
Optimised Low Complexity

Localisation in Wireless Sensor

Networks

by

Naveed Salman

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

University of Leeds

School of Electronic and Electrical Engineering

August 2013





The candidate confirms that the work submitted is his own and that

appropriate credit has been given where reference has been made to

the work of others.

This copy has been supplied on the understanding that it is copy-

right material and that no quotation from the thesis may be pub-

lished without proper acknowledgement.

©2013 The University of Leeds and Naveed Salman



If we knew what it was we were doing, it would not be called
research, would it?

Albert Einstein



Acknowledgments

I am most grateful to my supervisor, Dr Andrew Kemp, for his continuous en-

couragement and guidance. Working with Dr. Kemp was a pleasure, we had

countless meetings and he always kept me motivated through ups and downs. I

have learned a lot from Dr. Kemp and he played a key role in my professional

and personal development over the past four years.

I am also grateful to my second supervisor Prof. Mounir Ghogho, a brilliant

researcher and an inspiration to me. We had many fruitful meetings during

which new ideas were discussed and my work was reviewed. I am also thankful

to Dr. Des Mclernon, director of graduate studies for his help and support.

I also thank Prof. Jay Guo and Dr. Mark Hedley of CSIRO, Australia, with

whom I discussed my research and we explored new areas in localisation for

future research.

I would like to thank Dr. Nayef Alsindi and Dr. Basim Majeed of EBTIC, UAE,

for giving me the opportunity to work with them.

I am thankful to Dr. Ismail Guvenc, associate editor, IEEE Wireless Communi-

cation Letters, who reviewed my letters and suggested valuable modifications.

Many thanks to my close friends and colleagues Ana Maria Popescu, Dr. Hemat

Maheswari, Dr. Imtiaz Rasool and Waqas Khan.

i



Acknowledgements

Finally, above all, I thank my parents, my father Prof. Abdul Mutalib and my

loving mother Naheeda Yasmin for their support. I know it must have been

difficult for them to live away from me over these years as it was for me. But

whatever I am now is because of them. Thank you.

ii



Abstract

Wireless sensor networks (WSNs) consist of many small (up to several hundred)

low powered sensing nodes. These nodes can be capable of sensing temperature,

humidity, light intensity etc. In location aware WSNs, these nodes aside from

sensing environmental conditions, can also locate themselves, thus promoting

many new applications in the wireless communications industry. These applica-

tions may include firefighter tracking, cattle/wild life monitoring and logistics.

One way to locate the nodes is to use global positioning system (GPS), how-

ever deploying a GPS chip on every sensor node is expensive and also they are

power hungry. Moreover, GPS assisted nodes can only be located when a guar-

anteed line of sight (LoS) is present with the navigational satellites. On the other

hand, nodes can also be located using low complexity and cheap local positioning

systems (LPS).

Various techniques can be found in literature to locate wireless sensor nodes.

Location algorithms, which are based on the absolute distance between nodes are

known as range based algorithms. On the other hand, algorithms that do not

require determination of the inter-node distance for localisation are called range-

free positioning algorithms. Range free algorithms are based on the number of

hops for communications between two nodes as a distance metric. Range based

algorithms are however more accurate than range free algorithms.
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Abstract

In the context of range based algorithm, distance can be estimated between nodes

by making use of the angle of the impinging signal, this technique is more com-

monly known as the angle of arrival (AoA) technique. Apart from being very

sensitive to errors due to multipath, AoA is not favored for low complexity WSN

localisation as an array of antennas or microphones is required on the sensor nodes

to estimate the angle of the incoming signal. This increases the complexity and

cost of the system. Absolute distance can be estimated using either the delay or

attenuation of the signal. Systems capitalizing on the delay are more commonly

known as time of arrival (ToA) systems. ToA localisation, although more accu-

rate, requires highly accurate clocks and hence are high in complexity. On the

other hand, received signal strength (RSS) based systems require no additional

hardware and hence are more suitable for WSNs.

For location estimation via RSS (and ToA) the so called trilateration technique

is used. A number of nodes, usually high in resources and with known locations

known as anchor nodes (AN) are used to estimate the locations of target nodes

(TN). The location of ANs can be determined using GPS or they can be placed

at predetermined positions. Readings from the TN is received at the ANs and

are transmitted to a central station for processing.

Due to its straightforward implementation, RSS has been an advantageous ap-

proach for low cost localisation systems such as WSN localisation. Thus a major

part of this thesis focuses on RSS based localisation. The accuracy of location es-

timates via RSS is highly dependent on knowledge of the distance-power gradient

or the so called path-loss exponent (PLE). Thus, degraded system performance is

expected with an inaccurate PLE assumption. Although the propagation model

is difficult to characterize in uncertain environments, the majority of current stud-

ies assume to have exact knowledge of the PLE. This is a gross oversimplification

and hence this thesis looks into methods that considers the PLE as an unknown
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Abstract

variable in addition to the location coordinates of the target sensor node.

Thus the first part of this thesis deals with joint estimation of the PLE and loca-

tion based on maximum likelihood (ML) and linear least squares (LLS) methods

respectively. Error analysis of location estimates with incorrect PLE assumptions

for both ML and LLS technique is done in their respective chapters. Furthermore,

novel ideas such as assuming the PLE as an unknown random variable and de-

velopment of a maximum a posteriori (MAP) estimator has also been discussed.

While the hybrid Cramer Rao bound (CRB) is derived as benchmark for the

MAP estimator. To further optimize the performance of the LLS technique,

optimization such as optimal AN selection and weighted least squares (WLS)

methods have also been proposed. Finally, a new linear CRB has been derived

as a benchmark for the performance of the LLS.

The second part looks into another aspect of localisation that impacts the location

accuracy i.e. AN/TN geometry. It is well known that the accuracy of TN location

estimation depends on its relative angle with the ANs. Thus the placement of

ANs has an impact on location accuracy. Optimal AN positions are achieved that

guarantees best accuracy for the entire network area via extensive simulation.

This is done via choosing the placement of ANs that offers the minimum mean

CRB.

Finally, the impact of localisation error on upper layer applications i.e. routing of

packets is studied. For location based routing, the fundamental assumption until

recently was the absolute knowledge of the location of the forwarding nodes. This

becomes unrealistic in localised networks and hence algorithms that are resilient

to location error need to be developed. However, the first step is to recognise the

impact of location on geographic routing parameters such as the packet delivery

ratio (PDR) and loss rate (LR). Thus, via simulation, error analysis is done for
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location error induced by ToA and RSS localisation. Furthermore, an algorithm

is developed that reduces the performance degradation due to location error. The

ascendancy of the proposed algorithm is proven via simulation.
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1 Introduction

Through out history man has always been curious to know where things are;

from navigation by looking at stars to modern techniques such as local position-

ing service (LPS) and the global positioning system (GPS), locating objects has

invariably been of great interest. However, in the last two decades, new tech-

nologies such as wireless sensor networks (WSN) have become very popular and

localisation of nodes in such networks present new challenges. The next section

presents a short history of wireless localisation systems.

1.1 A Short History of Wireless Localisation

Systems

As with most technologies, positioning in wireless networks started in the military

circles. Interest in navigation systems for military use dates back to the second

world war when the Decca and LORAN (Long Range Navigation) systems were

implemented. Later on new systems such as the Omega navigation system and

GPS were developed. Here we give a brief overview of the historical and technical

background of these systems.
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1.1.1 The Decca navigation systems

The idea of the Decca systems was first conceived by W.J.O’Brien, an American

researcher, in order to track the ground speed of aircrafts and called it API

(Aircraft position Indicator). O’Brien however could not raise the interest of

the American military officials for his system. After the war broke out in 1939

the British Decca Radio and Television Company carried out successful trials

on the system. The British required an accurate navigation system for locating

aircrafts and ships. The operation of the Decca system began one day before

the invasion of France (D-Day) [1]. The Decca system is based on the phase

comparison between continuous waves (CW) signals originating from a chain. A

chain consists of a master station and three slave stations known as the red, green

and purple stations. The slave stations are situated at the corners of an equilateral

triangle and the master station is located at the center. The distance between

the master and each slave station is around 92- 140 km. All stations transmit

with frequencies that are harmonics of a common frequency f . On reception,

the phase difference between the master and one of the slaves is measured and is

translated into a hyperbolic line called a pattern. The three pairs of master-slave

stations define three such patterns, which are drawn on nautical charts as shown

in Fig. 1.1. The point of intersection of two patterns suggests the position of

the receiver [1]. The Decca is a low frequency (LF) based system with a range

up to 400 km and accuracy of about 50 m. 1.1 shows the harmonic frequencies

of the masters and slave stations. Receiver with multiplying circuits receives the

signals from a master/ slave pair. The signals are multiplied up to a common

frequency on which the phase comparison is done. The common frequencies for

each master/slave pair is given as follows:

• Master/Red 24f
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• Master/Green 18f

• Master/Purple 30f

Figure 1.1: Decca lattice chart [1].

Station Harmonic Frequency
Master 6f 85 kHz
Red 8f 112 kHz
Green 9f 127 kHz
Purple 5f 71 kHz

Table 1.1: Harmonic frequencies of master/slave stations.

1.1.2 The LORAN systems

The LORAN systems were also developed during the SecondWorld War. LORAN

(initially known as LRN) was employed by the US and Royal Navy for navigation

of marine ships. The Loran-A was the first less accurate system, which operated

in the 1715-2000 kHz band and had a range of 1200 miles. LORAN-D was a
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Figure 1.2: Master/slave topology for LORAN-C [2].

short-range system used for navigation of large air force planes. While Loran-F is

employed for drone navigation. The LORAN-B differed from the other systems

as it was based on the phase comparison of the incident signals [3], however,

the LORAN-C was the most widely used system and will be discussed briefly

here. Loran-C operates in the LF i.e. 90-110 kHz band and has a range around

1000 miles. The positioning accuracy for LORAN-C is around 500 meters. The

LORAN-C like the Decca system is based on the principle of hyperbolic position-

ing. In the LORAN-C, instead of phase comparison, time difference of arrival

(TDoA) of signals between stations is utilized to obtain position estimation. A

Loran chain consists of at least three stations, consisting of one master and at

least two secondary stations. The chain topology can be classified into three

types; triad, Wye and star, this is shown in the Fig. 1.2.

TDoA at the receiver of one master and one secondary station signal defines

one hyperbolic line of position (LOP). The transmitted signal from the master

station consists of nine pulses while the secondary station signal is formed by a

series of eight pulses. The difference of the number of pulses enables the receiver

to distinguish between the master and secondary station signals. The master
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station transmits its signal first; this signal when received by the receiver starts

its clock. The secondary station also receives the transmission from the master in

a time duration known as the baseline length (BLL) and then waits for a specific

time duration known as the secondary coding delay (SCD) before transmitting

its signal. The emission delay (ED) is BLL plus the SCD. The pulses from the

master and the secondary stations are transmitted at a common group repetition

rate (GRR). The time difference (TD) measurement is illustrated in Fig. 1.3.

Figure 1.3: Time axis for LORAN-C localisation [2].

1.1.3 The OMEGA navigation system

The Omega navigation system was developed by the US navy for air craft naviga-

tion in 1968. Omega operates on a very low frequency (VLF) that ranges between

10-14 kHz. Similar to the Loran system, the Omega also is based on the hyper-

bolic positioning. The position estimation is achieved by phase comparison of

the receiving signals. At the time of its operation, eight transmitters were placed

strategically around the globe, and were used to provide worldwide coverage [4].

The Omega system achieved accuracies of 4 km. The Omega was the first world
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wide navigation system which operated for 26 years. The system was shut down

in 1997.

1.1.4 The global positioning system (GPS)

The GPS is the most widely used navigation system that provides three-dimensional

positioning information at all times, all over the world. It has a wide range of ap-

plications including surveying, vehicle tracking, cellular positioning and aircraft

tracking. GPS is an accurate satellite based navigation system, initially developed

in the late 70’s by the department of defense (DoD). A total of 27 satellites are in

orbit with 24 operational and 3 spare, providing world wide positioning coverage.

GPS satellites are at approximate altitudes of 20200 km above the earth. The

first GPS satellite was sent into orbit in 1978 and by 1994, all 24 satellites were

operational. The project cost an estimate of $12 billion [3, 5]. GPS positioning is

based on the principle of trilateration, where at least three independent ranging

between three satellites and user is carried out and then position of the user is

estimated utilizing the ranging information. The structure of the GPS is broadly

divided into three segments

• The space segment

• The control segment

• User

The control segment is formed by five land-based stations, their purpose is to

monitor and control the satellite movement, clock correction and metrological

data. The control segment is operated under the DoD. The space segment con-

sists of the 24 operational satellites and is located in 6 orbital planes inclined

at 55 degrees to the equator. The users include both military and commercial

GPS devices. The GPS receiver can determine its position by first measuring its
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distance with at least three satellites; this is done by calculating the time taken

by signal to reach the user from each satellite. The exchange of information be-

tween the satellites and the receiver are done via codes. There are two types of

carrier radio waves modulated by the codes. These two signals are known as L1

(1575.42 MHz) and L2 (1227.60 MHz). It must be noted here that these two

signals are harmonically related to the fundamental frequency of 10.23 MHz that

is generated by the atomic clocks (on board the satellites). These are extremely

low powered signals and a direct line of sight (LoS) between the receiver and the

satellites is required for accurate positioning. The L1 signal is modulated by two

codes

• The Coarse/Acquisition code (C/A code)

• The Precision code (P code)

The L2 signal on the other hand is modulated only the P code. In addition, the

satellite also transmits a navigation message that includes the satellites orbital

and clock information, the general system status and the ionosphere model. The

navigation code has a low frequency of 50 MHz and is modulated onto both L1 and

L2 carrier waves, this is illustrated in Fig. 1.4. All the three codes mentioned

are binary in nature and are known as PRN codes. Each satellite is provided

with its unique PRN code. On the receiving side, the device, generates replicas

of either the A/C or P codes and are slide across the received code. The sliding

time taken by the locally generated code to completely match the received code

is the time taken by the signal to reach from the satellite to the receiver. This in

turn provides us with the distance information. There are two categories of GPS

positioning;

• The Standard Positioning Service (SPS)

• The Precise Positioning Service (PPS)

7



1.1 A Short History of Wireless Localisation Systems

The SPS makes use of the less precise C/A codes for location estimation. This

has an accuracy of 100 m and is normally used for commercial applications. The

PPS is based on the high pulse rate P code on both L1 and L2 carrier signals.

The PPS is used for military applications and has sub 20 m accuracy.

Differential GPS is an enhancement to the GPS system to reduce timing errors.

Differential GPS makes use of land based reference station or a control point with

known coordinates. There is a data link between the user and the control point

so that timing errors can be mitigated. Thus the error in positioning is reduced

to 2-10 m accuracy if users are within 1000 km of the control point.

Figure 1.4: GPS sattelite signals [3].

1.1.5 Other positioning systems

Various other navigation and positioning systems were developed, they may in-

clude the British Gee system, which is a time based hyperbolic system and was

employed in the Second World War. It offers an accuracy of 150 m when operated

8



1.2 Classification of Localisation Systems

at short ranges. Chayka is a Russian navigation system and is based on the Loran-

C [6]. Another Russian system known as Alpha is a low frequency system, which

is closely related to the America OMEGA system, phase difference of signals is

utilized to determine the location [7]. In satellite navigation, GLONASS (Global

Navigation Satellite System) is the Russian counterpart of the GPS. GLONASS

became operational in 2010. It employs 24 satellites with 21 operational and 3

spares. The purpose of developing GLONASS was to provide navigational service

to the Soviet military. It provides an accuracy of around 60 meters and vertical

location accuracy of 70 meters [8]. The European Union’s Galileo (named after

the Italian astronomer) is an under development project and is expected to be

operational in 2014. The need for a separate satellite navigation system for Eu-

rope was felt as GPS and GLONASS are controlled by the US and Russia and

could be shut down in times of war or political unrest. Galileo promises better

accuracies than the GPS and GLONASS i.e. up to 1 meter. Galileo will have 30

orbiting satellites, 27 operational and 3 spare in 3 orbital planes. Four atomic

clocks (two-rubidium frequency stranded and two passive hydrogen masers) will

be on board each satellite. Similar to the GPS, Galileo will be free to use to

everyone, however high accuracy services will be charged a fee [9].

1.2 Classification of Localisation Systems

Localisation systems can be classified in various ways; referring to [10][11], fol-

lowing are some of the parameters by which these systems can be classified.
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1.2.1 Classification based on the PHY employed

One way to class localisation systems is based on the signaling scheme employed.

These schemes and their pros and cons are as follows.

1.2.1.1 Optical signals

Optical signals can provide accurate ranging and location. Optical signals are

highly attenuated with distance and suffer drastically with non-line of sight

(NLoS) errors, thus these systems are well suited for short range and LoS po-

sition/ranging. Furthermore optical signals suffer from interference due to sun

light and light bulbs.

1.2.1.2 Infrared

Although infrared signals require low power transmitter, a perfect LoS is required.

Infrared is also affected by sunlight.

1.2.1.3 Ultrasound

The relatively slower propagation speed of ultrasound waves eliminates the need

for faster clocks. The disadvantage of using ultrasound is that they provide higher

accuracies only at short ranges and requires high power transmitters.

1.2.1.4 Radio frequency (RF)

The accuracy of the RF location systems vary depending on the centre frequency

of the signal, generally RF signals perform relatively well in non line of sight

(NLoS) scenarios and can travel for longer range. The RF based system can
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be further classified into ultra-wide band (UWB), code division multiple access

(CDMA) etc.

1.2.2 Classification based on position estimation technique

Time of arrival (ToA), Time difference of Arrival (TDoA), Received Signal Strength

(RSS) are some of the methods that can be employed to estimate the position of

a target node.

1.2.3 Self positioning and remote positioning

Positioning of a cell phone over a CDMA network or via GPS, where the user

estimates its own position is known as self-positioning. In remote positioning,

the user’s position is estimated by a network base station (BS), an example

is the localisation of the caller to the enhanced 911 (E911) service. Indirect

remote positioning is when the target node or user estimates its location and

then sends its positioning information to the BS. Indirect self positioning refers

to the positioning of the node by a BS and then transferring that information to

the user.

1.2.4 Active and passive positioning

Active positioning refers to the systems where the network (BS or satellites)

transmits positioning signals in order to estimate the location of a target. Passive

positioning is when the network receives the positioning signals from the target

node or user.

11



1.2 Classification of Localisation Systems

1.2.5 Centralized and distributed positioning

Centralized positioning collects location information at a BS before processing

while in distributed positioning the location is calculated jointly with the neigh-

boring nodes.

1.2.6 Single-hop/multi-hop algorithms

A direct communication link between two nodes is commonly referred to as a hop.

Networks where there is only a single link between nodes for location purposes

are called single-hop. GPS is an example of a single-hop positioning systems. On

the other hand, if the node that is desired to be localised is out of range of an

anchor or BS, a communication link using intermediate nodes is established, this

is known as multi-hop. Single hop algorithms are simple and accurate but are

not scalable, multihop algorithms are more scalable.

1.2.7 Range based and range free positioning

Location algorithms, which are based on the absolute distance between nodes,

are known as range based algorithms. On the other hand, algorithms that do

not require determining the actual inter-node distance for localisation are called

range-free positioning algorithms [12, 13]. Range free algorithms are based on

the number of hops for communications between two nodes as a distance metric.

Range based algorithms are more accurate than range free algorithms.

1.2.8 Localisation coordinates

These can be sub-divided into the following:
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1.2.8.1 Absolute Location.

This is the real global coordinates e.g. South 75 05.235’.

1.2.8.2 Relative location.

This involves the location of a target node with respect to a local reference (an-

chor).

1.2.8.3 Logical or semantic location.

These are simpler to understand, an example is Dr. Kemp’s office, second floor,

school of electronics.

1.3 Performance Metric

Accuracy of a location system is not the only benchmark of its performance; there

are other criterion that should also be taken into consideration. The performance

of positioning system can be determined by the following yardsticks.

1.3.1 Accuracy

Accuracy is the most important criterion for a location system. It is measured as

the mean Euclidean distance between the true and the estimated location.

1.3.2 Precision

A good positioning system apart from being accurate should be persistent in

estimating accurate location. If two systems have equal accuracy, the system,
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which is more precise, is chosen. This decision is normally based on the cumulative

distribution function (CDF) of the distance error, systems with high precision

have steeper CDF graphs. Usually the precision is measured in percentile.

1.3.3 Complexity

Localisation in low power networks (such as sensor networks) is desired to be

of low complexity. Nodes in such networks have lower computation power and

algorithms requiring low processing are preferred. Other systems, where the

calculations are carried out by an external base station can of course afford high

complexity algorithms. The complexity of the system is normally measured in

terms of the time taken by the network to localise a node.

1.3.4 Robustness

Systems that perform well in harsh conditions (such as ranging signals being

blocked or highly cluttered environments) are preferred over systems which per-

form well only in accommodating scenarios. Thus, systems, which are able to

perform localisation with incomplete information, are more robust.

1.3.5 Scalability

The scalability of a system can be measured in terms of geography and density.

A system is geographically scalable if it can perform localisation at longer dis-

tance; generally, the performance of a system degrades as the distance between

the nodes increases. On the other hand, the density of a network refers to the

number of nodes per unit area/volume. The performance of systems deteriorates

as more nodes are added into the network (due to multi-user interference (MUI)).
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Furthermore, scalability also can be assessed wether a system can localise in two

dimension (2D) or three dimension (3D).

1.3.6 Cost

Another important factor in choosing a positioning system is the cost. Cost

can be in terms of money, energy consumption, size and weight. It might be

desired to install low power and cheap positioning systems with little maintenance

requirement. Such needs cannot be fulfilled by GPS and hence low cost systems

are preffered.

1.4 Applications

Different applications have different requirements, as shown in 1.1 that all the

location systems were used for military purposes (navigation of airplanes and

ships). Although accuracy is an important factor in these systems, operation at

longer range is vital. Thus systems utilizing the lower frequencies of the spectrum

are employed. GPS on the other hand is a more accurate system outdoors where

we have a direct LoS between the user and the satellite, it thus can be used as an

efficient system for vehicle tracking etc. GPS, however deteriorates to achieve the

desired accuracy indoors (NLoS) and in many instance it totally fails to locate

the receiver. Furthermore, GPS receivers are extremely power hungry and costly.

The focus of this thesis is to look into the localisation of nodes in sensor networks.

WSNs which consist of independent nodes or devices that are capable of sensing

and monitoring environmental conditions such as temperature, pressure and light

intensity require low cost, very low power and low complexity [14]. Such nodes

are designed to operate for several years without their batteries being replaced.
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The applications of locating the nodes in such networks will be discussed in this

section.

1.4.1 Wildlife tracking

Keeping track of wildlife has been of interest to zoologist, knowledge of animal

movement over time can indicate animal behavior with other species and interac-

tion with their own kind. The systems that are employed for such purposes are

either using very high frequency (VHF) collars or using GPS chips. Since such

observations are recorded over a long period, regular battery replacement in the

collars becomes impractical. Low power sensor network localisation will improve

battery life and guarantee little human interaction with the animals. ZebraNet

is one such system and is demonstrated in [15].

1.4.2 Logistics

In order to locate boxes in a warehouse or goods in a factory, they are tagged

with sensor. These sensors could monitor not only the temperature, pressure or

humidity but also their location.

1.4.3 Secure buildings

In a highly secured building, where all individual cannot have access to certain

areas of the building. Visitors can be tagged before entering the building, this

will limit their movement. The tags can report to security when they are taken

to a restricted area.
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1.4.4 Search and rescue of avalanche victims

WSN localisation can be used in locating avalanche victims that are buried under

the snow. The skiers are tagged with sensors that monitor their vital signs, the

tags are also equipped with an accelerometer [16]. The accelerometer detects the

orientation of the victims, so rescue team are aware while digging by shovels etc.

1.4.5 Aid to firefighters and police

Sensor network localisation can be used for detection of firefighters in a building

on fire. Positioning of individuals in such situations is imperative, as visibility in

a smoked filled building is extremely low. Firefighters could locate each other and

can also be monitored from an external station. Similarly, police dogs trained

to find explosives in a building could be located by tagging them with sensor-

equipped collars.

1.4.6 Interactive gaming

Sensor location can also be brought into play in the gaming industry. In this

regard, the first step was taken with the release of the Nintendo Wii in which

the action in the game corresponds to the motion of a hand held controller.

The gaming consol consists of a sensor bar, which is connected to the controller

through an optical link. Although, the console can detect the 3D motion of the

controller, a perfect LoS is must for proper operation, which is often a hindrance

in the gaming experience. In the future, we will see more interactive gaming

based on sensor location without the LoS constrained. Players can interact with

each other in a three-dimensional environment viewed through special goggles or

helmets, while their physical position and motion can be pinpointed.
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1.5 Localisation

Since every node in the network cannot be equipped with a GPS chip, generally

a small number of nodes which know their location (this can be achieved through

GPS) called anchor nodes are deployed and the rest of the nodes estimate their

coordinates by referencing to the anchor nodes. This can be done by first finding

the range between the anchors and a target node and then manipulating that

information to calculate the location [17, 18, 11]. The anchor nodes are often

mains powered and are high in resources in terms of computational power and

memory. The positioning techniques discussed in literature include the time-of-

arrival (ToA), received signal strength (RSS) and the angle of arrival (AoA). A

hybrid RSS-ToA can also be deployed. Another time based system is the time-

difference-of-arrival (TDoA), which is a purely location based technique and does

not involve the absolute ranging between the nodes.

1.5.1 Ranging techniques

The first step in most location techniques is to establish the absolute distance

between two nodes. The received signal r(t) can be represented by the following

equation [19]

r(t) = h(t) ∗ s(t) + n(t), (1.1)

where * represents the convolution process, n(t) is the thermal noise and h(t) is

the system (channel) impulse response

h (t) = A (d) δ (t− τ (d)) , (1.2)
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where A is the amplitude or attenuation, and δ is the dirac function, thus

r (t) = A (d) s (t− τ (d)) + n (t) (1.3)

as seen from (1.3), the parameters that modify the received signal are the atten-

uation and the delay. Based on these parameters the ranging method is defined,

and the distance d estimated.

1.5.1.1 Received signal strength (RSS)

The RSS technique is based on the emission at the transmitter side of a signal

using fixed reference power known to the receiver while the receiver measures

the power of the received signal and derives the distance from the calculated

attenuation. The Frii formula provides us with the attenuation associated with

free space propagation [20]

Pr = PtGtGrλ
2

(4πd)2 (1.4)

where Pt is the transmitted power, Gt, Gr are the transmitter and receive antenna

gains respectively and λ is the wavelength associated with signal frequency. From

(1.4) we notice that the received power Pr is inversely proportional to the square

of the distance between the transmitter and receiver, thus it is evident that RSS

technique offers accurate distance estimates at shorter distances. However, the

accuracy decreases substantially with the increase in distance between the nodes.

The RSS is a straightforward, inexpensive technique and requires no additional
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hardware. The relation between distance and signal attenuation depends on chan-

nel behavior thus an accurate propagation model is required to reliably estimate

the distance.

The relation between the received power Pr and the transmitted power Pt as in

(1.4) is an over simplified form and is valid only for free space propagation. In

real-world conditions there are two major sources of error while measuring the

received signal strength, these are multipath and shadowing errors. Multipath

errors are due to the reflection and scattering in NLoS environments. This results

in multiple signals arriving at the receiver with varying amplitudes and phase [20].

These signals might interfere constructively or destructively resulting in fading.

Shadowing is a result of attenuation of the signal due to hindrance by trees, walls

etc. The shadowing effects are environment based and are generally modeled as

random. The multipath effects can be mitigated by measuring the average of the

received power over a sufficient period. The average receive power at distance d

is given as [21]

P (d) = P0 − 10α log10

(
d

d0

)
, (1.5)

where P (d) is the average received power in dB.

d is the distance between transmitter and receiver.

P0 is the received power at a reference distance d0 (normally taken as 1 m).

α is the path-loss exponent (PLE), its value depends on the type of environment.

Due to the effects of shadowing the received signal power is distributed log-normal

[18]. In other words, it is Gaussian distributed if the powers are taken in dB as

follows
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1.5 Localisation

p(d) ∼ N (P (d), σ2
shadowing).

Another major source of error is the incorrect PLE assumption. The impact of

incorrect of PLE on location accuracy is detailed chapter 2 and 3.

1.5.1.2 Time based

The time-based systems utilize the delay in the transmitted signal when received.

The underlying radios in use have a serious impact on the performance of a time-

based system. Here we give a brief overview of the three classes of RF signals.

1) Underlying RF technology

a) Narrow band systems These systems determine the distance between nodes

by calculating the difference in phase between the transmitted and received signal.

The phase φ is related with delay τ of the signal as follows [20]

φ = 2πfcτ (1.6)

where fc is the center frequency of the transmitted signal. In perfect LoS condi-

tions, the narrow band systems can attain an accuracy of 1 m.

b) Wideband systems The frequency spectrum of these radios are spread of-

ten using pseudo-noise (PN) codes as in the case of the direct sequence spread

spectrum (DSSS). This intentional increase in the bandwidth helps in combating

interference. Also the increased bandwidth improves the accuracy of location as
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1.5 Localisation

evident from the equation of the estimated distance[19]

d̂ = c

BW
(1.7)

where c = 3 × 108m/s is the speed of the electromagnetic wave and BW is the

bandwidth. As a rule of thumb, in the absence of NLoS a wide band signal of

300 MHz will have an accuracy of 1 m.

c) Ultra wide band (UWB) systems The UWB provides an ideal PHY for

ranging and localisation. A steep rise to the full power diminishes the uncertainty

about the start time of the pulse. As time distance between nodes is measured

as d = time × c. Thus, the inaccuracy of distance is reduced by reducing the

uncertainty in time. As stated before, the accuracy of the system increases with

the BW , thus an UWB signal with a bandwidth greater than 3 GHz can achieve

cm level accuracies. However, UWB systems can only be used for short distance

as the higher frequencies face severe attenuation.

Next, commonly used ToA ranging protocols are discussed in brief.

2) Time based ranging protocols

Time based ranging can be classified into two techniques based on the number of

packet transmission for range estimation.

a) One way time of arrival (OW-ToA)

Distance between two nodes, node A and B is estimated as follows. Node A

transmits the time-stamped signal at t1 and is received at node B at t2, the
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1.5 Localisation

distance between the nodes is given by the equation [22]

d = c (t2 − t1) (1.8)

The OW-ToA requires highly synchronized local clocks between the nodes. This

method is not favored for WSN as the demand for highly accurate clocks increases

the complexity and cost of the nodes

b) Two way time of arrival (TW-ToA)

In order to eliminate the requirement of clock synchronization between the nodes,

the TW-ToA method is adopted. This method requires the nodes to exchange

two packets for distance measurement. Node A transmits a ranging packet at

tstart and records the time stamp. Node B on reception of this packet records

the time and replies an acknowledgment signal after a delay of treply. Node A

receives this signal at time tstop. The propagation time tp and hence the distance

is calculated as [23]

d = c
(
tstop − tstart − treply

2

)
(1.9)

The node B’s reply time treply can be known “a priori” to the network devices or

this information can be sent by node B in the second packet exchange.

3) Major source of errors

The accuracy of location estimation is exceedingly dependent on the accuracy of

range measurement. In this subsection, various sources of errors in time based

range measurements are discussed.
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1.5 Localisation

a) Additive white Gaussian noise (AWGN) AWGN is due to the random

vibration of atoms in the circuitry of the transceivers, which adds impairment

to the ToA estimation. The accuracy of the ToA estimation in the presence of

AWGN is discussed in [24].

b) Multipath propagation Multipath propagation (due to reflection and scat-

tering) results into multiple copies of the transmitted pulse arriving at the re-

ceiver. This pulse might interfere constructively or destructively resulting in

performance degradation. In narrowband systems where the pulse length is rel-

atively longer, these multiple copies of the signal cannot be resolved. Generally,

ToA calculation is carried out by correlating the received signal with its time-

shifted template. However, due to multipath channel, the received signal is the

result of the convolution of the transmitted signal and the impulse response of the

channel. As a result, the correlation of the received signal with a pure template

results in suboptimal performance. Furthermore, we can classify errors for the

multipath ToA measurement into two categories.

• Early-arriving multipath.

The multiple copies due to reflection immediately follow the LoS signal, this

results in the replicas partially overlapping the LoS signal. Thus, an isolated peak

for location estimation at the receiver is not obtained. Fortunately, UWB systems

with its immense bandwidth results in short natured pulses in the time domain.

This also leads the UWB multipath pulses to be resolvable. Furthermore, a

narrow autocorrelation peak gives us a precise ToA and making it easy to separate

the LoS signal cross-correlation peak from the NLoS early arriving multipath

signals.

• Attenuated LoS.
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1.5 Localisation

This is due to the attenuation of the LoS signal relative to the multipath com-

ponent. In the worst case, the LoS signal is not picked by the receiver at all

resulting in severe ranging errors. This error occurs mainly in networks where

the nodes are located far apart from each other.

c) Direct path (DP) excess delay DP excess delay is the ToA error caused

by the variable propagation speed of the radio signals. The speed of the electro-

magnetic waves is dependent on the material it propagates. The electromagnetic

waves travel with the speed of light c in air. This speed decreases by a factor

of √εr with respect to c when it travels in another material with εr being the

relative electrical permittivity of the material. This can result in a positive bias

in the range estimation. The DP excess delay 4τ is given by equation [25]

4τ = (√εr − 1)dw
c

(1.10)

where dw is the thickness of the material.

d) NLoS propagation error NLoS propagation errors are due to the complete

blockage of the DP. The ranging signals reach the receiver after covering an

additional distance (resulting from reflection). Thus, the first arriving pulse does

not correspond to the true distance between the nodes and a positive bias is

introduced in the range measurement. Various methods have been proposed to

mitigate the NLoS error. This includes identifying the NLoS signals and then

discarding them completely. However [26, 27] suggests that NLoS can be utilized

to improve the location accuracy.

e) Mutliple access interference (MAI) Multi-user scenarios can lead to in-

terference with signals from other nodes resulting in suboptimal ToA estimation
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and hence range measurement.

f) Clock drift and clock offset Accurate clocks are the basic requirement for

ToA estimations. Commonly, nodes used in sensor networks have poor clock

oscillators. The effects of the clock drifts, as the clock varies from the true time,

thus should be taken into consideration. These errors can substantially affect the

accuracy of the range estimation. Precise synchronization is also required for one

way time of arrival, imperfection in the synchronization is an additional source

of error in the ToA measurement and is termed as clock offset.

1.6 Positioning Techniques

The ranging techniques discussed in 1.5.1 can be utilized to estimate the location

of a target node. This is known as trilateration, furthermore, range free position-

ing systems such as angle of arrival (AoA) have also been implemented. These

positioning methods are discussed in the following subsections.

1.6.1 Angle of arrival (AoA)

This technique makes use of the incident angle of the signal transmitted by a

target node on a pair of anchors. Though a minimum of two anchor nodes are

required in two dimensional positioning, the accuracy can be increased by adding

more anchors. A radial line is constructed joining the target node and the anchor,

the target location is found at the intersection of these lines, this is illustrated

in Fig. 1.5. The angle of the incident signal can be computed using one of the

following techniques [17, 21].

The main beam of the receiver antenna is rotated mechanically or electronically,
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and the angle which corresponds to highest receive power indicates the direction

of the transmitter. Often a second non-rotating isotropic antenna is used to nor-

malize the received signal power by the rotating antenna in case the transmitted

signal is of varying power.

Another method uses an antenna array at the receiver and the angle is calculated

by examining the phase differences at each element of the array. This method is

similar to the time of arrival as the delay of the incoming signal is different at the

array elements and is related to the phase delay 2πfct. The phase delay scheme

is often employed for narrowband signals.

Figure 1.5: Positioning via AoA.

Finally, two directional antennas with overlapping main beams are used to esti-
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Figure 1.6: RSS ratio corresponding to angle of arrival.

mate the angle based on the RSS ratio between them. This is illustrated in Fig.

1.6 where the ratio between the signal strengths correspond to the arrival angle.

Once the arrival angle at the anchor nodes is established, locating the target

follows a straight forward procedure. Let the anchor 1 be located at (0,0) and

anchor 2 at (0,y2) and the transmission from the target node is making an angle

Θ1 and Θ2 on anchor 1 and 2 respectively.

y = tan (Θ1)x (1.11)

y = tan (Θ2)x+ y2 (1.12)
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Equating (1.11) and (1.12) will yield the location of the target on the x-axis

x = y2

tan (Θ1)− tan (Θ2) . (1.13)

Substituting value of x in (1.11) will give us the y coordinates. The AoA is

not a favorable location approach for WSN localisation, as it requires additional

hardware which increases the complexity and cost of the system.

1.6.1.1 Major sources of error.

The sources of error in AoA are similar to those in ToA i.e thermal noise and

multipath. The angle measurement errors are generally Guassian distributed [17].

1.6.2 Trilateration

The estimated range between an anchor and a target node can be expressed as a

circle, the center of which is where the anchor is located and its radius represents

the distance. In order to locate a node in a two dimension plane, three such

target and anchor pairs are required thus forming three circles. The point at

which these circles coincide gives us the the location of the target node. In three

dimensional space, at least four anchors are needed, and the target location in

this case is the point of coincidence between four spheres.

The coordinates (x, y) of the target node shown in the Fig. 1.7 can be calculated

from the following set of equations

d1 =
√

(x− x1)2 + (y − y1)2

d2 =
√

(x− x2)2 + (y − y2)2
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Figure 1.7: Trilateration.

d3 =
√

(x− x3)2 + (y − y3)2. (1.14)

1.6.3 Time difference of arrival (TDoA)

TDoA does not depend on the absolute time of arrival but rather the idea is

to determine location of the target node by examining the difference in time

at which a broadcast signal from the target node arrives at multiple measuring

anchors. This difference in the arrival of time can be treated as a hyperbola,

which has the two receiving anchors at its focii. Three anchor nodes are required

for two dimensional positioning. The target node is located at the intersection

of two hyperbolas as shown in Fig. 1.8. The equations for the two coinciding

hyperbolas is given below

d31 = d3 − d1 =
√

(x3 − x)2 + (y3 − y)2 −
√

(x1 − x)2 + (y1 − y)2
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Figure 1.8: TDoA.

d32 = d3 − d2 =
√

(x3 − x)2 + (y3 − y)2 −
√

(x2 − x)2 + (y2 − y)2. (1.15)

TDoA can also be employed in an alternative mode, where the anchors broadcast

the signal simultaneously while the target node receives it with different delays. In

both cases, the anchor clocks should be accurately synchronized which are often

wired to guarantee synchronization. The synchronization of the target node and

anchors in this case is however not mandatory.

1.7 Major Contributions

The main contributions in thesis are as follows:

• Analytical expression for the mean square error (MSE) and bias of location
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estimates for incorrect PLE assumption is derived for Maximum likelihood

(ML) algorithm.

• A previously proposed RSS-PLE joint estimator (JE) is enhanced by reduc-

ing its complexity.

• A Maximum a posteriori (MAP) estimator which considers the PLE as an

unknown random variable is proposed.

• Hybrid Cramer-Rao Bound (HCRB), a benchmark, for the MAP is derived.

• Analytical expression for the mean square error (MSE) and bias of location

estimates for incorrect PLE assumption is derived for linear least squares

(LLS) algorithm.

• Low complexity joint LLS algorithm for location and PLE is proposed.

• A RSS based weighted least squares (WLS) algorithm is proposed for loca-

tion estimation.

• Optimal reference AN selection technique is proposed for better perfor-

mance.

• Linear CRB to lower bound the performance of LLS algorithm is dervied.

• Technique to select optimal and worst AN positions based on the minimiza-

tion of the mean CRB is proposed.

• A novel algorithm namely conditioned mean square error ratio (CMSER)

is developed that is resilient to location error and performs considerably

better than previously proposed geographic routing algorithms.
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1.8 Thesis Outline

Following the introduction, in which a brief history of localisation systems, a clas-

sification of location systems, some performance metrics and some applications

were described. The rest of the thesis is organised as follows:

Chapter 2 deals with RSS based localisation in an unknown path-loss model.

First, an analytical expression for the mean square error (MSE) on location esti-

mates for incorrect PLE assumption is derived and it is examined, via simulation,

the effects of error in the PLE on the location accuracy. Second, a previously

proposed RSS-PLE joint estimator (JE) is enhanced by reducing its complexity.

Also a maximum a posteriori (MAP) estimator which considers the PLE as an

unknown random variable is proposed. Finally, the Hybrid Cramer-Rao Bound

(HCRB) as a benchmark for the MAP estimator is derived.

Chapter 3 This chapter also deals with the estimation of location coordinates in

unknown path-loss model. First, the non-linear path-loss equations are linearized

and the solution is obtained using linear least square (LLS) estimates. Second, in

order to underline the effects of inaccurate PLE assumption in noisy channels on

location coordinates, error analysis is done when incorrect PLE is assumed, hence

a closed form expression is derived for MSE and bias. Next, the LLS problem is

transformed into a single variable minimization problem to estimate jointly the

location and PLE. In order to achieve higher accuracy, the obtained estimates

are used as an initial estimate to the proposed iterative algorithm in chapter 2.

Chapter 4 In this chapter, the LLS method is further analysed and its perfor-

mance is improved. Firstly, a weighted least squares (WLS) algorithm is proposed
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which considerably improves the location estimation accuracy. Secondly, refer-

ence anchor optimization using a technique based on the minimization of the

theoretical mean square error (MSE) is also proposed to further improve perfor-

mance of LLS and WLS algorithms. Finally, in order to realistically bound the

performance of any unbiased RSS location estimator based on the linear model,

the linear Cramer-Rao bound (CRB) is derived.

Chapter 5 In this chapter, the effects of anchor placement on optimal target

node positioning is investigated. The optimal and worst anchor positions are

determined through extended simulation by comparing their mean CRB. Fur-

thermore the ramifications of an additive and multiplicative noise model on the

mean CRB are explored. Finally, the least squares (LS) method for localisation

is used and its performance is compared with the lower bound for optimal anchor

positions.

Chapter 6 In chapter 6, the effects of error in localised nodes on the geographic

routing is discussed. Instead of assuming full knowledge of node location, nodes

are first localised using ToA and RSS and then their estimated locations are use

in the geographic routing algorithms. Furthermore, a novel algorithm namely

conditioned mean square error ratio (CMSER) is developed that is resilient to

location error and performs considerably better than previously proposed geo-

graphic routing algorithms with erroneous node locations.

Chapter 7 Chapter 7 concludes this thesis and briefly describes some future

research directions in the field of localisation.
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2 Joint Estimation of the

RSS-Based Location and

Path-Loss Exponent

The material in this chapter has been published in the paper:

• N. Salman, M. Ghogho, and A. H. Kemp, “On the joint estimation of

the RSS-based location and path-loss exponent,” IEEE Wireless Commun.

Lett., vol. 1, no. 1, pp. 34–37, Feb. 2012.

2.1 Overview

Two widely used techniques for distance estimation are time-of-arrival (ToA) [28]

and received signal strength (RSS) [29, 30, 18]. Highly accurate clocks on-board

the nodes are a requisite for ToA localisation. For low cost and low complexity

positioning systems, RSS based localisation is the most attractive technique as

no additional hardware is required. The accuracy of the location estimate via

RSS is highly dependent on knowledge of the path-loss exponent (PLE). Thus,

degraded system performance is expected with an inaccurate PLE assumption.

In many studies, the distance relation with the received power is based on a
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simplistic path-loss model [18, 31]. In these studies the PLE is assumed to be

exactly known. This, in practical systems is an oversimplification as the PLE

value can only be known when it is measured at multiple points prior to sys-

tem implementation. Prior channel measurement is impractical in unfavourable

scenarios and also its value is environment dependent, ergo its value needs to be

estimated. In a recent publication [32], the authors address the same problem

by first selecting the PLE from a values set by maximizing the compatibility of

the distance estimates however compatible distance estimates might be highly

inaccurate in noisy channels thus leading to inaccurate PLE estimation. The

authors also put constraints on the estimated PLE values which are reasonable

only in specific networks. More recently, in [33] a computationally intense two

stage algorithm is used. In the first stage the location coordinates are estimated

iteratively while keeping the PLE to any fixed value, in the second stage the PLE

is estimated iteratively. This chapter focuses on the joint estimation of the PLE

and location coordinates.

The signal model and problem statement is defined in section 2.2. In section 2.3,

location error analysis when the PLE value is incorrect via Taylor series expansion

is done while section 2.4 improves on an already proposed joint estimator (JE)

[34]. Its implementation is improved by abating its complexity. In addition,

any prior information regarding the PLE is utilized and a maximum a posteriori

(MAP) estimator is developed in section 2.5 that also jointly estimates the PLE

and location coordinates. Finally, the hybrid Cramer-Rao bound (HCRB) is

derived in section 2.6 to lower bound the performance of an unbiased location

estimator when the PLE is a random variable.
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2.2 Signal Model

For later use, the following notations are defined. Rn represents the set of n

dimensional real numbers. Tr(M) represents the trace of the matrix M . (.)T

represents the transpose operation. E(.) represents the expectation operation.

(M)ij represents the element at the ith row and jth column of matrixM . N (µ, σ2)

denotes the normal distribution with mean µ and variance σ2. A two dimensional

network is considered with only one target node (TN) which has unknown co-

ordinates θ = [x, y]T (θ ∈ R2) that are to be estimated. The network consists of

N anchor nodes (AN) with locations θi = [xi, yi]T (θi ∈ R2) for i = 1, ..., N. The

distance between the TN and the ith anchor, di, is related to the path-loss at the

ith anchor, Li , and the PLE, α, as [35, 36, 37]

Li = L 0 + 10αi log10 di + wi, (2.1)

where L0 being the path-loss at a reference distance d0 and wi is a zero-mean

Gaussian random variable representing the log-normal shadowing effect, i.e.

wi ∼
(
N
(
0, σ2

i

))
.

The path-loss is calculated as

Li = 10 log10 Pt − 10 log10 Pi, (2.2)

where Pt is the transmit power at the TN and Pi is the received power at the ith

anchor. The distance di is given by

di =
√

(x− xi)2 + (y − yi)2. (2.3)

The reference distance d0 < di is normally taken as 1 m. It is assumed that we

do not have knowledge of α, thus the unknown vector is
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φ =
[
θT , α

]T
.

The observed path-loss (in dB) from d0 to di

zi = Li−L0,

can be expressed as,

zi = fi(φ) + wi, i = 1, ..., N, (2.4)

where fi (φ) = 10α log10 di. In a vector form,

z = f (φ) + w, (2.5)

where z = [z1, ..., zN ]T is the vector of the observed path-loss.

f (φ) = [f1 (φ) , ..., fN (φ)]T represent the vector of the actual path-loss and w =

[w1, ..., wN ]T is the noise vector. Since the noise is Gaussian and assuming in-

dependence of the noise components, the joint conditional probability density

function (pdf) of z is given by

p (z | φ) =
N∏
i=1

1√
2πσ2

i

exp
{
−(zi − fi (φ))2

2σ2
i

}
. (2.6)

Thus, the maximum likelihood (ML) estimate of (2.6) is equivalent to the non-

linear least square (NLS) solution of the cost function

ε (φ) = (z− f (φ))T (z− f (φ)) . (2.7)

Since (2.5) represents a set of non-linear equations, an iterative method is required

to estimate the unknown vector in an optimal fashion. Chapter 2 and 3 deals

38



2.3 Error Analysis

with the sub-optimal (but low complexity) solution to (2.5).

2.3 Error Analysis

In this section, the effects of the error in α on location estimates that are obtained

from an ideal unbiased location estimator are analysed .

The ML solution to the pdf (2.6) for any given value of the PLE α is obtained

by minimizing the cost function

G (θ|α) = 1
2σ2

N∑
i=1

(zi − fi (θ|α))2 (2.8)

Same shadowing variance for all ANs i.e. σ2
i = σ2 ∀ i is considered. Next the

gradient ∇θ of G (θ|α) is taken such that ∇θ =
[

∂
∂x

∂
∂y

]T
and applying the

multivariate Taylor series expansion to ∇θG (θ|α) around the true values θ0 and

α0, while ignoring the higher terms to obtain (2.9),

∇θG (θ|α) = ∇θG (θ|α)
∣∣∣∣ θ=θ0
α=α0

+


[
∂
∂x
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0[

∂
∂y
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0


T  (x − x0)

(y − y0)

+

[ ∂
∂α
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0

 (α− α0) , (2.9)

where
[ [

∂
∂x
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0

[
∂
∂y
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0

]
can be replaced by its ex-

pected value [38]

E
[ [

∂
∂x
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0

[
∂
∂y
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0

]
=−I (θ)
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Here I (θ) is the 2 × 2 Fisher information matrix (FIM) [39] of the localisation

in terms of location coordinates (x, y) only and the expectation is w.r.t p (z | φ) .

(2.9) is thus written as

∇θG (θ|α) = ∇θG (θ|α)
∣∣∣∣ θ=θ0
α=α0

− I (θ)

 (x− x0)

(y − y0)

+
[ ∂
∂α
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α0

 (α− α0).

(2.10)

For the ML estimate θ̂ with an incorrect PLE assumption α̌, a necessary but

not sufficient condition at the minima of the cost function is ∇θG (θ|α)
∣∣∣∣ θ=θ̂
α=α̌

= o,

where o is a 2× 1 null vector. Thus, (2.10) is written as

 (x̂ − x0)

(ŷ − y0)

 = I (θ|α̌)−1
[
∇θG (θ|α)

∣∣∣∣ θ=θ0
α=α̌

+
[[

∂
∂α
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α̌

]
(∆α)

]
, (2.11)

where ∆α = (α̌ − α0). Finally, location mean square error (MSE) is given by

the trace of the covariance matrix1

E

 (x̂− x0)

(ŷ − y0)


 (x̂− x0)

(ŷ − y0)


T

=

E

{I (θ|α̌)−1
[
∇θG (θ|α)

∣∣∣∣ θ=θ0
α=α̌

+
[[

∂

∂α
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α̌

]
(∆α)

]}
×

1I (θ) is symmetric.
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
[
∇θG (θ|α)

∣∣∣∣ θ=θ0
α=α̌

+
[[

∂

∂α
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α̌

]
(∆α)

]T

I (θ|α̌)−1


, (2.12)

since

E

(∇θG (θ|α)
∣∣∣∣ θ=θ0
α=α̌

)(
∇θG (θ|α)

∣∣∣∣ θ=θ0
α=α̌

)T
 = I (θ|α̌), (2.13)

then from (2.12)

MSE = Tr
{
I (θ|α̌)−1 E

[
I (θ|α̌) + X.∆α + Y.∆α2

]
I (θ|α̌)−1

}
, (2.14)

where

X =2E
∇θG (θ|α)

∣∣∣∣ θ=θ0
α=α̌

(
∂

∂α
∇θG (θ|α)

∣∣∣∣ θ=θ0
α=α̌

)T . (2.15)

After derivation

X=2


α̌
σ2
∑N
i=1

(
γx̃i
d2
i

)2
α̌
σ2
∑N
i=1

(
γ
d2
i

)2
x̃iỹi

α̌
σ2
∑N
i=1

(
γ
d2
i

)2
x̃iỹi

α̌
σ2
∑N
i=1

(
γỹi
d2
i

)2

 . (2.16)

and

Y =
([

∂

∂α
[∇θG (θ|α)]

] ∣∣∣∣ θ=θ0
α=α̌

(4α)
)([

∂

∂α
[∇θG (θ|α)]

] ∣∣∣∣ θ=θ0
α=α̌

)T

, (2.17)

after derivation, E [Y] is given by

Y =


N∑
i=1

x̃2
i γ

2

σ4d4
i

(
(ln diα̌γ)2 + σ2

) N∑
i=1

x̃iỹiγ
2

σ4d4
i

(
(ln diα̌γ)2 + σ2

)
N∑
i=1

x̃iỹiγ
2

σ4d4
i

(
(ln diα̌γ)2 + σ2

) N∑
i=1

ỹ2
i γ

2

σ4d4
i

(
(ln diα̌γ)2 + σ2

)
, (2.18)

where γ = 10
ln 10 , x̃i = (x0 − xi) and ỹi = (y0 − yi).
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2.3 Error Analysis

When the error in α̌ is zero. When the error in α̌ is zero, the MSE of the

location reduces to the CRB2 of location estimate. It is straightforward from

(2.14)

MSE = Tr
{[

I (θ)−1 I (θ)
]
I (θ)−1

}
= Tr

{
I (θ)−1

}
. (2.19)

2.3.1 Bias of RSS estimator

For a “good” location geometry (i.e. the TN placed at the centre of the network

while the ANs are at the edge) the RSS measurements are unbiased. Similarly, for

high signal to noise ratio (SNR) i.e. when a large number of ANs are deployed, the

estimation again is unbiased. However, for a “poor” geometry (i.e. the TN is near

the edge of the network) or for low SNR, the RSS estimator exhibits a definite

bias. This bias can unexpectedly lead to favourable results as the performance

of the estimator can exceed the CRB. The CRB thus cannot tightly bound the

estimator performance when it is unbiased. However, the CRB can still predict

the performance of a general theoretical unbiased estimator.

2.3.1.1 Analytical expression of Bias due to incorrect PLE assumption

Rewriting (2.11), (x̂ − x0)

(ŷ − y0)

 = I (θ|α̌)−1
[
∇θG (θ|α)

∣∣∣∣ θ=θ0
α=α̌

+
[[
∂

∂α
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α̌

]
(∆α)

]
. (2.20)

Bias B is given by E
(
θ̂ − θ0

)
=E

 (x̂ − x0)

(ŷ − y0)

, thus (2.20) is written as

2The covariance matrix of an unbiased estimator is lower bounded by the CRB, and is given

by E
[(

θ̂ − θ
)(

θ̂ − θ
)T
]
≥ [I (θ)]−1, where [I (θ)] is the Fisher information matrix (FIM).
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2.4 Low Complexity Joint Location and PLE Estimator

B = I (θ|α̌)−1E

[[
∂
∂α
∇θG (θ|α)

] ∣∣∣∣ θ=θ0
α=α̌

]
(∆α)

= I (θ|α̌)−1
[
γ2α̌

∑N
i=1

x̃i ln di
σ2d2

i
γ2α̌

∑N
i=1

ỹi ln di
σ2d2

i

]T
(∆α) (2.21)

The Total Bias is given by

Total Bias = E
[

(x̂− x0)
]

+ E
[

(ŷ − y0)
]

= B (1, 1) + B (2, 1) .

2.4 Low Complexity Joint Location and PLE

Estimator

In [34], the author attempted to formulate a joint estimator (JE) to find the NLS

estimate of the unknown vector φ. The solution was obtained iteratively using

the Lavenberg-Marquardt (LM) method which is a modification to the Gauss-

Newton (GN) method. The solution at the (k + 1) th iteration is given by

φk+1 = φk + δ̃
k
, (2.22)

where δ̃k is the newton step which is modified and given by [40]

δ̃k =
((

JT
)k

Jk + λ̄kD
)−1 (

JT
)k (

z− f k (φ)
)
. (2.23)

D is a positive diagonal matrix and for simplicity it is commonly taken as the
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2.4 Low Complexity Joint Location and PLE Estimator

identity matrix3. Jk is the Jacobian matrix at the kth step. The LM method

differs from the conventional gradient descent algorithm as it has an adaptive

step size. An initial step size λ̄1 is chosen. If at the kth iteration, the error ε (φ)

is reduced, the value of φk is updated to φk+1 and the value of the step size is

decreased by a factor λ̄k+1 = λ̄k

%
, % is some scaling factor. Its value is a trade-off

between accuracy and computation complexity. A small % offers more accuracy

but higher computation. Conversely, if ε (φ) increases at the kth iteration, then φk

is not updated and the value of the step size is increased by a factor λ̄k+1 = %λ̄k.

For the estimator in [34], the Jacobian is a N×3 matrix. Its elements are given

by
[
J1
]
ij

= ∂fi (φ)
∂φj

∣∣∣∣∣∣
φ=φ1

. (2.24)

Described below is a simplified implementation of the JE which reduces the size

of the Jacobian matrix from N×3 to N×2.

It is clear from (2.5) that although they form a set of non-linear equations in

terms of TN coordinates (x, y), yet they are linear in terms of α and hence can

be solved via classical ML method instead of an iterative algorithm. Taking the

derivatives of (2.7) with respect to α and setting the result equal to zero yields

∂ε (φ)
∂α

= −10zT log10 d− 10 log10 dTz + 200α log10 dT log10 d = 0. (2.25)

Solving for the PLE yields

α̂ = zT

10 log 10dT
, (2.26)

for d = [d1, ..., dN ]T .

It is seen that (2.26) depends only on the observed path-loss and the distances
3The dimensions of D depend on the number of parameters to be estimated.
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2.5 Bayesian Estimation

between the target and the ANs which in turn depend on the unknown x and y

coordinates. This reduces the unknown vector to θ = [x, y]T . Finally putting α̂

back in (2.7) and applying the LM algorithm produces the TN coordinates. This

simplification shall be referred to as the low complexity joint estimator (LCJE).

On the other hand, a simple RSS based location estimator which assumes to

have accurate knowledge of α will be referred to as the received signal strength

estimator RSSE.

2.5 Bayesian Estimation

2.5.1 Motivation

As mentioned before, knowledge of the exact value of the PLE is difficult to ob-

tain. However, in general the value range is between 2-5 . In fact, many text

books tabulate values of α for different environments based on empiric results

[20]. Thus there is already a prior information about the PLE for different envir-

onments, therefore one could incorporate this information to estimate α instead

of blind estimation as in JE. Hence, the PLE can be considered a random vari-

able that is Gaussian distributed around a mean µa with variance σ2
α. Empirical

results in [41] validate this assumption. The value of the variance σ2
a indicates

the confidence in the available data. In this section, a MAP estimator is formu-

lated that iteratively estimates the location coordinates and also capitalizes on

the prior information about α.

2.5.2 Maximum a posteriori estimator

Using the signal model in (2.5) and the a priori information on α, the MAP

estimator of φ is given by [42]
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2.5 Bayesian Estimation

φ̃MAP ≡ arg max
φ
{ln p (φ | z)} , (2.27)

where p (φ | z) is posterior probability of φ given the obserivation z, and is given

by

ln p (φ | z) = ln p (z | φ) + ln p (φ) .

Thus,

φ̃MAP ≡ arg max
φ
{ln p (z | φ) + ln p (φ)} . (2.28)

Since in the unknown vector φ =
[
θT , α

]T
, only α is a random variable, thus

(2.28) can be written as

φ̃MAP ≡ arg max
α
{ln p (z | α,θ) + ln p (α)} . (2.29)

where

p (α) = 1√
2πσ2

α

exp
{
−
(

(α− µα)2

2σ2
α

)}
.

(2.29) can be equivalently represented by

φ̃MAP ≡ arg min
α

1
2

N∑
i=1

(
zi − fi (θ)

σi

)2

+ (α− µα)2

2σ2
α

 . (2.30)

Differentiating w.r.t α and equating the outcome to zero yields
N∑
i=1
−(zi − fi (θ)) 10 log10 di

σ2
i

+ (α− µα)
σ2
α

= 0. (2.31)

Solving (2.31) for α,
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2.6 Hybrid Cramer-Rao Bound

α̂ = µα +
∑N
i=1 (Ki − µαLi)Li

1
σ2
α

+∑N
i=1 L

2
i

, (2.32)

where

Ki = zi
σi
,

and

Li = 10 log10 di
σi

.

The variance σ2
α is choosen by doing some prior measurement in an environment.

A small σ2
α will suggest that the PLE value is uniform for different channel links

in the environment. As can be seen, Li depends on di, which is unknown. The

values of α̂ can now be updated jointly with the coordinates (x, y) using the LM

algorithm. Hence, the available information about α is capitalized in addition to

the observed data.

2.6 Hybrid Cramer-Rao Bound

In order to compare the MSEs of estimators, the CRB has been extensively used

as a benchmark. The CRB puts a lower bound on any unbiased estimator.

The classical CRB in [34] cannot be used as a benchmark for the performance of

the MAP estimator given in subsection 2.5.2. This is because the classical CRB

does not consider the available information of the parameters to be estimated.

For a set of all random parameters, the Bayesian CRB can be used as a bound

[42]. However, if some of the unknown parameters are random while others are

deterministic, then the hybrid CRB is used.
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2.6 Hybrid Cramer-Rao Bound

In this section, the HCRB is derived when considering the PLE as a random

variable. The hybrid information matrix (HIM) is defined as [42].

IH = ID + IP, (2.33)

where ID is the 3× 3 matrix that represents the contribution from the observed

data. Its elements are given by

[ID] = E [I (α,θ)] , (2.34)

where the expectation is w.r.t p (α) and

[I (α,θ)]ij = −E
[
∂2 ln p (z | α,θ)

∂θi∂θj

]
, (2.35)

the expectation here is w.r.t p (z | α,θ). IP shows the prior information and is

given by

IP = −E
[
∂2 ln p (α)

∂α2

]
, (2.36)

where the expectation is w.r.t p (α) only. After some derivation, IH is given by

IH = 1
σ2



∑N
i=1

(
γx̃i
d2
i

)2

Ψ ∑N
i=1

(
γ

d2
i

)2

x̃iỹiΨ
∑N
i=1
(
γ
di

)2
x̃i ln diΦ∑N

i=1

(
γ

d2
i

)2

x̃iỹiΨ
∑N
i=1

(
γỹi
d2
i

)2

Ψ ∑N
i=1
(
γ
di

)2
ỹi ln diΦ∑N

i=1
(
γ
di

)2
x̃i ln diΦ

∑N
i=1
(
γ
di

)2
ỹi ln diΦ

∑N
i=1(γ ln di)2+σ−2

α

 , (2.37)

where Φ and Ψ are the first and second moments of p (α) . Now, the localisation

MSE for any unbiased location estimator is bounded by

MSE
(
θ̂
)
≥ [IH]−1

11 + [IH]−1
22 , (2.38)

where
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MSE
(
θ̂
)

=E
[(

θ̂ − θ0
)T (

θ̂ − θ0
)]

(2.39)

and

θ̂ − θ0 =
[

(x̂− x0) (ŷ − y0)
]T

, (2.40)

θ0 being the true values.

On the other hand, the MSE of the estimated α̂ is bounded by

MSE (α̂) ≥ [IH]−1
33 . (2.41)

2.7 Simulation Results

In all the simulations a circular deployment of ANs with radius (R) is considered.

(x1, y1) is the initial seed given to the LM algorithm which iterates ρ number of

times. Simulations are run independently η number of times.

2.7.1 Error Analysis

2.7.1.1 MSE

Fig. 2.1 compares the location error analysis with RSSE simulation for incorrect

PLE assumption. The root mean square error (RMSE) is compared with different

values of ∆α. The TN is placed at the centre of the network at (0,0). It is

observed that the simulations follow the error analysis results. However, both

the error analysis and the simulation exhibit larger error for α̌ < α0 as compared

to α̌ > α0. The large error shown by the simulation is due to the divergence of
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2.7 Simulation Results

the iterative algorithm due to incorrect PLE assumption. It is also observed that

RMSE decreases as the number of ANs are increased, however even for larger

number of ANs the incorrect PLE assumption produces unacceptable location

error.
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Simulation for 4 anchors
Simulation for 5 anchors
Simulation for 6 anchors
Error analysis for 4 anchors
Error analysis for 5 anchors
Error analysis for 6 anchors

Figure 2.1: Comparison between error analysis and RSSE simulation. σ2
i = 5,

ρ = 10, α0 = 3, R=50 m, η = 500, (x0, y0) = (0, 0), (x1, y1) = (24,−24).

2.7.1.2 Bias

A circular deployment of 6 ANs is considered in Fig. 2.2 and the target node

is placed at different positions. The noise variance is σ2 = 1. The total bias is

compared with different values of 4α. It is interesting to note that when the

target node is placed at the centre, i.e. equal distance from all ANs, then no

Bias is recorded. Once again, it is noted that the simulation closely follow the

theoretical results.
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Figure 2.2: Comparison between theoretical Bias and RSSE simulation. σ2
i = 1,

ρ = 10, α0 = 3, R=50 m, N = 6.

2.7.2 Comparison between JE and LCJE

In the simulation shown in Fig. 2.3, the performance of JE and LCJE is compared.

As can be seen both implementation show similar performance. Thus the decrease

in complexity in LCJE does not have any negative impact on the performance of

the algorithm.

2.7.3 Performance comparison between JE and MAP

(estimation of α)

Fig. 2.4 shows the comparison between performance of the RSSE, JE and the

MAP estimator in estimating α at TN position (0,0). Two different values of σα=

0.1 and 0.05 are used. It is observed that as the noise variance increases (or at low

SNR) the MAP performs considerably better than the JE. It is noticed that CRB

and the HCRB bound the performance of the iterative algorithm as it is unbiased
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at this geometry. However, at other geometries when the estimator is biased, the

CRB/HCRB does not tightly bound the performance of the estimator. It should

be noted that all algorithm parameters such as (x1, y1), λ̄1, % and ρ in the LM

algorithm are kept the same for both methods.

2.7.4 Performance comparison between JE and MAP

(estimation of (x, y))

In Fig. 2.5, the performance of the RSSE, JE and MAP algorithms is compared.

The RMSE is compared with the number of iteration ρ. It is observed that all

three algorithms asymptotically converge to the same minimum. However, due to

no prior information the JE has a slower convergence rate than the MAP. Thus

the MAP exhibits superior performance for a smaller ρ. Indeed, the perform-

ance of the MAP estimator depends on σα, a smaller value of σα shows better

performance.

2.7.5 Location CRB/HCRB comparison

Fig. 2.6 shows the performance of the CRB and HCRB on the location estimation

for the three different cases, i.e. when α is known, α is unknown and deterministic

and when α is unknown and random. It is interesting to note, that at a good

geometry when the TN is at (0,0) the performance of HCRB and CRB is the

same. For other geometries the HCRB shows smaller error than the CRB. This

is expected due to the additional information available about α.

2.8 Summary

In this chapter, the issue of RSS based location estimation for an unknown path-

loss model was addressed. First, error analysis for incorrectly assumed PLE was
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Figure 2.3: Performance comparison between JE and LCJE. R=50, α0 = 3,
λ̄1 = 1, % = 1.1, ρ = 15, η = 1500, (x0, y0) = (0, 0), (x1, y1) = (25, 25).

done. It was shown that the simulation results are in agreement with the error

analysis results and that both show degraded performance when α is incorrectly

assumed. Performance degradation is even worse for negative ∆α. Second, a low

complexity implementation of the JE by decreasing the elements of the Jacobian

matrix was proposed. Simulation results prove that this simplification has no

affect on the performance. In order to utilize the on hand data available about

the PLE, the PLE is considered as a random variable and a MAP estimator was

proposed. Simulation results prove that the MAP performs better in estimating

α at low SNR and has a faster convergence in location estimation. Finally, the

HCRB for a random α was derived and it was shown that in general it is lower

than the CRB due to the additional information provided about α. Yet when the

TN is at equal distance from all anchors both bounds are the same.
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(x1, y1) = (18, 18).
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3 Low Complexity RSS based

Localisation

The material in this chapter has been published in the papers:

• N. Salman, M. Ghogho, and A. H. Kemp, “Low Complexity Joint Estima-

tion of Location and Path-Loss Exponent,” IEEE Wireless Commun Lett.,

vol. 1, no. 4, pp. 364–367, Aug. 2012.

• N. Salman, M. Ghogho, J. Guo, A. H. Kemp, “Analysis of linear least

square solution for RSS based localization” 12th International Symposium

on Communications and Information Technologies (ISCIT), 2012. pp. 1051

- 1054, Oct 2012.

3.1 Overview

Chapter 2 dealt with the RSS based localisation using the iterative LM method

and developed the LCJE. Although the LCJE reduces the number of unknowns

and hence the size of the Jacobian matrix, it suffers from issues which are inher-

ent with iterative techniques. These may include ill-conditioning and divergence

[40]. Furthermore a close initial estimate is required to guarantee convergence

to the global minima. In many cases, guessing a close initial estimate is not



3.1 Overview

possible, which can result in the iterative algorithms to converge to the local

minima. To by pass these difficulties, in this chapter, the non-linear path-loss

observations are first linearised and then solved via simple linear least squares

(LLS) method. The chapter also deals with the joint estimation of PLE and loc-

ation using the LLS. The approach here is opposite to LCJE in chapter 2, where

first the PLE was determined in terms of location coordinates which were then

estimated. However, in this chapter, the PLE is first estimated as it is depend-

ent on the location coordinates, which results into a single variable minimization

problem. The PLE is estimated via a simple line search followed by the location

estimation. Furthermore in this chapter, using the linearised set of equations a

closed form expression is developed for the mean square error (MSE) and bias of

the location estimates for incorrect PLE assumption. For further increased accur-

acy the obtained results are used as the initial estimate to our proposed iterative

algorithm i.e. LCJE. This results in optimum performance with a small number

of iterations and guaranteed convergence. To sum up, the main contributions of

this chapter are as follows:

• Introducing LLS technique to solve RSS based location.

• Error analysis of LLS technique with PLE in error.

• Joint estimation of PLE and location using LLS.

• Demonstration of superior performance when the LLS solution is used as

the initial estimate for LCJE.

The rest of the chapter is organized as follows. Section 3.2 presents the problem

statement and the system model. In section 3.3, the non-linear path-loss equa-

tions are linearised and the linear least squares (LLS) solution is presented. In

section 3.4, location error analysis for incorrect PLE is carried out. In section 3.5,

the linear joint estimator (LJE) for PLE and location estimation is developed.
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Finally in section 3.6, the simulation results are discussed which are followed by

conclusions.

3.2 System Model

Unless otherwise specified, same notations as in chapter 2 are used in this chapter.

The signal model (before linearisation) is similar to that in chapter 2, and will

be rewritten here for easy understanding.

A two dimensional network is considered bearing target node (TN) which has

unknown coordinates θ = [x, y]T (θ ∈ R2) that are to be estimated. The network

consists of N anchor nodes (ANs) with locations θi = [xi, yi]T (θi ∈ R2) for i =

1, ..., N. The distance di between the TN and the ith AN, is related to the path-loss

at the ith AN, Li , and the PLE, α, as [35]

Li = L 0 + 10α log10 di + wi, (3.1)

where L0 is the path-loss at the reference distance d0 (d0 < di, and is normally

taken as 1 m) and wi is a zero-mean Gaussian random variable representing the

multipath log-normal shadowing effect, i.e.

wi ∼
(
N
(
0, σ2

i

))
.

The different delay of the multipaths are irrelevant in RSS location systems.

Thus shadowing in this only fluctuates the received power due to constructive

and destructive interference at the receiver.

The path-loss is calculated as

Li = 10 log10 Pt − 10 log10 Pi, (3.2)
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where Pt is the transmit power at the TN and Pi is the received power at the ith

AN. The distance di is given by

di =
√

(x− xi)2 + (y − yi)2.

The observed path-loss (in dB) from d0 to di,

zi = Li−L0, (3.3)

can be expressed as

zi = fi(θ) + wi, (3.4)

where

fi (θ) = γα ln di, (3.5)

and

γ = 10
ln 10 . (3.6)

In a vector form,

z = f (θ) + w, (3.7)

where z = [z1, ..., zN ]T is the vector of the observed path-loss.

f (θ) = [f1 (θ) , ..., fN (θ)]T is the actual path-loss vector and w = [w1, ..., wN ]T is

the noise vector. It is evident from (3.7) that it forms a set of non-linear equations

and hence are normally solved using iterative methods such as the Gauss-Newton

(GN) method. However, the solution can also be found non-iteratively by first

linearising the system as shown in the next section.
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3.3 Linear Model

The idea of linearising the non-linear set of distance equations was first proposed

for ToA systems in [43] while its detailed analysis is present in [44]. Here a similar

approach is used to linearise the non-linear path-loss equations as follows. Let ẑi

be the noisy path-loss measurements. Then from (3.7),

ẑi
γα

= ln d̂i (3.8)

or (
exp 2ẑi

γα

)
= d̂2

i . (3.9)

Each distance equation can now be subtracted from a reference distance equation

d2
r.

d2
r − d2

i =
(

exp 2ẑr
γα

)
−
(

exp 2ẑi
γα

)
(3.10)

or

(xi − xr)x+(yi − yr) y = 0.5
[(

exp 2ẑr
γα

)
−
(

exp 2ẑi
γα

)
−
(
x2
r + y2

r

)
+
(
x2
i + y2

i

)]
.

(3.11)

The obtained results can be written in matrix form

Aθ = 0.5bα, (3.12)

where
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3.3 Linear Model

A =



x1 − xr y1 − yr

x2 − xr y2 − yr
... ...

xN−1 − xr yN−1 − yr


, θ =

 x

y

 (3.13)

and

bα =



(
exp 2ẑr

γα

)
−
(
exp 2ẑ1

γα

)
− ϕr + ϕ1(

exp 2ẑr
γα

)
−
(
exp 2ẑ2

γα

)
− ϕr + ϕ2

...(
exp 2ẑr

γα

)
−
(
exp 2ẑN−1

γα

)
− ϕr + ϕN−1


,

where ϕr = x2
r + y2

r and ϕi = x2
i + y2

i for i = 1, ..., N − 1. The solution is given by

[39]

θ̂ = 0.5A†bα, (3.14)

where A† = (ATA)−1AT .

This approach is referred to as the linear least squares (LLS) method. The

reference distance dr can be obtained by choosing a reference node. This will

be referred to as LLS-ref. Alternatively dr can be the average of all distance

equations i.e. d2
r = 1

N

∑N
i=1 d

2
i , this implementation will be referred as LLS-

avg. Finally instead of subtracting a reference distance, each distance equation

is subtracted from every other (combination of pair of equations) resulting in

N ×
(
N−1

2

)
equations. This shall be known as LLS-comb. It is noted however

that the number of equations increases substantially with LLS-comb for larger

number of ANs.
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3.4 Error Analysis

In order to appreciate the effects of an incorrect PLE assumption on location

error, the MSE and bias expressions for location error due to incorrect PLE and

noisy path-loss estimates are derived. Let the LS solution

θ̌ = 0.5A†bα̌ (3.15)

be the solution of the TN location for incorrect PLE assumption. The observed

vector bα̌ contains path-loss ži with associated noise that has variance σ2 and

PLE

α̌ = α0 + ∆α, (3.16)

α0 is the true value of the PLE and ∆α is the error. On the other hand if θ0 is

the solution obtained for accurate PLE α0 resulting in observed vector bα0 then

θ0 = 0.5A†bα0 , (3.17)

and for ε = (bα̌)− (bα0),

θ̌ − θ0 =
(
0.5A† (ε)

)
. (3.18)

3.4.1 MSE

The mean square error (MSE) is given by the trace of the covariance matrix

MSE = Tr
{
E
[(

θ̌ − θ0
) (

θ̌ − θ0
)T ]}

. (3.19)

Putting (3.17) and (3.18) in (3.19), it follows

MSE = Tr
{

0.25
[
A†E

[
εεT

] (
A†
)

T
]}
. (3.20)
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{
E
[
εεT

]}
ii

= exp 4(γα̌fr(θ)+2σ2)
(γα̌)2 + exp 4fi(θ)

γα0
+ exp 4fr(θ)

γα0
− 2 exp 2(fi(θ)+fr(θ))

(γα0)2 −

2 exp 2(γα̌(fr(θ)+fi(θ))+2σ2)
(γα̌)2 − 2 exp

(
2(γα̌fr(θ)+σ2)

(γα̌)2 + 2fr(θ)
γα0

)
+ exp 4(γα̌fi(θ)+2σ2)

(γα̌)2 + 2×

exp
(
2(γα̌fr(θ)+σ2)

(γα̌)2 + 2fi(θ)
γα0

)
+2 exp

(
2(γα̌fi(θ)+σ2)

(γα̌)2 + 2fr(θ)
γα0

)
− 2 exp

(
2(γα̌fi(θ)+σ2)

(γα̌)2 + 2fi(θ)
γα0

)
.

(3.21)

{
E
[
εεT

]}
ij
=

exp 4(γα̌fr(θ)+2σ2)
(γα̌)2 − exp 2(γα̌(fr(θ)+fj(θ))+2σ2)

(γα̌)2 − 2 exp
(

2(γα̌fr(θ)+σ2)
(γα̌)2 + 2(fr(θ))

γα0

)
+

exp
(

2(γα̌fr(θ)+σ2)
(γα̌)2 + 2(fj(θ))

γα0

)
− exp2(γα̌(fi(θ)+fr(θ))+2σ2)

(γα̌)2 − exp
(

2(fi(θ)+fr(θ))
γα0

)
+

exp2(γα̌(fi(θ)+fj(θ))+2σ2)
(γα̌)2 + exp

(
2(γα̌fi(θ)+σ2)

(γα̌)2 + 2(fr(θ))
γα0

)
−

exp
(

2(γα̌fi(θ)+σ2)
(γα̌)2 + 2(fj(θ))

γα0

)
+ exp

(
2(fi(θ)+fj(θ))

γα0

)
+ exp

(
2(γα̌fj(θ)+σ2)

(γα̌)2 + 2(fr(θ))
γα0

)
+

exp 4(fr(θ))
γα0

− exp
(

2(fj(θ)+fr(θ))
γα0

)
+ exp

(
2(γα̌fr(θ)+σ2)

(γα̌)2 + 2(fi(θ))
γα0

)
−

exp
(

2(γα̌fj(θ)+σ2)
(γα̌)2 + 2(fi(θ))

γα0

)
.

(3.22)

The diagonal elements of E
[
εεT

]
are given by (3.21) where fr (θ) = γα ln dr.

On the other hand when i 6= j, then
{
E
[
εεT

]}
ij
can be given by (3.22).

3.4.2 BIAS

The total bias is given by

E
[

(x̌− x0)
]

+ E
[

(y̌ − y0)
]

= B (1, 1) + B (2, 1) (3.23)

where

B = 0.5A†E (ε) (3.24)

and the elements of E (ε) are given as
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3.5 Location Estimation in Unknown Path-Loss Model

E (ε) = exp
(

2(γα̌fr(θ)+σ2)
(γα̌)2

)
− exp

(
2(γα̌fi(θ)+σ2)

(γα̌)2

)

−
(

exp 2fr (θ)
γα0

)
+
(

exp 2fi (θ)
γα0

)
. (3.25)

The total bias expression (3.23) could be misleading at times, as the bias in the

x-axis and y-axis could cancel out each other if they are of the same magnitude

but opposite sign. In which case the bias can be zero however it does not mean

that the estimates are error free. Although, in our simulation the trend is that

the bias in both x and y axis has the same sign, in order to avoid confusion, the

abolute value of bias can be taken instead i.e.

Total Bias

=
∣∣∣∣E [ (x̌− x0)

]∣∣∣∣+ ∣∣∣∣E [ (y̌ − y0)
]∣∣∣∣ .

3.5 Location Estimation in Unknown Path-Loss

Model

For unknown path-loss model, the least squares (LS) problem for the observed vec-

tor bα with any unknown α is obtained by minimizing the cost function C (θ, α)

C (θ, α) = ‖Aθ − 0.5bα‖2 , (3.26)

where the LS solution is given by

θ̂LS = 0.5A†bα (3.27)

Putting (3.27) in (3.26), it follows
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3.5 Location Estimation in Unknown Path-Loss Model

C (α) = bT
α

(
AA†

)T
AA†bα + bT

αbα − 2bT
α

(
AA†

)T
bα, (3.28)

using
(
AA†

)T
AA† = AA† and

(
AA†

)T
= AA† to get

C (α) = bT
αbα − bT

α

(
AA†

)
bα (3.29)

or

C (α) =
[
0.25

(
bT
α

(
I−AA†

)
bα
)]
, (3.30)

which is now only a single variable optimization problem. Finally

α̂ = arg min
α

C (α) . (3.31)

Solution to (3.31) is straightforward as the values of α are between 2-5 for most

environments [20]. Incremental values of α between these limits are inserted in

(3.31) and the one that minimizes C (α) is selected. The value of the increment

depends on the desired accuracy. Thus bα̂ obtained is used to obtain the location

coordinates such as

θ̂LJE = 0.5A†bα̂. (3.32)

This technique will be referred to as linear joint estimator (LJE).
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3.6 Simulation Results

3.5.1 θ̂LJE as the initial estimate

In order to achieve higher accuracy at the expense of higher computation, θ̂LJE

can be used as an initial estimate to a more computationally complex iterative

algorithm such as maximum a posteriori (MAP) and LCJE in chapter 2. Both of

these algorithms operate iteratively such as θk+1 = θk+ δ̃, where δ̃ is a small step

and θk is the estimate at the kth iteration. Although both of these algorithms

are optimal, they still require a close initial estimate θ1 for convergence to the

global minima. For initial estimates that are far away from the actual location

coordinates, iterative algorithm can converge into a local minima. Hence by keep-

ing θ1=θ̂LJE convergence to the global minima can be guaranteed. Furthermore

for θ1 = θ̂LJE convergence can be achieved with smaller k.

3.5.2 Cramer-Rao bound (CRB)

The CRB lower bounds the MSE of any unbiased estimator. The CRB for un-

known location coordinates with known PLE is derived in [18]. When the PLE

is also unknown the the CRB-α is derived in [34].

3.6 Simulation Results

For the performance comparison. two different anchor/target node deployments

are considered.

3.6.1 Circular deployment of ANs with correct PLE.

In the first case, a circular deployment of ANs around the origin with radius (R)

is considered. Also randomly deployed 20 TNs are considered in the network

66



3.6 Simulation Results

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

meters

m
et
er
s

 

 

Target nodes
Anchor nodes

Figure 3.1: Network setup.

and average performance is analyzed. This network is illustrated in Fig. 3.1.

Equal noise variance for all ANs i.e. σ2
i = σ2

r = σ2 is assumed. Where σ2
r is the

shadowing variance associated with the path-lose estimate of the reference AN.

The simulations are run η number of times independently. For this scenario only

the LLS-ref approach is used. For the MSE and Bias due to shadowing error only

(accurate PLE), (3.20) is used with ∆α = 0.

In Fig. 3.2, the root mean square error (RMSE) of location estimates is com-

pared while increasing the variance in the path-loss estimates σ2
i . Simulation and

theoretical RMSE is plotted for 5, 7 and 9 ANs. The radius (R) of the circular

deployment is 50 m and the PLE value is 3. As expected lower RMSE is observed

for larger number of ANs. It is also noted that the theoretical analysis accurately

predicts the performance of the LLS estimator.

Fig. 3.3 demonstrates the performance of the LLS estimator and the theoretical

error analysis for different values of the PLE while other simulation conditions

are the same as for Fig. 3.2. It is observed that the performance is improved

67



3.6 Simulation Results

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

σ2

A
v
er
a
g
e
R
M
S
E

(m
)

 

 

Theoretical for 5 anchors
Theoretical for 7 anchors
Theoretical for 9 anchors
Simulation for 5 anchors
Simulation for 7 anchors
Simulation for 9 anchors

Figure 3.2: Simulation and theoretical RMSE. η = 1000, α = 3, R = 50 m.

σ2 0 1 2 3 4 5
LJE-ref 3.0000 3.0505 3.0981 3.1437 3.1846 3.2203
LJE-avg 3.0000 3.0582 3.1081 3.1541 3.2021 3.2349
LJE-comb 3.0000 3.0555 3.1078 3.1586 3.1979 3.2369

Table 3.1: Average of estimated α̂ at different values of noise variance σ2, actual
value α0 = 3.

for large values of the PLE, this improved performance seems encouraging for

large PLE values however this could be misleading for real time implementation.

The reason is that in real time systems the TN transmits with a finite transmit

power, for a larger PLE (and longer distance) the received power at the AN might

fall below the detection threshold. However, the system model employed in this

chapter does not impose such limitations. Nevertheless, for practical system with

high transmit power, larger PLE values could still lead to better accuracy.

In Fig. 3.4, variance σ2 in the path-loss estimate is kept constant at 5 while

the radius is increased from 30 m to 100 m. The results are obtained for 5, 7

and 9 ANs. The theoretical analysis and simulation show large error at longer

distances.
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Figure 3.3: Simulation and theoretical RMSE. η = 1000, N = 5, R = 50 m.
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Figure 3.4: Simulation and theoretical RMSE. η = 1000, α = 3, σ2 = 5.
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Figure 3.6: Network setup.
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Fig. 3.5 illustrates the bias of the LLS estimator and theoretical results. In order

to observe the bias, a single TN is considered at the origin (0,0) while 5 ANs are

deployed in a circular arrangement with R = 50 m. The impact of reference node

placement on the bias is seen by first placing the reference AN at equal distance

as all other ANs from the TN i.e. dr = di = 50 m. In this setup the bias in the

estimator and theoretical bias is zero. Second, the reference AN is placed inside

the network with dr = 10 m, with this geometry, a positive bias is observed in the

simulation and analysis. Finally, the reference AN is placed outside the circular

deployment of the AN’s at dr = 70 m resulting in substantial negative bias. A

negative bias indicates that the biased estimate of the target node is localized

towards the negative x or y axis.

3.6.2 Square area with ANs around the edges with incorrect

PLE

In the second scenario, a 2-D area with dimensions 50m×50m is considered with

8 ANs around the edge at [0, 0], [50, 0], [50, 50], [0, 50], [25, 0], [50, 25], [0, 25],

[25, 50]. Again instead of assuming a single TN, 20 TNs are assumed within the

network to observe the average performance. This is illustrated in Fig. 3.6. For

the LJE-ref, LLS-ref implementation, [25, 50] is taken as the reference AN. The

simulation is executed η = 300 times independently. Equal noise variance for all

ẑi i.e. σ2
i = σ2 is assumed and the actual value of PLE α0 = 3. The incremental

step to estimate α̂ in (3.31) is 0.1.

3.6.2.1 Bias of α̂

For the network described above, simulations to estimate α are done for 20 TNs.

Table 3.1 shows the average of the obtained α̂ values for various levels of noise in
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the observed ẑi. It is evident that although the estimated values are close to the

actual PLE α0, yet there is a positive bias in the estimates. This bias effects the

estimation of the location coordinates and is described in subsection 3.6.2.3.

3.6.2.2 Error analysis

In Fig. 3.7, simulation and error analysis results are shown, error in terms of the

RMSE subject to incorrect PLE assumption and noise is given. The error analysis

accurately predicts the performance of the estimator (LLS-ref). It is evident that

inaccurate PLE assumption can result in substantial error in location estimates.

In Fig. 3.8, the bias due to incorrect PLE and noise is shown. It is also observed

that comparatively degraded performance in terms of both RMSE and the bias

is observed for α̌ < α0 than for α̌ > α0. These results confirm the error analysis

results obtained in chapter 2 for the ML technique.

3.6.2.3 Performance comparison of LJE and LLS

Fig. 3.9 shows the performance comparison between the variants of LLS and

LJE. The RMSE of all estimators is compared while increasing the variance in

the path-loss noise. It is observed that there is no considerable performance

difference between the three different approaches of LLS. It is also observed that

performance of LJE is close to LLS with LJE-avg and LJE-comb performing

slightly better than LJE-ref. However, it is also observed that at certain points

due to the bias of the LJE in estimating α̂, its performance exceeds that of

the LLS. This is a counter intuitive phenomenon but is inherent with biased

estimators. There is considerable gap between the performance of the estimators

and the CRB, the reason for this is discussed in the Chapter 4.
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Figure 3.7: Error analysis: RMSE and simulation for incorrect PLE.
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Figure 3.8: Error analysis: Bias and simulation for incorrect PLE.
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Figure 3.9: Performance comparison between variants of LLS and LJE, the CRB
(with known α) and the CRB-α (estimated α).

3.6.2.4 LJE as initial estimate for LCJE

In the simulation shown in the Fig. 3.10, the performance of the LCJE is com-

pared when given a random value as the initial estimate θ1 and when the estim-

ated value of LJE, θ̂LJE, is selected as θ1. It is seen that there is considerable

performance improvement when θ1 = θ̂LJE. Indeed the performance of LCJE

with a random θ1 can be improved by taking more iterations. Nevertheless, it

is seen that only with k = 3 iterations, for θ1 = θ̂LJE reach near optimal per-

formance. On the other hand, for an arbitrarily chosen initial estimate, there

is degraded performance even for k = 6 iterations. Thus the advantages of this

approach are twofold; i) there is obvious performance improvement in terms of

power consumption and computational time taken with smaller number of it-

erations. ii) the requirement for the selection of a close initial point to avoid

convergence to local minima is bypassed.
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Figure 3.10: Performance of LCJE for arbitrary θ1and θ1 = θ̂LJE.

3.7 Summary

In this chapter, a simplified low complexity RSS based location estimator for

unknown path-loss model is proposed. The error analysis for incorrect PLE as-

sumption was done. Based on the linear model, analytical expressions for the

RMSE and bias were derived. It was seen via simulation that analysis results

accurately predicts the performance of the linear estimator. For correct PLE

assumption, the performance of the estimator is unbiased if the TN is at equal

distance from all ANs. It was also observed that use of an incorrect PLE has

dramatic impact on the accuracy of location estimates. Both the MSE and bias

are large for α̌ < α0 than for α̌ > α0. Next, a simplistic technique to estimate

the PLE by optimizing a single variable function was devised. Simulation res-

ults show that this technique has acceptable performance though the estimates

are biased. In order to achieve even better accuracy, the LJE results are used

as the initial estimate for more computationally intense but optimal algorithm
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3.7 Summary

and showed via simulation that this performs considerably better with a smaller

number of iterations in comparison with an arbitrary initial estimate. For future

work, the joint estimation of different PLE for each link and the location will be

investigated. Furthermore, in such scenario the geometry of ANs and its impact

on location accuracy will be studied.
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4 Optimising Linear Least Squares

Solution to RSS Localisation

The material in this chapter has been published in the paper:

• N. Salman, M. Ghogho, and A. H. Kemp, “Optimized Low Complexity

Sensor Node Positioning in Wireless Sensor Networks,” EEE Sensors Jour-

nal.,vol.14, no.1, pp.39,46, Jan. 2014.

4.1 Overview

It was shown in chapter 2 that due to the non-linear nature of the localisation

problem, location estimation via RSS (and also for ToA) can be achieved us-

ing maximum likelihood (ML) techniques that commonly operate in an iterative

fashion. Generally, a close initial estimate of location is required for the ML

algorithm. Furthermore, the ML technique due to its iterative nature is high

in complexity. On the other hand, location can also be estimated by employing

a low complexity linear least squares (LLS) approach as discussed in chapter 3.

The LLS technique does not require a close initial estimate and is of low com-

plexity as it does not require multiple iterations. However it was noticed that the

LLS technique performs sub-optimally. Hence the LLS technique needs further
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optimization to achieve acceptable results. In addition it was also noted from 3.9

that the conventional CRB does not tightly bound the performance of the LLS.

Hence a new bound needs to be derived.

In this chapter the performance of the LLS RSS location estimator is analysed and

improvement is proposed. The linear model in this chapter is modified to account

for different PLEs and noise variance for each link. The basic concept behind the

LLS technique is that instead of using individual readings from ANs, readings

from AN pairs are first formulated (subtracted from each other) to linearise the

non-linear system of equations. Generally, a reference node has to be chosen and

paired with all other ANs. However, random selection of an AN as a reference can

cause performance degradation. Other techniques to linearise the system include

averaging the readings from all ANs and then pairing them with individual AN.

Finally, pairing each AN with every other AN can be used for linearisation. The

system performance can be optimized by choosing an optimal reference AN and

pairing it with all other ANs. In this chapter, a technique for optimal reference

AN selection using the RSS signals is devised. In order to further improve the

performance, the correlation between the (now linear) RSS readings is used and a

weighted least squares (WLS) algorithm is proposed. For optimized performance

the optimal AN selection for the WLS method is also given in the chapter.

In order to compare the MSEs of estimators, the Cramer-Rao bound has been

extensively used as a benchmark. For ML algorithms, the CRB on location

estimated has been derived for ToA in [45, 46] and for RSS systems in [18].

However, since the LLS method is not based on individual readings, the CRB

given in [18] does not tightly bound the performance of the LLS-RSS estimator.

For ToA LLS technique the CRB is given in [44]. The ToA linear CRB in [44]

does not lower bound the performance of the RSS system due to different signal

and noise model. In this chapter, the linear CRB is derived to tightly bound the
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performance of the LLS and WLS algorithm based on RSS range estimation.

To sum up, the main contributions of this chapter are as follows:

• WLS algorithm for the linear model is proposed.

• Optimal anchor selection for both LLS and WLS methods is proposed.

• Linear CRB for RSS systems is derived.

Simulation results show that the linear CRB is significantly larger than the exact

CRB and is thus more realistic in lower bounding the performance of RSS systems

using the linear model. It is shown via simulations that the performance of the

LLS estimator improves considerably when the optimal reference AN is used. The

system performance is further improved using the WLS algorithm with optimal

AN selection.

The rest of the chapter is organized as follows. Section 4.2 presents the problem

statement and the system model. In section 4.3, the modified linear RSS model

and the LLS solution is presented. In section 4.4, the WLS algorithm is proposed.

In section 4.5, the optimal reference AN selection technique is presented. In

section 4.6, linear CRB is derived. Finally, in section 4.7, the simulation results

are discussed which are followed by conclusions.

4.2 System Model

Unless otherwise specified, same notations as in chapter 2 are used in this chapter.

The signal model (before linearisation) is similar to that in chapter 2, with a

different PLE αi used for each anchor now. The signal model will be rewritten

here for easy understanding.

A two dimensional (2-D) network is considered, consisting of a TN which has

unknown coordinates θ = [x, y]T (θ ∈ R2) that are to be estimated, and M ANs
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4.2 System Model

with known locations θi = [xi, yi]T (θi ∈ R2) for i = 1, ...,M. The received power

at the ANs due to random shadowing is log-normally distributed. This model is

based on empirical results obtained in [36, 37]. Thus the distance di between the

TN and the ith AN, is related to the path-loss at the ith AN, Li , and the PLE,

αi, as [35]

Li = L 0 + 10αi log10 di + wi, (4.1)

where L0 is the path-loss at the reference distance d0 (d0 < di, and is normally

taken as 1 m) and wi is a zero-mean Gaussian random variable with known

variance representing the log-normal shadowing effect, i.e. wi ∼ (N (0, σ2
i )). The

PLEs are assumed to be known via prior channel modelling or accurate estimation

[32]. The path-loss is calculated as

Li = 10 log10 Pt − 10 log10 Pi (4.2)

where Pt is the transmit power at the TN and Pi is the received power at the ith

AN. The distance di is given by

di =
√

(x− xi)2 + (y − yi)2. (4.3)

The observed path-loss (in dB) from d0 to di, zi = Li−L0, can be expressed as

zi = fi(θ) + wi, i = 1, ...,M (4.4)

where fi (θ) = γαi ln di and γ = 10
ln 10 . In a vector form,

z = f (θ) + w, (4.5)

where z = [z1, ..., zM ]T is the vector of the observed path loss.
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4.3 Modified Linear Model

f (θ) = [f1 (θ) , ..., fM (θ)]T is the actual path-loss vector and w = [w1, ..., wM ]T is

the noise vector.

Since the noise is Gaussian and assuming independence of the noise components,

the joint conditional probability density function (pdf) of z is given by

p (z | θ) =
M∏
i=1

1√
2πσ2

i

exp
{
−(zi − fi (θ))2

2σ2
i

}
. (4.6)

Thus, the maximum likelihood (ML) estimate of (4.6) is equivalent to the non-

linear least square (NLS) solution of the cost function

ε (θ) = (z− f (θ))T (z− f (θ)) . (4.7)

The solution to (4.7) is obtained using high complexity iterative techniques such

as the Gauss-Newton (GN) or Levenberg-Marquardt (LM) techniques. Due to

its iterative nature, the ML techniques can converge to local minimum instead of

global minimum if given an initial seed that is far from the actual node location.

Hence a close initial guess is essential to the reliability of the ML technique. In

addition to the high complexity of the ML method, it can suffer from various

other challenging issues detailed in [40].

In order to bypass the close initial estimate requirement and high complexity of

the ML method, location coordinates can be estimated using a low complexity

LLS technique explained in the next section.

4.3 Modified Linear Model

The idea behind the LLS is to first linearise the RSS measurements and then

use ordinary least squares (OLS) to estimate the unknown parameters. This

idea was first introduced for ToA systems in [43] and analysed for the same in
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4.3 Modified Linear Model

[44]. However, for RSS measurements the linearisation is somewhat different due

to additional parameters such as the PLEs. The non-linear system of path-loss

equations can be linearised as follows. From (4.4), it can be readily shown that

E

(
1
βi

exp
(

2zi
γαi

))
= d2

i , (4.8)

where βi = exp
(

2σ2
i

(γαi)2

)
. Similarly choosing a reference AN, it can be shown

E

(
1
βr

exp
(

2zr
γαr

))
= d2

r, (4.9)

where βr = exp
(

2σ2
r

(γαr)2

)
.

Proof Proof of (4.8) is presented here, proof of (4.9) is similar.

E

[
1
βi

exp
(

2zi
γαi

)]
= 1
βi

ˆ (
exp

(
2zi
γαi

))
1

σ2
i

√
2π

exp
(
−(zi − fi (θ))2

2σ2
i

)
dzi

= 1
βi

ˆ 1
σ2
i

√
2π

exp
{
−
(
z2
i + f 2

i (θ)− 2zifi (θ)
2σ2

i

)
+
(

2zi
γαi

)}
dzi.

By completing squares method,
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= 1
βi

ˆ 1
σ2
i

√
2π

exp

−

z2
i +f 2

i (θ)− 2zifi (θ)−2
(

2σ2
i

(γαi)

)
zi +

(
2σ2
i

(γαi)

)2
+ 2

(
2σ2
i

(γαi)

)
fi (θ)

2σ2
i




exp


(

2σ2
i

(γαi)

)2
+ 2

(
2σ2
i

(γαi)

)
fi (θ)

2σ2
i

 dzi.

= 1
βi

ˆ 1
σ2
i

√
2π

exp−


(
zi − fi (θ)− 2σ2

i

(γαi)

)2

2σ2
i

exp


(

2σ2
i

(γαi)

)2
+ 2

(
2σ2
i

(γαi)

)
fi (θ)

2σ2
i

 dzi.
(4.10)

The first part of the (4.10) is a pdf and its integral is equal 1. Thus we have

E

[
1
βi

exp
(

2zi
γαi

)]
= 1
βi

exp


(

2σ2
i

(γαi)

)2
+ 2

(
2σ2
i

(γαi)

)
fi (θ)

2σ2
i


= 1
βi

exp
(

2σ2
i

(γαi)2

)
exp (2 ln di)

= d2
i

For linearisation, the square of each distance equation is subtracted from the

square of a reference distance equation d2
r. This results in a linear system which

is represented in matrix form as

b = Aθ + v, (4.11)

where b = [b1, ..., bN ]T , is the observation vector and is given by
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4.3 Modified Linear Model

b =



δ̄r − δ̄1 − ϕr + ϕ1

δ̄r − δ̄2 − ϕr + ϕ2

...

δ̄r − δ̄N − ϕr + ϕN


(4.12)

for δ̄r = 1
βr

exp
(

2zr
γαr

)
and δ̄i = 1

βi
exp

(
2zi
γαi

)
. While

ϕr = x2
r + y2

r and ϕi = x2
i + y2

i

for i 6= r, i = 1, ..., N and N = M − 1 and A is the N × 2 data matrix

A = 2



x1 − xr y1 − yr

x2 − xr y2 − yr
... ...

xN − xr yN − yr


. (4.13)

v is the noise vector which has zero mean and variance given by

σ̌ = E
[(
δ̄r − δ̄i − d2

r + d2
i

)2
]

= d4
i exp

(
4σ2

i

(γαi)2

)
− d4

i + d4
r exp

(
4σ2

r

(γαr)2

)
− d4

r (4.14)

and covariance

E
[(
δ̄r − δ̄i − d2

r + d2
i

) (
δ̄r − δ̄j − d2

r + d2
j

)]

=
{
d4
r exp

(
4σ2

r

(γαr)2

)
− d4

r

}
. (4.15)
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The solution to the LLS problem is obtained by minimizing the cost function

εLLS (θ) = (b−Aθ)T (b−Aθ) (4.16)

and is given as [39]

θ̂LLS = A†b, (4.17)

where A† is Moore–Penrose pseudoinverse i.e. A† = (ATA)−1AT . The LLS can

be implemented in three different ways:

4.3.1 LLS-ref

In this implementation, dr is the distance of the TN from a reference AN as shown

above.

4.3.2 LLS-avg

Instead of choosing a reference distance, dr is taken as the average of all distances

from the ANs. Thus in this case, d2
r = 1

M

∑M
i=1 d

2
i .

4.3.3 LLS-comb

In this case, combination of all pairs of ANs is considered and subtracted from

each other. This results in M
(
M−1

2

)
equations. This technique is studied for the
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4.4 Weighted Least Squares Algorithm

ToA case in [47]. The elements of data matrix A are now given by

A = 2



x1 − x2 y1 − y2

... ...

x1 − xN y1 − yN

x2 − x3 y2 − y3

... ...

xN−1 − xN yN−1 − yN



. (4.18)

Similarly element of vector b are given as bij =
[
δ̄i − δ̄j − ϕi + ϕj

]
for i, j =

1, ...,M and i < j. It should be noted that the number of equations increase

considerably for a large number of ANs. Hence LLS-comb is not favourable for

large a number of ANs.

The performance of all variants of the LLS algorithm are compared in the simu-

lation section.

4.4 Weighted Least Squares Algorithm

For the LLS solution obtained in (4.17), no knowledge about the reliability of each

measurement is used. If this information is present, links that are more reliable

are given more weight than others. Thus utilizing the information present in the

covariance matrix, a weighted least square (WLS) algorithm is proposed in this

section.

For a given covariance matrix C (θ) the WLS solution is obtained by minimizing

the cost function

εWLS (θ) = (b−Aθ)T C (θ)−1 (b−Aθ) , (4.19)
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where the elements of C (θ) are given by (4.14) and (4.15). It is however noted

that the elements of the C (θ) are dependent on the actual distance of the target

node from the anchors, which is unknown, hence the estimated distance is used to

estimate the covariance matrix C
(
θ̂
)
. The WLS estimate is obtained as follows

θ̂WLS = A‡b‡, (4.20)

where A‡ =
{
AT

[
C
(
θ̂
)]−1

A
}
−1AT and b‡ =

[
C
(
θ̂
)]−1

b.

It is noted that similar to LLS, the WLS algorithm can also be implemented

in three different modes i.e. WLS-ref, WLS-avg and WLS-comb. It is however

seen that the covariance matrix is different for the three implementations. For

WLS-ref, the diagonal and non diagonal terms of C (θ) are given by (4.14) and

(4.15). For WLS-avg, where the reference anchor is the mean of all anchors, the

M ×M covariance matrix is given below.

C (θ) =

diag
{
d4

1 exp
( 4σ2

1
(γα1)2

)
− d4

1+, ...,+d4
N exp

(
4σ2
N

(γαN )2

)
− d4

N

}

+1M×M
{
d

4
r exp

(
4σ2

r

(γαr)2

)
− d4

r

}
, (4.21)

where

d
4
r = 1

M

M∑
i=1

d4
i , (4.22)

σ2
r = 1

M

M∑
i=1

σ2
i (4.23)
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and

αr = 1
M

M∑
i=1

αi, (4.24)

where 1M×M represents the (M ×M) matrix of all ones.

For the WLS-comb, development of the
(
M2−M

2

)
×
(
M2−M

2

)
covariance matrix

becomes slightly complicated. As for WLS-ref and WLS-avg, the non-diagonal

elements are the same, however this does not hold for WLS-comb for which the

diagonal terms are given as

σ̃2
i = E

[(
δ̄i − δ̄j − d2

i + d2
j

)2
]

= d4
i exp

(
4σ2

i

(γαi)2

)
− d4

i + d4
j exp

(
4σ2

j

(γαj)2

)
− d4

j , (4.25)

for i, j = 1, ...,M and i < j.

Conversely, the non-diagonal terms are given by

E
[(
δ̄i − δ̄j − d2

i + d2
j

) (
δ̄k − δ̄l − d2

k + d2
l

)]
=



{
d4
i exp

(
4σ2
i

(γαi)2

)
− d4

i

}
for i = k{

d4
j exp

(
4σ2
j

(γαj)2

)
− d4

j

}
for i = k

−
{
d4
i exp

(
4σ2
i

(γαi)2

)
− d4

i

}
for i = l

−
{
d4
j exp

(
4σ2
j

(γαj)2

)
− d4

j

}
for j = k

0 for i 6= l and j 6= k

for i, j = 1, ...,M and i < j

and k, l = 1, ...,M and k < l.
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{
E
(
bbT

)}
ii

= ϕ2
r + ϕ2

i + d4
r

β2
r

exp
(

8σ2
r

(γαr)2

)
+ d4

i

β2
i

exp
(

8σ2
i

(γαi)2

)
− 2d2

r

βr
exp

(
2σ2
r

(γαr)2

)
−

2d2
i

βi
exp

(
2σ2
i

(γαi)2

)
− 2ϕrϕi − 2d2

i d
2
r

βiβr
exp

(
2σ2
r

(γαr)2

)
exp

(
2σ2
i

(γαi)2

)
+ 2d2

rϕi
βr

exp
(

2σ2
r

(γαr)2

)
+

2d2
iϕr
βi

exp
(

2σ2
i

(γαi)2

)
.

(4.28)

4.5 Optimal Reference Anchor Node Selection

Generally, the performance of LLS-avg and LLS-comb is slightly better than

LLS-ref implementation due to the averaging effect of all ANs. Similarly, the

performance of WLS-avg and WLS-comb is better than WLS-ref. However, in its

basic form, LLS/WLS-ref randomly selects a reference AN. This could at times

lead to degraded system performance as the accuracy of the location estimate

depends on factors such as the true distance dr from the TN, shadowing noise

variance σ2
r and the PLE αr of a particular reference AN. In this section, a

technique to select the optimal reference AN is proposed. The optimal reference

AN is chosen to be the AN that minimizes the MSE of the location estimates.

Thus

θiopt = arg min
θi

(MSE) . (4.26)

where

MSE
(
θ̂
)

= Tr
{
E
[(

θ̂ − θ0
) (

θ̂ − θ0
)T ]}

, (4.27)

where θ̂ is the estimated location via LLS or WLS and θ0 is the true location

coordinates. The theoretical MSE is given for the LLS and WLS algorithm in

the following subsections.
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{
E
(
bbT

)}
ij

= ϕ2
r + d4

r

β2
r

exp
(

8σ2
r

(γαr)2

)
− d2

jd
2
r

βjβr
exp

(
2σ2
j

(γαj)2

)
exp

(
2σ2
r

(γαr)2

)
−

d2
i d

2
r

βiβr
exp

(
2σ2
i

(γαi)2

)
exp

(
2σ2
r

(γαr)2

)
+ d2

i d
2
j

βiβj
exp

(
2σ2
i

(γαi)2

)
exp

(
2σ2
j

(γαj)2

)
− 2d2

rϕr
βr

exp
(

2σ2
r

(γαr)2

)
+

d2
rϕj
βr

exp
(

2σ2
r

(γαr)2

)
+ d2

jϕr

βj
exp

(
2σ2
j

(γαj)2

)
+ d2

rϕi
βr

exp
(

2σ2
r

(γαr)2

)
+ d2

iϕr
βi

exp
(

2σ2
i

(γαi)2

)
−

d2
iϕj
βi

exp
(

2σ2
i

(γαi)2

)
− d2

jϕ

βj
exp

(
2σ2
j

(γαj)2

)
− ϕrϕi − ϕrϕj + ϕiϕj.

(4.29)

Theoretical MSE for LLS

For LLS, the estimated location θ̂ is given by θ̂LLS = A†b while θ0 can be

represented by θ0 = A†b0, where b0 represents the noise free observation vector

and is given by

b0 =



d2
r − d2

1 − ϕr + ϕ1

d2
r − d2

2 − ϕr + ϕ2

...

d2
r − d2

2 − ϕr + ϕN


.

Putting elements of θ̂LLS and θ0 in (4.27) and after some manipulation, it follows

MSE
(
θ̂LLS

)
= Tr

{
A†K

(
A†
)

T
}
, (4.30)

where

K =E
(
bbT

)
− 2E (b) bT0 + b0bT0 (4.31)

where E (b) = b0. The diagonal and off diagonal elements of E
(
bbT

)
are given
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by (4.28) and (4.29) respectively.

Theoretical MSE for WLS

For the MSE of the WLS algorithm the estimated θ̂WLS (4.20) is used in (4.27)

to obtain the following MSE expression

MSE
(
θ̂WLS

)
= Tr


[
A‡C (θ)−1 E

(
bbT

) [
C (θ)−1

]T (
A‡
)T
]

− 2
[
A‡C (θ)−1 b0bT0

(
A†
)T ]

+
[
A†b0bT0

(
A†
)T ]. (4.32)

It is noted that the theoretical MSE depends on the actual distances which are

unknown, hence their estimates are used to estimate the MSE in (4.30) and (4.32).

Once the optimal AN is selected, it is used again in the LLS solution (4.17) or

WLS solution (4.20) to provide the final estimate of the TN location. This will

be referred to as LLS-opt and WLS-opt respectively.

The following results were obtained via simulations.

Case 1. Equal PLEs and equal distances In case of equal PLEs and equal

distances of the TN from all ANs i.e. αi = α, di = d ∀ i , the AN with the

smallest noise variance σ2
i is selected as the reference AN.

Case 2. Equal PLEs and equal noise variance For equal PLEs and equal

noise variance from all ANs i.e. αi = α, σ2
i = σ2 ∀ i, the AN with the shortest

distance di from the TN is selected as the reference AN.
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Case 3. Equal distance and equal noise variance For equal noise variance

and equal distances of the TN from all ANs i.e. σ2
i = σ2, di = d ∀ i, the AN with

the largest PLE αi is chosen as the reference AN. Choosing reference AN with

the largest PLE might seem counter intuitive, however if the PLE is reduced to

zero, then no distance information can be extracted. Since, we do not consider a

lower receiver threshold power in the signal model, hence a larger PLE will give

us better performance and hence the AN with largest PLE is considered as the

reference AN.

4.6 Performance Bound

The CRB lower bounds the MSE performance of any unbiased estimator. For

2-D TN location, the CRB on the estimation MSE is given by

MSE
(
θ̂
)
≥ [I (θ)]11 + [I (θ)]22

det [I (θ)] , (4.33)

where [I (θ)] is the Fisher information matrix (FIM), and its elements are given

by [39]

[I (θ)]ij = −E
[
∂2 ln p (z | θ)
∂θi∂θj

]
. (4.34)

To lower bound the ML algorithms, the elements of the FIM are given by

[I (θ)] =


∑M
i=1

γ2α2
i (x−xi)

2

d4
i σ

2
i

∑M
i=1

γ2α2
i (x−xi)(y−yi)

d4
i σ

2
i∑M

i=1
γ2α2

i (x−xi)(y−yi)
d4
i σ

2
i

∑M
i=1

γ2α2
i (y−yi)

2

d4
i σ

2
i

 . (4.35)

The CRB as obtained from the FIM in (4.35) only tightly bounds the performance
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of ML type algorithms. Since the LLS method is different from the ML approach,

the exact CRB for RSS-based localisation in [18] does not accurately predict the

performance of estimators based on the linear model. Unlike the conventional

CRB, which is based on the observations taken from individual ANs, the linear

CRB is based on the observations

pi = 1
βr

exp
(

2zr
γαr

)
− 1
βi

exp
(

2zi
γαi

)
. (4.36)

Clearly, 1
βr,i

exp
(

2zr,i
γαr,i

)
represents a log-normal distribution; a closed form expres-

sion for the difference of two log-normal random variables is however not known.

Although the summation of two log-normal random variables can be approxim-

ated by another log-normal random variable [48, 49], pi can be approximated by

a Gaussian random variable i.e.

pi ∼ N
(
µi, σ̌

2
i

)

where

µi = d2
r − d2

i (4.37)

and

σ̌2
i = d4

r exp
(

4σ2
r

(γαr)2

)
− d4

r + d4
i exp

(
4σ2

i

(γαi)2

)
− d4

i . (4.38)

In vector form,

p(p | θ) ∼ N (µ (θ) ,C (θ)) , (4.39)
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4.6 Performance Bound

where µ (θ) = [µ1 (θ) , µ2 (θ) , ..., µN (θ)]T is the vector constituting the means,

and C (θ) is the N × N covariance matrix whose elements are given by (4.14)

and (4.15).

In order to prove the validity of the Gaussian assumption, the empirical cumu-

lative distribution function (CDF) of pi and the theoretical Gaussian CDF are

plotted in Fig. 4.1. It is observed that even for a relatively large variance of

σ2
i = σ2

r = 6, the empirical CDF closely fits the Gaussian CDF. The plot shows

two cases, for dr > di and for dr < di. It is clear that for both cases the Gaussian

assumption holds true.
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Figure 4.1: Empirical CDF of pi and theoretical Gaussian CDF. σ2
i = σ2

r = 6

For the multivariate Gaussian distribution in (4.39), the elements of the FIM are

given by1

1In this thesis, the linear CRB is derived for the the LLS-ref model, for other variants similar
procedure can be followed.
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[I (θ)]ij =
(
∂µ (θ)
∂θi

)T
C−1 (θ)

(
∂µ (θ)
∂θj

)
+0.5Tr

(
C−1 (θ) ∂C (θ)

∂θi
C−1 (θ) ∂C (θ)

∂θj

)
.

(4.40)

where

∂µi (θ)
∂x

= 2 (x− xr)− 2 (x− xi)

and

∂µi (θ)
∂y

= 2 (y − yr)− 2 (y − yi) . (4.41)

The derivatives of C (θ) are given by (4.42) and (4.43).

∂C(θ)
∂x = diag

{
4d2

1 (x− x1)
[
exp

( 4σ2
1

(γα1)2

)
− 1

]
+, ...,+4d2

N (x− xN)
[
exp

(
4σ2
N

(γαN )2

)
− 1

]}

+1N×N
{

4d2
r (x− xr)

[
exp

(
4σ2

r

(γαr)2

)
− 1

]}
. (4.42)

∂C(θ)
∂y = diag

{
4d2

1 (y − y1)
[
exp

( 4σ2
1

(γα1)2

)
− 1

]
+, ...,+4d2

N (y − yN)
[
exp

(
4σ2
N

(γαN )2

)
− 1

]}

+1N×N
{

4d2
r (y − yr)

[
exp

(
4σ2

r

(γαr)2

)
− 1

]}
. (4.43)

4.7 Simulation Results

For performance comparison, a circular deployment of 5 ANs around the origin

of a 2-D coordinate system is considered with radius R. To evaluate the average
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performance at various TN positions, 20 TNs are randomly deployed inside the

network. For simplicity, the noise variance associated with all ANs is kept the

same i.e. σ2
i = σ2

r = σ2. A different PLE value (given by vector α) is given

to each AN, while the root mean square error (RMSE) is compared when the

shadowing noise variance σ2 in the path-loss is increased. The simulations are

run independently η times. The network AN and TNs deployment is shown in

Fig. 4.2.

In Fig. 4.3, the performance of LLS-opt and LLS-ref is analysed. For LLS-ref,

the RMSE is given while choosing each AN as a reference AN at a time for

all 20 TNs. It is seen that the selection of some ANs as reference ANs exhibits

better performance than others, this is primarily due to larger PLE value for that

particular AN. However, since the simulations show the average performance for

all 20 TNs, a larger PLE does not guarantee a particular AN to be an optimal

reference AN, since it also depends on the actual distance from the TN. On the

other hand, the performance of LLS-opt supersedes that of LLS-ref.

In Fig. 4.4, the results obtained for the theoretical MSE for LLS and WLS

are compared to the simulation for both algorithm respectively. It can be seen

that theoretical MSEs accurately predicts the performance of the LLS and WLS

algorithms.
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[2.4, 2.6, 2.8, 3, 3.2]T .

In Fig. 4.5, performances of the variants of LLS and WLS are compared with

LLS-opt and WLS-opt. The linear CRB is also plotted for comparison. For LLS-

ref and WLS-ref, AN-3 is randomly selected as the reference AN. As expected

performance of LLS-avg and LLS-comb exceeds that of LLS-ref due to the aver-

aging effect. However, the performance the LLS-opt surpasses all the other three

LLS implementations. Interestingly, WLS-ref with reference AN-3 outperforms

LLS-opt. As for the WLS, WLS-comb performs marginally better than WLS-avg

and WLS-ref, both of which exhibit similar performance. While the WLS-opt

performs better and approaches the linear CRB.

In Fig. 4.6, the CRB is compared with the linear CRB and as expected the

performance of the linear CRB shows larger error than the exact CRB. Thus the

linear CRB is a more realistic bound for the linear RSS estimator. On the other

hand, the linear CRB changed little with optimal reference anchor selection.
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4.8 Summary

4.8 Summary

The RSS based LLS localisation algorithm is a low complexity technique for node

positioning in WSNs. In this chapter, performance analysis was carried out and

improvements were proposed to the LLS method. The linear model was intro-

duced and modified for three different LLS variants. Performance was improved

with a WLS algorithm that uses the information present in the covariance mat-

rix of the observations. Further performance improvement was achieved with an

optimal reference AN selection technique. The performance of the WLS method

was shown to be close to the linear CRB which was also derived. The linear CRB

was shown to have larger error than the conventional CRB and thus realistic-

ally bounded the MSE of RSS location estimators operating on the linear model.

Optimal anchor placement is discussed in next chapter.
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5 Effects of anchor placement on

mean-CRB for localisation

The material in this chapter has been published in the paper:

• N. Salman, H. K. Maheshwari, A. H. Kemp, M. Ghogho, "Effects of anchor

placement on mean-CRB for localization," The 10th IFIP Annual Mediter-

ranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp.115-118, 12-15

June 2011.

5.1 Overview

Two widely used methods for range estimation are the time of arrival (ToA) and

the received signal strength (RSS). Techniques to solve the range information

for location estimation include the LLS method (chapter 3), the weighted LLS

method (chapter 4) and the maximum likelihood (ML) approach (chapter 2).

However the performance of these algorithms is bounded by the Cramer-Rao

bound (CRB). The CRB puts a lower bound on the variance of any unbiased

estimator. Apart from depending on the noise variance, the CRB for localisation

also depends on the geometry of the anchor nodes (ANs) and the target node

(TN). Since the lower bound is a function of the geometry of the network, it is
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obvious that certain AN locations would offer better accuracy than others. In this

chapter, the goal is to determine the optimal AN positions that will guarantee an

overall optimal performance. The focus of this chapter is on ToA localisation. The

ToA can be modelled based on an additive noise model (aNm) or a multiplicative

noise model (mNm). The optimal AN placement for both models is investigated

in this chapter.

This chapter is organized as follows, a review of the two noise models is given in

section 5.2. In section 5.3, the CRB for localisation is discussed The simulation

results are presented in section 5.4. In section 5.5, the LLS method is simulated

and compared with the lower bound, which is followed by the conclusions.

5.2 Signal Models

A network consisting of N ANs is considered whose locations θi = [xi, yi]T for i =

1, ..., N are known, this can be done by placing these ANs at predefined spots or

their position can be determined via GPS. It is desired to determine the location of

a TN θ = [x, y]T . Then the estimated distance between each AN and the TN can

be modelled either by the aNm or the mNm. The aNm is a widely accepted signal

model, however the mNm is more suitable for practical propagation channels. The

two noise models are discussed in the following subsections.

5.2.1 Additive noise model

The signal received at the TN from the ith AN is given by

ri(t) = Ais(t− τi) + ni(t), (5.1)

where Ai is the amplitude or attenuation of the signal, τi is the propagation delay

and ni(t) is the thermal noise. The delay τi that is dependent on the distance
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5.2 Signal Models

between the AN and the TN is given by

τi(x, y, li) = 1
c

√
(x− xi)2 + (y − yi)2 + li, (5.2)

where c is the speed of the electromagnetic wave c ' 3 × 108 and li is non line

of sight (NLoS) bias. The present work only considers the LoS case, thus l = 0.

From (5.2), it is noted that the distance between ith AN and the TN is given by

di = cτi. (5.3)

To include distances from N ANs, (5.3) is given in vector form

d = [d1, ..., dN ]T . (5.4)

Thus the estimated distance d̂i can be represented as

d̂i = di + ni, (5.5)

where ni ∼ N (0, σ2
i ) is the additive white Gaussian noise with constant standard

deviation σi, that is independent of di. Similarly, in vector form

d̂ =
[
d̂1, ..., d̂N

]T
. (5.6)

Fig. 5.1 shows how the aNm effects the estimated distance or range.

5.2.2 Multiplicative noise model

For the multiplicative noise model (5.5) can be written as

cτ̂i = cτi + cn̄i. (5.7)

Where n̄i is Gaussian noise in the time estimates.

Then the CRB on the variance of the ToA estimate is given as [11]

σ2 (τ̂) ≥ 1
8π2B2SNR , (5.8)
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5.2 Signal Models

where B is the effective bandwidth of the signal and the received power from the

ith AN is given by [20]

Pi = Pt
ν

dαi
, (5.9)

where ν is the frequency related loss. It is also dependent on antenna heights

and other physical layer effects. Pt is the transmit power. α is the path-loss

exponent (PLE), its value is generally taken between 2 to 5 depending on the

type of environment. The signal-to-noise ratio (SNR) is hence given by

SNR = Pi
N0

, (5.10)

where N0 is the noise power. Putting the value of (5.9) in (5.10) and then back

in (5.8), the standard deviation on the estimated distance is given by

σ̄i = κd
α
2
i , (5.11)

where

κ = c

√
N0

8π2B2Ptν
. (5.12)

Following the distance dependent variance model, (5.5) can be written as

d̂i = di + κd
α
2
i ω. (5.13)

or

d̂i = dαi

(
d1−α
i + κd

−α2
i ω

)

Here ω is Gaussian random variable with zero mean and unit variance. Thus the

noise model in (5.13) is multiplicative due to the term d
α
2
i ω. The variation in the

estimated distance for the mNm is illustrated in Fig. 5.2.
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Figure 5.1: Simulation of estimated range for aNm.

5.3 Cramer-Rao Bound

The accuracy of θ̂ being an unbiased estimate of θ is bounded by

var(θ̂i) ≥
[

1
I(θ)

]
ii

, (5.14)

where θ = [θ1θ2...θp]T is the vector parameter to be estimated and I(θ) is the p×p

Fisher information matrix (FIM) and is defined as [39]

[I(θ)]ij =− E
∂2 lnp(d̂|θ)

∂θi∂θj

 ;i, j = 1, 2, ..,p. (5.15)

Where p(d̂|θ) is the likelihood function and E{.} refers to the expected value and

is taken w.r.t. p(d̂|θ) and the derivatives are taken at the true value of θ.
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Figure 5.2: Simulation of estimated range for mNm.

The FIM for the aNm model is given by [45, 46, 28]

I(θ) = 1
σ2
i


∑N
i=1

(x−xi)2

d2
i

∑N
i=1

(y−yi)(x−xi)
d2
i∑N

i=1
(y−yi)(x−xi)

d2
i

∑N
i=1

(y−yi)2

d2
i

 (5.16)

or

I(θ) = 1
σ2
i


∑N
i=1 cos2(Θi)

∑N
i=1 cos(Θi) sin(Θi)∑N

i=1 cos(Θi) sin(Θi)
∑N
i=1 sin2(Θi)

 , (5.17)

where Θi being the angle of the TN with the ith AN. The FIM for the mNm is

given by [50]

I(θ) = 1
σ̄2
i


∑N
i=1 ζi cos2(Θi)

∑N
i=1 ζi cos(Θi) sin(Θi)∑N

i=1 ζi cos(Θi) sin(Θi)
∑N
i=1 ζi sin2(Θi)

 , (5.18)

where ζi = 1 + α2κ
2 dα−2

i , which is distance dependent. Since the lower bound
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in both noise models is a function of the geometry of the AN and the TN, it is

obvious that certain AN locations would offer better accuracy than others. These

optimal AN locations are discussed in the next section.

5.4 Optimal Anchor Positions

The estimation of different TN positions is subject to different accuracies. The

aim is to find AN locations that would give us an overall best accuracy for all

target positions. Thus the ANs that offers the minimum of the mean CRB are

chosen. In the following subsection, these optimal AN locations are discussed.

5.4.1 Optimal anchor positions for aNm

Trilateration in a 2-D case requires a minimum of three ANs. Individual distance

between each AN and the TN is represented by a circle or line of position (LoP).

The point of intersection of these circles is the TN location. In order to get an

insight on how the lower bound is affected by the relative angle between the target

and the AN node, the CRB for every point in a 10 × 10 2-D plane is calculated

for fixed AN positions. Furthermore, in order to achieve the AN positions that

give the minimum mean CRB, all the combinations of ANs are taken. i.e.

Cn
r = n!

r!(n− r)! , (5.19)

where n is the dimension of the area and r is the number of ANs.

The mean CRB is given by

mean CRB = 1
n2

n2∑
i,j=1

CRBi,j
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for i = 1, ..., n and j = 1, ..., n. Where CRBi,j is the CRB at the (xi, yj) TN

position. Hence the mean CRB is the average CRB of the CRBs taken at all TN

locations.

Figure 5.3: Optimal AN positions and corresponding CRB for aNm.

As an example, in the present case, an area of 10 × 10 is taken for case (b1) in

Fig. 5.3, where 3 ANs are employed, a total combination of C100
3 =161,700 AN

positions are obtained. It is well known that when all ANs are placed along the

same line (x or y coordinates being the same), then the variance of the CRB

rises to infinity and in such cases positioning algorithms such as the LLS fail

to estimate the TN’s coordinates. Thus in order to avoid this problem, all the

collinear AN positions are not considered in the simulations. The number of such

combination is given by x′ ∗Cx′
r + y′ ∗Cy′

r , where x′, y′ represent the lengths of x

and y coordinates respectively. For case (b1) in Fig. 5.3, a total of 2,400 collinear

AN positions are avoided. Fig. 5.3 shows the optimal AN positions for 3-8 ANs.

The contour plots Fig. 5.3 (b1-b6) are obtained for a constant standard deviation

for all cases i.e. σi = σ = 2. It is observed that when only 3 ANs are placed in a

square area, the highest accuracy in the estimated location is achieved when the

trio is placed at the corners of an equilateral triangle. This triangle is of maximum

size as 2 ANs are placed at the corners of one side of the square area while the 3rd
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5.4 Optimal Anchor Positions

AN is placed at the centre of the opposite side. It is also noted that the bound

increases as the TN goes near any of the AN nodes. The best location for 4

ANs is at the corners of the square area while the best location for an additional

5th AN is the centre of the area. Similarly such symmetrical AN locations are

exhibited in Fig. 5.3 (b4-b6) where 6, 7 and 8 ANs are used. The white points

in the figures show the AN locations where the TN placement is avoided. It

should be noted that these configurations are independent of rotation i.e. the

same results are obtained if the entire set of ANs are simultaneously rotated

clockwise or counter-clock wise by 900or 1800. Fig. 5.3a displays the mean CRB

as a function of variance. It is noted that as the number of ANs increase the

variance effect on the mean CRB becomes smaller. Fig. 5.4 (b1-b6) illustrates

the AN locations which exhibits the worst localisation accuracy and which gives

the maximum mean CRB. It is observed that the variance of the estimator is the

highest if all the ANs are placed in the same corner of a square area. It is also

seen in 5.4a that the improvement in performance is negligible if the number of

ANs is increased from 5 to 8 for such a poor network geometry. Furthermore,

it is evident from both Fig. 5.3 and Fig. 5.4 that when the minimum 3 ANs

are placed optimally (with mean CRB = 1.5063 and 9.0379 for σ2= 1 and 6), it

outperforms a poor deployment of 8 ANs (mean CRB = 13.562 and 81.375 for

σ2= 1 and 6).

5.4.2 Optimal anchor positions for mNm

The plot in Fig. 5.5a illustrates the mNm mean CRB as a function of the number

of ANs placed at the optimal positions for the aNm. The contour plot for κ =

0.001 [50] and α = 4 is given in Fig. 5.5 (b1-b6). The mean CRB for the mNm is

lower with the aNm for ANs 5 and more. However this is not true for all values
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κ of and α. The optimal AN placement for mNm is different than the aNm, as

shown in Fig. 5.6 (a1-a3) for 3, 4 and 5 ANs. However, these optimal placements

depend on the actual scale of the area, the constant κ and α. The mNm CRB

becomes lower as values of κ and α are decreased. While both CRBs are almost

identical for α = 2. In a dense urban environments where α = 4 to 5 or highly

cluttered indoor scenarios, the mNm is a more suitable noise model. In such cases,

results from Fig. 5.6 suggest that it is not always optimal to place the AN nodes

at the corners as in Fig. 5.3. In fact, the optimality cannot even be guaranteed

by the AN placement in Fig. 5.6 as they are for a particular dimension and for

an assumed value of κ and α. Thus, for the mNm case, the values of κ and α

need to be obtained experimentally before AN deployment. Finally, the worst

AN placement for mNm is similar as that for aNm i.e. all ANs are placed at one

corner of the area.

Figure 5.4: Poor AN positions and corresponding CRB for aNm.
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Figure 5.5: Suboptimal AN positions and corresponding CRB for mNm.

Figure 5.6: Optimal AN positions and corresponding CRB for mNm.

5.5 Performance of Linear Least Squares (LLS)

Method at Optimal Anchor Positions

In this section, the performance of the LLS method for position estimation is

compared with the mean CRB for optimal AN placement. The elements of the

vector d̂i in (5.5) are given by

d̂i =
√

(x− xi)2 + (y − yi)2, (5.20)
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where d̂i represent the noisy estimated distances and the circles obtained from

them do not intersect at a common point. In order to solve the LS problem

(which is non-linear) for (x, y) coordinates, the distance equation of the rth AN

is fixed and all other distance equations are subtracted from it, yielding [28]

x2
i − x2

r + y2
i − y2

r − 2xxi + 2xxi − 2yyi + 2yyr = d̂2
i − d̂2

r, (5.21)

for i = 1, ..., N − 1, i 6= r and where ϕi,r = x2
i,r + y2

i,r.

Similarly in matrix form

Aθ = 0.5b, (5.22)

where

A =



x1 − xr y1 − yr

x2 − xr y2 − yr
... ...

xN−1 − xr yN−1 − yr


, (5.23)

θ =

 x

y



b = 1
2



ϕ1 − ϕr + d̂2
r − d̂2

1

ϕ2 − ϕr + d̂2
r − d̂2

2
...

ϕN−1 − ϕr + d̂2
r − d̂2

N−1


(5.24)

and the estimated coordinates of the TN is given by the vector
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θ̂ =
(
ATA

)−1
ATb. (5.25)

The mean square error (MSE) is given by: MSE = Tr
{
E
[(

θ̂ − θ0
) (

θ̂ − θ0
)T ]}

,

where Tr(.) represents the trace of the matrix. Fig. 5.7(a) compares the MSE of

the LLS method with the mean CRB for optimal AN positions. Fifty iterations

are taken for each range measurement while the variance is incremented from 1 to

4 for aNm. The MSE for all TN locations is computed and its mean is compared

with the mean CRB. The simulation uses the same setup of a 10× 10 2-D plane

as in the previous case. It is seen that although the number of ANs is increased

from 4 to 5, it does not have a significant impact on the accuracy. Fig. 5.7(b)

compares the MSE of LLS for mNm with the mean CRB for α= 4. The right y

axis of Fig. 5.7(b) shows the mean MSE of the LLS method. It is observed that

error is colossal for α = 4. The effect of the different values of α is illustrated in

Fig. 5.8, where the LS method for α = 2 and 3 are simulated. As can be seen

the LS offers less error for a smaller value of α.
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5.5 Performance of Linear Least Squares (LLS) Method at Optimal Anchor
Positions

(a) (b)

Figure 5.7: Performance of the LS method for 3, 4 and 5 ANs for α= 2 and 3.

(a) (b)

Figure 5.8: Performance of the LS method for 3, 4 and 5 ANs for α= 2 and 3.
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5.6 Summary

5.6 Summary

In this chapter, the impact of AN positions on the localisation of nodes was

discussed. Based on extensive simulations, optimal AN location for both aNm

and mNm have been achieved. It is evident from the simulations that for an aNm

the CRB decreases as the TN is moved away from the ANs. Thus in a square area

the lowest accuracy is observed near the AN while the highest accuracy is achieved

at the centre of the area. On the other hand, for highly cluttered environments

where the α value of 4-5 is taken, the mNm is more suitable. In such scenarios,

the minimum mean CRB is not offered by ANs placed at the corners of a square

area. Optimal AN placement in mNm depends on the dimension of the area and

the value of κ and α. Although the tecnique used in this chapter is not analytical,

however it can be best used to obtain optimal AN locations for unsymmetrical

areas. For future work, the optimal AN selection using the RSS technique will

be studied.
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6 Geographic Routing in Localised

Networks

The material in this chapter has been published in the papers:

• A. M. Popescu, N. Salman, and A. Kemp, “Energy consumption of geo-

graphic routing with realistic localisation,” Networks, IET, vol. 1, no. 3,

pp. 126–135, 2012.

• A. M. Popescu, N. Salman, and A. H. Kemp, “Geographic routing resilient

to location errors,” Wireless Communications Letters, IEEE, vol. 2, no. 2,

pp. 203–206, 2013.

6.1 Overview

The constant need for energy efficiency in WSNs has led to the consideration of

geographic based forwarding for routing in applications of large scale networks

[51, 52]. However, until recently, the assumption of accurate location knowledge

in the design of position-based algorithms was frequent, making this routing type

unreliable in practical applications. Localisation solutions are either based on

expensive GPS or affordable but less accurate local positioning systems (LPS).
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6.1 Overview

The impact of location error on geographic routing has been considered in [51,

52, 53, 54, 55, 56, 57, 58].

This chapter focuses on the study of geographic routing because of its power

saving features which makes it an ideal candidate for large scale WSNs. Early

routing proposals assumed accurate location information readily available. Later

algorithms considered the existence of location error and mathematically mod-

elled it as either random uniform or Gaussian [51, 52, 53, 54, 55, 56]. In the first

part of this chapter, geographic routing is studied when positioning is performed

with specific localisation techniques i.e. with RSS or ToA. ToA and RSS are

chosen because they have gained a lot of popularity over the years being based

on inter-nodal ranges (R) and because they do not require costly equipment.

Each technique is simulated using 2 different methods, LLS (chapter 3 and 4)

and ML (chapter 2) based Levenberg Marquardt (LM) method (iterative). The

chapter shows the loss rate (LR) of basic advance-based routing and the energy

consumption of the networks with accurate locations and with position inaccur-

acy of various degrees. The results indicate that a general model for location

errors is not sufficient for a correct algorithmic design as each localisation tech-

nique yields errors of a different degree, with a different impact on the routing

performance.

The second part of this chapter proposes a solution to improve the performance

of geographic routing in terms of packet delivery ratio (PDR) in realistic loc-

alisation conditions. A novel, low-complexity, error-resilient geographic routing

method, named conditioned mean square error ratio (CMSER) routing is pro-

posed with the intention to efficiently make use of existing network information

and to successfully route packets when localisation is inaccurate. Next hop se-

lection is based on the largest distance to destination (minimizing the number

of forwarding hops) and on the smallest estimated error figure associated with
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the measured neighbour coordinates. It is found that CMSER outperforms other

basic greedy forwarding techniques. Simulation results show that the throughput

for CMSER is higher than that of other methods; additionally it also reduces the

energy wasted on lost packets by keeping their routing paths short.

Geographic routing with imprecise location measurements has been investigated

by research literature in an attempt to improve its resilience to location errors

by increasing the packet delivery ratio (PDR) and minimizing energy consump-

tion. Two of the available forwarding techniques stand out, having different

approaches: the least expected distance (LED)[58] and the maximum expected

progress (MEP)[59] algorithms. While [59] focuses on increasing the throughput,

the work in [58] aims to optimize power consumption.

[59] uses the objective function named maximum expectation progress (MEP)

for positive advance. It determines the goodness of routing candidates based on

progress to destination and location error characteristics. MEP uses a Gaussian

location error model and assumes a known standard deviation of the location er-

ror (σ) for each node. Based on σ, the transmission range (R) and the measured

inter-nodal distances d̂, it estimates the probability of the real position of the for-

warding node to be found within a circular area centered at the known erroneous

location. The value of this probability (used as an indicator of the risk that the

neihbour may be outside R in reality) and the amount of progress offered by the

forwarding option help in choosing the best forwarding candidate.

The LED algorithm in [58] is presented as a novel, error-robust routing scheme,

whose main aim is to preserve the power saving features of basic geographic for-

warding. It is proven in [58] that whichever approach the position-based routing

may have, either to optimize the energy spent per hop or for the overall chosen

path, the energy-optimal forwarding position is the same. LED determines this
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theoretical optimum and subsequently chooses as the next hop the neighbour

whose real position is closest to it. The algorithm strategically incorporates loca-

tion error into the forwarding objective function. It is assumed that the estimated

coordinates of each node are affected by a Gaussian error of a given variance. As a

consequence the erroneous distances between nodes are random variables charac-

terized by the Rice distribution. LED calculates the expectation of the considered

distances and chooses the node with the minimum expectation.

Although [59, 58] provide solutions for geographic routing in realistic localisation

scenarios, performance degradation can still be considered severe and can be fur-

ther reduced. The investigation in section 6.3 presents a comparative study of the

various greedy forwarding techniques (the basis of the algorithms described above)

and proposes the conditioned mean square error ratio (CMSER) algorithm as an

alternative method to improve the overall performance while still coping with

location errors. To be able to compare the routing techniques, all the algorithms

forward with positive advance only, dismissing the possibility of backward pro-

gress.

The most forward within range algorithm (MFR) [60], a basic geographic routing

algorithm without location error coping capabilities, is also used for comparison

and it is considered energy efficient when using a fixed transmission power because

it minimizes the hop count.

Simulations have shown that, under identical circumstances, the PDR of the pro-

posed forwarding method CMSER is increased and the energy wasted on lost

packets is limited. The throughput grows higher without the lost packets travel-

ling in the network for a large number of hops, thus reducing the overall power

consumption of the network.
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6.2 Geographic Routing with ToA and RSS

Localisation

Geographic routing depends on knowledge of location which is itself derived from

measured or estimated distance either through RSS or ToA. The ranging tech-

niques as well as the mathematical model have been described in chapter (2-5).

The MATLAB simulation used for evaluation assumes 8 ANs, situated 20 m out-

side the network, in the corners and on the edges of the routing surface, one being

placed in the centre. ANs do not participate in the routing process and for them

R ≥ 623m. Networks with different densities are considered and the variance of

the estimated distance and shadowing path-loss is varied. The simulation uses

the parameter values specified in table 6.1. The destination (D) is placed in the

right upper corner of the square network. The events in the network are detected

by source nodes (S). Their number determines the S−D traffic connections and

the congestion level in the networks. A static network is assumed, with randomly

and uniformly distributed nodes.

As the network area is kept constant, the network density (calculated as number

of in-range neighbours per node) is varied by a gradual increase of the total

number of nodes (from 25 to 65 nodes). Each simulation consists in generating:

• A network with accurate location information and

• 5 networks with inaccurate location information, whose variance, σ2
n (ToA) and

σ2
w (RSS) is increased from 2 to 10, with a step of 2.

This process takes place 300 times (similar to [58]) for each network size and all

the results are averaged.

Packet forwarding is achieved through MFR routing, based on advance to D, but

modified here so that no backward progress takes place. The algorithm assumes
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6.2 Geographic Routing with ToA and RSS Localisation

Parameter Name (unit) Value
Transmission R of Target Nodes (m) 100
Transmit power (mW)[58] 1.778
Path Loss Exponent 3
Standard Deviation for Shadowing 3.5
Sensitivity Threshold (dBm)[61] -95
Packet Size (bits) [56] 1024
Data rate (kbits/s) [62] 250
Energy spent on Transmission (Joules/bit) [62] 2.5e-07
Energy spent on Reception (Joules/bit)[62] 1.5e-0.7
Network side length (m) 400
Number of trials 300
Number of packets per S −D connection 10
Number of S 15
Minimum value of Backoff Exponent (minBE)[63] 3
Maximum value of Backoff Exponent (maxBE)[63] 5
Maximum number of Backoffs (maxCSMABackoffs)[63] 5

Table 6.1: Simulation parameters

Nodes 25 35 45 55 65
Density 3.5 5.2 6.7 8.2 9.8

Table 6.2: Network density (neighbours/node).

nodes which are aware of the location of S, D and of their neighbours (nodes

within R). Nodes list their neighbours whose coordinates are known correctly or

estimated.

Fig. 6.1a illustrates the forwarding of a node F with neighbours F1 and F2.

The neighbour list of F is checked to see if it is empty and if D is listed as a

neighbour. When it is not, F blacklists S and the previous hops within R. This

has been simulated to avoid undesired loops and backward progress - sources

of useless energy consumption. However, this implies a list of previous hops is

forwarded in the header of each packet, slightly increasing its size. The remaining

neighbours (F1 & F2) are possible forwarding options, but the one with actual

progress (shorter distance to D than d) will be short-listed in a list of neighbours
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6.2 Geographic Routing with ToA and RSS Localisation

with progress. The node with the most progress is the next hop (d1 in Fig. 6.1a).

Each transmitting node follows the same algorithm as illustrated in the simulation

flow chart in Fig. 6.1b, which also shows that once the next hop is identified and

transmission is attempted, the medium access control (MAC) layer’s carrier sense

multiple access with collision avoidance (CSMA/CA) mechanism comes into play.

In agreement with the un-slotted version of IEEE 802.15.4 MAC layer [63], when

inter-node communication is attempted, each sensor checks if the channel is idle

or not before sending a packet. When found busy, the assessment is repeated.

The channel status is determined through clear channel assessment (CCA) and

the failure probability at node level is defined based on the number of sources S.

If the MAC approves the transmission, the sending node either succeeds or fails,

depending on the accuracy of the location knowledge it has.

The simulation makes use of a realistic log-normal shadowing channel model

as in [58]. The model is considered to take into account multipath shadowing

and fading effects which occur in wireless environments. Upper layers are not

simulated.
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6.2 Geographic Routing with ToA and RSS Localisation

(a) Forwarding Example.

(b) Flow Chart.

Figure 6.1: Simulated Forwarding Algorithm.

It is expected that the results of the ML simulations have better accuracy, thus

improving the routing process. ML localisation offers better accuracy at higher

computational costs and is sometimes infeasible because it requires a good initial

estimation which may not be achievable.

The loss rate (LR) is shown in Fig. 6.2 and Fig. 6.3. For lower densities, routing
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6.2 Geographic Routing with ToA and RSS Localisation

performance is unsatisfactory in all cases and this is more pronounced as σ2

increases. For ML localisation with RSS ranging (ML-RSS), even for the smallest

σ2
w, the LR reaches 89%, worse than for ML localisation with ToA ranging (ML-

ToA) where the value is 81%. Although the LR for RSS ranging decreases with

the increase in density, the figures show how the best value, with the smallest σ2
w

reach 64% so more than half of the sent information is lost. This is because of

the large errors introduced in the location estimates due to RSS measurements

at longer distances. However, for both LLS-ToA and ML-ToA, the performance

improves considerably when node density increases, reaching a LR of 26% for the

worst case scenario of σ2
n = 10 of the LLS-ToA.

It is found that the performance of networks employing geographic routing, under

the same relaxed traffic load, is considerably different for the positioning errors

induced by ToA and RSS. While good connectivity is necessary for large scale

networks, even when ensured, the routing outcome is seriously affected in terms

of throughput when RSS is employed. If the networks are sparse, the loss rate can

reach 80% to 90% regardless of the localisation method used. The failure causes

have been studied and for each type, loss of connectivity is the fundamental

reason. However, when the optimal density is ensured, inaccurate localisation is

the most important cause for failure.
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(b) For networks with RSS ranging.

Figure 6.2: Loss Rate (for LLS).
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Figure 6.3: Loss Rate (for ML).

The results of the present study are limited to the use of 8 anchor nodes, but

a higher number of anchors involved in the localisation process would positively

impact the positioning results and the routing. Also the findings herewith refer to

a maximum of 65 nodes, larger and more congested networks, considering more

practical issues, such as clock synchronization or the introduction of the ARQ
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6.3 Geographic Routing Resilient to Location Errors

protocol would provide different results.

6.3 Geographic Routing Resilient to Location Errors

It has been concluded in section 6.2 that location errors have a significant impact

on geographic routing performance. If the localisation is inherently erroneous,

then the routing algorithm must be able to cope with these errors and provide

quality of service. Here, it is considered that the location errors are independent

Gaussian random variables and that the error variance of each node is different.

Let there be a relay node Si, with i = 1, . . . , I, where I is the number of

transmitting nodes along a routing path. Let Fj be a forwarding candidate of

Si, with j = 1, . . . , J , where J is the number of neighbours of Si with positive

progress to destination D. In the two dimensional plane, Si and Fj have the real

coordinates Si (xi, yi) and Fj (xj, yj) and the estimated locations S ′i (x̂i, ŷi) and

F
′
j (x̂j, ŷj), where x̂i = xi + Wi , ŷi = yi + Wi, x̂j = xj + Wj and ŷj = yj + Wj.

Wi ∼ N (0, σ2
i ) and Wj ∼ N

(
0, σ2

j

)
are Gaussian random variables with zero

mean with standard deviation σi and σj. For each node, it is considered that the

error variance is equal on the x and y axes. The probability density function of

the measured distance d̂ij between 2 nodes (S ′iand F
′
j ) follows a Rice distribution

p
(
d̂ij
)

=
 d̂ij
σ2
ij

 exp
− d̂ij2 + d2

ij

2σ2
ij

 I0

 d̂ijdij
σ2
ij

 . (6.1)

The estimated distance d̂ij is given by (6.4) and dij is the accurate distance

between Si and Fj (6.3).
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d̂ij =
√

(x̂i − x̂j)2 + (ŷi − ŷj)2 (6.2)

dij =
√

(xi − xj)2 + (yi − yj)2. (6.3)

I0 is the modified Bessel function of the first kind and order zero and σ2
ij = σ2

i +σ2
j .

The mean (expectation) of the estimated distance d̂ij is

E
(
d̂ij
)

= σij

√
π

2L
1
2

(
−
d2
ij

2σ2
ij

)
, (6.4)

where L1
2(x) denotes the Laguerre polynomial (6.5) and I1 is the modified Bessel

function of the first kind and first order.

L 1
2
(x) = exp

(
x

2

) [
(1− x) I0

(
−x2

)
− xI1

(
−x2

)]
. (6.5)

The variance of the estimated distance d̂ij is

V ar
(
d̂ij
)

= 2σ2
ij + d2

ij −
(
πσ2

ij

2

)
L2

1
2

(
−
d2
ij

2σ2
ij

)
. (6.6)

According to the simple forwarding algorithm MFR presented in the section 6.1,

when a node Si has to choose among the available forwarding candidates with

positive advance, the next hop Fj will be the one closest to the destination D, so

the node with the largest distance dij. However, it is likely that the furthest node
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from Si will also be the nearest to the edge of R. Because all choices are made

based on the estimated distances, the transmission is susceptible to failure and

energy wastage. If a statistical error characteristic associated with the measured

location of each node (a mean and error variance) is known and communicated

along with the coordinates, then the forwarding decision can make use of this

data.

Below a novel routing proposal to address the presence of location errors is made.

Its aim is to minimize the effect of inherent positioning errors on the network

throughput, when nodes use a fixed transmission power. To be able to analyse

strictly the forwarding techniques, it is assumed that the communication is not

affected by the environment.

It is proposed that Si first calculates the mean square error (MSE) associated

with all Fj with

MSEij = E
(
d̂ij − dij

)
2 = E

(
d̂ij

2
)
− 2dijE

(
d̂ij
)

+ d2
ij, (6.7)

where E
(
d̂ij
)
is calculated with (6.4) and E

(
d̂ij

2
)
is calculated as follows

E
(
d̂ij

2
)

= E(x̂2
i − 2x̂ix̂j + x̂2

j) + E(ŷ2
i − 2ŷiŷj + ŷ2

j ). (6.8)

Using the second moments in (6.8), i.e. E(x̂2
i ) = x2

i + σ2
i , E(ŷ2

i ) = y2
i + σ2

i ,

E(x̂2
j) = x2

j + σ2
j and E(ŷ2

j ) = y2
j + σ2

j , (6.9) is obtained

E
(
d̂ij

2
)

= 2σ2
i + 2σ2

j + x2
i + x2

j + y2
i + y2

j − 2xixj − 2yiyj. (6.9)

The actual distance dij is not available as the accurate locations are unknown,
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hence the calculations are made using the estimated coordinates instead. The

next step is to calculate the mean square error ratio (MSER) associated with

each forwarding candidate F j and to detect the best choice as follows

MSERij = MSEij/d̂ij, (6.10)

and finally

Fj = arg min (MSERij) . (6.11)

By choosing the neighbour Fj with the minimum value for MSER, a balance is

obtained between the shortest distance to D and the smallest error of the next

hop. In the special case of 2 forwarding options equally far from Si, the next hop

will be the node with the smallest error. If the error characteristics are the same,

the next hop will be the furthest one from Si. So, Fj is chosen depending on the

scale of the error in comparison with the distance.

The algorithm can be further improved by considering that Fj, although optimal

from the MSE point of view, can still be close to the edge of R, especially when few

routing options are available. The routing selection can be refined by considering

a condition similar to that of MEP, but redefined as follows: that the squared

difference between R and the estimated distance to the neighbour node should be

greater than the variance of the erroneous distance (6.12). The quadratic form is

used to have the same unit of measurement. This is referred to as the CMSER

algorithm. While in the simulation, the condition (6.12) when used independently
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is referred to as COND.

(
R− d̂ij

)2
> V ar

(
d̂ij
)
. (6.12)

For a complete comparison LED is now based on the maximum E
(
d̂ij
)
used

to determine the Fj closest to D, instead of that used for the Fj closest to a

predetermined energy-optimal forwarding position.

The PDR of the forwarding methods referred to as MFR, LED, COND, MSER

and CMSER is analysed via MATLAB simulation when the nodes are erroneously

localised with σi, σj∈ [0, σmax]. Nodes are randomly distributed over a network

area of 200 m2. Several scenarios are studied, as described in table 6.3, where

SE random sensing events take place. Each source sends 1 packet of 1024 bits

in the network. The probability of correctly receiving any packet within R is 1,

and 0 outside R. Performance is studied for different network densities (when

the number of nodes N is varied), for different values of the maximum standard

deviation of errors (σmax) or different R. Each scenario consists of a network

distribution with accurate node coordinates, where packet forwarding is made

with MFR, and a number of η distributions with inaccurate locations (η being

the number of iterations), where the errors have been modelled Gaussianly. The

figures are obtained through averaging over η.

Table 6.3: Simulation Scenarios

Scenario N R(m) σmax(m) (% of R) η SE

1 50-600 40 8 (20%) 100 50
2 350 40 4-20 (10-50%) 100 50
3 200 10-100 5 (50-5%) 300 30

Fig. 6.4 presents the forwarding performance for different network densities. For
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an optimal density of more than 200 network nodes, CMSER has a PDR between

70% to 80%. The MFR performs worst with approximately 10% PDR for all

network densities. MSER and LED have a similar throughput with PDR values

between 20% and 40%. It is however noticed that MSER has a slightly better

performance. Looking strictly at COND an obvious improvement over the other

methods is noticed, with a parallel behaviour to that of CMSER, but with a PDR

below 50%. To indicate the reliability of the estimations, Fig. 6.4 illustrates the

PDR with a 95% confidence level.
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Figure 6.4: Routing performance for Scenario 1.

Looking at the PDR when σmax is increased (Fig. 6.5), the performance degrades,

as expected. The most severe performance degradation is that of LED, which for

large errors behaves worse than MFR. COND has the second best performance

maintaining a PDR of above 50% only for errors with σmax up to 10% of R.

CMSER is the best forwarding method here because its performance has the

least abrupt degradation slope with the increase of errors. Although the PDR for
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CMSER drops below 50% when σmax is higher than 45% of R, it still maintains

a significantly superior performance than that of the other methods.
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Figure 6.5: Routing performance for Scenario 2.

Varying theR (Fig. 6.6) within a reasonably dense network increases the potential

forwarding options for each node. With more neighbours to choose from, the

throughput also increases. For R ≤ 20, all the considered forwarding methods

fail to find neighbours to forward to and the routing fails. While for R > 30

CMSER increases its throughput progressively from 60% to almost 100% PDR,

none of the other algorithms perform as well. The PDR curve for MFR remains

detached below the rest of the algorithms for all values of R. The performance of

CMSER, COND and LED is similar, but lower than for CMSER whose behaviour

is constantly better than the rest.
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Figure 6.6: Routing performance for Scenario 3.

6.4 Summary

The design of new energy efficient algorithms as well as the analysis of the existing

ones has to be made with realistic considerations of location errors. This is why

the investigations of this chapter considered not only a statistical error model as

previous work has, but the location error given by localisation techniques em-

ployed in real network design. It was found that geographic routing performance

depends on the magnitude of the positioning errors as well as on the employed

ranging methods, ToA or RSS. The differences in localisation influence both the

PDR and the energy wastage of the networks.

Making geographic routing algorithms resilient to location error is imperative as

this type of routing is theoretically energy efficient and very suitable to large

scale networks. CMSER’s performance in terms of throughput is considerably
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better when compared to other basic greedy routing techniques such as those

employed by MFR, MSER, COND and LED. The MATLAB simulations results

confirm that CMSER outperforms other algorithms when the network objective

is to increase packet delivery. CMSER makes use of the notion of maximum

progress to destination, but gives more importance to the probability of success

when coordinates are affected by location error. As a consequence, the energy

spent on lost routing packets is considerably decreased. While the paths of the

received packets of CMSER may be longer, the routes of the lost packets are kept

short, being surpassed only by MFR, which does not cope with location error at

all.

135



7 Conclusions and Future Work

7.1 Conclusions

This thesis focused on low complexity and low powered localisation of nodes in

wireless networks. A major part of the thesis utilized the received signal strength

(RSS) measurements for range estimation. Where the attention was given to en-

vironments with unknown path-loss model. This was followed by another aspect

impacting location accuracy i.e. anchor node (AN) and target node (TN) net-

work geometry. Finally, the impact of localised nodes on the geographic routing

was discussed and algorithms were developed to mitigate the impact of location

error.

For unknown path-loss models or models with unknown path-loss exponent (PLE),

the natural strategy was to estimate the PLE alongside the location coordinates.

However, first an theoretical analysis of incorrect PLE assumption was required

to highlight its impact on location coordinates. This was done for a high com-

plexity maximum likelihood (ML) estimator and for a low complexity linear least

squares (LLS) estimator. For both methods it was shown that the simulation

results are in agreement with the error analysis results and that both show de-

graded performance when α was incorrectly assumed. Performance degradation

was even worse when the assumed PLE value was smaller than the correct value.

136



7.1 Conclusions

The next step was to jointly estimate the location coordinates and the PLE. Thus

this was done for both the ML and LLS estimators. For the ML type estimator,

the low complexity joint estimator (LCJE) was developed that operated on the

Lavenberg-Marquardt (LM) method which is a modification to the Gauss-Newton

(GN) method. Furthermore, in order to utilize the on hand data available about

the PLE, the PLE was considered as a random variable and a MAP estimator

was proposed. Simulation results proved that the MAP performs better in es-

timating α at low signal-to-noise ratio (SNR) and has a faster convergence in

location estimation. As for the LLS technique, a simplistic technique to estimate

the PLE by optimizing a single variable function was devised, this technique was

referred to as the linear joint estimator (LJE). Simulation results showed that

this technique had acceptable performance though the estimates were biased. In

order to achieve even better accuracy, the LJE result was used as the initial es-

timate for more computationally intense but optimal algorithm and showed via

simulation that it performed considerably better with a smaller number of itera-

tions in comparison with an arbitrary initial estimate. Furthermore, in order to

optimize the performance of the LLS algorithm, optimization techniques such as

optimal anchor selection and weighted least squares (WLS) algorithms were also

proposed.

In order to compare the mean square error (MSE) of estimators, the Cramer-

Rao bound (CRB) has been extensively used as a benchmark. For the MAP

estimator where the PLE was assumed to be a random variable, the conventional

CRB could not have been used as a performance bound, hence a modified bound

i.e. the hybrid Cramer-Rao bound (HCRB) was derived. The the HCRB for a

random α was shown in general to be lower than the CRB due to the additional

information provided about α. Yet when the TN was at equal distance from all

ANs both bounds showed similar performance. As for the LLS algorithm the
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conventional CRB again could not be used as a lower bound hence a linear CRB

was derived. The error in the linear CRB was shown to be considerably larger

than the conventional CRB.

Further CRB analysis was done on the impact of AN/TN geometry on location

accuracy. It has been previously established that the relative angle of the TN

with ANs had an impact on the accuracy of the estimated location of the TN.

Thus, the goal was to formulate a mechanism that would guarantee minimum

error due to network geometry or to place the ANs at optimal positions. Optimal

AN positions were achieved that guaranteed best accuracy for the entire network

area via extensive simulation. This is done via choosing the placement of ANs

that offered the minimum mean CRB.

Inaccuracy in localisation estimates impacts the applications in the upper layers.

Location based routing has been favoured in energy efficient WSNs. Conventional

geographic routing algorithms are based on the assumption of accurate location

knowledge making this routing type unreliable in practical applications. Thus

impact of location error on geographic routing parameters such as the loss rate

(LR) was done via simulation. It was found that geographic routing performance

depends on the magnitude of the positioning errors as well as on the employed

ranging methods, ToA or RSS. The differences in localisation influence both the

LR and the energy wastage in the networks.

The next natural step was design algorithms that are resilient to location er-

ror. Thus an algorithm conditioned mean square error ratio (CMSER) was de-

veloped to counter the effects of location error. CMSER’s performance in terms

of throughput was considerably better when compared to other basic greedy rout-

ing techniques such as those employed by most forward within range (MFR) and

least expected distance (LED). Overall energy costs were also kept down to a
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minimum. CMSER makes use of the notion of maximum progress to destination,

but gives more importance to the probability of success when coordinates are

affected by location error. As a consequence, the energy spent on lost routing

packets was considerably decreased. While the paths of the received packets of

CMSER may be longer, the routes of the lost packets were kept short, being

surpassed only by MFR, which does not cope with location error at all.

7.2 Future Work

Although localisation of wireless nodes has been a well studied subject, there still

remains room for further research. Some current trends and topics for future

research are highlighted below.

Cooperative localisation

Low cost and hence low powered node localisation is a critical requirement for

WSNs. In a large and low powered sensor network, some TNs may not be in

range of all the ANs. Thus, a method in which the in-range TNs can work in

a peer-to-peer manner to localise the out of range nodes is required. This type

of localisation scheme is known as cooperative localisation. One of the main

problem in cooperative localisation is error propagation i.e. error in one node

will show up in another node. In [64] Nayef Al-sindi proposed an error propaga-

tion aware algorithm in which only those nodes with small errors are used in a

peer-to-peer manner. In [65] D. Niculescu proposed a range free algorithm which

takes into account an approximated distance between two nodes rather than a

metric distance. This approximated distance depends upon node density of the

network. Another method used for cooperative localisation is multidimensional
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scaling (MDS). MDS has its origins in psychometric and is recently introduced in

node localisation. It uses the spectral decomposition of a doubly centred distance

matrix. A rotated, translated and shifted configuration of the true configuration

is obtained, which can be brought back to its original position subject to the

availability of minimum 3-4 ANs for 2D-3D systems respectively. [66] and [67]

uses classical MDS for localisation, using spectral decomposition. In [68] Shang,

et al. proposed a new centralized algorithm called MDS-MAP(C), where C is for

centralized. MDS-MAP(C) has three steps. In the first step shortest distance

between all the nodes are calculated via Dijkstra or Floyd warshall algorithm.

These shortest distances are used to construct the distance matrix. In the second

step classical MDS is applied on this distance matrix to get relative configuration

of the nodes. In the third step this relative configuration is rotated, shifted and

translated to its original position by the help of ANs. The authors also propose

a distributed version of their system in [69] which is known as the MDS-MAP(P)

where P is for patched. In MDS-MAP(P) the whole network is divided in small

sub-networks. MDS-MAP is applied on each section to get relative configura-

tion. These relative configurations are patched together by using common nodes

between two neighbouring sub-networks, forming the relative map of the full net-

work which is then translated and rotated to its original position. This map

stitching technique for localisation was introduced in [70]. The MDS algorithm

involves spectral decomposition of a doubly centred distance matrix thus for large

number of nodes a large matrix is obtained. For example for a network of hun-

dred nodes a 100× 100 matrix is formed. Performing spectral decomposition on

such a matrix is computationally not efficient, thus iterative technique like SMA-

COF (Scaling by MAjorization aCOmplicated Function) [71] is used. In [72] the

author combined ML estimator and SMACOF, and showed that the estimator

converges faster and gives better estimation of the node position. In [73] the
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author uses a weighted multidimensional scaling approach that does not involve

spectral decomposition and shows better results than classical MDS.

Whichever localisation approach is used, cooperative localisation is often seen

as a failure to produce appreciable results. This may be due to node failure,

due to the effect of harsh environments or due the effect of improper placement

of ANs in random deployment. Considerable amount of work is needed to be

done in these areas, to limit the node failures, to improve the geometric dilution

of precision (GDOP) and to overcome the effect of the harsh environment on

localisation. Another issue that affects the accuracy of localisation nodes is the

use of erroneous AN positions. Small amount of work is done on how to mitigate

this error and needs to be addressed in future research.

Hybrid ToA-RSS Localisation

A recent trend is the design of efficient hybrid (ToA & RSS) location systems.

This research area is still in its infancy. Since we inherently have the RSS mea-

surements even in ToA systems, it is thus logical to manipulate both for increased

accuracy. With N number of ANs and M number of TNs, we will have N ×M

estimates of RSS and ToA ranges. The next step is to either filter out or de-

prioritize erroneous samples of the observed data. For efficient design of hybrid

(ToA & RSS) location systems, one way for example can be the design of algo-

rithms that identify and reject non line of sight (NLoS) ToA estimates or giving

higher weights to links with a smaller estimated PLE.

Multipath mitigation

Indoor environments face two main propagation challenges: multipath and NLoS

The former significantly affects the accuracy of ToA based localisation techniques
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for low bandwidth systems such as IEEE 802.11 – WLAN. Thus to enable accu-

rate ToA-based ranging, multipath mitigation algorithms are required to provide

better time-resolution and accurate distance estimation. Thus an extensive eval-

uation of existing multipath mitigation algorithms needs to be investigated to

assess the limitations of existing techniques and their practicality in implemen-

tation.

Multipath mitigation algorithms are based on noise and signal sub-space de-

composition techniques and the major approaches in literature are based on

two algorithms for high-resolution delay estimation which are MUltiple SIgnal

Classification (MUSIC) and Estimation of Signal Parameters Via Rotational In-

variance Techniques (ESPRIT) [74, 75]. Recently different variants of MUSIC

and ESPRIT have been proposed for different system implementations which

are typically based on singular value decomposition (SVD) and eigen value de-

composition (EVD) methods. The implementations are usually grouped under

time-domain (cross-correlation method) [76] versus frequency domain (channel

estimation method) [77]. Thus for future work capabilities of the existing multi-

path decomposition algorithms operating in realistic propagation conditions can

be investigated. Finding the most suitable and practical approach is the desirable

outcome.
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