
Scheduling with due dates and time-lags:
new theoretical results and applications

by

Alessandro Condotta

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy •

.,
UNIVERSITY OF LEEDS

The University of Leeds
School of Computing

May2011

The candidate confirms that the work submitted is his own, except where work
which has formed part of jointly-authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly
indicated below. The candidate confirms that appropriate credit has been given

within the thesis where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material
and that no quotation from the thesis may be published without proper

acknowledgement.

Acknowledgements
I express my gratitude to my supervisor Dr. Natasha Shakhlevich for her continuous

support and valuable guidance at all the stages of this research. I am in debt to her for the
trust she gave me from the beginning and the extraordinary effort she put into guiding me.

I would also like to thank Prof. Peter Brucker for providing useful suggestions and
recommendations during his visits to Leeds.

Special thanks go to all the friends that I have met here in Leeds during this long and
rewarding period. Each of them contributed to making this an experience of inestimable
value and to enriching me as a person.

Finally, I dedicate this thesis to my family who have given me strength and the tools
to achieve my targets during this challenging journey to the doctorate.

2

Abstract
Manufacturing and service environments involve decisions on sequencing activities.

Some examples are assembly operations in workshops, the elaboration of data by com-
puter systems and the handling of products by operators in warehouses. Scheduling theory
studies the mathematical structures of such problems with the objective of designing the-
oretical models and solution algorithms that can be used in practice. In this thesis we
investigate scheduling models with time-lags and release/due dates inspired by two real-
world problems: transportation of goods and appointment scheduling for chemotherapy
patients.

The first part of this thesis studies the minimisation of the maximum lateness for two
batch scheduling problems with release/due dates and equal processing times: one with
a single machine and one with parallel machines. These theoretical models represent the
problem of scheduling the delivery of goods within given time windows using one or more
limited capacity vehicles. We design two enhanced polynomial-time algorithms that, for
the single machine case, outperform the best algorithms known in literature, and, for the
parallel machine case, establish the first solution algorithm.

In the second part we investigate the coupled-operation scheduling model with time-
lags which characterises some important features of the problem of booking treatment
appointments for chemotherapy patients. The objective is to develop a solution algo-
rithm that minimises the maximum completion time (makespan). Initially we investigate
a possible compact representation of a solution considering the sub-problem with a fixed
sequence of the first operations of the jobs. We prove that this special case of the problem
is NP-hard in the strong sense even in the case of unit processing times. Then we adapt
a technique used for solving job shop problems with no-wait constraints to our coupled-
operation problem and develop an efficient tabu-search heuristic that outperforms the al-
gorithms known in literature.

In the last part, we introduce the problem of booking appointments for chemotherapy
treatments in an outpatient clinic which is an example of real-world scheduling prob-
lem with complex time-lags and release/due dates constraints. We design an innovative
4-stage approach based on the concept of a multi-level template schedule which is gener-
ated solving a number of multi-objective integer linear programs. The evaluation of our
approach using historical data shows that, using available resources, 20% additional ap-
pointments could be scheduled in the clinic eliminating peaks of workloads, maintaining
short waiting days/times and improving the overall patient and staff experience.

Declarations
Some parts of the work presented in this thesis have been submitted to scientific journal:

Condotta, Ao,Knust, Soand Shakhlevich, No,"Parallel batch scheduling of equal-length jobs
with release and due dates", Journal of Scheduling, 13 October 2010,463-477.

My contributions: I developed the algorithms and the proofs for the single-machine
p-batching problem, the extension with start-start precedence constraints, the enhanced
binary search. I contributed to the development of the proofs for parallel-machine p-
batching problem and to paper write-up.

Other authors contributions: Knust S. and Shakhlevich N. developed the ideas and
the algorithm for parallel p-batching problem and the proofs of NP-Hardness for the prob-
lem with completion-start precedence constraints. They also provided supervision, feed-
back, general guidance and they contributed to paper write-up.

Chapters based on this paper: Chapter 2.

Condotta, Aoand Shakhlevich, No, "Scheduling Patient Appointments Via Multi-level Tem-
plate: A Case Study in Chemotherapy", Operations Research, submitted in October 2010.

My contributions: I identified the problem, gathered the requirements, developed the
ideas, designed all the algorithms, conducted the experiments and interpreted the results
with the contribution of my supervisor.

Other authors contributions: Shakhlevich N. discussed and developed the ideas,
provided supervision, feedback and general guidance, and contributed to paper write-up.

Chapters based on this paper: Chapter 4.

ii

Contents

1.6 Contributions of the Thesis

1
2
3
4
5
5
6

8
10
15
22

1 Introduction
1.1 Computational Complexity
1.2 Combinatorial Optimization
1.3 Heuristics..........

1.3.1 Constructive Heuristics.
1.3.2 Local Search

1.4 Integer Linear Programming . .
1.5 Scheduling Theory and Applications .

1.5.1 Scheduling with Release and Due Dates .
1.5.2 Scheduling with Time-Lags

2.4 Discussion.

24
24
27
27
39
41

45
51

2 Parallel Batch Scheduling
2.1 Overview
2.2 Batch Scheduling with a Single Machine .

2.2.1 Feasibility Problem
2.2.2 Feasibility Problem with Precedence Constraints
2.2.3 Minimizing the Maximum Lateness

2.3 Batch Scheduling with Parallel Machines

3.4.2 Neighbourhood Structure .

54
54
58
71
73
74
79

3 Coupled-operation Scheduling
3.1 Overview
3.2 NP-hardness of the Problem with a Given Sequence of First Operations
3.3 Integer Linear Program Formulation .
3.4 Tabu Search Algorithm .

3.4.1 Disjunctive Graph Model and the Insertion Algorithm

iii

3.4.3 Description of the Tabu Search Implementation 81
3.5 Constructive Heuristics . . . 83
3.6 Computational Experiments 84

3.6.1 Instance Generation 85
3.6.2 Results 86

3.7 Discussion 91

4 Appointment Scheduling 93
4.1 Overview and Problem Definition 93
4.2 Notation and General Idea of the Solution Approach 99
4.3 Generating the Template Schedule 104

4.3.1 Generating Data for Artificial Patients 104
4.3.2 Quality Metrics of the Template Schedule 105
4.3.3 Template Schedule Generation 111

4.4 Running Schedule: Creating and Maintaining 116
4.5 Daily Rescheduling 119

4.5.1 Nurse assignment problem 122
4.6 Clinic Appointment Data . . 127
4.7 Computational Experiments 130
4.8 Discussion 137
4.9 Notation. 138

5 Conclusions 142

iv

List of Figures

1.1 Gantt Chart of the solution given by Table 1.3 13
1.2 Classification of problems according to the operations constrained by

time-lags 16
1.3 Classification of problems according to the time-lags characteristics 17
1.4 The Gantt chart representation of the solution in Table 1.5 19

2.1 Forbidden regions $" = {(2,6) , (6,9), (10,14), (21,24)} 32
2.2 The schedule satisfying release dates, deadlines and forbidden regions $" 33
2.3 Schedule Y considered in Case 1 .
2.4 Schedule Y for Case 3 with a non-full batch in-between i and j
2.5 Schedule Y for Case 3 with full batches in-between i and j .
2.6 o-values in the layer~' .
2.7 o-values in the layer~" .
2.8 o-values in the layer ~'" when o~'= of + (n -1)p
2.9 o-values in the layer ~'" when 0:: < of + (n -1)p

36
38
38
42
43
44

44

2.10 A feasible schedule satisfying release dates and deadlines for the p-
batching problem with m = 2 parallel machines 48

3.1 Example of feasible schedule for instance COED(lra,67) generated
from a feasible schedule for the problem COMD(5) with two coupled-
operation jobs with minimum time-lags £1 = 1 and £2 = 2. 69

3.2 Graph of strongly NP-hard coupled-operation scheduling problems 70
3.3 Disjunctive graph for three coupled-operation jobs (pairs of disjunctive

arcs are represented by dashed lines) 75

4.1 An example of a multi-day schedule and three intra-day schedules, each
schedule for one nurse .

4.2 Representation of the 4-stage approach
95
100

v

4.3 Template schedules SI and S2given by Table 4.2 and schedule S~obtained
by modifying SI. 110

4.4 Subproblems and algorithms for generating the template schedule 111
4.5 Example of undirected graph. 125
4.6 Appointment schedule generated by algorithm 'Reduction from k-

colouring' from graph in Figure 4.5; the time is expressed in 15-min time-
slots 125

4.7 Graph representing the number of appointments of a typical month 128
4.8 Graph representing the number of appointments for each week of the his-

torical data 128
4.9 Graph representing daily arrival frequency. 129
4.10 Graph representing weekly arrival frequency. 129
4.11 Graph representing the weekly arrival frequency grouped by regimens 131
4.12 Graph representing the monthly arrival frequency grouped by regimens 132

vi

List of Tables

1.1 Product availability times, due times and delivery durations. 12
1.2 Instance data of the relative single machine scheduling problem llri ILmax;

the customer deliveries are now jobs and the product availability times,
due times and delivery durations are expressed in 15-min time slots 13

1.3 Example of a feasible non-optimal solution 13
1.4 Example of hoist scheduling problem; numbers in parenthesis represent

the durations expressed in time slots 18
1.5 Sequence and starting times of hoist operations of a feasible solution 19

2.1 Input data for an instance of problem ljp-batch.e < n,rj,Pj = p,Cj S
djl- .. 31

2.2 Input data for an instance of problem Plp-batch,b < n,rj,Pj = p,Cj S djl- 47

2.3 Summary of the results for problems without precedence constraints . .. 52
2.4 Summary of the results for the feasibility problems with precedence con-

straints. 53

3.1 A summary of the results for all instances 87
3.2 Value of p for MIX instances obtained by the experiment in [81] with

parameter f3 = 0 88
3.3 Value ofp for SIM instances depending on instance size 89
3.4 Value ofp for MIX instances depending on instance size 89
3.5 Value ofp for SIM instances depending on a-value 90
3.6 Value ofp for MIXI instances depending on a-value 90
3.7 Value ofp for MIX2 instances depending on a-value 90

4.1 Input data for the template schedule for day d 109
4.2 Appointment starting times for two template schedules SI and S2 and their

density sets . 109
4.3 Performance metrics of template schedules SI and S2 109

vii

4.4 Intra-day patterns generated by algorithm 'Reduction from k-colouring'
from the graph 4.5; 15-min timeslots are counted starting from 1. 125

4.5 Comparison of actual daily schedules of May 2008 used at the St. James's
Hospital (Leeds, U.K.) and those obtained via rescheduling 133

4.6 The effect of rescheduling on patient waiting times 133
4.7 Weekly nurse rota for scenario 1 and 2 134
4.8 Average number of appointments and treatments performed in a typical

month .
4.9 Characteristics of schedules produced for Scenario 1 and 2
4.10 Patients' waiting days and times
4.11 Main notation used throughout Chapter 4.

134
135
135
141

viii

Chapter 1

Introduction

Operational research is a multidisciplinary science aimed at improving the decision mak-
ing process by the use of advanced analytical techniques. It is applied in almost all sectors
ranging from manufacturing to the service industry and it is divided into many disciplines,
one of which is scheduling. In scheduling the decision maker needs to determine the se-
quence and the times at which some resources are used in order to complete given tasks
efficiently. A classic example is determining the best processing sequence of a set of op-
erations to be performed in a manufacturing machine in order to obtain finished goods as
quickly as possible.

The solution of a real-world scheduling problem goes through a series of steps. The
first is to understand the problem which is usually achieved by observing the operations
and practices in their environment. The second step consists of the problem modelling
where some aspects are simplified to produce a formal mathematical model. In the third
stage, the model is solved by the design of solution algorithms which use mathemati-
cal and computational techniques. Finally, in the last stage, the algorithms are tested,
evaluated and passed to the final decision maker. Note that at the third stage, the design
of solution algorithms sometimes goes through the reuse or extension of algorithms and
models already studied in literature.

The main objective of this thesis is the development of theoretical scheduling models
for real-world applications. Two major problems inspired our work: the delivery of goods
by limited capacity vehicles and the scheduling of treatment appointments for chemother-
apy patients. The first problem arises in the transportation sector where goods have to

1

Chapter 1 2 Introduction

be delivered to customers by limited capacity vehicles within given due dates; the goods
become available at different times at the manufacturer site. The problem is to determine
vehicle loading times and sequences that minimise the maximum delivery lateness. Such
a problem is often part of more complex multi-stage problems involving coordination
issues between production and transportation.

The second problem arises in chemotherapy outpatient clinics where complex treat-
ments involving multiple time-constrained appointments have to be scheduled efficiently.
Among other constraints, what makes the problem challenging is that the number of days
interleaving two appointments is strictly regulated by the type of chemotherapy treatment
and that each appointment involves a set of tasks to be performed by a nurse at specific
times. The problem is to schedule appointments for arriving patients such that appoint-
ment dates and times respect the given constraints, patient waiting times are minimised
and the clinic efficiency is maximised.

In the next sections we give fundamental definitions and the necessary background
information to understand and appreciate the results in this thesis and the context into
which it fits. An outline of the thesis and its contributions is given in Section 1.6.

1.1 ComputationalComplexity

In computational theory, a problem can be seen as an abstract question to be answered.
Usually the same question can be applied to different entities which are called instances
of the problem. An answer to the question is referred to as a solution of the problem
and is the result of a detailed step-by-step procedure called a solution algorithm. The
problems for which the answer can be only YES or NO are called decision problems. A
problem instance J is encoded by a string in an alphabet with two symbols 0,1. The size
of an instance is defined as the length of the representing string with such encoding. The
sequence of the steps that lead to a YES answer in a decision problem is called a certificate
of the problem instance.

The solution algorithms of interest in this thesis are the algorithms made of operations
that are executed by a computational device such as the Deterministic Turing Machine
and Random Access Memory (RAM) (see [38,76,95]). The running time (or time com-
plexity) of an algorithm is the number of basic operations performed by the device to
execute the algorithm on a given instance. The running time depends on the instance and
it is expressed by a function t/J (n) of its size n.

The worst case analysis is commonly used to characterise the performance of algo-
rithms. It considers the longest running time T (n) performed by an algorithm among all

Chapter 1 3 Introduction

possible instances of a given size n. Similar running times are grouped into complexity
classes and they are represented using the "Big 0" notation: by definition, a running time
function q,(n) belongs to the class O(T(n)) if and only if there exists two constants c and
no such that q,(n) ~ cT(n) for each n ~ no.

A problem is solvable in polynomial-time if there exists an algorithm whose running
time function belongs to the class O(p(n)) where p(n) is a polynomial in n. Such an
algorithm is called a polynomial-time algorithm.

A decision problem 9'1 is reducible to a problem 9'2 if there exists an algorithm (the
reduction) that transforms any instance It of the problem 9'1 into an instance of Iz for the
problem 9'2 such that h is a YES instance for 9'2 if and only if It is a YES instance for
9'1. If such an algorithm is polynomial, then the reduction is polynomial.

The complexity of a decision problem can be classified further using problem com-
plexity classes P and NP. The class NP consists of all decision problems such that for
each YES-instance of a problem there exists at least one certificate that can be verified in
polynomial time. The class P consists of all the decision problems solvable in polyno-
mial time. Clearly, all problems belonging to P also belong to NP, i.e. P ~ NP. Most
researchers strongly believe that NP ~ P although it has not been formally proved.

A decision problem 9' is NP-complete if it belongs to the class NP and all problems
in N P are reducible to 9'. Thus, if a NP-complete problem can be reduced in polynomial
time to a problem 9', then 9' is also NP-complete. Moreover, a problem is NP-hard if
its decision version is NP-complete. In other words, NP-complete and NP-hard problems
are at least as hard as any problem in NP. A decision problem is considered to be dif-
ficult to solve if it is NP-complete. We refer the reader to Garey and Johnson [38] and
Papadimitiou [76] for a more detailed classification of the problems and a list of known
NP-complete problems.

In Chapters 2 and 3 we use computational complexity theory to prove the NP-hardness
of considered scheduling problems.

1.2 CombinatorialOptimization

In a combinatorial optimization problem, given a set of elements and an evaluation cri-
terion, the question to be answered can be simplified to 'what is an element in the set
that minimises the criterion 1'. This thesis considers combinatorial optimization prob-
lems where each element s is a solution belonging to a set of feasible solutions S (also
called solution space) and the criterion is a function f(s) :S ~ Z called objective junction.

Chapter 1 4 Introduction

Formally, a combinatorial optimization problem pjJ can be described as follows:

pjJ : min {f(s) : s E S}.

A feasible solution s E S is called optimal if for all Sf E S we have f(s) ~ f(Sf). In the
decision version of a combinatorial optimization problem, an instance is a YES instance if
there exists a feasible solution sE S such that f(s) ~ k, where k is a value given as input.

The study of a combinatorial optimization problem starts with an attempt to design
an algorithm that finds an optimal solution in polynomial time. Although there exist
many standard algorithmic tools, this step requires experience and creativity. If the at-
tempt fails, researchers try to show that it is unlikely that such an algorithm exists by
demonstrating that the problem is NP-hard. If the problem is NP-hard, then heuristics,
exact exponential-time algorithms or approximation algorithms are developed as possible
solution approaches.

In what follows we give a brief introduction to heuristics and exact algorithms used
in this thesis. These include constructive heuristics (used in Chapter 3), local search
algorithms (also used in Chapter 3) and integer linear programs (used in Chapter 4).

1.3 Heuristics

Given an instance J for a combinatorial optimization problem pjJ, a lower bound
LB [P (J) is a value which is guaranteed to be less than or equal to the value that the
objective function has in the optimal solution, i.e. LB[p(J) ~ min {f(s) : s E S}. The
lower bound is useful to measure the quality of a solution s by means of an approximation
ratio Llf),(j).

An approximation algorithm is an algorithm that generates for any instance a solution
with a guaranteed approximation ratio. A special case of approximation algorithms are
exact algorithms. An exact algorithm is an approximation algorithm that always finds a
solution s with approximation ratio 1 within a limited amount of time (although it may
be very large), i.e. uf),(j) = 1. Differently, a heuristic algorithm is one that generates
solutions for which no approximation ratio has been proved.

The classification of heuristic algorithms is very wide and distinguishes the techniques
used to generate feasible solutions. In the following subsections we introduce two of
them: local search and constructive heuristics.

Chapter 1 5 Introduction

1.3.1 Constructive Heuristics

For some combinatorial optimization problems it is easy to design one or more procedures
to generate a feasible solution or part of it. We call such procedures construction rules. A
constructive heuristic is an algorithm that builds a solution by repeatedly applying one or
more construction rules.

We distinguish between deterministic and non-deterministic (or random) constructive
heuristics. In the first type, given a problem instance, the construction rules used and their
execution sequence are fixed a priori. Typically a deterministic constructive heuristic
is executed only once for each problem instance since multiple runs would lead to the
same solution. In the second type, the rules used and their execution sequence are chosen
randomly from a known distribution. Typically the algorithm is run multiple times in
order to generate many different solutions. The solution considered is usually the one
with the best objective function among the ones generated.

Notice that, differently from Local Search heuristics (see Section 1.3.2), in a construc-
tive heuristic there is no improvement process: each time a new solution is generated, it
is re-built from scratch without using knowledge from the solutions previously generated.
Constructive heuristics are preferred when fast computations are necessary and an easy
procedure to build a feasible solution is known.

A constructive heuristic for the coupled-operation scheduling problem is presented in
Chapter4.

1.3.2 Local Search

For some combinatorial optimization problems it is easy to define a set of actions M that
transform a feasible solution s E S into another feasible solution s' E S called a neighbour
of s. Such actions are usually referred to as moves and can be represented by a function
m(s,a) :S x M --7 S, where a is an indicator of the move to apply. Given a solution s, the
function m defines the set JY(s) = {m(s,a) :a EM} of all possible neighbours of s called
the neighbourhood of s.

Two solutions s,s' E S are said to be connected over a neighbourhood function m
if there exists a sequence of solutions so, SI •.. ,Sk-l, Sk such that So = s, Sk = s' and
Sj-l E JY(Sj), 0 < i ~ k. The solution space S is said to be optimally connected over
a neighbourhood function m if any solution s is connected to at least one optimal so-
lution. A solution s' is said to be a local optimum for the neighbourhood JY(s) if
f(s) ~ f(s') Vs' E JY(s). Clearly an optimal solution is also a local optimum, but not
vice versa. Notice that, differently from a construction rule (see Section 1.3.1) which is

Chapter 1 6 Introduction

used to complete a partial solution, a move is usually applied only to a complete solution
in which the objective function can be evaluated in full.

A local search algorithm explores the solution space moving from one solution to an-
other one in its neighbourhood. The search process continues until a termination condi-
tion is triggered or an optimal solution is found. A termination condition usually consists

of a time limit, a maximum number of iterations or a required approximation ratio to be
reached.

For a current solution s, the next neighbour to visit is determined by an acceptance
policy which varies depending on the algorithm design. Best improvement is an example
of a common acceptance policy which accepts at each iteration the neighbour solution
with the minimum objective value. Often, local search algorithms using such a policy
terminate having found only local optima. To overcome such a problem, local search
algorithms implement special escape procedures (usually in the acceptance policy) in

order to allow the algorithm to move from a local optimum to other solutions not in its
neighbourhood or with higher objective values.

During the search process, local search heuristics may visit the same solution multiple
times. Often, this is due to the escape procedures which allow visiting of solutions with
objective values higher than the current one. To overcome this problem local search
algorithms implement an anti-cycle mechanism. A representative example is the list of
'forbidden' solutions (tabu list) used in Tabu search heuristics: every time a new solution

is generated, its compact description is put in the tabu list so that it is not visited again in
the future. Since the list has a limited capacity, its implementation defines a specific list
management policy which determines the solution to be removed from the list when the
length exceeds the capacity. For additional information about local search algorithms we
refer the reader to Aarts and Lenstra [47] and Glover and Laguna [40].

In Chapter 4 we present a tabu search algorithm for the coupled-operation scheduling
problem.

1.4 Integer Linear Programming

Linear programming is a technique to model combinatorial optimization problems where:

• a solution of the problem is determined by the values of numeric variables called
decision variables;

• the solution space S is determined by a set of linear inequalities called linear con-
straints defined over the decision variables;

Chapter 1 7 Introduction

• the objective function is a linear function of the decision variables.

Thus a linear program can be represented in a matrix form as follows:

LP: mine"x
Ax~b,

where x are the decision variables, c is a vector of coefficients defining the linear objective
function f, A is a matrix defining the left-hand side coefficients of the constraints and b is
the vector of constants representing their right-hand sides.

A linear program has many important properties that derive from the convex anal-
ysis of its solution space and from the duality theory. There exists three main classes
of solution algorithms for linear programs: simplex method, interior point and ellipsoid
algorithms. Since the ellipsoid algorithm has a polynomial running time [54,55] any
combinatorial optimisation problem that can be represented by a linear program belongs
to the complexity class P. Despite this, most research has been focused on techniques to
improve the simplex method which is simpler and often more efficient in practice than the
others.

An integer linear program is a linear program where decision variables are forced to
be integer. Thus an integer linear program has the following form:

ILP: mincTx
Ax~b
xEZ.

The LP obtained by removing the integer constraints x E Z is a relaxed version of the
original ILP and is called LP-relaxation. The optimal solution of a LP-relaxation is always
a lower bound of the optimal solution of the related ILP, i.e. min {f{s) : s E SlLP} ~

min {f(s) : s E SLP} where SILP and SLP are the solution spaces defined by the ILP and its
LP-relaxation respectively. An integer linear program in which some variables are forced
to be integer and some others are not, is called Mixed Integer Linear Program M/LP.

The presence of the integrality constraints x E Z makes the solution of an integer
linear program a NP-hard problem. However, some special integer linear programs can
be solved in polynomial time. This is the case for problems whose coefficient matrix
A has the total unimodularity property, see [77]. Since the solution of an integer linear
program is an NP-hard problem, mainly heuristics and branch-and-bound methods are
used as solution algorithms. Both types of algorithms use lower bound calculations to
drive the search and reduce the computational efforts. For these reasons research into

Chapter 1 8 Introduction

integer linear programming is largely focused on strengthening the lower bound obtained
by LP-relaxation of the problems. A more comprehensive survey of fundamental results
for linear and integer linear programs can be found in [14,77,106].

In Chapter 4 integer linear programs are used extensively for the construction of the

template schedule and for the re-allocation of nurses in the appointment scheduling prob-
lem.

1.5 Scheduling Theory and Applications

In this thesis, the term scheduling refers to the problem of determining the assignment of
a set of activities to some resources over time such that a given criteria is optimised. The
solution of such a problem is called schedule and consists of a description of the times
and the resources each activity is assigned to. With some exceptions in Chapter 4, we
consider the case in which the activities and the availability of resources are known in
advance. Thus the scheduling problems that we consider are combinatorial optimization
problems in which the solution space is a set of feasible schedules.

Studies on scheduling problems started in the early fifties for the design of efficient

production plans in the manufacturing industry. Typically in this context, activities rep-
resent production steps (called jobs) to be performed in production machines which con-
stitute the limited resources. The classical goal is to reduce the production time and to
maximise the efficiency of the machine usage. Nowadays scheduling problems are stud-
ied for a wide range of applications such as project planning, train and flight scheduling,
sport timetabling, staff rostering and many others. The solution models generated for
such different environments share similar structures that justify the existence of a general
scheduling theory in which the models are simplified and analysed from a mathematical
and computational perspective.

Different terminologies exist that are used in scheduling literature are derived from
various application contexts such as project planning, resource-constrained scheduling

and manufacturing scheduling. In this thesis we use the classical terminology from the
manufacturing scheduling where a set N of jobs (activities) have to be scheduled to pro-
duction machines (resources). In addition we use the wording 'operation of a job' to
indicate a single activity of a job that has to be performed by a production machine. Each
job can have one or more operations but each operation belongs to only one job.

Traditionally, scheduling problems are classified according to the three-field scheme

alJ3lr presented in [42], where a indicates the machine environment, J3 describes the
processing restrictions and r specifies the optimality criteria.

Chapter 1 9 Introduction

The machine environment a mainly characterises the type of the machines involved
and their number m. Some examples are the unrelated machines environments such as the
single machine 1, the identical parallel Pm and the parallel machines with different speeds
Qm environments; others are the shop environments such as flow shop Fm, job shop Jm
and open shop Om. In the unrelated machines environment, all machines are of the same
type and each job can be processed in any of them, although at different posssible speeds.
Differently, in shop environments, machines are of different types and operations of jobs
have specific constraints determining the machines they have to be processed on. The
most general case is job shop where each job has a specific machine order to follow.

The problems studied in this thesis involve single and parallel machine environments.
For a more detailed classification of machine environments see [19, 80].

The processing restrictions f3 characterise the constraints involved in the job process-
ing. Some examples of job constraints are:

• rj indicates the presence of a release date for each job j EN; job j cannot be
processed before its release date rj.

• dj indicates the presence of a due date for each job j E N; job j should not be
processed after its due date dj.

• p-batch or s-batch indicate that multiple jobs are processed together in batches; the
word p-batch is used when the jobs are processed simultaneously and s-batch when
jobs in a batch are processed in series.

• prec indicates that the processing of jobs is subject to precedence constraints.

Field f3 contains combinations of many other constraint symbols which result in self-
explanatory formula. For example, the writing p j = p indicates that all job processing
times are equivalent to a value p.

The optimality criteria r is an objective function usually defined over the completion
times and the job sequence. The objective functions that interest us in this thesis are called

min-max objectives (or bottleneck objectives) and are of the form fmax=maXjEN{f(cj)}
where N is the set of jobs to be scheduled. In particular, in Chapter 2 we consider the
minimisation of the maximum lateness calculated as

(1.1)

where Cj - dj is the lateness of job j. The maximum lateness is used as a fair represen-
tation of the overall punctuality of a process to given due date targets. In Chapter 3 we

Chapter 1 10 Introduction

focus on the minimisation of the maximum completion time (makespan) defined by the

following formula:
(1.2)

The maximum completion time is a sensible measure for the speed and efficiency of a
system with possible idle times.

An example of three-field notation is given by lip - batch,b = 4,p = 1,rj,djICmax

which denotes the problem of minimizing the makespan on p-batching machines where
at most 4 jobs can be processed simultaneously in batches of unit processing time and jobs
are released at given release dates and should be processed before given due dates. More
examples and detailed explanations of specific machines and their processing restrictions
are introduced in later sections and chapters.

In Chapters 2, 3 and 4 we study scheduling problems with release and due dates, and
scheduling problems with time-lags. The following sections give an overview of such
scheduling areas.

1.5.1 Scheduling with Release and Due Dates

In scheduling with release and due dates, each job j of a set N is available to be processed
after a release date rj and should be completed before a due date d]. There exists a hard

and soft version of due dates: in the hard version the due dates are called deadlines and
no job in a feasible schedule can be completed after them; in the soft version jobs that
are completed after their due dates incur penalties. The due date version and the penalties

eventually involved are determined by the objective function in use. In the three-field
scheme, problems with release and due dates are usually denoted with the symbols rj.d]

in the J3-field. When the presence of due dates is clear by the nature of the objective
function, dj is omitted.

Originally, such constraints arose in the manufacturing industry where production pro-

cesses use materials and resources which have restricted availability and the goods pro-
duced have to be delivered within given due dates in order to meet production and market
requirements. In this context scheduling techniques help to maximise the efficiency of
machine usage together with the delivery performances. Modem applications such as ser-
vice scheduling also involve release and due dates constraints. Some examples can be
found in healthcare and, in particular, in appointment scheduling where clinical referrals
establish the dates at which patients can start to be treated and reasonable waiting day
targets determine the latest dates when the treatment is due. A measure of patient waiting
days can be modelled in the objective function as the average or maximum lateness of pa-

Chapter 1 11 Introduction

tients. Successful appointment scheduling is shown in literature to substantially improve
the quality of the service and to reduce costs [25]. Release and due dates are also fun-
damental constraints in logistics where commodities are available at different times/dates
and have to be delivered to a destination before agreed due dates. Notice that in this
case the processing of a job represents the transportation of some goods. A study on this

context is presented in chapter 2 where we consider a special case in which goods are
transported by limited capacity vehicles.

Most of the traditional scheduling problems such as parallel machines or shop prob-
lems have been studied in the version with release and due dates (see examples in
[19,27,80,86,87]). In the rest of the section, we present some of the fundamental problems

which have deeply influenced literature in the field and whose study has led to important
solution techniques, some of which are exploited in later chapters.

One of the simplest but very challenging problems in scheduling with release and due
dates is the single machine problem IhlLmax described in [19]. Given a set N of jobs,
one has to determine the sequence and the starting times of the jobs to be processed by a
single machine such that the maximum lateness is minimised. Each job j E N can start

only after its release date rj and no preemption is allowed. Although, llrjlLmax is known
to be NP-hard in the strong sense (see [60D, there are some special cases of intuitive
solutions:

• llrj = riLmax: single machine problem with equal release dates; it is solved schedul-
ing the jobs in non-decreasing order of due dates (Jackson's algorithm [51]).

• llrj,dj = dlLmax: single machine problem with equal due dates; it is solved
scheduling the jobs in non-decreasing order of release dates (Jackson's algorithm
[51D.

• Ih,p = llLmax: single machine problem with unit processing times and integer
release dates; it is solved by scheduling in each time slot the available job with the
earliest due date (Hom's rule [48D.

All the problems mentioned are solved by simple rules (called dispatching rules) that are
repeatedly applied for each job and that find an optimal solution in O(nlogn) time.

Example Consider a retailer warehouse where every day the products are delivered to
customers in the local area. The transportation is performed by a van that has to deliver
the goods no later than the due times agreed with the customers. Due to the limited
capacity, the van can deliver one product a time. The amount of time necessary for the

loading/unloading and the round-trip is well known and is called delivery duration. On

Chapter 1 12 Introduction

a typical day, 10 costumers are served by one van. Table 1.1 shows the time at which
the products become available, the delivery duration and the due times agreed with the
customer. The operations manager wants to determine the vehicle loading sequence that

Customers Availability Delivery Due
time duration times

1 09:00 00:45 14:15

2 09:00 00:15 13:15

3 10:00 00:45 12:00

4 10:15 01:15 11:45

5 12:00 01:30 14:30
6 12:30 00:15 13:45

7 12:45 00:30 14:30

8 13:15 00:30 15:45

9 14:00 00:45 15:30

10 16:30 00:30 17:00

Table 1.1: Product availability times, due times and delivery durations

guarantees a timely delivery to customers.

A fair measurement for the punctuality is the maximum lateness of deliveries among
all the customers served on that day. Thus, such a problem can be modelled as a single
machine scheduling problem with release and due dates with maximum lateness objective
function, i.e. llrjlLmax. Notice that in this case the release and due dates are actually
release and due times.

A feasible solution to the problem is given in Table 1.3 and by the Gantt chart is
shown in Figure 1.1. The maximum lateness of the schedule is 1 and it is determined by
the completion time of jobs 3, 7 and 8. This means that each customer would receive the
goods with a delay no longer than 15 minutes. 0

Another important version is the single machine problem with release and due dates
where the processing of a job can be stopped and resumed at any time 11rj, pmtn ILmax.
The possibility of interrupting the processing of a job is called pre-emption and is denoted
by the word 'pmtn' in the {3-fieldof the three-field scheme. Pre-emption makes the single
machine problem with release and due dates easy to solve by the use of the following
simple algorithm: at each decision point, which corresponds to the release date of a job

Chapter 1 13 Introduction

Release Processing Due
Job date ('/.) time date (dj)

1 0 3 21

2 0 1 17

3 4 3 12

4 5 5 11

5 12 6 22

6 14 1 19

7 15 2 22

8 17 2 27

9 20 3 26

10 30 2 32

Table 1.2: Instance data of the relative single machine scheduling problem IIriILmax; the
customer deliveries are now jobs and the product availability times, due times and delivery
durations are expressed in 15-min time slots

Seq. No 1 2 4 3 6 5 7 9 8 10

Time of
9:00 9:45 10:15 11:30 12:30 12:45 14:15 14:45 15:30 16:30delivery

Starting
0 3 5 10 14 15 21 23 26 30slot

Table 1.3: Example of a feasible non-optimal solution

rl,2

Time- -- ---..

Figure 1.1: Gantt Chart of the solution given by Table 1.3

Chapter 1 14 Introduction

or its completion time, schedule an available job with the smallest due date. Problems
with pre-emption are of great interest since their optimal solutions are lower bounds for
the problem versions with no pre-emption and they can be used to drive the search in the
branch-and-bound and local search algorithms.

The single machine problem with precedence constraints, release and due dates
11rj, preclLmax is also of great interest since it models many sub-problems in complex
multistage scheduling machine environments such as flow shops, job shops and open

shops (see Section 1.5). A precedence constraint between two operations determines the
order in which the operations have to be processed, Le. i --* j indicates that operation i

must start the processing before j. This type of constraint appears in the representation
of partial solutions generated during the search in branch-and-bound and local search al-
gorithms. Notice that the problem llrj,preclLmax is NP-hard since its relaxed with no
precedence constraints IlrjlLmax has been proved to be NP-hard in [60].

The most important studies in relation with the problem llrj, preclLmax involved the
development of two efficient solution techniques for the problem 1hlLmax: block ap-
proach and immediate selection.

Given a feasible schedule, the block approach determines a set of contiguous jobs
(called a block) inducing the makespan. The technique search for better schedule moving
outside the block some of the jobs that were scheduled inside the block and vice versa.
Notice that imposing a job to be processed before or after a block is equivalent to setting
specific precedence constraints between jobs inside and outside the block leading to a
problem of the form llrj, preclLmax. An example of a successful application of this tech-
nique can be found in the branch-and-bound algorithms from [41]. Immediate selection is
a technique used in local search and branch-and-bound algorithms to speed up the search
of the optimal solution. It is based on simple constraint propagation techniques that use
lower and upper bounds to increase release dates and decrease due dates of the jobs to be
scheduled. Once the order of two jobs in a optimal solution is evident by the value of the
release and due dates, the corresponding precedence constraint is immediately fixed. An

example of the successful application of this technique can be found in [22].

The algorithms for the single machine problems also give rise to advanced techniques
for more complex problems. Clear examples are the block approach and the immediate
selection which have been extended to the job shop problems and used to tackle the fa-
mous 10 jobs 10 machines benchmark problem which remained unsolved for more than
two decades see [20,24,59]. Another important example is the shifting bottleneck heuris-
tic for the job shop (see [2,80]). Such a heuristic reduces the solution of the job shop
problem to the solution of many conveniently adapted single machine problems. In par-

Chapter 1 15 Introduction

ticular, the heuristic searches for a solution by iteratively relaxing each stage of the shop to
appropriately defined single machine problems 1hlLmax and solving them with available
algorithms (see [80]).

To complete our overview of influencing scheduling problems with release and due
dates, we describe the single machine problem 11rj, Pj = P ILmax where all jobs require
the same processing time p. This special case is solvable in polynomial time by complex
combinatorial algorithms described in [93,94]. The algorithm works solving iteratively
many instances for the decision version of the problem llrj,pj = plLmax:S: k with different
k values. For each job j E N, the decision version involves modified deadlines d', =
dj + k after which a job j cannot be completed. Then a solution of the decision version
of the problem is computed in two steps: the generation of forbidden regions and the
actual scheduling of the jobs. In the first step, the algorithm determines intervals of times
during which, if a job starts to be processed, it exceeds the given deadlines, i.e. the
forbidden regions. In a second stage, jobs are sequenced so that no starting time falls in
a forbidden region. Such algorithms have also been used to solve the parallel machine
problem Plrj,pj = plLmax in [94].

In Chapter 2 we solve the parallel batching scheduling problem with release and due
dates for single and parallel machines extending the idea of forbidden regions. Similarly
to what happened with the study of different versions of the problem 11rj ILmax, we expect
that our results will influence future work on the batch scheduling problems in complex
shop environments.

1.5.2 Scheduling with Time-Lags

In scheduling problems, time-lag constraints impose restrictions on the difference be-
tween the starting times of pairs of operations. Formally, given two operations v,w with
starting times Sv and sw, a time-lag constraint imposes that

1 :S: Sv - Sw :S: u (1.3)

where 1 and u are given integer values and 1 :S: u. We refer to such a general form of
constraint as start-start constraints. If the value 1 is greater than the processing time Pw
of the operation w, then the constraint is of the type completion-start and formula 1.3 can
be transformed to

1- Pw :S: Sv - Cw :S: u. (1.4)

Chapter 1 16 Introduction

Notice that this is not always the case since in problems with parallel machine and batch-
ing environments, or in problems where pre-emption is allowed, an operation can start to
be processed before the completion of another one already started.

We distinguish between coupled and uncoupled operation scheduling problems (see
Figure 1.2). In coupled-operations problems, there is a constraint between pairs of op-
erations belonging to the same job (see examples in [74,81]). In uncoupled-operations
scheduling problems, the time-lag constraints can link any pair of operations, even if they
belong to different jobs (see examples in [9], [18], [49] and [89]).

~------

Figure 1.2: Classification of problems according to the operations constrained by time-
lags

Problems with time-lags are also classified according to the characteristics of the
upped bound u and lower bound I values (see Figure 1.3). In particular we distinguish
between problems with flexible, minimum, andfixed time-lags. In problems with flexible
time-lags the values of I and u are distinct, allowing some variability in the starting time
difference between operations; i.e. 1< u (see examples in [18,36,81]). In problems with
minimum time-lags the difference between operation starting times can grow indefinitely,
i.e. u = 00 (see examples in [9,35,82]). Finally, if the time-lags are classified as fixed,
the possible starting time differences degenerate to single values, i.e. 1= u (see examples
in [61,74]).

Extending the notation from [42] and [74], in this thesis we denote coupled-operation
problems including the letters Ij and Uj in the J3-field. However, if Ij = Uj as for the fixed
time-lag case, we use the upper case letter Lj; for example 1 I aj,bj,Lj ICmax indicates the
coupled-operation single machine problem with fixed time-lags and a maximum lateness
objective function.

Time-lags constraints arise in many different areas ranging from command-and-
control systems in electronics to process and resource scheduling in the manufacturing

Chapter 1 17 Introduction

'--------_._-----
Figure 1.3: Classification of problems according to the time-lags characteristics

and service industries. In radar controllers scheduling, the problem is to schedule the
emission of multiple wave pulses such that all bounced signals can be captured accu-
rately. The time-lags constraints are caused by the amount of time between the emission
and the reception of a bounced signal which is dependent on the distance of the object that
is to be tracked (see examples in [32,33,75, 104]). However, radar controllers are only
an example of command-and-control systems where electronic boards request data from
sensors that takes an considerable amount of time to be retrieved, other examples can be
found in [90-92]. A similar problem arises in modem high performance computing in-
frastructures where complex calculations are divided between many processors. A server
acting as coordinator, sends the data to many client computers which process and return
it to the server. The server has to wait a minimum time-lag before which a processor can
return the elaborated data. The problem is to determine the time at which the transmis-
sion of the data should be performed such that the use of the overall computation time is
minimised (see example in [62,64,90]).

Typically, in manufacturing, time-lags constraints appear between different process-
ing stages. In some cases, fixed or flexible time-lags are imposed by the cooling and
deterioration of the material used. One example can be found in the steel industry where
iron should be handled while warm (see examples in [81, 105]). In flexible manufactur-
ing time-lags are due to manual handling or transportation issues. Unfinished goods, for
example, need to be transported from one workstation to another by a human operator
or robots which add considerable delay in the production chain [16,23]. In other cases
the production process requires some human intervention during the process to check or
add specific customisations to the products. These interventions determine a minimum
delay between two successive processing stages that could result in efficiency loss if not
scheduled properly (see examples in [66,82]). Time-lags also occur in single-stage pro-
cesses where, after the production, goods need to be reprocessed by the same machine

Chapter 1 18 Introduction

for some adjustments to be made [83]. In literature, this feature is represented by models
with re-entrant jobs.

Examples of models with time-lags in the service industry can be found in mainte-
nance service and healthcare. In maintenance service, after an on-the-spot investigation
identifies some faults at a customer site, some replacement parts need to be ordered to a
distributor which requires a certain amount of time to fulfil the request. Clearly, a techni-
cian can replace the faulty part only after it has been delivered. Thus, the problem for a
maintenance company is to schedule the technician visits to multiple customers minimis-
ing the technician idle times due to unavailability of replacement parts. An example of
application in healthcare service area is mentioned in [108] where a minimum time-lag
has to elapse between the administration of anaesthetic and the introduction of the pa-
tient into the operating room. In Chapter 4 we introduce a new scheduling problem with
time-lags in healthcare.

Example Consider a small facility where printed circuits boards (PCBs) are coated with
thin films using a chemical bath deposition method. A single hoist grasps each PCB,
takes it to a preparation stage and then dips it into the appropriate tank in which the
coating agents are placed. Depending on the size of the PCB and on the type of coating
needed, each PCB remains in the tank for a fixed amount of time after which it must be
removed. While a PCB is inside a tank, the hoist can load or remove other PCBs from
the same or other tanks. After the immersion, the PCB is taken through a post-processing
stage where additional actions such as drying take place. During the preparation and the
post-processing stage the PCB is held by the hoist.

Durations

PCB No. Preparation/Loading Coating Removal/Post -processing
1 00:45 (3) 02:00 (8) 01:00 (4)

2 01:00 (4) 03:30 (14) 01:00 (4)

3 00: 15 (1) 02:00 (8) 00:15 (1)

4 00:15 (1) 02:15 (9) 00:30 (2)

5 00:30 (2) 02:45 (11) 00:30 (2)

6 00:30 (2) 01:45 (7) 00:45 (3)

Table 1.4: Example of hoist scheduling problem; numbers in parenthesis represent the
durations expressed in time slots

Assuming that Table 1.4 summarises the number of PCBs coated on a typical day

Chapter 1 19 Introduction

and their coating times, what is the sequence of hoist loads/unloads that minimises the
amount of time that the whole process takes? This problem can be modelled as a coupled-
operation scheduling problem where the processing machine is the hoist and each job is
made of two holding operations: the preparation and the post-processing of the PCB. The
objective function is the minimisation of maximum completion time (makespan).

A feasible solution sequence is represented in Table 1.5 and in the Gantt chart shown
in Figure 1.4. In such a solution the total amount of time required to process all PCBs is
32 unit-time slots (8 hours). _

Job 6 4 2 1 5 3
Starting slot 0 2 3 14 17 20

Starting time 00:00 00:30 00:45 03:30 04: 15 05:00

Table 1.5: Sequence and starting times of hoist operations of a feasible solution

o 32

[
----~l ell
------~~-----------

1
2

ffi_ 14J
6- __ ~_._~~---__'__I _ 5

Time ---.

Figure 1.4: The Gantt chart representation of the solution in Table 1.5

A natural optimization criteria for problems with time-lags is the minimisation of
the total idle time in the resulting schedule. This is equivalent to the minimisation of
the maximum completion time of the jobs on the machines involved. In fact, most of
the studies in literature focus on the minimisation of the maximum makespan Lmax or,
less frequently, on the total weighted completion time EjEJWjCj. Unfortunately, many
of the general problems with such objective functions have been proved to be NP-hard

(see [74,102,109]).
Although, many scheduling problems with time-lags have been studied in the past,

there exists no standard nomenclature used by authors. This makes a comprehensive
survey of the literature and a strict classification difficult to achieve. For example the
time-lags are referred using the term delays in [9,21,69,70,88,109] and limited waiting

Chapter 1 20 Introduction

time constraints in [107]; coupled-operation jobs are called coupled-tasks in [74], two-
phased jobs in [90] and chains in [21,68]. In some cases even the same authors used

different names in different paper; some examples are Brucker [18,21], Munier [68,70]

and Potts [74, 81]. In the rest of the section we provide a general overview of the studies
in literature related to scheduling models with time-lags. A detailed survey of complexity
results and open problems specific to coupled-operation scheduling problems is presented
in the first part of Chapter 3.

Initially, time-lags constraints were introduced by Roy [85] during the development of

the Metra Potential Method for project planning. The methodology introduced to describe
the interdependence between activities in a project included the possibility of establishing
a minimum and a maximum delay between the execution of two activities. This inspired
later studies in theoretical models with time-lags.

The most general formulation for the problems involving time-lags is the single ma-
chine problem with flexible time-lags and uncoupled operations. Such a problem was
studied in the original form by Wikum et al [102] and by Brucker et al [18]. The
first investigated the complexity of the problem showing that it is NP-hard and design-
ing a few polynomial-time algorithms for very special cases. Differently, Brucker et
al [18] designed a general branch-and-bound solution algorithm using immediate selec-
tion (see [22]) and other techniques developed for the single machine problem with re-
lease and due dates. Differently, Balas et al in [9] study the problem where only positive
time-lags are allowed proving the NP-hardness of the problem and developing an efficient
heuristic. Their work was inspired by the application that such a problem has in the shift-

ing bottleneck solution procedure for job-shop. Other studies on the general formulation
has been done in the area of resource constrained project scheduling with the studies of
Bartush et al [12], Brinkman and Neumann [17] who developed heuristics procedures for
variants of the problem.

The importance of studying the general formulation of the single-machine problem is
strengthened by the results in [18] which show that many other scheduling problems such
as general shop problems and scheduling problems with multi-purpose machines, with

parallel dedicated machines and with multi-processor tasks can be reduced to the single

machine problem with time-lags.
A large number of theoretical scheduling models with time-lags are considered for

multi-stage environments such as flow-shops, job-shops and open-shops. The common
characteristic of such models is that time-lags constraints link operations of the same jobs

(coupled-operation). In some models coupled-operations must be processed in different

machines [30,37] while in others they must be processed in the same machine [84]. Since

Chapter 1 21 Introduction

most of the problems in this area are NP-hard, accurate lower bounds, heuristics and
branch-and-bound algorithms have been mainly developed.

Many studies of scheduling in multi-stage environments are linked to models with
fixed time-lags even if it was not explicitly stated by the authors. Of this type are the
problems with no-wait constraints. Such constraints dictate that two operations of the
same job must be processed contiguously with no time delay between the completion of
the first and the starting of the second operation [16,53,67]). A no-wait constraint is
equivalent to a fixed time-lag constraint with a value equal to the processing time of the
first operation. Another similar form of constraint is the so called blocking constraint
where, given two operations of the same job, after the processing of the first operation a
machine remains idle until the processing of the second operation is started (possibly on
a different machine). Such a restriction is common when no buffering or storage capacity
is available between two processing machines [44,67]. Clearly, a feasible solution for
a problem with no-wait constraints can be transformed into a feasible solution for the
blocking version of the problem and vice versa.

Many successful studies in this area focused on local search heuristics based on the
reinsertion neighbourhood. Such a technique consists of generating a better schedule from
an existing one by removing some operations and reinserting them in better positions in
the schedule. Due to the similarity in the constraints structure, solution algorithms for
shops with blocking and no-wait restrictions can be extended to scheduling problems
with time-lags. In fact, the recent results in reinsertion techniques developed by Groftin

et al in [43-45] gave rise to our work in coupled-operation scheduling with time-lags
described in Chapter 3.

From the complexity perspective, literature shows that problems involving time-lags
are generally hard to solve and that polynomial-time algorithms could be designed only
for special cases. Solution approaches attempted are mainly heuristics and branch and
bound algorithms. The difficulty in finding efficient algorithms results from the fact that
even feasible solutions are hard to construct. This forced the design of solution algorithms
which allow infeasible solutions to be considered in the search [49,81] or which limit
the search to a subset of feasible solutions [63]. This has been conjectured to be the
cause of the limited performance of the algorithms. In the case of coupled-operation
problems, constructive heuristics have been recognised as the best approach to achieve
good solutions in a short amount of time [81].

In summary, time-lags constraints of different forms find applications in various
real-world problems and, because of this, they have been considered in many theoret-
ical scheduling models. It has been recognised that problems with time-lags involv-

Chapter 1 22 Introduction

ing single-machine environments are among the more difficult problems. Solution ap-
proaches adopted are mainly heuristics and branch-and-bound algorithms which include

in the search unfeasible solutions or limit the search to only subsets of feasible solutions.
As a result, many improvements can still be brought to this area of research. In particular,
the design of theories which could support the design efficient solution algorithms for
general scheduling models would be of great benefit. This is the aim our work in Chapter
3 where we study a possible compact representation for solution schedules and we adapt
the theory developed for the no-wait job-shop to the single-machine scheduling problem
with coupled-operations.

1.6 Contributionsof the Thesis

The contributions of this thesis to scheduling area are manifold. We study issues in the
fields of combinatorial optimization, operational research and computing. In particular
we provide new complexity results for combinatorial optimization problems (Chapters
2 and 3), we design efficient algorithms for scheduling problems (Chapter 2 and 3), we
introduce a new real-world problem and we conceive an innovative solution technique for
it (Chapter 4).

This thesis is structured as follows. In Chapter 2 we present new results on scheduling
with release/due date constraints for batching machines. We introduce algorithms for the
case of single and parallel machines that outperform previously known algorithms. In
addition we determine the computational complexity of the problem with two types of
precedence constraints: start-start and completion-start precedence constraints.

In Chapter 3 we study coupled-operations scheduling problems. In particular, we
concentrate on the special case where each job consists of exactly two operations whose
starting time difference is determined by a fixed time-lag. Among other results, we prove
that the problem of determining the sequence of operations that minimises the makespan
is NP-hard in the strong sense even if a partial sequence of the operation is given and
processing times are unitary. We show the relation between coupled-operation scheduling
problems and the short cycle property used in [43] for the solution of the blocking job
shop scheduling problems. Using such a theory we design a tabu-search algorithm for our
problem and we compare it with other algorithms in literature.

In Chapter 4 we study a real-world scheduling problem arising in outpatient
chemotherapy clinics. Specifically, we consider the problem of scheduling appointments

with complex time patterns of patients arriving over a period of time. We design an in-
novative approach that schedules patient appointments and allocates them to a limited

Chapter 1 23 Introduction

number of nurses such that given waiting targets are respected and workload peaks are
minimised. Our contribution consists of the introduction of the new concept of the multi-
level template schedule and the design of specific integer linear program formulations for
its construction. Such a problem is a relevant example of a real-world scheduling problem
with release/due dates and time-lags.

Conclusions of the thesis and possible future research directions are discussed in
Chapter 5.

Chapter 2

Parallel Batch Scheduling of
Equal-length Jobs with Release and Due
Dates

2.1 Overview

In this chapter we study scheduling problems in which jobs can be processed simultane-
ously in batches. It is assumed that all jobs have equal processing times and the same
value defines the processing time of every batch. Due to processing restrictions, a limited
number of jobs can be allocated to one batch. In the scheduling literature, such a model
is often called a parallel hatching model or p-batching; see [19].

Such a scenario is typical for transportation area when deliveries between two loca-

tions are arranged by vehicles which can carry several items at the same time. In such a

problem a set of items are sited in one location and have to be moved to another location
before given due dates. Each item is available to be moved only after known release dates.
Since the distance between the locations is fixed, the duration of all the deliveries is the
same. This problem is represented by a p-batching scheduling model where each machine
represents a limited capacity vehicle and the processing of a batch of jobs by a machine
represents a delivery of items by the associated vehicle.

Formally the scheduling problem can be described as follows. There are n jobs of a

24

Chapter 2 25 Parallel Batch Scheduling

set N which have the same processing times Pj = p, j EN. Each job j EN becomes
available for processing at its release date rj and it should be completed by a deadline (or
due date) dj. The jobs can be processed in any order and up to b jobs can be processed
jointly in one batch.

If there is a single processing machine, then a schedule is defined by a sequence of
batches Bi; B2, ... , Ba, their starting times s{Bq) for I ~ q ~ a, and the sets of jobs
assigned to each batch Bq. If there are m > I parallel batching machines, then in addition
the batches have to be allocated to the machines.

Since no job can be processed before its release date, we must have s{Bq) 2:
max jEBq {r j} for any batch Bq. All jobs j E Bq of the same batch are completed simulta-
neously at time Cj = s(Bq} +p.

A schedule is feasibLe if the jobs are completed before their deadlines, i.e., if Cj ~

dj for all j EN. If no feasible schedule exists, then the deadlines are considered as (soft)
due dates and the overall performance of a schedule is measured in terms of the maximum
lateness Lmax:=max{Lj I j EN}, where Lj :=Cj - dj is the lateness of job j.

Using the standard three-field notation of [57] we denote the feasibility version of our
problem with a single batching machine or several batching machines by lip-batch, b <
n,rj,pj = p.c] ~ djl- and Plp-batch,b < n,rj,pj = p,Cj ~ djl-, respectively. Here
the first field specifies whether a single batching machine or several parallel batching
machines exist. We include 'p-batch' in the second field to indicate that the jobs are
processed in batches in accordance with the parallel batching discipline. The entry b < n
means that the batch capacity b is limited. Parameter rj specifies release dates of the jobs,
while P j = P means that the jobs have equal processing times. In addition, Cj ~ d j is
included to denote that in a feasible schedule all jobs should meet their deadlines. The
third field is empty since the objective is to find any feasible schedule (if one exists)
without giving preference to any particular schedule.

The problem of minimizing the maximum lateness (where the values dj are treated
as due dates) is denoted similarly by lip-batch, b < n, rb Pj = plLmaxif there is a single
batching machine, and Plp-batch,b < n,rj,Pj = plLmaxin the case of parallel p-batching
machines.

Parallel batching problems with equal processing times have been studied since the
eighties. The main focus of the early papers was on special cases with equal due dates or
agreeable release and due dates.

If all due dates are equal, then Lmax-minimisation is equivalent to cmax-minimisation.
This problem can be solved in O(nlogn) time by the algorithm due to Ikura and Gimple
[50] known as First-OnLy-Empty (FOE) rule. It sequences the jobs in the order of their

Chapter 2 26 Parallel Batch Scheduling

release dates and generates full batches consisting of exactly b jobs except, perhaps, for
the first batch which may have less jobs.

If the values rj and dj are agreeable, i.e. rl :::;ri :::;... :::;rn,dl :::;da :::; ... :::;dn, then
the feasibility problem is solvable in O(n2) time by an algorithm due to the same authors
[50]. The algorithm is based on the repeated application of a greedy procedure, which
sequences as many jobs as possible in one batch. Another approach based on dynamic
programming is due to Lee et al. [58]; it solves the problem in O(nb) time. For the Lmax
-minimisation problem with agreeable release and due dates, Lee et al. [58] developed an
O(nb log(np))-time algorithm by combining their O(nb) feasibility algorithm with binary
search.

The general case of the batching problem with arbitrary "r and drvalues was studied
by Baptiste [10]. For the feasibility problem ljp-batch.b < n,rj,Pj = p,Cj :::;djl-, an
O(n8)-time dynamic programming algorithm was developed; when combined with binary
search, it solves the Lmax-minimisation problem Ijp-batch.e < n,rj,pj = p,djlLmax in
O(n810gn) time.

Many extended versions of the batching problem are NP-Hard. One example is the
problem of scheduling batching machine with perishability time windows and incompati-
ble job families presented in [26] where due dates are considered as strict deadlines. Such
problem has been tackled by the design of a dynamic program and a greedy heuristic.

The results listed above deal with the bounded version of the p-batching problem with
batch capacity b < n. The unbounded version of problem IIp-batch,rj,pj = pi! with
b ~ n is studied in [28] where an O(n3)-time algorithm is developed for minimizing an
arbitrary regular objective function f.

In our research, we study the bounded version of the problem. We assume that all
input data are integer. The algorithms we develop outperform those known previously.
To achieve this, we use the idea of forbidden regions formulated in [39] for the classi-
cal problem with a single (non-batching) machine and the notion of barriers formulated
in [93] for the case of parallel (non-batching) machines. We also discuss how the sug-
gested algorithms can be generalized to solve the corresponding problems with prece-
dence constraints. We distinguish between completion-start constraints (denoted by prec)

traditionally studied in the scheduling theory and start-start constraints (denoted by prec')

which are useful in developing constraint propagation techniques, branch-and-bound and
local search algorithms.

This chapter is organised as follows. In Section 2.2 we consider the single-machine
batching problem. We start with an O(n2)-time algorithm for solving the feasibility prob-
lem l lp-batch.b < n, rj,Pj = p,Cj :::;djl- (Section 2.2.1); we then explain how the al-

Chapter 2 27 Parallel Batch Scheduling

gorithm should be modified to solve the feasibility problem with precedence constraints
(Section 2.2.2) and the Lmax-minimisation problem (Section 2.2.3). Observe that our al-
gorithms compare favourably with those previously known in terms of their worst-case
running times: the algorithm for the feasibility problem has the same time complexity
as the best algorithm developed for the case of agreeable tr and drvalues [50] and it is
faster than the O(n3)-time algorithm for the unbounded version of the problem [28]. Our
O(n2Iogn) algorithm for minimizing Lmaxsolves, in strongly polynomial time, a more
general problem in comparison with the earlier O(nb log(np))-time algorithm developed
for the case of agreeable release and due dates [58]. Furthermore, it is faster than the
O(n8Iogn)-time algorithm from [10] developed for arbitrary release and due dates and a
range of objective functions.

In Section 2.3 we consider the problem with parallel batching machines. We show
how the idea of barriers formulated in [93] for the case of parallel (non-batching) ma-
chines can be generalized to parallel batching machines solving the feasibility problem in
O(n3log n) time and the Lmax-minimisation problem in O(n3log2 n) time. Finally, con-
clusions are discussed in Section 2.4.

2.2 Batch Scheduling with a Single Machine

In this section we study p-batching problems with a single machine where all time values
are integer. Baptiste [10] developed a dynamic programming algorithm for the feasibility
version l lp-batch.e < n, rj,pj = p,Cj ~ djl-, which runs in O(n8) time. Furthermore, he
showed that problem l lp-batch.b < n,rj,Pj = pi! can be solved by applying the feasi-
bility algorithm in conjunction with binary search to minimise a range of objective func-
tions ! including the weighted sum of completion times, total tardiness and maximum
tardiness. The range of objective functions he consider is the reason of the higher time
complexity of his algorithm in comparison to the ones presented in this chapter.

In what follows we develop a faster O(n2)-time algorithm for the feasibility version of
the problem (Section 2.2.1), adjust it for solving the problem with start-start precedence
constraints (Section 2.2.2) and discuss an O(n2Iogn)-time approach for solving the Lmax-
minimisation problem (Section 2.2.3).

2.2.1 Feasibility Problem

In this subsection we consider the feasibility problem lip-batch, b < n, rh Pj = p, Cj ~

djl- of finding a schedule meeting all deadlines where all time values are integer. The

Chapter 2 28 Parallel Batch Scheduling

corresponding single-machine problem llrj,pj = p,Cj ~ djl- in which batching is not
allowed, is studied in [39] where an O(nlogn)-time algorithm is developed based on the
idea ofJorbidden regions. We demonstrate how the concept of forbidden regions can be
extended to the batching problem leading to an O(n2)-time solution algorithm.

A set of forbidden regions $ is a collection of time intervals with open left and right
ends. Its fundamental property can be described as follows: in any feasible schedule with
all jobs meeting their deadlines no batch can start in a forbidden region. Observe that a
batch starting outside a forbidden region can continue its processing in a forbidden region.

The idea of the algorithm is to determine all forbidden regions for the given instance
and then schedule the jobs in non-decreasing order of due dates such that no batch starts
in a forbidden region.

Forbidden regions are determined considering for each release date r, the latest time
Si at which the jobs released after ri should start to not exceed the deadline. Clearly if
Si is less than r; then no feasible schedule exists since there exists a job that cannot be
scheduled after his release date without exceeding its deadline. If r; ~ Si ~ ri + p then any
batch of jobs released before ri and scheduled in the interval of time [Si - p, ... ,Si] would
force later jobs to start after Si and consequently to exceed their deadlines. Thus, interval
[Si - p, ... ,Si] is declared forbidden.

Our algorithm consists of two stages: constructing forbidden regions (procedure FR)
and constructing a feasible schedule which respects forbidden regions, release dates and
deadlines (procedure F S). It can be formally described as follows.

Algorithm 'Batch-Scheduling'
Initialize $:= 0;
Renumber the jobs in N so that r) ~ ri ~ ... ~ rn;

FOR i := n DOWNTO 1DO
Call F R(ri,$); II Calculate forbidden regions and store them in $

END FOR
Call FS($); II Construct a schedule respecting the forbidden regions $

Procedure FR is called n times, once for each release date, starting from the largest
one. Each call F R (ri, $) either keeps the previously found set of forbidden regions $
unchanged or adds a new forbidden interval with the right end at rio This is done by
calling a backscheduling subroutine BS([rj,dj] ,$,Nri,d) for all jobs j with dj ~ dj.

Procedure FR(rj,$) 'Find Forbidden Regions $'
II It is assumed that $ contains forbidden regions found so far by considering all jobs f.

Chapter 2 29 Parallel Batch Scheduling

1/ with r£ > r,
Introduce an auxiliary numbering of the jobs so that dh :::;dh :::;... :::;djn;
q:=n;
WHILE djq ~ d, DO

Define Nri,djq := {u I r, :::;ru, du :::;djq};

Si,jq := BS ([r;,djq] ,~,Nr;,djq); II latest time when the earliest task

II from Nr· d. should start
J, Jq

q:=q-l;
END WHILE
Find Si :=min {Si,jq I jq is a job with djq ~ di};
IF Si < r; THEN

Terminate declaring failure: no feasible schedule exists;

IF r; :::;Si < ri +p THEN
Declare interval (Si - p, ri) 'forbidden' and add it to the set~;

The back-scheduling subroutine BS([r;,dj] ,~,Nr;,d) considers a subset of jobs Nri,dj ~
N which have to start and complete in interval [ri, d j], i.e.,

In order to find the latest time Sij when the jobs Nr;,dj should start to be completed within
the time interval [ri, dj], the subroutine temporarily ignores individual values of release
dates and deadlines for all u E Nr· d· and schedules the jobs in Nr· d· backwards from right

J, J J, J

to left into full batches of b jobs (except for the first batch which may have less jobs). Each
batch is started as late as possible. If the starting time of a batch Bq falls in a forbidden
region (A., Jl) E ~, then its starting time is shifted towards the beginning of that region,
i.e., s(Bq) = A.. Thus, the resulting schedule respects all forbidden regions in ~ found

earlier.
The back-scheduling procedure implementation is the main difference between our

algorithm and the one in Garey et al. [39]. In fact, since limited capacity batches have to
be created, our algorithm uses the First Only Empty (FOE) empty rule defined in Ikura
and Gimple [50] instead of scheduling each job contiguously backwards from the due
dates. Later in this section, we prove that the use of such rule is correct.

Procedure BS([a,/3l ,~,Na{3) 'Backscheduling with Forbidden Regions'

II Na{3 is a set of jobs to be scheduled in [a,p] ignoring their release dates and deadlines
Let S denote the starting time of the previously scheduled batch, initially S = p;

Chapter 2 30 Parallel Batch Scheduling

WHILE there are unscheduled jobs DO
1/ Form batches one by one starting from the last batch:
Define the starting time of the current batch as S := S - p;

IF S falls in a forbidden interval (A, Jl) E $ THEN
Sets:= A;

Assign b unscheduled jobs from Na,fj to the current batch; if there are less than b

unscheduled jobs, assign all of them to that batch.
END WHILE
RETURN s;

After procedure FR has called subroutine BS for all possible dj with dj ~ di, it analyses
the earliest starting time

Si:= min {Sij I j is ajob with dj ~ di}.

If Si appears to be smaller than ri, then there exists a subset of jobs Nr;,dj which cannot be
processed in the interval [ri,dj] and FR declares failure: no feasible schedule exists meet-
ing the deadlines. Otherwise, i.e. if Si ~ ri, every subset of jobs Nr;,dj can be scheduled in
the corresponding interval [ri, dj]. In this case each earlier batch should complete before
time Si. This means that if Si < ri +p, then the interval (Si - p, ri) has to be declared
forbidden and added to the set $.

Implementation details of procedures FRand BS are discussed in the proof of The-
orem 4. Notice that whenever a new forbidden interval is created, it is merged with an
existing one, if their intersection is not empty. Therefore we may assume that all gener-
ated forbidden intervals are disjoint.

Suppose now that procedure F R has been called for all release dates, has not declared
failure and produced forbidden regions $, which are merged if their intersection is not
empty. Then procedure FS ($) is called to construct a feasible schedule with the set of
forbidden regions $ found.

Procedure F S ($) schedules the jobs into batches from left to right respecting for-
bidden regions. At each decision point, it selects up to b available jobs giving priority
to those with smallest deadlines and assigns them to one batch. A decision point corre-
sponds to a job release date or a batch completion time that does not fall into a forbidden
region. Observe that the right-end of any forbidden interval is given by a release date of
some job. Formally procedure FS ($) can be described as follows.

Chapter 2 31 Parallel Batch Scheduling

Procedure FS($) 'Forward Scheduling with Forbidden Regions $'
q := 1; /I current batch number
Bq := 0; II Bq is the set of jobs of the batch q
WHILE there are unscheduled jobs DO

IFq= 1 THEN
tl := 0;

ELSE
Let tl be the completion time of batch Bq_l;

t2 := min {rj I j is an unscheduled job};
t:= max{tl,t2};
IF t belongs to some forbidden interval (A, J.L) E $ THEN

Set t := J.L
Add to batch Bq no more than b jobs available at time t with the smallest
deadlines, break ties in accordance with the job numbering;
Remove the jobs assigned to Bq from the set of unscheduled jobs;
q:=q+l;

END WHILE

The correctness of the formulated algorithm is proved in Theorems 1 and 3. Prior to
presenting them, we introduce an illustrative example.

Example Consider an instance with n = 12jobs which should be processed in batches of
the maximum capacity b = 3 and the batch processing time is p = 4. Job release dates and
deadlines are given in Table 2.1. Observe that the jobs are numbered in non-decreasing
order of their release dates.

j 1 2 3 4 5 6 7 8 9 10 11 12

6 6 9 12 13 13 14 23 24

dj 5 14 13 10 11 15 22 18 19 20 31 29

Table 2.1: Input data for an instance of problem llp-batch.e < n,rj,Pj = p,Cj::; djl-

Starting with an empty set of forbidden intervals $,procedure F R (rj,$) updates $
as follows.

Chapter 2 32 Parallel Batch Scheduling

FR(r12,$) considers Nr12,dl1 = {12} and finds S12,11= 27,
Nr12,d12 = {12} and finds S12,12= 25.

This results in S12= 25 and $ = $U {(21, 24)}.

FR(rll,$) considers Nrl1,dl1 = {ll, 12}
This results in SII = 27 and no changes in $.

and finds SII,11 = 27.

FR(rlO,$)considers NrlO,dl1 ={10,1l,12} andfindsslo,11 =27,
NrlO,dl2 = {1O,12} and finds SIO,12= 25,
NrlO,d7 = {10} and finds SIO,7= 18,
NrlO,dlO = {1O} and finds SIO,10= 16.

This results in Sw = 16 and $ = $U{(12, 14)}.

The subsequent calls of procedure F R (rj, $) lead to the following updates of $:
FR(r9,$) finds S9= 15 and $ = $U{(ll, 13)}.
FR(rs,$) finds Ss = 14 and $ = $U{(lO, 13)}.
FR(r7,$) finds S7= 14 and $ = $U{(lO, 12)}.
FR(r6,$) finds S6= 10 and $ = $U{(6,9)}.
FR(r5,$) finds S5= 6 and $ = $U{(2,6)}.
FR(r4,$) finds S4= 6 and $ = $U{(2,6)}.
FR(r3,$) finds S3= 6 and $ = $U{(2,5)}.
FR(r2,$) finds S2= 6 and $ = $U{(2,4)}.
FR(rJ,$) finds si = 1 and$=$U{(-3,0)}.

r r r
2 3 4,5

r r
11 12

Figure 2.1: Forbidden regions $ = {(2, 6) , (6,9), (10, 14), (21 ,24)}

The found forbidden regions are shown in Fig. 2.1. Observe that forbidden intervals
(2,6) and (6,9) do not overlap, so that the forward scheduling procedure F S can select 6
as a starting time of a batch. This procedure generates a feasible schedule as follows.

- The first batch B, starts at time tl = °and it contains the only available job 1.

Chapter 2 33 Parallel Batch Scheduling

- The second batch B2 starts at time t = 6 since it cannot start inside the forbidden interval
(2,6); procedure FS allocates jobs {3,4,5} selected from the four available jobs
{2, 3,4, 5} based on the smallest deadlines.

- Next batch B3 starts at time t = 10, which corresponds to the completion time of the
previous batch and does not belong to ~; the batch contains two available jobs
{2,6}.

- Next batch B4 starts at time t = 14, which corresponds to the completion time of the
previous batch and does not belong to ~; procedure FS allocates jobs {8, 9, 1O}
selected from the four available jobs {7, 8, 9, 1O}based on the smallest deadlines.

- Next batch Bs starts at time t = 18, which corresponds to the completion time of the
previous batch and does not belong to ~; the batch contains the only available job
7.

- The last batch B6 starts at time t = 24 since it cannot start inside the forbidden interval
(21, 24) and the the batch contains two available jobs {II, 12}.

The Gantt chart of the resulting schedule is shown in Fig. 2.2.

28 19 30 31 32

r r
II 12

Figure 2.2: The schedule satisfying release dates, deadlines and forbidden regions ~

Now we tum to proving the correctness of algorithm 'Batch-Scheduling'. We start
with a number of auxiliary statements first concluding with the main result formulated in
Theorem 3.

First we show that the value s found by procedure BS is indeed the latest starting time
for a subset Na,{3'

Lemma 1. Let s be the time calculated by procedure BS using the jobs in Na,{3' If all jobs
in N a,{3are grouped in batches which start strictly after time s, then at least one job from
Na,{3 is completed after time {3.

Chapter 2 34 Parallel Batch Scheduling

Proof The backscheduling procedure BS arranges the jobs into batches in accordance
with the First-Only-Empty policy [50] avoiding the given forbidden regions. It is known
that this rule generates the minimum number of batches fiNa,/3i / b1 necessary for a given
set of jobs. Therefore the arguments of Lemma 3 from [39], which justify the correct-
ness of algorithm BS for the single-machine case without batching, are applicable to the
batching case. 0

Before we proceed with procedure FS, we prove that procedure FR finds 'correct'
forbidden regions. A forbidden interval (A., Jl) E $ is correct, if in all feasible schedules
no job can start at any time s E (A., Jl).

Lemma 2. Eachforbidden intervalfound by FR(ri,$) is correct.

Proof To simplify the notation, we use dj instead of djq in this proof.

Let s be the minimum time Sij found by procedure BS([n,dj] ,$,Nrj,dJ. Suppose
FR (ri, $) finds a forbidden region (s - p, ri), but there exists a feasible schedule with all
jobs meeting their deadlines and ajob k (j: Nrj,dj starting at time Sk E (s - p, n).

Consider the jobs in Nr· d·. The release dates and deadlines of all jobs from Nr· d." J J, J

belong to [ri,dj]. Even if we relax individual job constraints and assume that all jobs
from Nrj,dj have the same release date equal to ri and the same deadline equal to d],
then due to Lemma 1 they cannot be scheduled after job k without exceeding dj since

Ck=Sk+P>S. 0

The next two theorems prove that algorithm 'Batch-Scheduling' is correct.

Theorem 1. If procedure F R (n, $) declares failure, then no feasible schedule with all
jobs meeting their deadlines exists.

Proof Similar to the previous proof, we use dj instead of djq.
Suppose FR declares failure because subroutine BS([ri,dj] ,$,Nrj,d) finds the latest

time sij, sij < ri, when the jobs Nrj,dj should start in order to fit into interval [ri,dj]. Since
procedure BS groups the jobs from Nrj,dj in the minimum number of batches relaxing
individual job constraints on their release dates and deadlines, no feasible schedule exists
for a subproblem defined by a subset of jobs Nrj,dr 0

Now we prove that in a schedule constructed by procedure FS all jobs meet their
deadlines.

Theorem 2. Procedure FS($) respect all release dates and all forbidden regions.

Chapter 2 35 Parallel Batch Scheduling

Proof. This holds since the algorithm schedule a job strictly after its release date and, if
the starting time fall in a forbidden regions, the processing of the job is postponed to first
available time not in a forbidden region. D

Theorem 3. Procedure FS($) finds a feasible schedule if one exists.

Proof. We assume that rj ::; dj - p for each job j E N, since otherwise procedure

BS([rj,dj] ,$,N'jodJ declares failure when applied to interval [rj,dj] with j E N'j,dj'
Suppose an instance exists for which procedure F S ($) generates a schedule Y with
some jobs completing after their deadlines. In this proof we show that in such a schedule
either

(i) procedure F R would have declared failure, or

(ii) a batch would start in a forbidden region,

which are contradictions to the theorem 1 and the theorem 2 respectively.
Let us indicate with j the first late job in such an instance. In addition we assume that

all idle intervals which appear after the smallest release date rl and before the starting time
of job j are caused only by forbidden regions. Otherwise, if there is an idle interval ['t'l , 't'21

before job j caused by a release date of some job and not by a forbidden region, then each
job scheduled at or after 't'2 has a release date no smaller than 't'2 due to the properties of
Algorithm FS. Therefore we can create a minimal counterexample by removing all jobs
completed before 't'l. In the resulting counterexample the smallest release date is 't'2 and
all idle intervals in-between 't'2 and the starting time of job j are caused only by forbidden
regions.

Denote the batches that precede job j by BI, ... , B; and the batch that contains job j
by Bv+ I.We distinguish two cases.

Case 1:alljobs processed before j in the current schedule Y have deadlines no larger

than dj and at least one of the batches processed before job j is non-full.

Let B, be the last non-full batch preceding job j and all batches Bz+ I,...,B; are full,
see Fig. 2.3. Define job k as the one with the smallest release date among the jobs from
Bz+l, ... ,Bv,Bv+I. Since the jobs in Y are scheduled by procedure FS, the release date
of job k should satisfy

(2.1)

Indeed, if (2.1) does not hold, then there is at least one job (job k or another job with a
smaller deadline) that should have been scheduled by FS in batch Bz. By definition of job
k and by the assumption of Case 1, all jobs processed in the batches Bz+ I, ... ,B; together

Chapter 2 36 Parallel Batch Scheduling

[---·---·~l
.---- ..---~.~-.

s(Bz+')+p s(B)+ps(Bz)

Figure 2.3: Schedule Y considered in Case 1

with job j belong to the set Nrk,dj. Moreover, since the batches Bz+ I,...,B; are full, the
jobs in Nrbdj require at least v - Z+ 1 batches.

In the rest of the proof we will use the following auxiliary lemma.

Lemma 3. If procedure BS([rk,dj] ,$,Nrk,d) is called for the set Nrbdj including all

jobs from Bz+ I,...,Bv+ I, then it creates v - z+ 1 batches B~+I' ...,B~+I with starting
times strictly less than those in the original schedule Y:

s(BD < S(Bi), for all i with z+ 1~ i ~ v+ 1.

Proof Remind that procedure BS schedule jobs from right to left respecting the set of
forbidden regions $ which may be not empty. The proof is done by induction on the
number of batches. Clearly, s(B~+I) < s(Bv+l) since s(B~+I) = dj - p is assigned to
batch B~+1 by procedure BS.

For the induction step assume that the statement holds for B~, ... ,B~+I with some I
satisfying z+ 1 < I ~ v+ 1, i.e.,

s(d;) < S(Bi), for all i with I ~ i ~ v+ 1. (2.2)

Consider procedure BS scheduling the batch B~_I· If in the initial schedule Y there is
no idle time in-between batches BI_I and BI, then the fact that B~ starts earlier implies
that B~_I should start earlier than BI_I· On the other hand, if BI_I is separated from BI

by an idle time belonging to a forbidden region (A,,u) in schedule Y, then batch BI_I
straddles A, i.e., s(BI-d ~ A < s(BI-d +p. Observe that the situation A = s(BI-d +p

is not possible, since in that case batch BI would have been scheduled at time A.
Since procedure BS respects forbidden regions and (2.2) holds for batch B~, then BS

schedules batch B~ at time A or earlier so that B~_I completes at time A or earlier. This
completes the induction proof for Lemma 3. 0

Chapter 2 37 Parallel Batch Scheduling

We now proceed with the proof of Theorem 3 showing that if procedure BS schedules
the batch B~+I at an earlier time than Bz+ I in schedule Y, then one of the contradictions
(i) or (ii) holds.

Let s be the latest starting time calculated by procedure BS([rk,dj] ,~,Nrbd),

Notice that at the time BS([rk,dj] ,~,Nrk,d) is called, the set ~ contains all the
correct forbidden regions with left end strictly larger than rk - p. Since BS respects the
forbidden regions and batch Bz+ I starts earlier than in the original schedule Y, we have
s < s(Bz) +p. Using condition (2.1) we obtain s < rk+p. Thus, one of the following two
cases happens:

• s < rk implies that jobs in Bz+ I,...,Bv+ I cannot be completely processed in [rk' d j].
Then procedure F R should have declared failure, which is the contradiction (i);

• r« ~ s < rk + p implies that a forbidden region (s - p, rk) is created. Then batch B;
starts in that forbidden region in schedule Y, which is the contradiction (ii).

In the case all batches before Bv+ I are full, then a similar argument can be applied.
In particular, renumber the jobs in non-decreasing order of their release dates, if required,
so that k = I and Bz+1 = 1. Consider the application of procedure BS with the jobs
Nr),dj' Clearly the set Nr),dj includes all jobs of the batches BI,'" .B; together with job j.
Using the same arguments as in the proof of Lemma 3 it is easy to verify that procedure
BS schedules each batch strictly earlier than in the original schedule Y. Thus, since
s = s(BD and s < ri, we conclude that procedure FR would have declared failure, which
is the contradiction (i),

Case 2: at least one job processed before j has a larger deadline.
Let i be the last job processed before job j with dj > dj, see Fig. 2.4. Denote the batch

containing job i by Bx.
If there is a non-full batch processed in-between jobs i and j, then denote the latest

batch with this property by Bz. All jobs of batches Bz,'" ,Bv+1 have deadlines no larger
than dj and we arrive at Case 1 with batches Bz,'" ,Bv+l.

If all batches Bx+ I,....B; processed in-between jobs i and j are full, then the frag-
ment of the schedule from batch Bx+1 until job j contains the jobs with deadlines no
larger than d]. Ifwe consider Case 1 with z replaced by x, then following the same argu-
ments we can define job k as the one with the smallest release date among the jobs from

LEEDS UNIVERSm LIBRARY

Chapter 2 38 Parallel Batch Scheduling

Figure 2.4: Schedule Y for Case 3 with a non-full batch in-between i and j

r

-'··~~-~~~-------~~-I • . - j-- ---~-~--~-.~t---~---t-~---.-~
--..---- .. '----.-----~.-,. _------------- __ .__ .. -.----~------- -_-__ .._----- -_----='~ .~~::::_==~ --~ .r".

B
x

t----•..~---_
j •

-~:--

s(BJ s(BJ+p S(BX+l) s(BV+1)+p

Figure 2.5: Schedule Y for Case 3 with full batches in-between i and j

Bx+I, ... ,Bv,Bv+l• Since the jobs in Y are scheduled by procedure FS, the release date
of job k should satisfy

(2.3)

otherwise job k should have been scheduled in batch B, instead of job i due to dk < d..
Observe that condition (2.3) is the analogue of (2.1). The arguments used in the remaining
part of the proof of Case 1 are applicable now, so that Lemma 3 with z replaced by x is
also valid in Case 3 and therefore one of the contradictions (i) or (ii) holds. 0

Theorem 4. Problem IIp-batch,b < n,rj,Pj = p,Cj:S; djl- is solvable in O(n2) time.

Proof. The correctness of algorithm 'Batch-Scheduling' follows from Theorems 1 and 3.
Procedure FR(ri,$) is called no more than n times for the different values rio Each call
of FR(ri,$) incurs O(n) calculations of the sets Nn,djq and O(n) calls of procedure BS.

We first estimate the time needed to find the sets Nr· d· . The first call of procedure
" Jq

BS considers the largest possible time interval [ri,djn] and selects the relevant jobs Nr· d.
" In

in O(n) time. For the further calls with time intervals [ri,djq_I]' q :s; n, some jobs from
Nr;,djq should be removed. Due to the numbering djl :s; dh :s; ... :s; djn' this can be done
in no more than INr'd' I steps for all calls of FR with the fixed rio Thus all calculations of

" In

the sets Nr. d. for all values ri, i = n, n - 1, ... ,2, 1 can be done in O(n2) time.
" Jq

Chapter 2 39 Parallel Batch Scheduling

Consider now the time complexity of procedure BS. Every initial call of this procedure
with the largest release date r« and the set of jobs Nrn d· , N, d· ,N, d. can be, In n, In-I n, Jq
implemented in O(1) time since the set of forbidden intervals is empty at that stage.
In order to implement the subsequent calls of procedure BS efficiently, one can keep
records of the earlier calls. Note that each call to procedure F R(ri, $) creates at most one
forbidden region (Sj - 't', rj). Since the inclusions

(2.4)

hold, at most one new forbidden region has to be considered when scheduling the
jobs from n; Id·. Therefore, procedure BS([rj-l ,dJ'q] .s,Nr· Id·) can use the par-

I- , Jq 1- , Jq
tial schedule found earlier by procedure BS([rj,djq] ,$,Nn,djq) to add the jobs from
N; Id· \ Nr· d· . Thus, all calls of procedure BS with the fixed value dj' and different

1- , Jq " Jq q
values Tn» rn-l ,... ,rl can be implemented in no more than INri ,djqI steps, so that the
overall time complexity of all calls of procedure BS is O(n2).

Finally notice that, since the forbidden regions are created sequentially from right
to left, overlapping forbidden regions can be detected and merged at the time of their
creation with a constant time complexity. This completes the proof. 0

An interesting property of a feasible schedule constructed by the algorithm with
forbidden regions is its optimality with respect to two other criteria: the makespan
Cmax = maXjEN{Cj} and the sum of completion times LjENCj. This can be shown fol-
lowing the same arguments as in [39].

In addition, it is easy to verify a useful property which holds for a pair of jobs with
agreeable release dates and deadlines.

Proposition 1. If two jobs i, j E N with i < j have agreeable release dates and deadlines,
i.e., rt ~ rj, dj ~ d], then algorithm 'Batch-Scheduling' finds a solution with job j starting
not earlier than job i, i.e. Si ~ Sj.

The correctness of the above proposition immediately follows from the behavior of
procedure F S($) which schedules available jobs in non-decreasing order of deadlines.

2.2.2 Feasibility Problem with Precedence Constraints

In this subsection we study the p-batching problem with two types of precedence relations:
completion-start and start-start relations defined as follows. Ifjob i precedes job j in terms
of the completion-start relation, denoted by prec, then j can start only after i is completed,

Chapter 2 40 Parallel Batch Scheduling

i.e. Sj 2: ci. If job i precedes job j in terms of the start-start relation, denoted by prec',
then j cannot start earlier than i, i.e. Sj 2: si.

Completion-start relations are the most popular precedence constraints and are well-
studied in the scheduling literature. However, start-start relations are of importance when
several jobs can be processed in parallel either by a batching machine or by multiple
machines. Such relations are especially useful in connection with algorithms which use
list scheduling techniques. As we show in this subsection, the complexity status of the
two versions of our batching problem with completion-start and start-start relations is
different.

Proposition 2. Problem Ilprec, rh p j =p, cj :::;dj 1- with a single non-batching machine
and completion-start precedence relations is solvable in O(nlogn) time.

The above result is due to Garey et al. [39]. Observe that Proposition 2 is valid for the
general case of the problem when jobs are released at different times and have non-equal
deadlines.

Proposition 3. Problem IIp-batch,b < n,prec,pj = l,cj:::; dl- with a single p-batching
machine and completion-start precedence relations is strongly NP-hard even if all jobs
are released simultaneously, have unit processing times and a common deadline d.

The correctness of the above proposition follows from the equivalence of the p-
batching problem ljp-batch.f < n,prec,pj = l,cj :::;dl- and problem Psprec.p] =

1,cj :::;dl- with b identical parallel (non-batching) machines and unit-time jobs which
start at integer times. The NP-hardness in the strong sense of the latter problem was
established by Ullman [97].

We now turn to the start-start precedence relations and describe an algorithm
'Batch-Scheduling with Start-Start Relations' which solves problem lip-batch, b <
n,prec',rj,pj = p,Cj :::;djl- in two steps. In the first step, a preprocessing is done by
modifying the release dates and deadlines of the jobs in accordance with the given prece-
dence relations; in the second step algorithm 'Batch-Scheduling' finds a feasible schedule
which respects the precedence relations and the given deadlines, if such a schedule exists.

The preprocessing procedure is typical for problems with precedence relations, see,
e.g., [19,56]. The main idea is to modify release dates and deadlines of a problem in-
stance so that the algorithm 'Batch-Scheduling' applied to the modified instance returns
a solution which respects the precedence constraints. In particular, if job i should precede,
job j (denoted byi P!!.f j), we can alter release dates and deadlines of i and j in order to
exploit the property of Proposition I, replacing rj by max {rj, rj} and d, by min {d., dj }.

Chapter 2 41 Parallel Batch Scheduling

,
Scanning all jobs in a topological order (i.e., such that i < j for i P!!J j), modified release
dates and deadlines can be calculated in O(n2).

Proposition 4. Algorithm 'Batch-Scheduling with Start-Start Relations' solves problem
IIp-batch,b < n.prec'ir j.p] = p,Cj:::; dlj- with a single p-batching machine and start-
start precedence relations in O(n2) time.

Proof For all j E N denote the modified release dates and deadlines by rj and dj, respec-
tively. We show that

(a) if algorithm 'Batch-Scheduling with Start-Start Relations' does not construct a fea-
sible schedule, then none exists,

(b) if a feasible schedule which respects rj and dj is found, then it respects rj and dj for
all jobs j EN, as well as the precedence constraints.

Claim (a) holds due to the fact that the constraints imposed by the modified release
dates and deadlines are "weaker" than the precedence constraints: the adjustments do not

allow the first job i from the pair i p!!{ j to be completed after the deadline dj of the
second job or the second job j to start before the release date r; of the first job. Then
in accordance with Theorem 1, if algorithm 'Batch-Scheduling', which is used at the
second stage of 'Batch-Scheduling with Start-Start Relations', declares failure, then no
schedule exists for the modified data rj and dj, and therefore no schedule exists for a
"more constrained" problem with precedence relations.

To demonstrate that claim (b) holds, consider a schedule found by the algorithm for
the modified data rj and dj. Since the preprocessing stage leads to agreeable release

dates and deadlines with I; :::;rj and d: :::;dj for all i P!!J' j, then due to Proposition 1,
in the schedule found at the second stage by algorithm 'Batch-Scheduling' we have Si :::;,
Sj for all i P!!J j, i.e. each precedence constraint is observed.

The time complexity of algorithm 'Batch-Scheduling with Start-Start Relations' is
O(n2) since the calculation of modified release dates and deadlines can be done in O(n2)
time and algorithm 'Batch-Scheduling' of the second stage requires O(n2) time as well.

o

2.2.3 Minimizing the MaximumLateness

In this subsection we discuss how the O(n2)-time algorithm 'Batch-Scheduling', which
solves the feasibility problem IIp-batch,b < n, rhPj = p,Cj :::;djl-, can be used for solv-
ing the Lmax-minimisation problem ljp-batch.e < n, rj,Pj = plLmax.We consider a series

Chapter 2 42 Parallel Batch Scheduling

of feasibility problems l lp-batch.e < n,rj,pj =p,Cj ~ dj+ol- with due dates of all jobs
increased by an offset 0; the smallest value 0* for which a feasible schedule exists meet-
ing all dj-values defines the optimal Lmax-value. Since Lmaxcan be as large as rmax+np
in the worst case, where rmaxis the largest release date, the straightforward application
of a binary search approach would incur O(log(rmax+ np)) calls to algorithm 'Batch-
Scheduling' resulting in an algorithm with time complexity O(n210g(rmax +np)), which
is polynomial but not strongly polynomial.

Using the property that all possible values of completion times belong to the set

~:={rj+ap liEN, aE{I,2, ... ,n}},

a strongly polynomial algorithm can be derived by considering trial values 0 E qJ, where

qJ:={rj+ap -d;li,jEN, aE{I,2, ... ,n}}, (2.5)

see Baptiste [10]. Since IqJl= O(n3), binary search over set qJ incurs O(logn) calls to
algorithm 'Batch-Scheduling'. Thus, the overall time complexity is dominated by the
generation and sorting of the set qJ requiring O(n310gn) time.

In what follows we describe a faster approach which considers only a subset of "ap-
propriate" elements of qJ, so that the overall time complexity of the resulting approach is
O(n210gn). The main idea is to consider sequentially three 'layers' of qJ-values with

• qJ' consisting of O(n2) elements {o'} spreading over the whole range of qJ-values,

• qJ" consisting of O(n) elements {o" I 0" E (of, o:]} u{of, o:}, where of and 0:
are two elements of qJ',

• qJ'" consisting of O(n2) elements {o'" I 0'" E (0:, o~']}, where 0: and o~' are two
elements of qJ" and (0:, o~']~ (of, 0:1.

Figure 2.6: o-values in the layer qJ'

The first layer qJ' ~ qJ is defined by relation (2.5) with a = 1. In addition, we also

Chapter 2 43 Parallel Batch Scheduling

include the largest possible element from ~ defined as

Omax =max{rj I j EN} +np-min{dj I j EN},

which is needed as the right boundary for binary search:

~' = {rj +p - di I i,j EN} U {Omax}, see Fig. 2.6.

Clearly, such a set contains O(n2) distinct values which can be generated and sorted
in O(n210gn) time. Using binary search combined with algorithm 'Batch-Scheduling',
we find in O(n210gn) time the largest value of for which no feasible schedule exists and
the smallest value 0: for which a feasible schedule exists. Since 0* E (of, 0:] , the next
layer is generated within these boundary values.

The appropriate values of ~" are defined on the basis of the left boundary of by adding
the offset ap; in addition set ~" also includes of and 0::

~" = {S" = Sf+ ap I S" E (of, S:J, 1 ::; a < n} U {Sf, S:}, see Fig. 2.7.

Observe that of is of the form rj+p - d; and, therefore, offset ap is defined for 1 ::;a < n.

Figure 2.7: S-values in the layer ~"

Clearly, the set ~" contains at most n + 1 values which can be generated and sorted
in O(nlogn) time. Using binary search combined with algorithm 'Batch-Scheduling', the
appropriate boundary values 0:, o~'for the second layer can be found in O(n210g n) time,
the optimum value S* is guaranteed to satisfy

~* E (S" 0."] C (0' 0']U U' v - l i ri: (2.6)

Notice that if 0:= of + (n -l)p as shown in Fig. 2.8, then using the fact that of and
0: are the two nearest values in ~' we conclude that no value from ~ lies in-between o~'
and o~'.Therefore, due to (2.6) the optimal value of Lmax corresponds to S* = S~'.

In all other cases we have

et! -li" <Uv U - p. (2.7)

Chapter 2 44 Parallel Batch Scheduling

Figure 2.8: o-values in the layer ~", when o~'= o{+ (n - l)p

Observe that the strict inequality may happen only if o~'= 0:; in all other cases o~'and
o~'both belong to ~"\ {o:} and the distance between two consecutive elements from this
set is p.

For o~'and o~'satisfying (2.7), the search continues in the third layer ~", defined as

~", = {0'" = 0:+ aplo: E ~', 0'" E (o~',o~'l,1 ~ a < n} , see Fig. 2.9.

B·
0' 0' 0' =0' 0"· SIt
__l ____l_ , . r .._~_.~_L .._..-_u ,~: _v__ 0' =0'

4 r

: :
_' -----....:...-~-------

Figure 2.9: o-values in the layer ~", when o~'< of + (n -l)p

Due to (2.7), each element 0: E ~' can generate at most one element 0'" = 0:+ ap,
which can be found in O(1) time as the solution to the inequality

o~'~ 0:+ ap ~ o~'.

Therefore, there are O(n2) values 0[" which can be generated and sorted in O(n2log n)
time. Using binary search combined with algorithm 'Batch-Scheduling', the optimum
solution 0* can be found among elements Z'" in O(n2Iogn) time.

Thus, we have proved the following result.

Theorem 5. Problem IIp-batch,b < n,rj,pj = plLmax can be solved in O(n2Iogn) time
by combining the feasibility algorithm 'Batch-Scheduling' and specially arranged binary
search.

2.3 Batch Scheduling with Parallel Machines

In this section we consider the problems Plp-batch,b < n,rj,Pj = p,Cj ~ djl- and
Plp-batch,b < n,rj,Pj = plLmaxwith parallel machines. We formulate two algorithms

Chapter 2 45 Parallel Batch Scheduling

with complexities O(n31ogn) and O(n31og2n) based on the ideas of Simons [93] who
developed an algorithm for solving the parallel machine problem Pip j = p, rj, cj ::; dj l-
in which batching is not allowed.

Using similar arguments as in Lemma 1 from [93] (see also Lemma 5.1 from [19]),
it is easy to demonstrate that an optimal schedule can be found in the class of cyclic list
schedules with the m earliest batches Bl, ... ,Bm assigned to machines Ml, ... ,Mm, the
next m batches Bm+ 1, ... ,B2m assigned to machines Ml, ... ,Mm, etc. If the batches are
numbered in accordance with their starting times, then machine Mk processes batches Bi,
Bk+m, Bk+2m, etc.

Suppose a partial schedule consisting of batches BI ,B2, ... ,Bz, ... ,Bq_1 with q -1 2::
m has been constructed, and U is the set of remaining unscheduled jobs. In order to
form the next batch Bq we determine its starting time t taking into account the fact that
Bq cannot overlap with the previous batch Bq-m on the same machine and at least one
unscheduled job should be released by that time. Then the algorithm tries to schedule
at most b jobs at time t where preference is given to the available jobs with the smallest
deadlines. If it is not possible to schedule a job before its deadline, a 'Crisis' subroutine
is called. This happens if an available job i does not meet its deadline, i.e. d, < t +
p. Since an available job with the smallest deadline is always selected first, the crisis
occurs when an attempt is made to schedule the first job in a new batch. The crisis
subroutine backtracks over the current partial schedule searching for the latest batch B;
which satisfies at least one of the following two conditions:

(i) is incomplete (i.e. has less than b jobs),

(ii) contains a job u with a deadline larger than that of the crisis job i.

If no such batch exists, then the subroutine concludes that there is no feasible sched-
ule and halts. Otherwise (i.e., if the required batch B, is found) the subroutine initiates
rescheduling of the jobs from batch B, and the subsequent batches Bz+ I,...,Bq_l. As a
result,

(i) the earlier incomplete batch Bz accommodates more jobs, or

(ii) job u is moved to a later batch leaving room for a job with a smaller deadline.

To perform re-scheduling, the crisis subroutine creates an additional restriction called
barrier (Bz, r) that prohibits batch B, to start earlier than time r, where the value of r is set
to a value larger than the previous starting time of batch B, (it equals the smallest release
date of ajob from Bz+I U··· UBq-1 U{i}). The jobs from Bz, Bz+l,'" ,Bq_1 are claimed

Chapter 2 46 Parallel Batch Scheduling

unscheduled by adding them to the set of unscheduled jobs U and the algorithm continues
with the partial schedule Bl,B2, ... ,Bz-l.

In what follows we provide a formal description of the algorithm 'Batch Scheduling
with Barriers' together with the subroutines it uses.

Algorithm 'Batch-Scheduling with Barriers'
q:= 1; II current batch number
Bq := 0; II set of jobs of the current batch Bq
barrierlist:« 0; II a set of barriers (Bz, r) containing batches and restrictions on their

II starting times (batch B, is not allowed to start earlier than time r)

WHILE there are unscheduled jobs in U DO
IF q ::; m THEN

Select machine Mq;
tl := 0;

ELSE
Select machine Mq mod m;
tl := s(Bq-m) +p;

ENDIF

II where Mo = Mm

t2 := min {rj I j E U is an unscheduled job};
ts :=max ({r I (Bv, r) is a barrier; 1 ::; v::; q} U {O});
t:= max{tl,t2,t3};
Select at most b jobs with the smallest deadlines available at time t;
IF a job i with the smallest deadline satisfies d, ~ t + p THEN

Schedule all selected jobs in batch Bq on the selected machine, Le. start
them at time s(Bq) := t and remove them from the set of unscheduled jobs U;
q:=q+l;

ELSE
Call Crisis(i);

END WHILE

Chapter 2 47 Parallel Batch Scheduling

Procedure Crisis(i)
Find the latest incomplete batch BA' Jl < q. with less than b jobs;
Find the latest batch Bp.. J.L < q. with ajob u such that du > d, (Bp. can be complete);
IF no batch BA or Bp. exists THEN

Terminate declaring failure: no feasible schedule exists
ELSE

z :=max {Jl, J.L}; II Batch B, and subsequent batches should be re-scheduled
Determine r =min { {r j I j E Bz+ I, ... ,Bq_ d U rj};
Add (Bz,r) to barrierlist;
Add the jobs from Bz U ... UBq-l to the set of unscheduled jobs U;
Set Bz = Bz+I = ... = Bq_1 := 0;
q:=z;

ENDIF

We illustrate the performance of the algorithm 'Batch Scheduling with Barriers' by
the following example.

Example Consider an instance with n = 12 jobs which should be processed in batches
of maximum capacity b = 2 with processing time p = 7 on m = 2 machines. Job release
dates and deadlines are given in Table 2.2. Observe that the jobs are numbered in non-
decreasing order of their release dates.

j 1 2 3 4 5 6 7 8 9 10 11 12
rj 0 0 0 5 6 6 6 6 6 15 18 18
dj 14 14 14 13 24 24 24 29 27 25 32 32

Table 2.2: Input data for an instance of problem Pip-batch, b < n, rj, Pj = P, cj :::;dj 1-

A trace of the algorithm 'Batch-Scheduling with Barriers' is given below.

q= 1:
q=2:
q=3 :

batch BI = {I, 2} is allocated to machine M, at time t = O.
batch B2 = {3} is allocated to machine M2 at time t =O.
batch B3 = {4} is allocated to machine MI at time t = tl = s(B.) +p = 7.

Job 4 is late. Procedure Crisis(4) is called and barrier (B2,5) is added to barrierlist.

q = 2: batch B2 = {3,4} is allocated to machine M2 at time t = t3 = 5.

Chapter 2 48 Parallel Batch Scheduling

q=3 :
q=4:
q=5 :
q=6:

batch B3 = {5,6} is allocated to machine MI at time t = tl = S(BI) +p = 7.
batch B4 = {7, 8} is allocated to machine M2 at time t = tl = S(B2) +p = 12.
batch B5 = {9} is allocated to machine MI at time t = tl = S(B3) + p = 14.
batch B6 = {lO} is allocated to machine M2 at time t = tl = S(B4) +P = 19.

Job 10 is late. Procedure Crisis(lO) is called and barrier (B5, 15) is added to barrierlist.

q=5 :
q=6:

batch B5 = {9, lO} is allocated to machine MI at time t = t3 = 15.
batch B6 = {II, 12} is allocated to machine M2 at time t = tl = S(B4) +P = 19.

The Gantt chart of the resulting feasible schedule is shown in Fig. 2.10.

d d < dg5,6,7 10

.. -_(:)~';_i ____:~--+-I .t....;...-;...:[~=--------'-+--'-=-=-~;f._.;i-i~lr... "m
~ ~ 2 3 '4.5:6 7 R 9 10 11 12 i,.l ~4 is I~ 17 iH 19 20 21 22 23 ~4 ~5 26 2~ 28 ?9 30 31 ~2

1---____:2=---i-+-1-------,~:----:-: --11- 1-----;..:: I
9
..:..O---l-----------..--------~-.-~____'_____~-

~ 1 2 3 4:5:6 7 8 9 10 11 12 IJ 14 .5 16 17 18 19 20 21 22 2.1 24 25 26 27 2~ 29 30 31 32

(Bs ,IS)
rl,2,3 r4 rS_9 riO rll,I2

Figure 2.10: A feasible schedule satisfying release dates and deadlines for the p-batching
problem with m = 2 parallel machines

We now prove the correctness of the algorithm 'Batch Scheduling with Barriers' by
demonstrating that each barrier is correct and that if the algorithm does not provide a
feasible schedule meeting all deadlines, then none exists. A barrier (Bz, r) is correct if in
all feasible schedules batch Bz cannot start before time r.

Let PAbe a barrier list. A feasible PA-schedule is a feasible schedule for problem
Plp-batch,b < n,Pj = p,rj,cj:::; djl- with the property that if (Bz,r) EPA, then batch B,

does not start before time r.
We introduce the algorithm 'Batch-Scheduling with Barriers(PA), by replacing the

initialization statement 'barrieriist= 0' by 'barrierlist:= PA'.
Suppose that at some stage of the algorithm 'Batch-Scheduling with Barriers' we

have constructed a partial schedule of batches BI, ... ,Bq-I consisting of jobs J C N and

Chapter 2 49 Parallel Batch Scheduling

the corresponding set of barriers is PA. Then we have the following property: If 'Batch-
Scheduling with Barriers(PA)' is applied to the set of jobs J, then it constructs the same
schedule as algorithm 'Batch-Scheduling with Barriers' without any call of the crisis sub-
routine.

Lemma 4. Let PA be a set of barriers. Assume that algorithm 'Batch-Scheduling with
Barriers(PA)' has scheduled jobs J and calculated time t as a possible starting time for
the next batch Bq. Then

(i) there is no feasible PA-schedule of jobs J in which any of the batches B; (v =

1, ... ,q - 1) is scheduled before time s (Bv);

(ii) there is no feasible PA-schedule in which Bq starts before time t.

Proof We prove this lemma by induction on q. If (ii) holds for all v ~ q - 1, then (i)

holds. Thus, it remains to prove (ii) for v = q. Let t be the current time after jobs J are
scheduled.

If t = tl, then either t = 0 or t = s (Bq_l) +p. In the former case, Bq trivially cannot
start earlier. In the latter case, by assumption, s (Bq_l) +p is the earliest possible time at
which batch Bq_1 can finish and, therefore, the earliest possible starting time of Bq.

If t = ti. then Bq is started at the minimum release date of the unscheduled jobs. Thus,
tz is indeed the earliest possible starting time of Bq in any feasible schedule.

If t = ts, then a barrier constraint is preventing Bq from starting earlier. o

Lemma 5. Each barrier created by algorithm 'Batch-Scheduling with Barriers' is cor-
rect.

Proof Assume that the set PA consists of h - 1 barriers and that they are correct, the
algorithm has constructed a partial schedule consisting of batches BI, ... ,Bq_1 at the time
of the h-th crisis and that (Bz, r) is the h-th barrier to be created. Let t be the current time
after the first q - 1batches are scheduled with respect to the first h - 1 correct barriers and
let f be the crisis job so that de < t + p. Furthermore, the following two properties hold:

(a) for each job j assigned earlier to Bz+IU· .. UBq_1 we have dj ~ de < t + p;

(b) each of the batches Bz+I,'" ,Bq_1 has exactly b jobs.

Suppose to the contrary that there is a feasible schedule in which batch B, is scheduled
before time r. Since r is the minimum release date of all jobs assigned earlier to Bz+I U
... UBq_1 U {f}, they cannot be assigned to batch Bz. Due to (b) and taking into account

Chapter 2 50 Parallel Batch Scheduling

job t, after the first z batches we have to schedule (q - z - l)b + 1 jobs which require at
least q - z batches. Thus, at least one job should be scheduled in batch Bq•

By applying Lemma 4 using the previously defined set fA we conclude that batch
Bq cannot start earlier than time t, so that the job in that batch is late. Thus, a feasible
schedule in which batch B, is scheduled before time r cannot exist. 0

Lemma 6. If the crisis subroutine declaresfailure, then nofeasible schedule with all jobs
meeting their deadlines exists.

Proof Subroutine Crisis(i) halts while considering job i only if the preceding batches
BI, ... ,Bq_l, which have already been scheduled, are full and no job from those batches
has a deadline larger than dj. Since t is the earliest possible time when job i can start if
the batches B I, ... ,Bq_1 start as early as possible and d; < t+p, then clearly no feasible
schedule exists. 0

Lemma 7. If the crisis subroutine does not declare failure at any stage of the algorithm
'Batch-Scheduling with Barriers', then the algorithm finds a feasible schedule with all
jobs meeting their deadlines.

The proof immediately follows from the fact that every job i is scheduled at the earliest
possible time t for which condition dj ~ t +p is always satisfied.

Theorem 6. If a feasible schedule for problem Pip-batch.b < n,Pj = p,rj,cj ::;djl-
exists, then algorithm 'Batch-Scheduling with Barriers' produces a feasible schedule in
at most O(n310gn) time.

Proof The correctness of the algorithm follows from the preceding lemmas. Since there
are at most n distinct release dates and at most nbatches, the algorithm creates no more
than n2 barriers. A job can be scheduled in 0 (log n) time if a priority queue is used
or in O(loglogn) time if a stratified binary tree is used. Since no more than n jobs are
scheduled before a new barrier is created, the overall time complexity is 0 (n310g n) . 0

Using the same arguments as in [19,93], one can demonstrate that the suggested algo-
rithm constructs a schedule for problem Plp-batch,b < n,pj = p,rj,cj ::;djl- such that
all jobs meet their deadlines and in addition the values of Cmax and Ecj are minimum.

Finally we discuss the versions of the problem with precedence constraints or Lmax-

criterion.
Since the problem with completion-start relations is NP-hard even for the single ma-

chine case, we consider only start-start precedence relations. It is easy to make sure that
the arguments from Section 2.2.2 can be applied to the case of multiple machines and the

Chapter 2 51 Parallel Batch Scheduling

same preprocessing stage described as Stage 1 of the algorithm 'Batch-Scheduling with
Start-Start Relations' followed by the algorithm 'Batch-Scheduling with Barriers' finds
an optimal solution or concludes that none exists.

As far as Lmax-minimisation is concerned, the arguments from Section 2.2.3 hold so
that the solution can be found using binary search over various values 0 E ~, where ~ is
defined by (2.5). As shown in Section 2.2.3, I~I= O(n3) and this set can be generated
and sorted in O(n310gn) time without constructing three layers ~', ~" and ~"'. The
time complexity of solving the feasibility problem is also O(n310gn). Thus, using binary
search over the set ~ combined with the O(n310gn)-time feasibility algorithm results in
an O(n310g2 n)-time algorithm for solving the Lmax-minimisation problem.

2.4 Discussion

In this chapter we presented several algorithms for solving p-batching problems with
equal-length jobs outperforming the known algorithms published during the last 20 years.
The developed algorithms generalized the concepts of forbidden regions and barriers for-
mulated by Garey et al. [39] and Simons [94] for the classical problem where batching
is not allowed. The results are summarised in two tables: Table 2.3 for the versions of
the problem without precedence constraints (feasibility and Lmax-minimisation) and Ta-
ble 2.4 for the feasibility version of the problem with precedence constraints. For compar-
ison purposes, both tables include the results for the classical single and parallel machine
problems where batching is not allowed.

Our results show how the elegant techniques developed for the classical single and par-
allel machine problems with equal processing times can be generalized for the p-batching
problems resulting in faster algorithms. In addition, the results for the problems with start-
start precedence constraints provide a powerful algorithmic tool to solve more complex
problems in which a p-batching model appears as a subproblem.

Comparing the two types of the algorithms based on the concepts of forbidden regions
and barriers, the algorithms which use forbidden regions appear to be faster than those
using barriers, see results [93] and [94] in Table 2.3. A possible subject for future research
could be exploring the idea of forbidden regions further and generalising it for the problem
with parallel p-batching machines, although this might be a technically challenging task.

It is important to notice that, while in [39] a lot of work has been done on improving
the implementation of the forbidden region algorithm in order to reduce its time com-
plexity, the same work was not necessary in our case. In fact, since our objective is to
minimise the maximum lateness, any time-complexity reduction of the decision version

Chapter 2 52 Parallel Batch Scheduling

of the problem would be neutralised by the time-complexity of sorting the values used the
binary search.

Another direction of future research is related to the application of the developed
algorithms to more complex problems which involve batching decisions. For example,
supply chain management problems require coordination of transportation and production
decisions. A transportation sub-problem associated with a segment of the supply network
is usually characterized by equal delivery times and therefore it can be reduced to the
batch-scheduling model studied in this chapter. Then batch-scheduling algorithms may be
used as subroutines for solving transportation subproblems, for calculating lower bounds
in branch-and-bound methods, or in local search procedures.

Feasibility problem Lmax -minimization

m= 1,
O{n log n) [39]* O{n310glogn) [94]**no batching

O{n2Iogn)
[39]* combined
with Section 2.2.3

m= 1,
dj=d dj=dbatching
O{nlogn) [50] O{nlogn) [50]

agreeable rj and dj agreeable rj and dj
O{n2) [50]
O{nb) [58] O{nblog{np)) [58]

O{n8) [10] O{n8Iogn) [10]

O{n2) Section 2.2.1* O{n2Iogn) Section 2.2.3*

m> 1,
O{n3Iogn) [93]** O{{dmaxlogn +n)nm), [98]

no batching
O{n2m) [94]* where dmax =%~{dj}

m> 1,
O{n3Iogn) Section 2.3** O{n3Iog2n) Section 2.3**

batching

* Algonthms based on the concept of forbidden regions
* * Algorithms based on the concept of barriers

Table 2.3: Summary of the results for problems without precedence constraints

Chapter 2 53 Parallel Batch Scheduling

completion-start precedence relations start-start precedence relations
prec prec'

m= 1,
O(n log n) [39] O(nlogn) [39]

no hatching

m= 1, strongly NP-hard [97] O(n2) Section 2.2.2
hatching

m> 1,
hatching! strongly NP-hard [97] O(n310gn) Section 2.3
no hatching

Table 2.4: Summary of the results for the feasibility problems with precedence constraints

Chapter 3

Coupled-operation scheduling

3.1 Overview

In this chapter we study a theoretical model for scheduling coupled-operations in a single-
machine environment. We remind the reader that coupled-operation scheduling is a spe-
cial class of scheduling problems with time-lags constraints where each job is made of
two operations to be processed. The differences between the starting time of operations
of the same jobs are defined by the time-lags values given in the problem instance. The
problem consists on scheduling all operations on a single machine such that the maximum
completion time (makespan) is minimised.

Coupled-operation problem arises in various applications: radar controllers send and
receive signals after a delay since the pulse emission [32,33,88,104]; some health care
treatments must follow delivery patterns with strictly defined time-lags (see Chapter 4) ;
in distributed computing the master processor organises data transmission and the time-
lags in-between transmissions of input and output files correspond to the execution stage
by a slave processor [62,64].

Formally, in the model under consideration each job j of the set N = {I, 2, ... ,n }
consists of a pair of operations aj and bj which should be processed without preemption
by a single machine. Job j is characterized by a triple Paj,Lj,Pbj' where Paj and Pbj

are processing times of aj and bj and Lj is the duration of a given time-lag. If the first

54

Chapter 3 55 Coupled-operation Scheduling

operation aj starts at time SOj' then the second operation bj should start exactly at time

(3.1)

The machine can be used for processing other jobs in-between aj and b j» but the time-lag
of duration L j between completing aj and starting bj should be observed. The completion
time of the second operation determines the completion time Cj of job j,

The objective is to sequence all 2n operations of jobs N so that the machine processes
at most one operation at a time and the makespan emax = max jEN { Cj} is minimum.
Extending the notation from [42] and [74] we denote the problem by 1 I aj,bj,Lj I emax•

The introduced model is characterized by fixed time-lags: in accordance with (3.1),
the difference Sbj - (SOj +POj) between the starting time of bj and completion time of
aj should be exactly equal to Li: There are several related models of couple-operation
scheduling in which time-lags are treated differently. In the model with flexible time-
lags, denoted by 1 I aj,bj,f-j,uj I emax, the difference between the starting time of bj and
completion time of aj should be within given boundaries,

(3.2)

In the model with minimum time-lags, denoted by 1 I aj,bj,f,j,uj = 00 I emax, the upper
bound is unlimited so that the delay between the first and the second operations can be
indefinitely large.

All formulated versions of the coupled-operation problem are strongly NP-hard, see
[74], [102] and [109]. Polynomial-time algorithms are known only for special cases and
most of the results for the problem with fixed time-lags are formulated in [74] where a
detailed classification of NP-hard and polynomially solvable cases is given. The long-
standing open question on the complexity of problem 1 I aj = b] = p.L] = L I emax

has been recently resolved in [11], where the O(logn)-time dynamic programming al-
gorithm is proposed improving the preliminary results from [6]. The most recent research
is mainly focused on various special cases of the problem with equal job parameters (e.g.,
equal processing times), but in a more general setting: coupled-operation jobs are replaced
by chains of several operations, see [21,68].

As far as approximation algorithms are concerned, the problem with fixed time-lags 1 I
aj, bi- Lj I emax is approximable within a factor of 7/4 in the case of unit-time operations

Chapter 3 56 Coupled-operation Scheduling

aj = bj = 1 [3], within a factor of 5/2 in the case of equal-length operations aj = b,

and within a factor of 7/2 in the general case (arbitrary aj and bj) [4]; it is also shown
in [4] that no polynomial-time algorithm exists with an approximation ratio 2 - e unless
P=NP.

Another stream of research considers coupled-operation problems with precedence
constraints, see, e.g., the summary and the main results in [13]. Notice that for the prob-
lem with flexible time-lags 1 I aj,bj,i!.j, Uj, 1C ICmax, finding optimum starting times mini-
mizing the makespan is a non-trivial task even if precedence constraints define a complete
sequence 1C of operations. The algorithm involves longest path calculation in a disjunctive
graph having positive- and negative-weight arcs (see [49,81]). We are not aware of any
algorithms for solving the coupled-operation problem with a given sequence 1Ca of first
operations or with a given sequence 1Cb of second operations.

To the best of our knowledge, there is only one publication [81] which discusses
heuristic algorithms for the coupled-operation problem. It studies the version of the
problem with flexible time-lags 1 I a j, bj, i!.j, Uj I Cmax comparing different constructive
heuristics and local search algorithms. Interestingly, the proposed local search algorithms
appear to be less efficient than the most successful constructive heuristics and that ineffi-
ciency of local search is explained by the high cost of generating and evaluating infeasible
solutions. Indeed, the algorithms developed in [81] for flexible time-lags are applicable
to the version with fixed time-lags 1 I aj,bj,Lj I Cmax. However, due to the importance
of the latter problem for real-world applications, it is particularly desirable to design ef-
ficient problem-specific algorithms for it. As we show in this thesis, this can be achieved
by exploiting special properties of the problem.

Our main objective is to design a successful local search method. We start this
study with the analysis of possible representations of feasible solutions and the neigh-
bourhood structure. The local search approach from [81] developed for the problem
1 I a j, b j, i!.j, Uj I Cmax with flexible time-lags represents feasible solutions as permuta-
tions 1C of all 2n operations and generates neighbours by removing one operation from
1C and inserting it elsewhere. The quality of a new solution is evaluated via the 0 (n2)

longest path algorithm which either fixes the starting times of all operations observing
given bounds i!.j, Uj for time-lags or identifies that no feasible solution exists. As noted
in [81], the resulting local search approach performs poorly in comparison with construc-
tive heuristics since infeasible solutions prevail around local optima. It is likely that such
an approach would perform even worse for problem 1 I aj, bj, Lj I Cmax with fixed time-
lags as infeasible neighbours would probably occur more often as time-lags cannot be
adjusted in that problem. Due to this reason, in our study we pay special attention to

Chapter 3 57 Coupled-operation Scheduling

alternative representations of feasible solutions and alternative neighbourhood structures.
For solution representation, one natural approach is based on considering permutation

7ra of a-operations or permutation trb of b-operations. Notice that due to the problem
symmetry for the makespan objective, a problem with a fixed permutation tra can be re-
formulated as the problem with a fixed permutation 7rb. Using a single permutation 7ra

(or permutation 7rb) may seem attractive as this representation is compact and leads to
simple strategies for neighbour generation. Such a representation induces an important
subproblem in which the permutation tra (or 7rb) is fixed and the objective is to produce a
complete schedule, i.e., to specify complete permutation 7r of all operations 2n and their
starting times so that the makespan Cmax is minimum. We perform complexity analysis of
that subproblem in Section 3.2 and demonstrate that it is NP-hard in the strong sense even
in the case of unit processing time. This negative result suggests that using representation
7ra (or, equivalently, 7rb) is less preferable in comparison with the full permutation 7r.

As far as neighbour generation strategy is concerned, we take into account the conclu-
sions from [81] on inefficiency of re-insertion of a single operation in a given permutation
7r of 2n operations as it often leads to infeasible permutations. The alternative neighbour
generating strategy we suggest optimally re-inserts the whole job consisting of two op-
erations. Although the difference between our strategy and the one from [81] may look
insignificant, it in facts results in an efficient search procedure: our strategy always gen-
erates feasible solutions during the search and the neighbours are obtained as solutions
to a specially defined optimization problem. Enumerating neighbours of good quality is
perhaps one of the reasons of good performance of our method.

The formulated ideas are elaborated in the tabu search algorithm presented in Sec-
tion 3.4. We suggest two enhancements that improve the search:

- maintaining the pool of solutions ranked in accordance with the estimates of possible
improvements that can be achieved if the neighbour is generated;

- creating the tabu list which keeps the main characteristics of the eliminated solutions in
the format of critical paths.

The performance of the tabu search algorithm is evaluated empirically comparing it
with the winning method from [81] - the random constructive heuristic. Its adaptation for
the model with fixed time-lags is described in Section 3.5 followed by the summary of
computational experiments in Section 3.6. Conclusions are the drawn in Section 3.7.

Chapter 3 58 Coupled-operation Scheduling

3.2 NP-hardness of the Problem with a Given Sequence

of First Operations

It is known that if the permutation 1C of 2n operations is given, then their optimum starting
times can be found in 0 (n2) time as a solution to a specially defined longest path problem
[81]. In this section we consider the related problem in which the permutation 1Ca of
a-operations is given while permutation of b-operations is not fixed. Without loss of
generality we assume that the jobs are numbered in accordance with the permutation of
a-operations so that 1Ca = (1,2, ... ,n). The objective is to find the starting times of all
operations and complete permutation 1C of all operations that minimises the makespan so
that the makespan Cmax is minimum.

Our main result is the proof that the coupled-operation problem with a given permu-
tation 1Ca of a-operations is NP-hard in the strong sense even if all operations have unit
processing times. The decision version of this problem consists in verifying whether there
exists a feasible solution with the makespan not-exceeding a given threshold value T. The
latter problem is denoted by COED(1Ca,T).

We reduce the following coupled-operation problem with minimum delay and a given
makespan threshold t, denoted by COMD(t), to problem COED(1Ca,T).
COMD(t): given a set of jobs Q = {1,2, ... ,q}, each job j E Q consisting of two unit-
time operations separated by a time-lag of duration no less than fj, does there exist a
feasible schedule with the makespan no larger than t, so that no two operations are pro-
cessed simultaneously and the second operation of each job j starts after at least f j time
units elapses the first operation of that job is completed. It is known that COMD(t) is
NP-complete in the strong sense, see [109].

The reduction described in this section is based on the following observations:

1. Consider two unit-time coupled-operation jobs i and j with exact time lags such that
Ii~ Ij and the a-operation of the job i starts to be processed before the a-operation
of the job j. Then, the difference between the starting times of the b-operation of
jobs j and i is always greater than Ij -Ii. In addition, it is possible to arbitrarily set
the job starting times at which a-operation of job j and b-operation of job i swap.
This is achieved by increasing both time-lags values of an arbitrary constant.

2. Given a set of jobs and a fixed sequence of a-operations, there exists a assignment
of values to the jobs time-lags such that all permutations of b-operation can be
constructed respecting the initial sequence of a-operation.

The idea of the reduction is to model the operations of each job for the problem COMD

Chapter 3 59 Coupled-operation Scheduling

by the b-operations of two jobs of COED (later called A-proxy and B-proxy jobs). The
b-operations of the proxy jobs reproduce a solution of the COMD problem in a fixed time
interval in COED schedule. In order to guarantee that the time-lags between b-operations
of proxy jobs is no less than a minimum values, time-lags of pairs of proxy jobs are tuned
according to observation I. Then, since the b-operations of the proxy jobs should have the
possibility to be scheduled according to any permutation, the time-lag differences between
different proxy job pair are set according to observation 2. Finally, in order to force the
b-operations of the proxy jobs to be scheduled within a given time-interval, special filler
jobs are scheduled in the first part of the schedule such that:

• the last a-operation of filler jobs is scheduled just one unit before all their b-
operations;

• a-operations of the proxy jobs are scheduled in between b-operations of the filler
jobs.

• the part of the schedule where b-operations of filler jobs and a-operations of proxy
jobs are processed is tight, i.e. no idle time appears.

An example of COED schedule results of a reduction of a COMD problem instance can
be seen in Figure 3.1.

More formally, given an instance J (t) of problem COMD we construct an instance
J' (1t'a, T) of problem COED{1t'a, T) as follows. The set of jobs N in instance J' (1t'a, T)
consists of n = 3tq + I coupled-operation jobs which fixed time-lags Lj are defined in
accordance with the job type.

• There are q sets FI,"., Fq of the so-called filler jobs, each set Fh =

({3t - 2){h - I) + 1, ... , {3t - 2)h}, I :::;h :::;q, consisting of 3t - 2 jobs with time-
lags

• There is one set R consisting of a single sentinel job, R = {(3t - 2) q + I}, with the
time-lag

Lj = t{3q+ I), j E R.

• There are q sets UI,"" Uq of A-proxy jobs, each set Uh= {{3t - 2)q +2h}, I :::;
h :::;q, consisting of a single job with the time-lag

Chapter 3 60 Coupled-operation Scheduling

• There are q sets VI, ... ,Vq of B-proxy jobs, each set Vh = {(3t - 2)q +2h+ I}, 1 :::;
h :::;q, consisting of a single job with the time-lag

Observe that
(3.3)

The makespan threshold value is T = 6tq + t + 2 and the sequence of a-operations is
1ta= (1,2, ... ,3tq+ 1):

1ta= (1, ... ,3t - 2, 3t - 1, ... ,2 (3t - 2), ... , (3t - 2)(q - 1)+ 1, ... , (3t - 2) q,
'-v-" '---....----'"

~ ~ ~
(3t - 2)q+ 1,
~

R (3.4)

{3t - 2)q+2, {3t - 2)q+ 3, (3t - 2)q+4, (3t - 2)q+5, ... , 3tq ,3tq+ 1) .
._,_,_, "---v--' "---v--' ..____...., "-.? ~

~ ~ ~ ~ ~ ~

In what follows, we use the following notation for single-element sets:

R {r},

Uh - {u(h)},

Vh - {v(h)}.

Theorem 7. If there exists afeasible schedule for instance J (t) of problem COMD(t),
then there exists afeasible schedule for instance J'(1ta, T) of problem COED(1ta, T).

Proof: Let a feasible solution S for instance J (t) be given by starting times sah and
Sbh' hE Q, of its a- and b-operations. We construct a feasible schedule S' for instance
J'(1ta, T) with permutation 1ta given by (3.4). First we describe the structure of that
schedule and then specify the starting times S~j and ~j' j E N, for all operations.

There are five types of time intervals:

• q time intervals AI, A2, ... , Aq, each of length 3t, such that in interval

Ah = [3t(h-l), 3th], 1:::; h:::;q,

all first operations of the jobs from Fh are processed; since there are 3t - 2 jobs in

Chapter 3 61 Coupled-operation Scheduling

Fh and the length of interval Ah is 3t, there are two idle time intervals of unit length
in each interval Ah;

• one unit-length time interval

~= [3tq, 3tq+ 1]

for processing the first operation of the sentinel job from R;

• q time intervals f.LI, f.L2, ..• , f.Lq, each of length 3t, such that in interval

f.Lh = [3t(q+h-l) +1, 3t(q+h) +1], 1~ h ~ q,

all second operations of the jobs from Fh are processed together with the first oper-
ations of the jobs from Uh and Vh; since there are 3t - 2 jobs in Fh, one job in Uh
and one job in Vh, there are no idle time slots in f.Lh;

• one interval 't' of length t defined as

't' = [6tq+ 1, 6tq+ 1+t]

for processing the second operations of the jobs from Uk=1 Uh and Uk=1 Vh;

• one unit-length time interval

1] = [6tq+t+ 1, 6tq+t+2]

for processing the second operation of the sentinel job from R.

To give a full description of the schedule, we specify the starting times S~I' ~2' ••• ,

s~n' of the b-operations of jobs N; the starting times of the corresponding a-operations are
then derived as S~j = S~j - L] - 1.

The job completing at time T in the schedule for instance ~'(1ta, T) is the sentinel
job r E R and its two operations are processed in time intervals ~ and 1]:

S~r = T - 1= 6tq+t+ 1, s~r = (6tq+t + 1) - t (3q+ 1) - 1= 3tq.

Scanning the schedule for instance v" (1ta,T) from its right end backwards, we define
the starting times of the jobs from Vq, Uq, Vq_l, Uq_l, ... , VI, UI. For each 1 ~ h ~ q, the
time slots for the second operations of v (h) E Vh and u (h) E Uh are allocated on the basis

Chapter 3 62 Coupled-operation Scheduling

of the starting times sah and Sbh of the two operations of job h in the schedule for instance
.JP(t):

S~ = 6tq+ I+Sbh,
,

(6tq+ 1+Sbh) - (3t (q-h) +t+ 1+Rh)-1v(h) sav(h)
- 3t (q+h) +Sbh -t -1- Rh, (3.5)

~ = 6tq+ 1+sah'
,

(6tq+ 1+sah) - (3t(q-h) +t+ 1)-1sau(h) -u(h)
- 3t (q + h) + sah - t - 1.

Observe that the difference in the starting times of second operations of jobs v (h)
and U (h) in the schedule for instance for instance .JP' (lra, t) is the same as the distance
between two operations of job h in the schedule for instance .JP (t):

In addition, in the schedule for instance for instance .JP' (lra,t)

(i) the first operation of job v (h) starts after the first operation of job u (h):

(ii) all second operations of the jobs Uh=l o; and Uh=l Vh are fully processed in time
interval r:

(iii) for each fixed h, 1 ~ h ~ q, the first operations of u (h) and v (h) are both processed
in time interval J.Lh.

Here observations (ii) and (iii) follow from the fact that in instance .JP (r), the starting
times sah and Sbh are non-negative for any job h E Q and they are bounded by t - 2.

We now define the time intervals for the filling jobs. Consider the set Fh for some h,

1 ~ h ~ q. The 3t - 2 jobs in Fh have their second operations processed in time interval
J.Lh. The length of the latter interval is 3t and two unit-time slots within J.Lhare already
fixed for u (h) and v (h), see (3.5). Thus there is a unique way to allocate the jobs from
Fh in time interval J.Lhkeeping them in the order of their numbering and avoiding clashes
with u(h) and v(h).

Having allocated the second operations of the jobs from Fh in interval J.Lh, their first
operations are automatically allocated in interval Ah. Since the time-lags for the jobs in Fh
are equal, the order of the first operations is the same as the order of the second operations
and it satisfies the given permutation lra· Taking into account observation (i), the order
given by lra is satisfied for all jobs. •

Chapter 3 63 Coupled-operation Scheduling

An example of schedule generated by the reduction shown in Theorem 7 is shown in
Figure 3.1.

In the remaining part we prove that if there exists a feasible schedule for instance
f'(1ra, T) of problem COED(1ra, T), then there exists a feasible schedule for the related
instance f (t) of problem COMD(t). We assume that t satisfies the following two con-
ditions:

t > fj + 2, j E Q,

t > 2q;

(3.6)
(3.7)

otherwise COMD(t) does not have a feasible solution since the makespan of the coupled-
operation schedule cannot be smaller either of the values, the length of a single job or the
combined length of q jobs consisting of two unit-time operations.

We start with a lemma which characterises the structure of a feasible solution for
instance f'(1ra,T).

Lemma 8. In any feasible solution S' for instance f'(1ra,T) of problem COED(1ra,T)
the following properties hold:

1) the a-operations of all jobs from N are processed in one of the time intervals
AI, ... ,Aq, ~,Ill' ... ,Ilq, i.e.,
S~j ~ 6tq, j E N;

2) the a-operation of the sentinel job rE R is processed in time interval ~ or earlier,
i.e.,
s' < 3tq·ar - ,

3) the a-operations of all jobs from Uh= I Fh are processed in time intervals AI, ... ,Aq,
i.e.,

4) the b-operations of all jobs from Fh, 1 ~ h ~ q, are processed in time intervals
111,· .. ,Ilq, i.e.,
3tq+ 1< s~. s 6tq,

J

5) each unit time slot of intervals 111, ... ,Ilq has an operation allocated to it;
the set of operations allocated to intervals 111, ... ,Ilq consists of all b-operations of
the jobs from Uh=1 Fh and exactly one operationfor each job from Uh=l (UhUVh)·

6) job j = (3t - 2)q, which is the last job of the set Fq, starts at time 3tq -1;

Chapter 3 64 Coupled-operation Scheduling

7) the a-operations of all jobs from Uh=1 (UhUVh) are processed in time intervals
Ill, ... ,llq, i.e.
S~j ~ 3tq+ 1,

8) the b-operations of all jobs from Uh=l (Uh UVh) are processed in time interval r,
i.e.
6tq+ 1~ s~. ~ 6tq+t,

J

Proof:
1) For any job j from Uh=l (UhUVh), its time-lag satisfies (3.3), while all other jobs have
even larger time-lags. For any job j EN, its completion time should not be larger than
T = 6tq + t +2, which implies

sj ~ T-Lj -2 = (6tq+t+2) - (2t -1) -2 = 6tq-t+ 1~ 6tq.

2) To be completed within the threshold makespan value T, the starting time of the a-

operation of job r E R should satisfy

s~r~ T - L; - 2 = (6tq+ t +2) - t (3q+ 1) - 2 = 3tq.

3) In accordance with sequence 1ra, any filler job from Uh= IFh must start before the
sentinel job from R, i.e., at time 3tq - 1 or earlier.
4) By the previous property, all filler jobs from Uk=1 Fh have their starting times within
[0, 3tq - 1). Since all of them have the same time-lag of 3tq, the b-operations start within
time interval [3tq+ 1,6tq).
5) Due to the property 4), there are (3t - 2)q b-operations of the jobs from Uh=1 Fh which
have their starting times in [3tq+ 1,6tq), leaving room for at most 2q additional unit-time
operations in Ill, ... , Ilq. We show that exactly 2q operations of the jobs from Uh=1 Uh
and Uh=1 Vh, are scheduled in Ill, ... , Ilq, one operation for each job.

Consider f job j E Uh=1 (UhUVh)' If

(3.8)

then due to property 1), the a-operation of job h is processed within in Ill, ... , Ilq.
Otherwise, i.e., if

(3.9)

we show that the corresponding b-operation is processed within in Ill, ... , Ilq.

Chapter 3 65 Coupled-operation Scheduling

To prove that the left boundary 3tq of Jll is observed, we derive lower bounds on
S~j and s~j' Since the set of jobs which precede j in permutation 1ta includes (3t - 2) q
operations of filler jobs from Uh= 1Fh and one sentinel job from R,

S~j ~ (3t - 2)q+ 1.

Taking into account condition (3.3), we obtain:

S~ j = s~j +Lj + 1 ~ « 3t - 2) q + 1)+ (2t - 1)+ 1= 3tq+2 (t - q) + 1 ~ 3tq+2q+ 1,

where the last inequality is due to assumption (3.7).

To prove that the right boundary 6tq of Jlq is observed, we derive the upper bound on
S~j using condition (3.9) and the fact that the time-lag L, is bounded by the maximum
time-lag in the set Uh=l (Uh UVh), which is LV(I)= 3t (q - 1)+ 2t - 1+£1.We conclude:

where the last inequality is due to assumption (3.6).

Thus in any case, (3.8) or (3.9), at least one operation of a job j E Uh=l (Uh UVh)
is processed within intervals JlI, ... , Jlq. Taking into account that there are 2q unit time
intervals left after allocation of the b-operations of Uh=l Fh, we conclude that exactly one
operation of every job j is processed within intervals Jll, ... , Jlq.
6) Consider job j = (3t - 2)q, which is the last one in the set Fq. By condition 3),

To prove that

we show that

S~j ~ 6tq.

Suppose that S~j < 6tq. By property 5), there is a job j E Uh=l (Uh UVh) allocated to
time interval [6tq,6tq+ 1]. If it is the first operation of j, i.e., s~. = 6tq, then the deadline

J

T is violated:
S~. = s~.+Lj+2 ~ 6tq+ (2t -1) +2 > T,

J J

Chapter 3 66 Coupled-operation Scheduling

where the inequality is due to (3.3). If it is the second operation of j, i.e.,

s~. = 6tq,
J

then job j would have two operation processed within Ill, ... , Ilq since its time-lag satisfies

L j ~ 3t (q - 1)+ 2t - 1+ Rh ~ 3t q - 3,

which implies

S~j = S~j - Lj - 1 ~ 6tq - (3tq - 3) - 1= 3tq +2,

a contradiction to property 5).
7) In accordance with permutation 1t'a, the starting time of the last job of the set Fq with
index f = (3t - 2)q is smaller than that of the sentinel job r E R which in its tum is smaller
than the starting time of any job j E Uh=1 (Uh UVh):

so that

The statement now follows from property 6).
8) The total length of time intervals Ill, ... ,Ilq is 3tq and in accordance with properties 5)
and 7) there are exactly 3tq operations allocated there: (3t - 2) q operations from Uh=1 Fh
and 3q a-operations from Uh=1 (Uh UVh). Therefore all b-operations of the jobs from
Uh=1 (Uh UVh) are processed after time intervals Ill,· .. , Ilq.

It remains to show that no b-operation from Uh= I (UhUVh) can be processed in time
interval C;. If it is a case, then for the sentinel job r E R,

s~r < 6tq+t,

s~r - L; - 1= s~r - t (3q + 1) - 1 ~ 3tq - 1.s'ar

The latter condition cannot happen since due to property 6) the a-operation of the last
job f = (3t - 2) q from Fq is assigned to time slot [3tq - 1,3tq] and it should precede the
a-operation of the sentinel job. •

Based on the properties formulated in Lemma 8, we now complete the proof of the
NP-hardness result.

Theorem 8. If there exists a feasible schedule for instance ~'(1t'a, T) of problem

Chapter 3 67 Coupled-operation Scheduling

COED(na,T), then there exists a feasible schedule for instance 5(t) of problem
COMD(t).

Proof: Consider a feasible schedule for instance 5' (na, T). By construction of instances
5 (t) and 5' (na, T), for any job h of instance 5 (t), its two operation ah and bh cor-
respond to the following two operations of instance 5' (na, T): the b-operation of job
u (h) E Uh and the b-operation of job v(h) E Vh.

Due to property 8) of Lemma 8, all b-operations of the jobs from Uh=l (Uh UVh) are
processed in time interval 'f of length t. We define a solution to instance 5 (t) via the
partial solution to instance 5' (na, T) in the time interval 'f. For any job h, 1 ~ h ~ q, of
instance 5 (t), the starting times of its two operations are defined as

It remains to show that in instance J (t)

or equivalently

S~V(h)~ S~U(h)+ 1+Rl:

Indeed, due to permutation na which is observed in the solution to instance 5' (na, T),

Taking into account that

Lau(h) - 3t(q-h)+2t-l,

Lav(h) - 3t(q-h)+2t-l+Rh,

we conclude:

S~V(h)- S~U(h) - [S~V(h)+Lav(h)+ 1] - [S~U(h)+Lau(h)+ 1]
- [S~U(h)+ 3t (q - h) + 2t - 1+ Rh] - [S~U(h)+ (3t (q - h) + 2t -1)]
> Rh'

•

Chapter 3 68 Coupled-operation Scheduling

The results obtained in this section hold also for the symmetric problem in which
a permutation Hb of b-operations is fixed, i.e. lla j = bj = 1,Lj, Hb ICmax. The equiva-
lence of the two problems is proved by the fact that a solution for the problem lla j =

bj = 1,LhHa ICmax can be easily transformed into a solution of the problem lla j =
bj = 1,LhHb ICmax where Ha = Hb. In particular, consider the operation starting times
sal'sa2, ... ,San,SbpSb2, ... ,Sbn of a solution of the problem llaj = bj = 1,Lj,HaICmax,

the operation starting times S~I' S~2' ... , s~n' S~I ' %2' ... ,s~n for the problem lla j = bj =
1, L j, Hb ICmax can be calculated by the formula:

S~ =Cmax + S] (3.10)

where Cmax is the optimal makespan value obtained in the first problem. It is trivial to see
that an optimal solution for the first problem is transformed in an optimal solution of the
second and vice versa.

The problem lla j = bj = 1,LhHa ICmax considered in this section is a special case
of the problem with equal processing times lla j = bj = p, LhHa ICmax and of the more
general problem lla j, bhLj, Ha ICmax• This fact implies that both problems are also NP-
hard in the strong sense. The hierarchy of the complexity results in this section is shown
in Figure 3.2.

Chapter 3 Coupled-operation Scheduling69

__ 1L_________________
~:-t_- -

::::::::::::;;!~:::::::::::::::::::::::::::::::::i~: ------------------ ------------------- --~- ------------------- -~ - -
E~ ~rJ

,C~
C~~ ~3

II t~ :£
C~ II :::._N

ES ~~ :::)
~51 E 3 ~~ ,

E~ t~ I

~~~~
O[~

f~ ~~ . :i
[~ I~I~-

E9 ~~ ~
1:'::1 ~~

,~~~ ~ ~
.... ~~N

[3 ~ ~ ~
N

ON -e
~3 C~

N

,t~ E3 00 ~

E3 E3 ~ ~ .....

E3 t::l ~ ~
t~N ~ C .,J

(3 f~ .......... V
~~C~0\ 8 ..... k,N

ES r-- 00 .s
IQ

~3 rSJ
~~~~~ .,.., ,

~~ M

.....N\..________---.,Jy
~

Figure 3.1: Example of feasible schedule for instance COED(na,67) generated from
a feasible schedule for the problem COMD(5) with two coupled-operation jobs with
minimum time-lags £1 = 1 and £2 = 2

t~-s=-t~--t
N-

-t
0'1

o

Chapter 3 70 Coupled-operation Scheduling

Figure 3.2: Graph of strongly NP-hard coupled-operation scheduling problems

Chapter 3 71 Coupled-operation Scheduling

3.3 Integer Linear Program Formulation

The coupled-operation scheduling problem with fixed time-lags can be modelled by many
integer linear program formulations. These are useful to express the constraints of the
problem in an unambiguous way and to provide an initial ready-to-use formulation to be
run on general solvers. In this section we describe two possible integer linear program
formulations.

In what follow we denote by OJ the set of operations to be scheduled for each job
j E N, and by A and B the sets of all a and b operations respectively. In addition we
assume that operations are numbered such that u < v for all u E A and v E B.

The first formulation ILPt uses two sets of decision variables: starting time variables
and precedence variables. There is a starting time variable Xu E N for each operation

u E OJ of ajob j EN. There is a precedence variable Yu,v between all operations u E OJ
and v E OJ belonging to different jobs j,i E N and such that u < v. Their values are
assigned as follows:

{
I,

Yu,v = 0,
if operation u precedes operation v in the final schedule ,
otherwise.

In addition, an auxiliary variable c E N is used to represent the makespan value of the
schedule by the following set of constraints:

Xu+Pu ~ c

A second set of constraints models the fact that the processing of the operations cannot
overlap in time :

Xv +Pv - Yu,vM ~ Xu u E OJ, v E OJ, i,j E N, i oj:. j.

The constant M is an upper bound of the minimum makespan of the schedule such that
the completion time of any job j does exceed M. The time-lag between operations of the
same job is modelled as follows:

Xu +Pu +Lj = Xv

Chapter 3 72 Coupled-operation Scheduling

Thus the complete formulation is the following:

[LP!: min c

s.t. Xu+Pu ~ c
Xv+Pv - Yu,vM ~ Xu,
xu+Pu+Lj =xv,
Yu,v E {O,I},
XU EN,

UEBnoj, jEN,
UEOj,VEOi, i,jEN,
UEAnOj, VEBnOj,
u, v E OJ, U < v.
UEOj.

i#j,
jEN,

This formulation has been tested on different solvers which failed to find feasible solutions
even for small size instances (Le. 10 jobs) in a reasonable amount of time. The cause
of such inefficiency is the use of the so called BigM technique which models disjunctive
constraints in the integer linear program and yields to weak bounds in the linear relaxation
of the problem.

Better results have been obtained using a second integer linear program formulation
ILP2. Differently from the previous one, this formulation uses a discrete time horizon
which is which is divided in contiguous unit-time slots. Consequently all instance param-
eters such as processing times and time-lags are expressed by positive integer values.

Let us denote by Sj the set of all possible times of the first operation of a job j EN.
Clearly, since the number of elements in Sj is finite and limited by an upper bound M on
the maximum makespan. In formulation ILP2, a variable Xj,s is defined for each job j EN
and each possible starting time s E Sj such that:

{
I, if job j starts to be processed at time s in a schedule ,

Xjs =
, 0, otherwise.

Similar to [LP!, a variable c is used to model the makespan of the schedule.
Consider the set Ks,t of jobs such that, if starting at time s, they have an operation

processed at time t. Then the first set of constraints guarantees that no more than one
operation is processed at each time slot t:

E E Xj,s ~ 1,
O:S;s<M jEKs,1

o s. <M.

A second set of constraints guarantees that only one time slot is assigned as starting time

Chapter 3 73 Coupled-operation Scheduling

of each job. This is done by the following constraint:

E Xj,s = 1,
SESj

jEN.

The last set of constraints forces the variable e to be no smaller than the completion time
of all operations in the schedule:

Summarising the complete formulation is as follows:

[L~: min e

OSt<M,
ESESjXj,s = 1, j E N,

SXj,s+Paj+Lj+Pbj Se, SESj,
Xj,s E {O,I} , sE Sj,

jEN,

jEN.

In [L~, although the LP relaxation provides better bounds than the relaxation of [LP},
the formulation is still inefficient for instances involving processing times, time-lags and
makespan with large values. In fact [L~ involves O(nt) number of constraints which
is much higher that the O(n2) constraints in [LP}. Clearly, this is a consequence of the
fact that time-indexed formulations are pseudo-polynomial in the number of jobs to be
scheduled. However, in chapter 4 we use time-indexed formulations since the problems
to tackle involve processing times and time-lags values of few time-slots.

3.4 TabuSearchAlgorithm

Due to the NP-hardness of the coupled-operation problem with the fixed permutation of
a-operations (or b-operations), we use the alternative representation given by permutation
~ of all 2n operations. We suggest a neighbour generation strategy based on removing
both operations of a selected job j and inserting them elsewhere so that the makes pan
is minimised and the sequence of the remaining 2 (n - 1) operations remains unchanged.
An efficient insertion algorithm for finding the optimum re-allocation of job j is based
on the disjunctive graph model (see, e.g., [19]) and the short cycle property formulated
in [43].

We start with describing the disjunctive graph model and the insertion algorithm (Sec-

Chapter 3 74 Coupled-operation Scheduling

tion 3.4.1). Then we describe the neighbourhood structure (Section 3.4.2). Finally, we
conclude with the general description of the tabu search algorithm (Section 3.4.3).

3.4.1 Disjunctive Graph Model and the Insertion Algorithm

In this section we present an efficient procedure for solving the problem of inserting two
operations of a given job j into a partial schedule with a fixed sequence of operations of
the jobs from N\ {j}. We assume that an upper bound C~!.on the makespan value is
given and our task is to find a feasible schedule for that upper bound with job j inserted,
if one exists.

The algorithm is based on the disjunctive graph model which can be described as
follows. A disjunctive graph G = (V,A,E,<C,c) is a directed graph with the vertex-set V,
the set of conjunctive arcs A, the set of disjunctive arcs E, the family <C~ 2E of disjunctive
sets and the arc cost function c.

Set V contains vertices Vi, i = 1,2, ... ,2n, representing 2n operations of the coupled-
operation problem and two additional dummy nodes: origin Vo and terminal V*. If Vi
represents the a-operation (b-operation) of job j, notation aj (b], respectively) is used in
line with Vi.

Conjunctive arcs A characterise the minimum difference in the starting times of the
operations they connect: if there is an arc (Vi, Vj), then the starting times SVj and Sv j should
satisfy

There are four conjunctive arcs for each job j EN:

- two arcs (aj, bj) and (bj, aj) represent precedence constraints between operations of

the same job and their costs Cajbj = Paj +Lj and Cbjaj = -(Paj +Lj) specify the
fixed distance between the starting times of aj and bj;

- one arc (vo,aj) from origin Vo to the a-operation of job j with cost cvoaj = 0;

- one arc (bj, v*) from the b-operation of job j to the terminal node v, with cost Cbjv. =

Pbj'

One additional conjunctive arc (v*, vo) connects the terminal node and the origin; its cost
is based on the given value of the makespan upper bound: cv•vo = -C~!., which implies

> CUBSvo _ Sv. - max

Chapter 3 75 Coupled-operation Scheduling

PIJ.,o , , ,
I I I I

I I ' I, ,, ,, / ,
I I " I I

I _.e'_'; p +~ , / ~ I :

I---~ --:----dL----'/--.W_;-- _!!_b;,_ _a2-------·---,--~~- 2
" '-Pd2-~ .' \ ,

\ ,I I \" \

\ 1. I}/ \

\ I" '. I / \ \

I I" \

: " /~ ~ ,I \

\ I ' \
\ I ,. "" \ \

I \ \, , '
\ I \ \

~={P'S~=~--~ /
/'<>--------------

o
PI>j

Figure 3.3: Disjunctive graph for three coupled-operation jobs (pairs of disjunctive arcs
are represented by dashed lines)

or equivalently

Set E contains pairs of disjunctive arcs e = (Vi, Vj) and e = (Vj, Vi) which connect
two operations of different jobs. We call e the mate of e and vice versa. In a complete
solution, one of the disjunctive arcs of the pair is selected specifying the order between
the two operations while another arc is dropped. The cost of a disjunctive arc (Vi, Vj) is
defined as the processing time of the operation corresponding to node Vi.

The family of disjunctive sets is g ~ 2E has the meaning that for each pair e= (Vi, Vj)
and e = (vi- Vi) at least one of the disjunctive constraints should be satisfied:

The scheduling decision consists in finding a selection of disjunctive arcs § ~E
containing no more than one mate from a pair. Selection § is feasible if it is complete
(exactly one arc is selected from each pair of arcs e and e) and positive acyclic (digraph
(V,A U§,c) does not contain cycles of positive cost). A feasible selection § specifies a
schedule Y in which the starting time of every operation Vi is defined as the longest path
from origin Vo to the corresponding node Vi in digraph (V, AU §,c). The makespan of the

Chapter 3 76 Coupled-operation Scheduling

schedule is equal to the length of the critical path, i.e., the longest directed path from the
origin vo to the terminal node v*. Notice that for an infeasible selection the critical path
does not exist since it would have an infinite cost; for a feasible selection a critical path
can be found in 0 (1V12) time.

We can now introduce the neighbour generation problem for the coupled-operation
problem. It is defined for the current partial solution Y corresponding to selection § and
job j EN to be inserted in Y. We assume that § is complete and positive acyclic for the
subproblem defined by the nodes V \ { aj, bj }; otherwise inserting two operations of job
j cannot lead to a feasible solution. For the insertion set J = {a j ,bj} we define the set of
disjunctive arcs E (J) ~ E and the set of conjunctive arcs A (J) ~ A which connect nodes
in J and the remaining nodes V \J. Notice that conjunctive arcs (aj,bj) and (bj,aj) are
not included in A (J).

Definition Given ajob j with operations J = {aj,bj} and a selection § feasible for the
nodes V \ J and not containing any disjunctive arcs from E (J), the job insertion problem

consists in finding a selection §J C E (J) such that:

- the resulting graph G = (V,A U§ U§J, c) is positive acyclic.

The associated insertion graph is denoted by GJ = (V, A U§ ,E (J) , cC' (E (J)) , c),
where cC' (E (J)) c cC' is the family of disjunctive sets defined over E (J).

A feasible selection can be found efficiently by the procedure from [43] if insertion
graph GJ has a so called short cycle property which states that for any selection §J, if
the corresponding digraph (V,A U§ U§J,c) contains a positive cycle, then it contains a
short positive cycle visiting J has exactly once. We first demonstrate that this property is
satisfied for the insertion graph of the coupled-operation problem and then describe how
the algorithm from [43] can be applied to solving our insertion problem.

Proposition 5. An insertion graph GJ of the coupled-operation problem has the short-

cycle property.

Proof. Suppose §J is a positive cyclic selection with more than two arcs from E (J). We
show how a short positive cycle visiting J exactly once can be constructed.

Let Z be a positive cycle with arcs from A UA (J) U§J which visits J twice or more.
The possible components of cycle Z are arcs (a j, bj), (b j, aj) which may appear multiple
times in Z and the fragments of the form a.Pa], bjQbj, a.Rb] and bjTaj, where P, Q, R

and T are the paths consisting of nodes different from {aj, bj } .

Chapter 3 77 Coupled-operation Scheduling

If Z has a fragment of the form a Pa] (or bjQbj) and such a fragment is of positive
length, then it is a required short positive cycle; if that fragment has non-positive length,
it can be removed from Z so that the remaining cycle is positive and it has less visits to J.

If Z has a fragment of the form ajQb j and its length c (R) satisfies

(3.11)

then we construct a short cycle ajRb ja j: it visits J only once and its length c (R) +Cbjoj is
positive since Cbjaj = -cajbr Alternatively, if condition (3.11) does not hold, we replace
a fragment of type ajRb j by a single arc (a j, bj) obtaining a new cycle with less visits to
J and which length is positive since c (R) ~ cajbr

It is easy to make sure that a similar transformation can be done for fragment bjRa j:
one has to swap aj and bj in the above arguments and replace condition (3.11) by c (Q) >
Cbjar

Thus considering the fragments of Z with end nodes in {a i- bj} we either construct
a short positive cycle based on that fragment or eliminate a part of cycle Z construct-
ing a new positive cycle with less arcs and less visits to J. Applying this procedure we
eventually produce a short positive cycle with exactly one visit to J. •

The short cycle property implies that a selection is feasible if and only if it does not
include disjunctive arcs of the following two types:

(i) arc e E E (J) which incurs a positive cycle in the digraph (V,A U§U {e}, c);

(ii) a combination of two arcs u, vEE (J) which incur a positive cycle in the digraph
(V,AU§U{u, v} ,c).

This restriction on the choice of disjunctive arcs can be modelled naturally as a conflict
graph [43]. Formally, a conflict graph HO' = (X, U) has nodes X = E (J) corresponding
to disjunctive arcs of the insertion graph GJ and undirected arcs U of two types:

- loops (e, e) E U for disjunctive arcs e of type (i),

- undirected arcs (u, v) E U for every pair of disjunctive arcs u, v of type (ii).

Then any positive acyclic selection corresponds to a stable set in conflict graph HO', and
the required feasible selection §J for graph GJ is the stable set of maximal cardinality
in HO', I§JI = ! IE (J)I. If the maximum cardinality of a stable set is less than! IE (J)I,
then no feasible solution exists.

Chapter 3 78 Coupled-operation Scheduling

Due to Proposition 5, HG' is bipartite with node partition X = E+(J) UE-(J), where
E+(J) are the arcs from E (J) outgoing fromJ and E-(J) are the arcs incoming to J.
Clearly, if the insertion graph GJ does not have disjunctive arcs of type (i), then a stable
set of cardinality! IE (J) I can be selected as E+ (J) or E- (J). The presence of disjunctive
arcs of type (i) introduces additional restrictions; still it is possible to find a stable set
efficiently, as suggested in [43], without employing a standard approach based on the
minimum cut problem.

Disjunctive arcs of type (i) dictate some limitations on the choice of selection §J:

arc e of type (i) cannot be included in §J or equivalently the corresponding node e of
the conflict graph cannot be included in the stable set. Hence for each e of type (i) we
should include its mate e in the stable set. Having selected e, we need to prohibit all
fEE (J) connected with e by arc (e,f) in the conflict graph since arcs e, f are of type
(ii). Prohibiting f implies that its mate 7 should be selected and the procedure should be
continued for f.

Having performed all "necessary" selections dictated by disjunctive arcs of type (i),
the selected disjunctive arcs and their mates can be excluded from further consideration.
The resulting subgraph fiG' ~ HG' is bipartite and it contains only the nodes of type (ii),
and a stable set for fiG' can be selected as one of the two the bipartition set.

The correctness of the described approach for the insertion problem with the short cy-
cle property is rigorously proved in [43] and it can be formally presented as the following
procedure.
Procedure 'Insert(GJ, J)'

1. Construct the bipartite conflict graph HO' = (X, U); identify all arcs e of type (i)

and include their mates Q = {e E E : (e,e) E U} in §J.

2. For every u E Q find all nodes {71, 72' ... ,7 k} reachable in HO' from u through

alternating paths of the form (U,jl,] 1,12,]2, ... ,jk,] k); denote the set of nodes

reachable from Q by Q*, Q ~ Q*, and extend § J by including Q*.

3. If Q* is not stable, then terminate: no feasible selection exists.

4. Otherwise, consider a subgraph fiG' = (X,D) of HO' by eliminating all nodes Q*,
their mates and associated arcs; define a stable set T in Ha' as X nE- (J) or X n
E- (J).
Extend §J by including T.

Chapter 3 79 Coupled-operation Scheduling

In the case of the coupled-operation scheduling problem, conflict graph Ha' has IX I=
8(n-l) nodes corresponding to 2(n-l) pairs of disjunctive arcs connecting aj with
the remaining 2 (n - 1) nodes and similarly 2 (n - 1) pairs of disjunctive arcs incident to
b]. Step 1 should involve the all-pairs longest path algorithm (e.g., the Floyd-Warshall
algorithm, see [7]) for preprocessing and then it checks each disjunctive arc of GJ for
property (i) and each combination of two disjunctive arcs for property (ii), which requires
o (n2) time. Steps 2 and 3 can be implemented in 0 (n2) time, while Step 4 requires
o (n) time. Thus the overall time complexity of the described procedure is 0 (n3) •

Observe that having introduced the arc (v,, vo) of weight -C~:xin the disjunctive
graph model, we guarantee that the 'Insert' procedure finds a feasible schedule (if one
exists) with the the makespan no larger than C~!.. In order to find a feasible insertion
minimizing the makespan, one can apply the above technique in combination with binary
search, considering the makespan values in the interval [C~ax,C~!.]defined by the the
lower and upper bound of the makespan. One algorithm for calculating lower bounds is
discussed in Section 3.6.2.

3.4.2 Neighbourhood Structure

Given a current complete schedule .5" specified by a feasible selection $, we define
the neighbourhood of .5" via removing a critical job from that solution and inserting it
optimally without altering the order of other operations. A job is critical if one of its
operations aj or bj or both operations belong to the critical path in the disjunctive graph.

Unlike the earlier approach from [81], instead of re-inserting a chosen critical oper-
ation, we re-insert a critical job consisting of two operations ensuring that the resulting
solution is feasible and has the minimum makespan. In order to guarantee that the neigh-
bour differs from .5", we force one of the disjunctive arcs e belonging to the critical path
in .5" to be replaced by its mate e oriented in the opposite direction. We call e a disjunctive
critical arc and we select e to be incident to the operation of the critical job chosen for
re-insertion. Formally, the neighbour generating procedure can be described as follows.

Procedure 'Neighbour(.5",j,e),

1. Define the insertion set J = {a j, bj} and the insertion graph GJ by removing all
disjunctive arcs E (J) incident to operations aj and hj from $:

GJ = (V, AU($\E(J)), E(J),C(E(J)),c).

Chapter 3 80 Coupled-operation Scheduling

2. Include the mate e of the given disjunctive critical arc e into the selection and apply
procedure 'Insert(GJ,J), to find a new feasible selection (~\E (J)) U {e} U~J for
which the makespan value is minimum. Denote the resulting schedule by ..:7},e'

3. Return schedule ..:7},e as the neighbour of ..:7.

Observe that procedure 'Insert(GJ, J)' presented in the previous section does not guar-
antee that the required arc e is selected. However, this can be easily ensured if a loop
(e,e) E U is included in the conflict graph HO' so that Procedure 'Insert' is forced to
select e.

In what follows we are mainly interested in the best possible neighbour ..:7}of the
current solution ..:7obtained via re-inserting job j. In order to find ..:7},we need to identify
all disjunctive critical arcs E' C ~ incident to j, apply procedure 'Neighbour(..:7,j,e),
for each such arc and select the neighbour ..:7;with the smallest makespan value:

Cmax (..:7J~)=min {Cmax (..:7J~e)} .
eEE' ,

Notice that the set E' contains two disjunctive arcs, if job j has one operation on the
critical path, or four disjunctive arcs, if both operations of job j belong to the critical
path.

Consider now the problem of finding a neighbour of the current solution ..:7 hav-
ing the smallest possible makespan. The straightforward approach consists in generating
neighbour schedules ..:7}for all critical jobs j and finding the required neighbour with the

smallest value Cmax (..:7}). This, however, is computationally expensive due to the high
computational cost of the relatively slow procedure 'Insert'.

A possible alternative approach is to calculate some estimates (1 (..:7}) of the
makespan value of each neighbour schedule ..:7}assuming that a potentially good neigh-
bour has the lowest estimate. For a fast method, we consider only Step I of Proce-
dure 'Neighbour' without taking into account the selected disjunctive critical arc e and
the subsequent 'Insert' procedure. The resulting estimate can be used as a quality mea-
sure of the insertion graph GJ• The most accurate characteristic of GJ is its makespan,
which can be found in 0 (n2) time via the longest path calculation:

(3.12)

A faster but less accurate characterisation of GJ can be found in 0 (1) time as

(12 (..:7})=Cmax (..:7) - A, (3.13)

Chapter 3 81 Coupled-operation Scheduling

where the decrease value ~ which might be achieved if job j is removed from (S") can
take the following values:

L\=
if operations aj and bj appear in the critical path in the order bj, ai-
if only one operation aj appears in the critical path,
if only one operation bj appears in the critical path.

Pa j +L j +Ph j' if operations aj and b j appear in the critical path in the order aj, b j,

Notice that
Cmax (GJ) ::; Cmax (S"J)

since inserting job j in GJ can only increase Cmax (GJ). Therefore estimate (3.12) can be
considered as the lower bound on the value of Cmax (S"J,e) ,

al (S"J) ::; Cmax (YJ) .

However, estimate (3.13) may satisfy

since either condition

may hold.
Empirical evaluation of the described techniques has demonstrated that generating all

neighbour schedules of the current schedule S" and calculating their makespan values is
not efficient since it slows down the search procedure. Calculating estimates a2 is much
faster in comparison with al and leads to better results as a broader range of the solution
space is examined fast enough. Therefore the approach adopted in the implementation
and used in computational experiments generates only one potentially good neighbour on
the basis of estimate a2.

3.4.3 Description of the Tabu Search Implementation

In this section we describe implementation details of our tabu search algorithm. The al-
gorithm maintains tabu list f!7 of the characteristics of the most recent visited solutions to
prevent reproducing those solutions and to avoid generating solutions with similar char-
acteristics, see [47] for the general description of the tabu search algorithm.

Chapter 3 82 Coupled-operation Scheduling

The visited solutions are represented in the tabu list by their critical paths. For a
critical path recorded in the list, we keep two additional characteristics:

• a hit counter which specifies how many solutions with that critical path were visited,

• a serial number of the last visited solution with that critical path.

Once a new neighbour is generated, its critical path is added to the tabu list, if it does
not duplicate an existing entry in the tabu list; otherwise a hit counter of the existing entry
is incremented and a serial number is updated.

Whenever the number of entries in the tabu list reaches a given threshold on the list
size, the list is halved by removing the entries with the smallest hit counter values (i.e.,
solutions visited less often); in case of ties, the entries with the smallest serial numbers
(i.e., the older solutions) are eliminated first. In the updated list, the hit counters are set to
zero for all entries. This elimination strategy guarantees that the tabu list contains critical
paths of the solutions which are visited most recently and, in addition, generated most
frequently during the search.

While a traditional tabu search algorithm considers one current solution at a time and
performs moves from one current solution to its neighbour, in our implementation we
maintain a pool .£1) of current solutions. Initially, that pool is filled in with solutions gen-
erated by the constructive heuristics described in Section 3.5. At the neighbour generation
stage, we find estimates of all non-visited neighbours of all current solutions of the pool
.£1) and generate using procedure 'Insert' one neighbour which has the smallest estimate.
As discussed in Section 3.4.2, we use estimate 0'2 to examine all neighbours fast enough.
The newly generated neighbour is either rejected, if its critical path is in the tabu list, or,
otherwise, it is accepted and included in the pool .£1).

Since it is important to have a fast procedure to recognise whether a neighbour has
been examined or not, we maintain for each schedule YE Q the list X (Y) of critical jobs
of that schedule which re-insertion results in an unvisited neighbour: if j E X (Y), then
the corresponding neighbour YJ of schedule Y has not been considered yet. Formally
our implementation of the tabu search algorithm can be described as follows.

Algorithm 'Tabu-Search'

1. Initialize an empty tabu list g and the pool .£1) of current solutions containing a
given number of solutions generated by constructive heuristics.
For each schedule Y E .£1), find its critical path and initiate the list X (Y) of critical
jobs for neighbour generation.

Chapter 3 83 Coupled-operation Scheduling

2. Repeat steps 3-4 while the computation time is less than the pre-specified time limit.

3. Use (3.13) to find estimates 0'2 (.9';) of all non-visited neighbours of the solutions
belonging to the pool f5). Find solution.9' E f5) which neighbour.9'; has the small-
est estimate 0'2,

0'2 (.9';) = min min {0'2 (.9'D 1.9'£ is a obtained from .9' by re-inserting k} .
Y'E!') kEX(Y')

Generate.9'; using procedure 'Insert' and remove job j from list X (.9').
Replace the record of the best solution found so far, if .9'; beats it.
If .9'; is the last non-visited neighbour of .9', remove.9' from the pool f5).

4. If the critical path of .9'; belongs to tabu list g,update the hit counter and the serial
number of the corresponding entry in g, mark neighbour .9'; as visited and
eliminate it from further consideration.
Otherwise perform Steps 4.1-4.2.

4.1. Add the critical path of .9'; to g setting the hit counter to 1and serial number
to the current number of .9';. If the size of g reaches a given threshold value,
remove half of the entries which have the smallest hit counter values; in case
of ties eliminate the entries with the smallest serial numbers.

4.2. Add.9'; to the pool of current solutions f5). If the size of f5) reaches a given
threshold value, f5) is emptied and refilled with a given number of schedules
generated by constructive heuristics.

In order to perform the search operation and adding new records to the tabu list fast
enough, we implement it as a radix tree (Patricia trie) with alphabet {I, 2, ... ,2n} needed
to specify critical operations and their sequences.

3.5 ConstructiveHeuristics

To the best of our knowledge, there are no heuristics developed specifically for the
coupled-operation scheduling problem with fixed time-lags. The most relevant algo-
rithms presented in [81] are aimed at solving a more general version of the problem in
which time-lags are flexible, i.e., can vary within given limits (see Section 3.2). Computa-
tional experiments show that for the problem with flexible time-lags constructive random

Chapter 3 84 Coupled-operation Scheduling

heuristic outperforms local-search algorithms. In this section we adapt the most success-
ful constructive heuristic JOIN-DECOMPOSE [81] to our problem and, in addition, we
develop a simple but efficient EARLIEST-FIT dispatching rule. Both heuristics are used
to evaluate the performance of tabu search in the computational experiments of Section
3.6.

JOIN-DECOMPOSE (JD) from [81] is a constructive heuristic based on the idea of
composite jobs which are created and break down in two stages: the join and the de-
compose stage respectively. The algorithm maintains a pool of composite jobs which is
initially defined as the set of the individual input jobs. At the join stage, two individ-
ual jobs in the pool are selected and replaced by their combination: the new composed
job. The procedure is repeated until the jobs in the queue cannot be combined any more
and therefore they are placed into the schedule one after another without interleaving. At
the decompose stage, combined jobs are broken down into a schedule of individual jobs.
In [81], the authors describe 12 rules generating combined jobs and additional rules for
selecting the best combined job for the problem with flexible time-lags. The same rules
apply also to the case with fixed time-lags by simply setting the flexibility parameter f to
zero. In our experiments, JD heuristic is run multiple times inserting some randomness
in the selection of the rules to be applied and halting when a given time limit is reached.
Repeated application of the algorithm generates many feasible schedules from which the
best one is selected.

EARLIEST-FIT (EF) is based on a greedy dispatching rule which schedule jobs one
by one. At each iteration, such a rule randomly selects one unscheduled job and includes
it into the current partial schedule at the earliest starting time available so that no job
already scheduled is postponed and all time-lags are observed. Formally, for a coupled-
operation job j, starting time t is feasible if the machine is idle in time intervals [t, t + Pa j]
and [t+Paj +Lj,t +Pa, +Lj +Phj] where operations aj and hj can be processed. In our
experiments, EF heuristic is run multiple times in a similar fashion of JD heuristic.

Both algorithms JOIN-DECOMPOSE and EARLIEST-FIT can be implemented in
o (n2) time and are easy to code.

3.6 ComputationalExperiments

In order to evaluate the performance of our tabu search algorithm, we compare it with
the two constructive heuristics JD and EF presented in Section 3.5. ID is a winning
algorithm for the coupled-operation problem with flexible time-lags [81] and hence it can
be considered as a benchmark. For this reason we mainly repeat the experimental design

Chapter 3 85 Coupled-operation Scheduling

from [81] with some additions.
Notice that the computational experiments in [81] investigate the performances of the

algorithms for coupled-operation scheduling problem with flexible time-lags. Thus, the
time-lags of the problem instances are generated using two parameters: a parameter a
to determine the minimum length of the time-lag and a parameter f3 that establishes the
maximum increment the actual time-lag can take over the minimum length (flexibility).
For this reason, in the rest of this section, whenever a comparison is made between our re-
sults and the ones in [81], we consider only experiments in [81] performed with instances
generated setting the flexibility parameter f3 to zero.

3.6.1 Instance Generation

Computational experiments have been performed on two classes of instances: SIM and
MIX. In the SIM class, all jobs have similar time-lags; in the MIX class, job time-lags
differ significantly.

In all instances processing times Pa, and Phj are integers drawn from the uniform
distribution,

Paj,Phj E [1,100] foreachjEN.

In what follows we use the symbol Pavg to indicate the average processing time in the
instance calculated as

The time-lags Lj are also integer values sampled from an uniform distribution depend-
ing on a parameter a. For the SIM class the following formula is used:

• L] E [0.9aPavg,"" 1.1aPavg]

For MIX class, we distinguish between two subclasses of instances, MIXl and MIX2,
depending on the time-lag calculation formula used:

• Lj E [1, ... ,a] is used for the MIXl class (from [81]),

• L] E [1, ... , aPavg] is used for the MIX2 class.

Notice that, MIX2 subclass is not present in computational experiments in [81]. It
has been added in our work since instances in M/Xl appear to be biased by the fact the
a-values used in the [81] (i.e. 5,10,25,50) generate time-lags too small in comparison to
average processing time (50). As a consequence, the optimal solutions of such instances
present a few interleaving jobs and do not represent the complexity of the problem. The

Chapter 3 86 Coupled-operation Scheduling

subclass MIX 1 has been kept in our experiments for completeness of the analysis and to
allow a one-to-one comparison with results in [81].

For each class SIM, MIX 1 and MIX2 we generate 10 instances for each combination
of parameters nE {20,30,50, lOO}and a where:

• a E {5, 10,25,50} for MIX I class .

• a E {1,~,~n} for SIM and MIX2 class.

All algorithms have been coded in C and run on one core of a PC with processor Intel
Quad Core 2.5 Ghz with 3 GB of RAM. The parameters of the tabu search algorithm
have been tuned after several preliminary experiments: we have set 500 as the maximum
length of the tabu list § and 200 as the maximum length of pool .P). Each time the
pool is emptied, 50 random solutions are generated using constructive heuristics from
Section 3.5.

The experiments involve two constructive heuristics JD and EF and two versions of
tabu search: TS-JD, which uses heuristic JOIN-DECOMPOSE to generate new solutions
whenever .P2 is empty, and TS-EF, which uses heuristic EARLIEST-FIT to generate new
solutions whenever .P) is empty.

3.6.2 Results

The performance of an algorithm on a given instance is measured in terms of the relative
deviation p from the lower bound:

cBest -LBP = max
LB

where C~~~is the smallest makespan found by the algorithm and LB is the lower bound.
The performances of an algorithm on a set of instances is then measured as the average
value 75 of the relative deviation over all the instance considered. Where necessary, we
indicate the average time Tavg that the algorithm takes to generate the best solutions found
over all the instances of the set considered.

For lower bound calculation we use the approach described in [81]. It starts with iden-
tifying a subset of jobs NI ~ N which cannot be interleaved with any other job. Job j is
included in this set if none of the sequences (ak,aj,bj,bk), (ak,aj,bk,bj), (aj,abbj,bk)

or (a j, ab bb bj) is feasible for any kEN \ {j}. Then the contribution of all jobs from NI

is

LB(Nl) = ,1: (Paj +Lj+ PbJ.
JENt

Chapter 3 87 Coupled-operation Scheduling

The contribution of the remaining jobs N2 = N \ N., which can be interleaved, is no less
than their total processing requirement and it is also no less than the length of the longest
job in that set:

LB(N2) = max { ~ (Pa. +Ph') .max {Pa. +Lj +Ph'}} .
.~ J J JEN2 J J
JEN2

The overall lower bound is then

LB =LB(N.) +LB(N2)'

In the experiments, we set up a time limit of 600 seconds for tabu search and for
multiple runs of each of the two heuristics. Each time a new solution is generated, its
makespan is compared with the lower bound LB to check if the optimum is found and the
program may terminate immediately. This happened frequently only in our experiments
with MIX. instances.

Table 3.1 summarises the average accuracy of the two versions of the tabu search
algorithm TS-EF and TS-JD and the two constructive heuristics EF and ID on the MIX
and SIM classes of instances. Algorithms are listed in the order of overall performance
measured in terms of the average value p of the relative ratio p calculated over 10 test
instances. The second characteristic of each algorithm is the average time (in seconds) of
finding the best solution.

Algorithm Overall MIX. MIX2 SIM

P Tavg P Tavg P Tavg P Tavg

TS-EF 0.084 200 0.056 121 0.100 277 0.120 357

TS-JD 0.090 150 0.057 83 0.120 322 0.128 349

EF 0.198 186 0.071 115 0.250 272 0.336 281

JD 0.292 131 0.062 2 0.547 126 0.607 145

Table 3.1: A summary of the results for all instances

Tabu search algorithms outperform constructive heuristics in terms of the solution
quality. JD constructive heuristic tends to generate the best solution early and then con-
tinue running until the 6oo-second limit is reached without any improvement. Each ver-
sion of tabu search continues improving the best solution for a longer period of time in
comparison with the corresponding constructive heuristic. Comparing the behaviour of
algorithms on MIX and SIM instances we observe that, as a rule, all algorithms find so-

Chapter 3 88 Coupled-operation Scheduling

Algorithm MIX
({3 = 0)

Best random heuristics RC 0.073

C 0.077

SMD 0.074
Best local search RMD 0.086

LHTS 0.093

Table 3.2: Value ofI' for MIX instances obtained by the experiment in [81] with parameter
{3= 0

lutions closer to the lower bound for MIX instances.
Table 3.2 reports the performances of the best constructive heuristics and local search

algorithms presented in [81] evaluated on instances comparable to the MIX! class in this
chapter ({3 = 0). The algorithms presented has been designed for the solution of coupled-
operation scheduling problem with flexible time-lags. The heuristics C and RC are the
counterparts of our JD heuristic where additional rules are put in place to consider job
flexibility parameter during the selection process at the join stage. While in RC multiple
schedules are generated applying selection rules randomly, in C heuristic only one sched-
ule is generated using only one rule. The heuristics SMD, RMD and LHTS are local
search algorithms based on a reinsertion neighbourhood structure where, give a permu-
tation of the operations, an operation from the critical path is remove and re-inserted in
another random position. Differently from our neighbourhood, infeasible permutations
can be generated and later discarded. SMD and RMD use such neighbourhood struc-
ture repeatedly in descent algorithms starting the search with random solution in RMD
and seeded solution in SMD. LTSH algorithm implements such neighbourhood structure
in local search framework. It easy to see that, despite the instance data used seem to
be biased (see previous comments above), our tabu-search algorithms TS-JD and TS-EF
outperform all the best algorithms in [81]. Notice that local search algorithms SMD,
RMD and LHT are often unable to find better solutions than those found by constructive
heuristics RC and C.

Tables 3.3 and 3.4 illustrate the behavior of the algorithms on instances of differ-
ent sizes. For both classes of instances, MIX and SIM, tabu search algorithms produce
high quality solutions whichever the size of the instance is; the accuracy only slightly
deteriorated for larger values of n. Constructive heuristics perform similarly on MIX!
instances, while they show a substantial deterioration of the solution quality when n in-

Chapter 3 89 Coupled-operation Scheduling

Algorithm SIM

Input size n 20 30 50 100

TS-EF 0.99 0.112 0.116 0.151

TS-ID 0.101 0.114 0.119 0.178

EF 0.188 0.264 0.377 0.636

10 0.240 0.287 0.483 1.419

Table 3.3: Value ofp for SIM instances depending on instance size

Algorithm MIX! MIX2

Input size n 20 30 50 100 20 30 50 100
TS-EF 0.050 0.059 0.057 0.060 0.076 0.089 0.094 0.140
TS-ID 0.051 0.059 0.059 0.060 0.077 0.090 0.095 0.218

EF 0.056 0.066 0.077 0.086 0.145 0.200 0.272 0.382
10 0.055 0.066 0.064 0.064 0.175 0.255 0.470 1.287

Table 3.4: Value ofp for MIX instances depending on instance size

creases for MIX2 and SIM classes. Heuristic ID performs particularly poorly on instances
with n = 100 jobs resulting in deviation values p being almost twice the deviation of EF
heuristic. Notice that p values are homogeneous for all the instance sizes in MIX!. This is
an evidence of the bias in MIX! instances whose optimal solutions have few interleaving
jobs and can be found early in the search.

Tables 3.5, 3.6 and 3.7 illustrate the behavior of the algorithms on instances with
different values of a-parameter (see Section 3.6.1). Observe that p-value for constructive
heuristics is generally proportionate to the value of a-parameter. Differently, tabu search
algorithms running on SIM and MIX2 instances seem to perform better when a > 1 in
comparison with a = 1. This suggests that our tabu search design is much more powerful
than constructive heuristics to generate schedules of good quality even if there are many
interleaving jobs. For the MIX! class all algorithms reach similar p due to the biased
structure of the input instance mentioned above.

Summarising, computational experiments show that the proposed tabu search algo-
rithms based on job re-insertion provide solutions of higher quality than the algorithms
previously known. In particular, they compare favourably with constructive heuristics EF
and 10.Notice that 10 is the best published algorithm for the coupled-operation problem
with flexible time-lags so far. 10 performs poorly in comparison to our heuristic EF when

Chapter 3 90 Coupled-operation Scheduling

Algorithm SIM

a 1 n 2n
:5 5

75 Tavg 75 Tavg 75 Tavg

TS-EF 0.183 295 0.082 388 0.094 389

TS-JD 0.188 260 0.085 400 0.110 388

EF 0.281 276 0.334 261 0.484 307

JD 0.212 64 0.533 185 1.076 188

Table 3.5: Value of75 for SIM instances depending on a-value

Algorithm MIXl

a 5 10 25 50

75 Tavg 75 Tavg 75 Tavg 75 Tavg

TS-EF 0.006 60 0.028 59 0.081 128 0.111 273

TS-JD 0.006 15 0.028 17 0.083 130 0.113 172

JD 0.006 0 0.028 0 0.083 0 0.132 8

EF 0.006 2 0.028 59 0.089 128 0.162 273

Table 3.6: Value of75 for MIXl instances depending on a-value

Algorithm MIX2

a 1 n 2n
:5 5

75 Tavg 75 Tavg 75 Tavg

TS-EF 0.113 157 0.080 318 0.106 358

TS-JD 0.113 184 0.082 399 0.165 383

EF 0.161 185 0.277 341 0.310 292

JD 0.129 2 0.447 182 1.065 195

Table 3.7: Value of75 for MIX2 instances depending on a-value

Chapter 3 91 Coupled-operation Scheduling

run for a long period of time since it generates solutions of a similar structure. Differently,
heuristic EF explores broadly the solution space generating a wider variety of solutions
in comparison with JD. However, JD heuristic results to be an appropriate choice when a
reasonably good solution for special structured instances is needed within a few seconds.

3.7 Discussion

In this chapter we develop a tabu search algorithm for scheduling n coupled-operation
jobs with fixed time-lags on a single machine. In order to explore possible solution rep-
resentations, we study the special case of the problem with the fixed order of the first
n operations and establish its NP-hardness even for the special case of unit-time oper-
ations. Due to this reason we select an alternative solution representation based on the
permutation of all 2n operations.

For the neighbour generation strategy we adopt the insertion technique proposed in
[43]. We show that an optimal insertion of a job in a partial schedule can be found in
polynomial time. The algorithm uses the disjunctive graph model and exploits a so-called
short cycle property.

The tabu search algorithm we propose differs from the traditional version by maintain-
ing a pool of current solutions instead of a single solution. Due to this reason, it explores a
broader part of the solution space. With a larger size of the neighbourhood, fast selection
of a potentially good neighbour is particularly important. To achieve this we calculate
makespan estimates for each of the possible neighbours and we select the candidate with
the smallest estimate.

The following two enhancements are introduced in tabu list implementation: (1) solu-
tions are represented by their critical paths and (2) the entries of the tabu list are prioritised
depending on how often the corresponding solutions are generated; whenever there is a
need to reduce the size of the tabu list, the entries with the lowest frequency are removed
first.

Computational experiments demonstrate that the proposed tabu search is effective for
solving the coupled-operation problem with fixed time-lags. It outperforms the earlier
heuristics developed for the more general problem with flexible time-lags, in particular
the join-and-decompose (JD) heuristic, which is considered to be the most successful
among those studied in [81]. We believe, that the main reason of good performance of
our tabu search algorithm is related to the neighbour generation strategy which always
produces a feasible solution while neighbour generation strategy from [81] often results
in infeasible solutions.

Chapter 3 92 Coupled-operation Scheduling

To summarise, the main outcomes of this chapter include the analysis of possible
solution representations, an efficient neighbour generation strategy and two enhancements
for tabu search implementation. It should be noted, that the improvements achieved for
the coupled-operation problem with fixed time-lags cannot be immediately transferred to
the more general problem with flexible time-lags. In particular, the insertion technique
for neighbour generations is not applicable to the flexible time-lag version of the problem
since the short cycle property is not satisfied for it.

The outcomes of this work open new research directions. One research direction con-
cerns the study of the other compact representation for feasible schedules. In particular it
would important to know the complexity of the problem of constructing a feasible sched-
ule given a permutation Ha of a-operations and a permutation Hb of b-operations. The
existence of a polynomial-time algorithm would allow the design of a solution algorithm
visiting a reduced solution space. Another research direction would be a study aimed at
determining whether the neighbourhood based on the job reinsertion problem presented
in this section is opt-connected or not. This would be a stronger analytical argument to
the efficiency of the algorithm proposed.

Chapter 4

Scheduling Patient Appointments via
Multi-level Template

4.1 Overview and Problem Definition

In this chapter we study a multi-criteria optimization problem which appears in the context
of scheduling chemotherapy appointments. The scenario we consider is typical for many
chemotherapy outpatient clinics. In its current form, the problem was formulated by the
Institute of Oncology at St. James's University Hospital in Leeds, U.K.

Chemotherapy is an important and widely used therapy to treat cancer. It consists of
cyclic administrations of drug mixtures delivered to patients under rigid protocols called
regimens. In an outpatient clinic, chemotherapy is mainly administered orally or through
intravenous systems in a day case unit. The two main characteristics of a regimen are drug
combinations and delivery patterns. Once a regimen is prescribed, a patient should visit
the clinic at treatment days which are separated by a fixed number of rest days. During
a treatment day, a patient undergoes treatment procedures which involve several nurse
activities separated by time intervals of fixed length. Without loss of generality, in this
chapter we assume that each nurse activity is a 1S-min time slot in which a nurse is acting
for the treatment of a patient.

A regimen is characterized by two types of patterns: a multi-day pattern given as
a sequence of treatment days and rest days in-between and, for each treatment day, an

93

Chapter4 94 Appointment Scheduling

intra-day pattern given as a sequence of nurse activities and time-lags in-between, each
of which consists of several 15-minute time slots. Typically, nurse activities are related to
setting up an intravenous machine, its re-setting for a new drug mixture or a checkup of
patient's state. The working day of the clinic is split into 15-minute time slots and this is
the main time unit of an intra-day schedule.

Upon arrival to the clinic, a patient is allocated to a nurse for all treatment procedures
of the current one-day session. It is important that the same nurse delivers all treatment
procedures to an assigned patient during one treatment day; however, it is not required
that the patient is treated by the same nurse at other treatment days.

A nurse may treat several patients during a day if the related activities do not overlap in
time. If treatment procedures assigned to one nurse lead to a clash in the nurse's schedule
with more than one activity planned for the same time slot, the nurse needs to speed up
the normal operations, delay the starting time of patient appointment or request the cover
of an additional nurse(s). It is required that each nurse has at least 30-minute break (two
time slots) in the middle of the day.

In the rest of the chapter we use the term "appointment" for one treatment day of a
patient. An appointment is scheduled if its date and starting time are fixed and a nurse
is allocated to perform all associated treatment activities on that day. An appointment
is partially scheduled if only some of these parameters (day, time, nurse allocation) are
fixed.

In what follows we describe the problem considered in this chapter by the use of an
example. All the requirements and constraints defined have been gathered from the clinic.

Example 1. Consider a multi-day schedule for nine patients PI, ... , P9 is which
is shown in Fig. 4.1 (a) with treatment days marked by dark boxes. No treatments are
planned for weekend days which are dashed. The fragments of schedules for three days
and one nurse are shown in Fig. 4.1 (b). The first two intra-day schedules have clash-
ing activities resulting in a solution of poor quality since clashing treatments cannot be
delivered by a single nurse.

In order to characterise the effect of clashing activities, we use the following two
measures of an intra-day schedule for day d and nurse n: the number of clashing activities
o'd,n and the maximum clash density t1.ci,n. The value of o'd,n is defined as the minimum
number of activities which, if removed from the schedule of day d, result in a clash-free
schedule for nurse n. The value of ll.d,n is defined as the maximum number of activities
assigned to one nurse in one time slot.

In the example shown in Fig. 4.1 (b), the schedule for the second day (d =08/07/2008)

has clashing activities in time slots 9:15, 9:30, 12:30, 13:30 and 14:45. The schedule

Chapter4 95 Appointment Scheduling

PI ~ ~--- - -~--. ~ ~

~l..~-:r~r-·~-~~-·:~~I~-fr
P6 • -~ ---- .--~-- -.- ~- ----.~ ~~;.-~ ...~-~--~~~~- •.-~-- -. ~
P9 ~ .---- - ~ -- -~- - - --~. ~I I ({/'I I

(a)

07/0712008 09/0712008

PI P8 P4 P2 P 9

::~I
9:30 -- I I
I::: ~: I:,I
10:15 1

10:30 - 1

10:45 - I •

11:00 I I11:15 _. 1

11:30 -- I

11:45 1

12:00 - 1

12:15 - 1

12:30 I
12:45 - 1

13:00 - 1

(13:15 .:
13:30
13:45 - I •
14:00 -- I I
14:15 - I 1

14:30 -. 1
14:45 - I

15:00 •
15:15
15:30 --

08/07/2008

9:00 -i PI P5 P2 P8

~::~~rl I 5
9:45 _ 1 •

10:00 II
10:15 _ I
10:30
10:45 1 1

I 1
11:00 1

11:15
11:30
11:45

12:00 _. 1 I
12:15 I 1

(13:30 ~ I
13:45 1 1
14:00 I 1
14:15 -- I

1
14:30 I I

(14:45 ••
15:00
15:15 .-

15:30

::~ =IP6 P2 PI P8 P7

9:30
9:45-

1
•

10:00 - I I
10:15

-- I
10:30 I I
10:45 - I

II11:00
-I

11:15 I

11:30 - 1

11:45
12:00 --- :
12:15 - 1

12:30
-I

12:45 I

13:00 -.
13:15
13:30 ._. I

1

13:45 1
14:00
14:15 -- 1

1

14:30 1
14:45

-I
15:00 I

15:15 -.
15:30

1• (b)

•I.
I I
I 1.'

Figure 4.1: An example of a multi-day schedule and three intra-day schedules, each
schedule for one nurse

becomes clash free if we remove, e.g., the following activities: four activities of patient
P8 assigned to time slots 9: 15,9:30, 13:30, 14:45, two activities of patient PI assigned to
time slots 9: 15, 14:45, and one activity of patient PS assigned to time slot 12:30, which
implies that Od,n = 7. The second characteristic L1.d,n = 3 reflects the fact that there are
three clashing activities in time slots 9:15 and 14:45, and this is the maximum number of
activities assigned to one time slot.

The main decisions associated with scheduling appointments for one patient are as
follows:

Dl: selecting the date of the first appointment, which in fact fixes the dates of all subse-
quent appointments of the associated multi-day pattern;

Chapter4 96 Appointment Scheduling

D2: selecting the starting time of each appointment; this fixes the time slots for all treat-
ment activities needed for the patient on the visit day;

D3: allocating nurses, one nurse per patient per visit day, to perform all treatment proce-
dures for that patient on the day.

The main outcome of the above decision making process is a multi-day schedule com-
bined with a series of intra-day schedules, one for each day of the time horizon. These
schedules fully describe all nurse activities in the clinic.

There are a number of metrics which characterise the quality of the combined sched-
ule.

F1: The average number of waiting days for all patients, where the number of waiting
days for a patient is measured as the delay from a target date to the day of the first
appointment. In this metric, the target date of the first visit is predefined by patient's
requirements or by the clinic waiting targets.

F2: The maximum clash density ~ is calculated as the maximum among ~d,n-values
for all nurses n E N and all days d E H of the selected time horizon H, Le. ~ =
max ~d,n.

dEH,nEN

F3: The total number of clashes n for all nurses is calculated as the sum of the nd,n-

values for all nurses over the time horizon H, i.e. n= E nd,n'
dEH,nEN

One more quality measure is related to the pharmacy, which supplies drugs for
chemotherapy treatments. While some drugs are available off-the-shelf, others need to
be prepared in the hospital pharmacy. Since the shelf-life of drugs can be limited, it
is often required to produce some drugs just before their administration. Due to this, a
schedule can be efficient in terms of characteristics FI-F3, but might be poor in terms of
the pharmacy constraints. Although in this study we mainly focus on metrics FI-F3, the
approach we propose is very well suited for further enhancements which can take into
account drug preparation.

With increasing number of cancer patients, chemotherapy departments are under pres-
sure to provide more efficient and qualitatively better service. The World Health Orga-
nization [1] and the Department of Health, UK [72] suggest a redesign of the delivery
of chemotherapy treatments and set up new targets in terms of patients' waiting times
and improved quality of service. In this chapter we show that advanced scheduling algo-
rithms can help in providing timely treatments to larger numbers of patients within shorter

Chapter4 97 Appointment Scheduling

time-frames, balancing workloads of medical staff and reducing the costs of treatments.
Automated scheduling may also help in efficient rescheduling which is often needed due
to unpredictable events such as changes in patients treatment plans and clinic resources.

Outpatient appointment scheduling in health care has been studied since the early
fifties when Bailey [8] and Lin and Haley [65] published their first results on block ap-
pointment systems where a single queue model was used to minimise patient waiting
times. Since then, the main stream of research focuses on finding appropriate rules for
assigning patients' appointments to time intervals in order to minimise patients' waiting
times, idle time and overtime of physicians or trade-offs between these objectives, see,
e.g., Fetter and Thompson [34].

In more recent research, the models are extended by considering additional unex-
pected events such as no-shows, walk-ins and emergency treatments. A popular approach
aimed at reducing effects of those unexpected events is related to overbooking, see, e.g.
Vissers [lOO]. A comprehensive survey with a detailed classification of scheduling mod-
els for booking outpatient appointments can be found in Cayirli and Veral [25].

A new trend of research is related to appointment scheduling systems with specific
time requirements and restrictive constraints on resource availability, see Gupta and Den-
ton [46]. For example, there is an increasing number of publications on scheduling ra-
diotherapy appointments. The special feature of radiotherapy treatments is a multi-day
pattern consisting of several consecutive days; additional constraints are related to the
limited number of available treatment machines, see Conforti et al. [29] and Petrovic et
al. [79].

Similar to scheduling radiotherapy appointments, the problem of scheduling
chemotherapy appointments also deals with multi-day treatment patterns and limited re-
sources, but multi-day patterns usually have rest days in-between visit days. In addition,
patient's treatment procedures during one visit day should follow a complex intra-day
pattern. In spite of its importance, the problem of scheduling chemotherapy appointments
has received less attention of OR researchers than scheduling radiotherapy appointments.
The majority of publications appear in medical journals and they discuss mainly schedul-
ing strategies adopted by practitioners.

As a rule, scheduling decisions are made by a qualified nurse who selects appointment
dates and times based on the knowledge of treatment procedures, resource availability and
personal experience. We refer to Turkcan et al. [96] who provides an overview of pub-
lications in oncology journals. Here we only mention the article by Dobish [31] which
describes a scheduling strategy based on creating manually a weekly template schedule.
The template is used as a basis for scheduling patients arriving over time. Positive feed-

Chapter4 98 Appointment Scheduling

back of practitioners discussed in [31] and the potential of using a template for scheduling
patients in an uncertain environment have inspired our work. Notice that the strategy sug-
gested in [31] is of empirical nature, while in this study the idea of template schedule is
developed into a formal optimization model with advanced features.

We are aware of only one publication by Turkcan et al. [96] who consider optimization
aspects of delivering chemotherapy treatments. There are a number of points of differ-
ence between the model from [96] and the one studied in this chapter: intra-day patterns
are treated in [96] as contiguous blocks of time rather than sequences of nurse activities
separated by idle intervals; nurse's workload is restricted in [96] by acuity levels of allo-
cated patients while in our model nurse's workload is estimated taking into account actual
intra-day patterns of allocated patients and possible clashes between them.

The solution approaches are also different. The approach proposed in this chapter
constructs a dynamic plan for all anticipated appointments of the time horizon; such a
plan is then frequently adjusted and tuned in accordance with changes in demand and pa-
tients' state of health. All appointment dates and times are scheduled and communicated
to a patient at the time a patient is admitted to the clinic. In [96] scheduling is performed
at regular times for intervals in-between scheduling sessions. The decisions are made
for available patients only, which implies that patients arriving in-between scheduling
sessions should always wait for at least next session or even longer to get their first ap-
pointment. Moreover, appointment times for subsequent visits may not be available all at
once as each scheduling session considers a limited time interval until the next session.

In spite of all the differences, both studies, by [96] and ours, indicate that the problem
of scheduling chemotherapy appointments has multiple constraints, complex objectives
and requires further study.

There is a stream of research related to other aspects of chemotherapy treatments. In
particular, OR techniques are used in the chemotherapy context for constructing effective
treatment plans which define drug dosages and their administration protocols, see Agur
et al. [5], Ochoa et al. [71] and Petrovic et al. [78]; the output of such models are intra-
day and multi-day patterns tuned for individual patients rather than actual schedules for
delivering those treatments.

This study can be considered as the first attempt to develop an optimization model for
scheduling patients' appointments which should follow intra-day and multi-day patterns.
We explore the benefits of using a template schedule to fix appointment dates and times
for patients arriving over time, but unlike the earlier study by Dobish [31], the advanced
features of our approach are based on mathematical analysis of the model rather than em-
pirical observations. The multilevel template schedule we produce determines possible

Chapter4 99 Appointment Scheduling

dates and time slots at which future appointments can be scheduled. The appointments of
the template are grouped into levels with a view of producing an efficient running sched-
ule with even nurse workload and the smallest possible number of clashes. The running
schedule is created by considering arriving patients one by one; for each new patient
all required appointments are assigned to appropriate time slots of the template sched-
ule matching the prescribed multi-day and intra-day patterns. An additional rescheduling
procedure is used to reoptimized each intra-day schedule on a treatment day or shortly be-
forehand. The key stages of the planning process are modelled as integer linear programs
and solved using CPLEX solver.

The chapter is organised as follows. In Section 4.2 we introduce the concepts of tem-
plate schedule and running schedule and we give a general overview of our approach. In
Section 4.3 we formulate two integer linear programs (ILPs) for generating a template
schedule: one ILP to define appointment dates for future patients and another one to de-
fine appointment times for each day of the template schedule. In Section 4.4 we describe
how the template schedule is used for creating a running schedule for arriving patients.
Section 4.5 explains how daily rescheduling is done. In Section 4.7 we evaluate the pro-
posed approach via computational experiments performed on two scenarios typical for a
real-world clinic. Finally, conclusions are discussed in Section 4.8.

4.2 Notation and General Idea of the Solution Approach

We are given a time horizon H in which patients of a set Phave to be treated in accordance
with their multi-day and intra-day patterns. It is assumed that patients arrive during the
first days Ha of time horizon H, which we call the arrival period, Ha cH. The overall
length of H is sufficiently large so that if a new patient arriving within Ha is scheduled
with the largest possible acceptable delay, all visits of the corresponding multi-day pattern
can be scheduled within the remaining part H\Ha of the time horizon.

The approach we propose consists of four stages:

Stage 1. Forecasting the arrival rate of new patients for each regimen;

Stage 2. Creating the template schedule based on the forecast;

Stage 3. Producing a running schedule for actual patients arriving over time using the
template;

Chapter4 100 Appointment Scheduling

Stage 4. Daily rescheduling to re-optimise nurse allocation and to take into account
changes in patients' treatment plans.

Stages 1-2 are performed in advance, prior to the first day of the arrival period Ha, and
the generated template covers the whole time horizon H. Stages 3-4 are run on a daily
basis.

In order to ensure a smooth transition from one time horizon to the next one, we
adopt the idea of rolling time horizon. First an initial template schedule is created for
time horizon H. A running schedule is generated and maintained during a part of the
arrival period Ha (say, for one week). After that the time horizon is shifted to start at the
current date, the template schedule is re-calculated for the new time horizon and the same
scheduling approach is applied to accommodate patients arriving during the new arrival
period Ha keeping the appointments of the previously scheduled patients unchanged.

Forecasting
patient arrivals

Generating the
template schedule

Daily re-
scheduling

Producing the
running schedule

Figure 4.2: Representation of the 4-stage approach

Stage 1: Forecasting patient arrivals. The first stage is aimed at forecasting the
arrival rate of patients at the clinic for the arrival period Ha. The output of this stage is the
expected number of patients Ar for each regimen r E R arriving within one week of the
arrival period Ha and the distribution function characterising patient arrival over time.

In this chapter we focus mainly on scheduling procedures rather than on forecasting
techniques. In line with the traditional approach often adopted in similar scenarios, we
assume that the arrival of patients with a regimen r is a Poisson process with mean and
variance equal to An see, e.g., Brahimi and Worthington [15], Cayirli at Veral [25], Ogu-
lata et al. [73], Vermeulen et al. [99], Wijewickrama and Takakuwa [101] and Williams

Chapter4 101 Appointment Scheduling

et al. [103]. The value of Ar is estimated using the recorded historical data under the as-
sumption that the patient arrival rate for the new arrival period Ha does not substantially
differ from the past.

Stage 2: Generating a template schedule. The second stage is aimed at producing
the template schedule consisting of appointments for a set of artificial patients pd. In
such a schedule the dates, the times and the nurse assignments for the appointments of
artificial patients (or artificial appointments) are fixed. During the booking process in
Stage 3, the dates, the times and the nurses assignments of artificial appointments become
dates, times and the nurses assignments of arriving patients. Thus, artificial appointments
are placeholders for appointments of real patients arriving over the time.

Stage 2 consists of two parts:

Stage 2A: Generating data describing arrival of artificial patients;

Stage 2B: Producing a multilevel template schedule as a solution to the problem of
scheduling artificial patients.

Stage 2A is based on the output of the forecasting stage. Itgenerates, for each regimen
r E R, the number of artificial patients with that regimen and, for each artificial patient,
the target date of the first visit. Stage 2A deliberately produces the data for more artificial
patients than the number of expected patients, keeping the proportion of artificial patients
with different regimens the same as the patient proportion in the forecast. The main
objective is to produce a template schedule in Stage 2B with an overestimated number
of appointments, which should provide more flexibility for booking appointments for
arriving patients in Stage 3 and for handling unexpected arrivals.

Stage 2B schedules appointments of artificial patients in terms of decision 01-03
defined in Section 4.1 and produces a multilevel template schedule. The template can be
seen as a combination of a multi-day schedule for time horizon H with a series of one-day
schedules assigned to different nurses.

Due to the overestimated number of artificial patients, intra-day schedules of the tem-
plate may have a large number of unavoidable clashing activities; still such a template
leads to a successful running schedule at Stages 3-4. In fact, the multilevel feature of
the template described below ensures that, when a running schedule is constructed, the
number of clashing activities is as small as possible.

Appointments of the template schedule are grouped into so-called density sets accord-
ing to the maximum clash density Ilct,n of nurse activities scheduled for each day. For-
mally, the appointments of artificial patients of a day d E H assigned to the same nurse n

Chapter4 102 Appointment Scheduling

are grouped into density sets 2J~ , 2j~, ... , 2j~) , where the upper index k, 1 ~ k ~ K,

denotes a density level defined as the maximum clash density t1.d,nof appointments 2j~ .
By definition the density sets for one intra-day schedule of one nurse are nested:

2(1) c 2(2) c ...c 2(K).
d,n - d,n - - d,n

In particular, if we keep only those appointments which belong to 2j~ removing all,
other appointments from the intra-day schedule of nurse n, then the resulting schedule
does not have clashing activities, i.e., t1.d,n= 1. In general, for any k, 1 ~ k ~ K, a partial
schedule consisting of appointments from the set 2j~ may have clashes of the maximum,
density t1.d,n= k. Although the total number of density levels K can be as large as the
number of artificial patients scheduled on one day, in our experiments on real world data
the template schedule produced has no more than 5 density levels, so that K ~ 5 (see
Section 4.7).

Notice that the density levels into which a schedule can be divided are not unique. For
example consider a simple case in which two clashing appointments are divided into two
density sets. The only appointment belonging to the first density set can be any of the two
clashing appointments. The objective functions that are introduced later in the chapter
will restrict the possible combinations of appointments which can be assigned to density
classes.

In the example shown in Fig. 4.1, the second one-day schedule corresponding to day
d =08/07/2008, if considered as a template schedule for nurse n, can be split into density
sets as follows:

{PI, P2, P5},

2J~ U{P8}= {PI, P2, P5, P8},

2j~ U{P3}= {PI, P2, P5, P8, P3}.

To distinguish between the regimens, we denote the set of appointments of a regimen
rE R belonging to a density set 2j~ by 2r~~~n' In the above example, if patients PI
and P8 have the same regimen rI, while the regimens of patients P2, P3, P5 are r2,r3,r4,

respectively, then each of the sets 2r~~,n is as follows:

2(1) . (1) (1) _ (1) (1)
dn . 2r d.n = {PI}, 2r dn - {P2}, 2r dn =0, 2r dn = {P5},

2(2) . (2) , (2)' _ (2)' _ (2) ,
d,n . 2r d n = {PI,P8}, 2r dn - {P2}, 2r dn -0, 2,. d n = {P5},

(3) , (3)' _ (3) , 4, ,
2(3) . (3) _
d,n . 2r dn = {PI, P8}, 2r2,d,n - {P2}, 2r dn = {P3}, 2, dn - {P5}.

I, , 3, , 4, ,

Chapter4 103 Appointment Scheduling

As we show in Sections 4.3-4.4, density levels assigned to appointments of the tem-
plate schedule in Stage 2, playa fundamental role in Stage 3.

Stage 3: Producing the running schedule. The third stage deals with daily arrivals
of new patients P. The main objective is to fix appointment dates and times for arriving
patients using the template schedule generated in Stage 2. For each newly arrived patient
pEP with a regimen r, the algorithm finds a matching combination of pre-scheduled
appointments of the same regimen in the template schedule such that the multi-day pattern
of patient p matches the selected appointments. The selected matching appointments of
the template do not necessarily belong to a single artificial patient; instead they may
correspond to different parts of multi-day patterns of several artificial patients with the
required regimen.

If the overestimation rate for the number of artificial patients is selected appropriately
in Stage 2, the template schedule contains a sufficient number of artificial appointments
for each regimen so that there always exist matching artificial patients scheduled in the
template schedule after the arrival of actual patient p. Moreover, there is some flexibility
in selecting a match for an actual patient, which allows to keep the number of clashes and
patient waiting times at minimum. In particular, if a decision is adopted to schedule an
actual patient on day d EH, the algorithm gives preference in the template schedule to
the pre-scheduled appointments belonging to the set

with the lowest density level k, where Nd is the set of nurses available on day d. For
example, set 2r~~)is explored only if there are no available pre-scheduled matching ap-

pointments in set 2r~~)'The next set 2r~~)is considered only if there are no available

pre-scheduled matching appointments in 2r(~),etc. Additional priority rules are used if,
there are more than one matching pre-scheduled intra-day patterns in the template belong-
ing to the same density set.

Stage 4: Daily rescheduling. Although the running schedule generated in Stage 3
fixes appointment dates and times and nurse allocation for all patients, the quality of the
intra-day schedule can be further improved via re-optimization. At this stage, the number
of clashing activities of the running schedule is reduced by changing allocation of patients
to nurses and allowing small delays (within certain limits) in starting times of scheduled
appointments.

Chapter4 104 Appointment Scheduling

4.3 Generating the Template Schedule

Stage 2 includes two parts: generating data for artificial patients (Stage 2A) and schedul-
ing them in a template schedule (Stage 2B).

At Stage 2A we are given, for each regimen r E R, the estimated patient arrival rate
Ar. It specifies the number of patients expected to arrive during one week of the arrival
period Ha CH. The output data of Stage 2A consists of

- for each regimen r E R, the set P:' of artificial patients that must be scheduled in
the template schedule;

- for each artificial patient pE UrERP:', the target day tp of the first appointment.

The above data provides the input for Stage 2B. In addition, it also includes nurse
availability for each day d EH. The latter is given as the set Nd of nurses available on that
day, and working time for each nurse n ENd given as a set of 1S-minute time slots Hn,d
of day d when nurse n is available.

The output data of Stage 2B is the multilevel template schedule. It can be seen as a
combination of

- a multi-day schedule which specifies for each day d EH the set pf of artificial
patients to be treated on that day; that set can be further split into subsets p~,,
r E R, each of which includes only the patients with regimen r to be treated on that
day;

- an intra-day schedule for each day a « H, which specifies for each patient pE pf
the allocated nurse np E Nd and the appointment starting time; it also specifies
allocation of all appointments of artificial patients P:'d into density sets _;:tJ(dk) ,r E R,, r, ,n
n ENd, k = 1, ... ,K, see Section 4.2 for the definition.

In what follows we describe how Stages 2A and 2B can be implemented.

4.3.1 Generating Data for Artificial Patients

As described in Section 4.2, in order to achieve a high quality running schedule, we
produce a template schedule for a larger number of artificial patients than expected. In
particular, the number of artificial patients Ip:' I with regimen r for the arrival period
consisting of IHal working days is defined as

I~I = j:A x IHal
r ':I r S' (4.1)

Chapter4 105 Appointment Scheduling

where ¥ represents the number of weeks in Ha and ~ 2:: 1 is an overestimation rate,
whose value is determined empirically. The main purpose is to ensure that for each actual
arriving patient considered in Stage 3 there can be found a sufficient number of matching
artificial patients with the same regimen to select from, so that the incurred waiting time
and the number of clashes are within acceptable limits.

An additional adjustment is made for those regimens which happen rarely. In particu-
lar, if ~Ar < 1 for a regimen r, then we assign IP:'I a higher value:

IpJdI= IHal
r 5' (4.2)

i.e., we force at least one artificial patient with regimen r to be scheduled each week. Such
an adjustment ensures that at Stage 3, when an actual patient with a rare regimen r arrives,
the waiting time will not be too large, whichever week the patient arrives.

Having defined the number of patients IP:' I for each regimen r E R, we generate
for each artificial patient pEP:' a target day tp E Ha of the first appointment. The
values tp, pE Pr, are uniformly distributed in H. These values become the main input
for generating the template schedule in Stage 2B. In the resulting schedule, the day dp of
the first appointment of patient p is selected as close as possible to tp and either option
dp 2:: tp or dp < tp is acceptable.

4.3.2 Quality Metrics of the Template Schedule

The overall performance of our four-stage solution approach is measured in terms of the
quality of the running schedule with respect to the objectives F1, F2, F3 introduced in
Section 4.1. In order to achieve a successful running schedule, we propose a number of
metrics for the template schedule: two metrics U and V characterise the template schedule
at the multi-day level and three metrics Xd, Yd and Zd characterise the template schedule at
the intra-day level for each day d of time horizon H. Each of the metric is represented by
a well defined objective function defined below. In the creation of the template schedule
the objective functions are optimized in the order defined by a hierarchy described later
in this section.

The first metric U specifies the maximum daily workload excess of the clinic for the
whole template schedule defined over the time horizon H. This metric considers for each
day d E H the difference between the clinic workload Wd and its daily capacity Cd. The
workload Wd is the total number of 15-minute nurse activities which appear in the intra-
day schedule of the template. Itcan be calculated by counting for each nurse n the number
Wn,d of activities performed by that nurse on day d and summing up those values for all

Chapter4 106 Appointment Scheduling

The daily capacity Cd is the maximum number of activities which can be performed by
available nurses:

Cd = E IHn,d I'
nENd

(4.3)

where Hn,d specifies working time of nurse n on day d given as a set of IS-minute time
slots when the nurse is available.

With an overestimated number of artificial patients and a limited number of nurses,
some days of the template schedule may have activities which cannot be covered by avail-
able nurses, so that Wd > Cd. Then the workload excess of day d is max {Wd - Cd,O}. The
maximum daily workload excess U for the whole template schedule is defined for time
horizon Has

U =max {max {Wd -Cd,O}}.
dEH

(4.4)

It is desirable to keep the workload excess as small as possible distributing it evenly over
time horizon H.

Stages 3 and 4 of our approach use two additional characteristics related to daily
workload excess: the relative workload Wn,dof nurse n on day d, which quantifies the
proportion of time the nurse delivers treatments to patients:

Wo _ Wn,d
n,d--IH I'n,d

(4.5)

and the average relative workload Wd of all nurses working on day d:

(4.6)

Characteristic Wn,dis used at Stage 4 when daily rescheduling is done aimed at balancing
the workloads of different nurses. Characteristic Wd is used at Stage 3 when the best
possible options are selected from the template schedule to assign appointments of actual
patients keeping the maximum relative daily workload as small as possible and evenly
distributed over time horizon H.

To define metric V, we calculate for each artificial patient p E ptd the deviation
Idp - tpl of the date of the first appointment dp from the target day tp, and take the average

Chapter4 107 Appointment Scheduling

of these values:
I

V = -I JZlI E Idp-tpl·
P pEPof

Observe that the definition of V includes the case in which the first visit day dp of an
artificial patient p precedes the target day tp. When comparing two template schedules,
the one with a smaller value of the metric U is preferred. In case of ties than metric V

(4.7)

determines the best between the two template schedules.
We now tum to one-day metrics Xd, Yd and Zd. These metrics characterise the quality

of an intra-day schedule of day d of the template and they are closely related to the notion
of a density set introduced in Section 4.2. Each metric Xd, Yd and Zd is in fact a collection
of metrics XJk), yjk) and Z~k), respectively, defined for density levels k = 1,2, ... ,K.

Consider an intra-day schedule for day d EH, with artificial patients pt treated on
that day, which are split into subsets P~,n depending on regimen r and allocated nurse
n. In the intra-day schedule of nurse n, appointments of patients P~,n are scheduled and

allocated to sets 2r~~~n' I ~ k ~ K, belonging to the density set 2j~ , see Section 4.2 for
the definition.

For the partial intra-day schedule consisting of appointments from 2j~ we define

n~~~as the total number of I5-minute activities, which, if removed from that partial
schedule, result in a clash-free schedule.

Using the above notations, we formally introduce three metrics XJk), yjk) and Z~k) for
a density level k and then provide their interpretation and justification. The metrics are
defined as

X(k) = min { I~~nl } (to be maximised),
d rER,nENd I "d,nl

y(k) = E ard E I.z_(k) I (to be maximised), (4.8)dR' N r,d,nre nE d

Z(k) = E n(k) (to be minimised),d N d,n
nE d

where parameter ar,d is an additional weight characteristic defined empirically.
Metric XJk) measures the proportion of artificial appointments of different regimens

allocated to 2d~.Maximising XJk) ensures a fair representation of appointments of reg-

imens in density set 2j~, so that in the resulting template schedule every regimen has

appointments in ~d~and no regimen is overlooked in favour of another regimen.

Metric yjk) counts the total number of appointments allocated to density set 2j~, ,
in the case of unit weights ar,d, or the weighted number of appointments allocated to
that density set, otherwise. In the weighted version of metric yt), the most frequent
regimens r have higher weights, so that maximising yjk) is aimed at allocating as many

Chapter4 lOS Appointment Scheduling

appointments as possible to the density set of level k giving preference to the appointments

of the most frequent regimens. In our experiments, we set ar,d = 1P~,n I·
Finally, metric Z~k) measures the overall number of clashing activities determined by

appointments in 2j~.Clearly, that value should be as small as possible.,
If several intra-day schedules are compared in terms of metrics (4.S), then in the first

place, we give preference to a schedule with the highest proportion XJI) of appointments
assigned to density level k = 1 for each regimen rE R and each nurse n ENd. Among
the schedules with the same value XJI), we give preference to those schedules having
the largest total weighted number yY) of appointments allocated to density level k = 1. If
there are still several schedules equivalent in terms of XJI) and yY), the preferred schedule
has the smallest number Z~I) of clashing activities. The comparison then continues for
density level k = 2, considering metrics XJ2), yj2) and Z~2) in this order. The similar
approach is applied for higher density levels k = 3, ... ,K.

The order of consideration of density levels starting from k = 1, proceeding to k = 2
and so on up to k = K, is in agreement with the procedure used in Stage 3. The latter
procedure explores for each actual patient density level k = 1, then density level k = 2,
etc., in order to ensure that matching appointments are found in the lowest possible density
level of the template.

Example 2. Consider 9 artificial patients PI, P2, P3, P5, PS, PlO, PII, P12 and
PI3 that should be treated on day d by nurse n. The nurse working day starts at 9:00,
finishes at 15:45 and consists of 15-minute time intervals numbered from I to 27. Patients'
regimens and intra-day patterns are given in Table 4.1. An intra-day pattern is specified as
a sequence of time slots, numbered from 1,which require nurse actions. If an appointment
is scheduled to start in time slot t = I (at 9:00), then the intra-day pattern incurs nurse
activities in time slots listed in the pattern; if an appointment is scheduled to start at
time t > 1, the intra-day pattern incurs nurse activities in time slots listed in the pattern
incremented by t - 1.

The workload excess max {Wd - Cd,O} of the selected day d is 2 since all activities
require Wd = 29 time slots while the nurse can only cover Cd = 27 time slots.

Consider two template schedules SI and S2 given by Table 4.2 and graphically repre-
sented as the first two schedules in Fig. 4.3. There are two density sets for each schedule
2J~and 2j~ which are specified in Table 4.2 and marked in Fig. 4.3. The maximum
clash density of both schedule SI and S2 is dr.t,n = 2, while the number of clashing activi-
ties is D.d,n = 3 for SI and D.d,n = 5 for S2. The values of all metrics for schedules SI and
S2 are shown in Table 4.3, where metric yjk) is calculated with weights ar,d set equal to

IP~,nI.

Chapter4 109 Appointment Scheduling

Appointment Regimen Intra-day Pattern IP~I
PI

1,2,18,23 2P8 '1

P2 '2 1 1

P3 '3 1,2,15,24 1

P5
PlO '4 1,2,3,11 3
P11

P12
1,2 2P13 '5

Table 4.1: Input data for the template schedule for day d

Table 4.2: Appointment starting times for two template schedules S1 and S2 and their
density sets

S1 PI P3 P8 P12 PlO P2 P11 P5 P13
Starting time-slot 1 3 5 7 9 12 14 15 20

2(1) * * * * * * * *d,n
2(2) * * * * * * * * *dn

S2 PI P3 P8 P2 P5 P11 PlO P13 P12
Starting time-slot 1 3 5 8 10 11 14 18 22

2(1) * * * * * *d,n
2(2) * * * * * * * * *dn

Table 4.3: Performance metrics of template schedules S1 and S2

level k X(k) y(k) Z(k)
d. d. d.

S1
k=1 0.67 16 0
k=2 1 19 3

S2
k=1 0 12 0
k=2 1 19 5

According to metric XY), schedule S1 is preferred to schedule S2 since the proportion
of appointments allocated to density level k = 1 is 0.67 for S1 and 0 for S2.

Consider now schedule S~which is a modification of schedule S1,where the appoint-
ment for patient P5 starts in time slot 16, as shown in Fig. 4.3. The density sets 2/~)n are

the same for schedules S~ and S 1> so that S1 and S~ are equivalent in terms of metrics XJ1)

Chapter4 110 Appointment Scheduling

.d1)
d,n

.d1)
d,n

.c(l)
d,n

(2)
.cd.n

.c(2)
d,n

iPI P3 PS PI2 PlO P2 PII P13! PS

~ =113~.iI,
4 i !

5 J i I I
6 : I I
7 -1 I ' I I

--I ' I

: J: I10 :
II i I
12 --; I I I.
13 1 I I I
iii I

19 .i :
20 1 I
21 -1 I

-11
22 r .

23 Jill
24J
25 _1
26 :
27 --j

I•
I••

I.. IIIiI I
: I

I :'
Iii• r

I 1i""""",>e" '" i "

!~• i
5 j I I i
6 1 I i
71 'I I 1-i I 1

98-1 : I i: :lOi i
II 1
12 --; I •

-11
13 :' I

14 1i :
IS 11 I I

19 j :
20 1 I
21 i I I I
22 --; I :.

-:' I
23 1. I '
24'1 I i

-j I
25 '

(26 : _ ~

27 i •

Figure 4.3: Template schedules SI and S2 given by Table 4.2 and schedule S~ obtained by
modifying SI

and yY). Still schedule SI is preferable in comparison with Si due to the metric Z~I), as
the overall number of clashing activities in density set 2d~is 3 for schedule SI and 4 for,
schedule Si .

4.3.3 Template Schedule Generation

A template schedule is obtained as a solution to the problem of scheduling appointments
of artificial patients ptzl over time horizon H. The integrated problem of constructing
multi-day and intra-day schedules simultaneously appears to be cumbersome due to its
size and the complex combination of multi-day and intra-day patterns. On the other hand,
it can be naturally decomposed into the following subproblems:

Chapter4 111 Appointment Scheduling

- one subproblem of generating a multi-day schedule for the whole time horizon H;

- IHI subproblems of generating intra-day schedules for each day d EH.

The general idea of this approach is illustrated in Fig. 4.4.

Generating the multi-day
schedule for time horizon H by
solving [LPH to fix the date of
the first visit day for each
patient

Generating intra-day schedules

I IDay I
,,
,,
,,
,,
,,,

I Dayd I,,,,,,,,,,,
~Last day of I
time horizon H

,r----------------------------------,
,'/ Creating intra-day schedule:

" k:=l,,
,,' lid:=pf II the set of unscheduled patients for day d,

" Sd:=0 II the set of scheduled patients

.c~1):=0 /I the set of patients assigned to density level 0
WHILE Ud:;!:0

Solve ILPJk) (U,J,Sd) keeping previously made
appointments for patients Sd and fixing new
appointments for patients Ud ~ u,
Ud:= Ud\ ua

""
, ,.(k)._ ,.(k-l) /)'
'" '-'d .- '-'d U d

-, k:= k+l
-, END,~~------------------------------~

Figure 4.4: Subproblems and algorithms for generating the template schedule

The multi-day subproblem is formulated as an integer linear program ILPH defined
over time horizon H with time-indexed decision variables

{
I, if the first appointment of artificial patient p is scheduled on day s,

xps =
, 0, otherwise.

For each combination of s E Hand d EH, we define the set of artificial patients g'J~,
having an appointment on day d if the first visit-day is s, s ~ d; in addition for each patient
p E pd we define constant Wp,s,d representing the number of nurse activities necessary to
treat that patient on day d if the first visit day is s. Constants Wp,s,d are determined by the
information given by multi-day and intra-day patterns.

Chapter4 112 Appointment Scheduling

Then metrics U and V defined by (4.4) and (4.7) can be represented in the form

U - max {max {E E (Wp,s,dXp,s) -Cd,O}},
dEH sEH flJJJJfpEiTs,d

1-I Jl11E E Is-tplxp,s.
P pEPJJfSEH

V

We intend to find a solution with the smallest possible value of V among the solutions
with the smallest possible value of U. Denoting the lexicographical minimisation of U

and V by lex[minU, min V], we formulate the integer linear program ILlY for the multi-
day problem as follows:

ILPH: lex [minU, minV]

s.t. u?:. E E Wp,s,dXp,s - Cd, d « H,
sEH pEfPJJfs,d

U ?:. 0,
V = Ip~1 E E Is-tplxps,

pEPJJfsEH

E xp,s = 1,
sEH

xp,s E {O, 1}, p e P": sEH.

Having found the solution to problem ILPH, we generate input data for intra-day prob-
lems: for each day d E H and each regimen r, we construct the set of artificial patients
P~ which should visit the clinic on day d and define pf =UrERP~.

The intra-day problem consists in selecting the starting times for all appointments of
patients pf on day d and finding nurse allocation. The suggested approach considers a
series of integer linear programs ILPJI), ILPJ2), ... , ILPJK), as shown in Fig. 4.4. During
the solution process the set of artificial patients pf is partitioned into the subsets Yd and
o//d, which represent the sets of scheduled and unscheduled patients, respectively. Initially
o//d =pf and Yd = 0.

The solution is found iteratively starting from density level k = 1. The algorithm fixes
the starting times for patients all; ~ o//d by optimizing functions XJk), yJk) and Z~k); the
set o//d is then updated by moving patients all; to the set of scheduled patients Yd. The
corresponding appointments form the density set 2J 1

). Proceeding to density level k = 2
with updated sets o//d and Yd, the algorithm keeps previously fixed appointments and
finds the starting times for new patients which are then added to Yd. The density set

Chapter4 113 Appointment Scheduling

.zj2) is now formed as the union of all previously scheduled appointments .zY) and the

appointments scheduled for k = 2. The subsequent density sets are considered in a similar

fashion until the appointments of all patients are scheduled and Ojfd = 0.
For each density level k, the intra-day subproblem for day d E R is formulated as an

integer linear program ILPJk) with variables

{

I, if artificial patient p E P~ is assigned to nurse

xp,s,n,d = nE Nd with the first treatment procedure in time slot s,
0, otherwise.

Initially, k = 1 and all x-variables are free. In subsequent iterations k, k > 1, the set

of scheduled patients Yd is non-empty and for pE Yd, the patient's starting time sp and

allocated nurse np are fixed, which implies that the value of the corresponding x-variable

is also fixed, xp s n d = 1., p, p,

Finding now the expressions for the first two metrics XJk) and yJk) from (4.8) is

straightforward:

- miN {IP~I[, [, [, xp,s,n,d},
rE r,d PEP~ nENd SEHn,d

= [, (ar,d [, [, [, xp,s,n,d) .
rER PEP~ nENd SEHn,d

In order to calculate the third metric z~k), we introduce auxiliary variables Yi,n,d for

each nurse n ENd and each time slot i E Rn d of the nurse's available time slots of day,
d. The smallest value of Yi,n,d is defined as 1 and it represents either of the following two

situations which do not incur any penalties:

- nurse n is free in time slot i;
- there is exactly one activity assigned to nurse n in time slot i.

Any greater value Yi,n,d > 1 represents the number of activities assigned to nurse n in time

slot i.
Using the variables Yi,n,d, the third metric Z~k) can be defined as

Chapter4 114 Appointment Scheduling

For calculating Yi,n,d, we define the set of patients P:f"d having an activity to be per-
formed in time slot i if the appointment starts at time s, and we set

'rp,n,d

Yi,n,d 2:: E E xp,s,n,d
s=l pEPPI.s.i.d

with an additional constraint

1~ Yi,n,d ~ k.

Here the constant ~p,n,d defines the latest time slot when the intra-day pattern of patient
p may start so that all activities of the pattern can be performed by nurse n within the
working hours.
As a result, we obtain the following integer linear program ILP~k):

S.t. X(k) < 1 r r r X
d - jD7Ip I L. L. L. p.s n.d»

r,d PEpo/, nENd sEHn d

yJk) = E (a,: E E' E XP",n'd)'
rER PE~ nENd SEHn,d

Z~k) = E E (Yi,n,d - 1) ,
nENdiEHn,d
'rp,n,d

Yi,n,d 2:: E E Xp,s,n,d,
s=l pEP:'{d

S,I,

rER,

1~ Yi,n,d ~ k,
x d-1p,sp,np, - ,
E E Xp,s,n,d ~ 1,

nENdSEHn,d

Xp,s,n,d E {O,I},

nENd,
pEYd,
PEP:',

PEP:', SEHn,d, nENd·

After a solution to problem ILP~k)(o//d'Yd) is found, the sets of scheduled and un-
scheduled patients Yd and o//d are updated so that o//d = o//d \ all; and Yd = Yd Uall;. A
patient p is scheduled, if there exists a combination of sand n such that xp,s,n,d = 1; we
denote such a combination by sp and np.

The formulation can be extended to include various additional constraints. For exam-
ple, if a meal break is one of the requirements, then ILP~k) can be forced to reserve for
each nurse a set of contiguous time slots (two IS-minute slots in our experiments) in the
middle of the day such that no patient is treated at that time, leaving the nurse free from

Chapter4 115 Appointment Scheduling

treatment activities for that period. This can be achieved by introducing variables bt,n,d,
which define for nurse n the starting time of a break:on day d:

b _ { 1, ifthe meal break:of nurse n E Nd starts at time t E Hn,d,
t,n,d - 0 th .

, 0 erwise,

Let Mn,d be a set of possible starting times of the meal break: of nurse n ENd. For
a patient p E pt, introduce a set B p,t ,n,d of appointment starting times which incur a
treatment activity during the meal break: of nurse n starting at time t E Mn,d. Clearly, if
the meal break: of nurse n is scheduled at time t (i.e., bt,n,d = 1), patient pE Pt cannot
be allocated to nurse n with appointment starting time s E Bp,t,n,d' Then, ILPjk) can be
adjusted by introducing the following additional constraints:

E E xp,s,n,d +bt,n,d ~ 1,
pEP! SEBp,t,n,d

E btnd = 1,
tEMn,d "

Observe that it is easy to ensure that the meal break: is of the required length by defining
the set Bp,t,n,d appropriately.

Suppose the template schedule is created for artificial patients pol to be treated in
time horizon H. In Stage 3, described in the next section, the template schedule is used
for generating and maintaining a running schedule for actual patients P by fixing their ap-
pointments in time slots reserved for artificial patients. Using the approach of the rolling
time horizon, at some point within time horizon H a new template schedule is produced
for a new time horizon H' overlapping with H. The new template schedule is found as
a solution to a multi-day problem ILPH, and a series of intra-day problems ILPjk) for
dE H', 1 ~ k < K, which are similar to problems ILlY and ILPjk), d E H, 1 < k ~ K,
with one point of difference: the appointments of actual patients which have been fixed
in the running schedule must be kept. This can be achieved by adding the constraints
xp,s,n,d = 1 for each pre-scheduled actual patient pEP, which have to visit the clinic on
day d to be treated by nurse n with the first visit day s, s ~ d. On the other hand, the
appointments of artificial patients which are not booked so far for actual patients can be
rescheduled at no cost, so that the corresponding x-variables are free.

Chapter4 116 Appointment Scheduling

4.4 Running Schedule: Creating and Maintaining

Once a template schedule is generated, it is used to assign appointment dates and times
for arriving patients. The booking process for a new patient consists in identifying in the
template schedule available appointments of artificial patients with the same regimen and
selecting the combination of appointments that satisfies the multi-day pattern and addi-
tional preference conditions. Then the dates and starting times of chosen appointments
become dates and times of appointments of the new patient. In this section we propose an
algorithm that selects appointments from the template schedule with the aim of optimiz-
ing the quality of the generated running schedule in terms of metrics FI-F3 (see Section
4.1).

Consider a newly arrived patient pEP with regimen rE R whose first visit date dp
has to be within a given time window [d~in,d~axl determined by patient's requirements
and clinic waiting targets. The proposed algorithm searches for a possible date dp in
[d~in ,d~axl that allows the selection of appointments from the template schedule satisfy-
ing the multi-day pattern of regimen r.

One simple strategy is to choose in the template a single artificial patient with regimen
r and to assign all appointments of actual patient p to the dates and times of pre-scheduled
appointments of that artificial patient.

In order to achieve a solution of higher quality, we consider the template schedule
as a collection of artificial appointments breaking the link to artificial patients and their
multi-day patterns. Then, in order to book appointments for actual patient p with regimen
r, we consider all artificial appointments with regimen r and select those which satisfy
the multi-day pattern of regimen r and our preference criteria (described below). As a
result, the appointments selected for actual patient p might correspond to appointments
of several artificial patients, but they satisfy the requirements of patients p and potentially
lead to a high quality running schedule.

We describe how to perform a feasibility test for selecting day dp as the first visit day
of actual patient p with regimen r. Let 11:,= (11:,(I),11:,(2), ... ,11:,(z,)) be the multi-day
pattern associated with regimen r, where 11:,(1) = 1 and

• 11:,(j) - 1 is the number of days from the first visit to the lh appointment;

• z, is the total number of appointments of the multi-day pattern of regimen r.

The first visit date dp of actual patient p should be selected in such a way that for each
appointment j, j = 1,2, ... , z" there exists a matching artificial appointment scheduled

Chapter4 117 Appointment Scheduling

in the template on date d = dp + 'lrr(j) - 1. The days and starting times of the selected
artificial appointments are then booked for patient p.

An artificial appointment of day d of the the template matches the j'h appointment of
actual patient p if

(i) it is associated with regimen r,

(ii) it is free, i.e., it has not been used to book an appointment for another actual patient,

(iii) the clinic workload of day d, if increased by treatments activities needed for addi-
tional patient p, does not exceed a given threshold.

Verifying the first two conditions is straightforward. In what follows we clarify the last
condition.

In order to keep the workload of the clinic within acceptable limits and to reserve
some proportion of working hours for additional nurse duties, the relative workload of
a clinic on any day must not exceed a given threshold (J < 1 called capacity ratio. The
threshold (J represents the proportion of nurses' time which can be booked for treatment
activities. Using the notation from Section 4.3.2 and the notion of the average relative
workload Wd, the corresponding constraint can be expressed as

In accordance with definition (4.6) of the relative workload, the capacity requirement can
be re-written as

Wd+Wr
Cd ~(J,

where Wd is the overall time required for treating actual patients who have appointments
on day d, Cd is the capacity of the clinic on day d measured as the total number of 15-
minute time-slots when the nurses are available, and Wr is the total number of time-slots
needed for treatment activities of patient p.

Summarising, a date dp E [d~in,d~axl is a feasible date for the first appointment of
patient p with regimen r if for each day dp + 'lrr(j) - 1, j = 1,2, ... ,z-. there exists a
matching artificial appointment satisfying conditions (i), (ii) and (iii).

The minimisation of the number of clashing activities is fundamental in order to
achieve a successful running schedule (see metric F3). For this reason our algorithm
chooses a feasible starting date dp such that the maximum density level k of the selected
artificial appointments is minimum. By the definition of a density set, selecting appoint-

Chapter4 118 Appointment Scheduling

ments belonging to the set 2jk) results in an intra-day schedule with clash density not
exceeding k.

The formal description of the algorithm is given by procedure 'Match-
Appointmentstp,o)' presented below. It is assumed that the template schedule is rep-
resented by the set of artificial appointments grouped in density sets 2r:(~) for each day,
a « H and each regimen rE R. The algorithm uses the 'Feasibility-Test(r,j,d,k,C1),
which verifies whether for the jth visit day of the patient with regimen r there exists a
matching artificial appointment of set 2r~~)satisfying conditions (i), (ii) and (iii).

Chapter4 119 Appointment Scheduling

Procedure 'Match-Appointments(p, G)'
k:=O;
WHILE appointments 1t'r(l), 1t'r(2), ... , 1t'r(Zr) for patient p are not booked DO

Set the density level k := k + 1;
FOR d = dmin TO dmax DOp p p

IF 'Feasibility- Test(r, j, d, k, G)' confirms for each j = 1,2, ... ,Zr, that
the j'h appointment of patient p can be assigned to the corresponding
day d = dp +1t'r(j) - 1 and the matching artificial appointments belong
to density set .!£}~);,

THEN book all appointments for patient p with the first visit day dp; STOP
END FOR

END WHILE

Notice that in some extreme cases a set of feasible dates and times may not be found by
procedure 'Match-Appointmentstp,o)'. For example, if patient arrival rates substantially
diverge from the forecast of Stage 1, artificial appointments for arriving patients may not
be available in the template schedule. Our experiments show that this difficulty can be
overcome by using an appropriate overestimation rate of patient arrival at the stage of
template generation.

4.5 Daily Rescheduling

In this section we develop an integer linear program to adjust a one-day schedule in order
to achieve an improvement in the running schedule in terms of metrics F2, F3 introduced
in Section 4.2. In particular, we reduce the number of clashing activities and the maxi-
mum clash density of each day by full re-allocation of nurses, introducing minor shifts of
nurses' meal breaks and minor delays in starting times of the pre-booked appointments.
Observe that changing nurse allocation does not incur any cost as a patient can be treated
by different nurses on different visit days.

Rescheduling for day d can be performed when complete information about all booked
appointments for that day is known. The integer linear program presented below is a re-
formulation of lLPJk) introduced in Section 4.3 with slightly modified objective functions
and constraints.

Consider a set of patients Pd visiting the clinic on day d. For each patient pE Pd, let
sp be the starting time of the pre-booked appointment and np ENd be the nurse allocated

Chapter4 120 Appointment Scheduling

to patient p on that day. The rescheduling problem consists in finding for each patient p

a new starting time s~ and a new nurse allocation n~ ENd such that the maximum clash
density

Ad = max Ad n
nEN '

and the total number of clashing activities

are minimised (see Section 4.1). Since only small delays in patients' starting times are
acceptable, a new starting time s~ of the appointment of patient p can take values from
a restricted set H~,d ~ Hd, where Hd is the set of 15-minute time intervals of day d. For
example, if it is acceptable to delay starting times by at most two I5-minute time slots,
then

Consider now reallocation of patients to nurses. Introduce a set of patients Ps,i,n,d such
that the intra-day pattern of patient p E Ps,i,n,d incurs an activity for nurse n E Nd in time
slot i, if the appointment starts at time s. Allocation of patient p with appointment starting
time s~ to nurse n~may be infeasible if it is not possible to complete all treatments of the
intra-day pattern of patient p within the working hours of nurse n~. Therefore we limit
our consideration to a set of nurses Np,s,d ~ Nd whose working hours on day d allow to
perform all treatments of patient p with starting time s.

Similar to formulation ILP~k), we define the decision variables xp,s,n,d and bt,n,d:

Xp,s,n,d - {
~ {

1, if the appointment time of patient p is s and the allocated nurse is n,
0, otherwise.

bt,n,d
1, if nurse n has a meal break starting at time t,
0, otherwise,

and auxiliary variables Yi,n,d to measure the number of clashing activities. Recall that

Y· d> 1I,n, _ ,

where Yi,n,d = 1 represents either of the cases: the nurse is free in time slot i or performs
one activity in time slot i and there are no other clashing activities, see Section 4.3.3. The
case Yi,n,d > 1 corresponds to the number of clashing activities of nurse n happening in

Chapter4 121 Appointment Scheduling

time slot i and it is calculated as

Yi,n,d ~ E E Xp,s,n,d'
SEHn,dpEPs,i,n,d

The two main objective functions of the rescheduling problem are the maximum clash
density ~d and the number of clashing activities ad:

ad = E E (Yi,n,d - 1) .
nENdiEHn,d

An additional objective is aimed at balancing the workload of different nurses and it is
measured as the maximum difference Wjiff in nurses' workloads:

Recall that the relative workload Wn,d of nurse n on day d is defined by (4.5) and it can be
calculated as

1Wo d=- ~ ~ ~ Xn, IH I I...J I...J I...J p,s,n,d'
n,d SEHn,diEHn,d pEPs,i,n,d

Since the above three criteria are conflicting, we establish an order of their importance for
lexicographical optimization. Our first priority is to minimise the maximum clash density
~d; secondly, among the solutions with the smallest clash density, we give priority to those
with the smallest number of clashing activities ad; finally, among the solutions with the
smallest ~ and ad we select those with the minimum workload difference Wjiff.

Summarising, the resulting integer linear program 1LPd is of the form:

Chapter4 122 Appointment Scheduling

1LPd: lex [minLld, min Qd, min Wjiff)

s.t. Lld ~ Yi,n,d, nENd, i E Hnd,,
Qd= E E (Yi,n,d - 1) ,

nENdiEHn,d
diff W. W. nl,n2 ENd,Wd ~ nl,d - n2,d,

w.-l E E Ex nENd,n,d - ~ p.s.n.d»
n,d SEHn,d iEHn,d pEPs,i,n,d

Yi,n,d ~ E E Xp,s,n,d, nENd, i E Hnd,
SEHn,d pEPs,i,n,d

,

y' d> 1 nENd, i E Hnd,I,n, _ , ,

E E Xpsnd = 1, pEPd,
SEH'dnENpsd

' , ,
p, "

E E xp,s,n,d + bt,n,d ~ 1, nENd, t E Mn,d,
PEPd sEB p,t,n,d

E b d-1 nENdtEMn,d t,n, - ,

xp,s,n,d E {a, I}, PEPd. sE H;,d' nE Np,s,d.

bt,n,d E {a, I} , t E Mn,d nENpsd. , ,

Notice that the pre-assigned appointment starting time sp and nurse allocation np for every
patient pE Pd define a feasible solution to 1LPd, which can be used as an initial solution
for that problem. An optimal solution to 1LPd determines new appointment times s~ and
nurse allocations n~ for all patients p E Pd.

Such problem needs to be solved in the forth stage of our solution approach (see
Section 4.5)

4.5.1 Nurse assignment problem

The nurse assignment problem consists of assigning a set Nd of k nurses to a set Pd of pa-
tients whose appointment times have already been fixed for the day d. Each appointment
has to be allocated to one of the nurses such that no clashing activities occur in nurses'
diaries, i.e. no more than one appointment should be allocated to any time slot of the
nurse diary. Notice that, since all appointments and nurses involved in the assignment are
known in advance, the problem considered is an offline problem.

In this subsection we study the complexity of the nurse assignment problem which
appears in the fourth stage of our solution approach (see Section 4.5). In particular, we
show that such a problem is NP-complete and it can be solved by determining a colouring
of a special designed graph.

Chapter4 123 Appointment Scheduling

Consider a graph G = (V, E) and a number k > 2 of colours where V is the set of
vertices and E is the set of undirected edges connecting the vertices. The k-colouring
problem consists in determining the existence of an assignment of the k colours to vertices
such that, for each arc, adjacent vertices have different colours. Such an assignment is
called a k-colouring of the graph. The k-colouring problem has been proved to be NP-
complete in Garey and Johnson [38].

Given an instance of the nurse assignment problem, we define a so-called conflict
graph G = (V,E) with the node set V and the arc set E as follows. Each node v E V is
associated to a patient appointment to be assigned to a nurse. Given two nodes u, v E V,
there exists an undirected arc (u, v) E E if and only if the patient appointments associated
to nodes u and v generate one or more clashes when assigned to the same nurse.

The nurse assignment problem can be modelled as the problem of determining a k-
colouring of the corresponding conflicting graph where each of the k colours represents
one of the k nurses. In particular, a patient appointment is assigned to a nurse if the
node in the conflicting graph associated to the patient appointment is coloured with the
colour representing the nurse. Clearly, the solution of the nurse assignment problem can
be achieved by two steps: constructing the conflict graph of the given instance and then
determining a feasible k-colouring using available algorithms.

In what follows we show that the nurse assignment problem is NP-complete if the
number of nurses INd I is larger than 2 providing a polynomial reduction from the graph
k-colouring problem which is known to be NP-complete. In particular, given an arbitrary
instance of the k-colouring problem, we construct an instance of the nurse assignment
problem. Then we prove that the nurse assignment problem has a clash-free assignment
with no more than k nurses if and only if the k-colouring has a solution with no more than
k colours.

To prove the NP-completeness, we derive a polynomial-time algorithm 'Reduction
from k-colouring' reducing any instance of the k-colouring problem to an instance of
the decision version of the nurse assignment problem. The reduction is performed by
the polynomial-time algorithm 'Reduction from k-colouring' which, given an arbitrary
undirected graph G = (V, E) and a number of colours k, generates a set Nd of k nurses, a
set Pd of patients, their appointment intra-day patterns and starting times (see the formal
description below).

The idea behind the reduction algorithm is to create a set of clashing activities for
adjacent nodes in the conflict graph. The algorithm initially generates for each node v E V
an empty patient appointment P; with no activities scheduled, then it adds activities to
appointments While iterating the nodes of the graph. The algorithm stops when all nodes

Chapter4 124 Appointment Scheduling

have been visited once. When a node v E V is visited, the algorithm schedule, starting
from the time slot s, as many contiguous unit-length activities as the number of unvisited
nodes adjacent to v. Then, for each unvisited node vj adjacent to v, a unit-time activity is
scheduled at time s + t to the patient's appointment pYj' where t represents the number of
neighbours considered. As a result, the contiguous activities constructed for v clash with
the unit-time activities generated for nodes adjacent to v. It is worth clarifying that, when
we start exploring a new node v, the corresponding patient appointment may already have
one or more unit-length activities assigned to time-slots earlier than the current time s.

Algorithm 'Reduction from k-colouring(G (V, E) ,k) ,
Set a variable s := 0;
Generate a set Nd with k nurses;
Label all nodes in Vas 'unmarked' and renumber them arbitrarily;
Create an empty appointment of patient P; for each vertex v E V;

Consider each unmarked node v according to the numbering given:
Label the current node v as 'marked';
Schedule an activity of the appointment for patient Py at time s with duration
equal to the number of unmarked
neighbours of v, if any;
Sett:= 0;
FOR each unmarked node vj adjacent to v DO

create a clashing unit activity at time s+ t for appointment of patient P;j;
sett:= t+ 1;

END FOR
Set s := s + t + 1;

Generate the patterns according to the activities assigned.

Example In what follows we give an example of instance of the nurse assignment prob-
lem generated by the algorithm 'Reduction from k-colouring(G (V, E) ,k)' .

Consider a number of colours k = 3 and the undirected graph G with vertices
V = {1,2,3,4,5,6} and edges E = {(1,2), (1,4), (2,4), (3,5), (3,6), (4,5), (4,6), (5,6)}
represented in Figure 4.5. Let us call the three colours A, Band C. The given instance
admits the feasible colouring ~ = {(1,A),(2,B),(3,C),(4,C),(5,A),(6,B)}. Using the
nodes numbering given in the Figure 4.5, the algorithm 'Reduction from k-colouring'
produces the appointments showed in Figure 4.6 and the intra-day patterns listed in Table
4.4.

Notice that also the nurse assignment problem admit a feasible solution. Naming the a

Chapter4 125 Appointment Scheduling

Figure 4.5: Example of undirected graph .

. ..C1__. L~_:_1__CJ
...........C::::L -::J ___C]

o 2 3 4 5 6 7 8 9 10 11
time

Figure 4.6: Appointment schedule generated by algorithm 'Reduction from k-colouring'
from graph in Figure 4.5; the time is expressed in I5-min time-slots

Pattern No. I5-mins timeslots
1 1,2

2 1,4

3 1,2

4 1,3,8,9

5 1,4,7

6 1,4,6

Table 4.4: Intra-day patterns generated by algorithm 'Reduction from k-colouring' from
the graph 4.5; 15-min timeslots are counted starting from 1.

set of nurses with colours name A,B and C, a feasible assignment of patients appointments
to nurses is:

• appointments 1,5 are assigned to nurse A;

Chapter4 126 Appointment Scheduling

• appointments 2,6 are assigned to nurse B;

• appointment 3,4 are assigned to nurse C.

-
It is easy to see that the number of steps of the algorithm 'Reduction from k-colouring'

for the worst case instance is O(IEI) where lEI is the number of arcs in the conflicting
graph.

Theorem 9. The nurse assignment problem is NP-complete.

Proof: To prove NP-completeness, we show that (1) a k-colouring of the conflict graph
corresponds to a clash-free nurse assignment and (2) a clash-free assignment of patients
appointments to nurses corresponds to feasible k-colouring of the conflict graph.

The validity of the first statement is a direct consequence of the definition of the con-
flicting graph. Consider a feasible k-colouring of the conflicting graph. A solution of the
nurse assignment problem is constructed assigning appointments associated to nodes with
the same colour, to the nurse represented by such a colour. Clearly, since there is no arc
connecting nodes with same colour, then no clash appear between patients appointments
associated to the same nurse.

We prove the correctness of second statement by contradiction. Suppose that there
exists a feasible nurse assignment that leads to an infeasible k-colouring for the reduced
graph G = (V,E). Then, there exists two adjacent vertices u, v E V which have the same
colours. Since each colour is associated to a nurse and each node represents a patient
appointment, the patients appointments associated to nodes u, v are served by the same
nurse. This contradicts the fact that the assignment is feasible since the algorithm 'Reduc-
tion from k-colouring' generates two clashing activities between appointments associated
to adjacent nodes. _

Special cases of the nurse assignment problem solvable in polynomial time can be
derived by conflict graphs with special structures. An example is given by interval graphs
which model the nurse assignment problems where each intra-day pattern is a contiguous
set of activities. Since coloring of the interval graph is solvable in polynomial time(see
[52]), then the nurse assignment problem with intra-day patterns made of contiguous
activities is solvable in polynomial time. Another example is case in which each intra-
day pattern is made of a single activity. It is easy to see that in this case the resulting
conflict graph is made of a collection of unconnected cliques which can be easily coloured
(see [52]). The special case in which only 3 time intervals are defined is also polynomially
solvable despite the total number of nurses. In fact, the conflict graphs arising from this

Chapter4 127 Appointment Scheduling

class of instances are chordal graphs for which there exists a polynomial-time algorithm
to color them.

However the nurse assignment problem is still NP-complete for many other special
cases. Some examples are the case in which each pattern has exactly 3 activities or the
case in which each pattern has exactly 2 activities. The complexity of the nurse assign-
ment problem for instances with the same intra-day patterns remains an open question.

4.6 Clinic Appointment Data

In what follows we describe typical problem instances as they appear in the historical
appointment records of the chemotherapy outpatient clinic in the St. James's Hospital in
Leeds for the period from 1st May 2008 to 1st September 2008. The data analysed has
been extracted from the information system in use at the clinic and has been given to
us by the management in an anonymised form so that no personal patient information
could be identified. Since the data has been input in the system manually, it presents
many inconsistencies and missing information that could not be repaired and completed.
However, the analysis of such data gives us enough information to understand the number
of patients, appointments and treatment involved and to design a realistic and accurate
setting for the computational experiments in Section 4.7.

In the chemotherapy outpatient clinic of St. James's Hospital in Leeds an average of
800 appointments are scheduled every month. Treatments are performed by 19 nurses
which have different working hours. The clinic provides the outpatient service 5 days a
week and every day about 40 patients are treated by 8 nurses. According to the recorded
data, the time from the decision to treat to the date of the first appointment is 14 days on
average. A schedule in a typical day has about 20 nurse clashing activities which becomes
450 for a typical month. Patients' waiting times on treatment days can be as large as 2
hours. The percentage of time a nurse spends on treatment activities in relation to overall
nurse's working hours is 47% on average.
In what follows we provide a simple analysis of the data from two perspectives:

1. we ignore the links between appointments defined by the multi-day patterns for a
specific treatment and we analyse the monthly and daily number of appointments;

2. we consider each set of appointments defined by the multi-day patterns for a specific
treatment as a single event and we analyse their monthly and daily number.

The first perspective gives us a picture of the distribution of the clinic workload over

Chapter4 128 Appointment Scheduling

the time. Differently, the second perspective helps us to understand the patients' arrival
process and waiting days and times.

60

70 ~- - - - ..- ..-.-.--.- ..- - - -- - --- --- ---"------- ---------

f-.. r-r--r-: ..- ...-...... ..- f-... .--....-.-.-- ..-- t---- -

IO~_._,~r~~~~~~._._._._._._._~~~~~-_._._._+_.-~._~~
.,_._ ... __._I ... L-_ ___. __ L.A...__.... "...__. _ _ L- _ I 1

50

i! 40
1:1

'8, 30

~
r- ...-.........- ...--- - t-- r-----...- -- -

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 2S 26 27 28 29 30

Days

Figure 4.7: Graph representing the number of appointments of a typical month

Figure 4.7 shows a graph representing the number of appointments occurring each day
in one month. It is easy to see from the figure that with the current scheduling policy the
mid-week load of the clinic is higher. On Mondays and Fridays the clinic load is much
lower due to the start-up of the pharmacy (Mondays) and short staff shifts (Fridays). This
variation on the number of daily appointments is also confirmed by the high value of
standard deviation which is 17.79 where the average number of appointments is 34.21.

300,--------------------------------
250 -- -.- - ..---.- - ---- ...___.__ ...- --_- .__ ..._------

Weeks

:l 200
J ISOr.~~~.-~~~_1~._~~_.~~~._~_.~_1~._~;~ 100rt~~.-~~_.~~~._~_._.~~._~~_.~~~._~

SO - I-- .- _ .-....... - --. .-- r- f- - . ____

o .
2 3 4 5 6 7 8 9 10 II 12 13 14 IS 16 17 18 19 20 21

Figure 4.8: Graph representing the number of appointments for each week of the historical
data

The number of appointments for each week is shown in Figure 4.8. It is possible to
notice that the weekly variation of the number of appointments is relatively much smaller

Chapter4 129 Appointment Scheduling

than for the daily case. In fact, although the standard variation value of the number of
appointments is 16.38, it is calculated over an expected number of appointments as large
as 228.23.

180/0 ,,, ,, , .

~ 10% . " .

= 8%' -..- - - ..- - - ..-- ..- ..--.

16%

14% +------.-- ..-------.---1+--------

12% _ .

6%

N M ~ ~ ~ ~ ~ ~ 0 _ M ~ • ~
- - - - - - - - M N N M N N

Number oftreatments (ftrst appointments)

Figure 4.9: Graph representing daily arrival frequency

When considering the treatments as single events, we count the number of first ap-
pointments on daily and weekly basis to understand the arrival process. Notice that, al-
though a patient may undergo to many chemotherapy treatments before the recovery, in
our analysis we count each treatment as a separate entity ignoring the actual patient it is
associated to.
14%r .

12%~-----------·----------~-----------------
10% -t---- - - - -.- --- - - - - -.- ---#- .-------.--

~ 8%1--·--····-····-·-···---····-····-----·····-···----·-------.--.-.~.

~ 6%

-
'" '"

Number of treatments (ftrst appointments)

Figure 4.10: Graph representing weekly arrival frequency

Figures 4.9 and 4.10 show the number of the first appointments recorded on a daily
and weekly basis expressed in term of their frequency. In particular, for each possible
arrival quantity, the number of days (or weeks) in which such number of first appointments
arrived is expressed as a percentage over the total number of days (weeks) in the data set.

Chapter4 130 Appointment Scheduling

The dotted lines with squares represent the best fit (using maximum likelihood method) of
Poisson distribution to the data. The fitting procedure led to A parameters equal to 18.37
and 91 for the daily and weekly case respectively. The standard deviations of the two data
sets are 5.96 and 18.75 respectively.

In Figures 4.11 and 4.12 we represent the number of weekly and monthly arrivals
where the treatments are grouped by the 160 most important regimens. Observe that in
the 4-months data considered most of the arrivals are associated to 40 common regimens
while other regimens have not been prescribed at all. Notice that, as shown in Section
4.3.3, the 4-stage approach take in consideration such situation ensuring that some time
is reserved in the template schedule to easily match appointments for rare regimens.

4.7 ComputationalExperiments

In this section we describe the design of the experiments performed and their computa-
tional results. We perform two types of experiments evaluating the operations of the clinic
when

• only the rescheduling procedure (Stage 4 of our approach) is used in addition to the
existing manual scheduling policy,

• the whole four-stage scheduling approach is adopted.

The evaluation is based on historical data recorded at the St. James's University Hospital
in Leeds during the period from 1st May 2008 to 1st September 2009.

In our first set of experiments we show how the rescheduling procedure corresponding
to Stage 4 of our approach can be used to improve daily schedules produced in the hospital
manually. We use actual daily schedules for one month of the recorded historical data
(May 2008). The results are summarised in Table 4.5 where we compare the average
number of daily clashes over the one month period depending on rescheduling constraints.

Our experiments demonstrate that operation of the clinic can be substantially im-
proved if nurse reallocation is done (compare the figures in the first two columns of Ta-
ble 4.5). Further improvement can be achieved if delays are allowed in starting times of
patients' appointments (see the figures in the last four columns of Table 4.5). Observe that
such delays do not affect all patients and they are not necessarily of maximum duration
(see Table 4.6).

In the second set of experiments, we evaluate the four-stage approach on two scenar-
ios, one with patients' arrival rates similar to actual rates in the real clinic (119 patients

Chapter4

166
163
160
157
154
151
148
145
142
139
136
133
130
127
124
121
118
115
112
109
106
103
100
97
94
91

·1
88
85
82

Qi:
79
76
73
70
67
64
61
58
55
52
49
46
43
40
37
34
31
28
25
22
19
16
13
10
7
4
I

131 Appointment Scheduling

Number of treatments (first appointments)

5 6o 4 9

I
I

7 8

1'-'" -,---

1'-'-"' -","-"-"

I
I

Figure 4.11: Graph representing the weekly arrival frequency grouped by regimens

_---- --

2 3

Chapter4

166
163
160
157
154
151
148
145
142
139
136
133
130
127
124
121
118
115
112
109
106

100
97
94
91

i 88

!85
82
79
76
73
70
67
64
61
58
55
52
49
46
43
40
37
34
31
28
25
22
19
16
13
10
7
4

0

132 Appointment Scheduling

40 12020

Number ofireatments (ftnt appointments)

60 80 100

Figure 4.12: Graphrepresenting the monthly arrivalfrequency grouped by regimens

per week on average) and another one with higher arrivalrates (about 141 patients per
week). We consider the 160 regimens which occur in the real clinic most often. Our
experiments cover only one time horizon H consisting of 134 days with the first 60 days
corresponding to the arrivalperiodHa, see Section 4.2.

Stages 1-2 are performed only once producing one multilevel template schedule,
which is then used to generate running schedules for both scenarios. The data for ar-

Chapter4 133 Appointment Scheduling

Actual Nurse reallo- Nurse reallocation and possible delays
schedule cation; no in appointment starting times

delays in 15 min 30min 45 mis complete
appointments delay delay delay resche-
starting times duling

Number of
clashing activities 454 110 41 30 22 0
per month

Max clash density 6 4 4 2 2 1

Dailyavg.
clash density 3.2 1.95 1.55 1.25 1.20 1

Table 4.5: Comparison of actual daily schedules of May 2008 used at the St. James's
Hospital (Leeds, U.K.) and those obtained via rescheduling

Nurse reallocation and possible delays
in appointment starting times

patients waiting 30 mins

15 min delay 30 min delay 45 min delay
53.98 % 44.96 % 40.19 %

46.02 % 22.94 % 18.81 %

32.10 % 17.78 %

23.22 %

patients not waiting

patients waiting 15 mins

patients waiting 45 mins

Table 4.6: The effect of rescheduling on patient waiting times

tificial patients is generated considering the arrival rate Ar calculated as the arithmetic
mean of weekly arrival rates recorded in the historical data. The value of parameter ~,
which defines the level of overestimation, is set to 5.

Stages 3 and 4 are evaluated on 100 datasets, which describe patients' arrivals simu-
lated using a Poisson process. Each dataset we generate contains arrival dates of patients
for all regimens. For the first scenario, arrival rates are the same as Ar-values used in
Stage 2. For the second scenario the arrival rates are increased by about 20%.

All scheduling decisions for a patient have to be made on the arrival date. Depend-
ing on the category of a patient, the first appointment should happen within 7, 14 or 28
days from the arrival date. We denote the correspond groups of patients as A, B and C,
assuming that the patients are split in proportion 73% , 15% and 12%, respectively.

Chapter4 134 Appointment Scheduling

Both scenarios use the same nurses' weekly rota which is shown in Table 4.7. The
shifts have different lengths giving nurses some flexibility in negotiating preferred work-
ing hours. Notice that on Monday nurse shifts start no earlier than 11 a.m. since the
hospital pharmacy needs additional set up time after a weekend in order to prepare drugs
for treatments. It is assumed that each nurse needs a 30-minute lunch break between 11
a.m. and 2 p.m.

The capacity ratio o used in Stage 3 to generate and maintain running schedules is
set to 0.9 bounding the total number of treatment activities performed by a nurse. This
implies that in addition to a 30-minute lunch break, nurse's schedule should contain at
least 10% of unused time slots for additional duties.

Mon The Wed Thu Fri
Shift 1 11:00-18:00 9:00-18:15 9:00-18:15 9:00-18:00 9:00-16:45

Shift 2 11:00-18:00 9:00-18:15 9:00-18:15 9:00-18:00 9:00-16:45

Shift 3 11:00-18:15 9:00-18:15 9:00-18:15 9:00-18:00 9:00-16:45

Shift 4 11:30-18:15 9:00-18:15 9:00-18:15 9:00-16:45 9:00-16:45

Shift 5 12:00-18:30 9:00-17:00 9:00-18:15 9:00-16:45 9:00-16:15

Shift 6 12:00-19:00 9:00-17:00 9:00-17:30 9:00-16:45 9:00-16:15

Shift 7 - 9:00-17:00 9:00-17:00 9:00-16:45 9:00-16:15

Shift 8 - 9:00-17:00 9:00-17:00 9:00-16:45 9:00-16:15

Shift 9 - 9:00-16:45

Table 4.7: Weekly nurse rota for scenario 1 and 2

Average monthly number of

appointments treatments
Real clinic 992 415

Scenario 1 1024 531

Scenario 2 1277 617

Table 4.8: Average number of appointments and treatments performed in a typical month

Tables 4.9 and 4.10 characterise the quality of the generated running schedules. In the
first scenario, our approach is able to schedule appointments reducing the average number

Chapter4 135 Appointment Scheduling

Daily Daily Relative Workload (%)
Clashing activities Clash Density

Avg. Dev. Max. Avg. Dev. Max. Avg. Dev. Max.

Real clinic 22.7 10.43 43 3.20 0.80 6 47.28 12.71 62.90

Scenario 1 1.25 2.07 15 1.42 0.51 3 62.71 13.84 84.80

Scenario 2 1.95 2.55 18 1.56 0.52 3 71.13 12.53 85.86

Table 4.9: Characteristics of schedules produced for Scenario 1 and 2

Waiting days Waiting times

Total Group A GroupB GroupC (minutes)

Avg Avg. Dev. Avg. Dev. Avg. Dev. Avg. Dev.

Real clinic 14 N/A N/A N/A N/A N/A N/A N/A N/A
Scenario 1 4.69 3.80 4.85 5.79 4.83 8.97 6.50 11:11 12:28

Scenario 2 5.26 4.42 5.46 6.28 5.26 9.30 6.73 10:59 12:25

Table 4.10: Patients' waiting days and times

of waiting days (see Table 4.10), eliminating almost all clashing activities (see Table 4.9)
and, therefore, reducing their density and increasing nurses' relative workloads defined
by (4.5).

The results of experiments for the second scenario are quite remarkable. With an
increased number of arriving patients it is indeed inevitable that the waiting time charac-
teristics and the number of clashes should increase. It appears that for a 20% increase in
the number of patients (about 89 additional patients per month or 253 additional appoint-
ments) the deterioration in schedule quality is marginal: for each category of patients the
number of waiting days increases on average by no more than 1 day, while the average
number of clashing activities changes from 1.25 to 1.95 only. The comparison with the
actual booking process of the clinic is even more dramatic: the quality of actual schedules
generated manually for 992 appointments is much worse than the quality of schedules
generated by our approach for 1277 appointments.

The experiments were performed on Intel Pentium Core 2 Quad CPU 2.5GHz and
3GB RAM. The ILP programs of Stages 2 and 4 were solved by a single thread version
of CPLEX 11.2. Time estimates for the four stages of our approach are as follows.

• Stage 1 is implemented in the most simple way by calculating averages of patients'

Chapter4 136 Appointment Scheduling

arrival rates; the time required by these calculation is negligible.

• Since the template schedule is the major factor which affects the quality of running
schedules, we allowed more time for solving the associated ILP programs: 1 hour
for the solution of the multi-day problem and 8 hours for the solution of all intra-day
problems of the time horizon. In the environment of a real clinic, long computa-
tion time of Stage 2 is acceptable as template schedules are generated rarely and
serve for sufficiently long time. These calculations can be performed, for example,
overnight.

• Stage 3 is a fast heuristic requiring less than 1 second to book all appointments for
a patient.

• Stage 4 is implemented as a single ILP problem for each day. We set up a time limit
of 120 seconds for rescheduling each intra-day schedule; however optimal solutions
are often found within 60 seconds.

In order to set up the time limit for the series of intra-day problems of Stage 2, we use
the following approach. The 8-hour time limit (28800 seconds) is divided among the days
of the time horizon H in proportion to the number of daily appointments assigned. This
implies that the time limit Td for solving the intra-day problem for day d can be defined
as

Td = 28800 x IPtl
EdEHIPtl'

where Iptl is the number of artificial patients to be treated on day d.

Generating an intra-day schedule for one day of the template involves a number integer
linear programs ILPJk), one for each clash density level k = 1,2, ... ,K. Although the total
number of density levels K in an intra-day schedule for day d can be as large as the number
of artificial patients Ipt I scheduled on that day, for our datasets K can be bounded by a
much smaller number defined empirically:

K~5.

Due to this we set up a time limit for each program 1LPJk) as

Finally, since there are three objective functions for each problem 1LPJk) optimized
lexicographically, a time limit of Tjk) /3 is imposed for optimizing one function.

Chapter4 137 Appointment Scheduling

Summarising we observe that the computational experiments demonstrate the advan-
tages of the proposed approach evaluated against the performance metrics of the model.
Further experiments run in a real clinic in parallel with the existing manual system might
provide additional evidence of operational benefits which the streamlined scheduling pro-
cedures can bring.

4.8 Discussion

In this chapter we have introduced a new appointment scheduling problem which arises in
the context of a chemotherapy outpatient clinic. If all information about patients is known
in advance, producing good schedules for nurses and patients which treatments should
follow a combination of multi-day and intra-day patterns with constraints on waiting times
appears to be a difficult activity. The on-line nature of the problem with patients arriving
over time adds even more complexity to the scheduling process.

The approach we propose consists of four stages: forecasting, generating a template
schedule, producing a running schedule and rescheduling. The major underlying idea is
essentially based on the concept of multilevel template schedule which represents a well
thought through plan. The template schedule contains more pre-booked appointments
than anticipated, providing flexibility in selecting the most appropriate options for arriving
patients and for handling unexpected arrivals. It is obtained as a solution to a series of
integer linear programs with multiple objectives optimized lexicographically. Due to this,
the template ensures that the final running schedule is potentially of high quality and
satisfies the requirements of patients and nurses.

In order to use the template for booking actual appointments and creating a running
schedule, we design a matching procedure which takes into account characteristics of
appointments of the template and requirements of arriving patients. Finally, a running
schedule is further improved via rescheduling.

Thus, the novelty of our work lies in

- the introduction of a new scheduling model with jobs consisting of repetitive activ-
ities satisfying given multidimensional patterns;

- the formulation of the concept of multi-level template for scheduling patients in
an uncertain environment and in its development into a formal optimization model
with advanced features;

- the integration of daily rescheduling procedures into long-term planning.

Chapter4 138 Appointment Scheduling

The proposed approach can be enhanced with various additional features. We have
demonstrated how it can be extended to take into account the requirements of meal breaks
for nurses. Further enhancements may include patients' preferences on appointment start-
ing times (morning, midday or afternoon) or requirements of pharmaceutical suppliers
and hospital pharmacy on drug preparation.

Computational experiments demonstrate that our approach can potentially bring sub-
stantial improvement in operation of a real clinic in different ways:

- maintaining patients' waiting times within required limits;

- improving nurses' schedules by reducing the number of clashing activities (from an
average of 20 clashing activities per day to less than 2 clashes),

- increasing the clinic capacity in terms of additional patients (in our experiments
based on real-world data, up to 89 patients can be treated monthly in addition to
the current 476 patients on average) without extending nurses' working hours and
avoiding essential deterioration in schedule quality.

We strongly believe that the concept of template schedule can be used as a powerful
algorithmic tool to tackle complex online scheduling problems, especially those which
involve multi-operation jobs with given patterns.

Itwill be interesting to consider alternative approaches for generating template sched-
ules, for example, an integrated approach for solving multi-day and intra-day problems
simultaneously rather than sequentially. Due to the size and complexity of the integrated
problem, it will be appropriate to develop meta-heuristics and to compare the quality of
the resulting schedules with those produced by the current ILP-based approach which
treats multi-day and intra-day problems sequentially. Another possible improvement
could be achieved in Stage 1 by developing advanced models for prediction of future
demands.

4.9 Notation

Table 4.11 summarises the main notation used throughout Chapter 4. Symbols are indi-
cated in their most general form: when indices are missing in the text, a summation over
the elements of the domain is assumed unless differently stated, Le. Wd = EnEN Wd,n'

Symbol Description Section
H scheduling horizon 4.2

Chapter4 139 Appointment Scheduling

Symbol Description Section
p set of arriving patients 4.2

/).d,n maximum clash density in a schedule of a nurse n on day d. 4.2

Qdn number of clashing activities in a schedule of nurse n on day 4.2,
d.

/). maximum clash density over all days within the considered 4.2

horizon, i.e. /).= maxdEH,nEN~,n'
Q total number of clashes for all days within the considered hori- 4.2

zon, i.e. Q = EdEH,nEN Qd,n'
Ha arrival period: initial part of the scheduling horizon in which 4.3

patient arrives.

R set of chemotherapy regimens. Each regimen is associated to 4.3

an intra-day and multi-day pattern.

Ar expected number of arriving patients for a regimen r. 4.3
pol set of artificial patients associated to regimen r generated for 4.3r

the template schedule .
.z;_ti~ set of appointments of regimen r scheduled in density level i 4.3r,d,n

for nurse n on day d.
K constant defining the maximum density clash for a multi-level 4.3

template schedule.

Nd set of nurses available on day d. 4.3

C; constant representing the overestimation rate for the generation 4.3.1

of a multi-level template schedule.

tp target day of artificial appointment p. 4.3.1

Hn,d set of working time-slots of nurse n on day d. 4.4

dp day scheduled for the first appointment of a patient p. 4.3.2

Cd capacity of the clinic on day d in terms of available nurse time- 4.3.2
slots.

Wn,d workload of nurse n on day d measured as the number of 15- 4.3.2

minutes activities performed.

Wd average relative workload measured as Wd = ~ 4.3.2

U maximum daily workload excess in the template schedule, i.e. 4.3.2

U = maxdEH{max{Wd -Cd,O}}.
V average deviation between expected and actual appointment 4.3.2

starting times, i.e. V = iPk, EpEPJJlldp -tpl.

Chapter4 140 Appointment Scheduling

Symbol Description Section
xy) proportion of artificial appointments of different regimens al- 4.3.2

located to density level 2j~ .
y~k) weighed sum of artificial appointments of different regimens 4.3.2d

allocated to density level 2j~ .
Z~k) overall number of clashing activities determined by appoint- 4.3.2

ments in density level 2j~ .

Xd group of measures representing the proportion of artificial ap- 4.3.2
pointments assigned to density levels (see XJk)

Yd group of measures representing the weighted number of artifi- 4.3.2
cial appointments assigned to density levels (see yJk)

Zd group of measures representing the number of clashing activi- 4.3.2
ties in density levels (see Z~k)

ar,d weight defined for a regimen r on day d used in the calculation 4.3.2
ofyjk).

Wp,s,d number of activities that nurse n have to perform on day d to 4.3.3
treat the patient p.

o//d set of unscheduled patients for day d. 4.3.3
Yd set of scheduled patients for day d. 4.3.3
'rp,n,d latest time slot when the appointment of patient p can start to 4.3.3

be treated by nurse n on day d.

Mnd set of possible starting times for the meal break of the nurse n 4.3.3,
on day d.

Bp,t,n,d starting times of an appointment for patient p which determine 4.3.3
a treatment activity to be performed during a meal break start-
ing at time t.

dmin dmax minimum and maximum waiting days for the patient p. 4.4'» r:»
1rr(j) 1rr(j) - 1 represents the number of days from the first visit to 4.4

the i" appointment described in the regimen r.

Zr total number of appointments of the multi-day pattern of regi- 4.4
menr.

a capacity ratio, i.e. threshold for maximum relative workload 4.4
of the clinic.

Wr total number of activities for the treatment of a patient associ- 4.4
ated to regimen r in one day

Chapter4 141 Appointment Scheduling

Symbol Description Section

Pd set of patients visiting the clinic on day d . 4.5
np nurse allocated to patient p. 4.5
sp starting time of appointment for patient p 4.5
po. d set of patients whose intra-day pattern incurs in an activity for 4.5l,s,n,

nurse n at time i is starting at time s on day d.
Table 4.11: Main notation used throughout Chapter 4.

Chapter 5

Conclusions

Theoretical models are of great importance for the solution of practical scheduling prob-
lems. This thesis studied combinatorial optimization aspects of scheduling problems
with release/due dates and time-lags constraints inspired by two real-world problems:
the transportation of goods by limited capacity vehicles and the booking of treatment
appointments for patients of a chemotherapy clinic.

The first problem involves the scheduling of goods delivery between two sites by a
number of limited capacity vehicles where the transportation time is fixed to a given value
for all vehicles. Since goods are available at different release times and have to be deliv-
ered before given due dates, the objective is to find a schedule that minimises the maxi-
mum lateness of the deliveries. In the second problem, patients undergoing chemotherapy
treatments in an outpatient clinic have to be scheduled for appointments in which a mix-
ture of drugs are administered. All appointments which are part of a complete treatment
of a patient have to be issued at once and must follow strict time patterns. In particular the
number of days interleaving two appointments is regulated by the type of chemotherapy
treatment prescribed. Moreover, each appointment involves a set of tasks to be performed
by a nurse during the treatment. The number of tasks to be performed and their dis-
tribution over time also depends on the type of chemotherapy treatment and the drugs
prescribed. The problem consists of determining the allocation of patient to nurses and
in scheduling appointment dates and times such that patient waiting days respect given
targets and no clashes occur between nurse tasks.

In Chapter 2 we modelled the transportation problem as a p-batching scheduling prob-

142

Chapter 5 143 Conclusions

lem with equal processing times, release/due dates and with the maximum lateness objec-
tive function. After introducing the problem formally, we provided two polynomial-time
algorithms: an algorithm for the single machine environment which outperforms those
known in literature for 20 years and an algorithm for the parallel machine environment
which represents the first algorithm for the problem. In particular, the algorithms pre-
sented improve the best running time for the single machine environment from O(n8log n)
in [10] to O(n2Iogn) and achieve a running time of O(n3Iogn) for the parallel machine
environment. Our algorithm design showed how the forbidden regions and barrier tech-
niques, developed previously for the single non-batching machine environment, can be
extended to the parallel batching machine environment. Lastly, we demonstrated the
NP-hardness of the problem with finish-start precedence constraints and we provided a
polynomial-time algorithm for the case with start-start precedence constraints.

Our work on p-batching machines shows that the powerful forbidden region and bar-
rier techniques known for 20 years and probably overlooked by researchers can actually
improve modem scheduling problems with equal processing times and release/due dates.
Thus, we believe that one possible research direction is the study of the running time
improvements that such techniques could bring to other scheduling problems with equal
processing time.

A question that requires addressing is the application of forbidden regions to the p-
batch scheduling problem in the parallel machine environment. We believe that the same
achievements in terms of running times obtained in [94] where the forbidden regions
technique have been extended from the single to the parallel machine environment for
classical machines, can be obtained also for the p-batching case.

Another possible research direction is the application of the techniques in complex
multi-stage machine environments involving the coordination between p-batching and
non-batching machines with equal processing times. Such algorithms would have wide
applications in scheduling supply chains and in assembly and production-transportation
networks. Currently the team led by Prof. Sigrid Knust at the University of Osnabriick,
Germany, is using the algorithms and source codes developed for this thesis in their re-
search on the integrated scheduling of production and transportation stages.

In Chapter 3 a simplified version of the chemotherapy appointment scheduling prob-
lem was modelled as a coupled-operations scheduling problem with fixed time-lags and
a makespan minimisation objective function. The aim was to develop techniques that
could result in efficient solution algorithms and that could be extended to more general
problems of appointment scheduling. Firstly we considered a compact representation of
solution schedules. We formally proved that the coupled-operation scheduling problem

Chapter 5 144 Conclusions

with a given permutation of first operations and fixed time-lags is NP-hard in the strong
sense, even with unit processing times. This ruled out the possibility of a compact rep-
resentation of feasible solutions based on the sequence of job first operations. Secondly
we searched for an efficient neighbourhood to implement a local search algorithm for the
general version of the coupled-operation scheduling problem with fixed time-lags such
that no unfeasible solutions would be considered during the search. As a result we formu-
lated the problem of generating a neighbour solution as ajob reinsertion problem. Using
the disjunctive graph representation, we demonstrated that the short cycle property used
in [43] for job-shop environment can be adjusted to be applied for our reinsertion prob-
lem. Based on this observation we adapted an algorithm from [43] to the solution of the
reinsertion problem. Finally we designed an efficient tabu search algorithm based on the
neighbourhood introduced and we evaluated its performances through extensive compu-
tational experiments. Results presented in the final part of Chapter 3 showed that our local
search outperforms the algorithms in literature.

Our study on couple-operation scheduling raised many interesting questions to be
investigated. One question regards the connectivity of the neighbourhood designed: in
particular it is important to establish whether the solution neighbourhood is optimally
connected: does there exists a sequence of neighbourhood moves connecting any feasible
solution to an optimal one? Establishing this property would give us an indication on the
quality of the solutions generated. In fact, if the neighbourhood is optimally connected,
the quality of the solution achieved would depend only on the quality of the anti-cycle
and escape mechanisms put in place and on the maximum time allowed for the heuristic
to run. Differently, if the neighbourhood is not optimally connected, then, in order to
achieve better solutions for any instance, the research should focus on finding a better
neighbourhood structure and solution representation.

Another interesting research direction is the study of possible compact representa-
tions for the solution schedules. In fact, it would be beneficial to determine whether the
coupled-operation scheduling problem with fixed separated permutations of first and sec-
ond operations is solvable in polynomial time. We believe that the technique used to solve
the reinsertion problem with the short cycle property has applications in the generation of
compact solution representations.

Finally, further improvement of the tabu-search designed may be achieved via more
accurate lower-bound calculation procedures. The necessity of better lower-bound calcu-
lation procedure has been underlined during our computational experience which showed
that optimality of the solution calculated could be proved only for a few special instances.
Such a task is particularly challenging since lower-bounds based on the solution of relaxed

Chapter 5 145 Conclusions

problems seem to be hard to design. In fact, there exists a few polynomial-time algorithms
for special constrained problems that could lead to such a type of lower bounds.

A wider research direction includes the investigation of the possibility to apply the
techniques introduced in [43] to other scheduling problems. For example, we believe that
the short cycle property could be proved to hold for the disjunctive graph representation
of other job re-insertion scheduling problems with job chains.

In Chapter 4 we consider a full real-world version of the problem of booking
chemotherapy treatment appointments in an outpatient clinic and we develop a complete
solution approach for it. In order to deal with the stochastic nature of the patient arrivals
and the complex delivery patterns involved, we developed the innovative concept of a
multi-level template schedule which consists of a well-thought through schedule in which
arriving appointments can be fitted over time. The template schedule is flexible and can
be adapted to the variation of patient arrival rates. We designed several integer linear
programs which are run iteratively to construct and maintain the template schedule in the
long run. We evaluated our approach using artificial data and mirroring the arrival pro-
cess documented in historical data from a clinic. Obtained results showed that, using the
same resources, our approach schedules 20% more appointments, eliminates almost all
nurse clashing activities to be performed by the nurse and maintain short patient waiting
days and times at the clinic. It has been recognised that the benefits for the clinic are not
restricted to resource efficiency but also include safer treatments and a better patient and
staff experience.

The introduction ofthe concept of a multi-level template schedule opens new research
directions from both practical and theoretical sides. The first direction comprises the
evaluation of the actual performance of the developed approach in a running outpatient
chemotherapy clinic. Thus, the natural prosecution of the work in this thesis is the imple-
mentation of the designed algorithms in a prototype software and its use to book actual
appointments for arriving patients in a real clinic. The deployment of such a software
could gather detailed data of the arrival process which could contribute to a better tuning
of the algorithms parameters and to refining the algorithm's design. The performance of
the approach could also be improved by a deep statistical analysis of the patient arrival
process and its influence on the behaviour of the multi-level template schedule.

A wider research direction is the study of possible applications of the multi-level tem-
plate schedule to other online scheduling problems. The idea of generating a schedule
that embeds multiple scheduling decisions for the same activities and resources has great
potential to improve the quality of the solution achieved in the presence of uncertain de-
mands. The work in this thesis showed its application only to appointment booking but we

Chapter 5 146 Conclusions

believe that such an approach can be used in many other problems in manufacturing and
service industry where scheduling decisions are part of a contained stochastic process.

Bibliography

[1] World cancer report. ,P. Boyle and B. Levin, editors, World Health Organization,
2008.

[2] J. Adam, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop
scheduling. Management Science, 34(3):391-401, 1988.

[3] A. Ageev and A. Barburin. Approximation algorithms for UET scheduling prob-
lems with exact delays. Operations Research Letters, 35(4):533-540, 2007.

[4] A. Ageev and A. Kononov. Approximation algorithms for scheduling problems
with exact delays. Lecture Notes in Computer Science, 4368:1-14, 2007.

[5] Z. Agur, R. Hassin, and S. Levy. Optimizing chemotherapy scheduling using local
search heuristics. Operations Research, 54(5):829-846, 2006.

[6] D. Ahr, J. Bekesi, G. Galambos, M. Oswald, and G. Reinelt. An exact algorithm
for scheduling identical coupled tasks. Mathematical Methods of Operations Re-
search, 59(2): 193-203, 2004.

[7] R. K. Ahuja, T. L.Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[8] N. Bailey. A study of queues and appointment systems in hospital outpatient de-
partments, with special reference to waiting-times. Journal of the Royal Statistical
Society, AI4:185-189, 1952.

[9] E. Balas, J. K. Lenstra, and A. Vazacopoulos. The one machine problem with
delayed precedence constraints and its use in job shop scheduling. Management
Science, 41(1):94-109, 1995.

[10] P. Baptiste. Batching identical jobs. Mathematical Methods of Operations Re-
search, 52:355-367, 2000.

147

Chapter 5 148 BIBLIOGRAPHY

[11] P. Baptiste. A note on scheduling identical coupled tasks in logarithmic time. Dis-
crete Applied Mathematics, 158(5):583-587,2010.

[12] M. Bartusch, R. Mohring, and F. Radermacher. Scheduling project networks
with resource constraints and time windows. Annals of Operations Research,
16(1):199-240, 1988.

[13] J. Blazewicz, K. Ecker, T. Kis, C. N. Potts, M. Tanas, and J. Whitehead. Scheduling
of coupled tasks with unit processing times. Journal of Scheduling, 13(5):453-461,
2010.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[15] M. Brahimi and D. J. Worthington. Queueing models for out-patient appointment
systems - a case study. Journal of the Operational Research Society, 42(9):733-
746, 1991.

[16] N. Brauner, G. Finke, V. Lehoux-Lebacque, C. N. Potts, and J. Whitehead.
Scheduling of coupled tasks and one-machine no-wait robotic cells. Computers
& Operations Research, 36(2):301-307, 2009.

[17] K. Brinkmann and K. Neumann. Heuristic procedures for resource-constrained
project scheduling with minimal and maximal time lags: the resource-levelling
and minimum project-duration problems. Journal of Decision Systems, 5: 129-155,
1996.

[18] P.Brucker. A branch and bound algorithm for a single-machine scheduling problem
with positive and negative time-lags. Discrete Applied Mathematics, 94:77-99,
1999.

[19] P. Brucker. Scheduling Algorithms. Springer, Berlin, 2007.

[20] P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algorithm for the job-
shop scheduling problem. Discrete Applied Mathematics, 49:107-127, 1994.

[21] P. Brucker, S. Knust, and C. Oguz. Scheduling chains with identical jobs and con-
stant delays on a single machine. Mathematical Methods of Operations Research,
63(1):63-75,2006.

[22] J. Carlier. The one-machine sequencing problem. European Journal of Operational
Research, 11:42-47, 1982.

Chapter 5 149 BIBLIOGRAPHY

[23] J. Carlier, M. Haouari, M. Kharbeche, and A. Moukrim. An optimization-based

heuristic for the robotic cell problem. European Journal of Operational Research,
202(3):636-645, 2010.

[24] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Manage-
mentScience, 35(2):164-176,1989.

[25] T. Cayirli and E. Vera!' Outpatient scheduling in health care: a review of literature.

Production & Operations Management, 12(4):519-548,2003.

[26] K. Chakhlevitch, C. A. Glass, and H. Kellerer. Batch machine production with per-

ishability time windows and limited batch size. European Journal of Operational
Research, 210(1):39-47, 2011.

[27] T. C. E. Cheng. Survey of scheduling research involving due date determination

decisions. European Journal of Operational Research, 38(2):156-166, 1989.

[28] T. C. E. Cheng, J. J. Yuan, and A. F. Yang. Scheduling a batch-processing machine

subject to precedence constraints, release dates and identical processing times.

Computers & Operations Research, 32:849-859, 2005.

[29] D. Conforti, F. Guerriero, and R. Guido. Optimization models for radiotherapy

patient scheduling. 40R: A Quarterly Journal of Operations Research, 6(3):263-

278,2008.

[30] M. Dell' Amico. Shop problems with two machines and time lags. Operations
Research, 44(5):777-787, 1996.

[31] R. Dobish. Next-day chemotherapy scheduling: a multidisciplinary approach to

solving workload issues in a tertiary oncology center. Journal of Oncology Phar-
macy Practice, 9(1):37-42, 2003.

[32] M. Elshafei, H. D. Sherali, and J. C. Smith. Radar pulse interleaving for multi-

target tracking. Naval Research Logistics, 51(1):72-94, 2004.

[33] A. Farina and P. Neri. Multitarget interleaved tracking for phased-array radar.

Communications, Radar and Signal Processing, IEEE Proceedings, Part F,
127(4):312-318, 1980.

[34] R. B. Fetter and 1. D. Thompson. Patients' waiting time and doctors' idle time in

the outpatient setting. Health Services Research, 1(1):66-90, 1966.

Chapter 5 150 BIBLIOGRAPHY

[35] L. Finta and Z. Liu. Single machine scheduling subject to precedence delays. Dis-
crete Applied Mathematics, 70(3):247-266, 1996.

[36] J. Fondrevelle, A. Oulamara, and M. C. Portmann. Permutation ftowshop schedul-

ing problems with maximal and minimal time lags. Computers & Operations Re-
search, 33:1540-1556, 2006.

[37] J. Fondrevelle, A. Oulamara, and M. C. Portmann. Permutation ftowshop schedul-

ing problems with time lags to minimize the weighted sum of machine completion

times. International Journal of Production Economics, 112(1):168-176,2008.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman & Company, 1979.

[39] M. R. Garey, D. S. Johnson, B. Simons, and R. E. Tarjan. Scheduling unit-time

tasks with arbitrary release times and deadlines. SIAM Journal on Computing,
10(2):256-269, 1981.

[40] F. W. Glover and M. Laguna. Tabu search. Springer, 1st edition, 1998.

[41] J. Grabowski, E. Nowicki, and S. Zdrzalka. A block approach for single-machine

scheduling with release dates and due dates. European Journal of Operational
Research, 26:278-285, 1986.

[42] R.L.Graham, E. L.Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics, 4:287-326, 1979.

[43] H. Groflin and A. Klinkert. Feasible insertions injob shop scheduling, short cycles

and stable sets. European Journal of Operational Research, 177(2):763-785,2007.

[44] H. Groflin and A. Klinkert. A new neighborhood and tabu search for the blocking

job shop. Discrete Applied Mathematics, 157(17):3643-3655,2009.

[45] H. Groflin, A. Klinkert, and N. Dinh. Feasible job insertions in the multi-processor-

task job shop. European Journal of Operational Research, 185(3):1308-1318,

2008.

[46] D. Gupta and B. Denton. Appointment scheduling in health care: challenges and

opportunities. lIE Transactions, 40(9):800-819, 2008.

Chapter 5 151 BIBLIOGRAPHY

[47] A. Hertz, E. Taillard, and D. De Werra. Tabu search. In J. K. Lenstra and E. Aarts,
editors, Local search in combinatorial optimization, chapter 5,91-120. Princeton
University Press, 2003.

[48] W. A. Hom. Some simple scheduling algorithms. Naval Research Logistics Quar-
terly, 21(1):177-185,1974.

[49] J. Hurink and J. Keuchel. Local search algorithms for a single-machine schedul-
ing problem with positive and negative time-lags. Discrete Applied Mathematics,
112:179-197,2001.

[50] Y. Ikura and M. Gimple. Efficient scheduling algorithms for a single batch pro-
cessing machine. Operations Research Letters, 5(2):61-65, 1986.

[51] J. R. Jackson. Scheduling a production line to minimize maximum tardiness. Tech-
nical report, University of California, Los Angeles, 1955.

[52] T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley Series in Discrete
Mathematics and Optimization. Wiley Interscience, 1 edition, December 1994.

[53] P. Kalczynski and J. Kamburowski. On no-wait and no-idle flow shops with
makespan criterion. European Journal of Operational Research, 178(3):677-685,
2007.

[54] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373-395, 1984.

[55] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR, 244:1093-1096,1979.

[56] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. Minimizing maximum
lateness on one machine: computational experience and some applications. Statis-
tica Neerlandica, 30(1):25-41, 1976.

[57] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequenc-
ing and scheduling: algorithms and complexity. In S. C. Graves, A. H. G. Rin-
nooy Kan, and P. H. Zipkin, editors, Logistics of Production and Inventory, vol-
ume 4 of Handbooks in Operations Research and Management Science, chapter 9,
445-522.Elsevier, 1993.

[58] C. Y. Lee, R. M. Uzsoy, and L. A. M. Vega. Efficient algorithms for scheduling
semiconductor bum-in operations. Operations Research, 40(4):764-775, 1992.

Chapter 5 152 BIBLIOGRAPHY

[59] J. K. Lenstra, A. H. O. Rinnooy Kan, and P. Brucker. Complexity of Machine
Scheduling Problems, Annals of Discrete Mathematics, I :343-362. Elsevier, 1977.

[60] J. K. Lenstra, A. H. O. Rinnooy Kan, and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1:343-362, 1997.

[61] J. Y. T. Leung, H. Li, and H. Zhao. Scheduling two-machine flow shops with exact

delays. International Journal of Foundations of Computer Science, 18(2):341-359,

2007.

[62] 1. Y. T. Leung and H. R. Zhao. Minimizing sum of completion times and makespan

in master-slave systems. IEEE Transactions on Computers, 55(8):1-22, 2006.

[63] H. Li and H. Zhao. Scheduling coupled-tasks on a single machine. In 2007 IEEE
Symposium on Computational Intelligence in Scheduling, 137-142,2007.

[64] C. K. Y. Lin and K. B. Haley. Scheduling two-phase jobs with arbitrary time lags

in a single-server system. IMA Journal of Mathematics Applied in Business &

Industry, 5:143-161, 1993.

[65] D. V. Lindley. The theory of queues with a single server. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 48:277-289, 1952.

[66] M. Manier and C. Bloch. A classification for hoist scheduling problems. Interna-
tional Journal of Flexible Manufacturing Systems, 15:37-55, 2003.

[67] A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-wait con-

straints. European Journal of Operational Research, 143(3):498-517,2002.

[68] A. Munier and F. Sourd. Scheduling chains on a single machine with non-negative

time lags. Mathematical Methods of Operations Research, 57(1):111-123, 2003.

[69] A. Munier-Kordon and D. Rebaine. Polynomial time algorithms for the UET per-

mutation flowshop problem with time delays. Computers & Operations Research,
35(2):525-537, 2008.

[70] A. Munier-Kordon and D. Rebaine. The two-machine open-shop problem with

unit-time operations and time delays to minimize the makespan. European Journal
of Operational Research, 203(1):42-49, 2010.

Chapter 5 153 BIBLIOGRAPHY

[71] G. Ochoa, M. Villasana, and E. K. Burke. An evolutionary approach to can-
cer chemotherapy scheduling. Genetic Programming and Evolvable Machines,
8(4):301-318,2007.

[72] Department of Health. Cancer reform strategy. Technical report, Department of
Health, UK, 2009.

[73] S. Ogulata, M. Cetik, E. Koyuncu, and M. Koyuncu. A simulation approach for
scheduling patients in the department of radiation oncology. Journal of Medical
Systems, 33(3):233-239, 2009.

[74] A. J. Orman and C. N. Potts. On the complexity of coupled-task scheduling. Dis-
crete Applied Mathematics, 72(1-2):141-154, 1997.

[75] A. J. Orman, C. N. Potts, A. K. Shahani, and A. R.Moore. Scheduling for a mul-
tifunction phased array radar system. European Journal of Operational Research,
90(1):13-25, 1996.

[76] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.

[77] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization : Algorithms
and Complexity. Dover Publications, 1998.

[78] D. Petrovic, M. Morshed, and S. Petrovic. Genetic algorithm based schedul-
ing of radiotherapy treatments for cancer patients. In C. Combi, Y. Shahar, and
A. Abu-Hanna, editors, Artificial Intelligence in Medicine, volume 5651, 101-105.
Springer Berlin, Berlin, 2009.

[79] S. Petrovic, W. Leung, X. Song, and S. Sundar. Algorithms for radiotherapy treat-
ment booking. In R. Qu, editor, Proceedings of the 25th Workshop of the UK
Planning and Scheduling Special Interest Group (PlanSIG'2006), 105-112,2006.

[80] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems (2nd Edition). Pren-
tice Hall, 2001.

[81] C. N. Potts and 1. D. Whitehead. Heuristics for a coupled-operation scheduling
problem. Journal of the Operational Research Society, 58(10):1375-1388, 2007.

[82] D. Rebaine and V. A. Strusevich. Two-machine open shop scheduling with special
transportation times. The Journal of the Operational Research Society, 50(7):756-
764,1999.

Chapter 5 154 BIBLIOGRAPHY

[83] J. Riezebos. Time lag size in multiple operations flow shop scheduling heuristics.
European Journal of Operational Research, 105(1):72-90, 1998.

[84] J. Riezebos, G. 1. C. Gaalman, and 1. N. D. Gupta. Flow shop scheduling with
multiple operations and time lags. Journal of Intelligent Manufacturing, 6(2): 105-
115, 1995.

[85] B. Roy. Contribution de la theorie des graphes a l'etude de certains problems
Iineaires. Comptes rendus de seance de l'Academie des Sciences, 2437-2439,
1959.

[86] T. Sen and S. K.Gupta. A state-of-art survey of static scheduling research involving
due dates. Omega, 12(1):63-76, 1984.

[87] D. Shabtay. Due date assignments and scheduling a single machine with a general
earliness/tardiness cost function. Computers and Operations Research, 35: 1539-
1545,2008.

[88] R. D. Shapiro. Scheduling coupled tasks. Naval Research Logistics, 27(3):489-
498, 1980.

[89] G. Sheen and L. Liao. A branch and bound algorithm for the one-machine schedul-
ing problem with minimum and maximum time lags. European Journal of Opera-
tional Research, 181(1): 102-116, 2007.

[90] H. D. Sherali and 1. Smith. Interleaving two-phased jobs on a single machine.
Discrete Optimization, 2(4):348-361, 2005.

[91] G. Simonin, B. Darties, R. Giroudeau, and J. C. Konig. Isomorphic coupled-
task scheduling problem with compatibility constraints on a single processor. In
MISTA '04 : 4th Multidisciplinary International Scheduling Conference : Theory
and Applications, 378-388, 2009.

[92] G. Simonin, R. Giroudeau, and 1. C. Konig. Complexity and approximation for
scheduling problem for a torpedo. Computers & Industrial Engineering, 2011.

[93] B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times
and deadlines. SIAM Journal on Computing, 12(2):294--299, 1983.

[94] B. Simons and M. K.Warmuth. A fast algorithm for multiprocessor scheduling of
unit-length jobs. SIAM Journal on Computing, 18(4):690-710, 1989.

Chapter 5 155 BIBLIOGRAPHY

[95] A. M. Thring. On computable numbers, with an application to the entschei-
dungsproblem. Proceeding of the London Mathematical Society, 42(1):230-265,
1937.

[96] A. Thrkcan, M. Lawley, and B. Zeng. Chemotherapy operations planning and
scheduling. Optimization Online, 2010.

[97] J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System
Sciences, 10:384-393, 1975.

[98] N. Vakhania. A better algorithm for sequencing with release and delivery times on
identical machines. Journal of Algorithms, 48(2):273-293, 2003.

[99] I. Vermeulen, S. Bohte, P. Bosman, S. Elkhuizen, P. Bakker, and J. La Poutre.
Optimization of online patient scheduling with urgencies and preferences. Lecture
Notes in Computer Science, 5651:71-80, 2009.

[lOO] J. Vissers. Selecting a suitable appointment system in an outpatient setting. Medi-
cal Care, 17(12):1207-1220, 1979.

[101] A. Wijewickrama and S. Takakuwa. Simulation analysis of appointment scheduling
in an outpatient department of internal medicine. In M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines, editors, Proceedings of the 2005 Winter Simulation
Conference, 2264-2273. Winter Simulation Conference, 2005.

[102] E. Wikum, D. C. Llewellyn, and G. L. Nemhauser. One-machine general-
ized precedence constrained scheduling problems. Operations Research Letters,
16(2):87-99, 1994.

[103] P. Williams, G. Tai, and Y. Lei. Simulation based analysis of patient arrival to
health care systems and evaluation of an operations improvement scheme. Annals
of Operations Research, 178:263-279,2009.

[104] E. Winter and P. Baptiste. On scheduling a multifunction radar. Aerospace Science
and Technology, 11(4):289-294,2007.

[105] D. A. Wismer. Solution of the flowshop-scheduling problem with no intermediate
queues. Operations Research, 20(3):689-697, 1972.

[106] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization.
Wiley-Interscience, 1999.

Chapter 5 156 BIBLIOGRAPHY

[107] D. L. Yang and M. S. Chern. A two-machine flowshop sequencing problem with
limited waiting time constraints. Computers and Industrial Engineering, 28:63-70,
1995.

[108] W. Yu. The two-machine flow shop problem with delays and the one-machine total

tardiness problem. PhD thesis, Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, 1996.

[109] W. Yu, H. Hoogeveen, and J. K. Lenstra. Minimizing makespan in a two-machine
flow shop with delays and unit-time operations is NP-hard. Journal of Scheduling,

7(5):333-348, 2004.

