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Abstract 

 

The regulation of gene expression is not simply confined to the activity of a 

promoter but can occur at many stages, including mRNA degradation. 

Nonsense-mediated mRNA decay (NMD) is a eukaryotic mRNA decay 

pathway. It was first characterised as a pathway degrading transcripts with 

premature stop codons arising from mutations or alternative splicing. However, 

NMD also directly targets many ‘non-aberrant’ transcripts and is important for 

normal growth and development. For example, NMD is needed for a normal 

response to pathogens in Arabidopsis thaliana and NMD is regulated during 

mammalian brain development. In animals, it is well known that the kinase 

SMG1 activates the NMD pathway when a premature stop codon is recognised 

but no NMD-associated kinase has been characterised outside the animal 

kingdom. Reported here is that SMG1, whilst missing from fungi and A. 

thaliana, is ubiquitous in the plant kingdom, functions in the NMD pathway of 

moss and is needed for normal moss development. An RNA-seq analysis of 

transcripts regulated by SMG1 in moss revealed that NMD is important for 

regulating the unfolded protein response and is also involved in the DNA repair 

pathway. Taken together, SMG1 has been demonstrated to be an ancient 

kinase, which functions in the NMD pathway in moss. Furthermore, NMD is 

important for normal moss development. 
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1 General introduction 

 

1.1 Nonsense-mediated mRNA decay 

 

Regulating gene expression allows organisms to respond to changes in their 

surroundings and is necessary for development in multicellular organisms. 

Gene expression can be controlled at multiple steps, including recruitment of 

RNA polymerase to the promoter of a gene or stability of a protein. 

Transcription factors bind to the promoters of target genes and are important 

regulators of gene expression by either helping to recruit or exclude RNA 

polymerase by acting as activating or repressive transcription factors, 

respectively (Krogan and Long, 2009). This can work through altering the 

chromatin state of the target genes promoter. Although attention has mainly 

been paid to transcriptional regulation, the importance of post-transcriptional 

gene regulation is being increasingly recognised. Alternative splicing of a 

primary transcript can lead to several different transcripts, differing in the protein 

sequence and/or stability of the transcript. The amount of a transcript present in 

a cell is the product of both the rate of transcription and the rate of decay. 

Several pathways have been identified that can target a selected transcript for 

decay, therefore altering the level of expression without necessarily affecting 

the rate of transcription. The RNA silencing pathway, for example, uses small 

RNAs, which have complementarity to specific mRNAs to target the specific 

mRNAs for destruction (Urlaub et al., 1989; Chen, 2009; Cheng and Maquat, 

1993; Huntzinger and Izaurralde, 2011; Carter et al., 1996; Belostotsky and 
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Sieburth, 2009). Another RNA decay pathway is the nonsense-mediated mRNA 

decay (NMD) pathway. This pathway was first identified as an RNA quality 

control mechanism (see Section 1.1.1) but it has now become clear that NMD 

has a role in controlling the expression of physiologically important transcripts 

(see Section 1.3). The NMD pathway is initiated when a stop codon is 

recognised to be in an ‘unusual’ contexts by the terminating ribosome, although 

what constitutes an ‘unusual’ context varies between species and many 

exceptions to the proposed rules have been observed (see Section 1.2).  

 

1.1.1 NMD as an mRNA surveillance pathway  

 

Unexpected results from early mutant screens led to the identification of NMD. If 

a mutation introduced a nonsense codon, also known as a premature 

termination codon (PTC), not only would the level of the corresponding full-

length protein be reduced but also the mRNA level would be lower than from 

the wild-type (WT) copy of the gene (Belgrader et al., 1994; Losson and 

Lacroute, 1979; Carter et al., 1996; Gozalbo and Hohmann, 1990; Maquat, 

2004). These observations suggested a novel way to control gene expression, 

dependent on the presence of a PTC. The decrease in mRNA levels was 

shown to be the result of a translation-dependant decrease in stability of the 

transcript rather than a decrease in the rate of transcription (Singh et al., 2008; 

Losson and Lacroute, 1979; Gozalbo and Hohmann, 1990). However the 

molecular mechanism of this NMD pathway was unclear.  

 

Mutant screens in budding yeast (Saccharomyces cerevisiae) and 
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Table 1.1: A table of NMD effectors 

NI represents not identified.  

 

 

 

NMD 
effector 

Budding 
yeast C. elegans Drosophila Vertebrates A. thaliana 

‘Core’ 
NMD 

effectors 

UPF1 UPF1 SMG2 UPF1 UPF1 AtUPF1 

UPF2 UPF2 SMG3 UPF2 UPF2 AtUPF2 

UPF3 UPF3 SMG4 UPF3 
UPF3a 

AtUPF3 
UPF3b 

Kinase SMG1 NI SMG1 SMG1 SMG1 NI 

SMG5-7 
family 

SMG5 
EBS1/
SMG7 

SMG5 SMG5 SMG5 
AtSMG7 and 

AtSMG7L SMG6 SMG6 SMG6 SMG6 

SMG7 SMG7 NI SMG7 

Additional 
regulators 

SMG8 NI SMG8 SMG8 SMG8 NI 

SMG9 NI  SMG9 SMG9 SMG9 NI 

SMG1L NI SMG1L NI SMG1L AtSMG1L 

SMG2L NI SMG2L SMG2L SMG2L NI 

Core EJC 

Mago NI Mag Mago nashi Magoh AtMago 

Y14 NI Y14 Y14 Y14 AtY14 

eIF4AIII NI eIF4AIII eIF4AIII eIF4AIII AteIF4A3  

MLN51/
CASC3/
Barentsz 

NI Barentsz Barentsz Barentsz 
AtBarentsz1 

and 
AtBarentsz2  
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Caenorhabditis elegans identified components of the NMD pathway (Table 1.1). 

In budding yeast, the mutants were designated up-frameshift 1, 2 and 3 (upf1, 2 

and 3) because transcripts with nonsense codons, introduced from frameshifts, 

were over-expressed in the mutant backgrounds (Trcek et al., 2013; Losson 

and Lacroute, 1979; Leeds et al., 1992). In C. elegans, seven genes involved in 

the NMD pathway were identified through mutant screens originally looking to 

identify genes suppressing multiple mutant phenotypes in the nematode 

(Hwang et al., 2010; Hodgkin et al., 1989; Hosoda et al., 2005; Pulak and 

Anderson, 1993; Cali et al., 1999). These mutants all had abnormal genitals so 

were named suppressor with morphological effect on genitalia (smg) (Rufener 

and Mühlemann, 2013; Hodgkin et al., 1989; Durand and Lykke-Andersen, 

2013; Pulak and Anderson, 1993; Cali et al., 1999). It soon became apparent 

that the NMD pathways of budding yeast and C. elegans were related, with 

SMG2, SMG3 and SMG4 from C. elegans encoding homologues of UPF1, 

UPF2 and UPF3 from budding yeast, respectively (Hwang et al., 2010; Serin et 

al., 2001; Hosoda et al., 2005; Aronoff et al., 2001; Page et al., 1999). From 

hereon in, NMD effectors will be named by the organisms they were first 

discovered in, for example, UPF1 for SMG2.  

 

1.1.2 An overview of the molecular mechanism of the NMD pathway in 

animals  

 

A model was developed in C. elegans centring around UPF1 (SMG2) and its 

phosphorylation (Rufener and Mühlemann, 2013; Page et al., 1999; Durand and 

Lykke-Andersen, 2013). This model proposed that UPF1 phosphorylation is 
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dependent on SMG1, UPF2 (SMG3) and UPF3 (SMG4) while 

dephosphorylation requires the three related proteins SMG5, SMG6 and SMG7 

and this cycle of phosphorylation and dephosphorylation is needed for 

destruction of a PTC-containing transcript (Gatfield et al., 2003; Page et al., 

1999; Rehwinkel et al., 2005; Metzstein and Krasnow, 2006). Subsequent 

studies in C. elegans and mammals have shown that SMG1 is the kinase that 

phosphorylates UPF1 (Gatfield et al., 2003; Grimson et al., 2004; Chen et al., 

2005; Yamashita et al., 2001; Rehwinkel et al., 2005; Metzstein and Krasnow, 

2006) and that UPF2 and UPF3 stimulate this by forming a complex with UPF1 

(Kashima et al., 2006), SMG5, SMG6 and SMG7 are likely to be involved in 

recruiting a phosphatase to dephosphorylate UPF1 (Anders et al., 2003; Page 

et al., 1999; Chiu et al., 2003). This model is an over-simplistic view of NMD in 

animals but forms the foundations of the signalling pathway that occurs after 

PTC recognition (Figure 1.1). Once a PTC has been recognised by a ribosome, 

UPF1 is recruited to the ribosome through interaction with eukaryotic release 

factor 1 and 3 (eRF1 and 3), which in turn recruit SMG1 (Kashima et al., 2006). 

UPF1 interacts with UPF3 indirectly via UPF2 and formation of this complex 

induces the phosphorylation of UPF1 by SMG1 (Kashima et al., 2006). SMG5, 

SMG6 and SMG7 have 14-3-3-like domains at their N-termini (Fukuhara et al., 

2005; Jonas et al., 2013), which then bind to phosphorylated UPF1 and recruit 

both the dephosphorylation machinery and the decay machinery (Unterholzner 

and Izaurralde, 2004; Fukuhara et al., 2005). SMG6 binds to the N-terminus of 

phosphorylated UPF1 (Okada-Katsuhata et al., 2011) and acts as an 

endonuclease cutting the transcript near the PTC (Huntzinger et al., 2008; 

Eberle et al., 2009) while SMG7 binds the C-terminus, in complex with SMG5,  
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Figure 1.1: Model of NMD in animals 

(A) Upon termination at the PTC, the ribosome stalls and UPF1 might be 

recruited at this stage by eRF3. (B) UPF1 forms a complex with SMG1, UPF2 

and UPF3, which stimulates the kinase activity of SMG1. (C) Phosphorylated 

UPF1 recruits SMG6 to the N-terminus and SMG7:SMG5 is recruited to the C-

terminus. Legend continued on next page 
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Figure 1.1: Continued… 

The ribosome and SMG1 might have disassociated at this stage and UPF1 

binds to the transcript. SMG6 causes an endonucleolytic cleavage (EC) slightly 

downstream of the PTC. SMG7:SMG5 may recruit the decapping complex and 

the endonuclease XRN1.  
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and appears to recruit the decapping complex (Nicholson and Mühlemann, 

2010). This extended model of NMD depicted in Figure 1.1 appears to hold true 

in animals where UPF1-3, SMG1 and the SMG5-7 family are present (Table 

1.1), but cannot be the case in organisms like budding yeast and A. thaliana, 

which lack some of the key components of the pathway, such as SMG1 (Table 

1.1). UPF1-3 and SMG7 are important for NMD in many eukaryotes, however 

only UPF1 appears to be universal in eukaryotes and the simple pathway 

described in Figure 1.1 cannot be conserved across all organisms where NMD 

operates (Grimson et al., 2004; Chen et al., 2008; Delhi et al., 2011; Conti and 

Izaurralde, 2005).  

 

Excavates such as the parasites Giardia lamblia and trypanosomes represent 

the most reduced NMD pathways yet described. It is not yet clear if the NMD 

pathway is functional in these organisms and if it does it would mean that these 

pathways have only a few recognisable components discovered in other 

organisms. For example, in trypanosomes, the NMD pathway appears to 

consist of UPF1 and UPF2 (Delhi et al., 2011), while the only recognisable NMD 

effector in the genome of G. lamblia is UPF1 (Chen et al., 2008). These 

organisms represent extremely reduced examples of the NMD pathway and 

have not been well studied. Differences between the better studied NMD 

pathways of model organisms will be examined further in Section 1.2.  

 

A question central to understanding NMD is ‘How does the terminating 

ribosome differentiate between an authentic stop codon and a PTC?’ Early work 

lead to the proposal of two broad models trying to explain how a stop codon 
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could be identified as ‘aberrant’. These are 1) the long 3’ UTR model and 2) the 

downstream sequence element model. Proposed molecular mechanisms for 

each have now been described in different organisms and there appears to be 

some degree of evolutionary conservation, although early reports suggested 

that these were lineage specific mechanisms (Mühlemann et al., 2008).  

 

1.1.3 The downstream sequence element model  

 

The downstream sequence element (DSE) model proposes that a sequence 

element downstream of a PTC binds to a protein or protein complex and signals 

to the terminating ribosome that this stop codon is aberrant and that NMD 

should be activated. In budding yeast, a DSE was cloned and found to bind the 

RNA binding protein HRP1 (Zhang et al., 1995; Peltz et al., 1993; González et 

al., 2000), which interacts with the NMD effectors UPF1 and UPF2 to activate 

NMD (Figure 1.2A) (González et al., 2000; Wang et al., 2006). However, this 

model is specific to only a few transcripts in budding yeast and cannot account 

for a significant proportion of transcripts targeted to NMD. A variant of the DSE 

model involves exon-exon junctions acting as the DSE if the junction is greater 

than 50-55 nucleotides downstream of the stop codon in mammals (Mühlemann 

et al., 2008; Brogna and Wen, 2009). At many exon-exon junctions, a protein 

complex called the exon-junction complex (EJC) is deposited, consisting of four 

core proteins (Table 1.1), which are involved with activating NMD at the 

upstream terminating ribosome (Gehring et al., 2003; 2005; Ferraiuolo et al., 

2004). In mammals, UPF3 is an auxiliary EJC component and acts to link the 

EJC to the NMD pathway (Figure 1.2B) (Buchwald et al., 2010; Gehring et al., .  



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: DSE and EJC models of NMD activation 

(A) The DSE model of NMD activation in budding yeast. HRP1 binds to a DSE 

(blue) in budding yeast transcripts and binds UPF1 and UPF2. (B) The EJC 

model of NMD activation in mammals. The EJC binds close to an exon-exon 

junction with UPF3 as an auxiliary component and UPF2 and UPF1 link it to the 

terminating ribosome.  
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2003; Kashima et al., 2006). If a ribosome terminates upstream of an EJC then 

UPF3 and UPF1 interact via UPF2 and this activates the phosphorylation of 

UPF1 by SMG1 and recruitment of downstream decay machinery (Kashima et 

al., 2006). However, there are several examples where this does not act as a 

targeting feature (Brogna and Wen, 2009). It remains to be determined if UPF1 

is recruited to every termination event or only at PTC termination events 

(Nicholson et al., 2010).  

 

An exon-exon junction acting as a DSE is not universally conserved across 

eukaryotes. Budding yeast have few introns in their genome and have lost their 

homologues of the EJC. Early experiments studying model transcripts in C. 

elegans and Drosophila suggested that the EJC model did not apply in these 

organisms either (Longman et al., 2007; Gatfield et al., 2003), however, 

subsequent work has found that the EJC does have a role in NMD in 

Drosophila (Saulière et al., 2010). This suggests that the EJC might have a 

conserved function in the NMD pathway across animals. It also acts as a 

warning that it is unwise to use only a small number of model transcripts to 

make general conclusions about the mechanisms of NMD.  

 

Even organisms as evolutionarily divergent from animals as flowering plants 

use the EJC in determining a PTC. NMD reporter genes consisting of the GFP 

coding sequence and an NMD targeting feature have been expressed in a 

tobacco leaf transient assay. Briefly, Agrobacterium carrying the NMD target 

construct is infiltrated into a tobacco leaf and expression of the NMD target is 

measured by GFP or transcript level. Different components of NMD can be 
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silenced used virus-induced gene silencing (VIGS) or expression of a dominant 

negative variant of UPF1 (Kertész et al., 2006; Kerényi et al., 2008). Using this 

system, it was shown that reporter constructs with introns downstream of the 

stop codon can trigger NMD in angiosperms and that this is dependent on the 

core components of the EJC (Kertész et al., 2006; Kerényi et al., 2008; Nyikó et 

al., 2013). Taken together, these data suggest that in both plants and animals 

the EJC downstream of a stop codon can trigger NMD and therefore that this 

mechanism could be evolutionarily ancient. However, more work is needed to 

establish whether the mechanisms linking the EJC and NMD are conserved 

between mammals, invertebrates and flowering plants.  

 

1.1.4 The long 3’ UTR model  

 

In flowering plants, animals and budding yeast, a stop codon followed by a long 

3’ UTR can act as a trigger to activate NMD (Kertész et al., 2006; Kerényi et al., 

2008; Losson and Lacroute, 1979; Meaux et al., 2008; Longman et al., 2007; 

Bühler et al., 2006). Several non-mutually exclusive models have suggested 

how the length of the 3’ UTR is sensed. The faux 3’ UTR model proposes that a 

‘normal’ 3’ UTR has features that allow normal translation termination, whereas 

a false (faux) 3’ UTR does not terminate normally and triggers NMD (Behm-

Ansmant et al., 2007b). It has been proposed a long 3’ UTR increases the 

distance between the terminating ribosome and the polyA-binding protein 

(PABP), which leads to NMD being triggered (Behm-Ansmant et al., 2007b). 

During normal termination the PABP binds to eRF3 and it has been suggested 

that a long 3’ UTR inhibits this interaction, allowing UPF1 to bind eRF3 and  
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Figure 1.3: Models of 3’ UTR length sensing in NMD 

(A) When the ribosome terminates near the polyA tail (short 3’ UTR), PABP and 

eRF3 interact and normal, non-NMD inducing termination occurs. Long 3’ UTRs 

increase the distance between the terminating ribosome and PABP, which 

allows UPF1 to interact with eRF3 and activate NMD. Legend continued on next 

page 
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Figure 1.3: Continued… 

(B) Few UPF1 molecules binds to short 3’ UTRs and do not lead to NMD being 

triggered. Long 3’ UTRs recruit more UPF1 molecules relative to shorter 3’ 

UTR, which in turn triggers NMD.  
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leading to the activation of NMD (Figure 1.3) (Singh et al., 2008). Evidence has 

been gathered in budding yeast, Drosophila, angiosperms and mammals 

supporting this model that a PABP close to the PTC abolishes NMD (Behm-

Ansmant et al., 2007a; Amrani et al., 2004; Kerényi et al., 2008; Singh et al., 

2008). However, three lines of inquiry have questioned the importance of the 

PABP in sensing the 3’ UTR length. Firstly, the PABP has been implicated in 

general mRNA decay and tethering PABP to an NMD target therefore might 

increase stability independently of competition with UPF1 (Mangus et al., 2003; 

Brogna and Wen, 2009). For example, a transcript can be stablised by tethering 

PABP to it independently of a PTC being present in budding yeast (Coller et al., 

1998; Tsuboi and Inada, 2010). Secondly, a report by Meaux et al. (2008) 

demonstrated that NMD through 3’ UTR length sensing in budding yeast did not 

require the either a polyA-tail or PABP (Meaux et al., 2008). Finally, deleting the 

region of PABP thought to be important for linking PABP to the terminating 

ribosome had no effect of NMD targets in budding yeast (Simón and Séraphin, 

2007; Brogna and Wen, 2009), suggesting that the competition between PABP 

and UPF1 for eRF3 cannot account for coupling a long 3’ UTR to NMD. 

Therefore, it appears that if PABP has a role in long 3’ UTR recognition, it is 

redundant to other mechanisms.  

 

Other more speculative models for how the length of the 3’ UTR is measured 

have been suggested, although they currently lack experimental support (Niu 

and Cao, 2010; Brogna and Wen, 2009). A recently proposed model, based on 

experimental evidence, suggests that the length of a 3’ UTR is sensed directly 

by UPF1 (Figure 1.3) (Hogg and Goff, 2010). UPF1 can bind to the 3’ UTR of 
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any transcript (Zünd et al., 2013) in a length dependent manner (Figure 1.3) 

(Hogg and Goff, 2010). It has been shown that UPF1 binds along the whole 

length of the transcript and is displaced from the coding sequence by translation 

(Zünd et al., 2013). The amount of UPF1 bound along the 3’ UTR can act as a 

molecular sensor of the length of the 3’ UTR and targets the transcript to NMD 

(Hogg and Goff, 2010). Some transcripts with naturally long 3’ UTRs have been 

reported to be resistant to NMD. However these do not accumulate UPF1, 

suggesting that they have evolved a mechanism to escape NMD, despite 

having a long 3’ UTR, by modulating their ability to be bound by UPF1 (Hogg 

and Goff, 2010). The suggestion that UPF1 binds to many transcripts and 

senses the length of the 3’ UTR is consistent with the finding in budding yeast 

that UPF1 is 10-fold more abundant than UPF2 (Maderazo et al., 2000).  

 

It still remains to be resolved how UPF1 is recruited to the terminating ribosome 

in the long 3’ UTR and the EJC models. It remains possible that it is due to an 

increase in the local concentration of UPF1, because of the long 3’ UTR, 

recruitment via UPF2 and UPF3 bound to the EJC, or UPF1 binding to all 

terminating ribosomes but only being activated at a subset. Additionally, it 

remains unclear how UPF2 and UPF3 are recruited to UPF1 during long 3’ UTR 

NMD; whether this is simply through UPF1 recruitment or whether there is 

another step of NMD that has not been characterised. Unlike in the EJC model 

where UPF3 is recruited via the EJC it is unclear what recruits UPF2 and UPF3 

to the terminating ribosome in the long 3’ UTR models.  
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1.2 The NMD pathway varies between species 

 

1.2.1 The NMD pathway of mammals  

 

The model of NMD in animals described in Section 1.1.2 and Figure 1.1 is 

highly reductionist and additional components of the NMD pathway have been 

identified in mammals. However, the mechanistic significance for many of these 

additional components has not been well characterised and could be specific to 

mammals (Longman et al., 2007; Yamashita et al., 2009). An extra complication 

is that some of the ‘core’ NMD effectors, such as UPF2 and UPF3, are not 

required for decay of all NMD targets, suggesting that additional ‘branches’ of 

the NMD pathway exist (Saltzman et al., 2011; Chan et al., 2007; Gehring et al., 

2005).  

 

An RNAi screen identified SMGL1 (NAG/NBAS) and SMGL2 (DHX34) as 

additional regulators of NMD. Unlike SMG1-7, these are essential for survival in 

C. elegans (Longman et al., 2007) and they also function in the NMD pathways 

of humans and zebrafish (Longman et al., 2007; Anastasaki et al., 2011), 

although their mechanistic role in NMD is not clear. Separate work has 

identified SMG8 and SMG9 and proteins that form a complex with SMG1 to 

suppress its kinase activity in mammalian NMD (Yamashita et al., 2009). Initial 

reports performing RNAi knockdown analysis suggested that SMG8 also 

functions in the NMD pathway of C. elegans (Yamashita et al., 2009). However, 

recent analysis of SMG8 mutants in C. elegans has shown no role for SMG8 in 
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NMD in this organism (Rosains and Mango, 2012), questioning the mechanistic 

conservation of SMG8 in NMD. Additional components of the SMG1 complex 

have been identified, revealing that the ATPases RUVBL1 (TIP49a or Pontin) 

and RUVBL2 (TIP49b or Reptin) interact with SMG1 and other related kinases 

to affect their function (Izumi et al., 2010). Knockdown of RUVBL1 and RUVBL2 

reveals a weak loss of NMD in both humans and C. elegans, suggesting a 

minor role in NMD (Izumi et al., 2010). SMG10 and RPB5 were also identified 

as SMG1 complex interactors (Izumi et al., 2010). Knockdown of RPB5 (a 

subunit of RNA polymerases), but not SMG10, had an effect on NMD in 

mammals (Izumi et al., 2010). However, it was suggested that SMG10 has only 

a minor role in NMD in C. elegans (Izumi et al., 2010). Their mechanistic role in 

NMD stills needs to be resolved. Work has also identified that the vertebrate 

specific PNRC2 protein is a components of the NMD pathway (Cho et al., 2009; 

2012; Lai et al., 2012). PNRC2 is believed to bind to phosphorylated UPF1 and 

recruit the decapping complex to help degrade the targeted transcript (Cho et 

al., 2009; Lai et al., 2012). PNRC2 forms a complex with SMG5 and has been 

suggested to be a more important interactor of SMG5 than SMG7 in NMD (Cho 

et al., 2012).  

 

Some reports have suggested that different ‘branches’ of the NMD exist. This is 

where specific transcripts vary in their requirement of NMD effectors to be 

successfully degraded by NMD (Saltzman et al., 2011; Chan et al., 2007; 

Gehring et al., 2005). UPF1 appears to be essential for NMD but UPF2 and 

UPF3 are only required for a subset of NMD targets in mammals (Saltzman et 

al., 2011; Chan et al., 2007; Gehring et al., 2005). It is possible that BTZ from 
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the EJC can interact directly with UPF1 to activate NMD without the need for 

UPF2 and UPF3 (Gehring et al., 2009). Such ‘branches’ of the NMD pathway 

that do not require the full complement of NMD effectors have not been well 

studied in other model systems.  

 

Much time has been spent debating 1) whether NMD occurs in the nucleus of 

mammals and 2) whether NMD is confined to the pioneer round of translation in 

mammals, which is usually associated with the nuclear cap-binding complex. 1) 

Early work suggested that targets of NMD in mammals were associated with the 

nucleus (Urlaub et al., 1989; Cheng and Maquat, 1993; Carter et al., 1996), 

however, this could be due to transcripts being degraded during export from the 

nucleus (Belgrader et al., 1994; Carter et al., 1996; Maquat, 2004). Expression 

of peptides that inhibit NMD specifically in the nucleus has been show to have 

no effect on NMD (Singh et al., 2008). More recent work used visualisation 

techniques to show that degradation of NMD targets occurs in the cytosol and 

not in the nucleus (Trcek et al., 2013). Taken together these studies appear to 

have resolved the debate of nuclear NMD, at least in the case of the tested 

transcripts. 2) Some work has suggested that UPF1 and the CBC (nuclear) cap-

binding complex interact and that this increases the rate of NMD (Hwang et al., 

2010; Hosoda et al., 2005). Soon after the export from the nucleus, the cap-

binding complex (consisting of CBP80:CBP20) is replaced by the eIF4E cap 

(Rufener and Mühlemann, 2013; Durand and Lykke-Andersen, 2013) and it has 

been suggested that transcripts are then protected from NMD in mammals 

(Hwang et al., 2010; Hosoda et al., 2005). However, two independent studies 

have now shown that NMD can occur on eIF4E-bound transcripts in mammals 
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(Rufener and Mühlemann, 2013; Durand and Lykke-Andersen, 2013), therefore, 

while the bulk of NMD may occur during the pioneer round, this is not a pre-

requisite for NMD in mammals as it can occur after the nuclear cap-binding 

complex has been removed.  

 

A great deal of focus has been directed towards mammalian NMD, leading to a 

detailed understanding of both the central, possibly conserved, aspects of NMD 

as well as several apparently animal-specific aspects. Details of differences 

between the NMD pathway of mammals and other eukaryotes are discussed 

below. However, NMD has been less well studied outside the animal kingdom 

and therefore there is likely to be much left to be discovered.  

 

1.2.2 The differences between the NMD pathways of model animals  

 

The overview of the NMD pathway described in Section 1.1.2 is largely based 

on work on mammals and C. elegans and does not hold true for NMD in other 

animals. Drosophila has copies of many of the central NMD factors found in 

mammals (Table 1.1). Although it lacks SMG7, it retains SMG5 and SMG6 from 

the SMG5-7 family (Table 1.1). The functions of many of these components 

have been analysed in Drosophila and they have been implicated in NMD 

(Gatfield et al., 2003; Rehwinkel et al., 2005; Metzstein and Krasnow, 2006). 

However, the function of SMG1 in the NMD pathway of Drosophila has been 

questioned (Gatfield et al., 2003; Chen et al., 2005; Rehwinkel et al., 2005; 

Metzstein and Krasnow, 2006). At least for a subset of transcripts, SMG1 does 

appear to operate in NMD, but loss of SMG1 has a lesser effect in Drosophila 
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than loss of UPF1, UPF2 or SMG6 (Metzstein and Krasnow, 2006; Frizzell et 

al., 2012). It is possible that NMD in Drosophila does not completely rely on 

phosphorylation of UPF1, as it does in C. elegans and mammals. An alternative 

explanation is that there is a redundant kinase that acts to phosphorylate UPF1 

and activate the NMD pathway. More work is needed to differentiate between 

the two possibilities.  

 

Zebrafish (Danio rerio) have recently become established as a model organism 

to study NMD in vertebrates (Anastasaki et al., 2011; Wittkopp et al., 2009; 

Longman et al., 2013). Zebrafish are excellently placed as a model organism, 

as it is a basal vertebrate that can reveal insights true for NMD across 

vertebrates (Wittkopp et al., 2009). UPF1, SMG6, SMGL1 (NAG/NBAS) and 

SMGL2 (DHX34) have all had their functions in zebrafish NMD confirmed 

(Anastasaki et al., 2011; Wittkopp et al., 2009). Additionally, knockdown of 

UPF2, SMG5 and SMG6 have similar developmental phenotypes to knockdown 

of UPF1, suggesting a role for them in the same pathway (Wittkopp et al., 

2009). UPF3a and UPF3b appear to have redundant roles in zebrafish NMD 

(Wittkopp et al., 2009). No developmental phenotype was observed in zebrafish 

depleted of SMG1 (Wittkopp et al., 2009). This could be the result of inefficient 

knockdown, no role for SMG1 in NMD in zebrafish or a redundant kinase 

compensating for the loss of SMG1.  
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1.2.3 The NMD pathway of yeasts 

 

While mutant screens revealed the three core NMD effectors UPF1, UPF2 and 

UPF3 in budding yeast, the NMD pathway is likely to be more complex than it 

first appears. SMG5-7 have important roles in the NMD pathway of animals 

(Pulak and Anderson, 1993; Cali et al., 1999) but these share similarities to a 

regulator of telomere length in budding yeast EST1 and SMG6 (EST1A) is also 

an important controller of telomere length in mammals (Redon et al., 2007). 

Functional analysis of the two homologues in budding yeast revealed that EBS1 

but not EST1 has a role in the NMD pathway (Luke et al., 2007), suggesting 

subfunctionalization of the NMD and telomere regulatory roles in budding yeast 

between EBS1 and EST1, respectively, while at least SMG6 has retained a role 

in both (Redon et al., 2007; Eberle et al., 2009). It was proposed that EBS1 

should be renamed SMG7 in budding yeast, because EBS1 is a functional 

homologue of the SMG5-7 family of animals and its domain structure best 

matches the domain structure of SMG7 rather than SMG5 or SMG6 (Luke et al., 

2007). Deletion of SMG7/EBS1 in budding yeast did not lead to as severe an 

NMD compromised phenotype as mutation of UPF1, suggesting that 

SMG7/EBS1 does not have as essential a role in NMD as UPF1, UPF2 and 

UPF3 (Luke et al., 2007). This might explain why it was not identified in the 

original mutant screens that identified UPF1, UPF2 and UPF3. It could also be 

that the role of SMG7/EBS1 in NMD is not an essential step and loss of 

SMG7/EBS1 only results in a minor loss of NMD efficiency. On the other hand, 

SMG7/EBS1 could be partially redundant to another factor that has a similar 

role in budding yeast NMD. The exact nature of the role of SMG7/EBS1 in 
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budding yeast NMD is unknown. However, given the sequence homology to the 

SMG5-7 family and in particular to the 14-3-3-like domain, it is tempting to 

speculate that SMG7/EBS1 binds to phosphorylated UPF1 to recruit the decay 

machinery. It is also unknown whether UPF1 phosphorylation in budding yeast 

is essential for NMD. However, budding yeast UPF1 has been shown to be a 

phospho-protein (Wang et al., 2006). Yeasts have no orthologue of SMG1 

(Grimson et al., 2004) and no other NMD-associated kinase has been identified 

in fungi. More work is needed to establish a role for phosphorylation in yeast, to 

identify a kinase and to dissect out the exact roles of UPF1, UPF2, UPF3 and 

SMG7/EBS1.  

 

Additional work is needed to understand how a transcript is targeted to NMD. 

As previously discussed (Section 1.1.3), budding yeast lacks an EJC complex 

(Table 1.1), therefore must rely on other signals to act to trigger NMD. A DSE, 

which binds HRP1 (Zhang et al., 1995; Peltz et al., 1993; González et al., 2000) 

has been characterised but is only applicable to a small subset of NMD targets. 

A long 3’ UTR has been shown to be an effective trigger of NMD in budding 

yeast, possibly through the distance of the stop codon from the PABP, but this 

does not fully explain how a long 3’ UTR can be sensed (Meaux et al., 2008) 

(see Section 1.1.4 for more details). It will be important to search for more DSEs 

and untangle how the cell senses 3’ UTRs in budding yeast to gain a complete 

picture of NMD.  

 

The fission yeast Schizosaccharomyces pombe has also been used to study 

NMD and has yielded some unexpected results (Wen and Brogna, 2010). Like 
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budding yeast, S. pombe lacks SMG1 (Grimson et al., 2004) and relies on 

UPF1 and UPF2 for NMD (Wen and Brogna, 2010). Unlike budding yeast, S. 

pombe has an EJC, therefore, the role of introns in PTC recognition along with 

the EJC was explored (Wen and Brogna, 2010). Wen and Brogna (2010) found 

that the splicing of an intron did increase recognition of a PTC, but 

unexpectedly this occurred whether the PTC was upstream or downstream of 

the intron and did not require the EJC, suggesting a novel mechanism for PTC 

recognition (Wen and Brogna, 2010). It is still unclear whether the EJC has a 

role in NMD at all in S. pombe, but in these reporter transcripts splicing can 

increase perception of a PTC independently of an EJC (Wen and Brogna, 

2010). They also found that there was no clear correlation between the length 

of a 3’ UTR and targeting of the transcript to NMD in S. pombe (Wen and 

Brogna, 2010). However, caution should be used when trying to generalise 

work from a few model artificial transcripts to general rules for how NMD 

functions in an organism.  

 

1.2.4 The NMD pathway in flowering plants 

 

Work has begun to characterise NMD pathways in plants. This work has mostly 

focused on the flowering plant Arabidopsis thaliana, however, some work has 

been performed using a tobacco transient assay (described in Section 1.1.3). 

Using A. thaliana and the tobacco transient assay, the roles for many NMD 

effectors have been determined. UPF1, UPF2, UPF3 and SMG7 all have 

functional homologues in plants (Riehs et al., 2008; Arciga-Reyes et al., 2006; 

Kerényi et al., 2008). Examining the A. thaliana genome reveals that the NMD 
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pathway is similar to the budding yeast’s NMD pathway (Table 1.1). Like 

budding yeast, A. thaliana also lacks SMG1 (Grimson et al., 2004), or any 

known kinase involved with the NMD pathway. When A. thaliana UPF1 

(AtUPF1) is expressed in tobacco cells, it becomes phosphorylated at the N- 

and C-termini and these regions are needed for AtUPF1 to function in tobacco 

(Mérai et al., 2012). Additionally, SMG7 has a role in NMD, in particular, 

residues important for binding phosphorylated UPF1 in the 14-3-3-like domain 

are essential for its role in NMD (Riehs et al., 2008; Benkovics et al., 2011; 

Kerényi et al., 2008; Mérai et al., 2012). These data suggest that NMD in plants 

involves UPF1 phosphorylation, although no kinase involved in NMD has been 

characterised outside the animal kingdom. This highlights the need to study 

NMD intensively in more non-animal models to better understand the NMD 

pathway.  

 

As discussed previously (Sections 1.1.3 and 1.1.4), reporter genes that are 

targeted to NMD through both the long 3’ UTR and EJC models have been 

described using the tobacco transient assay (Kertész et al., 2006; Kerényi et al., 

2008), but, the exact mechanism for both is yet to be reported. For example, it 

would be interesting to identify whether UPF3 binds to the EJC, as has been 

reported in animals (Buchwald et al., 2010; Gehring et al., 2003; Kashima et al., 

2006) and whether there are plant-specific mechanisms to target a transcript to 

NMD.  
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1.2.5 NMD targeting features in flowering plants 

 

Work using the tobacco transient expression system has found that transcripts 

with either a long 3’ UTR or an intron located in the 3’ UTR are targeted to NMD 

in flowering plants (Kertész et al., 2006; Kerényi et al., 2008). In tobacco it was 

found that a 3’ UTR of 600 nucleotides could efficiently target a transcript to 

NMD but a shorter 3’ UTR of 300 nucleotides could also target a transcript to 

NMD, although less efficiently than the longer 3’ UTRs (Kertész et al., 2006; 

Kerényi et al., 2008). The average length of a 3’ UTR in A. thaliana (TAIR10) is 

237 nucleotides long (Zimmer et al., 2013). Analysis of 270 genes in A. thaliana 

found that transcripts with a 3’ UTR of >350 nucleotides were enriched among 

those with increased steady states in NMD mutants (Kalyna et al., 2012). A 

transcriptome-wide study of A. thaliana found that transcripts with lengths of 

over 347 nucleotides (representing the longest 10% of transcripts in TAIR10) 

were enriched in NMD mutants (Drechsel et al., 2013). This study also found 

that there is an enrichment of intron-containing 3’ UTRs in A. thaliana NMD 

mutants, suggesting these are targeting features conserved across flowering 

plants (Drechsel et al., 2013). Taken together, this suggests that both of the 

well charactorised features that can target a transcript to NMD operate in plants 

and could work through similar mechaisms. For example, the EJC is important 

in the targeting of transcripts with introns downstream of the stop and addition 

of a series of adenosine residues to recruit PABP in a long 3’ UTR can stabilise 

a transcript (Kerényi et al., 2008; Nyikó et al., 2013).  
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Upstream open reading frames (uORFs) are short ORFs located in the 5’ UTR 

of a transcript. This places a start and stop codon very distant from the polyA 

tail, thus creating a long 3’ UTR, often upstream of many introns. Therefore 

many uORFs can target a transcript to NMD (Nyikó et al., 2009; Saul et al., 

2009). uORFs are very common in A. thaliana genes (approximately 20% 

contain them), but only a small fraction appear to be targeted to NMD (Nyikó et 

al., 2009). Therefore work has started to define why some uORFs can target a 

transcript to NMD. From modifying a small number of uORFs in front of a GFP 

reporter in the tobacco, it has been suggested that short uORFs (<36 amino 

acids) are less likely to trigger NMD and that longer uORFs (Nyikó et al., 2009). 

An analysis of 270 genes in A. thaliana found that uORFs that overlap with the 

main ORF (where the stop codon of the uORF is in the coding sequence of the 

main ORF) are highly enriched in transcripts where the steady state level was 

increased in NMD mutants (Kalyna et al., 2012). Finally, uORFs where the 

peptide sequence is conserved between transcripts between different species 

(called conserved peptide uORFs; CPuORFs) are greatly enriched among 

transcripts with increased steady state levels in A. thaliana NMD mutants and 

have been suggested to be direct targets of NMD (Rayson et al., 2012a; 

2012b). These CPuORFs are enriched among NMD genes in A. thaliana NMD 

mutants with an increased steady state level independent of length, suggesting 

that they are targeted to NMD through a mechanism related to the conserved 

nature of their uORF, rather than simply being long uORFs (Rayson et al., 

2012a; 2012b). CPuORFs have also been placed in front of a GFP reporter and 

found to be able to target a transcript to NMD (Nyikó et al., 2009) suggesting 

they directly target transcripts to NMD. Why long, overlapping and conserved 
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peptide uORFs appear to target transcripts to NMD while many other uORFs do 

not is unclear and further research is needed.  

 

1.3 NMD is important for controlling gene expression 

 

As NMD was originally characterised as a quality control mechanism, it was 

predicted that many targets would be the result of nonsense mutations, PTC-

containing alternative splice variants and errors resulting from transcription or 

splicing (Mühlemann et al., 2008). However, transcriptomic analysis of NMD 

mutants in budding yeast, Drosophila, C. elegans, mammals and A. thaliana 

have all revealed that 1-10% of genes are influenced by NMD, and many of 

these genes do not have NMD targeting features (Guan et al., 2006; He et al., 

2003; Mendell et al., 2004; Ramani et al., 2009; Rayson et al., 2012a; 

Rehwinkel et al., 2005). The NMD influenced genes will include both direct and 

indirect targets of the mRNA decay pathway. It is difficult to quantify the 

influence of changes to the transcriptome that are induced by truncated 

proteins, however, many changes in gene expression are the result of NMD 

targeting transcripts, which encode full-length and physiologically important 

proteins. These ‘physiological’ targets of NMD can be targeted to NMD by a 

number of different targeting features. One of the best characterised 

physiological targets of NMD is AtSMG7 (Benkovics et al., 2011; Kerényi et al., 

2008; Nyikó et al., 2013; Rayson et al., 2012a). AtSMG7 has a long 3’ UTR with 

two introns downstream of the ‘natural’ stop codon and through both the long 3’ 

UTR-mediated recognition and EJC-mediated recognition, the ‘natural’ stop 

codon appears to the terminating ribosome to be a PTC and AtSMG7 is 
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degraded by NMD (Benkovics et al., 2011; Kerényi et al., 2008; Nyikó et al., 

2013; Rayson et al., 2012a). This appears to generate an autoregulatory loop to 

control the activity of the NMD pathway (Kerényi et al., 2008) and similar 

negative feedback loops have been reported to control the activity of NMD 

effector-encoding genes in animals (Huang et al., 2011; Yepiskoposyan et al., 

2011). Therefore, naturally long 3’ UTRs and/or introns downstream of the stop 

codon can target physiologically important transcripts to NMD (Sureau et al., 

2001; Kertész et al., 2006; Nyikó et al., 2013; Yepiskoposyan et al., 2011).  

 

As previously mentioned, uORFs can also target transcripts to NMD (Nyikó et 

al., 2009). If a uORF is translated, it will place a stop codon upstream of a long 

3’ UTR and/or introns downstream of the stop codon, to target the uORF-

containing transcript to NMD. However, the transcriptomes of eukaryotes have 

many uORF-containing transcripts but only a subset of these are targets of 

NMD (Rayson et al., 2012a). One possibility is that stop codons early along a 

transcript are not targeted to NMD, because in the closed loop model of 

eukaryotic translation, termination occuring near the 5’ end of the transcript is 

also near the PABP. The PABP can therefore bind to the 5’ cap complex and 

trigger normal translation termination and therefore does not activate NMD, 

according to the faux 3’ UTR model (Brogna and Wen, 2009). However, many 

stop codons early in the transcript do target the transcript to NMD (Brogna and 

Wen, 2009) and for those that cannot, this can sometimes be explained by the 

ribosome reinitiating at downstream start codons abolishing NMD (Zhang and 

Maquat, 1997). Two non-mutually exclusive models can be generated to 

explain why uORFs do not always trigger NMD; 1) if uORFs are translated by 
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the ribosome, the ribosomes are able to re-initiated at the start codon of the 

main ORF negating NMD or 2) uORFs are not always translated by the 

ribosome. Further work is needed to understand under which category uORF-

containing transcripts fall.  

 

It would be easy to view NMD as having a static role in suppressing gene 

expression, with transcripts targeted by NMD being degraded under all 

conditions, however, two mechanisms can actively modulate transcript levels 

via NMD: 

1) Regulation of the activity of the NMD pathway 

2) Altering the susceptibility of specific transcripts to NMD 

Both mechanisms have been reported in mammals. During brain development 

in vertebrates a microRNA targeting UPF1 is up-regulated, decreasing the 

activity of the NMD pathway (Bruno et al., 2011). Some transcripts required for 

normal neural development are predicted to be NMD targets. Reducing the 

overall level of NMD at a critical developmental stage allows these transcripts to 

be up-regulated and facilities the differentiation of stem cells into neurons 

(Bruno et al., 2011). Phosphorylation of eIF2-α is known to inhibit translation on 

a global scale but it also inhibits NMD through an unknown mechanism 

(Gardner, 2008; Wang et al., 2011). eIF2-α is phosphorylated in response to 

stress conditions such as the unfolded protein response (UPR) or hypoxia. 

Transcription factors responsible for combating these stresses are targeted to 

NMD by uORFs present in their transcripts and repression of NMD allows these 

factors to be expressed under stress conditions (Gardner, 2008; Wang et al., 

2011). In addition to global inhibition of NMD, there are also reports of individual 
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transcripts being able to evade NMD in a condition-specific manner. The uORF 

of the CPA transcript in budding yeast only targets the transcript to NMD when 

arginine is present in the growth medium (Gaba et al., 2005). Transcripts can 

also be alternatively spliced to target them to NMD, even in a manner that 

maintains the functionality of the protein. For example, SC35 in mammals has a 

cryptic intron in its 3’ UTR, which is spliced out if levels of the SC35 protein are 

high, creating a feedback loop (Sureau et al., 2001; Lareau et al., 2007). The 

splicing event deposits an EJC downstream of the ‘normal’ stop codon making it 

a target of NMD (Sureau et al., 2001). Therefore, there is a range of ways in 

which a transcript important for growth or stress response can be brought into 

or released from the sphere of influence of NMD.  

 

1.3.1 AS-coupled NMD  

 

AS-coupled NMD is an important mechanism for degrading transcripts to 

regulate gene expression. Splicing factors can cause changes in the splicing of 

specific primary transcripts to change splicing towards a PTC-containing 

variant. In the case of the mammalian SC35, the PTC is the authentic stop 

codon, which becomes recognised by NMD upon splicing of a cryptic intron and 

introduction of a EJC downstream of this stop (Sureau et al., 2001; Lareau et 

al., 2007). If a PTC is introduced in the middle of the coding sequence, then 

NMD removes this as waste to prevent production of truncated proteins. These 

truncated proteins might have dominant negative effects if they were not 

degraded by NMD. Many transcripts are regulated in the process, including 

splicing factors themselves to produce a autoregulatory feedback loop (Sureau 
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et al., 2001; Lareau et al., 2007; Stauffer et al., 2010; Palusa and Reddy, 2010). 

AS-coupled NMD is a highly regulated and is associated with highly conserved 

sequence element in mammals, suggesting a functional importance (Lareau et 

al., 2007). Approximately 20-30% of animal genes produce splice variants that 

are targets of NMD (Ramani et al., 2009; Weischenfeldt et al., 2012). In A. 

thaliana, a recent studies have found that around 13-17% of intron-containing 

genes produce a PTC-containing splice variant that has increased steady state 

levels in NMD mutants (Drechsel et al., 2013; Kalyna et al., 2012). It is worth 

noting that many of the genes associated with AS-coupled NMD in A. thaliana 

appear to have a role in salt stress (Drechsel et al., 2013), highlighting the 

potential importance of AS-coupled NMD in controlling properties of plants, in 

particular in processes important in agriculture. Interestingly, there is an 

emerging difference between plants and animals in regard to AS-coupled NMD, 

namely the types of AS events that occur in a transcript and whether this 

transcript is targeted to NMD (Drechsel et al., 2013; Kalyna et al., 2012). 

Transcripts containing intron retention events are targeted to NMD in a range of 

organisms including budding yeast and animals (Sayani et al., 2008; Ramani et 

al., 2009), however, it appears such transcripts are not targeted to NMD in A. 

thaliana (Drechsel et al., 2013; Kalyna et al., 2012), even when the PTC 

introduced by a retained intron is the same as those introduced by other 

splicing events and these transcripts are targeted to NMD (Kalyna et al., 2012). 

It is possible some of these transcripts accumulate in the nucleolus (Kim et al., 

2009). One report has shown that the purpose of such intron retained 

transcripts is to act as stored transcripts, which are rapidly spliced at the correct 

developmental stage (Boothby et al., 2013). Although it is unclear how splicing 
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of such transcripts are regulated and how they evade NMD. The mostly likely 

scenario would be that they are not translated. However, there are examples of 

transcripts with intron retention events being translated and producing a protein 

in plants, for example in the A. thaliana HSFA2-encoding gene (Liu et al., 

2013).  These studies suggest that AS-coupled NMD is a highly regulated and 

far-reaching process for controlling gene expression in both animals and plants, 

however more research is needed to understand the significance of this in 

plants and how AS-coupled NMD differs between the two groups.  

 

1.3.2 A biological function of NMD in plants 

 

To understand the function of NMD in flowering plants, NMD mutants have 

been examined in A. thaliana (Yoine et al., 2006; Arciga-Reyes et al., 2006; 

Riehs et al., 2008). A full null mutant of UPF1 (upf1-3) is seedling lethal (Yoine 

et al., 2006; Arciga-Reyes et al., 2006). A. thaliana NMD mutants have 

increased steady state levels of genes involved in pathogen response, and it 

was found that the seedling lethality of the upf1-3 allele was due to increased 

production of the defense hormone salicylic acid (SA) (Rayson et al., 2012a; 

Riehs-Kearnan et al., 2012; Jeong et al., 2011; Rayson et al., 2012b). 

Therefore, NMD might repress the pathogen response of A. thaliana (Rayson et 

al., 2012a; Riehs-Kearnan et al., 2012; Jeong et al., 2011; Rayson et al., 

2012b). It would be interesting to know if NMD is repressed during pathogen 

attack and this is what leads to increased expression of pathogen-regulated 

genes. It has been suggested that genes encoding NMD effectors are down-

regulated during pathogen attack and this could repress NMD, which in turn 
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would lead to expression of pathogen related genes (Jeong et al., 2011). If 

NMD is repressed during pathogen, this would allow for the expression of novel 

truncated proteins, some of which might have a role in fighting the invading 

pathogen(s).  

 

1.4 The origins of the NMD pathway 

 

The NMD pathway has an important role in controlling gene expression as both 

a quality control mechanism (Mühlemann et al., 2008) and also as a regulator of 

physiological transcripts (see Section 1.3). However, the origins of the NMD 

pathway and its original function are unclear. Although there is some debate 

regarding the evolution of eukaryotes and which are the basal lineages, recent 

work has suggested the last eukaryotic common ancestor (LECA; stem 

eukaryote) diverged into two lineages, one that contains plants and another that 

contains animals and fungi (Richards and Cavalier-Smith, 2005; Derelle and 

Lang, 2012). In this situation, the NMD pathway would have been complex in 

the LECA, with UPF1, UPF2, UPF3, SMG7 and the EJC all likely to be 

functioning, as they function in both plants and animals (Section 1.2).  

 

When focusing on diploids (and polyploids) such as animals and flowering 

plants, it is easy to imagine why NMD might have evolved and been 

maintained; to protect heterozygotes from damaging dominant negative 

truncated proteins, which could have deleterious effects on organismal survival. 

Many human genetic disorders have been described, for example β-

Thalassemia, that are predicted to be suppressed in heterozygotes due to NMD 
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(Khajavi et al., 2006). However, there are many cases where NMD can make 

the symptoms of a disease worse by preventing functional, or partly functional 

truncated proteins from being generated, for example, in the case of some 

Duchenne muscular dystrophy patients, where some truncated protein would be 

better than no protein in the homozygotes (Bhuvanagiri et al., 2010). However, 

the NMD pathway probably did not evolve in a diploid eukaryote but in a haploid 

before LECA arose. It is unclear exactly when NMD evolved in relation to other 

innovations in eukaryotes but it has been suggested it was as a defence against 

group II introns.  

 

Group II introns are selfish genetic elements and the likely ancestors of the 

modern day spliceosomal introns (Roy and Gilbert, 2006; Cavalier-Smith, 1991; 

Cech, 1986). It has been proposed that these underwent a massive expansion 

in early eukaryotes (Martin and Koonin, 2006). The splicing of these selfish 

genetic elements has been predicted to have been slower than translation 

(Poole, 2006) so it has been hypothesised that the nucleus evolved as a barrier 

to separate transcription and splicing from translation (Koonin, 2006; Martin and 

Koonin, 2006), therefore preventing truncated proteins arising from the 

translation of transcripts still undergoing splicing. The spliceosome itself is likely 

to be an outcome of the need to increase splicing efficiency (Koonin, 2006). It 

has been proposed that NMD may also have evolved as a quality control 

mechanism to prevent the translation of intron containing transcripts that were 

not correctly spliced in the early evolution of eukaryotes (Martin and Koonin, 

2006; Koonin, 2006). Studies have shown that intron retention events are 

degraded by NMD in animals (Ramani et al., 2009), budding yeast (Sayani et 
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al., 2008) and the protist Paramecium tetraurelia (Jaillon et al., 2008). 

Therefore, NMD has allowed for the expansion of novel introns in eukaryotes 

and laid the ground for the increase in organismal complexity through 

alternative splicing. Farlow et al. (2010) have shown that in Drosophila species, 

newly arisen introns have weaker splice sites than older introns and that these 

new introns are hidden from selective pressures by NMD (Farlow et al., 2010). 

As mentioned previously, A. thaliana appears to be the exception and several 

examples of PTC-containing intron retention events do not target a transcript to 

NMD (Kalyna et al., 2012), suggesting a novel mechanism in plants to 

recognise intron retention events, although little is known about this.  

 

This work demonstrates the importance of NMD not only to protect the 

organism from mutations and to regulate gene expression, but also in 

‘evolvability’. NMD is likely to have been a pre-requisite for the expansion of 

introns in eukaryotes and allowed for the evolution of alternative splicing. Today 

it has important additional roles in stress response (Wang et al., 2011; Rayson 

et al., 2012a; Riehs-Kearnan et al., 2012; Jeong et al., 2011).  

 

1.5 Aims of this thesis 

 

A great deal has been determined about the NMD pathway in animals by not 

just focusing on one model organism, but through complementary studies in 

multiple model systems, including, C. elegans and Drosophila, zebrafish, mice 

and human cell culture. These evolutionarily diverse organisms have allowed us 

not only to understand more about the central components of the pathway but 
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also to find organism/lineage specific mechanisms (Section 1.2.2). This has 

shown us that whilst SMG1 is important for NMD in C. elegans and mammals 

(Yamashita et al., 2001; Pulak and Anderson, 1993; McIlwain et al., 2010), this 

is not universal across all animals, since it does not appear to be essential for 

NMD in Drosophila or zebrafish (Wittkopp et al., 2009; Metzstein and Krasnow, 

2006).  

 

By studying evolutionarily diverse plants, a better understanding of the NMD 

pathways of plants can be deciphered, with both species-specific and 

conserved components being identified. In addition, the more we learn about 

NMD in plants, animals and fungi, the more we can predict about the NMD 

pathway of the LECA and the evolutionary origins of NMD.  

 

The broad aim of this thesis is to understand the mechanism and importance of 

NMD in plants by primarily using the moss, Physcomitrella patens as a model 

organism. P. patens (also referred to simply as moss in this thesis) is an 

excellent model organism within the plant kingdom. It is currently the most 

evolutionarily basal land plant with a published genome sequence (Rensing et 

al., 2008), having diverged from flowering plants at least 450 million years ago 

(Kenrick and Crane, 1997). In addition to being useful for studying evolutionarily 

diverse land plants, P. patens is an excellent model for reverse genetics (Prigge 

and Bezanilla, 2010). P. patens has a higher rate of homologous recombination 

than flowering plants, allowing efficient gene targeting. By cloning 

approximately one kilobase upstream and downstream of a gene of interest 

around a selection cassette, the targeted gene can be effectively deleted 
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(Kamisugi et al., 2005). Since mosses spend much of their life cycle as haploids 

and can be sub-cultured vegetatively, knockout lines generated in this way can 

be studied directly, without the need for crossing (Prigge and Bezanilla, 2010).  

 

Specific aims: 

1 To identify and functionally characterise components of the NMD 

pathway of moss 

2 To use knowledge from NMD in moss to understand better the NMD 

pathway in plants 

3 To understand the physiological roles of NMD effectors in moss  
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2 Materials and Methods 

2.1 Computer resources 

 

2.1.1 Bioinformatics tools 

 

Table 2.1: Computer resources.  

 

Function Tool name Web address 

Genome databases COSMOSS 

TAIR 

NCBI 

Phytozome 

http://cosmoss.org/ 

http://www.arabidopsis.org/ 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 

http://www.phytozome.net/ 

Synteny analysis Plant Genome 

Duplication 

Database 

http://chibba.agtec.uga.edu/duplication/ 

Domain 

identification 

SMART 

database 

http://smart.embl-heidelberg.de/ 

Sequence alignment  CluastalX: http://www.ebi.ac.uk/Tools/clustalw2/inde

x.html 

Tree viewer FigTree http://tree.bio.ed.ac.uk/software/figtree/ 

Primer design Primer-BLAST 

 

 

 

Primer3 

http://www.ncbi.nlm.nih.gov/tools/primer-

blast/index.cgi?LINK_LOC=BlastHome 

http://frodo.wi.mit.edu/primer3/ 

Plasmid map 

generation 

A plasmid 

editor (ApE): 

http://www.biology.utah.edu/ 

jorgensen/wayned/ape/ 

Image manipulation  ImageJ http://rsbweb.nih.gov/ij/ 
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2.1.2 Tree analysis 

 

Conserved domains or whole protein sequences were aligned using the 

ClustalX program with default settings. SMART was used to identify a domain of 

interest. A neighbour joining tree was generated using ClustalX and visualised 

in FigTree. The tree was rooted using midpoint in FigTree. Bootstrapping was 

used to add significance to the nodes on the tree. A thousand replicates were 

performed and if a node had the support of ≥50% of the replicates, it was 

considered significant.  

 

2.2 General growth media 

 

LB medium for bacterial cultures 

 

Tryptone   10 g/l 

Yeast extract     5 g/l 

NaCl    10 g/l 

(Agar    15 g/l for solid media only) 

 

YPDA medium for yeast cultures  

 

Tryptone   20 g/l (times two for 2xYPDA) 

Yeast extract   10 g/l (times two for 2xYPDA) 

Glucose   20 g/l (times two for 2xYPDA) 
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Adenine     3 g/l (times two for 2xYPDA) 

(Agar    20 g/l for solid media only) 

 

SD medium for yeast cultures 

 

Yeast nitrogen base    6.7 g/l 

Glucose   20 g/l 

Appropriate dropout supplement of amino acids (as specified by the 

manufacturer; Clonetech) 

(Agar    20 g/l for solid media only) 

 

2.3 Plant material and culture conditions 

 

2.3.1 Moss growth conditions 

 

Physcomitrella patens ssp. patens (Hedwig) ecotype ‘Gransden 2004’ (Rensing 

et al., 2008; Ashton and D Cove, 1977) was used in this study and is also 

referred to as P. patens or moss. Moss was cultured under sterile conditions in 

Petri dishes (Sterilin) on BCD or BCD supplemented with diammonium tartrate 

(BCDAT) medium, as described previously (Nishiyama et al., 2000), at 25 oC 

under continuous light. Moss was sub-cultured by transferring a small 

proportion of the plant with forceps to a new plate or by homogenisation of 

moss tissue in a previously autoclaved blender before growth in a Petri dish 

where the BCDAT had been overlaid with a sterile cellophane disc.  
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2.3.2 Treatment of moss with cellular process changing drugs 

 

To phenotype moss exposed to DNA damaging conditions or induction of the 

unfolded protein response (UPR), moss tissue five- to six-days post-

homogenisation, was inoculated as ‘spot inocula’ on BCDAT supplemented with 

drug or solvent control and grown for three weeks. To induce DNA damage 

moss was treated with 8 ng/ml bleomycin (Euro Nippon Kayaku GmbH), as 

described previously (Kamisugi et al., 2011). To induce the unfolded protein 

response of the endoplasmic reticulum BCDAT medium was supplemented with 

tunicamycin (Tm) 2.5 µg/ml or DMSO solvent control. To induce the unfolded 

protein response across the whole cell BCDAT medium was supplemented with 

10 mM L-azetidine- 2-carboxylic acid (AZC), a proline analogue or 10 mM 

proline as a control for growth. To monitor the expression of unfolded protein 

responsive genes, moss tissue five- to six-days post-homogenisation was 

inoculated as ‘spot inocula’ on BCDAT supplemented with 1 µg/ml of 

tunicamycin or DMSO as solvent control and grown for two weeks before tissue 

was collected for RNA extraction. The expression of NMD targets was 

monitored after exposure to the inhibitor of translation and NMD cycloheximide 

(CHX; Sigma). For CHX treatment, 100 mg of six-day old homogenised lawns 

on BCDAT medium with cellophane was picked and incubated on a BCDAT 

medium plate supplemented with 20 µM CHX or DMSO solvent control plate for 

six hours.  
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2.3.3 Moss colony area size estimation  

 

The image software ImageJ was used to convert the images into binary format 

and counting the number of pixels corresponding to a colony/plant measured 

moss colony or plant size on Petri dish. Moss colony size was normalised 

between plates and converted into mm2 by estimating the area of the plate 

(Kamisugi et al., 2011).  

 

2.4 General nucleic acid methods 

 

2.4.1 Genomic DNA extraction 

 

Moss genomic DNA was isolated from moss spot inoculates grown for 1-3 

weeks using the ISOLATE Plant DNA Miniprep Kit (Bioline), according to 

manufacturer’s instructions.  

 

2.4.2 RNA extraction  

 

Extraction was done using the RNeasy Plant Mini kit (Qiagen) and 

approximately 100 mg of moss tissue following manufacturer’s instructions. To 

remove contaminating genomic DNA, the on-column DNase I digestion 

(Qiagen) was performed according to manufacturer’s instructions.  
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2.4.3 cDNA synthesis 

 

For cloning and semi-quantitative reverse transcriptase-polymerase chain 

reaction (sqRT-PCR), first-strand cDNA was synthesised from 0.3-0.7 µg of 

total RNA and oligo(dT)12-18 using SuperScript II Reverse Transcriptase 

(Invitrogen) following manufacturer’s instructions. For quantitative (q)RT-PCR, 

first strand cDNA was synthesised from 0.8 and 1.0 µg of total RNA using the 

iScript cDNA Synthesis kit (Biorad) following the manufacturer’s instructions. 

This kit is designed to amplify short (<1 Kb) cDNA fragments for qRT-PCR 

analysis using both oligo(dT) and random hexamer primers in the reaction mix. 

A. thaliana RNA used for cDNA synthesis was kindly donated by Sandra 

Biewers.  

 

2.4.4 Nucleic acid quantity and quality quantification  

 

The quantity of RNA and DNA was measured using the NanoDrop spectrometer 

(Thermo Scientific), by measuring the absorbance at 260 nm. The quality of 

RNA was monitored using the Bioanalyser (Agilent) following the 

manufacturer’s instructions. Briefly, RNA is denatured and then loaded into a 

chip and run through micro-channels containing gel and size is measured by 

run-time of the RNA fragments through the micro-channels and comparison to 

an RNA ladder. This gives a high-resolution output with the 18S and 28S 

ribosomal RNA ratio allowing for identification of degradation of the RNA.  
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2.4.5 Restriction enzyme digestions  

 

Restriction reactions were set up in volumes between 10 and 20 µl with 0.5-1.0 

units of appropriate FastDigest enzyme(s) (Fermentas) and universal buffer 

(Fermentas). Digestions were incubated at 37 oC for 30 minutes. The predicted 

size of bands were determined using the a plasmid editor (ApE) computer 

software.  

 

2.4.6 Polymerase chain reaction 

 

Polymerase chain reactions (PCR) were made up to contain dNTPs (0.2 mM 

each), forward and reverse primers (0.2 µM each) with DNA template, 

appropriate buffer and an appropriate DNA polymerase. Phusion (Finnzymes) 

was used for cloning, yeast colony PCR and genotyping while DreamTaq 

(Fermentas) to generate the linear fragments for moss transformations and 

sqRT-PCR analysis. The PCR additives 10 µg/ml ET-SSB (NEB) and 20 mM 

betaine were added to DreamTaq when amplifying PCR products for moss 

transformations.  

 

2.4.7 Quantitative polymerase chain reaction 

 

For qRT-PCR, a 20 µl reaction was made up of 10 µl SsoFastTM Evagreen® 

supermix, primers to final concentration of 500 nM each, diluted cDNA template 

and water (to bring the volume to 20 µl). A qRT-PCR cycle consists of a single 
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initial denaturisation at 95 oC for 30 seconds followed by the combination of 95 

oC for three seconds for denaturisation followed by 60 oC for five seconds for 40 

cycles. The level of DNA is indirectly measured by the amount of fluorescence 

generated by the Evagreen® dye binding to the double-stranded DNA. To 

check that only one product was amplified, a melt curve was generated. The 

CPX96TM Real Time system (Biorad) with the C1000TM Thermo cycler (Biorad) 

was used in all qRT-PCR experiments. The newly synthesised double-stranded 

DNA was melted at different temperatures, starting at 65 oC and increasing in 

0.2 oC increments to 95 oC. The temperature that the DNA melted at is plotted 

and gives an output to estimate the number of PCR products in a reaction 

through a reduction of fluorescence at a particular temperature. The relative 

abundances of transcripts were calculated using the moss reference genes 

PpEF1α (Pp1s7_457V6.1) (Khraiwesh et al., 2010) or Pp1s54_156V6.1 

(Clathrin adapter complex subunit) (Kamisugi et al., 2011) (see figure legend of 

qRT-PCR data for reference gene used). The starting quantity calculation was 

done using the standard curve method. A dilution series was made from a 

cDNA reaction and the efficiency of the PCR reaction was estimated from this 

curve and used to accurately calculate the starting quantity of the target in each 

reaction. The data were analysed for anomalies, which were removed before 

the average of the technical replicates were calculated.  

 

2.4.8 DNA agarose gel electrophoresis 

 

Agarose gels for electrophoresis were made using 1% w/v agarose (Severn 

Biotech Ltd) for cloning perposes or 2% w/v agarose for analysis of sqRT-PCR 
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results in 1x TAE (Severn Biotech Ltd) buffer dissolved by heating in a 

microwave. Ethidium bromide was added to a final concentration of 0.5 µg/ml. 

Loading buffer was added to DNA samples prior to loading. DNA was run along 

side the GeneRulerTM 1 Kb plus molecular weight ladder (Fermentas) for 

between 25 minutes and 1 hour at 50-100 volts using a gel tank (Biorad) and 

power pack (Biorad) and visualised using a UV transilluminator and 

photographed (Syngene).  

 

2.4.9 Purification of DNA 

 

To purify a single PCR product, the post-cycling reaction mixture was purified 

using the QIAquick PCR purification kit (Qiagen) following the manufacturer’s 

instructions. Otherwise bands were extracted from agarose gels (Section 

2.4.10). Ethanol precipitation was used to purify linear DNA for moss 

transformation and to keep it sterile. This was achieved by adding two to three 

volumes of 100% ethanol and a tenth of a volume of sodium acetate (3 M; pH 

5.2) and incubating at -20 oC for 20-30 minutes before DNA was pelleted by 

centrifugation for 30 minutes between 18000-21000 relative centrifugal force (g) 

at 4 oC. The pellet was washed twice with 70% (v/v) ethanol before being re-

suspended in sterile distilled water.  
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2.4.10 Extraction of DNA from agarose gels 

 

Following electrophoresis (2.3.6) and viewing under a UV transilluminator in the 

dark room, the DNA band of interest was excised with a razor blade. The gel 

slice was trimmed to remove excess agarose and DNA was purified using the 

QIAquick PCR purification kit (Qiagen) using the Buffer QG (Qiagen) following 

the manufacturer’s instructions.  

 

2.4.11 Sanger sequencing 

 

Sequencing of DNA was carried out by either MWG Biotech or Beckman 

Coulter Genomics using plasmid purified by miniprep or purified PCR products. 

 

2.5 Cloning and sub-cloning 

 

2.5.1 Primer design 

 

Primers used for cloning, genotyping or sqRT-PCR of moss transformants were 

designed using Primer-BLAST, checking for predicted off-target amplification 

using the moss or A. thaliana databases. Primers used for qRT-PCR were 

designed using Primer3 using the following changes from default, product size 

between 90-150 bp, annealing temperature 60±1 oC and GC content between 

40 and 60%.  
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2.5.2 Bacterial growth conditions 

 

E. coli was grown at 37 oC overnight on LB agar or in LB liquid medium in a 

shaking incubator at 200 rpm. LB agar plates were inverted during incubation 

and were stored at 4 oC for up to 4 weeks before the cells were re-streaked on 

selective LB agar plates. Kanamycin (50 µg/ml), ampicillin (100 µg/ml) and 

gentamicin (10 µg/ml) were used as selective antibiotic in LB agar and liquid 

media. Molten LB agar was cooled to approximately 55 oC before the antibiotic 

was added and immediately poured into 9 cm diameter Petri dishes (Sterilin) 

under sterile conditions.  

 

2.5.3 Transformation of bacteria 

 

Escherichia coli α-select cells (Bioline) were transformed according to 

manufacturer’s instructions by heat shock at 42 oC before being incubated in 

non-selective liquid LB at 37 oC for one to two hours. Cultures were then spread 

on LB agar plates with appropriate antibiotic selection. 

 

2.5.4 Plasmid extractions 

 

Minipreps were carried out on 1.5 ml of overnight culture using the Qiagen 

miniprep kit (Qiagen) following the manufacturer’s instructions.  
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2.5.5 GatewayTM reactions 

 

To generate entry clones for GatewayTM cloning (Invitrogen), the BP reaction 

was carried out by mixing 15-100 ng of purified PCR product with 100-300 ng of 

miniprep purified or manufacturer provided plasmid and 2 µl BP clonase IITM, 

making the reaction up to 10 µl with sterile distilled water and incubating it for 

one hour or overnight at room temperature. To generate expression clones for 

GatewayTM cloning (Invitrogen), the LR reaction was carried out by mixing 100-

300 ng of miniprep purified entry clone with 100-300 ng of miniprep purified 

destination vector and 2 µl LR clonase IITM, making the reaction up to 10 µl with 

sterile distilled water and incubating it overnight at room temperature. 

 

2.5.6 Bacterial glycerol stocks 

 

Overnight bacterial culture (1.5 ml) was taken and pelleted by centrifugation 

and washed with LB liquid medium before being re-suspended in 300 µl of LB 

liquid, mixed with 300 µl of 80% glycerol (v/v) and stored at -70 oC.  

 

2.6 Moss transformation and selection 

 

Stable transformation of moss was performed using polyethylene glycol (PEG)-

mediated delivery of DNA to protoplasts as previously described (Schaefer et 

al., 1991; Kamisugi et al., 2005). One to two plates of moss tissue homogenate 

was grown on cellophane on BCDAT agar medium for 5-6 days. Tissue was 
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harvested and digested with 10 mg/ml driselase (Sigma) to remove the cell 

walls and protoplasts were separated from undigested tissue by filtration 

through a 100 µm metal mesh (Sigma). Protoplasts were recovered by 

centrifugation (100 x g; 4 minutes) and washed in 8% (w/v) mannitol solution 

three times, before being finally resuspended at a density of 1.6 x 106 

protoplasts/ml. Then 2.4 x 105 protoplasts were incubated with 10-15 µg of 

linear DNA and 20% (w/v) PEG-6000 and heat shocked for five minutes at 45 

oC. The protoplasts were diluted with 8% mannitol before being recovered by 

centrifugation and resuspended in BCDAT containing 6% (w/v) mannitol and 10 

mM CaCl2 for incubation in darkness at 25 oC overnight. Protoplasts were 

embedded in BCDAT containing 6% (w/v) mannitol, 10 mM CaCl2 and 0.4% 

agar on a cellophane overlaying the same medium containing 0.55% agar and 

allowed to regenerate for 5-6 days. The cellophane overlay was transferred 

onto BCDAT-agar medium containing 50 µg/l G418 for two weeks, to select 

transformed plants. Because the initial transformants comprise a mixture of 

stably transformed plants (transgene integrated in the genome) and unstable 

transformants (transgene maintained extrachromosomally), G418-resistant 

plants were then cultured for two weeks on medium lacking G418, followed by 

subculture for a further two weeks on medium containing G418 in order to 

recover only stably transformed plants.  
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2.7 Yeast two-hybrid 

 

2.7.1 Strains, plasmids and growth conditions used in yeast two-hybrid 

 

The budding yeast strains used in this work are AH109 (MATa) and Y187 

(MATα) (Clontech), which are two compatible mating strains. These strains are 

auxotropic mutants unable to grow on medium lacking the amino acids 

tryptophan (W), leucine (L) and histidine (H). AH109 carries the HIS3 reporter 

gene regulated by the GAL4-responsive cis-element. For untransformed yeast, 

growth was achieved on YPDA medium (Section 2.2; contains all essential 

amino acids for auxotropic mutants) but for yeast transformed with a plasmid, 

selection of transformants was achieved by growing on SD medium lacking the 

appropriate amino acid(s) (Section 2.2). The pGBKT7 plasmid (Clontech) 

modified for GatewayTM was used as the destination vector to generate the 

yeast two-hybrid bait construct. This plasmid has a W biosynthesis gene, 

allowing selection of transformants with SD-W medium. The pGADT7 Rec 

plasmid (Clontech) modified for GatewayTM was used as the destination vector 

to generate the yeast two-hybrid prey expression clones, which has L 

biosynthesis gene allowing for selection on SD-L medium. Diploid yeast 

containing both bait and prey plasmids were selected on SD media minus both 

W and L. To test for interactions, yeast was grown on SD media minus W, L 

and H with appropriate amounts of 3-amino-1,2,4-triazole (3-AT) to increase the 

stringency of the assay. To test for autoactivation of the HIS3 reporter gene by 

the bait construct alone, the yeast strain AH109 was transformed with the bait 
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construct and yeast growth was monitored on SD-WH with varying 

concentrations of 3-AT (see figure legends for details). Yeast was grown at 29 

oC on solid medium or in liquid medium in a shaking incubator at 200 rpm.  

 

2.7.2 Yeast transformation 

 

Small-scale yeast transformations were performed to introduce bait and prey 

yeast two-hybrid expression vectors into their appropriate host strains, using a 

previously published Li+/PEG-mediated protocol (Causier and Davies, 2002), 

except that YPDA was used in place of YPD. Yeast transformations were plated 

on SD medium lacking appropriate amino acid to select for transformed 

colonies.  

 

2.7.3 Yeast mating to test for individual interactions 

 

To test for interactions between two proteins, mating of yeast strains AH109 

and Y187 carrying vectors of interest was carried out as described previously 

(Causier and Davies, 2002), but using YPDA agar instead of YPD agar. Diploids 

were selected on SD lacking tryptophan and leucine.  

 

2.7.4 Library screening  

 

Bait vector transformed into the Y187 strain was used to screen previously 

generated libraries in AH109. These A. thaliana libraries are normalised to 
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ensure that both rare and abundant transcripts are represented to similar 

extents in the cDNA library rather than being proportional to expression level in 

A. thaliana. The libraries were generated using the Clontech SMART cDNA 

synthesis and recombination-mediated cloning strategies, in the pGADT7 Rec 

vector. One library was produced using oligo(dT) primers to generate of full-

length or near full-length cDNAs from A. thaliana and the other was produced 

using random hexamers to generate cDNAs of random truncated fragments of 

A. thaliana genes and has previously been used in the Davies laboratory 

(Causier et al., 2012). Briefly, Y187 yeast containing the bait vector was grown 

for approximately 21 hours in 50 ml of liquid SD lacking W at 29 oC in a shaking 

incubator at 200 rpm, until the total cell count number reached approximately 2 

x 109. These cells were pelleted and resuspended in fresh medium for mating 

(50 ml of 2xYPDA). For each library, 2 x 107 cells were added to the bait 

culture. Mating proceeded for 24 hours at 29 oC in a shaking incubator at 50 

rpm. Finally the mating solution was plated out across approximately 50 square 

Petri plates (120 mm x 120 mm; Gosselin) with SD-LWH supplemented with 3-

AT (2.5 mM) and incubated at 29 oC for six days. To estimate the number of 

diploids, yeast culture was plated on SD-WL. Positive colonies that grew on SD-

LWH supplemented with 3-AT (2.5 mM) after six days were picked and spread 

on a new SD-LWH supplemented with 3-AT (2.5 mM) to maintain the clone and 

used as template in yeast colony PCR (Section 2.4.6). Finally, PCR products 

were purified (Section 2.4.9) and sent for sequencing (Section 2.4.11).  
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2.8 Analysis of high-throughput RNA-sequencing 

 

2.8.1 Sample preparation 

 

Moss tissue grown for five-days post homogenisation on BCDAT medium 

overlaid with cellophane was collected for RNA-seq analysis. RNA was 

extracted using the RNeasy Plant Mini kit (Qiagen) following the manufacturer’s 

instructions. To remove contaminating genomic DNA, the on-column DNase I 

digestion (Qiagen) was performed according to the manufacturer’s instructions.  

 

2.8.2 Library generation and sequencing 

 

Library generation and RNA-sequencing (RNA-seq) were performed by GATC 

Biotech. Approximately 2 µg of RNA from each sample was used to generate a 

library after quality control check using the Bioanalyser (Agilent; Section 2.4.4) 

using the TruSeq sample prep kit (Illumina). Sequencing was performed using 

the Illumina HiSeq200 platform set to 100 bp single-end reads. In two channels, 

only three libraries were multiplexed to ensure a high number of reads for each 

library. In the third channel, five libraries were re-sequenced due to low number 

of reads generated in the first two and these were used as technical replicates.  
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2.8.3 Read mapping to the moss genome 

 

Adapter sequences were identified and removed from reads generated from 

RNA-seq. Subsequently, bad quality reads were removed before alignment to 

the moss genome. Short reads (<30 nt) post-trimming were removed from 

analysis. The RNA-seq reads were aligned to the moss reference genome 

Version 1.6 (Zimmer et al., 2013). TopHat (tophat-1.3.1.Linux_x86_64 custom 

version supporting additional bowtie1 parameters) was used to map reads 

spanning exon-exon junctions (Trapnell et al., 2009). Normalisation of RNA-seq 

read count data was achieved by adjusting read counts to the total gene length 

and the number of total reads mapped in that sample. This is the reads per 

kilobase of exon model per million mapped reads (RPKM) method and was 

used to calculate the fold-changes between samples (Mortazavi et al., 2008). 

To test for differential gene expression (DGE), three different statistical tools 

were used; DESeq (Anders and Huber, 2010), edgeR (Robinson et al., 2010) 

and NOISeq (Tarazona et al., 2011). Both DESeq and edgeR models count 

data using a negative binomial distribution. On the other hand, NOISeq makes 

no assumptions regarding distribution and is a non-parametric test. For initial 

analysis of the data, differentially expressed genes were defined as those that 

were predicted to be significantly over- or under-expressed by two or three of 

these three statistical tools.  
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2.8.4 Functional clustering of genes whose expression is changed in 

smg1Δ lines 

 

Gene ontology (GO) is a gene functional classification system that defines the 

predicted functions and properties of genes. Therefore, many unrelated genes 

whose gene products are predicted to function in the same pathway are 

grouped together within a single GO term. MapMan classifies genes in a similar 

manner to GO terms but was developed in a plant centric way, focusing on 

research in plants to aid classifications. For GO or MapMan analysis. 

Benjamini-Hochberg false discovery rate tests were performed to identify 

significantly enriched terms in either genes that were over- or under-expressed 

in one treatment compared to another. The corrected for multiple testing p-

values were used to assign enrichment of a GO term with a cut off set to 

p<0.05.  
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3 Chapter Three: Characterisation of the NMD Pathway 

of Moss 

 

3.1 Introduction 

 

3.1.1 The NMD pathway of plants is understudied relative to the NMD 

pathways of animals and fungi  

 

As discussed in Chapter One, NMD plays an important role in regulating a 

range of transcripts, including those with uORFs and splice variants that contain 

PTCs (Gaba et al., 2005; Nyikó et al., 2009; Lareau et al., 2007). NMD 

regulates 1-10% of the transcriptomes of all examined eukaryotes (Guan et al., 

2006; He et al., 2003; Mendell et al., 2004; Ramani et al., 2009; Rayson et al., 

2012a; Rehwinkel et al., 2005) by degrading selected, non-aberrant transcripts 

(Mühlemann et al., 2008). Work on identifying and characterising components 

of the NMD pathway has focused on animal and yeast models. Only a few 

studies have been performed looking at NMD in more evolutionarily diverse 

organisms. Plants are distantly separate from animals/fungi and some evidence 

has suggested that the last common ancestor of plants and animals/fungi was 

the last eukaryotic common ancestor (LECA), also called the stem eukaryote 

(Richards and Cavalier-Smith, 2005; Derelle and Lang, 2012). Therefore, 

studying the NMD pathway in plants and comparing it to the NMD pathways of 

animals and fungi will reveal how the NMD pathway of the stem eukaryote 
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operated. Some work has been performed on plant NMD, however, all the 

studies have used angiosperms (flowering plants). Using A. thaliana or a 

tobacco transient expression system (expressing A. thaliana or grape genes in 

tobacco leaves), the predicted roles of UPF1, UPF2, UPF3 and SMG7 in the 

NMD pathway of flowering plants have been confirmed (Arciga-Reyes et al., 

2006; Riehs et al., 2008; Kerényi et al., 2008; Benkovics et al., 2011).  

 

In budding yeast, the UPF1-UPF2-UPF3 complex is essential for NMD (He et 

al., 1997) and this is conserved  in animals (Chamieh et al., 2008). In animals 

but not budding yeast, UPF1 takes a central role in NMD by being 

phosphorylated by the SMG1 kinase, a step promoted by UPF2 and UPF3 

(Kashima et al., 2006). Once UPF1 is phosphorylated in animals, SMG5-7 are 

recruited to specific phosphorylated residues and SMG6 acts as an 

endonuclease cutting the transcript near the PTC, while SMG7 and SMG5 form 

a complex and recruit both the XRN1 exoribonuclease and the exosome 

complex, to degrade the transcript in the 5’-3’ and 3’-5’ directions, respectively 

(Unterholzner and Izaurralde, 2004; Jonas et al., 2013). The details of the 

signaling pathway that leads to mRNA decay in plant NMD are still unclear, but 

it is known that at least the UPF1-UPF2-UPF3 complex is conserved in plants 

(Kerényi et al., 2008). The A. thaliana UPF1 is phosphorylated when expressed 

in tobacco cells and loss of the phosphorylated regions of UPF1 eliminates its 

ability to function in NMD (Mérai et al., 2012). In addition, SMG7, predicted to 

bind to phosphorylated UPF1 through its 14-3-3-like domain, is important for 

NMD in A. thaliana (Riehs et al., 2008; Rayson et al., 2012a) and this function is 

dependent on conserved sites predicted to bind to the phosphorylated residues 
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of UPF1 in tobacco cells (Mérai et al., 2012). These data suggest that plant 

NMD involves phosphorylation of UPF1 to recruit SMG7, which then recruits the 

RNA decay machinery. However, no kinase has yet been identified that 

functions in the NMD pathway of a plant. SMG1 is absent from the genomes of 

A. thaliana and fungi (Grimson et al., 2004), leading to the dogma that SMG1 is 

an animal specific kinase (Izumi et al., 2010).  

 

To gain a better understanding of the evolution of the NMD pathway across 

eukaryotes, the moss P. patens was chosen as the model plant. Moss has the 

advantages of a completely sequenced genome to facilitate identification of 

NMD effectors (Rensing et al., 2008), is distantly related to all other plants used 

to study NMD and has a high rate of homologous recombination, allowing for 

the generation of knockout moss lines to study gene function (Kamisugi et al., 

2005).  

 

3.1.2 The aims of studying the NMD pathway of model basal land plant P. 

patens  

 

The aims of the experimental work of this chapter are: 

1. To develop P. patens as a new model for NMD in the plant kingdom to 

determine how widespread the mechanisms of plant NMD are 

2. To identify all the putative NMD effectors of P. patens using homology 

searches 

3. To compromise the NMD pathway of P. patens using targeted gene 

replacement to studying the types of NMD targets in moss 
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3.2 Results 

 

3.2.1 Identification of putative NMD effectors 

 

To examine the level of conservation of NMD effectors across land plants, the 

recently published moss genome was utilised and reciprocal BLASTp searches 

were performed using A. thaliana or animal sequences as input. The moss 

genome contains homologues of many of the NMD effectors identified in other 

organisms (Table 3.1). Moss has genes encoding the ‘core’ NMD effectors 

UPF1-3 and also SMG7. Some of these NMD effectors are encoded by 

multigene families in moss. Moss has two copies of both UPF1 and UPF3 and 

three copies of SMG7 (Table 3.1). In the case of SMG7, both PpSMG7-1 and 

PpSMG7-2 have been previously identified (Benkovics et al., 2011) and encode 

proteins much more similar to A. thaliana SMG7 (E-values of e-116 and e-117, 

respectively) than PpSMG7-3 does (E-value of 9e-50). A putative third copy of 

UPF3 was identified in the older gene models (Pp1s41_44V2.1) but this 

encodes a short truncated protein and has a very low expression level, 

measured using RNA-seq (Chapter 5) and is therefore likely to be a 

pseudogene. Unexpectedly, SMG1, the gene that encodes the kinase that 

activates NMD in animals, was identified in moss despite its reported absence 

in A. thaliana (Table 3.1) (Grimson et al., 2004). SMG8 and SMG9, which 

encode interactors of SMG1 that are also absent from the A. thaliana genome, 

have been identified in the genomes of rice and grape (Yamashita, 2013) and 

are also present in the moss genome (Table 3.1).  
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Table 3.1: A list of putative NMD effectors identified by BLASTp searches  

NI represents not identified 
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Additional NMD effectors have been identified but have been less well 

characterised. SMG Lethal-1 (SMGL1/NAG/NBAS) and SMG Lethal-2 

(SMGL2/DHX34) were identified as essential in development of C. elegans and 

functions in NMD (Longman et al., 2007), however, the exact role in NMD is 

unclear. A protein with weak homology to SMGL1 has been identified in A. 

thaliana AT5G24350 (Table 3.1). BLASTp identified no protein with homology to 

SMGL1 in moss (Table 3.1). Interestingly, SMGL1 from C. elegans has no 

identifiable domains, while AT5G24350 has a Sec39 domain, suggesting a role 

in the secretary pathway rather than in NMD. When using C. elegans SMGL2 

as input, BLASTp searches reveal that both A. thaliana and moss encode 

several putative homologues but these do not identify the C. elegans SMGL2 as 

the top BLASTp hit during the reciprocal BLASTp search.  

 

In the case of the EJC, each of the core EJC members (Mago, Y14, BTZ and 

eIF4AIII) appear to be represented by two genes in moss. Mago has an 

additional third locus that resembles a pseudogene and was predicted by an old 

gene model (Pp1s63_110V2.1). This pseudogene contains a PTC and 

mutations at highly conserved positions and is expressed at a relatively low 

level (RNA-seq data; Chapter 5). It is perhaps not surprising that moss has 

duplicated copies of many NMD and EJC components, since it has undergone 

a recent genome duplication leading to a large number of duplicated genes 

(Rensing et al., 2007; 2008), although this also raises the possibility of EJCs 

comprised of different subunits with specialized properties.  
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3.2.2 Bioinformatic analysis of plant SMG1 

 

The surprising presence of a putative SMG1 kinase in moss revealed by 

BLASTp searches presented the opportunity to better understand the role of a 

kinase in the NMD pathway of plants. SMG1 is absent from the genomes of A. 

thaliana and the yeasts S. cerevisiae and S. pombe (Grimson et al., 2004) and 

was therefore proposed to be an animal specific component of the NMD 

pathway (Izumi et al., 2010), although some reviews have suggested the 

presence of SMG1 in grape and/or rice based on unpublished BLAST searches 

(Templeton and Moorhead, 2005; Yamashita, 2013). SMG1 is a member of the 

phosphatidylinositol 3-kinase-related kinase (PIKK) family of kinases 

(Lempiäinen and Halazonetis, 2009). This family also contains TARGET OF 

RAPAMYCIN (TOR), an inactive kinase 

TRANSFORMATION/TRANSCRIPTION DOMAIN-ASSOCIATED PROTEIN 

(TRRAP), the DNA repair activating kinases ATAXIA TELANGIECTASIA 

MUTATED (ATM), ATAXIA TELANGIECTASIA AND RAD3-RELATED (ATR) 

and DNA-DEPENDENT PROTEIN KINASE, CATALYTIC SUBUNIT (DNA-

PKcs) (Lempiäinen and Halazonetis, 2009). A. thaliana has four PIKKs: ATM, 

ATR, TRRAP and TOR (Templeton and Moorhead, 2005). To confirm the 

PpSMG1 identified here is a true orthologue of animal SMG1 rather than a 

different PIKK, a phylogenetic tree was constructed using ClustalX and 

visualised in FigTree using the midpoint to root the tree (Figure 3.1). The kinase 

domain was used in the alignments to minimize the introduction of artifacts 

caused by poor gene model prediction and variation of domain composition and 

spacing in the different PIKKs. All plant SMG1 sequences, including the moss  
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Figure 3.1: Neighbor joining phylogenetic tree of the KD of PIKK  

Sequences of multiple PIKK proteins were collected and the protein kinase 

domains (KD) were identified using SMART and aligned using ClustalX. 

Bootstrap values (1000 replicates) are indicated at nodes. Midpoint rooting was 

performed. The plant SMG1 clade is shaded green and the animal SMG1 clade 

is shaded smoky red.  



66 

 

sequence, form a sister clade to the animal SMG1 clade (Figure 3.1), 

suggesting that plant SMG1 sequences are true orthologues of animal SMG1 

sequences. Further confirmation of the phylogenetic analysis of PIKKs was 

obtained by examining the PIKK domain structure. All PIKKs, with the exception 

of SMG1, have a kinase domain (KD) adjacent to the FRAP, ATM, TRRAP C-

terminal (FATC) domain in the C-terminal region of the protein (Lempiäinen and 

Halazonetis, 2009) (Figure 3.2A). All SMG1 proteins identified phylogenetically 

in this study, from both animals and plants, have a centrally located KD, 

separated from the FATC domain by a large middle region (Figure 3.2A). These 

data suggest SMG1 is not animal specific and is widespread in the plant 

kingdom.  

 

The presence of SMG1 outside the animal kingdom suggests that the 

mechanism used to phosphorylate the NMD effector UPF1 is more widely 

conserved than previously thought. A. thaliana is the only green plant examined 

that does not contain an SMG1 orthologue (Figure 3.1) (Grimson et al., 2004). 

To explore this further, the expected location of SMG1 was identified in the A. 

thaliana genome using synteny with the genome of its close relative, A. lyrata 

which does contain SMG1 (Figure 3.2B). Comparison of the gene content in 

this syntenic region confirms the absence of SMG1 from the A. thaliana 

genome. At the expected position of SMG1 the A. thaliana genome instead 

contains two unrelated transposable elements bracketing a short predicted ORF 

of 59 amino acids (ORF59, Figure 3.2B). This ORF displays weak homology to 

SMG1 in its reverse strand, revealing the remains of the kinase-encoding locus 

that was lost within the last 5-10 million years (Hu et al., 2011). These results  
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Figure 3.2: Conservation of SMG1 in some plants but loss in A. thaliana  

(A) Domain structure of PIKKs. The kinase domain (KD) of SMG1 is centrally 

located, distant from the C-terminally located FATC domain in both animals and 

plants. The KD of other PIKKs (ATM, ATR, TOR, TRRAP and DNA-PKcs) is 

directly adjacent to the FATC domain at the C-terminal. (B) The Arabidopsis 

syntenic region that contains SMG1 in A. lyrata has no SMG1 in A. thaliana. 

The expected position of SMG1 contains different genes, including two 

unrelated transposable elements (denoted by asterisks). Synteny was 

examined using the Plant Genome Duplication Database 

(http://chibba.agtec.uga.edu/duplication/). 
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show that orthologues of SMG1 are present in diverse eukaryotes, including 

green algae and land plants. However, they also confirm the absence of SMG1 

from fungi and demonstrate that the SMG1 gene has been recently lost in the 

A. thaliana lineage, despite A. thaliana retaining a competent NMD pathway 

(Rayson et al., 2012a; Arciga-Reyes et al., 2006; Riehs et al., 2008; Kerényi et 

al., 2008).  

 

These data suggest that SMG1 is more ancient than previously suggested. 

Recent work has suggested that the clade including plants/oomycetes and the 

one including animals/fungi are on opposing sides of the root of eukaryotes 

(Richards and Cavalier-Smith, 2005; Derelle and Lang, 2012). The presence of 

SMG1 in both clades therefore suggests that SMG1 was present in the LECA 

(Figure 3.3), dating its origin to over two billion years ago (Brocks et al., 1999). 

 

3.2.3 Generating moss knockout lines lacking SMG1 

 

As the function of the SMG1 kinase has never been studied outside the animal 

kingdom before, moss was chosen as an ideal model organism to understand 

the role of SMG1 in NMD in plants. Moss has a higher rate of homologous 

recombination than flowering plants, meaning targeted gene replacement can 

easily be achieved (Kamisugi et al., 2005). Therefore, a gene of interest can be 

effectively deleted by replacing it with an antibiotic selection cassette. Gene 

model prediction in the moss genome (Version 1.6) wrongly identified and split 

PpSMG1 into two gene models (Pp1s51_180V6.1 and Pp1s51_182V6.1) 

(Zimmer et al., 2013), therefore these gene models were fused together to  
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Figure 3.3: Conservation of NMD effectors across the eukaryotic domain  

Tree of relationships between selected eukaryotes with root placed between 

plants and animals as suggested by Richards and Cavalier-Smith (2005) and 

Derelle and Lang (2012). Conservation of the NMD effectors UPF1, SMG5-7 

(EBS1) and SMG1 (indicated by symbols), as assessed by homology searches 

and phylogenetic analysis. Note independent losses of the ancestral SMG1 (red 

circle), in fungi, A. thaliana, the red algae C. merolae, the brown algae E. 

siliculosus and excavata (Trypanosoma brucei and Giardia lamblia) and its 

predicted presence in the last eukaryotic common ancestor (LECA). 
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make a single accurate gene model named Pp1s51_180U2__zimmer.1 (D. 

Lang and A. Zimmer, personal communication). Approximately one Kb of 

sequence upstream of the start codon and approximately one Kb of sequence 

downstream of the stop codon was used to generate the knockout construct 

(Figure 3.4A). The knockout construct (designated pKO SMG1) was generated 

using three-site multisite GatewayTM. The selection cassette consists of the nptII 

coding sequence (kanamycin resistance gene) driven by the 35S promoter with 

a 35S terminator sequence, flanked by loxP sites. The backbone used was the 

pDEST22 yeast two-hybrid construct because it had an appropriate bacterial 

selection, is high-copy number and GatewayTM compatible. To obtain the DNA 

required to transform and generate knockout lines of PpSMG1, the linear 

smg1KO fragment (Figure 3.4A) was amplified by PCR. However, the desired 

four Kb fragment was not amplified using the PhusionTM polymerase. A two Kb 

PCR product was instead observed (Figure 3.5), which sequencing revealed to 

be the expected PCR product but without the selection cassette. Given the high 

homology of the GatewayTM sites within the plasmid, it was possible that 

complex base-pairing/looping within the plasmid was causing the DNA 

polymerase in the PCR to strand-switch. Therefore, a single-stranded DNA 

binding protein (ET-SSB) sold as a PCR additive (NEB) along with betaine to 

improve processivity was added to the PCR reactions. It was found that the 

optimal PCR condition to bias the reaction towards making the full-length PCR 

product of 4 Kb using DreamTaq (Fermentas) with ET-SSB (NEB) and 20 mM 

betaine (Figure 3.5).  
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Figure 3.4: Targeted disruption of SMG1 in moss  

(A) The structure of the PpSMG1 gene in moss with coding exons in black 

boxes, UTRs in grey boxes. The whole coding region 

(Pp1s51_180U2__zimmer.1) was replaced by the P35S-nptII-g6term selection 

cassette, shown as a white box (KAN; kanamycin resistance gene) with regions 

of homology used in gene targeting on either side. Legend continued on next 

page 
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Figure 3.4: Continued… The selection cassette and homology regions are 

cloned from pKO SMG1. Primers used for PCR genotyping are shown as 

arrows P1-P6. (B) Example genotyping. PCR determined whether successful 

gene targeting (GT) was achieved at the 5’ (primers P1 and P2) and (primers 

P3 and P4) 3’ ends of the SMG1 locus and whether lines also carried an 

undisrupted copy of PpSMG1 (primers P5 and P6). Wild type (WT) and no 

template controls (NTC) were set up. Some lines have GT events at both ends 

of PpSMG1, successfully deleting PpSMG1 (arrows). Other lines have 

successful GT events at both ends but still retain a copy of PpSMG1 (asterisk). 

Examples of unsuccessful 5’ or 3’ targeting are also shown (Plant 460 and Plant 

481). (C) sqRT-PCR expression analysis in WT, four mutant lines with 5’ and 3’ 

gene targeting and no genomic PpSMG1 (smg1Δ lines 1-4) and one mutant line 

with gene targeting and genomic PpSMG1 (SMG1WT line 1).  
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Figure 3.5: Optimisation of PCR conditions to generate the transforming 

DNA PCR product from pKO SMG1 

The pKO SMG1 plasmid was used as template (A) or the transforming region 

was cloned into another plasmid backbone (pGAD424) by multisite GatewayTM 

(B).  
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The PpSMG1 (Pp1s51_180U2__zimmer.1) locus was knocked out using 

homologous recombination, replacing PpSMG1 with the kanamycin selection 

cassette. Successful gene targeting (GT) was measured by PCR amplification, 

testing successful integration at the upstream (5’) and downstream (3’) sites 

(Figure 3.4). Thirty-four transformants had GT events at both the upstream and 

downstream sites suggesting they were complete knockouts but only four lines 

also lacked the WT locus (Figure 3.4B). This suggests a duplication of genomic 

sequence that contains PpSMG1 in many lines. Semi-quantitative (sq)RT-PCR 

was used to confirm that these four independent lines lacked PpSMG1 

expression (Figure 3.4C). It is unclear how it is possible for PpSMG1 knockout 

lines to also contain a genomic copy of PpSMG1 (SMG1WT lines). These lines 

could have resulted from protoplast fusion events where a diploid cell is formed 

or perhaps a localised recombination event could have occurred generating a 

WT site and a knockout site. These SMG1WT lines do however, provide a 

useful control line, in addition to WT, to analyse the role of loss of PpSMG1 in 

NMD.  

 

3.2.4 Plant SMG1 functions in the NMD pathway 

 

To examine the role of SMG1 in the NMD pathway of moss, putative NMD 

targets were identified. If SMG1 functions in the moss NMD pathway then 

targets of NMD should be up-regulated in smg1Δ lines. The transcripts of 

splicing factors, like SR proteins or polypyrimidine binding (PTB) proteins, are 

common targets of NMD in A. thaliana and animals, creating a feedback loop 

(Stauffer et al., 2010; Wollerton et al., 2004; Boutz et al., 2007; Palusa and  
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Figure 3.6: PTC+ splice variants are over-expressed in moss smg1Δ lines  

(A) sqRT-PCR analysis of two alternatively spliced targets of NMD. PpPTB3 

produces two splice variants by exon skipping, the shorter PTC+ variant and the 

longer, PTC- variant. Alternative acceptor site selection of PpRS2Z37 produces 

a longer, PTC+ variant compared to the shorter, PTC- variant. PpEF1α level is 

shown as a control for RNA loading. PTCs are indicated by a vertical black line. 

Constitutive exon sequences are blue and alternative exon sequences are in 

orange. (B) qRT-PCR analysis of PpRS2Z37 PTC+ variant. ‘Fold change’ is the 

amount of target expression normalised to PpEF1α and relative to WT levels. 

Error bars represent the standard error of the mean from three biological 

replicates. Asterisks represent lines with a statistical difference from WT using 

an unpaired t test p < 0.05.  
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Reddy, 2010). The moss PTB homologue, PpPTB3 (Pp1s48_128V6) was 

amplified by sqRT-PCR from WT and smg1Δ and two splice variants were 

identified (Figure 3.6A). Sequencing the PCR products revealed that the long 

variant encoded part of the full-length transcript (Pp1s48_128V6.1) and the 

short variant encoded a novel PTC containing (PTC+) variant, due to skipping 

of exon six. sqRT-PCR showed that the PTC+ variant was more highly 

expressed in the two mutant lines than in the WT or SMG1WT line 1 (Figure 

3.6A). The SR protein-encoding transcript PpRS2Z37 (Pp1s69_23V6) also 

undergoes AS (alternative acceptor site) to produce a PTC+ variant. sqRT-PCR 

and quantitative (q)RT-PCR show that this PTC+ splice variant is up-regulated 

three- to six-fold in smg1Δ lines, when compared to WT or control SMG1WT 

line 1 (Figure 3.6A and B).  

 

SMG7, a conserved NMD effector-encoding gene, has also previously been 

shown to be a direct target of NMD in flowering plants due to the presence of a 

long 3’ UTR and two introns located downstream of the stop codon (Benkovics 

et al., 2011; Kerényi et al., 2008; Nyikó et al., 2013; Rayson et al., 2012a). 

Regulation of SMG7 by NMD creates an autoregulatory loop to control the level 

of NMD activity (Figure 3.7A), a common feature in the NMD pathway of 

animals (Rehwinkel et al., 2005; Huang et al., 2011; Yepiskoposyan et al., 

2011). Therefore the expression of PpSMG7-1 (Pp1s80_14V6), PpSMG7-2 

(Pp1s311_73V6) and PpSMG7-3 (Pp1s28_218V6) was tested in WT/SMG1WT 

line 1 and smg1Δ lines (Figure 3.7B-D). The expression of both PpSMG7-2 and 

PpSMG7-3 was increased between 1.5 to 2 fold in the smg1Δ lines compared 

to WT (Figure 3.7D and E). This is in contrast to PpSMG7-1, which had  
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Figure 3.7: Moss SMG7 homologues are over-expressed in moss smg1Δ 

lines  

(A) A model of the autoregulatory feedback of NMD and SMG7 in plants. (B) 

qRT-PCR analysis of PpSMG7-1. (C) qRT-PCR analysis of PpSMG7-2. (D) 

qRT-PCR analysis of PpSMG7-3. (B-D) ‘Fold change’ is the amount of target 

expression normalised to PpEF1α and relative to WT levels. Error bars 

represent the standard error of the mean from three biological replicates. 

Asterisks represent lines with a statistical difference from WT using an unpaired 

t test p < 0.05.  
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increased steady state level significantly in smg1Δ line 2 and non-significantly in 

smg1Δ line 1 (Figure 3.7B). It appears that PpSMG7-1 can be up-regulated 

upon a reduction in NMD activity but this is less extreme and/or more variable 

than PpSMG7-2 and PpSMG7-3. The 3’ UTR structure of SMG7-encoding 

transcripts are conserved across flowering plants (Kerényi et al., 2008; Nyikó et 

al., 2013; Benkovics et al., 2011). The 3’ UTRs of plant SMG7 usually contain 

two introns and are abnormally long compared to other 3’ UTRs in plants and 

these features target the transcript to NMD (Kerényi et al., 2008; Nyikó et al., 

2013; Benkovics et al., 2011). In the currently released gene models of the 

moss genome (Version 1.6), the SMG7 loci do not have predicted 3’ UTRs due 

to poor EST coverage. By using our recent RNA-seq experiments performed on 

WT and smg1Δ lines 1 and 2 (Chapter 5), new gene models were predicted, 

which have 3’ UTRs for all three SMG7 loci. All three models have abnormally 

long 3’ UTRs and contain two introns as do the flowering plant SMG7-encoding 

transcripts. These data suggest that the NMD autoregulatory loop involving 

SMG7 through its abnormal 3’ UTR structure is conserved across land plants.  

 

Recent work in A. thaliana suggested that CPuORFs can target transcripts to 

NMD in plants (Rayson et al., 2012b; 2012a; Nyikó et al., 2009). Searching the 

moss genome for predicted transcripts which show sequence homology to both 

a CPuORF and its associated downstream main ORFs (mORF) from the list of 

NMD targets in A. thaliana, identified two moss eIF5 related genes, PpeIF5-

like1 (PpeIF5L1; Pp1s626_4V6) and PpeIF5-like2 (PpeIF5L2; Pp1s93_126V6). 

The largest uORFs of these moss genes show homology to the CPuORF 

upstream of the A. thaliana eIF5-related gene AT1G36730, which shows  
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Figure 3.8: CPuORF-containing transcripts are over-expressed in moss 

smg1Δ lines  

(A) The presence of uORFs including a CPuORF in PpeIF5L1 (Pp1s626_4V6) 

relative to the main ORF. (B) The presence of uORFs including a CPuORF in 

PpeIF5L2 (Pp1s93_126V6) relative to the main ORF. (C) Alignment of peptides 

encoded by the CPuORFs of eIF5-like genes in plants. Legend continued on 

next page 
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Figure 3.8: Continued… The deduced protein sequences of uORF sequences 

from putative eIF5 encoding transcripts have been aligned. This includes the A. 

thaliana sequence (AT1G36730), two rice sequences, Rice1 (AK067685) and 

Rice2 (LOC_Os06g48350) and two moss sequences, Moss1 (Pp1s646_4V6) 

and Moss2 (Pp1s93_126V6).  (D) qRT-PCR analysis of PpeIF5L1. (E) qRT-

PCR analysis of PpeIF5L2. (D-E) ‘Fold change’ is the amount of target 

expression normalised to PpEF1α and relative to WT levels. Error bars 

represent the standard error of the mean from three biological replicates. 

Asterisks represent lines with a statistical difference from WT using an unpaired 

t test p < 0.05.  
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elevated expression in three NMD mutants upf1-5, upf3-1 and smg7-1 (Rayson 

et al., 2012a) (Figure 3.8A-C). The conserved association between this 

CPuORF and mORF in this eIF5-related transcript, from bryophyte to 

angiosperm, strongly implies a functional dependence between the CPuORF 

and mORF across all land plants. As found for the A. thaliana eIF5-related 

transcript, both have PpeIF5L1 and PpeIF5L2 increased steady state levels in 

smg1 mutant lines (Figure 3.8D and E).  

 

To demonstrate further that the observed increased steady state levels of these 

genes in PpSMG1 knockout lines is attributable to a reduction in NMD, moss 

was exposed to cycloheximide (CHX). CHX is an inhibitor of translation, and 

since NMD is a translation-dependent decay mechanism, CHX has previously 

been used to identify targets of NMD (Kalyna et al., 2012). Three putative NMD 

targets were chosen to test this, each representative of a different class of NMD 

targeting feature: AS-coupled NMD (PpRS2Z37), uORF-containing transcript 

(PpeIF5L1) and long 3’ UTR (PpSMG7-2). A six-hour incubation with CHX 

caused an increase in the steady state level of each of these transcripts, 

consistent with their status as targets of NMD (Figure 3.9).  

 

Taken together, these data showing the increase in steady state levels of 

putative targets of NMD in smg1Δ relative to WT and SMG1WT lines plants, 

demonstrate that SMG1 is an NMD effector in moss and therefore likely to be 

important in other plants and possibly in the LECA.  
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3.2.5 SMG1 is important but not essential in moss development 

 

A compromised NMD pathway has previously been shown to have an adverse 

effect on development in animals and plants (McIlwain et al., 2010; Arciga-

Reyes et al., 2006; Riehs et al., 2008; Wittkopp et al., 2009; Hodgkin et al., 

1989; Metzstein and Krasnow, 2006; Frizzell et al., 2012). Phenotypic analyses 

of the moss smg1Δ lines, showed that the mutants are viable, but produce 

fewer leafy structures (gametophores) than WT (Figure 3.10A-D). The few 

gametophores produced by smg1Δ lines predominantly grow downwards into 

the agar, rather than equally upwards out of the agar and downwards into the 

agar as in wild type plants (Figure 3.10E). Since the moss NMD mutants are 

PpSMG1 complete knockout lines, this result shows that although PpSMG1 is 

needed for normal moss growth it is not essential under standard laboratory 

conditions.  
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Figure 3.9: Targets of NMD are over-expressed when moss is exposed to 

CHX  

(A) qRT-PCR analysis of PpRS2Z37 PTC+ variant. (B) qRT-PCR analysis of 

PpSMG7-2. (C) qRT-PCR analysis of PpeIF5L1. (A-C) Fold change is the 

amount of target expression normalised to reference gene Pp1s54_156V6.1 

and relative to WT DMSO levels. Error bars represent the standard error of the 

mean from three biological replicates. Asterisks represent lines with a statistical 

difference from WT DMSO to WT CHX using an unpaired t test p < 0.05.  
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Figure 3.10: smg1Δ lines produce fewer leafy structures which mainly 

grow into the media  

(A) Three-week-old wild-type colony (WT). (B) Three-week-old smg1Δ line 1. 

(C) Three-week-old smg1Δ line 2. White arrows point to example leafy 

structures (gametophores) growing from the filamentous tissue. (D) Total 

number of gametophores per colony after three weeks. (E) The percentage of 

gametophores not submerged in agar after three weeks. In A-C scale bars 

represent 1 cm. In D and E the n = 18. Error bars are SEM. Asterisks represent 

knockout line with a statistical difference from WT using an unpaired t test p < 

0.05. 
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3.3 Discussion 

 

3.3.1 An ancient role for SMG1 in the NMD pathway 

 

The NMD pathway plays important roles, both in protecting organisms from the 

production of truncated proteins and in regulating gene expression (Mühlemann 

et al., 2008). In animals, the SMG1 kinase activates NMD by the 

phosphorylation of UPF1, following its recruitment to the terminating ribosome 

(Grimson et al., 2004; Yamashita et al., 2001; Kashima et al., 2006). 

Phosphorylation of UPF1 facilitates the subsequent binding of the SMG5-7 

proteins (Okada-Katsuhata et al., 2011), allowing SMG6 to cut the transcript 

near the PTC (Huntzinger et al., 2008) and SMG5 and SMG7 to help recruit 

endonucleases (Unterholzner and Izaurralde, 2004; Jonas et al., 2013), leading 

to the destruction of the PTC-containing transcript. The work presented here 

has shown that the SMG1 kinase is not an animal-specific component of the 

NMD pathway and that SMG1 functions in NMD in a basal plant, a role that is 

likely to be conserved in all plants that retain SMG1. The involvement of SMG1 

in the NMD pathways of both animals and plants is consistent with SMG1 

functioning in NMD in the LECA (Figure 3.3). This suggests that the origins of 

SMG1 are very ancient; two to three billion years ago (Brocks et al., 1999).  

 

SMG8 and SMG9 were reported to regulate the kinase activity of SMG1 and 

function in the NMD pathway of mammals (Yamashita et al., 2009), however, 

they may not have conserved roles in NMD (Rosains and Mango, 2012; 
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Yamashita et al., 2009). RNAi knockdown of SMG9 did not lead to a reduction 

in NMD in C. elegans (Yamashita et al., 2009). RNAi knockdown of SMG8 did 

reduce NMD slightly in C. elegans (Yamashita et al., 2009), however, another 

study mutated SMG8 (deleted the first 65 amino acid residues) and found that 

these mutants had a normal level of NMD activity (Rosains and Mango, 2012). 

These data suggest SMG8 and SMG9 might not have an evolutionary 

conserved role in NMD. Interestingly, proteins with homology to SMG8 and 

SMG9 have been identified in moss (Table 3.1), rice and grape but not in A. 

thaliana (Yamashita, 2013). If they do play a role in plant NMD, they appear to 

only be conserved in species that also use SMG1 in the NMD pathway. 

 

3.3.2 The evolutionary history of SMG1 suggests an alternative NMD-

associated kinase 

 

Despite the conserved role of SMG1 in the NMD pathway of plants and 

animals, SMG1 has been independently lost in multiple eukaryotic lineages 

(Figure 3.3). In budding yeast, the lack of an NMD-associated kinase, through 

an early evolutionary loss of SMG1 in the fungal lineage (Figure 3.1), led to the 

suggestion that yeast NMD does not rely on UPF1 phosphorylation (Figure 

3.11D) (Gatfield et al., 2003). Nevertheless, budding yeast UPF1 is 

phosphorylated (Wang et al., 2006) and the loss of the yeast 14-3-3-like protein 

SMG7/EBS1, which is predicted to bind phosphorylated UPF1, results in a 

partially compromised NMD pathway (Luke et al., 2007). These data indicate 

that phosphorylation of UPF1 could be important for NMD in fungi and that, in 

the absence of an SMG1 kinase, an alternative kinase acts in NMD (Figure 
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Figure 3.11: Proposed models for UPF1 activation in NMD 

(A) The NMD pathway of organisms reliant on SMG1-dependant 

phosphorylation of UPF1 (e.g. C. elegans). (B) The NMD pathway of organisms 

that have replaced SMG1 with an undiscovered kinase, such as fungi and A. 

thaliana. (C) The proposed NMD pathway of organisms with two kinases. These 

may include the NMD pathways of Drosophila, zebrafish and the LECA. (D) The 

proposed NMD pathway of organisms that do not require UPF1 

phosphorylation. These may include the NMD pathways of yeasts and 

excavates. 
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3.11B). A more recent loss of SMG1 has occurred in A thaliana within the last 

5-10 million years (Hu et al., 2011). Even though SMG1 is not present in the A. 

thaliana genome (Figure 3.1-3) (Grimson et al., 2004), the A. thaliana UPF1 is 

phosphorylated in tobacco cells (Mérai et al., 2012) and SMG7 is required for 

NMD in A. thaliana (Riehs et al., 2008). This suggests that phosphorylation of 

UPF1 remains necessary for NMD, again implicating an alternative kinase 

(Figure 3.11B).  

 

Both SMG1 and SMG7 have been lost in the analysed members of the 

Excavate group, Giardia lamblia and Trypanosoma brucei, and in the red algae 

Cyanidioschyzon merolae (Figure 3.3). Despite the presence of UPF1 in these 

organisms, the absence of both its kinase (SMG1) and the protein that 

recognises its phosphorylated form (SMG7), could suggest that they no longer 

require the UPF1 phosphorylation/dephosphorylation cycle (Delhi et al., 2011; 

Chen et al., 2008) (Figure 3.11D). Alternatively, these eukaryotes could have 

independently acquired replacements for both SMG1 and SMG7 (Figure 

3.11B). An investigation of the phosphorylation status of UPF1 in these species 

will help to discriminate between these possibilities. It is interesting to consider 

the diversity of NMD pathway arrangements that exist in different organisms 

(Figure 3.11). Evidence suggests that there are distinct ‘branches’ of the NMD 

pathway where different substrates have specific effector requirements (Chan et 

al., 2007; Gehring et al., 2005; Huang et al., 2011). For example, in mammals it 

has been reported there is a branch of the NMD pathway that does not require 

UPF3 (Chan et al., 2007). There is a possibility that currently unidentified NMD 

effectors could be involved in these branches of the NMD pathway in different 
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eukaryotes. PNRC2 has recently been identified as a vertebrate specific protein 

that interacts with SMG5 to link UPF1 phosphorylation status to the RNA decay 

machinery (Cho et al., 2012; Lai et al., 2012; Cho et al., 2009).  

 

Multiple independent losses of SMG1 in eukaryotes which have conserved 

SMG7 and phosphorylation of UPF1 (Luke et al., 2007; Wang et al., 2006; 

Mérai et al., 2012; Riehs et al., 2008), suggest that an alternative kinase is 

capable of activating NMD in many organisms (Figures 3.11B and C). One 

possibility is that at each loss event, SMG1 was replaced by an independent 

kinase (Figure 3.11B). A more appealing explanation is that redundancy 

between two or more kinases in a common ancestor allowed the independent 

losses of SMG1 to be replaced by a pre-existing alternative kinase(s), which 

could be as ancient as SMG1. Loss of SMG1 in Drosophila and zebrafish has 

been shown to have little or no effect on NMD (Wittkopp et al., 2009; Metzstein 

and Krasnow, 2006), suggesting redundancy between SMG1 and another 

kinase(s) (Figure 3.11C). Redundancy would also explain the differential 

requirement for SMG1 for organismal survival. While UPF1 and UPF2 are 

required for Drosophila and zebrafish development, SMG1 is dispensable, 

possibly due to the presence of another NMD kinase (Figure 3.11C) (Wittkopp 

et al., 2009; Metzstein and Krasnow, 2006). Similarly, the plant NMD pathway 

could include an alternative kinase, providing an explanation for the relatively 

mild phenotype observed in moss smg1Δ lines compared to NMD-compromised 

phenotypes in A. thaliana and other non-plant species. Analysing the 

phenotypes of moss mutants that affect core NMD proteins would address this 

question.  
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If an alternative NMD-associated kinase is active, it will be interesting to look at 

the role of other PIKK family members in NMD. SMG1 is related to the A. 

thaliana DNA damage activated kinases ATM and ATR (Waterworth et al., 

2011) and TOR, a regulator of translation (Deprost et al., 2007). The A. thaliana 

genomes also encodes a TRRAP protein, which is a kinase inactive member of 

the PIKK family (Templeton and Moorhead, 2005) and A. thaliana lacks DNA-

PKcs (Figure 3.1). While a link to NMD has not been established, ATM and ATR 

can phosphorylate UPF1 in mammals. ATM phosphorylates UPF1 after DNA 

damage, but knockdown of ATM had no effect on NMD (Brumbaugh et al., 

2004) suggesting UPF1 is involved in DNA damage repair, independently of its 

role in NMD (Brumbaugh et al., 2004). ATR also phosphorylates UPF1, 

regulating genome stability (Azzalin and Lingner, 2006). The lack of an NMD 

phenotype in PIKK mutants, other than smg1, could indicate that these kinases 

are unable to substitute for SMG1, a view supported by the difference in the 

domain structure of SMG1 proteins in animals and plants compared to other 

PIKKs (Figure 3.2A). Alternatively, it is possible that these PIKKs could act 

redundantly in some species and that this redundancy could mask their NMD 

effects. 

	  

3.3.3 Differential requirements of NMD and/or SMG1 for growth and 

development  

 

Organisms vary in their requirement for NMD and/or SMG1 for development. 

Drosophila, vertebrates and A. thaliana all require NMD for organismal survival 
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(Arciga-Reyes et al., 2006; Metzstein and Krasnow, 2006; McIlwain et al., 2010; 

Wittkopp et al., 2009). In the case of A. thaliana, it was identified that seedling 

lethality was due to over-production of the defence hormone SA in the most 

NMD-compromised mutant lines (Riehs-Kearnan et al., 2012). This is in 

contrast to C. elegans and budding yeast where loss of NMD is not lethal 

(Hodgkin et al., 1989; Culbertson et al., 1980). The difference between 

organisms is likely due to different targets of NMD in different species as well as 

different sensitivity to altered expression of conserved targets, for example, 

splicing factors. In C. elegans and mice, loss of SMG1 abolishes the NMD 

pathway and leads to the same phenotype as in other NMD mutants (Hodgkin 

et al., 1989; McIlwain et al., 2010) but in Drosophila and zebrafish, loss of 

SMG1 has a mild or no phenotype, both at the level of NMD activity and at the 

level of whole organismal development (Wittkopp et al., 2009; Metzstein and 

Krasnow, 2006). As previously discussed (Section 3.3.2), this could be due to a 

non-essential role of SMG1 in the NMD pathway of these organisms because of 

redundancy with another NMD-associated kinase or a non-essential role of 

phosphorylation in the NMD pathway of these animals. In moss, loss of 

PpSMG1 leads to a mild phenotype where only a few gametophores grow into 

the air rather than into the agar on plates, suggesting that 1) NMD is not 

essential for moss development, 2) PpSMG1 is redundant in the 

phosphorylation of UPF1 in moss or 3) phosphorylation is not essential for NMD 

in moss. Examination of other NMD mutants in moss will be helpful in 

elucidating the correct hypothesis.  
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3.3.4 Conservation of NMD target features 

 

Transcripts encoding splicing factors are common targets of AS-coupled NMD, 

producing feedback loops between splicing factors and their transcripts (Lewis 

et al., 2003; Palusa and Reddy, 2010; Stauffer et al., 2010). AS-coupled NMD 

was identified in the moss SR protein-encoding transcript PpRS2Z37 and 

polypyrimidine tract binding protein-encoding transcript PpPTB3. PpRS2Z37 

has an alternative acceptor site that introduces a PTC from intronic sequence 

(Figure 3.6) while PpPTB3 undergoes exon skipping, resulting in a frameshift 

that introduces a PTC, targeting this splice variant to decay by NMD (Figure 

3.6A). Exon skipping also targets mammalian PTB transcripts (Sawicka et al., 

2008; Wollerton et al., 2004) and an A. thaliana homologue (Stauffer et al., 

2010) to NMD. AS-coupled NMD is therefore likely to be as widespread in moss 

as it is in A. thaliana (Stauffer et al., 2010; Palusa et al., 2007; Kalyna et al., 

2012) and animals (Ramani et al., 2009; McIlwain et al., 2010; Weischenfeldt et 

al., 2012).  

 

Another group of NMD targeted transcripts are those that encode NMD 

effectors. In animals, several NMD effector-encoding transcripts are targeted by 

NMD to create an autoregulatory feedback loop (Rehwinkel et al., 2005; Huang 

et al., 2011; Yepiskoposyan et al., 2011). In flowering plants, SMG7 is a direct 

target of NMD due to its long 3’ UTR and two introns located downstream of the 

stop codon, a feature conserved between monocots and eudicots (Benkovics et 

al., 2011; Kerényi et al., 2008; Nyikó et al., 2013; Rayson et al., 2012a). 

PpSMG7-2 and PpSMG7-3 were found to have an increased steady state level 
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in smg1Δ lines indicating that this autoregulatory loop is also conserved across 

land plants. Surprisingly, PpSMG7-1 was only significantly over-expressed in 

smg1Δ line 2 (Figure 3.7B). PpSMG7-1 was under-expressed in SMG1WT line 

1 suggesting that either 1) NMD is over-active in SMG1WT line 1 but this is 

unlikely as no significant reduction in other NMD targets was observed or 2) this 

line has a slight reduction in PpSMG7-1 independent of NMD due to chance or 

line specific changes. SMG1WT line 1 could contain random insertion sites from 

the transforming DNA or could contain stochastic epigenetic changes resulting 

from the transformation process. An alternative hypothesis is that SMG1WT line 

1 is a better control than WT because it has gone through the transformation 

process and better replicates smg1Δ line 1 than WT. It is impossible to 

conclude anything definitive at this stage, although WT has proven a reliable 

control for all other tested targets. Interestingly, plant SMG7 genes have a 

conserved 3’ UTR structure (but not sequence). This includes a longer than 

average 3’ UTR and two introns, both features that are important for the 

targeting to NMD (Nyikó et al., 2013). The stop codon proximal intron is very 

close to the stop codon, too close to induce NMD under the >50 nucleotide 

downstream of a stop codon rule, first established in mammals (Nyikó et al., 

2013). However, this stop codon proximal intron is important for splicing of the 

downstream stop codon that causes targeting to NMD in an EJC-dependant 

manner (Nyikó et al., 2013). Upon inspection of the newly predicted 3’ UTRs of 

the three moss SMG7 homologues, it was noticed all three have a longer than 

average 3’ UTR and contain two introns. For PpSMG7-1 and PpSMG7-2, the 

intron structure matches that of flowering plants, with the stop codon proximal 

intron being very close to the stop codon (<50 nucleotide downstream of a stop 
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codon) and the second being further downstream, suggesting that the first 

intron might be important for the splicing of the NMD-associated downstream 

intron. However, the stop codon proximal intron of PpSMG7-3 is >50 

nucleotides downstream of the stop codon so might function in NMD through 

association with an EJC, in addition to being involved with splicing of the 

downstream intron. These data suggest that NMD targeting of SMG7 to create 

an autoregulatory feedback loop through targeting of a long 3’ UTR containing 

introns might be ancient and conserved across land plants.  

 

Previous work has suggested that CPuORFs can target transcripts to NMD 

(Rayson et al., 2012a; 2012b; Nyikó et al., 2009). Nearly half of all CPuORF-

containing transcripts are up-regulated in at least one A. thaliana NMD mutant 

(Rayson et al., 2012a; 2012b) and the CPuORFs of AT1G70780 and 

AT3G18000 have previously been shown to be sufficient to target a reporter to 

NMD (Nyikó et al., 2009). The CPuORF of AT1G36730 is conserved in two 

moss genes (Figure 3.8). The mORFs of the two moss genes and the A. 

thaliana gene all encode eIF5-related proteins. Expression of AT1G36730 is 

elevated in A. thaliana NMD mutants (Rayson et al., 2012a) and is a direct 

target of NMD (S. Rayson, personal communication). In the moss smg1Δ lines, 

the expression of both eIF5L transcripts is elevated. CPuORFs fall into around 

30 homology groups, where there is homology between uORFs within a 

homology group but not between them (Hayden and Jorgensen, 2007; 

Jorgensen and Dorantes-Acosta, 2012). Work showing that nearly half of all 

CPuORFs target a transcript to NMD under laboratory conditions (Rayson et al., 

2012a; 2012b) suggests that despite the independent sequences and origins of 
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CPuORFs, many have a similar role in targeting transcripts to NMD. Our work 

suggests that CPuORFs may act to target transcripts to NMD across the plant 

kingdom. Interestingly, the eIF5-encoding transcripts of many animals contain 

uORFs and many of these are CPuORFs, however, the conservation is low 

between animal phyla (Loughran et al., 2012). It is likely that the peptide 

sequence of the uORF in front of the eIF5 mORF is important, probably for 

regulatory reasons, but that several sequences have arisen independently 

during eukaryotic evolution. In plants, it appears that the regulatory purpose is 

to link the transcript to NMD. In mammals, the uORF is only translated when 

start codon selection efficiency is low (for example, when eIF5 levels are high) 

and translation of the uORF reduces translation of the mORF (Loughran et al., 

2012). It was also suggested that translation of the uORF in animals could also 

target the transcript to NMD to reinforce the feedback loop (Loughran et al., 

2012). Given that the start codon of the CPuORF of A. thaliana and moss eIF5L 

genes is in a poor context (S. Rayson, personal communication) it is likely such 

a feedback loop is conserved in plants, which therefore use NMD to reduce the 

levels of eIF5L.  

 

These findings demonstrate the conservation of NMD mechanisms and targets 

across a large evolutionary span. The destruction of these conserved targets by 

NMD is likely to have important physiological outcomes, for example in 

regulating the activity of the NMD pathway itself or in the stringency of start 

codon selection.  
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4 Chapter Four: Using the Yeast two-hybrid Assay to 

Better Understand the NMD Pathway of Plants 

 

4.1 Introduction 

 

4.1.1 The putative role of an unidentified alternative NMD-associated 

kinase in A. thaliana  

 

To gain a better insight into the NMD pathway of plants, the SMG1 kinase was 

identified in moss and the entire coding region of the PpSMG1 gene was 

knocked out (Chapter 3). Upon deletion of PpSMG1, targets of the NMD 

pathway had an increased expression level (Chapter 3). It was subsequently 

speculated that phosphorylation of UPF1 by SMG1 could be an ancient 

mechanism, which operated in the stem eukaryote (Chapter 3). Although it has 

lost SMG1, A. thaliana has a competent NMD pathway, which is important for 

gene expression and development (Arciga-Reyes et al., 2006; Riehs et al., 

2008; Rayson et al., 2012a). The absence of the SMG1 kinase raises the 

possibility that NMD in A. thaliana does not rely on phosphorylation of UPF1 or 

that another kinase has replaced SMG1 in phosphorylating UPF1. Literature 

searches have not yielded any reports that A. thaliana UPF1 (AtUPF1) is 

phosphorylated in A. thaliana, however, evidence has been reported that 

suggests AtUPF1 is phosphorylated and this is important in NMD in tobacco. 

The AtUPF1 protein is predicted to encode multiple SQ and TQ dipeptides, 
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mainly in the N- and C-termini (Mérai et al., 2012). These dipeptides are the 

sites of phosphorylation in animals (Okada-Katsuhata et al., 2011) and are 

common targets of PIKKs, with the exception of TOR (Izumi et al., 2012). These 

sites are phosphorylated when AtUPF1 is expressed in tobacco cells and these 

sites are essential for AtUPF1 to have a role in tobacco NMD (Mérai et al., 

2012). It is likely tobacco has an orthologue of SMG1, although a published 

genome sequence is needed to confirm this. This suggests that SMG1 is the 

kinase responsible for the phosphorylation of AtUPF1 in tobacco cells. In 

addition to this, AtSMG7 requires its phospho-binding site to function in the 

NMD pathway of tobacco (Mérai et al., 2012). Work has shown AtSMG7 

functions in the NMD pathway of A. thaliana (Riehs et al., 2008) suggesting a 

role for AtUPF1 phosphorylation in bridging a PTC to the decay machinery. 

These data suggest that AtUPF1 needs to be phosphorylated to function in the 

NMD pathway of plants despite the lack of an NMD-associated kinase in the A. 

thaliana genome. It was suggested that this alternative NMD-associated kinase 

might also be conserved (Figure 3.11). If an alternative kinase existed before 

the loss of SMG1 in different lineages, it is easy to imagine that changes in the 

expression or interaction strength of this alternative kinase would be a smaller 

evolutionary step than recruiting a new kinase to the NMD pathway. It was 

predicted that this hypothetical alternative NMD-associated kinase has been 

conserved because SMG1 from both fungi and A. thaliana has been lost and 

because SMG1 has a non-essential role in the NMD pathway of some other 

organisms. Mutation of SMG1 in Drosophila does not abolish NMD in all cases 

and knockdown of SMG1 in zebrafish did not affect development, as it did with 

other NMD effectors (Metzstein and Krasnow, 2006; Wittkopp et al., 2009). It 
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has also been suggested that SMG1 in mammals is partially redundant to other 

wortmannin-sensitive kinases (Brumbaugh et al., 2004).  

 

Therefore to try to identify a kinase that interacts with AtUPF1 the yeast two-

hybrid system was used. The yeast two-hybrid assay was an attractive method 

given that it is a simple system to identify proteins that interact directly with a 

protein of interest.  

 

4.1.2 Introduction to the yeast two-hybrid assay 

 

The yeast two-hybrid assay can be used to identify proteins that directly interact 

with a protein of interest by expressing them in budding yeast and coupling this 

interaction to the expression of a reporter gene (Figure 4.1). In the assay, the 

first protein of interest is fused to a DNA-binding domain (BD) and is called the 

bait and the second protein is fused to the activation domain (AD) to produce a 

prey (Figure 4.1). The BD and AD are the two modular components of the yeast 

GAL4 transcription factor. When the BD and the AD are brought together by the 

interaction of two proteins of interest then they are able to induce the 

expression of reporter genes with the GAL4 binding sequence in their 

promoters (Figure 4.1). The HIS3 reporter gene is used in this study and 

encodes an enzyme required for histidine biosynthesis in yeast. When no 

interaction is present, yeast cannot grow on media lacking histidine.  
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Figure 4.1: Model representing the yeast two-hybrid assay  

(A) A fusion protein comprising of the GAL4 DNA-binding domain (BD) and the 

protein of interest. This should be unable to activate transcription of the HIS3 

reporter and the yeast should not grow on media lacking histidine. (B) 

Interaction between protein of interest and putative interactor (X), which is fused 

to the GAL4 activation domain (AD) recruits the AD to the promoter of the HIS3 

reporter and induces transcription and allows for growth on media lacking 

histidine.  
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Proteins fused to the BD should not have independent transcription activation of 

the HIS3 reporter, referred to as autoactivation. Therefore, test proteins should 

be screened for their autoactivation potential before a screen is attempted. 

Weak autoactivation can be overcome with the addition of 3-amino-1,2,4-

triazole (3-AT) into the medium. 3-AT is a chemical inhibitor of the product of 

the HIS3 reporter. This can be used to dampen autoactivation, allowing 

interactions to be detected.  

 

The yeast two-hybrid system can be used to test pair-wise interaction between 

specific proteins or used to screen cDNA libraries cloned into AD-containing 

plasmids. This allows for the rapid identification of novel putative interacting 

proteins.  

 

4.1.3 The aims of using the NMD effectors in the yeast two-hybrid assay 

 

The aims of the experimental work of this chapter are: 

1. To identify novel interactors of AtUPF1 

2. To establish yeast two-hybrid assays, which can be used to identify a 

kinase phosphorylating AtUPF1 

3. To explore the relationship between AtSMG7 and AtUPF1 

 

The ease of use of the yeast two-hybrid assay means that it should be an 

excellent tool to detect an interacting kinase. Yeast two-hybrid has been used 

before to successfully identify kinase-substrate interaction (Tsai and Gazzarrini, 

2012; Persak and Pitzschke, 2013). However, previous work has shown that 
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AtUPF1 is a powerful autoactivator (Kerényi et al., 2008). A library screen was 

performed using AtUPF1 as the bait, but since AtUPF1 is a powerful 

autoactivator, a very high concentration of 3-AT was used (100 mM) (Kerényi et 

al., 2008). This screen was able to pull out AtUPF2, a known interactor of 

AtUPF1 but no kinase was identified (Kerényi et al., 2008). It is possible that the 

high concentration of 3-AT meant that transient interactions, such as a kinase-

substrate interaction, could not be identified. To allow a screen to be performed 

under conditions that are more favorable for the detection of a transient or weak 

interaction, AtUPF1 will be truncated to remove its autoactivation ability. 

Additionally, it has not yet been shown that AtSMG7 and AtUPF1 directly 

interact and whether this is dependent on AtUPF1 being phosphorylated, 

although mutational analysis of AtSMG7 showed that sites predicted to bind 

phosphorylated AtUPF1 are essential for NMD (Mérai et al., 2012). 
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4.2 Results 

 

4.2.1 Autoactivation testing of truncated AtUPF1 

 

To identify potential interacting partners of AtUPF1, truncations of AtUPF1 were 

designed for use in the yeast two-hybrid assay. As full-length AtUPF1 is a 

powerful autoactivator and a previous screen did not find an interacting kinase 

(Kerényi et al., 2008), two truncations of AtUPF1 were generated to try to 

eliminate the autoactivating region of AtUPF1 when it is used as a bait (Figure 

4.2A). The first truncation, AtUPF1 NT, stretches from residue 2 to 808, which 

includes the UPF2 binding domain, RNA helicase domain and the putative 

phosphorylation sites at the N-terminal (Figure 4.2A). The second truncation, 

AtUPF1 CT, includes residues 618 to 1254, which includes half the RNA 

helicase domain and the putative phosphorylation sites at the C-terminal 

(Figure 4.2A). To test if these proteins autoactivate, as full-length AtUPF1 does, 

yeast was grown on medium lacking tryptophan (W) to select for the bait 

plasmid and histidine (H) to test for autoactivation. Yeast containing AtUPF1 NT 

grows strongly on SD–WH media suggesting that it can still autoactivate (Figure 

4.2B). However, AtUPF1 CT does not grow well on SD–WH media, suggesting 

that it has little autoactivation ability. To dampen the residual autoactivation, a 

range of concentrations of 3-AT were tested. Yeast expressing AtUPF1 NT 

were still able to grow at concentration of 20 mM 3-AT (Figure 4.2B). No 

observable growth of yeast expressing AtUPF1 CT was seen at any 

concentration of 3-AT (Figure 4.2B). Therefore, AtUPF1 NT appears to  
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Figure 4.2: Autoactivation testing for BD vectors AtUPF1 NT and AtUPF1 

CT 

(A) Domain structure of AtUPF1 and fragments cloned for yeast two-hybrid, 

AtUPF1 (N-terminal) NT and AtUPF1 (C-terminal) CT. AtUPF1 has two 

conserved domains 1) UPF2 binding site and 2) RNA helicase domain. (B) 

Yeast was grown on SD-W media as control of growth and on SD-WH plates to 

test for autoactivation of the HIS3 reporter. Growth of yeast on SD-WH plates 

shows that the bait protein can activate transcription alone. 3-AT was used to 

dampen activation. Two independent clones were tested for each construct. 

The yeast was photographed after five days of growth.  
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offer no advantage over the full-length protein as bait in the yeast two-hybrid 

assay due to high level of autoactivation, but AtUPF1 CT appears not to 

autoactivate and could be used in a library screen to identify novel interacting 

partners of AtUPF1.  

 

4.2.2 The pAD AtUPF1 CT screen did not yield a kinase 

 

To identify potential interacting proteins of the C-terminal of AtUPF1, a yeast 

two-hybrid screen was performed using the pBD AtUPF1 CT plasmid as bait. 

Two libraries were screened together, one made using random hexamer primed 

cDNA from A. thaliana and the other using oligo(dT) primed cDNA. After mating 

the yeast carrying AtUPF1 CT with the yeast containing the libraries, the 

diploids were plated out onto selection plates (SD-WLH) supplemented with 3-

AT (2.5 mM). A total of 10.25 x 106 diploids were screened. Results from the 

screen are listed in Table 4.1 after filtering non protein-encoding sequences. No 

kinase was identified in the screen. The screen did not pull out any proteins with 

obvious links to the functions of UPF1, for example, NMD or genome stability 

(Table 4.1). The most frequently isolated protein from the screen was 

AT5G24620, which encodes a thaumatin domain containing protein. Clones 

corresponding to AT5G24620 accounted for 34% of the total clones sequenced 

that encoded protein-encoding genes from A. thaliana. Little is known about this 

gene in A. thaliana or the thaumatin domain in plants but it has a role in 

pathogen defense (Liu et al., 2010). Since none of the putative interactors 

identified in this screen corresponded to gene ontologies that have correctly  
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Table 4.1: A list of interactors of pAD AtUPF1CT.  

Table 4.1 continued on next page 

!
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Table 4.1 continued  

 

Locus TAIR description Number of 
clones 

AT4G33010 glycine decarboxylase P-protein 1 (GLDP1) 1 

AT4G35090 Encodes a peroxisomal catalase 1 

AT4G38770 
Encodes one of four proline-rich proteins in 

Arabidopsis which are predicted to localize to the 
cell wal 

1 

AT5G38410   Ribulose bisphosphate carboxylase (small chain) 1 

AT5G38430 Ribulose bisphosphate carboxylase (small chain) 
family protein 1 

AT5G42050 DCD (Development and Cell Death) domain 
protein 1 

AT5G43330 C-NAD-MDH2, CYTOSOLIC-NAD-DEPENDENT 
MALATE DEHYDROGENASE 2 1 
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been linked to NMD this screen was not pursued further.  

 

4.2.3 Autoactivation testing of further AtUPF1 truncations 

 

Truncations of AtUPF1 that consisted of about half of AtUPF1 from either the N- 

or C-terminus were unsuccessful in identifying a kinase that interacts with 

AtUPF1. The ‘tails’ at the N- and C-terminals of AtUPF1 contain no identified 

protein domains, but are enriched in S/TQ dipeptides, predicted to be the 

phosphorylation sites important in NMD (Mérai et al., 2012). In humans, two 

functional phosphorylation sites have been mapped, one at the N-terminal (T28) 

and one at the C-terminal (S1096) (Okada-Katsuhata et al., 2011) and an 

alignment of UPF1 protein sequences shows that these sites have homologues 

sites in A. thaliana (T29 and S1193, respectively) (Okada-Katsuhata et al., 

2011) (Figure 4.3A). Therefore, new truncations of AtUPF1 were generated 

consisting of these ‘tails’ (Figure 4.3A). AtUPF1 NT2 includes resides 2 to 137 

and contains putative phospho-site T29 (Figure 4.3A). AtUPF1 CT2 includes 

residues 1082 to 1254 and contains putative phospho-site S1193. Yeast 

containing AtUPF1 NT2 or AtUPF1 CT2 show strong growth on SD–WH media 

(Figure 4.3B). Increasing the concentration of 3-AT reduces but does not 

eliminate growth of AtUPF1 NT2, even at 40 mM 3-AT (Figure 4.3A). 

Surprisingly, AtUPF1 CT2 is a strong autoactivator, despite being a further 

truncated form of AtUPF1 CT, which did not autoactivate. Growth was reduced, 

but not eliminated, at the higher concentrations of 3-AT tested (20 and 40 mM). 

Taken together, these data suggest using the ‘tails’ of AtUPF1 cannot be helpful 

in the search for interacting partners in the yeast two-hybrid assay.  



108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Autoactivation testing for BD vectors AtUPF1 NT2 and AtUPF1 

CT2.  

(A) Domain structure of AtUPF1 and fragments cloned for yeast two-hybrid, 

AtUPF1 (N-terminal) NT2 and AtUPF1 (C-terminal) CT2. AtUPF1 has two 

conserved domains 1) UPF2 binding site and 2) RNA helicase domain. (B) 

Yeast was grown on SD-WH plates to test for autoactivation of the HIS3 

reporter. Growth of yeast on SD-WH plates shows the bait protein can activate 

transcription of the reporter gene without an interacting protein with an AD. 3-AT 

was used to dampen activation. Four independent clones were tested for each 

construct. The yeast was photographed after five days of growth.  

RNA 
helicase 

UPF2 
binding N C 

AtUPF1 NT2 

AtUPF1 CT2 
Putative P site T29 

Putative P site S1193 

A 

B 

NT2 

CT2 

SD-WH 
0 mM 3-AT 

NT2 

CT2 

1 2 3 4 

SD-WH 
2.5 mM 3-AT 

1 2 3 4 

SD-WH 
5 mM 3-AT 

SD-WH 
10 mM 3-AT 

NT2 

CT2 

SD-WH 
20 mM 3-AT 

SD-WH 
40 mM 3-AT 

1 2 3 4 1 2 3 4 

1 2 3 4 1 2 3 4 

2 137 

1082 1254 



109 

 

4.2.4 Phosphomimetic AtUPF1 interacts with AtSMG7 NT 

 

In animals, it is essential that UPF1 is phosphorylated and recruits members of 

the SMG5-7 family for NMD (Okada-Katsuhata et al., 2011), but this has not 

been demonstrated in plants. It is, however, known that mutations of AtSMG7 at 

sites predicted to be involved in the recognition of phosphorylated AtUPF1, 

inhibit its role in NMD in tobacco cells (Mérai et al., 2012). We do not know if 

phosphorylated AtUPF1 is directly bound by AtSMG7, and if so, which residues 

are important for this interaction. A yeast two-hybrid assay where AtSMG7 is 

the bait and full-length AtUPF1 is the prey was designed. Whether AtUPF1 and 

AtSMG7 directly interact and whether this interaction is dependent on the 

phosphorylation status of particular residues of AtUPF1 was tested using this 

system. To mimic the phosphorylation of AtUPF1, site-directed mutagenesis 

was used to change residues predicted to be important for NMD in plants and 

changed these phosphorylatable residues (T or S) to glutamic acid (E), which is 

known to act a phosphomimetic (Wagner et al., 2004), and would therefore 

mimic the appearance and properties of a phosphorylated T or S residue.  

 

First, a clone of AtSMG7 was needed and tested for autoactivation to see if it 

can be used as the bait in yeast two-hybrid. Attempts to clone full-length 

AtSMG7 into the entry vector pDONR207 failed so an N-terminal truncated 

AtSMG7 including residues 1 to 591 was constructed (AtSMG7 NT; Figure 

4.4A). This region also includes the EST1 domain and the EST1 DNA/RNA 

binding domain, both predicted to function in telomere regulation (Figure 4.4A).  
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Figure 4.4: Autoactivation test of pBD SMG7 NT fragment 

(A) The domain structure and fragments cloned for yeast two-hybrid, cloned 

fragment AtSMG7 (N-terminal) NT. AtSMG7 has two conserved domains at the 

N-terminal 1) EST1 and 2) EST1 DNA/RNA binding domain. The N-terminal 

region contains the 14-3-3-like domain (Mérai et al., 2012). (B) Yeast was 

grown on SD-WH plates to test for autoactivation of the HIS3 reporter. Growth 

of yeast on SD-WH plates shows the bait protein can activate transcription of 

the reporter gene without an interacting protein with an AD. 3-AT was used to 

dampen activation. Four independent clones were tested for each construct. 

The yeast was photographed after three days of growth. 
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This region encodes the 14-3-3-like domain predicted to bind to phospho-UPF1 

(Mérai et al., 2012). AtSMG7 NT grew on SD-WH plates without 3-AT but 

addition of 2.5 mM 3-AT inhibited growth and removed autoactivation. 

Therefore, AtSMG7 NT could be used as bait at the low concentration of 2.5 

mM 3-AT.  

 

To test whether a phosphomimetic residue at sites of AtUPF1 predicted to be 

important for NMD can stablise the interaction between AtUPF1 and AtSMG7, 

yeast containing the AtSMG7 NT and AtUPF1 WT (no site-directed mutation), 

AtUPF1 PM-CT (phosphomimetic S1193Q at the C-terminal) or AtUPF1 PM-NT 

(phosphomimetic T29Q at the N-terminal) was mated. The diploids were grown 

on medium selective for both plasmids (SD-WL) or interaction-selective media 

(SD-WLH 2.5 mM 3-AT) (Figure 4.5). Very little growth is observed for AtSMG7 

NT and AtUPF1 WT (Figure 4.5), suggesting a very weak or no interaction is 

taking place. However, strong growth of yeast on interaction selective plates is 

observed when S1193 is mutated to a phosphomimetic (Figure 4.5). In contrast 

to this, no growth of yeast on interaction selective plates was observed when 

T29 is mutated to a phosphomimetic (Figure 4.5). These data suggest that 

AtSMG7 binds to phosphorylated AtUPF1 S1193 but not to phosphorylated 

T29, or that this site is not accurately represented by the phosphomimetic in a 

yeast system.  
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Figure 4.5: Phosphomimic AtUPF1 interacts with AtSMG7 NT 

Bait (BD) and prey (AD) fused to proteins of interest are shown above the 

colony which is grown on SD-WL as a control of yeast growth or SD-WLH 2.5 

mM 3-AT to measure interaction. PM-NT is phosphomimic AtUPF1 at T29 at the 

N-terminal (independent replicates A and B). PM-CT is phosphomimic AtUPF1 

at S1193 at the C-terminal (independent replicates A and B). Moss TOPLESS2 

(PpTPL2) and moss ARFe was used as positive control and PpTPL2 and moss 

ARFa was used as a negative control, for growth on selection plates. The yeast 

was photographed after three days of growth.  
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4.3 Discussion 

 

The aim of this chapter was to discover proteins that directly interact with 

AtUPF1, with particular focus on identifying a kinase that could have replaced 

SMG1 in A. thaliana NMD, using the yeast two-hybrid assay. As AtUPF1 is a 

powerful autoactivator, several truncations were generated to try and remove 

the autoactivation ability of AtUPF1, however, only one of these did not 

autoactivate (AtUPF1 CT). AtUPF1 CT was used to screen A. thaliana yeast 

two-hybrid libraries, however, it did not identify a kinase as a putative interactor. 

Subsequently, we (me, Dr Barry Causier and Prof Brendan Davies) started to 

develop a novel yeast-three hybrid assay to identify proteins that can bridge the 

interaction between AtSMG7 and AtUPF1 such as a kinase.  

 

4.3.1 Identification of putative novel interactors of AtUPF1 CT 

 

After performing a library screen with AtUPF1 CT as bait, several putative 

interactors of the C-terminal of AtUPF1 have been reported (Table 4.1) but, 

without further validation of their interaction, it is unclear if any of these yeast 

two-hybrid interactors are genuine in planta interactors. It is possible that the 

truncation in the middle of the RNA helicase domain might have caused 

misfolding of AtUPF1, resulting in few meaningful interactors being identified. 

This is supported by the fact that two clones of putative interactors encode a 

chaperone protein DnaJ (AT2G22360). However, some of the identified 

interactors might have a role in NMD, discussed below. None of the putative 
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interactors identified in the previously published yeast two-hybrid screen using 

full-length AtUPF1, using a very high concentration (100 mM) of 3-AT (Kerényi 

et al., 2008), overlap with our list of interactors (Table 4.1).  

 

Of the 53 yeast clones identified in the screen, eighteen contained a gene that 

best matched AT5G24620. AT5G24620 encodes a thaumatin domain 

containing protein. The thaumatin domain is found in many pathogen-related 

proteins, although the exact nature of the protein is not known. Thaumatin-like 

proteins have been shown to have anti-fungal properties but also have a range 

of ligands, which are endogenous plant components (Liu et al., 2010). It is 

possible that AT5G24620 encodes a genuine interactor of AtUPF1 but given the 

lack of evidence linking the thaumatin domain to RNA, translation or nuclear 

functions, investigating AT5G24620 further is not prioritised. AT1G52510 was 

represented by two clones and encodes an alpha/beta-hydrolase. This is 

unlikely to be a genuine interactor of AtUPF1 as the protein encoded by 

AT1G52510 is predicted to be located in the chloroplast and AtUPF1 has a 

cytosolic role in RNA decay and possibly a nuclear role in genome stability. 

SDG37 (AT2G17900) was also identified in two clones and is likely to have a 

role in histone methylation. This might be involved with nuclear functions of 

AtUPF1 but is unlikely to have a role in the cytosolic NMD pathway. Two clones 

encoding TPR10 (AT3G04710) and one clone encoding each of TPR3 

(AT1G04190), HOP3 (AT4G12400) and PP5 (AT2G42810) were isolated in the 

screen and all encode tetratricopeptide repeat (TPR) domain-containing 

proteins. A bioinformatic analysis of A. thaliana TPR proteins identified all of 

these as putative interactors of heat-shock proteins (HSP) 70 and/or 90 (Prasad 
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et al., 2010). PP5 encodes a protein phosphatase and has been shown to 

dephosphorylate phytochrome A (Ryu et al., 2005). Plant homologues of PP5 

and HOP have been shown to interact with HSP90 (van Bentem et al., 2005; 

Zhang et al., 2003). PP5 has also been shown to function as a chaperone 

independently of HSP90 in A. thaliana (Park et al., 2011). This is not the case 

for the PP5 from yeast (Park et al., 2011) and might not be representative of 

other TPR proteins. However, it remains possible that TPR proteins bind to 

AtUPF1 CT due to misfolding, likely due to its truncation. The TPR protein from 

animals P58(IPK) was shown to bind to unfolded proteins through the TPR 

domain and to recruit the BiP chaperone to re-fold the protein (Tao and Sha, 

2011). This suggests a mechanism linking unfolded proteins, potentially 

truncated AtUPF1, to TPR proteins in yeast two-hybrid. On the other hand, 

these TPR proteins might have a functional role in stabilising the NMD complex, 

perhaps by recruiting chaperones. mRNA adenosine methylase (MTA; 

AT4G10760) was identified by a single clone (Table 4.1) and might be of 

interest as an interactor of AtUPF1. MTA covalently marks adenosine residues 

in mRNA, but the function of this mark is unclear (Bodi et al., 2012). This mark 

is enriched at the 3’ end of a transcript and it has been suggested it might play 

a role in NMD (Bodi et al., 2012). It is unclear why UPF1 and MTA might 

interact, even if both function in NMD, as MTA is the enzyme leaving the 

methylation mark in the nucleus and UPF1 has a role in recognising stop 

codons in an unusual context in the cytosol. Therefore, if UPF1 has a role in 

directing the methylation of adenosine residues, it is unclear how this could 

work from a mechanistic point of view, given the cytosolic recognition of a PTC 

and a nuclear role for MTA. However, it is known that UPF1 has a role in 
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altering the release of a PTC+ transcript from the site of transcription by an 

unknown mechanism in mammals (De Turris et al., 2011), showing that UPF1 

influences PTC-containing transcripts in the nucleus despite the evidence 

against NMD functioning in the nucleus (Trcek et al., 2013; Singh et al., 2008). 

 

More work will be needed to confirm these potential interactors. The next step 

would be to clone the potential interactors into a bait vector and test if they 

interact with full-length AtUPF1 in a prey vector, which will overcome the 

problem of autoactivation from AtUPF1. If the potential interactors pass this 

stage of selection, then in planta interaction could be test for, for example, using 

the split YFP assay, also known as bimolecular fluorescence complementation. 

Following such confirmation of a physical interaction, it would be interesting to 

identify a role for the interactor in NMD through genetic approaches.  

 

4.3.2 The role of phosphorylation of AtUPF1 in recruiting AtSMG7 

 

It is currently unclear if AtUPF1 and AtSMG7 interact directly in plants and if this 

is dependent on phosphorylation. A yeast two-hybrid assay was developed to 

test if AtUPF1 and AtSMG7 NT interacted without phosphorylation of AtUPF1, 

which it does not (Figure 4.5), and then to determine which phosphorylated 

residues were important for this interaction by site-directed mutagenesis of S 

and T residues to a phosphomimetic amino acid (E).  

 

It has been proposed that AtSMG7 binds to the phosphorylated N- and C-

terminals of AtUPF1 in NMD (Mérai et al., 2012). In humans, the functionally 
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important phospho-sites have been mapped and sites homologous to sites in 

humans were identified in AtUPF1 (Okada-Katsuhata et al., 2011). These 

homologous sites (Figure 4.3A) were mutated to the phosphomimetic glutamic 

acid (E) in the hope that this would accurately mimic a phosphorylated S or T 

residue, as has been shown previously (Wagner et al., 2004). Indeed it was 

found that the S1193E mutation created a stronger interaction between 

AtSMG7 NT and AtUPF1 than between AtSMG7 NT and wild-type AtUPF1 

(Figure 4.5). Surprisingly, the T29E mutation did not stabilised the interaction 

between AtSMG7 NT and AtUPF1 (Figure 4.5). This could be due to the E 

residue failing to accurately mimic a phosphorylated T in this situation. On the 

other hand, it might be that AtSMG7 does not bind phosphorylated T29. 

Interestingly, in humans, SMG7 only binds to the site at the N-terminus (S1096) 

rather than both sites and SMG6 is responsible for binding to the functional site 

at the N-terminus (T28) so it might not be surprising that SMG7 does not bind 

both of these sites. This model would suggest another unidentified factor binds 

to phosphorylated T29 in A. thaliana NMD (Figure 4.6) rather than the model 

where SMG7 binds to phosphorylated residues at both ends of the protein 

(Mérai et al., 2012). It is not unprecedented that a novel protein outside the 

SMG5-7 family is involved in recruiting the decay machinery to phosphorylated 

UPF1. PNRC2 is a vertebrate specific protein that, as a heterodimer with 

SMG5, functions in binding to phosphorylating UPF1 and recruiting the 

decapping complex (Cho et al., 2012; Lai et al., 2012; Cho et al., 2009). 

However, there is a high level of redundancy seen between phosphorylated  
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Figure 4.6: Model of AtUPF1 phosphorylation and protein recruitment 

(A) Phosphorylated AtUPF1 recruits AtSMG7 to the C-terminal S1193 but not to 

T29 (phosphomimetic work, Figure 4.5) suggesting an alternative, unknown 

protein is recruited. (B) To explain the importance of AtSMG7 in NMD, AtSMG7 

might dimerise with the unknown protein, which binds to phosphorylated T29. 

(C) To explain the importance of AtSMG7 in NMD, AtSMG7 might bind to 

another phosphorylated site at the N-terminus.  
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sites in AtUPF1, not seen in the human UPF1 where both the N- and C-

terminuses have to be deleted to inhibit NMD (Mérai et al., 2012). While 

AtSMG7 might not bind phosphorylated T29, it might dimerise with the 

unidentified protein to aid function as SMG5 does with SMG7 and PNRC2 in 

humans or SMG7 might bind to another site in the N-terminus other than T29 

(Figure 4.6B and C). It has been proposed that the heterodimer of SMG7:SMG5 

might bind UPF1 through both SMG7 and SMG5 and the heterodimer helps 

stablise this interaction (Jonas et al., 2013), which is a fusion of the latter two 

models (Figure 4.6B and C). 

 

4.3.3 The interaction of AtSMG7 NT with phosphomimetic AtUPF1 reveals 

a novel yeast-three hybrid system that could identify a kinase 

 

Our findings that AtSMG7 NT interacts with phosphomimetic AtUPF1 reveals 

not only that it is likely that AtSMG7 needs AtUPF1 to be phosphorylated at 

specific residues but that this system could be used in a novel yeast-three 

hybrid assay to identify a kinase phosphorylating AtUPF1. Yeast-three hybrid 

works on the same principle as yeast two-hybrid, with the GAL4 BD and AD 

split between two proteins; however, these two proteins do not interact directly 

and need a third protein to bridge their interaction. This third protein is 

expressed from an expression vector, such as pTFT, and is not a fusion protein. 

In our proposed assay, the bridging protein would not actually take part in the 

complex per se but would phosphorylate AtUPF1 thus allowing AtSMG7 NT to 

interact with it without the need for a phosphomimetic mutation. This assay 

would require the generation of a pTFT library using A. thaliana cDNAs. 
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5 Chapter Five: RNA-seq Analysis Reveals the 

Importance of SMG1 in Moss Stress Responses 

 

5.1 Introduction 

 

5.1.1 The targets of NMD across eukaryotes 

 

The NMD pathway has an important role in suppressing gene expression in 

many eukaryotes. As previously stated, NMD influences 1-10% of the 

transcriptomes of all examined eukaryotes, as revealed through analyzing NMD 

mutants and knockdowns (Guan et al., 2006; He et al., 2003; Mendell et al., 

2004; Ramani et al., 2009; Rayson et al., 2012a; Rehwinkel et al., 2005). These 

changes in gene expression will be a mix of direct targets of NMD having an 

increased steady state level in mutants and knockdowns and up- and down-

regulation of indirect targets of NMD. While NMD influences many 

physiologically important transcripts in all examined organisms, the overlap of 

targets is small (Rayson et al., 2012a), suggesting that NMD has been co-opted 

into regulating multiple pathways at separate times. One consistent role for 

NMD is in AS-coupled NMD. AS can generate splice variants with a PTC, for 

example by introduction of a cassette exon known as a ‘poison’ cassette exon. 

This type of transcript is then targeted to NMD in budding yeast, invertebrates, 

mammals and flowering plants (Sayani et al., 2008; Barberan-Soler et al., 2009; 

Palusa and Reddy, 2010; Lareau et al., 2007; Kalyna et al., 2012). In animals, 
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any sort of AS event appears to be able to introduce a PTC that is recognised 

by NMD, however, in A. thaliana, multiple transcripts with intron retention (IR) 

events were shown to evade NMD, making A. thaliana unusual among 

eukaryotes in this respect (Kalyna et al., 2012). It will be interesting to find out if 

this is the case in other plants or if it is an A. thaliana specific feature. AS-

coupled NMD is particularly important for regulating the expression of splicing 

factors. Members of the GRP, PTB and SR families of splicing factors have 

been shown to regulate the splicing of their own primary transcripts; so that 

when the protein level is increased splicing of the PTC-containing variant is 

increased and this variant is subsequently degraded by NMD (Palusa and 

Reddy, 2010; Stauffer et al., 2010; Schoning et al., 2008). Over-expression of 

PTB in animals causes exon skipping which introduces a PTC due to a frame 

shift and becomes a target of NMD (Wollerton et al., 2004; Boutz et al., 2007). 

In A. thaliana, auto- and cross-regulation of PTB encoding transcripts has also 

been observed with exon skipping in AtPTB3 leading to NMD (Stauffer et al., 

2010). Exon skipping leading to NMD has also been observed in the moss 

homologue PpPTB3 (Chapter 3). Twelve of the eighteen SR protein-encoding 

genes are alternatively spliced to produce targets of NMD in A. thaliana, thus 

suggesting that it is a major mechanism to control correct gene expression of 

splicing regulators in flowering plants (Palusa and Reddy, 2010) and AS-

coupled NMD of one SR protein-encoding gene in moss has been identified 

(PpRS2Z37; Chapter 3).  

 

While studies of the transcriptomes of NMD mutants and knockdowns of diverse 

organisms have not revealed many conserved targets, they have identified 
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altered pathways with important physiological relevance to the organism of 

study (Mendell et al., 2004; Rehwinkel et al., 2005; Rayson et al., 2012a). In 

humans, transcriptomic analysis revealed that many genes involved with amino 

acid starvation and the unfolded protein response were up-regulated upon loss 

of UPF1 (Mendell et al., 2004; Gardner, 2008; Wang et al., 2011). Follow-up 

work revealed that NMD represses the expression of genes important for 

recovery from hypoxia and accumulation of unfolded proteins through 

recognition of their uORF as a NMD targeting feature (Gardner, 2008; Wang et 

al., 2011). Hypoxia or induction of the unfolded protein response (UPR) triggers 

phosphorylation of eIF2-α in animals, which inhibits NMD and leads to 

increased expression of genes involved with protecting the cell from these 

stress conditions (Gardner, 2008; Wang et al., 2011). For example, in mammals 

the transcription factor ATF4 activates the UPR of the endoplasmic reticulum 

(ER) and is repressed by NMD through its uORF. Additionally, NMD represses 

the UPR of C. elegans. HSP4 has an increased steady state level in NMD 

mutants of C. elegans (Sakaki et al., 2012).  

 

In A. thaliana, many of the phenotypes associated with mutations in NMD 

effector-encoding genes are due to over-production of the plant defense 

hormone salicylic acid (SA) (Rayson et al., 2012a; Riehs-Kearnan et al., 2012; 

Jeong et al., 2011; Rayson et al., 2012b). The exact molecular link between 

NMD and the pathogen response has not been described. It is possible that 

NMD directly targets transcripts that activate SA production. It has been 

suggested that the activity of the NMD pathway is reduced during pathogen 

attack through a down-regulation of NMD effectors (Jeong et al., 2011). Recent 
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work has shown that eIF2-α is phosphorylated during pathogen attack 

(Pajerowska-Mukhtar et al., 2012). Given the NMD inhibitory effect of eIF2-α 

phosphorylation in animals during the UPR and hypoxia (Gardner, 2008; Wang 

et al., 2011), it is easy to speculate that eIF2-α phosphorylation inhibits NMD 

upon pathogen assault, allowing for direct targets of NMD that regulate SA 

biosynthesis to be up-regulated.  

 

5.1.2 The aims of studying the transcriptomic differences between WT 

and smg1Δ lines 

 

Now that SMG1 has been identified and knocked out in moss, this gives us not 

only a model system in which to study the function of SMG1 in plant NMD 

(Chapter 3) but also an opportunity to study the biological function of NMD 

and/or PpSMG1 in moss growth.  

 

The specific aims of the experimental work of this chapter are: 

1. To identify differentially expressed genes and splice variants between 

WT and smg1Δ lines 

2. To identify dysregulated pathways upon loss of PpSMG1 to gain an 

insight into its biological role in moss 

3. To confirm that the dysregulated pathways identified have a 

physiological role in moss.  
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5.2 Results 

 

5.2.1 Transcriptomic analysis of moss compromised in NMD 

 

To investigate changes in the transcriptome of moss upon loss of the NMD 

effector PpSMG1, short-read high-throughput RNA-sequencing (RNA-seq) on 

the Illumina HiSeq2000 platform set to 100 bp read length (single-end) was 

performed. Libraries were generated from pools of poly(A)-purified RNA. A total 

of nine libraries were sequenced across three channels of the HiSeq2000 

(performed by GATC Biotech): four WT libraries, four smg1Δ line 1 libraries and 

three smg1Δ line 2 libraries. Each biological replicate (BR) was prepared by 

pooling RNA from two moss plants together. To account for the variation 

between individual sequencing reactions, some preparations were sequenced 

twice, which are the technical replicates (TR). Each sequenced library is named 

accordingly, for example, WT BR1.TR2 for the first biological replicate (BR) 

from WT but from the second sequencing reaction (TR). The total sequenced 

and subsequently mapped reads for each library are listed in Table 5.1. 

Mapping was performed by D. Lang and A. Zimmer of the University of 

Freiburg, Germany. For every library, except smg1Δ line 2 BR1.TR1, over 90% 

of the reads mapped to the moss genome, indicating a low level of reads 

resulting from contamination, reads mapping to un-sequenced parts of the 

moss genome and reads with sequencing errors. Of these reads, over 99% of 

all mapped reads for each library were mapped to the nuclear chromosomes  
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Table 5.1: Read statistics of RNA-seq data 

Number of sequences represents the number of individual reads generated by 

the sequencing of each library. Sequences after clipping shows how many 

reads survived quality control after having adapter sequences removed. 

Mapped reads is the number of reads after clipping that were mapped to a 

location in the moss genome.  
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rather than the plastid or mitochondrial genomes, as expected from poly-A 

enriched-coupled sequencing. Once the reads were mapped to the moss 

genome, the mapped reads were viewable on a personal track on the 

COMOSS.org genome browser (gbrowser). An example output from the 

gbrowser with mapped reads from example WT and smg1Δ lines is shown in 

Figure 5.1A. Figure 5.1A shows the PpSMG1 locus (gene model: 

Pp1s51_180U2__zimmer.1), which was replaced by the kanamycin selection 

cassette in smg1Δ lines (Chapter 3). Figure 5.1A confirms that PpSMG1 was 

deleted from smg1Δ lines as no reads from libraries generated from smg1Δ 

lines map to the coding sequence. Interestingly, the 3’ UTR region of SMG1 

that was not knocked out is over-expressed in both lines (Figure 5.1A). One 

possible explanation is that these reads are generated from the transcript 

produced by the kanamycin selection cassette. The selection cassette has the 

35S terminator of transcription, however, this suggests that it is not very 

effective in moss and there is a great deal of read-through to the native 

PpSMG1 terminator. This should serve as a warning to researchers who only 

knockout a proportion of a gene that they might be producing unexpected 

bicistronic transcripts including the selection cassette and the downstream 

proportion of the target gene. Surprisingly, this over-expression was much more 

pronounced in smg1Δ line 1 than in smg1Δ line 2. Both lines contain the same 

targeted gene replacement event so the changes could only be the result of 

stochastic epigenetic effects.  

 

Once reads had been mapped to the genome, differential gene expression 

(DGE) analysis was performed (D. Lang and A. Zimmer, personal  
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Figure 5.1: Downstream analysis of RNA-seq mapped reads 

(A) Example of the output from the gbrowser of COSMOSS.org with mapped 

RNA-reads. The PpSMG1 locus (Pp1s51_180U2__zimmer.1) with reads 

supporting the exon-intron organisation. The lack of reads in the smg1Δ lines 

confirms that PpSMG1 has be successfully replaced in these lines. (B and C) 

Genes that are up-regulated and down-regulated, respectively, in smg1Δ lines 

when compared to WT (p<0.05). Three different tools were used to assess if a 

transcript was up- or down-regulated (DESeq, edgeR and NOISeq). During the 

first round of selection, only genes that were differentially regulated in at least 

two tools were taken forward (overlap is indicated with an *).  

WT 
reads 

smg1! 
line 1 
reads 
smg1! 
line 2 
reads 

PpSMG1 
locus  

Up-regulated genes  Down-regulated genes 

A 

B C 

* 

* 

* 

* 
* 

3’ UTR Coding sequence replaced by selection cassette 
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communication). Reads that fell into a gene model predicted by the version 1.6 

of the moss genome (COSMOSS.org) were be counted to estimate fold change 

and its statistical significance. Statistical significance of DGE was used to 

generate a list of up- or down-regulated genes rather than setting a fold-change 

threshold for genes to be considered differentially expressed. Therefore, small 

but significant changes in gene expression were analysed. Three statistical 

packages/tools were used to assess if a gene was up- or down-regulated 

between WT and the smg1Δ lines; DESeq, edgeR and NOISeq. For the initial 

downstream analysis, such as GO term and MapMan analysis, genes identified 

as differentially expressed by two of these statistical tools were considered, 

giving a total of 1648 up-regulated genes and 3400 down-regulated genes 

(Figure 5.1).  

 

5.2.2 GO/MapMan terms are enriched in differentially expressed genes 

 

With thousands of up- and down-regulated genes revealed by RNA-seq in 

smg1Δ lines, gene ontology (GO) and MapMan terms were used to give an 

insight into the differentially regulated pathways and functions in these moss 

mutants (D. Lang and A. Zimmer, unpublished data). GO and MapMan 

identifiers (IDs) were assigned to moss genes by comparison to A. thaliana 

homologous genes and their IDs (Zimmer et al., 2013).  

 

For up-regulated genes in smg1Δ lines (pathways normally repressed by NMD), 

20 GO biological process terms were significantly enriched. A single gene can 
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be assigned to multiple GO terms, for example, there is overlap between ‘Auxin 

efflux’, ‘Positive gravitropism’, ‘Basipetal auxin transport’, and ‘Indoleacetic acid 

biosynthetic process’ (Table 5.2). These genes include homologues of ABC 

transporters involved in auxin transport in A. thaliana and enzymes involved in 

the biosynthesis of the biologically active auxin, IAA. The term ‘DNA 

recombination’ was the most significantly over-represented GO term from the 

up-regulated gene list (Table 5.2) and the ‘DNA recombination’ up-regulated 

genes included several DNA helicases predicted to function in DNA repair and 

DNA-PKcs, a PIKK family member involved in DNA repair in mammals (Table 

5.2). ‘mRNA processing’ related genes were also identified as those normally 

repressed by PpSMG1 (Table 5.2). This could be because many splicing 

factors generate splice variants targeted to NMD and loss of NMD means these 

variants are up-regulated.  

 

Among GO terms enriched among down-regulated genes are those relating to 

‘Translation’ and ‘Photosynthesis’ (Table 5.3), suggesting normal cellular 

homeostasis and energy acquisition is reduced. In contrast to A. thaliana, 

where defense against pathogen genes are up-regulated in NMD mutants, 

moss smg1Δ lines have GO terms such as ‘Defense response to fungus’, 

‘Response to salicylic acid stimulus’ and ‘Systemic acquired resistance’ 

enriched among down-regulated genes (Table 5.3). This suggests that 

repressing a defense response is not conserved across plants.  

 

There are five MapMan terms associated with genes with an increased steady 

state in smg1Δ lines (Table 5.4). These include ‘stress.abiotic.heat’ and  
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Table 5.2: Enriched GO terms relating to biological processes of up-

regulated genes in the smg1Δ lines relative to the WT 

 

GOid 
Annotated 
genes in 

GOid 

Number of 
differential 
genes in 

GOid 

Expected 
number of 
genes for 

significance 

p value for 
enrichment 
(Benjamini-
Hochberg 

corrections) 

GO term description 

GO:0006310 43 10 2.56 0.000674531 DNA recombination 

GO:0008361 66 12 3.93 0.000781396 Regulation of cell size 

GO:0006139 2436 168 144.92 0.000885892 Nucleobase-containing 
compound metabolic process 

GO:0006424 5 3 0.3 0.001914356 Glutamyl-tRNA 
aminoacylation 

GO:0009958 10 4 0.59 0.001952205 Positive gravitropism 

GO:0048767 10 4 0.59 0.001952205 Root hair elongation 

GO:0010315 2 2 0.12 0.003533978 Auxin efflux 

GO:0010540 2 2 0.12 0.003533978 Basipetal auxin transport 

GO:0030655 2 2 0.12 0.003533978 Beta-lactam antibiotic 
catabolic process 

GO:0042538 6 3 0.36 0.003659675 Hyperosmotic salinity 
response 

GO:0006754 163 14 9.7 0.004852099 ATP biosynthetic process 

GO:0030036 41 7 2.44 0.005355531 Actin cytoskeleton 
organization 

GO:0006397 59 11 3.51 0.006187483 mRNA processing 

GO:0009664 39 7 2.32 0.007408526 Plant-type cell wall 
organization 

GO:0001522 22 5 1.31 0.008285205 Pseudouridine synthesis 

GO:0005992 15 4 0.89 0.009999632 Trehalose biosynthetic 
process 

GO:0051260 4 3 0.24 0.010153103 Protein homooligomerization 

GO:0009684 3 2 0.18 0.010182698 Indoleacetic acid biosynthetic 
process 

GO:0043481 3 2 0.18 0.010182698 
Anthocyanin accumulation in 

tissues in response to UV 
light 
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‘chaperones and cochaperones.HSP70s.chaperones’, which are overlapping. 

All of the genes up-regulated in ‘stress.abiotic.heat’ are included in the 

‘chaperones and cochaperones.HSP70s.chaperones’ and related to the 

classical heat shock response/UPR. This suggests that perhaps the NMD 

pathway represses the UPR in plants as it does in animals (Sakaki et al., 2012; 

Gardner, 2008). In agreement with what we (me, Dr Daniel Lang and Dr 

Andreas Zimmer) see in GO terms associated with up-regulated genes, we see 

‘RNA.processing.splicing’, suggesting NMD normally represses splicing factors, 

possibility through AS-couple NMD.  

 

As for down-regulated genes significantly enriched for MapMan terms, several 

terms relating to photosynthesis are present, agreeing with what was present in 

GO terms for down-regulated genes (Table 5.3 and 5.5). Additionally, several 

terms relate to the cell wall (Table 5.5), suggesting that the cell wall structure of 

smg1Δ lines might be altered.  

 

Taken together, enrichment of GO and MapMan terms among the up- and 

down-regulated genes in smg1Δ lines suggests that NMD and/or PpSMG1 have 

important roles in moss growth and development, as has been observed in 

various eukaryotes. NMD and/or PpSMG1 appear to repress the expression of 

genes relating to the UPR and DNA repair but a physiologically relevant role still 

needs to be established. 
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Table 5.3: Enriched GO terms relating to biological processes of down-

regulated genes in the smg1Δ lines relative to the WT 

Table 5.3 continued on next page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GOid 
Annotated 
genes in 

GOid 

Number of 
differential 
genes in 

GOid 

Expected 
number of 
genes for 

significance 

p value for 
enrichment 
(Benjamini-
Hochberg 

corrections) 

GO term description 

GO:0006412 753 136 67.76 1.47E-19 Translation 

GO:0009813 16 14 1.44 2.11E-13 Flavonoid biosynthetic 
process 

GO:0015979 186 55 16.74 6.05E-11 Photosynthesis 

GO:0009765 46 18 4.14 1.39E-07 Photosynthesis, light 
harvesting 

GO:0009698 36 25 3.24 3.15E-07 Phenylpropanoid 
metabolic process 

GO:0006559 14 9 1.26 4.93E-07 L-phenylalanine catabolic 
process 

GO:0006073 105 24 9.45 6.22E-07 Cellular glucan metabolic 
process 

GO:0006979 127 27 11.43 9.25E-07 Response to oxidative 
stress 

GO:0042545 63 21 5.67 8.30E-06 Cell wall modification 

GO:0006629 445 67 40.04 3.13E-05 Lipid metabolic process 

GO:0009753 37 12 3.33 5.84E-05 Response to jasmonic 
acid stimulus 

GO:0030001 278 38 25.02 0.000424563 Metal ion transport 

GO:0015717 3 3 0.27 0.00072663 Triose phosphate 
transport 

GO:0000902 78 9 7.02 0.00129628 Cell morphogenesis 

GO:0015995 21 7 1.89 0.001759703 Chlorophyll biosynthetic 
process 

GO:0055114 874 96 78.65 0.002935677 Oxidation reduction 

GO:0030244 30 8 2.7 0.004060251 Cellulose biosynthetic 
process 

GO:0006032 19 6 1.71 0.005091134 Chitin catabolic process 

GO:0006869 32 8 2.88 0.006212429 Lipid transport 

GO:0010248 2 2 0.18 0.00809012 

Establishment or 
maintenance of 
transmembrane 

electrochemical gradient 

GO:0046686 85 15 7.65 0.008308782 Response to cadmium ion 

GO:0009644 10 4 0.9 0.008793812 Response to high light 
intensity 

GO:0006633 104 19 9.36 0.009949742 Fatty acid biosynthetic 
process 
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Table 5.3 Continued  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GOid 
Annotated 
genes in 

GOid 

Number of 
differential 
genes in 

GOid 

Expected 
number of 
genes for 

significance 

p value for 
enrichment 
(Benjamini-
Hochberg 

corrections) 

GO term description 

GO:0050832 22 7 1.98 0.012753792 Defense response to 
fungus 

GO:0006541 24 8 2.16 0.014294344 Glutamine metabolic 
process 

GO:0006542 7 3 0.63 0.01928642 Glutamine biosynthetic 
process 

GO:0008272 7 3 0.63 0.01928642 Sulfate transport 

GO:0009751 25 6 2.25 0.020886292 Response to salicylic acid 
stimulus 

GO:0009827 6 3 0.54 0.022783447 Plant-type cell wall 
modification 

GO:0046931 3 2 0.27 0.022817098 Pore complex assembly 

GO:0031348 13 4 1.17 0.024078686 Negative regulation of 
defense response 

GO:0009664 39 10 3.51 0.024736564 Plant-type cell wall 
organization 

GO:0009651 79 14 7.11 0.028503606 Response to salt stress 

GO:0009423 8 3 0.72 0.028821843 Chorismate biosynthetic 
process 

GO:0033587 8 3 0.72 0.028821843 Shikimate biosynthetic 
process 

GO:0009733 59 10 5.31 0.029793522 Response to auxin 
stimulus 

GO:0009627 21 5 1.89 0.035192884 Systemic acquired 
resistance 

GO:0006955 92 12 8.28 0.040226306 Immune response 

GO:0006081 17 5 1.53 0.040255213 Cellular aldehyde 
metabolic process 

GO:0042344 9 3 0.81 0.040394366 Indole glucosinolate 
catabolic process 

GO:0006414 22 5 1.98 0.04228173 Translational elongation 

GO:0019685 16 4 1.44 0.04284599 Photosynthesis, dark 
reaction 

GO:0052331 4 2 0.36 0.042923281 
Hemolysis of cells in other 
organism during symbiotic 

interaction 

GO:0016998 45 8 4.05 0.045305498 Cell wall macromolecule 
catabolic process 

GO:0016114 39 8 3.51 0.049103417 Terpenoid biosynthetic 
process 
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Table 5.4: Enriched MapMan terms of up-regulated genes in the smg1Δ 

lines relative to the WT 

 

 

 

 

 

 

 

 

 

MapMan term 
p value for enrichment 
(Benjamini-Hochberg 

corrections) 
DNA.synthesis/chromatin 

structure 0.004577991 

stress.abiotic.heat 0.004655027 

transport.ABC transporters and 
multidrug resistance systems 0.014763367 

chaperones and co-
chaperones.HSP70s.chaperones 0.023272632 

RNA.processing.splicing 0.026012463 
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Table 5.5: Enriched MapMan terms of down-regulated genes in the smg1Δ 

lines relative to the WT 

Table 5.5 continued on next page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MapMan term 
p value for enrichment 
(Benjamini-Hochberg 

corrections) 
PS.lightreaction.photosystem II.PSII 

polypeptide subunits 0.000204908 

transport.Major Intrinsic Proteins.PIP 0.000238753 

signalling.receptor kinases.leucine rich 
repeat X 0.000854828 

PS.lightreaction.photosystem II.LHC-II 0.001100448 

secondary 
metabolism.phenylpropanoids.lignin 

biosynthesis.PAL 
0.001100448 

signalling.receptor kinases.leucine rich 
repeat XIV 0.001100448 

signalling.receptor kinases.leucine rich 
repeat XII 0.001260012 

misc.protease inhibitor/seed storage/
lipid transfer protein (LTP) family 

protein 
0.002000159 

signalling.receptor kinases.leucine rich 
repeat XI 0.002000159 

cell wall.degradation.pectate lyases 
and polygalacturonases 0.002181506 

PS.lightreaction.photosystem I.LHC-I 0.00658954 

cell wall.cellulose synthesis.cellulose 
synthase 0.006656297 

development.late embryogenesis 
abundant 0.007125125 

misc.plastocyanin-like 0.007673018 

misc.GDSL-motif lipase 0.007673018 

misc.beta 1,3 glucan 
hydrolases.glucan endo-1,3-beta-

glucosidase 
0.015170978 

RNA.regulation of transcription.zf-HD 0.015630842 

cell wall.modification 0.016788378 

cell wall.cell wall proteins.LRR 0.020612336 
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Table 5.5 continued  

 

 

 

 

 

 

MapMan term 

p value for 
enrichment 

(Benjamini-Hochberg 
corrections) 

stress.abiotic.drought/salt 0.020612336 

not assigned.unknown 0.020612336 

secondary metabolism.isoprenoids 0.021616183 

transport.amino acids 0.021616183 

hormone 
metabolism.jasmonate.synthesis-

degradation.lipoxygenase 
0.022115347 

lipid metabolism.FA synthesis and FA 
elongation.beta ketoacyl CoA 

synthase 
0.02828771 

lipid metabolism.FA synthesis and FA 
elongation.fatty acid elongase 0.02828771 

secondary metabolism.wax 0.030075735 

protein.synthesis.ribosomal 
protein.eukaryotic.40S subunit.S27 0.034296729 

stress.biotic 0.041991118 

signalling.receptor kinases.leucine 
rich repeat III 0.041991118 

RNA.processing 0.042294296 

transport.H+ transporting 
pyrophosphatase 0.047336748 
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5.2.3 NMD represses the unfolded protein response 

 

As loss of PpSMG1 lead to the over-expression of several genes relating to the 

UPR, identified through MapMan analysis (Table 5.4), the changes in this 

pathway resulting from the loss of PpSMG1 were further characterised. The 

UPR-related transcripts identified encode a range of proteins, including seven 

HSP70-like proteins and small HSPs (two HSP18 proteins and five HSP17) 

predicted to be present in both the cytosol and the chloroplast, suggesting that 

the whole cell is responding to unfolded proteins rather than a specific sub-

cellular compartment. The most well studied UPR pathway in plants and 

animals is that of the ER. Manual searches of genes in smg1Δ lines identified 

genes encoding proteins predicted to be responsible for ER homeostasis to be 

up-regulated. For example, BiP proteins are the major chaperones in the ER of 

many eukaryotes (Gupta and Tuteja, 2011) and PpBiP1 (Pp1s181_3V6.1) and 

PpBiP2 (Pp1s288_23V6.1) both have an increased steady state level in smg1Δ 

lines. However, PpBiP2 was only identified by a single statistical tool (edgeR). 

In addition, PpDerlin-1a (Pp1s213_66V6.1), a protein that exports unfolded 

proteins from the ER for degradation, PpERdj3A (Pp1s368_19V6.1), a HSP70 

co-chaperone and PpIRE1b (Pp1s34_189V6.1), a receptor kinase that 

regulates the UPR of the ER were all up-regulated in smg1Δ lines compared to 

WT, suggesting UPR of the ER was activated. The expression of these genes 

was confirmed in WT and smg1Δ line 1 by qRT-PCR (Figure 5.2). The 

expression of all five genes was significantly increased in smg1Δ line 1 

compared to WT. The expression of a heat-shock transcription factor-encoding 
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transcript (HSF) was also tested and found to be significantly increased (Figure 

5.2).  

 

In addition to testing the expression of UPR of the ER related genes in WT and 

smg1Δ line 1, their expression when moss was exposed to 1 µg/ml of 

tunicamycin (Tm) dissolved in DMSO was tested. Tm inhibits N-site 

glycosolation, inducing unfolded proteins specifically in the ER and has been 

used to study the UPR of the ER in plants and animals (Sugio et al., 2009; 

Sakaki et al., 2012). The expression of PpBiP1, PpBiP2 and PpERjd3A were 

found to be significantly up-regulated in WT treated with Tm compared to WT 

treated with DMSO solvent control (Figure 5.2). In the case of most transcripts, 

the effect of Tm was not additive to the loss of PpSMG1 (Figure 5.2A, C-E). 

However, in the case of PpBiP2 an even higher level of up-regulation after loss 

of PpSMG1 than in WT is observed (Figure 5.2B). PpBiP2 is a highly regulated 

gene that under normal conditions is expressed at a very low level (RNA-seq; 

D. Lang and A. Zimmer, personal communication) but is up-regulated 52-fold 

after a two-week exposure to Tm (Figure 5.2B). The expression of a heat shock 

transcription factor-encoding transcript (HSF; Pp1s31_388V6.1) was also 

examined and confirmed that it was up-regulated in smg1Δ line 1 on DMSO 

control but not in WT or smg1Δ line 1 exposed to Tm (Figure 5.2). This 

suggests that the HSF (Pp1s31_388V6.1) is not involved in the UPR, or at least 

the ER branch of the UPR, and is up-regulated through other changes induced 

by the loss of PpSMG1. In mammals, unfolded proteins and related stresses 

inhibit NMD through eIF2-α phosphorylation, which in turn de-represses 

transcription factors needed for a normal UPR that are targeted by NMD  
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Figure 5.2: Expression of UPR-related genes in smg1Δ lines 

(A) Expression PpBiP1. (B) Expression of PpBiP2. (C) Expression of PpDerlin-

1a. (D) Expression of PpERjd3A. (E) Expression of PpIRE1b. (F) Expression of 

Legend continued on next page 
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Figure 5.2: Continued… 

HSF (PTC- variant). (A-F) Moss was grown for two-weeks on Tm (1 µg/ml) or 

solvent control (DMSO). ‘Fold change’ is the amount of target expression 

normalised to PpEF1α and relative to WT levels. Error bars represent the 

standard error of the mean from three biological replicates. Asterisks represent 

lines with a statistical difference from WT DMSO using an unpaired t test p < 

0.05.  
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(Gardner, 2008; Wang et al., 2011). Therefore, whether NMD was inhibited by 

exposure to Tm (1 µg/ml) for two-weeks was tested by measuring the level of 

two transcripts with PTCs that are normally targeted by NMD (Figure 5.3). It 

was found that the PTC+ variants of PpRS2Z37 and an HSF-encoding 

transcript (Pp1s31_388V6) were up- regulated in smg1Δ lines with or without 

Tm but not in WT exposed to Tm. These data suggest that NMD is not 

repressed in response to unfolded proteins as it is in mammals through eIF2-α 

phosphorylation. 

 

To identify whether over-expression of UPR-related transcripts altered smg1Δ 

lines response to inducers of unfolded proteins, moss medium was initially 

supplemented with 2.5 µg/ml Tm or DMSO solvent control (Figure 5.4). Tm 

inhibited moss growth in both WT and smg1Δ lines, however, WT was more 

susceptible to Tm than the smg1Δ lines (Figure 5.4). The smg1Δ lines appear 

greener and more photosynthetically active (Figure 5.4A) and produce colonies 

with a larger area (Figure 5.4B). To confirm this effect was not drug specific and 

was indeed related to the UPR, moss was then exposed to 10 mM L-azetidine-

2-carboxylic acid (AZC), a proline analogue known to induce unfolded proteins 

in plants and A. thaliana (Sugio et al., 2009) or 10 mM proline as a control 

(Figure 5.5). The smg1Δ lines appear greener and more photosynthetically 

active and produce colonies with a larger area (Figure 5.5), as was the case for 

exposure to Tm (Figure 5.4). Therefore, smg1Δ lines are less susceptible than 

WT to inducers of the unfolded protein response, possibly due to the increased 

expression of UPR-related genes like PpBiP2.  
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Figure 5.3: Tm exposure does not inhibit NMD 

(A) Expression of PpRS2Z37. (B) Expression of HSF (PTC+ variant). (A-B) 

Moss was grown for two-weeks on Tm (1 µg/ml) or solvent control (DMSO).  

Fold change is the amount of target expression normalised to PpEF1α and 

relative to WT levels. Error bars represent the standard error of the mean from 

three biological replicates. Asterisks represent lines with a statistical difference 

from WT DMSO using an unpaired t test p < 0.05.  
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Figure 5.4: smg1Δ lines are partially resistant to Tm  

(A) Three week old plants grown on Tm or solvent control (DMSO). Scale bar is 

1 mm. (B) Moss colony size on Tm (2.5 µg/ml). n = 5-12. For smg1Δ, colonies 

of lines 1 and 2 were pooled. Asterisks represent lines with a statistically 

significant difference from WT using an unpaired t test p < 0.05.  
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Figure 5.5: smg1Δ lines are partially resistant to AZC 

(A) Three week old plants grown on AZC or proline control. Scale bar is 1 mm. 

(B) Moss colony size on AZC (10 mM). n = 6-12. For smg1Δ, colonies of lines 1 

and 2 were pooled. Asterisks represent lines with a statistically significance 

difference from WT using an unpaired t test p < 0.05.  
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Taken together these data show that a compromised NMD pathway leads to 

up-regulation of the UPR-related transcripts and to partial resistances of smg1Δ 

lines to unfolded protein inducers. The mechanism linking NMD/PpSMG1 and 

the UPR is unclear but it is unlikely that unfolded proteins inhibit the NMD 

pathway in moss, as is the case in mammals (Wang et al., 2011). 

 

5.2.4 PpSMG1 is involved in genome stability 

 

Genes up-regulated in smg1Δ lines were enriched with those associated with 

the GO term ‘DNA recombination’ (Table 5.2) suggesting that DNA 

recombination or repair might be affected in smg1Δ lines. In mammals, SMG1 

functions in the DNA repair pathway independently of the NMD pathway by 

phosphorylating p53 (Brumbaugh et al., 2004). In addition to the genes 

identified in the GO enrichment, manual searches revealed that other genes 

related to DNA recombination and repair were up-regulated. These included 

PpATM (Pp1s135_65V6.1), a PIKK family member that activates DNA repair, 

PpRAD54b (Pp1s236_78V6.1), a helicase predicted to be involved in DNA 

recombination, and PpSOG1 (Pp1s251_11V6.1), a NAC family transcription 

family predicted to be involved with DNA repair (Yoshiyama et al., 2009; 2013). 

The activation of PpATM as opposed to PpATR (which is slightly down-

regulated according to one statistical tool), suggests that double-strand-breaks 

are accumulating or that the signaling pathway responding to them has been 

de-repressed (Waterworth et al., 2011). Interestingly, AtSOG1 acts downstream 

of AtATM in the DNA repair of double-strand break pathway and is needed for 
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the AtATM-dependent changes in gene expression (Waterworth et al., 2011; 

Yoshiyama et al., 2013; 2009).  

 

The up-regulation of genes relating to DNA repair in the smg1Δ lines could be 

due to: 

1. PpSMG1 repressing DNA repair, as it does the UPR, so that loss of 

PpSMG1 leads to over-expression of DNA repair factors and potentially 

to an efficient or improved response to DNA damage.  

2. PpSMG1 being involved in the DNA repair pathway, as it is in mammals 

(Gehen et al., 2008; Brumbaugh et al., 2004). In this situation the loss of 

PpSMG1 might lead to an inefficient DNA repair pathway and other 

repair genes might be up-regulated to either compensate for the loss of 

PpSMG1 or to help repair damage that accumulates in the absence of 

PpSMG1.  

To assess the physiological impact of the loss of PpSMG1 on the DNA repair 

pathway, smg1Δ lines were exposed to bleomycin (zeocin), a potent inducer of 

double-strand DNA damage (Chankova et al., 2007; Kamisugi et al., 2011). 

smg1Δ lines are more susceptible to bleomycin induced growth inhibition than 

WT, producing significantly smaller colonies after three weeks of exposure 

(Figure 5.6). These data suggest that SMG1 is needed for an efficient DNA 

repair pathway in moss as in animals (Gehen et al., 2008; Brumbaugh et al., 

2004). 
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Figure 5.6: smg1Δ lines are more susceptible to bleomycin than WT 

(A) Three week old plants grown on 8 ng/ml bleomycin or control plate. Scale 

bar is 1 mm. (B) Moss colony size on bleomycin (8 ng/ml). n = 6-12. For 

smg1Δ, colonies of lines 1 and 2 were pooled together. Asterisks represent 

lines with a statistically significant difference from WT using an unpaired t test p 

< 0.05.  
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5.2.5 NMD effectors and feedback loops 

 

In A. thaliana and mammals, NMD effector encoding transcripts have been 

identified as targets of NMD creating an evolutionarily conserved negative 

feedback loop (Yepiskoposyan et al., 2011; Huang et al., 2011). The NMD 

pathway therefore regulates its own activity. The expression of all the core NMD 

and EJC components was analysed in the RNA-seq data (Table 5.6). The 

expression of EJC component encoding transcripts was not altered in smg1Δ 

lines (Table 5.6). Of PpSMG7 encoding transcripts, only PpSMG7-2 was 

designated as up-regulated by two statistical tools, while each of PpSMG7-1 

and PpSMG7-3 were up in one tool. The over-expression of PpSMG7-2 and 

PpSMG7-3 have been confirmed by qRT-PCR (Figure 3.7), confirming the 

analysis of the RNA-seq analysis, even when only one statistical tool indicated 

differential expression in the case of PpSMG7-3. However, the over-expression 

of PpSMG7-1 was not statistically significant in both smg1Δ lines when 

analysed by qRT-PCR, suggesting a small and border-line increase in 

expression (Figure 3.7). As previously stated, each of these transcripts have 

abnormally long 3’ UTRs and two introns downstream of the stop codon, which 

can act as targeting features to NMD in flowering plants (Benkovics et al., 2011; 

Nyikó et al., 2013; Kerényi et al., 2008). The expression of PpUPF1a and 

PpUPF1b were slightly up-regulated according to only one tool but might 

represent a genuine up-regulation, like PpSMG7-3 and PpBiP2, further work is 

needed to address this. The 3’ UTRs of both UPF1 homologues were 

abnormally long (both over 1200 nucleotides long), which could act as an NMD 

targeting feature. PpUPF3a was identified as up-regulated by two tools and has  
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Table 5.6: The expression of transcripts encoding NMD effectors in 

smg1Δ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a – The qRT-PCR results are shown in Figure 3.7. b – PpSMG7-1 was only up-

regulated in line 2. ND – The qRT-PCR was not performed for transcripts that 

were not up-regulated in the RNA-seq experiment. Superscripted number – 

Represents the number of statistical packages (DESeq, edgeR and NOISseq) 

that showed statistical significance in DGE analysis. 

NMD 
effector  Gene Model Up-regulated 

in RNA-seq 

Fold 
change in 
RNA-seq 

Confirmed 
by qRT-

PCR 

PpUPF1a Pp1s44_135V6.1 Yes1 1.32 ND 

PpUPF1b Pp1s10_103V6.1 Yes1 1.50 ND 

PpUPF2 Pp1s123_14V6.1 No 1.30 ND 

PpUPF3a Pp1s246_94V6.1 Yes2 2.07 ND 

PpUPF3b Pp1s13_385V6.1 Yes1 1.50 ND 

PpSMG7-1 Pp1s80_14V6.1 Yes1 1.63 Yesab 

PpSMG7-2 Pp1s311_73V6.1 Yes2 1.89 Yesa 

PpSMG7-3 Pp1s28_218V6.1 Yes1 1.55 Yesa 

PpMago1 Pp1s63_105V6.1 No -1.08 ND 

PpMago2 Pp1s125_34V6.1 No -1.02 ND 

PpY14a Pp1s136_114V6.1 No -1.03 ND 

PpY14b Pp1s31_259V6.1 No -1.07 ND 

PpeIF4AIIIa Pp1s275_62V6.1 No 1.03 ND 

PpeIF4AIIIb Pp1s519_18V6.1 No 1.01 ND 

PpMLN51a Pp1s193_55V6.1 No 1.23 ND 

PpMLN51b Pp1s193_54V6.1 No 1.23 ND 
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a long 3’ UTR (ca. 850 nucleotides long), which could target the transcript to 

NMD. PpUPF3b was predicted to be up-regulated by one statistical tool and 

has both a long 3’ UTR (850 nucleotides) and a uORF, which could target it to 

NMD. Interestingly, none of the EJC-component encoding genes were 

differentially expressed (Table 5.6). This is in contrast to the recent report that 

AtBarentsz1 and AtBarentsz2 are up-regulated in NMD mutants through their 3’ 

UTR located intron to form a feedback loop for the intron-based NMD pathway 

(Nyikó et al., 2013). In contrast to this, neither of the moss homologues contain 

a 3’ UTR located intron, nor are they over-expressed in the NMD-comprised 

lines, suggesting that this is not an evolutionarily conserved feedback loop in 

plants (Table 5.6). Taken together, these data suggest that multiple negative 

feedback loops could regulate the NMD pathway of moss, as is the case in 

flowering plants and mammals, but does not include the core EJC-components 

like in A. thaliana.  
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5.3 Discussion 

 

The aim of the work in this chapter was to identify the differentially expressed 

genes and pathways upon the loss of PpSMG1. Using conservative criteria we 

(me, Dr Daniel Lang and Dr Andreas Zimmer) have identified 1648 up-regulated 

genes and 3400 down-regulated genes in smg1Δ lines compared to WT (Figure 

5.1B) with several biological pathways being affected (Tables 5.2-5). Then the 

biological significance of these changes in gene expression was tested by 

analysing the ability of the smg1 mutant moss plants to unfolded protein stress 

and DNA damage stress. Mutant moss was better able to survive exposure to 

inducers of unfolded proteins (Figure 5.4 and 5.5) while mutant moss was more 

susceptible to DNA damage induced inhibition of growth (Figure 5.6). These 

data suggest that NMD and/or PpSMG1 plays an important role in the normal 

physiology of moss.  

 

5.3.1 NMD might regulate the UPR in moss 

 

We (me, Dr Daniel Lang and Dr Andreas Zimmer) have shown that NMD and/or 

PpSMG1 normally keeps the UPR turned off. It is unclear whether PpSMG1 

functions to directly repress the UPR as a regulator of gene expression or 

whether the UPR is turned on indirectly in smg1Δ lines, for example through an 

increase in the accumulation of unfolded proteins caused by the failure of NMD 

to prevent the production of truncated proteins. Work in C. elegans found that 

enhancers of UPR activation included factors involved with mRNA decay 
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(Sakaki et al., 2012). The researchers then showed that mutations in NMD 

effector genes caused up-regulation of an UPR reporter, leading the authors to 

speculate that the truncated proteins produced in the absence of NMD induce 

the UPR (Sakaki et al., 2012). Subsequently, they found HeLa cells where 

SMG6 had been knocked down were more susceptible to Tm as an inducer of 

the UPR than cells where SMG6 had not been knocked down. They concluded 

that loss of NMD leads to more truncated proteins and that these cells are 

already under UPR stress, so they are more susceptible to Tm as an inducer of 

unfolded proteins (Sakaki et al., 2012). This work is in contrast to our findings in 

moss and the findings of another group working on mammalian cells (Wang et 

al., 2011). Wang et al. (2011) found that knockdown of UPF1 or UPF2 leads to 

a mild increase in mouse embryonic fibroblasts surviving exposure to Tm. This 

group has demonstrated that inhibition of NMD is needed for a full UPR, as 

under normal conditions NMD represses transcription factors through their 

encoding transcripts’ uORFs (Gardner, 2008; Wang et al., 2011). NMD targets 

were not up-regulated after a two-week exposure of moss to Tm (Figure 5.3), 

suggesting that unfolded proteins do not inhibit NMD in plants as they do in 

mammals. Inhibition of NMD in mammals is dependent on eIF2-α 

phosphorylation after exposure to unfolded proteins (Wang et al., 2011). 

However, the UPR of plants might not involve eIF2-α phosphorylation. It has 

been shown that the level of phosphorylation of eIF2-α is not increased after 

heat shock or exposure to Tm in A. thaliana or wheat (Gallie et al., 1997; Lageix 

et al., 2008; Kamauchi et al., 2005). It is unclear why two reports using 

mammalian systems have found differing responses in the survival rate of 

mammalian cells in response to loss of NMD and exposure to Tm (Sakaki et al., 
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2012; Wang et al., 2011). The reasons could include 1) differences between 

species that these cells arose from, 2) differences in cell type or cell survival 

assays and 3) differences in the NMD effectors knocked down and their role in 

NMD/UPR. However, it appears that both plants and animals use NMD to 

repress the UPR, however, further work is needed to understand the 

mechanism in plants.  

 

It is currently unclear whether NMD directly represses the UPR and, if it does, at 

what point the pathway is affected (Figure 5.7). An alternative explanation is the 

one proposed in C. elegans (Sakaki et al., 2012), where the UPR is activated 

due to the production of unfoldable truncated proteins increasing in the absence 

of NMD (Figure 5.7). It has not been established why this increase in UPR-

related gene expression in the mutant lines leads to an increase in resistance to 

unfolded protein inducing drugs. One possibility is that the up-regulation of UPR 

genes in unexposed smg1Δ lines has primed the moss so that it responds more 

quickly to misfolded proteins, aiding the plants ability to grow on Tm or AZC. 

However, another possibility is that smg1Δ lines can launch a stronger 

response to unfolded proteins than WT because there is reduced inhibition of 

the UPR pathway. The expression of PpBiP2 is much larger in smg1Δ line 1 

when exposed to Tm than WT exposed to Tm (Figure 5.2B). The latter situation 

would be similar to what is seen in the SA response to pathogens in A. thaliana 

NMD mutants. A. thaliana NMD mutants produce more SA compared to WT 

under normal growth conditions and when plants are attacked by a pathogen, 

leading to a large response to pathogens and a partial resistance to pathogens 

(Rayson et al., 2012a).  
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Figure 5.7: A model of the potential interaction between NMD/PpSMG1 and 

the UPR 

NMD/PpSMG1 might directly repress the unfolded protein response or NMD 

might inhibit misfolded proteins accumulating by degrading transcripts encoding 

truncated proteins and thus indirectly repress the UPR.  

Unfolded 
proteins 

Unfolded 
protein 
response 

Chemical 
inducers 
(Tunicamycin 
or AZC) 

NMD/
PpSMG1 

? ? 



155 

 

It is interesting to ask whether eIF2-α phosphorylation can inhibit NMD in plants 

and if so, what the physiological significance of this may be. Pathogen attack 

and the plant defence hormone SA can both induce eIF2-α phosphorylation in 

A. thaliana (Lageix et al., 2008; Pajerowska-Mukhtar et al., 2012). NMD mutants 

have both an increased resistance to pathogens and elevated levels of SA 

(Rayson et al., 2012a; Riehs-Kearnan et al., 2012; Jeong et al., 2011) so it is 

possible that eIF2-α phosphorylation inhibits NMD in plants to help de-repress 

the pathogen response pathway. NMD in A. thaliana also targets multiple genes 

with CPuORFs (Rayson et al., 2012a; Nyikó et al., 2009). Interestingly, a 

transcription factor (AtTBF1), which is needed for A. thaliana to respond 

normally to pathogens is under the control of a CPuORF (Pajerowska-Mukhtar 

et al., 2012). The authors did not investigate whether the uORFs of this 

transcript control expression at the level of translation or decay, but suggested 

that they could repress translation of the main ORF unless eIF2-α was 

phosphorylated upon pathogen attack (Pajerowska-Mukhtar et al., 2012). It is 

possible that this transcript and others are normally repressed by NMD until 

eIF2-α is phosphorylated, releasing the repression and allowing the plants to 

launch a full pathogen response.  

 

5.3.2 PpSMG1 is needed for genome stability  

 

It was demonstrated that PpSMG1 is needed for an efficient DNA repair 

pathway in moss as loss of PpSMG1 leads to plants not being able to survive 

exposure to the DNA damage inducing agent bleomycin (Figure 5.6). 

Interestingly, in mammals, loss of SMG1 leads to spontaneous DNA damage 
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and increased susceptibility to ionizing radiation (Brumbaugh et al., 2004). The 

authors noted that knockdown of SMG1 induced markers of DNA damage, such 

as H2AX phosphorylation. This might be analogous to the up-regulation of 

several DNA-repair related genes in smg1Δ lines (Table 5.2). It is possible that 

PpSMG1 regulates DNA repair through the NMD pathway (Figure 5.8A). 

However, in mammals SMG1 phosphorylates p53, the guardian of the genome, 

to activate the response to DNA damage, independently of NMD (Gehen et al., 

2008; Brumbaugh et al., 2004). This phosphorylation of the S15 residue 

precedes the phosphorylation of this residue by ATM, which is an important 

regulator of p53 (Brumbaugh et al., 2004).  Plants lack a homologue of p53, 

therefore, PpSMG1 might phosphorylate an unidentified moss equivalent of p53 

to aid the DNA repair pathway (Figure 5.8B). It has been speculated that the 

transcription factor SOG1 is functionally analogous to p53 in plants (Yoshiyama 

et al., 2009; Waterworth et al., 2011). AtSOG1 is important in activating cell 

cycle arrest and cell death in response to DNA damage in A. thaliana, as p53 in 

does mammals (Yoshiyama et al., 2009; Waterworth et al., 2011). Recently it 

has been shown that AtATM-dependant phosphorylation of AtSOG1 at SQ 

residues is important for DNA repair (Yoshiyama et al., 2013). Therefore, it is 

tempting to suggest that SOG1 could be a target of SMG1 in plants and could 

be an important step in regulating the DNA repair pathway. Further work is 

needed to determine the exact role in the DNA repair pathway. For example, 

does plant SMG1 function in the repair of double-strand breaks through the 

homologous recombination pathway or through the non-homologous end-

joining pathway.  
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Figure 5.8: Models describing how PpSMG1 might function in the DNA 

repair pathway 

(A) PpSMG1 could function in DNA repair through the NMD pathway in the 

cytosol. NMD could indirectly regulate the expression of DNA repair genes. (B) 

PpSMG1 could function in the nucleus by phosphorylating components of the 

repair machinery to activate normal repair as it does in mammals.  
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5.3.3 Multiple feedback loops regulate the NMD pathway in moss 

 

In mammals and flowering plants, NMD has been shown to create multiple 

negative feedback loops to regulate the activity of the NMD pathway. Multiple 

genes encoding NMD effectors are targeted to NMD by uORFs, long 3’ UTRs 

and/or by introns located in the 3’ UTR. For example, in A. thaliana, AtSMG7 is 

targeted to NMD by its long 3’ UTRs and the two introns located downstream of 

the stop codon (Rayson et al., 2012a; Kerényi et al., 2008; Nyikó et al., 2013). 

The EJC component encoding AtMLN51 is also targeted to NMD through 3’ 

UTRs introns (Nyikó et al., 2013). It has also been suggested that AtUPF3 is 

targeted to NMD through a uORF (Saul et al., 2009). In moss, multiple feedback 

loops are likely to exist as well. Whether PpSMG1 is targeted to NMD could not 

be tested using our RNA-seq data, as this NMD effector was knocked out to 

collect the data. Both UPF1 homologues were slightly up-regulated smg1Δ lines 

(Table 5.6). Both of these transcripts have long 3’ UTRs, which is likely to be 

the NMD targeting feature. Both UPF3 homologues were also found to be up-

regulated in smg1Δ lines (Table 5.6). PpUPF3a has a long 3’ UTR that could 

target it to NMD, while PpUPF3b also has a long 3’ UTR but also a uORF, 

either or both of which could target it to NMD. Finally, all three homologues of 

SMG7 appear to be targeted to NMD, to some extent (Table 5.6), which is likely 

to be through the long 3’ UTRs and two 3’ UTR located introns each of them 

contains. This suggests that multiple feedback loops control the activity of the 

NMD pathway in moss. In A. thaliana, AtSMG7 is targeted to NMD through its 

long 3’ UTR containing two introns and it has been suggested that AtUPF3 is 

targeted to NMD through a uORF (Rayson et al., 2012a; Kerényi et al., 2008; 
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Nyikó et al., 2013; Saul et al., 2009). In mammals, multiple NMD effector-

encoding transcripts are targeted to NMD to regulate the activity of the NMD 

pathway (Yepiskoposyan et al., 2011; Huang et al., 2011), for example, the long 

3’ UTRs of UPF1, SMG5 and SMG7 have been identified as the targeting 

features responsible (Yepiskoposyan et al., 2011).  

 

In summary, we (me, Dr Daniel Lang and Dr Andreas Zimmer) have been able 

to use RNA-seq to identify transcripts deregulated by the loss of PpSMG1 on a 

transcriptomic wide scale. The loss of PpSMG1 leads to a compromised NMD 

pathway (Chapter 3). Therefore, large fraction of differentially expressed genes 

are expected to be directly or indirectly regulated by NMD; however, a fraction 

of them could be regulated by NMD-independent roles of PpSMG1. SMG1 in 

mammals is known to function in the DNA repair pathway independently of 

NMD (Brumbaugh et al., 2004). A role of PpSMG1 in the DNA repair pathway 

was observed (Figure 5.6), but further work is needed to establish whether this 

is due to the loss of NMD or a role of PpSMG1 independent of NMD. Our work 

has also suggested a link between NMD and/or PpSMG1 and the UPR but 

more work will be needed to determine the exact nature of the relationship 

between PpSMG1 and the UPR and if this is conserved between species. This 

work has established that a loss of PpSMG1 results in widespread changes in 

gene expression that have physiological significance, such as altering the ability 

of a plant to withstand changes to the amount of DNA damage or unfolded 

proteins it was exposed to. This work highlights that NMD is important in 

controlling gene expression across species.  
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6 General discussion 

 

The work in this thesis has demonstrated that the NMD-associated kinase 

SMG1, which has previously been considered to be animal specific (Izumi et al., 

2010), is both present in plants and functions in plant NMD (Chapter 3) as well 

as in animals (Grimson et al., 2004). Furthermore, development and evaluation 

of yeast-two and -three hybrid methods for identifying novel components of the 

NMD pathway in A. thaliana, such as a kinase that might have replaced SMG1 

in A. thaliana has been performed (Chapter 4). Finally, we identified widespread 

changes in the transcriptome of moss upon loss of PpSMG1, indicating that 

NMD and/or PpSMG1 have important roles in moss growth and development, 

including influencing the UPR and DNA repair (Chapter 5).  

 

6.1 An alternative kinase in the NMD pathway? 

 

The model flowering plant A. thaliana lacks the SMG1 kinase, despite it being 

present in all other examined plants including the close relative of A. thaliana, 

A. lyrata (Chapter 3). Now that the role of SMG1 in the NMD pathway in plants 

has been demonstrated, the most likely scenario is that SMG1 phosphorylates 

UPF1 in plants, as it does in animals (Grimson et al., 2004). Others have 

previously demonstrated that AtUPF1 is phosphorylated in plants, using a 

expression tobacco system (which may or may not have a SMG1 homologue), 

and that this is essential for NMD (Mérai et al., 2012), while the work presented 

here has shown that AtUPF1 needs to be modified, through phosphomimetic 
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mutation to interact with the important NMD effector AtSMG7 (Chapter 4). 

These data suggest that NMD in A. thaliana relies on an unidentified alternative 

kinase, which we (me and Prof Davies) have dubbed A. thaliana replacement 

kinase of SMG1 (ARK) until the true identity of the kinase has been identified. It 

is easy to predict that this kinase phosphorylates AtUPF1 at the same residues 

as SMG1 does in other plants (S/TQ dipeptides).  

 

One possibility is that the related kinases ATM and ATR from the PIKK family 

might have replaced SMG1 in A. thaliana. NMD mutants in A. thaliana have an 

overlapping phenotype including curling of leaves, which is a result of an over 

production of the plant defence hormone SA (Rayson et al., 2012a; 2012b; 

Riehs-Kearnan et al., 2012). However, the phenotypes of the single and double 

mutants of ATM and ATR (Culligan et al., 2004) do not match the known NMD 

phenotypes. In animals, ATM was knocked down, but no NMD phenotype was 

observed suggesting that ATM does not have a role in NMD (Brumbaugh et al., 

2004). However, this study also found that addition of wortmannin, an inhibitor 

of PIKKs, lead to a larger up-regulation of an NMD target than was observed in 

an SMG1 knockdown. This indicates that either wortmannin is more effective at 

inactivating SMG1 than the SMG1 knockdown lines, or that a second 

wortmannin sensitive kinase is involved in NMD in animals (Brumbaugh et al., 

2004). More research is needed to confirm any role for these kinases in the 

NMD pathway of plants and animals.  

 

If the ATM and ATR kinases are not involved in NMD, we have developed a 

yeast-three hybrid screen to identify the ARK kinase responsible for UPF1 
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phsophorylation in A. thaliana (Chapter 4). An alternative experimental 

approach would be to tag AtUPF1 (for example, with HA or GFP) and pull-down 

the AtUPF1 complex with anti-tag antibodies, identifying interacting proteins 

using mass spectrometry. Another option would be to adopt a genetic 

approach, using a mutant screen to identify novel components of the NMD 

pathway in A. thaliana. Since the physiological NMD mutant phenotype is 

caused by elevated SA (Rayson et al., 2012a; 2012b; Riehs-Kearnan et al., 

2012), this phenotype cannot be used in the screen. To couple the loss of NMD 

to a readily identifiable phenotype, NMD could be made to target the activity of 

the fluorescence generating enzyme luciferase (LUC). The LUC encoding 

transcript could be engineered to contain an NMD targeting feature, for example 

a CPuORF or an alternative exon cassette with a PTC, so that the level of LUC 

activity is low in WT plants but high in NMD mutant plants. Our group is 

currently generating 35S::CPuORF::LUC plants and a LUC ORF with a cassette 

exon carrying a PTC, has already been shown to be targeted to NMD in A. 

thaliana (Hickey et al., 2012). As null mutations in NMD effector-encoding 

genes have a seedling lethal phenotype due to the overproduction of SA, the 

mutant screen could be performed in mutants  that are undable to produce SA 

and have been shown to rescue SA induced phenotypes in NMD mutants (such 

as pad4 or sid2) (Rayson et al., 2012b; Riehs-Kearnan et al., 2012). High-

throughput sequencing has been used in the past to identify causative 

mutations much more quickly than conventional map-based cloning and is 

considered to be fast forward screens (Mokry et al., 2011; Schneeberger and 

Weigel, 2011). Such techniques could be employed in such screens and could 
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rapidly yield the identity of mutated genes in the newly identified NMD-

comprised lines.  

 

As previously discussed, we have hypothesised that the ARK kinase could be 

evolutionarily ancient, as has been demonstrated for SMG1 (Chapter 3). This is 

because SMG1 has been independently lost multiple times in evolution, and 

work in Drosophila and zebrafish has suggested to us that there is redundancy 

between SMG1 and another, unidentified kinase in the NMD pathway (Chapter 

3). Therefore, it is possible that in the LECA and many extant eukaryotes, 

including many plants, both SMG1 and ARK kinases phosphorylate UPF1 in 

NMD (Figure 6.1). Both kinases may have been conserved in the majority of 

plants and animals because each has non-NMD functions. For example, SMG1 

has an independent role in DNA repair (Brumbaugh et al., 2004) (Chapter 5). If 

this is the case it will have widespread impact on NMD research in animals, 

fungi and plants and could be useful for directing research of medical and 

agricultural importance, given the roles of NMD in human and plant diseases.  

 

6.2 The need for plant models alternative to A. thaliana  

 

A. thaliana is an extremely useful model organism, with a relativity small 

genome, short generation time and large community resources such as a well 

curated genome database and insertion mutant collections. It is clear that this 

model has facilitated great advances in our basic understanding of plant biology 

(Koornneef and Meinke, 2010). However, A. thaliana is not representative of all  
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Figure 6.1: Model of NMD in organisms with two NMD-associated kinases  

(A) Upon termination at the PTC, the ribosome stalls and UPF1 might be 

recruited at this stage by eRF3. (B) UPF1 forms a complex with SMG1/ARK, 

UPF2 and UPF3, which stimulates the kinase activity of SMG1/ARK. (C) SMG7 

is recruited to at least the C-terminus phospho-site of UPF1. Legend continued 

on next page 

eRF3 

Start Stop PTC 

AAAAAAAAAA 

P

UPF1 

? 

Start Stop PTC 

AAAAAAAAAA 

UPF1 
UPF2 

UPF3 SMG1 

Start Stop PTC 

AAAAAAAAAA 

UPF1 UPF2 UPF3 

SMG1 

P

DCP1 

XRN4 
? 

? 

A 

B 

C 

eRF3 

ARK? 

ARK? 



165 

 

Figure 6.1: Continued… 

The ribosome and SMG1/ARK might have disassociated at this stage and 

UPF1 binds to the transcript. SMG7:SMG5 may recruit the decapping complex 

and the endonuclease XRN4.  
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other plants; not even flowering plants or other species in the Arabidopsis 

genus. For example, A. thaliana does not take part a symbiotic relationship with 

arbuscular mycorrhizal fungus (Kohlen et al., 2011), while 80% of all vascular 

plants do (Opik et al., 2010). Mutant analysis in A. thaliana has been important 

for the establishment of the ABCE model of flower development (Causier et al., 

2010). However, work on other species are making it clear that the A-function is 

a largely A. thaliana specific feature, with mutants of A-class genes in other 

species not resembling their A. thaliana equivalents (Causier et al., 2010). This 

and other work has lead to a new model called the (A)BC model, which 

introduces multiple other genes that establish the flower into the new (A)-

function (Causier et al., 2010).  

 

Here, it has been demonstrated that unlike all other plants examined, including 

important crops like rice, maize, cassava and grape, A. thaliana lacks the SMG1 

kinase from the NMD pathway (Chapter 3) (Grimson et al., 2004). Work in this 

thesis used moss to demonstrate that the SMG1 kinase functions in the NMD 

pathway of plants (Chapter 3), something that was not possible by using A. 

thaliana as a model organism. Additionally, a role for plant SMG1 in DNA repair 

has been identified, as is the case for animal SMG1 (Brumbaugh et al., 2004). 

More research is needed to establish the exact link between SMG1 and DNA 

repair. In humans, SMG1 directly phosphorylates p53 at serine 15, which 

precedes phosphorylation of this residue by fellow PIKK family member ATM, 

an important activator of the cell’s response to double-strand breaks. An 

analogous situation might exist in plants. One possibility is that SOG1, a non-

homologous plant equivalent of p53 (Yoshiyama et al., 2009) is a target of 
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SMG1. It has already been demonstrated that AtATM directly phosphorylates 

SQ dipeptides on AtSOG1 in order for normal DNA repair (Yoshiyama et al., 

2013). It is therefore easy to speculate that SOG1 is a direct target of plant 

SMG1. However, A. thaliana cannot be used to establish a direct link between 

plant SMG1 and DNA repair and whether this involves SOG1 or another 

component of the DNA repair machinery.  

 

The work presented in this thesis and highlighted from the literature reveals the 

need for more comparative studies and additional models in plant sciences. A. 

thaliana will no doubt continue to be the major model in plant sciences due to 

ease of use, wealth of background knowledge and strong community resources. 

However, animal research has been aided with the use of multiple model 

organisms, such as C. elegans, Drosophila, Zebrafish, mice, human cell culture 

and other less well used model organisms. In contrast, the plant community 

largely has focused on A. thaliana and no other secondary model has become 

established. Strong cases for organisms like moss, Petunia and Brachypodium 

can be made for being a useful model for comparative study (Gerats and 

Vandenbussche, 2005; Brkljacic et al., 2011). Moss with powerful reverse 

genetics as used in this study (Chapter 3), Petunia is another eudicot with a 

large insertion mutant collection and Brachypodium is a monocot and is 

becoming a model for the grasses. Additionally, high throughput genome 

sequencing means that any organism can be treated more like a model 

organism and we can determine what models to choose from post-genome 

sequence completion to develop resources for it, rather than generating vast 

resources before looking at the genome. However, plant scientists have not 
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rallied behind another model plant in the same way as with A. thaliana. Many 

other plants that have been used for research such as the grass rice have been 

chosen not for ease of use but because they are important crops and the hope 

is to apply the research directly to improving crop yields. While this has led to 

useful advances in crop sciences, such approaches are slow to yield novel 

advances in our understanding of basic biology, which is likely to lead to 

unexpected ways to manipulate crops in the long term. The outcome of the 

work presented in this thesis not only highlights the need for more plant models 

but has shown that the moss, P. patens, is a useful model. However, more 

flowering plant models are also required and a consensus in the plant sciences 

community is needed.  

 

6.3 NMD as an important controller of gene expression 

 

Loss of NMD in flowering plants, animals and fungi leads to widespread 

changes in gene expression (Guan et al., 2006; He et al., 2003; Mendell et al., 

2004; Ramani et al., 2009; Rayson et al., 2012a; Rehwinkel et al., 2005). 

However, few targets are conserved among species (Rayson et al., 2012a). 

Only two clusters of orthologous groups/eukaryotic orthologous groups 

(COG/KOG) were up-regulated in A. thaliana, Drosophila, human and budding 

yeast NMD mutants or knockdowns (Rayson et al., 2012a). These were 

serine/threonine protein kinase and nonsense-mediated mRNA decay protein 

(where the SMG5-7 family was the conserved target of NMD) (Rayson et al., 

2012a). Direct comparison with this dataset is not possible as moss genes have 

not yet been assigned to COG/KOG terms (D. Lang, personal communication). 



169 

 

However, here it has been shown that SMG7 encoding transcripts are targets of 

NMD in moss (Chapters 3 and 5), suggesting conservation of an NMD feedback 

loop involving the SMG5-7 family across eukaryotes. COG/KOG terms 

associated with ABC transporters (also known as multidrug transporters) have 

been identified as up-regulated in A. thaliana, budding yeast and Drosophila 

NMD mutants/knock downs and we (me, Dr Daniel Lang and Dr Andreas 

Zimmer) have seen that a MapMan term was associated with ABC transporters 

among the over-expressed genes in smg1Δ lines (Chapter 5). It is unclear why 

ABC transporters would be conserved targets of NMD, whether they are direct 

or indirect targets and what the targeting feature is. Further study could reveal a 

novel mechanism to regulate these important membrane proteins. Analysis of 

GO and MapMan terms lead us to suspect smg1Δ lines had altered tolerance to 

cellular stresses such as DNA damage and unfolded proteins (Chapter 5). This 

hypothesis was tested by treating mutant and WT moss with inducers of DNA 

damage or the unfolded protein response and confirmed that the mutants had 

altered tolerances to these stresses (Chapter 5), demonstrating the usefulness 

of such ‘blunt’ instruments as GO and MapMan analysis.  

 

Comparisons between diverse organisms at the individual gene level is difficult 

due to the difficulty in assigning orthology between such diverse genes en 

masse, therefore COG/KOG has been a good but limited proxy. However, this 

approach misses many important and conserved targets of NMD that are co-

regulated with other proteins in a related biological process. For example, eIF5 

was identified as a conserved target of NMD across land plants (Chapter 3), 

which was not apparent from GO or MapMan analysis. AteIF5L1 was identified 
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as a CPuORF containing gene that was over-expressed in NMD mutants 

(Rayson et al., 2012a) and it was demonstrated that the two moss homologues 

(PpeIF5L1 and PpeIF5L2) are also CPuORF containing transcripts that are 

over-expressed in an NMD mutant (Chapter 3). It has been found that the 

animal homologue has an (unrelated) uORF and is part of an autoregulatory 

feedback loop of eIF5 (Loughran et al., 2012). eIF5 regulates the translation of 

start codons in poor contexts, with more eIF5 leading to an increase in 

translation of start codons in a poor context (Figure 6.2) (Loughran et al., 2012). 

The uORFs of eIF5 in animals are in poor contexts and an increase in eIF5 

balances the expression of eIF5 by promoting translation at the uORF start 

codon rather than the main ORF, possibly coupling it to NMD (Loughran et al., 

2012). Such a feedback loop could exist in plants as the start codons of the 

moss and A. thaliana eIF5-encoding genes are also in poor contexts (S. 

Rayson, personal communication). An interesting consequence of this finding is 

that changes in the level of eIF5 and therefore the stringency of start codon 

selection, could alter the translation of many uORFs (Figure 6.2). If the 

stringency is low and more uORFs are consequently translated, this would bring 

more transcripts under the influence of NMD (Figure 6.2). It will be interesting to 

determine whether eIF5 levels control start codon selection in plants as it does 

in animals and whether this alters transcript susceptibility to NMD.  

 

We have identified more than 1600 over-expressed genes and 3400 under-

expressed genes in smg1Δ lines (Chapter 5). Subsequently it was shown that 

these changes in gene expression have a physiological effect on the moss in 

respect to the UPR and DNA damage (Chapter 5). However, the function of 
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many moss genes are unclear and the moss smg1Δ lines and our RNA-seq 

data provides a useful resource for studying the role of NMD and PpSMG1 in 

moss growth and development and transcritpomics.  
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Figure 6.2: Model of eIF5-mediated regulation of NMD of transcripts 

containing uORFs in poor contexts  

The eIF5 protein can increase the translation of uORFs in poor contexts and 

high levels of eIF5 protein could regulate its own transcript through NMD in an 

autoregulatory feedback loop and the NMD susceptibility of other transcripts 

containing uORFs in poor contexts.  
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