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Abstract 

Traditionally, modelling tasks involve the building of mathematical equations which can best 

describe the underlying process. Such a modelling practice normally requires a deep 

understanding of the systems under investigation, hence the reason why it is often referred to 

as knowledge-driven modelling. On the contrary, knowledge extraction from data (or data-

driven modelling), inspired principally from artificial intelligence techniques, is based on 

limited knowledge of the modelling process and relies on the data describing the input and 

output mappings. Such a process is able to make abstractions and generalisations of the 

process and plays often a complementary role to knowledge-driven modelling.  

The Fuzzy Rule-Based System (FRBS) has been found more appealing for such a knowledge 

extraction process, compared to other ‘black-box’ modelling techniques, due to its ability of 

providing human understandable knowledge. However, such interpretability is only semi-

inherent in the FRBS. Without a special caution one can easily end up with a FRBS with 

equally good predictions as those given by the ‘black-box’ modelling methods, while on the 

other hand with equally bad interpretability. Hence, extracting a transparent (interpretative) 

FRBS is reckoned to be of a multi-objective nature with often conflicting outcomes, which 

gives the rationale of using bio-inspired optimisation paradigms, more specifically, Artificial 

Immune Systems, in this research project. In a bid to further improve the overall predictive 

performance, especially for the scatter and uncertain data set, an error correction scheme is 

proposed so that one can compensate the original predictive model via the predicted error. 

The proposed immune optimisation framework was tested extensively using several 

benchmark problems and was compared with other salient techniques. Consistent better 

performances were obtained. The immune based modelling approach was tested using a set of 

benchmark problems, and was further applied to different real data sets, viz. Tensile Strength 

(TS), Elongation and Reduction of Area (ROA), taken from the steel industry, which are all 

featured by high dimensional, nonlinear and sparse data spaces. Results show that the 
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proposed modelling approach is capable of eliciting not only accurate but also transparent 

FRBSs. Such a transparent FRBS establishes the required predictions of the mechanical 

properties of materials, which on the one hand can help metallurgists to further understand 

the underlying mechanisms of alloys processing, and on the other hand will automate and 

simplify their design. Charpy toughness (impact energy) as a special data set featured by 

scatters and uncertainties was used to validate the proposed error correction mechanism and 

proved its validity.    

The project is part of the research activities which are currently conducted in the Institute for 

Microstructural and Mechanical Process Engineering: The University of Sheffield 

(IMMPETUS).  
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Chapter 1 

Introduction 

 “All men by nature desire knowledge".  

Aristotle, Metaphysics, 384BC‐322BC 

1.1 General Background 

In this research project, the main emphasis will be on how to allow Artificial Immune 

Systems (AIS) to cooperate with fuzzy rule based systems (FRBS), artificial neural networks 

and clustering methods in order to solve engineering problems, especially those associated 

with optimisation, knowledge extraction, modelling and control. With the characteristics of 

recognition of foreign agents, reinforcement learning, associative memory, distributed or 

parallel processing capability, self-adaptive and self-organization inherent in the human 

immune systems it is believed that AIS, as a metaphor, can accomplish the aforementioned 

tasks in a more efficient and transparent way. Unlike other evolutionary computing 

paradigms, which can be thought of as natural optimisers, AIS has been applied to broad 

application areas ranging from data analysis, computer security to optimisation. Hence, AIS 

provides a more extendable platform on which AIS Fuzzy Rule-Based System (AFRBS), for 

instance, can be built. The whole project can be divided into two subsequent stages, viz. 

optimisation and modelling. 

1.2 Project Description 

In the first phase of this project, AIS will be extended to the area of multi-objective 

optimisation problems (MOP) by realising that real-world problems are inherently of a multi-
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objective nature with often conflicting issues. Hence, the best way to deal with such problems 

is to provide a set of trade-off solutions. The rationality of adopting AIS, or broadly speaking, 

Evolutionary Algorithms (EAs), as the search engine is based on its ability to exploit the 

accumulated information about an initially unknown search space in order to bias subsequent 

searches into useful subspaces (Bodenhofer et al., 1997). The advantages of AIS over 

classical search methods which are based on derivative information or random search 

methods are manifold:  on the one hand, it is a derivative-free and global search method and 

thus offers a valid approach to tackle the problems which are not differentiable and have 

many local optima; on the other hand, it effectively uses previous search experiences to guide 

the following search rather than random search, which is recognised as the main scheme 

responsible for its efficiency, particularly in large, complex, and poorly understood search 

spaces; thirdly, its ability of simultaneously manipulating an adaptive antibody population 

makes it a very suitable way to handle MOP.  

There have been several attempts to address the applications of AIS to MOP in the literature 

(Yoo et al., 1999; Cruz Cortes et al., 2003; Coello Coello et al., 2005; Wang and Mahfouf, 

2005; Jiao et al., 2005; Freschi, 2006) but none of these presented a formal systematic 

framework for doing so. Further, all of the previous attempts are based on just a small part of 

the mechanism within the whole immune system. We intend to propose a more formal 

framework combining more immune metaphors, e.g. combining immune network theory with 

a clonal selection principle, and to identify the main differences between AIS and other EAs 

in terms of their structures, robustness, parameter settings and efficiency. Some 

hybridisations with other Evolutionary Algorithms (EAs), e.g. Genetic Algorithm (GA), will 

also be considered in this phase to improve the existing accuracy and efficiency of AIS.  

In the broad sense, knowledge extraction can also be viewed as an optimisation process. The 

task of extracting an appropriate knowledge base (KB) is equivalent to parameterizing this 

KB, and to finding a set of optimal parameter values with respect to some design criteria 

(Cordon et al., 2004). With a good and reliable optimisation algorithm developed via the first 

stage, the project can proceed to the second stage, which will consider a ‘hybrid’ form of AIS 

and fuzzy rule-based systems together in order to extract transparent knowledge purely from 

data for complex systems’ modelling. Some other soft computing techniques, such as 

clustering and neural networks will also be considered for inclusion at this stage in order to 

facilitate this process of knowledge extraction. 
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From the system identification viewpoint, KBs can also be viewed as identified models of the 

systems under investigation. There are mainly three methodologies to solve identification 

tasks, viz. white-box modelling, black-box modelling and grey-box modelling. In the line of 

the white box modelling everything is considered to be known as a priori from physics and 

the produced model (knowledge) is normally in the form of a mathematical equation 

following related physical laws without the need for any other measurements. However, in a 

real-world modelling situation, one can never have complete process knowledge, and 

uncertain factors always affect the system, which only have chance to be revealed (or 

partially revealed) through experiments. Black-box modelling responds to these requirements 

and is designed entirely from measured data without assumption of knowing any physical or 

verbal insight at all. The drawbacks of black-box modelling are twofold: first, once the model 

has been built one can only obtain a projection from inputs to outputs and nothing more, 

which means that no deep understanding about the process itself can be obtained through the 

modelling procedure; second, the thrust of the principle in the modelling field is to only 

estimate what is still unknown, however, black-box modelling breaks this law to some extent 

by employing a sufficiently flexible model family (Hellendoorn et al., 1997). To overcome 

these problems, the need for grey-box modelling is pressing, which combines both human 

knowledge and black box estimation to account for complex systems’ knowledge acquisition.  

Fuzzy rule-based system is the one that falls into the third category with an additional ability 

to integrate human expert knowledge in the form of vague or imprecise statements rather than 

crisp mathematics, for many real-world systems’ knowledge can only be described by experts 

using natural language. Previous research on fuzzy rule-based system has been mainly 

concerned with how to synthesis a rule-base with domain dependent knowledge from human 

experts, such as operators, and render the task of optimising the parameters associated with 

the antecedent and consequent parts to some estimation methods, e.g. recursive least squares 

or gradient based methods (Takagi et al., 1985). However, this paradigm gives rise to three 

limitations:  

1) More often than not, expert knowledge is lacking or is limited due to the newly 

discovered unknown complex system, or the narrow and partial knowledge gathered 

from a single expert.  

2) It is very hard to handle problems with considerable amount of data to be processed 

and analysed (Cordon et al., 2004). 
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3) The way to design such a fuzzy system is not domain-independent and thus no 

systematic design procedure can be followed.  

In all these cases, a sole knowledge extraction from would-be experts will undoubtedly fail to 

provide a satisfactory solution, while it must be stressed that discovering knowledge from 

data can help in overcoming aforementioned limitations by augmenting a fuzzy rule-based 

system with an additional learning ability provided by some machine learning approaches.  

In the past two decades, many successes have been witnessed in the hybridisation of neural 

networks and fuzzy systems. A well-known representative is Adaptive Network-based Fuzzy 

Inference Systems (ANFIS) (Jang, 1993). Although neuro-fuzzy systems may contribute 

successfully in overcoming the lack of the linguistic representation and transparency  

associated with the neural networks, the designer will still need to decide on major design 

parameters such as universe granulation, rule antecedent aggregation operators, rule 

semantics, rule base aggregation operators and defuzzification methods (Cordon et al., 2004). 

Almost at the same time, attempts of hybridising clustering methods with fuzzy systems were 

carried out and gave very promising results (Gomez-Skameta et al., 1999). The aim of this 

type of hybridisation is to automatically infer rules from large collections of learning data.  

However, designers following this line of research still face the problem of setting an 

appropriate cluster number as a priori, and the clustering depends highly on the chosen 

starting point.  

As pointed out by Cordon et al. (2004), contrary to neural networks and clustering, GAs 

provide a means to encode and evolve everything involved in the design of the rule base. 

Despite the prospective promising future, hitherto, no systematic design procedure has been 

put forward regarding this new line of research, although many successful attempts have been 

made in the past. Clearly, the main difficulty is that if everything is encoded and evolved 

using GAs the search space becomes prohibitively large. Hence, one has to reach a 

compromise on what level GAs are to be involved to learn to cover, e.g. data base tuning, 

rule base learning or the whole knowledge base extraction. For this reason, many possibilities 

exist, which hinder the formation of a generic systematic design procedure. Having said this, 

AIS architectures have shown great capabilities in dealing with high dimensional 

optimisation problems and exhibited great flexibility. It is believed that with their global 

search capability and their encoding schemes being similar to those of GA, and with their 

learning and data analysis capabilities being similar to those of neural networks, AIS can 
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offer a better and a more integrated route to solving complex knowledge extraction problems. 

At this stage of this project, the emphasis is on how to automatically generate fuzzy rule-

bases from numerical data only and on how to select rules in the generated rule-base to 

remove or merge redundant and similar rules to obtain a compact and transparent knowledge 

base. Clustering and neural networks will be considered to either be incorporated into or 

compared with AFRBS.  

The most attractive property of fuzzy systems lies in its capability of processing linguistic 

expression and providing human understandable knowledge. However, sometimes this 

property is only compromised in order to produce more accurate results, which can be 

achieved through either a mathematical function of the consequent part, or an increased 

number of complex rules, both routes deviating from the original intention of FRBS. Thus, in 

this project, more attention will be focused on the Singleton FRBS (Takagi et al., 1985) and 

the Mamdani FRBS (Mamdani et al., 1975) rather than the Takagi-Sugeno-Kang (TSK) 

FRBS with linear functions as its consequents (Takagi et al., 1985). To improve the 

interpretability of the fuzzy model, MOP will be incorporated as a substitute for the 

traditional estimation methods by accepting the fact that the increased interpretability is often 

a contradictory goal against the objective of the accuracy. Using MOP algorithm developed 

in the first phase of this project, one can simultaneously deal with several, usually cofilicting, 

objectives in a consistent fashion.  

Although FRBS can deal with imprecise data and incomplete knowledge, collected data, 

especially in ‘dirty’ environments, such as the steel industry, may often consist of severe 

stochastic activity which cannot be modelled easily. In order to further improve the 

generalisation ability of the model elicited via a data-driven modelling method in such a 

scenario, a special case of ‘Stacked Generalisation’ (Wolpert, 1992) is investigated, which 

relates to the case of when the first layer contains only one generaliser. In such a case, 

‘Stacked Generalisation’ is reduced to a scheme for estimating the error of the model in the 

first layer. An error correction scheme (ECS) is thus proposed based on such a special case. 

The basic idea of ECS is to build an Error Predictive FRBS (EPF) apart from the Original 

Predictive FRBS (OPF) so that one can predict the errors associated with the OPF, given the 

inputs of OPF. When a new scenario is encountered, the EPF will be able to predict the 

potential error and thus the predicted error can be used to compensate for the predicted output 

produced by the OPF. An improved predictive accuracy in terms of not only the learning but 

also in terms of the generalisation is expected via the ECS. 
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All the proposed methods are tested with benchmark problems and with a ‘real world’ 

engineering application associated with the mechanical property prediction for hot-rolled 

steels. Specialist heat treatments are used to develop the required mechanical properties in a 

range of alloy steels. The mechanical properties of the alloy steels depend on several factors 

of which the followings are believed to be the major ones: tempering temperature, quench 

type, chemical compositions of the steel, geometry of the bar, test sample location on the bar, 

batch distribution in the furnace, measurement tolerances and variations in the process 

equipment and operators (Tenner, 1999). Traditionally, a heat treatment metallurgist would 

attempt to balance these factors using their metallurgical knowledge and experience in a bid 

to obtain the desired mechanical properties. However, due to the increasing complexity of the 

underlying system, this may still prove difficult even for the metallurgists to tune these 

parameters. Given the lack of mathematical models which can account for these complex 

systems and a large amount of available industrial process data associated with the systems, 

data-driven modelling becomes more and more vital for assisting the metallurgist to predict 

the mechanical test results without actually doing it. Based on these models, further 

optimisations of the heat treatment process can also be developed, which is envisaged to be 

able to automate the steel design process and reduce the experimental costs.  

All in all, this research aims at proposing a systematic and integrated knowledge extraction 

framework with considerable transparency using AFRBS to automate and simplify the design 

of the alloy steels. This particular application work is currently being carried-out as part of a 

project within the EPSRC sponsored Institue for Microstructural and Mechanical Process 

Engineering: The University of Sheffield (IMMPETUS) project. IMMPETUS is a multi-

disciplinary research centre dedicated to integrating metallurgical, mechanical and thermal 

considerations in developing soundly based models for process planning and control to 

achieve target microstructures and product properties with increasingly fine tolerances and 

greater efficiency. The core of the approach is the concept of black, grey and white box 

modelling, and this requires a wide range of techniques and interdisciplinary knowledge. As 

control engineers involved in this project, the concerns are more related to AIS, fuzzy logic 

and hybrid modelling methodology, i.e. using an intelligent optimisation approach to design 

metals in a ‘right-first-time’ fashion.  
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1.3 Original Contributions 

The original contributions of this thesis are of the followings: 

 A population adaptive based immune algorithm (PAIA) has been proposed for solving 

MOP.  

 A Multi-stage optimisation procedure is proposed, where a single-objective 

optimisation method is utilised in the first stage to obtain any global optimum resting 

on the Pareto front, and PAIA is then invoked in the second stage as the post-

processing algorithm to approximate the rest solutions along the Pareto front.  

 The differences and the extra strength of immune based optimisation algorithms, as 

compared to other EAs, have been identified and summarised.  

  An evolutionary algorithm based clustering method has been proposed, which is the 

product of hybridisation of a real-coded GA and K-means algorithm. The proposed 

algorithm can avoid local optima during the search of proper cluster centres and, 

therefore, can find cluster centres as close to the real ones as possible.  

 A systematic Immune inspired Multi-objective Fuzzy Modelling (IMOFM) is proposed 

which can be regarded as a three-stage modelling procedure. The first stage is used to 

extract the prior knowledge from the available data using an evolutionary clustering 

algorithm. The second stage is used to refine such an initial model using a modified 

back-error propagation algorithm which can deal with both Singleton and Mamdani 

FRBSs. In the third and final modelling stage, and in order to tackle the problem of 

simultaneously optimising the rule-base structure and parameters, a variable length 

coding scheme (VLC) is adopted, and a new distance index is proposed to cope with 

the variable-length individuals. 

 The proposed modelling mechanism has been tested with benchmark problems and has 

been applied to the prediction of mechanical properties of alloy steels, such as Ultimate 

Tensile Strength (UTS), Reduction of Area (ROA), elongation and impact energy. The 

results are promising.  

 In order to further improve the generalisation ability of the models elicited via a data-

driven method, a special case of ‘Stacked Generalisation’, namely the error correction 

scheme (ECS), is proposed. An improved predictive accuracy in terms of not only the 

learning but also the generalisation is observed.  
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1.4 Outline of the Thesis 

The thesis is organized as follows: 

Chapter 2 gives a basic introduction to the relevant aspects of bio-inspired computing, such 

as evolutionary computing, Artificial Immune Systems (AIS), particle swarm optimisation 

(PSO), artificial neural networks (ANNs) and fuzzy rule based systems (FRBS). The 

emphasis is then given to the general aspects of bio-inspired optimisation, which is not 

restricted to a particular computing paradigm. The common features embedded in the modern 

heuristic based optimisation algorithms are also explored. 

Chapter 3 presents the development of the proposed PAIA and its improved version, viz. 

PAIA2. A multi-stage optimisation procedure (M-PAIA2) is also proposed, which aims as 

speeding up the optimisation process. All these algorithms are tested via benchmark 

problems, such as the well-known ZDT and DTLZ test suites, and compared with other well-

known algorithms, such as the Non-dominated Sorting Genetic Algorithm II (NSGA-II), the 

Strength Pareto Evolutionary Algorithm (SPEA2) and the Vector Immune algorithm (VIS). 

The differences and the extra strength of the immune based optimisation algorithms, 

compared to other EAs, are also elucidated.  

Chapter 4 provides the details which describe the proposed evolutionary based clustering 

algorithm. Experimental studies on the proposed clustering algorithm are carried out in order 

to justify such hybridisation. The relationship between unsupervised learning and supervised 

learning is further expanded so that one can easily generalise it to the relationship between 

data clustering and the elicitation of FRBS.  

Chapter 5 discusses the implementation of an immune inspired multi-objective fuzzy 

modelling (IMOFM) mechanism, which can be used to elicit not only Singleton FRBS but 

also Mamdani FRBS. To this end, a modified Mamdani fuzzy inference system is proposed 

with a carefully chosen output membership functions, the inference and the defuzzification 

methods. Such modifications ensure the efficiency and the differentiability of the developed 

Mamdani FRBS, which also leads to a set of new back-error propagation (BEP) updating 

formulas for refining Mamdani FRBS. Some important factors, such as the variable length 

coding scheme and the rule alignment, are also discussed. 

Chapter 6 presents the results of using IMOFM method for the modelling of two benchmark 

problems and for the predictions of three mechanical properties of alloy steels, viz. UTS, 
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ROA and elongation. Such results are also compared with other already established 

modelling methods, such as the Fuzzy Modelling Approach with a Hierarchical Clustering 

Algorithm and a Multi-objective Optimisation Mechanism (FM-HCMO). The empirical 

differences between Singleton FRBS and Mamdani FRBS are also discussed.  

Chapter 7 describes an Error Correction Scheme (ECS) which improves predictive accuracy 

in terms of not only the learning but also the generalisation. Experimental results on the 

impact energy are presented.  

Finally, concluding remarks, new perspectives and future research directions are given in 

Chapter 8. 
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Chapter 2 

Bio-Inspired Computing 

 “The designs found in nature are nothing short of brilliant, but the process of design that generates 

them is utterly lacking in intelligence of its own".  

Daniel Dennett, NY Times, 2005 

Bio-Inspired Computing lies within the realm of Natural Computing, a field of research that 

is concerned with both the use of biology as an inspiration for solving computational 

problems and the use of the natural world experiences to solve ‘real world’ problems. On the 

one hand, the increasing interest in this field lies in the fact that nowadays the world is facing 

more and more complex, large, distributed and ill-structured systems, while on the other 

hand, people notice that the apparently simple structures and organizations in nature are 

capable of dealing with most complex systems and tasks with relative ease.  

The most successful and visible work belongs to the realm of Evolutionary Computing (EC) 

through the simulation of biological evolution. Within this realm, three independently 

developed methodologies exist, viz. Genetic Algorithms (GA) (Holland, 1975), Evolution 

Strategies (ES) ( Back, 1996) and Genetic Programming (GP) (Koza, 1999).  Apart from EC, 

Artificial Immune Systems (AIS) (Farmer et al., 1986) and Particle Swarm Optimisation 

(PSO) (Eberhart & Kennedy 1995; Kennedy & Eberhart 1995) represent alternative lines of 

this type of research through the simulation of vertebrate immune mechanisms and of the 

migration of the bird flock. In the following Sections, GA and ES, as two most widely used 

methods in the EC field, and AIS, as the core of this project, will be briefly reviewed. PSO, 

as an alternative line of this type of research will also be reviewed. Special concerns will then 

be given to the so called bio-inspired optimisation which includes solving Single-Objective 

Optimisation Problems (SOP) and Multi-Objective Optimisation Problems (MOP) with the 

aforementioned three methods. Artificial Neural Networks (ANN) and Fuzzy Rule Based 
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Systems (FRBS), as the relevant subjects and techniques that will be used in Chapter 5~ 7, 

will also be introduced. The review in this chapter is meant to be comprehensive but non-

exclusive.  

2.1 Evolutionary Based Computing (EC) 

2.1.1 Genetic Algorithms 

GAs are general purpose search algorithms which use principles inspired by natural genetics 

to evolve solutions to problems. The basic idea is to maintain a pool of chromosomes that 

evolves over time through a process of competition elitism and controlled variation (Cordon 

et al., 2004; Goldberg, 1989). GAs were initially designed using binary coding scheme to 

solve many problems, such as gene alignment, combination optimisation and continuous 

optimisation. Due to GA’s binary coding scheme and population-based search concept, it is 

very easy to be adapted to different application scenarios. Although there are many variants 

of GAs, it is widely accepted that a GA should have the following five components: 

• A genetic representation of the solutions to the problem; 

• A way to generate the initial population; 

• A way to evaluate fitness of each solution (chromosome); 

• Two genetic operators, viz. crossover and mutation, to alter the genetic composition 

of offspring during reproduction; 

• A selection mechanism to introduce competition and pressure to individuals. 

Standard GAs use a binary coding scheme to represent the genetics of solutions. The 

crossover operator under the binary coding scheme is designed by randomly picking two 

strings and exchanging some portion of the strings. Among all possible implementations of 

this kind of crossover operators, single-point and two-point crossover (Goldberg, 1989) are 

the most used ones. However, the feasibility of such a simple crossover scheme, which is 

valid in the binary case, does not hold in the real-valued case. The stagnation of finding a 

feasible crossover operator in the real-valued situation is the main reason for the limitation of 

GAs, such as slow convergence, low accuracy etc., when they are applied to continuous 

optimisation problems. In recent years, research on real-valued GAs made a great 
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breakthrough. Crossovers, such as Simulated Binary Crossover (SBX) (Deb et al., 1994), 

were proposed. In those works, crossovers are not naive real-valued crossovers (Goldberg, 

1989) anymore; they are very much similar to mutation operators in ES or PSO in the way 

that they alter the compositions of offspring. Both the speed of the convergence and accuracy 

are improved to be at least as good as those of newly developed methods. 

2.1.2 Evolutionary Strategies 

Unlike GAs, ES-based algorithms were originally designed via real values for coding and is 

still marked with this. ES is a joint development of Bienert, Rechenberg and Schwefel, who 

built the idea and foundation for this field in the 1960s at the Technical University of Berlin 

(Back, 1996). It is first implemented as an experimental procedure to deal with 

hydrodynamical problems such as shape optimisation of a bended pipe or structure 

optimisation of a two-phase flashing nozzle. The strategy used is very simple, which is based 

on random small changes of experimental setups following observations from nature that 

smaller mutations occur more often than larger ones. If the new construction happened to be 

better than its predecessor, it will replace the old one and serves as the basis for the next trial. 

It was Schwefel (Schwefel, 1981) who first simulated a two membered ES on the first 

available computer which now commonly has the name of (1+1)-ES.  

To incorporate the principle of a population, ሺߤ ൅ ሻߣ െ ,ߤand ሺ ܵܧ ሻߣ െ  were introduced ܵܧ

by Schwefel (Schwefel, 1981). In the first case, the best μ individuals out of the union of 

parents and offspring survive while in the later case only the best μ offspring individuals 

from the next parent generation survive. It is argued that the selection schemes of multi-

membered ES are somewhat similar to two main implementations of selection in AIS, which 

are discussed in more detail in the next Section and in Section 3.2.1 (refer to Section 3.2.1 for 

‘Clonal Selection’ and ‘Reselection’).  

2.2 Artificial Immune Systems (AIS) 

AIS is relatively a new research area which can be traced back to Farmer et al.’s paper 

published in 1986 (Farmer & Packard, 1986). In this pioneering paper the author proposed a 

dynamical model for the immune systems based on the Clonal Selection Principle (Burnet, 

1959) and Network Hypothesis (Jerne, 1974; Perelson, 1989). However, there were only a 
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few developments since then until 1996 when the first international conference based on 

artificial immune systems was held in Japan. Following this event, the increasing number of 

researchers involved in this field indicated the emergence of a new research field: Artificial 

Immune Systems (AIS). But hitherto, no new formal framework based on AIS has since been 

proposed.  

There are three main application domains which AIS research effort has focused on, viz. fault 

diagnosis, computer security, and data analysis. The reason behind this is that it is relatively 

easy to create a direct link between the real immune system and the aforementioned three 

application areas, e.g. in the applications of data analysis, clusters to be recognised are easily 

related to Antigens (Ags), and the set of solutions to distinguish between these clusters is 

linked to Antibodies2.1 (Abs). Recently, a few attempts to extend AIS to the optimisation field 

have been made (de Castro & Von Zuben, 2002; Kelsey & Timmis, 2003). However, as 

mentioned by Emma Hart and Jonathan Timmis (2005), maybe partly for historical reasons, 

many of the AIS practitioners may be interested in the optimisation field by way of working 

in other biologically inspired fields such as EC, and thus in terms of optimisation the 

distinctive line between EC and AIS is vague. In other words, there is not a formal distinctive 

framework for AIS applied to optimisation. The situation is even worse when dealing with 

the MOP case since it is hard to find a way of defining Antigen and the affinity due to the 

implicit Antigen population to be recognised (Chen & Mahfouf, 2006).  

The biological foundations of AIS are based on various immunological models which coexist 

to explain the functions of immune systems, each of them being only from one particular 

point of view and sometimes being even contradictory with each other. Hence, there is not ‘a’ 

formal accepted immunological model that is well recognised in the immunology community. 

However, from the computational perspective, each of these models is a valid model 

provided an efficient algorithm can be extracted from it. Sometimes, several immunological 

models may even be synergized in order to produce a single algorithm such that the problem 

under investigation can be solved. Obviously, pragmatism is a widely adopted methodology 

in the development of AIS at the current stage. There are two models and two phenomena 

which are found to be very useful especially from the computational viewpoint: (1) Model1: 

The Clonal Selection Principle; (2) Model2: Immune Network Theory; (3) Phenomenon1: 

Vaccination and Secondary Response; and (4) Phenomenon2: adaptive antibody’s 

                                                 
2.1 In this thesis, Abs and B‐cells are not distinguished (refer to Section 2.2.1). 
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concentration. These immunological models are introduced in the following Sections. 

Detailed reviews of the existing immune algorithms are referred to Section 3.1.1. 

2.2.1 Model 1: Clonal Selection Priciple 

The Clonal Selection Principle describes the basic features of an immune response to an 

antigenic stimulus, and establishes the idea that only those cells that recognize the antigen are 

selected to proliferate. Figure 2.1 visualises the steps involved in such a process. 

 

Figure 2.1 The Clonal Selection Principle: 1-Selection; 2-Proliferation; 3-Affinity 

maturation; 4-Reselection. 

The key procedures of this principle are: 

1) Selection: the B-cell with a higher affinity than a threshold is selected to clone itself;  

2) Proliferation: the selected B-cells produce many offspring with the same structure as 

themselves; the clone size is proportional to the individual’s affinity;  

3) Affinity Maturation: this procedure consists of Hypermutation and Receptor Editing; 

in the former case, clones are subjected to a high-rate mutation in order to distinguish 

them from their parents; the higher the affinity, the lower the mutation rate; in the 

latter case, the cells with a low affinity, or self-reactive cells, can delete their self-

reactive receptors or develop entirely new receptors;  
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4) Reselection: after affinity maturation, the mutated clones and edited cells are 

reselected to ensure that only those cells with a higher affinity than a certain threshold 

survive.  

The whole process is performed iteratively until a certain stable state (i.e. the concentration of 

B-cells with higher affinities is not changed) is achieved.  

2.2.2 Model 2: Immune Network Theory 

Immune Network Theory states that ‘Abs’ not only include paratopes but also epitopes. This 

results in the fact that ‘Abs’ can be stimulated by recognizing other ‘Abs’, and for the same 

reason can be suppressed by being recognised. Consequently, the immunological memory 

can be acquired by this self-regulation and mutual reinforcement learning of B-cells. The 

suppression function is a mechanism that allows to regulate the over-stimulated B-cells to 

maintain a stable memory and thus serves as the inspiration to control the over-crowded 

population during the optimisation process. 

2.2.3 Phenomenon 1: Adaptive Antibody’s Concentration 

The way that the immune system controls its Antibody’s concentration represents an 

interesting phenomenon from the perspective of the optimisation practitioners.  Initially, only 

a small number of B-cells cruise in the body. If they encounter foreign ‘Ags’, some of them 

are activated and then they proliferate. This process is adaptive, i.e. the number of clones that 

are proliferated during the activation process and how many of them are maintained at each 

iteration step and at the end in order to neutralize ‘Ags’ is adaptive. This is somewhat 

predictable because if a large number of initial B-cells is available then undoubtedly it can 

kill any ‘Ags’ at the cost of spending more energy to activate B-cells and secrete ‘Abs’. 

However, only an optimal number of B-cells during each step is necessary (a less number 

means more time is needed to reach the required concentration; more means redundant B-

cells are introduced). 

2.2.4 Phenomenon 2: Vaccination and Secondary Immune Response 

It is well known that if the vaccine (which is very similar to the real antigens in terms of their 

structures) is available and first applied to the immune systems, the immune systems can 

remember it and can respond quickly in the successive encounter of similar antigens. Such a 
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response is called the secondary response in the immune community. As shown in Figure 2.2, 

the response lag of the secondary response is much smaller than that of the primary response, 

which means that, given a known vaccine, the immune response can be induced quickly and 

strongly in the second run.  

 

Figure 2.2 Vaccination and immune response. 

2.3 Particle Swarm Optimisation (PSO) 

Particle swarm optimisation (PSO) is a population based stochastic optimisation technique 

first described by Russell C. Eberhart and James Kennedy in 1995 (Eberhart and Kennedy, 

1995), inspired by social behaviour of bird flocking or fish schooling. PSO shares many 

similarities with EC techniques such as GA in that the system is also initialised with a pool of 

random solutions and searches for optima by iteratively updating these candidate solutions. 

However, since PSO was initially devised to solve real-valued optimisation problems the 

potential solution is encoded as a real-valued string. Furthermore, because of the real-valued 

coding scheme PSO does not have a crossover operator which in contrast represents one of 

the main evolution operators in GA.  

In PSO, the potential solutions, called particles, fly through the problem space by following 

the two current optimum particles: (1) each particle keeps track of its coordinates in the 

problem space which are associated with the best solution (fitness) it has achieved so far; (2) 

another "best" value that is tracked by the particle swarm optimiser is the best value, obtained 

so far by any particle in the neighbours of the particle; when a particle takes all the 
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population as its topological neighbours, the best value is a global best. At each time step, 

PSO changes the velocity of each particle toward its two current optimum particles according 

to its distances to the two optimum particles. This separates random numbers being generated 

for acceleration toward the optimum locations.  

2.4 Bio-Inspired Optimisation 

Bio-inspired optimisation concerns mainly the way in which to extract useful metaphors from 

biology to provide sound structures for solving engineering problems. In the following 

subsections, two themes are explored, namely single-objective optimisation and multi-

objective optimisation. The discussions are not restricted to a particular computing paradigm, 

such as the ones described in the previous sections. Rather, the intention is to expose the 

common features embedded in the modern heuristic based optimisation algorithms. 

2.4.1 Single-Objective Optimisation (SOP) 

Despite the apparent focus on MOP in this project SOP is the basis of all types of the 

optimisation. Hence, in this subSection, four important issues are addressed, which relate to 

the local search, the global search, the uni-modal optimisation and the multi-modal 

optimisation. Due to such different emphases, a special attention should be given to each 

individual, which brings various challenges to the design stage of a specific algorithm for any 

one of the aforementioned research directions. In the following discussion, only minimisation 

is considered without any loss of generality. 

The most famous local search algorithms fall into the category of gradient-based 

optimisation. In this case, the search is directed by the derivative of the objective function. 

Since the direction always leads the candidate solution to the place which results in a smaller 

objective value than the previous position does, this type of optimisation represents obviously 

a local search mechanism. The disadvantage of such a mechanism is obvious: once the 

solution is trapped at a local minimum there is no way to come out of it. Another concomitant 

disadvantage lies in the fact that the objective function should be differentiable, although the 

gradient-based search algorithms can be fast and accurate. The Nelder-Mead Simplex search 

(Nelder & Mead, 1965) represents another type of the local search mechanism. It is 

derivative-free and can be categorised as the simplest version of the heuristic search method. 
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Due to its heuristic nature, any new move of the ‘vertices’ may not always minimise the 

objective function. Through the consecutive employments of reflection, expansion, 

contraction and shrink, all vertices of the simplex gradually converge to a locally optimal 

solution. The main difference between the Simplex and other stochastic search methods is 

that there is no mechanism in the design of the Simplex to ensure that the vertices escape 

from the local optimum. 

In most situations, the search space contains several minima. Thus, a good balance between 

exploitation and exploration in the search space is the only insurance to locate the global area. 

For example, a legitimate step to extend Simplex to the global version is to restart the 

algorithm with a new simplex starting at the current best value. Restarting with a new 

simplex can be viewed as exploration, and preserving the current best value is a type of 

exploitation and elitism. In this sense, the above approach can be seen as the rudiment of a 

population-based GA, despite the fact that in the latter case a pool of individuals parallel 

searching for the optimum replaces the sequential restarting of the algorithm. By using a pool 

of individuals, a GA parallel explores more of the search space and thus increases the chance 

of finding the global optimum. Another mechanism to enhance the global search capability of 

GA is to utilise a mutation operator. Despite the great success in the early stage of the 

development of GA, single-point and two-point crossover operators are only feasible in the 

binary case. The stagnation of finding a feasible crossover operator in the real-valued 

situation is the main reason for the limitations of GA, which include premature convergence, 

slow convergence and low accuracy especially, when it is applied to continuous optimisation 

problems. Many research endeavors which specifically targeted at solving continuous 

optimisation problems have been proliferating. Most of these share some common features if 

one looks into the meaning behind their variation operators. More details can be found in 

Section 3.3.3. 

In the presence of the coexistence of many local optima, designers are often more interested 

in obtaining as many local optima as possible rather than the global one, and in doing so they 

increase their choices for decision making. This is where the multi-modal optimisation can 

play an important role. Under this scenario, keeping the diversity of the candidate solutions 

plays a key role in preserving a set of solutions. In GA, this has been achieved by introducing 

the sharing method (Goldberg, 1989). In this way, different species can format and co-exist in 

the final population. However, two associated problems with the sharing method and GA are:  
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1) It is sensitive to the setting of the sharing parameters;  

2) It depends highly on the population size when preserving the diversity of the 

population.    

2.4.2 Multi-Objective Optimisation (MOP)  

Many real-world problems are inherently of a multi-objective nature with often conflicting 

goals. Generally, MOP consists of minimizing/maximizing the following vector function: 

݂ሺݔሻ ൌ ሾ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ௠݂ሺݔሻሿ் (2.1) 

subject to J inequality and K equality constraints as follows: 

 ݃௝ሺݔሻ ൒ 0     ݆ ൌ 1,… ,  ;ܬ
݄௞ሺݔሻ ൌ 0   ݇ ൌ 1,… , ;ܭ

 (2.2) 

where ݔ ൌ ሾݔଵ, ,ଶݔ … , ௡ሿ்ݔ א Ω  is the vector of decision variables and Ω  is the feasible 

region. Classical methods that deal with MOP often use a higher-level of information about 

the problem to be optimised to choose a preference vector so that multiple objectives can be 

aggregated into a single objective. In doing so, MOP is actually transformed into a SOP. 

However, because of its high dependence on the preference information this approach is 

sometimes subjective and impractical. Facing the possibility of lacking the problem 

information, the idea of simultaneously finding a set of uniform-distributed optimal solutions 

through a single run, rather than several runs receives more and more attention. Bio-inspired 

optimisation algorithms are very ideal for the implementation of this idea due to the 

following reasons: first, they are population based search methods; second, they are 

derivative-free search methods; third, they effectively use previous knowledge. 

Hitherto, many well-known implementations of this concept were proposed (Deb, 2001; 

Zitzler & Laumanns, 2001; Knowles & Corn, 2000; Jin, Olhofer & Sendhoff, 2001), and two 

text books (Deb, 2001; Coello Coello et al., 2007) are available. One web repository 

http://www.lania.mx/~ccoello/EMOO/ is maintained by Dr. Carlos A. Coello Coello.  

By carefully studying the differences of the existing MOP algorithms, it is possible to group 

them into three categories, viz. the Weighted-aggregation-based method, the Pareto-based 

method and the Archive-based method.  
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I. The idea of the Weighted-aggregation-based method is to randomly change weight 

combinations of the objectives during each generation so that the population can 

approach the different locations of the Pareto front. Schaffer’s work-VEGA (Schaffer & 

Grefenstette, 1985), which is normally regarded as the first implementation of GA 

applied to MOP, falls into this family by implicitly performing a linear combination of 

the objectives where the weights depend on the distribution of the population at each 

generation. The problem associated with this method is that it suffers from the curse of 

‘concave Pareto front’. In such a situation, solutions tend to converge to some portion of 

the front rather than residing on the whole front.  

II. The Pareto-based method relates mainly to how to assign fitness values to individuals in 

the population according to the concept of Pareto dominance. The first proposal was 

made by Goldberg (1989) as a means of assigning an equal probability of reproduction to 

all non-dominated individuals in the population. The method consisted of assigning ranks 

to the non-dominated individuals and removing them from contention, then repeating the 

same operations until the remaining population is empty. Following this idea, Deb et al. 

(2001) proposed the Non-dominated Sorting Algorithm II (NSGAII). In such an 

implementation, solutions were classified into different ranks according to the 

aforementioned procedures. Some newly developed features were included in NSGA-II, 

such as elitism. The algorithm employs a crowded tournament selection operator to keep 

diversity so that it does not need to specify any niching parameters. The main problem 

associated with NSGAII is that individuals with the same rank have the same fitness; in 

the later runs, all individuals will be classified in ‘rank 1’ and thus have the same fitness; 

in such a situation the selection pressure will diminish. SPEA2 was later proposed as an 

improved version of SPEA (Zitzler et al., 2001). It distinguishes itself from other 

algorithms by using a different fitness assignment procedure, which for each individual 

takes into account how many individuals that it dominates and it is dominated by in the 

union of internal and external population; density estimation is also incorporated into the 

algorithm to calculate the fitness of each individual. In doing so, SPEA2 successfully 

resolved the problem associated with NSGAII as mentioned above. An enhanced archive 

truncation method was developed to guarantee the preservation of the boundary solutions 

and the diversity of the population. The main problem with SPEA2 is its high 

computational cost in the fitness assignment procedure and the archive truncation 

process. Both NSGAII and SPEA2 highly depend on their initial population size.  



 

- 21 - 
 

- 21 - Chapter 2: Bio-Inspired Computing 

III. Knowles and Corne (2000) proposed a new baseline for approximating the Pareto front 

which can be viewed as the gestation of the Archive-based method. The Pareto Archived 

Evolutionary Strategy (PAES) was developed by introducing the concept of archiving. 

PAES does not use the dominance concept to carry out the fitness assignment. The 

Pareto concept is only used to compare the mutated individuals against the existing 

archive consisting of non-dominated solutions previously found. An adaptive grid 

partition method is applied to the archive to preserve the diversity of the solutions so far 

found. Traditionally, the weighted aggregation method could not solve the concave 

problem. However, using the concept of archiving to record any non-dominated solutions 

so far found, it is possible to find solutions on the concave front. Jin et al. (2001) 

discussed this issue and demonstrated how a single objective optimisation method 

combined with a dynamic change of a weighed aggregation plus an archive can deal with 

both convex and concave problems. The advantage of the archive-based method lies in 

the simplification of the fitness assignment procedure.  

2.5 Artificial Neural Networks (ANNs) 

ANNs are the simulation of the human brain and are constructed by connecting a set of 

artificial neurons in the form of a network. Hence, there are two important things in an 

ANN’s configuration, i.e. the configuration of a single artificial neuron and the configuration 

of a network. A single artificial neuron is shown in Figure 2.3. 

 

Figure 2.3 A simple artificial neuron. 

The quantity, ܾ, represents the threshold value and is represented as a constant signal of unity 

applied to an auxiliary input line with weight value ܾ. The activation function, ߠ, is a design 

choice dependent on the task one wishes to solve. If the inputs are binary and the activation 

function is the unit step function it is called McCulloch-Pitts (MCP) unit. McCulloch and 
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Pitts showed (1943) showed that a network of MCP units can represent any logical function. 

If the activation function, ߠ, is simply the unit gain one call it the linear unit in this case. 

When one views it as a linear unit, then, the neuron’s weights can be identified directly from 

the input-output data set using Least Squares algorithms (as long as the outputs are linear in 

the weights). If one has a non-linear relationship between input and output, the only task one 

needs to do before training an ANN is to pre-process the inputs so that they can be applied to 

the input lines of the neuron. This type of process represents in fact polynomial expansion. 

By taking a high enough degree of polynomial one can approximate any function that is 

smooth enough as accurately as one wishes (the Stone-Weierstrass Theorem (Stone, 1948)). 

Hence, using a single linear unit we can approximate a wide range of functions.  

The problem with the linear unit is that if one wants more accuracy of an approximation one 

should take a relatively high degree of the polynomial expansion and thus more weights to be 

identified. To circumvent this problem the non-linear unit was proposed to replace the 

activation function to a non-linear function. By doing so, the outputs is non-linearly related 

both to the inputs and, more importantly, to the weights and Least Squares algorithms no 

longer apply to this case. The gradient descent method can resolve this problem based on the 

fact that one can use Mean Squared Error (MSE) as the cost function. The gradient descent 

method works as follows: change the weight values (ݓሬሬԦሻ at each iteration step so that the 

weight vector always leads the cost to the extreme. The mathematical formation is as follows 

(refer also to Section 5.4): 

డ௪ሬሬԦሺ௧ሻ
డ௧

ן பJሺ୵ሬሬሬԦሻ
ப௪ሬሬԦሺ௧ሻ

;         where wሬሬሬԦሺ0ሻ ൌ  ሬሬԦ଴ (2.3)ݓ

where ݓሬሬԦ଴ determines the starting point on the convex error (hyper-) surface and t represents 

the current iteration.  

However, a single adaptive non-linear unit can only represent sigmoidal functions of its 

input. The real power comes just as for MCP unit, when a network of logistic units is 

connected together with each other and this gives rise to the Multi-layer Perceptron (MLP) 

that is used in this project. The MLP is a layered network of units that learn to solve a wide 

variety of tasks that can be described as “finding mappings from n-dimensional input-space 

into q-dimensional output-space’. It consists of one input layer, several hidden layers and one 

output layer. MLP is strictly feed-forward. To update the weights in each layer the Back-

Error-Propagation (BEP) algorithm (refer to Section 5.4), is adopted. It is nothing more than 
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a gradient descent method in spite of the fact that now one may be faced with two 

fundamentally different situations: (1) Computation of the gradient with respect to weights in 

the output layer; (2) Computation of the gradient with respect to weights in any of the hidden 

layers.  

In 1990, Cybenko (1989) proved that an MLP with only one sigmoidal hidden-layer and a 

linear output layer is a universal approximator in that it can approximate any well-behaved 

function to arbitrary accuracy provided there are enough hidden units. Comparing with two-

layer network with the polynomial expansion approach one will find the hidden-layer is a sort 

of pre-processor but here the pre-processing function is found by the learning algorithm 

rather than being fixed a priori. By doing so, one can get a far more compact model. 

2.6 Fuzzy Logical Theory and Fuzzy Rule Based Systems (FRBS) 

In the real world, there are numerous systems which contain extremely non-linear, time-

varying and uncertain behaviour. These make the development of computerised systems for 

them not a straightforward algorithmic solution because of the inherent uncertainty which 

arises as a natural occurrence in these types of applications. The human operator can often be 

an adequate controller by being able to construct acceptable models of processes in his/her 

mind. Such models which do not include any mathematical equations are therefore easier to 

handle. In other words, the human operator has the ability to interpret linguistic statements 

about the process and to think in a qualitative fashion rather than in a quantitative one. Fuzzy 

logic theory is indeed inspired from these observations and first introduced by Zadeh (1965). 

The main advantage of fuzzy systems is that they can combine human expertise together with 

sensory measurements and mathematical models. 

2.6.1 Fuzzy Logic Theory 

Fuzzy logic can easily be introduced via the concepts of a fuzzy set. A fuzzy set is a set 

without a crisp, clearly defined boundary. It can contain elements with only a partial degree 

of membership. In other words, a fuzzy set is a class of objects with a continuum of grads of 

membership (Zadeh, 1965). A formal definition of fuzzy set is given by Zadeh (1965) as 

follows:  



 

- 24 - 
 

- 24 - Chapter 2: Bio-Inspired Computing 

“Let ܺ be a space of points (objects), with a generic element of ܺ denoted by ݔ. Thus, 

ܺ ൌ ሼݔሽ. Then, a fuzzy set (class)ܣ in ܺ is characterised by a membership (characteristic) 

function ஺݂ሺݔሻ which associates with each point in ܺ a real number in the interval ሾ0, 1ሿ, 

with the value of ஺݂ሺݔሻ at ݔ representing the ‘grade of membership’ of ݔ in A.”   

Where the membership function is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 and 1. The value of the 

membership function determines whether the element belongs to the fuzzy set ܣ and if so, to 

what degree. It determines a degree of certainty i.e. degree of truth.  

The main difference between classical (crisp) sets and fuzzy sets is the way their membership 

functions take values. The value of the membership function of a classical set can only take 

two values, either 0 or 1. So, it is discrete and can only represent black or white. These two 

kinds of sets are illustrated in Figure 2.4, as well as one commonly used membership function 

- the Gaussian membership function in Figure 2.5, which is a smooth function and can 

introduce extra smoothness and is used in this project.  

 

Figure 2.4 (a) representation of a classical set; (b) representation of a fuzzy set. 

The Gaussian membership function that was used in this project has the formula of follows: 

ሻݔ஺ሺߤ ൌ exp ቀെ ଵ
ଶ
· ሺ௫ି௖௘௡௧௘௥ሻ

మ

ఙమ
ቁ (2.4) 

Where ‘centre’ denotes the centre of the bell-shape curve and ߪ  denotes the standard 

deviation. 
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Figure 2.5   (a) the shape of a Gaussian membership function; (b) the illustration of the 

crossover points.  

The importance of the intersection, as shown in Figure 2.5 (b), is that it marks that point at 

which, for a particular membership function, the certainty of belonging changes. For 

membership degrees higher than the crossover point the ‘certainty’ of belonging to a 

particular membership function is higher than the certainty of not belonging. For membership 

degrees lower than the crossover point the opposite happens for the certainty of belonging. 

For different applications, the crossover point can vary between 0.2 and 1.   

To complete the fuzzy logic theory, Zadeh also introduced a set of basic operators that can be 

viewed as extensions of the corresponding definitions for ordinary sets. These operators 

consist of Containment, Union, Intersection, Complement and Cartesian product. The 

following part mainly addresses the Cartesian product since it represents a relationship 

between fuzzy variables and paves the basis for fuzzy inference.  

In fact, many application problem descriptions include fuzzy relations. A fuzzy system is 

usually represented by statements or rules of the following form:  

ܣ ݎ݋ ܤ ݄݊݁ݐ ܣ ݂ܫ ՜  ܤ

A fuzzy relation of the form ܣ ՜  is denoted ܴ and is defined as a relationship of two fuzzy ܤ

sets ܷ߳ܣ, ܸ߳ܤ  and it is a subset on the Cartesian product. ܷ  and ܸ  can be the same or 

different universes of discourse. ܴ  will be characterised by the membership function 

,ݑோሺߤ ,ሻݒ   :such that ܸ߳ݒ ݀݊ܽ ܷ߳ݑ ݁ݎ݄݁ݓ

ܴ ൌ ܣ כ ܤ ൌ ,ݑோሺߤ∑ ,ݑሻ/ሺݒ ሻݒ ൌ ൜
∑min ሺߤ஺ሺݑሻ, ሻሻݒ஻ሺߤ
ሻݑ஺ሺߤ∑ · ሻݒ஻ሺߤ

 (2.5) 
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Where ܴ is also called the relational matrix and the ‘sum’ does not represent a mathematical 

operation but shows rather all possible combinations of all elements of both universes of 

discourse. The Cartesian product can be extended to a product of more than two sets, e.g. if 

 :then ,ݓ is also a fuzzy set of the universe of discourse ܥ

ܴ ൌ ܣ כ ܤ כ ܥ ൌ ,ݑோሺߤ∑ ,ݒ ,ݑሻ/ሺݓ ,ݒ ሻݓ ൌ ൜
∑min ሺߤ஺ሺݑሻ, ,ሻݒ஻ሺߤ ሻሻݓ஼ሺߤ
ሻݑ஺ሺߤ∑ · ሻݒ஻ሺߤ · ሻݓ஼ሺߤ

 (2.6) 

Having defined the fuzzy relations and Cartesian product one can use it to interpret fuzzy 

conditional statement such as: 

 ݄݊݁ݐ 1ܣ ݂ܫ            ቀ݂݅ ݄݊݁ݐ 1ܤ ൫݂݅ ݄݊݁ݐ 1ܥ ሺ݂݅ … ሻ൯ቁ

 ݄݊݁ݐ 2ܣ ݂ܫ  ݁ݏ݈ܧ ቀ݂݅ ݄݊݁ݐ 2ܤ ൫݂݅ ݄݊݁ݐ 2ܥ ሺ݂݅ … ሻ൯ቁ
…                                                                      …

ؠ      ሺ1ܣ כ 1ܤ כ …1ܥ ሻْ ሺ2ܣ כ 2ܤ כ 2ሻْܥ …

 (2.7) 

Where, ‘Else’ is equivalent to the connective ܱܴ. Once the conditional statements have been 

made, one can infer relevant information from these statements as follows:  

Let ܴ be a fuzzy relation in ܷ כ ܸ and ܣ is a fuzzy set in ܷ then the fuzzy set ܤ in ܸ is given 

by:  

ܤ ൌ ܣ ל ܴ (2.8) 

 using the relational matrix ܴ which defines the mapping between ܷ and ܣ is inferred from ܤ

ܸ, and the operation ל is defined as the “max-min” operation. The above process is called as 

Compositional rule of inference and forms the basis of one type of fuzzy inference system 

which is discussed in the following section. 

2.6.2 Fuzzy Inference Systems and FRBS 

Fuzzy inference is the process of formulating the mapping from a given input to an output 

using fuzzy logic. The mapping then provides a basis from which decisions can be made, or 

patterns discerned. There are many types of fuzzy inference systems (FRBSs). The two most 

popular types of fuzzy inference systems are the Mamdani-type (Mamdani, 1974) and 

Sugeno-type (Takagi et al., 1985). These two types of inference systems vary somewhat in 

the way outputs are determined. The consequence part of the Mamdani-type is a fuzzy set 
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while the consequence part of the Sugeno-type is a set of functions with the arguments that 

are the linguistic variables of the antecedent part.  

Mamdani’s method was based on Zadeh’s fuzzy algorithms for complex systems (Zadeh, 

1973). It first calculates the relational matrix for each rule, and then calculates the overall 

relational matrix (also called the overall implied fuzzy set; refer to Section 5.3.1 for more 

details). Finally, by using the Composition rule of inference the output fuzzy set can be 

found. This type of inference is easily understandable by human experts and the rules are 

easier to formulated and maintained. However, the inference based on the overall implied 

fuzzy set has an inherent drawback which is computationally expensive and more importantly 

is not differentiable with respect to membership function parameters. As will be discussed in 

Section 5.3.1, this leads to the problem of not being able to use the BEP algorithm to refine 

fuzzy models. Hence, a modified Mamdani inference system is proposed in Section 5.4.2, 

which can get around the aforementioned problems.  

Another form of fuzzy inference, proposed by Takagi and Sugeno (1985), has fuzzy sets 

involved only in the premise part. By using Takagi and Sugeno’s fuzzy inference scheme 

(TSK), one can describe the fuzzy if-then rule as follows:     

ܴ௜: ,௜ଶܣ ݏ݅ ଶݔ ݀݊ܽ ௜ଵܣ ݏ݅ ଵݔ ݂ܫ … , ௜ܣ ݏ݅ ௝ݔ ݀݊ܽ
௝ ݄ܶ݁݊ ݕ௜ ൌ ݃௜൫ݔଵ, ,ଶݔ … ,  ௝൯ (2.9)ݔ

ܴ௜ denotes the ݄݅ݐ rule to be concerned. ‘݃௜’ is a function which can be the linear combination 

or quadratic. Normally, using linear combination for ‘݃௜’ is enough since the fuzzy if-then rule 

has already embedded non-linear inherently. If a linear model structure is assumed then a rule 

base with ݇ rules takes the following format: 

ܴଵ: ,ଵଶܣ ݏ݅ ଶݔ ݀݊ܽ ଵଵܣ ݏ݅ ଵݔ ݂ܫ … , ଵܣ ݏ݅ ௝ݔ ݀݊ܽ
௝ ݄ܶ݁݊ ݕଵ ൌ ܾଵ଴ ൅ ܾଵଵ · ଵݔ ൅ ൅ڮ ܾଵ

௝ ·    ௝ݔ
…

ܴ௞: ௞ଵܣ ݏ݅ ଵݔ ݂ܫ ,௞ଶܣ ݏ݅ ଶݔ ݀݊ܽ  … , ௞ܣ ݏ݅ ௝ݔ ݀݊ܽ
௝ ௞ݕ ݄݊݁ܶ  ൌ ܾ௞଴ ൅ ܾ௞ଵ · ଵݔ ൅ ൅ڮ ܾ௞

௝ ·    ௝ݔ
 (2.10) 

௜ߚ ݐ݁ܮ ൌ
ఓಲ೔

భሺ௫భሻכఓಲ೔
మሺ௫మሻכ…כఓಲ೔

ೕ൫௫ೕ൯

∑ ቌఓಲ೔
భሺ௫భሻכఓಲ೔

మሺ௫మሻכ…כఓಲ೔
ೕ൫௫ೕ൯ቍೖ

೔సభ

  (2.11) 

Where, ߚ௜  actually represents the certainty of each rule contributed by the premise of 

corresponding rule. The output from the input ൫ݔଵ, ,ଶݔ . . ,  :௝൯ is obtained as followsݔ

ݕ ൌ ∑ ൫ܾ௜଴ · ௜ߚ ൅ ܾ௜ଵ · ଵݔ · ௜ߚ ൅ ൅ڮ ܾ௜
௝ · ௝ݔ · ௜൯௞ߚ

௜ୀଵ  (2.12) 
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When a set of input-output data is given, one can obtain the consequent parameters 

൫ܾ௜଴, ܾ௜ଵ, . . , ܾ௜
௝൯, ሺ݅ ൌ 1,… , ݇; ݆ ൌ 1,… , ݊ሻ  via some learning algorithms, such as those 

introduced in Sections 2.1~2.5. Hence, the method as proposed by Takagi and Kang involves 

an iterative search to determine: (1) the best model structure; and (2) the best membership 

function parameters. In Sections 4.4.2 and 5.4.1, a special case of the TSK FRBS, namely 

Singleton FRBS, is employed due to its simple and interpretable structure.  

The general process of the fuzzy inference and its schematic diagram is shown in Figure 2.6. 

The ‘rule base’ contains a number of fuzzy if-then rules and the ‘database’ defines the 

membership functions of the fuzzy sets used in the fuzzy rules. Usually, the rule base and the 

database are jointly referred to as the ‘Knowledge base’. The ‘decision-making unit’ 

performs the inference operations on the rules and two interfaces perform fuzzification and 

defuzzification respectively. 

 

Figure 2.6 Fuzzy Inference Systems (FRBS) (Jang, 1993). 

2.6.3 Neuro-Fuzzy Systems (NFS) 

NFS refers to combinations of ANNs and FRBSs, which results in a hybrid intelligent system 

that synergizes these two techniques by combining the human-like reasoning style of fuzzy 

systems with the learning and connectionist structure of neural networks. NFS incorporates 

the human-like reasoning style of fuzzy systems through the use of fuzzy sets and a linguistic 

model consisting of a set of IF-THEN fuzzy rules. The main strength of NFS is that they are 

universal approximators (Kosko, 1994), and at the same time they still include the ability to 

explicitly express the embedded knowledge. Jang and Sun (1993) established the functional 

equivalence of a standard Gaussian radial basis function (RBF’s) networks and a restricted 
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form of TSK fuzzy inference model. The most visible work belongs to ANFIS proposed by 

Jang (1993). In Chapter 5, some of these techniques are employed to find an accurate enough 

fuzzy model in the first place.  

2.7 Summary 

In this chapter, some bio-inspired techniques, such as EC, AIS, PSO, ANNs and FRBS, were 

introduced. The techniques described in this chapter are by no means exhaustive. Other bio-

inspired mechanisms still exist, such as ant colony optimisation and membrane computing. 

The selected methods are the ones which most relate to the project. Apart from the 

description of each technique, some common features carried nowadays by most modern 

heuristic based optimisation algorithms are also explored. In the following chapters, the 

implementations of the mentioned techniques are presented. In particular, Chapter 3 describes 

a population adaptive based immune algorithm for solving MOP.  
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Chapter 3 

A Population Adaptive Based 
Immune Algorithm 

“How can computers be programmed so that problem‐solving capabilities are built up by specifying 

‘what is to be done' rather than ‘how to do it'?"  

John H. Holland, Adaptation in Natural and Artificial System, 1975 

The primary objective of this chapter is to introduce Artificial Immune Systems (AIS) as a 

relatively new bio-inspired optimisation technique and to show its appeal to engineering 

applications. To this aim, a novel Population Adaptive Based Immune Algorithm (PAIA)3.1 

inspired by four immunological models for solving multi-objective optimisation problems 

(MOP) is proposed. 

 The algorithm is shown to be insensitive to the initial population size; the population and 

clone size are adaptive with respect to the search process and the problem at hand. It is 

argued that the algorithm can largely reduce the number of evaluation times and is more 

consistent with the vertebrate immune system than the previously proposed algorithms. 

Results suggest that the algorithm is a valuable alternative to already established evolutionary 

based optimisation algorithms, such as NSGAII (Deb, 2001), SPEA2 (Zitzler, Laumanns, 

Thiele, 2001) and VIS (Freschi and Repetto 2005).  

Such promising results further formed the basis for the extraction of a general framework 

from the PAIA as the guide to design immune algorithms, under which clear definitions of 

immune operators and their roles are provided.   

                                                 
3.1   Different versions of PAIA are not discriminated at this stage. However, it will be more specific and clear 

when one approaches the corresponding context.    
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3.1 AIS Based Optimisation  

As mentioned in Section 2.2, there are three main application domains which most AIS 

research efforts have hitherto focused on, viz. fault diagnosis, computer security, and data 

analysis, although the main application areas in this thesis are optimisation and modelling. 

The reason behind this is that it is relatively easy to create a direct link between the real 

immune system and the aforementioned three application areas. However, as already stated in 

Chapter 2, such links are vague in the field of optimisation. Furthermore, as pointed by 

Emma Hart and Jonathan Timmis (2005), the distinction line between Evolutionary 

Computing and AIS is also fuzzy. Hence, in the following two sections, the current state of 

the AIS-based optimisation is first reviewed, which leads to the desiderate questions to be 

solved.      

3.1.1 Current State 

It is worth noting that most AIS-based research which relates to SOP identified the diversity 

of the population as the main advantage of AIS over conventional evolution algorithms and 

the slow convergence as its drawback. In the early days, AIS was mainly integrated into other 

evolutionary algorithms to overcome the well known problem of premature convergence in 

searching for the global optimum. In these developments, GA was combined with AIS to 

model the somatic mutation and gene recombination by means of two GA operators, viz. 

crossover and mutation in order to maintain the diversity of the population (Wang, Gao & 

Ovaska, 2004). More recently, some newly developed optimisation algorithms, which are 

solely based on the immune mechanisms, were proposed. Most of these algorithms establish 

the single objective multi-modal optimisation problem as a target. It is the diversity that 

gestates the motivation of using the immune based algorithms for solving multi-modal 

problems. Fukuda et al. (1998) proposed an Immune Algorithm (IA) which is based on the 

somatic theory and network hypotheses. The somatic theory contributes to increasing the 

diversity of antibodies and as a result to increasing the possibility of finding a global solution 

as well as local optimal solutions. The network hypotheses contributes to the control of the 

proliferation of clones. An Optimisation version of artificial immune network model (Opt-

aiNet) is an augmented version of the Clonnal selection Algorithm (ClONAG) (de Castro & 

Von Zuben, 2002; de Castro & Timmis, 2002) by combining Network hypothesis with the 

Clonal Selection Principle. The main features of Opt-aiNet include dynamically adjustable 
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population size, balance between exploitation and exploration of the search space and the 

ability of locating the multiple optima.  

Freschi and Repetto (2005) argued that AIS has, in its elementary structure, the main features 

required to solve MOP. Their vector artificial immune system (VIS) is mainly based on 

immune network theory. Unlike other immune algorithms, the clonal selection of the fittest 

antibodies is not based on the calculation of affinity, instead, it is based on a ranking scheme 

which is a modified version of the scheme adopted by SPEA2. The diversity of the antibody’s 

population is maintained via the network suppression and the newcomers inserted in the 

outer-loop. Since in the clonal selection step, the best mutated clone for each cell replaces the 

original parent rather than selecting the best mutants from the union of all parents and clones, 

the speed of convergence of this algorithm may be slower than that of the one adopting the 

latter selection scheme. Coello Coello et al.’s Multi-objective Immune System Algorithm 

(MISA) (2005) mainly takes ideas from the Clonal Selection Principle. Antibodies in their 

algorithms are encoded into binary strings. The algorithm sacrifices some biological 

metaphors in exchange for a better performance. There is no explicit affinity calculation 

within the algorithm, and thus both the selection and clone processes cannot be based on it. 

Apart from this, due to the binary encoding scheme, both the convergence and accuracy are 

deteriorated when the same algorithm is used to deal with continuous optimisation problems. 

Both the aforementioned algorithms fix the number of clones that each parent can proliferate. 

Pareto-optimal Neighbour Immune Algorithm (PNIA) (Gong et al., 2006) adopts a new way 

in defining affinity. The fitness (affinity) is calculated according to the crowding-distance 

proposed in NSGAII and is only assigned to the dominant individuals. Clone, recombination 

and hypermutation are only applied to the dominant individuals. Non-dominated selection is 

performed on the union of all kinds of the population. The clone size in this algorithm is 

adaptively determined by the corresponding affinity. Due to the selection scheme adopted in 

PNIA, both the convergence speed and the accuracy are improved. It seems that in PNIA 

there is no explicit diversity mechanism except that the over-crowed antibodies are removed 

from the population. It is worth noting that the population size in all these three algorithms is 

fixed.  

3.1.2 Call for Solutions 

From the discussions of the last section, the following problems associated with the already 

developed AIS-based MOP algorithms are exposed. 
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 No formal systematic framework (each algorithm has its own structure and is very 

much different from the others).  

 Not consistent with the immune mechanisms, e.g. 1) the clone size in most algorithms 

is fixed; however, in real immune systems, the clone size is proportionate to the 

corresponding affinity; 2) the population size is fixed; however, in real immune 

systems, the ‘Ab’’s concentration is adaptively changing.  

 Not effectively using the information from the decision variable space. In most cases 

affinity is only related to the dominance of each solution in the objective space.  

 The already developed AIS-based MOP algorithms are coupled with other   

evolutionary mechanisms. 

Apart from the above problems and based on the description in Section 2.1 and 2.4, generally 

speaking, one can also easily identify the following disadvantages related to the existing 

evolutionary algorithms with the GA as their representative.  

 Premature convergence and low accuracy. 

 The population size is problem-contingent and crucial for the search capability.  

 Slow convergence. 

 The sharing parameters are problem-dependent (not generic enough). 

All the previous considerations justify the ‘rationale’ behind the PAIA (Chen and Mahfouf, 

2006; 2008a). PAIA is the synthesis of the four immune metaphors, where the Clonal 

Selection Principle is used to provide a selection pressure to effectively drive the population 

towards the Pareto front over many iteration steps; the Network Theory is used to regulate the 

dynamics of the population; the adaptive antibody’s concentration is the main inspiration for 

the design of the PAIA’s structure so that the population is adaptive at each iteration step; and 

the vaccination and the secondary response is used to develop the so-called ‘multi-stage’ 

optimisation. The aims of PAIA are: 

1) providing a generic AIS framework for MOP solving;  

2) making the population size adaptive to the problem;  
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3) reducing the number of evaluation times so that only the necessary evaluations are 

carried-out (speed up the convergence).  

The detailed steps of the PAIA are described in the next section.  

3.2 A Population Adaptive Based Immune Algorithm (PAIA) 

3.2.1 Description of the PAIA 

The terms and definitions used in this subsection can be found in Section 2.2. The PAIA can 

be described via the following steps: 

1. Initialisation: a random ‘Ab’ population is first created. 

2. Identify_Ab: one random ‘Ab’ ( ௜ௗ௘௡௧௜௙௜௘ௗሻݔ in the first non-dominated front is 

identified. 

3. Activation: the identified ‘Ab’ is used to activate the remaining dominated ‘Abs’ (ݔௗሻ. 

The dominated ‘Abs’ affinity value (NB: affinity is the inverse of affinity value) is 

calculated according to Eq. 3.1, where n is the dimension of the decision variables. 

ௗ݈ܽݒ_݂݂ܽ ൌ
∑ ቀ௫೔೏೐೙೟೔೑೔೐೏ሺ௜ሻି௫೏ሺ௜ሻቁ೙
೔సభ

௡
  (3.1) 

The non-dominated ‘Abs’ affinity value is calculated as follows: I. if the size of 

dominated ‘Abs’ is not zero, the affinity value equals the minimum affinity value of the 

dominated ‘Ab’ divided by two; II. otherwise, the affinity value is calculated according 

to Eq. 3.2, where N is the size of non-dominated ‘Abs’. 

௡ௗ݈ܽݒ_݂݂ܽ ൌ ∑
ቌ∑

൬ೣ೔೏೐೙೟೔೑೔೐೏ሺ೔ሻషೣೕሺ೔ሻ൰

೙
೙
೔సభ ቍ

ே
ே
௝ୀଵ   (3.2) 

In this way, the ‘Ag-Ab’ affinity is indirectly embedded in ‘Abs’ affinity since the 

non-dominated ‘Abs’ always have the smallest affinity value (the highest affinity).  

4. Clonal Selection: Clonal selection consists of three steps: I. ‘Abs’ with the smallest 

affinity value are selected, i.e. the non-dominated Abs are always selected; II. The 
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‘Abs’ in the remaining population with an affinity value smaller than a threshold (ߜ) 

are selected; III. the unselected ‘Abs’ are kept in a different set. 

5. Clone: I. for the selected ‘Abs’, a maximum clone size (Ncmax) is pre-defined; then a 

fraction of Ncmax is allocated to each selected ‘Ab’ according to its affinity percentage, 

i.e. the higher the percentage the larger the fraction is assigned; II. Unselected ‘Abs’ 

are cloned once regardless of their affinity. 

6. Affinity Maturation: I. the selected ‘Abs’ are subjected to hypermutation, i.e. one 

dimension of the ‘Ab’ is randomly chosen to mutate; the mutation rate is proportional 

to the affinity value (inversely proportional to affinity); the whole process is calculated 

using Eq. 3.3. II. the unselected ‘Abs’ are submitted to receptor editing which means 

more than one dimensions (two, in PAIA) are randomly chosen to mutate; the mutation 

rate is calculated using Eq. 3.3. 

௡௘௪ሺ݅ሻݔ ൌ ௢௟ௗሺ݅ሻݔ ൅ ߙ · ܰሺ0,1ሻ ݅ ൌ 1,… , ݊; ߙ  ൌ ௘௫௣ሺ௔௙௙ష௩௔௟ሻ
௘௫௣ሺଵሻ

   (3.3) 

where N(0, 1) is a Gaussian random variable with zero mean and standard deviation 1. i 

represents the dimension that has been chosen to mutate. 

7. Reselection: the mutated/edited and their corresponding parents are mixed together 

and reselected: I. all non-dominated ‘Abs’ are selected; II. if the number of current 

non-dominated ‘Abs’ (NCR) is less than the initial population size (IN), the ‘Abs’ from 

the next non-dominated front are selected according to their recalculated ‘Abs’ affinity 

value (the ones with smaller affinity values are favoured) to fill the difference between 

these two; this process continues until the difference is filled; III. only when NCR is 

greater than IN and the number of non-dominated ‘Abs’ in the last iteration (NPR) can 

Network Suppression be invoked to suppress too-close ‘Abs’. 

8. Network Suppression: the Euclidian distance in objective space between any two 

‘Abs’ is calculated; if it is less than a predefined network threshold (ߪ) the one with 

larger affinity value is suppressed and deleted; this operator is invoked in step 7 when 

certain conditions are satisfied. 

9. Iteration: the process is repeated from step 2 until certain conditions are met. 
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In the following sections, the performance metrics and the ZDT test suites are first introduced 

so that adequate comparisons between the proposed algorithm and other well-known 

algorithms are suitably carried out.  

3.2.2 Performance Metrics 

Two performance metrics, namely the Generational Distance (GD) and the Spread ∆ are 

employed to evaluate the convergence and distribution of the final solutions, which are 

defined as follows. 

• Generational Distance: GD measures the closeness of the obtained Pareto solution set 

Q from a known set of Pareto-optimal set P*. 

ܦܩ ൌ
ቀ∑ ௗ೔

೘|ೂ|
೔సభ ቁ

భ ೘⁄

|ொ|
   ሺ3.4ሻ 

For a two-objective problem (m=2), di is the Euclidean distance between the solution i

∈Q and the nearest member of P*. A set of |P*|=500 uniformly distributed Pareto-

optimal solutions is used to calculate GD. 

• Spread: ∆ measures the diversity of the solutions along the Pareto front in the final 

population. where ݀௜ is the distance between the neighbouring solutions in the Pareto 

solution set Q. ҧ݀ is the mean value of all ݀௜. ݀௠௘  is the distance between the extreme 

solutions of P* and Q along the mth objective. It is worth noting that for discontinued 

problems, such as ZDT3 described in Section 3.2.3, ∆ is calculated in each continuous 

region and averaged as follows. 

∆ൌ
∑ ௗ೘೐ಾ
೘సభ ା∑ |ௗ೔ିௗത|

|ೂ|
೔సభ

∑ ௗ೘೐ಾ
೘సభ ା|ொ|·ௗത

  (3.5) 

3.2.3 Preliminary Results on ZDT Series Problems 

In this section, the PAIA is compared with two well-known algorithms-NSGAII and SPEA2, 

and one immune-based algorithm-Vector Immune Algorithm (VIS). By comparing with 

NSGAII and SPEA2, it is shown that the PAIA is a valuable alternative to standard 

algorithms; by comparing PAIA with VIS, the difference between these two immune 

algorithms is identified; Table 3.1 defines the ZDT series problems (Deb, 2001). The ZDT 
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series problems have two objectives and represent the same type of problems with a large 

decision variable space, a concave and discrete Pareto front, many local optima and variable 

density of the decision variable space and the objective space. At this stage, only the test 

functions ZDT1~ZDT4 are considered.  

For such comparisons to be fair, the experimental configuration refers to the experiments in 

Deb’s book (2001). The maximum function evaluation for NSGAII and SPEA2 is set to 

25000. For PAIA, although the population is adaptive the final population can be controlled 

by ߪ . Hence, one can set an adequate value for ߪ  so that the final population size and 

evaluation times are around 100 and 25000 respectively. To make the comparison fair, VIS is 

also run using the same setting for PAIA. NSGA II failed to converge for ZDT4 even with a 

larger number of evaluation times, while on the other hand, although PAIA and VIS may not 

fully converge within 25000 evaluations they had no difficulty to converge using larger 

evaluations. For this reason, one can also compare PAIA and VIS when both have fully 

converged. Hence, in the following space of this section, two experiments are conducted, 

with the first one (Experiment 1) concentrating on the comparison of the results obtained 

using 25000 evaluation times and the second one (Experiment 2) focusing on the comparison 

of the results obtained when PAIA and VIS have fully converged.  

TABLE 3.1 
ZDT SERIES PROBLEMS (DEB, 2001) 

Problems Definition 

ZDT1 
30-variable problem with a convex Pareto front. 

ଵ݂ ൌ ,ଵݔ ݃ ൌ 1 ൅
9

݊ െ 1 ·෍ݔ௜

௡

௜ୀଶ

, ଶ݂ ൌ ݃ · ቀ1 െ ඥ ଵ݂ ݃⁄ ቁ , 0 ൑ ௜ݔ ൑ 1, ݊ ൌ 30 

ZDT2 
30-variable problem with a concave Pareto front. 

ଵ݂ ൌ ,ଵݔ ݃ ൌ 1 ൅
9

݊ െ 1 ·෍ݔ௜

௡

௜ୀଶ

, ଶ݂ ൌ ݃ · ሺ1 െ ሺ ଵ݂ ݃⁄ ሻଶሻ, 0 ൑ ௜ݔ ൑ 1, ݊ ൌ 30 

ZDT3 

30-variable problem with disconnected Pareto fronts. 

ଵ݂ ൌ ,ଵݔ ݃ ൌ 1 ൅
9

݊ െ 1 ·෍ݔ௜

௡

௜ୀଶ

, ଶ݂ ൌ ݃ · ቀ1 െ ඥ ଵ݂ ݃⁄ െ ሺ ଵ݂ ݃⁄ ሻ · sinሺ10 · ߨ · ଵ݂ሻቁ,  

0 ൑ ௜ݔ ൑ 1, ݊ ൌ 30

ZDT4 

10-variable problem with 100 local Pareto fronts. 

ଵ݂ ൌ ,ଵݔ ݃ ൌ 1 ൅ 10 · ሺ݊ െ 1ሻ ൅෍ሺݔ௜ଶ െ 10 · cos ሺ4 · ߨ · ௜ሻݔ
௡

௜ୀଶ

, ଶ݂ ൌ ݃ · ቀ1 െ ඥ ଵ݂ ݃⁄ ቁ, 

 ݊ ൌ 10, 0 ൑ ௜ݔ ൑ 1,െ5 ൑ ௜ݔ ൑ 5, ݅ ൌ 2,3, … , ݊ 

ZDT6 

10-variable problem with a concave and non-uniform distributed Pareto front. 

ଵ݂ ൌ 1 െ expሺെ4 · ଵሻݔ · ଺ሺ6݊݅ݏ · ߨ · ,ଵሻݔ ݃ ൌ 1 ൅ 9ቆ
ሺ∑ ௜௡ݔ

௜ୀଶ ሻ
9 ቇ

଴.ଶହ

,  

ଶ݂ ൌ ݃ · ሺ1 െ ሺ ଵ݂/݃ሻଶሻ, 0 ൑ ௜ݔ ൑ 1, ݊ ൌ 10
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 Experiment 1 (25000 Evaluations) 

This experiment is designed to compare the performance of different algorithms using 25000 

evaluation times. The parameter settings for different algorithms are as follows: 

• SPEA2: Population size 100, archive size 100, mating pool size 100, the distribution 

index for crossover 20, the distribution index for mutation: 20, maximum generation 

250; crossover probability 1 and mutation probability 1/ (the dimension of the decision 

variable). 

• NSGA II: Population size 100, maximum generation 250, crossover probability 0.9 

and mutation probability 1/(string-length). 30 bits are used to code variable. 

• PAIA: IN=7, 0.4=ߜ, ௖ܰ௠௔௫=95, 0.005=ߪ for ZDT1~ZDT4. 

Figure 3.1 shows the results found by PAIA. The results of SPEA2 and PAIA shown in 

Tables 3.2 and 3.3 are the average values over 10 independent runs. The results of NSGAII 

are from Deb (2001) and the results of VIS are from Chen and Mahfouf et al. (2006).  

 

Figure 3.1 (a) Pareto solutions obtained by PAIA on ZDT1~ZDT4; (b) Adaptive population 

size vs. iteration; (c) Adaptive clone size (the assigned maximum clone size 

among all Abs) vs. iteration. 
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TABLE 3.2 
MEAN AND VARIANCE VALUES OF THE CONVERGENCE MEASURE GD FOR ZDT SERIES PROBLEMS 

Algorithm 
ZDT1 

   GD                   2σ  
ZDT2 

  GD             2σ  
ZDT3 

 GD            2σ   
ZDT4 

 GD              2σ  
NSGAII 8.94e-4 0 8.24e-4 0 4.34e-2 4.20e-5 3.228 7.3076 
SPEA2 2.64e-4 4.68e-10 1.05e-4 1.21e-11 1.69e-4 1.74e-10 4.68e-4 1.36e-8 

VIS 1.81e-3 1.97e-7 1.21e-3 1.04e-6 1.58e-3 2.26e-7 0.1323 4.20e-2 
PAIA 1.43e-4 1.56e-9 1.04e-4 2.2e-11 1.58e-4 4.6e-10 1.20e-3 1.88e-7 

 

TABLE 3.3 
MEAN AND VARIANCE VALUES OF THE DIVERSITY MEASURE ∆ FOR ZDT SERIES PROBLEMS 

Algorithm 
ZDT1 

       Δ                 2σ  
ZDT2 

   Δ               2σ  
ZDT3 

    Δ               2σ  
ZDT4 

     Δ             2σ  
NSGAII 0.4633 4.16e-2 0.4351 2.46e-2 0.5756 5.08e-3 0.4795 9.84e-3 
SPEA2 0.1575 1.44e-4 0.1523 1.31e-4 0.1638 2.90e-2 0.1555 4.34e-4 

VIS 0.5420 8.25e-3 0.6625 2.58e-2 0.6274 1.60e-2 0.1011 1.37e-3 
PAIA 0.3368 1.10e-3 0.3023 7.07e-4 0.4381 1.50e-3 0.3316 1.20e-3 

 

TABLE 3.4 
FINAL POPULATION SIZE AND EVALUATION TIMES OF PAIA 

Test suite Final Population Evaluation Times 
Mean           Max/min       Mean                Max/min 

ZDT1           96     101/87 25372 26467/24494 
ZDT2          101     106/96 25950 26649/25371 
ZDT3           94     102/89 25365 26155/24587 
ZDT4           96     103/85 25910 26654/25203 

 

Results shown in Tables 3.2~3.4 indicate that PAIA reached a better performance in terms of 

GD for ZDT1~ZDT3 problems than any of other three algorithms using a similar number of 

evaluation times. From Figure 3.1 (b), it can be seen that the population adaptively 

increases/decreases during each iteration step and can be finally controlled by ߪ , which 

means that only necessary ‘Abs’ are maintained during and at the end of the search. From 

Figure 3.1 (c), it can also be seen that the clone size is adaptively decided by the number of 

selected ‘Abs’ and their corresponding affinity. If the number of selected ‘Abs’ is small, each 

selected ‘Ab’ can be assigned a large clone size so that the population is large enough to 

explore the objective space. Although the results of PAIA for ZDT4 are much better than for 

NSGAII and VIS, it has not fully converged to the ‘true’ Pareto front. It is worth noting that 

this result can be further improved by using more iteration steps and such results will be 

described by Experiment 2 next. 

 

 



 

- 40 - 
 

- 40 - Chapter 3: A Population Adaptive Based Immune Algorithm 

 Experiment 2 (full convergence) 

In this experiment, the number of iterations was 180 for ZDT1 and ZDT2, 280 for ZDT3 and 

500 for ZDT4. Other parameters are similar to those of Experiment 1. Figure 3.2 shows the 

Pareto front obtained by PAIA, and Tables 3.5 and 3.6 summarise the results over the ZDT 

test problems.  

 

 

Figure 3.2 Pareto solutions of PAIA on ZDT1~ZDT4. 

Via this particular experiment, it was found that PAIA possesses very fast convergence; for 

ZDT1 and ZDT2, 180 iterations were enough for its convergence, and for ZDT4 500 

iterations were enough. Beyond these points, results could not be notably improved. For all 

the four test problems, both PAIA and VIS obtained good performances (except ZDT4 in 

VIS) in terms of metrics (3.4) and (3.5).  

From Table 3.6, one can see that PAIA generally uses fewer evaluations to lead to good 

results. Although the algorithm used 46899 evaluations to fully converge, it only used 25910 

(see Table 3.4) evaluations to obtain similar results as those produced by VIS (see Table 3.5). 

This is due to two reasons: 1) PAIA only preserves necessary ‘Abs’ during each iteration step 

so that only the necessary evaluations are carried out; 2) PAIA uses an ‘adaptive clone size’ 

so that only necessary clone size is assigned to each selected ‘Ab’. It can be seen from Figure 

3.1(c) that in most cases the clone size is 1, although VIS uses a fixed clone size of usually 4. 

This can lead to two main problems: 1) in the early stages of the optimisaiton rum, a fixed 

clone size may not be large enough to speed up the convergence; 2) in the later stages of the 

run, a fixed clone size may be too large so that at each iteration step many unnecessary clones 

are produced. 
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TABLE 3.5 
MEAN AND VARIANCE VALUES OF GD AND ∆ FOR PAIA AND VIS ON ZDT SERIES PROBLEMS 

Algorithm 
ZDT1 

   GD           2σ  
ZDT2 

   GD            2σ  
ZDT3 

    GD           2σ  
ZDT4 

   GD            2σ  
VIS 1.32e-4 1.12e-9 1.10e-4 2.2e-12 1.23e-4 1.9e-11 1.23e-3 1.12e-6 

PAIA 1.58e-4 2.31e-9 1.06e-4 5.7e-11 1.58e-4 4.6e-10 4.96e-4 1.53e-8 
Algorithm      Δ            2σ       Δ             2σ        Δ            2σ       Δ              2σ  

VIS 0.3142 6.31e-4 0.2123 3.12e-3 0.3451 1.22e-3 0.0834 1.12e-4 
PAIA 0.3522 1.10e-3 0.3443 1.50e-3 0.4381 1.50e-3 0.3058 1.00e-3 

 

TABLE 3.6 
FINAL POPULATION SIZE AND EVALUATION TIMES OF PAIA AND VIS ON ZDT TEST PROBLEMS 

Test 
suite 

Final Population Size Evaluation Times 
     PAIA(mean)        VIS    PAIA(mean)       VIS 

ZDT1 93 100 15844 28523 
ZDT2 95 100 15856 29312 
ZDT3 94 100 25365 32436 
ZDT4 97 100 46899 38956 

 

3.2.4 Drawbacks of PAIA 

Despite the encouraging results achieved in ZDT1~ZDT3 problems, PAIA generally uses 

more evaluations compared to other GA based algorithms, e.g. SPEA2 (refer to Table 3.2), in 

order to converge to the ‘optimal’ solutions when applied to problems with many local 

optima such as those found in ZDT4. Furthermore, when PAIA is applied to the DTLZ test 

suite (Deb et al., 2005) (refer to Section 3.3.2 for the descriptions of DTLZ test problems), it 

fails to converge fully to the Pareto fronts of, for instance, DTLZ1 and DTLZ3, both having 

many local optima. Generally speaking, PAIA has no problem in finding the global trade-

offs, provided enough evaluations are carried-out. This is recognised as the problem 

associated with the mutation operator which is not adequately designed and as a result many 

evaluations may be wasted on evaluating the local optima. Furthermore, although not a 

drawback in itself, worthy of noticing is that the distribution of the final population provided 

by PAIA can be further improved as shown in Table 3.3, the difference in terms of the 

distribution of the final population between PAIA and SPEA2 is relatively large, especially 

for problems with discontinued Pareto fronts; hence the space for the improvements.  
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3.3 An Improved Version of PAIA (PAIA2) 

3.3.1 Basic Ideas behind the Improvements 

In light of the observations presented in Section 3.2.4, a modified PAIA with the Simulated 

Binary Crossover (SBX) (Deb and Agrawal, 1994), as the recombination operator and a 

modified mutation operator, is proposed (Chen and Mahfouf, 2008). Density information is 

also incorporated to calculate the affinity of each Antibody in order to allow a more uniform 

distribution of the final population. The basic idea of the modified mutation operator is to let 

the mutation rate of each antibody decrease when the optimisation process evolves so that a 

more focused search is introduced in the later iterations. This decreasing rate can be 

controlled through a predefined parameter.  SBX is a real-code GA crossover and is similar to 

a mutation operator in the way that it allocates two ‘children’ alongside their ‘parents’ by a 

calculated distance (the only difference is that it uses two solutions to calculate the distance 

to mutate). The reason for choosing this operator is that in the later iterations solutions are 

normally close to each other in the decision variable space (especially, when the problem has 

many local optima), in this case, the modified mutation operator is not good enough to 

produce an adequate mutation rate (it is either too small or too large). Also, SBX uses two 

solutions to calculate the distance to mutate, in other words, it takes into account the 

crowding information in the decision variable space. The mutation operator is very good at 

finding directions and strengths to mutate in the early iterations and SBX is very good at fine-

tuning the distance to mutate in the later iterations. By combining them both, one can reach a 

very fast convergence and a good accuracy. In the implementation of SPEA2, the author used 

an adaptation of the k-th nearest neighbor method to calculate the density at any point, which 

is an inverse of the distance to the k-th nearest neighbor. In PAIA2, the density estimation is 

also added to each ‘Ab’ so that the calculated affinity can reflect this kind of information as 

well.  

Specifically, the following equations presented in Section 3.2.1 are, indeed, in need of some 

modifications: 

(1) Eqs. 3.1 and 3.2 in step 3 are modified with added density information in a bid to 

obtain solutions with a more uniform distribution, i.e. 
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ௗ݈ܽݒ_݂݂ܽ ൌ
∑ ቀ௫೔೏೐೙೟೔೑೔೐೏ሺ௜ሻି௫೏ሺ௜ሻቁ೙
೔సభ

௡
൅  ሺ݀ሻ  (3.6)ܦ

௡ௗ݈ܽݒ_݂݂ܽ ൌ ∑
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൬ೣ೔೏೐೙೟೔೑೔೐೏ሺ೔ሻషೣೕሺ೔ሻ൰

೙
೙
೔సభ ቍ

ே
൅ ሺ݆ሻேܦ

௝ୀଵ    (3.7) 

where, ܦሺ݆ሻ (the same for ܦሺ݀ሻ) is the density of the ݆݄ݐ antibody and can be calculated by 

Eq. 3.8.  ߪ௝௞ is the distance between point ݆ and the ݄݇ݐ nearest point of ݆. ݇ is set to 2. 

ሺ݆ሻܦ ൌ ଵ
ఙೕ
ೖାଶ

   (3.8) 

(2) The mutation rate ߙ  calculated by Eq. 3.3 in step 6 is modified into Eq. 3.9 to 

incorporate the conception of ‘gradual decrease’, where, ݎ  is a decreasing rate and is 

calculated according to Eq. 3.10. 

ߙ ൌ ݎ ൈ ୣ୶୮ሺ௔௙௙ష௩௔௟ሻ
ୣ୶୮ሺଵሻ

  (3.9) 

ݎ ൌ 1 െ ሺቀଵି݀݊ܽݎ
ಸ

ಸ೐೙ቁ
್
ሻ  (3.10) 

Where ܩ is the current iteration and ݊݁ܩ is the predefined total number of iterations. ܾ is a 

control parameter and equals to 1 in this project. It is worth noting that the selected ‘Abs’ are 

also submitted to recombination which is implemented using SBX with the distribution index 

(refer to Section 3.2.3, Experiment 1) being 20 in this project. 

(3) In the Reselection step (step 7), not only the mutated, edited and their corresponding 

parents but also the recombined clones are mixed together and reselected. 

3.3.2 Simulation Studies Using ZDT and DTLZ Series Problems 

The benchmark functions used in this Section are ZDT1~ZDT4, ZDT6 and DTLZ1~DTLZ7 

(Deb et al., 2005) The DTLZ problems are scalable test problems with three or more 

objectives and are characterised by a concave (DTLZ2~DTLZ4) and a discrete (DTLZ7) 

Pareto front, a variable density of the decision variable space and the objective space 

(DTLZ4, DTLZ6) and many local optima (DTLZ1, DTLZ3). The definitions about DTLZ 

test suites are defined in Table 3.7. 
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TABLE 3.7 
DTLZ TEST PROBLEMS (DEB ET AL., 2005) 

DTLZ1: this test problem is a M-objective problem with a 
linear Pareto-optimal front. 

 

DTLZ2: this problem is its concave Pareto-optimal area.  
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DTLZ3: this problem has 3k-1 local Pareto-optimal fronts and 
one global Pareto-optimal front. k is the decision variable’s 
dimension. 
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DTLZ4: this problem has more dense solutions near f3-f1 and 
f1-f2 planes. 
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DTLZ5: this problem has a Pareto front which is a curve. 
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DTLZ6: this problem has variable density in decision variable 
space and objective space. 
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DTLZ7: this problem has 2M-1 disconnected Pareto-optimal regions in the search space.  
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 Experiment 1 (ZDT1~ZDT6) 

The parameter settings for different algorithms are kept the same as those which were used in 

Section 3.2.3. 25000 evaluations are used for each test problem. Figure 3.3 shows the Pareto 

fronts obtained by PAIA2, where the continuous lines represent the true Pareto fronts and the 

dots represent the obtained fronts using PAIA2.  
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Figure 3.3 Pareto solutions of the modified PAIA2 on ZDT1~ZDT4 and ZDT6. 

From the above figure, one can see that the PAIA2 approaches the true Pareto fronts with 

very good diversity and accuracy.  The results shown in Table 3.8 also indicate that PAIA2 

reached a better performance than any of other four algorithms in terms of convergence. 

Results of SPEA2 are comparatively as good as those results obtained using PAIA2. 

Generally, PAIA2 produces slightly better convergence properties, while SPEA2 produces a 

slightly better distribution as seen from Tables 3.8~3.9.  

As already stated in the first part of this section, the original PAIA needs more evaluations to 

finally converge for problems consisting of many local minima. This is confirmed by the 

experiment and can also be seen in Table 3.8. For ZDT4, while PAIA did not quite converge 

to the true Pareto front using 25000 evaluations, the enhanced PAIA2 had no problem in 

finding the true Pareto front within 25000 evaluations with the aid of the new mutation 

operator and SBX. Due to the inclusion of the density information in the calculation of the 

affinity, PAIA2 slightly improved the performance as far as diversity is concerned.  
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TABLE 3.8 
MEAN AND VARIANCE VALUES OF THE CONVERGENCE MEASURE GD FOR ZDT SERIES PROBLEMS  

Test 
problems/Algorithms NSGAII SPEA2 VIS PAIA PAIA2 

ZDT1 
GD 8.94e-4 2.64e-004 1.81e-3 1.43e-4 2.45e-4 

2σ  0 4.68e-010 1.97e-7 1.56e-9 4.44e-10 

ZDT2 
GD 8.24e-4 1.05e-004 1.21e-3 1.04e-4 9.34e-005 

2σ  0 1.21e-011 1.04e-6 2.2e-11 3.69e-011 

ZDT3 
GD 4.34e-2 1.69e-004 1.58e-3 1.58e-4 1.55e-004 

2σ  4.20e-5 1.74e-010 2.26e-7 4.60e-10 1.89e-010 

ZDT4 
GD 3.228 4.68e-004 0.1323 1.20e-3 2.43e-004 

2σ  7.3076 1.36e-008 4.20e-2 1.88e-7 7.86e-010 

ZDT6 
GD 7.8067 1.81e-004 - 1.02e-4 9.41e-005 

2σ  1.67e-3 6.65e-011 - 6.04e-12 1.87e-011 

 

TABLE 3.9 
MEAN AND VARIANCE VALUES OF THE DIVERSITY MEASURE ∆ FOR ZDT SERIES PROBLEMS  

Test 
problems/Algorithms 

NSGAII SPEA2 VIS PAIA PAIA2 

ZDT1 
Δ  0.4633 0.1575 0.5420 0.3368 0.3289 

2σ  4.16e-2 1.44e-004 8.25e-3 1.10e-3 7.05e-004 

ZDT2 
Δ  0.4351 0.1523 0.6625 0.3023 0.3345 

2σ  2.46e-2 1.31e-004 2.58e-2 7.07e-4 3.55e-004 

ZDT3 
Δ  0.5756 0.1638 0.6274 0.4381 0.3292 

2σ  5.08e-3 2.90e-2 1.60e-2 1.50e-3 2.61e-004 

ZDT4 
Δ  0.4795 0.1555 0.1011 0.3316 0.3310 

2σ  9.84e-3 4.34e-004 1.37e-3 1.20e-3 4.18e-004 

ZDT6 
Δ  0.6444 0.3248 - 0.4932 0.3210 

2σ  3.50e-2 1.29e-004 - 3.56e-4 2.58e-004 

 

Figure 3.4 shows the results from the original PAIA and PAIA2 under the same number of 

evaluations when they were applied to ZDT4. The original PAIA failed to fully converge to 

the Pareto front in this case, which justifies the new proposed mutation operator and the 

incorporation of SBX. 
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Figure 3.4 Pareto solutions of the original PAIA (left) and PAIA2 (right) on ZDT4. 

To examine how efficient PAIA2 is compared to PAIA, VIS and SPEA2, all four algorithms 

are run as many evaluations as necessary until adequate convergence and diversity (this 

means that both metrics cannot be significantly improved by only increasing the number of 

evaluations) are obtained. Table 3.10 summarises the results after 10 independent runs.  

TABLE 3.10 
EVALUATION TIMES OF PAIA2, PAIA, VIS AND SPEA2 WHEN THEY ARE FULLY CONVERGED 

Test suite 
Evaluation Times 

PAIA2 (GD/∆) PAIA(GD/∆) VIS (GD/∆) SPEA2(GD/∆) 

ZDT1 7500 (2.48e-4/0.2990) 15844 (1.58e-4/0.3522) 28523 (1.32e-4/0.3142) 8000 (2.66e-4/0.1814) 

ZDT2 7000 (9.12e-5/0.3567) 15856 (1.06e-4/0.3443) 29312 (1.10e-4/0.2123) 11000 (9.50e-5/0.1589) 

ZDT3 7500 (1.81e-4/0.4201) 25365 (1.58e-4/0.4381) 32436 (1.23e-4/0.3451) 9000 (1.69e-4/0.1489) 

ZDT4 20000 (2.90e-4/0.3140) 46899 (4.96e-4/0.3058) 46899(1.23e-3/0.0834) 20000 (5.56e-4/ 0.1879) 

ZDT6 3900 (1.40e-4/0.4569) 8766 (1.48e-4/0.5929) - 18000 (2.65e-4/0.3172) 

 

It can be seen that for all the five test problems, PAIA2 generally uses a fewer evaluations 

than VIS does. Furthermore, results of PAIA2 are comparatively as good as those obtained by 

SPEA2. It is worth noting that PAIA2 only used 3900 evaluations for ZDT6 compared to 

18000 evaluations used by SPEA2. The justification behind such a big difference lies in the 

fact that PAIA2 uses information from both the objective and the decision variable spaces to 

calculate the affinity. For the problem having a variable density in both the decision variable 

space and the objective space, the aforementioned scheme seems very effective. A similar 

observation is encountered in Experiment 2 for DTLZ6. The big difference in the number of 

evaluations needed by PAIA2 and VIS indicates that there must be some fundamental 
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differences in the design of the algorithms, which can mainly be attributed to the adaptive 

clone and population size adopted by PAIA2. 

  Experiment 2 (DTLZ1~DTLZ7) 

In this experiment, PAIA2 is compared to SPEA2. For the sake of fairness in comparisons, 

the experiment configuration refers to those in Deb et al. (2001). The maximum function 

evaluations and the number of decision variables are shown in Table 3.11. All the parameter 

settings for SPEA2 are kept unchanged except for the maximum generations. For PAIA2, all 

the parameters are kept the same as the last experiment expect for the network suppression 

threshold which will be shown along with the corresponding plots. Figures 3.5~3.11 show the 

results of PAIA2 and SPEA2 from various angles of view.  

TABLE 3.11 
THE MAXIMUM FUNCTION EVALUATIONS AND THE NUMBER OF DECISION VARIABLES 

Test 
suite 

The maximum 
function evaluations 

The number of 
decision vairables 

The number of 
objectives 

DTLZ1 30000 7 3 

DTLZ2 30000 12 3 

DTLZ3 50000 12 3 

DTLZ4 20000 12 3 

DTLZ5 20000 12 3 

DTLZ6 50000 12 3 

DTLZ7 20000 22 3 

 

 

Figure 3.5 The results of PAIA2 ሺߪ ൌ 0.03ሻ and SPEA2 on DTLZ1. 
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Figure 3.6 The results of PAIA2 ሺߪ ൌ 0.03ሻ and SPEA2 on DTLZ2. 

 

Figure 3.7 The results of PAIA2 ሺߪ ൌ 0.03ሻ and SPEA2 on DTLZ3. 

Figure 3.8 The results of PAIA2 ሺߪ ൌ 0.03ሻ and SPEA2 on DTLZ4. 
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Figure 3.9 The results of PAIA2 ሺߪ ൌ 0.004ሻ and SPEA2 on DTLZ5. 

 

Figure 3.10 The results of PAIA2 ሺߪ ൌ 0.004ሻ and SPEA2 on DTLZ6. 

 

Figure 3.11 The results of PAIA2 ሺߪ ൌ 0.01ሻ and SPEA2 on DTLZ7. 
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For all seven problems, PAIA2 consistently produced better results than SPEA2. For DTLZ1 

and DTLZ3, SPEA2 was not able to converge to the true Pareto front although the overall 

results were very close to the optimal solutions. For DTLZ4, since the density of the decision 

variable is different, SPEA2 has a tendency to converge to the verge of the whole front. As 

one can see from Figure 3.8, SPEA2 led to two outcomes:  

1) Converged to any one verge out of three verges (Figure 3.8 (d));  

2) Converged to the whole Pareto front (Figure 3.8 (c)).  

Which outcome it finally reaches highly depended on the initial population. Also, PAIA2 had 

no problem in finding the spread solutions along the whole Pareto front. For DTLZ6, SPEA2 

encountered two problems: 

1) It cannot converge to the Pareto front; 

2) The Pareto front is not truly a curve due to the variable density of the solutions in the 

objective space. 

 For the same problem, PAIA2 produced a very good approximation of the Pareto front. It is 

worth recalling that, for DTLZ6, PAIA2 can use much less evaluations than SPEA2 does 

(less than 5000 evaluations compared to 50000 evaluations in SPEA2). Figure 3.12 shows the 

results of PAIA2 using 5000 evaluations. As already mentioned in Experiment 1, and in 

contrast to SPEA2, PAIA2 utilises information from both the decision variable space and the 

objective space. Hence, it is very good at dealing with problems having variable densities 

both in the objective and decision variable spaces (e.g. DTLZ4 and DTLZ6) 

 

Figure 3.12 The results of PAIA2 on DTLZ6 using 5000 evaluations. 
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3.3.3 Discussions 

From the description and the experiments of PAIA2, one can conclude the following two 

points as the most important parts when implementing an optimisation algorithm for any type 

of the optimisation problems: 

(1) A good balance between exploitation and exploration of the search space. 

(2) The diversity of the population.  

However, special attention should be given when one tries to embody these two points for 

different types of optimisation problems. In the field of real-valued optimisation, the first 

point is normally implemented by generating the offspring around their parents. The number 

of parents could be one, two, or any number depending on the specific application. The 

distance of the new solutions to their corresponding parents depends on how good their 

parents are and the stage of the search process. Normally, if their parents are very good in 

terms of their fitness or in the late stage of the search the distance is a small value so that a 

focused search can be carried out, and vice versa. In this way, a good balance between 

exploitation and exploration is achieved. In this sense, as far as real-valued optimisation is 

concerned, the distinction line between mutation and crossover diminishes since they all tend 

to allocate their children to the places according to the calculated distances; the naive 

crossover operator (Goldberg, 1989) is not applicable in this case anymore. There are many 

ways of maintaining the diversity of the population, e.g. random mutation, large population 

size, or the insertion of new random individuals. PAIA2 is the embodiment of the above 

features via the following implementations:  

1) Hypermutation maintains a good balance between exploitation and exploration of the 

search space by providing a small mutation rate to the good Abs and vice versa.  

2) The decreasing rate r (see Eq. 3.10) allows a finer search to be carried-out in the late 

stage of the optimisation process. Figure 3.13 depicts the change of r against the 

iteration step when 200 iterations are used.  

3) The recombination operator-SBX allows a more focused search in the late stage of the 

optimisation. In this case solutions are normally close to each other, and thus the 

calculated distance is small. 
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Figure 3.13 Decreasing rate ݎ vs. iterations. 

4) Receptor editing explores more search space by employing mutations in more 

positions with large mutation rates.  

5) Adaptive clone size ensures the diversity of the ‘Abs’ population. 

3.4 Effects of the User Specified Parameters 

3.4.1 Effect of the Initial Population Size 

In PAIA2, the population size is not fixed. It is regulated by the network suppression 

threshold σ  so that any too-close ‘Abs’ are suppressed. It will be finally stabilized, which is a 

sign for the convergence of the algorithm. Due to the nature of the adaptive population as one 

can see from Figure 3.1 in Section 3.2.3, irrespective of the initial size used the population 

can be adaptively adjusted to a reasonable size according to the need of the problem. Figure 

3.14 and Table 3.12 take ZDT2 and ZDT3 as examples, without any loss of generality, to 

show that even with 1 as the initial size the algorithm can still find the Pareto front.  

Although the initial size is not crucial to the success of PAIA2, Table 3.12 clearly indicates 

that in the case of 1 as the initial size more evaluations are needed compared to the one with 7 
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as its initial size. Hence, a carefully chosen initial size (7 in this case) does reduce the 

computation load of PAIA.  

 

Figure 3.14 PAIA2 with 1 as the initial population size. 

TABLE 3.12 
THE MAXIMUM FUNCTION EVALUATIONS AND THE NUMBER OF DECISION VARIABLES 

Test 
suite 

Evaluation Times 
PAIA2 (GD/∆)  

with 7 as the initial size 
PAIA2 (GD/∆) 

with 1 as the initial size 
ZDT2 7000 (9.12e-5/0.3567) 12000 (9.28e-5/0.3340) 

ZDT3 7500 (1.81e-4/0.4201) 14000 (1.47e-4/0.2860) 

 

3.4.2 Effect of the Clonal Selection Threshold 

Theoretically, the Clonal Selection Threshold ߜ can vary between 0 and 1. Figure 3.15 uses 

ZDT4 to show how ߜ affects the convergence performance of PAIA2. The results reported 

here are the average values of 10 independent runs with a varying ߜ at 0, 0.1,…,1 (marked 

with squares in Figure 3.15). 
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Figure 3.15 The effect of the Clonal Selection Threshold ߜ on ZDT4 problem. 

As one can see from Figure 3.15, ߜ has only a small impact on the algorithm’s convergence 

performance. A big value of ߜ means that more Abs can be selected to undergo the clone 

process and the affinity maturation process. While, a small value of ߜ imposes more selection 

pressure upon the population. Hence, when ߜ approaches 0 only the best solutions among the 

population have the chance to be selected, which suppresses the diversity of the population 

and leads to a relatively inferior performance. When ߜ is greater than 0.4 the convergence 

index of PAIA2 is oscillating, which reflects the fact that even worse solutions have the 

chance to be selected. Hence, values between 0.1 and 0.4 for ߜ represent all good choices, 

which on the one hand will lead to an appropriate diversity and on the other hand will 

discourage bad solutions being included in the next iteration.  

3.4.3 Effect of the Network Suppression Threshold 

One promising property of PAIA2 is that it generally finds more solutions (which can be 

tuned with the Network threshold ߪ) with similar or less evaluations than those required by 

other evolutionary algorithms, such as SPEA2. By tuning the Network threshold, one can 

obtain more options in a single run without increasing the number of evaluations 

dramatically. Figure 3.16 shows that even without increasing the number of evaluations, the 

obtained non-dominated solutions increased from 109 to 357!  
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Figure 3.16 (a) σ = 0.01, 18432 evaluations; (b) σ = 0.02, 18452 evaluations. 

Although this parameter is generally not an important factor which decides on the 

convergence and the distribution indices of the PAIA2, it has nevertheless to be set to an 

appropriate value. An insufficient design of ߪ will lead to a population which is either sparse 

or overcrowding.  

3.4.4 Effect of the Maximum Clone Size 

In order to study the effect of the maximum clone size Ncmax on the performance of PAIA2, 

ZDT4 is taken as an example without any loss of generality. All other parameters are kept the 

same as those used in Section 3.2.3, except Ncmax which is varied here at the values of 1, 10, 

20,...,100, 200,...,500 (marked as squares in Figure 3.17). Figure 3.17 (a) illustrates how the 

convergence index GD is affected by the varying Ncmax. Figure 3.17 (b) demonstrates the least 

number of required evaluation times for PAIA2 with varying Ncmax to fully converge.  

Although the convergence index GD is not greatly affected by Ncmax, the least number of 

required evaluation times for PAIA2 to fully converge increases a lot when Ncmax equals 0 or 

exceeds 200. Hence, a value between 10 and 100 represents a good choice for Ncmax.  
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Figure 3.17 The effect of the maximum clone size Ncmax on ZDT4 problem: (a) how the 

convergence index GD is affected by the varying Ncmax; (b) the least number of 

required evaluation times for PAIA2 with varying Ncmax to fully converge. 

3.4.5 Adaptive Clone Size and Adaptive Population Size 

As mentioned in Experiment 2 in Section 3.2.3, the big difference in the needed number of 

evaluations of PAIA2 and other immune based algorithms, such as VIS, indicates that there 

must be some fundamental differences in the design of the algorithms. In Section 3.2.3, such 

differences are summarised as the adaptive clone size and adaptive population size.  

Figure 3.18 only takes results from ZDT4 as an example to provide a graphical explanation 

about the aforementioned differences. From Figure 3.18, it can be seen that the clone size is 

dictated by the population size and their corresponding affinities. If the population size is 

small, each selected ‘Ab’ can be assigned a large clone size so that the size of the activated 

clones is large enough to explore the objective space.  

Most previous research studies, such as those associated with VIS, fixed the clone size (4 in 

VIS), which can generally lead to two main problems:  

1) In the early stage, a fixed clone size may not be large enough to speed up the 

convergence;  

2) In the later stage, a fixed clone size may be too large so that at each iteration step too 

many unnecessary clones are produced.  
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Figure 3.18 Adaptive population size and adaptive clone size (the assigned maximum clone 

size among all Abs) vs. iteration. 

3.5 A Multi-Stage Optimisation Procedure (M-PAIA2) 

In this section, a new algorithm for optimisation procedure has been proposed, which aims at 

reducing the computational cost when dealing with problems having many local optima. The 

associated procedure is inspired by the vaccination process and the secondary response of the 

immune systems (refer to Section 2.2.4).  

3.5.1 Connection between ‘Multi-Stage’ and Immunology 

It is well known that if the vaccine (which is very similar to real antigens in terms of their 

structures) is available and first applied to the immune systems, the immune systems can 

remember it and can respond quickly in the successive encounter with similar antigens. Such 

a response is called the ‘secondary response’ in the immune community.  

The same mechanism can be emulated in the MOP algorithm by first obtaining a solution 

which can be viewed as the vaccine, and then invoking the immune algorithm with the 

vaccine as one of the initial population to find the remaining solutions. Here, the problem 

relates to how to acquire the vaccine in the first place without any knowledge about the 

problem to be solved. The process of obtaining the vaccine should be computationally 

inexpensive otherwise the exercise concerned with adding this additional mechanism would 

be fruitless. 
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Figure 3.1 (b) is a reflection of the immune response from ‘Ab’ when stimulated by ‘Ag’. It 

can be seen that the population (‘Ab’ concentration) keeps increasing with the presence of 

antigenic stimuli until a stable concentration level is achieved. If without local optima, a 

problem (i.e. ZDT1~ZDT3) can be regarded as an unvaccinated immune system whose ‘Ab’ 

concentration bears characteristics illustrated in the first three graphs in Figure 3.1 (b), then 

such characteristic is seen as primary immune response. Also, when a problem has many 

local optima and these optima share some common features (ZDT4), it corresponds to an 

immune system with continuous vaccinations. As in the last graph of Figure 3.1 (b), the ‘Ab’ 

concentration initially reacts as a primary response; however, in the following vaccinations 

its peak values match each optima and this is recognised here as a ‘secondary response’. The 

process shown in Figure 3.1 (b) also indicates that the most efficient way of dealing with 

MOP is to quickly obtain any of the solutions residing on the Pareto front. Based on this 

solution, the extension to the other parts of the Pareto front can be easily obtained. 

In the light of the above discussions, a multi-stage optimisation procedure is proposed, which 

divides the whole search procedure into two separate stages with the first being the 

vaccination process. In the first stage, a single objective optimisation method is used to 

quickly find a solution on the Pareto front, and in the second stage, PAIA2 is used as a post-

processing algorithm to approximate the rest trade-offs along the Pareto front. In the 

following space, the reason as to why the first stage can reduce the computational cost of the 

whole optimisation process is explained next. 

3.5.2 Why ‘Multi-Stage’? 

In the MOP context, the direction information is not fully used. As far as the dominance-

based method (refer to Section 2.4.2) is concerned, the partial order of the candidates 

according to their dominance is given; in such a case candidates can only progress in a 

general direction (in the sense of dominance concept rather than a fixed direction leading to a 

more optimised front). In the weighted aggregation method (refer to Section 2.4.2), the 

weight combination is adaptively changed, hence, candidates always change their directions 

to minimise the current weight combination. Both the aforementioned cases result in an 

ineffective search due to many searches being wasted to find more dominant solutions in the 

current non-dominated front rather than progress to a more optimised front. Also, most single 

objective optimisation algorithms use directional information in a more ordered fashion since 

there is only one objective to deal with. The effect of this is that single objective optimisation 
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algorithms are more efficient in terms of approaching the solution on the true Pareto front. 

Figure 3.19 is a graphical explanation of the above arguments via a 2-dimensional problem 

with one or two objectives plotted in the decision variable spaces without any loss of 

generality. 

 

Figure 3.19 (a) Single objective optimisation; (b) two-objective optimisation with candidate 

solutions far from the true Pareto front; (c) two-objective optimisation with 

solutions close to the Pareto front. 

In Figure 3.19, pentacles (yellow ones) are the starting points from which new solutions will 

be produced. The ‘stars’ (red ones) in the middle of the ellipses are the global optimum of 

each objective. In stochastic search methods, pentacles can move in any direction with equal 

opportunity. In a single objective optimisation case, the pentacle has 50% chance to choose 

the right direction, represented by H+ half plane in Figure 3.19 (a), to move. In the two-
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objective case, this is more involved as Figure 3.19 (b) and (c) indicate. The lines connecting 

two stars are the Pareto solutions that one wishes to approach. Again, H+ plane represents the 

right direction to go since if the newly generated solution falls into this area it will 

simultaneously optimise two objectives. However, as one can see from the figure, the 

probability of choosing the right direction becomes smaller in this case as compared to the 

single-objective case. More often than not, there is a greater probability of choosing a 

direction which falls into HL and HR planes so that only trade-offs can be found rather than 

better solutions. The situation becomes more severe when the candidates are close to the 

Pareto solutions. In such a case many searches are wasted by moving from one place to 

another place on the same trade-off front. This is the reason why for most evolutionary 

algorithms it becomes inefficient to progress any further to the true Pareto front in the later 

iterations.  

From the above discussions, it is argued that the most efficient way to deal with MOP 

problem is to divide the search process into two separate stages. In the first stage, a single 

objective optimisation algorithm is used to find any solution on the Pareto front. The solution 

found in the first stage serves as the vaccine in the second stage to quickly find the rest 

solutions on the Pareto front.  In doing so, one maximizes the possibility of choosing the 

appropriate direction in both stages. 

3.5.3 Comparisons between PAIA2 and M-PAIA2 

In this section, DTLZ1 is taken as an example to show the efficiency of M-PAIA2 as 

compared to PAIA2. Figure 3.20 shows the graphical results of DTLZ1. In the first stage, 

PAIA2 is used as a single objective optimiser to find an optimum corresponding to a fixed 

weight combination of the objectives (Figure 3.20 (a)). The solution found in the first step is 

then fed into PAIA2 as the initial population to find the rest solutions. From Figure 3.20, it 

can be seen that in the first stage 6948 evaluations are executed, and in the second stage 9719 

evaluations are needed for the rest solutions, which leads to 16667 evaluations in total to 

cover the whole Pareto front compared to 30000 evaluations in Experiment 2 of Section 

3.3.2. With the solution found in the first stage, PAIA2 is able to quickly find the remaining 

solutions on the Pareto front as shown in Figure 3.20 (d), which corresponds to the secondary 

response in the immune systems. Figure 3.20 (b) shows the variation curve of the population 

size by only using the PAIA2. The curve fluctuates with each peak corresponding to a local 

Pareto front. More evaluations are needed to finally stabilise the population size in this case. 
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Figure 3.20 Results from multi-stage optimisation procedure on DTLZ1: (a) solution found 

by the first stage; (b) adaptive population size vs. iterations using PAIA2; (c) 

non-dominated solutions found by the second stage; (d) adaptive population size 

vs. iterations using multi-stage optimisation procedure (the second stage). 

3.6  General Framework of AIS-based Multi-Objective 

Optimisation (MO) Algorithms 

3.6.1 The Framework  

Although PAIA2 is a specific MO algorithm, the main structure of the algorithm can be 

extracted as a ‘generic’ AIS framework for MOP solving, as shown in Figure 3.21. 

Two types of activation are emulated, namely ‘Ag-Ab’ activation and ‘Ab-Ab’ activation, so 

that one obtains information from both the objective space (‘Ag-Ab’ affinity) and the 

decision variables space (‘Abs’ affinity) to select ‘Abs’. The Clonal Selection and Clone 

prefer good ‘Abs’ by providing them with more chances to be cloned so that they always 
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dominate the whole population. Furthermore, the Clone itself contributes singnificantly to the 

diversity of the population. Affinity Maturation includes hypermutation, receptor editing and 

recombination, the former two of which increase the diversity of the population so that more 

objective landscape can be explored, and the last one of which efficiently uses the 

information contained in the solutions so that fine search can be executed in the late stage of 

the optimisation. Reselection ensures that good mutants are inserted into the memory set and 

bad ‘Abs’ apoptosis. Network Suppression regulates the population so that it is adaptive to 

the search process. Newcomers are used to further increase the diversity of ‘Abs’. It is argued 

here that each part of the framework can be implemented by various means; while the basic 

structure remains unchanged. The framework is more consistent with the previously 

discussed immune mechanisms, and thus it can serve as a guide to design AIS-based 

optimisation algorithms. 

 

Figure 3.21 Generic AIS framework for MOP solving (NCR: the number of current non-

dominated Abs; NPR: the number of non-dominated Abs in the last iteration; 

IN: the initial Abs size; Stop: at least one iteration step is executed). 

3.6.2 Comparisons with other Bio-Inspired Methods 

The superiority of the proposed immune based algorithm is based on the fact that AIS is 

inspired by a different regime of natural mechanisms. Thus, it is important to clarify the 

differences between AIS and other evolutionary-based algorithms (with GA as their 
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representative) to finally highlight the extra advantages that AIS can deliver upon. The 

fundamental differences can be summarised as follows: 

(1) Reproduction mechanism: AIS represents a type of asexual reproduction; while a 

population-based GA represents the counterpart. With the latter, the offspring is 

produced by crossing the chromosomes of both parents. Via the former, each ‘Ab’ 

copies itself to produce many clones. 

(2) Selection scheme: for a population-based GA, good solutions are included in the 

mating pool with a high probability. For AIS, good solutions are always selected. 

(3) Evolution strategy: for a population-based GA, the whole population evolves by using 

‘crossover’. The hypothesis is as follows: if both parents are the good ones their crossed 

offspring would have a high probability of becoming even better solutions; mutation is 

only used to jump out of the local optima hence the diversity is very important, 

otherwise, GA is likely to reach premature convergence; for AIS, since clones are 

duplicates of their predecessor the evolution of the population depends mainly on the 

mutation of the clones. Recombination is also applied to the clones. Only in the later 

stages of the search can this operator take effect.   

(4) Elitism: for a population-based GA, during each generation, the whole population is 

replaced with the offspring after mating; hence ‘elitism’ has to be introduced to 

preserve good solutions found hitherto, otherwise they would be lost during successive 

generations; for AIS, the mutated clones and their predecessors are mixed together to 

compete for survival, hence ‘elitism’ is inherently embedded in AIS. 

(5) Population control: for a population-based GA, since one has to specify the size of the 

mating pool in the first place the population size is thus fixed during each generation; if 

one only selects good solutions into the mating pool and makes the pool size flexible to 

the number of selected solutions GA could reach premature convergence due to its 

evolutionary strategy; a reasonable pool size is necessary so that in the early stage sub-

optimal solutions can also get into the pool to increase population diversity; for AIS, a 

mating pool does not exist, hence the population should be flexible and finally 

controlled by the mutual influences of ‘Abs’. 

(6) Diversity preservation: for a population-based GA, diverity is maintianed through the 

mutation and an adequate population size; obviously, the population size is problem-

contingent; for AIS, diversity is maintained through a prolific mechanism, affinitiy 

maturation, network suppression and the insertion of the newcomers.  
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(7) Fitness (affinity) assignment. For conventional evolutionary algorithms, ranking and 

fitness assignment are only based on the information from the objective space; AIS, 

however, combines both to calculate affinity. Hence, it effectively uses the information 

from both the objective and decision variable space.  

Based on such differences, it can be concluded that AIS, and specifically PAIA2, possesses 

further strengths which cannot be found in the conventional evolutionary algorithms.  

(1) Adaptive population. Due to point 5 mentioned above, PAIA2 possesses an adaptive 

population size which can adjust to an adequate size according to need of the problem 

under investigation. This adaptive rather than a fixed population leads to the following 

three advantages: 1) Initial population size is not problem-dependent; 2) more solutions 

can be obtained without significantly increasing the number of evaluations by tuning 

the network suppression threshold; 3) only necessary evaluations are exercised because 

only necessary population and clones are maintained and produced in each iteration 

step. 

(2) Good starting point. By using the multi-stage optimisation procedure, an optimised 

solution can be included in the initial population to bias the search process, which 

reduces the computational load of the whole optimisation process.  

(3) Good convergence. Due to points 3 and 7, a good balance between exploitation and 

exploration of the search space is achieved, especially when the problem has variable 

density in the objective and decision variable spaces.  

(4) Fast convergence. The slow convergence observed in the previous works is eliminated, 

and fast convergence is claimed as one advantage of the proposed algorithm instead. In 

PAIA2, even a small initial size (e.g. 7) can lead to a very fast convergence because one 

is supposed to only select good ‘Abs’ and let them reproduce with an adaptive clone 

size. In the early iteration this cannot only provide sufficient ‘Abs’ to support the search 

but also accelerate the convergence speed. 

3.7 Summary  

In this chapter, an enhanced version of PAIA and a multi-stage optimisation procedure are 

proposed. For all experiments, significant results, either improving the convergence or 

reducing the computational cost are observed. In the next chapter, an evolutionary based 
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clustering algorithm is described, which can bridge the gap between the unsupervised 

learning and supervised learning. An example of using the proposed clustering algorithm to 

extract initial fuzzy rule based systems from data is also introduced.  
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Chapter 4 

An Evolutionary Based 
Clustering Algorithm 

“An intelligent being cannot treat every object it sees as a unique entity unlike anything else in the 

universe.  It  has  to  put  objects  in  categories  so  that  it may  apply  its  hard‐won  knowledge  about 

similar objects encountered in the past, to the object at hand.” 

Steven Pinker, How the Mind Works, 2002 

In this chapter, a brief introduction to data clustering is given, which is followed by the 

discussion of an evolutionary based clustering algorithm. Experimental studies of the 

proposed clustering algorithm were carried out in order to justify such hybridisation. Then, 

the relationship between unsupervised learning and supervised learning is expounded so that 

one can easily generalise it to the relationship between data clustering and the elicitation of 

the initial FRBS.  

4.1 Introduction to Data Clustering 

Knowledge in some sense can be defined as the ability that distinguishes the ‘similar’ from 

the ‘dissimilar’. However, given the amount of information (in other words, data) 

encountered in the real life, such ability is sometimes limited, which in turn gives rise to 

limited knowledge. Without further abstraction, more information may simply lead to more 

difficulties for human beings to uncover the underlying structure.  The key to the success of 

handling vast amount of data lies in the capability of retrieving representatives or prototypes 

from anfractuous information via a certain level of abstraction. Representing the data by 

fewer prototypes necessarily loses certain fine details, but achieves simplification and 

interpretability. One of the vital means which implements the abstraction of this type is data 
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clustering, which is also termed unsupervised learning in the machine learning community.  

A loose definition of clustering can be defined in terms of internal cohesion-homogeneity and 

external isolation-separation (Everitt et al., 2001, p6) such that data points within the same 

cluster share the most common features, while data points of different clusters share the most 

dissimilar ones. A much more formal definition is given below, wherein the employment of 

the notations is not only for this chapter but also for the rest of the thesis: 

Given  a  set  of  data  points ܺ௠ ൌ ሺݔ௠ଵ, … , …,௠ௗݔ , ௠௡ሻݔ א Ψ, where, ݉ ൌ 1,… , ܰ is 

the number of the data samples  in the given data set; ݀ ൌ 1,… , ݊ is the dimensions 

of the feature variables; and Ψ is the feasible feature space, clustering is to group the 

given data points according to some similarity or dissimilarity measure ߸. The result 

from clustering is a set of clusters ܥ௜ (or centres), wherein ݅ ൌ 1,… , ݇, such that each 

data  point ܺ௠ is  either  assigned  to  one  of  the  clusters,  or  has  the membership  of 

each cluster.  

From the above definition, a number of crucial issues associated with data clustering arose, 

and some of them are listed below: 

• What is the type of feature variables?  

• Which feature variable is important and should be included in the clustering? 

• What is the similarity or dissimilarity measure? 

• How the similarity or dissimilarity measure is used?  

• How many clusters is appropriate? 

• Can data points belong to different clusters? 

The first issue deals with what type of feature variables that a clustering algorithm can handle. 

Possible feature types include categorical values, continuous values, or a combination of both. 

The second issue relates to the feature selection or input selection so that irrelevant features 

are discriminated and excluded accordingly. The third issue is important since different 

similarity or dissimilarity measures will definitely affect the shape and the number of the 

obtained clusters to a great extent. Regarding the fourth and sixth issues, they are important 

since they provide criterions to categorise different clustering algorithms, although from 

different perspectives different categories may be obtained. The fifth issue relates to the 

cluster validation which deals with the problem of monotonic decrease associated with most 

similarity and dissimilarity measures in a bid to automatically make a decision on the optimal 
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number of clusters. Summing up the above discussions gives the general steps normally 

involved in a data clustering task. Figure 4.1illustrates these steps. 

 

Figure 4.1 General steps involved in data clustering. 

Despite the equal importance of each individual step shown in Figure 4.1, particular attention 

has been given in this chapter to two of them, namely Clustering and its Validation, due to 

the fact that an assumption of the pre-processed data has been made in this project. Readers 

are also referred to three comprehensive surveys (Jain et al., 1999; Berkhin, 2002; Xu et al., 

2005) and a textbook (Everitt et al., 2001) for other steps involved in data clustering. 

4.1.1 Similarity and Dissimilarity Measures  

One of essential issues in data clustering is to make a decision on how ‘close’ individuals are 

to each other, or how far apart they are. Such a decision is based on the measure of similarity 

or dissimilarity (proximity is another general term). Typically, a distance is the measure of 

dissimilarity and is normally used for continuous features, while a similarity measure is more 

important for categorical ones (Xu et al., 2005).  

In fact, such a measure itself has twofold meanings: the first implies the relationship between 

individuals, and the other one is referred to the relationship between clusters. The former 

serves as the constitutive factors of the latter, and the latter is the core for most clustering 

algorithms. Due to the apparent focus of continuous features in this project, only dissimilarity 

measure is discussed. Among many dissimilarity measures, Minkowski metric is the most 

popular one which works on the level of individuals: 
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߸൫ ௜ܺ, ௝ܺ൯ ൌ ൫∑ หݔ௜ௗ െ ௝ௗหݔ
௥௡

ௗୀଵ ൯
ଵ ௥ൗ ݎ      ൒ 1 (4.1) 

where, ݀ is the dimension of the ݄݅ݐ and ݆݄ݐ data points ( ௜ܺ and ௝ܺ). Minkowski metric varies 

when r takes different values, and the Euclidean distance is a special case when r equals to 2.  

Having the measure which can distinguish individuals does not necessarily mean that one can 

discriminate different groups. Nonetheless, a dissimilarity measure on the basis of individuals 

does build up a ground for the assessment of group proximity. The key is to represent clusters 

with their corresponding prototypes so that dissimilarity measures, such as Eq. 4.1, are still 

effective. Two very different techniques to account for group proximity exist, namely ‘inter-

cluster distance’ and ‘within-cluster variance’, and various approaches have been proposed 

depending on the ways of extracting the prototypes. The approaches under the stream of 

‘inter-cluster distance’ include the nearest-neighbour technique, the farthest-neighbour 

technique, the median technique. Figure 4.2 shows the difference between these techniques. 

There are techniques, such as average linkage (see Section 4.1.2.1), which do not require 

prototypes explicitly. However, every single individual can be de facto regarded as a 

prototype in such a case.  

 

Figure 4.2 Illustration of different prototypes in ‘inter-cluster distance’: A. nearest-

neighbour technique; B. farthest-neighbour technique; C. median technique.  

As far as ‘within-cluster variance’ is concerned, a centroid is normally used to represent the 

core of the corresponding cluster. Hence, the variance of the individuals within a cluster can 
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be measured as the sum of the squared error between the individuals (ܺ) and the core (ܥ) as 

shown in Eq. 4.2, where ݇ is the number of clusters and ܰ is the number of the individuals.  

߸ሺܥ௟ሻ ൌ ∑ ԡܺ௠ െ ஼೗א௟ԡଶ௑೘ܥ      ݈ ൌ 1,… , ݇;݉ ൌ 1,… ,ܰ (4.2) 

In the broad sense, clustering is an optimisation process in that it tries to find a set of optimal 

clusters such that an ‘inter-cluster distance’ is maximized and a ‘within-cluster variance’ is 

minimised (see Section 4.1.2.2). There are techniques that do not explicitly use proximity 

metric, such as mixture model (see Section 4.1.2.2) and density-based clustering (see Section 

4.1.2.3). However, the implicit use of such metric can still be found in those methods.   

4.1.2 Classification of Clustering Algorithms 

There are different ways to categorise clustering algorithms. They all hold similar objectives, 

but out of different considerations. One possible classification consists of hierarchical 

clustering, partition-based clustering, density-based clustering, and search-based clustering.  

4.1.2.1 Hierarchical Clustering 

Hierarchical clustering is so far the most popular clustering scheme, which builds a hierarchy 

of clusters by successive agglomerative or divisive operations. In the agglomerative case, 

clustering starts from the individual data point by considering it as a cluster. The calculation 

of the linkage (distance) between different clusters is then carried out, which leads to the 

fusion of two closest clusters into a bigger one. The whole process is iterative until a certain 

level of granulation is achieved.  For the divisive version, it is the other way around. The 

whole data set is treated as a single cluster at the start. The similarities of each individual to 

the other individuals in the same group are then calculated so that a ‘splinter cluster’ can be 

formed which only contains the most dissimilar one from the main cluster. Some individuals 

in the main cluster will finally join the ‘splinter cluster’ since they are closer to the ‘splinter 

cluster’ than to the main cluster, which completes the divisive operation once. Such division 

repeats until each data point is classified as a singleton cluster. Due to the high demand of 

computation (Xu et al., 2005), divisive method is not widely used. However, the observations 

for agglomerative clustering are still hold for divisive clustering in most cases. 

Linkage plays an important role in the clustering process, irrespective of whether it is 

agglomerative or divisive. For Agglomerative clustering, the representatives are as follows: 
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single linkage (Sneath, 1957), complete linkage (Sorensen, 1948), average linkage (Sokal et 

al., 1958), centroid linkage (Sokal et al., 1958), median linkage (Gower, 1969) and Ward’s 

method (Ward, 1963). More complicated variants, such as CURE (Guha et al., 1998), are 

adapted from the above basic linkages. Different linkages normally lead to different 

clustering results, e.g. Single linkage tends to find irregular (chaining) clusters since it 

calculates the distance between two clusters via the nearest-neighbour technique, while 

complete linkage, due to the use of the farthest-neighbour technique, tends to find compact 

clusters with equal diameters (Everitt et al., 2001).  

Figure 4.3 shows such discrepancy when different linkages are applied to the same data set. 

Without prior knowledge of data and the objective of clustering, it is hard to estimate from 

Figure 4.3 which represents a better choice. The assessment of the clustering result is beyond 

the scope of this thesis. However, in Section 4.4, it is pointed out that if the objective of 

clustering is to elicit an initial data-driven FRBS, then methods which can produce compact 

clusters are superior. And for the same reason, if the objective of clustering is to discriminate 

objects with irregular shapes, then methods which can identify chain-like clusters have 

priority.   

 

Figure 4.3 An illustrative example of a two-dimension data set: (a) single linkage tends to 

find chain-like clusters; (b) complete linkage tends to find compact clusters. 

Hierarchical clustering is a one-pass method. Once a fusion or division has been made, 

individuals cannot change their identities within the hierarchy. Hence, if the first move is 

based on the wrong suggestion, either merging or separation, there is no chance to rectify 

such defect afterwards. Another drawback is the high computational demand, especially for 
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the high dimensional data. The most distinctive feature of hierarchical clustering lies in its 

capability of conveying a data structure-map so that one can decide on which abstraction 

level the clusters are retrieved.   

4.1.2.2 Partition-Based Clustering 

Partition-based clustering contains a rich class of developments. Despite such diversity, they 

all divide data into a pre-defined number of partitions (clusters) and gradually improve the 

quality of such partition by reassigning individuals among clusters. Unlike hierarchical 

clustering, partition-based clustering only obtains a single partition of data instead of a 

clustering structure (Jain et al., 1999). Squared error clustering is the representative of this 

class.  

Squared error clustering is an instance of the utilisation of the ‘within-cluster variance’. The 

general form of the squared error is described as follows: 

߸ሺܥଵ, ,ଶܥ … , ௞ሻܥ ൌ ∑ ∑ ሺߤ௠௟ሻఒԡܺ௠ െ ௟ԡଶேܥ
௠ୀଵ

௞
௟ୀଵ     ݈ ൌ 1,… , ݇ (4.3) 

௟ܥ ൌ ൫∑ ሺߤ௠௟ሻఒ · ܺ௠ே
௠ୀଵ ൯ ൫∑ ሺߤ௠௟ሻఒே

௠ୀଵ ൯ൗ  (4.4) 

where; 

 ;௠௟:   the membership of mth individual to the lth clusterߤ

    .the fuzzification parameter       :ߣ

During the course of the clustering, centroids are updated using Eq. 4.4. Depending on the 

manners the membership ߤ is defined, squared error clustering can be further divided into 

two categories, namely hard clustering and soft (fuzzy) clustering. When ߤ takes continuous 

values between (0, 1) and is updated during every iterative step, it results in fuzzy clustering. 

In such a case, individuals no longer belong to a unique cluster. Instead, they pertain to every 

cluster with a certain degree of membership. Fuzzy C-Means (FCM) devised by Bezdek 

(1981) is the most well-known one of this type, which has an intuitive connection with FRBS 

(see Section 4.4). When ߤ takes binary values, i.e. 0 or 1, it leads to hard clustering. K-Means 

algorithm (Hartigan, 1975, 1979) falls into this category. Due to the use of the ‘within-cluster 

variance’, squared error clustering tends to find compact and hyper-spherical clusters. The 

computational cost of squared error clustering is normally less than that of hierarchical 

clustering so that it has the potential to work with large data sets. However, a major drawback 
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of this type lies in its sensitivity to the initial partitions, which not only result in a 

convergence to the local optima, but also produce different clusters given different initial 

settings. However, given the simplicity of squared error clustering, it is still being widely 

used and many variants (hybridisations) have been proposed to offset the mentioned 

problems (see Section 4.1.2.4 and 4.2.3).  

4.1.2.3 Density-Based Clustering 

Instead of using distance-based similarity measures, density-based clustering utilises the local 

density of points to group similar data. The motivation behind such an idea stems from the 

intention of grouping non-convex (or chain-like) clusters which generally represents a great 

challenge for a distance-based clustering approach. Density-based clustering normally 

involves two steps:  

(1) The first step estimates the density function associated with each data point so that a so-

called density attractor of the defined density function can be found via optimisation 

techniques;  

(2) The second step consists of investigating the densities of the density attractors and each 

data point attached to these density attractors; if both densities are greater than some 

threshold ߦ  then a density-based cluster is formed by connecting the corresponding 

density attractors and including the attracted data points.  

In order to estimate the density function kernel density estimation and k-nearest neighbour 

approach are commonly adopted. Although, density-based clustering can successfully 

classify chain-like data points, it suffers from the problem when clusters have different 

densities.  

4.1.2.4 Search-Based Clustering 

Search-based clustering solves a clustering problem by viewing it as an optimisation 

problem. By iteratively searching for the optimum of the objective (cost) function, a set of 

optimal clusters will emerge. Search-based clustering covers miscellaneous implementations 

which may be overlapped with other clustering categories, e.g. partition-based clustering and 

density-based clustering. In terms of the optimisation techniques employed in this type of the 

clustering, it ranges from gradient based optimisation to ANNs and to EAs.  The superiority 

of using EA-based clustering over other optimisation techniques lies in its global search 
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capability so that it is less sensitive to the initial settings (Bezdek et al., 1994; Maulik et al., 

2000).  

4.1.2.5 The Relationship between Different Clustering Categories 

In some sense, classification of clustering algorithms is by itself a clustering problem. Hence, 

different similarity measures (in this case, it is the criterion that groups similar clustering 

algorithms) are bound to result in different classifications, which also means that no matter 

how hard one tries to separate the resulting categories a certain level of association can still 

be found.  

The intersection between hierarchical clustering and density-based clustering lies in the fact 

that a single linkage used in the former resembles the idea of the latter in that it views clusters 

as a connected dense component which can grow in any direction that density leads (Berkhin, 

2002). If a complete linkage is applied, the performance of hierarchical clustering is more 

like that of partition-based clustering which normally leads to the ellipsoid-shape clusters.  

Both partition-based clustering and density-based clustering can be viewed as the special 

cases of search-based clustering in that the former is trying to relocate centres so that the 

objective function is optimised and the latter is trying to find the maximum peaks of the 

density functions. There is not a ubiquitous clustering algorithm that can be applied to every 

application. The choice of the type of the clustering algorithms depends heavily on the nature 

of the problem. 

4.1.3 Cluster Validation  

Cluster validation relates to the question of how many clusters are more adequate. In most 

applications, such as partition-based clustering and search-based clustering, the user has to 

estimate the number of clusters and fix this number during the search process. For 

hierarchical clustering, even if a complete hierarchy has been obtained one still has to decide 

the abstraction level so that a partition to the users’ interests can be retrieved. An informal 

way of deciding this number in hierarchical clustering involves the observation of large 

changes in the fusion level so that a so-called best cut can be found to cut the dendrogram. A 

similar philosophy has been applied to partition-based clustering and search-based clustering 

by plotting the values of the clustering criterion against the number of groups. Large changes 

of levels in the plot are normally the indication of an ‘optimal’ partition (Everitt et al., 2001).  
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However, such informal approaches are very subjective due to the fuzzy definition of ‘large’. 

In order to overcome such subjectivity, a number of cluster validity indices (Bezdek, 1974; 

Fukuyama et al., 1989; Xie et al., 1991; Chen et al., 2004) have been introduced in order to 

detect the ‘right’ number of partitions. The idea is to transform the clustering criteria, which 

is initially monotonic decrease with the increased number of partitions, into cluster validity 

index such that one can associate a minimal turning point of the index with the ‘right’ number 

of groups. Although some methods, such as Subtractive Clustering (Chiu, 1994) and density-

based clustering do not require a priori the number of clusters, the user still has to decide on 

the radius for the former and thresholds for both cases, which are subjective and have a 

significant impact on the number of the clusters. This issue will be discussed again at the end 

of the chapter and in Chapter 5 since it is closely related to the number of rules in a data-

driven FRBS.    

4.1.4 Type of Clustering Used in This Project 

As mentioned in Section 4.1.2.5, choosing the appropriate type of the clustering method is 

more of art than science. It depends heavily on the nature of the problem and on the user’s 

intention. Since the main aim of this thesis is to extract transparent fuzzy predictive models, 

the task of clustering is reduced to the elicitation of an initial data-driven FRBS. Such a 

modelling task normally favours clustering techniques which can produce compact clusters. 

Hence, hierarchical clustering with complete linkage and partition-based clustering are the 

ideal candidates. However, in view of the computational cost, partition-based clustering, in 

particular K-means clustering seems more appropriate in the case of this present research due 

to its simplicity in implementation and its low computational demand, especially in the 

presence of a large data set. In order to address the well-known ‘sensitivity’ problems 

associated with K-means clustering, a real-coded GA (Deb et al., 2002) is incorporated into 

K-means clustering. The effect of such hybridisation is an enhanced search by incorporating 

the local search capability rendered by the hill-climbing optimisation with the global search 

ability provided by the GAs. Section 4.2 details such a choice. 
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4.2 Hybridisation of G3PCX and K-means (G3Kmeans) 

4.2.1 Introduction to G3PCX 

G3PCX (Deb et al., 2002) is the abbreviation of the Generalised Generation Gap (G3) model 

and the Parent-Centric Recombination (PCX). It is a computationally efficient genetic 

algorithm, specially designed for the real parameter optimisation. The design of G3 model 

emanates from the realisation that a population alteration model also plays a vital role in a 

real-valued optimisation process, and it should be different from a standard binary based 

genetic algorithm. The G3 model includes the following four steps: 

Step 1:    From the population P, select the best parent and ‘ߤ െ 1’ other parents randomly, 

where ߤ is set to 3 by Deb (Deb et al., 2002). 

Step 2:    Generate ߣ offspring from the chosen ߤ parents using the PCX, where ߣ is set to 

2 according to Deb (Deb et al., 2002). 

Step 3:     Choose two parents at random from the population P. 

Step 4:    From a combined subpopulation of two chosen parents and ߣ created  offspring, 

choose the best two solutions and replace the chosen the  chosen two parents (in 

step 3) with these solutions.  

In terms of the selection scheme of the above G3 model, it is rather similar to the one 

described in Section 3.2.1 where elitism is also adopted implicitly by selecting the best 

solutions from the combined population of parents and their progeny. As far as the variation 

operators are concerned, Deb (2001, p. 110-112) pointed-out that a binary coded GA or a 

real-valued GA with simple naive crossover is no longer sufficient for the real-parameter 

optimisation. Hence, a new crossover (recombination) based on the parent-centric principle 

was proposed, which in many ways resembles the affinity maturation operator used in PAIA2 

(refer to Section 3.3.1) in that they are both based on the assumption that potential good 

solutions are most likely to appear in the region close to their parents which have qualified 

the ‘fitness test’ in the selection operator. The PCX-based operator first calculates the mean 

vector Ԧ݃ of the chosen ߤ parents so that for each offspring, one parent ܺሺ௉ሻ is chosen with 

equal probability. The direction vector ݀ሺ௉ሻሬሬሬሬሬሬሬԦ ൌ ܺሺ௉ሻ െ Ԧ݃ is then calculated. Afterwards, from 
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each of the other ሺߤ െ 1ሻ parents, perpendicular distances ܦ௜ to the vector ݀ሺ௉ሻሬሬሬሬሬሬሬԦ are computed 

and their average ܦ is found. The offspring is thus created as follows: 

ܺ௢௙௙௦௣௥௜௡௚ ൌ ܺሺ௉ሻ ൅ ߱఍ · ݀ሺ௉ሻሬሬሬሬሬሬሬԦ ൅ ∑ ߱ఎ
ఓ
௜ୀଵ,௜ஷ௣ · ܦ · Ԧ݁ሺ௜ሻ (4.5) 

where Ԧ݁ሺ௜ሻ  are the ሺߤ െ 1ሻ orthonormal bases that span the subspace perpendicular to the 

vector ݀ሺ௉ሻሬሬሬሬሬሬሬԦ. The parameters ߱఍  and ߱ఎ  are zero-mean normally distributed variables with 

variance ߪ఍ଶ  and ߪఎଶ  respectively. Deb et al. (2002) further compared PCX with various 

Mean-Centric Recombination (MCR) operators and concluded that the use of PCX is 

computationally more efficient than MCR operators, especially in the early iterations in 

which the centroid of the chosen parents may have a large distance from each parent. Hence, 

creating potential good solutions around such centroid in the early iterations may not be a 

clever choice, which more often than not requires a large number of iterations or a large 

population size to eventually converge. Figure 4.4 visulalises the philosophy behind PCX and 

shows the density of the potential solutions produced by three parents in a 2-dimensional 

decision variable space (represented as the red circles at [1.2 1.1], [1.2 1.25], [1.1, 1.1]) using 

the PCX recombination.  

 

Figure 4.4 The density of solutions with three parents using PCX. 



 

- 79 - 
 

- 79 - Chapter 4: An Evolutionary Based Clustering Algorithm 

4.2.2 Description of G3Kmeans 

The G3PCX algorithm introduced in Section 4.2.1 is hybridised with K-means clustering 

algorithm with the aim of overcoming the well-known problems associated with K-means 

algorithms, viz. its sensitivity to the initialisation and its convergence to the local optima. 

Such a hybridised clustering algorithm is termed G3Kmeans and the detailed steps are 

described as follows:  

Step 1: Initialisation: The randomly generated ‘k’ cluster centres are encoded in each 

chromosome in a concatenated form. ‘P’ chromosomes are generated in the initial 

population.  

Step 2:  Assigning data points: Each data point is assigned to one cluster with the centre 

of Ci using Eq. 4.6: 

ܺ௠ א :௜ܥ ݂݅ሼ
ԡܺ௠ െ ௜ԡܥ ൏ ԡܺ௠ െ ௟ԡܥ

݉ ൌ 1,2, … ,ܰ; ݅, ݈ ൌ 1,2, … , ݇; ݈ ് ݅ (4.6) 

where, || || is the Euclidean norm and N is the number of data samples. After the 

assignment, cluster centres encoded in the chromosome are updated by 

calculating the mean value of each cluster using Eq. 4.4. 

Step 3: Fitness computation: the fitness value of each individual is calculated using Eq. 

4.3, and for clarity it is rewritten here by replacing the membership ߤ௠௟ with a 

binary value of 0 or 1: 

߸ሺܥଵ, ,ଶܥ … , ௞ሻܥ ൌ ∑ ∑ ԡܺ௠ െ ஼೗א௟ԡଶ௑೘ܥ
௞
௟ୀଵ     ݈ ൌ 1,… , ݇ (4.7) 

where, ϖ is a within-cluster-distance metric to be optimised (minimised), and 

kCCC ,..., 21  are k cluster centres. 

Step 4: Parent-Centric Crossover (PCX): Generate ߣ offspring from the ߤ parents using 

the PCX recombination mentioned in Eq. 4.5. 

Step 5: Fitness computation: the cluster centres and fitness values of the offspring are 

updated and calculated again as what have been done in the step 2 and 3 

accordingly. 

Step 6: Parents to be replaced: choose two parents at random from the population P. 
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Step 7:  Replacement: From the combined subpopulation of two chosen parents and λ

created offspring, choose the best two solutions and replace the chosen two 

parents (in step 6) with these solutions. 

Step 8: Iteration: the aforementioned steps from step 2 are repeated for a specified 

generations or until the standard deviation of the fitness values of the last five 

iterations becomes less than a threshold stable, and the final solution is the one 

with the smallest fitness value at the end of the execution.  

It is worth mentioning that in the following experiments within this chapter and the 

experiments afterwards all the user-specified parameters are set as those suggested by Deb et 

al. (2002) unless otherwise stated. Hence, ߪ఍ଶ ൌ ఎଶߪ ൌ 0.1, ܲ ൌ 100, ߣ ൌ 2, ߤ ൌ 3, ݈ܾ݁ܽݐݏ ൌ

0.001.  

4.2.3 Rationale of the Hybridisation 

In the last decades, we have seen many efforts in hybridising GAs with the conventional 

partition-based clustering algorithms (Bezdek et al., 1994; Hall et al., 1999; Krishna et al., 

1999; Bandyopadhyay et al., 2002; Sheng et al., 2006). As briefly mentioned in Sections 

4.1.2.4 and 4.1.4, the ‘rationale’ behind such a hybridisation idea lies in the fact that most 

optimisation techniques used in partition-based clustering are inherently hill-climbing 

techniques which are very sensitive to the initial settings and may lead to convergence to 

local optima. One of the earliest GA-based clustering implementations was carried-out by 

Bezdek et al. (1994) by hybridising a GA with Fuzzy C-Means (FCM), in which a binary 

coded chromosome was adopted to represent cluster centres so that a GA can be used to 

iteratively search for the optimal fuzzy partitions. Hall et al. (1999) improved the efficiency 

of such a GA-based fuzzy clustering algorithm by coding the centres with a binary Gray code 

representation in which any two adjacent numbers are one bit different. The authors of both 

research contributions argued that coding centres in the chromosome is more efficient than 

coding the membership matrix (ߤ௠௟, refer to Eq. 4.4 in Section 4.1.2.2). Similar efforts have 

been made to hybridise GAs with K-means clustering. Instead of coding centres in the 

chromosome, Murthy et al. (1996) proposed to code the cluster identity number which is 

assigned to each data point. Hence, the length of the chromosome is the same as the number 

of data points, which makes the algorithm vulnerable to the large data set. Krishna et al. 

(1999) proposed to code the hard membership matrix (ߤ௠௟) in a binary form so that a GA 
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framework can be applied to find the optimal hard membership matrix which minimises the 

‘within-cluster variance’. Bandyopahyay et al. (2002) acknowledged the comments made 

earlier by Bezdek (1994) and noticed that the clustering problem under a GA framework is 

actually a real-valued optimisation problem. Hence, a real-valued GA was adopted in their 

work. Cluster centres are encoded in the chromosome with floating-point values. Recently, 

Sheng et al. (2006) incorporated GAs into K-medoids clustering using an integer encoding 

scheme.   

Despite the great achievements reported in the aforementioned research contributions, several 

related problems still deserve special attention: 

(1) In the early implementations, binary-coded GAs were widely adopted. However, GA-

based clustering can actually be viewed as a real-valued optimisation problem. 

Applying binary-coded GAs to such a continuous search space will result in a so-called 

‘Hamming cliffs’ difficulty associated with certain strings (such as 0111 and 1000). In 

such a scenario, a transition to a neighbouring solution (in real space) requires the 

alteration of many bits. Hamming cliffs may cause difficulties in a gradual search, 

especially in a continuous search space (Deb, 2001, p. 110).  

(2) Binary-coded GAs suffer from the problem of imprecision, especially when they are 

used for a real-valued optimisation problem. More precision simply means longer 

strings which will in turn increase the search space. It also means a large population 

size in order to have an effective search.  

(3) Both Murthy et al.’s work (1996) and Krishna et al.’s work (1999) cannot deal with a 

large data set since the length of the chromosome increases as the number of the data 

points increases.  

(4) Although Bandyopahyay et al. (2002) adopted a real-valued GA, a so-called Naive 

crossover (single-point crossover) was used in their work, which is similar to the 

crossover operators used in binary-coded GAs. However, as mentioned by Deb (2001, 

p.112), this crossover operator does not have an adequate search power. Hence, it 

surrenders its search responsibility to the mutation operators, which may not be 

effective as well.  

 In the light of the above problems, the proposed G3Kmeans algorithm chooses a real-valued 

GA as its optimisation method which only encodes cluster centres in the chromosome. 

Hence, the length of the chromosome rests only with the number of the cluster centres. The 
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search power of G3Kmeans is significantly enhanced by combining PCX with the hill-

climbing operator. Such a combination takes full advantage of global search capability 

mainly attributed to the PCX recombination and local search ability rendered by the hill-

climbing operator. As a result, G3Kmeans is more robust to the initialisation as opposed to 

other conventional partition-based clustering and is more efficient than the mentioned 

algorithms of the same kind. In the next Section, two synthetic data sets, iris data set and a 

real data set from the steel industry are utilised to validate the proposed G3Kmeans. The 

results are then compared to those of FCM, K-means, Subtractive clustering, GA-clustering 

(Murthy et al., 1996) and  KGA (Bandyopadhyay et al., 2002). Comparisons on the use of 

different clustering algorithms to elicit an initial data-driven FRBS are also provided in 

Section 4.4.3 via a benchmark example.  

4.3 Experimental Studies 

4.3.1 Artificial Data Sets 

4.3.1.1 Test Problem 1 

The first test problem consists of 4 randomly generated Gaussian clusters around the nominal 

cluster centres4.1. Each cluster contains 100 data points as shown in Figure 4.5. Figure 4.6 

shows the evolution curve of G3Kmeans4.2. Although the evolution takes 11 generations to 

finish it only takes 5 generations to reach the minimum objective value.  

In order to obtain a quantitative comparison with different clustering algorithms, objective 

values are calculated using Eq. 4.7 and are used as the measure for the algorithms’ efficacy. 

The objective value of the original clusters is also computed using the nominal centres as the 

baseline to see if a specific clustering algorithm can approach to the nominal centres as close 

as possible. Table 4.1 summarises the results of FCM, Subtractive clustering, K-means and 

G3Kmeans algorithms respectively. The results are the average values of 20 independent 

                                                 
4.1    They  are  called nominal  centres here  since  the objective  value of  the  clusters  generated  around  these 

centres may not represent the minimum objective value as opposed to those of the identified clusters (see 
Table 4.1 for more details).   

4.2   The objective  value  is  calculated using  the normalised data and  this  is held  for  the  following problems 
unless otherwise stated. 
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runs. The standard deviations of the results are also calculated to show if the algorithm is 

robust to different initialisations and runs.  

 

Figure 4.5 4 Gaussian clusters with 100 data points per cluster. 

 

Figure 4.6 The evolution curve of the first test problem using G3Kmeans. 
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Figure 4.7 displays the identified cluster centres obtained by G3Kmeans. 

 

Figure 4.7 The identified 4 clusters of the first test problem using G3Kmeans. 

For this simple problem, K-means and G3Kmeans algorithms can both approach to the global 

optimal partition (nominal centres) as their objective values represent the minimum ones 

among all the candidates. The standard deviations of K-means algorithm on test problem 1 

are zero, which means for this problem there are no local optima. The FCM based algorithm 

constantly led to near optimal solutions which are very close to the nominal centres. The 

small variations of the objective values associated with FCM indicate that even for this 

simple problem different initialisations will inevitably lead to slightly different results. The 

radius of Subtractive Clustering is set to its default value, i.e. 0.5. The results produced via 

Subtractive Clustering consistently show its lack of accuracy, not only in this problem but 

TABLE 4.1 
COMPARISONS OF THE OBJECTIVE VALUES BETWEEN DIFFERENT CLUSTERING ALGORITHMS ON TEST PROBLEM 1 

Methods  Maximum  Minimum  Mean  Standard 
Deviation 

Time  
(second) 

Original Clusters*  5.2880  5.2880  5.2880  0  ‐ 
FCM  5.2533  5.2522  5.2522  5.1640e‐005  0.0271 

K‐means  5.2284  5.2284  5.2284  0  0.0090 
Subtractive Clustering  7.6686  7.6686  7.6686  0  0.0706 

G3Kmeans  5.2284  5.2284  5.2284  0  0.7283 
 

* The objective value of the original clusters is obtained using nominal centres.   
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also in the subsequent test problems. Hence, Subtractive Clustering is normally used a priori 

as a method to estimate the number of clusters for other clustering algorithms. Figure 4.8 

shows the distribution of the nominal centres and the identified cluster centres via different 

algorithms. 

 

Figure 4.8 The distribution of identified cluster centres for test problem 1. 

4.3.1.2 Test Problem 2 

In order to test the robustness of the proposed algorithm to the data contaminated by random 

noise, the same Gaussian clusters as those used in test problem 1 are generated, which are 

then combined with 200 randomly distributed noisy data. Figure 4.9 shows the data 

distribution associated with this set. 

The results are also the average values of 20 independent runs. The difficulties of this test 

problem lie in the facts that the classes are not well separated and the search space presents 

many local optima due to the presence of noise.  Figures 4.10 and 4.11 show the evolution 

curve of the G3Kmeans4.3 and the identified clusters using G3Kmeans clustering. G3Kmeans 

takes 11 generations to finish. However, the algorithm has already converged to the minimum 

objective value within 6 generations.  

                                                 
4.3   The objective values are calculated using the whole data set, i.e. including noisy points.   
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Figure 4.9 4 Gaussian clusters contaminated by 200 noise data points.  

 

Figure 4.10 The evolution curve of the second test problem using G3Kmeans. 
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Figure 4.11 The identified 4 clusters of the second test problem using G3Kmeans. 

Due to the presence of noise, the identified cluster centres are slightly different from those 

shown in Figure 4.7. However, in terms of classifying the data points into the right 

categories, the results from the first and the second test problems are very similar, which 

means G3Kmeans is robust even in the presence of noise. Table 4.2 summarises the results of 

FCM, Subtractive clustering, K-means and G3Kmeans.  

For this problem, both FCM and K-means are sensitive to the initialisations. Due to the 

presence of noise, test problem 2 includes several local optima, which correspond to the non-

zero standard deviations produced by these two algorithms. In fact, K-means algorithm 

misclassifies the clusters twice in 20 runs. The larger the standard deviation, the more likely 

an algorithm depends on the initial condition. Figure 4.12 shows the distribution of the 

identified cluster centres via different clustering algorithms and the nominal centres. It can be 

TABLE 4.2 
COMPARISONS OF THE OBJECTIVE VALUES BETWEEN DIFFERENT CLUSTERING ALGORITHMS ON TEST PROBLEM 2 

Methods  Maximum 
 

Minimum 
 

Mean 
 

Standard 
Deviation 

Time  
(second) 

Original Clusters 13.8697  13.8697  13.8697  0  ‐ 
FCM  13.1898  13.1895  13.1897  1.0138e‐004  0.0269 

K‐means  18.3056  13.0382  13.5173  1.5881  0.0130 
Subtractive Clustering  16.2954  16.2954  16.2954  0  0.2000 

G3Kmeans  13.0382  13.0382  13.0382  0  0.8008 
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seen from Table 4.2 and Figure 4.12 that the K-means algorithm not only depends on its 

initial condition but also leads to higher objective values which implies that the centres found 

by K-means may be remote from the nominal ones.  

 

Figure 4.12 The distribution of the identified cluster centres for test problem 2. 

4.3.2 Real World Problems 

4.3.2.1 Iris data 

In this section, G3Kmeans is compared with other GA-based K-means algorithms, e.g. GA-

clustering (Murthy et al., 1996) and KGA (Bandyopadhyay et al., 2002), to justify the 

discussed ‘rationale’ of the proposed hybridisation (refer to Section 4.2.3) using the Iris data 

set (Fisher, 1936). The Iris data set consists of 150 patterns belonging to three categories of 

Iris. Each of the patterns is described by four real-valued features in ‘centimetres’, which are 

the sepal length, sepal width, petal length and petal width. Each of the categories consists of 

50 patterns. The difficulties of the Iris data lie in the facts that the problem possesses two 

overlapped classes and presents many local optima.  Figure 4.13 shows the evolution curve of 

G3Kmeans. It can be seen from this graph that G3Kmeans takes 11 generations to finish. 

However, the algorithm converged to the minimum objective value (6.9981) within 5 
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generations. Table 4.3 summarises the results4.4 over 20 independent runs. The results of GA-

clustering and KGA are extracted from Bandyopadhyay et al. (2002).  

 

Figure 4.13 The evolution curve of the Iris data set using G3Kmeans. 

For this problem, the K-means algorithm misclassified the clusters 4 times in 20 runs, which 

correspond to its maximum objective value shown in Table 4.3. A large standard deviation 

associated with K-means algorithm indicates that the Iris data set consists of many local 

optima and confirms that the K-means algorithm is vulnerable to such a scenario. The results 

of G3Kmeans are far superior to those of GA-clustering and KGA for the reasons discussed 

in Section 4.2.3. In fact, GA-clustering is unable to provide meaningful clusters within 1000 
                                                 
4.4   Unlike the results presented  in Table 4.1 and 4.2, the objective values shown  in Table 4.3 are calculated 

using the original data so that the results produced by G3Kmeans can be compared with GA‐clustering and 
KGA. 

TABLE 4.3 
COMPARISONS OF THE OBJECTIVE VALUES BETWEEN DIFFERENT CLUSTERING ALGORITHMS ON THE IRIS DATA 

Methods  Maximum 
 

Minimum 
 

Mean 
 

Standard 
Deviation 

Time  
(second) 

FCM  79.4566  79.4516  79.4557  1.6000e‐3  0.0252 
K‐means  142.9149  79.0031  95.0244  27.4598  0.0052 

Subtractive Clustering  84.6800  84.6800  84.6800  0  0.0114 
GA‐clustering   139.7782  124.1274  135.4048  ‐  ‐ 

KGA  97.1008  97.1008  97.1008  0  ‐ 
G3Kmeans  79.0031  79.0031  79.0031  0  0.4623 
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iterations (Bandyopadhyay et al., 2002). This is mainly due to the coding scheme adopted by 

GA-clustering, which needlessly increases the search space and thus requires more 

computational efforts to converge. It is worth mentioning that Subtractive clustering cannot 

offer the correct number of clusters with its default radius. Hence, the radius is set to 0.6 for 

this problem in order to obtain the same number of clusters as produced by other clustering 

algorithms. Figure 4.14 shows the identified Iris classes and their centres via every two 

features.  

 

Figure 4.14 The identified 3 Iris classes using G3Kmeans. 

4.3.2.2 Real Data from the Steel Industry 

In order to test the scalability of the proposed G3Kmeans algorithm to high dimensional 

problems, a real data set from the steel industry, viz. Ultimate Tensile Strength (UTS), is used 

as the test problem. The UTS data set consists of 3760 data samples each of which has 16 

dimensions. The detailed description of the UTS data set can be found in Section 6.3.4.  
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For a real world problem, one normally does not know how many clusters are inherent in the 

data. Conventionally, the best one can do is to use trial-and-error or the cluster validity 

mentioned in Section 4.1.3 to select the right number of clusters.  As one will see in Sections 

4.4.2 and 5.2, the problem of choosing the adequate number of clusters is somehow alleviated 

in our work by utilising a multi-objective optimisation framework. In such a case, one is 

allowed to overestimate the number of clusters in the first place so that the optimisation 

algorithm can find out the most appropriate number of clusters afterwards. Hence, the 

number of clusters for this problem is set to 12 as an overestimated number without any loss 

of generality. Figure 4.15 shows the evolution curve of G3Kmeans. As one can see from 

Figure 4.15, G3Kmeans took 36 generations to terminate. However, it actually converged to 

the minimum objective value (530.3131 in this particular run) within 30 generations.   

 

Figure 4.15 The evolution curve of the UTS data using G3Kmenas. 

Table 4.4 summarised the results of G3Kmeans over 20 independent runs and compared them 

with the results produced by FCM, K-means and Subtractive Clustering.  As can be seen from 

Table 4.4, G3Kmeans outperformed the other three clustering algorithms in terms of the 

objective values, and consistently finding near optimal clusters which are believed to be very 

close to the global optimal clusters. The K-means algorithm is very sensitive to the initial 

settings since the results produced by K-means represent the highest standard deviation 

among all the clustering methods. Although the results of FCM present a smaller deviation 
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compared to those of G3Kmeans, FCM failed to approach the global optimal partition since 

its objective values are far higher than the smallest objective value found by G3Kmeans.  

4.3.3 Discussions 

As one can conclude from the above experiments, the performances of FCM, K-means and 

the proposed G3Kmeans are similar for simple clustering problems featuring low 

dimensionality and without local optima, e.g. test problem 1. The real power of G3Kemans 

lies in its capability of handling high dimensional and non-linear problems, which normally 

present many local optima.   

Due to the parallel search of multiple search spaces and the possession of a population pool, 

it is not surprising that G3Kmeans generally takes more time to provide a final solution than 

FCM, K-means and Subtractive Clustering do. However, if one compares G3Kmeans with 

other algorithms of the same type, such as GA-clustering and KGA, one will conclude that 

G3Kmeans is more efficient than other GA-based clustering methods. For the Iris data set, 

both GA-clustering and KGA need 1000 iterations to provide the final solution which are 

equivalent to 50000 evaluation times. In fact, GA-clustering cannot even converge within 

50000 evaluation times. For the same problem, G3Kmeans only takes 11 generations which 

equal to 1020 evaluation times to converge.  

Such superiority is mainly attributed to the combined local and global search operators 

adopted in G3Kmeans, which are specially designed for the real-valued optimisation. The 

encoding scheme of the proposed method also ensures a reasonable search space as opposed 

to GA-clustering algorithm.  

TABLE 4.4 
COMPARISONS OF THE OBJECTIVE VALUES BETWEEN DIFFERENT CLUSTERING ALGORITHMS ON THE UTS DATA 

Methods  Maximum 
 

Minimum 
 

Mean 
 

Standard 
Deviation 

Time  
(second) 

FCM  1040.500  1034.100  1038.600  1.4292  1.4950 
K‐means  662.8515  547.2090  591.6639  30.5610  0.3280 

Subtractive Clustering  828.2510  828.2510  828.2510  0  4.4580 
G3Kmeans  537.4079  524.7958  528.7017  2.9452  48.3259 

 



 

- 93 - 
 

- 93 - Chapter 4: An Evolutionary Based Clustering Algorithm 

4.4 The Relationship between Clustering and FRBS 

4.4.1 Identification of the Relationship 

Generally speaking, clustering algorithms are unsupervised learning schemes. The main 

characteristic of unsupervised learning is to automatically ‘mine’ the relationship embedded 

within a group of unlabelled data without any structural assumptions about them. On the 

contrary, supervised learning schemes normally assume a known causal structure of the data, 

which means the inputs (i.e. feature variables) and the outputs (i.e. categories in a discrete 

space and real values in a continuous case) have been discriminated from the outset. 

Instances of supervised learning schemes include all types of learning classifiers and the 

predictive modelling methods based on the techniques such as ANN, Neuro-Fuzzy Systems 

(NFS) and evolutionary fuzzy systems. 

In practice, unsupervised learning is usually exploited as the first learning step to induce 

knowledge especially when the ‘curse of dimensionality’ becomes a serious issue. One of the 

earliest such endeavours in the field of fuzzy modelling has been made by Yoshinari et al. 

(1993). In their work, structure-free fuzzy models are created based on a generalised fuzzy 

clustering approach. Since there is not any assumption about the data structure, the fuzzy 

model can be used in any direction. As a result, any variable can be estimated with the rest 

ones as the inputs. Such initial knowledge (fuzzy models or relations) can then be refined in 

the manner of supervised learning, which leads to a combined unsupervised and supervised 

learning scheme.  

In the last two decades, such a combined learning approach has been successfully applied to 

the elicitation of FRBS (Chiu, 1994; Genther, 1994; Delgado et al., 1996; Chiu, 1997; 

Delgado et al., 1997; Stenes, 2000). Among many of such implementations, Chiu (1994) 

proposed a Subtractive Clustering algorithm which is specifically designed for the fuzzy rule-

base modelling and can be viewed as an extended version of the mountain clustering 

algorithm (Yager et al., 1994). Subtractive Clustering is operated on the product space of 

inputs and outputs and can automatically estimate the number of clusters (hence, the number 

of rules in FRBSs). Each cluster centre is in essence a prototypical data point that exemplifies 

a characteristic of the system. The identified cluster centres and radiuses correspond to the 

centroids and the spreads of the exponential membership functions that are used for the 
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premise part of FRBSs. The parameters of the linear consequents are computed via a 

‘recursive least-squares’ method. Chiu (1997) further extended the above fuzzy modelling 

methodology to a fuzzy classification scenario. A gradient decent algorithm was developed to 

tune the parameters pertaining to the membership functions in a bid to improve the 

classification accuracy. Genther et al. (1994) argued that fuzzy (soft) clustering is more 

suitable for the elicitation of FRBSs than hard clustering methods (e.g. Subtractive 

Clustering). Their argument is based on the fact that nature objects tend to belong with 

certain degrees of membership to all classes, which seems to have more intuitive connection 

with the concept behind the fuzzy sets. In order to associate the information provided by 

FCM with fuzzy membership functions, the authors approximated the projections of the 

cluster on each dimension via triangular membership functions. Such a ‘projection’ idea has 

also been adopted by Delgado et al. (1996), in which a set of fuzzy measures work in 

conjunction with a hierarchical clustering algorithm to automatically detect the suitable 

number of clusters. Such pre-processed clustering are then used to initialise the algorithms of 

the FCM type. Delgado et al. (1997) further proposed and compared various clustering based 

fuzzy modelling implementations, ranging from the direct use of the clusters’ membership 

function (refer to Eq. 4.8) to the projections of the clusters, and from clustering on the 

product space of inputs and outputs to clustering on separate spaces. The conclusions drawn 

from their work are that the direct use of the clusters’ membership function normally leads to 

an accurate initial fuzzy model; while on the other hand, projection based method tend to 

produce descriptive FRBSs at the cost of their accuracy.  

Summing up the above discussions leads to the conclusion that clustering is incorporated into 

fuzzy modelling especially when the numerical data reflects a high dimensionality mapping 

between input and output spaces. The purpose of clustering is to extract the relationship 

between independent variables so that the initial fuzzy structure with only a conservative 

number of rules can be obtained. One may have the following options when one attempts to 

use the clustering based fuzzy modelling approach: 

[1] Fuzzy (soft) clustering is operated on the product space of inputs and outputs. The 

resulted clusters are directly used to build the fuzzy model. Figure 4.16 (upper FRBS) 

illustrates this choice.  

[2] Clustering (soft or hard clustering) is operated on the product space of inputs and 

outputs. The projections of clusters on each ‘universe of discourse’ form the fuzzy 

sets for each rule in FRBS. Figure 4.16 (lower FRBS) demonstrates such an idea. 
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[3] Clustering is operated on the separate input and output spaces. One of the same steps 

as those described in [1] and [2] is then used to build FRBSs. 

 

Figure 4.16  Creating FRBS through clustering: (1) upper FRBS is built by the direct use of 

clusters; (2) lower FRBS is built by the projections of clusters. 

Figure 4.16 visulalises the process of extracting a FRBS based on clustering methods for a 

two-input problem. For illustration purpose, clustering results are shown only in the input 

space. In practice, the results may be obtained from the product space of inputs and outputs, 

or from separate input and output spaces. In the following discussions, no difference has been 

made for the space from which clustering results are obtained. Rather, the emphasis is placed 

on how these clustering results are utilised for fuzzy modelling.  

The upper FRBS shown in Figure 4.16 represents a rapid prototyping method (Delgado et al., 

1997) of emanating fuzzy models, where ߤ஼೉೗ ሺ·ሻ  calculates the degree of membership to 

which a feature sample belongs to the lth cluster. Depending on different implementations, zl 
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can be the linear function of the inputs, a singleton or the membership function ߤ஼ೊ೗ ሺ·ሻ. If 

FCM is employed for clustering, ߤ஼೉೗ ሺ·ሻ and ߤ஼ೊ೗ ሺ·ሻ can be calculated as follows, where ߣ is 

the fuzzification parameter: 

஼೉೗ߤ  ሺܺ௠ሻ ൌ ቊ∑ ฮ௑೘ି஼೉
೗ ฮ

మ

ฮ௑೘ି஼೉
೔ ฮ

మ
௞
௜ୀଵ ቋ

ିଵ ሺఒିଵሻ⁄

 

஼ೊ೗ߤ ሺ ௠ܻሻ ൌ ቊ∑ ฮ௒೘ି஼ೊ
೗ ฮ
మ

ฮ௒೘ି஼ೊ
೔ ฮ
మ

௞
௜ୀଵ ቋ

ିଵ ሺఒିଵሻ⁄ ݉ ൌ 1,… ,ܰ (4.8) 

Rapid prototyping method is characterized by its easy implementation and yet accurate 

predictions. However, the apparent drawback associated with this method lies in the fact that 

the above advantages are obtained at the sacrifice of the model’s transparency. It is worth 

mentioning that the above membership grades are different from ߤ௠௟ mentioned in Section 

4.1.2.2, where ߤ௠௟  is calculated using Eq. 4.8 on the whole data space which does not 

distinguish inputs and outputs.  

The lower FRBS shown in Figure 4.16 represents the ‘projection’ based fuzzy modelling 

approach. The terms, such as ‘around 2’ (which is in essence a fuzzy set centred on 2), are 

found through the projections of the clusters onto each dimension. Since fuzzy sets on each 

dimension are available, the projection based method conveys more semantic meanings than 

the rapid prototyping method. However, due to the loss of information during the projection 

process, the projection based fuzzy modelling approach normally results in a less accurate 

initial FRBS. 

Since the aim in this research work is to elicit a transparent knowledge base without too much 

compromise on the model’s accuracy, the projection based fuzzy modelling approach seems 

more suitable. The problem of having a less accurate initial fuzzy model can somehow be 

compensated via a subsequent fine-tuning procedure. Soft clustering seems indispensable 

only when one decides to use the rapid prototyping method. In such a case, clusters’ 

membership functions (Eq. 4.8) play a vital role in forming the FRBS. If the projection based 

fuzzy modelling approach is selected, the need of the information provided by fuzzy 

clustering is relaxed since those fine details attached to clusters’ membership functions will 

inevitably be lost during the projection procedure. Hence, G3Kmeans is a suitable clustering 

algorithm for the modelling purpose of this research. The only issue which remains to be 

solved is to find a way so that the radiuses (spreads) of the identified clusters can be 

estimated via the already known cluster centres.  
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4.4.2 Elicitation of Initial Singleton FRBSs Using G3Kmeans 

In Section 2.6.2, two different types of FRBS, namely TSK and Mamdani FRBS, were 

introduced. Here, the general form of FRBS is revisited for ease of understanding: 

ܴ௜: ,௜ଶܣ ݏ݅ ଶݔ ݀݊ܽ ௜ଵܣ ݏ݅ ଵݔ ݂ܫ … , ௜ݕ ݄݊݁ܶ ௜௡ܣ ݏ݅ ௝ݔ ݀݊ܽ ൌ ܼ௜ 

where, ܣ௜
௝ is the ith linguistic value (fuzzy set) for the jth linguistic variable ݔ௝ defined over 

the universe of discourse Լ௝; the function ߤ஺೔ೕ
ሺݔ௝ሻ associated with ܣ௜

௝ that maps  Լ௝ to [0, 1] is 

the corresponding membership function; Ri  represents the ith rule in the rule base, and ݕ௜ is 

the output of the ith rule. Typically, ܼ௜ can be the function of the inputs or the linguistic value 

of the output, which differentiate FRBS into TSK (the former) and Mamdani (the latter) 

FRBS. In order to build such a rule-base via the proposed G3Kmeans algorithm, one has to 

establish a certain mechanism so that ߤ஺೔ೕ
ሺݔ௝ሻ and the corresponding output ܼ௜ can be linked 

with the extracted clusters. In the following, such a mechanism is explained using a Singleton 

FRBS as an example. For Mamdani FRBS, the process is almost the same except some minor 

modifications in the output and the inference method, which will be discussed in detail in 

Sections 5.3.1 and 5.4.2.      

First, it is assumed that the Gaussian membership function is used for the inputs of FRBS. In 

such a case, the ith identified cluster centre ܥ௑௜  in the input space corresponds directly to the 

centriods of the Gaussian membership functions responsible for the ith rule. The spreads of 

the corresponding Gaussian membership functions are obtained by first calculating the U 

matrix as follows: 

ܷሺ݅,݉ሻ ൌ ቀ∑ ԡ௑೘ି஼೔ԡ
ԡ௑೘ି஼೗ԡ

௞
௟ୀଵ ቁ

ିଵ
 (4.9) 

where, ܥଵ, ,ଶܥ … , ௞ܥ  are k cluster centres, and ܷሺ݅,݉ሻ specifies the degree of data point m 

belonging to the ith cluster. Spread ߪ௜
௝is thus deduced as follows: 
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݀݁ݏݑ ݏ݅ ݊݋݅ݐܿ݊ݑ݂ ݌݄݅ݏݎܾ݁݉݁݉ ݊ܽ݅ݏݏܽݑܩ :݂ܫ

݌ݔ݁  :݄݊݁ݐ ൭െ ଵ
ଶ
· ቆ௫೘

ೕ ି௖೔
ೕ

ఙ೔೘
ೕ ቇ

ଶ

൱ ൌ ܷሺ݅,݉ሻ

֜ ௜௠ߪ
௝ ൌ ඨ ିሺ௫೘

ೕ ି௖೔
ೕሻమ

ଶ·୪୭୥ ሺ௎ሺ௜,௠ሻሻ

֜ ௜ߪ 
௝ ൌ ߩ · max୫אሾଵ,Nሿሺߪ௜௠

௝ ሻ

݉ ൌ 1,… , ܰ   (4.10) 

where, j indicates the dimension of the spread in the input space for the ith cluster, N is the 

total number of data points. The maximum value of ߪ௜௠
௝  is picked to ensure a certain degree 

of overlap between different clusters. This also ensures a smooth transition of the predictions 

over different regions. ߩ is used to adjust the degree of overlap. In practice, values between 

0.85 and 1 are good choices. In the following experiments, ߩ is set to 0.95 without any loss of 

generality. 

 Hence, the Gaussian membership function on each dimension can be specified using Eq. 

4.11. It is worth mentioning that the Gaussian membership function defined in Eq. 4.11 is the 

projection of the overall Gaussian cluster on the jth dimension as follows: 

஺೔ೕߤ
൫ݔ௠

௝ ൯ ൌ exp൭െ ଵ
ଶ
· ቆ௫೘

ೕ ି௖೔
ೕ

ఙ೔
ೕ ቇ

ଶ

൱  (4.11) 

Hence, the overall Gaussian cluster can be defined as the product of the membership 

functions on each dimension as shown in Eq. 4.12.  

௜ሺܺ௠ሻߤ ൌ ௠ݔ஺೔భሺߤ
ଵ ሻ · ௠ݔ஺೔మሺߤ

ଶ ሻ · … · ௠ݔ஺೔೙ሺߤ
௡ ሻ ൌ ∏ exp൭െ ଵ

ଶ
· ቆ௫೘

ೕ ି௖೔
ೕ

ఙ೔
ೕ ቇ

ଶ

൱௡
௝ୀଵ   (4.12) 

Figure 4.17 illustrates a 2-dimensional overall Gaussian cluster and its corresponding 

projections on each dimension. 
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Figure 4.17 A 2-dimensional overall Gaussian membership function and its projected 

membership functions on x1 and x2 dimensions. 

The output of each rule ܼ௜ is equal to ܿ௜
௬. Substituting Eq. 4.11 and ܿ௜

௬ into the general form 

of FRBS mentioned earlier leads to an initial Singleton FRBS. Next, if Centriod of Area 

(COA) defuzzification method is employed, the crisp output of the initial FRBS can be 

computed as follows:  

௖௥௜௦௣ݕ ൌ ∑ ௓೔·ఓ೔ሺ௑ሻೖ
೔సభ
∑ ఓ೔ሺ௑ሻೖ
೔సభ

؝  ሻ    (4.13)ߠ|௖௥௜௦௣ሺܺݕ

ߠ ൌ ൫ܿ௜
௬, ܿ௜

௝, ௜ߪ
௝|݅ ൌ 1, . . , ݇; , ݆ ൌ 1, . . , ݊൯  is the parameter vector in which each individual 

parameter is linked directly to the cluster centres and spreads. This vector is subject to further 

tuning in Chapter 5 so that the predictive performance of the initial fuzzy model can be 

improved. 

 It is worth mentioning that the number k, i.e. the number of clusters, is directly related to the 

number of fuzzy rules. However, in this project, no explicit approach has been devised to 

detect this number during the clustering process. Instead, an overestimated number of clusters 

are initially assumed. As pointed by Setnes (2000), an overestimated number of clusters may 

increase the possibility that all important regions in the data are covered, and the result 
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becomes less dependent on the initialisation. Such an idea of using an overestimated number 

of clusters has been extended to that of fuzzy rules in this project. Hence, a FRBS with the 

overestimated number of rules is obtained after clustering.  

Unlike Setnes who utilised the orthogonal least squares (OLS) method (Wang et al., 1992; 

Chen et al., 1991) to remove less important clusters during the clustering process, these 

overestimated number of clusters were not directly dealt with in any part of the clustering 

procedure. Instead, a rule base with an overestimated number of rules is believed to be able to 

cover every vital aspect in the search space just as what has been assumed for the 

overestimated number of clusters. Such a rule-base may over-fit the training data due to the 

unnecessary complex structure. However, just as what has been done to remove the 

redundant clusters a more compact FRBS with a good generalisation ability can be obtained 

via pruning and merging operations. Such operations are discussed in detail in Section 5.5.4. 

In the next Section, a benchmark example is used to illustrate the fuzzy rule base extraction 

process. Modelling results based G3Kmeans are compared with those based on FCM, 

Subtractive Clustering and K-means algorithms.  

4.4.3 An Example of Application 

The benchmark example used in this Section is a nonlinear static system with two inputs and 

one output, which has been studied by Sugeno et al. (1993). The system is defined as follows: 

ݕ ൌ ሺ1 ൅ ଵିଶݔ ൅ ଶିଵ.ହሻଶ,        1ݔ ൑ ,ଵݔ ଶݔ ൑ 5    (4.14) 

In order to make a fair quantitative comparison with the results reported in Delgado et al. 

(1997), the same 50 input-output data pairs are used. The maximum allowable number of 

clusters is set to 5 for G3Kmeans, FCM, Subtractive Clustering and K-means, which is the 

same number as what has been set in Delgado’s work. 

Hence, after clustering, a set of 5-rule FRBSs are elicited via different clustering algorithms. 

For this problem, G3Kmeans takes 10 iterations to terminate. However, as one can see from 

Figure 4.18, after 4 iterations, the algorithm had already converged! 

Figure 4.19 shows the three-dimensional I/O graph of the nonlinear system along with the 

data points that have been classified into five clusters using G3Kmeans. As shown in Figure 

4.19, G3Kmeans can automatically locate the regions which, after identifying the cluster 

centres, capture the main features of data.  
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Figure 4.18 The evolution curve of the nonlinear static system using G3Kmeans. 

 

Figure 4.19 The surface of the nonlinear static systems and the identified clusters. 
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A close inspection of the identified clusters shown in Figure 4.19 reveals that 5 clusters may 

represent an overestimated number as one may possibly bring this number down to 4 clusters 

by merging cluster 3 and 4 without too much damage to the model’s accuracy; such results 

will be shown in Section 5.5.6, where similar rules (clusters) are fused. Converting these 

identified clusters into fuzzy rules is straightforward via Eqs. 4.11~4.13. Figure 4.20 

illustrates the overall Gaussian membership functions whose projections on each input 

dimension form the rules shown in Figure 4.21.  

  

Figure 4.20 The overall Gaussian membership functions and their corresponding clusters. 

Figure 4.21 shows individual rules of the converted FRBS and the projected membership 

functions on each input dimension. The resulting fuzzy rule-base is interpretable to human 

experts since each fuzzy set can be related with a linguistic value. As a matter of fact, each 

rule shown in Figure 4.21 corresponds to a cluster and an overall Gaussian membership 

function shown in Figures 4.19 and 4.20. For example, rule 1 corresponds to cluster 5. As one 

can see from Figure 4.21 (b), some fuzzy sets are heavily overlapped, which leads to the 

difficulty in a semantic interpretation. This issue is further discussed in Chapter 5.  
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Figure 4.21 (a) individual rules in the fuzzy rule base; (b) projected membership functions on 

each input dimension. 

In order to conduct a quantitative comparison on the clustering performance, Table 4.5 

summarises the objective values using different clustering algorithms. To compare the 

performances of the obtained initial FRBSs using different configurations, the root mean 

square error (RMSE) is utilised to measure the degree of the discrepancy between the actual 

outputs and the predicted outputs, which is defined in Eq. 4.15. All results shown in Table 4.5 

are the average values over 20 independent runs.  

ܧܵܯܴ ൌ ට∑ ሺ௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ ି௬೘ሻమಿ
೘సభ

ே
   (4.15) 
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The same conclusions in terms of the clustering performance, as those in Section 4.3.3, can 

be drawn from the above results. G3Kmeans has proved to be robust and not sensitive to the 

initial settings. It was successful in finding the global optima in the sense that a within-

cluster-distance metric ߸ (refer to Eq. 4.7) is globally minimised. The hence elicited initial 

FRBS based on these compact clusters leads to the best predictive performance when 

compared to the previously mentioned methods. K-means and FCM are both sensitive to the 

initialisations, which may partially be responsible for the less accurate elicited FRBSs. 

Subtractive Clustering is robust subject to different initialisations. However, the clustering 

results produced by Subtractive Clustering are only sub-optimal. This is confirmed by its less 

accurate initially elicited FRBS. EST5 represents the most inaccurate implementation. EST5 

uses the approximations of the extensional hulls of the clusters to form membership 

functions. Such approximation and projection processes greatly affect the performance of the 

elicited FRBS. 

4.5 Summary 

In this chapter, an evolutionary based clustering algorithm, namely G3Kmeans, is introduced. 

The proposed algorithm is tested extensively through the artificial and real data sets. The 

results show that the proposed algorithm is superior to other more traditional clustering 

algorithms in that:  

1) It is robust to different initial settings;  

TABLE 4.5 
COMPARISONS OF THE OBJECTIVE VALUES AND THE PERFORMANCES BETWEEN DIFFERENT FUZZY MODELING 

METHODS BASED ON DIFFERENT CLUSTERING ALGORITHMS ON A NONLINEAR STATIC SYSTEM WITH FIVE RULES 

Modeling 
Methods1 

Objective Values 
 

Initial FRBS predictive 
Performance  Time 

(second) 
Min.  Max.  Mean  Std.  RMSE  Std. 

FCM  2.2659  2.2667  2.2663  3.15e‐04  0.6290  0.0049  0.0080 

K‐means  2.1795  2.9406  2.4734  0.3009  0.6236  0.0070  0.0066 

Subtractive 
Clustering 

2.4413  2.4413  2.4413  0  0.6204  0  0.0160 

G3Kmeans  2.1795  2.1795  2.1795  0  0.5954  0  0.5460 

EST52  ‐  ‐  ‐  ‐  0.672  ‐  ‐ 
      

      1 Fuzzy modeling methods based different clustering algorithms. 
      2 Fuzzy modeling methods proposed by Delgado et al. (1997). 
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2) It can approach to the global optimal partitions very closely, especially for high-

dimensional problems;  

3) It is computationally more efficient compared to other evolutionary based clustering 

algorithms.  

G3Kmeans is also suitable for eliciting FRBS without any prior assumption about the 

underlying data structure. The performance of the elicited FRBS using G3Kmeans is superior 

to the performances of those elicited via K-means, FCM, Subtractive Clustering and EST5. In 

the next chapter, an extension of the G3Kmeans algorithm by combining it with the proposed 

PAIA algorithm described in Chapter 3 for multi-objective fuzzy modelling will be 

introduced. 
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Chapter 5 

An Immune Inspired Multi-
Objective Fuzzy Modelling 

(IMOFM) 

“From computing with numbers to computing with words ‐ from manipulation of measurements to 

manipulation of perceptions.” 

Lotfi A. Zadeh, Int. J. Appl. Math. Comput. Sci., 2002 

In this chapter, an immune inspired multi-objective fuzzy modeling (IMOFM) mechanism is 

proposed. IMOFM adopts a multi-stage modeling procedure and a variable length coding 

scheme to account for the enlarged search space due to the simultaneous optimisation of the 

rule-base structure and its associated parameters. IMOFM tries to challenge Zadeh’s Principle 

of Incompatibility, which may facilitate the ultimate goal of ‘computing with words’. In this 

chapter, it is shown how to elicit an accurate and yet transparent FRBS from quantitative 

data. 

5.1 Introduction  

5.1.1 Data-Driven Modelling (DDM) 

Traditionally, modelling tasks involve the building of mathematical equations which can best 

describe the underlying process. Such a modelling practice normally requires a deep 

understanding of the systems under investigation, hence the reason why it is often referred to 

as knowledge-driven modelling. On the contrary, Data-Driven modelling (DDM), inspired 
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principally from artificial intelligence techniques, is based on limited knowledge of the 

modelling process and relies on the data describing the input and output mapping. DDM is 

able to make abstractions and generalisations of the process and plays often a complementary 

role to knowledge-based models. A simple example of DDM is the linear regression in which 

the coefficients of the regression equation are ‘trained’ through the available data. Figure 5.1 

illustrates a one-input-and-one-output system which can be approximated via a ‘straight line’. 

The coefficients of the line equation are trained so that the line is best fitted into the data 

points in the sense of the least-squares error or other forms of error measures.  

 

Figure 5.1 The linear regression. 

For complex systems, the linear regression may not be sufficient, which leads to the need for 

the non-linear regression techniques. Among many of these techniques, ANN, fuzzy rule-

based systems and Neural-Fuzzy Systems (NFS) have been receiving more attention during 

the last two decades due to the facts of not only being able to approximate practically any 

given function to an arbitrary accuracy (Kosko, 1994; Wang et al., 1992), but also being able 

to generalise reasonably well to any previously ‘unseen’ situations. The prevalence of these 

nonlinear regression techniques is largely attributed to the breakthrough in the nonlinear 

optimisation techniques, such as the BEP and the EC. In the following space, all these issues 

are covered since they all make their appearances in the development of the proposed 

modelling framework.          
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5.1.2 Relationship between FRBS and DDM 

Since the first introduction of ‘fuzzy logic’, FRBS have been widely used in control 

engineering (Passino et al., 1998). However, the predominant approach in the traditional 

design of fuzzy rule-based systems highly relies on human experts, which makes the fuzzy 

modelling process similar to the design of expert systems except traditional expert systems 

were based on the classical Boolean logic and thus were not well suited to managing the 

progressiveness in the underlying process phenomena (Guillaume, 2001). Both FRBS and 

expert systems share some common features:  

 They all include the so-called ‘knowledge base’ which uses some knowledge 

representation formalism to capture the domain expert knowledge; 

 They all acquire a process of inducing knowledge from the expert or other resources 

and codifying such knowledge according to the formalism. 

 They may or may not have learning components. Once the model is developed it will 

replace human experts in the same real world problem solving situation so that it can 

aid human workers to make decisions or control. 

If knowledge is induced from resources such as data rather than from experts it is in essence a 

data-driven methodology. Chapter 4 described one such method in which clustering is used to 

automatically induce hidden (implicit) knowledge from data. If learning components are 

further incorporated into the procedure of coarse knowledge inducement, the accuracy of the 

raw knowledge base can be improved to a certain degree depending on the quality of the 

historic data and the power of the learning mechanism.  

Although learning components can improve the quality of the model it may suffer from two 

serious problems, e.g. the deterioration of the model’s interpretability and the over-fitting to 

the training patterns. These problems are formally discussed in Section 5.1.4 following the 

brief introduction of the concept concerning model accuracy and interpretability. Among 

many existing solutions to overcome the aforementioned problems, evolutionary based 

approaches are reviewed in Section 5.1.5. From Section 5.2 onwards, IMOFM is introduced, 

which represents an alternative tactic to solve the above problems.  
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5.1.3 Accuracy vs. Interpretability 

As Casillas et al. (2001) pointed out, modelling is the task that simplifies a real system or 

complex reality with the aim of easing its understanding. Hence, the development of reliable 

and comprehensible models must be the main theme of any modelling tasks. By ‘reliable’ it is 

meant the model’s capability of faithfully representing the real system, in other words ‘the 

model accuracy’. By ‘comprehensible’ it is meant the model’s capability of expressing the 

behaviour of the real systems in a comprehensible way, in other words ‘the model 

interpretability’. However, as Zadeh conjectured in his Principle of Incompatibility (Zadeh, 

1973) cited as below, 

“As the complexity of a system  increases, our ability to make precise and yet significant 

statements  about  its  behaviour  diminishes  until  a  threshold  is  reached  beyond  which 

precision and significance (or relevance) become almost mutually exclusive characteristics.” 

it is very likely that accuracy and interpretability may well be exclusive requirements in a 

modelling process. Since both requirements are vital and cannot always be possessed at the 

same time, a good balance between them is the best outcome that one can achieve. The 

reflection of these in a fuzzy modelling scenario represents a dilemma of designing FRBS. 

This issue is further discussed in Section 5.1.4.  As far as interpretability is concerned, it is 

mainly a subjective property and normally refers to at least one or all of the following aspects 

in a fuzzy modelling scenario: 

 The distribution of the fuzzy sets on each dimension should be well separated so that 

meaningful (distinguishable) linguistic terms can be associated with them. 

 The number of fuzzy sets for each dimension and the number of rules should not be 

excessive. This is closely related to the cognitive studies, one of which reported by 

Miller (1956), which shows that the optimal number of chunks of information 

simultaneously held in human short-term memory should be seven, plus or minus two. 

This implies that redundant rules and fuzzy sets should be merged or deleted. 

 The number of input variables involved in each rule should be optimal, which means 

input variables are subject to either a global selection, in which case none of the rules 

in the rule base can use the deleted input variables, or a local selection, in which case 

the selection is done at the individual rule level (Guillaume, 2001).  

 The rule base should be complete and consistent (Guillaume, 2001; Jin et al., 1999). 



 

- 110 - 
 

- 110 - Chapter 5: An Immune Inspired Multi-Objective Fuzzy Modelling (IMOFM) 

Otherwise, the knowledge represented by the rule base is incomplete, and different 

conclusions given similar premises would certainly confuse its users.   

The ‘accuracy vs. interpretability’ issue can also be formulated as a multi-objective 

optimisation problem. Figure 5.2 shows the Pareto front in a bi-objective fuzzy modelling 

scenario where two competing objectives, viz. the predictive error (accuracy) and the rule-

base complexity (interpretability), are minimized simultaneously. The aim is to find a set of 

‘approximate Pareto FRBSs’ as close to the true Pareto front as possible.  

 

Figure 5.2 Pareto front in a bi-objective fuzzy modelling case.  

By finding a set of solutions, human can understand the underlying problem in a much 

greater depth, and finally a single optimal solution to a specific scenario is finally selected 

and applied. In the above case, if one requires certain interpretability (transparency) of the 

FRBS along with its good predictive accuracy the middle circle could be the one that fulfils 

the user’s need. As already stated by Jiménez et al. (2001), this should result in a ‘minimal’ 

human intervention during the modelling process.  

5.1.4 The Dilemma of Building FRBS 

The main advantage of using FRBS as a modelling tool over other modelling methods lies in 

its additional ability of integrating human expertise in the form of vague or imprecise 

statements rather than crisp mathematics, for many real-world systems’ knowledge can only 
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be described by experts with nature language. Depending on what degree to which such 

expertise is involved, fuzzy modelling may pertain to ‘white’ box, ‘black’ box or ‘grey’ box 

modelling. Previous research on fuzzy modelling was mainly concerned with the way to 

synthesis a rule-base with domain-dependent knowledge from human experts, such as 

operators, and hence render the task of tuning the parameters associated with the antecedent 

and consequent parts as an optimisation problem, e.g. recursive least-squares or gradient-

based methods. Without the tuning process following the synthesis step, the above approach 

is indeed equivalent to ‘white’-box modelling and the elicited model can be regarded as 

descriptive (linguistic) FRBS (Cordon et al., 2001), which may give rise to the following four 

limitations:  

 Often, expert knowledge is not available or is limited;  

 It is very hard to handle problems with a significant amount of data to be processed 

and analysed;  

 The synthesis approach suffers from the ‘curse’ of dimensionality;  

 The way to design such a fuzzy system is not domain-independent and thus no    

systematic (or unique) design procedure can be followed.  

In all these cases, a knowledge extraction emanating purely from experts fails to provide a 

satisfactory solution. However, discovering knowledge from data can help in overcoming the 

aforementioned limitations by augmenting FRBS with an additional learning layer. 

In the past two decades, many successes in the hybridisation of FRBS and learning methods 

have been registered. The most representative of these must be the so-called neuro-fuzzy 

system, which incorporates learning methods normally used in neural networks for FRBS 

(Jang, 1993).  Almost at the same time, attempts of hybridising clustering methods with fuzzy 

systems were carried out and led to very promising results (refer to Section 4.4.1). The aim of 

these types of hybridisation techniques is to automatically elicit rules from large collections 

of learning data. Despite the great success using the aforementioned paradigms, the following 

challenges have also been identified:  

1. The designer still needs to set the abstraction level or the number of clusters; 

2. The need to set the starting points for clustering and neural networks;  

3. Most importantly, the elicited FRBS can only be described as approximate FRBS 

(Cordon et al., 2001) rather than being labelled as the descriptive one.  
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The main drawback of approximate FRBS compared to the descriptive one is its degradation 

in terms of interpretability of the rule-base due to the automatic learning process, which 

yields overlapped fuzzy sets. Although such approximate FRBS retains some basic level of 

interpretability, it may become more ‘black’-box oriented although often its performance is 

much improved compared to the descriptive FRBS.  

The shift between the descriptive and approximate FRBS represents a dilemma for designing 

of fuzzy models. The last two decades have witnessed the popularity of the latter by 

compromising ‘interpretability’ (significance) with ‘accuracy’ (precision), which deviates 

from the original intention of FRBS which must always try to challenge Zadeh’s Principle of 

Incompatibility. Taking this into account, one can find that EAs, in particular GAs, have a 

long history of being incorporated into fuzzy logic and demonstrate a possible route to the 

remedy for the dilemma. This may ultimately facilitate the achievement of ‘grey’-box 

modelling. The next Section reviews the existing EAs-based approaches for tackling the 

above mentioned dilemma.  

5.1.5 Literature Review of Previous Works 

Originated from Karr’s work (Karr, 1991), the GA approach in fuzzy systems was initially 

utilised to adjust the parameters of membership functions, which leads to no significant 

difference when compared to other learning paradigms. The real significance of employing 

EAs for optimising FRBSs comes from EAs’ flexibility in terms of being able to encode and 

evolve almost every component of the FRBS (Herrera, 2008). Such a flexibility offers a 

solution so that one can take into account the interpretability (structure) and the performance 

of the FRBS in a more coherent way. Broadly speaking, there currently exist two different 

EA-based streams to tackle the interpretability issues: the first stream is mainly concerned 

with the linguistic modelling, in which a set of pre-specified fuzzy partitions are given a 

priori by experts or users (grid partition); the task is then to find an optimal FRBS in terms of 

its compactness and performance (Ishibuchi et al., 1995; Ishibuchi et al., 1997; Ishibuchi et 

al., 2001; Ishibuchi et al., 2004; Alcalܽ́ et al., 2007; Cococcioni et al., 2007); the second 

stream generally uses the approximate fuzzy model as the starting point; hence, the task is to 

improve the model’s explanatory ability, which may have been lost during the automatic 

learning process, through a set of similarity-driven simplification and parameter adjusting 

operations (Setnes et al., 1998; Setnes et al., 2000; Roubos et al., 2001; Jim݁́nez et al., 2001; 
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Jim݁́nez et al., 2002; Jin et al., 1999; Jin et al., 2000; Wang et al., 2005; Gonzܽ́lez et al., 

2007, Chen et al., 2004).   

In the first stream, the earliest noticeable attempt was made by Ishibuchi et al. (1995), in 

which a fuzzy classifier is built using the pre-specified linguistic terms (fuzzy sets). These 

linguistic terms are fixed during the course of the evolution so that their physical meanings 

are retained. Only the fuzzy rules are subject to the selection via GA so that a compact rule-

base can be evolved from a large number of candidate rules, which should lead to a more 

interpretable FRBS. Since the selection process removes irrelevant and inconsistent rules, the 

accuracy is also improved. In the works of Ishibushi et al. (1997), Ishibushi et al. (2001) and 

Ishibushi et al. (2004), extensions to the above ‘rule selection’ idea were made in both single 

objective and multi-objective configurations. It is worth mentioning that, in Ishibushi et al.’s 

work (2004), the GA is not only used to select the optimal combination of rules but also to 

learn the granularity of different fuzzy partitions for each input, which leads to a more 

accurate fuzzy model while the linguistic feature is not compromised. Further relevant 

researches include those which were proposed by Alcalܽ́ et al. (2007) and Cococcioni et al. 

(2007). In Alcalܽ́ et al.’s work (2007), apart from the rule selection, the authors also tuned 

the linguistic terms by a modified GA. However, such tuning is only operated in a local sense 

in order to maintain their original semantics. One interesting paper in the second stream is 

attributed to Setnes et al. (1998), in which the TSK model is elicited via a fuzzy clustering 

algorithm for its premises and a parameter estimation method for its consequents. A 

similarity measure is taken so that similar fuzzy sets can be merged. Consequently, similar 

rules are merged as well. Hence, the distinguishability of membership functions and the 

compactness of the rule-base are improved. Although this rule-base simplification method 

does not relate to the EA directly, it has since inspired many EA-based fuzzy modeling 

algorithms within this trend (Setnes et al., 2000; Roubos et al., 2001; Jim݁́nez et al., 2001; 

Jim݁́nez et al., 2002; Jin et al., 1999; Jin et al., 2000; Wang et al., 2005). In Gonzܽ́lez et al.’s 

work (2007), the idea of rule pruning is used to delete less relevant rules within a multi-

objective optimisation framework. The similarity measure is not explicitly used in this work.  

Comparing the two streams leads to the following: in the linguistic modelling stream, the 

target problems are normally associated with classifications and low-dimensional function 

approximations; hence, the effect of the ‘curse of dimensionality’ due to the grid partition and 

the need for the parameter tuning due to the performance requirement are not serious issues. 

In the latter case, high-dimensional approximations are often the case; as a result, an 
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approximate FRBS is a better choice to start with due to the accuracy and compactness 

requirements.  Within the second stream, EA-based multi-objective fuzzy modelling has 

become a recent hotspot for function approximations due to its ability of producing a set of 

compromised FRBSs (Jim݁́nez et al., 2001; Jim݁́nez et al., 2002) and (Wang et al., 2005; 

Gonzܽ́lez et al., 2007). However, this is a rather new developing area with several other 

issues to be addressed. Among which, it is believed that the following considerations are the 

most important:  

 most well-known multi-objective optimisation algorithms used in fuzzy modeling, e.g. 

NSGA II (Deb, 2001), are originally designed to solve real-valued problems; in order 

to use such type of algorithms to simultaneously optimise the rule-base structure and 

the membership function parameters, similarity-driven simplifications are normally 

selected as the mutation operators for the former (Jim݁́nez et al., 2001; Jim݁́nez et al., 

2002; Wang et al., 2005), and the heuristic variations (crossover) are proposed for the 

latter (Jim݁́nez et al., 2001; Jim݁́nez et al., 2002; Wang et al., 2005; Gonzܽ́lez et al., 

2007); however, the search power of these optimisation algorithms relies heavily on 

their original variation (search) operators; other components of the algorithms are 

mainly used to advocate diversity and elitism; without using the original variation 

operators, even if the general framework is kept fixed it is likely that the search 

capability, in terms of the real-valued optimisation part, may be compromised, and 

this is the partial reason to explain the necessity to include a gradient-based 

optimisation for the enhancement of the parameter optimisation in Gonzܽ́lez et al.’s 

work (2007);  

 The reason behind the use of the heuristic variation operators for the parameter 

optimisation is that the structure optimisation leads to individuals with different sizes, 

e.g. rule base length, which makes the conventional variation operators invalid. Hence, 

new techniques that can cope with the variable length coding and can facilitate the use 

of the original variation operators are needed.   

With the aim of solving high-dimensional approximation problems, the proposed modelling 

framework-IMOFM falls into the second stream. To address the above two issues, the 

research work in Chen & Mahfouf’s works (2006, 2008a) (refer to Chapter 3) is extended, 

which has been shown to be effective for real-valued multi-objective optimisation, to a fuzzy 

modeling scenario. A new distance index (Chen & Mahfouf, 2008b; 2009) that is able to cope 

with the variable-length individuals and unconstraint optimisation is also proposed. The main 
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focus points are two types of FRBS, viz. Singleton FRBS and Mamdani FRBS, due to their 

simplicity and their ability to express semantics in both premises and consequents. In the next 

section, IMOFM is introduced, which is in essence a three-stage modelling procedure which 

mimics the proposed multi-stage immune optimisation procedure already discussed in 

Section 3.5.  

5.2 The Framework of the Proposed Modelling Method 

IMOFM is a systematic multi-objective fuzzy modelling framework, which can be regarded 

as a three-stage modelling procedure. The first two stages are equivalent to the vaccination 

process in the first stage of the immune optimisation procedure (see Section 3.5). By doing 

so, an initial ‘vaccine model’ (prior knowledge, in some sense) can efficiently be elicited. 

Another reason of including the first two modelling stages, especially the second one, is that 

by doing so the most complex-rule base can survive under the pressure of ‘Pareto’ selection. 

Without including the refining step (the second stage), the rule-base with a complex structure 

may be regarded inferior to the less complex-rule base in a ‘Pareto’ sense. Even if both the 

most complex and less complex rule-bases are inaccurate in the early evolutionary stages, the 

‘Pareto’ selection favours the one with a simpler structure. Hence, one may lose the chance of 

evolving the most accurate FRBS, which normally comes with a complex structure (refer to 

Section 5.6.1). The ‘vaccine model’ is then used in the third stage to seed the initial 

population of PAIA2 in order to obtain a set of Pareto fuzzy models with improved 

interpretability.  

To tackle the problem of simultaneously optimising the rule-base structure and parameters, a 

variable length coding scheme is adopted, and a new distance index is proposed to cope with 

the variable-length individuals, which should improve the efficiency of the search (see 

Section 5.5.3 for more details).  

Figure 5.3 represents a schematic diagram of such a framework and each stage depicted in 

this figure is expanded in depth in the following sections.  
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Figure 5.3 The proposed IMOFM framework. 

5.3 First Stage: Elicitation of Initial FRBSs 

Section 4.4.2 gives detailed steps on how to elicit an initial Singleton FRBS from data using 

the G3Kmeans algorithm, which serves as the first modelling stage in IMOFM_S (IMOFM_S 

stands for the Singleton version of IMOFM). Hence, in the following space, special attentions 

have been given to the Mamdani version of IMOFM, viz. IMOFM_M. IMOFM_M differs 

from the original Mamdani FRBS (Mamdani, 1974) in that IMOFM_M adopts a different T-

norm, S-norm and defuzzification mechanism.    

5.3.1 Elicitation of the Initial Mamdani FRBS 

The original Mamdani FRBS is based on the so-called ‘sup-star compositional rule of 

inference’ (see Section 2.6.2 and Eqs. 5.1~5.3) and the overall implied fuzzy set (see Section 

2.6.2 and Eq. 5.3) (Passino et al., 1998, p. 63), which are defined as follows: 
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௠ሻݕ஻෠೔ሺߤ ൌ ௜ሺܺ௠ሻߤ  כ  ௠ሻ    (5.1)ݕ஻೔ሺߤ 

௜ሺܺ௠ሻߤ ൌ ௠ݔ஺೔భሺߤ
ଵ ሻ · ௠ݔ஺೔మሺߤ

ଶ ሻ · … · ௠ݔ஺೔೙ሺߤ
௡ ሻ    (5.2)

 

௠ሻݕ஻෠ሺߤ ൌ ْڮ௠ሻْݕ஻෠మሺߤ۩௠ሻݕ஻෠భሺߤ ݅   ,௠ሻݕ஻෠೔ሺߤ ൌ 1…݇    (5.3) 

where, ܺ௠ and ݕ௠ are the inputs and output of the ݄݉ݐ data point; ݔ௠௡  indicates the ݄݊ݐ input 

of the ݄݉ݐ  data point; and ݇  is the number of fuzzy rules in the rule-base. The ‘sup’ 

corresponds to the ْ operation, and the ‘star’ corresponds to *. A special instance of the 

‘sup-star’, which uses maximum for ْ and minimum for *, was adopted in the original 

Mamdani implementation, and the centre of average defuzzification was applied on the 

overall implied fuzzy set in order to derive a crisp output, which leads to two problems as 

mentioned by Passino (1998, p. 64): 

(1) The overall implied fuzzy set ܤ෠  is itself difficult to compute; 

(2) The defuzzification techniques based on the overall implied fuzzy set are also 

difficult to compute. 

More importantly, if an analytical solution cannot be deducted from the defuzzification step 

the gradient based optimisation method, such as the BEP technique, cannot be utilised. 

Hence, in this work, the centre of gravity defuzzfication is applied on the implied fuzzy set 

(Eq. 5.1). Instead of using minimum and maximum, ‘product’ is used for * and ‘plus’ is used 

for ْ. Unlike traditional Mamdani FRBS which may use the same type of membership 

functions for premises and consequents, IMOFM_M uses Gaussian membership functions for 

the premises (refer to Section 4.4.2) and the bell-shape membership functions for the 

consequents (Eq. 5.4).  

௠ሻݕ஻೔ሺߤ ൌ
ଵ

ଵାቆ
೤ష೎೔

೤

഑೔
೤ ቇ

మ     (5.4) 

Where, ܿ௜
௬ and ߪ௜

௬ are the centre and the spread of the ݄݅ݐ membership function of the output. 

Hence, a Mamdani FRBS can be formulated as follows: 

௖௥௜௦௣ݕ ൌ
∑ ௕೔·׬ ఓಳ෡೔ሺ௬ሻௗ௬೤
ೖ
೔సభ

∑ ׬ ఓಳ෡೔ሺ௬ሻ ௗ௬೤
ೖ
೔సభ

ൌ
∑ ௕೔·ఓ೔ሺ௑ሻ·׬ ఓಳ೔ሺ௬ሻ ௗ௬೤
ೖ
೔సభ

∑ ఓ೔ሺ௑ሻ·׬ ఓಳ೔ሺ௬ሻ ௗ௬೤
ೖ
೔సభ

؝  ሻ  (5.5)ߠ|௖௥௜௦௣ሺܺݕ
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where, bi is the centre of area of the membership function ߤ஻೔ሺݕሻ and is the peak (ܿ௜
௬) if 

ߠ .௖௥௜௦௣ is the final defuzzified output of the FRBSݕ ;ሻ  is symmetricݕ஻೔ሺߤ ൌ ൫ܾ௜, ௜ߪ
௬, ܿ௜

௝, ௜ߪ
௝൯ 

is the parameter vector in which each individual parameter is linked directly to the identified 

cluster centres and spreads. This vector is subject to further fine-tuning in a bid to improve 

the model’s predictive performance. ׬ ሻݕ஻෠೔ሺߤ ௬ݕ݀  denotes the area under ߤ஻෠೔ሺݕሻ over the 

output interval ݕ: ሾݕ௅, ׬ ௎ሿ andݕ ሻݕ஻೔ሺߤ ௬ݕ݀  is calculated using Eq. 5.6.  

׬ ሻݕ஻೔ሺߤ ௬ݕ݀ ൌ ௜ߪ
௬ ൤ܽ݊ܽݐܿݎ ൬௬ೆି௕೔

ఙ೔
೤ ൰ െ ݊ܽݐܿݎܽ ൬௬ಽି௕೔

ఙ೔
೤ ൰൨ ؝ ݃൫ܾ௜, ௜ߪ

௬൯ (5.6) 

Hence, after the first stage, a Singleton/Mamdani FRBS with the pre-specified number of 

rules is extracted from the numerical data, which is analytical and can be refined further using 

gradient based techniques, as will be introduced in Section 5.4.   

5.3.2 An Example of Application 

The benchmark example tested in Section 4.4.3 is employed again to demonstrate the results 

of the first modelling stage using IMOFM_M. The number of rules is again set to 5. Figure 

5.4 shows individual rules of the initial FRBS and the membership functions on each 

dimension (including the output dimension). 

Comparing Figure 5.4 with Figure 4.19, one can find that the premises of Mamdani FRBS 

and Singleton FRBS for this particular problem are the same since they are all extracted by 

G3Kmeans. The only difference lies in their consequents. Instead of singleton values, 

Mamdani FRBS uses fuzzy sets for its consequents as well, which makes Mamdani FRBS 

more interpretable when compared to the Singleton one. Fuzzy outputs convey vagueness 

information that is inherent in the model’s knowledge-base and may be well designated by 

linguistic terms (Mencar et al., 2005).  
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Figure 5.4 (a) individual rules in a Mamdani FRBS; (b) membership functions of each 

dimension. 

Table 5.1 summarised the predictive performance of IMOFM_M and IMOFM_S, which are 

the average values of 20 independent runs. The results of IMOFM_S are adapted from Table 

4.5. The detailed comparison of IMOFM_S and IMOFM_M can be found in Section 6.4.  

TABLE 5.1 
THE PREDICTIVE PERFORMANCES OF THE FIRST MODELING STAGE OF IMOFM_S AND IMOFM_M ON A 

NONLINEAR STATIC SYSTEM WITH FIVE RULES 

Modeling Methods 
The Predictive Performance of Initial FRBS 

RMSE (average)  Std. 

IMOFM_S  0.5954  0 

IMOFM_M  0.6078  0 
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5.4 Second Stage: Refinement of Initial FRBSs 

The initial fuzzy model extracted from the first modeling stage is not optimal from two 

perspectives:  

(1) The structure of FRBS is not optimal as far as the interpretability is concerned. As one 

can see from Figures 4.21 and 5.4, the FRBS elicited from the first modeling stage 

contains redundant fuzzy sets and rules.  

(2) The membership function parameters need to be tuned further as far as the accuracy is 

concerned.  

A constrained BEP algorithm is thus utilised to first improve the accuracy of the initial FRBS 

so that a ‘vaccine model’ can be obtained for the next operation in the multi-objective 

optimisation stage.  As mentioned by Gonzܽ́lez et al. (2007), if the initial population can be 

constructed using some heuristics, e.g. an optimised FRBS in terms of its predictive 

performance, then many generations of evolutionary search can be saved. The ‘vaccine 

model’ constructed by the first two stages acts similarly to these heuristics. In the subsequent 

Sections, the BEP updating formulas for IMOFM_S and IMOFM_M are given. Interested 

readers are referred to Passino’s book (Passino, 1998, p. 246-252) for the detailed BEP 

deduction for Singleton FRBS, and to Appendix A for the Mamdani FRBS.  

5.4.1 Back-Error-Propagation Algorithm for Singleton FRBS 

Recall Eq. 4.13 discussed in Section 4.4.2, where a Singleton FRBS is deffuzified with 

respect to a parameter vector ߠ ൌ ൫ܾ௜, ܿ௜
௝, ௜ߪ

௝|݅ ൌ 1, . . , ݇; , ݆ ൌ 1, . . , ݊൯. Here, ܾ௜is the output of 

the ݄݅ݐ rule and equals to ܿ௜
௬ in this work; ܿ௜

௝ and ߪ௜
௝ are the centre and the spread of the ݄݅ݐ 

membership function for the ݆݄ݐ  input. The BEP algorithm is developed such that the 

predictive performance of a Singleton FRBS can be improved subject to adjusting the 

parameters in ߠ. By taking the partial derivatives of Eq. 4.13 with respect to each parameter 

included in ߠ, one can obtain a set of parameter updating laws as follows, where, ߣଵ~ߣଷ and 

 ଷ are user-specific parameters and are the step seizes and the gains of momentum termsߚ~ଵߚ

respectively (refer to Section 4.4.2  for the definitions of other parameters). 
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ݐ௜ሺܾ     :ݓܽܮ ݃݊݅ݐܽ݀݌ܷ ݐ݊݁ݑݍ݁ݏ݊݋ܥ ݊݋ݐ݈݁݃݊݅ܵ ൅ 1ሻ ൌ ܾ௜ሺݐሻ െ ଵߣ · ሻݐ௠ሺߝ ·
ఓ೔ሺ೟ሻሺ௑೘ሻ

∑ ఓ೔ሺ೟ሻሺ௑೘ሻೖ
೔సభ

൅

ଵߚ · ∆ܾ௜ሺݐ െ 1ሻ (5.7) 

:ݓܽܮ ݃݊݅ݐܽ݀݌ܷ ݁ݏ݅݉݁ݎܲ ݄݁ݐ ݂݋ ݁ݎݐ݊݁ܥ  ܿ௜
௝ሺݐ ൅ 1ሻ ൌ ܿ௜

௝ሺݐሻ െ ଶߣ · ሻݐ௠ሺߝ ·
ఓ೔ሺ೟ሻሺ௑೘ሻ·௤ሺ௧ሻ
∑ ఓ೔ሺ೟ሻሺ௑೘ሻೖ
೔సభ

൅

ଶߚ · ∆ܿ௜
௝ሺݐ െ 1ሻ (5.8) 

௜ߪ  :ݓܽܮ ݃݊݅ܽ݀݌ܷ ݁ݏ݅݉݁ݎܲ ݄݁ݐ ݂݋ ݀ܽ݁ݎ݌ܵ
௝ሺݐ ൅ 1ሻ ൌ ௜ߪ

௝ሺݐሻ െ ଷߣ · ሻݐ௠ሺߝ ·  
ఓ೔ሺ೟ሻሺ௑೘ሻ·௥ሺ௧ሻ
∑ ఓ೔ሺ೟ሻሺ௑೘ሻೖ
೔సభ

൅

ଷߚ · ௜ߪ∆
௝ሺݐ െ 1ሻ (5.9) 

                     :݁ݎ݄݁ݓ

ሻݐ௠ሺߝ ൌ ሻሻݐሺߠ|௖௥௜௦௣ሺܺ௠ݕ െ ௠ݕ

ሻݐሺݍ ൌ ሺܾ௜ሺݐሻ െ ሻሻሻݐሺߠ|௖௥௜௦௣ሺܺ௠ݕ · ቆ
௫೘
ೕ ି௖೔

ೕሺ௧ሻ

ሺఙ೔
ೕሺ௧ሻሻమ

ቇ

ሻݐሺݎ ൌ ሺܾ௜ሺݐሻ െ ሻሻሻݐሺߠ|௖௥௜௦௣ሺܺ௠ݕ ·
൬௫೘

ೕ ି௖೔
ೕሺ௧ሻ൰

మ

ቀఙ೔
ೕቁ
య

   (5.10)

  

ܽ݊݀                                  
∆ܾ௜ሺݐ െ 1ሻ ൌ ܾ௜ሺݐሻ െ ܾ௜ሺݐ െ 1ሻ
∆ܿ௜

௝ሺݐ െ 1ሻ ൌ ܿ௜
௝ሺݐሻ െ ܿ௜

௝ሺݐ െ 1ሻ
௜ߪ∆

௝ሺݐ െ 1ሻ ൌ ௜ߪ
௝ሺݐሻ െ ௜ߪ

௝ሺݐ െ 1ሻ
  (5.11) 

 

5.4.2 Back-Error-Propagation Algorithm for Mamdani FRBS 

By using Eqs. 5.5 and 5.6 already developed in Section 5.3.1 and taking the partial 

derivatives of Eq. 5.5 with respect to each parameter in ߠ ൌ ൫ܾ௜, ௜ߪ
௬, ܿ௜

௝, ௜ߪ
௝|݅ ൌ 1, . . , ݇; , ݆ ൌ

1, . . , ݊൯, one can end up with the following parameter updating formulas. Here, ܾ௜ is the 

output of the ݄݅ݐ rule and equals to ܿ௜
௬ (the centre of the ݄݅ݐ output membership function) in 

this work; ߪ௜
௬ is the spread of the ݄݅ݐ output membership function; ܿ௜

௝ and ߪ௜
௝ are the centre 

and the spread of the ݄݅ݐ membership function for the ݆݄ݐ input; ߣଵ~ߣସ and ߚଵ~ߚସ are user-

specific parameters and are the step seizes and the gains of momentum terms respectively 

(refer to Section 5.3.1  for the definitions of other parameters).The detailed deduction steps 

can be found in Appendix A.  



 

- 122 - 
 

- 122 - Chapter 5: An Immune Inspired Multi-Objective Fuzzy Modelling (IMOFM) 

ݐ௜ሺܾ      :ݓܽܮ ݃݊݅ݐܽ݀݌ܷ ݏݐ݊݁ݑݍ݁ݏ݊݋ܥ ݄݁ݐ ݂݋ ݁ݎݐ݊݁ܥ ൅ 1ሻ ൌ ܾ௜ሺݐሻ െ ଵߣ · ሻݐ௠ሺߝ ·

ఓ೔ሺ೟ሻሺ௑೘ሻ·ቂ௚ቀ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ ቁା௕೔ሺ೟ሻ·௚ᇲ൫௕೔ሺ೟ሻ൯ି௚ᇲ൫௕೔ሺ೟ሻ൯·௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯ቃ

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
൅ ଵߚ · ∆ܾ௜ሺݐ െ 1ሻ  (5.12) 

௜ߪ     :ݓܽܮ ݃݊݅ݐܽ݀݌ܷ ݏݐ݊݁ݑݍ݁ݏ݊݋ܥ ݄݁ݐ ݂݋ ݀ܽ݁ݎ݌ܵ
௬ሺݐ ൅ 1ሻ ൌ ௜ߪ

௬ሺݐሻ െ ଶߣ · ሻݐ௠ሺߝ ·

ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ᇲቀఙ೔ሺ೟ሻ
೤ ቁ·ൣ௕೔ሺ೟ሻି௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯൧

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
൅ ଶߚ · ௜ߪ∆

௬ሺݐ െ 1ሻ  (5.13) 

௜ܿ          :ݓܽܮ ݃݊݅ݐܽ݀݌ܷ ݁ݏ݅݉݁ݎܲ ݄݁ݐ ݂݋ ݁ݎݐ݊݁ܥ
௝ሺݐ ൅ 1ሻ ൌ ܿ௜

௝ሺݐሻ െ ଷߣ · ሻݐ௠ሺߝ ·

௚ቀ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ ቁ·ൣ௕೔ሺ೟ሻି௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯൧

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
· ௜ሺ௧ሻሺܺ௠ሻߤ · ቈ

௫೘
ೕ ି௖೔ሺ೟ሻ

ೕ

ሺఙ೔ሺ೟ሻ
ೕ ሻమ

቉ ൅ ଷߚ · ∆ܿ௜
௝ሺݐ െ 1ሻ  (5.14) 

௜ߪ       :ݓܽܮ ݃݊݅ݐܽ݀݌ܷ ݁ݏ݅݉݁ݎܲ ݄݁ݐ ݂݋ ݀ܽ݁ݎ݌ܵ
௝ሺݐ ൅ 1ሻ ൌ ௜ߪ

௝ሺݐሻ െ ସߣ · ሻݐ௠ሺߝ ·

௚ቀ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ ቁ·ൣ௕೔ሺ೟ሻି௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯൧

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
· ௜ሺ௧ሻሺܺ௠ሻߤ · ቈ

ሺ௫೘
ೕ ି௖೔ሺ೟ሻ

ೕ ሻమ

ሺఙ೔ሺ೟ሻ
ೕ ሻయ

቉ ൅ ସߚ · ௜ߪ∆
௝ሺݐ െ 1ሻ  (5.15) 

௠ߝ ؜ ሻߠ|௖௥௜௦௣ሺܺ௠ݕ െ ௠ݕ
;݁ݎ݄݁ݓ ݃ᇱሺܾ௜ሻ ؜ ݃,൫ܾ௜, ௜ߪ

௬൯|௕೔ ൌ
ଵ

ଵାቆ
೤ಽష್೔
഑೔
೤ ቇ

మ െ
ଵ

ଵାቆ
೤ೆష್೔
഑೔
೤ ቇ

మ

݃ᇱ൫ߪ௜
௬൯ ؜ ݃,൫ܾ௜, ௜ߪ

௬൯|ఙ೔೤ ൌ
ଵ
,ఙ೔
೤ · ൦݃൫ܾ௜, ௜ߪ

௬൯ ൅ ௬ಽି௕೔

ଵାቆ೤ಽష್೔
഑೔
೤ ቇ

మ െ
௬ೆି௕೔

ଵାቆ೤ೆష್೔
഑೔
೤ ቇ

మ൪

  (5.16) 

Comparing Eqs. 5.7~5.11 with Eqs. 5.12~5.16 leads to the conclusion that the two sets of 

parameter updating formulas (one for IMOFM_S and the other one for IMOFM_M) are very 

similar to one another. The only difference lies in the fact that the latter (Eqs. 5.12~5.16) 

include extra items, such as ݃൫ܾ௜, ௜ߪ
௬൯ (refer to Eq. 5.6) and its partial derivatives with respect 

to ܾ௜   and ߪ௜
௬ , which allows the updating formulas to adjust the spreads of the output 

membership functions as well.    

5.4.3 Constraint Back-Error-Propagation Algorithm 

One problem associated with the above BEP updating formulas is that they include no 

constraints with respect to the update mechanism of these parameters. Hence, during the 

course of the optimisation, the centres are likely to be placed outside the boundaries. 

Although this does not affect the ultimate accuracy of FRBS, it may cause confusion for the 

users when assigning linguistic labels, and more importantly it may violate the search space 
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which will be defined in the next modelling stage. Hence, in this work, a constraint handling 

scheme is added, which checks the boundary violation for centres during each iteration step 

and drives any violated centres back to the boundaries. The process is illustrated in Figure 

5.5.  

 

Figure 5.5 Violated solutions are dragged back to the boundaries. 

5.4.4 An Example of Application 

As the continuation of the example shown in Sections 4.4.3 and 5.3.2, the elicited FRBSs in 

those sections are further optimised (viz. parameter optimisation) using the developed BEP 

updating formulas. It is worth mentioning that the step sizes ߣଵ~ߣସ  and the gains of 

momentum terms ߚଵ~ߚସ are all set to 0.03 in this work without any loss of generality. The 

number of iterations is set to 1500 for Singleton FRBS and 600 for Mamdani FRBS, which 

are the empirical numbers that ensure the convergence of the BEP algorithm. Since this 

example is only exploited for illustration purposes and the data itself is very limited, the 

whole data set is used for training. Hence, the over-training problem is not the particular 

concern in this section. Such problem will be formally dealt with in Chapter 6 by dividing the 

data set into training and testing sets for all applications. For some applications, such as 

Ultimate Tensile Strength, a small extra data set is also available, which serves as the 
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validation set in our work. Figures 5.6 and 5.7 show the refined Singleton and Mamdani 

FRBSs along with their membership functions.  

 

Figure 5.6 (a) the refined Singleton FRBS; (b) its associated membership functions. 
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Figure 5.7 (a) the refined Mamdani FRBS; (b) its associated membership functions. 

As one can see from Figures 5.6 and 5.7, the knowledge discovered by Singleton FRBS and 

Mamdani FRBS is consistent in terms of the distributions and the combinations of the 

membership functions (linguistic terms). However, the Mamdani FRBS has the advantage of 

being able to express clear semantic meanings in its consequents due to the inclusion of the 

width. As mentioned in Sections 4.4.3 and 5.1.4, the automatic rule induction process and 

unconstrained optimisation often lead to a deteriorated interpretability, and this is firmly 

supported by Figures 4.21, 5.6 and 5.7. It is because of this reason that the third modelling 

stage is a necessity and is normally included to improve model transparency. Figure 5.8 

shows the predictive performances of the refined Singleton and Mamdani FRBSs by plotting 

their predicted outputs against the real outputs.    
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Figure 5.8 (a) the predictive performances of the initial and the refined Singleton FRBS; (b) 

the predictive performances of the initial and the refined Mamdani FRBS. 

 

Table 5.2 summarises the predictive performances of the second modelling stage when using 

Singleton FRBS and Mamdani FRBS. The results are the average values of 20 independent 

runs. It can be seen from this table that, after the BEP refinement, both FRBSs’ predictive 

performances are singificantly improved.  

TABLE 5.2 
THE PREDICTIVE PERFORMANCES OF THE SECOND MODELING STAGE OF IMOFM_S AND IMOFM_M ON 

A NONLINEAR STATIC SYSTEM WITH FIVE RULES 

Modeling Methods 
The Predictive Performance of FRBSs from the 2nd Stage 

RMSE (average)  Std.  Time (sec.) 

IMOFM_S  0.0688  0  120 

IMOFM_M  0.0702  0  37 
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5.5 Third Stage: Immune Algorithms-based Multi-Objective 

Fuzzy Modelling  

An optimal FRBS can be obtained by optimising the rule-base structure and membership 

function parameters either simultaneously or separately. The previous two modeling stages 

can be viewed as the instances of a separate structure and parameter learning. The drawbacks 

of the separate learning option are as follows:  

 Only a ‘sub-optimal’ result may be obtained since both the structure and the 

parameters of the rule-base need to cooperate to provide a satisfactory FRBS. 

 The separate learning structure relies too strongly on subjective judgment. Hence, 

only challenge 2, namely the need to set the start points, as mentioned in Section 5.1.4 

would have been solved by the first two stages, which should mainly be attributed to 

the global search capacity of the G3Kmeans algorithm. As far as the other two 

limitations are concerned, one still has to set the initial abstraction level and only an 

approximate FRBS with obscure semantics can be elicited as a result.  

To improve the interpretability of such an approximate FRBS, the authors in (Setnes et al., 

1998; Setnes et al., 2000; Roubos et al., 2001; Chen et al., 2001) performed model 

simplifications and fine-tunings. The learning procedure described in these research 

investigations can still be labeled as being a separate learning process so that model 

simplifications rely heavily on the pre-specified thresholds according to the designer’s 

choice. Wang et al. (2005) proposed a hierarchical scheme to evolve both parts. However, a 

rule matrix was required, which rendered the scheme vulnerable to high dimensional 

problems due to the exponential increase in the matrix dimension. Research work reported in 

(Jim݁́nez et al., 2001; Jim݁́nez et al., 2002; Gonzܽ́lez et al., 2007) adopted a variable length 

coding strategy in order to cope with high dimensional problems. However, as mentioned in 

Section 5.1.5, only heuristic variation operators are used in these works, which did not do 

justice to the idea of using variable length coding. In fact, it may somehow impede the search 

power of EAs as far as the real-valued optimisation part is concerned. Apart from these 

problems, research investigations in (Setnes et al., 1998; Setnes et al., 2000; Roubos et al., 

2001; Jim݁́nez et al., 2001; Jim݁́nez et al., 2002; Wang et al., 2005; Gonzܽ́lez et al., 2007) 

dealt with TSK FRBS with linear functions as their consequents, which detracts from the 

linguistic attempts of the authors’ proposed methods.   
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The proposed approach in this current research work utilises a multi-objective optimisation 

framework and a variable length coding scheme, which does not suffer from ‘the curse of 

dimensionality’. A set of FRBSs representing the trade-offs between interpretability and 

accuracy are obtained through a single run, and only the maximum allowable number of rules 

is required a priori, which reduces any user intervention during the whole design process to a 

minimum level. As can be seen from Figure 5.3, a ‘variable length coding scheme’ and a 

‘model simplification’ are integrated into the original PAIA2 to account for parameter and 

structure optimisation. A new distance index is proposed to facilitate the use of the original 

variation operator in PAIA2. Details of these operators and the way of formulating objective 

functions and the initial population pool are explained next. 

5.5.1 Formulation of the Objective Functions 

Ishibuchi (2004) formed three objective functions with the first one being concerned with the 

classification accuracy and the rest two focusing on the structure optimisation. In the work 

presented by Jim݁́nez (2001), similar objectives were formed with the first one relating to the 

predictive accuracy and the rest two being concerned with transparency and compactness 

measures.  

However, not all the above objectives represent conflicting objectives which may lead to the 

difficulty in achieving a good distribution over the entire Pareto front. Furthermore, as 

pointed out by Ishibuchi (2008), the search capability of evolutionary multi-objective 

optimisation algorithms is severely deteriorated by the increase in the number of objectives. 

Hence, only two conflicting objective functions are formulated with the first focusing on the 

prediction accuracy and the second on the structure simplification as described in Eq. 5.17, 

where, Nrule is the number of fuzzy rules in FRBS; Nset is the total number of fuzzy sets; RL 

is the summation of the rule length of each rule.  

ܧܵܯܴ          :1 ݁ݒ݅ݐ݆ܾܱܿ݁ ൌ ට∑ ሺ௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ ି௬೘ሻమಿ
೘సభ

ே
    

݈݁ݑݎܰ         :2 ݁ݒ݅ݐ݆ܾܱܿ݁                ൅ ݐ݁ݏܰ ൅                                               ܮܴ
  (5.17) 
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5.5.2 Formation of Initial Population Pool 

The vaccine model elicited from the first two stages is used to seed the initial population pool 

so that a set of initial FRBSs will be randomly generated around the original vaccine model 

using the following equations: 

௜௡௜௧௜௔௟௜ܥ
௝ ൌ ߙ · ௝݁݃݊ܽݎ · ݊݀݊ܽݎ ൅ ௩௔௖௖௜௡௘௜ܥ

௝

௜௡௜௧௜௔௟௜ߪ
௝ ൌ ߚ · ݊݀݊ܽݎ ൅ ௩௔௖௖௜௡௘௜ߪ

௝

௜௡௜௧௜௔௟௜ܥ
௬ ൌ ߙ · ௬݁݃݊ܽݎ · ݊݀݊ܽݎ ൅ ௩௔௖௖௜௡௘௜ܥ

௬

௜௡௜௧௜௔௟௜ߪ
௬ ൌ ߚ · ݊݀݊ܽݎ ൅ ௩௔௖௖௜௡௘௜ߪ

௬

   (5.18) 

݁݃݊ܽݎ ൌ minሺ|ܥ௩௔௖௖௜௡௘ െ ௟ܷ௜௠௜௧|, ௩௔௖௖௜௡௘ܥ| െ  ௟௜௠௜௧|ሻ  (5.19)ܮ

where, ܥ௩௔௖௖௜௡௘௜
௝  and ߪ௩௔௖௖௜௡௘௜

௝  are the centre and spread of the ith rule and the jth input 

membership function in the original vaccine FRBS extracted from the first two modelling 

stages.  ܥ௩௔௖௖௜௡௘௜
௬  and ߪ௩௔௖௖௜௡௘௜

௬  are the centre and the spread of the ith rule’s consequent. 

When IMOFM is used for evolving the Singleton FRBS, ߪ௩௔௖௖௜௡௘௜
௬ is not included. ݊݀݊ܽݎ is 

a random number within [0, 1]. ‘݁݃݊ܽݎ’ defines the minimum interval between the centre 

and its corresponding upper ௟ܷ௜௠௜௧  and lower ܮ௟௜௠௜௧  limits of the input (or the output) 

variable, whichever is smaller. The inclusion of ‘݁݃݊ܽݎ’ is to ensure that the newly generated 

centres are most likely within the inputs’ (or the output’s) domains. Any violation of the 

domains will be corrected by dragging those centres (or consequents) back to the upper or 

lower limits, whichever is closest. ߙ and ߚ are the user specified parameters which define 

how much different the newly generated FRBSs are from the original vaccine one in order to 

maintain a certain diversity in the initial population. 

Finally, the newly generated FRBSs and the original vaccine model will all be included in the 

initial population pool. Such a ‘forming’ approach only acquires the knowledge about the 

maximum allowable number of rules and the data so that emphasis of the third modelling 

stage is placed on the automatic elicitation of a set of FRBSs in the ‘Pareto’ sense. 

Alternatively, if more information about the system is available the initial population pool 

can be formed using expert knowledge, or some heuristics, which means that the first two 

modelling stages are not necessarily needed. The aim of the third modelling stage is then to 

locate more solutions between these already known models, i.e. filling up the gaps in the 

limited prior knowledge. Figure 5.9 visualises the aforementioned two ‘forming’ options. As 
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already shown in Section 3.4.1, PAIA2 is not sensitive to the size of initial population, which 

ensures the feasibility of the proposed forming method as one can form as many initial 

populations as necessary.  

In the following experiments, the initial population pool is formed using Eqs. 5.18 and 5.19 

since no prior knowledge about the problems is assumed. ߙ and ߚ are set to 0.2 and 0.1 

respectively in the following experiments without any loss of generality.  

 

Figure 5.9 (a) If the initial population is formed using the 1st option, IMOFM is responsible 

for evolving the population towards the Pareto front; (b) if the initial population is 

formed using the 2nd option, IMOFM is responsible for filling the gaps between 

the limited knowledge. 

5.5.3 A Variable Length Coding Scheme 

The encoding scheme plays a vital role in all types of EA-based optimisation. As far as multi-

objective fuzzy modelling is concerned, different encoding schemes have been proposed and 

can be broadly divided into two categories: 
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1. Encoding based on the global data base (linguistic term set);  

2. Encoding based on the effective rule parameters.  

The former is mainly found in the linguistic modeling stream (Ishibuchi et al., 2004; 

cococcioni et al., 2007; refer to Section 5.1.5), in which a global linguistic term set (data-

base) is given a prior so that a string or a rule matrix can be formed as the chromosome in 

order to select the effective rules and linguistic terms from the candidate set; key to this type 

of encoding is that the global data-base is kept unchanged. The latter is mainly found in the 

approximate modelling stream (see Section 5.1.5) due to the lack of global data-base 

(Jim݁́nez et al., 2001; Jim݁́nez et al., 2002; Wang et al., 2005). In the research investigation 

carried-out by Alcalܽ́ et al. (2007) and Gonzܽ́lez et al.(2007), variants of the first encoding 

scheme were described, in which the encoding comprised the structure coding and the 

parameter (data-base) coding. The structure coding controls the ‘on-and-off’ of the genes in 

the parameter coding. The drawback of using the first encoding scheme and its variants is that 

it suffers from ‘the curse of dimensionality’. In such a case, the length of the chromosome 

grows exponentially with the increased dimensions. A typical problem associated with these 

variants is illustrated in Figure 5.10 (a). Since most heuristic search methods rely on the 

interaction between individuals in the phenotypic space, which is the major thrust directing 

the search mechanism, an ineffective real-valued optimisation may be induced because some 

active parameter genes (grey ones) may interact with the inactive ones (blank ones). Such a 

problem can also be found in the work of Zhang et al. (2007) (see Figures 5.10 (b) and (c)), 

where a fixed length coding according to the maximum allowable number of rules is adopted, 

an ineffective optimisation may be induced because some parts of the long FRBS may 

interact with the ‘inactive’ part of the one with fewer rules. Conversely, if only the effective 

rule parameters are included in the coding, a variable length coding scheme is inevitable. One 

of the first attempts of this type for designing fuzzy controllers has been proposed by Cooper 

et al. (1994). Similar coding schemes can be found in (Jim݁́nez et al., 2001; Jim݁́nez et al., 

2002; Wang et al., 2005). Such a variable length coding scheme, which only encodes 

effective rules, is also employed in this work to account for the efficiency of the search and 

the curse of dimensionality. Since only the parameters of effective rules are encoded, the 

increase of the code length is only linear to the variable’s dimension. Figures 5.10 (b) and (c) 

give examples of how to encode Singleton and Mamdani FRBSs with the different number of 

rules. 
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Figure 5.10 (a) Ineffective optimisation caused by the interaction of inactive gene (grey 

ones) and active gene (blank ones); (b) and (c) variable length coding scheme 

for a three-rule Singleton/Mamdani FRBS and  a six-rule Singleton/Mamdani 

FRBS. 

Given the variable length coding scheme and the unconstrained optimisation, a concomitant 

effect of the so-called ‘unordered sets of rules’ (Magdalena, 1998) may occur as shown in 

Figure 5.11, where FRBS1 and FRBS2 are exactly the same. However, because of the blind 

search mechanism, values encoded in ‘Rule1’ and ‘Rule7’ became different within the two 

FRBSs. Alternatively, rules may be deleted, e.g. Rule7 in FRBS2. Hence, a special procedure 

is required to align the closest rules from different FRBSs in order to have a meaningful 

crossover on the ‘unordered sets of rules’ (Cooper et al., 1994; Magdalena, 1998). Although 

this problem has been realised and solved early-on during the development of the binary GA-

based fuzzy controller, it was somehow overlooked later in the development of real-valued 

GA-based fuzzy models.  In the research work proposed by Jim݁́nez et al. (2001, 2002), 

arithmetic crossovers based on the random rules are employed both on the rule level and 

parameter level to account for the parameter tuning. As pointed out by Cooper et al. (1994), 
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such crossovers are equivalent to combining the mother’s gene for good vision and father’s 

gene for curly hair, which does not make much sense. In Gonzܽ́lez et al.’ proposal (2007), 

although the alignment procedure is used, the so-called ‘naive real-valued crossover’ (Deb, 

2001, p. 112) is included for the real parameter tuning, which impedes the search as far as the 

real-valued optimisation is concerned.  

 

Figure 5.11 The problems associated with the FRBS having different rule lengths and 

unconstrained optimisation.  

A similar problem is encountered if one wishes to use PAIA2 in the fuzzy modeling scenario. 

In the case shown in Figure 5.11, a very large distance is produced as the affinity value if the 

conventional distance measure, e.g. Euclidean distance, is directly used. In PAIA2 this would 

lead to a very large mutation, however, only a small or a non-jump is needed if the two 

interacted FRBSs are similar or exactly the same. To tackle the aforementioned problems, a 

new distance index is proposed to calculate the affinity for PAIA2 in the activation step. This 

will facilitate the use of the original effective search operator, viz. affinity maturation.  The 

basic idea is to find the distance of the closest rules in different FRBSs rather than the 

distance of the corresponding rules. Hence, ‘Rule1’ in FRBS1 will be paired with ‘Rule7’ in 

FRBS2. The mathematical description of the idea is as follows: 

൫ݐݏ݅݀ ௝ܴ, ܴ௞൯ ൌ
∑ ∑ ቀோೕ

೔భሺ௟ሻିோೖ
಴೔భሺ௟ሻቁೝ೗

೗సభ
ೖభ
೔భసభ ା∑ ∑ ቀோೖ

೔మሺ௟ሻିோೕ
಴೔మሺ௟ሻቁೝ೗

೗సభ
ೖమ
೔మసభ

௥௟·ሺ௞ଵା௞ଶሻ
   (5.20) 
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where, ௝ܴ  and ܴ௞  are two FRBSs with ݇1  and ݇2  rules; ݈ݎ  is the length of the rule; 

ܴ௞
஼೔భ ( ௝ܴ

஼೔మሻ represents the closest rule in ܴ௞  ሺ ௝ܴ) with respect to the ݅1݄ݐ ሺ݅2݄ݐሻ rule in ௝ܴ 

ሺܴ௞ሻ. The above distance index is used to replace the one in PAIA2 for calculating the 

affinity (see Section 3.2.1 and Eqs. 3.1~3.2). 

5.5.4 Improvement of Interpretability 

As one can see from Figure 5.3, a model simplification step is added to PAIA2. The aim is to 

remove the redundancy both in the rules and in the fuzzy sets so that one can achieve the 

FRBS structure optimisation along with the accuracy at the same time. There are five steps 

involved in the model simplification module, which are discussed in the following Sections. 

The effects of the thresholds introduced in Sections 5.5.4.1~5.5.4.5 will also be analysed in 

Section 5.6.2.  

5.5.4.1 Removing Unimportant Rules 

Inspired by the idea behind neural network pruning, the unimportant rules are those rules that 

contribute the least to any prediction error increase when not including this rule, as described 

by Eq. 5.21. This occurs because other rules may already have covered the input region under 

these rules.  

௥௨௟௘ݐ݂݊ܽܿ݅݅݊݃݅ݏ݊ܫ ൌ min௜|ܴܧܵܯ஺ோ െ |ప̃ܧܵܯܴ     ݅ ൌ 1,… , ݇   (5.21) 

where,  ܴܧܵܯ஺ோ is the root mean square error when all the rules in the rule base are used for 

predicting; ܴܧܵܯప̃ is the predictive error associated with the rule base when the ݅th rule is 

temporarily excluded. Insignificant rules are deleted when the following condition is met: 

ቀ ௖௥
௠௔௫௥

ቁ · ݀݊ݎ ൐  ௠  (5.22)݌

where, ܿݎ  is the number of rules in the current FRBS; ݉ܽݎݔ  is the maximum allowable 

number of rules, which equals the number of clusters used in the first modelling stage; rnd is 

a random number between [0, 1]. ݌௠ is a design parameter which limits the fewest rules in 

FRBS (in other words, the maximum rules that can be regarded as the insignificant rules) and 

has been set to 0.5 in this work without any loss of generality. At each iteration step, each 

cloned individual has one insignificant rule removed unless the rule base reaches the fewest 

rules designated by Eq. 5.22. 



 

- 135 - 
 

- 135 - Chapter 5: An Immune Inspired Multi-Objective Fuzzy Modelling (IMOFM) 

5.5.4.2 Removing Singleton Rules 

Singleton rules are those rules which include fuzzy sets that are similar to the singleton set. 

Such rules should be removed because they may not be fired in most cases and may not be 

desirable for the generation of an interpretable rule-base (Wang et al., 2005). These may be 

deleted subject to the following condition: 

∑ ఙ೔
ೕ

௡
൏ ݎ݀ݎ_݄ݐ ؜ ݀݊ݎ · ௡ݎ݀ݎ

௝ୀଵ   (5.23) 

where, n is the input dimension; ݎ݀ݎ_݄ݐ  is a design parameter which randomly changes 

between [0, ݎ݀ݎ] every t iterations and ݎ݀ݎ is 0.01 in the following experiments without any 

loss of generality. At each iteration step, one singleton rule is removed for each cloned 

individual given condition 5.23 is met. 

5.5.4.3 Merging Similar Rules 

During the simplification and the optimisation operations, rules may have similar fuzzy sets 

in the antecedent part. These rules should be merged together by taking the mean values of 

those fuzzy sets to keep the FRBS consistent and parsimonious. To measure the similarity of 

rules, the so-called similarity of rule premise (SRP) (Jin et al., 1999) is used in this thesis. 

The following condition should be met for merging a pair of similar rules of each cloned 

individual at each iteration step:  

ܴܵܲሺ݅, ݈ሻ ؜ ݉݅݊ ൜ܵ൫ܣ௜
௝, ௟ܣ

௝൯, ݆ ൌ 1,… , ݊
݅, ݈ ൌ 1,… , ݇; ݅ ് ݈ൠ ൐ ݎ݉_݄ݐ ؜ ݀݊ݎ · ሺ1 െ ሻݎ݉ ൅  (5.24)  ݎ݉

where, ܵ൫ܣ௜
௝, ௟ܣ

௝൯ are the similarity between two fuzzy sets and will be explained in Section 

 every t (specified [1 ,ݎ݉] is the threshold which randomly changes between ݎ݉_݄ݐ ;5.5.4.5

by the user) iterations and ݉ݎ is 0.95 in this work without any loss of generality.  

The above three operations (see Sections 5.5.4.1~5.5.4.3) are applied to the rule level as 

visualised by Figure 5.12. 



 

- 136 - 
 

- 136 - Chapter 5: An Immune Inspired Multi-Objective Fuzzy Modelling (IMOFM) 

 

Figure 5.12 The example used in Section 4.3.1.1 with two inputs: (1) R1 and R5 are similar 

rules; (2) R6 is the singleton rule; (3) R7 is the insignificant rule.  

5.5.4.4 Removing Universal Fuzzy Sets 

Fuzzy sets which meet the following condition are regarded as universal fuzzy sets and are 

therefore deleted: 

ܵ൫ܣ௜
௝, ܷ൯ ൐ ݏ݂ݑ_݄ݐ ؜ ݀݊ݎ · ሺ1 െ ሻݏ݂ݑ ൅  (5.25) ݏ݂ݑ

where, ܷ is the universal fuzzy set; ݏ݂ݑ_݄ݐ is the threshold which randomly changes between 

 is 0.85 in this work. For computation purpose, if the ݏ݂ݑ generations and ݐ every [1 ,ݏ݂ݑ]

width of a fuzzy set is more than two times wider than the universe of discourse of the 

corresponding dimension, it is regarded as the universal fuzzy set. Figure 5.13 illustrates such 

a case, where the centre of the fuzzy set is 0.5 and the spread is 2 on the universe of 

discourse: [0, 1]. 
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Figure 5.13 A fuzzy set with its spread more than two times wider than the universe of 

discourse is regarded as the universal fuzzy set.  

5.5.4.5 Merging Similar Fuzzy Sets 

Jin (2000) proposed a simplified similarity measure based on the distance measure if 

Gaussian membership functions are involved. Although this measure does not satisfy all the 

conditions mentioned by Setnes et al. (1998), it works well when it tries to locate similar 

fuzzy sets in our case. Two fuzzy sets are considered to be similar if the following condition 

is met: 

ܵ൫ܣ௜
௝, ௟ܣ

௝൯ ݎ݋ ܵ൫ܣ௜
௬, ௟ܣ

௬൯ ൐ ݏ݂ݏ_݄ݐ ؜ ݀݊ݎ · ሺ1 െ ሻݏ݂ݏ ൅ ݏ݂ݏ
ܵ൫ܣ௜

௝, ௟ܣ
௝൯ ൌ ଵ

ଵାටሺ௖೔
ೕି௖೗

ೕሻమାሺఙ೔
ೕିఙ೗

ೕሻమ

ܵ൫ܣ௜
௬, ௟ܣ

௬൯ ൌ ଵ

ଵାටሺ௖೔
೤ି௖೗

೤ሻమାሺఙ೔
೤ିఙ೗

೤ሻమ

  (5.26) 

where, ݏ݂ݏ_݄ݐ is the threshold which randomly changes between [1 ,ݏ݂ݏ] every ݐ generations 

and ݏ݂ݏ is set to 0.95 in this work. The mean values of two similar fuzzy sets are calculated 

in order to substitute the original two fuzzy sets. It is worth mentioning that ܵ൫ܣ௜
௬, ௟ܣ

௬൯ is also 

checked if IMOFM_M is used. Figure 5.14 shows an example of merging two fuzzy sets with 

the same width and different centres at 0.45 and 0.5 respectively. 
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Figure 5.14 An example of merging similar fuzzy sets. 

It is worth mentioning that all the simplification processes, except for the ‘insignificant 

rules’, have only α chance to be evoked at each iteration, where α is taken to be 20% in this 

work without any loss of generality. The similarity measures mentioned in Sections 5.5.4.4 

and 5.5.4.5 will be checked for each fuzzy set. Only the ones with the maximum similarity 

values will be deleted or merged during each iteration step provided the conditions mentioned 

in Eqs. 5.25 and 5.26 are also met. For this reason and because of the elitism which records 

any non-dominated solution found at each iteration step during the experiments, it was found 

that the aforementioned thresholds are not critical parameters. Section 5.6.2 expands on such 

observation.  

5.5.5 Algorithm Implementation Issues 

Due to the simultaneous optimisation of the rule base structure and its parameters in the third 

modelling stage, some issues regarding the practical implementation of the algorithm should 

be treated with a special caution and deserves more exploration in this Section. In the 

following space, three issues are discussed, which are all vital to the proposed mechanisms 

for improving model’s interpretability in the third modelling stage. 
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The first issue is that the rule-base should be normalised before the third modelling stage is 

use so that all the centres lie within the interval [0, 1]. This is to ensure that the affinity 

maturation operator described in Section 3.2.1 is still an effective search operator even if the 

scales of different dimensions are quite different. Eq. 5.27 provides the formulas on how to 

normalise a rule base. Where, ܷ௝  and ܮ௝  are the upper and lower limits on the ݆th input 

dimension; ܷ௬ and ܮ௬ are the upper and lower limits on the output dimension. It is worth 

mentioning that ߪ௜
௬_݊݉ݎ݋ is only calculated when IMOFM_M is adopted.  

ܿ௜
௝_݊݉ݎ݋ ൌ ሺܿ௜

௝ െ ௝ሻ/ሺܷ௝ܮ െ ௝ሻܮ
௜ߪ
௝_݊݉ݎ݋ ൌ ௜ߪ

௝/ሺܷ௝ െ ௝ሻܮ
ܿ௜
௬_݊݉ݎ݋ ൌ ሺܿ௜

௬ െ ௬ሻ/ሺܷ௬ܮ െ ௬ሻܮ
௜ߪ
௬_݊݉ݎ݋ ൌ ௜ߪ

௬/ሺܷ௬ െ ௬ሻܮ

  (5.27) 

In real applications, the differences between different dimensions are frequently encountered 

and are usually up to many orders of magnitudes. Hence, normalisation is a very important 

step to ensure a good optimisation result. 

The second issue is raised because of the actual use of the rule base coding (see Figure 5.15) 

for the parameter optimisation and the rule-base itself for the structure optimisation. Such a 

scheme of using different representations of the same model for different optimisation 

purposes calls for a link to bridge the gap between the two representations. The link is 

particularly important when the structure optimisation is performed along with the parameter 

optimisation. Without the link, the parameter optimisation operated over the coding 

representation may lose vital structural information which is constantly modified during the 

structure simplifications (optimisation). Figure 5.15 shows one such scenario which may 

cause the mentioned problem if such a link is missing (the example is demonstrated via a 

Mamdani FRBS, however, the observation is applicable to Singleton FRBS as well). 

The upper part of Figure 5.15 is a 3-rule Mamdani FRBS with two inputs and one output. 

Suppose ܣଵଵ and ܣଷଵ are very similar such that the conditions defined in Eq. 5.26 are all met, 

these two membership functions will then be combined into a single one (ܣሙଵଵ) after the step of 

‘merging similar membership functions’ (refer to Section 5.5.4.5). However, when 

converting this simplified rule-base into its coding representation, the code itself will not 

know that ܿଵଵ and ܿଷଵ are indeed from the same membership function ܣሙଵଵ. If it happens that 

PAIA2 chooses ܿଵଵ and ߪଵ
௬ as its mutation points, without the link between the modified rule 

base and its coding representations, PAIA2 will not apply the same optimisation that has been 
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applied to ܿଵଵ to ܿଷଵ. Hence, after the parameter optimisation, the converted rule-base from this 

coding representation will have two distinctive membership functions for the first input in 

Rules 1 and 3, i.e. ܣመଵଵ and ܣሙଵଵ. In other words, the parameter optimisation may not take into 

account the structure optimisation, which also means that the parameter optimisation and the 

structure optimisation cannot work concurrently unless the link between them is already set 

up.  

 

Figure 5.15 If no links are set up for the rule base and its coding representation, a missed 

mutation point may be induced.  

In order to build up such a link, two concepts, namely ‘FISmap’ and ‘RULE’, are introduced 

into IMOFM. The example shown in Figure 5.15 is reinterpreted in Figure 5.16 with the aid 

of ‘FISmap’ and ‘RULE’. The only difference is that ‘Rule 2’ is now subject to deletion. 
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Figure 5.16 If a link is set up, no missed mutation points are induced; inactive rules are not 

actually deleted but marked so that it will not participate in any computations 

afterwards. 

The first concept is the so-called ‘FISmap’ matrix, which is a ݇ ൈ ݊ matrix for IMOFM_S 

and ݇ ൈ ሺ݊ ൅ 1ሻ for IMOFM_M.  The elements of the ݅th row are all initialised to their row 

number and will be constantly updated so that it can reflect the current status of the rule base. 

The number stored in each element serves as the identification number of each membership 

function. For example, during the interpretability improvement operation at each iteration 

step, if the membership function of the first input in the ݅ th rule is very similar to the 

membership function of the same input in the ݆th rule, two membership functions in the rule-

base representation will be merged into a single one. In order to reflect such changes in the 

rule base structure, FISmap is updated, and if ݅ ൏ ݆, FISmap(i, 1) will remain to its initialised 

number ‘i’ and FIS(j, 1) will be updated using the smaller number ‘i’. By doing so, two 

similar membership functions would have been combined into a single one and their 
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corresponding identification numbers would also have been updated using the smaller value. 

If some membership functions’ spreads are wider enough (refer to Section 5.5.4.4 for the 

definition of ‘wide’) to be considered as the universal fuzzy set, then the corresponding 

element in FISmap is updated using ‘inf’ (‘inf’ represents infinity in Matlab®) to reflect this 

fact. However, the real spreads in the rule base representation are set to 5 (recall the universe 

of discourse is normalised within the interval [0, 1]) rather than ‘inf’ for the computational 

purpose. The second concept relates to a so-called vector ‘RULE’, which is a ݇ ൈ 1 vector 

initialised with 1. This vector serves as the flag to indicate which rule in the rule-base is 

active and which rule is inactive. Rules satisfy the conditions defined in Eqs. 5.22~5.24 are 

deleted or merged, which lead to the corresponding elements in ‘RULE’ flipping from 1 to 0 

(hence, ‘Rule 2’ is an inactive rule as shown in Figure 5.16).  

As one can see from Figure 5.16, if PAIA2 chooses ܿଵଵ and ߪଵ
௬ as the mutation points, the 

next step is to check FISmap to see if there are any elements in the same columns of FISmap 

whose identification numbers are the same as FISmap(1, 1) and FISmap(1, 3). If there are 

such elements, such as FISmap(3, 1) in this case, a calculation is carried-out so that 

FISmap(3, 1) is mapped into the index of ܿଷଵ  in the coding representation. It is worth 

mentioning that due to the use of ‘RULE’, the variable length coding scheme is realised 

without the need of deleting the inactive rules. ‘RULE’ is consulted before the new distance 

index (Eq. 5.20) and all the structure simplifications mentioned in Section 5.5.4 can actually 

be performed. Hence, only active rules are involved in those computing.  

The third issue only relates to IMOFM_M. In a Mamdani FRBS, the spreads of the output 

membership functions are also subject to unconstrained optimisation. Hence, it is very likely 

that some spreads become wide enough to be considered as the universal fuzzy set. However, 

it is every hard to associate any meaningful linguistic terms with the universal fuzzy set for 

the consequents. The solution to this problem is to impose a constraint on the spreads of the 

output membership functions so that they will not exceed 1 in a normalised universe of 

discourse.    

5.5.6 An Example of Application 

As the continuation of the example shown in Sections 4.4.3, 5.3.2 and 5.4.4, the elicited 

FRBSs in these Sections are further optimised (viz. simultaneous optimisation of the 

parameters and the rule-base structure) in this section using the developed IMOFM_S and 
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IMOFM_M. The refined Singleton and Mamdani FRBSs (see Section 5.4.3) are used as the 

‘vaccine FRBSs’ to generate a set of seven initial individuals using Eqs. 5.18 and 5.19, each 

including five rules. The number of iterations is set to 1200 for both IMOFM_S and 

IMOFM_M. The network suppression threshold of PAIA2 is set to 0.0008 for this example to 

manage the population within the solution pool. The effect of this parameter on the final 

solutions is analysed in Section 5.6.2. Other parameters of PAIA2 are kept the same as those 

introduced in Section 3.4. In order to obtain a quantitative comparison of the proposed 

method with other well-known fuzzy modelling paradigms, IMOFM is compared with the 

methods proposed by Wang et al., (2005), Lin et al., (1997), Sugeno et al., (1993), Delgado 

et al., (1997) and Chen et al., (2004). Table 5.3 summarises such comparative results 

focusing on their predictive performances (RMSE). The results in Table 5.3 include the 

average values of 30 runs.  

TABLE 5.3 
COMPARISONS OF THE PREDICTIVE PERFORMANCE OF THE DIFFERENT MODELING METHODS FOR THE EXAMPLE  

Modeling Methods (Ref.) No. of 
rules 

No. of fuzzy sets&

 
No. of 

Parameters 
Consequents Performance 

(RMSE training) 
Y. H. Lin et al., (1997) 6 12 trapzoidal*/Gaussian@ 30*/42@ Singleton 0.5925* 0.0707@ 

M. Sugeno et al., (1993) 6 12 trapzoidal 72 Fuzzy sets 0.5639* 0.2811@ 

M. Delgado et al., (1997) 5 10 25 Singleton 0.5604* 0.3391@ 

H. L. Wang et al., (2005)       
   Initial  6 12 Gauss2mf. 66 Linear  - 0.1755@ 
   Pareto FRBS1 7 6 Gauss2mf. 45 Linear  0.0298# 

   Pareto FRBS2 4 3 Gauss2mf. 24 Linear  0.0520# 

   Pareto FRBS3 3 2 Gauss2mf. 17 Linear  0.0719# 

M. Y. Chen et al., (2004)       
   Pareto FRBS1 4 8 Gaussian 28 Linear  0.0656# 

   Pareto FRBS2 4 5 Gaussian 22 Linear  0.0883# 

   Pareto FRBS3 3 5 Gaussian 19 Linear  0.1382# 

   Pareto FRBS4 2 4 Gaussian 14 Linear  0.2750# 

       

IMOFM_S ( NB: Average results over 30 runs are presented here)   
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 3rd stage: 213sec  
   Initial FRBS 5 10 Gaussian 25 Singleton   0.5954* 0.0688@ 
   Pareto FRBS1(30 times) 5 10 Gaussian 25 Singleton  0.0688#  ߪଶ: 0 
   Pareto FRBS2(30 times) 5 9 Gaussian 23 Singleton   0.0696# ߪଶ: 0 
   Pareto FRBS3(12 times) 5 8 Gaussian 21 Singleton 0.0875# ߪଶ: 0.0044 
   Pareto FRBS4(29 times) 4 8 Gaussian 20 Singleton 0.0930# ߪଶ: 0.0105 
   Pareto FRBS5(30 times) 4 7 Gaussian 18 Singleton 0.1152# ߪଶ: 0.0101 
   Pareto FRBS6(29 times) 3 6 Gaussian 15 Singleton 0.1417# ߪଶ: 0.0045 
   Pareto FRBS7(21 times) 3 5 Gaussian 13 Singleton 0.1884# ߪଶ: 0.0042 
   Pareto FRBS8(30 times) 2 4 Guassian 10 Singleton 0.2484# ߪଶ: 0.0015 
   Pareto FRBS9(2 times) 2(6T) 3 Gaussian 8 Singleton 0.7087# ߪଶ: 0.0022 
   Pareto FRBS10(25 times) 2(5T) 3 Gaussian 6 Singleton 0.4769# ߪଶ: 0.0719 

   Pareto FRBS11(1 time) 2(5T) 2 Gaussian 6 Singleton 0.7392# ߪଶ: 0 

   Pareto FRBS12(21 times) 2(4T) 2 Gaussian 6 Singleton 0.7070# ߪଶ: 0.0259 
   Pareto FRBS13(1 times) 1 2 Gaussian 5 Singleton 1.0326# ߪଶ: 0 
   Pareto FRBS14(22 times) 1(2T) 1 Gaussian 3 Singleton 1.0326# ߪଶ: 0 

Table 5.3  to be continued... 
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Table 5.3 continued... 
IMOFM_M (NB: Average results over 30 runs are presented here) 
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 3rd stage: 229sec 
   Initial FRBS 5 15 Gaussian 30 Mamdani  0.6078* 0.0702@ 
   Pareto FRBS1(14 times) 5 15 Gaussian 30 Mamdani  0.0633# ߪଶ: 0.0005 
   Pareto FRBS2(25 times) 5 14 Gaussian 28 Mamdani  0.0651# ߪଶ: 0.0023 
   Pareto FRBS3(22 times) 5 13 Gaussian 26 Mamdani  0.0691# ߪଶ: 0.0017 
   Pareto FRBS4(7 times) 5 12 Gaussian 24 Mamdani  0.0711# ߪଶ: 0.0033 
   Pareto FRBS5(1 time) 5 11 Gaussian 22 Mamdani  0.0756# ߪଶ: 0 
   Pareto FRBS6(10 times) 4 12 Gaussian 24 Mamdani  0.0743# ߪଶ: 0.0013 
   Pareto FRBS7(26 times) 4 11 Gaussian 22 Mamdani  0.0781# ߪଶ: 0.0034 
   Pareto FRBS8(25 times) 4 10 Gaussian 20 Mamdani  0.0961# ߪଶ: 0.0032 
   Pareto FRBS9(3 times) 4 9 Gaussian 18 Mamdani  0.1212# ߪଶ: 0.0042 
   Pareto FRBS10(28 times) 3 9 Gaussian 18 Mamdani  0.1311# ߪଶ: 0.0152 
   Pareto FRBS11(28 times) 3 8 Gaussian 16 Mamdani  0.1846# ߪଶ: 0.0193 
   Pareto FRBS12(12 times) 3 7 Gaussian 14 Mamdani  0.2257# ߪଶ: 0.0014 
   Pareto FRBS13(25 times) 2 6 Gaussian 12 Mamdani  0.2482# ߪଶ: 0.0019 
   Pareto FRBS14(28 times) 2(5T) 5 Gaussian 10 Mamdani  0.2718# ߪଶ: 0.0617 
   Pareto FRBS15(8 times) 2(4T) 4 Gaussian 8 Mamdani  0.4712# ߪଶ: 0.0154 
   Pareto FRBS16(17 times) 2(4T) 4 Gaussian 8 Mamdani  0.7040# ߪଶ: 0.0110 
   Pareto FRBS17(27 times) 1(2T) 2 Gaussian 4 Mamdani  1.0326# ߪଶ: 0 

& For IMOFM_S, it is the number of fuzzy sets in its inputs; for IMOFM_M, it is the number of fuzzy sets in its   
inputs and output.  

 * Initial model extracted directly from data using clustering algorithms or grid partition methods. 
@ Refined model or the consequents are computed through the estimation methods.  
 # Simplified model after model simplification and parameter fine tuning. 
T Total number of rule length. 
 .ଶ Stardard deviation of the results obtained from 30 runsߪ

One challenge associated with EAs-based multi-objective fuzzy modelling algorithms is how 

to include the results from different runs. This is because the algorithms of this type are 

stochastic in their nature. Different runs will lead to slightly different FRBS configurations. 

Hence, Table 5.3 also records the number of each FRBS’ configuration found within the 30 

runs using the whole three-stage modelling procedure. Most configurations are found more 

than 20 times within 30 runs, which suggests that the proposed modelling method is robust 

and consistent. It is worth mentioning at this stage that the FRBS with a short rule length was 

identified. This is mainly attributed to the merging of some fuzzy sets with the universal 

fuzzy set. The proposed method is also compared to other modelling approaches with 

singleton as their consequents, and it was found to represent the most accurate results with 

simpler rule-base structures. Although, Lin et al. (1997) used six rules and led to comparably 

good results, trapezoidal membership functions were used, which included more parameters 

to be tuned compared to the Gaussian membership functions used in the proposed work. In 

contrast, Wang et al. (2005) and Chen et al. (2004) adopted linear TSK structure. The reason 

for including these TSK modelling methods is that they are the representatives in terms of 
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eliciting transparent FRBSs, and there are almost no similar efforts which have been made 

using Singleton or Mamdani modelling approaches. As can be seen from this table, these two 

methods produced slightly better predictions using fewer rules, e.g. four rules, compared to 

five rules in the proposed work. However, due to the linear combinations in the consequents 

of TSK models, the number of parameters involved in these two works and the proposed 

work is more or less the same. Apart from this, although linear TSK models generally use 

fewer rules and still provide better predictions, the linear combinations in the consequents are 

very hard to interpret in terms of linguistic terms, which more or less deviates from their 

original intentions of using MOP algorithm or model simplifications to elicit transparent 

FRBSs. However, the proposed method (both IMOFM_S and IMOFM_M) can provide 

interpretable rule-bases with comparable good predictions. No conclusion will be drawn 

regarding the comparisons of IMOFM_S and IMOFM_M at this point. Such comparisons are 

available in Section 6.5 after further results on different test problems are investigated.  

Figures 5.17 and 5.18 show the Pareto fronts of the example using IMOFM_S and 

IMOFM_M from one of the 30 runs.  

 

Figure 5.17 The Pareto fronts obtained using IMOFM_S from the third modelling procedure 

for the example: (a) Objective1 vs. Objective2; (b) Objective1 vs. Nset; (c) 

Objective1 vs. Nrule; (d) Objective 1 vs. RL. 
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Figure 5.18 The Pareto fronts obtained using IMOFM_M from the third modelling procedure 

for the example: (a) Objective1 vs. Objective2; (b) Objective1 vs. Nset; (c) 

Objective1 vs. Nrule; (d) Objective 1 vs. RL. 

In this project, the decision-making procedure was not explicitly investigated. A rather 

intuitive approach has been carried-out to inspect the Pareto fronts and to focus on each 

individual FRBS. In doing so, a 4-rule simplified FRBS with 7 fuzzy sets is chosen as a 

possible solution for IMOFM_S and a 4-rule simplified FRBS with 7 fuzzy sets in its inputs 

and 3 fuzzy sets in its consequents is chosen as a possible solution for IMOFM_M because of 

their acceptable predictive performances and their improved transparency. Given the limited 

and sparse data in this example, the results proved that the proposed modelling method has a 

good learning capability.  

Figure 5.19 illustrates how the previously elicited two five-rule ‘vaccine FRBSs’ with highly 

overlapped membership functions (refer to Figures 5.6 and 5.7) are simplified to two 4-rule 

FRBSs with fewer interpretable fuzzy sets using IMOFM_S and IMOFM_M.  
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Figure 5.19 (a) membership function distribution of the 4-rule Simplified Singleton FRBS; 

(b) membership function distribution of the 4-rule simplified Mamdani FRBS. 

 

Figure 5.20 (a) 4-rule simplified Mamdani FRBS; (b) 4-rule simplified Singleton FRBS. 
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Figure 5.20 compares individual rules of the simplified 4-rule Singleton and Mamdani FRBS. 

As can be seen from Figure 5.20, although the rule-bases are extracted via different canonical 

forms, the knowledge expressed by such rule-bases is rather consistent. A closer investigation 

of consequents of the two simplified FRBSs reveals that, for IMOFM_M, due to the inclusion 

of fuzzy sets and the merging operations in its consequents, the simplified FRBS is more 

transparent than that elicited via IMOFM_S. Figure 5.21 shows the predictive performances 

of the simplified Singleton and Mamdani FRBSs by plotting their predicted outputs against 

the real outputs. Both FRBSs led to good predictions.  

 

Figure 5.21 The predictive performances of the simplified Mamdani and Singleton FRBSs. 

Figure 5.22 shows the 3-D surfaces of the simplified FRBSs using their inputs and outputs. 

As can be seen from this figure, the surfaces of both FRBSs are smooth over the definition 

ranges, which indicate that both IMOFM_S and IMOFM_M are good at interpolation. 

Comparing Figure 5.22 with Figure 4.19, it can be found that the predicted surfaces do not 

reproduce the original one perfectly even though the predicted outputs are very close to the 

real ones after the second and the third modelling stages. The reason behind this is that the 

data samples used in this experiment are not uniformly distributed so that not all the regions 

are reflected in the collected data. Data-driven modelling cannot address such extrapolation 

problem unless there are data represented specifically in such regions. However, with the 

limited and sparse data given by this example, this result does show that the proposed 

modelling method has a good learning capability using the given data.    
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Figure 5.22 3-D surfaces of the simplified Mamdani and Singleton FRBSs. 

Finally, the Pareto fronts obtained using IMOFM_S and IMOFM_M over 30 runs are given 

in Figures 5.23 and 5.24 as the complement to Table 5.3. Figures 5.23 and 5.24 reinforce the 

observation made earlier: although IMOFM is a stochastic algorithm, it is robust since most 

solutions found during different runs are very similar.   

 

Figure 5.23 The Pareto fronts obtained using IMOFM_M over 30 runs. 
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Figure 5.24 The Pareto fronts obtained using IMOFM_S over 30 runs. 

5.6 Analysis of the Proposed Modelling Method 

5.6.1 Influence of the Modelling Stages on Performance 

In order to test the influences of the first two stages, two variants of the proposed modelling 

scheme are investigated:  

1) The combination of the first stage and the third stage;  

2) Only the third stage.  

In the first case, an initial 5-rule FRBS is generated using G3Kmeans, which is then fed to the 

third stage without any refinement. While in the latter case, the initial 5-rule FRBS is 

randomly generated within the variable domains. Table 5.4 summarises the results of the two 

variants.  Only the results obtained by IMOFM_S are presented in this Section. However, the 

observations made in this section are always held for IMOFM_M, unless otherwise stated.  
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TABLE 5.4 
COMPARISONS OF THE PREDICTIVE PERFORMANCE OF THE DIFFERENT MODELING STAGES FOR THE EXAMPLE  
Modeling Methods (Ref.) No. of 

rules 
No. of fuzzy sets

 
No. of 

Parameters 
Consequents Performance 

(RMSE training) 
IMOFM_S (the first stage and the third stage), NB: the results of one random run are presented here 
Execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 1st stage : 0.41sec; 3rd stage: 415sec; numbeer of iterations: 3000 
Initial FRBS 5 10 Gaussian 25 Singleton 0.6069*  
Pareto FRBS1 5 6 Gaussian 17 Singleton  0.1183# 

Pareto FRBS2 4 6 Gaussian 16 Singleton  0.1268# 

Pareto FRBS3 3 5 Gaussian 13 Singleton  0.1724# 

Pareto FRBS4 2 4 Gaussian 10 Singleton  0.2475# 

Pareto FRBS5 2(4T) 2 Gaussian 6 Singleton  0.7235# 

Pareto FRBS6 1 1 Gaussian 3 Singleton  1.0326# 

IMOFM_S (only the third stage), NB: the results of one random run are presented here 
Execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 3rd stage: 423sec; number of iterations: 4000 
Initial FRBS 5 10 Gaussian 25 Singleton 1.0363*  
Pareto FRBS1 4 7 Gaussian 18 Singleton  0.1116# 

Pareto FRBS2 4 6 Gaussian 16 Singleton  0.1223# 

Pareto FRBS3 3 5 Gaussian 13 Singleton  0.1502# 

Pareto FRBS4 3(8T) 4 Gaussian 11 Singleton  0.1753# 

Pareto FRBS6 3(7T) 4 Gaussian 11 Singleton  0.3211# 

Pareto FRBS5 3(6T) 4 Gaussian 11 Singleton  0.3252# 

* Initial model extracted directly from data using clustering algorithms or grid partition methods. 
# Simplified model after model simplification and parameter fine tuning;  
T Total number of rule length. 

It is worth mentioning that for the two variants, the thresholds for the model simplification 

are set at higher values so that the FRBSs with more rules are given a better chance of 

surviving in the early stages of the evolution, otherwise, FRBSs with more rules may be 

replaced by FRBSs with fewer rules since both of them are inaccurate in the early iterations. 

In such a case, the ‘Pareto’ selection process favours the one with fewer rules. This problem 

has already been solved by Jim݁́nez et al. (2001) using a ‘niche’ concept, where each niche 

maintains a set of FRBSs with the same number of rules. A substitution only happens within 

each niche so that one can evolve a set of FRBSs with the different number of rules without 

the worry of losing individuals with more rules. However, the thresholds are not important 

parameters if one chooses to use the whole three-stage modelling procedure. The proposed 

three-stage procedure does not need the aforementioned ‘niche’ concept if all the stages work 

as a unified procedure. In such a case, the most accurate FRBS is always the one with the 

number of rules close to the maximum value. More importantly, this accurate FRBS will 

direct the search from the most complex structure (the more accurate one) to the simplest 

ones (the less accurate ones). This ensures the coexistence of FRBSs with various 

complexities during the ‘Pareto’ selection.  
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As can be seen from Table 5.4, more iterations and more time are needed for the two variants 

to achieve a similar predictive performance as that obtained using the three-stage modelling 

procedure. This is because that the two variants have to evolve from a totally random stage 

(inaccurate individuals). Only a few Pareto FRBSs are obtained compared to the ones elicited 

via the three-stage procedure. The most complex structure which is supposed to evolve to the 

most accurate FRBS is discarded during the optimisation for the reasons described above. In 

terms of the predictive performance of the evolved ‘Pareto’ FRBSs, one can always find the 

counterparts within the proposed modelling schemes and its variants. However, the variants 

may lose the chance of evolving into the most accurate (the most complex) FRBS. All these 

justified the inclusion of the first two stages.      

5.6.2 Influence of the User-Specified Parameters on Performance 

It is a common phenomenon that an EA-based algorithm includes a number of user-specified 

parameters and IMOFM is not an exception. It includes a set of user-defined parameters, 

among which some are inherited from PAIA2 (referred to Section 3.4) and others are mainly 

associated with the third modelling stage. Hence, in this Section, the investigations on how 

these parameters affect the performance of IMOFM are carried out. The emphasis has been 

given to two PAIA2 affiliated parameters, namely the initial population size and the network 

suppression threshold, and five model-simplification parameters, namely ݌௠, ݏ݂ݑ ,ݎ݉ ,ݎ݀ݎ 

and ݏ݂ݏ.  

In Section 3.4.1, it was concluded that the initial population size is not a critical parameter as 

far as PAIA2 is concerned. This parameter has indeed an impact on the speed of the 

algorithm’s convergence. However, given enough evaluation times it has been shown that the 

initial population size and the accuracy of PAIA2 have no causal relationship. In order to 

confirm that such a fact is still applicable in the case of IMOFM, a series of experiments are 

conducted with the initial population size varied from 1 to 10. Other parameters are kept the 

same as those used in previous sections.  

The results shown in Figure 5.25 are the average values of 10 independent runs, each of 

which executes 1000 iterations (which are considered as enough evaluation times) using 

IMOFM_S.  
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Figure 5.25 The averaged objectives’ values of the non-dominated solutions found in 10 

independent runs with their initial population sizes varied from 1 to 10. 

As one can see from Figure 5.25, the non-dominated FRBSs with different initial population 

sizes produced very close Pareto fronts, which means that the initial population size is not a 

critical parameter for IMOFM just as the conclusion made in Section 3.4.1 for PAIA2.  

Figure 5.26 shows the averaged predictive performances of different Pareto FRBSs found in 

the 10 runs with their initial population sizes varied from 1 to 10 (marked as the red squares). 

As can be seen from Figure 5.26, the Pareto FRBSs with different initial population size have 

only a small variance in terms of their predictive performances. It is because of this property 

that the ‘initial population pool forming method’ proposed in Section 5.5.2 gains its 

legitimacy. Hence, the conclusions made in the previous sections and to be made in the 

subsequent sections using 7 as the initial population size are sufficient without any loss of 

generality.   
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Figure 5.26 The averaged predictive performances of different Pareto FRBSs found in the 10 

runs: (a) 5-rule FRBS with 10 fuzzy sets; (b) 5-rule FRBS with 9 fuzzy sets; (c) 

5-rule FRBS with 8 fuzzy sets; (d) 4-rule FRBS with 8 fuzzy sets; (e) 4-rule 

FRBS with 7 fuzzy sets; (f) 4-rule FRBS with 6 fuzzy sets; (g) 3-rule FRBS 

with 6 fuzzy sets; (h) 3-rule FRBS with 5 fuzzy sets; (i) 2-rule FRBS with 4 

fuzzy sets; (j) 2-rule FRBS with 3 fuzzy sets; (k) 2-rule FRBS with 2 fuzzy sets; 

(l) 2-rule FRBS with 1 fuzzy sets; (m) 1-rule FRBs with 1 fuzzy sets. 

In Section 3.4.3, it was concluded that the network suppression threshold is not a critical 

parameter as far as the convergence accuracy is concerned. However, it is an important factor 

as far as the number of the obtained Pareto solutions is concerned. Without the need for 

increasing the evaluation times greatly, more Pareto solutions may be obtained by simply 

adjusting the network suppression threshold. This property is regarded as one of the 

advantages of PAIA2 comparing to other MOEAs in Section 3.6.2. Whether this property is 

still held for IMOFM will be investigated next. Figure 5.27 shows the number of Pareto 

FRBSs obtained using 0.1 and 0.0008 as their network suppression thresholds. The results are 

obtained over 10 independent runs (marked as the red squares in Figure 5.27), each of which 

executes 1000 iterations.          



 

- 155 - 
 

- 155 - Chapter 5: An Immune Inspired Multi-Objective Fuzzy Modelling (IMOFM) 

 

Figure 5.27 The number of Pareto FRBSs obtained using 0.1 (right) and 0.0008 (left) as the 

network suppression threshold.  

As can be seen from Figure 5.27, different network suppression thresholds did affect the final 

number of Pareto solutions. Without greatly increasing the evaluation times, the number of 

Pareto FRBSs has increased from around 4 (in which case, 0.1 is the network suppression 

threshold) to 10 (in which case, 0.0008 is the network suppression threshold).  

Figure 5.28 shows the Pareto fronts obtained using two different network suppression 

thresholds from 1 of 10 runs. A bigger value of the threshold means more Pareto solutions 

will be suppressed. A Smaller value of the threshold means more Pareto solutions will be 

allowed to enter into the memory set during each iteration step; hence, more Pareto FRBSs 

are obtained in the final population set. Using a smaller threshold reduces slightly the 

evaluation times; however, using fewer evaluation times will not compromise the accuracy of 

the algorithm. Hence, the choice of the network suppression threshold is problem-dependent 

and is subject to specific requirements. Since this parameter does not affect the predictive 

performance of the elicited model, the conclusions made in the previous sections and to be 

made in the subsequent sections with 0.0008 are sufficient. 
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Figure 5.28 Pareto FRBS obtained using different network suppression thresholds from one 

of 10 runs. 

In order to investigate the effects of the model-simplification parameters, only one parameter 

is selected each time with its value varied from 0 to 1. Other parameters are kept as constant 

so that one can concentrate on analysing the effect of the selected parameter.   

The first parameter to be investigated is  ݌௠ which is responsible for removing insignificant 

rules.  ݌௠ can vary from 0 to 1, in which 1 means no rules can be regarded as insignificant 

rules and 0 means the opposite. Any value between 0 and 1 means given enough evaluation 

times a proportion of rules will be regarded as insignificant rules. In order to bypass the 

effects of other model simplification parameters, ݏ݂ݑ  ,ݎ݉ ,ݎ݀ݎ and ݏ݂ݏ are set to 0, 1, 1 and 

1 respectively.  
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Figure 5.29 The effect of ݌௠ on the least number of rules that IMOFM can obtain. 

Figure 5.29 shows how ݌௠  affects the least number of rules that IMOFM can obtain. 

According to Eq. 5.22, if ݌௠ equals to 1, all rules will be kept in the rule base; while, if ݌௠ 

equals to 0, IMOFM will have the chance to find the simplest rule base with the number of 

rules being 1. If ݌௠  takes values in between, IMOFM will find the rule bases with their 

number of rules varied from 1 to 5.  

Figure 5.30 shows the Pareto front obtained using ݌௠ ൌ 0.5 . Table 5.5 summarises the 

predictive performances of Pareto FRBS with ݌௠ ൌ 0.5. As one can see from this graph and 

Table 5.5, predictive accuracy-wise, they are very similar as those shown in Figure 5.17 and 

Table 5.3. However, without the involvement of other model simplification parameters, only 

a smaller number of Pareto FRBS can be obtained. This is because no singleton rules can be 

deleted, and no similar rules or fuzzy sets can be merged unless they are exactly the same.    



 

- 158 - 
 

- 158 - Chapter 5: An Immune Inspired Multi-Objective Fuzzy Modelling (IMOFM) 

 

Figure 5.30 The Pareto front obtained using IMOFM_S with ݌௠ ൌ ݎ݀ݎ ,0.5 ൌ ݎ݉ ,0 ൌ 1,  

ݏ݂ݑ ൌ 1 and ݏ݂ݏ ൌ 1.  

TABLE 5.5 
THE PREDICTIVE PERFORMANCES OF IMOFM_S WITH  ݌௠ ൌ ݎ݀ݎ,0.5 ൌ ݎ݉ ,0 ൌ ݏ݂ݑ  ,1 ൌ 1 AND ݏ݂ݏ ൌ 1 

Pareto FRBS No. of rules No. of fuzzy sets in inputs
 

No. of 
Parameters 

Consequents Performance 
(RMSE training) 

Pareto FRBS 1 5 10 25 Singleton 0.06873 
Pareto FRBS 2 4 8 20 Singleton 0.11697 
Pareto FRBS 3 3 6 15 Singleton 0.13735 
Pareto FRBS 4 2 4 10 Singleton 0.24818 
 

Hence, ݌௠ controls the least number of rules. It is worth mentioning that such a number is 

also affected by other model simplification parameters. Hence, the least number of rules may 

not be strictly specified by ݌௠. ݌௠ is set to 0.5 so that half of the initial rules can be regarded 

as insignificant rules given enough evaluation times in this work without any loss of 

generality.  

The next model-simplification parameter under investigation is the threshold ݎ݀ݎ  which 

controls the deletion of singleton rules. ݎ݀ݎ is varied from 0 to 1 with ݌௠ ൌ ݎ݉ ,0.5 ൌ 1,  
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ݏ݂ݑ ൌ ݏ݂ݏ ,1 ൌ 1, and all other parameters are kept the same as those used in the previous 

sections.  

 

Figure 5.31 The predictive performances of different Pareto FRBSs elicited with different 

 values: (a) 5-rule FRBS with 10 fuzzy sets; (b) 4-rule FRBS with 8 fuzzy ݎ݀ݎ

sets; (c) 3-rule FRBS with 6 fuzzy sets; (d) 2-rule FRBS with 4 fuzzy sets; (e) 2-

rule FRBS with 3 fuzzy sets; (f) 2-rule FRBS with 2 fuzzy sets; (g) 1-rule FRBS 

with 1 fuzzy sets. 

Figure 5.31 indicates that ݎ݀ݎ is not a critical parameter as far as the predictive performance 

of the elicited FRBS is concerned. However, a small value of ݎ݀ݎ reduces the chances of a 

fuzzy rule being considered as a singleton rule (as shown in Figure 5.31, IMOFM with ݎ݀ݎ 

smaller than 0.2 cannot find (e), (f) and (g)). As mentioned in Section 5.5.4.2, a singleton 

fuzzy rule may represent exceptions. Hence, one should keep this threshold as a small value 

in case that useful fuzzy rules are deleted. As a general guideline, any values between 0 and 

0.2 may represent an adequate choice for ݎ݀ݎ. Hence, in this research work, ݎ݀ݎ is set to 0.01 

without any loss of generality. 
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In order to investigate the effect of the threshold ݉ݎ which is responsible for merging similar 

rules, ݉ݎ is varied from 0 to 1  with ݌௠ ൌ ݎ݀ݎ ,0.5 ൌ ݏ݂ݑ  ,0.01 ൌ ݏ݂ݏ ,1 ൌ 1, and all other 

parameters are kept the same as those used in the previous sections. Figure 5.32 clearly 

demonstrates that a small value of ݉ݎ encourages more rules to be considered as similar rules 

and thus to be merged. Hence, with a smaller value of ݉ݎ, more Pareto FRBSs and FRBS 

with fewer rules are expected in the final solution set.  

 

Figure 5.32 The effects of ݉ݎ on: (a) the number of Pareto FRBS in the final population; (b) 

the least number of rules that IMOFM can obtain.  

However, one cannot conclude just from Figure 5.32 that a smaller value of ݉ݎ is more 

preferable. With ݏ݂ݑ ൌ 1 and ݏ݂ݏ ൌ 1, the merging of similar fuzzy sets and the deletion of 

fuzzy sets similar to the universal fuzzy set are disabled. In such a situation, a small value of 

 will result in rules being merged even if they are quite different, and this may ultimately ݎ݉

affect the predictive performances of the elicited FRBS.  

Figure 5.33 shows the predictive performances of four Pareto FRBSs against different values 

of ݉ݎ . As can be seen from Figure 5.33, IMOFM with ݉ݎ  varied between 0.9 and 1 

generally produces more accurate predictions. More importantly, if the operations of merging 

similar fuzzy sets and deleting universal fuzzy sets are added in, even with a large value of 

 IMOFM is able to find Pareto FRBS with fewer rules (which means more Pareto FRBS ,ݎ݉
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can be found). Hence, ݉ݎ with a large value, e.g. between 0.9 and 1, is a preferable choice as 

far as the predictive accuracy is concerned. This parameter is set to 0.95 in the previous and 

subsequent sections without any loss of generality.  

 

Figure 5.33 The predictive performances of different Pareto FRBSs elicited with different 

 values: (a) 5-rule FRBS with 10 fuzzy sets; (b) 4-rule FRBS with 8 fuzzy ݎ݉

sets; (c) 3-rule FRBS with 6 fuzzy sets; (d) 2-rule FRBS with 4 fuzzy sets. 

 is the threshold which decides when a fuzzy set can be regarded as the universal fuzzy ݏ݂ݑ

set and is thus deleted. A small value of this threshold means more fuzzy sets can be 

considered as the universal fuzzy set, and vice versa. If ݌௠ ൌ ݎ݀ݎ ,0.5 ൌ ݎ݉  ,0.01 ൌ 0.95, 

ݏ݂ݏ ൌ 1, and all other parameters are kept the same as those used in the previous sections, a 

small value of ݏ݂ݑ will result in more Pareto FRBS to be found since in such a case the 

probability of having similar rules are increased due to the deletion of some fuzzy sets. 

Hence, IMOFM has more probability of finding FRBS with fewer rules. Figure 5.34 

demonstrates such an effect when ݏ݂ݑ varied from 0 to 1.  
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Figure 5.34 The effects of ݏ݂ݑ: (a) on the number of Pareto FRBS in the final population; (b) 

on the least number of rules that IMOFM can obtain.  

However, similarly to the conclusion made about ݉ݎ , a small value of ݏ݂ݑ  does not 

necessarily mean that it represents a good choice. Useful fuzzy sets may be deleted just 

because they are ‘wide enough’ to be considered as the universal fuzzy set in the case of 

using a small value of ݏ݂ݑ. In such a case, the predictive performances of the elicited FRBS 

may be affected.  

Figure 5.35 demonstrates how different ݏ݂ݑ affects the predictive performances. Generally 

speaking, values between 0.6 and 1 are good values. As can be seen in the next paragraph, if 

 will not make any difference in ݏ݂ݑ is set to values smaller than 1, then the values of ݏ݂ݏ

terms of the number of Pareto FRBS that IMOFM can find. Hence, ݏ݂ݑ is set 0.85 in this 

work without any loss of generality.  
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Figure 5.35 The predictive performances of different Pareto FRBSs elicited with different 

 values: (a) 5-rule FRBS with 10 fuzzy sets; (b) 4-rule FRBS with 8 fuzzy ݏ݂ݑ

sets; (c) 3-rule FRBS with 6 fuzzy sets; (d) 2-rule FRBS with 4 fuzzy sets. 

The last model-simplification parameter to be investigated is ݏ݂ݏ. Intuitively, this parameter 

should be set to values smaller than 1 so that not only the same fuzzy sets but also similar 

ones can be merged. When similar fuzzy sets are merged, rules may become similar so that 

they will be merged consequently, a consideration which makes the rule-base more compact 

even with other parameters set to the aforementioned values. Hence, in the part,  ݏ݂ݏ is varied 

from 0 to 1, with ݌௠ ൌ ݎ݀ݎ ,0.5 ൌ ݎ݉ ,0.01 ൌ ݏ݂ݑ ,0.95 ൌ 0.85, and all other parameters 

are kept the same as those used in the previous sections.  

Figure 5.36 confirms that when ݏ݂ݏ takes values smaller than 1 IMOFM can produce more 

Pareto FRBSs and the FRBS with a more compact structure. 
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Figure 5.36 The effects of ݏ݂ݏ: (a) on the number of Pareto FRBS in the final population; (b) 

on the least number of rules that IMOFM can obtain. 

Figure 5.37 shows the predictive performances of different Pareto FRBSs elicited with 

different ݏ݂ݏ. As can be seen from this figure, not all Pareto FRBS configurations can be 

found by different values of ݏ݂ݏ, e.g. results of Figure 5.37 (d) cannot be found using ݏ݂ݏ 

with values smaller than 0.9. However, as long as ݏ݂ݏ  does not equal to 1, most FRBS 

configurations can be found via various values of ݏ݂ݏ. Hence, the emphasis here is rather 

placed on evaluating the predictive accuracy of the elicited FRBSs so that a generally 

guideline of this parameter can be derived. As can be seen from Figures 5.37 (e), (f), (h), (i), 

(n) and (p), values between 0.9 and 1 normally give more accurate FRBS than using a smaller 

value. Hence, ݏ݂ݏ is set to 0.95 in this work without any loss of generality.   
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Figure 5.37 The predictive performances of different Pareto FRBSs found in the 10 runs with 

different ݏ݂ݏ values: (a) 5-rule FRBS with 10 fuzzy sets; (b) 5-rule FRBS with 9 

fuzzy sets; (c) 5-rule FRBS with 8 fuzzy sets; (d) 4-rule FRBS with 8 fuzzy sets; 

(e) 4-rule FRBS with 7 fuzzy sets; (f) 4-rule FRBS with 6 fuzzy sets; (g) 4-rule 

FRBS with 5 fuzzy sets; (h) 3-rule FRBS with 6 fuzzy sets; (i) 3-rule FRBS 

with 5 fuzzy sets; (j) 3-rule FRBS with 4 fuzzy sets ; (k) 3-rule FRBS with 5 

fuzzy sets (objective 2: 18); (l) 3-rule FRBS with 3 fuzzy sets; (m) 2-rule FRBS 

with 4 fuzzy sets; (n) 2-rule FRBS with 3 fuzzy sets; (o) 2-rule FRBs with 2 

fuzzy sets; (p) 2-rule FRBS with 2 fuzzy sets (objective 2 : 10); (q) 1-rule FRBS 

with1 fuzzy set. 

5.6.3 Influence of the Variable Length Coding Scheme on Performance 

In order to investigate the influence of the variable length coding scheme on model predictive 

performance, two experiments are conducted. The first experiment consists of utilising the 

proposed three-stage modelling procedure with the new distance index proposed in Section 
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5.5.3 being replaced with the original distance measure proposed in Section 3.2.1 so that one 

can obtain a direct comparison of the modelling approaches with and without the variable 

length coding scheme. The second experiment consists of recording the approximate Pareto 

fronts found during the search process. By plotting such progress one can also explore how 

the proposed modelling method with the variable length coding scheme can cope with the 

simultaneous optimisation of the rule-base structure and its parameters.  

Table 5.6 summarises the results of the first experiment. All the user-defined parameters of 

both modelling methods, viz. with and without the variable length coding scheme, are kept as 

those mentioned in the last Section. The results are the average values of 15 independent 

runs.   

TABLE 5.6 
THE COMPARISON OF THE MODELING APPROACHES WITH AND WITHOUT VARIABLE LENGTH CODING SCHEME  

Modeling Approach Fuzzy Models The Number of Fuzzy 
Sets in Each Inputs  

Performance 
(RMSE training) 

Improvement 
(%) 

IMOFM_S  
(without the variable  
Length coding scheme) 
 Pareto FRBS 1 4 rules: [4 3] 0.1261 - 
IMOFM_S  
(with the variable  
length coding scheme
 Pareto FRBS 1 4 rules: [4 3] 0.1198 5% 

 

As can be seen from the above table, with the variable length coding scheme, the average 

improvement is 5%. Such an improvement can be made even more significant when more 

rules and higher dimensional problems are involved. This will be confirmed in Section 6.3.4 

(refer to Table 6.5) where the modelling mechanical properties of heat treated alloy steel is 

considered. 

Figure 5.38 shows a snapshot of the approximate Pareto fronts at 10, 100, 500, 800, 1000 and 

1200 iterations respectively. As one can see from this figure, the evolution starts from the 

most accurate FRBS and expands the Pareto front during the course of the optimisation. The 

variable length coding and the new distance index play an important role in expanding the 

rest part of Pareto front and in fine-tuning of the parameters of the evolved simpler FRBSs. 

The MO search process is efficient since after 800 iterations it has already approached very 

closely to the approximate Pareto front. 
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Figure 5.38 The snapshot of the Pareto FRBS at 10, 100, 500, 800, 1000 and 1200 iterations.  

5.7 Summary 

In the chapter, a systematic immune inspired multi-objective fuzzy modelling framework, 

namely IMOFM, is introduced. The main novelty of the proposed modelling framework are 

considered as follows: 

 The proposed modelling approach is not sensitive to the initial settings due to the 

evolutionary based clustering algorithm used in the first stage.  

 The initial abstraction level (the initial number of rules in the rule-base) is not an 

important factor anymore since in the third stage a set of Pareto FRBS with different 

structure are elicited. Only the maximum allowable number of rules is required a priori.  

 Due to the vaccination process used in the three-stage modelling procedure, the 

efficiency and predictive accuracy of the modelling are improved.  

 By using the variable length coding scheme and a new distance index, the problem of the 

so-called ‘unordered set of rules’ is resolved, which leads to a more efficient 

optimisation of the parameters. The effect of the variable length coding scheme and the 

new distance index used in this paper is equivalent to the synapsing variable-length 

crossover (SVLC) mentioned by Hutt & Warwick (2007) in that common parental 
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sequences are automatically preserved in the offspring with only the genetic differences 

being exchanged.  

This simple modelling framework provides the user with more options on a set of elicited 

optimal models and leaves the designer’s intervention to a minimum level. The framework is 

currently implemented via two types of fuzzy rule-base, viz. Singleton FRBS and Mamdani 

FRBS. The results on a benchmark example suggest that IMOFM is capable of 

simultaneously optimising both the rule base structure and its parameters. Because of the 

added model simplification module, several user-specified parameters are introduced. The 

similarity measures described in Eqs. 5.24~5.26 will be checked for each fuzzy set, and only 

the ones with the maximum similarity values will be deleted or merged during each iteration 

step. For this reason and because of the elitism which records any non-dominated solution 

found at each iteration step during the experiments these parameters were found not to be 

critical as long as they are kept within the recommended ranges. In the next chapter, IMOFM 

will be further tested with two benchmark functions and will then be applied to the modelling 

mechanical properties of heat treated steels.   
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Chapter 6 

Transparent Knowledge 
Extractions Using an Immune 

Inspired Multi-Objective Fuzzy 
Modelling (IMOFM) 

“Inferring models  from observations and  studying  their properties  is  really what  science  is about. 

The models  (“hypotheses,”  “laws  of  nature,”  “paradigms,”  etc.) may  be  of more  or  less  formal 

character, but they have the basic feature that they attempt to link observations together into some 

pattern.” 

Lennart Ljung, System Identification‐Theory for the User, 1999 

In this chapter, different performance indices are introduced to quantify the performance of 

an Immune inspired Multi-Objective Fuzzy Modelling (IMOFM) scheme. IMOFM is further 

tested with two benchmark functions and is then applied to the modeling of mechanical 

properties of heat treated steels. In all cases, IMOFM is able to produce not only accurate but 

also transparent fuzzy models. More importantly, the knowledge expressed by these 

transparent models is consistent with the domain knowledge. Finally, the comparison of 

IMOFM_S and IMOFM_M is given at the end of the chapter. 

6.1 Performance Indices  

In this section, different indices are introduced due to the fact that every single one of them 

just reflects a fraction of the model’s performance. By inspecting all these indices, more 

objective evaluations are expected.    
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6.1.1 Root Mean Square Error 

In Section 4.4.3, RMSE has been briefly introduced. For the convenience of the description, 

this index is elaborated again in this section. RMSE is a quadratic scoring rule which 

measures the average magnitude of the error. The equation for RMSE is given in Section 

4.4.3 and is rewritten in Eq. 6.1, where ݕ௠
௣௥௘ௗ௜௖௧  and ݕ௠  are the predicted and the actual 

outputs of the ݄݉ݐ data sample; ܰ is the total number of the data samples. Expressing Eq. 6.1 

in words, the difference between the predicted outputs and corresponding observed values are 

each squared and then averaged over the samples. Finally, the square root of the average is 

taken. Since the errors are squared before they are averaged, the RMSE gives a relatively 

high weight to large errors. This means that the RMSE is most useful when large errors are 

particularly undesirable. Since square root is taken after the averaged squared value is 

obtained, the RMSE has the same unit as the data samples. The small value of RMSE is 

expected for a good fit of the model.  

ܧܵܯܴ ൌ ට∑ ሺ௬೘
೛ೝ೐೏೔೎೟ ି௬೘ሻమಿ

೘సభ
ே

  (6.1) 

6.1.2 R-Square 

This statistical measure is included to evaluate more objectively the fit of the model, which is 

the square of the Pearson product moment correlation coefficient calculated from the 

measured and predicted values (Tenner, 1991). This index can be interpreted as the 

proportion of the variance in ݕ௠ attributed to the variance in ݕ௠
௣௥௘ௗ௜௖௧ and is given by Eq. 6.2: 

ܴଶ ൌ
ே·ቀ∑ ௬೘

೛ೝ೐೏೔೎೟·௬೘ಿ
೘సభ ቁିቀ∑ ௬೘

೛ೝ೐೏೔೎೟ಿ
೘సభ ቁ·൫∑ ௬೘ಿ

೘సభ ൯

ඨ൤ே·∑ ቀ௬೘
೛ೝ೐೏೔೎೟ቁ

మ
ିቀ∑ ௬೘

೛ೝ೐೏೔೎೟ಿ
೘సభ ቁ

మಿ
೘సభ ൨·ቂே·∑ ሺ௬೘ሻమಿ

೘సభ ି൫∑ ௬೘ಿ
೘సభ ൯

మ
ቃ

 (6.2) 

The R-square value varies between 1 for a perfect fit to 0 for no fit. Hence, a big value of R-

square is expected for a model with a good predictive performance. 

6.1.3 Confidence Band 

This index was proposed by Zhang (2008) to measure how confident can one be in each small 

scope of the predictions. A so-called ߙ%-range confidence value is designed as follows: 
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௦ೝܤܥ ൌ ඨ
∑ ൫ఌ೘ିఌೞೝതതതതത൯మ
೤೘
೛ೝ೐೏೔೎೟,೤೘אೄೝ

ேೞೝ
   ,      1 ൏ ݎ ൏ ܰ (6.3) 

Where, ܵ௥ is a prediction scope defined by the ݎth prediction value ݕ௥
௣௥௘ௗ௜௖௧ with the lower 

and upper bounds being ݕ௥
௣௥௘ௗ௜௖௧ ט 0.005 · ߙ · ௬೛ೝ೐೏೔೟ܮ ௬೛ೝ೐೏೔೎೟ܮ ;  is the total range of the 

prediction values and it equals to the maximal prediction value minus the minimal prediction 

value; ߝ௠ is defined as ߝ௠ ൌ ௠ݕ
௣௥௘ௗ௜௖௧ െ  ௠ over the scopeߝ ௦ೝതതതത is the average value ofߝ ௠ andݕ

ܵ௥; ௦ܰೝ is the number of data samples within the scope ܵ௥. As mentioned by Zhang (2008), 

since it is not realistic to calculate the ߙ% -range confidence band for every possible 

prediction, some averagely distributed prediction values are selected to provide the 

confidence values which will be viewed as the representatives of all possible predictions 

within the same scope. Hence, ݎ is normally less than the total number of data samples and is 

problem-dependent, which basically defines the granularity of the index over the output 

range. A lower value of this index indicates a higher confidence for the corresponding 

predictions.  

6.1.4 Error Band 

Instead of the above statistical measures, the േ10% error bands provide an additional visual 

aid to judge how well does the model fit the data. Predictions outside the േ10% error bands 

indicate a bad fitting in such regions. Figure 6.1 shows an example with the perfect fitting 

line over the interval [1, 10] and its േ10% error bands. 
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Figure 6.1 േ10% error bands over the interval [1, 10]. 

6.2 Benchmark Problems  

In the previous chapters, a simple nonlinear function was employed as the example to show 

how each modelling stage works and how the user-specified parameters affect the modelling 

performance. However, only the leaning ability of IMOFM was investigated. In this Section, 

such studies are extended to the investigation of the generalisation ability of IMOFM using 

another nonlinear function approximation problem and a dynamic system identification 

problem.    

6.2.1 Nonlinear Function Approximation 

The benchmark problem studied in this Section is a nonlinear static system with two inputs 

and a single output, taken from Lin et al. (1997), which can be described as follows: 

ݕ ൌ ଶݔ sinሺݔଵሻ ൅ ଵݔ cosሺݔଶሻ     0 ൑ ,ଵݔ ଶݔ ൑  (6.4) ߨ
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To compare with the results in Lin et al. (1997), Huang et al. (2002), Wong et al. (1999), 441 

evenly distributed data points from ሼݔଵ, ଶሽݔ  ൌ ሼ0, గ
ଶ଴
, ଶగ
ଶ଴
, … , ଵଽగ

ଶ଴
,  ሽ were generated so thatߨ

441 input-output data pairs were obtained using Eq. 6.4. To investigate the generalisation 

capability of IMOFM, Another 100 randomly generated data samples are used as the testing 

data set. Due to the potential overtraining possibility, the testing data set also serves as the 

watchdog so that in the second modelling stage the training will be halted if Eq. 6.5 is met, 

where, ܴܭܥሺ݅݊݋݅ݐܽݎ݁ݐሻ is the testing RMSE at the current iteration and ܧ௛ is the tolerance of 

the testing RMSE increase which will be explained later:  

ሻ݊݋݅ݐܽݎ݁ݐሺ݅ܭܥܴ െ min൫ܴܭܥሺ1ሻ, . . , ݊݋݅ݐܽݎ݁ݐሺ݅ܭܥܴ െ 1ሻ൯ ൐  ௛ (6.5)ܧ

Theoretically, the BEP algorithm used in the second modelling stage is a type of gradient 

descent optimisation method. Hence, it is supposed to produce more optimal solutions at each 

iteration step. However, due to the difficulty in setting an optimal step size, such as ߣ and ߚ 

in Sections 5.4.1 and 5.4.2, the training and testing RMSE may increase for several iterations 

and then may decrease during the optimisation process, which would mean that the BEP 

algorithm also has a limited ability to escape some local optima. Hence, if one allows the 

BEP algorithm to stop right after the testing RMSE starts to increase, one may lose the 

chance of obtaining a more accurate model. However, one cannot tolerate too much increase 

of the testing RMSE since it may indicate the start of the over-fitting phase. For this reason, 

 ௛ is introduced in this work, which specifies the tolerance of the testing RMSE increaseܧ

during the training procedure and is a problem-dependent parameter; ܧ௛ is set to 0.05 for this 

problem.  

The maximum number of iterations is set to 1500 so that the second modelling stage will stop 

training at 1500 iterations even if Eq. 6.5 is not met. The maximum allowable number of 

rules in the initial FRBS is set to 9. Hence, ‘9’ clusters were obtained in the first modelling 

stage using G3Kmens, which are then transformed into a 9-rule Singleton/Mamdani fuzzy 

model. In order to obtain a statistical report, the IMOFM is allowed to run 10 times 

independently. Figures 6.2 and 6.3 show the training and testing processes of the second 

modelling stage, which are extracted from one of 10 runs.  
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Figure 6.2  The training and testing process of the IMOFM_S on the nonlinear function 

approximation problem. 

 

Figure 6.3  The training and testing process of the IMOFM_M on the nonlinear function 

approximation problem. 
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Figures 6.4~6.7 shows the predictive performances of the first and the second modelling 

stages of IMOFM_S and IMOFM_M. 

 

Figure 6.4  The predictive performances of the first modelling stage of IMOFM_S on the  

nonlinear function approximation problem.  

 

Figure 6.5 The predictive performances of the second modelling stage of IMOFM_S on the 

nonlinear function approximation problem.  

 



 

176 
 

176 Chapter 6: Transparent Knowledge Extractions Using IMOFM 

 

Figure 6.6 The predictive performances of the first modelling stage of IMOFM_M on the 

nonlinear function approximation problem.  

 

Figure 6.7 The predictive performances of the second modelling stage of IMOFM_M on the 

nonlinear function approximation problem.  

It can be seen from Figures 6.4~6.7 that the predictive performances of the first modelling 

stage are not accurate enough since for most of the data samples the predictions are outside 

the േ10%  error bands. However, after the second modelling stage, the predictive 
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performances are improved significantly so that most of the predictions are within the േ10% 

error bands. More importantly, the first two stages of IMOFM not only led to a very good 

learning but also to excellent generalisation properties. In order to further investigate the 

performances of each modelling stage, the 3-Dimension surface of Eq. 6.4 and its 

approximations using the elicited Singleton and Mamdani fuzzy models from each modelling 

stage are plotted in Figure 6.8. 

 

Figure 6.8 Nonlinear system approximation using IMOFM: (a) the actual nonlinear system 

surface; (b) and (c) the approximated surface obtained from the first modelling 

stage using IMOFM_S and IMOFM_M; (d) and (e) the approximated surface 

obtained from the second modelling stage using IMOFM_S and IMOFM_M; (f) 

and (g) the approximated surface obtained from the third modelling stage using 

IMOFM_S and IMOFM_M.  
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As can be seen from Figures 6.8 (b) and (c), the predicted outputs using the initial Singleton 

and Mamdani fuzzy models are not accurate enough. However, the 3-D surfaces of these 

initial fuzzy models resemble the surface of the one defined by Eq. 6.4, which suggests it as a 

good start point for the following refining and multi-objective optimisation stages. After the 

second stage using a constrained BEP algorithm, both models’ predictive accuracies have 

improved significantly, as shown in Figures 6.8 (d) and (e). Figures 6.8 (f) and (g) show the 

approximate surfaces of a 5-rule simplified Singleton fuzzy model (with 10 fuzzy sets in its 

inputs) and a 4-rule Mamdani fuzzy model (with 7 fuzzy sets in its inputs and 4 fuzzy sets in 

its output). These simplified fuzzy models are one of the many Pareto solutions found by the 

third modelling stage.   

Table 6.1 records the Pareto FRBS which appears more than 5 times over 10 runs. The 

predictive performances of the initial FRBSs extracted from data using various clustering 

algorithms are more or less the same, in which Huang’s method represents the best result. 

However, the aim of the clustering operation is not to find out the most accurate model in the 

first place, but rather it is to discover the right structure behind data so that the refined model 

based on this structure can be as accurate as possible. It is in this respect that one can regard 

the proposed G3Kmeans as a better fuzzy partitioning method over the other three methods 

since it provides the most accurate result after the refinement. Based on the 9-rule refined 

FRBSs, after the third modelling stage, a 5-rule and a 4-rule simplified FRBS is evolved and 

selected as the final fuzzy models for use.  

As can be seen from Table 6.1, although the rule-base complexity has been greatly 

simplified, its predictive performance is not sacrificed too much. More importantly, IMOFM 

displays also a very good generalisation capability for the testing data set. The big values of 

R-square for most of Pareto FRBSs shown in Table 6.1 reinforce further the good learning 

and generalisation capabilities of IMOFM.   
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TABLE 6.1 
COMPARISONS OF THE PREDICTIVE PERFORMANCES FOR THE DIFFERENT MODELING METHODS USING THE NONLINEAR FUNCTION APPROXIMATION PROBLEM  
Modeling 
Methods  

(Ref.) 

No. of 
rules 

No. of fuzzy 
sets& 

No. of 
Parameter

s 

Consequents Performance 
Training  
(RMSE) 

Testing 
(RMSE) 

Training 
(R-Square) 

Testing 
(R-Square) 

Lin’s method (1997) 9 18 trapzoidal 72 Singleton 0.4000*/0.1265@ - - - 
Hang’s method (2002) 9 18 Gaussian 63 Linear 0.3805*/0.0680@ - - - 
Wong’s method (1999) 9 18 Gaussian 45 Singleton 0.4047*/0.0889@ - - - 
         
IMOFM_S ( NB: Average results over 10 runs are presented here)   
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 3rd stage: 213sec  
   Initial FRBS 9 18 Gaussian: [9 9] 45 Singleton   0.6691*/0.0405@ 0.6341*/0.0290@ 0.9011*/0.9993@ 0.8851*/0.9996@ 

   Pareto FRBS1 9 18 Gaussian: [9 9] 45 Singleton  0.0395#       0.0286#    0.9993#   0.9996# 

   Pareto FRBS2 9 17 Gaussian: [9 8] 43 Singleton 0.0395#        0.0280#        0.9993#          0.0996# 

   Pareto FRBS3 9 16 Gaussian: [8 8] 41 Singleton 0.0416#        0.0304#          0.9993#   0.9995# 

   Pareto FRBS4 8 16 Gaussian: [8 8] 40 Singleton 0.0468#   0.0362#        0.9991#          0.9994# 

   Pareto FRBS5 8 15 Gaussian: [7 8] 38 Sinlgeton 0.0471#   0.0357#         0.9991#          0.9994# 

   Pareto FRBS6 8 14 Gaussian: [7 7] 36 Singleton 0.0484#   0.0388#         0.9990#          0.9994# 

   Pareto FRBS7 7 14 Gaussian: [7 7] 35 Singleton 0.0594#   0.0465#         0.9985#          0.9990# 

   Pareto FRBS8 7 13 Gaussian: [7 6] 33 Singleton 0.0664#   0.0539#         0.9982#          0.9987# 

   Pareto FRBS9 6 12 Gaussian: [6 6] 30 Singleton 0.0796#   0.0656#         0.9973#          0.9979# 

   Pareto FRBS10 6 11 Gaussian: [6 5] 28 Singleton 0.0847#   0.0700#         0.9970#          0.9976# 

   Pareto FRBS11 5 10 Gaussian: [5 5] 25 Singleton 0.1037#   0.0889#         0.9955#          0.9962# 

   Pareto FRBS12 4 8 Gaussian:   [4 4] 20 Singleton 0.1211#   0.1035#         0.9939#          0.9948# 

   Pareto FRBS 13 4 7 Gaussian:   [4 3] 18 Singleton 0.1235#   0.1047#         0.9936#          0.9947# 

   Pareto FRBS 14 4 6 Gaussian:   [4 2] 16 Singleton 0.1309#   0.1144#         0.9928#          0.9936# 

         
IMOFM_M (NB: Average results over 10 runs are presented here) 
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 3rd stage: 229sec 
   Initial FRBS 9 27 Gaussian: [9 9 9] 54 Mamdani 0.6734*/0.0363@ 0.6373*/0.0240@ 0.9018*/0.9994@ 0.8859*/0.9997@ 

   Pareto FRBS1 8 22 Gaussian: [8 7 7] 44 Mamdani 0.0352#        0.0240#          0.9995#           0.9997# 

   Pareto FRBS2 8 21 Gaussian: [8 6 7] 42 Mamdani 0.0417#        0.0330#         0.9993#           0.9993# 

   Pareto FRBS3 7 19 Gaussian: [7 6 6] 38 Mamdani 0.0615# 0.0544#         0.9986#          0.9984# 

   Pareto FRBS4 7 18 Gaussian: [7 5 6] 36 Mamdani 0.0702# 0.0626#         0.9980#           0.9981# 

Table 6.1  to be continued... 
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Table 6.1 continued... 
    Pareto FRBS5 6 16 Gaussian: [6 5 5] 32 Mamdani 0.0714# 0.0647#          0.9978#           0.9980# 

    Pareto FRBS6 5 12 Gaussian: [5 3 4] 24 Mamdani 0.1001# 0.0892#         0.9962#          0.9958# 

    Pareto FRBS7 4 11 Gaussian: [4 3 4] 22 Mamdani 0.1027# 0.0875#         0.9957#          0.9964# 

    Pareto FRBS8 4 9 Gaussian: [3 3 3] 18 Mamdani 0.1435# 0.1282#           0.9909#           0.9915# 

    Pareto FRBS9 4 8 Gaussian: [3 2 3] 16 Mamdani 0.1786# 0.1525#            0.9860#           0.9882# 

& For IMOFM_S, it is the number of fuzzy sets in its inputs; for IMOFM_M, it is the number of fuzzy sets in its   inputs and output.  
 * Initial model extracted directly from data using clustering algorithms or grid partition methods. 
@ Refined model or the consequents are computed through the estimation methods.  
 # Simplified model after model simplification and parameter fine tuning. 
T Total number of rule length. 
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Figures 6.9 and 6.10 show the Pareto fronts from one of the 10 runs. As already stated in 

Section 5.5.6, the decision-making procedure was not explicitly investigated in this work. A 

rather intuitive approach has been carried out to inspect the Pareto fronts and each individual 

FRBS. In doing so, a 5-rule simplified FRBS with 10 fuzzy sets for its inputs is chosen as a 

possible solution for IMOFM_S and a 4-rule simplified FRBS with 7 fuzzy sets in its inputs 

and 4 fuzzy sets in its consequents is chosen as a possible solution for IMOFM_M because of 

their acceptable predictive performances and their improved transparency. Figures 6.11, 6.12 

and 6.13 show how the initially elicited two 9-rule ‘vaccine FRBSs’ from the first two 

modelling stages with highly overlapped membership functions are simplified to a 5-rule and 

a 4-rule FRBSs with fewer interpretable fuzzy sets. 

 

Figure 6.9 The Pareto fronts obtained using IMOFM_S from the third modelling procedure 

for the nonlinear function approximation problem: (a) Objective1 vs. Objective2; 

(b) Objective1 vs. Nset6.1; (c) Objective1 vs. Nrule6.2; (d) Objective1 vs. RL6.3. 

                                                 
6.1  Nset is the total number of fuzzy sets in the fuzzy rule‐base; 
6.2  Nrule is the number of rules in the fuzzy rule‐base; 
6.3  RL is the summation of the rule length of each rule;  
      (the above definitions of Nset, Nrule and RL are held throught this chapter, and more details on these 

definitions can be found in Section 5.5.1). 
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Figure 6.10 The Pareto fronts obtained using IMOFM_M from the third modelling procedure 

for the nonlinear function approximation problem: (a) Objective1 vs. Objective 

2; (b) Objective1 vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 

 

Figure 6.11 The nonlinear function approximation problem: (a) membership function 

distribution of the 9-rule Singleton FRBS from the first modelling stage; (b) 

membership function distribution of the 9-rule Mamdani FRBS from the first 

modelling stage.  
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Figure 6.12 The nonlinear function approximation problem: (a) membership function 

distribution of the 9-rule Singleton FRBS from the second modelling stage; (b) 

membership function distribution of the 9-rule Mamdani FRBS from the 

second modelling stage.  

 

Figure 6.13 The nonlinear function approximation problem: (a) membership function 

distribution of the 5-rule simplified Singleton FRBS from the third modelling 

stage; (b) membership function distribution of the 4-rule simplified Mamdani 

FRBS from the third modelling stage.  
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Figure 6.14 compares the individual rules in the simplified 5-rule Singleton and 4-rule 

Mamdani FRBSs.  

 

Figure 6.14 (a) 5-rule simplified Singleton FRBS; (b) 4-rule simplified Mamdani FRBS. 

As can be seen from Figure 6.14, although the rule bases are extracted via different canonical 

forms, the knowledge hence expressed is consistent. For IMOFM_M, due to the inclusion of 

fuzzy sets and the merging operations in its consequents, the hence simplified FRBS is more 

transparent than the one elicited via IMOFM_S.  

Figure 6.15 shows the predictive performances of the simplified Singleton and Mamdani 

FRBSs by plotting their predicted outputs against the real outputs. As can be seen from the 

same figure, most of the training and testing predictions are within the േ10% error bands, 

which indicates that IMOFM not only leads to a good predictive performances but also 

possesses a good generalisation ability. 
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Figure 6.15 The predictive performances of the simplified Singleton (upper part) and 

Mamdani (lower part) FRBSs obtained from the third modelling stage. 

Figure 6.16 shows the 5%-range confidence band of the simplified FRBSs on the training 

data set.  

 

Figure 6.16 5%-range confidence band of a 5-rule simplified Singleton FRBS (left) and a 4-

rule simplified Mamdani FRBS (right) on the training data set. 
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As can be seen from Figure 6.16, the middle parts of the predictions over the range between 

െ2 and ൅2 represent the most reliable parts of the predictions. The predictions fall into the 

smaller output values convey less confidence since they are rather scattered, or in other 

words, less consistent.   

6.2.2 Dynamic System Identification 

The benchmark example studied in this section is a second-order nonlinear plant also used by 

Setnes et al. (2000), Jim݁́nez et al. (2001), Wang et al. (2005) and Chen et al. (2004) in their 

research. This example is employed to show the learning and the generalisation ability of the 

proposed modelling scheme. The system is defined as follows: 

ሺ݇ሻݕ ൌ ݃൫ݕሺ݇ െ 1ሻ, ሺ݇ݕ െ 2ሻ൯ ൅  ሺ݇ሻ (6.6)ݑ

where，݃൫ݕሺ݇ െ 1ሻ, ሺ݇ݕ െ 2ሻ൯ ൌ   ௬ሺ௞ିଵሻ௬ሺ௞ିଶሻሺ௬ሺ௞ିଵሻି଴.ହሻ
ଵା௬మሺ௞ିଵሻ௬మሺ௞ିଶሻ

 (6.7) 

:ܭ ;݈ܽݒݎ݁ݐ݊݅ ݈݃݊݅݌݉ܽݏ :ݕ ;ݐݑ݌ݐݑ݋ :ݑ   ݐݑ݌݊݅

The goal is to approximate the nonlinear component ݃൫ݕሺ݇ െ 1ሻ, ሺ݇ݕ െ 2ሻ൯ of the plant with 

a fuzzy model. As in Setnes et al.’s work (2000), 400 simulated data points were generated 

from the plant model using Eq. 6.6. Starting from the equilibrium state (0, 0), 200 samples of 

training data were obtained with a random input signal ݑሺ݇ሻ uniformly distributed in [-1.5, 

1.5], followed by 200 testing samples obtained using a sinusoid input signal ݑሺ݇ሻ ൌ

sin ቀଶగ௞
ଶହ
ቁ. The 400 simulated data samples are shown in Figure 6.17.  

 

Figure 6.17 Input ݑሺ݇ሻ, unforced system ݃ሺ݇ሻ, and output ݕሺ݇ሻ of the plant in Eq. 6.6. 
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The maximum allowable number of rules is set to 5 for IMOFM_S and 8 for IMOFM_M. 

The number of iterations is set to 1200 for the third modelling stage. 30 independent runs 

were executed and the results shown in this section are the average values of the runs. Other 

parameter settings are kept the same as those in Section 5.6.2. Figures 6.18 and 6.19 show the 

evolutions of training and testing processes of the second modelling stage, each of which is 

extracted from one of 30 runs.  

 

Figure 6.18 The training and testing process of the IMOFM_S on the second-order nonlinear 

plant.  

 

Figure 6.19 The training and testing process of the IMOFM_M on the second-order 

nonlinear plant.  
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Figures 6.20~6.23 show the predictive performances of the first and the second modelling 

stages of IMOFM_S and IMOFM_M. 

 

Figure 6.20 The predictive performances of the first modelling stage of IMOFM_S on the 

second-order nonlinear function approximation problem.  

 

Figure 6.21 The predictive performances of the first modelling stage of IMOFM_M on the 

second-order nonlinear function approximation problem. 
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Figure 6.22 The predictive performances of the second modelling stage of IMOFM_S on the 

second-order nonlinear function approximation problem. 

 

Figure 6.23 The predictive performances of the second modelling stage of IMOFM_M on the 

second-order nonlinear function approximation problem. 

In order to investigate further the performances of each modelling stage, the 3-Dimension 

surface of Eq. 6.7 and its approximations using the elicited Singleton and Mamdani fuzzy 

models from each modelling stage are plotted in Figure 6.24, where (f) and (g) represent the 

approximate surfaces of a 3-rule simplified Singleton fuzzy model (with 4 fuzzy sets in 

inputs) and a 4-rule simplified Mamdani fuzzy model (with 4 fuzzy sets in inputs and 3 fuzzy 

sets in output) respectively.  
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Figure 6.24 The second-order nonlinear system approximation using IMOFM: (a) the actual 

nonlinear system surface; (b) and (c) the approximated surface obtained from 

the first modelling stage using IMOFM_S and IMOFM_M; (d) and (e) the 

approximated surface obtained from the second modelling stage using 

IMOFM_S and IMOFM_M; (f) and (g) the approximated surface obtained from 

the third modelling stage using IMOFM_S and IMOFM_M.   

Table 6.2 summarises the comparison of the proposed algorihtms’ results (both IMOFM_S 

and IMOFM_M) with those presented by Stenes et al. (2000), Jim݁́nez et al. (2001), Wang et 

al. (2005) and Chen et al. (2004). Each configuration of the Pareto FRBS presented in the 

above table appeared more than 10 times over 30 runs. When compared with the singleton 

FRBS presented by Stenes et al. (2000), the proposed modelling procedure shows the overall 

better predictive performance by using fewer rules. Again, linear TSK FRBSs led to a better 

predictive performance due to the use of linear combinations in their consequents which are 

hard to interpret. One interesting finding from the experiments of this example using the 

proposed modelling procedure is the one related to the relationship between the model’s 

complexity and its generalisation ability.  
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TABLE 6.2 
COMPARISONS OF THE PREDICTIVE PERFORMANCES FOR THE DIFFERENT MODELING METHODS USING THE SECOND-ORDER NONLINEAR FUNCTION APPROXIMATION PROBLEM  

Modeling Methods  
(Ref.) 

No. 
of 

rules 

No. of fuzzy 
sets& 

No. of 
Parameter

s 

Consequents Performance 
Training  
(RMSE) 

Testing 
(RMSE) 

Training 
(R-Square) 

Testing 
(R-Square) 

M. Stenes’s method (2000)         
Configration1 7 14 triangular 49 Singleton 0.1265*/0.0548@ 0.0346*/0.0221@ - - 
Configration2 5 10 triangular 45 Linear 0.0762* 0.05* - - 
    Simplified FRBS1 5 8 triangular 39 Linear 0.0274# 0.0187# - - 
    Simplified FRBS2 4 4 triangular 24 Linear 0.0346# 0.0217# - - 
F. Jiḿࢋnez’s method (2001)         
   Pareto FRBS1 5 5 trapezoidal 30 Linear 0.0447# 0.0361# - - 
   Pareto FRBS2 5 6 trapezoidal 33 Linear 0.0243# 0.0297# - - 
H. L. Wang‘s method (2005)         
   Initial 5 10 Gauss2mf 55 Linear 0.0374@ 0.0513@ - - 
   Pareto FRBS2 5 3 Gauss2mf 27 Linear 0.0154# 0.0173# - - 
   Pareto FRBS1 4 3 Gauss2mf 24 Linear 0.0234# 0.0233# - - 
   Pareto FRBS2 4 3 Gauss2mf 24 Linear 0.0237# 0.0158# - - 
M. Y. Chen’s method (2004)         
   Initial 5 10 Gaussian 55 Linear 0.0138@ 0.0195@ - - 
   Pareto FRBS2 5 6 Gaussian 27 Linear 0.01# 0.0179# - - 
   Pareto FRBS1 4 5 Gaussian 22 Linear 0.0332# 0.0192# - - 
IMOFM_S ( NB: Average results over 30 runs are presented here)   
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 3rd stage: 283 sec.  
   Initial FRBS 5 10 Gaussian: [5 5] 25 Singleton   0.2753*/0.0654@ 0.2988*/0.0673@        0.7809*/0.9859# 0.9351*/0.9922# 

   Pareto FRBS1 5 10 Gaussian: [5 5] 25 Singleton  0.0572#       0.0630#     0.9888# 0.9920# 

   Pareto FRBS2 5 9 Gaussian: [5 4] 23 Singleton 0.0584#        0.0651#               0.9881#              0.9916# 

   Pareto FRBS3 5 8 Gaussian: [5 3] 21 Singleton 0.0645#        0.0667#                 0.9830#        0.9886# 

   Pareto FRBS4 5 7 Gaussian: [4 3] 19 Singleton 0.0693#   0.0676#               0.9823#               0.9895# 

   Pareto FRBS5 5 6 Gaussian: [4 2] 17 Sinlgeton 0.0703#   0.0702#               0.9800#               0.9882# 

   Pareto FRBS6 5(14T) 6 Gaussian: [4 2] 17 Singleton 0.0730#   0.0677#               0.9814#               0.9894# 

   Pareto FRBS7 4 6 Gaussian: [3 3] 16 Singleton 0.0808#   0..0730#               0.9785#               0.9867# 

   Pareto FRBS8 4 5 Gaussian: [2 3] 14 Singleton 0.0803#   0.0732#               0.9761#                0.9867# 

   Pareto FRBS9 4 4 Gaussian: [2 2] 12 Singleton 0.0791#   0.0728#               0.9782#                0.9873# 

Table 6.2  to be continued... 
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Table 6.2 continued... 
   Pareto FRBS10 4(11T) 4 Gaussian: [2 2] 12 Singleton 0.0863#   0.0755#               0.9743#                0.9872# 

   Pareto FRBS11 3 5 Gaussian: [2 3] 13 Singleton 0.1113#   0.1082#               0.9726#                 0.9899# 

   Pareto FRBS12 3(8T) 4 Gaussian: [2 2] 11 Singleton 0.0889#   0.0639#               0.9724#                 0.9899# 

   Pareto FRBS 13 2 4 Gaussian: [2 2] 10 Singleton 0.2193#   0.2211#               0.8152#                  0.8215# 

   Pareto FRBS 14 2 3 Gaussian: [2 1] 8 Singleton 0.2218#   0.1701#               0.8153#                  0.9600# 

   Pareto FRBS 15 2 2 Gaussian: [1 1] 6 Singleton 0.2495#   0.2024#               0.8125#                  0.9500# 

         
IMOFM_M (NB: Average results over 10 runs are presented here) 
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 3rd stage: 229sec 
   Initial FRBS 8 24 Gaussian: [8 8 8] 48 Mamdani 0.2488*/0.0437@ 0.2485*/0.0627@ 0.8233*/0.9936@ 0.9296*/0.9928@ 

   Pareto FRBS1 7 18 Gaussian: [4 7 7] 36 Mamdani 0.0424#        0.0598#          0.9995#           0.9997# 

   Pareto FRBS2 7 17 Gaussian: [4 6 7] 34 Mamdani 0.0438#        0.0603#         0.9929#            0.9923# 

   Pareto FRBS3 6 16 Gaussian: [4 6 6] 32 Mamdani 0.0482# 0.0595#          0.9914#           0.9917# 

   Pareto FRBS4 6 14 Gaussian: [4 5 6] 28 Mamdani 0.0491# 0.0604#          0.9917#            0.9925# 

   Pareto FRBS5 5 13 Gaussian: [3 5 5] 26 Mamdani 0.0540# 0.0590#           0.9898#             0.9923# 

   Pareto FRBS6 5 12 Gaussian: [3 4 5] 24 Mamdani 0.0568# 0.0603#           0.9897#             0.9925# 

   Pareto FRBS7 5 11 Gaussian: [3 3 5] 22 Mamdani 0.0578# 0.0619#            0.9876#             0.9922# 

   Pareto FRBS8 4 11 Gaussian: [3 4 4] 22 Mamdani 0.0811# 0.0602#              0.9807#             0.9919# 

   Pareto FRBS9 4 10 Gaussian: [3 3 4] 20 Mamdani 0.0861# 0.0611#              0.9797#             0.9921# 

   Pareto FRBS10 4 8 Gaussian: [2 2 4] 16 Mamdani 0.0906# 0.0749#              0.9662#             0.9901# 

   Pareto FRBS11 4 7 Gaussian: [2 2 3] 14 Mamdani 0.0929# 0.0836#              0.9600#             0.9889# 

& For IMOFM_S, it is the number of fuzzy sets in its inputs; for IMOFM_M, it is the number of fuzzy sets in its   inputs and output.  
 * Initial model extracted directly from data using clustering algorithms or grid partition methods. 
@ Refined model or the consequents are computed through the estimation methods.  
 # Simplified model after model simplification and parameter fine tuning. 
T Total number of rule length. 
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As can be noticed from Table 6.2, when the model’s complexity is reduced from a 4-rule 

Singleton FRBS to a 3-rule Singleton FRBS the generalisation capability is significantly 

improved. The complex structure may result in an over-fitting to the training data.  By 

obtaining a set of FRBSs with various complexities in a single run, one can analyse the trade-

off between the models’ learning ability and their generalisation ability. This will provide 

further help in terms of choosing the ‘right’ model in the decision-making process. As 

already mentioned, this work does not propose a new decision-making process, however, for 

the sake of completeness, a Singleton FRBS with 3 rules and 4 fuzzy sets in its input and a 

Mamdani FRBS with 4 rules and 4 fuzzy sets in its input and 3 fuzzy sets in its output are 

chosen from the ‘Pareto’ FRBSs as the potential solutions for their good generalising 

properties and their good training performances. The ‘Pareto’ FRBS mentioned above are the 

one randomly chosen from 30 runs and their corresponding Pareto fronts are shown in 

Figures 6.25 and 6.26.  

 

Figure 6.25 The Pareto fronts obtained using IMOFM_S from the third modelling procedure 

for the nonlinear function approximation problem: (a) Objective1 vs. 

Objective2; (b) Objective1 vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. 

RL. 
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Figure 6.26 The Pareto fronts obtained using IMOFM_M from the third modelling procedure 

for the nonlinear function approximation problem: (a) Objective1 vs. Objective 

2; (b) Objective1 vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 

 

Figure 6.27 The dynamic system identification problem:  (a) membership function 

distribution of the 5-rule Singleton FRBS from the first modelling stage; (b) 

membership function distribution of the 8-rule Mamdani FRBS from the first 

modelling stage. 
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Figure 6.28 The dynamic system identification problem:  (a) membership function 

distribution of the 5-rule Singleton FRBS from the second modelling stage; (b) 

membership function distribution of the 8-rule Mamdani FRBS from the 

second modelling stage. 

 

Figure 6.29 The dynamic system identification problem:  (a) membership function 

distribution of the 3-rule simplified Singleton FRBS from the third modelling 

stage; (b) membership function distribution of the 4-rule simplified Mamdani 

FRBS from the third modelling stage. 
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Figures 6.27~6.29 illustrate how the initially elicited 5-rule Singleton and 8-rule Mamdani 

‘vaccine FRBSs’ from the first two modelling stages with highly overlapped membership 

functions are simplified to a 3-rule Singleton and a 4-rule Mamdani FRBSs with fewer 

interpretable fuzzy sets using IMOFM_S and IMOFM_M. It is worth mentioning that in these 

simplified FRBS, a ‘don't care’ has been given to one of input y(k-2) (input2), as is shown in 

Figures 6.30 and 6.31.  

 

Figure 6.30 The dynamic system identification problem: (a) the 5-rule FRBS extracted from 

the first two modelling stages using IMOFM_S; (b) the 3-rule simplified 

Singleton FRBS after the third modelling stage using IMOFM_S. 
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Figure 6.31 The dynamic system identification problem: (a) the 5-rule FRBS extracted from 

the first two modelling stages using IMOFM_M; (b) the 3-rule simplified 

Mamdani FRBS after the third modelling stage using IMOFM_M. 

Comparing Figure 6.30 (b) and Figure 6.31 (b), one extra rule (Rule 4) appears in the 4-rule 

simplified Mamdani FRBS. Other rules from both FRBSs convey consistent knowledge 

about the underlying systems. Figure 6.32 shows the predictive performances of the 

simplified Singleton and Mamdani FRBSs by plotting their predicted outputs against the real 

outputs.  
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Figure 6.32 The predictive performances of the simplified Singleton (upper part) and 

Mamdani (lower part) FRBSs obtained from the third modelling stage. 

Figure 6.33 shows the 5%-range confidence band of the 3-rule simplified Singleton and the 

4-rule simplified Mamdani FRBS on the training data set.  

 

Figure 6.33 5%-range confidence bands of a 3-rule simplified Singleton FRBS (left) and a 4-

rule simplified Mamdani FRBS on the training data set. 
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6.3 Predictions of Mechanical Properties of Heat-Treated Steel 

The proposed modelling method is tested further with a real world engineering application 

associated with the mechanical property prediction of hot rolled steels. Specialist heat 

treatments are used to develop the required mechanical properties in a range of alloy steels. 

The mechanical properties of the alloy steels rest with many factors of which the followings 

are believed to be the major ones: tempering temperature, quench type, chemical 

compositions of the steel, geometry of the bar, test sample location on the bar, batch 

distribution in the furnace, measurement tolerances and variations in the process equipment 

and operators (Tenner, 1999). Traditionally, a heat treatment metallurgist would try to 

balance these factors using their metallurgical knowledge and experience in a bid to obtain 

the desired mechanical properties. However, due to the increasing complexity of the 

underlying system, it becomes more difficult even for the metallurgists to tune these 

parameters. Given the lack of the mathematical models which can account for these complex 

systems and a large amount of available industrial process data associated with the systems, 

data-driven modelling becomes more and more vital for assisting the metallurgist to predict 

the mechanical test results without actually doing it. Based on these models, further 

optimisations of the heat treatment process can also be developed, which is envisaged to be 

able to automate the steel design process and reduce the experimental costs.  

In the past, several mechanical property models were developed which were mainly based on 

linear regression methods (Pickering 1978) or artificial neural networks (Tenner, 1999). The 

linear models are only designed for specific classes of steels and specific processing routes, 

and not sophisticated enough to account for more complex interactions, while neural 

networks are black-box modelling techniques and one cannot have a deep insight into the 

model (Zhang, 2008). Hence, transparent data-driven modelling framework for material 

property prediction is still needed.  

In this section, the problem of predicting the mechanical properties of heat-treated steel is 

used as a case study, which involves knowledge acquisition from real industrial data. To this 

end, a brief overview of the steel-making process and the heat treatment process are first 

given, before the case studies of predicting Ultimate Tensile Strength (UTS), Reduction of 

Area (ROA) and Elongation are presented. It is worth noting that Impact Energy will be 

studied in Chapter 7. 
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6.3.1 An Overview of the Steel-Making Process 

The basic steel making process consists of the following steps (Tenner, 1999): 

 Blast Furnace (BF) Process: the iron ore is melted in the BF with coke, air and 

limestone as assistance to remove many embedded impurities. 

 Basic Oxygen Furnace (BOF) Process: the molten iron from the blast furnace is 

transported to a BOF for a smelting process, using steel scrap, oxygen, and lime as 

assisting agents. The major element removed from the molten iron in this oxygen-based 

steel-making process is carbon, which is removed via oxidation to carbon monoxide 

(CO). Other impurities are also controlled in this stage depending on the targeted steel 

grade.  

 Electric Arc Furnace (EAF) Process: alternatively, molten steel can be produced in 

an EAF; this procedure involves the melting of scrap charge by electric arcs. The main 

heat treatment process modelled in this project is fed by steel produced from an EAF. 

The reactions in the EAF are similar to those in the BOF (Tenner, 1999).  

 Ladle Metallurgy Process: this is a new process which is increasingly employed by 

steel makers. It involves molten steel from the EAF or BOF being poured into a 

refining vessel, where the temperature and composition of the molten iron are closely 

controlled to produce various grades of steels as required by the customer (Tenner, 

1999).  

 The Production of Ingots and Continuous Casting Process: traditional steel-making 

involves the production of ingots. However, continuous casting is rapidly replacing the 

production of ingots. A casting machine is used to produce a continuous piece of solid 

steel, giving higher yield than ingot formation. In doing so, the intermediate step of 

rolling ingots into semi-finished sections is avoided.  

 Rolling, Forging and Heat Treatment Process: this process is required to obtain the 

correct geometry and properties in the finished product.  

6.3.2 Heat Treatment 

Heat Treatment is the controlled heating and cooling of metals to alter their physical and 

mechanical properties without changing the product shape. Metallic materials normally 

consist of a microstructure of small crystals called ‘grains’. The nature of the grains, e.g. 
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grain size and orientation, is one of the most effective factors that can determine the overall 

mechanical behaviour of the metal and is closely related to the temperature at which the grain 

growth occurs. Hence, heat treatment provides an efficient way to manipulate the properties 

of the metal by controlling rate of diffusion and the rate of cooling within the microstructure.  

Steels are heat treated mainly for the following two reasons:  

I. Hardening: to obtain sufficient hardness in steel it is common for industrial processes to 

aim for the martensitic microstructure as it can be later tempered to obtain the required 

mechanical properties (Tenner, 1999). A general used technique for hardening is 

quenching, which involves heating a metal into the austenitic crystal phase and then 

quickly cooling the heated metal into martensite structure (a hard brittle crystalline 

structure). However, on an industrial scale a rapid cooling may not be practical with 

large pieces of materials. Moreover, a rapid quench may result in cracking due to the 

thermal stresses. Hence, alloy additions are needed to improve the hardenability of steel, 

e.g. using chromium, molybdenum, manganese, nickel and occasionally vanadium as 

additions (Tenner, 1999). These elements act so that martensite can be formed at lower 

cooling rates. Cooling speeds are mainly determined by the quenching method (cooling 

mediums), which, from fastest to slowest, go from polymer, brine, fresh water, oil, and 

forced air. The cooling mediums used in this project are water, oil and air. The 

aforementioned process consists of the hardening stage of the heat treatment process. 

However, the martensite may result in brittle steel that would be impractical for most 

engineering applications. For this reason, softening stage is introduced to transform some 

of the martensite into a tougher structure. 

II. Softening: softening is done to reduce strength or hardness, remove residual stress, 

improve toughness, restore ductility or refine grain size. Two widely used techniques are 

annealing and tempering. Annealing is a technique to recover cold work and relax stress 

within a metal. Annealing typically results in a soft, ductile metal. During annealing, 

small grains recrystallize to form large grains. The tempering process is very similar to 

the annealing process, except they may have different ‘soaking’ temperatures and may be 

cooled under different cooling rates. Untempered martensite, while very hard and strong, 

is too brittle to be useful. Hence, most applications may require that the quenched parts 

to be tempered at a lower tempering temperature (normally around 150Ԩ) to impart 

some toughness, or to be temperd at a higher tempering temperatures (may be up to 

700Ԩ) to impart further ductility. 
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6.3.3 Introduction to Mechanical Properties and Their Testing 

Strength, hardness, toughness, elasticity, plasticity, ductility, brittleness and malleability are 

mechanical properties used as measures of how metals behave under a certain load. These 

properties are described in terms of the types of force or stress that the metal must withstand 

and how these are resisted. As mentioned by Tenner (1999), mechanical properties can be 

broadly divided into static and dynamic properties. A static property is independent of the 

loading rate at which a force is applied to the test piece, while a dynamic property is 

dependent on this.  

Typically, static properties include the followings:  

 Strength: strength is the property that enables a metal to resist a force without 

deformation; three kinds of loading which may test a material’s strength are tensile, 

compressive and shear.  

 Elasticity: when a material has a load applied to it, the load causes the materials to 

deform; elasticity is the ability of a material to return to its original shape after the load 

is removed.  

 Plasticity: this property is the opposite of strength; it refers to the readiness of a 

material that can be permanently deformed to a stretched state when a load is applied.  

 Ductility: ductility allows a material to stretch, bend, or twist without cracking or 

breaking; this property makes it possible for a material to be drawn out longitudinally.  

 Malleability: in comparison to ductility, malleability is the property that enables a 

material to deform by compressive forces without developing defects.  

 Hardness: this is the property which measures a material’s ability to resist permanent 

indentation.  

Tensile testing is often employed to measure the above static properties, which results in the 

determination of a number of values, namely the UTS, the Proof Stress, the Yield Stress of 

the material, and the Elongation and ROA of the specimen. Among these values, in this 

project, particular interest has been given to the UTS, which is a measure of strength and 

represents a maximum strain that a material can withstand, the Elongation, which is measured 

as percentage changes in the gauge length, and the ROA, which is measured as diameter of 

the specimen after fracture. The Elongation and ROA provide a guide to the ductility of the 

steel.   
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Of the dynamic properties: 

 Toughness: it is the ability of a material to withstand sudden loading and to be 

deformed without rupturing. 

 Brittleness: it is the opposite of the plasticity and implies lack of ductility or toughness. 

A brittle metal is the one that breaks or shatters before it deforms.  

 Fatigue: it is where a failure can result in a material when a load is applied repeatedly 

to that place.  

Impact testing is a testing method that is used to quantify toughness of a metal. The principle 

of impact testing is to measure the energy necessary to fracture a standard notched bar 

specimen, by an impulse load imposed by a striker (Tenner, 1999). The energy absorbed by 

the specimen is measured by the angle of displacement of the pendulum after the fracture. 

The striker angle, shape, the depth of the test piece and rate of loading all affect the obtained 

results, therefore equipment and specimen size have to be standardized. This testing method 

is problematic, as will be discussed when we proceed to Section 7.4.   

6.3.4 Predictions of Ultimate Tensile Strength (UTS) 

UTS data set consists of 3760 data samples and includes 15 inputs and one output as shown 

in Table 6.3.  

TABLE 6.3 
THE INPUTS AND OUTPUT OF TENSILE STRENGTH DATA SET  

Inputs Test Depth Size Site %C %Si %Mn %S %Cr 
Max. 140 381 6 0.62 0.35 1.72 0.21 3.46 
Min. 4 8 1 0.12 0.11 0.35 5e-4 0.05 

Inputs %Mo %Ni %Al %V Hardening 
Temperature 

Cooling 
Medium 

Tempering 
Temperature / 

Max. 1 4.16 1.08 0.27 980 3 730 / 
Min. 0.01 0.02 5e-3 1e-3 820 1 170 / 

Outputs Tensile Strength (Max.: 1842; Min.: 516.2)  
 

Figure 6.34 shows the distribution of the data points on some dimensions. As can be seen 

from Figure 6.34, UTS data is very scattered at some regions, while at the other places it is 

very dense. Hence, this data set represents a great challenge for both clustering and modelling 

tasks. 
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Figure 6.34 Data distributions on chosen dimensions of UTS data. 

In order to compare with Zhang & Mahfouf’s work (2007), the UTS data set is randomly 

divided into two parts: 75% of the data are used for training and the remaining data are used 

for testing. Another 12 more recent samples are used as the unseen data set to validate the 

generalisation properties of the model. The maximum number of rules is set to 12 for both 

IMOFM_S and IMOFM_M. The number of iterations for the second and third modelling 

stages are set to 500 and 1200 respectively. Other parameters are kept the same as those 

given in Section 5.6.2.  

Figures 6.35 and 6.36 show the training and testing processes of the second modelling stage 

of IMOFM_S and IMOFM_M, each of which is extracted from 1 of 10 runs. As can be seen 

from these two figures, for the second modelling stage, IMOFM_S terminates at 350 

iterations and IMOFM_M terminates at 452 iterations before the specified 500 iterations are 

reached.  

The results presented in Table 6.4 include the average values of 10 independent runs. It is 

worth mentioning that the training and testing data sets are re-generated before each run with 

the same proportion indicated before, as will be done for the other mechanical properties. 

This is to ensure that the results presented here are not dependent on a particular data 

partition. 
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Figure 6.35 The training and testing process of the IMOFM_S on the UTS data. 

 

Figure 6.36 The training and testing process of the IMOFM_M on the UTS data.
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TABLE 6.4 
COMPARISONS OF THE PREDICTIVE PERFORMANCE FOR THE DIFFERENT MODELING METHODS USING THE UTS DATA  

Modeling Methods  
(Ref.) 

No. of 
rules 

No. of fuzzy sets in inputs and output Performance 
Training  
(RMSE) 

Testing 
(RMSE) 

Training 
(R-Square) 

Testing 
(R-Square) 

Q. Zhang & M. Mahfouf (2007)  
Initial FRBS 12 Input:[12 12 12 12 12 12 12 12 12 12 12 12 12 12 12]; output: 12 100.54* 108.26* - - 

Pareto FRBS1 12 Input: [9 11 10 12 8 10 8 9 10 10 6 11 10 10 10]; output: 10 37.45# 43.07# - - 
Pareto FRBS2 9 Input: [7 8 7 8 5 6 4 6 8 8 2 6 7 8 7]; output: 9 42.82# 43.90# - - 

       
IMOFM_S ( NB: Average results over 10 runs are presented here)   
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 1st stage:  1 min.;  2nd stage: 25 min.; 3rd stage: 3.7 hours 

   Initial FRBS 12 Input: [12 12 12 12 12 12 12 12 12 12 12 12 12 12 12]; output: 12 (113.54*/
30.93@) 

(112.32*/
35.65@) 

(0.6842*/ 
0.9826@) 

(0.6181*/ 
0.9699@) 

   Pareto FRBS1 11 Input: [8 11 10 11 11 11 8 11 10 11 6 10 10 11 11]; output: 11 29.671#  34.42# 0.9830# 0.9709# 

   Pareto FRBS2 10 Input: [4 7 8 8 4 7 3 8 7 7 3 4 4 7 7]; output: 10 32.376#  34.82# 0.9798# 0.9702# 

   Pareto FRBS3 10 Input: [4 7 8 8 4 6 3 8 7 7 3 4 4 7 7]; output: 10 32.656#   35.19# 0.9794# 0.9696# 

   Pareto FRBS4 10 Input: [4 7 8 8 4 7 3 7 6 6 2 3 3 7 7]; output: 10 34.104#   35.80# 0.9775# 0.9686# 

   Pareto FRBS5 9 Input: [4 5 6 6 2 4 3 6 5 6 2 2 3 7 6]; output: 9 34.512#   35.96# 0.9770# 0.9683# 

   Pareto FRBS6 8 Input: [2 4 4 7 3 4 3 5 4 5 2 2 3 6 6]; output: 8 35.663#   37.62# 0.9754# 0.9675# 

   Pareto FRBS7 8 Input: [2 4 4 7 3 3 3 5 4 5 2 2 3 6 6]; output: 8 36.429#   37.62# 0.9743# 0.9654# 

   Pareto FRBS8 8 Input: [3 5 4 4 1 4 2 6 4 6 2 2 3 4 4]; output: 8 39.041#   40.12# 0.9705# 0.9603# 

   Pareto FRBS9 7 Input: [3 4 4 4 1 3 3 4 3 4 1 1 2 6 5]; output: 7 42.914#   43.87# 0.9642# 0.9523# 

   Pareto FRBS10 6 Input: [3 2 2 4 1 3 2 4 3 3 1 1 1 3 5]; output: 6 45.061#   43.48# 0.9605# 0.9531# 

       
IMOFM_M (NB: Average results over 10 runs are presented here) 
Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 1st stage:  1 min.;  2nd stage: 30 min.; 3rd stage: 4 hours  

   Initial FRBS 12 Input: [12 12 12 12 12 12 12 12 12 12 12 12 12 12 12]; output: 12  (120.43*/
 31.21@) 

 (123.44*/
   35.49@) 

  

   Pareto FRBS1 11 Input: [8 9 10 10 5 11 5 10 10 8 4 6 6 11 10 11]; output: 11 30.914# 34.49# 0.9810# 0.9739# 

   Pareto FRBS2 10 Input: [8 9 10 10 6 10 6 9 9 7 4 7 6 10 9]; output: 10 31.210# 35.32# 0.9806# 0.9726# 

   Pareto FRBS3 10 Input: [6 8 9 10 6 8 6 9 9 7 3 4 5 10 9]; output: 9 31.231# 35.13# 0.9806# 0.9728# 

   Pareto FRBS4 10 Input: [5 8 9 10 5 8 5 8 9 7 1 4 4 10 9]; output: 9 31.421# 35.06# 0.9804# 0.9730# 

   Pareto FRBS5 9 Input: [5 7 7 9 4 4 2 7 7 7 1 5 4 9 9]; output: 7 33.503# 36.09# 0.9777# 0.9715# 

   Pareto FRBS6 8 Input: [6 7 7 7 2 5 4 6 8 7 2 4 2 7 7]; output: 7 33.683# 36.68# 0.9774# 0.9705# 

Table 6.4 to be continued... 
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Table 6.4 continued... 
   Pareto FRBS7 8 Input: [5 7 7 8 3 5 3 6 7 6 0 4 3 8 7]; output: 6 34.390# 37.42# 0.9764# 0.9692# 

   Pareto FRBS8 8 Input: [5 6 7 8 3 5 3 6 7 6 0 4 3 8 7]; output: 6 34.468# 37.44# 0.9763# 0.9692# 

   Pareto FRBS9 7 Input: [5 7 7 7 2 4 3 6 6 6 2 3 1 7 7]; output: 5 34.703# 36.44# 0.9760# 0.9708# 

   Pareto FRBS10 6 Input: [1 3 2 3 1 3 1 3 2 4 2 1 2 4 4]; output: 5 46.469# 45.12# 0.9567# 0.9548# 

* Initial model extracted directly from data using clustering algorithms or grid partition methods. 
@ Refined model or the consequents are computed through the estimation methods.  
 # Simplified model after model simplification and parameter fine tuning. 
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As can be seen from Table 6.4, the proposed algorithm generally gives more accurate 

predictions with the same number of rules. More importantly, if one closely insprects the 

number of fuzzy sets involved in each input for the Zhang & Mahfouf’s method and IMOFM, 

one could find that less fuzzy sets are needed for IMOFM, which leads to an even more 

simplified (transparent) structure. Due to constraints on space, only a few obtained ‘Pareto’ 

FRBSs from 10 runs are presented in Table 6.4 without any loss of generality.  

The ‘actual outputs vs. predicted outputs’ plots from the three modelling stages are shown in 

Figures 6.37~6.38. The first two stages led to two ‘vaccine FRBSs’ both consisting of a 

maximum of 12 rules. The third stage produced a set of Pareto FRBSs and only an 8-rule 

simplified Singleton fuzzy model and a 7-rule simplified Mamdani Fuzzy model are chosen 

for the subsequent illustration purposes. As shown in Figures 6.37~6.38, although the initial 

FRBS extracted by G3Kmeans is not accurate, it does however capture the basic structure of 

the training data. After the second modelling stage, the model’s predictive performance is 

improved so that the elicited fuzzy model is ready for use as far as its predictive accuracy is 

concerned. Furthermore, since 12 membership functions are involved in each input at the 

second modelling stage the rule-base’s structure is very complex to interpret in terms of 

linguistic terms. A further simplification for the rule base can still be applied if one is trying 

to use this model to understand the underlaying behaviour of the system.  

Without any prior knowledge as to how to simplify the model and to what degree, the 

proposed method provides a set of FRBSs after the third modelling stage, which represents 

various degrees of simplification. Among these options and after the inspection of the trade-

off of these elicited FRBSs, the users can finally realise what degree of model simplification 

is the one that they really need. Figures 6.39~6.40 show the Pareto fronts of the UTS 

modelling problem using IMOFM_S (41 Pareto FRBSs) and IMOFM_M (47 Pareto FRBSs) 

from one of the 10 runs.  

Figures 6.41~6.46 show how the initially elicited 12-rule ‘vaccine FRBSs’ from the first two 

modelling stages with highly overlapped membership functions are simplified to an 8-rule 

Singleton and a 7-rule Mamdani FRBSs with fewer interpretable fuzzy sets using IMOFM_S 

and IMOFM_M.  
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Figure 6.37 The prediction performances of the three stages for the training and testing data 

using IMOFM_S. 

 

Figure 6.38 The prediction performances of the three stages for the training and testing data 

using IMOFM_M. 
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Figure 6.39 The Pareto fronts obtained using IMOFM_S from the third modelling procedure 

for the UTS modelling problem: (a) Objective1 vs. Objective2; (b) Objective1 

vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 

 

Figure 6.40 The Pareto fronts obtained using IMOFM_M from the third modelling procedure 

for the UTS modelling problem: (a) Objective1 vs. Objective2; (b) Objective1 

vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 
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Figure 6.41 The distribution of membership functions of the 12-rule initial Singleton FRBS 

(from the first modelling stage) for UTS modelling.  
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Figure 6.42 The distribution of membership functions of the 12-rule initial Mamdani FRBS 

(from the first modelling stage) for UTS modelling. 
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Figure 6.43 The distribution of membership functions of the 12-rule refined Singleton FRBS 

(from the second modelling stage) for UTS modelling.  
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Figure 6.44 The distribution of membership functions of the 12-rule refined Mamdani FRBS 

(from the second modelling stage) for UTS modelling.  
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Figure 6.45 The distribution of membership functions of the 8-rule simplified Singleton 

FRBS (from the third modelling stage) for UTS modelling.  
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Figure 6.46  The distribution of membership functions of the 7-rule simplified Mamdani 

FRBS (from the third modelling stage) for UTS modelling. 
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Figure 6.47 shows 4 selected rules from the 8-rule simplified Singleton FRBS. 

 

Figure 6.47 The selected rules from the 8-rule simplified Singleton FRBS: (a) rule 2; (b) rule 

3; (c) rule 5; (d) rule 7. 
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Figure 6.48 shows 3 selected rules from the 7-rule simplified Mamdani FRBS. 

 

Figure 6.48 The selected rules from the 7-rule simplified Mamdani FRBS: (a) rule 2; (b) rule 

3; (c) rule 5. 
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For such a high dimensional problem, verifying the physical interpretation of the obtained 

models is proved to be a difficult task. Hence, Figures 6.49~6.50 show the three-dimensional 

response surfaces of the UTS models by plotting two varying input variables against the 

output while keeping other input variables constant. The constant variables are set to the 

‘median’ values of the dominant steel grade, as indicated in Table 6.5, which corresponds to 

1%CrMo steel grade. It is worth mentioning that the knowledge conveyed by Figures 

6.49~6.50 is rather consistent with the knowledge extracted by Tenner (1999) and Zhang & 

Mahfouf (2009), which has been verified to follow the expected behaviour as predicted by 

theory or by expert knowledge. As an example, one interesting finding that has been 

consistently mined via the composition based variable effect method (Tenner, 1999) and the 

response surface based method is the interaction effects of varying tempering temperature 

and carbon content. As shown in Figures 6.49~6.50, the strength of 1% CrMo steel is greatest 

at low tempering temperature and high carbon content, and is lowest at high tempering 

temperature and low carbon content. More importantly, with high carbon content, the effect 

of tempering temperature is much more non-linear than the one with low carbon content. 

Similar analyses can be conducted for variables to extract hidden knowledge.  

 

TABLE 6.5 
THE ‘MEDIAN’ MODEL INPUTS REPRESENTING THE 1%CRMO STEEL GRADE 

The ‘Median’ Inputs of 1% CrMo Steel Grade 
Input Variables  Values 
Test Depth (mm)  12.7 

Size (mm)  180 
Site (1‐6)  3 
C (%)  0.41 
Si (%)  0.27 
Mn (%)  0.78 
S (%)  0.023 
Cr (%)  1.08 
Mo (%)  0.22 
Ni (%)  0.19 
Al (%)  0.027 
V (%)  0.005 

Hardening Temperature (0C)  860 
Cooling Medium (1‐3)  3 

Tempering Temperature (0C)  630 
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Figure 6.49 Response surfaces of the 8-rule simplified Singleton UTS model. 

 

Figure 6.50 Response surfaces of the 7-rule simplified Mamdani UTS model. 
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As shown in Table 6.4, the ‘vaccine FRBSs’ produced from the second modelling stage are 

accurate as far as the training data is concerned and generalise well under similar situations 

represented by the testing data. However, such a good generalisation performance does not 

guarantee the same level of goodness for the ‘vaccine models’ under unseen situations. 

Hence, another 12 more recent samples were used as unseen examples for further 

investigating the generalisation ability of the elicited fuzzy models. By doing so, the problem 

of over-fitting specifically related to the second modelling stage (vaccine FRBS) is further 

revealed in Table 6.6. Such over-fitting is mainly attributed to the excessive number of rules 

and membership functions involved in the first two modelling stages. By employing the third 

modelling stage, these unnecessary parts are pruned so that the simplified fuzzy models can 

predict well even under unknown scenarios.  

TABLE 6.6 
THE VALIDATION PERFORMANCES OF IMOFM ON THE 12 UNSEEN DATA SAMPLES 

Modeling Methods 
Second Stage (single objective refining) 

No. of rules Validation (RMSE) 
IMOFM_S 12 53.62 
IMOFM_M 12 47.34 

Third Stage (multi-objective fuzzy modeling) 
Modeling Methods No. of rules No. of Fuzzy sets in inputs Validation (RMSE) 

IMOFM_S 
Pareto FRBS1 

 
10 

 
Inputs: [4 7 8 8 4 7 3 8 7 7 3 4 4 7 7], Outputs: 10 

 
41.01 

Pareto FRBS2 8 Inputs: [2 4 4 7 3 3 3 5 4 5 2 2 3 6 6], Output: 8 
 31.54 

Pareto FRBS3 7 Inputs: [3 4 4 4 1 3 3 4 3 4 1 1 2 6 5], Output: 7 46.34 
IMOFM_M 

Pareto FRBS1 
 

10 
 

Inputs: [8 9 10 10 6 10 6 9 9 7 4 7 6 10 9], Output: 10 35.65 

 
Pareto FRBS2 

 
7 

 
Inputs: [5 7 7 7 2 4 3 6 6 6 2 3 1 7 7], Output: 5 37.80 

 
Pareto FRBS3 6 Inputs: [2 2 2 5 2 2 1 4 3 3 0 2 1 2 4], Output: 5 49.87 

 

Figure 6.51 shows the prediction performances of the ‘vaccine FRBSs’ and the simplified 

FRBSs on the validation data. As indicated by the graph, the refined FRBSs obtained from 

the second modelling stage cannot cope with those newly collected samples as some 

predictions are very close to or even outside the േ10%  error bands. Conversely, the 

generalisation capability of the simplified FRBSs is very much improved due to the 

simplification of the rule-base structure. Figure 6.52 shows the confidence bands the UTS 

models on the training data.       
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Figure 6.51  The prediction performances of the 12-rule refined FRBSs from the second 

modelling stage and the 8-rule and 7-rule simplified FRBSs from the third 

modelling stage. 

 

Figure 6.52 5%-range confidence bands of an 8-rule simplified Singleton FRBS (left) and a 

7-rule simplified Mamdani FRBS (right) on the training data set. 

As already discussed in Section 5.6.3, the variable length coding scheme and the new 

distance index can greatly improve the prediction performance of the simplified model and 
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the process of optimisation. Such an improvement can be made even bigger when more rules 

and higher dimensional problems are involved. Figure 6.53 uses IMOFM_S as an example to 

demonstrate such an improvement and shows the snapshot of the approximate Pareto fronts at 

10, 100, 500, 800, 1000 and 1200 iterations respectively. As can be seen from this figure, the 

evolution starts from the most accurate FRBS and expands the Pareto front during the course 

of the optimisation. The variable length coding and the new distance index play an important 

role in such a search process as the prediction accuracy of the simplified FRBSs at early 

iterations has been considerably improved. 

 

Figure 6.53 The snapshot of the Pareto FRBSs at 10, 100, 500, 800, 1000 and 1200 

iterations. 

Table 6.7 summarises the results of the UTS modelling problem using IMOFM_S with and 

without the variable length coding and the new distance index. The results were obtained 

from two random runs with each of them for one of IMOFM_S configurations. The 

improvements with the variable length coding and the new distance index are much bigger, 

especially for the FRBSs with fewer rules, comparing to that of the low dimensional problem 

presented in Section 5.6.3. Since the FRBS with fewer rules is more prone to suffering from 

the so-called ‘unordered set of rules’, IMOFM_S with the variable length coding and the new 

distance index is more effective in such a scenario as compared to the one without such a 

scheme. Figure 6.54 shows the Pareto fronts produced by two different IMOFM_S 

implementations, viz. with and without the variable length coding and the new distance 

index. 
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TABLE 6.7 
THE COMPARISON OF THE MODELING APPROACHES WITH AND WITHOUT VARIABLE LENGTH CODING SCHEME  

FRBS 
Configurations 

No. of 
rules Objective 1 

IMOFM_S 
(without VLC) 

Training 
Performance 

(RMSE) 

IMOFM_S 
(with VLC) 

Training 
Performance 

(RMSE) 
 

Improvement 
(%) 

Pareto FRBS1 11 348 29.782 29.671 0.3% 
Pareto FRBS2 10 306 29.944 29.824 0.4% 
Pareto FRBS3 10 304 29.952 29.839 0.4% 
Pareto FRBS4 10 298 30.024 29.882 0.5% 
Pareto FRBS6 9 263 31.972 31.865 0.3% 
Pareto FRBS7 8 226 35.871 33.484 6.7% 
Pareto FRBS8 8 225 36.273 33.733 7.0% 
Pareto FRBS9 8 212 36.762 35.740 7.0% 

Pareto FRBS10 7 193 40.854 38.194 6.5% 
Pareto FRBS11 7 192 41.019 38.975 5.1% 
Pareto FRBS12 7 188 42.333 40.536 4.2% 
Pareto FRBS13 6 162 45.725 41.100 10.0% 
Pareto FRBS14 6 161 45.869 41.400 9.8% 
Pareto FRBS15 6 158 47.052 41.994 10.7% 
Pareto FRBS16 6 157 47.780 42.581 10.9% 

 

 

Figure 6.54 The Pareto fronts obtained using IMOFM_S with and without the variable length 

coding and the new distance index for the UTS problem. 
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6.3.5 Predictions of Reduction of Area (ROA) 

Reduction of area (ROA) is part of the tensile testing procedure described in Section 6.3.3. 

The reduction of area is measured as the percentage change in the diameter of the specimen 

after fracture. This data set includes 3710 data samples. It has 15 inputs, which are the same 

as those shown in Table 6.3 with the same ranges, and 1 output, which is the ROA with the 

maximum value being 79.4% and the minimum value being 21.8%. In order to compare with 

Zhang & Mahfouf’s work (2009), the ROA data set is randomly divided into two parts: 75% 

of the data are used for training and the remaining data are used for testing. The maximum 

number of rules is set to 12 for both IMOFM_S and IMOFM_M. The number of iterations for 

the second and the third modelling stages are set to 500 and 1200 respectively. Other 

parameters are kept the same as those given in Section 5.6.2. 

Figures 6.55 and 6.56 show the training and testing processes of the second modelling stage 

of IMOFM_S and IMOFM_M, each of which is extracted from one of 10 runs. 

 

Figure 6.55 The training and testing process of the IMOFM_S on the ROA data. 
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Figure 6.56 The training and testing process of the IMOFM_M on the ROA data. 

The results presented in Table 6.8 include the average values of 10 independent runs. 
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TABLE 6.8 
COMPARISONS OF THE PREDICTIVE PERFORMANCES FOR THE DIFFERENT MODELING METHODS USING THE ROA DATA  

Modeling Methods  
(Ref.) 

No. of 
rules 

No. of fuzzy sets in inputs and output Performance 
Training  
(RMSE) 

Testing 
(RMSE) 

Training 
(R-Square) 

Testing 
(R-Square) 

Q. Zhang & M. Mahfouf (2007)  
Initial FRBS 20 Input:[20 20 20 20 20 20 20 20 20 20 20 20 20 20 20]; output: 20 5.92* 5.44* - - 

Pareto FRBS1 15 Input: [14 12 13 14 13 14 11 14 13 15 6 10 13 12 13]; output: 13 3.46# 3.75# - - 
Pareto FRBS2 7 Input: [5 4 3 4 5 4 4 5 6 4 4 5 5 3 4]; output: 6 4.41# 4.40# - - 

       
IMOFM_S ( NB: Average results over 10 runs are presented here)   
 

   Initial FRBS 12 Input: [12 12 12 12 12 12 12 12 12 12 12 12 12 12 12]; output: 12 (5.82*/
3.08@) 

(5.82*/
3.43@) 

(0.4766*/ 
0.8859@) 

(0.4447*/ 
0.8506@) 

   Pareto FRBS1 12 Input: [7 10 10 10 6 8 6 8 8 11 8 6 9 8 9]; output: 12 2.98#  3.29# 0.8887# 0.8570# 

   Pareto FRBS2 10 Input: [6 7 6 10 5 8 7 7 8 9 6 5 7 7 10]; output: 10 3.00#  3.30# 0.8869# 0.8572# 

   Pareto FRBS3 10 Input: [4 7 5 9 5 6 5 6 6 7 5 4 7 6 8]; output: 10 3.06#  3.29# 0.8822# 0.8572# 

   Pareto FRBS4 10 Input: [4 6 5 9 5 5 5 5 6 6 5 3 7 6 7]; output: 10 3.09#  3.29# 0.8822# 0.8572# 

   Pareto FRBS5 8 Input: [6 3 6 6 2 6 3 5 5 5 4 5 7 7 6]; output: 8 3.16#  3.42# 0.8736# 0.8448# 

   Pareto FRBS6 8 Input: [5 3 5 5 2 5 3 5 5 4 4 4 5 6 6]; output: 8 3.18#  3.42# 0.8736# 0.8448# 

   Pareto FRBS7 7 Input: [5 3 4 4 1 4 3 5 5 3 4 3 4 6 5]; output: 7 3.28#  3.47# 0.8629# 0.8401# 

   Pareto FRBS9 6 Input: [4 2 4 6 3 4 3 3 4 4 3 4 5 3 4]; output: 6 3.38#  3.59# 0.8541# 0.8272# 

   Pareto FRBS10 6 Input: [4 2 3 3 1 2 3 5 4 4 3 2 4 4 5]; output: 6 3.40#  3.54# 0.8518# 0.8329# 

IMOFM_M (NB: Average results over 10 runs are presented here) 
 

   Initial FRBS 12 Input: [12 12 12 12 12 12 12 12 12 12 12 12 12 12 12]; output: 12  (5.72*/
 3.24@) 

 (5.97*/
   3.49@) 

(0.4716*/ 
0.8686@) 

(0.5199*/ 
0.8643@) 

   Pareto FRBS1 9 Input: [6 7 7 7 3 6 5 4 5 6 3 3 5 6 7]; output: 7 3.03# 3.34# 0.8799# 0.8697# 

   Pareto FRBS2 8 Input: [5 7 7 5 3 5 3 7 4 7 3 1 5 5 7]; output: 8  3.07# 3.32# 0.8766# 0.8707# 

   Pareto FRBS3 8 Input: [5 7 7 5 2 5 3 7 4 7 3 1 4 5 7]; output: 7 3.10# 3.32# 0.8746# 0.8703# 

   Pareto FRBS4 7 Input: [4 6 5 5 2 4 5 4 4 7 3 1 4 5 7]; output: 5 3.14# 3.30# 0.8708# 0.8716# 

   Pareto FRBS5 7 Input: [2 5 5 5 2 4 5 6 3 6 3 1 2 5 7]; output: 5 3.22# 3.38# 0.8636# 0.8652# 

   Pareto FRBS6 6 Input: [4 5 5 4 1 4 4 3 2 4 3 1 2 5 6]; output: 5 3.30# 3.40# 0.8561# 0.8632# 

   Pareto FRBS7 6 Input: [2 3 5 4 1 3 4 4 3 5 3 0 2 5 6]; output: 5 3.38# 3.48# 0.8483# 0.8553# 

* Initial model extracted directly from data using clustering algorithms or grid partition methods.  
@ Refined model or the consequents are computed through the estimation methods.  # Simplified model after model simplification and parameter fine tuning.
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Figures 6.57~6.58 show the ‘actual outputs vs. predicted outputs’ graphs from the three 

modelling stages.  

 

Figure 6.57 The prediction performances of the three stages for the ROA training and testing 

data using IMOFM_S. 

 

Figure 6.58 The prediction performances of the three stages for the ROA training and testing 

data using IMOFM_M. 
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Figures 6.59~6.60 show the Pareto fronts of the ROA modelling problem using IMOFM_S 

(28 Pareto FRBSs) and IMOFM_M (14 Pareto FRBSs) from one of 10 runs. 

 

Figure 6.59 The Pareto fronts obtained using IMOFM_S from the third modelling procedure 

for the ROA modelling problem: (a) Objective1 vs. Objective2; (b) Objective1 

vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 

 

Figure 6.60 The Pareto fronts obtained using IMOFM_M from the third modelling procedure 

for the ROA modelling problem: (a) Objective1 vs. Objective2; (b) Objective1 

vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 
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Figures 6.61~6.66 show the distribution of membership functions of the fuzzy models found 

in different modelling stages.  

 

Figure 6.61 The distribution of membership functions of the 12-rule initial Singleton FRBS 

(from the first modelling stage) for ROA modelling. 

 

Figure 6.62 The distribution of membership functions of the 12-rule refined Singleton FRBS 

(from the second modelling stage) for ROA modelling. 
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Figure 6.63 The distribution of membership functions of the 6-rule simplified Singleton 

FRBS (from the third modelling stage) for ROA modelling. 

 

Figure 6.64 The distribution of membership functions of the 12-rule initial Mamdani FRBS 

(from the first modelling stage) for ROA modelling. 
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Figure 6.65 The distribution of membership functions of the 12-rule refined Mamdani FRBS 

(from the second modelling stage) for ROA modelling 

 

Figure 6.66 The distribution of membership functions of the 6-rule simplified Mamdani 

FRBS (from the third modelling stage) for ROA modelling. 
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As can be seen from Figure 6.66, IMOFM_M can not only be used to simplify the overlapped 

membership functions, but also can be used to select useful inputs. In the above example, V 

has been identified as a redundant factor among all chemical compositions for the decision of 

ROA.  

Figures 6.67~6.68 show the three-dimensional response surfaces of the simplified Singleton 

and Mamdani ROA models. The ‘median’ values of the constant variables are referred to 

Table 6.5. 

 

Figure 6.67 Response surfaces of the 6-rule simplified Singleton ROA model. 
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Figure 6.68 Response surfaces of the 6-rule simplified Mamdani ROA model. 

The response surfaces of Mo-Cr of the Singleton and Mamdani ROA models are different in 

the regions where Mo is around 1 and Cr is around 0. This can be explained via Figure 6.69 

(c). Indeed, the data samples are sparse in such a region, hence the result. Figures 6.69 (a) and 

(b) also explain the reason why the low value ROA points are modelled poorly, as one can 

see from Figures 6.57~6.58 and 6.70. The distribution of the ROA is obviously skewed 

towards to higher values, and this was thought to have affected the accuracy of the low-end 

values. 
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Figure 6.69 Data distributions on chosen dimensions of ROA data. 

 

Figure 6.70  5%-range confidence band of the 6-rule simplified Singleton FRBS on the ROA 

data. 

6.3.6 Predictions of Elongation  

Elongation is the final property derived from the tensile strength test, as described in Section 

6.3.3. Since elongation is measured as the percentage change in gauge length after fracture, 

this property is dependent on the gauge length used for the specimen, which may be defined 

as either 4 or 5 times the diameter of the specimen. Hence, apart from the inputs shown in 
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Table 6.3 for the UTS and ROA data, gauge length is also included, which is defined as 4 or 

5 times the diameter of the specimen. The original data set consists of 3804 samples. 

However, as indicated by Figure 6.71, there is only one data sample whose output value is 

greater than 35. Hence, we removed this data points in the subsequent experiment. Table 6.9 

describes the maximum and minimum values for each input and output. 75% of the data are 

used for training and the remaining data is used for testing. 

 

Figure 6.71 The histogram of the output of the elongation data. 

TABLE 6.9 
THE INPUTS AND OUTPUT OF ELONGATION DATA SET  

Inputs Gauge   
Length 

Test 
Depth 

 
Size 

 
Site 

 
%C 

 
%Si 

 
%Mn 

 
%S 

Max. 5 140 381 6 0.62 0.37 1.75 0.21 

Min. 4 4 10 1 0.13 0.11 0.35 0.0005 

Inputs  
%Cr 

 
%Mo 

 
%Ni 

 
%Al 

 
%V 

Hardening 
Temperature 

Cooling 
Medium 

Tempering 
Temperature 

Max. 3.46 1 4.21 1.08 0.27 980 3 730 

Min. 0.05 0.01 0.02 0.005 0.001 820 1 170 

 
Output Elongation (%) (Max.: 51.1; Min.: 8.2) 

 

The maximum number of rules is set to 12 for both IMOFM_S and IMOFM_M. The numbers 

of iterations for the second and third modelling stages are set to 150 and 1200 respectively. 

Other parameters are kept the same as those given in section 5.6.2. Figures 6.72 and 6.73 
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show the training testing processes of the second modelling stage. Table 6.10 summarises the 

predictive performances. 

 

Figure 6.72 the training and testing process of the IMOFM_S on the elongation data. 

 

Figure 6.73 The training and testing process of the IMOFM_M on the elongation data.
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TABLE 6.10 
COMPARISONS OF THE PREDICTIVE PERFORMANCES FOR THE DIFFERENT MODELING METHODS USING THE ELONGATION DATA  

Modeling Methods  
(Ref.) 

No. of 
rules 

No. of fuzzy sets in inputs and output Performance 
Training  
(RMSE) 

Testing 
(RMSE

) 

Training 
(R-Square) 

Testing 
(R-Square) 

Q. Zhang & M. Mahfouf (2007)  
Initial FRBS 15 Input:[15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15]; output: 15 2.39* 2.23* - - 

Pareto FRBS1 10 Input: [8 6 9 7 8 9 9 3 9 9 7 6 5 9 9 9]; output: 9 1.78# 1.76# - - 
Pareto FRBS2 8 Input: [5 4 5 2 5 5 6 3 4 4 5 2 4 5 5 5]; output: 7 1.78# 1.65# - - 

       
IMOFM_S ( NB: Average results over 10 runs are presented here)   

   Initial FRBS 12 Input: [12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12]; output: 12 (2.72*/
1.32@) 

(2.83*/
1.48@) 

(0.5461*/ 
0.9117@) 

(0.5678*/ 
0.8966@) 

   Pareto FRBS1 12 Input: [10 8 12 11 10 10 11 6 11 12 11 6 9 11 11 12]; output: 12 1.31# 1.48# 0.9128# 0.8961# 

   Pareto FRBS2 11 Input: [7 6 9 9 9 7 8 4 10 10 10 6 7 10 10 11]; output: 11 1.31#  1.48# 0.9126# 0.8964# 

   Pareto FRBS3 11 Input: [8 7 8 9 9 5 8 3 9 8 9 5 2 9 9 11]; output: 11 1.31#  1.48# 0.9122# 0.8960# 

   Pareto FRBS4 9 Input: [7 6 8 8 7 3 7 3 7 9 8 5 5 8 8 9]; output: 9 1.32#  1.49# 0.9120# 0.8955# 

   Pareto FRBS5 9 Input: [5 5 6 8 7 2 6 3 6 8 8 5 3 6 8 8]; output: 9 1.34#  1.51# 0.9094# 0.8920# 

   Pareto FRBS6 8 Input: [4 5 6 8 6 2 6 3 7 7 8 5 3 6 7 8]; output: 8 1.34#  1.52# 0.9086# 0.8910# 

   Pareto FRBS7 8 Input: [4 5 6 8 5 1 5 2 6 7 7 5 3 7 7 7]; output: 8 1.35#  1.53# 0.9076# 0.8887# 

   Pareto FRBS9 6 Input: [4 3 6 6 4 1 5 2 6 5 5 3 2 4 5 6]; output: 6 1.38#  1.55# 0.9026# 0.8863# 

   Pareto FRBS10 6 Input: [4 3 6 6 4 1 4 2 5 5 4 3 2 3 5 6]; output: 6 1.39#  1.55# 0.9016# 0.8867# 

IMOFM_M (NB: Average results over 10 runs are presented here) 

   Initial FRBS 12 Input: [12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12]; output: 12  (2.73*/
 1.32@) 

 (2.82*/
   1.49@) 

(0.5448*/ 
0.9117@) 

(0.5684*/ 
0.8955@) 

   Pareto FRBS1 12 Input: [8 7 7 10 11 7 8 5 10 9 9 5 6 8 8 10]; output: 11  1.30# 1.49# 0.9138# 0.8954# 

   Pareto FRBS2 11 Input: [8 5 5 8 9 7 8 5 10 9 10 5 4 8 8 10]; output: 11  1.30# 1.47# 0.9137# 0.8982# 

   Pareto FRBS3 10 Input: [6 5 6 9 9 4 6 4 8 8 8 4 4 6 7 8]; output: 9 1.32# 1.48# 0.9115# 0.8968# 

   Pareto FRBS4 9 Input: [6 5 7 8 9 4 6 4 8 7 7 3 3 6 8 8]; output: 9  1.33# 1.51# 0.9096# 0.8929# 

   Pareto FRBS5 8 Input: [6 4 5 8 7 2 4 3 6 5 6 3 3 5 6 7]; output: 6  1.35# 1.52# 0.9071# 0.8912# 

   Pareto FRBS6 6 Input: [5 4 4 6 5 2 5 3 4 6 6 3 3 3 3 4]; output: 6 1.39# 1.54# 0.9019# 0.8869# 

   Pareto FRBS7 6 Input: [4 3 3 6 4 1 3 3 5 6 5 2 3 2 4 4]; output: 4 1.41# 1.55# 0.8992# 0.8869# 

* Initial model extracted directly from data using clustering algorithms or grid partition methods.  
@ Refined model or the consequents are computed through the estimation methods.  # Simplified model after model simplification and parameter fine tuning.
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Figures 6.74~6.75 show the ‘actual outputs vs. predicted outputs’ graphs from the three 

modelling stages.  

 

Figure 6.74 The prediction performances of the three stages for the elongation training and 

testing data using IMOFM_S. 

 

Figure 6.75 The prediction performances of the three stages for the elongation training and 

testing data using IMOFM_M. 
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Figures 6.76~6.77 show the Pareto fronts of the elongation modelling problem using 

IMOFM_S (28 Pareto FRBSs) and IMOFM_M (21 Pareto FRBSs) from one of 10 runs. 

 

Figure 6.76 The Pareto fronts obtained using IMOFM_S from the third modelling procedure 

for the elongation modelling problem: (a) Objective1 vs. Objective2; (b) 

Objective1 vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 

 

Figure 6.77 The Pareto fronts obtained using IMOFM_M from the third modelling procedure 

for the elongation modelling problem: (a) Objective1 vs. Objective2; (b) 

Objective1 vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 
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Figures 6.78~6.83 show the distribution of some membership functions of the fuzzy models 

found in different modelling stages. 

 

Figure 6.78 The distribution of some membership functions of the 12-rule initial Singleton 

FRBS (from the first modelling stage) for elongation modelling. 

 

Figure 6.79 The distribution of some membership functions of the 12-rule refined Singleton 

FRBS (from the second modelling stage) for elongation modelling. 
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Figure 6.80 The distribution of some membership functions of the 6-rule simplified 

Singleton FRBS (from the third modelling stage) for elongation modelling. 

 

Figure 6.81 The distribution of some membership functions of the 12-rule initial Mamdani  

FRBS (from the first modelling stage) for elongation modelling. 
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Figure 6.82 The distribution of some membership functions of the 12-rule refined Mamdani 

FRBS (from the second modelling stage) for elongation modelling. 

 

Figure 6.83 The distribution of some membership functions of the 6-rule simplified 

Mamdani FRBS (from the third modelling stage) for elongation modelling. 
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Figures 6.84~6.85 show the three-dimensional response surfaces of the simplified Singleton 

and Mamdani elongation models. The ‘median’ values of the constant variables are referred 

to Table 6.5. For gauge length, the ‘median’ value is set to 5.   

 

Figure 6.84 Response surfaces of the 6-rule simplified Singleton elongation model. 

 

Figure 6.85 Response surfaces of the 6-rule simplified Mamdani elongation model. 
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The response surfaces of the Singleton and Mamdani ROA models are quite different for 

some inputs. This can be explained by the data which is very sparse in this case. Figure 6.86 

shows the 5%-range confidence band of the 6-rule simplified Singleton FRBS on the 

elongation data. 

 

Figure 6.86  5%-range confidence band of the 6-rule simplified Singleton FRBS on the 

elongation data. 

6.4 Comparison between Singleton FRBS and Mamdani FRBS 

As shown in Tables 6.1, 6.2, 6.4, 6.8 and 6.10, generally, the predictive performance of the 

initial Mamdani FRBS in the first modelling stage is slightly worse than that of the singleton 

FRBS. However, using the proposed BEP updating formulas, the accuracy of such an 

inaccurate Mamdani FRBS has been improved greatly in the second modelling stage. More 

importantly, when unseen data are presented to the algorithm, a much better generalisation 

ability has been observed for the refined Mamdani FRBS comparing to the refined Singleton 

FRBS. This is confirmed if one looks into Table 6.6 where 12 unseen UTS data samples were 

used as the validation data. After the third modelling stage, generalisation ability of the 

Singleton FRBS is much improved due to the removal of the redundancies embedded within 

its structure. Those redundancies are responsible for the over-fitting of the training data, 

which may lead to a bad generalisation on unseen situations. Since the singleton FRBS is a 

special type of TSK model, good generalisation ability using fewer rules is observed for all 
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the case studies. However, with a few more rules, Mamdani FRBS represents a competitive 

generaliser.  

6.5 Summary 

In this chapter, the proposed IMOFM is tested via two benchmark problems and is applied to 

predict the mechanical properties of alloy steels, such as UTS, ROA and elongation. The 

results show that the proposed IMOFM is a powerful modelling tool in that it can elicit not 

only accurate but also transparent models. Apart from that, IMOFM also shows its potential 

in selecting inputs and improving generalisation ability. The experiments have also shown 

that by using the variable length coding scheme and a new distance index, the problem of the 

so-called ‘unordered set of rules’ is resolved, which leads to a more efficient optimisation. In 

the next chapter, a special case of ‘stacked generalisation’ will be examined, which will be 

used, along with IMOFM, to model the impact energy. 
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Chapter 7 

Improving the Prediction 
Accuracy of FRBSs 

“Stacked  generalisation  works  by  deducing  the  biases  of  the  generaliser(s)  with  respect  to  a 

provided learning set."  

David H. Wolpert, Stacked Generalisation, 1992 

In this chapter, the concept of ‘Stacked generalisation’ (Wolpert, 1992) is first introduced, 

which is a scheme for minimising the generalisation error rate of one or more generalisers 

(models). A special case of ‘Stacked Generalisation’ is also proposed in this chapter and 

applied to the modelling of Impact Energy data set. The results show that the proposed 

method can generally improve not only the training but also the generalisation performance. 

The theoretical justification of the proposed special case is also given in this chapter.  

7.1 Introduction to Stacked Generalisation  

Given the limited information and the presence of embedded systematic errors, it is often 

hard to learn the underlying process behaviour using the conventional feedback-based 

supervised learning (CFSL).  In such a case, inaccuracies are inherent in the collected data in 

the form of the contaminated information and/or the shortage of some critical factors. A data-

driven learning procedure is by no means able to uncover the underlying flaws-free system by 

learning directly from such flawed data. The learnt model may fit the learning examples 

perfectly, however, in terms of generalisation via unseen situations, the same model may 

perform badly. Figure 7.1 shows the conventional feedback-based supervised learning. 
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Figure 7.1 The conventional feedback-based supervised learning (CFSL). 

‘Stacked Generalisation’ represents an ideal candidate for the aforementioned problem by 

concatenating an additional learning layer and the original one with the aim of improving the 

model’s generalisation property without the need for additional information (inputs). The 

basic idea of ‘Stacked Generalisation’ is to use a high-level model to combine lower-level 

model(s) to achieve a greater accuracy. ‘Stacked Generalisation’ normally consists of the 

following two steps (Ting & Witten, 1999): 

1. The first step is to collect the output of each model into a new set of data. For each 

instance in the original training set, this data set represents every model’s predicted 

output of that instance, along with its observed output; 

2. The new data set are treated as the data for another learning problem, and a learning 

algorithm is employed to solve this problem.  

Wolpert (1992) called the original data and the model(s) constructed from them in the first 

step ‘level-0 data’ and ‘level-0 model(s)’, respectively, while the data and the learning 

algorithm in the second step are referred to as ‘level-1 data’ and ‘level-1 generaliser’. The 

process of ‘stacking’ can be iterated, resulting in stacked levels greater than 1. From now on, 

only 2-level ‘Stacked Generalisation’ is discussed. 

There are many variations of ‘Stacked Generalisation’ as long as one follows the mentioned 

two steps to construct them. However, the primary implementation is as the technique for 

combining multiple generalisers. In such a case, ‘Stacked Generalisation’ can be viewed as a 

more sophisticated version of non-parametric statistics techniques like cross-validation. It 

provides a strategy by combining a set of generalisers rather than ‘winner-takes-all’. An 
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instance of this type of ‘Stacked Generalisation’ in the field of ANNs is network ensembles 

(Krogh et al., 1995). Theoretical proof that diversity of networks can lead to reduced 

generalisation error has been given by Sollich & Krogh (1996) by considering the task of 

approximating a target function ଴݂ from ܴே  to ܴ. The target function is denoted ݕሺݔሻ and 

only noisy samples of the target function can be obtained. The inputs ݔ are taken to be drawn 

from a distribution ܲሺݔሻ. If an ensemble of ܭ independent predictors ௞݂ሺݔሻ is available, a 

weighted ensemble average (the final output of the ensemble) is denoted as follows: 

݂ሺݔሻ ൌ ∑ ௞ݓ · ௞݂ሺݔሻ௞  (7.1) 

Where, ݓ௞ is a weight representing the strength of ‘belief’ in each predictor, which has a 

positive value and sums to one. For an input ݔ, the error of the ensemble ߝሺݔሻ, the error of the 

 :ሻ are defined as followsݔ௞ሺߙ ’ሻ, and its ‘ambiguityݔ௞ሺߝ predictor ݄ݐ݇

ሻݔሺߝ ൌ ቀݕሺݔሻ െ ݂ሺݔሻቁ
ଶ
 (7.2) 

ሻݔ௞ሺߝ ൌ ሺݕሺݔሻ െ ௞݂ሺݔሻሻଶ (7.3) 

ሻݔ௞ሺߙ ൌ ൫ ௞݂ሺݔሻ െ ݂ሺݔሻ൯
ଶ
 (7.4) 

The error of ensemble can also be written as follows: 

ሻݔሺߝ ൌ ሻݔሺߝ െ  ሻ (7.5)ݔሺߙ

Where, ߝሺݔሻ ൌ ∑ ௞ݓ · ሻ௞ݔ௞ሺߝ  and ߙሺݔሻ ൌ ∑ ௞ݓ · ሻ௞ݔ௞ሺߙ . When averaged over the input 

distribution ܲሺܺሻ, the following ensemble generalisation error is obtained as follows:  

ߝ ൌ ߝ െ  (7.6) ߙ

Sollich & Krogh pointed out that Eq. 7.6 is important in that it separates the generalisation 

error into a term that depends on the generalisation errors of the individual predictors and 

another term that contains all correlation between the predictors. Hence, the more the 

predictors differ, the lower the error will be, given ߝ௞ remain constant.  

Instead of viewing ‘Stacked Generalisation’ as an extension of concepts such as cross-

validation, Wolpert (1992) argued that it can also be viewed as a means of collectively using 

all predictors to estimate their own generalising biases with respect to a particular training 

set, and then filter out those biases. This description leads to another primary implementation 
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which only has a single level-0 generaliser. In such a case, ‘Stacked Generalisation is a 

scheme for estimating the errors of a generaliser and then correcting those errors. In the next 

sections an Error Correction Scheme (ECS) will be introduced first, which falls into the 

second implementation discussed above. A mathematical proof regarding how much one can 

improve the predictive performance via the ECS will then be given. Impact Energy is 

employed as the case study to show the validity of the proposed ECS. Some possibilities to 

extend the current ECS are also discussed at the end of the chapter. 

7.2 Basic Ideas for Prediction Improvements 

7.2.1 Error Correction Scheme 

Here, a special case of ‘Stacked Generalisation’ is presented, which relates to the case of 

when the first layer contains only one generaliser. In such a case, ‘Stacked Generalisation’ is 

reduced to a scheme for estimating the error of the model in the first layer. Figure 7.2 shows 

the special case of the ‘Stacked Generalisation’ based on the ECS. 

 

Figure 7.2 ‘Stacked Generalisation’ based on the ECS. 
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The basic idea of ECS is to build an Error Predictive FRBS (EPF) apart from the Original 

Predictive FRBS (OPF) so that one can predict the errors associated with the OPF given the 

inputs of OPF. When a new scenario is encountered, the EPF will be able to predict the 

potential error and thus the predicted error can be used to compensate for the predicted output 

produced by the OPF. An improved predictive accuracy in terms of not only the learning but 

also the generalisation should be expected. 

7.2.2 Theoretical Justification 

A logical question relating to the proposed ECS may be as follows: how much exactly can 

one improve the predictive performance via the ECS? The following mathematical deduction 

will answer this question. 

To measure the predictive performance of OPF, RMSE is used as follows: 

ை௉ிܧܵܯܴ ൌ ට∑ ൫௬೛ೝ೐೏೔೎೟೔೚೙ሺ௠ሻି௬೟ೌೝ೒೐೟ሺ௠ሻ൯మಿ
೘సభ

ே
 (7.7) 

Where, ܰ  is the number of learning examples, ݕ௧௔௥௚௘௧, ௣௥௘ௗ௜௖௧௜௢௡ݕ  are the targeted and 

predicted outputs. If the error produced by the OPF is defined using Eq. 7.8, the predictive 

performance of EPF is given by Eq. 7.9: 

ሺ݉ሻݎ݋ݎݎܧ ൌ ௧௔௥௚௘௧ሺ݉ሻݕ െ ݉        ,௣௥௘ௗ௜௖௧௜௢௡ሺ݉ሻݕ ൌ 1,… ,ܰ (7.8) 

ா௉ிܧܵܯܴ ൌ ට∑ ൫ா௥௥௢௥೛ೝ೐೏೔೎೟೔೚೙ሺ௠ሻିா௥௥௢௥ሺ௠ሻ൯మಿ
೘సభ

ே
 (7.9) 

Where, ݎ݋ݎݎܧ௣௥௘ௗ௜௖௧௜௢௡  is the predicted error produced by EPF. Hence, the compensated 

outputs are calculated using Eq. 7.10: 

௖௢௠௣௘௡௦௔௧௘ௗሺ݉ሻݕ ൌ ௣௥௘ௗ௜௖௧௜௢௡ሺ݉ሻݕ ൅ ݉      ,௣௥௘ௗ௜௖௧௜௢௡ሺ݉ሻݎ݋ݎݎܧ ൌ 1,… ,ܰ  (7.10) 

Hence, the predictive performance of the ECS can be calculated and rearranged by 

substituting Eq. 7.8 and 7.9 into 7.11 as follows: 

ா஼ௌܧܵܯܴ ൌ ඨ∑ ൫ݕ௖௢௠௣௘௡௦௔௧௘ௗሺ݉ሻ െ ௧௔௥௚௘௧ሺ݉ሻ൯ݕ
ଶே

௠ୀଵ

ܰ ฺ 



 

252 
 

252 Chapter 7: Improving the Prediction Accuracy of FRBSs 

֜ ට∑ ൫௬೛ೝ೐೏೔೎೟೔೚೙ሺ௠ሻାா௥௥௢௥೛ೝ೐೏೔೎೟೔೚೙ሺ௠ሻି௬೟ೌೝ೒೐೟ሺ௠ሻ൯మಿ
೘సభ

ே
ൌ ට∑ ൫ா௥௥௢௥೛ೝ೐೏೔೎೟೔೚೙ሺ௠ሻିா௥௥௢௥ሺ௠ሻ൯మಿ

೘సభ
ே

؜

 ா௉ி  (7.11)ܧܵܯܴ

Hence, with the ECS, one can improve the predictive performance of the OPF to the 

predictive performance of the EPF on the learning examples.  

7.3 Experimental Studies on Impact Energy 

The proposed ECS is used to model Charpy toughness (impact Energy) which is featured as 

the imprecise and scattered multidimensional data. However, the repeatability of the 

measurements of Charpy test is considerably poor due to the unknown internal fracture 

dynamics which propagate the energy during the fracture stage in an almost random manner. 

Hence, repeating the test a number of times, for the same input conditions, may result in 

measurements within a certain output space region but with some variability (Panoutsos and 

Mahfouf, 2008). Due to the constraints on the costs associated with such measurements, a 

very imprecise and sparse data set is obtained. Also, the industrial/customer demands a robust 

process in order to predict the toughness properties of steels. Hence, a modelling approach 

which can provide consistent predictions, even in the regions of low data density and high 

scatter, is required.   

The variables used for the construction of the impact model, together with statistics of the 

data are shown in Table 7.1. Figure 7.3 shows the data distribution on some of the 

dimensions incolved.  
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TABLE 7.1 
THE INPUTS AND OUTPUT OF IMPACT ENERGY DATA SET  

Inputs Min. Max. Mean SD. 
Test Depth (mm) 5.5 146.05 20.8 14.5032 
Bar Size (mm) 11 381 172.488 80.839 
Test Site (2-6) 2 6 3.7965 1.1219 

C (%) 0.13 0.52 0.3942 0.0575 
Si (%) 0.11 0.38 0.2548 0.0318 

Mn (%) 0.41 1.75 0.8409 0.2172 
S (%) 0.0008 0.052 0.0167 0.0089 
Cr (%) 0.11 3.25 1.0752 0.2447 
Mo (%) 0.02 0.98 0.2394 0.086 
Ni (%) 0.03 4.21 0.3683 0.5192 
Al (%) 0.003 0.047 0.027 0.0048 
V (%) 0.001 0.26 0.0077 0.0223 

Hardening  
Temperature (0C)  810 980 864.0157 15.4689 

Cooling Medium (1-3) 1 3 2.0855 0.415 
Tempering  

Temperature (0C) 190 730 647.1927 49.9249 

Impact  
Temperature (0C) -59 23 -5.7869 26.4486 

Output: Impact 
Energy (J) 3.4667 245.3333 89.6419 32.9701 

 

 

Figure 7.3 Sample of Impact Energy data space. 
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To evaluate the proposed ECS, it was decided to apply its associated algorithm to the 

modelling of impact energy of steel data which consists of 1661 data samples. 75% of 

samples are used as the training data and the rest for testing. An 11-rule FRBS is first 

generated using G3Kmeans clustering, which is then refined further via a back-propagation 

algorithm. The refined FRBS is used to seed the third modelling stage of IMOFM to generate 

a set of Pareto FRBSs. Hence, a set of OPFs is formed by utilising the obtained Pareto 

FRBSs. Then, a set of 15-rule FRBSs (for OPFs having more than 9 rules) and 11-rule 

FRBSs (for OPFs having less than 10 rules) is used to build the corresponding EPFs in the 

way described in Section 7.2.1. In doing so, one can investigate the improved predictive 

performance of the ECS not only for a particular OPF but also for a set of OPFs.  

The number of iterations of the second modelling stage of IMOFM is set to 250, and the 

number of iterations of the third modelling stage is set to 1200. All other parameters are kept 

the same as those in chapter 6. For the ease of analysing, only Singleton FRBS is employed 

without any loss of generality. Table 7.2 summarises the predictive performances of the 

Pareto FRBSs (only a selection of them among 34 Pareto FRBSs is presented). The results of 

IMOFM modelling in terms of the Pareto fronts, the predictive performances from each 

modelling stage and the membership function distributions can be found in Appendix B, 

where a 6-rule simplified FRBS is used as an example. Table 7.3 summarises the predictive 

performances of EPF, OPF and ECS. As one can see from the table, by including the 

proposed ECS, the predictive performances of the Pareto FRBSs are improved. 
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TABLE 7.2 
COMPARISONS OF THE PREDICTIVE PERFORMANCES FOR THE DIFFERENT MODELING METHODS USING THE IMPACT ENERGY DATA  

Modeling Methods  
(Ref.) 

No. of 
rules 

No. of fuzzy sets in inputs and output Performance 
Training 
(RMSE) 

Testing 
(RMSE) 

Training 
(R-Square) 

Testing 
(R-Square) 

Q. Zhang & M. Mahfouf (2007)  
Initial FRBS 15 Input:[15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15]; output: 15 30.54* 31.44* - - 

Pareto FRBS1 15 Input: [12 15 14 13 15 13 12 14 13 12 13 15 13 11 15]; output: 11 14.35# 17.10# - - 
Pareto FRBS2 8 Input: [8 8 8 7 6 7 7 8 7 7 7 5 7 7 4 7]; output: 8 17.85# 19.03# - - 

       
IMOFM_S ( NB: Average results over 10 runs are presented here)   

Initial FRBS 11 Input: [11 11 11 1 11 11 11 11 11 11 11 11 11 11 11 11]; output: 11 (30.72*/
15.47@) 

(30.13*/
17.19@) 

(0.3777*/ 
0.8858@) 

(0.3934*/ 
0.8536@) 

Pareto FRBS1 10 Input: [7 8 8 9 6 8 9 6 7 5 6 3 8 9 8 9]; output: 10 14.96# 17.36# 0.8921# 0.8474# 

Pareto FRBS2 10 Input: [7 8 9 8 5 8 9 7 5 6 6 2 6 8 8 8]; output: 10 15.28#  17.52# 0.8871# 0.8449# 

Pareto FRBS3 9 Input: [6 7 7 7 5 7 8 7 6 4 5 3 5 8 8 7]; output: 9 15.73#  17.91# 0.8797# 0.8367# 

Pareto FRBS4 9 Input: [6 7 7 7 4 7 8 7 6 4 5 3 5 8 8 7]; output: 9 15.83#  18.15# 0.8783# 0.8320# 

Pareto FRBS5 7 Input: [4 7 6 6 3 6 5 6 3 2 6 2 4 5 5 6]; output: 7 16.41#  17.61# 0.8685# 0.8428# 

Pareto FRBS6 7 Input: [4 6 5 6 3 5 5 4 4 1 4 1 2 4 5 6]; output: 7 16.89#  18.39#  0.8606# 0.8271# 

Pareto FRBS7 6 Input: [4 6 5 4 2 3 5 6 4 3 3 2 4 5 6 6]; output: 6 17.68#  19.38# 0.8452# 0.8058# 

Pareto FRBS8 6 Input: [3 6 5 4 2 3 5 5 3 3 3 2 4 4 6 6]; output: 6 17.80#  19.62# 0.8432# 0.8006# 

Pareto FRBS9 5 Input: [4 4 5 5 2 3 3 5 3 2 3 2 3 4 4 4]; output: 5 17.82#  18.59# 0.8426# 0.8221# 

Pareto FRBS10 5 Input: [2 5 3 3 1 1 2 4 1 1 2 1 3 2 3 4]; output: 5 19.20#  19.58# 0.8144# 0.8002# 

* Initial model extracted directly from data using clustering algorithms or grid partition methods.  
@ Refined model or the consequents are computed through the estimation methods.   
# Simplified model after model simplification and parameter fine tuning. 
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TABLE 7.3 
TRAINING AND TESTING RESULTS FROM OPF, ECS AND EPF  

OPF 
Configurations 

OPF ECS EPF Improvement 
Training Testing Training Testing Training Testing Training 

(%) 
Testing 

(%) RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE RMSE 
Initial model 15.47 0.88 17.19 0.85 15.09 0.89 16.74 0.86 15.09 16.74 2.5 2.6 

Pareto FRBS1 14.96 0.89 17.36 0.84 14.62 0.90 17.01 0.85 14.62 17.01 2.2 2.0 
Pareto FRBS2 15.28 0.89 17.52 0.84 14.50 0.90 17.18 0.85 14.50 17.18 5.1 1.9 
Pareto FRBS3 15.73 0.88 17.91 0.84 15.55 0.88 17.78 0.84 15.55 17.78 1.1 0.7 
Pareto FRBS4 15.83 0.88 18.15 0.83 15.59 0.88 17.93 0.84 15.59 17.93 1.5 1.2 
Pareto FRBS5 16.41 0.87 17.61 0.84 15.77 0.88 17.12 0.85 15.77 17.12 3.9 2.8 
Pareto FRBS6 16.89 0.86 18.39 0.83 15.76 0.88 17.14 0.85 15.76 17.14 6.7 2.8 
Pareto FRBS7 17.68 0.84 19.38 0.80 16.21 0.87 18.58 0.82 16.21 18.58 8.3 4.1 
Pareto FRBS8 17.80 0.84 19.62 0.80 15.17 0.89 17.83 0.84 15.17 17.83 14.8 9.1 
Pareto FRBS9 17.82 0.84 18.59 0.82 17.01 0.86 18.41 0.83 17.01 18.41 4.5 0.9 
Pareto FRBS10 19.20 0.81 19.58 0.80 17.60 0.85 19.03 0.81 17.60 19.03 8.3 2.8 

 

In the following space, Pareto FRBS8 (a 6-rule simplified FRBS) is taken as an example to 

demonstrate the various aspects associated with the EPF, OPF and ECS. 

 

Figure 7.4 The predictive performance of the initial EPF. 

 

Figure 7.5 The predictive performance of the refined EPF. 
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Figures 7.4 and 7.5 show the predictive performances of the initial and the refined EPFs. It 

can be seen from the figure that the refined EPF correctly predicts some errors, which may be 

largely associated with the systematic error induced either by OPF or the data itself. For the 

errors which are close to the red line, it is most related to the noise when the data is collected. 

No model can predict the white noise. The improvement in the predictive performance of the 

ECS is mainly attributed to those embedded systematic errors which can be corrected after 

the compensation. Figure 7.6 shows the training process of the EPF. 

 

Figure 7.6 The training process of the EPF. 

Figures 7.7 and 7.8 show the predictive performances of the OPF and the ECS.  

 

Figure 7.7 The predictive performance of the OPF. 
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Figure 7.8 The predictive performance of the ECS. 

As can be seen from Figures 7.7~7.8, the predictions given by the corrected model are more 

close to the red line.  

7.4 Model Confidence Bands 

The confidence bands introduce another type of measures which quantify how reliable the 

elicited model is in particular regions. Such information has been combined into the EPF as a 

part of inputs with the hope of obtaining a more accurate EPF, given that more relevant 

information is now available. However, as indicated by Table 7.4, after compensation, the 

improvements in the predictive performance is not as good as those presented in Table 7.3.  

TABLE 7.4 
TRAINING AND TESTING RESULTS FROM OPF, ECS AND EPF USING CONFIDENCE BAND AS THE EXTRA INPUT 
OPF 

Configurations 

OPF ECS EPF Improvement 
Training Testing Training Testing Training Testing Training 

(%) 
Testing 

(%) RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE RMSE 
Pareto FRBS7 17.68 0.84 19.38 0.80 16.91 0.85 18.89 0.82 16.91 18.89 4.3 2.5 
Pareto FRBS8 17.80 0.84 19.62 0.80 17.35 0.85 19.09 0.81 17.35 19.09 2.5 2.7 

 

Possible explanations are as follows:  

1. The calculation of the confidence values is still based on the model’s predictions and 

its bias to the actual ones. ݎ݋ݎݎܧሺ݉ሻ (refer to Eq. 7.8) has already provided such 
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information by including ݎ݋ݎݎܧሺ݉ሻ as the output of the EPF’s learning examples. 

Hence, including the confidence values does not necessarily lead to more information.  

2. Indeed, including the confidence values as another input in the EPF’s learning 

examples leads to a situation where the consequence is inferred by the consequence 

itself.  

3. The confidence values are only a coarse measure which calculates the deviation 

within a scope ܵ௥ (refer to section 6.1.3). Hence, it is not specific enough to let the 

learning algorithm learn how to correct a particular error for a specific instance.  

As Wolpert (1992) indicated, the type of generaliser that is suitable to derive the higher-level 

model and the type of attributes that should be used as its inputs remain as a ‘black art’ in the 

design of ‘Stacked Generalisation’. The same problem was encountered in this research 

during the development of the ECS. For example, the number of rules which are appropriate 

for the EPF, and whether extra information, such as confidence bands, should be included in 

the inputs of the EPF remain open issues which deserve more attention in the future.  

7.5 Summary 

The development of a reliable empirical model is a key step towards realising model-based 

process control and monitoring. The proposed ECS is robust and particularly suitable for the 

case of imprecise and scattered data. Although, the work presented here relates to the use of 

FRBS as a modelling tool, it is not limited to such an implementation. In fact, ECS is a very 

general scheme which can be implemented via various modelling methods. In the next 

chapter, conclusions of this thesis and the future research directions will be discussed. 
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Chapter 8 

Conclusions and Future Work 

Every scientific endeavour tries to find the answers to the problems at hand and in doing so, 

raises several others. The work presented in this thesis is not an exception. Since it proposed 

to answer the following  3 questions:  

1. How to use bio-inspired paradigms to account for the problems involving multiple 

conflicting goals? 

2. How to automate the process of acquiring transparent knowledge from high 

dimensional data without too much damage to the predictive performance of the 

extracted knowledge base (e.g. FRBS)?  

3. How to improve the predictive performance of the elicited model if it is driven by 

imprecise data? 

This final chapter summarises what has been achieved in answering the above three questions 

and what are the open questions that deserve further research efforts. 

8.1 Conclusions 

To answer the first question, a novel Population Adaptive based Immune Algorithm (PAIA) 

and a multi-stage optimisation procedure for solving MOP were proposed. These algorithms 

are inspired by four immunological models, namely the Clonal Selection Principle, Immune 

Network Theory, Vaccination and Secondary Response and adaptive antibody’s 

concentration. The algorithms have been tested with ZDT and DTLZ test suites, and in all 

cases have been shown to be insensitive to the initial population size. The population and 

clone size are adaptive with respect to the search process and the problem at hand. It is 

argued that the algorithm can largely reduce the number of evaluation times and is more 
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consistent with the vertebrate immune system than the previously proposed algorithms. 

Results also suggest that the algorithms are valuable alternatives to already established 

evolutionary based optimisation algorithms, such as NSGAII (Deb, 2001), SPEA2 (Zitzler, 

Laumanns, and Thiele, 2001) and VIS (Freschi and Repetto 2005). A general framework is 

extracted from the PAIA as the guide to design immune algorithms, under which clear 

definitions of immune operators and their roles are provided.   

Some common features included in by most modern heuristic search methods, especially 

within the field of real-valued optimisation, were discussed during the course of answering 

the first question, which are summarised as follows:  

1. The offspring should be generated around the parents. The better the parents are, in 

terms of their fitness (or ‘affinity’ in AIS terminologies), the closer to the parents the 

offspring should be. In doing so, a widespread search (exploring) in the early stage of 

the optimisation is ensured and a more elaborate search (exploitation) in the late stage 

is emphasised.  

2. As far as the real-valued optimisation is concerned, if a heuristic search method is 

implemented following the rule mentioned above, there will be no distinction between 

the commonly used terms such as ‘crossover’ and ‘mutation’. Instead, ‘recombination’ 

and/or ‘variation operator’ are more precise terms to describe such proliferation 

behaviour inherent in most heuristic search methods.  

3. The initial population size is no longer the only way to maintain the diversity of the 

population. One can always insert newcomers or intensify the ‘variation’ effort (by 

generating new solutions which are relatively far from the parents) in order to achieve 

such diversity (we will discuss this a bit more in the Section 8.2). Hence, the initial 

population size should not be an important factor any more.  

4. As far as multi-objective optimisation problems are concerned, the multi-stage 

optimisation procedure may represent a more suitable solution, which allows a more 

focused and direct search in the first stage when solutions are still some way from the 

Pareto front. In the second stage, non-dominated concept can be included to extend 

the already found solutions into other areas of the Pareto front.  

 The fundamental differences between AIS and other evolutionary algorithms are also 

identified through their reproduction mechanism, selection scheme, evolution strategy, 
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population control, diversity preservation and fitness (affinity) assignment (refer to Section 

3.6.2).  

In order to answer the second question, an evolutionary based clustering algorithm 

(G3Kmeans) and a multi-stage immune based multi-objective fuzzy modelling (IMOFM) 

method were proposed.  

The proposed clustering algorithm is used to induce a coarse fuzzy rule-base from data. The 

method was tested extensively through the artificial and real data sets. The results show that 

the proposed algorithm is superior to other more traditional clustering algorithms in that:  

1) It is robust to different initial settings;  

2) It can approach very closely to the global optimal partitions, especially for high-

dimensional problems;  

3) It is computationally more efficient compared to other evolutionary based clustering 

algorithms.  

The proposed IMOFM adopts a multi-stage modelling procedure and a variable length coding 

scheme to account for the enlarged search space due to the simultaneous optimisation of the 

rule-base structure and its associated parameters.  The proposed modelling method applies to 

both Singleton FRBS and Mamdani FRBS.      

The following points have been learnt during the development of IMOFM and are considered 

as important factors for any multi-objective fuzzy modelling algorithms: 

1. There currently exist two different multi-objective based fuzzy modelling streams to 

tackle the interpretability issues: the first stream is mainly concerned with the 

linguistic modelling, in which a set of pre-specified fuzzy partitions are given a priori 

by experts or users (grid partition); the task is then to elicit an optimal FRBS in terms 

of its compactness and performance; the second stream generally takes the 

approximate fuzzy model as the start point; hence, the task is to improve the model’s 

explanatory ability, which may have been lost due to the automatic learning process. 

Both streams end up with a ‘semi-linguistic and semi-approximate’ form after 

optimisation. However, as their names suggest, the first stream is more suitable for 

low dimensional problems with high requirement of interpretability, such as 

classification problems, and the second stream is more suitable to tackle problems 

with high dimensionality and high requirement of predictive performance, such as 
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approximation problems. Hence, anyone who wishes to enrich this exciting research 

field should consider first which stream is more appropriate to the problems at hand. 

In Section 8.2, the possibility of separating the knowledge base from the predictive 

model is discussed so that each of them can serve for a different purpose.  

2. Rules should be realigned before any optimisation and simplification. Otherwise, it 

will result in the so-called ‘unordered set of rules’. More importantly, if the 

optimisation is operated on the rule bases before realignment, it will break the rule of 

‘always proliferating around parents’. Such a rule is now widely accepted by the 

practitioners in the field of real-valued optimisation as key to success.     

In order to answer the third question, a special case of ‘Stacked Generalisation’, viz. the ECS, 

was proposed. The basic idea of ECS is to build an Error Predictive FRBS (EPF) apart from 

the Original Predictive FRBS (OPF) so that one can predict the errors associated with the 

OPF given the inputs of OPF. When a new scenario is encountered, the EPF will be able to 

predict the potential error, and thus the predicted error can be used to compensate the 

predicted output produced by the OPF. An improved predictive accuracy in terms of not only 

the learning but also the generalisation was observed. The proposed scheme is particularly 

suitable to model imprecise data where systematic error is embedded.  

8.2 Future Research Directions 

As mentioned at the beginning of this chapter, when the immediate problems are solved, new 

problems will arise and they, too, should be investigated. Such problems remain as open 

questions and are discussed in the following part. 

(1) How to more efficiently generate newcomers? In Chapter 3, it is believed that the 

diversity of the population can be further improved by inserting newcomers during the 

search process. Previous research normally inserts randomly generated individuals at 

each iteration step. In this way, meaningless individuals may be generated in ‘not-so-

good’ regions which have already been searched (explored). Hence, investigations 

into ways that can form meaningful newcomers deserve more attention and the 

negative selection principle (Esponda et al., 2004) may play a significant role in this 

process.  
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(2) How to develop a unified MOP scheme? A unified multi-objective optimisation 

scheme which in the early stage can focus on a particular pathway leading to the 

global optimum and in the later stage can extend such optimum into other parts of the 

Pareto front deserves more attention. The multi-stage optimisation procedure 

described in Chapter 3 is just an initial step towards such a unified MOP scheme.  

(3) Can one make unsupervised clustering more supervised? And how to 

automatically (systematically) define the number of clusters? In Chapter 4, an 

evolutionary algorithm-based clustering algorithm was discussed. There are several 

new advancements in the clustering field that can easily make their ways into the 

current clustering based fuzzy modelling framework. One of such possibilities is to 

use supervised clustering (Setnes 2000; Gonz ܽ́ lez et al., 2002). The difference 

between supervised clustering and conventional clustering lies in that, as its name 

suggests, supervised clustering specifically makes use of the output information. 

Hence, the supervised clustering result is one more step close to the refined model, 

which makes supervised clustering scheme more suitable for function approximation 

problems. Clustering methods which can automatically decide the number of clusters 

deserve more attention. Sheng et al., (2006) proposed that the number of clusters can 

be obtained automatically through minimizing cluster validity index, rather than a 

within-cluster-distance. Handl et al., (2004) adopted a multi-objective optimisation 

framework to determine the number of clusters. All these methods can be used to 

enrich the current work.       

(4) Can generalising measures be devised to evaluate the modelling results from 

different multi-objective fuzzy modelling algorithms? Through the discussions in 

Chapter 5, one may notice that it is not easy to categorically comment on the 

modelling results due to the stochastic nature of all EAs-based fuzzy modelling 

methods. The current solution is to run the IMOFM several times and average the 

results of each Pareto FRBS configuration. However, the Pareto FRBS configurations 

found by different fuzzy modelling approaches or even by different runs with the 

same algorithm may not be exactly the same, which causes the difficulty as far as the 

comparison is concerned. Hence, the performance metrics which can facilitate the 

comparison between different algorithms and runs, such as the generational distance 

and spread introduced in Section 3.2.2 for multi-objective optimisation algorithms, 

deserves more attentions.  
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(5) Can the knowledge base be separated from the predictive model so that they can 

serve for different purpose? As discussed in Chapter 5 and Section 8.1, a ‘semi-

linguistic and semi-approximate’ fuzzy model is the best resort for the interpretability 

issues. However, too much obligations have been put on a single model. On the one 

hand, the model should predict well, while on the other hand, the model should be 

transparent enough. If a single model cannot offer both requirements even after some 

compromise, then the best way is to build separate models. Each model should fulfil a 

different requirement and the key to fulfilling such a requirement is to keep both of 

them consistent. The rapid prototyping method proposed by Delgado (1997) (refer to 

Section 4.4.1) represents a possible way and is based on the fuzzy clustering. Such a 

method is considered to be able to produce more accurate fuzzy models since the 

membership functions involved have more freedom rather than being restricted to a 

certain type, e.g. the Gaussian function. Since fuzzy models elicited via this method 

are very hard to interpret, it has not caught researchers’ attentions in the field of multi-

objective fuzzy modelling during the last decades. However, due to its easy 

implementation and relatively high accuracy, it deserves more exploration by 

incorporating an additional layer, e.g. knowledge translation layer, to make it more 

transparent.  

(6) Can multi-layered ‘Stacked Generalisation’ be used to further improve the 

model’s predictive performance? In Chapter 7, a single-layered ‘Stacked 

Generalisation’ was used to improve the generalisation ability of the elicited fuzzy 

rule-base, especially for the imprecise data. It is believed that, by using ensembles or 

cross-validation to create the error predictive models, one may further improve 

model’s generalisation property. This would lead to a multi-layered (more than 2 

layers) ‘Stacked Generalisation’.   
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Appendix A 

The Back-Error-Propagation 
Algorithm for Mamdani FRBS 

According to Eqs. 5.5 and 5.6, a defuzzified Mamdani FRBS can be described as follows: 

ሻߠ|௖௥௜௦௣ሺܺݕ ൌ
∑ ௕೔·ఓ೔ሺ௑ሻ·௚൫௕೔,ఙ೔

೤൯ೖ
೔సభ
∑ ఓ೔ሺ௑ሻ·௚൫௕೔,ఙ೔

೤൯ೖ
೔సభ

 (A.1) 

There are four parameters to update, namely ߠ ൌ ൫ܾ௜, ௜ߪ
௬, ܿ௜

௝, ௜ߪ
௝൯ . Before the detailed 

deductions of each update laws, following denotation is adopted: 

݁௠ ൌ ଵ
ଶ
· ሻߠ|௖௥௜௦௣ሺܺ௠ݕൣ െ ௠൧ݕ

ଶ
 (A.2) 

Where ܺ௠ is the input vector of the ݉th data sample; ݕ௠ is the actual output of the ݉th data 

sample. Using the chain rule, the general gradient based update law for the parameters has the 

form shown in Eq. A.3. The update formula for each parameter is obtained by replacing ߠሺ·ሻ 

with the corresponding parameter.  

ݐሺ·ሻሺߠ ൅ 1ሻ ൌ ሻݐሺ·ሻሺߠ െ ߣ · డ௘೘
డఏሺ·ሻ

|௧ (A.3) 

1. Centre of the Consequents Updating Law 

ܾ௜ሺݐ ൅ 1ሻ ൌ ܾ௜ሺݐሻ െ ଵߣ ·
డ௘೘
డ௕೔

|௧ (A.4) 

Here,  డ௘೘
డ௕೔

|௧ ൌ ൫ݕ௖௥௜௦௣ሺܺ௠|ߠሻ െ ௠൯ݕ ·
డ௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ

డ௕೔
|௧ (A.5) 

Let: ߝ௠ ؜ ሻߠ|௖௥௜௦௣ሺܺ௠ݕ െ  ௠ (A.6)ݕ
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     ,݁ܿ݊݅ݏ
ሻߠ|௖௥௜௦௣ሺܺ௠ݕ߲

߲ܾ௜
|௧

ൌ
ൣܾ௜ · ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ൧௕೔
ᇱ · ∑ ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ௞
௜ୀଵ െ ௜ሺܺ௠ሻߤൣ · ݃ሺܾ௜, ௜ߪ

௬ሻ൧௕೔
ᇱ · ∑ ܾ௜ · ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ௞
௜ୀଵ

ൣ∑ ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ
௬ሻ௞

௜ୀଵ ൧ଶ
|௧ 

ܽ݊݀,    ݃ᇱ൫ܾ௜, ௜ߪ
௬൯|௕೔ ؜ ݃ᇱሺܾ௜ሻ ൌ

ଵ

ଵାቆ೤ಽష್೔
഑೔
೤ ቇ

మ െ
ଵ

ଵାቆ೤ೆష್೔
഑೔
೤ ቇ

మ (A.7) 

׵
ሻߠ|௖௥௜௦௣ሺܺ௠ݕ߲

߲ܾ௜
|௧

ൌ
௜ሺܺ௠ሻߤൣ · ݃൫ܾ௜, ௜ߪ

௬൯ ൅ ܾ௜ · ௜ሺܺ௠ሻߤ · ݃ᇱሺܾ௜ሻ൧ · ∑ ௜ሺܺ௠ሻߤ · ݃൫ܾ௜, ௜ߪ
௬൯௞

௜ୀଵ െ ௜ሺܺ௠ሻߤ · ݃ᇱሺܾ௜ሻ · ∑ ܾ௜ · ௜ሺܺ௠ሻߤ · ݃൫ܾ௜, ௜ߪ
௬൯௞

௜ୀଵ

ൣ∑ ௜ሺܺ௠ሻߤ · ݃൫ܾ௜, ௜ߪ
௬൯௞

௜ୀଵ ൧ଶ
|௧ 

֜ డ௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ
డ௕೔

|௧ ൌ
ఓ೔ሺ௑೘ሻ·௚൫௕೔,ఙ೔

೤൯ା௕೔·ఓ೔ሺ௑೘ሻ·௚ᇲሺ௕೔ሻିఓ೔ሺ௑೘ሻ·௚ᇲሺ௕೔ሻ·௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ
∑ ఓ೔ሺ௑೘ሻ·௚൫௕೔,ఙ೔

೤൯ೖ
೔సభ

|௧ (A.8) 

Substituting Eqs. A.5 and A.8 into A.4 gives the update law for the output centres: 

 ܾ௜ሺݐ ൅ 1ሻ ൌ ܾ௜ሺݐሻ െ ଵߣ · ሻݐ௠ሺߝ ·
ఓ೔ሺ೟ሻሺ௑೘ሻ·ቂ௚ቀ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ

೤ ቁା௕೔ሺ೟ሻ·௚ᇲ൫௕೔ሺ೟ሻ൯ି௚ᇲ൫௕೔ሺ೟ሻ൯·௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯ቃ

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
൅ ଵߚ ·

∆ܾ௜ሺݐ െ 1ሻ (A.9) 

Where, ߚଵ · ∆ܾ௜ሺݐ െ 1ሻ is the momentum term which can sometimes improve the speed of 

convergence (Passino, 1997, p. 246-252).  

2. Spread of the Consequents Updating Law 

௜ߪ
௬ሺݐ ൅ 1ሻ ൌ ௜ߪ

௬ሺݐሻ െ ଶߣ ·
డ௘೘
డఙ೔

೤ |௧ (A.10) 

Here, డ௘೘
డఙ೔

೤ |௧ ൌ ௠ߝ · డ௬
೎ೝ೔ೞ೛ሺ௑೘|ఏሻ
డఙ೔

೤ |௧ (A.11) 

    ,݁ܿ݊݅ݏ
ሻߠ|௖௥௜௦௣ሺܺ௠ݕ߲

௜ߪ߲
௬ |௧

ൌ
ൣܾ௜ · ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ൧ఙ೔೤
ᇱ · ∑ ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ௞
௜ୀଵ െ ௜ሺܺ௠ሻߤൣ · ݃ሺܾ௜, ௜ߪ

௬ሻ൧ఙ೔೤
ᇱ · ∑ ܾ௜ · ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ௞
௜ୀଵ

ൣ∑ ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ
௬ሻ௞

௜ୀଵ ൧ଶ
|௧ 
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ܽ݊݀,    ݃ᇱ൫ܾ௜, ௜ߪ
௬൯|ఙ೔೤ ؜ ݃ᇱ൫ߪ௜

௬൯

ൌ ቈܽ݊ܽݐܿݎ ቆ
௎ݕ െ ܾ௜
௜ߪ
௬ ቇ െ ݊ܽݐܿݎܽ ቆ

௅ݕ െ ܾ௜
௜ߪ
௬ ቇ቉ ൅ ௜ߪ

௬

·

ۏ
ێ
ێ
ێ
ۍ

1

1 ൅ ቆݕ௎ െ ܾ௜
௜ߪ
௬ ቇ

ଶ · ൭െ
௎ݕ െ ܾ௜
൫ߪ௜

௬൯ଶ
൱ െ

1

1 ൅ ቆݕ௅ െ ܾ௜
௜ߪ
௬ ቇ

ଶ · ൭െ
௅ݕ െ ܾ௜
൫ߪ௜

௬൯ଶ
൱

ے
ۑ
ۑ
ۑ
ې

        

֜ ݃ᇱ൫ߪ௜
௬൯ ൌ ଵ

ఙ೔
೤ · ൦݃൫ܾ௜, ௜ߪ

௬൯ ൅ ௬ಽି௕೔

ଵାቆ೤ಽష್೔
഑೔
೤ ቇ

మ െ
௬ೆି௕೔

ଵାቆ೤ೆష್೔
഑೔
೤ ቇ

మ൪ (A.12) 

׵  
ሻߠ|௖௥௜௦௣ሺܺ௠ݕ߲

௜ߪ߲
௬ |௧

ൌ
ܾ௜ · ௜ሺܺ௠ሻߤ · ݃ᇱ൫ߪ௜

௬൯ · ∑ ௜ሺܺ௠ሻߤ · ݃൫ܾ௜, ௜ߪ
௬൯௞

௜ୀଵ െ ௜ሺܺ௠ሻߤ · ݃ᇱ൫ߪ௜
௬൯ · ∑ ܾ௜ · ௜ሺܺ௠ሻߤ · ݃൫ܾ௜, ௜ߪ

௬൯௞
௜ୀଵ

ൣ∑ ௜ሺܺ௠ሻߤ · ݃൫ܾ௜, ௜ߪ
௬൯௞

௜ୀଵ ൧ଶ
|௧ 

֜ డ௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ
డఙ೔

೤ |௧ ൌ
௕೔·ఓ೔ሺ௑೘ሻ·௚ᇲ൫ఙ೔

೤൯ିఓ೔ሺ௑೘ሻ·௚ᇲ൫ఙ೔
೤൯·௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ

∑ ఓ೔ሺ௑೘ሻ·௚൫௕೔,ఙ೔
೤൯ೖ

೔సభ
|௧ (A.13) 

Substituting A.11, A.12 and A.13 into A.10 gives the update law for the output spread: 

௜ߪ 
௬ሺݐ ൅ 1ሻ ൌ ௜ߪ

௬ሺݐሻ െ ଶߣ · ሻݐ௠ሺߝ ·
ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ᇲቀఙ೔ሺ೟ሻ

೤ ቁ·ൣ௕೔ሺ೟ሻି௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯൧

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
൅ ଶߚ · ௜ߪ∆

௬ሺݐ െ 1ሻ (A.14) 

3. Centre of the Premise Updating Law 

ܿ௜
௝ሺݐ ൅ 1ሻ ൌ ܿ௜

௝ሺݐሻ െ ଷߣ ·
డ௘೘
డ௖೔

ೕ |௧ (A.15) 

Here,     డ௘೘
డ௖೔

ೕ |௧ ൌ ௠ߝ · డ௬
೎ೝ೔ೞ೛ሺ௑೘|ఏሻ
డఓ೔ሺ௑೘ሻ

· డఓ೔ሺ௑೘ሻ
డ௖೔

ೕ |௧  ሺA.16ሻ 

    ,݁ܿ݊݅ݏ
ሻߠ|௖௥௜௦௣ሺܺ௠ݕ߲

௜ሺܺ௠ሻߤ߲
|௧

ൌ
ൣܾ௜ · ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ൧ఓ೔
ᇱ · ∑ ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ௞
௜ୀଵ െ ௜ሺܺ௠ሻߤൣ · ݃ሺܾ௜, ௜ߪ

௬ሻ൧ఓ೔
ᇱ · ∑ ܾ௜ · ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ

௬ሻ௞
௜ୀଵ

ൣ∑ ௜ሺܺ௠ሻߤ · ݃ሺܾ௜, ௜ߪ
௬ሻ௞

௜ୀଵ ൧ଶ
|௧ 

֜ డ௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻ
డఓ೔ሺ௑೘ሻ

|௧ ൌ
௚൫௕೔,ఙ೔

೤൯·ቀ௕೔ି௬೎ೝ೔ೞ೛ሺ௑೘|ఏሻቁ

∑ ఓ೔ሺ௑೘ሻ·௚൫௕೔,ఙ೔
೤൯ೖ

೔సభ
|௧ (A.17) 
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     ,݋ݏ݈ܽ డఓ೔ሺ௑೘ሻ
డ௖೔

ೕ |௧ ൌ ௜ሺܺ௠ሻߤ · ൭
௫೘
ೕ ି௖೔

ೕ

ቀఙ೔
ೕቁ
మ ൱ |௧ (A.18) 

Substituting A.16, A.17 and A.18 into A.15 gives the following update law: 

         ܿ௜
௝ሺݐ ൅ 1ሻ ൌ ܿ௜

௝ሺݐሻ െ ଷߣ · ሻݐ௠ሺߝ ·
௚ቀ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ

೤ ቁ·ൣ௕೔ሺ೟ሻି௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯൧

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
· ௜ሺ௧ሻሺܺ௠ሻߤ · ቈ

௫೘
ೕ ି௖೔ሺ೟ሻ

ೕ

ሺఙ೔ሺ೟ሻ
ೕ ሻమ

቉ ൅ ଷߚ ·

∆ܿ௜
௝ሺݐ െ 1ሻ (A.19) 

4. Spread of the Premise Updating Law 

௜ߪ
௝ሺݐ ൅ 1ሻ ൌ ௜ߪ

௝ሺݐሻ െ ସߣ ·
డ௘೘
డఙ೔

ೕ |௧ (A.20) 

Here,     డ௘೘
డఙ೔

ೕ |௧ ൌ ௠ߝ · డ௬
೎ೝ೔ೞ೛ሺ௑೘|ఏሻ
డఓ೔ሺ௑೘ሻ

· డఓ೔ሺ௑೘ሻ
డఙ೔

ೕ |௧ (A.21) 

     ,݋ݏ݈ܽ డఓ೔ሺ௑೘ሻ
డఙ೔

ೕ |௧ ൌ ௜ሺܺ௠ሻߤ · ൭
ቀ௫೘

ೕ ି௖೔
ೕቁ
మ

ቀఙ೔
ೕቁ
య ൱ |௧ (A.22) 

Substituting A.17, A.21 and A.22 into A.20 gives the following update law: 

௜ߪ
௝ሺݐ ൅ 1ሻ ൌ ௜ߪ

௝ሺݐሻ െ ସߣ · ሻݐ௠ሺߝ ·
௚ቀ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ

೤ ቁ·ൣ௕೔ሺ೟ሻି௬೎ೝ೔ೞ೛൫௑೘หఏሺ௧ሻ൯൧

∑ ఓ೔ሺ೟ሻሺ௑೘ሻ·௚ሺ௕೔ሺ೟ሻ,ఙ೔ሺ೟ሻ
೤ೖ

೔సభ ሻ
· ௜ሺ௧ሻሺܺ௠ሻߤ · ቈ

ሺ௫೘
ೕ ି௖೔ሺ೟ሻ

ೕ ሻమ

ሺఙ೔ሺ೟ሻ
ೕ ሻయ

቉ ൅ ସߚ ·

௜ߪ∆
௝ሺݐ െ 1ሻ (A.23) 
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Modelling Results of Impact 
Energy Data Using IMOFM_S 

Figure B.1 shows the predictive performances of the three stages for the impact energy 

training and testing data sets using IMOFM_S.  

 

Figure B.1 The prediction performances of the three stages for the impact energy training 

and testing data using IMOFM_S. 

Figure B.2 show the Pareto fronts of the impact energy modelling problem.  
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Figure B.2  The Pareto fronts obtained using IMOFM_S from the third modelling procedure 

for the impact energy modelling problem: (a) Objective1 vs. Objective2; (b) 

Objective1 vs. Nset; (c) Objective1 vs. Nrule; (d) Objective1 vs. RL. 

Figures B.3~B.5 show the distribution of some membership functions of the fuzzy models 

elicited in different modelling stages. 

 

Figure B.3  The distribution of some membership functions of the 11-rule initial Singleton 

FRBS (from the first modelling stage) for impact energy modelling. 
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Figure B.4  The distribution of some membership functions of the 11-rule refined Singleton 

FRBS (from the second modelling stage) for impact energy modelling. 

 

Figure B.5  The distribution of some membership functions of the 6-rule simplified Singleton 

FRBS (from the third modelling stage) for impact energy modelling. 


