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ABSTRACT 

 

In this work, we have modelled multilayer magneto-photonic nanostructures in one 

dimension which display circular birefringence. Starting from Maxwell's equations, we 

have derived the     transfer matrix for these media. This is used to calculate optical 

and magneto-optical properties when the structure is deposited on an isotropic 

transparent substrate. For a transparent substrate it is important to include the effect of 

multiple incoherent back reflections in the substrate; therefore, the calculations were 

adapted to consider such reflections for both thick finite isotropic and circularly 

birefringent substrates. The results show the significant contribution of incoherent back 

reflections on the magneto-optical Kerr effects. We have reanalysed Sato's modulation 

method including incoherent back reflections in the substrate. We have derived exact 

and approximate Faraday rotation formulae for a circularly birefringent film on a 

circularly birefringent substrate; and a circularly birefringent cavity structure.  
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 Background 

In 1987, both Yablonovitch and John introduced the concept of photonic crystal, 

Yablonovitch (1987) was studying forbidden spontaneous emissions in three-

dimensional periodic media, and in the same year John (1987) was investigating photon 

localisation in disordered microstructures.  

A photonic crystal is a material patterned with a periodic variation of refractive 

index or dielectric constant, which can produce photonic band gaps (PBG's): ranges of 

frequencies in which photons can not propagate in the crystal (Joannopoulos et al., 

1997). This band gap plays a significant role in the study of photonic structures. These 

structures can be classified into one-, two-, and three-dimensional photonic crystals, see 

figure 1.1. 

 

 

Figure ‎1.1: Schematic diagrams of one-, two-, and three-dimensional photonic crystals, 

taken from http://ab-initio.mit.edu/photons/index.html  accessed on 11/1/2013, with 

permission from Prof. John D. Joannopoulos. 

http://ab-initio.mit.edu/photons/index.html
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The multilayer film is the simplest photonic crystal. It is composed of periodic 

layers which have varied refractive indices or dielectric constants in one-dimension. A 

simple example is the quarter-wave stack, where each individual layer has a thickness 

equal to a quarter-wavelength, which means the thickness, h, is given by  

   
 

  
  (1.1) 

 

where   is the vacuum wavelength and n is the refractive index. The waves from each 

layer boundary reflect in phase at the mid gap frequency, therefore, the band gap of  the 

quarter-wave stack is maximised (Joannopoulos et al., 2008).  

We do not get 'direct' magneto-optical effects because the relative magnetic 

permeability         at optical frequencies, but in some materials the dielectric 

constant,    is affected by a magnetic field, which leads to magneto-optical effects. If 

the materials are used inside the photonic crystal, a magneto-photonic crystal results. 

This produces unique features in the optical and magneto-optical effects (Inoue et al., 

2006). These features (high value of the transmission and Faraday rotation) are a 

consequence of multiple reflections in the magnetic layer (Kato et al., 2003). The large 

enhancement of magneto-optical properties can be understood in circularly birefringent 

terms as being due to slight differences in the behaviour of  right and left  circularly 

polarised light (Inoue et al., 2006).  

The study of magneto-optical effects helps in understanding the electronic 

structures of atomic and molecular systems (Pershan, 1967). Previous studies have 

suggested the magneto-optical Kerr effect in the ultra-violet region may be useful in 

high density magneto-optical data-storage (VanDrent and Suzuki, 1997; Wang et al., 

1999). A high Faraday rotation is helpful in magneto-optical imaging and in integrated 



3 
 

optics as an optical isolator (Kahl and Grishin, 2004). Magneto-photonic structures 

have applications for control of optical devices using a magnetic field. The motivation 

to apply these structures in photonic crystals arises from the ability to control the 

optical properties of the photonic crystal by reorienting the magnetisation. In addition, 

there is the ability to enhance the magneto-optical effect due to light confinement 

(Lourtioz et al., 2008).  

The rotation polarisation state of the light is known as optical activity. It 

requires a breaking of inversion symmetry, as, for example in chiral molecules. This 

effect has importance in different fields such as molecular biology and analytical 

chemistry. Moreover, it is considered  a possible signature for life in space (Plum et al., 

2009). The idea of chirality has stimulated research in developing microwave and 

optical artificial chiral meta-materials, since they have been identified as negative 

refraction resources (Plum et al., 2009). 

The study of magneto-optical activity involves two problems: relating the 

measured quantities such as rotation and ellipticity to the dielectric or conductivity 

tensor; and then explaining these functions in terms of the characteristics of the band 

structure or estimating them from relativistic and spin-polarised band structure 

computations (Reim and Schoenes, 1990). The present thesis is concerned with the first 

step.  

In the photonic field, computational methods have been used in a set of 

problems such as photonic band analysis and calculation of reflection, transmission or 

emission spectra. These methods include finite difference time domain (FDTD), plane 

wave expansion, multiple scattering theory and transfer matrix.  
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There are many different experimental methods to measure magneto-optical 

properties, including the polarisation modulation method using a Faraday cell and the 

superior spinning analyser approach. In addition, several experiments have used piezo-

bifringent modulators for measuring magneto-optical parameters, Kerr rotation and 

reflectance magneto-circular dichroism (RMCD), which is related to Kerr ellipticity 

(Sato, 1981). This will be explained in detail in Chapter 6.  

In this work, we give attention to theoretical modelling of photonic structures 

which have magneto-optical properties. The work is useful in analysing real 

experimental magneto-optic data, as well as in designing novel structures that utilise 

sensitivities of the optical properties of photonic crystal to tiny differences in the 

refractive index.   

 

1.2 Aims of Work 

The aim of this work is to derive a 4×4 Transfer matrix treatment for circularly 

birefringent nanostructures with light at normal incidence. A FORTRAN programme is 

used to evaluate the matrix and calculate optical and magneto-optical spectra. This 

model is first used for structures on an infinite substrate that is ignoring any reflection 

from the back of the substrate. Then, it is modified to address the issues arising from 

the contribution of multiple incoherent back reflections in finite transparent substrates, 

which may be isotropic materials or themselves circularly birefringent. The reflections 

may be incoherent for several reasons, including finite angular resolutions or a slight 

wedge in the substrate. We also re-analyse Sato's modulation method including 

incoherent reflections. In addition, we derive approximate analytical expressions for the 
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Faraday rotation of a circularly birefringent film and cavity structure. The Faraday 

rotation formula is used to drive an expression for the effective number of light passes.  

 

1.3 Plan of Research 

The rest of this thesis will be divided into seven chapters. Each one will investigate a 

special topic.  

In Chapter 2, the main ideas about photonic structures which will be used in our 

simulation program will be outlined. These topics include Maxwell's equations, 

photonic band gaps, the localisation of light and computational techniques such as the 

transfer matrix.  

Chapter 3 will be devoted to concepts in optics and magneto-optics. These 

concern the polarisation of light, birefringent properties, Stokes' parameters and the 

Poincaré sphere. In addition, a description of the magneto-optical effects, Kerr and 

Faraday ellipticity and rotation, will be presented. 

We shall use computer codes, which are written using the FORTRAN language, 

to calculate reflectivity and magneto-optic spectra. For this purpose Chapter 4 will 

focus on the derivation of the transfer matrix method for circularly birefringent 

structures, which is used in our codes. 

We have already mentioned the effect of using a finite transparent substrate 

instead of an infinite one on the optical and magneto-optical spectra. This is an 

important issue which will be discussed extensively in Chapter 5. The incoherent back 

reflections within the substrate will be taken into account. 
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Sato's modulation method is universally applied experimentally to obtain 

continuous magneto-optical spectra. In Chapter 6, we will re-analyse the modulated 

method and simulate magneto-optical spectra for circularly birefringent medium with 

treatments both of coherent and incoherent back reflections.  

In Chapter 7 we will investigate the problem of a circularly birefringent film on 

a substrate which is itself circularly birefringent. We will discuss the question of how 

the film properties can be deduced by comparing the results for the whole structures 

with those for a bare substrate. In addition, exact and approximate analytical formulae 

of Faraday rotation will be found for the following cases: where a single circularly 

birefringent film has air on both sides; when it is deposited on circularly birefringent 

substrate; and for a cavity structure which has Bragg mirrors on both sides of cavity 

layer with a circularly birefringent medium.  

The last chapter will be devoted to the conclusions and outlook to the future of 

this research. 
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CHAPTER 2  

OVERVIEW OF PHOTONIC STRUCTURES  

 

 

 In this chapter, some topics in photonic structures will be investigated briefly. These 

topics include Maxwell's equations, photonic band gaps, the localisation of light, 

applications of photonic crystals and some examples of photonic structures in nature. In 

addition, various computational techniques will be discussed.  

  

2.1 Maxwell's Equations 

The propagation of electromagnetic waves within a photonic structure obeys Maxwell's 

equations:  

        

     
  

  
    

        

     
  

  
    

where B is the magnetic induction field, D is the electric displacement, E is the electric 

field, H is the magnetic field, J is the current density, and   is the free charge density. 

By coupling the two curl equations of 2.1 in source free ( =0 and  =0) and using the 

constitutive relations,                    for nonmagnetic materials (the relative 

magnetic permeability          these equations can be turned into eigenvalue 

problem, the master equation, in terms of H(r): 

       

 

 

 

 (2.1) 
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Where   is the (Cartesian) position vector,     is the frequency and c is the vacuum 

speed of light, (given by         
   ).          

 
  are the vacuum permittivity and 

the vacuum permeability, respectively.      is the relative permittivity, which is taken 

to be spatially dependent for photonic crystals. 

Assumming the relative permittivity is not frequency dependent, scale 

invariance is a fundamental property of the master equation, which means there is no 

fundamental length scale. In detail, the master equation in dielectric configuration      

is given by equation 2.2. Then, in dielectric configuration       is an enlarged or 

compressed version of     :               By using         and       equation 

2.2 becomes: 

                                                 
 

      
     

  

 
    

 

  
 
 

  
  

 
                                   

where s is a scale parameter. This is also the master equation with mode profile  

                and frequency       . By just rescaling the old mode and its 

frequency, the new mode and its frequency are produced. The solution of the equation 

at one length scale is the same as the solution at another length scale (Joannopoulos et 

al., 2008).  
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2.2 Photonic Band Gaps  

The band gap has had much attention from researchers in the study of photonic 

structures. Yablonovitch (2001) explained the wave behaviours in photonic crystals. In 

a band gap structure, incident electromagnetic waves reflect partially from individual 

layers. These waves reflect in phase and strengthen each other. Then, as a result of the 

interference of the reflected and incident waves, standing waves arise. These prohibit 

propagation across the media. Figure 2.1 illustrates the wave behaviour within the band 

gap of a one-dimensional photonic crystal. There are two polarisations: transverse-

magnetic (TM) and transverse-electric (TE), the first one has the electric field in the 

plane and the second one has the electric field perpendicular to the plane (Hecht, 2002). 

They have an individual band structure (Johnson and Joannopoulos, 2003). When light 

is incident obliquely, these polarisations need to be considered separately. However, at 

normal incidence there is no distinction between them. 

 

 

 

  

 

 

 

 

Figure ‎2.1:The wavelength in one-dimensional band gap (Yablonovitch, 2001), with 

permission from Andy Christie, Slims film, and courtesy for reuse from Karin Tucker. 
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The band gap may be easily calculated in the one-dimensional case. On the 

other hand, it is difficult in two-dimensions (Lourtioz et al., 2008). This is not only 

because the wave propagates in two directions but also, because the polarisations are 

not generally separable. There are also two topologies: either holes with low index in 

the material with a high index or rods with a high index embedded in a low index 

material. The former, holes, may have a TE photonic band gap. The latter, rods, have a 

TM photonic band gap (Johnson and Joannopoulos, 2003). Since the study of three-

dimensional photonic crystal is complicated, a photonic-crystal slab is used. This is the 

design of two-dimensional periodic structure with a finite height. It can confine the 

light vertically in the slab with index guiding (a general idea of total internal reflection) 

(Johnson and Joannopoulos, 2003). 

 

2.3. Light Localisation 

Defects in photonic crystals have received much attention in the study of photonic 

structures. Anything which causes a change in periodic structures is termed as a defect. 

There are two main types of defect: line and point defects. In the first one, waveguides 

are produced, while in the second one a cavity is produced. Modes associated with 

defects lie within the photonic band gap and are localised near the defects (Johnson and 

Joannopoulos, 2002). The modes in the gap have the complex wave vector, k, and 

decay exponentially away from the defect. Analytic continuation can be used to 

determine the explicit decay factor near to the gap edge. The quadratic approximation 

to the band structure is:  
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   (2.4) 

 

where   is constant and            is a minimum location. So, the solution of equation 

2.4 for frequency lower than     by small amount     is:  

        
  

 
  (2.5) 

 

(Johnson and Joannopoulos, 2002).  The power localisation in the high or low dielectric 

regions can distinguish the bands above and below a band gap. Because of that, the 

band above a photonic band gap is called the air band while the band below a photonic 

band gap is called the dielectric band (Joannopoulos et al., 1997). (Johnson and 

Joannopoulos)(2002) mentioned that there are two methods to produce states within the 

photonic band gap: pulling  a localised state down from  the air band, by  raising the 

dielectric constant  in an  area; and, pushing a localised state up from  the dielectric  

band, by reducing  the dielectric constant  in an  area.  

 

2.4 Applications of Photonic Crystals 

Introducing a point defect can localise or confine the light at one point inside the 

photonic crystal producing a cavity. These photonic structures can be designed to be 

used as filters, lasers and light emitting diodes (LEDs). Photonic crystals can be used to 

control spontaneous emission, which occurs naturally when an excited atom goes down 

to a lower energy state, and its energy is released as emitted radiation. Many light 

emitting devices in the optoelectronic industry depend on a spontaneous emission. Both 

 

 

 

 

 

 

  (5) 
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the density of allowed state and the coupling between the photon and the atom 

determine the rate of spontaneous emission (Joannopoulos et al., 1997). 

Photonic cavities have many applications. Typically, both a small volume, V 

and a high quality factor, Q are required in designing the cavities for these applications. 

The energy dissipated per cycle against the energy stored defines the cavity Q-factor. 

The loss on reflection at the interfaces between the inside and the outside of the cavity 

defines the Q-factor if the media have no absorption. The strength of the emitter-cavity 

interaction is determined by V. researchers  often aim to maximise  a ratio Q/V  for a 

particular application (Akahane et al., 2003a). L3 and L4  nano-cavities were 

introduced by(Akahane et al.) (2003b). These are types of photonic crystal nano-

cavities that have three and four missing holes, respectively. A Q-factor of 45,000 and 

modal volume of 0.69         (where    is the wavelength of light in air) in a nano-

cavity based on silicon membrane were achieved by displacing air holes at both cavity 

ends (Akahane et al., 2003a, 2005). (Akahane et al.)(2005) investigated experimentally 

and theoretically maximizing the quality factor Q of this cavity by displacing six air 

holes close to the end of the cavity.  

Another form of cavity is a micro-cavity pillar. There is a long history on a 

micro-cavity pillar. (Gérard et al.) (1998) have enhanced the spontaneous emission 

using InAs quantum boxes which are put in a small volume GaAs/AlAs pillar micro-

resonator.(Sanvitto et al.) (2005) have considered emission from a circular micro-pillar 

structure of 5-10    diameter. This pillar structure consisted of three layers of InAs 

quantum dots, which are formed a cavity. This cavity is surrounded by 27 alternating 

bilayers from AlAs/GaAs, in the bottom distributed Bragg reflector (DBR) and on the 
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top, 20 repeats. They recorded a Q factor equal to 30,000 approximately (but this is for 

large pillars, so Q/V  is not good). (Daraei et al.) (2006) showed elliptical micro-cavity 

pillars have different values of Q-factor for modes polarised parallel to the long and the 

short pillar axes. The authors also controlled the polarisation of emission of quantum 

dots, which are inside the pillars, using the coupling between the photonic modes and 

the emission of the quantum dots. 

As seen above, by introducing defects in photonic crystals, light can be 

localised. It can also be guided from one position to another by using a line defect. 

Electromagnetic waves with the frequencies inside the photonic band gap are restricted 

to the waveguide or can be guided within the waveguide (Joannopoulos et al., 1997). 

Elimination of  a single row from two-dimensional photonic crystals produces a single-

mode waveguide, while increasing the number of removed rows produces multi-mode 

waveguides (Joannopoulos et al., 2008). In conventional dielectric waveguides, for 

example, in optical fibres, electromagnetic waves can be guided with no losses, 

depending on the total internal reflection principle. However, when the optical fibre 

bends tightly, an incident angle becomes too big for the total internal reflection to 

happen. As a result, electromagnetic waves escape at the corners and then are lost 

(Joannopoulos et al., 1997). However, in a theoretical study of photonic crystals, the 

electromagnetic waves can be transmitted through a waveguide with sharp corners 

without significant losses. Because of this, photonic crystal waveguides may have a 

practical significance in allowing miniaturisation of optoelectronic circuits and devices 

(Novotny and Hecht, 2006).(Mekis et al.) (1996) also showed a high transmission of 

electromagnetic waves around sharp corners in photonic crystal waveguides using 
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numerical simulations (the FDTD method). If the curvature radius of the right angle is 

zero, the power transmission still reaches 98%, compared with 30% for similar 

dielectric waveguides. High transmission, more than 80%, was measured 

experimentally by (Lin et al.)(1998) through a sharp     bend in a square lattice of 

alumina rods, which have radius equal to 0.20 a , where a is a lattice constant.  

Another practical waveguide device is a splitter. This device splits the input 

power into two equal output waveguides (Joannopoulos et al., 2008). (Yonekura et al.) 

(1999) estimated the reflection loss is from 0 to 4.6     at a       branching angle (Y-

branch), which depends on the input wave frequency.(Fan et al.)(2001) have discussed 

theoretical considerations as well as the numerical simulations of T-shaped waveguide 

branches in photonic crystals. FDTD modelling of waveguide branches reveals almost 

full transmission. The result of such a transmission simulation is shown in figure 2.2.  

 

 

Figure ‎2.2: The electric field distribution in a waveguide splitter (Fan et al., 2001),with 

permission from Susannah Lehman, Authorized agent, the optical society.   
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A photonic crystal slab, which is mentioned in section 2.2, is also known as 

photonic crystal waveguides (PCWs). This type of photonic and their implementation 

have received an increased interest from researchers. PCW may be broadly defined as 

the design of photonic crystals in two dimensions fabricated in the form of thin films 

with deep patterning. This design is useful in generating photonic band gap defined 

micro-lasers and in improving light extraction from LEDs (Astratov et al., 2000a). 

Astratov et al. (2000b) used surface coupling techniques to investigate experimentally 

the band structure for two types of patterned waveguide structures: lattice of air stripes 

and honeycomb lattice of air cylinders. They studied a 'bulk' photonic crystal which is 

made of a core layer (            ), a cladding layer (            ) and a GaAs 

substrate. In the experimental investigation, the authors measured reflectivity spectra, 

the theoretical reflectivity spectra were calculated using a scattering matrix treatment to 

solve numerically the Maxwell equations for these structures. In both experimental and 

theoretical treatments, reflectivity spectra were obtained for different incidence angles. 

Resonant coupling arises if the energy and in-plan wave vector, k, of the incident light 

are equal to those in waveguide dispersion. The resonant coupling was shown as sharp 

feature in reflectivity spectra. k is determined by the incident angle   using dispersion 

expression,               Hence, via changing   and observing the energy positions 

of the resonant features, the band structure of these types of photonic crystal were 

plotted.  
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2.5 Photonic Structures in Nature 

There are many examples of photonic structures in nature. The sea mouse (Aphrodite) 

is an example of a living organism which produces a brilliant iridescence, colours 

which change with the angle of incident light and the view direction (Tayeb et al., 

2003). The colours are produced by structural properties; they are from interference or 

diffraction, not selective absorption in pigments. These effects are angle dependent, so 

iridescence distinguishes structure colours (Tayeb et al., 2003). Parker et al. (2001) 

stated ''The simple structure responsible for this effect is a remarkable example of 

photonic engineering by a living organism''.  The sea mouse has hexagonal close–

packed (hcp) structures of holes with spacing about 0.5    in its spine and finer hairs. 

At the normal incidence of light, the spine exhibits a bright red colour. By increasing 

the incident angle of light, the red colour varies to green and blue. The finer hairs have 

gold colours  which alter to green and blue (McPhedran et al., 2003). Several studies 

have indicated that  these two-dimensional  structures have a  partial photonic band gap 

(Tayeb et al., 2003).  The geometric parameters of the 88 layers forming the wall of the 

spine were computed by McPhedran et al. (2003), who also determined the reflectivity 

at normal incidence through these layer stacks of 88 gratings of the spine. Other 

examples of photonic crystals in nature are some butterflies such as Morphorhetenor,  

and the opal, which is formed  of small silica spheres packed together (Tayeb et al., 

2003). 
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2.6 Computational Techniques 

Computational methods have been used in a number of problems such as photonic band 

analysis, calculation of the reflection or the transmission spectra, and emission spectra. 

Methods include finite difference time domain (FDTD), plane wave expansion (PWE), 

multiple-scattering theory and transfer matrix. A large computer resource is required 

and a long time is spent during the computational process in both the FDTD and PWE 

methods  (Yonekura et al., 1999).  These methods are briefly discussed below. 

   2.6.1 Finite Difference Time Domain 

In 1966, the FDTD method was introduced by(Yee)(Yee, 1966). This is a popular 

numerical method in electromagnetism. In this technique,  time and space are separated  

into a grid of discretised points (Joannopoulos et al., 2008). The method provides a 

numerical solution to the two curls' Maxwell equations; see equation 2.1, in real space. 

The fields are propagated in a series of discrete time steps (Villeneuve et al., 1996).  

In the FDTD method, as mentioned, Maxwell equations are solved in a 

discretised domain where scales have to be controlled. Problems including open 

boundaries are treated by modifying the computational domain boundaries to absorb 

outgoing waves. The execution of the FDTD method uses an absorbing layer termed 

perfectly matched layer (PML). The matched medium is designed to absorb 

electromagnetic waves with no reflection (Berenger, 1994). (Gedney)(1996) introduced 

PML absorbing media based on uniaxial anisotropic media.  
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 2.6.2 Plane Wave Expansion  

 The plane wave expansion method has been used to calculate band structure of 

photonic crystals. In this method, the electric or magnetic field is represented in terms 

of plane waves and given by the following: 

                                                                                                         

where u denotes the electric or magnetic field, k is the wave vector, r is an arbitrary 

spatial vector, G is a linear combination of the reciprocal lattice vectors and V is the 

electric or magnetic vector. Limitations in numerical accuracy result from the 

discontinuity of the permittivity between two media, which means that the 

electromagnetic field components are also discontinuous (Lourtioz et al., 2008).             

   2.6.3 Multiple-Scattering Theory 

Classical wave studies are the origin of the multiple scattering theory (MST). The 

theory gives a united theoretical method to treat ordered and disordered dielectric 

systems, when the vector nature of waves is taken into account (Wang et al., 1993). 

These authors gave an expression of multiple-scattering for electromagnetic waves. 

They also applied it to three-dimensional structures. The fundamental nature of 

multiple scattering theory is to divide the scattering potential into non overlapped 

districts. Every district can be treated as a single scatterer and the incident waves on 

this scatterer consist of the scattered waves from other scatterers, along with the 

incident waves itself. Its scattered waves become components of the incident waves for 

other scatterers (Chen and Li, 2003). Multiple scattering theory can be used to find the 

photonic band for dielectric and metallic systems  (Zhang et al., 2001).   
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2.6.4 Transfer Matrix 

The transfer matrix is the main computational tool used in this thesis. In this section, a 

brief introduction to the general idea of the transfer matrix is given. The transfer matrix 

(T-matrix) connects the waves in different layers of the structure, i.e., the forward, a, 

and backward, b, waves in the layer N connect to the forward and backward waves in 

layer 0 (Whittaker and Culshaw, 1999). It is defined by the following equation: 

                                                  
  

  
    

      

      
  

  

  
                                        (2.7)                                                                            

The T-matrix can also be written in terms of the electric, E, and magnetic, B, fields, 

which is the form we actually use. This is given by the following equation: 

                                                 
  

  
    

      

      
  

  

  
                                         (2.8)                                                                            

For a set of layers, the T- matrix is produced as the result of the product of each matrix 

in every layer, which means, 

                                                          ,                                           (2.9) 

Reflectivity and transmission spectra can be calculated using T-matrix method (Hecht, 

2002). Details of this matrix will be given in Chapter 4.  
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CHAPTER 3  

MAGNETIC AND OPTICAL PROPERTIES  

 

   

In this chapter, some background about the polarisation of light and birefringent 

materials will be discussed. Magneto-optics effects, Kerr and Faraday ellipticity and 

rotation, will also be examined. In addition, Stokes' parameters and their geometric 

representation, the Poincaré sphere, will be introduced. 

  

3.1 Light Polarisation 

Most text books in optics have studied polarisation, for example Hecht (2002) and 

Smith et al., (2007). The polarisation of light in free space may be broadly defined as 

the behaviour of an electric field in the polarisation plane perpendicular to the 

propagation vector. There are three types of polarisation depending on amplitude and 

phase difference: linear or plane; circular; and elliptical polarisation. In linear 

polarisation, the electric field remains in a fixed direction although its magnitude and 

sign are time dependent. However, in a circular polarisation type, the electric field 

rotates uniformly with time in the polarisation plane. This polarisation is important in 

considering light propagation through birefringent materials. The last type, elliptical 

polarisation emerges from a combination of the linear and circular polarisations. The 

elliptical polarisation is a general case of the polarisation. The linear and circular 

polarisations are just special cases.   



21 
 

3.2 Birefringent Materials    

In anisotropic materials, the refractive index changes with crystal orientation. The 

refractive index light experiences depend on the polarisation state. Thus two ray 

components refracted in different directions result when a randomly polarised ray 

passes through a crystal. A material which has this characteristic is called doubly 

refracting or more precisely birefringent material (Smith et al., 2007). 

The eigenvector components represent linear and circular polarised states for 

linearly and circularly birefringent materials, respectively. These are given by Jones 

vectors. In a linearly birefringent material, two refracted beams, called the ordinary and 

extraordinary rays, emerge linearly polarised in orthogonal directions.  The ordinary ray 

obeys Snell's law (law of refraction) while the extraordinary ray does not obey this law. 

There are two refractive indices correspond to these beams. In a circularly birefringent 

material, the two refractive indices are known as right and left according to the rotation 

direction of circularly polarised light. The difference between these refractive indices is 

smaller (Pedrotti and Pedrotti, 1993).  A change from one polarisation state to another 

can be produced using linearly birefringent media such as calcite, quartz and ice. Chiral 

or optically active materials have the property of circular birefringence. There are 

different examples of these media in nature such as DNA, hormones, vitamins, proteins 

and sugar solutions. Waves with right and left circular polarisation states propagate 

without change in these substances at different speeds. As a result of this, the 

polarisation plane of linearly polarised waves rotates, and this phenomenon is called 

natural optical rotation (Orfanidis, 2008). Optically activity media have different 

refractive index for the two hands of circular polarisation (Smith et al., 2007). These 
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refractive indices distinguish circularly birefringent material from ordinary birefringent 

materials. In order to explain the reason of existing different velocities for left and right 

circularly modes the following clarification is mentioned. The optical activity media 

have molecules or crystalline structures which are chiral, such as spiral forms that have 

left- or right-handed screw shapes. The linear polarised light propagated through a 

group of these molecules produces forced vibrations of electrons. These move along 

and around a spiral. Then the effect of left circularly polarised light on a left-handed 

spiral differs from the effect of right circularly polarised light on a right-handed spiral 

(Pedrotti and Pedrotti, 1993).     

Birefringence can be induced by applying an external electric or magnetic field 

to an isotropic medium. In the case of an applied electric field transverse to a ray of 

light the effect is known as the Kerr effect (Smith et al., 2007). This Kerr effect is often 

denoted as the quadratic electro-optic effect because it is  proportional to the square of 

electric field  (Hecht, 2002). A longitudinal-magnetic field can induce optical activity 

(difference between dielectric constants for two circular polarisations); this is known as 

the Faraday effect (Smith et al., 2007). Alternatively, by applying mechanical stress on 

a transparent isotropic medium, optical anisotropy can be produced. This effect is 

known as the photo-elastic effect or stress birefringence. Birefringence can originate 

from anisotropy on a length scale much bigger than molecular dimensions. This 

situation is known as 'form birefringence' (Born and Wolf, 1999). 

Birefringent layered structures have a highly significant role in many different 

devices such as narrow-band birefringent filters, multistage electro-optic modulators, 

and polarisers (Yeh, 1979).  
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3.3 Magneto-Optic Effects 

As a result of the interaction between light and magnetisation, either internal 

magnetisation or using an external magnetic field, magneto-optical effects are 

produced. The effect on the optical properties is characterised by the dielectric 

matrix,  .  In a circular birefringent material or in the case of applying the magnetic 

field on a medium in the z-direction, this takes the form  

    

        

         

     

  (‎3.1) 

 

The diagonal elements are the same in isotropic media and the off diagonal element      

is finite due to the magnetic field (Mansuripur, 2009). Precise values for diagonal and 

off-diagonal elements of the dielectric matrix provide important information about the 

band structure of the medium (Gao et al., 1999). 

Mansuripur (2009) attempted to explain the basis of magneto-optical effects: 

linearly polarised light can be expressed  as a superposition of right and left circularly 

polarised components. The propagation of polarised light inside a magnetic material or 

along the applied magnetic field direction leads to the right and left circularly polarised 

components experiencing different refractive indices. They undergo a relative phase 

shift, which is equivalent to a rotation of polarisation plan; as in an optically active 

medium. There may also be a change in amplitude, which produces elliptically 

polarised light. Figure 3.1 illustrates this graphically. The phase change leads to a 

rotation. While the amplitude change gives rise to the ellipticity. This is described as 

either Kerr or Faraday rotation and ellipticity, depending on whether reflection or 

 

 = 

 

 = 
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transmission is measured (Reim and Schoenes, 1990). It should be pointed out the Kerr 

effect here is produced as a result of using magnetic media or applying the magnetic 

field, not to be confused with the Kerr effect or the quadratic electro-optic effect which 

is produced by applying electric field transverse to a light ray. It should be pointed out 

in this thesis when we refer to the Kerr and Faraday effects, we mean the magneto-

optical Kerr and Faraday effects. 

 

 

Figure ‎3.1: A graphical illustration of the process of magneto-optical effects, where    

is the rotation angle and   is the ellipticity angle. Adapted from(Mansuripur)(2009). 

 

In the magneto-optical Kerr effect, as mentioned above, the input linear 

polarised light reflects from the medium and the polarisation changes to a rotated, 

elliptically polarised state. In order to measure the polarisation states, photometric and 

ellipsometric techniques can be used (Finazzi et al., 2009).  
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The magneto-optical Kerr effect (i.e., when dealing with the reflection 

measurements) can be classified into three types according to magnetic field directions 

relative to the incidence plane and the direction of propagation. These are the polar, 

longitudinal (meridional) and transverse (equatorial) magneto-optical Kerr effects. The 

first one is similar to the Faraday effect in transmission measurements since a 

propagation direction is parallel or anti-parallel to the applied magnetic field direction 

(Reim and Schoenes, 1990). This first type, the polar Kerr effect, is proportional to the 

out-of-plane magnetisation component. The longitudinal magneto-optical Kerr effect is 

produced by the in-plane magnetisation component parallel to the incidence plane, 

whereas the transverse magneto-optical Kerr effect is produced by the component of in-

plane magnetisation perpendicular to the  incidence plane (Hamrle et al., 2007), see 

figure 3.2.   

  

Figure ‎3.2:  Schematic diagrams of different magneto-optical Kerr effects. I and R are 

the incident and reflected waves, respectively. H is the magnetic field. Adapted from 

(Reim and Schoenes)(1990).  
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The magneto-optical effects can be used to monitor optically the magnetisation 

state of a medium since changes to the ellipticity and rotation indicate the 

magnetisation direction is changed within the material (Mansuripur, 2009). In 

1999,(Sakaguchi and Sugimoto) used multilayer films, which have periodic magnetic 

and dielectric materials, as Faraday rotators in optical isolators. The rotation was 

controlled either by changing the intensity of the magnetic field or increasing the 

number of magneto-optical layers.  

The Kerr ellipticity ( ) and rotation ( ) are defined by (Sato) (1981) as:  

   
 

 
 
  

 
  

 

 
 
     

     

   (‎3.2) 

 

 
   

 

 
    

 

 
        (‎3.3) 

 

where     and      are the reflectivity for right and left circularly polarised light, 

respectively (as they are called in Sato's article) .    refers to the change in the  phase. 

More details of Sato's experiment will be given later in Chapter 6. A similar definition 

can be used in the transmission case.  

In 1999,(Sakaguchi and Sugimoto) also gave a mathematical definition of  

ellipticity ( ) and rotation ( )  that is adapt for  reflection as follows: 
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                                    (‎3.5) 
 

 

where r is the complex reflectivity amplitude, and the first and second subscripts  refer 

to incoming and outgoing waves, respectively. Re and Im denote the real and the 

imaginary part of a complex number, respectively. It should be pointed out that both 

rotation definitions depend on amplitude and phase information. The two definitions 

are, in fact, identical, as is shown in appendix A.  

    

3.4 Stokes' Parameters and Poincaré sphere  

In 1852, (Stokes)introduced a set of parameters which are used to describe the 

polarisation states of light. Stokes' parameters are properties of observed light beams 

and can represent either partial or full polarisation Hecht (2002).  

Stokes' parameters are given in terms of intensity, which may be determinted 

experimentally or theoretically as will be seen later, by (Born and Wolf)(1999) as:  

 

          

          

          

          

 

(‎3.6) 

 

where    is the total intensity,       and     are the differences in intensities (I's) 

between two linear polarised state (horizontal, x, and vertical, y,), two linear diagonal 

polarised state (at     , a, and at     , b,) and two circularly polarised state (right, +, 

and left, -,), respectively as they are called in Born and Wolf 's book.  
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Other studies (Born and Wolf, 1999; Smith, 1997) considered the relationship 

between Stokes' parameters and ellipticity,    or rotation angle,    (see figure 3.3) as the 

following: 

                    (‎3.7 a) 

 

                  , (3.7 b) 

 

             (3.7 c) 

 

These equations are equivalent to equations 3.2-3.5 as will be discussed, in detail, in 

Chapter 5. For a total polarised state of light beam 

   
    

    
    

   (‎3.8) 

 

whereas for a partial polarised state of light 

   
    

    
    

   (‎3.9) 

 

and the polarised degree,   ,  is given by: 

    
   

    
    

 

  
 (‎3.10) 

 

The polarisation state of a plane monochromatic wave can be represented by a 

point on or inside a sphere, known as the Poincaré sphere, see figure 3.3. In the 

Poincaré sphere, Stokes' parameters       and     are the Cartesian coordinates and    

indicates the distance between the origin and the point. If the point is on the sphere's 

surface, the state is fully polarised, otherwise is partially polarised. The north pole of 

the sphere corresponds to right circularly polarised light while the south pole is left 

circular polarisation. Linear polarised states are represented by points in the equatorial 

plane (Born and Wolf, 1999). The Poincaré sphere was used by (Suits) (1992) to give 

an obvious demonstration of the change in polarisation where the action of a photo-
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elastic modulator, which is experimentally useful in measuring Kerr magneto-optic 

effects, is represented by the motion of  points on the sphere, and the output intensity is 

given as the projection onto an axis. As shown in figure 3.3, ellipticity,    and rotation 

angle,    can be interpreted as, respectively, latitude and longitude, on the sphere 

(Smith, 1997). 

 

 

Figure ‎3.3: Schematic diagram of the Poincaré sphere and Stokes' parameters. Adapted 

from Born and Wolf (1999). 
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CHAPTER 4  

TRANSFER MATRIX DERIVATION AND OPTICAL 

PROPERTY CALCULATIONS 

 

 

As discussed in Chapter 2, many computational techniques have been used in the 

photonics field. In this chapter, we concentrate on the transfer matrix method for both 

isotropic and anisotropic media. This method was used to calculate reflectivity spectra 

using computational codes, which were written using the FORTRAN programme.  

    

4.1 Introduction 

In this section, some previous investigations about using a 4×4 transfer matrix in 

anisotropic materials are cited. Berreman (1972) developed a 4×4 differential matrix 

approach, starting from Maxwell's equations, to find the reflection and transmission of 

light by liquid crystals. The propagation of electromagnetic waves in periodic stratified 

structures was described in a general theoretical method by Yeh et al. (1977). They 

used a diagonalisation of the unit cell translation operator to find the Bloch wave 

solutions, the dispersion relations, and the band structure. This theory was utilised in 

the problems of birefringence and group velocity by Yariv and Yeh (1977). Yeh (1979) 

extended the theory of wave propagation into periodic birefringent layered materials. 

The author used a 4×4 transfer matrix technique to find the reflection and transmission 

coefficients in these media in the case of linear polarisation. The formulae of reflection 

and transmission amplitudes were produced explicitly by Lekner (1991) for different 

polarisations when waves are incident on an arbitrary uniaxial crystal face. These 
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formulae were found in terms of optical constants as well as the direction cosines of the 

optical axis relative to the laboratory axes. 

 

4.2 Non-Birefringent Materials at a Finite Angle  

   4.2.1 Theory and Calculations  

Hecht (2002) started from boundary conditions of fields to find expression for 2×2 

transfer matrices for a multilayer structure and used it to calculate reflectivity and 

transmission. In isotropic materials, TE and TM polarisations are independent of each 

other (Yeh, 1979) so, the transfer matrix calculations can be treated for each 

polarisation separately as 2×2 matrices or for both polarisations together as 4×4 matrix. 

We do 4×4 matrix calculations to build up the theory for 4×4 matrices.  In this section, 

we follow a similar procedure; starting from Maxwell's equations to derive an 

expression in terms of 4×4 matrices. Then we use our matrix to calculate reflectivity 

and transmission spectra. At normal incidence there is no distinction between TM and 

TE polarisations of light. However, when light incidents with an oblique angle, the 

polarisations need to be considered.  

A wave with frequency   was considered to be incident at a finite angle on a 

multilayer structure of non-birefringent materials, for example, a quarter-wave stack. 

The electric E and magnetic B fields are   
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(‎4.2) 

 

 

where   
       

  are the amplitudes of the electric and magnetic fields, respectively, 

(i=x,y,z). q is the wave vector in the z-direction and k is the wave vector in the x-

direction and is the same in each layer given by (           , see figure 4.1.  

 

 

Figure ‎4.1: Schematic diagram of a quarter-wave stack model.    is the substrate 

refractive index,    is the air refractive index.               and     are the refractive 

indices and thicknesses for each couple of layers, periodically. I, R and T are the 

incident, reflected and transmitted waves, respectively.   is the incident angle. 

 

 

The propagation of electromagnetic waves obeys Maxwell's equations. For 

nonmagnetic materials, the two curl equations of Maxwell's equations are 
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where c is the vacuum speed of  light and       is the relative permittivity (related with 

the refractive index, n, by      . From equation 4.3, we obtain the following 

relations: 

                                

 
  
 

  
 

                     
       

                                      

                            
       

                     

                    
       

                                          

 
  
 

  
 

       

Similary, from equation 4.4, we get: 

          

 
 
 
 
 

 
 
 
          

     
  

  
   

                                     

                 
      

  

  
   

                  

          
     

  

  
   

                                        

 
 
 
 
 

 
 
 
 

       

It should be pointed out using the two divergence equations of Maxwell's equations 

gives   
       

     and   
       

      Substituting those   
  and   

   in equations 

4.5, 6-c leads to equations 4.5, 6-a. By substituting   
   from equation 4.5-a in 4.6-b or 

substituting   
  from equation 4.5-b in 4.6-a, we can find the magnitude of the total 

wave vectors as given by: 

            
    

  
  

(‎4.7) 

 

 

There are two solutions of wave equation, the first one corresponds to TM 

polarisation and is given by:   

(‎4.5) 

 

 

 

 

 

 

(‎4.6) 
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(‎4.8) 

 

  

 

the second solution corresponds to TE polarisation and is given by: 

 

 
 
 
 
 

 
 
 
 
                                                                          

              
   

 
                              

                                                           

                              
 
 
 
 

 
 
 
 

 

 
 

 

 

  (‎4.9) 

 

 

 

 

where a, a' are the amplitudes of forward waves, b, b'  are the amplitudes of backward 

waves and                  The forward and backward amplitudes can be found in 

term of                         and          with setting z=0 into equations 4.8 and 

4.9. Then substituting the results in the same equations with z=h, we find the following 

equation. It should be pointed that out we just need the relationships between the fields 

on either side of structure. So, if we call them z=  , and z=     , we get the same 

matrix: 

 

 

 

 

 

 
 
 
 
 

     

      

     

       

 
 
 
 
 

 

 

 
 
 
 
 

     
  

   
      

   

  
           

    
  

      
  

    

                 

    
  

      
  

    

                 

     
  

  
       

   

 
             

 
 
 
 
 

 

 
 
 
 
 

     

      

     

       

 
 
 
 
 

  

 

 

(‎4.10) 
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  is called the 4×4 transfer matrix of a single layer, and includes the two block 

diagonal matrices, which can be used to solve TM and TE patterns separately. The     

transfer matrix depends on the refractive index, n, and the thickness, h, of the layer.  

From the last equation and as Hecht (2002) mentioned , this matrix connects the fields 

at the interface between two layers. For multilayer structures such as a quarter wave 

stack, let us write          , in layer l, where u is a vector given as 

 

 
 

  

   
  

    

 
 

  We apply 

the boundary conditions at an interface between two layers, which means             

and     are continuous, so           . Equation 4.10 can be written as: 

         
 , 

  

(‎4.11) 

and 

         
      

 (‎4.12) 

 

So equation 4.11 can be written as:  

              
     

(‎4.13) 

 

Hence, as mentioned previously, the T-matrix is computed as the product of the matrix 

for each layer. So for N layers, equation 4.10 can be written as: 
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here the superscripts 1 and N refer to the initial and final layers, respectively. The 

resultant matrix M is 4×4 matrix. In calculating the reflectivity and transmission, there 

are two reflection coefficients,         and two transmission coefficients,          for 

TM and TE polarisations. From equation 4.14 and using the relation between the fields, 

equations 4.5 and 4.6, we get: 
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where 

    
 

  
  

   
                       

 
  

  

   
  

    
 

    

 
                       

 
    

 
  

here, the index s refers to the substrate layer, while the index 0 refers to the surface 

(air).The value of q can be found from equation 4.7. Solving equation 4.15 for          

    and      we find for TM polarisation:   

and for TE polarisation: 
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The power fraction in the incident wave which is reflected or transmitted is known as 

reflectance, R and transmittance, T respectively. It is obtained from the squared 

modulus of the amplitudes ratio (Pedrotti and Pedrotti, 1993). R and T  are calculated 

for both types of polarisation by the following relations:  

where the factors 
    

    

  and 
    

    

 refer to the flow of power in a material. At normal 

incidence, the 2×2 transfer matrices for TM and TE are identical.  It is given as the 

following: 

 

 
 
     

      
   

     
 

 
     

             
  

     

      
   

 

 

               (‎4.21) 
 

 

 where the magnitude of wave vector now is           The reflectivity and 

transmission coefficients are calculated as: 

     
     

               

    
        

    
            

   
  (‎4.19) 
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these equations will be used again in Chapter 7. 

4.2.2 Results and Discussion 

In the special case of normal incidence of light, as mentioned above, there is no 

difference between TM and TE polarisations. Reflectivity spectra for a quarter wave 

stack consisted of             
  on a glass substrate were calculated at normal 

incidence is shown in figure 4.2  The air refractive index was    1.0. Ignoring 

absorption for simplicity, the parameters of the dielectric layers and the refractive index 

of the glass substrate were taken from Kato et al.,(2003)  as the following:    

     
       and          

       periodically at                   and 

the layer thickness was equal to          The refractive index of the glass substrate was 

         Kato et al.,(2003) pointed out these dielectric multilayers are being 

exploited in optical communication as narrow band pass filters.  

 

Figure ‎4.2: Reflectivity spectra of Bragg mirror composed of 6 layers, for both types of 

polarisation at normal incidence. 
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Reflectivity spectra for             
  on a glass substrate were also calculated for 

both TM and TE polarised light at incident angles equal to    and       The difference 

between polarisations is represented in figure 4.3-a, b. It is clear from this figure that 

the reflectivity values for TM polarised light are lower than those for TE polarised 

light; this is connected to the disappearance of TM‎ reflectivity‎ at‎ Brewster’s‎ angle‎

(Brewster’s‎ angle‎ is‎ the‎ incident‎ angle‎ where‎ the‎ reflection‎ coefficient‎ of‎ TM‎

polarisation reaches zero when the sum of incident and refracted angles is equal to   2  

(Smith et al., 2007)). In addition, the reflectivity values for TE polarised light increase 

as the incident angle is increased, while for TM they decrease, until the incident angle 

is‎close‎to‎Brewster’s‎angle,‎then‎they‎increase‎again.‎The‎external‎Brewster’s‎angle‎at‎

the interface between air and the first layer (i.e.,      layer) is      and the internal 

angle corresponding to this external angle       In addition, reflectivity spectra for a 

quarter-wave stack were calculated at a normal incidence of light for different numbers 

of layers. In figure 4.4, the number of nodes increases as the number of layers is 

increased owing to an increase in the number of reflected waves from each interface. 

There are wave oscillations at both sides of the band gap, due to the constructive or 

destructive interference of waves between the top and bottom of structure leading to the 

formation of Fabry-Perot fringes. The band diagram of structures can be found from  

analysis of these oscillation points (Labilloy et al., 1999).  The figure also illustrates 

that when the number of  layers is increased, the reflectivity peak at the band gap 

feature becomes flatter and the reflectivity values at the gap become closer to unity 

(Hecht, 2002).  
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Figure ‎4.3: Reflectivity spectra for both types of polarisation at finite angles,                   

(a)    and (b)    . 
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Figure ‎4.4: Reflectivity spectra at normal incidence for various numbers of layers (N). 

 

 

Next, we consider the reflectivity spectra calculated for the Bragg stack 

consisted of six and eighteen layers, when absorption is included.  In absorbing media, 

the refractive index becomes a complex number,     It is given by: 
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 where n is the real refractive index and   is the imaginary part and called the extinction 

coefficient, which determines the absorption rate (Pedrotti and Pedrotti, 1993). The 

extinction coefficients were taken from (Kato et al.)(2003) as       
     and 

      
            at          . The absorption effect on reflectivity spectra is 

shown in figure 4.5-a, b. The reflectivity values decreased when the absorption was 

taken in our account. The extent of the decrease depends on the extinction coefficient. 

The asymmetry in the photonic band gap, which appears clearly in figure 4.5-b can tell 
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that the material with absorption (here      ) is  the one which the mode has the field 

peak  on the low energy side of the gap.   

 

 

Figure ‎4.5: Reflectivity spectra at normal incidence without and with absorption for (a) 

6-layers (b)18-layers, ( the extinction coefficients for Bragg stack were taken from 

(Kato et al.)(2003)  as       
      and        

            at              
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4.3 Birefringent Materials at a Normal Incidence 

   4.3.1 Theory and Calculations 

In isotropic materials, the two modes of polarisation (i.e., TE and TM) are independent 

of each other. However, in birefringent materials because of the anisotropy of the 

media,  coupled modes occur at an interface where an incident wave generates waves 

which have different states of polarisation (Yeh, 1979). In this section, we develop the 

mathematical treatments of the T-matrix to include anisotropic, circularly birefringent 

materials in the case of normal incidence of light.  

The constitutive relation at a normal incidence for lossless media which display a 

circular birefringence in an applied magnetic field in z-direction is given in matrix form 

by: 

 

 
 

  

  

  

   

        

         

     

  

  

  

  

   
 

(‎4.25) 

 

 

where the permittivity matrix     has the quantities  of            , which are real in our 

work, and            also             So, it is a hermitian and positive-definite. 

     is proportional to the applied magnetic field and inverts sign with the field 

direction (Orfanidis, 2008).  

Let us consider a wave with frequency   incident on a multilayer structure of 

birefringent media on a transparent isotropic substrate, for simplicity, at normal 

incidence of light. An anisotropic substrate case will be considered in Chapter 7. The 

electric E and magnetic B fields of the waves propagating with wave vector q in the z-

direction are   

=

= 
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(‎4.26) 

 

 

 

 
   

  
 

  
 

  
 

       
 

(‎4.27) 

 

 

where   
    

      since          and       with choosing this particular form 

of the permittivity matrix (see equation 4.25).  

For our purpose, the two curl Maxwell's equations are used in the following form: 
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                        (‎4.29) 

 

From equation 4.28, we obtain the following relations: 

             
                              

  
  

 
    

                                         

                      
  

 

 
    

                                    
   (‎4.30) 

 

Similarly, from equation 4.29, we find: 

  

                    
 

  
  

       
        

                                       

            
  

  
  

         
       

                             
   (‎4.31) 

 

To find the magnitude of the wave vector q, substituting equation 4.30-b into 4.31-a 

and equation 4.30-a into 4.31-b, we get: 

  
                    

        
          

                              
       

                  
       

          
                            

   (‎4.32) 

 

These last equations can be rewritten in matrix notation as: 

 = 
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  .  (‎4.33) 

 

Solving equation 4.33 for     we get 

                   (‎4.34) 

 

the superscripts   indicate two values of q. The eigenvector components which 

correspond to these values are found as:  

  
  

  

  
     

 
  

                
  

  

  
     

 
 
           (‎4.35) 

 

which  represent circular polarised states. In these numerical calculations, the linearly 

polarised bases were chosen rather than circularly polarised bases. Using circularly 

polarised bases can simplify the calculations (because the two polarisations are 

decouple) and giving the same final results. However, our formalisim could be applied 

to different types of birefringent materials such as linear or linear together with circular 

birefringence just by changing those eigenvector components to suitable eigenvectors 

for the material used.  

The general solutions for the electric and magnetic fields in circularly 

birefringent media, including both polarisations, are: 

 

 
 
 
 

 
 
          

           
             

           
         

            
           

                
           

          

         
           

             
           

         

              
           

                
           

           
 
 
 

 
 
 

  (‎4.36) 

 

where   , are given by: 
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   (‎4.37) 

 

here a, b are the amplitudes of the forward waves, c, d  are the amplitudes of backward 

waves  The forward and backward amplitudes can be found with setting z=0, in 

equation 4.36. Then substituting the results in the same equation with z=h, we find in 

matrix form: 

 

 

 
 

     

     

     

      

 
 

  
      

      
 

 

 
 

     

     

     

      

 
 

  

  

 

                (‎4.38) 

 

where   is a 4     transfer matrix of  a single layer, and includes 2    block matrices 

                   , are given by:  
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where h is the layer thickness. By applying the boundary conditions at an interface 

between couple of layers for multilayer structures such as the quarter wave stack, for N 

layers equation 4.38 can be written as: 

 

 

 
 

  
 

  
 

  
 

  
 
 

 
 

             

 

 
 

  
 

  
 

  
 

  
 
 

 
 

   (‎4.40) 

 

here the superscripts 1 and N refer to the initial and final layers, respectively. The 

resultant M is a 4×4 matrix.    

When calculating the reflectivity and transmission, we require four linear 

reflection and four transmission coefficients as a result of coupling of modes in the 

anisotropic media  (Yeh,(1979). Using equation 4.40 and the relation between the fields 

(equations 4.30-a, b), we get for linearly incoming x-polarised wave: 

  

      

     

      

      

   

      

      

      

      
      

      

      

      

   

             

         
           

     

     (‎4.41) 

 

where          and          here, the index s denotes the substrate layer, while 

the index 0 denotes the surface (air). The values of      for the substrate layer and the 

surface are given by (              . Solving equation 4.41 gives             and      

The first and second subscripts of the amplitudes refer to incoming and outgoing 

waves, respectively. 

 

 

(‎4.39) 
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Similarly, for linearly incoming y-polarised wave we get: 

 

 

 

      

     

      

       

   

      

      

      

      
      

      

      

      

 

 

 

          

      

     

           

    (‎4.42) 

 

solving equation 4.42 gives             and       

The linearly polarised light can decompose into right      and left       

circularly polarised lights which are given by the following expressions:  

  
                    

                   
  

 (‎4.43) 

where    is the amplitude of the electric field. Now we can work out circular reflection 

coefficients (                     in terms of linear reflection coefficients. For left 

incoming circularly polarised light    , the outgoing wave can be written from the 

above analysis of linearly polarised light as: 

                 
  

  
             

  

  
    

 (‎4.44) 

Also, the outgoing wave can be written in terms of circularly polarised light as: 

         

  

  
            

  

  
          

 (‎4.45) 

By solving the last two equations for              we find 

       
 

 
                         (‎4.46) 

and 
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                         (‎4.47) 

Similarly, for right incoming circularly polarised light circularly polarised light      we 

get: 

      
 

 
                      (‎4.48) 

and 

        
 

 
                         (‎4.49) 

The reflectivities for circular polarisations are calculated by the following relations: 

 

             

              

             

             

 (‎4.50) 

In this work, we choose to deal with circularly birefringent materials. In this type of 

material, the circularly polarised eigenstates propagate through the medium without any 

change or mixing in the eigenstates. This fact means     and     must be zero, and that 

implies the following relationships for linear polarisation           and          . 

 

4.3.2 Results and Discussion 

Reflectivity spectra, shown in figure 4.6, were calculated for both right,      and 

left       circularly polarised light at a normal incidence of light for a single circularly 

birefringent layer, bismuth-substituted yttrium iron garnet (          on a glass 
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substrate, ignoring absorption for simplicity. To provide a general idea about how our 

code worked, the parameters of this simple film  and the refractive index of glass 

substrate were taken from Kato et al.,(2003) as the following: for              

                    at           its thickness was equal to          and the 

refractive index of the glass substrate was          For a given    the left        

circularly polarised light has a lower value of wave vector   , and hence a higher speed 

than that of the right. The difference between the spectra of left and right circularly 

polarised light is very small, as is apparent in figure 4.6, because the value of     is 

small in a real medium. This means the waves propagate with only slightly different 

speeds. We know physically that the use of circularly birefringent materials 

implies           . The reflectivity values of       and      were found to be 

equal to approximately zero with numerical errors, so that confirmed the calculations 

have worked as we expected.  In addition, since, on this scale, there is negligible 

difference between the two circularly polarised lights, the reflectivity spectrum of x-

polarised light,     is also identical. 
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Figure ‎4.6: Reflectivity spectra at normal incidence for both right,      and 

left       circularly polarised lights. The difference between them is shown by the 

green curve. 

 

For the purpose of studying the Kerr rotation, the reflectivity spectrum,      for 

linearly incoming x-polarised and outgoing y-polarised light was also calculated using 

          
 . As shown in figure 4.7, these reflectivity values are very small of order 

       because of the small value of    .  
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Figure ‎4.7: Reflectivity spectrum for linearly polarised light,     at normal incidence.  

 

 

Figure 4.8 shows Kerr and Faraday ellipticity spectra that are calculated using 

equation 3.2 in the reflectivity and transmission terms, respectively. Figure 4.9 shows 

the corresponding rotation spectra for        on a glass transparent substrate using 

equation 3.3. It should be pointed out because there is no absorption in this calculation, 

we can only see the Kerr rotation because the reflection from the back of the film (the 

multiple reflections).  Clearly, from figure 4.8, the Kerr ellipticity is zero approximately 

at the resonant wavelength,           where the reflectivity value has a minimum 

(see figure 4.6). However, as shown in figure 4.9, the rotation has a maximum at that 

wavelength. Figure 4.9 shows small rotation angles for this simple layer. To obtain high 

Kerr rotation angles, a cavity structure will be investigated below.  
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Figure ‎4.8: Kerr and Faraday ellipticity spectra for a simple        film. 

 

Figure ‎4.9: Kerr and Faraday rotation spectra for a simple        film. 
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We studied a cavity structure             
                      

  which 

was taken from Kato et al.,(2003). This structure consists of a circularly birefringent 

thin film,          with the dielectric Bragg mirrors on each side. Ignoring absorption, 

the parameters of this cavity structure were taken from Kato et al.,(2003) as mentioned 

above. Reflectivity spectrum shown in figure 4.10 was calculated for linearly x-

polarised light,      at normal incidence. Figure 4.10 shows high reflectivity values in 

the stop-band of the dielectric Bragg mirrors. A sharp dip is also apparent because of 

the cavity layer.  

 
Figure ‎4.10: Reflectivity spectrum of linearly polarised light,     for 

            
                      

 . 

 

Figure 4.11 shows the Kerr ellipticity spectrum of the structure. This was 

calculated using Sato's definition of ellipticity (see equation 3.2). The Kerr rotation 

spectrum in the cavity region, is shown in figure 4.12. At the resonant wavelength, 
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         the maximum Kerr rotation is   0.380 rad compared with 0.0022 rad for 

a simple film. Hence, the cavity structure enhances the magneto-optical rotation effect. 

 

 

Figure ‎4.11: Kerr ellipticity for             
                      

 .  

 

 

 

Figure ‎4.12: Kerr rotation for             
                      

 . 
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In 2010, (Dong et al.)pointed out that the enhancement of the Faraday rotation 

could be valuable in the design of sensitive magneto-optical filters and optical isolators.  

To check our calculations against previous work, our numerical results were compared 

with those of (Dong et al.) (2010). The reflectivity, transmission and Faraday rotation 

spectra were calculated for the cavity structure,            
                 which 

was taken from (Dong et al.) (2010). The cavity mode is confined between the Bragg 

mirrors and the         magnetic metal layer.  

 

 

Figure ‎4.13: Simulated spectra of reflectivity, transmittance and Faraday rotation for 

           
               . The right figures (a) and (b) are reprinted with 

permission from [Journal of Applied Physics 107, 093101. 'Enhancement of Faraday 

rotation effect in heterostructures with magneto-optical metals' Dong, L., Jiang, H., 

Chen, H., and Shi, Y.]. Copyright [2010], AIP Publishing LLC.  

http://dx.doi.org/10.1063/1.3406152  (courtesy of Dong, L). 
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The parameters of the cavity structure were taken from (Dong et al.) (2010) as the 

following:      
               

        and the layer thicknesses are 90 nm and 

59.5 nm respectively, while for the last layer of      the thickness is 20 nm. For the 

metallic        ,     is a function of   given by          
              where 

            Hz  is the electronic plasma frequency and     is the damping. The 

Faraday rotation calculations are performed for weak and strong birefringence     

        or            in both cases the maximum Faraday rotation occurs at         

The layer thickness was equal to 50.8 nm   We set the substrate refractive index as 

        Very good agreement is obtained for the reflectivity and transmission spectra, 

shown in figure 4.13-a. Figure 4.13-b shows similarly good agreement for the Faraday 

rotations at both small and large     values.  

 

4.4 Conclusions 

In this chapter, a multilayer structure of photonic crystal, such as the quarter-wave 

stack, was modelled for isotropic and anisotropic materials which display circular 

birefringence. Maxwell's equations were used to derive the transfer matrices for these 

media. These matrices were used to calculate the reflectivity spectra of isotropic media 

at a finite incident angle. In circularly birefringent media, the reflectivity spectra for 

both right and left circularly polarised lights were calculated at normal incidence of 

light. Magneto-optical spectra were calculated for a simple layer and cavity structure. 

The cavity structure enhanced magneto-optical effects and this result agreed well with 

previous work.  
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CHAPTER 5  

EFFECT OF INCOHERENT BACK SUBSTRATE 

REFLECTIONS 

 

 

The previous chapter has investigated a single layer and a cavity structure with 

circularly birefringent materials, when those were deposited on an infinite substrate. 

Major issue raised in this chapter is the consequence of using a thick but finite 

transparent substrate in place of an infinite one, on the optical and magneto-optical 

properties of circularly birefringent structures. The contribution of the incoherent back 

reflections within such a substrate will be considered.   

    

5.1 Introduction 

The interference fringes of transmission spectra have been used by Swanepoel (1983) 

to determine the thickness and optical constants of a thin absorbing film on a thick 

transparent substrate. He studied the contribution of incoherent multiple reflections 

from the back of this substrate. In 1986, (Harbecke)published a paper in which he 

considered a method that included coherent and incoherent multiple reflections 

concepts to calculate the transmission and reflectivity spectra for multilayer structures. 

A recent study of transmission and reflection by (Whittaker and Gehring)(2010), for 

both a multilayer micro-cavity and an opal structure, involved the contributions of 

multiple incoherent reflections from a finite substrate, more details will be given in 

section 5.2. Numerous studies have revealed that a thick substrate layer leads to 

unrealistic fine Fabry-Perot fringes in the spectra if reflections within the substrate are 
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treated coherently (for example, (Harbecke, 1986); (Whittaker and Gehring, 2010). To 

address this issue a formulism using incoherent multiple reflections in the substrate was 

applied in those studies. The existent of incoherent reflections can be ascribed to 

several possible reasons: the finite angular resolution of the measurement, since a slight 

change in the angle leads to differences in path lengths and consequently different 

fringes. Whittaker and Gehring (2010) speculated that due to in-homogeneities in the 

substrate, the light will be scattered at different angles. A possible explanation could 

also be related to experimental procedures, either the limitation of measurement 

resolution or the source bandwidth. Another factor is the non parallel surfaces of the 

thick layer (Katsidis and Siapkas, 2002).  

 

5.2 Theory and calculations 

Before describing our theory and to illustrate the problem, let us assume light is 

incident in the normal direction on a multilayer             
 , placed on a thick 

finite transparent substrate. Initially, consider the multiple reflections within this 

substrate to be coherent.  As a consequence, closely spaced Fabry-Perot fringes occur, 

shown by the blue curve in figure 5.1, which are not observed experimentally.  

However, by modifying our treatment with incoherent multiple back reflections the 

spectrum became more realistic as shown in the same figure by the pink curve.  
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Figure ‎5.1: Simulated reflectivity spectra result from coherent and incoherent 

treatments for             
 . For clarity, the insert displays a small energy range. 

 

 

As mentioned above, Whittaker and Gehring (2010) calculated the transmission 

and reflection including the multiple incoherent reflections in substrate for a multilayer 

micro-cavity and an opal structure, which are not circularly birefringent materials. 

Here, we follow their method but for circularly birefringent materials where the 

polarisation properties for each of the multiply reflected beams are important and also 

calculate the magneto-optical effects. The total reflectivity is explained by Whittaker 

and Gehring (2010) as the reflectivity from the film plus the summation of an unlimited 

number of incoherent reflections from the substrate surfaces. Attenuation also occurs 

on each reflection from the substrate if an absorbing substrate is used. The expression 

for total reflectivity given by those authors, for a structure on a transparent isotropic 

substrate is the following: 
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(‎5.1)  

Similarly the transmission,  , is: 

               
               

              
      

 

                                              
     

                                                 

 

 

(‎5.2)  

In equations 5.1 and 5.2 and as used in figure 5.2,    and     are the reflectivity and 

transmission of a structure, when waves travel from air into the transparent substrate 

going through this structure.      and     are the reflectivity and transmission for the 

reverse direction. The transfer matrix is used to find these front coefficients.      and 

    are the reflectivity and transmission of the back of the substrate, i.e., from the 

substrate to air. These coefficients are found from the Fresnel expressions.   and    are 

the absorption coefficient and thickness of substrate, respectively. These expressions 

for R and T are fine if the polarisation does not change or mix when waves propagate 

through the medium. If the changing or mixing of polarisations occur, we should deal 

with reflectivities and transmissions in these expressions as  matrices (Whittaker and 

Gehring, 2010), we could do this with any pair of orthogonal polarisation states as a 

basis, and we chose x and y linear states for example,     is replaced by 2    matrix 

 
        

        
   and similar for others reflectivities and transmissions. These are 

obtained from matrices for amplitudes such as   
      

      
 . This choice then implies 
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we do the transfer matrix calculation with basis   
  

 

  
  . The amplitude coefficient 

matrices are defined as the following: 

         
      

      
                  

      

      
          

     
        

        
                  

        

        
   

         
  
                        

  
       

 (‎5.3) 

The first and second subscripts of the matrix elements refer to incoming and outgoing 

waves, respectively.  

 

 

 

 

 

 

Figure ‎5.2: Illustrating the parameters used in equations 5.1 and 5.2.    is the air 

refractive index,    is the substrate refractive index and    is the substrate thickness. 

Adapted from(Whittaker and Gehring)(2010). 

 

Here   and   are the amplitude coefficient matrices of transmission and 

reflection of the front of a structure, i.e., wave travelling from air into the substrate 
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going through the structure. The matrix elements are calculated as explained for the 

forward direction in Chapter 4 (see equations 4.41 and 4.42). 

     and     are the amplitude coefficient matrices of transmission and reflection 

for the opposite direction, i.e., wave travelling from the substrate into air going through 

the structure. To calculate the elements for these matrices, we follow the same 

calculations, which were described for the forward direction in Chapter 4 but now for 

the reversed direction, we get for linearly incoming x-polarised wave: 

 

 

 
 

       

      

       

        

 
 

  

        

        

        

        

        

        

        

        

  

 

 

              

          
            

       

     (‎5.4) 

 

where    is the     transfer matrix of the circularly birefringent structure for a reverse 

direction.          and          here, the index s denotes the substrate layer, 

while the index 0 denotes the surface (air). Solving equation 5.4 gives                and 

      Similarly, for linearly incoming   y-polarised wave we get: 

 

 

 
 

       

      

       

        

 
 

  

        

        

        

        

        

        

        

        

 

 

 
 

           

       

      

            

 
 

   (‎5.5) 

 

solving equation 5.5 gives                and       In the same way, as in Chapter 4, we 

can find  the circular reflection coefficients,       

     and     are the amplitude coefficient matrices of transmission and reflection 

of the back substrate, i.e., from the substrate to air. Fresnel's equations at a normal 

incidence are used to calculate the elements of both matrices     and      as the 

following: 



64 
 

    
   

     
              

     

     
  

 (‎5.6) 

It should be pointed out in the special case of circular polarised bases, because 

there is no polarisation mixing, the situation becomes simple and the matrix treatment 

is not needed. We could use equation 5.1 or 5.2 separately for left and right polarised 

light, i.e. we can adapted equation 5.1 for example, as      corresponding either 

dealing with left or right circularly polarised light.  

Using equation 5.1, the reflectivity spectra for both left and right circularly 

polarised light can be found (case of adding the incoherent back reflections within the 

substrate). To calculate the magneto-optic effect, we need to re-work the calculations of 

Chapter 4 according for the incoherent contributions. Since now only the reflected 

intensities are known and the phase information is not defined, we cannot use Sato’s 

(1981) definition for Kerr rotation, i.e., equation 3.3. Each reflection term in equation 

5.1 itself is coherent, but relative to the others is incoherent, see figure 5.3. To define 

fully the polarisation, we need the three Stokes' parameters,        and   , 

corresponding to linear polarisation, linear diagonal polarisation and circular 

polarisation  as was mentioned in Chapter 3.  
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Figure ‎5.3: Illustrating the three possible types of reflections. 

 

 

Let us consider a linearly incoming wave, x-polarised incident normally on a 

structure with circularly birefringent properties. Suppose the structure is deposited on a 

thick but finite substrate. There are multiple coherent reflections inside the thin film as 

well as multiple incoherent reflections within the substrate (Johs et al., 1994). Because 

we need to know the polarisation properties for each of the multiply reflected beams, 

i.e. Stokes' parameters, we will need to do three basses, and then reset the transfer 

matrix in them. Therefore, we will deal with the reflectivities and transmissions in 

equations 5.1 and 5.2 as matrices but with the following treatment. The analysis of 

matrix treatment is illustrated schematically in figure 5.4 for multiple reflection and 

transmission amplitudes within the substrate. Here  the basis of x- polarised wave,  
 
 
   

is used. 
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Figure ‎5.4: Schematic diagram of multiple incoherent reflection and transmission 

amplitudes in a thick substrate. For clarity, the rays are drawn at small angles. 

 

 

 

In general, the amplitude of the n
th

 reflection term can be written as  

                
    

 
 
    (‎5.7) 

Similarly, the amplitude of the n
th

 transmission term can be written as 

           
    

 
 
    (‎5.8) 

where the  amplitude coefficient matrices are defined by equation 5.3 and used in figure 

5.4 

Following this, the projection matrix, for example,     of linear x-polarisation is 

acted on amplitude expressions (5.7 and 5.8). To find the intensity in that projection, 

we take the modulus square and use the fact for any projection matrix,       . We 

get the intensity in x-polarisation of the n
th

 reflection term as: 
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   (‎5.9) 

 

Similarly, the intensity in x-polarisation of the n
th

 transmission term is: 

            
          

                 
    

 
 
   (‎5.10) 

 

After that, we add the intensity of all different numbers of reflections to obtain a 

suitable formula for the total reflectivity and transmission intensities in x-polarisation. 

For outgoing x-polarised light, these total intensities are found as: 

                         
          

                     
 

 

   

     
 
 
   

 

(‎5.11) 

 
                

          
                

 

 

   

    
 
 
   

 

(‎5.12) 

In equation 5.11, the term              
 
 
  refers to the reflectivity from the film. To 

calculate the infinite sums, we define the following matrices.     
          

  
             for equation 5.11 or      

       for equation 5.12 and   C=      . Then, 

the expansion of the infinite summations can be rewritten as: 

                             (‎5.13) 

where the superscripts are integers , by multiplying equation 5.13 by A from the left and 

by C from the right, we obtain: 

                         (‎5.14) 

Subtracting the last two equations gives rise to:  

           (‎5.15) 

in matrix elements notation for  , A, B and C this gives: 
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                                                   (‎5.16) 

                                                   (‎5.17) 

                                                   (‎5.18) 

                                                   (‎5.19) 

by solving those four simultaneous equations for          ,     and     the total 

reflectivity and transmission which are given by equations 5.11 and 5.12 respectively, 

can be found. 

For different polarisation states, similar reflectivity and transmission 

expressions can be obtained just by changing  the projection matrix: for outgoing y-

linear polarised light,    , outgoing a-linear diagonal polarised light at     ,    , 

outgoing b-linear diagonal polarised light at     ,    , outgoing left circularly 

polarised light ,    , and  outgoing right circularly polarised light ,    . These 

projection matrices are given by Hecht (2002) as the following: 

 

         
  
  

        
  
  

          

   
 

 
 
  
  

     
 

 
 

   
   

      

   
 

 
 

   
   

     
 

 
 

   
   

      

 

 (‎5.20) 

From the foregoing treatment, the reflected or transmitted intensities for each 

polarisation can be computed as is measured experimentally. As mentioned above, 

since the phase information can not be identified in this case,  the definitions of  

rotation angle,    which are given by Sato (1981) or (Sakaguchi and Sugimoto)(1999), 
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see equations 3.3 and 3.5 are not helpful. In contrast, equations 3.7- a, b, c can be 

manipulated to obtain the ellipticity,    and rotation angle,   in the terms of Stokes' 

parameters,       and     which can simply be found in terms of either the reflected or 

transmitted intensity for each polarisation. These are (Born and Wolf, 1999): 

   
 

 
      

  

   
    

    
 
   (‎5.21) 

 

   
 

 
      

  

  
   (‎5.22) 

 

The Stokes' parameters can be written in term of reflectivites as:  

 

            

            

          , 

            

(‎5.23) 

 

Equations 5.21 and 5.22 are suitable for both cases with and without incoherent back 

reflections. Similar procedures can be applied in dealing with transmissions.  

 

 

5.3 Results and Discussion 

Optical and magneto-optical effects were calculated for a simple film,       , ignoring 

the absorption of the film for simplicity. Its parameters and the refractive index of glass 

substrate were taken from Kato et al.,(2003) as mentioned in Chapter 4. Figure 5.5-a 

show the reflectivity spectrum for left circularly polarised light with incoherent back 

reflections along with that without incoherent back reflections, similarly figure 5.5-b 

shows the transmission spectra. We also calculated Kerr ellipticity with incoherent back 
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reflections by using the reflectivity results from equation 5.1 and Sato's definition 

(1981) of Kerr ellipticity (see equation 3.2) supposing there was air after the substrate. 

The results are shown in figure 5.6-a. The pink curve shows Kerr ellipticity with 

incoherent back reflections; and the blue curve shows Kerr ellipticity without 

incoherent back reflections for comparison. Inclusion of incoherent back reflections in 

our calculations showed a significant effect on spectra; therefore, as argued by 

Whittaker and Gehring (2010), ignoring the contribution of incoherent back reflections 

from substrate might be incorrect and this should be included in any realistic system if 

the substrate is transparent.   

In the same way, figure 5.7 shows Faraday ellipticity spectra with and without 

incoherent back reflections. As can be seen from the figure, there is little effect when 

taking the incoherent back reflections into account. It happens because the transmission 

of film (in both directions) is high. Hence, most of the incident light passes through the 

film, and significant amount gets reflected back from the near of the substrate. Most of 

this passes through the film, contributing to the Kerr, with little being reflected back 

through the substrate to provide a contribution to the Faraday. 
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Figure ‎5.5: Comparison (a) reflectivity and (b) transmission spectra with and without 

incoherent reflections for the simple film,       . 
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To obtain stronger incoherent back reflections, a shiny metal such as silver and 

gold could be coated on the back of the substrate. In this case, most of the light is 

reflected back at the interface of the glass substrate and metal. Kerr ellipticity with 

incoherent back reflections was calculated, supposing there was silver after the 

substrate. The available value of the silver refractive index                was 

taken at         nm from (Palik)(1998). In figure 5.6-a, the green curve shows Kerr 

ellipticity values. These values are very small      . Figure 5.6-b shows the green 

curve in the magnified scale. If there is no absorption and perfect reflection from the 

metal,         =1, then from the definition see equation 3.2; the Kerr ellipticity is 

zero. 
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Figure ‎5.6: (a) Comparison with and without incoherent back reflections in Kerr 

ellipticity spectra for        film and (b) the green spectrum is plotted in the 

magnified scale. 
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Figure ‎5.7: Comparison with and without incoherent back reflections in Faraday 

ellipticity spectra for        film.  

 

 

Turning now to another magneto-optical effect (rotation), we calculated Kerr 

rotation with incoherent back reflections using equation 5.22, supposing there was air 

after the substrate. The results are shown in figure 5.8. The pink curve is Kerr rotation 

with incoherent back reflections; and the blue curve is the Kerr rotation without 

incoherent back reflections for comparison. The effect of adding the incoherent back 

reflections in our calculations is clear in figure 5.8. As before, the green curve in figure 

5.8 shows a significant change in Kerr rotation for incoherent back reflections for a 

structure with silver after the substrate.  Similarly, Faraday rotations were calculated 

showing no considerable difference between both spectra with and without incoherent 

back reflections as seen in figure 5.9, for the same reason explained above.   
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Figure ‎5.8: Comparison with and without incoherent back reflections in Kerr rotation 

spectra for        film. 

 

 

 

Figure ‎5.9: Comparison with and without incoherent back reflections in Faraday 

rotation spectra for        film. 
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Lack of coherence between different reflections suggests state may not be fully 

polarised. Figure 5.10 shows the high degrees of polarisation for incoherent reflection 

that is calculated using equation 3.10, although the two reflections, the reflected light 

from the film and the reflected light from the first back reflection, are incoherent 

relative to each other. It is difficult to explain this result, but it might be the different 

reflections have similar polarisation states; just being incoherent does not necessary 

reduce degree of polarisation.  

 

Figure ‎5.10:  The degree of depolarisation for        film with incoherent back 

reflections situation with air and silver after the substrate. 
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nm (where one peak of the ellipticity at that wavelength) the Kerr ellipticity is      

     with a thick film compared with           with the film thickness          . 

At 720 nm, the Kerr rotation is             rad with a thick film compared with 

           rad  with the film thickness          . In general, the Kerr rotation 

increased approximately ten times.  

 

Figure ‎5.11: Kerr effects for        film with incoherent back reflections when 

thickness is equal to                 where            

 

As mentioned in Chapter 4, a cavity structure enhances the magneto-optical 

effects. Here, the contribution effect of including the incoherent back reflections on the 

magneto-optical properties will be described. For the same cavity structure        

     
                      

 , which was studied in Chapter 4 the Kerr ellipticity 

spectrum with incoherent back reflections was calculated and compared with that 
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the pink curve shows the Kerr rotation spectrum with incoherent back reflections, and 

the blue curve shows rotation without incoherent back reflections, for comparison. The 

maximum Kerr rotation presented in the cavity region, at 720 nm the maximum is 

 0.380 rad without incoherent back reflections compared with  0.139 rad with 

incoherent back reflections.  

 

Figure ‎5.12: Kerr (a) ellipticity and (b) rotation spectra with and without incoherent 

back reflections for            
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In Chapter 4,  we checked our calculations of  the Faraday rotation spectrum for 

the cavity structure,            
                 which was taken from (Dong et 

al.) (2010) for both small and large     values. Here, we focus on           which 

gives much larger values of magneto-optical effects to consider the Kerr effects in both 

cases: with and without incoherent back reflections. The Kerr ellipticity spectrum with 

incoherent back reflections was calculated and compared with that without incoherent 

back reflections as shown in figure 5.13-a. In the cavity region, the figure shows a 

small effect on the Kerr ellipticity spectra with taken the contribution of incoherent 

back reflections from the substrate. Similarly, figure 5.13-b shows very little difference 

between the Kerr rotation with and without incoherent back reflections spectra, i.e., the 

incoherent back reflections were not significant in this situation. A discontinuity or a 

jump (straight line) was seen from 625.7 nm to 625.8 nm and this may be of interest. 

We know the rotation in the terms of polar coordinates on the Poincaré sphere is the 

longitude. To explain the discontinuity, we plot the path of rotation on the Poincaré 

sphere as the point projections on the sphere describe the position of a polarisation 

state. As can be seen from 5.14, a smooth curve of the point projections means the 

polarised state moves smoothly around the sphere. For clarity, we plot the relation 

between    and     these Stokes' parameters are required to determine the rotation as 

given by equation 5.22.  Figure 5.15 shows the longitude goes over the meridian line 

(the line has zero longitude conventionally) chosen for the branch cut as represented by 

the green dotted line on the figure. That means when the longitude crosses the meridian 

line, the jump (discontinuity) occurs. To modify this to a continuous spectrum, which 

has the same physical meaning, we added      to the points after the cut. This has no 



80 
 

physical consequence, because there is always an ambiguity in the inverse tangent 

function. The final continuous rotation spectrum is shown in figure 5.16. 

 

 

 

  

 

 

 

 

 

 

Figure ‎5.13: Kerr (a) ellipticity and (b) rotation spectra with and without incoherent 

back reflections for            
                  using           which gives 

much larger magneto-optical effects. 
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Figure ‎5.14: Visualisation of the path of rotation on the Poincaré sphere. The red 

points are the positions of wavelength where the jump occurs between 625.7 nm and 

625.8 nm.  

Figure ‎5.15: the relation between Stokes' parameters    and     The green dotted line 

refers arbitrarily to zero longitude. The red squares are the positions of wavelength 

where the jump occurs between 625.7 nm and 625.8 nm.  
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Figure ‎5.16: The modified Kerr rotation spectrum without incoherent back reflections 

for            
                  using           

 

 

As mentioned in section 5.2, Stokes' parameters can be found in terms of 

reflectivity expressions by using equations 5.11 for different polarised states and 

equation 5.23. Then we can find the expression of Kerr ellipticity in terms of the 

reflectivity amplitudes by using equations 5.21. In a different way, we can also find 

Kerr ellipticity expression in terms of the reflectivity amplitudes using equations 4.46 

and 4.49 with help of equation 3.2. It should be pointed out that for a small magneto-

optical constant, we can show analytically that Kerr ellipticity was identical using either 

Sato's (1981) definition in terms of left and right circularly polarised light, equation 3.2, 

or Born and Wolf's (1999) definition in terms of Stokes' parameters, equation 5.21, for 
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rotation without incoherent back reflections can be found by using Sato's (1981), 

equation 3.3 or Sakaguchi and Sugimoto's (1999) definitions, equation 3.5 (both require 

the phase information) or Born and Wolf's (1999) definition in terms of Stokes' 

parameters, which are given in terms of the reflectivity intensities, equation 5.22; all of 

them gave identical results. However, to compute Kerr rotation with incoherent back 

reflections, we can only use Born and Wolf's (1999) definition as explained in section 

5.2. Born and Wolf's (1999) definitions for the magneto-optical effects in terms of 

Stokes' parameters are more general and suitable for both cases with and without 

incoherent back reflections of the substrate; the difference in both cases arises from 

different reflectivity expressions.   

 

5.4 Conclusions 

This study set out to determine the effect of the incoherent back reflections from a thick 

but finite transparent isotropic substrate on the magneto-optical properties of circularly 

birefringent structures. We have given a formula for the reflectivity and transmission, 

which can be used with the definition of Stokes' parameters to find the Kerr rotation 

and ellipticity spectra. The results of this investigation show the important contribution 

of incoherent back reflections from transparent isotropic substrate on the Kerr effects; 

therefore, the inclusion of incoherent back reflections is necessary in realistic situations 

to obtain accurate spectra.  
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CHAPTER 6  

MODULATION METHOD  

 

 

Spectra of the magneto-optics effects were studied previously when structures were 

placed on both finite and infinite substrates, i.e., with and without incoherent back 

reflections. In this chapter Sato's modulation method will be investigated analytically 

for circularly birefringent materials. As seen in Chapter 5, the existence of the back 

reflections in substrate is very important and ignoring it gives significantly different 

results. We will hence, reanalyse Sato's method in the case of incoherent back 

reflections. We find that the method can still be applied in the case of the incoherent 

back reflections in the substrate, provided that the calculation of relevant parameters 

includes the incoherent reflections. 

 

6.1 Introduction 

Diverse experimental approaches have been used in measuring magneto-optical 

characteristics, for instance, the Faraday cell technique, used in a photoelectric 

ellipsometer device. This cell has a borosilicate crown glass rod wound with turns of 

wire. A current flows through the winding and a time-variant magnetic field is 

generated along the light path. The field in turn leads to a time-variant Faraday effect 

(Robinson, 1963). This Faraday cell method has a high sensitivity; however, it is 

restricted in wavelength span and is sensitive to stray magnetic fields. Moreover, a 

continuous spectrum is difficult to obtain. Another method uses mechanically rotating 



85 
 

birefringent plates instead of the Faraday cell but the last problem remains. A spinning 

analyser employs a continuously rotating analyser with the aim of intercepting the 

linear polarised light. The angle of the plane of polarisation of the incident wave is 

obtained directly from the phase of alternating current signal.  It has a good sensitivity 

and is not affected by stray magnetic fields and a continuous spectral readout can be 

obtained. The measurement principle of magneto-optical effects using this spinning 

analyser and compensator is the linearly incident light on a magneto-optical active 

medium comes out from it as elliptical polarisation (Suits, 1971). A quarter wave plate 

placed in the optical path was required for those techniques in the Kerr ellipticity 

measurement; for every region of the wavelength, a suitable quarter wave plate should 

be chosen. That means an additional continuous readout problem could occur. This 

creates weakness in using those techniques (Sato, 1981). Therefore, Sato (1981) 

modified the equipment using a piezo-birefringent modulator.          

At the start, an overview of the experimental modulation method carried out 

by(Sato)in 1981 and his analyses of this measurements may be useful to mention here. 

The author described the principle of the technique using the piezo-birefringent 

modulator to measure magneto-optical Kerr spectra. The incident light is transmitted 

across a polariser that is set at      and then passes through a modulator and 

experiences a periodically changing retardation,       so that 

 
  

  

  
               

 

(‎6.1) 

 

where     is the amplitude of the electric field, and    and     are unit vectors at x and y 

directions. The modulation is chosen to be: 
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(‎6.2) 

 

here    is the retardation amplitude and   is the modulation frequency. After that, the 

light is reflected by the sample and passes through an analyser at x-direction. This light 

can be described by the x-component of electric field in terms of the Fresnel reflection 

coefficients     for two circularly polarised lights as given by Sato (1981) as follows:  

    
  

   
                               

 

(‎6.3) 

 

Finally, the intensity is detected using a photo-detector. This is defined as      
    . 

Hence, equation 6.3 can be turned into intensity as: 

 
     

      

  
   

  

 
                     

 

(‎6.4) 

 

where  ,    and    are defined as: 

 
  

 

 
           

            

          

(‎6.5) 

 

Ellipticity,  , and the rotation,    are defined as seen previously by(Sato)(1981) as:  

   
 

 
 
  

 
  

 

 
 
       

       

   (‎6.6) 

 

 
   

 

 
    (‎6.7) 

 

By substituting  equation 6.2 into 6.4 and applying expansion expressions for       

and      , that means the result consists of  three components: the direct current (dc) 

component which does not depend on frequency i.e., a dc component I(0), an  -
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component I( ) and a 2  component I(2 ), where I is the intensity of light. The output 

intensity, equation 6.4, is written by Sato (1981) as the following equation: 

                                   
 

                 (‎6.8) 

This equation represents the first terms of a Fourier series expansion of     . In the case 

of the setting analyser at x-direction, the       I( ) and I(  )  are obtained  in terms of 

Bessel functions of integral order n,         as:  

                            
 

(‎6.9) 

 

                    
 

(‎6.10) 

 

                          
 

(‎6.11) 

 

   is defined as             . It should be pointed out the actual values of the Bessel 

functions are not interesting in numerical calculations, but the importance of the Bessel 

functions is to determine only here the type of magneto-optic effects: Kerr ellipticity or 

Kerr rotation. By detecting the   and 2  components, the reflectance magneto-circular 

dichroism (RMCD),        or ellipticity,  , and the rotation,    can be obtained, 

respectively, where the final results were given as the ratio of each modulated intensity 

to dc component,           and              Considering the phase shift,      is 

much smaller than one, leads to               can approximately be negligible 

compared with one, so the following equations are given: 

 
    

    
        

  

 
  

 

(‎6.12) 

 

 
     

    
             

 

(‎6.13) 
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Figure ‎6.1: Schematic diagram of fundamental components in the measuring method. 

Adapted from Sato (1981). 

 

 

 

6.2 Theory and calculations 

In this section, we are going to calculate expressions for the Fourier components as in 

equations 6.9-6.11 using the general incoherent back reflection theory. We show 

analytically that ignoring the back reflections in the substrate, we get Sato's results. We 

show numerically that in the case of inclusion the back reflections the Fourier 

components can be expressed in Sato's form, but not been able to derive this 

analytically. Hence, the same procedures described by Sato (1981) were followed. 

Diagonal linearly polarised light emerges from the polariser. The outgoing light from 

the modulator can be written as in equation 6.1, which in the matrix notation (and by 

assuming      for simplicity) can be rewritten as:  

   
 

  
 

 
         

(‎6.14) 
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After that, this light is reflected by the structure; and the outgoing reflected intensity 

can be obtained by using equation 5.11 in the case of modulated light instead of the 

linearly x-polarised incident light. It follows that, equation 5.11 becomes: 

    
 

 
                 

        
           

                     
 

 

   

     
 

         

 

(‎6.15) 

The following matrix was defined:  

 
   

      

      
                 

           
                     

 

 

   

      
 

(‎6.16) 

 

 

Then, equation 6.15 can be simplified as:  

 

    
 

 
           

      

      
  

 
         

 

             
 

 
             

          
         

 

 

 

 

(‎6.17) 

 

by substituting equation 6.2 into equation 6.17, we get: 

 

       
 

 
             

             
            

 

(‎6.18) 

 

Equation 6.18 is periodic with a period        so can be expanded as Fourier series, 

whose terms are Bessel functions. We calculate the first few term using the Wolfram 

Mathematica programme as the following:  

                               (‎6.19) 

                           (‎6.20) 

                           (‎6.21) 
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Now, we are going to get Sato's results by concentrating just on a special case 

ignoring incoherent back reflections of substrate: this means       The comparison 

between the last equations and equations 6.9-6.11 requires finding matrix 

elements:             and    .  These can be found using equation 6.16 in the special 

case. The term         is easy to calculate by substituting the previous definitions of    

and    in Chapter 5, see equations 5.3 and 5.20.This gives: 

  
      

      
          

 

 
                                              

      
       

 

      
       

    
 

(‎6.22) 

 

We substitute the expressions of the matrix elements                and     from 6.22 

into equations 6.19-6.21. Since, for circular birefringent structures,          and 

         (since            in equations 4.47 or 4.48), these equations can be 

rewritten as the following: 

          
        

                   
        

    (‎6.23) 

                        
        

    (‎6.24) 

                         
        

    (‎6.25) 

To rework the last three equations in terms of R,    and         as in 

equations 6.9-6.11, expressions for these quantities need to be found in terms of     and 

   . Starting from the definition of (Sato)(1981), see equation 6.5, R can be written in 

terms of             and     using equations 4.46 and 4.49 as: 
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(‎6.26) 

 

 For circular birefringent structures this can be simplified as:  

 
        

        
   (‎6.27) 

 

Following similar procedures    is calculated as: 

 
                 

 

 

Finally, let us work out           

 

                 
 

         
                                   

 

(‎6.29) 

where Re and Im denote the real and the imaginary part of a complex number, 

respectively. Assuming                              and using equations 4.46, 

49, equation 6.29 can be rewritten as: 

                                              (‎6.30) 

Returning now to the terms         
        

   in equation 6.23 or 6.25 that can be 

rewritten in the following form:  

        
        

                                       (‎6.31) 
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(‎6.28) 
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Comparison between the last two equations gives: 

                
        

   (‎6.32) 

Substituting equations 6.27, 6.28 and 6.32 into equations 6.23-6.25 then leads to 

equations 6.9-6.11, as required (with        

We can also apply equations 6.19-6.21 in a more general case to find the 

magneto-optical effects for the situation which includes the effect of incoherent back 

reflections in the substrate. As including the incoherent back reflections is important in 

a realistic situation, this case was investigated numerically in this work. We get 

numerically same results, but not been able to drive this analytically.  

 

6.3 Numerical Calculations 

The modulated spectra were calculated for a simple circularly birefringent 

film,         on a glass substrate ignoring absorption. Its parameters and the refractive 

index of glass substrate were taken from Kato et al.,(2003) as the following:     

                    at          with the film thickness equal to          ; 

and           

Figure 6.2 shows the unmodulated spectra of the first term of the Fourier series, 

i.e.,          by using equation 6.23 in both cases; with and without incoherent back 

reflections. This result gave an identical result to that produced using equation 6.9 in 

both cases when the phase shift,      was much smaller than one. It should be pointed 

out, in this condition,  equation 6.9 becomes the same as Sato's formula (1981) for R. 
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By comparing the pink and blue spectra, the effect of including incoherent back 

reflections in the substrate is shown clearly in the figure.   

 

 

 

Figure ‎6.2: The unmodulated spectra both with and without incoherent back 

reflections using equation 6.23. The curves are identical to those obtained from Sato's 

method, equation 6.9 when     is much smaller than one, in both cases. 
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By calculating 
 

 
          and 

  

 
        using equations 6.19-6.21, the 

magneto-optic effects: RMCD,        or ellipticity,  , and the rotation,    can be 

determined. The Kerr ellipticity and rotation were found as shown in figures 6.3-a and -

b, respectively both with and without incoherent back reflections. Both sets of spectra 

are indistinguishable from Sato's method. Figures 6.3-a and –b show clearly the effect 

on magneto-optical spectra of taking the incoherent back reflection within a transparent 

substrate into account. This effect is important in practical situations and ignoring it 

leads to wrong results in finding the off-diagonal components of the dielectric matrix, 

see equation 4.25.  Hence, Sato's analysis is fine and works well, we just need to 

modify, R,    and         values to include the effects of incoherent back reflections 

in the substrate. 
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Figure ‎6.3: (a) Kerr ellipticity and (b) Kerr rotation spectra for        film both with 

and without incoherent back reflections using equations 6.19- 6.21. The curves are 

identical to those obtained from Sato's method, i.e., 
 

 
   equation 6.12) and equation 

6.13, respectively in both cases.   
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6.4 Conclusions 

At the start of this chapter, an overview of the experimental modulation method of Sato 

was given. The analytical calculations of Sato's modulation method were reanalysed 

including incoherent back reflections in the substrate, which is vital for a non-absorbing 

substrate in realistic cases to find the right     value. We have shown Sato's analysis 

works, with just R,    and         values needing to be adapted to include the effects 

of incoherent back reflections in the substrate. The formulae can then be used in both 

cases, with and without incoherent back reflections. We have only shown this for one 

set of parameters for the single layer, maybe it does not work so well if there is a 

significant reduction in the degree of polarisation.  
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CHAPTER 7  

THEORETICAL ANALYSIS OF STRUCTURES ON A 

CIRCULARLY BIREFRINGENT SUBSTRATE  

 

 

Chapter 5 has considered circularly birefringent films on a thick  isotropic transparent 

substrate. One of the major issues in this chapter is the significance of using a thick 

circularly birefringent substrate instead of a thick isotropic one. This means both the 

simple film and the substrate are circularly birefringent media. Furthermore, exact and 

approximate analytical formulae for Faraday rotation will be derived for various cases: 

(1) a single circularly birefringent film with air on both sides; (2) a film on a circularly 

birefringent substrate; (3) a circularly birefringent cavity structure with Bragg mirrors 

on both sides. The measure of the effective number of light passes based on the Faraday 

rotation will be found. 

      

7.1 Theory and calculations 

The Faraday rotation of an extremely thin film in isolation is very difficult to determine 

experimentally. The following question is discussed in detail: can the Faraday rotation 

of a film on a circularly birefringent substrate be obtained by simply subtracting the 

rotation of the bare substrate from that of the whole structure?  Let us consider a 

linearly incoming x-polarised wave incident normally on an arbitrary multilayer 

structure with circularly birefringent properties. Suppose this structure is also deposited 

on a thick circularly birefringent substrate.  
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 We use the transfer matrix for a circularly birefringent structure, which was 

derived in Chapter 4 and modify the matrix treatment of incoherent multiple back 

reflections which was used in Chapter 5 in the case of a circularly birefringent 

multilayer structure on a transparent isotropic substrate. The rotation of the light going 

through the substrate, which will be considered in this analysis, is illustrated 

schematically in figure 7.1. The calculation requires changes in the expressions for the 

transmission and reflection coefficients of a circularly birefringent multilayer structure 

for waves propagating from air through the structure into the substrate and for waves 

propagating in the reverse direction. In addition, the rotation at the interface between 

the back of substrate and air will be calculated.  

 

 

 

Figure ‎7.1: Schematic diagram of multiple incoherent reflections and transmission 

amplitudes in a thick circularly birefringent substrate. For clarity, the rays are drawn at 

small angles to the normal. 
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In general, the amplitude of the n
th

 reflection term can be written as   

                          
 
 
            (‎7.1) 

Similarly, the amplitude of the n
th

 transmission term can be written as 

                    
 
 
            (‎7.2) 

where  

 

         
      

      
                  

      

      
          

     
        

        
                 

        

        
   

            
   
    

 

   
    

               
   

    
 

   
    

           

      
      

      
   

 

 (‎7.3) 
 

 

 

are the amplitude coefficient matrices used in figure 7.1. Here    and   are the 

amplitude coefficient matrices of transmission and reflection of the front of the 

multilayer structure, i.e., wave travelling from air into the substrate going through the 

structure.     and     are the amplitude coefficient matrices of transmission and reflection 

for the opposite direction, i.e., wave travelling from the substrate into air going through 

the structure. The first and second subscripts of the matrix elements refer to incoming 

and outgoing waves, respectively.     and     are the amplitude coefficient matrices of 

transmission and reflection of the back substrate, i.e., wave travelling from the substrate 

into air.   and     are the rotation matrices in a thick circularly birefringent substrate for 

forward and reverse propagation directions, respectively. The calculations of all the 

matrix elements will be explained below. 
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Following this, the projection matrix, for example,     of linear x-polarisation is 

acted on amplitude expressions (7.1 and 7.2). To find the intensity in that projection, 

we take the modulus square and use the fact for any projection matrix,      . We get 

the intensity in x-polarisation of the n
th

 reflection term as: 

              
                  

                                     
 
 
    (‎7.4) 

Similarly, the intensity in x-polarisation of the n
th

 transmission term is: 

              
                   

                        
 
 
   (‎7.5) 

 

After that, we add the intensity of all different numbers of reflections to obtain a 

suitable formula for the total reflectivity and transmission intensities in x-polarisation. 

For outgoing x-polarised light, these total intensities are found as: 

                

           
                  

                                    

 

   

      
 
 
   

 (‎7.6) 

 

                  
                   

                      

 

   

    
 
 
   (‎7.7)  

     

For different polarisation states, similar reflectivity and transmission 

expressions can be obtained just by changing  the projection matrix: for outgoing y-

linear polarised light,    , outgoing a-linear diagonal polarised light at     ,    , 

outgoing b-linear diagonal polarised light at     ,    , outgoing left circularly 

polarised light ,    , and  outgoing right circularly polarised light ,    ,. These 

projection matrices are given in equation 5.20. 
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To study a circularly birefringent structure on circularly birefringent substrate as 

shown in figure 7.1 we need to consider waves propagating in forward direction from 

air into a circularly birefringent substrate going through a circularly birefringent 

structure and waves propagating in the reverse direction. We consider also the waves at 

the back of the substrate and air boundary and the rotation of light going through the 

substrate.  As in Chapter 4, to calculate the reflectivities and transmissions we solve 

Maxwell's equations for electric and magnetic fields and apply the boundary conditions 

at interfaces between two media.  The     transfer matrix of circularly birefringent 

film, which is derived in Chapter 4, is also used. The eigenvectors in the circularly 

birefringent substrate are circular; therefore, we need to convert them to linear polarised 

state as will be explained below; hence, in order to calculate the matrix elements in 

equation 7.3, the following calculations need to be considered. 

7.1.1 Required calculations for the rotation going through the circularly 

birefringent substrate   

As a consequence of using a thick circularly birefringent substrate, the rotation of light 

going through such a substrate needs to be considered. To obtain the rotation matrix for 

the substrate,    we start from the general solution of Maxwell's equations for the 

electric field in terms of the circularly polarised eigenstates:    

           
       

         
        

       
         

  , (‎7.8) 

where a and b are the amplitudes of   and     waves. By substituting the eigenvector 

components,   
   and   

     from equation 4.35 into equation 7.8, then this equation can 

be rewritten as follows: 
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     . (‎7.9) 
 

The initial field is obtained at z=0, as: 

 

                     , 

                          
(‎7.10) 
 

from the last equation, i.e., from    and   components, a and b can be found as: 

 
  

 

 
                  

  
 

 
                 

(‎7.11) 
 

Substituting these amplitudes waves a and b in equation 7.9 when the substrate 

thickness      leads to: 

 

 
        

     
    

     
                         

        
     

    
     

                          
 
 

 
 

 

 

(‎7.12) 

 

where the rotation angle for substrate is        
    

    . The last equations can be 

rewritten in the matrix form as the following:  

 

 
 
      

      
   

     
    

     
  

         
         

  
     

     
   

 

 

(‎7.13) 

 

 

neglecting   
     

    
     

   as the total phase is not interesting in the case of incoherent 

treatment, the rotation matrix,    is given  by: 

    
         
         

  (‎7.14) 
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7.1.2 Required calculations for the forward propagation direction  

To calculate the elements of the amplitude coefficient matrices of transmission and 

reflection for wave travelling from air into the substrate going through the structure, the 

solutions of Maxwell's equations in the air for electric and magnetic field for both 

polarisations are given by: 

 

 

                     

                         

                         

                              
 
 
 
 

 
 
 
 

 

 

(‎7.15) 
 

where    is defined by        . a and    are the amplitudes of the incoming waves. b 

and   are the amplitudes of outgoing waves  The solutions of Maxwell's equations in 

the circularly birefringent substrate are:  

 

 

          
      

       
      

   

        
     

      
     

     
      

   

          
      

      
      

   

          
     

      
     

     
      

    
 
 
 

 
 
 

 

 

(‎7.16) 
 

where   
  are  given by   

    
   .  l and    are the amplitudes of the outgoing waves. 

Choosing the incoming wave to be linearly x-polarised at z=0, and substituting the 

eigenvector components,   
   and   

     from equation 4.35 into equation 7.16. We 

obtain the amplitudes of the forward and backward waves as the following: the incident 

amplitude for linearly incoming x-polarised wave     
       and     

       . The 
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outgoing amplitude for linearly x-polarised wave    
     b=     and          The 

outgoing y-polarised wave   
             and             Using the transfer 

matrix to relate the fields at either side of the structure, we get for linearly incoming x- 

polarised wave:  

 

 

 
 
 

      

 

 
   

              
            

       

 

 
   

              
             

 
 
 

   

             

         
           

     

     (‎7.17) 
 

where M is the     transfer matrix of circularly birefringent structure for a forward 

direction. Solving simultaneous equations in 7.17 gives             and      Similarly, 

by setting the incoming wave to be y-polarised we get: 

 

 

 
 
 

      

 

 
   

              
            

       

 

 
   

              
             

 
 
 

  

 

 

           

      

             

           

     (‎7.18) 
 

solving simultaneous equations in 7.18 gives             and      

7.1.3 Required calculations for the reverse propagation direction  

To calculate the elements of the amplitude coefficient matrices of transmission and 

reflection of the reverse direction, i.e., wave travelling from the circularly birefringent 

substrate into air going through the structure, the solutions of Maxwell's equations in 

this substrate  for electric and magnetic field for both polarisations are given by: 
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  (‎7.19) 

 

here a, b are the amplitudes of incoming waves, c, d  are the amplitudes of outgoing 

waves. The solutions of Maxwell's equations in the air are: 

 

              

            
     

               

               
      

 
 
 

 
 
 

  (‎7.20) 

 
 

 

 

 

where l and    are the amplitudes of outgoing waves. Choosing the incoming wave to be 

linearly x-polarised at z=0,  and substituting the eigenvector components,   
   and 

  
     from equation 4.35 into equation 7.19. We obtain the amplitude of incoming 

waves as     
         and     

           The amplitude of outgoing waves 

   
               and          similarly    

                  and    

       Using the transfer matrix to relate the fields at either side of the structure,  gives 

for linearly incoming x-polarised wave: 

 

 
 

       

       

       

         

 
 

    

 

 
 
 

              

 

 
    

                  
                

            

 

 
    

                   
                 

 
 
 

     (‎7.21) 
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where    is the     transfer matrix of circularly birefringent structure for a reverse 

direction. Solving simultaneous equations in 7.21 gives                and       In a similar 

way, by setting linearly incoming y-polarised wave we get: 

 

 
 

       

       

       

         

 
 

    

 

 
 
 

    

  

 
    

                   
                 

              

 

 
    

                  
                 

 
 
 

  

 

(‎7.22) 
 

solving equation 7.22 gives                and        

7.1.4 Required calculations at circularly birefringent substrate-air interface   

To calculate the elements of the amplitude coefficient matrices of transmission and 

reflection of the back substrate, i.e., at the interface between the substrate and air, we 

could just follow the same procedures discussed in section 7.1.3 but now, the transfer 

matrix is a unit matrix because there is only one interface. Here, we solve Maxwell's 

equations for electric and magnetic fields, which are as in equations 7.19 and 7.20, then 

apply the boundary conditions at that interface. This gives: 

    
     

  
    

    
        

    
  

      
         

  
   (‎7.23) 
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A further check for equations 7.23 and 7.24 is the case of an isotropic transparent 

substrate, i.e., when   
    

       This leads to Fresnel's equations, equation 5.6. 

Also, from equation 7.25,    
     

 ,    
 ,    

    all become equal to zero. The Faraday 
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rotation going from the back of the substrate to air can be obtained directly by applying 

the equations 7.23 and 7.25 in equation 3.5 in transmission. As can be seen, there is no 

rotation if   
  are real, i.e., there is no absorption in the substrate. However, to find the 

Faraday rotation going from the back of the substrate to air, we just assume the 

circularly birefringent substrate is absorption medium with the complex reflective 

indices defined as    
    

     
    in a similar way to equation 4.24. Here the real part 

is   
 . The extinction coefficients   

   are given by   
           in terms of 

absorption coefficients of substrate    as defined for isotropic media by(Pedrotti and 

Pedrotti)(1993). To obtain a rotation formula, equations 7.23 and 7.25 are applied in 

terms of    and    
  in equation 3.5 for transmission. In order to simplify the 

calculations, the difference is always small in   
    

  and in   
    

   so, we can put 

  
  equal to average refractive index of substrate    and similarly for   

      We only 

concentrated on the actual value when there is subtraction as in    
    

  and in  

  
    

 . The expression of the Faraday rotation going from the back of the substrate to 

air is found as: 

         
    

    
 

 
   

     
    

       
    

   

                       
   

 

 (‎7.26) 

 

That means any circularly birefringent substrate with absorption property has some 

rotation even if the absorption is the same for the two different circular polarisations, 

i.e., the difference between absorption coefficients is equal to zero. 

7.2 Results and Discussion 

Ignoring absorption for simplicity, a structure               was studied. It 

consisted of circularly birefringent thin film Eu orthoferric,         and this film was 
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deposited on a circularly birefringent thick substrate,          The film parameters 

were taken from (Kahn et al.)(1996) as            In addition, from the graph given 

by the authors, an off diagonal element was taken as an approximate value;      0.011 

at             at this wavelength, the film thickness was equal to           

Substrate parameters were taken from Kato et al.,(2003) as the following:     

                    at          and its thickness was set as       . In this 

calculation, we used those parameters, which correspond to different wavelength values 

for the film and substrate because those are available realistic parameters. 

To determine the Faraday rotation, equation 5.22 was used with equation 7.7 in 

different polarisation states for a single pass of substrate, i.e.,     in equation 7.7. 

The Faraday rotation spectrum was firstly calculated for the whole structure as shown 

by the blue curve in figure 7.2. The Faraday rotation for the substrate alone was also 

calculated, using        
    

    , but on this scale it is indistinguishable from the 

curve for the whole structure. The green spectrum shows the small differences between 

the Faraday values of the whole structure and substrate alone. This differences 

spectrum was calculated by subtracting the Faraday values of the circularly birefringent 

substrate from those of the whole structure. To compare with the green curve, the 

Faraday rotation for the single pass of the film alone was calculated as represented by 

the pink curve. As can be seen, the rotation of the film is very small. The differences 

spectrum did not give the same Faraday rotation as that rotation was calculated for the 

single pass in the film alone; this was perhaps not expected experimentally. The effect 

of the multiple reflections inside the film produced this result. So, as a consequence of 

this last numerical result, the following theories will be considered analytically below.  
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Figure ‎7.2: Numerical Faraday rotation spectra for the whole structure        

        for a thick substrate,       ; for differences between the spectra of the whole 

structure and substrate alone and finally for the single pass in a thin film,           

 

 

7.3 Faraday rotation theory of simple film with air on both sides  

Multiple reflection and transmission beam problems through two parallel plates, the 

thin film, have been studied in many optics books, for example, Smith et al., (2007), 

(Born and Wolf)(1999) and (Pedrotti and Pedrotti)(1993). In general, the total 

transmitted amplitude,   
   of N transmissions terms, is the sum of a geometric series 

(see figure 7.3) and given for an isotropic film as: 

   
    

                                                  
 

 
                  

                         

 

   

  (‎7.27) 
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where   
   is the amplitude of incident wave.     and     are the amplitude coefficients of 

transmission from air to a film and from a film to air, respectively.   and    are the 

amplitude coefficients of reflection out and in the film, respectively.   represents the 

phase difference between successive reflected beams (2 passes through film). If  

   , hence       becomes zero, the transmitted amplitude of the isotropic thin film is 

given by: 

 

 
  

    
  

          

         
 (‎7.28) 

 

 

Figure ‎7.3: Schematic diagram of multiple passes in a simple film with air on both 

sides. For symbols see the text. For clarity, the rays are drawn at small angles to the 

normal. Adapted from(Pedrotti and Pedrotti)(1993). 
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7.3.1 Exact formula of Faraday rotation 

The multiple transmission beam problem through an isotropic film was explained 

above. Here we will study this problem when a circularly birefringent film is used 

instead of an isotropic film. As a result of the properties of the film, we can separate the 

above problem into two circular polarisation problems as there is no mixing between 

the two. Let us consider a linearly polarised incoming wave incident normally on a 

simple circularly birefringent film, which has air on both sides as shown by figure 7.3. 

Now this film has two refractive indices   , so equation 7.28 can be modified as the 

pair of equations as:   

   

  
     

   
             

     
                          

  
     

   
             

                               

 
  
 

  
 

 (‎7.29) 
 

It should be pointed out in this derivation, we deal with the incident amplitude for 

linearly incoming x-polarised wave and can express this as equal amplitudes for the two 

circular polarisations, i.e., (  
     

       
        

     Fresnel's equations at normal 

incidence are used to calculate        and       as follows: 

     
   

     
               

   

     
              

     

     
   (‎7.30) 

 

   indicate there are two phase differences given at normal incidence by: 

               
     (‎7.31) 
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in which h is the film thickness,    are the two wave-vector values of a circularly 

birefringent film and     is the wave-vector value of the air. Then the Faraday 

rotation,    of the thin film can be found exactly by using Sato's definition (1981) as:  

 
   

 

 
         (‎7.32) 

 

where the phases      of the complex number    

      

      , are        

     

The difference between these phases here should be a Faraday rotation so equation 7.32 

can be rewritten in argument of a complex number as:  

 
  

 

 
    

  
  

  
  

  
 

 
    

        
            

      
 

                          
 
   (‎7.33) 

 

7.3.2 Approximate formula of Faraday 

Now, as we know, the difference between two circular refractive indices is small for a 

real material, so we use this to deduce an approximate formula for Faraday rotation of 

the circularly birefringent thin film which has air on both sides. We write:  

         (‎7.34) 

 

where n is the average refractive index of the film and    is the small difference 

between two circular refractive indices. The comparison between this definition 

(equation 7.34) and the definition in terms of two circularly polarised lights (see 

equation 4.34 and 4.35) gives           . Substituting equation 7.34 into equation 

7.31, gives:  

                (‎7.35) 
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In order to find analytically the approximate formula of Faraday rotation, we calculate  

      

      
  using equation 7.30, 7.34 and Binominal expansion to first order in  

 

 
 , to get:  

 
      
      

 
  

  
 
     

     
 

 

   
  

 
 

  

    
 

 

(‎7.36) 

 

 

Also, applying equation 7.35 in        of equation 7.33 and using Taylor and 

Binominal expansions to first order in  , gives: 

        

      
               (‎7.37) 

 

Besides that, 
      

      

      
        need to be found; by using equations 7.30, 7.34, Binominal 

expansion and the same procedures on      
, we obtain: 

       
      

      
         

            

          
    

 
     

    

  
 
        

 

(‎7.38) 
 

 

where 

    
    

    
                                     (‎7.39) 

 

By multiplying equations 7.36, 7.37 and 7.38 with some algebra, we get: 

  
  

  
  

 
        

            
      

 

                          
 

        
  

 
  

           

          
          

    

       
           

(‎7.40) 

 

We define  
  

  

  
  

        from the geometry for a complex number z,   is given as: 
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               (‎7.41) 

 

the approximation is good for small z. 

Hence, the Faraday rotation is just the imaginary part of that complex number. By 

taking only the imaginary part of equation 7.40, the required approximate formula for 

the Faraday rotation is found as: 

          
        

          
 

       

       
           

                
 

(‎7.42) 
 

 

Here the superscript      refers to approximate value. This can be rewritten as the 

following:  

      
    

      
 
    

    

      
        

  

 
       

       
       

                                 

 

(‎7.43) 

 

where    is the reflectivity in the film and defined by            
    

      
  represents the 

finesse coefficient, FC. As given in (Hecht)(2002), this coefficient is related to the 

finesse quantity    as                        The resolving power or the 

quality factor of resonator is            where    is the wavelength on resonance 

and     refers to free spectral range, defined as the wavelength difference at which 

fringes of different order overlap (Hecht, 2002). The finesse can be considered as the 

number of lines of a diffraction grating which give the same resolution as the Fabry- 
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Perot, so it represents a  measure of the effective number of passes of the light through 

the film (Born and Wolf, 1999).       

Applying the resonance condition for a maximum transmission, which is 

   

 
      where   is an integer leads to          and         . The last equation 

then becomes:  

               
  

      
                          (‎7.44) 

 

Here the superscript     refers to resonance value.         is the contribution of the 

Faraday rotation from the first pass of light through the film and 
  

      
 is a measure of 

the effective number of double passes based on the Faraday rotation. The Fabry-Perot, 

Faraday measures for the effective number of passes are different. However, for a high 

reflectivity,     , the difference between       and     is negligible so both are 

proportional to          . So, as    approaches one, the behaviour is very similar.  

 

7.4 Results and Discussion 

The Faraday rotation of the thin film,         which had air on both sides was 

calculated using the exact analytical formula (equation 7.33), as shown by the black 

curve in figure 7.4. The exact and approximate Faraday spectra of the film with air on 

both sides are indistinguishable on this scale. The black curve also shows the numerical 

result for this film.  
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The disagreement between exact and approximate analytical formulae starts 

noticeably at about          i.e., the difference becomes obvious when the     value 

is much larger, at least 1.7 hundreds of times of practical value of     as shown by 

figure 7.5. For           (the real used value), the fraction of the difference value 

(i.e. the difference between approximate and exact analytical rotations) to exact value is 

           . The evidence from this calculation shows this approximate formula is 

very good for any realistic material.   

The effect by having the multiple passes through the film is also shown in figure 

7.4; as the black curve shows the Faraday rotation spectrum for the multiple passes 

through the film and the pink curve shows that for a single pass through the film.  

Clearly, from the figure the black curve for the film with air on both sides disagrees 

with 'difference' curve in figure 7.2. As can also be seen from figure 7.4 the resonance 

case occurred at about         ,  as shown by the red point. It should be pointed 

out this is not a transmission peak. This is a Faraday rotation, which depends on the 

phase difference for the two circularly polarised lights. This probably occurs where the 

phase variation is maximum, which may not necessary corresponded to the 

transmission peak. The following theory, i.e., Faraday rotation theory of a simple film 

on a circularly birefringent substrate will be considered analytically below.      
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Figure‎7.4: The exact, approximate analytical Faraday rotation results and the 

numerical result, for a thin film,        with air on both sides and has the multiple 

passes, are shown by the black curve. The single pass of light in the film is shown by 

the pink curve.  The red point indicates Faraday rotation on resonance. 

 

Figure‎7.5: Faraday rotations against the       values for a thin film,        with air 

on both sides at         . 
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7.5 Faraday rotation theory of a simple film on a circularly 

birefringent substrate 

In section 7.3, the Faraday rotation was investigated analytically for a simple circularly 

birefringent film, which had air on both sides. This section will consider analytically 

the Faraday rotation for a simple circularly birefringent film on a circularly birefringent 

substrate. We will derive exact and approximate analytical formulae for the Faraday 

rotation when a film is placed on a circularly birefringent substrate. 

7.5.1 Exact formula of Faraday rotation 

Let us now assume the light is incident at a normal direction on a simple circularly 

birefringent film. This film has two refractive indices,     and is deposited on a 

circularly birefringent substrate which also has two refractive indices,   
 . This means 

the film has air on one side and circularly birefringent medium on another side, so this 

is a more general result for a simple film. From figure 7.6 and as above, the same 

procedures were followed; the transmitted amplitudes of this film are given by: 

  

  
     

   
  
    

        

     
   

                            

  
     

   
  
    

        

     
   

                           
 
 
 

 
 

 (‎7.45) 
 

As mentioned above (  
     

       
        

    and    is defined by equation 7.35. 

  
   and   

   are the amplitude coefficients of transmission from air to a film and from a 

film to a substrate, respectively. At the first interface,   
  and    

   are the amplitude 

coefficients of reflection out and in the film, respectively. At the second interface,   
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and    
   are the amplitude coefficients of reflection in and out the film, respectively. 

Fresnel's equations are used to calculate     
       

  and    
    as follows: 

   
  

   

     
         

  
   

     
            

  
     

     
            

  
     

 

     
   

 

(‎7.46) 
 

Finally, the exact Faraday rotation,    of this film is computed by using equation 7.33. 

 

 

Figure‎7.6: Schematic diagram of multiple passes inside a simple circularly birefringent 

film deposited on a circularly birefringent substrate. For symbols see the text. For 

clarity, the rays are drawn at small angles to the normal. 
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7.5.2 Approximate formula of Faraday rotation 

 The same procedures were followed, as explained in section 7.3.2. Some further 

assumptions have to be included to derive an approximate formula of Faraday rotation 

for a circularly birefringent thin film on a circularly birefringent substrate. First, for the 

film which has an average refractive index,    equation 7.34 was supposed as before. 

Second, for the circularly birefringent substrate that has an average refractive index,     

we assume: 

   
       , (‎7.47) 

 

where     is  the small difference between two circular refractive indices in the 

substrate.  

As mentioned previously, the Faraday rotation can be rewritten in argument of a 

complex number as given by equation 7.33. Hence, substituting equation 7.45 into 

equation 7.33 (in this case) to find the analytical approximate formula of Faraday 

rotation gives:  

 
  

 

 
    

  
    

              
    

      
 

  
    

               
    

      
 
   (‎7.48) 

 

Then using equation 7.46 to find  
  
    

 

  
    

   and in a similar way, substituting equation 7.34 

and 7.47 with applying Binominal expansion to first order in   and    gives: 

   
    

 

  
    

  
  

  
  

     

     
   

  
    

  
    

  

                                          
 

    
 

 

    
 

 

 
  

    

    
  

(‎7.49) 
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From the foregoing  
       

         is given by equation 7.37. To find  
      

    
      

      
    

      ,  equations 

7.34 and 7.47 were substituted into equation 7.46 for    
  and   

   In addition, we use 

Binominal expansion and do the same procedures on     
, we get: 

      
    

      

      
   

         
      

        
   

  

                                 
          

    
 

          

    
                                

    
   

(‎7.50) 

 

where    is defined as given by equation 7.39.     and     are the reflection coefficients 

inside the film as shown in figure 7.6 and defined by the following equations: 

     
    

    
                

    

    
  (‎7.51) 

 

By multiplying equations 7.49, 7.37 and 7.50 with some algebra which include taking 

the common factors and ignoring both     terms and higher orders in   and     we get: 

  
  

  
  

 
  
    

              
    

      
 

  
    

               
    

       
          

 

    
 

 

    
 

 

 
         

                                        
     

           
 
          

    
 

          

    
                        

      
 

    
 

     

           
 
          

    
    

(‎7.52) 

 

By using equation 7.48 and 7.52 then taking the imaginary part as explained above, we 

find: 
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(‎7.53) 

 

Then the approximate formula of Faraday rotation is given by the following equation: 

      
    

          
 

   
        

          
         

 
 

 
           

      
       

                                        

 
                                   

                 
 

   
        

          
         

  

  

 

(‎7.54) 

 

Where     and    are the reflectivities inside the film and defined by           
   and 

        
   In this equation, 

        

          
  represents the finesse coefficient, FC, in a 

general case.         is the contribution of Faraday rotation from the first pass of light 

in the film. The other terms result from multiple passes through the film. It should be 

pointed out in a special case; air as substrate leads to               and        

  . Hence equation 7.54 returns back to equation 7.43. On resonance equation 7.54 

becomes:  

 
             

      

          
            (‎7.55) 
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It should be pointed out the calculations here were made to find the Faraday rotation 

contribution from the film only. This is what are trying to compare to the difference 

between the substrate alone and the whole structure. In other words, the calculations did 

not include the rotation going through the substrate or at the substrate-air interface. To 

find the total Faraday rotation for the whole structure, those last two rotations must be 

added to equation 7.55.   

 

7.6 Results and Discussion 

The Faraday rotation of the thin film,         on a circularly birefringent substrate, 

        was calculated using the exact analytical formula (see equation 7.33 and 7.45). 

This result corresponds to the difference between the Faraday rotation of the whole 

structure and that of the substrate alone and agrees exactly with 'difference' curve, see 

figure 7.7.  

As in section 7.4, the Faraday rotation was also calculated using approximate 

analytical formula (equation 7.54) and at           (the real used value). Excellent 

agreements were found between the Faraday rotation calculated using the exact 

analytical formula and the rotation calculated from using the approximate analytical 

formula. Clearly, those agreements demonstrated the approximate formula is good for 

any realistic material.  
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Figure‎7.7: The exact, approximate analytical Faraday rotation results and the 

numerical result, for a thin film,        on a circularly birefringent substrate and has 

the multiple passes, are shown by the black curve. The difference between the spectra 

of the whole structure and substrate alone is shown by the green curve.   
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7.7 Faraday rotation theory of a circularly birefringent cavity 

In section 7.5, an analytical Faraday rotation formula was deduced for a simple 

circularly birefringent film deposited on circularly birefringent substrate. The film had 

different media on both sides. In this section, to deduce a more general formula for the 

Faraday rotation, the following structure will be investigated. The structure consists of 

a circularly birefringent cavity which has quarter-wave stacks, Bragg mirrors, on each 

side of the cavity. This structure is placed on a transparent isotropic substrate as shown 

in figure 7.8. 

 

Figure‎7.8: Schematic diagram of a circularly birefringent cavity structure on a 

transparent isotropic substrate. Here, h is the cavity thickness.  
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7.7.1 Exact formula of Faraday rotation 

In this section, a circularly birefringent cavity structure will be considered. The 

structure consists of a circularly birefringent cavity with an average refractive index n 

and a thickness h. The structure also has quarter-wave stacks, Bragg mirrors, on each 

side of the cavity. Further, it is placed on a transparent isotropic substrate as depicted in 

figure 7.8. We consider a beam of light incident on a cavity structure at a normal 

direction. As seen above, the transmitted amplitudes of the cavity are given by equation 

7.45. As a consequence of the Bragg mirrors in this structure, the T-matrix matrix is 

used to calculate     
       

  and   
  instead of Fresnel's equations. By recalling the 

reflectivity and transmission coefficients from Chapter 4 as calculated by equations 

4.22 and 4. 23, we get:  

 where the subscript indices of m and    refer to the matrix elements.          are the 

matrix elements for forward propagation direction through the first and second Bragg 

mirrors, respectively.       is the matrix element for reversed propagation direction 

 

  
  

        
   

   
   

    
   

   
   

 

     
   

         
   

    
   

      
   

  

   
  

       
   

    
      

   
     

   
       

   

         
   

          
   

     
   

       
   

 
  

  
  

        
   

   
   

    
   

   
   

 

     
   

         
   

    
   

      
   

  

  
  

      
   

         
   

    
   

      
   

       
   

         
   

    
   

      
   

 
  

 

 

 

 

(‎7.56) 
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through the first Bragg mirror. Then, the Faraday rotation,    of cavity structure can be 

obtained exactly using equation 7.45 and rotation definition is given by equation 7.33. 

7.7.2 Approximate formula of Faraday rotation 

Starting from equation 7.48, using equation 7.56, and following the same procedure 

discussed previously, gives: 

 

  
    

 

  
    

       

 

  
  

  
     

   
    

   

   
   

      
   

 
 

  
     

   
    

   

   
   

      
   

 
 

 

 

  
 

  

 

 

 

(‎7.57) 

     
    

      

      
   

         
       

          
   

 
                

   
      

   
 

     

   
        

   
    

   
      

   
   

                                      
                  

   
       

   
 

      
   

         
   

     
   

       
   

 
                     

(‎7.58) 

 

where    is given by equation 7.39.     and    are defined for a non-circularly 

birefringent cavity with refractive index n  by the following equations:  

 

    
       

   
         

   
     

   
       

   
 

      
   

         
   

     
   

       
   

  
  

   
      

   
        

   
    

   
      

   

     
   

        
   

    
   

      
   

  

 

 

 

(‎7.59) 
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Here              are complex numbers because the T-matrix is a complex matrix as 

noted in Chapter 4. As above,  
       

         is given by equation 7.37. Multiplying equations 

7.57, 7.37 and 7.58 gives a complex number. The imaginary part of this complex 

number is not a simple expression, as in the above calculations.  Hence, we leave the 

approximate formula of Faraday rotation as: 

      
 

 
  

 
 
 

 
 

     

 
 
 
 
 
 

 

  
  

  
     

   
    

   

   
   

      
   

 
 

  
     

   
    

   

   
   

      
   

 
 

 

 

  
 

         

               
     

            
 

               
   

      
   

 

     
   

        
   

    
   

      
   

  

  
                                

                
   

       
   

 

      
   

         
   

     
   

       
   

 
                   

 
 
 
 
 

   

 
 
 

 
 

  

 

(‎7.60) 

 

However, the study of Faraday rotation on the resonance is an interesting case 

as will be seen. We assume the mirrors and cavity have the same resonance condition 

and the mirrors are identical. Applying the resonance condition in the cavity, which 

means 
   

 
      leads to         In addition, substituting the wavelength,    from 

equation 1.1, i.e.,          into              gives a resonance condition in Bragg 

mirrors,           where   ,    and    are the thickness, the refractive index and the 

wave-vector value of the layer l. Then, applying this resonance condition in the Bragg 
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mirrors leads to           and           . According to that, the T-matrix in 

equation 4.21 for the first layer,      becomes: 

So, for   bilayers the T-matrix can be expressed for the first Bragg mirrors as follows: 

For the reverse of first Bragg mirrors and the second Bragg mirrors as: 

Clearly, the elements of the last two matrices are now real if there is no absorption, as 

in our case. Substituting these matrices elements in the expressions for      and      

equation 7.59, gives: 

Finally, the approximate formula of Faraday rotation on the resonance is given by the 

following expression: 
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                    (‎7.65) 

 

since      and     are real, this has the same form  as equation 7.55.  

 

7.8 Results and Discussion 

A cavity structure             
                      

  was taken from Kato et 

al.,(2003). This structure consists of a circularly birefringent thin film,          with 

dielectric Bragg mirrors, on each side of the film. Ignoring absorption, the parameters 

of the film, the parameters of dielectric layers and the refractive index of glass substrate 

were taken from Kato et al.,(2003)  as the following: for                        

          at          and its thickness was equal to         . The refractive 

indices for the isotropic materials were taken as          
       and         

 

     for        and for       dielectric layers, respectively at          and their 

thicknesses were equal to          The refractive index of the glass substrate was 

         The Faraday rotation of this cavity structure was calculated using the  exact 

and approximate analytical formula as shown by one curve only (the black curve) in 

figure 7.9, because they are indistinguishable on this scale. So, the approximate formula 

worked well. 

The resonance occurred at wavelength           as can be seen by the red 

point in figure7.9. From the comparison, this wavelength agrees with the resonance 

wavelength for the cavity structure given by Kato et al.,(2003). However, we obtained a 

different Faraday rotation value as that found by Kato et al.,(2003). This result may be 

explained as absorption in the structure was neglected in this work. 
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Figure‎7.9: Numerical spectrum and analytical Faraday rotation spectra for a cavity 

structure             
                      

   are shown by the same black 

curve. The red point indicates Faraday rotation on resonance. 

 

 

7.9 Conclusions 

Total reflectivity and transmission were calculated for a circularly birefringent film 

deposited on a thick circularly birefringent substrate. In addition, a formula for Faraday 

rotation was derived exactly and approximately for different situations: a single 

circularly birefringent film with air on both sides; the film on a circularly birefringent 

substrate; and a circularly birefringent cavity structure. The results of this analytical 

study show that the approximate formulae worked excellently for any realistic material.  

These analytical formulae enhance our numerical calculations. The measure of the 

effective number of double passes based on the Faraday rotation was found. We can use 
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the Faraday rotation as o'clock, which accounts how much time photons spent in the 

film. Because we can get from the Faraday rotation, the effective distance (i.e., number 

of passes multiplies by the actual thickness of the material) and then divide this 

effective distance by the speed of the medium to find the time. In general, it seems that 

the value of Faraday rotation on resonance could be found straightforwardly. Returning 

to the question posed at the beginning of this chapter, regarding the difference between 

the Faraday rotation of the whole structure and that of the substrate alone, we have 

given a formula for the difference, but it is not the simple rotation for the film, because 

of multiple reflections in the film.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



133 
 

CHAPTER 8  

CONCLUSIONS  

 

 

8.1 Summary 

In the field of photonic nanostructures, computational techniques are required in a 

number of problems. These include photonic band analysis, calculation of reflection or 

transmission spectra, and emission spectra. Moreover, the problems can be handled by 

computer methods using the experimental data. The knowledge of various properties of 

the structure enables us to understand it, since the spectra of the structure are found to 

be one of the important sources. From the magneto-optical spectra, the value of 

dielectric constants can be obtained.  

This thesis describes theoretical modelling of magneto-photonic structures using 

the transfer matrix, which is developed here for circularly birefringent materials. The 

work is useful in analysing real experimental magneto-optic data, and in the creation of 

novel structures which make use of the sensitivities of the optical properties of photonic 

crystals to minute differences in the refractive indices.   

We started from Maxwell's equations to derive the     transfer matrix for 

circularly birefringent structures. The matrix was used to compute optical and magneto-

optical properties at normal incidence of light for a structure on an infinite thickness 

substrate. We modelled both a simple circularly birefringent film and a circularly 

birefringent cavity structure. This work has confirmed previous studies showing that 

the cavity structure enhanced magneto-optical effects. 
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We next considered the effects of incoherent reflections within a finite thickness 

substrate. The incoherent reflections can arise for a number of reasons, for example, a 

slight wedge in the substrate or the finite angular resolution of measurements. We first 

investigated the effect of inclusion multiple incoherent back reflections within an 

isotropic transparent substrate. The results showed a significant contribution of these 

reflections to the magneto-optical Kerr rotation from a thin film. Since the 

measurements of this sort are used to obtain the values of magneto-optical constants of 

the material, it is important that the incoherent reflections are taken into account in 

analysing the experiments.   

The present investigation found that both Sato’s‎definition‎and the definition in 

terms of Stokes' parameters gave the same Kerr ellipticity result for both coherent and 

incoherent back reflections situations for a small magneto-optical constant. However, 

for a large magneto-optical constant the Kerr ellipticity resulting from these definitions 

was not the same. With either a small or large value of magneto-optical constant, the 

Kerr rotation results were the same  from the definitions of  Sato's (1981) or  Sakaguchi 

and Sugimoto's (1999) or the definition in terms of Stokes' parameters in the case of 

ignoring the incoherent back reflections. On the other hand, when incoherent back 

reflections are included, the definition of rotation in terms of Stokes' parameters is the 

only way to proceed, since other definitions depend on phase information. In general, 

therefore, it seems that the definition of magneto-optical effects in terms of Stokes' 

parameters is the only one, which is universally applicable.  

The total reflectivity and transmission expressions were also found for a 

circularly birefringent film deposited on a thick circularly birefringent substrate. We 
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also gave a formula for the difference between the Faraday rotation of the whole 

structure and that of the substrate alone. As a result of multiple reflections, this does not 

display the simple Faraday rotation of the film that has air on both sides. 

Exact and approximate analytical formulae for the Faraday rotation were 

derived for several different cases: first, a single circularly birefringent film with air on 

both sides; second, a film on a circularly birefringent substrate; and finally a circularly 

birefringent cavity structure. The results show that the approximate formulae derived 

for a small    , work well in any real medium. The analytical results agree with our 

numerical calculations. The approximate formulae were used to derive an expression 

for the effective number of light passes through the film.  

We used our model to re-analyse Sato's modulation method for determining 

magneto-optical spectra. Our study showed that the expressions given by Sato still 

work in the presence of incoherent back reflections  

 

8.1 Outlook to the Future 

This work might be extended in the following points:  

Within the current framework, it would be straightforward to add absorption; 

we did not do it here for simplicity and because the effects are strongest without 

absorption.  

The code is written so it would be easy to change from simple circular 

birefringent materials to those which are linearly birefringent or mixture of the two by 

changing the eigenvector components to appropriate one for the material used. 
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Some changes will be needed for the treatment of the circularly birefringent 

materials when the light is incident at a finite angle (non-normal incidence), for 

example, a wave vectors need to be changed. 

This work could provide basis for modifying treatments of two- and three- 

dimensional photonic structures.  
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APPENDIX A 

 

 

Both rotation definitions of Sato (1981) and(Sakaguchi and Sugimoto)(1999) are, in 

fact, identical, as is proven analytically here  

We start from the trigonometric identity for        This is given as: 

 

                 
            

            
  

 

(A.1) 

 

Substituting       from the complex reflectivity coefficients give: 

       
       

       
                  (A.2) 

 

Then, by applying the relationships for circular birefringent structures between       

      and           i.e., equations 4.46, 49 and it can be shown that:  
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