low pH, 

protonation of the amine groups reduces the affinity and thus coalescence is 

observed. Increasing the electrolyte concentration improves emulsion stability but 

causes an increase in droplet size due to adsorption of flocculated/aggregated 

particles.  

The solid-stabilised emulsions are used as a template to produce colloidosome 

microcapsules. The pDMAEMA chains on the particle surface are cross-linked 

producing a robust capsule shell. The oil core is removed and it is demonstrated that 

the membrane shell, expands and contracts in response to changes in environmental 

pH. Furthermore it is shown that the microcapsules can be used for the retention and 

release of ‘model’ dextran molecules.  

Rotational membrane emulsification was employed to produce emulsion droplets 

with controlled sizes, stabilised by silica and pH-responsive latex particles. It was 

found that changes in the droplet size due to variations in the processing parameters 

could be related back to the kinetics involved in particle adsorption. Tensiometry 

experiments were performed to probe adsorption kinetics by measuring changes in 

dynamic interfacial tension. It was found that that bare particles do not change the 

tension, whereas with core-shell particles the change is pH dependent.   
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CHAPTER 1: INTRODUCTION 

The role of particles in the stabilization of fluid-fluid interfaces has been recognized 

as being very important in industrial processing. Industrial applications that utilize 

emulsions such as the food, cosmetic, pharmaceutical and agrochemical industries 

have driven the increased interest in studying particle stabilised emulsions.  

Although Ramsden
1
 reported the stabilisation of emulsions using particles, it was 

Pickering
2
 who conducted the first systematic study. It was the contribution made by 

his work in this area that earned the name ‘Pickering emulsions’ for particle 

stabilised emulsions. The physical advantage of using particulates over surfactant 

emulsifiers, is that particulates achieve high attachment energies to the liquid-liquid 

interface and once attached they effectively remain irreversibly adsorbed.
3
 In 

contrast, surfactant molecules rapidly adsorb and desorb from the interface 

exchanging from the bulk.
4
 It should be mentioned that in the case of particle 

stabilised emulsions, both the particle size and wettability characterised by its 

contact angle will influence the amount of energy that will be required to detach the 

particles from the interface. This required detachment energy is proportional to the 

square of the particle radius and the particles are most strongly adsorbed at the 

interface when an interfacial contact angle of 90° is achieved. It has been 

demonstrated that particle stabilised emulsions can be used for the fabrication of 

new of class materials such as ‘colloidosome’ microcapsules.
5-7

    

Conventional methods to produce emulsions are based on rotor-stator dispersing 

machines (e.g. stirred vessels and tooth disc dispersing machines), high-pressured 

homogenizers
8
 and ultrasonic systems. These conventional systems use turbulent 

eddies and cavity formations to disrupt the two immiscible liquids to produce 

dispersions of fine droplets of one liquid into the other. These methods face 

numerous problems during large scale manufacturing. In large vessels eddies cannot 

be generated and controlled consistently over a large period of time, this limits the 

control achieved on the size distribution and sizes required. Another problem 

encountered is the fact that these systems cannot be consistently reproduced from 

batch to batch due to their inability to produce monodispersed systems, specifically 
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because of in-homogeneity in the process. Furthermore, these processes are 

energetically costly, which leads to high manufacturing costs. 

The production of emulsions using a drop by drop production technique allows 

greater control of features such as droplet size and polydispersity, under the correct 

operating conditions.
9
 Several examples of drop by drop technologies include 

microfluidics, cross-flow,
10

 vibrating
11

 and rotating membrane emulsification.
12, 13

 

The advantage of membrane emulsification over the conventional counterparts is 

that it results in highly monodisperse droplets created with low levels of energy 

input
14

 that can easily be scaled up for large scale manufacturing with the addition of 

more membranes to the setup. Another advantage is that the droplet sizes are 

dependent on the choice of membrane and not on the turbulence, i.e. inhomogeneous 

eddies.  
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Aims of thesis 

The aim of this work is to investigate pH-responsive sterically stabilised latex 

particles as Pickering emulsifiers, in particular their adsorption to an oil/water 

interface, exerting control over droplet size using Rotational Membrane 

Emulsification and for the fabrication of smart colloidosome microcapsules. The 

latex particles are sterically stabilised using poly(methyl methacrylate – block - 

poly(2-dimethylaminoethyl methacrylate) (pMMA-b-pDMAEMA). Initially the 

influence of the pDMAEMA chain length and the polymerisation temperature on the 

particle size will be investigated. It is important that these latex particles are well 

characterised in order to understand their roles as particulate emulsifiers. The role of 

these latex particles to adsorb onto liquid-liquid interfaces and stabilise the 

emulsions from coalescence will be systematically investigated as a function of 

environmental pH and ionic concentration. The potential of using particle stabilised 

emulsions as templates for the manufacture of novel colloidosome microcapsules 

will be investigated. In this study the use pH stimuli will be used to control the 

porosity of the microcapsule membrane to demonstrate successful retention and 

release of model molecules.  

Finally the possibility of producing particle-stabilised emulsions using a rotary 

membrane emulsification device will be investigated by firstly using model silica 

colloids. This will scope the potential of using the sterically stabilised latex particles 

to control droplet production. In this study the effect of various chemical and 

mechanical parameters will be investigated. 
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Structure of thesis 

Chapter 2 

Chapter 2 is written to provide the reader with an overview on the theory of 

emulsion and emulsion stability and techniques used for their production. This 

chapter introduces the concept of emulsions, emulsion stability and the role of 

emulsifiers. In particular, the differences between surfactant and particulate 

emulsifiers will be introduced. This chapter concludes by outlining various 

techniques employed to produce emulsions comparing conventional methods with 

drop by drop techniques.  

Chapter 3 

The third chapter is written to provide a literature review regarding the fundamental 

theory behind membrane emulsification. In particular, details are given regarding the 

membrane and processing parameters that dictate the droplet size and size 

distribution obtained using these devices.  

Chapter 4 

Chapter 4 details the materials and methodology employed within this work 

introducing a number of techniques that will be used to gain characteristic 

information about the particulate systems used in this study and how this affects 

their adsorption to liquid-liquid interfaces. 

Chapter 5 

The fifth chapter investigates the synthesis and characterisation of sterically 

stabilised latex particles. In particular looking at the effect of polymer chain length 

and polymerisation temperature on the particle size. Also presented in this chapter is 

the characterisation of the pH-responsive polymer used in this work.  

Chapter 6 

Chapter 6 looks at the use of the sterically stabilised latex particles to a stabilise 

emulsions. In particular the role of pH and ionic strength is evaluated. The stability 

of the emulsions prepared using latex particles with two different polymer chain 

lengths is presented. Also presented in this chapter is the fabrication of pH-
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responsive colloidosome microcapsules using the particle stabilised emulsions as 

templates. 

Chapter 7 

Chapter 7 presents a systematic study regarding the production of controlled 

emulsion droplets using model silica colloids and the sterically stabilised latex 

particles. The influence of various chemical and mechanical parameters on the 

droplet size and droplet size distribution is presented. 

Chapter 8 

Chapter 8 investigates the use of tensiometry of probing particle adsorption kinetics. 

In this study, experimentation using two devices; a) pendant drop tensiometry and b) 

microtensiometry are presented. The role and effect of numerous particulate systems 

on the dynamic interfacial tension is presented. 

Chapter 9 

Chapter 9 contributes as an additional assessment of the importance of this work in 

the context of broader scientific and industrial development. 
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CHAPTER 2: THEORY AND PRINCIPLES OF 

EMULSIFICATION  

 

 

NOMENCLATURE 

 

A  Hamaker constant 

D  Diffusion coefficient 

d  Particle separation distance 

ε  Electron charge 

G  Gibbs free energy 

g  Gravitational constant 

dH  Enthalpy 

k  Boltzmann constant 

M  Molar mass 

P  Pressure 

R  Ideal gas constant 

r  Radius of particle 

S  Solubility 

dS  Entropy 

T  Absolute temperature 

t  Time 

VA  Potential energy of attractive forces 

VM  Molar volume 

VR  Potential energy of repulsive forces 

VT  Total energy of interaction 

κ  Function of ionic composition 

ρ  Density  

π  Solvent permeability 

η  Viscosity 

ζ  Zeta potential 

θ  Contact angle 
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ABBREVIATIONS 

 

CV  Coefficient of Variation 

DLVO  Derjaguin, Landau, Verwey, Overbeek 

HLB  Hydrophilic Lipophilic Balance 

MC  Microchannel 

O/W  oil-in-water emulsion 

PDMS  poly(dimethyl siloxane) 

PMMA poly(methyl methacrylate) 

W/O  water-in-oil emulsion 

W/O/W water-in-oil-in-water emulsion 
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2.1. Introduction 

An emulsion can be described as a colloidal dispersion where one immiscible liquid 

is dispersed as fine droplets in another. Emulsions are a biphasic system containing a 

continuous phase (e.g. water) and a dispersed phase (e.g. oil). For a system 

composed of oil and water, there are two types of emulsions that can be created; oil 

in water (O/W) and water in oil (W/O) emulsions as illustrated in Figure 2.1. 

Emulsions can also be created with other types of liquids such as ionic liquid.
1
 

Emulsions play pivotal roles in the formulations of many products within the 

cosmetics (hand creams, body milk and sun-block,
2
 pharmaceuticals (creams, 

ointments, drug carriers)
3
 and chemicals industries (paints and coatings).

4
  

 

 

Figure 2.1. Illustration of O/W and W/O emulsions and a few examples of their uses 

in applications. 

 

A third type of emulsion that can be created is known as a multiple emulsion (Figure 

2.2). Multiple emulsions are complex systems and consist of smaller droplets inside 

the dispersed phase such as water in oil in water (W/O/W) or vice versa. They are 

widely used to encapsulate active ingredients in myriad applications.
5 

 

Figure 2.2.  Illustration of an multiple emulsion (W/O/W) and a few examples of 

their uses in applications. 
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2.2. Emulsion stability 

The stability of emulsions is an important parameter as it dictates the shelf life and 

application of a product. For example in the food industry different degrees of 

stability are needed to achieve a variety of products. Some emulsions are required to 

remain stable for long periods of time (days, months or years) e.g. mayonnaise to 

achieve a longer shelf life. On the other hand there are instances where having 

unstable emulsions can also be advantageous. This is evident in the manufacture of 

ice cream mix and margarine premix where the emulsion is required to be stable for 

very short periods of time (seconds, minutes or hours). This is because the emulsion 

is merely an intermediate process step towards the manufacture of the final product. 

In oil recovery, the heavy oils contain asphaltenes that act as surfactants and 

stabilise both O/W and W/O emulsions. These emulsions need to be broken to 

successfully recover the oil.
6
 

Emulsions are inherently thermodynamically unstable systems.
7
 This is because the 

surface of each droplet is an interface between immiscible phases and contact 

between them is energetically unfavourable and needs to be minimised.
8
 Their 

breakdown which occurs through different phenomena (creaming, flocculation, 

coalescence, phase inversion and Ostwald ripening which are illustrated in Figure 

2.3)
9
 can be kinetically slowed down by the addition of stabilisers (see Section 2.3). 

These processes are mentioned in more detail in the following subsections. 
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Figure 2.3.  Illustration of processes that cause instabilities in emulsions. Redrawn 

from Ref [9]. 

 
 

2.2.1. Creaming and sedimentation 

Creaming and sedimentation are processes that result from external forces usually 

gravitational, due to the density difference of the emulsion droplets in comparison to 

the continuous liquid that surrounds them.
10

 When the gravitational force exceeds 

the thermal motion acting on the droplet (Brownian motion), the emulsion droplets 

will either cream (if their density is lower than the surrounding liquid) or sediment 

(if their density is higher than the surrounding liquid). Generally most oils have a 

lower density than water so O/W emulsions cream, whereas W/O emulsions 

sediment.  

Creaming and sedimentation can be limited if the liquids used are of matching 

density, by the addition of a weighting agent (usually a higher density oil) to the oil 

phase causing an overall increase in density of the oil phase, or by increasing the 

viscosity of the dispersed phase or by an overall reduction in the average droplet size 

(increase in Brownian motion).  
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The relationship between creaming or sedimentation rate with the average particle 

size, viscosity of continuous phase and the density of both phases can be defined by 

Stokes law (for dilute systems) as illustrated by Equation 2.1.
11

  

 

          (Equation 2.1)  

where Ustokes is the creaming or sedimentation velocity (if the value is positive then 

creaming occurs and if negative then sedimentation prevails), g is gravitational 

acceleration (9.81 ms
-2

),  is density with subscripts 1 and 2 denoting continuous 

and dispersed phases and  is the viscosity of the continuous phase.  

 

In concentrated emulsions the Stokes law serves only as an approximation due to 

hindered settling/creaming. Hindered settling/creaming prevents the droplets from 

sedimenting/creaming independently, they are influenced by the motion of the 

surrounding droplets. The hindered behaviour can be described by applying a 

correction factor to the Stokes law.
12

  

 

2.2.2. Flocculation and Coalescence 

Droplet flocculation and coalescence are the resulting phenomena when collisions 

between emulsion droplets occur. Emulsions are in constant motion due to external 

mechanical forces, Brownian motion (thermal energy), gravitational separation. This 

causes the droplets to collide with each other, resulting in the droplets to either move 

away or remain together aggregated on the resultant attractive and repulsive forces 

acting on them. Flocculation occurs when the droplets collide and the van der Waals 

attractive forces exceed the repulsive forces causing the droplets to form aggregates, 

whilst retaining their individual structural integrity
9
 (see DLVO theory in Section 

2.3.1).  

Coalescence is a process resultant of two droplets colliding with each other and then 

merging to form a single large droplet. When two droplets collide with each other, 

the contact zone deforms and flattens. The thin interstitial film (with uneven 

thickness) that exists between the two interfaces interact via van der Waals forces 
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that cause the film to drain and become unstable due to thermal fluctuations at the 

interface.
13, 14

 At a critical film thickness, the film ruptures and the droplets join 

together. The influence of the interaction force acting over the contact area is known 

as the disjoining pressure.
15 

A positive disjoining pressure leads to a stable film 

whilst a negative value will lead to film rupture, causing the droplets to merge. This 

occurs as it is thermodynamically favourable to decrease the contact area between 

the oil and water phases. 

In particle stabilised emulsions, between the extremes of total stabilisation and total 

coalescence is an intermediate process known as arrested coalescence.
16

 When the 

two droplets begin to coalesce, the progress can be halted by opposing forces, 

resulting in an arrested structure that resembles a stable-doublet. This process is also 

termed as partial coalescence
17

. For arrested coalescence to occur a resistance is 

needed before complete coalescence occurs that stabilises the arrested structure 

against further shape relaxation. If coalescence does persist it will eventually lead to 

the complete breakdown of the emulsion to form two separate layers of the 

immiscible liquids.  

 

2.2.3. Ostwald ripening 

Ostwald ripening is a thermodynamically driven process that is a result of the 

solubility (chemical potential) difference between small and large droplets. In this 

process larger droplets grow at the expense of the smaller ones through mass 

transportation of the dispersed phase from one drop to another through the 

continuous phase as illustrated by Figure 2.4.
18

  

 

Figure 2.4.  Illustrating the process of Ostwald ripening leading to complete 

emulsion breakage. 
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The ripening process is driven by differences in Laplace pressure, ΔP, between 

droplets of different radii;  

             (Equation 2.2) 

where Pin is the pressure inside the droplet, Pout is the pressure outside the droplet, γ 

is the interfacial tension and r is the droplet radius. 

 

The pressure difference is higher in small droplets forcing the oil phase out to 

deposit onto the larger ones. This effect is also increased with increasing radius of 

curvature of the droplet.
19

 Ostwald ripening can be limited by; a) controlling the 

droplet size and size distribution, b) reducing the interfacial tension and c) 

controlling the composition of the droplet to limit large differences in solubility
9
 and 

is described by Equation 2.3. 

             (Equation 2.3) 

where r is the droplet radius, t is time, γ the interfacial tension, VM the molar volume 

of the dispersed phase, S the solubility of the dispersed phase, D the diffusion 

coefficient of the dispersed phase, R the ideal gas constant and T is the absolute 

temperature. 

2.3. Emulsifiers 

Emulsifiers are surface active agents used to kinetically stabilise emulsions, by 

adsorbing onto freshly formed oil-water interface and forming a protective 

membrane that prevents droplet aggregation and coalescence.
9
 There are a range of 

emulsifiers used within emulsion production including surfactants, particles 

(Pickering emulsions) and proteins (food emulsions). However in this thesis only the 

use of surfactants and in particular particulates as emulsifiers will be described in 

the subsequent sub sections. 
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2.3.1. Surfactants 

Surfactants are amphiphilic molecules that have both hydrophilic and hydrophobic 

properties. The structure of these amphiphilic molecules comprise of a hydrophilic 

head and a hydrophobic tail (Figure 2.5). The hydrophilic head interact with polar 

solvents whereas the hydrophobic tails are preferably solubilised by non-polar 

solvents such as oil. Surfactants diffuse to the interface and rapidly adsorb and 

desorb onto/from the interface. They stabilise emulsions by lowering the interfacial 

tension at the oil-water interface and also form an electrical or mechanical barrier 

preventing droplet coalescence.
20

  

 

Figure 2.5.  Illustration of a surfactant molecule consisting of a hydrophilic head 

and a hydrophobic tail. 

Excess surfactant in polar solution results in the aggregation of these molecules to 

form micelles. In micelles the hydrophobic tails arrange themselves so that are 

situated inside away from the polar solvent, whilst the hydrophilic head group 

arrange themselves to interact with the polar solvent. The structure of these micelles 

in polar solvents is shown schematically in Figure 2.6. 
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Figure 2.6.  Structure of micelles formed from aggregated surfactant molecules in 

polar solvents e.g. water. Adapted from Ref. [15]. 

 
In addition, surfactants stabilise oil-water interfaces using the Gibbs-Marangoni 

effect as illustrated by Figure 2.7.
7
 The effect is caused by rapid surface mobility of 

the molecules responding to convective motions due to local differences in 

interfacial tension. 

 

Figure 2.7.  Gibbs-Marangoni effect on two droplets approaching each other during 

emulsification. Adapted from Ref. [7]. 

 

When two droplets insufficiently covered with surfactant molecules move towards 

each other, the droplets acquire more surfactant molecules at its surface during the 

approach (Figure 2.7a). However, at the point where the film between the droplets is 
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thinnest, the concentration of surfactant molecules available for adsorption will be 

the lowest, causing a local increase in the interfacial tension, γ. This local increase in 

the interfacial tension causes the surfactant molecules to move towards the site of 

the highest interfacial tension (Figure 2.7b). This gradient in the interfacial tension 

causes streaming of the liquid along the surface (the Marangoni effect) causing the 

two droplets to move away from each other (Figure 2.7c).
7
   

In industrial formulations, surfactants are characterized by HLB (Hydrophilic 

Lipophilic Balance) numbers that determine how hydrophilic or lipophilic the 

surfactant is. The concept was developed by Griffin in 1949 and later improved by 

Davies in 1957. Griffin
21

 proposed that the HLB number was calculated by: 

 

                     (Equation 2.4)  

 

where Mh is the molecular mass of the hydrophilic group and M is the molecular 

mass of the whole molecule.  

 

Surfactants that have a HLB number of 0 will be completely hydrophobic and those 

that have a number close to 20 will be hydrophilic. However, Davies
22

 modified this 

to take into account the strength of the hydrophilic head groups and proposed: 

 

                   (Equation 2.5) 

 

where m and Mh are the number and molecular mass of the hydrophilic groups and n 

and Ml are the number and molecular mass of the lipophilic groups.  

 

HLB numbers are used to distinguish the types of surfactants to be used as 

emulsifiers according to the Bancroft rule,
23

 that states; ‘The phase in which an 

emulsifiers is more soluble constitutes as the continuous phase.’ This was later 

revised to ‘the phase containing the surfactant aggregates becomes the continuous 

phase of an emulsion’.
24

 Therefore surfactants whose HLB values are below 7 

produce W/O emulsions (i.e. more soluble in oil) and those greater than 13 produce 
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O/W emulsions (more soluble in water).
15

 A major drawback of using the HLB 

system to select surfactant as emulsifiers is that it makes no allowance for changes 

in the HLB values with changing emulsification conditions such as the temperature, 

nature of the oil, presence of co-surfactants and other additives.
25

 In addition the 

HLB theory ignores the importance of the electric double layer, the placement of the 

emulsifier, the percentage of emulsifier that should be used and how the different 

components interact. Therefore the theory should be used as a starting point when 

selecting surfactants as emulsifiers. 

Surfactants can be classified according to the polar head group that usually contains 

heteroatoms such as oxygen, nitrogen and sulphur. These functionalities on the head 

group makes the emulsifier anionic, cationic, amphoteric or non-ionic. Anionic 

surfactants carry a negative charge with a small positive counter-ion (alkylbenzene 

sulfonates and lauryl sulfate etc.). Cationic surfactants are positively charged and 

have a small negative counter-ion (quaternary ammoniums). Amphoteric surfactants 

carry both positive and negative charges on the same molecule (amino acids and 

phospholipids), whilst a non-ionic surfactant carries no formal charge (where the 

hydrophilic group is based on an alcohol, phenol etc. and the hydrophobic group 

consists of alkyls or alkylbenezenes.
26

 Some examples of these surfactants are given 

in Figure 2.8.
 27
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Figure 2.8.  Examples of a few commonly used surfactants as emulsifiers. Redrawn 

from Ref. [27]. 

 

The charges present on the surfactant molecules help to stabilise emulsion droplets 

by forming an electrical barrier preventing droplet coalescence. The polar head of 

the surfactant will align on the droplet surface and this electric charge will cause 

repulsion between the droplets. 

An explanation of the stability of colloids in aqueous media determined from the 

potential energy of interaction between two approaching surfaces (e.g. particles, 

droplets) was proposed and explained in the 1940’s by two independent research 

groups. The proposed theory and explanation is commonly referred to as the DLVO 

theory (Derjaguin and Landau,
28

 and Verwey and Overbeek).
29

 The theory aims to 

calculate the total interaction energy (VT) between surfaces at close proximity, using 

the electrostatic attractive van der Waals forces (VA) and the repulsive interactions 

(VR).  
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                     (Equation 2.6) 

 

The attractive van der Waals energy are weak forces that dominate at very close 

distances as expressed by Equation 2.7, which was derived by Hamaker.
30 

            (Equation 2.7) 

where A is the Hamaker constant, π the solvent permeability and d the surface 

separation distance. 

 

The repulsive energy arises from the electric surface charge, which is influenced by 

the electric double layer (Chapter 4). 

                     (Equation 2.8) 

where ε is the dielectric constant of the solvent, r is the particle radius, ζ the zeta 

potential,  is the Debye-Hückel screening parameter based on ionic concentration 

(
-1

 is the characteristic length of the electric double layer).  

 

The theory predicts the summation of the electric double layer interaction and the 

van der Waals interaction (Figure 2.9).
31

 The double-layer repulsion energy is 

approximately an exponential function of the distance between the surfaces with a 

range of the order of the thickness of the double layer. The van der Waals attraction 

potential decreases as an inverse power of the distance between the surfaces. As a 

result the van der Waals attraction energies dominate at small and at a large 

separation distance. At intermediate distances the electric double layer repulsion 

may predominate. If the potential energy of interaction is greater than the thermal 

energy of the surfaces, then the system will be stable. The maximum height of this 

barrier depends on the magnitude of the zeta potential (Chapter 4) and the range of 

the repulsive forces. Another feature of the potential energy curves is the presence of 

a secondary minima at large separation distances. This results in loose and easily 
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reversible flocculation. As the repulsive forces are exceeded, the surfaces are held 

by strong van der Waals attraction forces in the primary minimum, forming larger 

clusters which require a significant amount of energy to break up the aggregates.
15

   

 

 

Figure 2.9.  Illustration of how the energy of interaction is affected by change in the 

separation distance between the surfaces of two particles. Where VR is the 

double layer interaction energy, VT is the total energy of interaction and VA is 

the London-van der Waals attractive energy. Adapted from Ref. [31]. 

 

A number of assumptions are made in the DLVO theory, these are;
15

  

 Infinite flat surface, 

 Uniform surface charge density, 

 No redistribution of the surface charge i.e., the surface electric potential 

remains constant 

 The electric potential remains unchanged i.e. no change in the concentration 

profile of the surface charge determining ions and counter-ions, and 

 The solvent exerts influence via a dielectric constant only. 
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Some of the assumptions mentioned above are far from real particle dispersion 

systems. The particle surface is not indefinitely flat and the surface charge density 

and distribution of the surface change may change when two charged particles meet 

together. In spite of these assumptions the theory works well in explaining the 

interactions as long as the following conditions are met:
15

 

 The dispersion is very dilute i.e., charge density and distribution not 

interfered by other particles, 

 No other forces apart from van der Waals and the electrostatic potential are 

present i.e., gravity is negligible or the particles are small, 

 The geometry of the particles are simple i.e., the surface properties of the 

particle as well as the electric potential in the surrounding medium are the 

same, 

 Diffusive double layer i.e., distribution of the counter-ions and surface 

charge determining ions are determined by the electrostatic force, entropy of 

the dispersion and Brownian motion. 

 

2.3.3. Colloidal particles  

Colloidal particles used as emulsifiers typically range from a few nanometers to a 

few microns. These particles behave similarly to surfactants as they can also 

accumulate and adsorb onto an liquid-liquid interface. A key parameter of particles 

at liquid-liquid interfaces is the three phase contact angle, θ. This is the angle 

measured between the tangents to the solid particle surface and the liquid-liquid 

interfaces as illustrated by Figure 2.10.
32

 The angle is measured through one of the 

liquids, conventionally through the more polar liquid. The angle is dependent on the 

surface free energies i.e. the interfacial tensions at the particle-oil, γpo, particle-

water, γpw, and oil-water, γow, interface as described by Young’s equation;
32

   

             (Equation 2.9) 
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Figure 2.10.  Definition of the three phase contact angle, θ, for a colloidal particle at 

a liquid-liquid interface. 

 

If the particle is preferentially wetted by water (i.e. hydrophilic, γpo > γpw) the contact 

angle will be 0° ≤ θ ≤ 90°, whilst if preferentially wetted by the oil (i.e. 

hydrophobic, γpo < γpw) the contact angle will be 90° ≤ θ ≤ 180°,
32

 this is represented 

diagrammatically in Figure 2.11. 

 

 

Figure 2.11.  Illustration of the position made by a particle at a planar oil-water 

interface for a contact angle, θ, measured through the water phase to 

distinguish nature of particle. 

 

The position of the particles at the interface of an particle stabilised emulsion is 

illustrated in Figure 2.12.
10
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Figure 2.12.  Illustration of particle stabilised emulsion droplet; a) O/W emulsion 

and b) W/O emulsion. Redrawn from Ref. [10]. 

 

In particle stabilised emulsions there are at least two mechanisms of stabilisation.
33

 

In the first mechanism, the particles are required to adsorb to the liquid-liquid 

interface and remain there forming a dense film around the droplet, to impede 

coalescence by acting as a mechanical barrier. The second mechanism is the 

development of a 3-dimensional network of particles in the continuous phase which 

surrounds the droplet and adds additional stability to the emulsion droplet. It has 

been shown that with particle stabilised emulsions, even millimetre sized droplets 

can be stable to coalescence.
34

 

A third mechanism by which colloidal stability can be achieved is via steric 

stabilisation. This arises from the presence of large molecules (polymers) adsorbed 

or grafted onto the particle surface.
35

 When two particles meet the adsorbed layer of 

polymer on the particles are compressed that reduces the entropy (i.e. ΔS < 0, 

assuming that the change in enthalpy, ΔH is negligible) causing an increase in the 

overall Gibbs free energy, ΔG. When the distance between the colloids is less than 

the thickness of the polymer layer, the reduction in thickness produces a repulsive 

force, increasing the overall Gibbs free energy (Equation 2.10).
36 

                  (Equation 2.10) 
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2.4. Colloidal particles vs. surfactants as emulsifiers 

One of the main advantages in using particles over surfactants as emulsifiers, is that 

the particles achieve high attachment energies to the interface and once adsorbed 

they are effectively irreversibly adsorbed.
37

 Surfactants on the other hand 

continually and rapidly adsorb to and desorb from the interface. It should be noted 

that both the particle size and contact angle will influence the energy of attachment 

achieved, as very small particles do not attach as strongly as larger ones. This is 

highlighted by equation 2.11 that shows the influence of both particle size and 

contact angle on the energy needed to remove particles from the interface. 

 

            (Equation 2.11) 

where ΔGd is the free energy of detachment, r the particle radius, γ is the interfacial 

tension between phases and cos θ is the contact angle made with the interface. The 

sign for the cos θ in the brackets is taken as negative for removal of particles into 

water and positive for removal into oil.
38

   

 

The effect of particle radius on the energies required for particle detachment, from a 

planar liquid-liquid interface (with an interfacial tension of 24.9 mN m
-1

) is 

illustrated in Figure 2.13.
38

 It shows clearly that particle sizes of less than 0.5 nm in 

radius can be easily detached with energies of a few kT (where k is the Boltzmann 

constant, that relates the absolute temperature, T, and the kinetic energy contained in 

each molecule of an ideal gas). This is comparable to surfactant systems and may 

not be very effective stabilisers. For a particle radius of 10 nm it is clear from the 

figure that the energy required for detachment is large around 10,000 kT. It also 

highlights that at large particle radii the contact angle is less critical for effective 

adsorption and the energies required for detachment are very high and hence the 

particles are effectively irreversibly adsorbed.
38
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Figure 2.13.  Illustrating the variations in energies required to detach a particle 

exhibiting a contact angle of 90°, from a planar oil-water interface. The 

interfacial tension value is taken as 24.9 mN m
-1

. Redrawn and adapted from 

Ref. [38]. 

 
The effect of particle contact angle on the free energy of particle detachment from 

an oil-water interface is illustrated in Figure 2.14.
39

 The plot shows that the energies 

of detachment into water is much smaller than into the oil for an particle 

preferentially dispersed in water, whilst the values are higher for water than oil when 

the particle is preferentially dispersed in oil. The line drawn on the plot shows that 

free energy of detachment is highest at 90°, corresponding to the state where the 

particle is wetted by both the oil and water phases. Either side of 90°, the energies of 

detachment decrease towards 0 kT. These data are on the basis of a particle radius of 

800 nm at an interface which has a tension of 24.9 mN m
-1

 (similar to the silica 

particles at the tricaprylin/water interface reported in Chapter 7).  
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Figure 2.14.  Illustrating the free energy of particle detachment of 800 nm particles 

into the water phase, ΔGdw (squares) and oil phase, ΔGdo (circles), with an 

interfacial tension of 24.9 mN m
-1

. The line is drawn to denote ΔGd as per 

Equation 2.7. Redrawn and adapted from Ref. [39]. 

 
A further advantage of using particulates as emulsifiers is that they can be further 

manipulated by adding a degree of functionality to their surface. For example, 

particles can be sterically stabilised with a polymer on the surface that is responsive 

to external stimuli such as pH, temperature and/or light. Such ‘smart’ emulsifiers 

can then be used as building blocks to prepare novel materials such as colloidosome 

microcapsules
40

 and liquid marbles etc.
41
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2.5. Production of Emulsions  

The production of emulsions can be classified as a) conventional (where high shear 

and high-energy input is required) b) membrane based processing (membrane 

emulsification, which will be discussed in greater detail in Chapter 3), c) 

microchannel and microfluidic emulsification. These processes will be discussed in 

detail in the following sub-sections. 

  

2.5.1. Conventional production processes  

Conventional productions of emulsions in industry are based on a large input of 

energy via mechanical processes, breaking down one of the liquid phases into small 

droplets within the other phase. These emulsions are produced using rotor stator 

machines, high pressured homogenizers and ultrasonic devices and are illustrated in 

Figure 2.15.
42, 43 

 

  

Figure 2.15.  Illustration of conventional processes to produce emulsions. Redrawn 

from Refs. [42 and 43]. 

 

Rotor-stator dispersing machines comprise of both a rotating as well as a fixed part. 

Stirred vessels are the simplest examples of rotor-stator machines and are used to 
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produce emulsions usually in batches or semi-continuously. The formation of the 

dispersed droplets is caused by fluid disruption due to turbulent eddies generated 

between the rotor and stator.
7
 Although it is commonly used in the food industry it 

has a number of drawbacks. The efficiency is poor and this leads to long 

emulsification times and broad droplet size distributions. These drawbacks are 

addressed and improved in colloid mills and tooth disc dispersing machines.
43

  

In colloid mills the emulsion is disrupted in a conical gap by the rotor and stator 

which can be either smooth, toothed or grooved. The disruption is controlled by 

adjusting the rotational speed, gap width and the flow rates.
42

 In toothed disc 

dispersing machines the rotor and stator have one or multiple discs that have teeth of 

various designs. They have low maintenance cost and are easy to handle.
43

 

High pressure homogenizers as well as pistons can be used to pump premix 

emulsions through a narrow orifice under very high pressure. The pump generates 

energy which enables the nozzle to disintegrate the droplets and can handle 

throughputs of 1 to 1000 L hr
-1

.
42, 43

 The design of the nozzle influences the flow 

patterns of the emulsion entering and this helps to disintegrate the droplets.
44

 The 

disruption of the droplets is due to inertial forces acting in the turbulent flow and 

shear forces in the laminar flow.  

In ultrasonic methods, waves (frequency > 18 kHz) disrupt the droplets by 

cavitations in a high turbulence zone. This method is used to prepare low viscous 

emulsions batch-wise and produces fine emulsion droplets. To produce droplets 

continuously, necessary modifications resulting in the addition of a flow chamber of 

a special design is needed into which the ultrasonic waves propagate. This method 

has drawbacks as the power induced is limited and suffers from technical limits for 

very high throughputs.
43

 

 

2.5.2. Microchannel emulsification 

Microchannel (MC) emulsification was developed in the 1990’s and utilizes devices 

fabricated by lithography. The devices are primarily existent in two forms, 1) MC 

array device (consisting of comb like channel arrays, which are micron sized, on a 

silicon chip), 2) straight through MC device (consisting of tens of thousands of pores 

with oblong cross sections).
45
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The MC array device also consists of a terrace and a well (Figure 2.16)
46, 47

 which is 

sealed using a glass plate when being used. The disperse phase is pushed through the 

arrays and forms individual flattened barrels in the terrace area.
46

 When the flattened 

barrels develop near the edge of the terrace, they inflate into the well forming 

monodisperse droplets. The sizes and size distribution attained are governed by the 

channel size, shape, width, height of terrace and the interfacial tension of the 

emulsion system. 

 

 

Figure 2.16.  Illustration of a microchannel plate composing of a channel, terrace 

and well. Taken from Refs. [46 and 47]. 

  

The surface hydrophilicity of the channel is very important.
48

 MC plates that are 

hydrophobic will produce W/O emulsions, whereas hydrophilic ones will produce 

O/W emulsions. Therefore the right materials need to be chosen for the specific 

emulsion system required. MC plates so far have been made of different materials 

including silicon, quartz glass and stainless steel.
49

 The device can produce 

emulsions in the range of 4-190 µm with a coefficient of variation (CV) (ratio of the 

standard deviation and the mean) values of less than 5%. 

In straight through MC emulsification devices the MC plate consists of thousands of 

uniformly sized channels and terrace lines fabricated usually onto silicon. The 
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emulsification process does not require any mechanical stress to make the droplets.
50

 

Rather the process is based on spontaneous transformation of the dispersed phased 

through the channel due to effects of interfacial tension.
51

 A typical straight through 

MC emulsification device is shown in Figure 2.17.
50

 

 

 

Figure 2.17.  Typical straight through MC emulsification device. Taken from Ref. 

[50]. 

 

Although microchannel emulsification can produce emulsion droplets with good 

control over their droplet size and size distributions. They are regarded to be highly 

sophisticated and expensive technologies because of the high precision needed in 

fabricating such devices. Furthermore, these emulsification techniques produce very 

low flux of the dispersed phase and therefore question marks remain over their 

scalability.  

 

2.5.3. Microfluidic emulsification 

Microfluidic devices allow the production of monodispersed emulsion droplets in a 

drop by drop manner allowing careful and precise manufacturing.
52 

This method of 
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emulsification is so far an academic exercise and that despite its large advantages, it 

is limited to the production of small volumes which restricts its application. These 

devices can be defined as a microfluidic where one or more of the channels have at 

least one dimension less than a millimeter.
53

 Such devices can be manufactured as 

2D or 3D systems. 2D systems have been intensively studied where the channel is 

confined to uniform depths, e.g. t-junctions,
54-57

 cross-junctions,
58-60

 flow focusing 

channels,
51-64

 and co flow channels.
55, 65-67

 Monodisperse emulsion droplets are 

achieved by flowing the dispersed and continuous phases under low Reynolds 

(measure of the ratio of inertial forces to viscous forces) and capillary (relative 

effect of the viscous forces versus interfacial tension at an interface) numbers with 

coefficients of variation (CV) values of 1 - 3%. The production of these droplets 

using a microfluidic device with t-junctions is shown in Figure 2.18.
45

 

 

Figure 2.18.  Illustrating the production of monodisperse emulsion droplets 

(Water/Oil/Water, W/O/W) from microfluidic devices containing two t-

junctions. Taken from Ref. [45]. 

 
Common types of microfluidic devices used are; 1) soft microfluidic devices 

fabricated by soft lithography in elastomeric materials such as poly(dimethyl 

siloxane) (PDMS),
68

 2) microfluidic glass devices manufactured by etching or 

micromachining in quartz glass or glassy polymers such as poly(methyl 

methacrylate) (PMMA),
65

 3) microchannel (MC) array devices fabricated in single 

crystal silicon by photolithography and wet-etching or deep-reactive ion etching 

processing.
69

 

Emulsions can also be created using microfluidics capillaries
52

 where the device 

consists of coaxial assemblies of glass capillaries on glass slides. The advantage of 

using capillaries is that their wettability can be controlled by modifying the surface 

using reagents to change hydrophobic glass into hydrophilic and vice versa. To set 



53 

 

up a simple microfluidic capillary device, a circular glass capillary is slid into a 

square capillary. Then two liquids are introduced within the circular capillary and 

the square capillary, respectively, as shown in Figure 2.19.
52

 Since the direction of 

both fluids is the same, this is known as a co-flow microfluidic capillary device. 

 

Figure 2.19.  Schematic illustration of a co-flow microfluidic capillary device. 

Taken from Ref. [52]. 

 
When the flow rates of both fluids are low, monodisperse droplets form periodically 

from the tip of the orifice.
70

 Once the flow rate is increased above a critical value the 

flow at the tip becomes a jet and produces droplets later downstream as shown in 

Figure 2.20.
 52

 

 

 

Figure 2.20.  Illustration of a jet stream formed by increasing the flow rate of the 

continuous phase above a critical value, whilst keeping the dispersed phase at 

a constant rate in a microfluidic capillary. Taken from Ref. [52]. 

 

An alternative arrangement is to use a flow focusing microfluidic capillary device
70, 

71 
as shown in Figure 2.21.

52
 Both the fluids are introduced from opposite ends 

within the square capillary. The inner fluid becomes flow focused by the outer fluid 

into the narrow orifice of the circular capillary. An advantage of using this setup is 

that the droplets formed can be smaller than the orifice typically 1-5 µm.
52
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Figure 2.21.  Schematic illustration of a flow focused microfluidic capillary device. 

Taken from Ref. [52]. 

 
In addition to producing emulsion droplets, microfluidic devices have also been used 

for fabrication of polymeric particles such as solid liquid microspheres,
72

 Janus 

particles,
66

 and core shell particles.
73 

 

2.5.4. Membrane emulsification 

In membrane emulsification a force in the form of low pressure pushes the disperse 

phase through a membrane into the continuous phase. Although advances have been 

made in emulsification using membrane devices, the full exploitation of their 

benefits are limited due to the irregularities in the microstructure and surface 

properties of current membranes.
74

 Membrane emulsification techniques utilise a 

low dispersed phase flux through the membrane. In addition membrane fouling from 

particulates and the adsorption of species can lead to blocked membrane pores and 

changes in the wetting properties of the membrane. However, it is superior in 

comparison to the conventional counterparts as it results in highly monodisperse 

droplets created with low levels of energy input, which can easily be scaled up for 

large scale manufacturing with the addition of more membranes to the setup.  
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CHAPTER 3: PRINCIPLES OF MEMBRANE 

EMULSIFICATION 

 

NOMENCLATURE 

 

dp  Pore diameter 

F  Force 

Jd  Disperse phase flux 

K  Permeability 

Pc  Critical permeation pressure 

Pc, in  Mean pressure of continuous phase at membrane pore inlet 

Pc, out  Mean pressure of continuous phase at membrane pore outlet 

Pd  Mean pressure of dispersed phase 

Ptm  Transmembrane pressure 

γ  Interfacial tension 

µ  Dynamic viscosity 

θ  Contact angle 

 

 

ABBREVIATIONS 

 

ME  Membrane Emulsification 

PECVD Plasma Enhanced Chemical Vapour Deposition 

PGPR  Poly(glycerol polyricinoleate) 

PTFE  Poly(tetrafluorothylene) 

RME  Rotary Membrane Emulsification 

SDS  Sodium Dodecyl Sulphate 

SPG  Shirasu Porous Glass 

XME  Cross-flow Membrane Emulsification 
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3.1. Introduction 

Conventional processes for the manufacturing of emulsions are based on the use of 

turbulent eddies and cavity formations to disrupt the two immiscible liquids to 

produce dispersions of fine droplets of one liquid into the other.
1
 These methods 

face numerous problems during large scale manufacturing. In large vessels, eddies 

cannot be generated and controlled consistently over a large period of time, which 

limits the control achieved on the produced emulsion mean droplet size and size 

distribution.
2
 Additionally, emulsions produced using this technique are unlikely to 

be consistently reproduced from batch to batch due to the in-homogeneity in the 

process. Furthermore, these processes are energetically costly, which therefore leads 

to high manufacturing costs.  

In order to overcome some of these limitations, an alternative technique called 

‘membrane emulsification’ (ME) was developed in the late 1980’s. This technique 

made use of either Shirasu Porous Glass membranes (SPG, made from Shirasu a 

type of volcanic ash, lime and boric acid), developed by Nakashima and Shimizu,
3
 

or ceramic tubular membranes, developed by Williams et al.
4
 Highly droplet size 

uniform O/W and W/O emulsions can be produced using this method, where the 

dispersed phase is expressed from the membranes into the continuous phase. In this 

technique a membrane with an extensive array of pores is required for the 

simultaneous production of a large number of droplets to ensure a meaningful 

emulsification rate.
5
 The dispersed phase is usually permeated through the 

membrane under an applied pressure and is expressed in a drop-by-drop manner 

from the pores of the membrane into the continuous phase as illustrated by Figure 

3.1. In addition, the continuous phase is sheared across the membrane surface to 

facilitate droplet detachment.  
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Figure 3.1.  Schematic illustration of the membrane emulsification process. The 

arrow illustrates the direction in which the continuous phase flows across the 

membrane surface (cross flow). Redrawn from Ref. [4]. 

 
By careful selection of the porous membrane and optimisation of the flux rate of 

dispersed phase and cross-flow velocity of the continuous phase, the mean droplet 

size and size distribution can be carefully controlled.
2
 Under certain conditions, this 

approach allows for the production of emulsions with very narrow droplet size 

distributions
6, 7

 and potentially near monodisperse emulsions.
8
 In addition the ME 

process requires a low energy input (typically 10
4
 – 10

6
 Jm

-3
 compared with 10

6
 – 

10
9
 Jm

-3
 for conventional production processes) and the apparent shear stress is far 

lower in comparison to its conventional counterparts.
6-8 

Here, droplets are formed 

individually by a drop-by-drop permeation of the dispersed phase through the 

membrane and not by attrition of larger droplets under high shear.  

In the literature, the ME methods reported so far are of two types; direct ME and 

premix ME as depicted by Figure 3.2.
9 
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Figure 3.2.  Illustrating emulsion production using direct and premix membrane 

emulsification methods. Taken from Ref. [9]. 

 

 In direct ME the dispersed phase is pressed through the membrane forming fine 

droplets at the membrane/continuous phase interface as illustrated by Figure 3.2a. 

Regular droplet detachment is facilitated by relatively low shear stresses acting at 

the membrane/continuous phase interface. In literature, this shear stress is generated 

by one of three processes: a) recirculation of continuous phase using a pump known 

as crossflow ME
4, 10, 11

 (Figure 3.3a), b) agitation in a stirring vessel
12, 13

 (Figure 

3.3b) and c) rotation
14, 16

 or vibration
17, 18 

of the membrane in a stationary continuous 

phase (Figure 3.3c). In the absence of shear, droplets can be spontaneously detached 

from pore outlets at very low disperse phase fluxes
19

 (Figure 3.3d).  

 

 

Figure 3.3.  ME systems for controlling shear and hydrodynamic conditions near the 

membrane surface. Taken from Ref [9]. 
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3.2. Rotating Membrane Emulsification (RME) 

The concept of inducing shear for droplet detachment due to the motion of the 

membrane itself, as opposed to the displacement of the continuous phase across the 

membrane surface has been investigated in recent years by three research groups.
19, 

20, 21 
The systems employed have many similarities and all three use tubular 

membranes that rotate within a vessel containing the continuous phase as depicted 

by Figure 3.4.  

 

 

Figure 3.4.  The basic principle and set-up of rotating membrane emulsification 

(RME). The rotating membrane module is connected to the tubular membrane 

allowing it to be rotated within a vessel containing the continuous phase. 

Redrawn from Ref. [9]. 

 

In 2001, Williams patented a novel rotary membrane emulsification device 

developed at the University of Leeds for ‘the production of controlled emulsions and 

particulate systems using membranes made from stainless steel, ceramic or a 

polymer film’.
14

 The first published data using this rotary emulsification device was 

presented by Aryanti et al. at the “EUROMEMBRANE 2006” conference held in 

Italy.
20

 A tubular membrane made of stainless steel with precise laser drilled holes 

was reported. The membrane was 10 mm in diameter and had a pore size of 100 µm 

in a regular square pore arrangement, so that the effective membrane area was 26.7 
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cm
2
. The study investigated the production of paraffin wax droplets in water using 

two emulsifiers: Tween 20 (polyoxyethylene sorbitan monolaurate) and SDS 

(sodium dodecyl sulphate). Carbomer (a crosslinked polyacrylic acid polymer) was 

used in both cases as a stabiliser and a viscosity modifier. The rotating membrane 

was shown to be capable of producing monodisperse droplets with diameters 

ranging from 81 to 567 µm using both emulsifiers. Reported membrane rotational 

speeds varied from 0 to 1500 rpm and it was shown that the droplet diameter 

decreased with increasing membrane rotational speed, as expected.  

This work was extended by Vladisavljević and Williams
16

 in a later complementary 

study exploring the effects of rotational speed and apparent viscosity on the 

production of paraffin wax droplets in water. The emulsifier used in this case was 

Tween 20, whilst Carbomer was again used as a thickener. In this work, the droplet 

size was seen to decrease as the concentration of Carbomer increased, an effect 

attributed to the increase in the apparent viscosity of the continuous phase. They also 

reported that that an optimal membrane rotation speed of 350 rpm yielded droplet 

size uniformity when the concentration of the Carbomer was between 0.1 and 0.25 

wt%. However when the rotation speed was increased to 1500 rpm, the droplets 

broke up producing satellite daughter droplets in the high shear conditions.  

In rotational membrane emulsification, the centrifugal force due to the rotation of 

the membrane in the continuous phase acts alongside the shear induced at the 

membrane surface to drive droplet detachment.
19, 20

 This causes droplets to detach 

faster from the membrane surface (i.e. at a smaller size) in comparison to simple 

dead-end or cross-flow emulsification systems at the same nominal shear rate across 

the membrane surface. In a shear rate range consistent with laminar flow, the shear 

applied at the membrane surface is constant and self-similar across the entire 

membrane surface. At higher shear rates, the flow is turbulent and the local shear 

rate varies across the membrane surface and over time. These constantly changing 

shear rates affect both the mean droplet size and the size distribution. Although there 

is no reported systematic investigation of these effects, it is postulated that droplet 

production in a turbulent regime will increase the polydispersity in the emulsion 

droplets created.
22 

In 2009, Yuan et al. investigated the performance of slotted pores in producing 

emulsion droplets using a stainless steel rotating membrane.
22

 From previous studies 
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it has been shown that rectangular pores require less shear in comparison to round 

pores on flat membranes.
23, 24, 25, 26

 In this publication, Yuan et al.
22

 compared the 

production of paraffin wax oil droplets in water (Tween 20 as emulsifier and 

Carbomer as a thickening agent) to determine the performance of four slotted pores 

(laser drilled with different aspect ratios) in comparison with the round pore 

membrane that had been used in earlier studies from the same group.
20

 The four 

slotted pores used in the study are described in Table 3.1. 

 

Membrane Pore size (µm) Aspect ratio 

A 80 × 80 1 

B 56.5 × 113 2.3 

C 48 × 136 3 

D 136 × 48 3 

Round pore 100 1 

 

Table 3.1. Geometry data of the slotted pores used to compare performance versus 

round pores in rotating membrane emulsification. Data taken from Ref. [22]. 

 

It was found that the droplets in emulsions produced using rectangular and square 

pores had lower size polydispersity than those from the equivalent round ones. 

However, the droplets were considerably larger due to the larger surface area.  

In 2006, a new rotating membrane emulsification device for the production of 

droplets was presented at the 10
th

 Aachen Membrane Colloquium.
19

 The membrane 

was developed at Zurich, Switzerland, at the ETH Zentrum Laboratory of Food 

Process Engineering, by Professor Erich Windhab’s group. A 100 mm diameter 

membrane tube with pore diameters of 1 to 5 µm was used.  

The larger membrane studied within Windhab’s group was manufactured by Stork 

Veco B.V. (Netherlands) with an aim of producing small monodisperse droplets 

using a larger membrane, by ensuring that the ‘droplet history’ of each droplet was 

as similar as possible. The membrane was made from an etched nickel foil sheet 

with equally spaced pores of around 5 µm in diameter. This diameter was further 

reduced to 1 µm using Plasma Enhanced Chemical Vapour Deposition (PECVD).
19

 

The membrane is inserted into a vessel that is marginally larger than the membrane 
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itself (Figure 3.5). The large membrane diameter is rotated at high speeds in a 

narrow annular gap specifically designed to create a high shear rate at the membrane 

surface whilst maintaining laminar flow with a consistent shear rate at each pore. 

 

 

Figure 3.5.  Illustration of rotating membrane emulsification with a narrow annular 

gap between the membrane and the vessel as employed by Windhab’s group. 

 

In their paper, Schadler and Windhab investigated the influence of the annular gap 

width, the membrane rotation speed and the dispersed phase volume fraction on the 

production of water droplets in sunflower oil stabilised using polyglycerol 

polyricinoleate (PGPR).
19

 They report that the droplet diameter decreases with 

increasing rotation speed (1000 to 8000 rpm) for a fixed annular gap of 1 mm. In 

particular a drastic decrease in the droplet diameter is reported between 4000–5000 

rpm due to the high angular velocities causing the formation of Taylor vortices, 

which in turn lead to smaller droplets. It was also found that changes in the annular 

gap dictated the formation of Taylor vortices. At 0.5 mm, no Taylor vortices were 

formed therefore the droplets produced were larger than those produced at 1 mm. 

The study also reports that the volume fraction of the dispersed phase has little or no 

influence on the droplet sizes produced.  

In 2012, an SPG rotating membrane device developed at the Centre for Formulation 

Engineering, Department of Chemical Engineering, University of Birmingham was 

reported. Norton and co-workers used this device to investigate the production of 

W/O/W emulsions.
21

 The primary emulsion of water droplets in sunflower oil 
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stabilised using PGPR was prepared using a conventional high-shear mixer, 

producing droplets with a mean diameter of around 200 nm. The primary emulsion 

was then expressed through the SPG membrane into a water phase containing 

glucose and Tween 20. The SPG membrane used was 5 cm long, 1 cm in diameter 

with a mean pore diameter of 2.8 µm. The W/O/W emulsion droplets produced 

decreased in droplet size as the rotational speed was increased. It was also found that 

if the trans-membrane pressure (Section 3.3) was increased the droplet size 

increased due to the formation of a larger interfacial area. 

In 2013 the production of oil in water emulsions using this SPG membrane was also 

investigated.
27

 The dispersed phase used was sunflower oil. The influence of 

rotational velocity, trans-membrane pressure and emulsifier was investigated. It was 

found that the droplet size decreased with increasing rotational velocity and 

decreasing trans-membrane pressures. When Tween 20 was used as an emulsifier, 

the droplet size was seen to increase with decreasing Tween 20 concentration due to 

a lower driving force of surfactant adsorption. However, at high surfactant 

concentrations, changes in the rotational velocity produced no changes in the mean 

droplet size. Whey Protein Isolate (WPI) and Xanthan Gum (XG) were also 

investigated to investigate the use of protein as an emulsifier and the gum as both a 

stabiliser and a thickener agent.    

Although there have been many reports on the use of membrane emulsification to 

produce near monodisperse emulsion droplets, the majority of these studies are 

focused on emulsions stabilised using surfactants.
9, 28, 29

 There are very few reports 

on the use of particulate stabilisers to produce low polydispersity emulsions.
5, 13, 30

 

Yuan et al. investigated the use of 80 nm silica as a particulate emulsifier using 

cross-flow membrane emulsification.
5
 They reported that increasing the cross-flow 

velocity decreased the droplet size without significantly affecting the width of the 

size distribution. Thompson et al. investigated the effect shear rate and disperse flux 

on the droplet size using a stirred cell membrane emulsification device.
13

 They 

found that the droplet size increased as the disperse flux increased and decreased 

with increasing shear rates. Xu et al. investigated the effect of flow rate in a 

microfluidic channel and found that at low flow rates the droplets coalesced as they 

were not immediately covered with particles, whilst increasing the flow rate 

decreased coalescence as the mutual contact between the droplets was decreased.
30
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The work presented in this thesis aims to advance the current knowledge of 

producing particle-stabilised emulsions using membrane emulsification, by 

investigating and optimising several chemical and mechanical parameters (in 

particular the effect of pH, electrolyte, shear, disperse flow rate and particle 

concentration) and how they influence the droplet size and size distribution. The 

data is related to the particle adsorption kinetics for each parameter. 
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3.3. Process of droplet formation 

A key requirement in membrane emulsification is the permeation of the dispersed 

phase through the membrane into the continuous phase. The trans-membrane 

pressure (Ptm) affects the flux of the dispersed phase through the membrane. It is 

defined as the difference between the pressure of the dispersed phase, Pd, and the 

mean pressure of the continuous phase, Pc;
31

 

 

            (Equation 3.1) 

where Pc,in and Pc,out are the pressures of the flowing continuous phase at the inlet 

and at the outlet of the membrane device, respectively. 

 

The disperse phase flux is also affected by the critical permeation (capillary) 

pressure. The critical permeation pressure, Pc, is defined as the minimum pressure 

difference over a membrane pore needed to start the production of droplets from that 

pore (assuming all the pores are ideal cylinders).
4
  

 

                     (Equation 3.2) 

where γ is the interfacial tension, cos θ the contact angle of the dispersed phase to 

the membrane surface and dp the membrane pore diameter.  

 

The transmembrane pressure has to be greater than the critical pressure to produce 

an emulsion. If the transmembrane pressure becomes too small the dispersed phase 

cannot be forced through the membrane, whilst if too high it is forced out as a jet 

stream and produces large polydisperse droplets.
4
  

The dispersed phase flux, Jd is related to the transmembrane pressure according to 

Darcy’s expression;
31
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             (Equation 3.3) 

where, K is membrane permeability, ΔPtm is pressure drop from point b to a 

(transmembrane pressure), µ is the dynamic viscosity and L is the length over which 

the pressure drop occurs (or membrane thickness in the case of membrane 

emulsification).  

 

The process of a droplet formation and detachment from an individual membrane 

pore is based on two mechanisms as proposed by Peng and Williams;
2 

 droplet growth (inflation of the dispersed droplet at the pore tip),
 

 droplet detachment (where the droplet detaches and moves away from the 

pore tip).
 

In membrane emulsification, distortion of the droplet shape occurs resulting from 

imperfections in membrane pore and from the local hydrodynamic forces acting on 

the droplet through shear, buoyancy forces, the gravitational force and from the 

wettability of the droplet on the membrane surface. 

Controlling the formation of the droplet and its size can be achieved by balancing 

the forces acting on the droplet at the capillary pore, which controls the droplet 

growth period (residency time on the membrane). Once the droplet growth period 

ends, the droplet detaches from the pore and breaks away from the dispersed phase 

flow within the pore capillary.
2 

Assuming the formation of a rigid spherical droplet, the main forces acting on the 

droplet produced using rotating membrane emulsification are illustrated in Figure 

3.6. 
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Figure 3.6.  Illustrating the main forces acting on a forming droplet from a capillary 

pore on a rotating membrane emulsification reactor. Taken from Ref. [32]  

where Fγ is the interfacial tension (dispersed phase adhesion at pore opening), Fvis is 

the dynamic viscosity of the dispersed phase, FD is the drag force (created by the 

continuous phase flowing past the droplet parallel to the membrane surface), FB is 

the buoyancy force (related to the density difference between the phases under 

gravity) and FL is the dynamic lifting force (asymmetric velocity profile of the 

continuous phase near the droplet).  

The drag, buoyant and lifting forces play an important role in overcoming the 

resistive forces of the interfacial tension and viscous forces to shear off the droplet. 

The relative motion between the membrane surface and the continuous phase applies 

a drag force on the droplet. The buoyancy force is a result of the differences in the 

specific densities of the continuous and dispersed phases, and the role this force 

plays in the detachment process is linked to the membrane displacement and 

operation condition. The lifting force is determined by the hydrodynamics of the 

dispersed phase permeating through the membrane pores. A higher throughput of 

flux leads to a larger lifting force for a particular pore size.  

The resistive interfacial tension and viscous forces are influenced by the constituents 

present in the formulation, and the dynamic viscosity of the dispersed phase. These 

resistive forces are also related to the wetting of the dispersed phase at the pore 

opening and are consequently influenced by the pore geometry. If the wettability is 

low, a thin connection neck leads to a lower resistance force producing smaller 

droplets as the detachment process occurs faster.
23, 33, 34 

For sub-micron sized 

droplets the buoyancy force can be neglected as it is about 6 - 9 orders of magnitude 

smaller than the drag and interfacial tension forces. When larger droplets are 
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produced (~200 µm and above), the buoyancy force becomes much more 

significant.
35

  

The shear acting at the membrane surface due to the membrane rotation causes the 

deformation of the droplets. The resistive force of interfacial tension acts in two 

ways; a) resisting the shear force in the direction parallel to the membrane surface, 

b) resisting the shear force perpendicular to the membrane surface. Once the 

magnitude of interfacial tension force parallel to the membrane surface equals the 

shear force, the droplet will detach.
2 
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CHAPTER 4: EXPERIMENTAL METHODOLOGY 

 

NOMENCLATURE 

α  Degree of protonation/association 

Bo  Bond number 

De  Equatorial diameter in pendant drop 

DH  Hydrodynamic diameter 

Ds  Horizontal diameter in pendant drop 

Dsol     Diffusion coefficient of solution 

δ  Chemical shift 

E  Electric field 

r  Dielectric constant of medium 

o  Permittivity of free space 

g  Gravitational constant 

γ  Interfacial tension 

H  Droplet correction factor 

k  Boltzmann constant 

η  Viscosity 

Δp  Pressure difference 

Rd  Droplet radius 

Rc  Radius of capillary 

S  Pendant droplet factor 

T  Absolute temperature 

µe  Electrophoretic mobility 

ν  Velocity 

ζ  Zeta potential 

 
ABBREVIATIONS 

CMC  Critical micelle concentration 

DLS  Dynamic light scattering 

GPC  Gel Permeation Chromatography 
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1
H NMR Proton nuclear magnetic resonance 

LDV  Laser Doppler velocimetry 

MEB  Milli-equivalent of added base 

NIBS  Non-invasive back-scatter 

RME  Rotational membrane emulsification 

SEM  Scanning electron microscopy 

TEM  Transmission electron microscopy 

UV-Vis Ultraviolet-Visible 
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4.1. Introduction 

Numerous experimental and characterisation-based techniques have been employed 

to acquire the data presented within the results chapters of this thesis. This chapter is 

divided into five sections. The first section details the materials used to fabricate 

bespoke pMMA-b-pDMAEMA di-block copolymers used within the experimental 

work and their subsequent characterisation. Also mentioned within this section is the 

synthetic route of fabricating these di-block copolymers, however this is not part of 

this study. The second section of this chapter describes in detail the synthesis of 

polystyrene latex particles sterically stabilised using the di-block copolymers. Also 

considered within this section is the use of 
1
H NMR to characterize the grafting 

density of this polymer on the surface of the latex particles. The third section 

outlines the equipments and techniques to obtain the data along with any 

experimental parameters employed.  

Since a large number of techniques and equipments have been used, the descriptions 

will be concise. However, where appropriate references have been provided for 

further reading. The production of controlled emulsion droplets using particulate 

stabilisers via a Rotational Membrane Emulsification (RME) reactor is described in 

section 4. This section gives detailed information about the membrane used, the 

reactor set-up and techniques used to characterise the resulting emulsions. The final 

section describes the use of pendant drop tensiometry and a new microtensiometry 

device to study the particle adsorption kinetics at liquid/liquid interfaces.   
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4.2. pMMA-b-pDMAEMA diblock copolymer 

Bespoke di-block copolymers based on pMMA-b-pDMAEMA, with controlled 

molecular architectures, were synthesised using Reversible Addition-Fragmentation 

chain Transfer (RAFT) living free-radical polymerisation for this project by 

Chamelic Ltd (Leeds, U.K). A brief description of the synthesis is given in Section 

4.2.2. More detailed information regarding the synthesis of these di-block 

copolymers can be found in the following references.
1, 2 

 

4.2.1. Materials 

The following chemicals and reagents were used as received: 

 Dimethylaminoethyl methacrylate (DMAEMA, ≥98%, Sigma-Aldrich) 

 Methyl methacrylate (MMA, ≥98%, Sigma-Aldrich) 

 Toluene (≥99%, Fisher Scientific) 

 Azobisisobutyronitrile initiator (AIBN, Sigma-Aldrich) 

 Dichloromethane (≥99%, Sigma-Aldrich) 

 Hexane (anhydrous, ≥95%, Sigma-Aldrich) 

 Chloroform (CDCL3, ≥99%, Sigma-Aldrich) 

 RAFT chain transfer agent, Cyanopropyldithiobenzoate (CPDB) (≥97%) 

 

4.2.2. Synthesis 

Controlled living free-radical polymerisation using the Reversible Addition-

Fragmentation chain Transfer (RAFT) methodology was used to copolymerise 

MMA with DMAEMA. This was done in a solution of toluene at 80°C in a 1 L 

round bottom flask. In a typical run, the flask was filled with a solution containing: 

Freshly purified MMA (25 g, 0.25 mol), the chain transfer agent CPDB (3.82 g, 1.5 

× 10
-2 

mol, 85% purity), the initiator AIBN (1.23 g, 7.5 × 10
-3 

mol) and the solvent 

toluene (7.51 g).
 
The solution was degassed via nitrogen bubbling at 0°C for 20 

minutes, before being immersed into an oil bath at 80°C ± 2°C for 3 hours. After the 

polymerisation was complete, the reaction was cooled and diluted with 

dichloromethane. The polymer was then recovered by precipitation into cold hexane 

and dried under vacuum. This process removes any residual un-reacted monomer 
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and produces polymers with purity greater than 99% confirmed by using 
1
H NMR 

and Gel Permeation Chromatography (GPC).  

The molecular weights and polydispersity were determined by 
1
H NMR 

spectroscopy in CDCl3. A range of these di-block copolymers were supplied that 

had a fixed pMMA block length with varying pDMAEMA block lengths. The 

structure of these bespoke di-block copolymers are illustrated by Figure 4.1. 

Detailed information regarding the block lengths can be found in Table 4.1 below. 

 

 

Figure 4.1.  Chemical structure of pMMA-b-pDMAEMA di-block copolymer (m, n 

refer to the block units). Redrawn from Ref. [1] 

 
 
 

Batch Entry Block lengths 
Average molecular 

number, Mn (g mol
-1

) 

Polydispersity 

(PDI) 

GB 167 pMMA14-b-pDMAEMA20 4770 1.14 

GB 168 pMMA14-b-pDMAEMA54 10110 1.20 

GB 169 pMMA14-b-pDMAEMA108 18600 1.20 

WB 76 pMMA16-b-pDMAEMA245 40340 1.10 

 

Table 4.1.  Block length units, average molecular number (determined using 
1
H 

NMR) and the polydispersity details of the pMMA-b-pDMAEMA di-block 

copolymers used in this study determined by Chamelic Ltd. 
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4.2.3. Potentiometric Titration 

Potentiometric titrations of weakly basic or acidic polymers are useful to attain 

information on the degree of protonation of the polymer as a function of the 

background pH.  

 

Figure 4.2.  Illustrating the general form of a potentiometric titration curve for a 

pMMA-b-pDMAEMA diblock copolymer. 

 

Data from a potentiometric titration curve of one of the copolymer samples used in 

this study is given in Figure 4.2. Here, the polymer solution has been initially 

adjusted to a low pH, the change in pH is monitored and recorded as a function of 

added base (in milli-equivalent volumes of added base, MEB). In general, for a 

weakly basic polymer such as pDMAEMA, the titration curve will exhibit two 

inflection points, relating to the onset of proton association with the polymer and to 

complete proton association, respectively. The positions of these inflection points 

are usually determined by plotting ΔpH/ΔMEB as a function of added base. An 

example of this plot is also illustrated in Figure 4.2. It is clear from the figure that 

the two inflection points from the curve can be converted into distinguishable peaks. 
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The distance between these two peaks (ΔMEB*), measured in MEB can then be 

related to the concentration of the proton associating species.  

The data from the titration curve can provide information about the degree of proton 

association (α) of the polymer. In all the studies considered here, the potentiometric 

titrations were conducted by titrating a base solution against an acidic copolymer 

solution. For every addition of base, the addition of hydroxide ions may undergo 

two possible interactions; either a) associating with and neutralising a free proton in 

solution or b) neutralising and associating with a proton from the tertiary amine site 

of the di-block copolymer. Another alternative is that the hydroxide ion does not 

undergo any of these interactions and instead remains as a free hydroxide ion within 

the solution. These scenarios can be expressed as: 

[OH- added] = Δ[free OH
-
] - Δ[free H

+
] - Δ[BH

+
]         (Equation 4.1) 

 

where BH
+ 

represents a proton association from the tertiary amine site of the di-

block copolymer. The total amount of base added throughout the titration can then 

be written as: 

[total OH
-
 added]j = {[free OH

-
]j - [free OH

-
]0} - {[free H

+
]j – [free H

+
]0} - {[free     

BH
+
]j - [free BH

+
]0}                                                                               

           (Equation 4.2) 

where 0 and j represent initial and jth addition of base. 

 

The total concentration of OH
- 

can be determined from the total volume of base 

added, whilst the free hydroxide and proton concentrations can be determined from 

the pH measurements. Assuming that at low pH all the tertiary amine sites are fully 

protonated, it is possible to calculate the concentration of the protonated amine units 

on the di-block copolymer, at any stage of the titration. The degree of association (α) 

of the di-block copolymer can be expressed as: 

 

              (Equation 4.3) 
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This allows tracking of α throughout the course of the titration. It is conventional to 

present the degree of association as a function of pH of the polymer solution.  

For the titration measurements, various polymer concentrations were studied. All the 

solutions were prepared using Milli-Q water and adjusted to pH 2 using small 

quantities of concentrated HNO3. The solutions were then left overnight to 

equilibrate and the pH was adjusted prior to titration if necessary. The titration was 

performed using a solution of KOH and added to the polymer solution in 50 µL 

volume additions. Up to 5 minutes was given to allow the base to interact with the 

polymer solution before measuring the pH and subsequent base addition.    
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4.3. pMMA-b-pDMAEMA sterically stabilised latex particles 

The di-block copolymers outlined in Table 4.1 (Section 4.2.2) were used to 

synthesise sterically stabilised polystyrene latex particles. In particular the influence 

of the polymer block length and reaction temperature on the particle size was 

studied. 

 

4.3.1. Synthesis 

The polystyrene latex particles were prepared via emulsion polymerisation, based on 

the method described by Amalvy et al.
3
 using styrene monomer and ammonium 

persulfate as the initiator. Styrene monomer (≥99%, Sigma Aldrich, U.K) was firstly 

vacuum distilled at 45C to remove any impurities. The ammonium persulfate 

(APS), initiator (Sigma Aldrich, U.K) and all other reagents were of analytical grade 

and were used without further purification. Milli-Q water (Millipore Corporation) 

with a resistivity of 18.2 M cm
-1

 was used in all the preparations. A 100 mL three 

necked round bottom flask was used with a magnetic stirrer. The heating and stirring 

was controlled using a thermostated hotplate (IKA RCT basic). 

In a typical 50 mL preparation, the di-block copolymer (0.5 g) was dissolved in 

Milli-Q water (40 mL) adjusted to pH 3-4 using HNO3 and was left to stir overnight. 

Once the polymer had completely solubilised, the polymer solution was added to the 

round bottom flask. A water-cooled reflux condenser was connected to the flask was 

immersed into an oil bath at room temperature. Nitrogen was purged through the 

polymer solution in order to remove oxygen from the system via one of the necks. 

After 20 minutes, the initiator (5 mg) was dissolved in Milli-Q water (5 mL) and 

was added to the flask and left to stir for 20 minutes. The monomer styrene (5 mL) 

was added drop by drop into the flask using a syringe and was left for 30 minutes to 

saturate into the aqueous phase. The temperature was then ramped up to the required 

working temperature. Once the system had reached the reaction temperature the 

nitrogen was taken out and the reaction was left to proceed for 24 hours.    

At the end of the reaction, the flask was removed from the oil bath and allowed to 

cool for 20 minutes. The latex was then passed through glass wool to remove any 

unreacted monomer and coagulum formed during the reaction process. The latex 

was then dialysed against Milli-Q water (replaced every few hours) to remove 
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residual traces of monomer and initiator still present in the particle dispersion. The 

dialysis tubing used had a molecular weight cut-off that matched the molecular 

weight of the polymer used in the synthesis. The dialysis tubing was left to soak in 

Milli-Q water overnight and washed prior to use. The dialysis treatment was 

considered to be complete when the surface tension of the water droplet was 72.8 

±0.2 mN m
-1

 (i.e. that of an air/water interface).  

 

4.3.2. Determining stabiliser grafting density via 1H NMR spectroscopy 

1
H NMR spectroscopy (done by Dr. Alexandre Richez) was performed on the latex 

particles to determine the grafting density of the steric stabiliser (pMMA-b-

pDMAEMA) on the polystyrene latex particle surface.   

A 500 MHz Bruker 
1
H NMR spectrometer was used and tetramethyl silane was used 

as a reference sample. The sterically stabilised particles were initially dried in a 

vacuum oven and a small amount was dissolved in CDCl3 and added to a 5 mm 

NMR tube. After performing the spectroscopy, the intensity signals from the 

polystyrene and the stabiliser were analysed by integration of the peaks. The two 

oxymethylene protons adjacent to the ester group in the DMA residue produced a 

signal at a chemical shift value, δ 4.0 (this peak was chosen as it is not obscured by 

overlapping polystyrene signals). This was compared to the five aromatic protons 

due to styrene residues at δ 6.0 - 8.0 as illustrated by Figure 4.3. This comparison of 

the peaks allows the stabiliser content to be calculated.
3
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Figure 4.3.  
1
H NMR spectra of polystyrene latex particles dissolved in CDCl3 to 

allow calculation of stabiliser content. Integration of the oxymethylene proton 

peaks at δ 4.0 (inset) are compared to the aromatic proton peaks of the styrene 

at δ 6.0-8.0 to determine the grafting density of the stabiliser. 

 
Assuming that all the stabiliser is located on the surface of the latex particles the 

grafting density, Γ, (in mg m
-2

), is calculated by comparing the stabiliser content 

with the particle surface area (determined from intensity-averaged particle diameter 

using DLS). The typical errors associated with these Γ values are on the order of 

±10%. 
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4.4. Experimental techniques 

This section outlines general colloidal experimental and analytical techniques 

employed during this study. Where necessary the operating conditions and protocols 

are described.   

 

4.4.1. Dynamic Light Scattering (DLS) - Polymer characterisation 

DLS (also known as photon correlation spectroscopy and quasi-elastic light 

scattering) is a powerful optical technique to determine the diffusion coefficient of 

particles in suspension/polymers in solution on the basis that particles undergoing 

Brownian motion produce fluctuations in the scattered light. Deconvolution of the 

temporal correlation function obtained through these measurements eventually leads 

to gaining information of particle size distribution. A monochromatic light beam, 

such as a laser is shone onto the colloidal sample, which in turn scatters the light. If 

the particles or polymers are smaller than the wavelength of the light source, the 

light is scattered in all directions (also known as Rayleigh scattering), if they are 

larger, then the intensity of scattering will be angle dependent (Mie scattering).  

Particles and polymers in suspension undergo random movement due to collisions 

with the solvent molecules, with each other, and with the vessel walls that they are 

contained within, due to fluctuations in the thermal energy of the solvent molecules. 

This motion is described as Brownian motion. A distinguishing feature of Brownian 

motion is that larger objects move relatively slowly giving rise to smaller scattered 

light intensity fluctuations, whilst smaller objects move faster, a relationship 

described by the Stokes-Einstein equation (equation 4.4). The light scattered by 

these moving objects produces constructive and destructive interference patterns, 

which results in fluctuating scattering intensities at the detector. In DLS, measuring 

the rate of these fluctuating intensities reveals information regarding the diffusion 

coefficient of the objects in a given solvent. There are a number of mathematical 

models that can be used to fit the scattering data in order to determine the diffusion 

coefficient, these are; number weighted cumulant model and CONTIN which is an 

inverse Laplace transformation analysis algorithm. The Stokes-Einstein equation
4
 

can then be used to extract the hydrodynamic diameter (DH) of the object;  
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                 (Equation 4.4) 

 

where k is the Boltzmann constant, T the absolute temperature, η the viscosity of the 

solvent and Dsol the diffusion coefficient of the object in solution. 

 

DLS also utilizes a digital correlator to measure the similarities between intensity 

signals over a period of time known as the correlation function. Comparing the 

intensity signals after very short time intervals (nano to micro seconds) the 

correlation of the signals will be strong (correlation function = 1), whilst larger time 

intervals will lead to an eventual decay of the correlation function to 0 (no 

correlation). Decay in the correlation function is used to obtain the particle diameter. 

Larger objects move slower so fluctuations in signal are much smaller meaning the 

signals have longer decay times as shown by Figure 4.4. In contrast, smaller 

particles move faster leading to larger intensity fluctuations causing faster signal 

decays.  

 

 

Figure 4.4.  Illustrating the correlation function of signals attained from large and 

small particles. 

 
The DLS measurements in this research were conducted using a Brookhaven BI-

200SM instrument equipped with a 633 nm helium-neon (He-Ne) laser to estimate 

the critical micelle concentration (cmc) of the di-block copolymers by measuring the 



92 

 

size of the objects present in solution at different polymer concentrations. In a 

typical experiment, the quartz cells were washed with a detergent and subsequently 

rinsed with copious amount of Milli-Q water and underwent ultrasonic treatment 

prior to use. The di-block copolymers were solubilised in Milli-Q water (Millipore 

Corporation) at a concentration of 1000 ppm adjusted to pH 4 using 0.1M HNO3 and 

left to stir overnight. This solution was then diluted with Milli-Q water at pH 4 to 

obtain different polymer solution at concentrations varying from 50 to 1000 ppm (in 

this case there is no further dilution).  

For the measurements, 5 cm
3 

of the polymer at a particular concentration and pH 

was filtered using a hydrophilic non-pyrogenic 0.4 µm membrane syringe filter 

(Sartorius Stedim Biotech GmbH) to remove any dust particulates in the solution. 

The angle studied for the light scattering measurements was chosen to be 90° in 

accordance to similar studies performed in literature.
2

 The duration of one 

measurement was varied between 5 to 10 minutes depending on the ease of attaining 

a correlation. Typically 10 measurements were taken for one data point and 

averaged. All the measurements were carried out at constant temperature of 25°C, 

controlled by a water bath circulator.     

 
 

4.4.2. Dynamic Light Scattering (DLS) - Particle characterisation 

DLS was used to measure the changes in hydrodynamic diameter of sterically-

stabilised latex particles as a function of pH and electrolyte concentrations. This was 

performed using the Zetasizer Nano ZS (Malvern). The zetasizer also uses a helium-

neon laser with a wavelength of 633 nm and utilizes a non-invasive back-scatter 

(NIBS) technology.
5
 Instead of using the conventional 90 angle used in most DLS 

measurements, the zetasizer uses a backscatter angle of 173. The main components 

of the zetasizer are; a laser, detector and a focusing lens. The lens allows the 

positioning of the beam to maximise the scatter information depending on the size of 

the particles measured.
5
 Shining of the laser onto a solution of spherical particles 

undergoing Brownian motion, causes a Doppler shift to slightly higher or lower 

frequencies depending on whether the particle is moving towards or away from the 

detector. Over the measurement timescale these shifts will produce a Doppler 

frequency broadening peak.
4
 A pattern of beat frequencies is produced when the 

broadened scattered signal is mixed with the incident light, allowing the calculation 
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of the particle diffusion coefficient which is used to calculate the particle size using 

Equation 4.4.       

Samples were prepared to a concentration of 1000 ppm at various electrolyte 

(KNO3) concentrations (ranging from no added electrolyte to 1M). The samples 

were given 5-10 minutes to equilibrate to the working temperature of the instrument 

prior to conducting measurements. To measure a sample, two vials were prepared in 

order to titrate low pH (vial 1) and high pH values (vial 2). The pH was adjusted 

using HNO3 and KOH. For any data point, 10 measurements were taken and then 

averaged. Measurements of the size of model monodisperse particles of known 

hydrodynamic diameter were carried out regularly to calibrate the instrumentation. 

 

4.4.3. Electrophoretic mobility 

The electrophoretic mobility of colloidal particles can be measured using 

electrophoresis. Electrophoresis is the application of an electric field across an 

electrolyte causing charged particles/molecules suspended in the electrolyte to 

become attracted towards the electrode having opposite charge. In electrophoresis, if 

the viscous and electrostatic forces are at equilibrium, the particles will move with 

constant velocity. The velocity v, will be dependent on the strength of the electric 

field E, dielectric constant of the medium r, viscosity of the solvent η, and the zeta 

potential ζ (electrokinetic potential of the slipping plane in the electric double layer, 

associated with the particle). The exact location of the shear plane is unknown. In 

addition to bound ions in the Stern layer, a layer of solvent bound to the particle also 

forms part of the kinetic unit. The boundary of this bound solvent layer is described 

as the slipping plane is reasonably assumed to be located a small distance away from 

the Stern layer as illustrated in Figure 4.5.     
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Figure 4.5.  Schematic representation of zeta potential. Redrawn from Ref. [5] 

 

The electrophoretic mobility (µe) can be expressed as: 

                     (Equation 4.5) 
                       

where ν is the electrophoretic velocity and E is the electric field strength.  

 

The most widely used theory for electrophoresis was developed by Smoluchowski in 

1903.
6
 The theory can be used for dispersed particles for any shape at any 

concentration, providing that the thickness of the electric double layer is small 

compared to the particle size (and for the polymer micelles in solution used in this 

study) and that the surface conductivity is assumed to be negligible.
7
 The theory is 

expressed as: 
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                                                                                (Equation 4.6) 

   

where r is the dielectric constant of medium, 0 is the permittivity of free space and 

η is the dynamic viscosity.  

 

The electrophoretic mobility can be measured using Laser Doppler Velocimetry 

(LDV), which is an established technique for measuring fluid flows in engineering 

studies. An incident beam is shone at the cell and the light scattered is collected at 

an angle of 17° which is combined with a reference beam.
5
 The detector measures 

the fluctuation in the intensity signals, which relates to the velocity of the particles 

moving in the media. A processor is used to convert the intensity signals into 

mobility values for the dispersed particles.  

The Zetasizer Nano ZS (Malvern), was used to measure the electrophoretic mobility 

of the sterically stabilised latex particles. The samples were prepared at a 

concentration of 0.1 wt% in varying electrolyte (KNO3) concentrations (no added 

electrolyte to 1M). For a particular sample two vials were prepared, one to titrate 

low pH’s whilst the other for high pH values. The pH was adjusted using HNO3 and 

KOH. Up to 10 measurements were taken and averaged to attain a single data point. 

The machine was regularly calibrated using model particulate systems. 

 

4.4.4. Interfacial tension measurements 

Surface and interfacial tension measurements were obtained using a droplet shape 

analysis (pendant drop method) surface tensiometer (DSA100, Easydrop FM40, 

KRÜSS, Germany). In the pendant drop method, liquid A is injected into a needle to 

form a droplet at the end of the needle tip into either air or into a liquid B to measure 

the surface and interfacial tension respectively. The droplet that is formed is 

observed optically using a CCD camera and the tension is measured by fitting a 

Young-Laplace model to the shape of the droplet.  

Suspending a droplet of liquid A in air or liquid B at mechanical equilibrium is 

possible due to the balance of gravitational and surface forces.
8
 The forces acting on 

a curved surface can be summarised by Young-Laplace equation (equation 4.7) 

which describes the pressure difference (Δp), both above (p1) and below (p2) the 
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curvature of the droplet at the apex (r1) and a specific coordinate (r2) in order to 

obtain the interfacial tension (γ): 

 

                 (Equation 4.7) 

4.74.7)           

       

Bashforth and Adams related the Laplace equation to the drop profile by a non-

linear differential equation.
9
 They calculated tables of contours to fit the droplet 

geometry profile (Figure 4.6)
10

, however this was very tedious as photographs of the 

droplet would have to be compared with tabulated values.  

 

 
 

Figure 4.6.  Schematic of pendant drop geometry. Adapted from Ref. [10]. 

 

 

To simplify this, Andreas et al.
11

 proposed the following empirical equation, where 

g is the gravitational constant, De the equatorial diameter of the droplet, Δρ is the 

density difference between the two liquids and H is a correction factor:  

    

                      (Equation 4.8)
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The correction factor, H is based on the droplet factor of the pendant drop, S, 

expressed by:          

                   

                                                                                             (Equation 4.9) 

                        
where Ds is the diameter measured horizontally at a diameter De away from the apex 

of the droplet. 

 

In the pendant drop device, Equations 4.8 and 4.9 are fitted to digitized images of 

the drop to obtain the surface/interfacial tension values. This method has an error of 

between 0.01 and 0.2 mN m
-1

 depending on the shape of the droplet formed, as this 

impacts on the droplet fitting analysis tool. 

 

4.4.5. Scanning Electron Microscopy  

Scanning Electron Microscopy (SEM) is a technique that utilizes a high-energy 

electron beam which scans across the surface of the sample. SEM measures 

secondary and backscattered electrons that interact with the atoms of the sample. 

The interactions are characteristic of the topography, composition and electrical 

conductance of the sample. For poor conducting samples, it is necessary to coat the 

sample with a thin layer (2 - 5 nm) of metal (e.g. platinum/palladium), which 

provides a highly conductive surface that strongly scatters the electron beam. The 

SEM technique allows magnification of the samples up to 25,000 times with a 

resolution of 5 nm. Therefore the micrographs obtained from SEM allow for a three 

dimensional representation of the surface of the sample.  

To prepare the samples for SEM analysis, microscope slides were cut into small 

pieces and placed on an SEM stub using double sided tape. However, this surface is 

not conductive and thus conductive paint was applied on the bottom side of the glass 

slide to provide conduction between the SEM stub and the sample. A droplet 

containing a diluted suspension of the particles was pipetted onto the slide. A droplet 

of ethanol was then deposited on top to spread the particles evenly across the slide. 

Ethanol was used as it is a volatile solvent and therefore quickly evaporates. After 

evaporation, the sample was stored in a sample box at ambient temperature in order 

to prevent dust particles interfering with the sample. Once dried, the samples were 
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then sputter coated with a platinum/palladium film prior to analysis. The SEM used 

in this study was performed with a LEO 1530 Field Emission Gun (FEG) SEM 

instrument operated at 3 kV. The SEM experiments were carried out by myself at 

the Leeds Electron Microscopy and Spectroscopy Centre (LEMAS). 

 

4.4.6. Transmission Electron Microscopy  

Transmission electron microscopy (TEM) and optical microscopy techniques 

broadly work on the same principle. In the case of optical microscopy, light at 

different wavelengths is used whereas in TEM an electron beam is used as the 

source. Electrons have a smaller wavelength than light and hence higher resolution 

images can be obtained up to a few angstroms (10
-10 

m). An electron beam is emitted 

at the top of the microscope through a vacuum, which is focused into a narrow beam 

using electromagnetic lenses. The beam is transmitted through the specimen and 

depending on the density of the sample, the electrons are either scattered or lost 

from the beam. The unscattered electrons hit a fluorescent screen and the image of 

the sample is displayed as a shadow. The variation in darkness of the image is due to 

density differences within the sample. The image can be studied directly or 

photographed using a CCD camera.  

To prepare samples for TEM analysis, a droplet of the particles at a concentration of 

0.1 wt% was deposited onto a Holey Carbon film 400 Mesh copper (50)’ grid. Once 

deposited the sample was allowed to dry at ambient temperature for 24 hours prior 

to analysis. The samples were analysed using a Phillips CM100 TEM operated at 

100 kV with the help of Dr. Mike Ward at the LEMAS centre.  
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4.5. Pickering emulsions produced via a Rotational Membrane 

Emulsification (RME) reactor 

This section outlines the use of two different particulate stabilisers in the production 

of Pickering emulsions using a new rotational membrane emulsification (RME) 

reactor. It outlines the materials used, set up of the RME reactor and emulsion 

characterisation.  

  

4.5.1. Materials 

The key properties of the materials used in this study for the two particulate systems 

for the production of O/W emulsions are listed in Table 4.2. 

 

 

 System 1 System 2 

Aqueous (Continuous) 

Phase 

800 nm FUSO silica 

colloids dispersed in 

Milli-Q water (Size 

determined using DLS) 

91.2 ± 3.2 nm sterically 

stabilised (pmma16-

pdmaema245) polystyrene 

latex particles dispersed in 

pH 9.3 Milli-Q water. (Size 

determined using DLS) 

Oil (Dispersed phase) 
Glyceryl Trioctanoate 

(Tricaprylin) 
Hexadecane oil 

Viscosity of oil @20°C 26 mPa. s 3.34 mPa. s 

Specific density of oil 0.95 0.773 

 

Table 4.2.  Composition and properties of O/W emulsions presented in this research 

study. 

 
The 800 nm silica colloids were purchased from FUSO Chemical Co. Ltd. These 

colloids are essentially monodisperse and spherical in shape as illustrated by the 

SEM micrograph illustrated in Figure 4.7.  
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Figure 4.7.  Scanning electron micrograph: 800 nm FUSO silica (Scale bar = 2 µm). 

 

The polystyrene latex particles stabilised by pMMA16-pDMAEMA245 were 

synthesised using emulsion polymerisation (based on the recipe of Amalvy et al.
3
) 

as outlined in Section 4.3.1. Dried SEM micrographs of these latex particles 

indicated particle diameters ranging from 85 – 100 nm as shown by Figure 4.8.   

 

 

Figure 4.8.  Scanning electron micrograph: pMMA16-pDMAEMA245 stabilised 

polystyrene latex particles (Scale bar = 300 nm). 

 

 

4.5.2. RME setup and procedure 

The emulsions were produced using a stainless steel membrane mounted on an 

overhead stirrer motor (IKA, Eurostar digital agitator). Prior to conducting the 
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experiments, the wettability of the continuous and dispersed phases were imaged to 

ensure the production of oil-in-water emulsions as illustrated by Figure 4.9.  

 

Figure 4.9.  Illustrating the preferential wetting of water droplet (A) over oil droplet 

(B) on the membrane surface. 

 

The membrane was carefully placed into a stationary cylindrical vial (Figure 4.10). 

The steel membrane is laser drilled with a pore size of 80 µm × 80 µm illustrated by 

Figure 4.11.
12

 The membrane has a diameter of 8 mm, length of 25 mm and a 

membrane wall thickness of 0.5 mm. It contains 108 pores, which are drilled in a 

controlled array; further information on the properties and characteristics of this 

membrane can be found in an earlier publication.
12

 

The volume of continuous phase used in the experiments was 25 mL, with varying 

pH, electrolyte and particle concentrations. Prior to emulsification the particle 

dispersion was sonicated for 20 minutes, dispersed using a vortex mixer and the 

particle size was subsequently checked using DLS before use. The membrane 

rotational speed was kept constant for a given experiment. The rotational speeds 

were systematically varied from 500 to 1500 rpm.  
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Figure 4.10.  Schematic illustration of the RME reactor system. The illustration 

(left) shows a cross sectional view of oil droplets being stabilised by 

nanoparticles through particle adsorption from the continuous phase. Redrawn 

from Ref. [12]. 

 

Figure 4.11.  Laser drilled 80 µm × 80 µm stainless steel membrane used 

throughout the membrane emulsification experiments, A) Digital micrograph 

of the membrane and B) SEM micrograph of the membrane pores (Scale bar = 

1 mm), Taken from Ref. [13]. 
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In a typical experiment, the dispersed phase is introduced from a syringe mounted 

on a syringe pump (Razel A99FMZ, Fisher Scientific, U.K) with a wide variety of 

pumping rates from 0.075 × 10
-6

 to 75 × 10
-6

 m
3
 h

-1
. The use of syringe pump allows 

the expression of the dispersed phase through the membrane to be accurately 

controlled. The flow rates examined in this study ranged from 1 × 10
-3

 to 1 mL min
-1

 

to compare the droplet sizes obtained with previous surfactant stabilised emulsions 

using the same membrane pore size. All the emulsification experiments were 

conducted at room temperature.  

 

4.5.3. Emulsion characterisation and analysis 

The emulsion droplets were imaged using optical microscopy to subsequently 

calculate the number average droplet diameter and droplet size distribution. The 

distortion of the droplets was prevented by using pipettes with an opening at least 2 

times wider than the maximum droplet size. The size measurements were carried out 

using the Java-based image processing software ‘ImageJ’ (developed at the National 

Institutes of Health). The images were taken immediately after the emulsification 

experiments were complete. Optical microscopy was consistently used to measure 

the droplet size instead of any of the light scattering measurement techniques 

described above to accurately take into account all droplet sizes.  
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4.6. Particle adsorption to liquid-liquid interfaces 

This section outlines the use of a pendant drop tensiometer device (4.6.1) and a 

microtensiometer (4.6.2) to investigate kinetics of particle adsorption to liquid-liquid 

interfaces.   

 

4.6.1. Dynamic studies via pendant drop measurements 

The theory behind the use of pendant drop techniques for measurement of 

surface/interfacial tension is mentioned earlier in Section 4.4.4. This technique was 

used to measure the changes in interfacial tension over time for a variety of different 

particle and oil systems: 

 800 nm FUSO silica with tricaprylin oil 

 300 nm sulfate stabilised polystyrene latex particles (supplied by IDC, USA) 

with hexadecane oil 

 pMMA-b-pDMAEMA sterically stabilised latex particles with hexadecane 

oil 

The changes in interfacial tension with time was measured by recording a video of a 

droplet (containing a dispersion of particles at different concentrations) immersed 

into  a cuvette containing one of the oils for a period of time (usually 5000 seconds). 

Once the recording was complete, the resulting movie was played back in the Drop 

Shape Analysis software accompanying the pendant drop device. For every video 

frame, the shape of the droplet was fitted to a Young-Laplace model which yielded 

an interfacial tension value, which was plotted as an isotherm.  

 

4.6.2. Dynamic studies using a Microtensiometer 

A custom-built microtensiometer device developed at Carnegie Mellon university
14

 

was used as an alternative method to investigate particle adsorption kinetics. In the 

pendant droplet technique, an important experimental parameter concerns the 

balance between gravitational and surface tension forces as described by the Bond 

number, B0, in Equation 4.10, where ρ is the density, g the gravitational force, Rc the 

radius of the capillary and γ the interfacial tension; 

 



105 

 

                (Equation 4.10) 

 

In the pendant droplet technique the Bond number is around 0.3, while in the 

microtensiometer the Bond number is smaller than 0.01, which is achieved by either 

matching the densities of the two fluids or reducing the surface area of the interface. 

By reducing the Bond number the interface becomes spherical. This is an important 

parameter as with increasing Bond numbers, the curvature of the interface becomes 

non-uniform and the capillary pressure becomes significantly different at each point 

on the interface.
15

 Under these conditions where the interface is deformed, accurate 

measurement of pressure change becomes impossible which affects the calculation 

of surface tension.  

In the case where the droplet is spherical, direct measurement of both the pressure 

jump across the interface and the radius of the spherical interface can be used to 

calculate the surface tension by the Young-Laplace equation (Equation 4.7). The 

pressure jump across the interface is measured using a pressure transducer, whilst a 

syringe pump is used to control the size of the microscopic droplet formed at the end 

of the glass capillary. The main features of the device are illustrated in Figure 4.12 

and Figure 4.13.
14 
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Figure 4.12.  Schematic diagram illustrating the components of the 

microtensiometer device used in this study. The different parts of the 

microtensiometer include A: microscope condenser, B: PDMS well and 

holder, C: PDMS spacer, D: coverslip, E: objective and image analysis, F: 

glass capillary, G: pressure transducer, H: 3-way solenoid valve and I: constant 

pressure head. Taken from Ref. [14]. 

 

 

Figure 4.13.  Magnified view of the capillary tip (F). An oil droplet endcap is 

formed at the capillary tip into a reservoir well of water. The droplet radius 

(Rd), internal (P1) and outer (P2) pressure are measured for calculation of the 

interfacial tension using Young-Laplace equation. Redrawn from Ref. [16].  

 

Further details regarding the fabrication of the sample cell and capillaries can be 

found in a publication by Prof Lynn Walker’s group that developed this instrument 

at Carnegie Mellon University.
14

 In a typical experiment, the glass capillaries were 

cleaned using sulphuric acid and rinsed with acetone. The capillaries were washed 
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with acetone for a number of times and allowed to dry in an oven. Once dried the 

capillaries were tested for axis-symmetry using a microscope and to ensure that the 

tip of the capillary was not damaged by the cleaning procedure.  

Before measuring the interfacial tension of liquid-liquid interfaces, a clean air-water 

interface was studied to ensure the value of an pure air/water surface tension could 

be obtained (72.8 mN m
-1

), characteristic of the absence of any impurity in the 

system. The cell was cleaned and replaced with a particle dispersion to be studied. 

An oil droplet was formed using a constant pressure head (generated by a water 

column connected to the 3-way solenoid valve). The interface was recorded using a 

Diagnostic Instrument Spot RT Monochrome digital camera connected to the 

microscope. LabVIEW (Laboratory Virtual Instrument Engineering Workbench) 

developed at National Instruments, was used to process recordings of the interface to 

determine changes in the droplet radius and to monitor the pressure changes 

(subtraction of the hydrostatic pressure head at the capillary tip from the measured 

constant pressure head) to attain interfacial tension measurements.  
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CHAPTER 5: SYNTHESIS AND CHARACTERISATION OF 

STERICALLY STABILISED LATEX PARTICLES 

 

 
 

 

NOMENCLATURE 

 

α  Degree of protonation 

dp  Particle diameter 

I  Initial ionic concentration 

M  Initial monomer concentration 

P  Initiator concentration 

T  Absolute temperature 

 

 

ABBREVIATIONS 

 

DLS  Dynamic Light Scattering 

LCST  Lower critical solution temperature 

MEB  Milli-equivalents of added Base 

 

  



111 

 

5.1. Particle synthesis 

5.1.1. Introduction 

Colloidal dispersions are typically made up of particles that are sufficiently small 

(usually less than 1 µm) distributed throughout another (continuous) phase. There is 

no sharp distinction between colloidal and non-colloidal dispersions. Many systems 

that exist in nature contain colloidal particles that are dispersed throughout a liquid 

phase (e.g. water) and hence have received much attention. The understanding of 

colloidal systems is very important especially for applications in areas such as 

precipitation, water treatment, flotation, food processing, lubrication and detergency 

etc.   

Polymer latexes have been extensively studied as model systems to increase our 

fundamental understanding of key aspects of colloidal science. To understand and 

describe the behaviour of colloidal systems, many mathematical models often 

assume that the particles are both spherical and size monodisperse. The use of 

polymer latex systems is therefore attractive as they are usually spherical and can be 

synthesized with relatively narrow particle size distributions. One method of 

producing such polymer latexes is via emulsion polymerisation  which is outlined in 

the subsequent section. 

 

5.1.2. Emulsion polymerisation 

The process of emulsion polymerisation has been extensively used within industry 

since the 1930’s. In the early stages very little was known about the mechanism and 

kinetics associated with the polymerisation process due to the complexity of the 

heterogeneous system. One of the earliest theories on emulsion polymerisation was 

proposed by Harkins.
1
 The model was based on the following components; water as 

the continuous phase, with monomers such as styrene as the dispersed phase, water 

soluble initiators such as persulfate ions and a stabiliser such as anionic surfactants. 

At the beginning of the polymerisation process, the reaction vessel contains the 

water phase which also includes the initiator, electrolytes, small quantities of 

dissolved monomer and other minor ingredients. The rest of the monomer is 

dispersed as stable emulsion droplets and partially solubilised within the surfactant 
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micelles. The reaction is heated and the initiator (persulfate ions) molecules 

decompose into sulfate radicals. 

In the early theories it was proposed that the monomer droplet itself polymerised, 

however Harkins
1
 dismissed the idea of particle nucleation occurring within the 

monomer droplet, based on the observation that the final latex particle was generally 

much smaller than that of the monomer droplet. In addition, the number of particles 

at the end of the reaction was typically a thousand times more than the number of 

monomer droplets, hence the monomer droplets was considered to act as a reservoir 

for the monomer. The polymerisation was instead thought to occur within the 

monomer swollen micelles and the polymerisation progressed by drawing additional 

monomer from droplets through the aqueous phase. As the polymerisation process 

progresses, the size of the monomer droplets decrease in order to replenish the 

aqueous phase with more monomer. Although the Harkins model is not consistent 

with all experimental systems, it does represent an ideal case. It should be noted that 

emulsion polymerisation can vary greatly depending on the components used and 

that no single mechanism will account for all emulsion polymerisations.  

Harkins also reported that the polymerisation starts upon the migration of the free 

radicals into the swollen micelles. This causes a depletion of the monomer from the 

micelles and causes mass transfer from the monomer droplet to the site of newly 

formed and growing polymer particles. This process has now been revised and it 

more commonly accepted that the initiation step actually occurs in the aqueous 

phase, forming oligomeric radical chains.
2, 3

 The propagation of the oligomeric 

chains may undergo in the aqueous phase until a sufficient size occurs making them 

insoluble in the aqueous phase. The insoluble oligomeric chains may either a) 

continue to polymerise by entering a swollen micelle, b) by aggregation with other 

oligomeric chains or c) by entering a monomer droplet. All three routes are possible 

and the route taken depends on the emulsion system used.  

The process of emulsion polymerisation occurs in 3 steps, the first step is the 

initiation stage characterised by particle nucleation in which the particle number is 

determined. This stage is regarded as complete when the micelles disappear. The 

second stage is the particle growth. At this stage the polymerisation proceeds by 

drawing monomer from the aqueous phase and the particle number remains 

relatively constant. The monomer droplet shrinks in size in order to replenish the 
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aqueous phase. This second stage is considered complete when all the monomer 

droplets disappear. The last stage of the polymerisation process is the additional 

particle growth in the absence of monomer droplets. At this stage, almost all of the 

monomer is confined within the swollen latex particles. After a period of time a 

100% monomer conversion is achieved. In order to produce latex particles with a 

relatively narrow particle size distribution, the nucleation period needs to be short 

followed by a long growth period without coagulation.  

Styrene is commonly used as a monomer in academic emulsion polymerization 

experiments due to its convenience in laboratory handling. After polymerisation, 

amorphous polystyrene latex particles are produced that are spherical, insoluble is 

the dispersion medium and are relatively low in size polydispersity. Persulfate is 

commonly used as the initiator, however it can produce a surface of mixed 

functional groups such as sulfate, hydroxyl and under some processing conditions 

carboxyl. These mixed surface groups originate from the initiator fragments that are 

chemically bound to polymer chains during polymerization as well as from surface 

oxidation.  

A systematic studied was carried out by Goodwin et al.
4
 looking at the influence of 

electrolyte strength, monomer concentration, initiator concentration and temperature 

on the size of particles produced in an emulsifier-free system. A range of particle 

sizes between 0.1 to 1 µm was obtained by adjusting the reaction conditions. From 

their data they derived a formula from which the particle size could be predicted 

from the preparation conditions; 

         (Equation 5.1) 

where dp is the particle diameter, T the absolute temperature, I the initial ionic 

strength, M the initial monomer concentration and P the initiator concentration.  

 

Similar results have also been published by other authors.
5
 It is evident that the 

components, the method of addition and the reaction conditions all influence the 

final product characteristics. 
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In addition to surfactants, the use of chemically grafted or the physical adsorption of 

polymers to enhance the stability of the polymer latex particles is well established.
6
 

The polymeric stabilisers that are commonly used are usually non-ionic or anionic in 

character, common examples include poly(ethylene oxide),
7
 poly(acrylic acid) and 

poly(acrylic acid) based di-block copolymers.
8, 9

 Whilst only a few reports exist on 

the use of cationic di-block copolymers as latex stabilisers.
10, 11

 These stabilisers are 

based on 2-dimethylaminoethyl methacrylate (DMAEMA). The advantage of using 

this steric stabiliser is that it is a tertiary amine methacrylate and hence has a pH-

responsive property that than can be used to produce core-shell particles (where the 

core is e.g. polystyrene and the shell is made of the DMAEMA polymer). In this 

thesis the use of pMMA-b-pDMAEMA as a steric stabiliser for producing latex 

particles is investigated. The characterisation of the di-block copolymer and the 

sterically stabilised particles is detailed in the subsequent sections.    
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5.2. Solution properties of pMMA-b-pDMAEMA di-block 

copolymer 

5.2.1. Dynamic light scattering  

The di-block copolymers used in this work comprise of a hydrophobic component 

(pMMA) and a hydrophilic component (pDMAEMA). It should be noted that these 

di-block copolymers are readily soluble in weakly acidic aqueous environments (pH 

≈ 4).
12

 The pDMAEMA block contains a tertiary amine group, that protonates and 

selectively solubilises in a weakly acidic aqueous environment. Such hydrophobic-

hydrophilic block copolymers have been reported to form micelle structures in 

solvents, which are selective for one of the blocks.
13-16 

Dynamic light scattering (DLS) measurements were performed to investigate the 

micellar hydrodynamic diameter of pMMA-b-pDMAEMA solutions as a function of 

polymer concentration, prepared at pH = 4 in the presence of 0.01M KNO3. The data 

in Figure 5.1 highlight changes in the hydrodynamic diameter as a result of 

increasing pDMAEMA block length.  
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Figure 5.1.  Variation in hydrodynamic diameter as a function of polymer 

concentration for four different pDMAEMA block lengths; a) 20, b) 54, c) 108 

and d) 245. The polymer solutions are prepared at pH 4 in presence of 0.01M 

KNO3 (T = 25°C). 

 

The DLS technique is not able to gather information relating to the size of the 

micelle core and corona individually, however the hydrodynamic diameter does 

gives an indication of the diameter of the copolymer aggregate. At low polymer 

concentrations (less than 400 - 500 ppm) the copolymer exists as individual chains 

(unimers). At polymer concentrations the critical micelle concentration the 

copolymer chains aggregate forming micelles. The micelles consist of a 

hydrophobic micellar core (pMMA) and a hydrophilic corona (pDMAEMA).  

The DLS data shows that the micelles of the copolymer with the greatest asymmetry 

(pMMA14-b-pDMAEMA108 and pMMA16-b-pDMAEMA245) are the smallest. The 

data clearly shows that as the pDMAEMA block length increases, the micelle 

diameter decreases. This phenomena can be described by the packing parameter 
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theory.
17

 The longer pDMAEMA chains lead to a bigger hydrophilic head group and 

hence they form smaller aggregates in solution with a higher degree of curvature. 

The trend observed from these data presented in table 5.1 matches observations 

previously reported by Xiao et al.
18

 In addition the transition from unimers to 

equilibrium micelles occurs at different critical micelle concentrations for each of 

the polymers studied (Table 5.1) and at values similar to that observed by Baines et 

al.
16

 and Chatterjee et al.
19

 

 

Batch Entry Block lengths CMC (ppm) 

GB 167 pMMA14-b-pDMAEMA20 510 

GB 168 pMMA14-b-pDMAEMA54 480 

GB 169 pMMA14-b-pDMAEMA108 430 

WB 76 pMMA16-b-pDMAEMA245 370 

Table 5.1.  The critical micelle concentration of pMMA-b-pDMAEMA diblock 

copolymers determined via DLS as a function of changing pDMAEMA block 

lengths in pH 4 aqueous solutions at 25°C. 

 

The data also demonstrates that the surface activity of these diblock copolymers 

mainly depends on the influence of the hydrophobic block (pMMA) due to its 

packing density at the interface. As the pDMAEMA block length increases the 

packing density of the hydrophobic chains also increase which in turn leads to a 

reduction in the critical micelle concentration.
18

  

The change in the hydrodynamic diameter as a function of solution pH at 25°C for a 

1000 ppm pMMA16-b-pDMAEMA245 is presented in Figure 5.2. This is a typical 

plot also observed with the other copolymers that have been studied.  
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Figure 5.2.  Change in hydrodynamic diameter as a function of solution pH for 

pMMA16-b-pDMAEMA245 (T = 25°C). 

 
The hydrodynamic diameter of the micelles increases as a function of increasing pH. 

At high pH values the electrostatic repulsion of the hydrophilic head groups is 

reduced since the degree of protonation is very low (Section 4.2.3). At lower pH 

values, the pDMAEMA chains are more protonated, resulting in stronger 

electrostatic repulsion and effectively, therefore, larger head group dimensions 

producing correspondingly smaller aggregates.
18

     

 

5.2.2. Potentiometric titrations 

Potentiometric titrations were conducted on an aqueous solution of a di-block 

copolymer (pMMA-b-pDMAEMA) sample. The titration data, where the solution 

pH is measured as a function of milli-equivalents of added base (MEB), for a 1000 

ppm solution of pMMA14-b-pDMAEMA20 is shown in Figure 5.3. Also shown on 

the same figure is the plot of ΔpH/ΔMEB as a function of added base. The curves 

presented in Figure 5.3 are representative of multiple titrations for the different di-

block copolymers studied at various concentrations ranging from 50 to 500 ppm. 
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Figure 5.3.  Changes in the solution pH as a function of added milli-equivalents of 

base for a 1000 ppm aqueous solution of pMMA14-b-pDMAEMA20 (black).  

Also shown is the ΔpH/ΔMEB as a function of added base (blue). 

 

 

Figure 5.4.  Change in ΔMEB* as a function of polymer concentration for aqueous 

solutions of pMMA14-b-pDMAEMA20. 

The gap between the two peaks in the ΔpH/ΔMEB versus milli-equivalents of added 

base is defined as ΔMEB*. A plot showing the dependence of ΔMEB* on the 
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polymer concentration of pMMA14-b-pDMAEMA20 is presented in Figure 5.4. The 

data presented in Figure 5.4 shows a clear linear relationship between different 

polymer concentrations and ΔMEB*. Such data is important as it can allow the 

possibility of evaluating the concentration of pMMA14-b-pDMAEMA20 in a solution 

where the composition is unknown. 

The titration data presented in Figure 5.3 for each polymer concentration can be 

converted into a plot illustrating the degree of association (α) of the DMAEMA 

chains (section 5.1.3). A plot of pH versus α for a 1000 ppm pMMA14-b-

pDMAEMA20 aqueous solution is presented in Figure 5.5. The plot is representative 

of multiple titrations over a range of polymer concentration. 

 

Figure 5.5.  Degree of polymer association as a function of pH, for a 1000 ppm 

aqueous solution of pMMA14-b-pDMAEMA20. 

 

The data presented in Figure 5.5 shows that the majority of the polymer association 

occurs over a narrow pH range. Assuming maximum proton association at the 

starting conditions (very low pH), the addition of base initially has no effect on the 

proton association until the solution pH becomes greater than 6. After pH 6, further 

addition of base causes a decrease in the proton association. It can be seen that at pH 

8 the copolymer has less than 5% residual proton association. The addition of more 

base, causes further dissociation until α reaches a value of zero at a solution pH of 9-
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10. The degree of protonation data confirms that the pDMAEMA block is weakly 

basic with a pKa value of around 7.5.
11
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5.3. Factors affecting particle synthesis 

5.3.1. Effect of polymer chain length and reaction temperature 

The effect of the pDMAEMA polymer chain length and the reaction temperature on 

the emulsion polymerisation of styrene was investigated by comparing the particle 

size obtained at pH 9 where the dispersion remains stable and as individual particles. 

Table 5.2 and 5.3 summarise the particle size data obtained at pH 8, as a function of 

pDMAEMA block length and reaction temperature and the size polydispersity of 

these particles. Scanning electron micrographs of these particle samples are 

presented in Figure 5.6 and 5.7.  

The particle size data presented in Table 5.2 illustrates that the particle size increases 

as the pDMAEMA block length increases for a fixed pMMA block length. This is 

because the molecular weight of the copolymer increases with increasing 

pDMAEMA block length. This reduces the concentration of stabiliser molecules 

present for a given weight % of polymer in the reaction and thus larger particles are 

created as confirmed by DLS and SEM. There is a small difference in the particle 

size when comparing data from DLS and SEM micrographs. This is because in SEM 

the particles are dry and hence only the latex particles are observed, whilst in DLS 

the particles are measured as a dispersion and hence both the latex core as well as 

the polymer shell is detected .  

 

Sample No 
pDMAEMA block 

length 

DLS latex 

hydrodynamic 

diameter, Dz (nm) 

(polydispersity) 

SEM latex 

diameter, Dn (nm)  

SM01 54 57 (0.06) 53 (0.06) 

SM02 108 68 (0.08) 64 (0.09) 

SM03 254 87 (0.05) 84 (0.07) 

 

Table 5.2.  Effect of increasing pDMAEMA block length on the particle size of 

sterically stabilised polystyrene latex particles prepared at a reaction 

temperature of 70°C. 
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Figure 5.6.  Scanning electron micrographs of polystyrene latex particles stabilised 

by varying pDMAEMA block lengths; a) 54, b) 108 and c) 245, produced via 

emulsion polymerisation at 70°C. 

 

Sample No 
Reaction 

temperature (°C) 

DLS latex 

diameter, Dz (nm) 

(polydispersity) 

SEM latex 

diameter, Dn (nm)  

SM04 50 342 (0.11) 335 (0.13) 

SM05 60 155 (0.07) 150 (0.09) 

SM01 70 57 (0.06) 53 (0.06) 

 

Table 5.3.  Effect of reaction temperature on the particle size of pMMA14-b-

pDMAEMA54 sterically stabilised polystyrene latex particles. 
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Figure 5.7.  Scanning electron micrographs of polystyrene latex particles stabilised 

by pMMA14-b-pDMAEMA54, via emulsion polymerisation at different 

reaction temperatures; a) 50°C, b) 60°C and c) 70°C. 

 

The data presented in Table 5.2 illustrates that by increasing the reaction 

temperature the particle size decreases. This inverse dependence between the 

reaction temperature and particle size is a result of the decomposition rate of the 

initiator. As the temperature increases, the decomposition rate of the initiator 

increases. In addition, raising the temperature also increases the monomer solubility 

in the aqueous phase, resulting in an increase in the concentration of the growing 

chains causing a reduction in the bead size.
9, 20 

   

5.3.2. Polymer grafting density measurements 

The grafting density of the polymer chains provides important information about the 

number of polymer chains present on the particle surface and how this influences the 

properties of the core-shell particles. 
1
H NMR was performed by dissolving the latex 

particles in CDCl3 and measuring the associated spectra. The intensity signals from 

the polystyrene and stabiliser are analysed via integration of the relevant proton 

signals. Figure 5.8 illustrates a typical 
1
H NMR spectra obtained for polystyrene 

latex particles sterically stabilised by pMMA-b-pDMAEMA. 
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Figure 5.8.  
1
H NMR spectra of polystyrene latex particles sterically stabilised using 

pMMA-b-pDMAEMA dissolved in CDCl3 to allow calculation of stabiliser 

content and thus the grafting density. 

 

It was assumed that the stabiliser was uniquely located on the surface of the 

particles. The oxymethylene proton peaks (around δ 4.0) were compared to the 

aromatic peaks of styrene (δ 6.0-8.0). The grafting density, Γ, was calculated by 

comparing the stabiliser content (which takes into account the integration peaks) 

with the available particle surface area (based on intensity-averaged particle 

diameter using DLS).
11

 The information relating to the grafting density of samples 

SM01 and SM03 (Table 5.1) is presented in Table 5.4. The grafting density values 

obtained for the polystyrene latex particles match well with the values obtained by 

Amalvy et al.
11 

for the same core-shell particle system. They also achieved a 

grafting density value of 0.3 mg m
-2

.  
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The weakly cationic nature of the stabiliser means that the polymer chains occupy 

considerably more latex surface area per chain. This gives grafting density values 

that are considerably lower than those observed with other polymerisation 

techniques such as dispersion polymerisation.
11

     

 

Sample 

No 

DMA peak 

integration 

(
1
H) 

Polystyrene 

peak 

integral  

(
1
H) 

Particle 

Diameter 

(nm) 

Particle 

surface area 

(m
2
) 

Polystyrene 

per particle 

(g) 

Stabiliser 

(mg) 

Stabiliser 

content 

(wt%) 

Adsorbed 

amount, Γ 

(mg m
-2

) 

SM01 0.48 26.97 54 1.39×10
-14 

1.02×10
 -16 

3.22 ×10
 -14 

3.01 0.23 

SM03 0.53 32.53 87 3.35×10
 -14 

4.01×10
 -16 

1.01 ×10
 -14 

2.53 0.30 

Table 5.4.  Polymer grafting density data using 
1
H NMR for samples SM01 and 

SM03. 

 

The data can be further examined to obtain information regarding the number of 

polymer chains and subsequently the number of tertiary amine groups present per 

particle. This is summarised in Table 5.5. 

 

 SM01 SM03 

Average molecular 

number, Mn (g mol
-1

) 
10110 40340 

Chains/nm
2 1.8×10

-2
 4.5×10

-3
 

Chains/particle 53 29 

Amine groups/particle 2862 7105 

 

Table 5.5. Details regarding the area occupied, number of polymer chains and 

amine groups per particle derived from the grafting density data. 

 

The data in Table 5.5 shows that the area and the number of polymer chains 

occupied on the surface of the particle decreases with increasing pDMAEMA block 

length which fits in with the polymer packing theory.
17

 In addition, increase in the 

pDMAEMA block length directly results in an increase in the number of amine 
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groups present per particle. This information will be important when comparing the 

use of these particles for stabilising Pickering emulsions.  
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5.4. Particle characterisation 

5.4.1. Hydrodynamic diameter and electrophoretic mobility 

measurements 

5.4.1.1. Effect of pH 

The hydrodynamic size and electrophoretic mobility was measured to ascertain the 

behaviour of pMMA-b-pDMAEMA sterically stabilised polystyrene latex in 

aqueous media. Changes in the particle hydrodynamic diameter and electrophoretic 

mobility as a function of solution pH for samples SM01 and SM03 are presented in 

Figure 5.9.  

 

Figure 5.9.  Changes in the particle hydrodynamic diameter and electrophoretic 

mobility  as a function of pH for sample a) SM01 and b) SM03 in the presence 

of varying background KNO3 electrolyte concentration; 0M (black), 0.01M 

(red), 0.1M (blue) and 1M (green). 
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In general, the latex samples exhibit changes in both the hydrodynamic size and 

electrophoretic mobility as a function of pH (Figure 5.9). In the case where the 

particles are dispersed with no background electrolyte, a number of key features can 

be highlighted; 1) as the pH is decreased from around pH 9 to pH 3, both the 

hydrodynamic diameter and electrophoretic mobility increase due to the protonation 

of the amine groups on the pDMAEMA block. Increasing the pH of the particle 

dispersion above 9, shows an increase in the measured particle size whilst the 

particle mobility remains close to zero; The polymer is essentially uncharged and 

collapsed at these pH’s and the small increase in size is probably caused by the 

formation of aggregation of the latex particles driven by an intersegmental attraction 

between the uncharged pDMAEMA chains on the surface of adjacent particles.  

 

5.4.1.2. Effect of background electrolyte 

The effect of background electrolyte on both the hydrodynamic diameter and 

particle mobility is also shown in Figure 5.9. It can be seen that at any pH less than 

9, an increase in background electrolyte causes a reduction in the particle mobility. 

The addition of electrolyte screens the surface charges present on the polymer and 

the strength of this charge screening increases with electrolyte concentration. A 

reduction in particle size is also observed as a result of the partial collapse of the 

charged polymer chains at increased electrolyte levels. At pH 9 and above, the 

insolubility of the polymer increases and therefore the strength of the intersegmental 

attraction increases leading to the formation of large aggregates. At pH 10, increase 

in the salt concentration gives arise to a higher negative electrophoretic mobility 

value.   

 

5.4.2. Temperature responsiveness 

The pMMA-b-pDMAEMA di-block copolymers are not only responsive to pH 

stimuli, they have also been shown to be temperature responsive.
21, 22

 The 

pDMAEMA polymer chains have a lower critical solution temperature (LCST) that 

occurs between 40 - 50°C. The LCST dictates the solvency of the polymer in 

solution; i.e. the polymer is miscible below this critical temperature and becomes 

unstable and precipitates in solution above this value. The latex particles grafted 
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with di-block copolymers were investigated for changes in the hydrodynamic 

diameter as the dispersion temperature changes as a function of solution pH. The 

effect of electrolyte concentration on the particle size was also investigated. The 

latex particles used in this study were sterically stabilised using pMMA16-b-

pDMAEMA245 at 65°C (Sample SM04). Therefore the particle size is different to 

sample SM03 i.e. larger, so the changes in the hydrodynamic diameter and mobility 

of these particles to pH are first presented in Figure 5.10.  

 

Figure 5.10.  Changes in the hydrodynamic diameter and electrophoretic mobility as 

a function of pH for sample SM04. 

 
The changes in the particle size and mobility follow the same trends as discussed in 

Section 5.4.1.  
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5.4.2.1. Effect of temperature 

 

Figure 5.11.  Changes in the particle hydrodynamic diameter of sample SM04 with 

temperature as a function of solution pH with no added background 

electrolyte. 

 

In acidic pH (pH 3.8), the hydrodynamic diameter remains relatively unchanged as a 

function of increasing temperature. At this pH, the pDMAEMA chains are strongly 

protonated; the polymer is highly soluble under these conditions and adopts an 

extended configuration in solution. At pH 6, we find that the hydrodynamic diameter 

decreases as the temperature is increased. At pH 6, the polymer is less strongly 

protonated and will be partially collapsed, even at room temperature; clearly, this 

decreased baseline polymer solvency is sufficient to result in a further decrease in 

solvency as the temperature increases resulting in a reduction in the observed 

hydrodynamic diameter. At pH 8 and 10.2, the polymer is more fully collapsed onto 

the particle surface and no change is observed as the temperature is increased until 

reaching an LCST value above 50°C. At this point the pDMAEMA chains entirely 

lose solvency and particle aggregation is observed above this point. 
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5.4.2.2. Effect of added electrolyte concentration 

The addition of electrolyte causes a general decrease in particle sizes observed at 

pH’s below 6 due to a screening of the surface charges on the polymer (Figure 

5.12.). In the case of 10mM KNO3 background electrolyte, no change in particle size 

is observed for particles dispersed at pH 8 and 10.2 until they reach the LCST and 

particle aggregation is observed above 50°C. In the case where 100mM KNO3 is 

used, the hydrodynamic diameter at all pH’s remain unchanged with increasing 

temperature until the LCST is achieved. It should be noted at temperatures below 

50°C, the hydrodynamic diameters at pH 8.1 and 10.2 are larger than pH’s 2.8 and 

6.2 due to particle aggregation induced by electrolyte addition. Above the LCST the 

insolvency of the polymer causes an increase in the particle aggregate size observed 

for pH’s 8.1 and 10.2 (Figure 5.13), whilst the particle size remains unaffected at the 

lower pH’s (2.8 and 6.2).  
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Figure 5.12.  Changes in the particle hydrodynamic diameter of sample SM04 with 

temperature as a function of solution pH in the presence of a) 10mM KNO3 

and b) 100mM KNO3 background electrolyte. 
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Figure 5.13.  Digital micrograph showing a stable particle dispersion of sample 

SM04 at 25°C and particle aggregation at 70°C for particles dispersed at pH 

8.1 and 100mM KNO3 background electrolyte concentration. 
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5.5. Conclusions 

Polystyrene latex particles sterically stabilised using pMMA-b-pDMAEMA were 

prepared using an emulsion polymerization technique. The particle size obtained can 

be controlled by changing the polymer block length or/and the synthesis 

temperature. The pDMAEMA chains are weakly cationic exhibiting a pKa value 

around pH 7.5. Below this pH the polymer on the particle surface becomes 

protonated and the chains extend out into solution (exhibiting an increase in size), 

whilst above this pH the polymer loses its charge and becomes insolvent, thus 

collapses back onto the particle surface (reduction in particle size). In addition the 

pDMAEMA chains exhibit an LCST value around 50°C at pH values above 8, 

below which the polymer is solvated (stable particle dispersion), whilst above this 

value, the polymer becomes insoluble, which causes inter-segmental attraction 

between the polymer chains leading to particle aggregation. The aggregation 

observed increases with increasing electrolyte concentration.  
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CHAPTER 6: USING STERICALLY STABILISED LATEX 

PARTICLES TO PRODUCE PICKERING EMULSIONS 

 

 

6.1. Introduction 

This chapter describes and outlines the use of polystyrene latex particles sterically 

stabilised with a pH-responsive polymer to stabilise Pickering emulsions (section 2). 

Such emulsions can further be used as templates for the fabrication of pH-responsive 

colloidosome microcapsules (section 3). In addition it is demonstrated that these 

capsules can be used as size-exclusion membranes to retain and control the release 

of water soluble species as a function of pH.     
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6.2. Production of Pickering emulsions stabilised by sterically-

stabilised PS  latex particles using homogenisation 

6.2.1. Introduction 

Pickering emulsions are emulsions stabilised by solid particles that adsorb onto the 

liquid–liquid interface, a phenomena described after its discovery by S. U. Pickering 

in 1907.
1
 The potential of using Pickering emulsions for technological applications 

has driven renewed interest in this area over the past decade or so. The two 

dimensional assembly of colloidal material at oil/water interfaces can be used as a 

template for creating new materials such as organic/inorganic composite particles,
2
 

microfibers and films
3, 4

 and hollow particulate microcapsules often referred to as 

colloidosomes.
5, 6

 

In addition to the three phase contact line and energy of particle desorption (Chapter 

2), there are numerous other factors that need to be considered in the preparation of 

particle stabilised emulsions. Other factors that influence emulsion stability include 

particle  concentration, particle shape, oil type and the presence of other additives 

such as electrolytes.
7
  

In light of recent studies showing that emulsion droplets can be stable to coalescence 

at low surface coverage of the droplet by particles,
8, 9

 for most particle stabilised 

emulsions, the particle concentration is an important factor. Increases in the particle 

concentration can lead to an increase in stable emulsion volume fraction and/or 

cause a reduction in the droplet size.
7
 The limit of this is dictated by the particle size. 

In most cases a complete coverage with particles is considered to be necessary for 

emulsion stability. The presence of excess particles form an additional 3-D network 

that surrounds the droplet and improves stability.
10

   

The location of the particle prior to emulsification is another important factor. Yan 

and Masliyah reported the production of o/w emulsions stabilised with hydrophobic 

particles.
11

 In their investigation they used kaolinite clay particles were coated with 

asphaltenes to obtain hydrophobic particles. They were dispersed in the aqueous 

phase prior to emulsification and thus they were able to stabilise o/w emulsions. The 

effect of particle location adds an additional factor. The maximum stability of an 

emulsion can be obtained by having the particles with the appropriate wettability in 

the appropriate continuous phase (i.e. to obtain the most stable o/w emulsions the 
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particles should be dispersed in the water continuous phase). Binks and Lumsdon 

also showed how changes in pH affect the partitioning of partially hydrophobic 

silica nanoparticles between toluene and water.
12

 They found that at low pH’s the oil 

preferred to be distributed in oil, whilst at high pH’s they preferred water. At the 

intermediate pH’s they were present in both phases. Hence, these findings verified 

the Bancroft rule
13

 in solid stabilised emulsions prepared using equilibrium 

multiphase systems.    

The oil type affects the interfacial tension, the contact angle and the interactions 

between the particles surface and the liquids as well as the energy of particle 

attachment to an interface.
14

 Silica particles that had the same surface treatment 

were found to produce o/w emulsions when non-polar oils were used whilst w/o 

emulsions were produced using polar oils.
15

 Both the location of the particle and the 

oil type can be related back to the contact angle of the particle in an emulsion 

system.  

Particle size is also an important parameter as it dictates whether it remains 

suspended in solution and hence at the oil/water interface. It has been reported 

experimentally that by decreasing the particle size, the emulsion stability increases 

with the formation of smaller droplets until a critical particle size is achieved.
16

 

Tambe and Sharma used 4 and 37 µm alumina particles to stabilise decane in water 

emulsions. They found that using a particle mixture of two different particle sizes 

produced a less stable emulsion. This is because when the large particles are present 

there is no ordering in the arrangement of the particles at the interface in contrast to 

when only small particles are used.
17

 This leads to the conclusion that polydispersity 

of fine particles reduce the stability of the emulsions and disrupt their ability to form 

a mechanical protective barrier against coalescence.  

Well defined spherical particles are often used for theoretical studies to help 

simplify analysis and calculations. However, in reality particles are not always 

spherical and the particle shape does have an impact on the emulsion stability. In 

addition, particle roughness also plays an important role. It has been reported that 

rough particles produce less stable emulsions in comparison to smoother particles.
9
 

This is because the particle roughness causes changes in the particle contact angle at 

the interface and hence dictates the emulsion stability. From all the factors 
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mentioned above, the influence of particle shape is the least understood in 

determining emulsion stability.
14

   

There is a copious amount of literature investigating the use of relatively inert 

particles like silica and carbon to stabilise emulsions. More recently, particles that 

are responsive to numerous stimuli such as pH, temperature and/or light have been 

synthesised to act as emulsifiers. Their ability to influence the behaviour of the 

emulsions through the effect of stimuli is of technological interest. One example of 

such particles are sterically stabilised particles, which are particles grafted with a co-

polymer. The sterically-stabilised particles are capable of becoming charged to 

influence the wettability of the particles to stabilise emulsions. One such steric 

stabiliser used is [2-(dimethylamino)ethyl methacrylate - block - methyl 

methacrylate) (pDMAEMA-b-pMMA) di-block copolymers. The pMMA anchors 

onto the particle surface, whilst the pDMAEMA acts as the stabiliser.
18

 The 

pDMAEMA chain contain a tertiary amine group which can become charged and 

uncharged and this influences its wettability to stabilise emulsions. The latex 

particles are also temperature responsive since the pDMAEMA chains have a LCST 

(low critical solution temperature) around 50°C, above which it becomes insoluble 

and becomes less hydrophilic.
19

 Another similar system is silica nanoparticles 

modified with an anionic polyelectrolyte poly(styrenesulphonate).
20

 In this system 

the polymer charge is independent of pH and ionic strength. More recently latex 

particles stabilised using poly(glycerol monomethacrylate) has been shown to 

stabilise emulsions. By varying the degree of polymerisation of the pGMA chains, 

the wettability of the particles change and influence the emulsion behaviour.
21, 22

  

Adsorbing surface-active polymers onto the surface of nanoparticles or grafting 

them from their surface drives in most cases the production of extremely efficient 

particle emulsifiers.
6
 The enhanced emulsification effectiveness of polymer grafted 

particles in comparison to bare particles is attributed to the surface activity of the 

polymer. The grafted surface-active polymer chains such as pDMAEMA can 

penetrate the oil/water interface and decrease the interfacial tension,
20

 whilst bare 

particles have no effect on the interfacial tension.
9, 23

 In addition the polymer may 

impede droplet flocculation of two approaching droplets via steric or electrosteric 

repulsion forces preventing thin film drainage.
24

  



142 

 

In this work, I examine the effect of both pH as well as ionic strength on stability of 

the produced emulsions using two pMMA-b-pDMAEMA sterically stabilised latex 

particle samples (SM01 and SM03) (Chapter 5). In particular, the aim is to expand 

on previous work
18, 25 

to investigate the influence of latex particles of similar size but 

varying pDMAEMA block length on emulsion stability.  

 

6.2.2. Materials and Methodology 

6.2.2.1. Preparation 

Once the particles were synthesised via emulsion polymerisation (Chapter 4 and 5) 

and cleaned via dialysis, the particle concentration was assessed by gravimetric 

studies. The particles were then diluted accordingly to obtain a suspension at a 

concentration of 2 wt% in 5 mL of Milli-Q water at different pH (ranging from pH 2 

to 11, adjusted using HNO3 and KOH). In this case, the background electrolyte 

concentrations were also varied from a case where no electrolyte was added to a 

case where the electrolyte concentration was 1M KNO3. Once the particle 

dispersions were prepared, an equal volume of hexadecane oil (≥99%, Sigma- 

Aldrich) was added to the vial (compensating for the addition of acid/alkali), to 

subsequently produce emulsions containing equal volumes of both the continuous 

and dispersed phases via homogenisation. The latter step was performed using a 

rotor-stator, which was previously cleaned with a solution of Decon 90 surfactant 

followed by washes in Milli-Q water, ethanol (≥99%, Fisher Scientific) and acetone 

(≥99%, Sigma-Aldrich) and was left to dry before use. The samples were 

homogenised using an Ultra Turrax T25 (IKA) homogeniser for 2 minutes at a 

rotation speed of 15,000 rpm. The stability of the emulsions was assessed as a 

function of time by recording the apparent changes in the level/volume of coalesced 

oil at the top of the sample. The rotor was cleaned with water, ethanol and acetone 

after preparing each sample and left to dry before use. 

 

6.2.2.2. Characterisation       

Digital images of the emulsions contained within the vials were taken with a Canon 

EOS 550D camera immediately after the emulsions were made and after 24 hours. 

This was used to measure the stability of the emulsions with respect to time. In 
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particular, the amount of oil coalesced after 24 hours was assessed at the different 

pH’s and electrolyte concentrations.  

The emulsions were also characterised using light scattering by using a Mastersizer 

2000 (Malvern) to obtain information regarding the droplet size and their size 

distribution for the different emulsification conditions. During a measurement the 

sample is passed through a focussed laser beam.
26

 The sample scatters the light at an 

angle that is inversely proportional to their size. The angular intensity is measured 

using multiple photosensitive detectors. This angular intensity is the primary source 

of information used to calculate the sample size based on either Mie scattering 

(angle dependent) or by using the Fraunhofer approximation. The Fraunhofer 

approximation does not require any of the optical properties of the sample to be 

known (whereas the properties are needed for Mie scattering) and thus it leads to 

significant errors. The Mastersizer also contains a short wavelength blue light for 

increased sub-micron resolution, which is used in conjunction with the forward and 

backward scatter.  

To prepare samples for measurement, the cell of the Mastersizer was filled with 

Milli-Q water prepared at the desired pH and electrolyte concentrations. A few 

drops of the emulsions were added until light signal was obscured to generate a size 

measurement. Typically 10 measurements were taken for each sample, which were 

averaged and plotted as size distributions based on volume %.   

In addition optical micrographs of the droplets were taken using an Olympus BX51 

microscope. The droplets were analysed using Cell^D (Olympus) imaging software 

to obtain information regarding both the size and size distribution of the emulsion 

droplets.  

 

6.2.3. Results and Discussion 

6.2.3.1. Stability of emulsions - effect of pH 

The two latex samples (SM01 and SM03) were dispersed in Milli-Q water at 

varying pH and electrolyte concentrations to investigate their ability to stabilise 

emulsions under these different initial conditions. The emulsions were left to stand 

for 24 hours and the stability of the emulsions was assessed by digital micrographs 

and droplet size after 1 hour and 24 hours. It should be noted that in this emulsion 
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stability study, both the base particle size and the pMMA block lengths are relatively 

similar (14 and 16) therefore this study investigates the influence of the pDMAEMA 

block length and the polymer density. Emulsions prepared using both latex samples 

at varying pH values for no added electrolyte to the continuous phase are illustrated 

in Figure 6.4. 

 

Figure 6.1.  Emulsions stabilised with polystyrene latex particles sterically 

stabilised using a) SM01 and b) SM03. The figure shows digital micrographs 

of the emulsions, 24 hours after they were produced (top) and the droplet 

diameter distribution based on volume % as a function of pH for no added 

electrolyte to the continuous phase. 

 

Digital micrographs and droplet size data of emulsions stabilized using latex 

particles stabilized with SM01 (Figure 6.1a) show varying degrees of stability as a 

function of pH. At pH 9.6 the emulsion is observed as being very stable and yields 

the smallest droplet size (mean size of 25 µm) with the narrowest droplet size 

distribution. At this pH the pDMAEMA chains are deprotonated and collapse on the 

surface of the particle, allowing the latex to act as an efficient particulate emulsifier 

and strongly adsorb on the oil-water interface. One deduces from these data that the 

low affinity of the polymer for the continuous phase drives adsorption of the 

particles for the interface. Increasing the pH to 10.9, a layer of oil phase is clearly 
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visible above the emulsion phase, indicating that the emulsion is unstable and that it 

is undergoing coalescence followed by macroscopic phase separation. This is 

confirmed by the droplet size distribution data showing a broad distribution with a 

mean diameter of around 200 µm. At pH 10.9 the polymer is collapsed on the 

surface of the particle and the insolubility of the polymer into the continuous phase 

causes particle aggregation as demonstrated with an increase in particle size (Figure 

6.1 left). This means that the particles are likely to adsorb on the surface of the 

droplets as aggregates, which leads to an increase in droplet size. When pH is 

lowered in the range from 7.9 to 3, the emulsions become unstable and a layer of oil 

is observed above the emulsion phase. This is due to the pDMAEMA chains 

becoming protonated and cationic and becoming very soluble in the water phase.
27 

This reduces the affinity of the particles for the oil/water interface and this in turn 

destabilizes the emulsion. These observations of emulsion stability/instability as a 

function of pH matches previous reports.
18, 25

  

When reducing the pH further to pH 2.3, the emulsion created appears stable and 

produces droplets of around 100 µm. This observation does not match the findings 

reported by Amalvy et al.
26

 who found 100% coalescence at pH 2.2 with no added 

electrolyte to the continuous phase. The observation of a stable emulsion at pH 2.3 

in the system studied here can be potentially explained with regards to charge 

screening of the pDMAEMA chains. Upon adjusting the pH to 2.3, the background 

electrolyte concentration increases significantly and this screens the cationic charge 

of the polymer. This causes the polymer to collapse on the particle surface and 

increase the affinity of the latex to the oil/water interface producing stable 

emulsions. In addition the sterically stabilised particles used in this study have 

different chain lengths and polymer densities compared to the particles investigated 

by Amalvy et al.
25

 

The trend in emulsion stability as a function of pH (under no added electrolyte 

conditions) is slightly different when using SM03 (Figure 6.1b). At pH 9.5 and 10.6 

the digital micrographs show that the emulsions are similar to the emulsions 

stabilized using the previous latex sample. However, as the pH is lowered below 9.5, 

stable emulsions are observed from pH 9.5 to pH 6.6. As a typical example from this 

range of pH, droplet size data show a monomodal peak with an average droplet size 

of 40 µm at pH 8.6. The observation of stable emulsions at pH values as low as 6.6 

can be explained if we consider the grafting density of the di-block copolymer on 
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the surface of the particles (obtained from 
1
H NMR Chapter 4 and 5) as illustrated 

by Table 6.1. 

 

  SM01  SM03 

Average molecular 

number, Mn (g mol
-1

) 
10110 40340 

Chains/nm
2 1.8×10

-2
 4.5×10

-3
 

Chains/particle 53 29 

Amine groups/particle 2862 7105 

 

Table 6.1.  Grafting density data of the diblock co-polymer on the surface of latex 

particles (Re-inserted from Chapter 5). 

 
 The grafting density data presented in Table 6.1 show that for latex particles 

stabilized with SM03 the number of pDMAEMA chains per particle is around 29 

which is a relatively low. This low grafting density means that the affinity of the 

particle for the interface is less dictated by the behaviour of the polymer compared 

to particles stabilised by SM01. The particles have good affinity for the interface 

which is not compensated for fully by the protonation of the polymer until below pH 

6.6.  Further decreasing the pH below 6.6 up to pH 2.5, the polymer becomes fully 

protonated and induces a much lower affinity for the interface for the particles. This 

results in turn in macroscopic phase separation as seen by the presence of an oil 

layer above the emulsion phase at these low pH’s as well as the broad bi-modal size 

distribution data shown in Figure 6.4. It is interesting to note that in the case of 

SM03 the emulsion at pH 2.5 is unstable, compared to the stable emulsion seen with 

SM01. This is because pDMAEMA254 has more tertiary amine groups (up to 4.5 

times more) in comparison to pDMAEMA54, so the number of amine groups per 

particle is much larger. This means that at pH 2.5, even though electrolyte is added 

via pH adjustment, this process is less efficient at screening the charge on the 

polymer and thus an unstable emulsion is obtained. 

 

6.2.3.3. Stability of emulsions - effect of added electrolyte concentration 

The effect of added electrolyte concentration on the stability of emulsions was 

investigated across the pH range. Emulsions stabilised by both of the latex particle 
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samples synthesized were investigated here and the appearance of the emulsions and 

the size distribution of the droplets produced were recorded. Figure 6.2 shows some 

of the data recorded for such emulsions produced at a range of pH’s and with a 

background electrolyte concentration of 10mM. 

 

Figure 6.2.  Emulsions stabilised with polystyrene latex particles sterically 

stabilised using a) SM01 and b) SM03. The figure shows digital micrographs 

of the emulsions, 24 hours after they were produced (top) and the droplet 

diameter distribution based on volume % as a function of pH in the presence of 

10mM KNO3 background electrolyte (after 24 hours). 

 

The addition of 10mM KNO3 background electrolyte to the aqueous phase generally 

improves the stability of the emulsions stabilised with latex particles stabilised 

pDMAEMA54. Comparing the digital micrographs in Figure 6.2a with those 

presented in Figure 6.1a, one can see a drastic reduction of the volume of coalesced 

oil phase present on top of the emulsion phase at the lower pH values for an 

increased background electrolyte. This improved stability is attributed to screening 

of the charges present on the polymer below its pKa. In this case, the polymer 

becomes less soluble in the continuous phase and adopts a less extended 

configuration (as seen in Figure 5.9) which potentially improves the wettability of 
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the particles at the oil/water interface. This is further confirmed by the droplet size 

data showing a shift towards smaller recorded emulsion droplet diameter at 10mM 

as compared to the case where no additional salt is present.  

 

Figure 6.3.  Plot of volume % of free oil layer as a function of pH and electrolyte 

concentration stabilised by a) SM01 and b) SM03 after 24 hours. 

 
In the case of emulsions stabilised by the SM03, the addition of electrolyte seems to 

increase the stability of the emulsions created at pH 2.6 and 10.6 (Figure 6.3) that 

showed a relatively large volume of coalesced oil on their surface after 24Hrs in the 

absence of added electrolyte. The appearance of a stable emulsion at pH 2.6 (Figure 

6.2b) is indicative of the influence of the protonation of the polymer on the 

successful adsorption of the particles to the oil-water interface. Indeed, by adding 

electrolyte to the particle system prior to emulsification, the charged groups on the 

particle polymer sheath are (to an extent) screened from each other and from those 

of neighbouring particles. This phenomenon appears to facilitate a more efficient 

adsorption of the particles to the interface since the corresponding emulsions do not 

show any coalescence after 24 hours, oppositely to their counterparts prepared 

without added electrolyte. However, a noticeable amount of oil coalescence is 

present for emulsions prepared at pH 4.9 and 5.7. In this case, the combination of 

the added electrolyte and the electrolyte provided by the added acid counter ion to 

reach these moderately acidic pH’s does not appear sufficient to screen the polymer 

charges sufficiently to efficiently drive the particles to the interface. This is also 

indicated by the fact that these two systems produces droplets with a bi-modal 

distribution at relatively large sizes. At pH 10.6, the addition of electrolyte yields a 

stable emulsion by potentially driving the particles to the oil/water interface where 
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they subsequently adsorb and stabilise the droplets. The grafting density is also 

much lower than SM01 which may potentially explain the improvements in stability. 

The digital micrographs and droplet size distribution of emulsions created using 

both latex particulate systems with the addition of 100mM KNO3 background 

electrolyte is presented in Figure 6.4. Emulsions produced with pDMAEMA54 do not 

appear to present coalesced oil layers at any pH. The average droplet sizes are 

similar at all pH’s and have shifted to larger sizes in comparison to the droplet sizes 

obtained with 10mM added electrolyte concentration. The size distribution in Figure 

6.4 also appear much broader, potentially indicating particle flocculation (polymer 

insolvency) at the high pH values and aggregation at the lower pH values leading to 

larger droplet sizes.
28

  

Emulsions produced at all pH’s except pH 3.4 showed no coalesced oil after 24 

hours when using latex particles stabilised using pDMAEMA245 (although a longer 

time period such as 1 week or 1 month needs to be examined in the future for a 

stricter test). A small volume of oil phase appears above the emulsion phase 

indicating that at this pH the amine groups are protonated and have a reduced 

affinity for the interface. The addition of electrolyte to these particles also cause 

flocculation (due to polymer insolvency) (high pH) and aggregation (low pH) as a 

broad/bi-modal size distributions are observed for emulsions created at pH’s 2.5, 5.3 

and 11.2.     
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Figure 6.4.  Emulsions created with polystyrene latex particles sterically stabilised 

using a) SM01 and b) SM03. The figure shows digital micrographs of the 

emulsions, 24 hours after they were produced (top) and the droplet diameter 

distribution based on volume % as a function of pH in the presence of 100mM 

KNO3 background electrolyte. 

 
The addition of 1M KNO3 (Figure 6.5) produces stable emulsions across the whole 

pH range for both latex systems. However, due to the high electrolyte concentration, 

the particles are aggregated and this leads to droplets having either broad or a bi-

modal size distribution. The observation of improved stability as a function of 

electrolyte concentration matches the findings presented by Amalvy et al.,
25

 who 

reported a reduction in coalescence of emulsions created at pH 2.2 with increasing 

electrolyte concentration.      
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Figure 6.5.  Emulsions created with polystyrene latex particles sterically stabilised 

using a) pMMA14-b-pDMAEMA54 and b) pMMA16-b-pDMAEMA245. The 

figure shows digital micrographs of the emulsions, 24 hours after they were 

produced (top) and the droplet diameter distribution based on volume % as a 

function of pH in the presence of 1M KNO3 background electrolyte. 

 

In conclusion it has been shown that both the pH and electrolyte concentration have 

an influence on the emulsion stability to droplet coalescence. Furthermore 

comparing particles with two different pDMAEMA chain lengths and grafting 

densities also have an influence on the emulsion behaviour. 
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6.3. pH-responsive ‘Colloidosome’ microcapsules from emulsion 

templates
1
 

6.3.1. Introduction 

Designing novel encapsulation systems for efficient delivery of actives has been of 

great focus in recent times both in the academic and industrial domain.
30

 The 

potential for delivering actives accurately, site-specifically and controlling dosage 

have been the key drivers for the surge in interest. Although many different systems 

have been developed,
30-32

 very few reach manufacturing stage due to the associated 

complexities in producing such highly functional capsules. 

One particular class of microcapsule systems holding great promise are those 

fabricated based on particle-stabilised emulsion templates often referred to as 

‘colloidosomes’. The first structures of these type were reported by Velev et al.
5, 33, 

34
 who introduced oil emulsion droplets into a dispersion of micron-sized latex 

particles. The particles coated the droplet and provided stability to the system. The 

inter-particle interactions were tailored by the adsorption of surfactants onto the 

particle surface prior mixing the droplets into the particle suspension. This process 

was referred to by the authors as ‘interaction tailored colloid assembly’. In the third 

paper of the series they introduced the concept of manufacturing water-core 

structures that were developed further by Dinsmore et al.
6
 who coined the term 

‘colloidosomes’.  

Yi et al.
35

 and Ashby et al.
36

 improved the size distribution of the fabricated 

colloidosomes using a technique based on the self-assembly method. In this 

technique the particle suspension is introduced into a co-flowing, surfactant rich 

continuous phase using a tapered capillary. Cayre et al.,
37

 Noble et al.
89

 and Duan et 

al.
39

 developed other types of colloidsome microcapsules using a gel trapping 

technique. In this process, instead of a liquid core, the aqueous dispersed phase and 

the particle monolayer on the interface is trapped  resulting in colloidosomes with a 

solid-like core. This technique allows for a better support of the shell giving added 

                                                 

1 The research presented in this section also contains some data collected by Mr. James Hitchcock, an 

M.Sc. student working in our labs, and are included in his MSc thesis (August 2011). The data 

which were obtained by James that are presented in this section will be explicitly 

acknowledged.  
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stiffness and ability to the droplets produced with the aim of improving the strength 

of the structures.  

The production of these microcapsules is done by permanently locking the particle 

monolayer adsorbed onto the particle surface via chemical and physical processing 

(annealing, chemical cross-linking or physical bridging through adsorption of high 

molecular weight polymers).
40

 The encapsulation of actives in these microcapsules 

is likely to be achieved on the basis of size-exclusion, as the interstices between the 

particles control the pore size in these microcapsule membrane. The porosity can be 

potentially controlled by various means e.g. annealing processes or changing the 

particle size forming the monolayer.  One of the important advantages in the 

fabrication of such capsule systems is that they can be easily prepared using 

common industrial emulsification techniques and are therefore adapted for being 

scaled-up to an industrially relevant scale.  

Over the last decade several examples of colloidosome microcapsules have been 

developed reporting a range of membrane properties and functionalities.
6, 37-39, 41

 

Initial studies on the release properties of colloidosome microcapsules have focused 

on the extent of annealing to control the release rate of different chemical species.
42

 

To date, there have been only few systems that have demonstrated and reported the 

use of responsive materials within the microcapsule membrane, to control the rate of 

release of encapsulated species. For example, the use of microgel particles that swell 

in response to an external stimuli e.g. temperature.
43

 Recently, it has been 

demonstrated that it is possible to use a sterically-stabilised latex particles to create a 

permanent shell around the emulsion droplet.
21, 40, 44, 45

 

It has been shown in principle that polystyrene latex particles coated with a 

responsive polymer shell made of pMMA-b-pDMAEMA can be used to fabricate 

colloidosome microcapsules.
40

 As mentioned previously in Chapter 6, the polymer 

forming the particle shell provides responsive properties as it expands away from the 

particle surface at low pH’s and collapses back onto the surface at high pH’s. The 

permanent locking of the particle monolayer is achieved by annealing the polymer 

shell on the particle surface or by cross-linking the polymer on adjacent particles 

within the monolayer.
40, 45

 The cross-linking method allows one to work at high 

concentrations as the cross-linker is located within the dispersed oil phase, thus the 

reaction is limited to  the polymer in contact with the oil phase. This process avoids 
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potential risks for cross-linking adjacent particle monolayers (on separate emulsion 

droplets). This prevents the potential issue of multiple capsules inter-locking and 

fusing together which can limit and restrict the concentrations that one can work 

at.
46

  

The work described in the subsequent sections details the fabrication of such 

colloidosome microcapsules and demonstrate that they can be used as a pH-

responsive system to control the loading and the eventual release of water soluble 

species. 

 

6.3.2. Materials and Methods 

6.3.2.1. Preparation of capsules 

Previous studies within the research group have investigated the use of 1, 2-bis(2-

isodoethyloxy)ethane (BIEE) to cross-link the amine groups, however this cross-

linking mechanism appeared to occur over several days. Walsh et al. used a 

poly(propylene glycol)diglycidyl ether (PPG-DGE), an oil soluble cross-linker that 

showed improvements in the reaction times.
47

 In their work, they cross-linked 

primary and/or secondary amines whilst in this study, PPG-DGE was shown to 

cross-link the tertiary amines from the hexadecane oil phase.  

The hexadecane phase was firstly prepared; 0.3 g of PPG-DGE was dissolved in 25 

mL of hexadecane oil from which 3 mL was taken and added to a 3 mL, 2 wt% 

particle dispersion of the polystyrene latex particles sterically stabilised using 

pMMA16-b-pDMAEMA254 in Milli-Q water at pH 8.5. The two phases were 

homogenised for 2 minutes at a rotating speed of 20,000 rpm. The emulsion was left 

to stand at room temperature for 30 minutes for the cross-linking to occur. A study 

was also conducted on the effect of cross-linking time and concentration of the 

cross-linker on the formation of the capsules. 

In order to remove the internal oil phase of the microcapsule, a 2:1 ratio of 

isopropanol (IPA) to water was prepared. 0.1 mL of the emulsion was added to 

0.9mL of the isopropanol/water mixture in a 1 mL eppendorf centrifuge tube and 

was redispersed using a Vortex Genie mixer (Scientific Industries) for 30 seconds 

and a carousel mixer for 30 minutes. Once dispersed the sample was centrifuged for 

2 minutes at 7,000 rpm to sediment the capsules and remove the supernatant. These 
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centrifugation and re-dispersion cycles were repeated 3 times and a further three 

times using 0.9 mL pure IPA to ensure full removal of the oil in the samples. The 

microcapsules were then washed twice using centrifugation and redispersion cycles 

with firstly 0.9 mL 2:1 IPA/water mixtures and then with 0.9 mL pure Milli-Q 

water. This resulted in the string-bag capsules being dispersed in water with a water 

filled core. Further details regarding the process of how the oil core is removed is 

outlined in Section 6.3.3. 

 

6.3.2.2. Loading of dextran within the microcapsule core 

After the removal of the oil core the microcapsules dispersed in water had a 

collapsed appearance. Subsequently, the pH of the aqueous suspension was changed 

to 3 using  a 0.1M HNO3 solution to allow protonation of the unreacted amine 

groups on the di-block copolymers within the particle membrane, to maximise the 

membrane porosity of the microcapsules. Thereafter, a mother solution of FITC 

(Fluoresceinisothiocyanato) dextran (<1/10 of total volume) was added to the 

microcapsule system to reach a concentration of 1wt% and allowed to mix on the 

carousel for 30 minutes. The sample was then further diluted (10x) with Mill-Q 

water and the pH was adjusted to 10 using a 0.1M NaOH solution. The pH was 

increased to 10 minimize the membrane porosity. The excess dextran was removed 

by centrifugation of the microcapsules, removal of the supernatant and then 

redispersion into pH 10 water. The obtained loaded microcapsules were used to 

investigate the controlled release of the FITC dextran at different pH’s.         

 

6.3.2.3.  Confocal microscopy studies  

Once, the microcapsules were loaded with FITC dextran (Molecular weight = 

70,000) and the excess dextran removed from bulk via centrifugation, the sample 

was divided into two equal volumes. One was washed three times using pH 10 water 

and the other washed three times using pH 3 water, this was to ensure that the final 

pH’s of both dextran-loaded samples were close to 10 and 3, respectively. The 

capsules were stored for 5 hours before confocal micrographs on both samples were 

recorded.    
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Release studies were conducted using a confocal laser scanning microscope (Zeiss 

LSM 510 META Axiovert 200M). Using a step size of 1µm several Z-scan images 

were recorded for each sample. These images were overlapped to produce a 3D 

reconstruction of the samples. Additionally one 1µm slices through the microcapsule 

samples at pH’s 3 and 10 were taken to distinguish whether the dextran was located 

on the capsule shell or present within with the capsule core. To quantify whether 

dextran was encapsulated or released as a function of pH, fluorescent intensity 

measurements were done on at least 50 capsules at both pH’s. Care was taken not to 

include any intensity measurements associated with the capsule shell when 

calculating the intensity for the microcapsule core.     

 

6.3.3. Results and Discussion 

As reported in section 6.2 the ability for the sterically stabilised latex particles to 

stabilise oil/water emulsions was demonstrated to be most efficient at basic pH’s. 

This is highlighted again in Figure 6.6 showing a digital photograph of the 

emulsions prepared at different pH conditions and an optical micrograph of the 

droplets prepared at pH 8.5. All emulsions prepared at pH’s between 8.5 and 9 were 

subsequently used as templates for the preparation of the colloidosome 

microcapsules as these produced the most stable emulsions. 

 

Figure 6.6.  Emulsions prepared with 2wt% sterically stabilised polystyrene latex 

particles dispersed in the aqueous phase and an equal volume of oil phase. The 

images show emulsions created as a function of pH (left) and an optical 

micrograph of the emulsion sample prepared at pH 8.5. 
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The microcapsules were obtained by the cross-linking the particles adsorbed at the 

oil-water interface using an oil-soluble cross-linker with very low solubility in the 

aqueous phase. This allows the possibility of working with high emulsion droplet 

volume fractions which is advantageous for creating such systems on a large scale.
20, 

40, 44 
The cross-linker quarternizes the amine groups (has been confirmed when using 

the BIEE cross-linker and is likely for PPG but remains to be confirmed/explored) 

present on the di-block copolymer which potentially reduces the pH responsive 

properties of the polymer. However, as the data will demonstrate below this 

potential issue does not appear to be significant enough to affect the responsive 

properties of the microcapsules produced via this method. The cross-linker was 

added to the oil phase and an equal volume of aqueous phase containing the particle 

dispersion at pH 8.5 - 9 was added and emulsified using the Ultra-Turrax emulsifier. 

When using the BIEE cross-linker, 24 hours was sufficient to ensure that the 

microcapsules could sustain the removal of the oil phase using the co-solvent 

treatment described in section 6.2.2.1. In the case of the PPG-DGE cross-linker, the 

cross-linking time needed to ensure a fully cross-linked structure was considerably 

reduced to 30 minutes.     

In order to encapsulate water soluble species with the microcapsule core, it is 

necessary to remove the oil core using a co-solvent that is miscible with both the oil 

and aqueous phases. The images in Figure 6.7 clearly show that the capsules swell 

upon the addition of IPA to the system. It is postulated that the IPA diffuses into the 

capsule core initially (there is a large driving force this and the IPA and oil and 

miscible), causing an increase in the internal pressure of the capsule (which causes 

the emulsion droplets with a particulate membrane lightly cross-linked using 0.1 

wt% BIEE to rupture). At the boundaries of the capsule (crosslinked using a 2 wt% 

cross linking concentration), mixing of the oil, IPA and water can occur and some of 

the oil is solubilised into the IPA-water mixture giving a 1-phase solution. As this 

process continues the IPA-oil core is gradually solubilised to a 1-phase mixture, 

which will have a constant composition throughout the whole system and so there is 

no longer an elevated pressure inside the capsules and they relax. This whole 

process is governed by the chemical potentials, diffusion rates and mixing. The IPA 

is miscible with both the oil and water, but the oil and water can only mix in the 

presence of IPA. Clearly, the diffusion of the IPA throughout the whole system 

(inside and outside the capsules) is quicker than the mixing/solubilisation of the 3-
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components into a 1-phase system. So we have a swelling and then relaxation. 

Figure 6.8 shows the reduction/removal of the oil phase in the microcapsule core 

with subsequent washes with IPA:water washes. 

 

Figure 6.7.  Optical micrographs of two emulsion samples using two different cross-

linker concentrations, 0.1 wt% (top) and 2 wt% (bottom) that are cross-linked 

for 24 hours. The first image in both sets is taken shortly after the addition of 

isopropanol and subsequent images are taken every 15s. (Scale bar = 100µm). 

 

 

Figure 6.8.  Optical micrographs showing the reduction/removal of oil phase over 

time inside a colloidosome microcapsule in the IPA:water wash cycle. [Data 

acquired by Mr. James Hitchcock and used with his permission].
48

 

 

Increases in the core volume causes the particle films to push against each other. 

Where the film is unmodified or lightly cross-linked, it is expected that the film will 

rupture during core volume expansion as illustrated by Figure 6.7. In the case, where 

2 wt% cross-linker concentration is used the particle films are cross-linked to a 

suitable degree and are able to sustain induced pressure from the volume expansion. 

It should also be noted that in the case of the higher cross-linker concentration the 
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particle membrane of the microcapsules was found to be very strong and not as 

elastic as the lightly cross-linked system. The swelling due to the addition of 

isopropanol was hardly noticeable. 

 

Figure 6.9.  Micrographs of microcapsules prepared using a 1wt% BIEE cross-

linker concentration at different stages. The optical micrographs (top) show the 

microcapsules suspended in water after the removal of the oil core, the 

scanning electron micrographs (middle) showing the dried microcapsules, and 

optical micrographs (bottom) illustrating the microcapsules in suspension after 

the addition of dextran to the aqueous phase to reach a 1 wt% concentration. 

 
Upon the gradual removal of the oil core using isopropanol, the microcapsules were 

observed to collapse on themselves as illustrated by Figure 6.9 (top image). This is 

most likely due to a small amount of the oil phase located around the microcapsule 

membrane during the washing process (where most of the oil has been removed), 

causing the microcapsules to deflate and collapse onto themselves.  

The microcapsules were observed using scanning electron microscopy, that further 

demonstrated successful cross-linking of the particle membrane. The middle images 

in Figure 6.9 show a number of ‘folded’ microcapsules from a sample prepared 

using a cross-linker concentration of 1wt%. The bottom images demonstrate that 



160 

 

these microcapsules are able to re-swell after removing the oil phase from the core. 

This re-swelling is achieved by firstly switching the aqueous pH to acidic values, 

causing the  (non-crosslinked) amine groups within the polymer on the surface of 

the particles to protonate. This causes an increase in the inter-particle distance 

within the particle membrane maximising the membrane pore size, thus increasing 

the membrane porosity. Although at these acidic pH values the polymer expands, 

this is insufficient for the complete and homogeneous re-swelling of the 

microcapsules (in these condition only 20% of the microcapsules were seen to re-

swell). In contrast, when a 70 kDa dextran molecule was added to the aqueous 

continuous phase, this was observed to force the re-swelling of (almost all, ~90%) 

the microcapsules.  

The mechanism of this re-swelling still needs to be investigated in greater detail. 

However, it can be postulated that this is due to the presence of a large difference in 

chemical potential between the aqueous continuous phase and the inner core of the 

microcapsule. This results in driving the labeled dextran into the core of the capsule 

along with water, equalising the concentration on both sides of the microcapsules. It 

is likely that it is this process that causes the microcapsules to swell up back to their 

original size. This process and procedure corresponds to step 2 in Figure 6.10. 

The procedure regarding the loading and retention of the dextran molecules within 

the microcapsules and its subsequent release in response to pH stimuli is described 

by Figure 6.9.  

Once the dextran penetrates into the core of the microcapsule and the system 

equilibrates (step 2), the pH of the aqueous continuous phase is switched to pH 10 to 

‘close’/reduce the membrane pores by deprotonating the amine groups within the 

polymer causing it to collapse onto the particle surface. The excess dextran is 

washed off using multiple centrifugation and re-dispersion cycles (step 3). The last 

step (step 4) describes how these microcapsules can selectively release their contents 

by switching the pH back to acidic values causing the polymer to protonate and thus 

increase the inter-particle distance making the membrane more porous. 
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Figure 6.10.  Schematically illustrating the procedures for loading the dextran 

molecules within the responsive colloidosome microcapsules and subsequently 

releasing it into the continuous in response to pH stimuli. 

 

 

Figure 6.11.  Transmitted (top) and fluorescence (bottom) optical micrographs of 

the colloidosome microcapsules corresponding to step 3 of Fig. 6.12, where 

the dextran is encapsulated at pH 10 using different BIEE cross-linking 

concentrations of 0.1 wt% (left), 0.5 wt% (middle) and 1 wt% (right). The 

dextran is loaded at pH 3 and the excess is removed using multiple washing 

steps after changing the pH to 10. 
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The process of encapsulating the dextran species within the microcapsule cores as a 

function of cross-linking concentration is presented in Figure 6.10. When a low 

cross-linking concentration (0.1 wt%) is used, it is clear from the micrographs that 

most of the microcapsules remain collapsed and are unlikely to be loaded with the 

fluorescently-labelled dextran molecules. This matches the observations presented in 

Figure 6.11, since the microcapsule membrane is not robust at this BIEE cross-linker 

concentration. Thus the process of removing the oil core could cause the rupture of 

the particle film in this case. However, the micrograph does show that the dextran 

appears to adsorb onto the surface of the resulting structures. In the case of the other 

two samples (0.5 wt% and 1 wt%), the optical micrographs show that upon loading 

with dextran the microcapsules swell back to a shape similar to that of their initial 

spherical structure. This fact that the microcapsules have swollen back to their initial 

shape suggests that at these cross-linker concentrations the dextran is not only 

adsorbed on the surface of the microcapsules, but is also present with the core. 

However, further evidence is needed to confirm the presence of dextran within the 

microcapsule membranes as the optical microscope used in these observations does 

not provide 3-dimensional information. This is provided later in this section. It 

should be noted in the case where 0.5 wt% and 1 wt% BIEE cross-linking 

concentration was used, no significant loss of dextran was recorded during the 

washing process. This suggests that colloidosome microcapsules cross-linked with 

either 0.5 wt% or 1 wt% of BIEE cross-linker may be candidate systems for the 

successful encapsulation and retention of 70 kDa dextran molecules.  

In addition to the BIEE cross-linker we also investigated an alternative crosslinker; 

poly(propylene glycol) diglycidyl ether (PPG-DGE) to cross-link the polymer 

stabiliser on adjacent particles at the oil-water interfaces. This epoxy based 

compound reacts efficiently with primary and secondary amine groups. Its efficacy 

in reacting with tertiary amines has not been demonstrated, however, we show in the 

subsequent section that it was successful in permanently locking the particles used in 

our system for the   preparation of the corresponding colloidosome microcapsules.
32

 

The pDMAEMA block of the stabiliser used in this study contains a tertiary amine. 

The cross-linker reacted sufficiently to create a permanently particle shell as evident 

by scanning electron microscopy as illustrated in Figure 6.12.  
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Figure 6.12.  Successful cross-linking of the polymer stabiliser between the adjacent 

particles using the  PPG-DPG cross-linker. [Data acquired by Mr. James 

Hitchcock and used with his permission].
48

 

 

The responsive properties of these microcapsules produced using the PPG-DPG 

cross-linker were tested after removal of the oil core as described by the procedure 

in Figure 6.10. The microcapsules were loaded with the fluorescently-labelled 

dextran by adding an excess to a suspension of capsules dispersed at pH 3. At this 

pH the size of the membrane pores are maximised due to the protonation of the 

amine groups. Once the capsules are loaded with dextran the pH is switched to pH 

10, deprotonating the amine groups and causing the pore size to decrease with the 

aim of retaining the loaded dextran. Multiple washes with pH 10 water are 

subsequently carried out to remove any excess dextran in the continuous phase.  

Optical fluorescent micrographs of the dextran-loaded microcapsules are illustrated 

in Figure 6.13. It is clear from the micrograph shown that there is little/no dextran 

present in the continuous phase in comparison to the fluorescent intensity observed 

within (on the surface of) the capsules. This observation was further verified by 

performing intensity measurements. These data demonstrate that although there is 

strong adsorption of the dextran on the outer membrane shell, the desorption from 

the shell and leakage from the interior of the capsule is relatively low at pH 10 

(shown later in Figure 6.14b). 
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Figure 6.13.  Fluorescent optical micrographs of the colloidosome microcapsules 

loaded with labelled dextran at pH 10. At this pH the pores are minimised in 

their size allowing the detran to be encapsulated with minimal leakage. These 

capsules were cross-linked using the PPG-DPG cross-linker. [Data acquired 

by Mr. James Hitchcock and used with his permission].
48

 

 

To confirm the location of the dextran and to investigate the potential for pH 

induced release of the dextran, fluorescence confocal microscopy was performed on 

these microcapsules. The ability of confocal microscopy to allow 3-D visualisation 

of the location of the fluorescent species allows for differentiation between the 

dextran molecules adsorbed onto the microcapsule surfaces and those present in 

their cores. The microcapsules were initially loaded with dextran at acidic pH values 

and then switched to pH 10 to close the pores of the capsules as mentioned above. 

The sample was then divided into two equal volumes where one was kept at pH 10 

for 5 hours, whilst the other was kept at pH 3 for 5 hours.  

The fluorescence confocal micrographs presented in Figure 6.14a shows these 

microcapsules at the two different pH’s representing a 1µm slice through the 

microcapsule. It is clear from this image that a significant amount of the dextran is 

adsorbed onto the shell of the microcapsule. From the images it is clearly evident 

that at pH 10 the dextran is retained within the interior of the microcapsules. At pH 

3, the micrograph clearly shows that the dextran is released from the microcapsule 
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core into the continuous phase as the polymer on the surface of the particle film 

protonates increasing the pore size, but it is also clear that the desorption of the 

dextran from the microcapsule surface is limited. 

 

Figure 6.14.  (a) Fluorescent confocal micrographs (1 µm slice) of two 

colloidosome microcapsules loaded with labelled-dextran kept at pH 10 and 

pH 3 for 5 hours after loading. (b) Fluorescent intensity measurements carried 

out on the microcapsules present in a), detailing both the average intensity of 

the continuous phase and  the capsule core. [Data acquired jointly by myself 

and Mr. J. Hitchcock].
48

 

 

Fluorescent intensity measurements of the microcapsule interior and the continuous 

phase were performed for both samples and is presented in Figure 6.14b. These 

observations were made under the same conditions using the same exposure time of 
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the camera so that the images could be directly compared to each other. It can be 

concluded from these data that the dextran concentration is in equilibrium between 

the interior of the capsule and the continuous phase (background) at pH 3. At pH 10 

the intensity observed is much higher within the capsule core in comparison to the 

background,  which demonstrates successful retention of the 70 kDa dextran within 

the sample of microcapsules over a period of 5 hours.   
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Conclusions 

It has been demonstrated that polystyrene latex particles grafted with sterically 

stabilised polymer (pMMA-b-pDMAEMA), behave as a pH-responsive particulate 

emulsifier for the preparation of oil in water Pickering emulsions. Emulsions are 

readily formed at pH values around 8 - 9 in the presence of 2 wt% latex by mass. 

Unstable emulsions (over the course of 24 hours) with macroscopic phase separation 

occurs at acidic pH values due to the protonation of the amine groups on the 

pDMAEMA block, which presumably reduces the affinity of the particles to the 

oil/water interface. The addition of electrolyte to the system increases emulsion 

stability as the electrolyte screens the charges present on the polymer, thus 

increasing the affinity of the particles to adsorb at the interface and stabilise the oil 

droplets. 

These solid-stabilised emulsions can then be used as templates for the fabrication of 

pH-responsive colloidosome microcapsules. Using the pH-responsive properties of 

the particulate membrane shell, the microcapsules can successfully encapsulate and 

control the release of labelled dextran molecules as a function of changes in the 

environmental pH. The pH-responsive membrane is produced by chemically cross-

linking the polymer chains on adjacent particles at the interface. Confocal 

microscopy studies conducted at different pH’s showed that at acidic pH’s the 

membrane porosity is maximised and a rapid equilibrium of the dextran molecules 

occurs between the continuous phase and the capsule core. On the other hand the 

dextran molecules are retained at basic pH over 5 hours. The data clearly 

demonstrates that the colloidosome microcapsule membrane can be used to control 

the release rate of large molecules and acts as a size exclusion membrane. 
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CHAPTER 7: Production of solid-stabilised emulsions using Rotary 

Membrane Emulsification (RME) 

 
 

 

NOMENCLATURE 

kad   Adsorption rate constant 

Ad  Surface area of droplet covered with particles 

Ad, cr  Critical surface coverage value 

Ad, 0  Total surface area of droplet 

τad  Adsorption time 

τad,cr  Critical adsorption time 

τdrop  Droplet lifetime on membrane 
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7.1. Introduction 

This chapter describes and outlines an optimization study carried out on the use of 

rotational membrane emulsification (RME) to produce controlled Pickering 

emulsions. In this study two particulate emulsifiers (model silica colloids and 

sterically stabilised latex particles) are used to investigate and optimize various 

chemical and mechanical parameters related to RME for controlled droplet 

production.  

 

7.2. Surfactant-free emulsions stabilised by silica particles 

7.2.1. Surface chemistry of silica 

Silica (SiO2) consists of four oxygen atoms surrounding a single silicon atom in a 

tetrahedral arrangement as shown in Figure 7.1.  

 

Figure 7.1.  Schematic of tetrahedral arrangement of four oxygen atoms 

surrounding a silicon atom. 

 

The silicon atoms are joined together by oxygen via siloxane bonds (Si-O-Si). 

Depending on the method used to produce the silica particles, the surface may 

contain hydroxyl (silanol) groups, which can hydrogen bond with water adsorbed 

onto its surface, giving rise to a negative surface charge density.
1
 This negative 

surface charge can be assumed to be uniformly distributed over the particle surface.  
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Silica particles were used as a ‘model’ system to investigate and optimise the 

production of solid-stabilised emulsion droplets using a rotary membrane 

emulsification technique. Although there have been many reports on the use of 

membrane emulsification to produce near monodisperse emulsion droplets, the 

majority of these studies are focused on surfactant-stabilized emulsions.
2-4

 There are 

very few reports on the use of particulate stabilisers to produce low polydispersity 

emulsions.
5-7

 Therefore in this emulsification study ultra-high purity (>99.5% SiO2), 

near monodisperse 800 nm silica particles with a density of 2.26 g cm
-3

 were used 

which were obtained from Fuso Chemical Co. Ltd (Japan). 800 nm silica particles 

were chosen due to the potential of very high attachment energies at the interface 

(Chapter 2). Furthermore, for membrane emulsification experiments a large quantity 

of particles are usually required and therefore 800 nm silica was chosen as it was 

relatively inexpensive and available in a large quantity. To remove trace impurities, 

the silica particles were washed three times using ethanol (typically 1 g of silica was 

dispersed in 25 mL of ethanol and left on the carousel for 30 minutes, centrifuged 

for 3 mins at 5000 rpm and the supernatant was replaced with fresh ethanol). After 3 

washes with ethanol, three wash cycles with Milli-Q water (25 mL) were performed 

before finally dispersing into water at the desired pH and electrolyte concentration. 

Zeta potential measurements (see Chapter 4) were carried out to measure the zeta 

potential as a function of environmental pH and background electrolyte 

concentration as illustrated in Figure 7.2, to assess the stability of the silica 

dispersion.  
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Figure 7.2.  Illustrating the changes in zeta potential of 800 nm FUSO silica colloids 

as a function of pH at varying NaCl electrolyte concentrations. 

 

The zeta potential titration illustrates that under no added electrolyte conditions the 

silica is highly negatively charged around pH 6.5, with zeta potential values close to 

-50 mV. As the pH is decreased the silanol groups on the surface become uncharged, 

resulting in a decrease in the measured zeta potential. As the pH is decreased to 4, 

all the silanol groups are protonated, hence the zeta potential measured reduces to 

0mV. This is known as the point of zero charge or the isoelectric point (i.e.p). This 

value has been previously reported in literature for FUSO silica particles
8
 and also 

matches the specification reported by FUSO Chemical Company Ltd.
9 

The addition of background electrolyte also influences the zeta potential measured. 

Comparing the values around pH 6.5, it is evident that by increasing the ionic 

strength of the background electrolyte there is a reduction in the zeta potential 

measured. This can be explained by changes in the electric double layer thickness 

(see Chapter 4) and the screening of surface charges which potentially improve their 

adsorption to the liquid-liquid interface. This is due to the attraction of a layer of 

counter-ions towards the negatively charged surface of silica in order to achieve 

overall electroneutrality.
10

 As the ionic strength of the electrolyte is increased the 

concentration of counter ions surrounding the silica surface increases, reducing the 

Debye length (length over which significant charge separation occurs). This 
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screening of the surface charge therefore reduces the zeta potential observed at the 

slip plane.  

To examine the stability of the silica dispersion in terms of size, dynamic light 

scattering measurements were undertaken for two different pH’s as illustrated in 

Figure 7.3. 

 

Figure 7.3.  Illustrating the size distribution of 800 nm FUSO silica colloidal 

dispersions at two different pH values in an electrolyte concentration of 0.01M 

NaCl. 

 

The size distribution data shows that at pH 6 that the silica dispersion is highly 

stable. A monomodal peak is observed with a particle size of around 800nm in 

diameter. This stability is due to the highly negative charge density on the silica 

surface. Therefore the repulsive forces dominate over the attractive van der Waals 

force leading to a stable particle dispersion. Decreasing the pH of the dispersion to 

4.5 (close to the i.e.p), there is little/no charge stabilization on the silica surface 

which causes instability in the particle dispersion. The screening of the surface 

charge decreases the repulsive forces between the particles, allowing the attractive 

van der Waals forces to dominate, causing them to form aggregates. Performing 

sizing measurements at pH 4.5, a bi-modal size distribution is obtained with particle 

aggregate sizes of approximately 3 – 4 µm.  
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Performing zeta potential and particle size measurements show that the silica 

dispersion is stable at ~pH 6. The stability of the silica particles in terms of their size 

over a typical membrane emulsification period of 60 minutes was also measured at 

pH 6 at various electrolyte concentrations (Figure 7.4). 

 

Figure 7.4.  Variation in size of 800 nm FUSO silica colloids dispersion at pH 6 

over a typical emulsification time period at 4 different electrolyte 

concentrations; a) no added electrolyte, b) 0.01M, c) 0.1M and d) 1M NaCl. 

  

The data in Figure 7.4 shows that when the silica particles are dispersed with either 

no added electrolyte or 0.01M NaCl, they remain stable over the 60 minute 

measuring period. As the electrolyte concentration increases to 0.1M and 1M NaCl, 

the particles aggregate over the typical emulsification period. Particle aggregation 

occurs as the Debye length decreases with increasing electrolyte concentration, thus 

van der Waals attractive forces between the particles dominate, leading to particle 

aggregation.  

Before conducting membrane emulsification experiments it was important to ensure 

that at pH 6 the particles were able to adsorb to the tricaprylin/water interface. 

0.01M 

0.1M 1M 
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Tricaprylin oil was selected as the disperse phase in this study, as it has been 

previously demonstrated that silica particles are able to stabilise tricaprylin droplets 

in water using both homogenisation and microchannel emulsification techniques.
7
 

Therefore a preliminary emulsion study (using an Ultra-Turrax homogeniser) was 

conducted to determine the effect of electrolyte concentration on emulsion stability 

at pH = 6, by comparing digital micrographs and light diffraction data as illustrated 

in Figure 7.5. The purpose of this study was to determine the starting pH and 

electrolyte conditions in order to optimise emulsion droplet production using 

rotational membrane emulsification.  

 

 

Figure 7.5.  Silica stabilised emulsions produced at pH 6 under different electrolyte 

concentration via homogenisation. Emulsion stability determined using digital 

micrographs (left) and droplet size distribution (right), 24 hours after 

preparation. 

 

Emulsions created in the absence of added background electrolyte produced droplets 

having a bi-modal size distribution, 24 hours after the initial emulsion had been 

created.    The size distribution data shows a peak at around 40 µm, with a secondary 

peak at around 1000 µm. This larger peak is attributed to instability in the emulsion 

leading to coalescence and creaming. This instability is also visualised in the digital 

micrographs where coalesced droplets can be seen. The clear phase visible below 

the emulsion phase is a result of water drainage which sediments to the bottom due 
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to the density difference. The addition of background NaCl electrolyte shows an 

apparent increase in emulsion stability as a function of added electrolyte 

concentration. Size distribution data performed after 24 hours yielded monomodal 

peaks of around 30 µm (for 0.01M NaCl) and 15 µm (0.1M NaCl). Furthermore, the 

water phase is much smaller than that observed at no added and 0.1M NaCl 

electrolyte conditions. Therefore silica dispersions prepared at pH 6 in the presence 

of 0.1M NaCl electrolyte was taken as the starting conditions for the membrane 

emulsification experiments.  

 

7.2.2. Influence of pH and background electrolyte 

Initial studies were focused on investigating the role of pH and electrolyte 

concentration  of the continuous phase on droplet production using rotary membrane 

emulsification. These conditions would then be used to explore the impact of 

membrane rotational speed, injection rate of the disperse phase and particle 

concentration on the droplet size and size distribution (to be discussed later in the 

chapter). As mentioned in section 7.2.1, the starting pH and electrolyte conditions 

were based on preliminary experiments examining particle dispersion and emulsion 

stability.  

The average droplet size and polydispersity  as a function of varying pH conditions  

at a fixed electrolyte concentration of 0.1M NaCl are given in Figure 7.6. The initial 

membrane rotation speed and disperse injection rate of 1000 rpm and 0.1 mL min
-1

, 

were based on emulsion droplet data produced using surfactant stabilisers (see 

Figures 5a and 5b).
11

 These membrane rotational speed and oil injection rate values 

were used as they produced the smallest droplet size with the lowest coefficient of 

variation in the surfactant system studied. The initial particle concentration used is 

4.0 wt%. The data illustrated in Figure 7.6 and subsequent studies was obtained by 

taking optical micrographs of 100 droplets and measuring them using ImageJ 

software.  
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Figure 7.6.  Effect of pH on the diameter of tricaprylin droplets produced using 

RME. The continuous phase consisted of 4.0 wt% of 800 nm silica colloids in 

0.1M NaCl background electrolyte. The membrane rotational speed and oil 

injection rate were kept constant at 1000 rpm and 0.1 mL min
-1

, respectively. 

 

The effect of pH on the droplet diameter is inconclusive from the data presented in 

Figure 7.6 due to the large scatter in the data which represents the polydispersity of 

the emulsion sample.  However, the data does show an apparent decrease in the 

polydispersity of emulsion droplets as the pH decreases from pH 7.0 to 4.5. This 

decrease in polydispersity can be attributed to an improvement in the stability of the 

droplets produced. Binks and Lumsdon have previously investigated the stability of 

12 nm silica stabilised Pickering emulsions examining the effects of pH and 

electrolyte concentration.
12

 They reported on the stability of oil in water emulsions 

created at varying pH’s at two extreme NaCl electrolyte concentrations. They found 

that pH 4 also yielded the most stable emulsions irrespective of the NaCl electrolyte 

concentration used.  

The apparent decrease in polydispersity as a function of decreasing pH can be 

attributed to changes in the particle adsorption rate. Improvements in the particle 

adsorption rate will help facilitate the production of droplets which are low in 

polydispersity as evident from the droplet size data illustrated in Figure 7.6. It 

should be noted that in general oil-water interfaces are negatively charged, most 
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probably due to the adsorption of hydroxyl ions at the interface.
13

 This may 

potentially explain why the pH of the silica dispersion and its resultant charge will 

influence the particle adsorption rate. At pH 7, the silica surface is highly negatively 

charged (as confirmed by zeta potential measurements in Figure 7.2), therefore an 

electrostatic repulsion force exists between the particles and the oil-water interface, 

potentially leading to low particle adsorption rates. As the pH is decreased, so does 

the surface charge on the silica which reduces the electrostatic repulsion between the 

particles and the interface and hence changes the contact angle leading to 

improvements in the particle adsorption rate. As a result the droplet polydispersity 

decreases.  

Although the data in Figure 7.6 suggests that the lowest polydispersity in the 

emulsion sample is achieved at pH 4.5 (i.e. close to the i.e.p), it is found from 

particle size data that at this pH the silica dispersion is unstable (see Figure 7.3). 

This instability causes the colloidal dispersion to undergo flocculation and 

sedimentation during the membrane emulsification process, making data 

interpretation difficult from one experiment to another. In order to maintain stable 

silica dispersions throughout the emulsification process, pH 6 was chosen as the 

optimal pH to work at. This is because the droplet size and polydispersity can 

ultimately be controlled and improved when investigating other parameters which 

will be discussed later.   

Figure 7.7 illustrates the droplet size data as a function of added electrolyte 

concentration at a fixed pH value of 6. The membrane rotation speed and disperse 

injection rate of 1000 rpm and 0.1 mL min
-1 

respectively. The particle concentration 

used was fixed at 4.0 wt%.  
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Figure 7.7.  Effect of added NaCl electrolyte concentration on the diameter of 

tricaprylin droplets produced using the RME. The continuous phase consisted 

of 4.0 wt% of 800 nm silica colloids dispersed at a pH = 6. The membrane 

rotational speed and oil injection rate were kept constant at 1000 rpm and 0.1 

mL min
-1

, respectively. 

 

The trend observed from Figure 7.7 shows that the addition of background 

electrolyte prior to emulsification results in a reduction in the mean droplet size and 

size distribution. The addition of electrolyte to the colloidal dispersion screens the 

negative surface charge on the silica particles. This favours the approach of the 

particles to the oil-water interface and their subsequent adsorption as there is a 

reduction in the electrostatic repulsion between the particles and the interface. The 

trend in Figure 7.7 shows an apparent decrease in the droplet diameter between 

electrolyte concentrations of 0 and 0.1M NaCl. Further addition of electrolyte results 

in an increase in both the average droplet size polydispersity.  

As the electrolyte concentration is increased between 0 and 0.1M NaCl, a reduction 

in the average droplet size suggests the addition of electrolyte improves the particle 

adsorption kinetics of the silica particles to the liquid-liquid interface. When the 

silica dispersion contains no added electrolyte the Debye length around the particles 

and droplet exceeds 960 nm (in pure water).
14

 The rate of diffusion of the particles 



183 

 

over this length scale may impact the kinetics of adsorption towards the forming 

droplet. As a result both the diffusion and adsorption of the silica particles are likely 

to be relatively slow when no electrolyte is added to the colloidal dispersion. If we 

assume that the adsorption process is diffusion (due to Brownian motion) limited the 

time taken for the 800 nm silica particles to adsorb to the oil-water is around 0.76 s 

in pure water (i.e. no added electrolyte). In comparison, the droplet residency time at 

the membrane is around 1.06×10
-3 

s (assuming that the droplet grows to a size of 

150 µm which is twice the size of the membrane pore at a rate of 0.1 mL min
-1

). It is 

clear from these calculations that the adsorption rate at low electrolyte 

concentrations is very slow leading to production of droplets with low particle 

coverage. This can be visualised in Figure 7.8 showing optical micrographs of 

droplets that shows an incomplete particle coverage for no added electrolyte as well 

at an electrolyte concentration of 0.01M NaCl. 

 

 

Figure 7.8.  Optical micrographs of tricaprylin droplets prepared in a) no added 

electrolyte, b) 0.01M NaCl, c) 0.1M NaCl and d) 1M NaCl electrolyte 

concentrations. The micrographs show differences in the particle coverage and 

adsorption of flocs at high electrolyte concentrations. The continuous phase 

consisted of 4.0 wt% of 800 nm silica colloids in 0.1M NaCl background 

electrolyte. The membrane rotational speed and oil injection rate were kept 

constant at 1000 rpm and 0.1 mL min
-1

, respectively. 
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The incomplete particle coverage observed at no added and low NaCl electrolyte 

concentrations are in agreement to data published by Midmore et al.
15

 They found 

that it was possible to produce stable paraffin oil droplets having a particle coverage 

as low as 29% using Ludox silica particles at low electrolyte concentrations. 

Kinetically stable emulsions with very low particle surface coverage values have 

also been reported by numerous authors.
16-19

 Gautier et al.
19

 obtained stable 

emulsions with particle coverage values as low as 10% without the addition of 

background electrolyte. The addition of 0.1M NaCl electrolyte increased the overall 

surface coverage to around 78%. In their discussion they outline two potential 

mechanisms that could be used to explain why droplets with low particle surface 

coverage can be obtained. They proposed that these two mechanisms were due to 1) 

particle bridging and 2) attractive interactions between particles at neighbouring 

interfaces, respectively. These differences in critical surface coverage values will 

also be a result of varying particle adsorption rates leading to stable droplets of 

varying degrees of particle coverage on the droplet surface.  

At low electrolyte concentrations the particle collision events at the interface are 

high (typically in the order of 10
10

 particles cm
-1

 s), (in the lifetime of a 150 µm 

droplet growing at the membrane wall, it will come into contact with 10
6 

particles
 

whilst only 10
5
 particles are needed for a complete monolayer coverage on the 

droplet surface based on a hexagonal close packing arrangement) therefore the 

adsorption process is not diffusion limited. The assumption made here is that the 

particles in the continuous phase remains stagnant and that the contact is due to the 

droplets moving (due to the rotation of the membrane) as it grows on the membrane 

surface. The main mechanism is therefore due to changes in charge screening at the 

interface as well as at the particle surface, leading to faster particle adsorption. This 

can be confirmed upon comparing the particle surface coverage of the tricaprylin 

droplets in Figure 7.8. At 0.01M the droplets appear patchy, whilst at 0.1M the 

droplet surface appears completely covered. Furthermore, it is evident from the 

micrograph that small aggregates are present on the droplet surface at 0.1M. This 

enhances the stability of the droplets by forming a large steric barrier, that prevents 

droplets from coming into close contact and coalescing.  

At 1M NaCl concentration, the average droplet size and polydispersity increases. At 

this ionic strength the Debye length is very small (0.3 nm) and thus causes 

instability in the silica dispersion forming large aggregates (Figure 7.8). The data in 
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Figure 7.4 clearly show that the silica dispersion in the presence of 1M NaCl 

becomes highly unstable and can aggregate to a mean size of 60 µm. Performing 

simple calculations on these aggregates, show that their diffusion times (~ 4000 s) to 

the interface are much slower in comparison to the residency time of the droplet at 

the membrane (1.06×10
-3 

s) in order to achieve sufficient droplet coverage. The 

formation of large aggregates also results in a decrease in the total number of 

particles in the continuous phase to adsorb and stabilise newly formed droplets. 

Combination of these two processes (colloidal instability and decrease in the total 

number of particles in the continuous phase) result in an increase in droplet size and 

the polydispersity at this specific electrolyte concentration.  

 
 

7.2.3. Membrane rotational speed 

In section 7.1.2, the data suggested that the pH and electrolyte concentration of the 

continuous phase impacted the adsorption rate of the particles onto the surface of the 

oil droplet. To gain further insight into the effect of the adsorption kinetics in the 

emulsification process two complementary parameters were investigated. Namely, 

the membrane rotational speed, which affects 1) the droplet residency time at the 

surface of the membrane and the shearing of the silica particles to the interface due 

to the turbulence caused by membrane rotation and 2) the particle concentration in 

the continuous phase. These variables affect the rate of particle collision with the 

droplet growing on the membrane surface.  

The average droplet size and polydispersity as a function of membrane rotational 

speed is presented in Figure 7.9. The experiments were conducted at the optimised 

pH and electrolyte concentrations highlighted in section 7.1.2, and at a fixed 

volumetric flow rate of 0.1 mL min
-1

.  
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Figure 7.9.  Variation in the droplet diameter of tricaprylin droplets using a) 4 wt% 

and b) 8 wt% 800 nm FUSO silica colloids as a function of membrane 

rotational speed using RME. The continuous phase has a background 

electrolyte concentration of 0.1M NaCl and at pH = 6. The oil injection rate is 

kept constant at 0.1 mL min
-1

. 

 

The data illustrated in Figure 7.9 are collected at two particle concentrations, viz. 4 

and 8 wt%. At both these particle concentrations the droplet size as a function of 

membrane rotational speed essentially remains invariant at high rotational speeds. 

At low rotational speeds (200 - 500 rpm), the shear generated from the rotation of 

the membrane is very low leading to a low droplet detachment efficiency. It is 

assumed that under these conditions, the droplets continue to grow on the membrane 

surface reaching final droplet sizes that are up to 10 times greater in magnitude in 

comparison to the actual membrane pore size. It is difficult to pinpoint whether these 

large droplet sizes are a result of a large single droplet growing at the membrane or 

by coalescence of multiple small droplets from adjacent pores, due to the 

opaqueness of the silica dispersion. The data show that an optimum value in droplet 

size and size variation occurs at a rotational speed of 700 to 800 rpm. At higher 

rotational speeds (1000 to 1500 rpm) a small increase in droplet size and 

polydispersity is observed. 
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The droplet size data can be directly compared to the surfactant system studied by 

Vladisavljević and Williams, who also studied the effect of rotation speed on the 

mean droplet size and size variation illustrated in Figure 7.10.
20

 They showed that as 

the membrane speed increased, the average droplet size reduced monotonically. This 

is because in a surfactant system there are sufficient amount of stabiliser molecules 

to rapidly coat the growing interface. In addition, there is a constant equilibrium 

surface tension, as the kinetics of adsorption of surfactant systems is fast in 

comparison to the rate of creation of new interface. As a result, the main governing 

factor controlling the droplet size is the shear field generated by the rotation of the 

membrane. In contrast to the surfactant system, it is interesting to note that in the 

case of the silica stabilised system, the data seems to show a minimum in average 

droplet size at 700 - 800 rpm. 

This critical area of the graph is believed to be a result of competition between 

particle adsorption and the shear induced droplet detachment process. The 

generation of shear from the rotation of the membrane acts to detach the droplet 

from the membrane surface. For the droplets to remain stable against coalescence, 

they need to be coated with sufficient particulate emulsifiers adsorbed at the 

interface at the time of droplet detachment. 

 

 

Figure 7.10.  Effect of membrane rotational speed on paraffin wax droplet sizes 

emulsified with 2wt% Tween 20 in presence of different Carbomer 

concentrations. Taken from Ref. [20]. 
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If the adsorption and attachment process is sufficiently rapid, a monotonically 

decreasing droplet size can be expected (towards a limiting value) as a function of 

increasing membrane rotation as seen for a standard surfactant system.
20

 In the case 

of the silica stabilised system examined here, the rate of particle adsorption is 

insufficient to fully stabilise the droplets prior to detachment at high rotation speeds. 

At these high rotation values the shear produces small oil droplets that are initially 

unstable. They coalesce to a larger droplet size until a sufficient particle coverage is 

reached, thereafter remaining stable. Whitesides et al.
21

 and Arditty et al.
22

 

described this process as limited coalescence. When the emulsion is prepared, the oil 

drops coalesce to form droplets of a larger size as after a coalescence event, the 

droplets undergo a relaxation process that causes the two droplets to fuse into one. 

This causes the average droplet size to increase at short time intervals and will reach 

an asymptotic value at after a long time interval. This is because initially the 

particles are unable to fully cover the oil-water interface and thus the droplets 

coalesce to a limited extent. Due to this process of coalescence, the total interfacial 

area is now reduced allowing for a greater degree of particle coverage and particle 

re-arrangement at the interface and this limits further droplet coalescence.     

The particle numbers in the continuous phase at both 4.0 and 8.0 wt% are sufficient 

to ensure complete coverage of the droplet assuming a diffusion limited collision 

process. Simple calculations of particle loading show that at a particle concentration 

of 4.0 wt% there is a sufficient amount of particles to adsorb onto the interface. 

Assuming an ideal case in which the continuous phase comprises of silica colloids 

(at a concentration of 4.0 wt%) at their primary particle size of 800 nm, the phase 

contains 1×10
12

 particles, whilst only 1×10
5
 particles are needed to form a complete 

monolayer on a 150 µm droplet. At a background electrolyte of 0.1M NaCl the 

Debye length around the particle and droplet is approximately 1nm, therefore the 

diffusion time of the 800 nm silica colloids over this length is 0.9 µs. The lifetime of 

the droplet at the membrane surface is 10 ms, therefore assuming a diffusion limited 

process the particles have sufficient time to diffuse to the interface and consequently 

adsorb.  

In reality, over the course of the emulsification (typical emulsification period of 60 

minutes) of the full volume of oil, the silica dispersion at 0.1M NaCl aggregates 

(Figure 7.4). The data shows that the dispersion aggregates over time to a mean size 
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of 3.2 µm. Performing particle loading and diffusion calculations on this aggregated 

particle size, shows that there is still a sufficient amount of particles in the system 

and that their diffusion across the Debye length is still much faster than the lifetime 

of the droplet. Therefore it can be concluded that the system under these specific 

conditions is able to stabilise the droplets at the point of detachment from the 

membrane.  

The observation of a minimum in droplet size and size variation at 750 rpm suggests 

that the adsorption of the silica colloids to the interface is not diffusion-limited. 

Instead the rate of particle adsorption is the main governing factor. Considering the 

process of particle attachment, a number of mechanisms can be highlighted; i) the 

particles must collide with the free interface, ii) the particles then have to adhere to 

the interface, iii) the particles adsorb into the interface as the oil displaces the water 

on the particle surface. At the particle concentrations used in this emulsification 

experiments, stage 1 of the attachment process is easily satisfied. Simple 

calculations show that there are enough particles in the system and therefore enough 

contacts, at a rate which allows for sufficient amount of particles adhering to the 

interface for efficient stabilisation. The second stage is affected by the charge on the 

particle and droplet, however under conditions where the electric double layer is 

sufficiently weak, deposition and initial adhesion will occur at a rate which allows 

for sufficient amount of particles to adhere to the interface for efficient stabilisation. 

Stage 3 is complex and not easily modelled, the process of displacement wetting 

requires the oil to displace water on the particle surface. Assuming that the contact 

angle of the particles at the interface is 90°, we have a condition where there is no 

net gain for the oil over the water phase and so the rate of displacement may not be 

large. If the contact angle is smaller than 90° (likely in this system), the 

displacement rate will be even lower. Therefore this displacement wetting stage is 

critical. Although the collision frequency is increased with the addition of more 

particles (4 to 8 wt%), the particles need to remain long enough at the interface to; a) 

preferentially wet the interface and b) remain irreversibly adsorbed. If the particles 

are at the interface less than the critical adsorption time they will diffuse away from 

the interface into the bulk. This will cause the droplets to undergo limited 

coalescence until a critical particle coverage is obtained preventing further 

coalescence.  



190 

 

This optimal membrane rotational speed (750 rpm) was then used to investigate the 

influence of the oil injection rate on droplet size and size variation.  

 

7.2.4. Oil injection rate 

The data obtained for the effect of oil injection rate on the droplet size is presented 

in Figure 7.11. The injection rates investigated were chosen based on previous 

emulsification data stabilised by surfactants using the RME.
11

 

 

 

Figure 7.11.  Effect of oil injection rate on the droplet size of tricaprylin droplets as 

produced using RME. The continuous phase is comprised of 4 wt% 800 nm 

FUSO silica colloids dispersed at pH 6 in 0.1M NaCl. The membrane 

rotational speed is kept constant at 750 rpm. 

 
In this experiment the membrane rotational speed i.e. the shear force that drives 

droplet detachment is constant. Therefore, changes in the oil injection rate equates 

directly to a change in the production rate of new interfacial area. It is clear from the 

data presented in Figure 7.11 that there is a critical injection rate determining the 

stability of the emulsion droplets produced. Below 0.1 mL min
-1

, the droplets appear 

very stable whilst  at and above this critical value coalescence is observed. This 
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suggests again that there must be some barrier to particle adsorption onto the 

interface.  

Assuming a constant droplet size detachment (say 80 µm which is the same as the 

membrane pore size), the lifetime of the droplet on the membrane will range from 

seconds to milliseconds across the injection rates examined. However, in all cases 

the particle diffusion time across the Debye length (1 nm in 0.1M NaCl electrolyte) 

around the particle and droplet is much quicker as illustrated by Table 7.1, therefore 

the adsorption process is not diffusion limited.  

 

Oil injection rate 

(mL min
-1

) 

Droplet lifetime on 

membrane (s) 

Time for particle diffusion in 0.1M NaCl 

electrolyte (s) 

Primary particle 

size = 800 nm 

Aggregated particle 

size = 3.2 µm 

1.0 1.6 ×10
-5 

9.33 ×10
-7 

3.18 ×10
-6 

0.1 1.6 ×10
-4 

9.33 ×10
-7 

3.18 ×10
-6 

0.01 1.6 ×10
-3 

9.33 ×10
-7 

3.18 ×10
-6 

0.001 1.6 ×10
-2 

9.33 ×10
-7 

3.18 ×10
-6 

 

Table 7.1.  Comparison of droplet lifetimes on the membrane and particle diffusion 

times across the Debye length around the particle and droplet. At all oil 

injection rates the size of the droplets detaching is assumed constant at 80 µm. 

  

The observation of limited coalescence under certain conditions when using the 

RME suggests that there must be a barrier to particle adsorption, as the timescales of 

droplet growth is sufficiently long to ensure that the adsorption is not diffusion 

limited. In the case of a non-diffusion controlled process, the adsorption kinetics will 

govern the critical stabilisation time according to;
6 

                       (Equation 7.1) 

where Ad is the surface area of the droplet covered with particles, Ad,o is the total 

surface area of a droplet, kad is the adsorption rate constant and τad is the adsorption 

time. 
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Assuming a critical particle coverage (Ad,cr/Ad,0)
22

 is required to stabilise the 

droplets, when the coverage reaches a critical surface value Ad,cr, we can give a 

corresponding critical adsorption time τad,cr through: 

            (Equation 7.2) 

The term, ln(1-Ad,cr/Ad,0) will be a constant value at the critical degree of coverage, 

therefore the critical adsorption time will be determined and dependent on the 

adsorption rate constant, kad.  

For the experiments reported here a droplet formation time, τdrop, can be defined. 

Comparison of the droplet formation time and the critical adsorption time of the 

particle will dictate the suitability of the emulsifier and whether the emulsions will 

undergo limited coalescence.
22

 In general, the following conditions can be defined in 

particle stabilised emulsions produced using rotary membrane emulsification: 

  

 

            The data in Figure 7.10 demonstrates that there is a critical oil injection rate for a fixed membrane rotational speed. The optimal oil injection rate based on the was determined to be 0.01 mL min
-1

, this injection rate was then used to  

 

The data in Figure 7.11 demonstrates that there is a critical oil injection rate for a 

fixed membrane rotational speed. The optimal oil injection rate based on the was 

determined to be 0.01 mL min-1, this injection rate was then used to investigate the 

effect of particle concentration. 

 

7.2.5. Particle concentration     

Studying the effect of particle concentration on the stability and size control of the 

droplets produced, provides an alternative means of considering particle adsorption 

kinetics. Figure 7.12 illustrates the changes in the mean droplet size and their 

variation as a function of changing particle concentration in the continuous phase.  

the emulsion droplets produced will have narrow 

polydispersity with droplet size control; 

resulting emulsions will have a wider size distribution; and 

unsuitable for producing size controlled droplets. 
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Figure 7.12.  Changes in average droplet size and polydispersity as a function of 

particle concentration. The continuous phase contains a background electrolyte 

concentration of 0.1M NaCl and set at pH = 6. The oil injection and membrane 

rotational speed is kept constant at 0.01 mL min
-1

 and 750 rpm respectively. 

 

It should be noted here that even at the lowest particle concentration (1 wt%), the 

system contains a large excess of particles to cover all of the oil/water interface 

created. Based on the volume of emulsion droplets produced, typically for a 

concentration of 1 wt% only 5% of the total amount of particles is required (based 

on the assumption that the droplets are all monodisperse with close hexagonal 

packing of the particles on the surface of the droplets). The differences in the 

average droplet size and polydispersity in Figure 7.12, demonstrates that the particle 

coverage is dictated by adsorption kinetics related to wetting of the interface and 

subsequent adsorption.  

This study was conducted at optimal pH, electrolyte concentration, membrane 

rotational speed and oil injection rate. In addition, experiments were also conducted 

at particle concentrations of 0.1 and 0.5 wt%, but the emulsions produced at these 

conditions coalesced, forming a thin film of oil on top of the aqueous phase. It is 
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clear from the data that there is a critical particle concentration (4 wt%), above 

which stable near monodisperse oil droplets are produced.  

The variation in droplet size as a function of particle concentration can be explained 

in terms of collision frequency and adsorption kinetics with the interface. At low 

particle concentrations (1 – 2 wt%), the collision frequency is relatively low 

however there are still a sufficient amount of particles to cover the interface if 

assuming every particle colliding with the interface is successfully adsorbed. 

Therefore the governing factor is the adsorption kinetics and not the collision 

frequency. This relates to insufficient particle coverage at the time of droplet 

detachment, at which point the droplets are not stable. Limited droplet coalescence 

occurs in this case until a sufficient coverage is reached, producing polydisperse 

droplets with large droplet size variation values. In section 7.1.4, equations 

governing the critical adsorption time were presented regarding critical particle 

coverage and control over droplet size. When the critical adsorption time is greater 

that the lifetime of the droplet on the membrane prior to detachment, the droplets 

coalesce to a limited extent with no control over their size and polydispersity. This 

could explain why large droplet sizes with a large polydispersity are observed for 

particle concentrations of 1 and 2 wt%.  

In the case of higher particle concentrations (4 - 8 wt%), the collision frequency is 

high, however the kinetics of adsorption is the dominant factor. When the critical 

adsorption time is less than the droplet formation time, stable droplets with control 

over monodispersity can be produced (Figure 7.13).  
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Figure 7.13  Optical micrographs of tricaprylin droplets produced at varying particle 

concentrations using 800 nm silica colloids; a) 1 wt% (Dave = 450 µm), b) 2 

wt% (Dave = 296 µm), c) 4 wt% (Dave = 149 µm), d) 6 wt% (Dave = 139 µm) 

and e) 8 wt% (Dave = 135 µm). The continuous phase is prepared with a 

background electrolyte concentration of 0.1M NaCl at a pH = 6. The 

membrane rotational speed and oil injection rates were kept constant at 750 

rpm and 0.01 mL min
-1

. 

 

The images in Figure 7.13 show that with the optimisation of both chemical and 

mechanical parameters, it is possible to exert a high degree of control over the 

production of emulsion droplets stabilised with silica colloids using rotary 

membrane emulsification. This is particularly evident from Figures 7.13d to 7.13e 

which show droplet sizes of about two times the membrane pore size (80 µm) used 

in these experiments. In contrast, conventional emulsification techniques 

(homogenization) continuously produce interface therefore the kinetics of adsorption 

are less important. In this case the system is more dependent on the uptake of all the 

particles by the disperse phase over the duration of homogenization until an 

equilibrium size is achieved.
23

 In such a turbulent environment, control over droplet 
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size distribution is difficult and the use of RME offers significant improvements in 

this domain. Although the droplet sizes presented here are very large (> 100 µm due 

to the large pore sizes), the study does provide an insight into the role of adsorption 

kinetics of particles at liquid-liquid interfaces.  
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7.3. Surfactant-free emulsions stabilised by sterically-stabilised latex 

particles 

7.3.1 Introduction 

The optimisation study conducted using the 800 nm silica colloids provides a 

platform to understand the role of particulate emulsifiers on the controlled 

production of emulsion droplets using rotary membrane emulsification. In this 

section we also present complimentary work on the use of polystyrene latex particles 

sterically stabilised with a pMMA-b-pDMAEMA di-block copolymer as Pickering 

emulsifiers for emulsions produced in the RME. The added advantage of using such 

particulate emulsifiers is that the steric stabilisers on the surface of the particle can 

potentially be cross-linked in situ to obtain colloidosome microcapsule structures as 

described in Chapter 5.
24, 25

 There is little work to date on the use of sterically 

stabilised particles to stabilize emulsion droplets using membrane emulsification.
6
 

Thompson et al. used polystyrene latex particles stabilised by poly(glycerol 

monomethacrylate) to stabilise emulsions using a stirred cell membrane 

emulsification device. They investigated the effect of shear rate and disperse flux on 

the droplet size produced.
7 

In this study, the role of the particles as well as the 

influence of membrane rotation (shear), volumetric flow rate and particle 

concentration will be investigated. 

The RME is a sensible membrane emulsification rig to conduct a preliminary study 

on this system as it allows for small scale experiments to be conducted easily 

without the need for substantial quantities of the latex emulsifier. 

For this study, polystyrene latex particles stabilized with pMMA16-b-pDMAEMA245 

were used (SM03). The characterization of these particles is reported in Chapter 6. 

The oil used was hexadecane oil which has been reported previously in literature to 

be compatible with such particulate emulsifiers,
26, 27 

and has also been tested in the 

lab as a suitable oil to make stable emulsions (Chapter 6).  A standard rotor-stator 

homogenizer (Ultra-Turrax) was initially used to find the optimal pH and 

background electrolyte conditions to produce stable emulsions (Chapter 6). From 

these emulsion studies it was decided to perform the RME experiments at pH 9 and 

at a background electrolyte of 10mM KNO3 to ensure that the particles were able to 

efficiently adsorb onto the growing droplets.  
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7.3.2. Effect of membrane rotation speed   

In comparison to the silica particles, the polystyrene particles are much smaller (~90 

nm). The mean droplet size as a function of membrane rotational speed and 

associated variation is presented in Figure 7.14. The flow rate was kept constant at 

0.01 mL min
-1

 (optimised value from silica system) and the particle concentration 

was set at 2 wt%. 

 

Figure 7.14.  Variation in the average droplet size of hexadecane droplets as a 

function of membrane rotational speed. The continuous phase contains a 

background electrolyte concentration of 0.01M KNO3 and set at pH = 9. The 

oil injection and particle concentration is kept constant at 0.01 mL min
-1

 and 2 

wt%, respectively. 

 
The data presented in Figure 7.14 is similar in its profile to that presented in Figure 

7.9. As in the case of the silica system at low rotational speeds (250 and 500 rpm) 

the shear generated is small and therefore corresponds to a low droplet detachment 

efficiency. In surfactant systems it is possible to measure the droplet size before it 

detaches however when working with particles, due to the opaqueness of the 

polystyrene dispersion in the continuous phase it is difficult to detect whether the 



199 

 

large size is a result of a single droplet grown at the pore or the coalescence of 

multiple droplets.  However under these rotational speeds, the droplet residency time 

would be long enough for sufficient particle coverage against coalescence, so it is 

assumed that the droplet grows to these larger sizes on the membrane surface.  

As the membrane rotational speed is increased (500 - 800 rpm) the droplet size and 

size variation rapidly decreases from droplet sizes of ~600 µm (500 rpm) to ~150 

µm (1000 rpm) as shown in Figure 7.15. This can be attributed to the increase in 

shear-induced detachment that induces an earlier detachment of the droplets from 

the membrane, resulting in smaller droplet sizes with narrow droplet size 

distributions. Further increase in the rotation speed (1000 - 1500 rpm) causes a small 

increase in both the droplet size and polydisperisty due to limited coalescence. 
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Figure 7.15.  Optical micrographs of hexadecane droplets produced at varying 

membrane rotational speeds using sterically stabilised polystyrene latex 

particles; a) 500 rpm (Dave = 586 µm), b) 600 rpm (Dave = 380 µm), c) 700 rpm 

(Dave = 211 µm) and d) 1000 rpm (Dave = 153 µm). The continuous phase is 

prepared with a background electrolyte concentration of 0.01M KNO3 at a pH 

= 9. The particle concentration and oil injection rates were kept constant at 2 

wt% and 0.01 mL min
-1

, respectively. 

 
When silica particle stabilizers were used, the smallest droplet size with the 

narrowest size distribution was attained at a rotational speed of 750 rpm, whereas in 

the polystyrene system this appears to occur at 1000 rpm.  If we consider the 

attachment process, it is found that as with the silica system the number of 

polystyrene latex particles in the continuous phase is largely sufficient to enable an 

excess number of contacts with the interface than what is needed for full coverage of 

the droplets before detachment from the membrane, even at the highest rotation 

speeds. The second stage is the adhering of the particles to the interface. In this case 

the sterically stabilised latex particles contain pDMAEMA chains that are pH 

responsive due to the presence of tertiary groups. At pH 9 the pDMAEMA chains 

become unprotonated and collapse onto the surface of the latex particle as water 

becomes a poor solvent for the polymer under these conditions. This is likely to 

improve the wettability of the particle and the non-soluble polymer shell provides an 

additional drive to the interface making it more favourable to stabilise the oil/water 
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interface (in comparison to the silica particles). The third stage of displacement 

wetting requires the oil to displace the water on the particle which is the critical step 

in the kinetics of particle adsorption. From Figure 7.9, the recorded changes in the 

droplet diameter as a function of membrane rotation suggests that stage 3 occurs 

faster for the latex system than for the silica, which potentially explains why stable 

droplets with narrow size distributions can be found at a higher rotation speed.   

The optimal membrane rotational speed of 1000 rpm was then selected to investigate 

the influence of the oil injection rate.  

 

7.3.3. Effect of oil injection rate 

The data for the mean droplet size and size variation droplet polydispersity as a 

function of oil injection rate is presented in Figure 7.16. 

 

Figure 7.16.  Variation in the average droplet size of hexadecane droplets as a 

function of oil injection rate. The continuous phase contains a background 

electrolyte concentration of 0.01M KNO3 and set at pH = 9. The membrane 

rotational speed and particle concentration is kept constant at 1000 rpm and 2 

wt%, respectively. 



202 

 

The data in Figure 7.16 illustrate that there is a critical injection rate which 

determines the stability of the droplets detaching from the rotating membrane. 

Previous membrane emulsification experiments have also reported an upper limit on 

the dispersed phase flow rate leading to an increase in drop size for constant shear 

rates.
28-30

 This is due to a fixed characteristic time required for droplet detachment at 

a constant shear rate (membrane rotation). A higher injection rate will lead to 

droplets growing to large sizes prior to detachment. The trend observed in Figure 

7.16 again matches the trend observed in the dataset obtained with the silica 

particles (Figure 7.12). Below 0.1 mL m
-1 

the droplets appear very stable whilst 

coalescence of the droplets after membrane detachment is observed above this 

critical value. This further suggests that in this particular membrane configuration, 

there is a barrier to adsorption onto the interface since particle loading is sufficient 

to ensure complete coverage. Clearly the presence of a critical injection rate 

emphasizes that the barrier is related to the kinetics of particle adsorption and is not 

diffusion limited.  

The optimal injection rate was determined to be 0.01mL m
-1 

and this injection rate 

was used to investigate the effect of particle concentration when all the other 

parameters are kept constant.
 

 

7.3.4. Effect of particle concentration 

The average droplet size and polydispersity as a function of particle concentration is 

illustrated in Figure 7.17. 
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Figure 7.17.  Changes in average hexadecane droplet size and associated variation 

as a function of particle concentration. The continuous phase contains a 

background electrolyte concentration of 0.01M KNO3 and set at pH = 9. The 

oil injection and membrane rotational speed is kept constant at 0.01 mL min
-1

 

and 1000 rpm respectively. 

 
The data illustrated in Figure 7.17 shows that the droplet size decreases as a function 

of increasing particle concentration to a limit (2 wt%), above which further increase 

yields no improvements in droplet size. The continuous phase contains a large 

excess of particles even at the lowest particle concentration of 0.1 wt%. Performing 

simple calculations illustrates that at 0.1wt%, the system contains 6.2×10
13

 particles 

whilst only  3×10
11

 particles are needed to cover the total interface created in these 

experiments. Therefore there are more than enough particles in the system for a 

sufficient number of contacts with the interface and subsequent adsorption.  

The data above demonstrate the production of relatively monodisperse emulsion 

droplets with core-shell latex stabilisers in a membrane emulsification rig and that 

the influence of particle adsorption kinetics helps to give some understanding for the 

success of this to optimize the conditions. The emulsions produced here are all at 

optimal pH, background electrolyte concentrations, membrane rotational speed and 

oil injection rate. It is clear from the data in Figure 7.17 that when all these 

parameters are constant there is a critical particle concentration between 1 to 2 wt%. 
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Above this concentration stable droplets with narrow size distributions can be 

produced whilst the same control is not exerted below this critical concentration and 

the droplets undergo limited coalescence to larger droplet sizes. This trend is similar 

to the one observed with the silica system.  
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Conclusions 

Rotational membrane emulsification has been successfully employed for the 

controlled production of surfactant-free emulsion droplets stabilised using two 

particulate emulsifiers (silica and core-shell latex particles). The optimization of 

chemical and mechanical parameters, allowed the production of droplets that 

showed to have long term stability with a controlled droplet diameter and droplet 

size distribution. The advantage of this process over its counterparts is the ability to 

scale up production to produce large quantities of controlled sized emulsion 

droplets. In comparison to literature, the optimization study presented here has shed 

light on the influence of particle adsorption kinetics on the production of emulsion 

droplets via this process. The change in both the rotational speed and particle 

concentration gives variation in sizes which can be related back to the critical 

adsorption time needed for particles to wet the interface and subsequently adsorb. 

As long as the critical adsorption time is less than the droplet formation time and 

residency time at the membrane surface it is possible to produce well controlled 

droplet sizes with narrow droplet distributions.  



206 

 

References 

1. S. H. Behrens and D. G. Grier, The charge of glass and silica surfaces, J. 

Chem. Phys., 2001, 115, 6716-6721. 

2. G. T. Vladisavljević and R. A. Williams, Recent developments in 

manufacturing emulsions and particulate products using membranes, Adv. 

Colloid Interface Sci., 2005, 113, 1-20. 

3. E. Egidi, G. Gasparini, R. G. Holdich, G. T. Vladisavljević and S. R. 

Kosvintsev, Membrane emulsification using membranes of regular pore 

spacing: Droplet size and uniformity in the presence of surface shear, J. 

Membr. Sci., 2008, 323, 414-420. 

4. R. G. Holdich, M. M. Dragosavac, G. T. Vladisavljević and S. R. 

Kosvintsev, Membrane emulsification with oscillating and stationary 

membranes, Ind. Eng. Chem. Res., 2010, 49, 3810-3817. 

5. Q. Yuan, O. J. Cayre, M. Manga, R. A. Williams and S. Biggs, Preparation 

of particle-stabilized emulsions using membrane emulsification, Soft Matter, 

2010, 6, 1580-1588. 

6. K. L. Thompson, S. P. Armes and D. W. York, Preparation of Pickering 

emulsions and colloidosomes with relatively narrow size distributions by 

stirred cell membrane emulsification, Langmuir, 2011, 27, 2357-2363. 

7. Q. Y. Xu, M. Nakajima and B. P. Binks, Preparation of particle-stabilized 

oil-in-water emulsions with the microchannel emulsification method, 

Colloids Surf. A: Physicochem. Eng. Asp., 2005, 262, 94-100. 

8. K. Sato, H. Yilmaz, Y. Hotta, A. Ijuin and K. Watari, Dispersion of ceramic 

particles in aqueous media with surface-grafted dispersant, J. Am. Ceram. 

Soc., 2009, 92, 256-259. 

9. FUSO Chemical Co. Ltd, Japan. 

www.fusokk.co.jp/eng/electronicmaterials/elec/01.pdf. 

10. D. J. Shaw, ed., Introduction to Colloid and Surface Chemistry, Butterworth-

Heinemann, London, 1992. 

11. Q. Yuan, N. Aryanti, R. Hou and R. A. Williams, Performance of slotted 

pores in particle manufacture using rotating membrane emulsification, 

Particuology, 2009, 7, 114-120. 

12. B. P. Binks and S. O. Lumsdon, Stability of oil-in-water emulsions stabilised 

by silica particles, Phys. Chem. Chem. Phys., 1999, 1, 3007-3016. 



207 

 

13. K. G. Marinova, R. G. Alargova, N. D. Denkov, O. D. Velev, D. N. Petsev, I. 

B. Ivanov and R. P. Borwankar, Charging of oil-water interfaces due to 

spontaneous adsorption of hydroxyl ions, Langmuir, 1996, 12, 2045-2051. 

14. J. N. Israelachvili ed., Intermolecular and Surface Forces, Academic Press, 

New York, 1992. 

15. B. R. Midmore, Preparation of a novel silica-stabilized oil/water emulsion, 

Colloids Surf. A: Physicochem. Eng. Asp., 1998, 132, 257-265. 

16. E. Vignati, R. Piazza and T. P. Lockhart, Pickering emulsions: Interfacial 

tension, colloidal layer morphology, and trapped-particle motion, Langmuir, 

2003, 19, 6650-6656. 

17. B. P. Binks, J. H. Clint, G. Mackenzie, C. Simcock and C. P. Whitby, 

Naturally occurring spore particles at planar fluid interfaces and in 

emulsions, Langmuir, 2005, 21, 8161-8167. 

18. T. S. Horozov and B. P. Binks, Particle-stabilized emulsions: A Bilayer or a 

Bridging Monolayer?, Angew. Chem., Int. Ed., 2006, 45, 773-776. 

19. F. Gautier, M. Destribats, R. Perrier-Cornet, J.-F. Dechezelles, J. 

Giermanska, V. Heroguez, S. Ravaine, F. Leal-Calderon and V. Schmitt, 

Pickering emulsions with stimulable particles: from highly- to weakly-

covered interfaces, Phys. Chem. Chem. Phys., 2007, 9, 6455-6462. 

20. G. T. Vladisavljević and R. A. Williams, Manufacture of large uniform 

droplets using rotating membrane emulsification, J. Colloid Interface Sci., 

2006, 299, 396-402. 

21. T. H. Whitesides, D. S. Ross, Experimental and theoretical analysis of the 

limited coalescence process: Stepwise limited coalescence, J. Colloid 

Interface Sci., 1995, 169, 48-59. 

22. S. Arditty, C. P. Whitby, B. P. Binks, V. Schmitt and  F. Leal-Calderon, 

Some general features of limited coalescence in solid-stabilized emulsions. 

Eur. Phys. J. E: Soft Matter Biol. Phys., 2003, 11, 273-281. 

23. B. P. Binks and C. P. Whitby, Silica particle-stabilized emulsions of silicone 

oil and water: Aspects of emulsification, Langmuir, 2004, 20, 1130-1137. 

24. Q. Yuan, O. J. Cayre, S. Fujii, S. P. Armes, R. A. Williams and S. Biggs, 

Responsive core-shell latex particles as colloidosome microcapsule 

membranes, Langmuir, 2010, 26, 18408-18414. 



208 

 

25. O. J. Cayre, J. Hitchcock, M. S. Manga, S. Fincham, A. Simoes, R. A. 

Williams and S. Biggs, pH-responsive colloidosomes and their use for 

controlling release, Soft Matter, 2012, 8, 4717-4724. 

26. J. I. Amalvy, S. P. Armes, B. P. Binks, J. A. Rodrigues and G. F. Unali, Use 

of sterically-stabilised polystyrene latex particles as a pH-responsive 

particulate emulsifier to prepare surfactant-free oil-in-water emulsions, 

Chem. Comm., 2003, 1826-1827. 

27. R. Murakami. B. P. Binks, S. P. Armes, S. Fujii,, Temperature-induced 

inversion of nanoparticle-stabilized emulsions, Angew. Chem., Int. Ed., 2005, 

44, 4795-4798. 

28. I. Kobayashi, M. Nakajima and S. Mukataka, Preparation characteristics of 

oil-in-water emulsions using differently charged surfactants in straight-

through microchannel emulsification, Colloids Surf. A: Physicochem. Eng. 

Asp.,  2003, 229, 33-41. 

29. N. C. Christov, D. N. Ganchev, N. D. Vassileva, N. D. Denkov, K. D. Danov 

and P. A. Kralchevsky, Capillary mechanisms in membrane emulsification: 

oil-in-water emulsions stabilized by Tween 20 and milk proteins, Colloids 

Surf. A: Physicochem. Eng. Asp.,  2002, 209, 83-104. 

30. M. T. Stillwell, R. G. Holdich, S. R. Kosvintsev, G. Gasparini and I. W. 

Cumming, Stirred cell membrane emulsification and factors influencing 

dispersion drop size and uniformity, Ind. Eng. Chem. Res., 2007, 46, 965-

972. 

 

 

 

 

 

 

 

 

  



209 

 

CHAPTER 8: PROBING PARTICLE ADSORPTION KINETICS 

AT OIL-WATER INTERFACES 

 
 

 

Nomenclature 

A  Area 

A0  Initial or mean area of the sinusoidal oscillation 

AA  Amplitude of the measured response of the area change 

E0  Elasticity 

Hz  Hertz 

Rd  Droplet radius 

γ  Interfacial tension 

γA  Amplitude of the measured response in interfacial tension 

 

  



210 

 

8.1. Introduction 

The role of nanoparticles at liquid-liquid interfaces has recently attracted significant 

attention, driven by the development of novel functional materials from the self-

assembly of particles at interfaces.
1
 The adsorption of particles at liquid-liquid 

interfaces reduces the free energy leading to stable emulsions.
2
 The energy change 

related to the adsorption of a single particle at the liquid-liquid interface depends on 

the particle radius and the surface free energies i.e. the interfacial tensions at the 

particle-oil, γpo, particle-water, γpw, and oil-water, γow, interface described by 

equation 8.1; 

            (Equation 8.1) 

This was later extended further to incorporate the influence of line tension.
3, 4

 The 

thermodynamic processes involved in nanoparticle attachment at liquid-liquid 

interfaces are further described in numerous publications.
1, 5

  

There is a copious amount of literature in the area of self-assembly of particles at 

liquid-liquid interfaces for production of a variety supra-colloidal structures. 

However, the kinetics of particle adsorption at liquid-liquid interfaces is less well 

understood. The use of pendant drop tensiometry as a method to investigate dynamic 

interfacial tension has been extensively used for surfactant systems at liquid 

interfaces; however, there are very few reports on the use of this technique to study 

particle adsorption.  

The effect of particulates on the interfacial tension is not well understood and 

published results seem to be contradictory. Vignati et al.
6
 investigated the effect of 

silica particle concentration and hydrophobocity on iso-octane/water and 

octanol/water systems. They show that the adsorption of hydrophilic particles does 

not modify the interfacial tension at any particle concentration. Increasing the 

hydrophobicity also had little influence on the interfacial tension measured. Drelich 

et al.
7
 confirmed this observation and showed experimentally that the presence of 

hydrophobic silica particles had little effect on the interfacial tension at the paraffin 

oil/water interface.  
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The experimental data from Vignatti et al.
6
 and Drelich et al.

8
 contradict the 

conclusions made by Levine et al.
9
 who developed a theoretical model to calculate 

the oil/water interfacial tension where particles were closely packed at a planar 

interface. They reported that, in the model, the interfacial tension did indeed depend 

on the particle hydrophobicity (decreasing interfacial tension as contact angle 

increases from 0° to 90°). This was supported by experiments made by Kim et al.
10

 

who found that graphene oxide lowered the interfacial tension. In 2006, Glaser et 

al.
11

 demonstrated the interfacial activity of Janus nanoparticles at the hexane/water 

interface. They found that the interfacial activity could be increased by increasing 

the amphiphilic character of the particles. In 2007, Kutuzov et al.
12

 investigated the 

adsorption of 5 nm CdSe nanoparticle to a toluene/water interface, to study changes 

in the dynamic interfacial tension as a function of particle concentration to infer 

details about the adsorption process. Stocco et al.
13

 used a tracker pendant 

drop/rising bubble tensiometer device to measure the dynamic surface tension of 

silica particles at the air/water interface. They found that the surface activity was 

concentration dependent. Du et al.
14

 studied the adsorption energy of citrate-

stabilised gold nanoparticles on OFPA/water interface and found it scaled with the 

particle radius by measuring the dynamic interfacial tension. Recently Isa et al.
15

 

studied qualitatively the self-assembly of iron oxide core-shell particles (where the 

shell is comprised of poly(ethylene glycol) at the n-decane/water interface. Even 

more recently, Ferdous et al.
16

 investigated the adsorption kinetics of alkanethiol-

stabilised gold nanoparticles at the hexane-water interface. They reported that the 

time evolution of the interfacial tension at the early and latter stages infer a switch 

from diffusion-controlled kinetics to an interaction-controlled kinetics. It is also 

evident from all these publications that there is a barrier to particle adsorption at the 

interface (an observation also found in my rotational membrane emulsification work 

(Chapter 7), leading to relatively slow adsorption kinetics, typically around 10
3 

- 10
4 

s before equilibrium tension values are observed.  

All these publications use nanoparticles whose behaviour is similar to that of 

surfactant molecules at liquid-liquid interfaces i.e. relatively low attachment 

energies. The adsorption kinetics of larger particles is less well understood and the 

aim of this study is to use dynamic tensiometry data using larger particles to 

investigate their effect on interfacial tension. 
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8.2. Pendant drop analysis 

8.2.1. Silica 

The droplet size data of tricaprylin oil droplets stabilised using 800 nm FUSO silica 

colloids, produced using membrane emulsification illustrated that the adsorption 

kinetics played a pivotal role in droplet stability and size. Therefore, pendant drop 

tensiometry was conducted to investigate the kinetics of adsorption for silica 

particles at a tricaprylin oil/water interface (Figure 8.1). 

Initially the pure air/water interface was measured by expressing a 50 µL drop of 

water to obtain 72.8±0.2 mN m
-1

 to calibrate the pendant drop device. Afterwards 

the pure tricaprylin oil/water  interface was measured (where the water was prepares 

at pH 6, containing 0.1M NaCl electrolyte). It should be noted that for the 

tricaprylin/water system a 50 µL drop of water was rapidly extruded into a cuvette 

containing 10 mL of tricaprylin oil at 20°C. The droplet was videoed and fitted to 

the Young-Laplace equation to obtain equilibrium interfacial tension values. These 

measurements were repeated three times and an average was taken. For the pure 

tricaprylin oil/water  the droplet was videoed for ~3500 s (Figure 8.1, black 

squares). The isotherm remained essentially flat across this timescale with an 

equilibrium interfacial tension of 24.8±0.2 mN m
-1

 and matched the interfacial 

tension values reported in literature (24.91 mN m
-1

) for a tricaprylin droplet 

expressed in 0.1M NaCl solution.
17

 It should be noted that measurement of the 

tricaprylin/water interfacial tension was started as soon as the droplets were 

expressed from the syringe in the device (t0 = 0).  Thereafter, changes in the 

interfacial tension, as a function of particle concentration (dispersed at pH 6, 0.1M 

NaCl), were measured as a function of time.  

To remove trace impurities the silica particles were washed three times using 

ethanol (typically 1 g of silica was dispersed in 25 mL of ethanol and left on the 

carousel for 30 minutes, centrifuged for 3 minutes at 5000 rpm and the supernatant 

was replaced with fresh ethanol). After 3 washes with ethanol, three wash cycles 

with Milli-Q water (25 mL). After the third wash, the interfacial tension of the 

supernatant was measured in air to confirm the removal of impurities.  If the 

interfacial tension matched that of a pure air/water interface the particles dispersed 

into pH 6, 0.1M NaCl water for measurement. If the pure air/water interfacial 

tension was not obtained then further wash cycles were performed until the value 
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was reached. It should be noted that the measurements were started as soon as the 

droplets were expressed from the syringe in the device (t0 = 0).   

 

Figure 8.1.  Dynamic interfacial tension of a water droplet in tricaprylin oil with 

800 nm silica colloids at various particle concentrations. 

 

 

Particle 

Concentration, (wt%) 

Equilibrium interfacial tension value, 

γeq, (mN m
-1

) 

0 24.8±0.2 

0.1 16.1±0.2 

0.5 16.1±0.2 

1 16.1±0.1 

4 10.3±0.5 

Table 8.1.  Equilibrium interfacial tension values for a tricaprylin/water interface 

laden with 800 nm FUSO silica particles at various particle concentrations. 

  

The data in Figure 8.1 shows that there is a clear change in the interfacial tension 

that is particle concentration dependent. At particle concentrations of 0.1 to 1 wt%, 
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the isotherms reach an equilibrium interfacial tension value of 16.1 mN m
-1

 (Table 

8.1), however the time taken to reach the equilibrium value decreases with 

increasing particle concentration. As the concentration is increased to 4wt% the 

isotherm shows an initial rapid drop in interfacial tension from 24.9 mN m
-1 

to ~16 

mN m
-1 

within the first 40 seconds of the experiment, after which it slows and 

reaches an equilibrium tension value of 10.3 mN m
-1

 at around 2000 seconds (much 

faster in comparison to the other particle concentrations).  

The analysis of the adsorption process in the pendant drop when using relatively 

large silica particles is complicated by gravitational settling.
13

 The density difference 

will cause the silica particles to sediment (as illustrated by comparing the 

transparency increase in the right hand side of the droplet in Figure 8.2) and this 

may potentially help adsorption. In addition, sedimentation will also cause the 

droplet shape to change due to the weight of particles settling towards the bottom of 

the drop (illustrated by the dashed line in Figure 8.2); this will be interpreted in the 

drop shape as a change in the interfacial tension (Figure 8.2). The Figure also shows 

a good Young-Laplace fit to the droplet shape (red line around the droplet) at the 

three time intervals presented and therefore the change in the interfacial tension 

value is directly resultant from a change in droplet shape due to particle 

sedimentation. Therefore, these initial tests were considered inconclusive in terms of 

measuring the interfacial tension. However it should be noted that these silica 

particles do adsorb to oil/water interface as they stabilise tricaprylin/water emulsions 

as presented in Chapter 7. 
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Figure 8.2.  Young-Laplace fits to 50µL water droplet (containing 4 wt% 800 nm 

FUSO silica particles dispersed at pH 6, 0.1M NaCl) in tricaprylin oil at time 

a) 0 s, b) 8 s and c) 32 s. Blue dashed line illustrates changes in the droplet 

height with time.     

 

8.2.2. Sulfate stabilised polystyrene latex 

In order to eliminate sedimentation effects, the adsorption of 300 nm sulfate 

stabilised polystyrene latex ‘model’ particles at the hexadecane/water interface was 

investigated, since the density of polystyrene (1.05 g cm
-3

) is much closer to that of 

water.  The sulfate-stabilised latex particle dispersions were cleaned via a 

centrifugation and re-dispersion cycle and the supernatant was checked to see 

whether it matched the air/water surface tension value. The initial surface tension of 

the supernatant was 53.6 mN m
-1 

i.e. much lower than that of pure air/water interface 

(72.8 mN m
-1

) suggesting that some sulfate molecules were adsorbing at the 

interface. Further centrifugation and redispersion cycles were performed until the 

surface tension of the supernatant matched that of an air/water interface. The 

particles were re-tested at the hexadecane/water interface to measure the dynamic 

interfacial tension at 20°C. Three measurements were taken and then averaged 

(typical error of ±0.2 mN m
-1

).The isotherms obtained are presented in Figure 8.3.   
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Figure 8.3.  Dynamic interfacial tension of a water droplet in hexadecane oil with 

300 nm sulfate-stabilised colloids (cleaned via centrifugation) at various 

particle concentrations. 

 
The bare interfacial tension of the hexadecane/water interface was measured and it 

remained constant around 52.1±0.2 mN m
-1

. This measured value matches the value 

reported in literature of 52 mN m
-1

.
18

 Upon the addition of the particles there was no 

measured effect on the dynamic interfacial tension. Based on this interpretation of 

the data, the changes in the interfacial tension observed with the silica, must be due 

to changes in the droplet shape caused by particle sedimentation and gravitational 

effects. This is because both the silica particles and these latex particles have shown 

to adsorb to the oil/water interface and stabilise emulsions however their adsorption 

does not change the interfacial tension. 

 

8.2.2. Sterically stabilised polystyrene latex 

The dynamic interfacial tension of a hexadecane oil/water interface was studied 

using 70 nm polystyrene latex particles sterically stabilised by pMMA14-b-

pDMAEMA45 (SM01). These particles were cleaned via dialysis, periodically 

changing the outer phase until the outer phase produced a surface tension value of a 
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pure air/water interface i.e. 72.8 mN m
-1

. These particles were then dispersed into 

pH 10 and 2 water to investigate the effect of pH and particle concentration on the 

interfacial tension of an hexadecane/water interface at 20°C. A 50 µL droplet of 

water was used and the measurements were repeated three times and an average was 

taken. The typical error was 0.2 mN m
-1

. Figure 8.4 illustrates the dynamic 

interfacial tension when the particles are dispersed at pH 10 and 2, respectively, at a 

particle concentration of 0.01 wt%. 

 

Figure 8.4.  Dynamic interfacial tension of a water droplet in hexadecane oil with 

90 nm pMMA14-b-pDMAEMA54 (SM01) sterically stabilised polystyrene latex 

colloids dispersed at pH 10 (red) and pH 2 (blue) at a particle concentration of 

0.01 wt% at 20°C. 

 
The interfacial tension for the bare hexadecane oil/water interface was measured to 

be constant at 52 mN m
-1

. When the interfacial tension is measured with a particle 

concentration of 0.01 wt% dispersed at pH 2, the dynamic interfacial tension 

remains unaltered matching observations seen by Amalvy et al.
19

 at an air/water 

interface. This suggests that either a) the particles do not adsorb at the oil/water 

interface or b) they do not affect the interfacial tension as the polymer when 

protonated has little affinity for the oil phase, but particle adsorption does occur. The 
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second mechanism is most likely here, since it has been demonstrated that emulsions 

can be stabilised by these particles dispersed at pH 2 even though some macroscopic 

phase separation does occur (Chapter 6).  

At pH 10, the dynamic interfacial tension at t0 is lower than that observed for a bare 

hexadecane/water interface and for particles at pH 2. This suggests that as the 

droplet is produced, some particles are already adsorbed onto the liquid-liquid 

interface. At pH 10 the polymer is collapsed onto the surface of the latex particle 

increasing its affinity for the interface and thus its adsorption. In addition, the 

polymer, even in its collapsed state it is able to penetrate the oil/water interface and, 

due to its surface active nature influences the interfacial tension (i.e. the behaviour is 

different to a bare solid particle at the interface). This observation again matches 

experimental surface tension measurements at an air/water interface.
19

 The reduction 

in the interfacial tension is very rapid initially before it decreases more slowly over 

the next 600 seconds. The equilibrium interfacial tension occurs at ~23.5 mN m
-1

. 

The eventual plateau in the data suggests a full coverage of the core-shell particles 

on the interface. The formation of a plateau also suggests that no further particle 

adsorption occurs and that an equilibrium interfacial is obtained. The influence of 

particle concentration was also investigated. Interfacial tension data for particles 

dispersed at pH 2 and 10, respectively, at a concentration of 0.1 wt% are presented 

in Figure 8.5.  
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Figure 8.5.  Dynamic interfacial tension of a water droplet in hexadecane oil with 

SM01 dispersed at a) pH 2 and b) pH 10 at a particle concentration of 0.1 wt%. 

 
For the particles dispersed at pH 2 (Figure 8.5a), increasing the particle 

concentration to 0.1 wt% has no or very little effect on the dynamic interfacial 

tension. At pH 10 (Figure 8.5b), the interfacial tension again initially drops very 

rapidly before reaching an equilibrium value after approximately 40 s. The 
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equilibrium value of the interfacial tension is 22.4 mN m
-1

 and is similar to that seen 

above for the 0.01 wt% example suggesting that, in both cases, equilibrium coverage 

of the interface has been achieved. The increased rate of adsorption at the higher 

concentration is, of course, expected.    

It can be concluded from the pendant drop tensiometry data that the adsorption of 

bare particles has little influence on the dynamic interfacial tension. In contrast, 

particles grafted with an amphiphilic polymer cause a decrease in the observed 

interfacial tension. In order to confirm these pendant drop tensiometry data, a 

complimentary study was conducted with the particle samples mentioned above 

using a microtensiometry device built at the Carnegie Mellon University, U.S.A. 

The results obtained from this study are given below. 
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8.3. Microtensiometry data 

8.3.1. Silica 

Before conducting dynamic interfacial tension measurements at the relevant liquid-

liquid interface, the microtensiometry device was initially calibrated by measuring 

the air/water surface tension to ensure that the device internals were clean. It should 

be noted that in the microtensiometer, the interfacial tension of an oil droplet in 

water is measured rather than a water droplet in oil, as was used for the pendant drop 

experiments. The bare interfacial tension of a tricaprylin oil/water (pH 6, 0.1M 

NaCl) interface (droplet radius, Rd = 40 µm) was then measured at 20°C. The 

interfacial tension measured (24.9 mN m
-1

) matched the value reported in 

literature.
17

 The measurements were performed three times and averaged. The data 

had a typical error of ±0.5 mN m
-1

. Afterwards the interfacial tension of a tricaprylin 

droplet (droplet radius, Rd = 40 µm) in water containing 0.01 wt% particles, at pH 6 

and 0.1M NaCl was measured at 20°C. It should be noted that the particle 

concentration used in the microtensiometer is much lower than that used in the 

pendant drop device. This is because at higher particle concentrations it is difficult 

to image the interface due to the opaqueness of the particle dispersion. Dynamic 

interfacial tension data for the silica colloid is presented in Figure 8.5. 
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Figure 8.6.  Dynamic interfacial tension of a tricaprylin droplet (Rd = 40 µm) in pH 

6, 0.1M NaCl water containing a dispersion of 800nm silica colloids at a 

particle concentration of 0.01 wt% (T= 20°C). 

 
The addition of 0.01wt% 800 nm FUSO silica dispersed at pH 6 has little effect on 

the dynamic interfacial tension and the data is effectively the same that of a bare 

tricaprylin/water interface. This observation matches data presented by Vignati et 

al.
6
 and Drelich et al.,

7
 showing that even if the bare particles are strongly attached 

to the interface, no reduction of interfacial tension reduction is detected.  

In the microtensiometer device the Bond number (Chapter 4) is lower than that seen 

in the pendant drop device, meaning the droplet shape is less perturbed i.e. the effect 

of gravitational forces is less. The other advantage is that the actual pressure and 

droplet radius values are measured to give a measured interfacial tension, whereas in 

the pendant drop the interfacial tension is calculated using a nonlinear Young-

Laplace model fit. Calculation by using a fit introduces error especially when the 

droplet experiences a change in shape due to gravitational effects.    
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8.3.2. Sulfate-stabilised polystyrene latex 

The dynamic interfacial tension of a hexadecane/water interface laden with sulfate-

stabilised latex particles at 20°C is presented in Figure 8.7. 

 

Figure 8.7.  Dynamic interfacial tension of a hexadecane droplet (Rd = 40 µm)  in 

water containing a dispersion of 300 nm sulfate-stabilised silica polystyrene 

latex particle at a particle concentration of 0.01 wt% (T=20°C). 

 
Initially the pure hexadecane/water interfacial tension was measured (52 mN m

-1
) 

matching values reported in literature.
18

 The interfacial tension data matches the data 

obtained using pendant drop tensiometry. Since both isotherms are the same, the 

data again suggests that adsorption of unmodified (bare) latex particles do not 

change the interfacial tension.  

 

 8.3.3. pDMAEMA sterically stabilised polystyrene latex 

The dynamic interfacial tension of a hexadecane droplet in water was also measured 

in the presence of 70 nm pMMA14-b-pDMAEMA54 (SM01) sterically stabilised 
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latex particles. The isotherm of the dynamic interfacial tension when the particle is 

dispersed at pH 2 is illustrated in Figure 8.8. 

 

Figure 8.8.  Dynamic interfacial tension of a hexadecane droplet (Rd = 40 µm) in 

water containing a dispersion of SM01 sterically stabilised polystyrene latex 

colloids dispersed at pH 2 at a particle concentration of 0.01 wt% (T = 20°C). 

 
The data in Figure 8.7 shows that the dynamic interfacial tension both with and 

without the latex particles dispersed at pH 2 are the same. At pH 2, the amine groups 

on the polymer are fully protonated and the resultant cationic polyelectrolyte is oil 

insoluble. Under these conditions, the polymer is not surface active and hence, even 

with particle adsorption little or no change is observed on the dynamic interfacial 

tension. 

The dynamic interfacial tension when the particles are dispersed at pH 10 is 

presented in Figure 8.9. The addition of 0.01 wt% of the sterically stabilised latex 

particles dispersed at pH 10 causes a significant decrease in the observed interfacial 

tension. Over the first 600 seconds as the particles adsorb the interaction of the 

surface-active polymer at the interface causes a rapid decrease in the interfacial 

tension from around 52 mN m
-1 

to 37 mN m
-1

. At around 600 seconds the measured 

interfacial tension value decreases suddenly from 37 mN m
-1

 to 25 mN m
-1

; 
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interestingly, at this point the droplet size had increased sufficiently (>40 µm) on the 

verge of detachment from the capillary tip. To continue the measurement, the 

droplet was compressed and this sudden compression of the droplet pushed the 

particles at the interface closer together causing the observed large drop in 

interfacial tension. The interfacial tension stabilises for about 150 seconds before the 

droplet again increases in size nearing detachment; once again the droplet is 

compressed and the tension value relaxes to an equilibrium value of around 19±0.5 

mN m
-1

. Although the kinetics of adsorption cannot be simply deduced, due to the 

necessity of droplet compression, it is evident from the data that the drop in 

interfacial tension interfacial is caused by the interfacial activity of the surface 

attached polymer at pH 10 and not by the core particles. To test this hypothesis 

further, dilational elasticity measurements were performed at both pH 2 and 10.  

 

 

Figure 8.9.  Dynamic interfacial tension of a hexadecane droplet (Rd = 40 µm) in 

water containing a dispersion of SM01 sterically stabilised polystyrene latex 

colloids dispersed at pH 10 at a particle concentration of 0.01 wt% (T = 20°C). 
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8.3.4. Dilational elasticity measurements 

Dilational elasticity measurements were performed by oscillating the 40 µm droplet, 

once the equilibrium interfacial tension had been obtained for the sterically 

stabilised latex particles. This was done by changing the constant pressure head to 

the oscillatory pressure head, which can be varied over a frequency range of 0.15 – 2 

Hz at an amplitude of about 50 - 100 Pa. The corresponding changes in the 

interfacial tension with this drive signal were measured. The dilational elasticity 

modulus is calculated by measuring the change in stress due to change in interfacial 

area of an interface. For a drop, the dilational elasticity modulus, E0,
20

 is given by; 

            (Equation 8.1) 

where γ is the interfacial tension and A is the interfacial area.  

 

The modulus is usually measured by imposing a sinusoidal oscillation to the surface 

area of the drop and the response in the interfacial tension is measured. If the strain 

applied is small (ΔA/A0) << 0.10 then equation 8.1 reduces to; 

          (Equation 8.2) 

which becomes  

          (Equation 8.3) 

where A0 is the initial or mean area of the sinusoidal oscillation, , where AA is the 

amplitude of the measured response of the area change, γA is the amplitude of the 

measured response in interfacial tension. 

 

After oscillating the interface, the interface is allowed to relax for ∼500 s before 

oscillating at a new frequency. 

The change in interfacial tension with changing interfacial area for the 

hexadecane/water interface in the presence of 0.01 wt% sterically stabilised latex 

particles (SM01) dispersed at pH 2 is presented in Figure 8.10. 
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Figure 8.10.  A typical plot of change in interfacial tension with changing interfacial 

area of a hexadecane droplet in water interface laden with 0.01 wt% of 

sterically stabilised polystyrene latex particles dispersed at pH 2 (T = 20°C). 

 
By oscillating the interfacial area after equilibrium interfacial tension is obtained, 

the interface expands and contracts. During the expansion of the droplet, the 

interfacial area increases allowing additional particles to adsorb on the free 

interfacial area, whilst as the droplet contracts the particles on the interface 

rearrange and come into close contact. This oscillatory movement gives an insight 

into the elasticity of the interface i.e. the dilational elasticity modulus. The data in 

Figure 8.10 shows no change in the interfacial tension (as the data is noisy and all 

the data points are within error) as the droplet area expands and contracts. This 

behaviour was also seen at all frequencies tested and therefore the dilational 

elasticity modulus could not be calculated.   

The change in interfacial tension with changing interfacial area for the 

hexadecane/water interface in the presence of 0.01 wt% sterically stabilised latex 

particles (SM01) dispersed at pH 10 is presented in Figure 8.11. 
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Figure 8.11.  A typical plot of change in interfacial tension with changing interfacial 

area of a hexadecane droplet in water interface laden with 0.01 wt% SM01 

dispersed at pH 10 (T = 20°C). 

 
The data presented in Figure 8.11 shows that the change in interfacial tension due to 

changing interfacial area is much larger in comparison to the particles dispersed at 

pH 2. As the droplet compresses the particles come into closer contact that cause the 

polymer chains that are deprotonated to entangle with each other. As the droplet 

expands the entangled polymer chains on the particle surface stretch giving the 

interface an enhanced elastic behaviour. At pH 2, the polymer chains are highly 

protonated and are not expected to become entangled and hence, the change in 

interfacial tension as the droplet oscillated is much negligible. By performing a 

frequency sweep, the dilational elasticity modulus at all frequencies can be 

calculated using equation 8.3 and is presented in Figure 8.12.   

The data shows that the dilational elasticity modulus increases as a function of 

increasing oscillation frequency until it reaches its high frequency limit, εo. Initially, 

with increasing frequency the dilational elasticity modulus increases. As the system 

reaches its high frequency limit the elasticity plateaus. This plateau occurs as further 

increase in the frequency of oscillation does not give enough time for additional 
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particles from the bulk to adsorb onto the interface, and therefore maximum change 

in the interfacial tension is achieved, hence little effect is seen on the elasticity. This 

high frequency limit is therefore concentration dependent.  

 

Figure 8.12.  Dilational elasticity modulus of the hexadecane/water interface laden 

with 0.01 wt% SM01 dispersed at pH 10, as a function of oscillation 

frequency. 

 

The dilational elasticity modulus observed with SM01 at pH 10 is much higher than 

that seen with  surfactants and proteins at fluid-fluid interfaces. The elasticity 

modulus of various surfactants at an octane-water interface was measured by 

Giorgieva et al.
21

 using a pendant drop device. They found that at an oscillating 

frequency of 0.1 Hz the elastic modulus for DTAB, TTAB, and CTAB were 2, 4 and 

6 mN m
-1 

respectively. They concluded that the low elasticity moduli that they 

obtained was due in part to the bulk-surface exchanges of the surfactant molecules. 

In surfactant systems the exchange is very fast hence perturbation of the interfacial 

equilibrium becomes negligible and hence little or no effect on the surface tension 

value is observed away from its equilibrium value especially at low oscillation 

frequencies. This therefore leads to a low dilational elasticity modulus. In the case of 
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proteins (e.g. whey protein) the molecular transport to the interface is much slower 

and the interfacial equilibrium is perturbed to a larger extent. This means that even 

the smallest change in the interfacial area causes a large change in the interfacial 

tension resulting in a higher surface elasticity (~60 mN m
-1 

at 1 Hz).
22

 In the case of 

SM01 the diffusion of the particles is much slower compared to surfactants and 

proteins. Furthermore the polymer may potentially entangle and thus can easily 

stretch and relax as the interfacial area changes. This therefore leads to a more 

elastic interface resulting in a higher dilational elasticity modulus (~135 mN m
-1

) 

compared to typical surfactants and proteins. 

 

 

 

  



231 

 

Conclusions 

Dynamic interfacial tension measurements show different behaviour depending on 

the particle system used. In the case of 800nm FUSO silica, a reduction in interfacial 

tension is observed with increasing particle concentration. However, gravitational 

settling makes it difficult to make definitive conclusions. Sulfate stabilized latex 

particles (similar density to water) were used to investigate the dynamic interfacial 

tension of the interface. It was found that when the particles were cleaned via 

centrifugation cycles, no visible changes in the interfacial tension is obtained. These 

data are also confirmed from data obtained from using a microtensiometer device for 

the same systems. 

Using the sterically stablised latex particles the interfacial tension remains 

unaffected at pH 2, where the polymer is hydrated. At pH 10, the change in 

interfacial tension measured is large as the polymer becomes uncharged and 

penetrates the interface. Additionally elasticity measurements show that at pH 10 the 

interface is more elastic than at pH 2, as the polymer chains interlink that can be 

compressed and extended at the interface is oscillated.  
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

Conclusion 

The chapters presented in this thesis have an associated summary. This brief section 

will therefore only contain an overall assessment of the work present as a whole in 

the broader context of scientific research and development. 

It has been successfully demonstrated that emulsion polymerisation can be used to 

prepare polystyrene latex particles that are sterically stabilised using pMMA-b-

pDMAEMA. These particulate systems exhibit responsive behaviour to both pH and 

temperature, which can be characterised by measuring changes in the hydrodynamic 

diameter in response to changes in these stimuli. In addition it has been shown that 

these sterically stabilised latex particles can be used as stabilisers to stabilise oil-in-

water emulsions. Emulsion studies showed that the stability of hexadecane in water 

emulsions to coalescence was influenced by both pH and electrolyte concentration. 

Changes in the pH dictated the solvency of the pDMAEMA chains in water and thus 

controlled their affinity to the oil/water interface. The addition of electrolyte 

screened the charges on the polymer surface, thus driving particle adsorption to the 

interface. 

The ability to influence the behaviour of the emulsion through the effect of these 

stimuli on these particles is of technological interest. These solid-stabilised 

emulsions can be used as templates for the fabrication of ‘colloidosome’ 

microcapsules for the encapsulation and release of actives. We demonstrate that the 

pDMAEMA chains on the surface of the particles can be chemically crosslinked on 

the droplet surface to form a membrane shell. Upon removal of the oil core, we 

show that the porosity of this membrane shell can be controlled by changes in the 

environmental pH. These microcapsules act as size-exclusion membranes and we 

demonstrate the retention and release of model dextran molecules as a function of 

pH. These microcapsules can also be potentially used in numerous other 

applications.  

We also demonstrate that rotational membrane emulsification can be used to prepare 

particle stabilised emulsion droplets. The data in Chapter 7 illustrates that both 
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formulation chemistry as well as the membrane mechanical parameters can be used 

to exert control on the droplet size and droplet size distribution. The advantage of 

this production method is that is can be easily scaled up to industrially relevant 

scales. These data also infer details about the influence of particle adsorption 

kinetics on the droplet size. Variations in the droplet size with changes in the 

membrane rotational speed, volumetric flow rate and particle concentration can all 

be related back to the critical time needed for particles to wet the interface and then 

adsorb.  

Finally we probe the adsorption kinetics of particle adsorption to liquid/liquid 

interfaces. We know that all the particle systems that are tested are able to stabilise 

emulsions, however particles that are clean, i.e., have no surface modifications do 

not change the interfacial tension with time. In contrast, when sterically stabilised 

latex particles the interfacial tension does change dramatically at pH 10 in 

comparison to pH 2 as the affinity for the interface is much greater at the high pH’s. 

In addition dilational elasticity measurements show that the interfacial elasticity is 

also pH dependent. 

 

Future work 

This work has investigated the use of sterically-stabilised latex particles as 

emulsifiers, fabrication of colloidosome microcapsules based on emulsion templates 

and their adsorption to fluid-fluid interfaces using tensiometry. In Chapter 6 the 

preparation of colloidosome microcapsules from emulsion droplet precursors was 

presented. It was demonstrated that such microcapsule systems were able to 

encapsulate and release model actives (labelled dextran) at pH 10 and 2, 

respectively. In order to examine the permeability of colloidosome shells towards 

such relatively large actives in more depth, further encapsulation studies should be 

conducted. A range of latex particles (varying particle size and polymer chain 

length) should be prepared to probe the permeability of the colloidosome shell to 

determine the smallest molecular weight of active that can be successfully 

encapsulated. Performing release studies at more pH’s would give a better insight 

regarding the porosity of these microcapsule structures. This could also be coupled 

with probing the effect of temperature on the encapsulation/release of model actives. 
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It would also be interesting to modify the steric stabiliser used in these studies. Since 

the pDMAEMA block is crosslinked the pH responsiveness of the amine groups 

may be potentially affected. To avoid this, a third block could be added which would 

be used to crosslink adjacent polymers.  

In Chapter 7, the production of particle stabilised emulsions using  rotary membrane 

emulsification was presented. This study could be further examined by investigating 

the effect of a) particles of same size with different pDMAEMA chain lengths and 

b) particles of different size with same pDMAEMA chain length on the droplet size 

and size distribution. The production of colloidosome microcapsules using the RME 

should also be exploited for the potential to develop a ‘one pot synthesis’ route. It 

would be interesting to examine whether particles with different aspect ratios have 

any effect on droplet shape, size and polydispersity. Investigating the production of 

water in oil emulsions using the RME would also be of academic/industrial interest.  

The data investigating the adsorption of these sterically-stabilised latex particles was 

preliminary. Further work is needed to examine the effect of different pH’s and 

polymer chain lengths on the interfacial tension. A series of experiments should be 

done to compare the dilational elasticity modulus as a function of pH, particle 

concentration and compare this to data obtained with polymer only. In addition the 

effect of temperature should also be examined.         

    


