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Abstract

Glacier mass balance depends upon the dynamic change of glacier geometry. De-

spite this effect being recognised as important, few modelling studies have addressed

and quantified it specifically. This study presents a 99 year reconstruction and

mass balance response analysis of K̊arsaglaciären, a small (0.89 km2) mountain

glacier located in Arctic Sweden, using a number of techniques in order to overcome

this limitation.

A geodetic approach was used to assess changing mass balance over time. Data

were derived from topographic maps and contemporary field surveys. These data

were used to interpolate a number of DEMs and full 3D reconstructions were

derived, providing information on spatial change for the period 1909-2010. A long

term trend of negative mass balance was identified. The glacier retreated 1292 m,

thinned by 0.35 m w.e. yr-1 and reduced in volume by 1.33 km3 yr-1.

The 3D reconstructions provided the input for a user friendly, simple distributed

surface energy balance model, aimed at facilitating the assessment of the effect

of geometry change on mass balance — designed specifically for this study and

made available to other researchers online (https://github.com/Chris35Wills/

SEB_model_java_files). Using the reference balance approach, it was possible

to assess change in mass balance over time both with and without dynamic surface

adjustment, allowing disentanglement of these effects with climate. Geometry

change on an annual basis had little effect on glacier mass balance response to

climate but has a significant dampening effect for the period 1926-1943.

These results provide evidence of K̊arsaglaciären showing a strong pattern of retreat

throughout the 20th and early 21st century. From these analyses it is apparent

that the effects of glacier geometry on mass balance response are not simply linked

by time. Future mass balance studies should consider changes in glacier geometry

for accurate assessments of glacier response to climate.

https://github.com/Chris35Wills/SEB_model_java_files
https://github.com/Chris35Wills/SEB_model_java_files
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Chapter 1

Introduction

Small mountain glaciers are extremely important indicators of climate change

due to their small size and fast response times (Dyurgerov & Meier, 1997, 2000;

Dyurgerov, 2003; Raper & Braithwaite, 2006; Haeberli et al., 2007). Many Arctic

glaciers have been found to be particularly responsive to climate, especially those

in northern Europe due to their location relative to warm, north trending Atlantic

ocean currents (James et al., 2012). Recent studies have concluded that the mass

loss of relatively small glaciers in mountain regions could be much more important

for contributions to sea level in the short term than contributions from the large

ice sheets of Greenland and Antarctica (Meier et al., 2007). The retreat of small

mountain glaciers also has immediate regional and local implications because

changes in meltwater magnitude and timing affects power generation, irrigation,

riparian ecology and even tourism.

This study is an investigation into mountain glacier mass loss with a specific focus

on the control that changing glacier geometry has on both the surface energy

balance and mass balance. Glacier geometry modifies energy contributions of the

different elements of the surface energy balance which in turn affects mass balance.

An understanding of the surface energy balance (SEB) is vital if one is to calculate,

understand and eventually predict changes to the volume of small mountain

glaciers. Modelling is an important way of understanding surface/atmosphere

interactions and the potential effects that climate change may consequently have
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on local and global hydrology (Michlmayr et al., 2008).

There has long been a focus on the effect of climate on glacier mass balance with

early work by Finsterwalder & Schunk (1887) and Ångstrom (1933) in the early

20th Century. This work identified the relationship between glacier fluctuations

and climatic variations and led to an understanding of the surface energy balance

which manifests itself over a glacier surface at the glacier/atmosphere interface

(Hock, 2005). The surface energy balance exists as a pool of energy over a glacier

that can either be in surplus or deficit relative to the energy needed to maintain

the glacier in a steady state. The SEB exists through energy contributions from a

variety of components including air temperature and solar radiation. Where the

energy balance is in surplus, melting of snow and ice can occur. However, if the

energy balance is in deficit, melting will not occur as there is not enough energy

available to facilitate this process. The SEB is inextricably linked to climate and

is the link between climate change and glacier mass change.

A wealth of glacial mass balance models exist (e.g. Hock & Noetzli, 1997; Braith-

waite & Zhang, 2000; Michlmayr et al., 2008; MacDougall & Flowers, 2010; Paul,

2010) which account for changes in the mass of a glacier in relation to the surface

energy-balance and which have different distributions (local/regional/global) and

data requirements. These models vary between being point and grid (distributed)

based (Hock, 2005) and many are finely tuned to best-fit individual glaciers. Issues

relating to the use of fixed digital elevation models (DEMs) — and therefore

non-dynamic glacier surface geometry — in modelling studies with regard to

elevation effects have been considered in the work of others including e.g. Gerbaux

et al. (2005). However, many existing models do not consider dynamic geometric

effects, particularly with regard to changes in slope and aspect from those inherent

to the initial input surface (e.g. Paul, 2004; Harrison et al., 2009; Huss et al., 2012).

Investigation of the effects of dynamic geometric change and the resultant re-

sponse of mass balance is vital to enable further understanding of mountain glacier

response to changes in climate. Knowledge derived from this study will ultimately

enable better modelling and prediction of how glaciers will change in accordance
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with changing climate and what effects this will have both globally, such as affect-

ing sea level rise (SLR), and locally, such as affecting power generation and with

regard to tourism where mountain glaciers are present in more populated areas

such as the European Alps.

The aims of this study are to:

1. Provide a full 3D glacier geometry reconstruction and assessment of a small

mountain glacier, since the beginning of the 20th century, over decadal and

annual time scales (see chapters 6 and 7)

2. Assess the sensitivity of the surface energy balance and mass balance change

to meteorological and topographical forcing (see chapter 8)

3. Assess the effect of changing glacier geometry on the surface energy balance

and mass balance of a small mountain glacier throughout the 20th and

early 21st century with focus on solar radiation contributions and glacier-

topography relationships (see chapter 9)

These aims are addressed via the following objectives:

1. Collate historic topographic maps and reports as well as data from the

field to ascertain glacier geometry, meteorological conditions and snow pack

characteristics (see chapter 4)

2. Apply geostatistical methods to reconstruct 3D glacier geometry and enable

geometry and geometric change analyses (through development of a GIS)

(see chapter 4)

3. Account for sensitivity of applied geostatistical techniques on reconstructed

surface properties (see chapter 4)

4. Develop a user friendly grid based distributed surface energy balance model

which uses reconstructed surfaces as an input, combined with meteorological

data from the field (see chapter 5)
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5. Conduct model scenarios with the developed model to assess the effects

of meteorological and topographic forcing as well as geometry change on

surface energy balance and mass balance change (see chapter 5)
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Chapter 2

Literature review

2.1 Mountain glaciers, climate change and sea

level rise

Mountain glaciers include all of those outside of the Greenland and Antarctic

ice sheets, with them sometimes being referred to as small glaciers and ice caps

(Paterson, 1994; Raper & Braithwaite, 2006; De Woul, 2008). Approximately

10% of the Earths land surface is covered in ice of which only approximately 3%

is from outside of the two major ice caps (Church, 2001; Solomon et al., 2007).

These smaller glaciers and ice caps cover an area between 512 x 103 and 546

x 103 km2 which is equal to a sea level equivalent (SLE) rise of 0.15 - 0.37 m

respectively (Lemke, 2007). Although covering only a small amount of the globe,

they contribute significantly to SLR due to their short response times and large

mass turn-over (Oerlemans et al., 1998).

Throughout the 20th century and to the present there has been a generally nega-

tive trend in mountain glacier mass balance across the globe resulting in large

reductions in volume (Dyurgerov & Meier, 2000; Zemp et al., 2006; Diolaiuti

et al., 2011; Gardner et al., 2011; Lenaerts et al., 2013). The global retreat of

glaciers in recent decades is a clear sign of accelerating environmental change

and this is, rightly or wrongly, frequently accepted as a clear manifestation of

global warming (Kuhn, 1981; Haeberli et al., 1999; Dyurgerov & Meier, 2000;
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Oerlemans, 2005; Zemp et al., 2006; Citterio et al., 2007; Diolaiuti et al., 2011).

Glacier retreat relates directly to the glacier/climate transfer function concept

whereby a change in one over time, results in equivalent change in the other

(Oerlemans, 2005; Diolaiuti et al., 2011). Glacier change is directly governed

by the mass balance (MB) — where negative, this results in glacier mass loss

(associated with glacier thinning and retreat) and where positive, this results in

glacier mass gain (associated with glacier thickening and advance). Change in the

MB is controlled predominantly by the surface energy balance (SEB). These two

balances are discussed in detail in section 2.2.

Between 20-25% of global continental land masses are orographic, supporting

10% of the Earths population and indirectly affecting 50% (Haeberli & Beniston,

1998; Barry, 2008). Decreases in mountain glaciers and ice caps not only increase

melt water contribution to SLR (Jacob et al., 2012), but also affect settlements

within glacier locales which rely upon glaciers for irrigation and resource supplies

(Chen & Ohmura, 1990; Granshaw & Fountain, 2006). In Switzerland, 56% of

the national energy mix is from hydroelectric power and remains the main re-

newable energy component. This figure was at 90% in the 1970s, reducing as a

consequence of the introduction of nuclear power (BFE, 2013). Further relating

climate change to mountain regions specifically, there have been observations

made of elevation-dependent climate change occurrences in some areas, with some

exhibiting seasonal warming rates greater than at sea level (Rangwala & Miller,

2012). However the use of such observations in support of climate change is

controversial, due to the relative lack of understanding of meteorological processes

in mountain environments (e.g. Barry, 1992; Rangwala & Miller, 2012). A full

understanding of glacial systems is required in order to assess the effect that a

changing climate will have upon them (Huss et al., 2012) and to predict future

contributions from these glaciers in the most accurate way possible.

Small mountain glaciers are of special interest as they have been identified as

extremely useful indicators of climate perturbations. Compared to all other ice

masses, small glaciers are the first to respond to changes in climate (Grudd, 1990).

Studies have identified that smaller glaciers respond much quicker to climate
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perturbations compared to their larger counterparts in Greenland and Antarctica

(Granshaw & Fountain, 2006; DeBeer & Sharp, 2009), and this helps to explain

their large proportional contribution to 20th century SLR (see below) (Raper &

Braithwaite, 2006). Over the past century, the largest area reductions of ice in

the Alps are manifest over glaciers of area less than 1 km2 (Citterio et al., 2007;

Diolaiuti et al., 2011). Faster response times of smaller glaciers are supported

by kinematic wave theory which has been used to identify valley glacier response

times to be within the order of 10 - 70 years (Folland, 2001).

The Arctic has been attributed to be particularly sensitive to climate change

(Bates et al., 2008), and this in part can be contributed to the number of small

mountain glaciers and their related fast response times, within the region. The

World Glacier Inventory (WGI) was used to identify that in 2009 64.2% of Arctic

glaciers were ≤2 km2 (Rippin et al., 2011). The contribution of glaciers in these

regions to SLR is expected to propagate over the next century (Arendt et al., 2002;

Raper & Braithwaite, 2006; Rippin et al., 2011). The relative juxtaposition of

Arctic glaciers, such as in Svalbard, to the north of warm North Atlantic currents

further enhances sensitivity of these glaciers to climate change (Fleming et al.,

1997; Lefauconnier et al., 1999; James et al., 2012).

Current estimates of mass balance in terms of SLR for Antarctica and Greenland

are in the range of -0.12 to +0.38 mm yr-1, which is equivalent to a +42 to -139

Gton yr-1 of mass gain or loss (Shepherd & Wingham, 2007; Lee et al., 2013).

This compares to estimates from mountain glaciers in the range of 0.52 to 1.4

mm yr-1 (Kaser et al., 2006; Meier et al., 2007; Bahr et al., 2009; Cogley, 2009;

Hock et al., 2009; Cogley, 2011; Radić & Hock, 2011; Jacob et al., 2012). A best

approximation of mountain glaciers and ice cap contribution throughout the 20th

century is equal to approximately 0.028 m (Church, 2001; Raper & Braithwaite,

2006). Increasingly negative mass balance values are a cause for concern with

regard to SLR (e.g. Solomon et al., 2007) as this is important with regard to

planning as well as with regard to those that live in the immediate vicinity of

glaciers (Xu et al., 2009). In model runs with warming running from 1998 - 2100,
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mountain glaciers appear to decline much faster than ice caps, therefore contribut-

ing proportionally more to SLR; ice caps did not appear to contribute until the

21st Century (Raper & Braithwaite, 2006). The contribution from mountain

glaciers and ice caps to SLR is expected to be prolific for at least the next 100

years (Meier et al., 2007; Glasser et al., 2011; Radić & Hock, 2011) however some

authors argue that specific contributions are yet to be calculated (Glasser et al.,

2011; Radić & Hock, 2011). The contribution to SLR from mountain glaciers

and ice caps is an order of magnitude greater than for both the Greenland and

Antarctic ice sheets when compared to calculations made by Zwally et al. (2005)

and discussed in Carrivick & Chase (2011), contributing to an SLR of 0.5 mm yr-1

over the past 50 years (Kaser et al., 2006; Raper & Braithwaite, 2006; Carrivick

& Chase, 2011).

Thus, despite acknowledgment of the importance of the sensitivity of small moun-

tain glaciers, there is still a lot left to be understood and it is critical to reduce such

uncertainties to enable more effective planning, such as for resources and energy

policy. Contemporary and future projections of glacier contributions to SLR and

thus to hydroelectric power (HEP) and irrigation, are still uncertain and this is

linked to data gaps in global information on the size and locations of glaciers

(Paul, 2011). Such gaps explain the large errors that have been for example

associated with attempts at estimating total SLR contributions by the end of

the 21st century which range between 0.05 - 0.24 m (Hock et al., 2009; Paul, 2011).

Following a critical study of the literature, a number of common themes have

been identified, highlighting a variety of issues that contribute to inaccuracies

associated with assessments of mountain glacier melt (Gardner et al., 2013; Kerr,

2013; Zemp et al., 2013). The key issues with regard to the difficulties and errors

associated with estimating mountain glacier and ice cap meltwater contributions

that need to be addressed include:

1. Geodetic ice loss calculations (see section 2.4) for individual glaciers are

distorted where surface interpolations are based on sparse point networks

resulting in poor reconstructions of glacier dimensions (Barrand et al.,
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2010; Carrivick & Chase, 2011). Such issues fail to acknowledge the effects

introduced by glacier hypsometry and climatic gradients (Førland & Hanssen-

Bauer, 2003);

2. Knowledge of geometric, topographic and climatic conditions of individual

glaciers is required to understand and more accurately accounting for local

glacier change (Oerlemans, 1987; Granshaw & Fountain, 2006; Salinger

et al., 2008). Neglecting these factors can result in highly erroneous melt and

resultant SLR estimates (Barrand et al., 2010). To scale up measurements

from only a few glaciers to provide catchment wide values, risks inaccuracies

being introduced as such scaling will often not effectively account for true

inter-catchment variability (Carrivick & Rushmer, 2009).

3. Poor understanding of the variability in mass-balance gradients leads to

poor melt estimates from modelling routines, as mass-balance sensitivities

are inaccurately represented (Raper & Braithwaite, 2006). Despite these

uncertainties — which can be related to limitations of existing studies —

volume changes are still calculated which will only emulate these issues.

(Carrivick & Chase, 2011);

4. Glacier volume can easily be overestimated as a function of the method-

ological approach taken to derive a value. Volumes are often calculated

from only a few point measurements or the use of center-line analyses (e.g.

Shugar et al., 2010) which results in an inadequate quantification of spatial

variability (Barrand et al., 2010; Berthier et al., 2010; Carrivick & Chase,

2011) (see section 2.4). Volume inaccuracies can be further introduced as

a result of the application of fixed density functions, resulting in incorrect

acknowledgments of true glacier water content and therefore contribution to

SLR (Huss, 2013);

More recently, many inconsistencies have been found between local and satellite

based measurements of glacier mass balance, the former often providing more

negative results. This is discussed with the methodology of this study in chapter

10.
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2.2 The driver of glacier change - the relation-

ship between surface energy balance (SEB)

and mass balance (MB)

The sum of the different energy fluxes that exist across the surface of a glacier

at a given point in time amounts to the surface energy balance (SEB) (Hock,

2005; Benn & Evans, 2010). The energy fluxes are contributed by different

meteorological factors as well as changes of state and geological components. The

SEB directly affects the glacier mass balance (MB). Where the mass of a glacier

is in balance, this is indicative of conditions where accumulation and ablation

processes are equal over a year. Such a positive MB indicates accumulation

processes are dominant over ablation processes. Accumulation processes include

addition of mass through a number of processes (which are site specific), including

precipitation, avalanching and snow drifting. A negative MB indicates ablation

processes exceed the contribution of accumulation processes. At a given point

in time, positive SEB conditions, whereby there is a surplus of energy available

at the surface, will drive snow and ice melt. Equally, where there is an energy

surplus available to drive ice/snow melt, there will be mass loss through melting.

These varying states of SEB contribute directly to the overall MB change of the

glacier resulting in more or less mass loss respectively. However, the relationship

between SEB and MB is not simple, resulting in an array of complex feedbacks,

as by the SEB affecting MB, the SEB is itself modified by resultant changes and

evolution of the glacier surface, as well as the relationship between the glacier

and the topography that surrounds it. Here an assessment of the different terms

and calculations associated with MB are discussed as well as the construction of

the SEB equation and acknowledgments of contributions to it. Modelling is not

discussed here, being the focus of section 2.5.

2.2.1 Glacier mass balance

Glacier mass balance is equal to the difference between net accumulation and net

ablation measured over a given time period, which is usually a year. This can also

be called the cumulative mass balance, as it is calculated by the addition of the
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winter and summer balances, the latter usually having a negative sign. A value

of 0 from such a calculation denotes a glacier in balance, with a negative value

indicating negative balance and a positive value indicating a positive balance. The

year over which mass balance is calculated is better described as being between

specific glacier stances whereby two stances define the “year” time step. In this

case it is better to refer to the time step as the balance-year (Benn & Evans, 1998).

Here, we define t1 and t2 as the glacier minimum surface at time step 1, succeeded

by the glacier minimum surface at time step 2. Regarding nomenclature, the

following terms are used to define mass balance:

1. Specific net balance: mass change per unit area (not glacier wide) relative

to the previous minimum surface t2 (bn)

2. Annual glacier balance: mass change for the entire glacier relative to the

previous minimum surface t2 (Bn)

3. Mean glacier balance: mass change for the entire glacier relative to the

previous minimum surface t2 divided by the glacier area (b̄n)

There is a lot of confusion in the literature between different terms for mass

balance (Cuffey & Paterson, 2010), where ultimately specific, mean and annual

balance all mean the same - the only factor changing being the area over which

they are integrated. The calculation of these values are defined in equations 2.1,

2.2 and 2.3 (Cuffey & Paterson, 2010).

bn = t2 − t1 (2.1)

Bn =

∫
A

ba dA (2.2)

b̄n =
Bn

A
(2.3)

Where bn has been calculated for a surface where data on surface change is only

available over large time steps, the value calculated for bn using equation 2.1 is

then divided by the number of years in the interval between t1 and t2. To convert
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changes in mass to m w.e. (melt water equivalent) values, changes in terms of

ice thickness are considered. Glacier ice density is assumed to be 900 kg m-3

compared to water at 1000 kg m-3. Where Bn or b̄n are in m (ice), m w.e. is

calculated using:

m w.e. = ∆mice x 0.9 (2.4)

where ∆mice is the change in mass in m of ice per the area defined. ∆mice is derived

from either equation 2.2 or 2.3. The m w.e. calculations here assume no change

in total ice density, with it being fixed at 900 kg m-3. Fixing ice density for m w.e.

volume change assessment is common (Braithwaite, 2002) and has been carried

out in other studies over long periods including a 50 year reconstruction and com-

parison for Glacier de Sarennes, French Alps, from 1952-2003 (Thibert et al., 2008).

2.2.2 Conventional and reference glacier mass balance

The aforementioned description and equations 2.1 - 2.3 pertain to the conven-

tional mass balance and such values are derived from different studies of mass

balance change (see section 2.4) and modelling efforts. These studies assume the

glacier itself changes in accordance to its state of mass balance, although this

may not be explicitly stated (Huss et al., 2012). This is mentioned, as follow-

ing Elsberg et al. (2001), a second term — the reference balance — was also defined.

The reference balance calculation was originally used in situations where little

spatial information relating to a glacier was available (perhaps a single map from

the beginning of a long term mass balance assessment). The issue identified was

that mass balance at specific points could only be translated to the available

map, despite the glacier surface having changed (requiring an updated glacier

map) — ultimately giving incorrect information regarding mass balance, especially

where mass balance change was not linearly related to elevation (Elsberg et al.,

2001). Such limitations are overcome when considering conventional and reference

balance approaches together. Where a conventional balance is calculated using a

dynamic surface which changes in relation to changing meteorological conditions
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and mass loss, the reference balance is calculated using a fixed reference surface

for which the geometry is held fixed and the surface does not change. Thus, all

geometric components of a reference surface will remain the same for a given

period. The amount of mass loss which may be expected over the set time frame

for such a surface can still be calculated, but the specific geometric considerations

relating to — for example — elevation, slope and aspect which are considered

in the calculation of different fluxes, do not alter. For the conventional surface,

these values do alter. By comparing dynamic (conventional) surfaces and fixed

(reference) surfaces, the effects of changes in surface geometries can be considered

in terms of their effect on mass loss and therefore mass balance processes affecting

a given glacier.

The calculation of the reference balance provides information on a hypothetical

glacier state, providing the mass balance at a given time whilst assuming glacier

geometry has remained fixed since a given reference period. The reference balance

therefore isolates the effects that any dynamic glacier geometric changes may have

on MB change. This differs to the conventional balance which changes in time

with glacier geometry. Thus, the reference balance method is extremely useful for

climatic and dynamics based problems (Elsberg et al., 2001). However, due to its

fixed nature, it does not represent real changes and thus is no replacement for

the contemporary mass balance which gives knowledge of real mass changes, thus

being of use when considering melt water output such as for SLR. The reference

balance can be acquired using a SEB model approach as in Huss et al. (2010) or

by extrapolating mass-balance profiles of different years to the reference surface

as engineered in the studies of Elsberg et al. (2001) and Harrison et al. (2009).

Few studies have made use of the reference mass balance approach (Huss et al.,

2008; Harrison et al., 2009; Paul, 2010; Huss et al., 2012) with no such studies

having been carried out on small mountain glaciers in sub-polar/polar regions.

Nevertheless, the method of conventional/reference mass balance comparison is

powerful in its ability to allow for an assessment of geometrical change and its

effect on SEB and therefore MB.
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An important consideration when applying the method, as mentioned in Harrison

et al. (2009), concerns what specific elements of the reference surface remain fixed.

Harrison et al. (2009) state that their application of the reference balance method

corrects for both elevation and area and that where area alone is fixed, this should

be given another name such as the reference-area balance, specifically so that the

two types of reference balance can be differentiated.

2.2.3 The surface energy balance

The overall SEB propagating over a glacier surface is contributed to by a number

of factors (Hock, 2005) including:

1. Net radiation (QN)

2. Sensible heat flux (QH)

3. Latent heat flux (QL)

4. Ground heat flux (QG)

5. Sensible heat flux from rain (QR)

6. Energy consumed by melt (QM)

These factors can be represented as part of the overall SEB as:

QN + QH + QL + QG + QR + QM = 0 (2.5)

Where the factors = 0, there is no surplus or energy deficit. Where the SEB 6=
0, an energy surplus would be represented by a positive value, and a deficit by a

negative value. Thus energy then affects the glacier surface by inducing melt or

not, hence the close relationship to glacier MB as mentioned at the beginning of

section 2.2. Equation 2.5 can be rewritten to show the energy available at the

glacier surface (Q) as in (Hock & Holmgren, 1996):

Q = QN +QH +QL +QG +QR +QM (2.6)
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The modeling of the SEB is discussed in section 2.5. A consideration of the effect

of changing surface geometry through time on both the SEB and MB is covered

in section 2.3.

2.3 Considering surface geometry and topographic

effects on SEB and MB

As highlighted in section 2.1, a number of issues exist when considering the

quantification of glacier mass change and resultant meltwater contributions. A

number of methods are used to assess spatial glacier change over time, a review of

which is carried out in the section 2.3.6. This review considers the merits of the

different methods as well as their associated limitations, along with possible ways

in which mass balance can be assessed considering the SEB distribution using a

distributed spatial modelling approach. Such a review is prudent as there is a

call for further study of spatial variability of SEB/MB relationships, in particular

with reference to the feedbacks and fluctuations related to glacier change as a

function of climate (Giesen & Oerlemans, 2010; Oerlemans, 2010a; Carturan et al.,

2013). Despite a solid understanding of SEB and MB processes (section 2.2),

spatial studies of geometric evolution are required and prove an invaluable tool

for decoupling glacier geometric effects from equilibrium conditions (Zemp et al.,

2006). To allow for an effective consideration of the methods available (section

2.3.6), an understanding of the effects of geometry on SEB and MB must first

be acknowledged and it is these effects that are specifically tested in this thesis.

Geometry is defined as the slope, aspect and elevation of a given area of a glacier

surface. The key effects of geometry changes on the SEB and MB are summarised

in table 2.1.
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Table 2.1: Geometry effects on SEB and MB

Geometric and

assoc. changes

Effects on SEB Possible effects on MB Further considerations

Slope

� Modification of shortwave ra-

diation receipt with smaller

receipts being associated with

steeper slopes

� Modification of relationship

to surrounding topography

which is important when con-

sidering diffuse and long-wave

radiation receipt. Where

slope angles are favorable to

radiative receipt from sur-

rounding topography, SEB

will be enhanced

� Steeper slope angles will re-

sult in more negative specific

MB values, as a function of

slope alone

� Enhanced diffuse radiation re-

ceipt will result in more nega-

tive specific MB

� Effect of slope on radiation

dependent on other factors in-

cluding elevation, aspect, po-

sition relative to surrounding

topography and surface eleva-

tion

� Diffuse radiation dependent

on sky view factor (Oke, 1987)

and aspect whilst long-wave

radiation depends on position

relative to surrounding topog-

raphy

� Spatially and temporally vari-

able - this variability must be

considered for accurate assess-

ment of effects on SEB and

MB

Continued on Next Page. . .
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Table 2.1 – Continued

Geometric and

assoc. changes

Effects on SEB Possible effects on MB Further considerations

Aspect

� Modification of shortwave ra-

diation receipt with smaller

receipts being associated with

northerly aspects in the north-

ern hemisphere and southerly

aspects in the southern hemi-

sphere

� Important when considering

the relationship of a given

position to surrounding to-

pography which is important

when considering diffuse and

long-wave radiation receipt.

Where aspect angles are fa-

vorable to radiative receipt

from surrounding topography,

SEB will be enhanced. Sur-

face aspects away from sur-

rounding topography will re-

sult in less long-wave radia-

tion receipt, but may result

in greater diffuse radiation re-

ceipt from the sky

� Northerly aspects (in the

northern hemisphere) and

southerly aspects (in the

southern hemisphere) will re-

sult in less specific MB change

as a function of shortwave ra-

diation receipt alone, as op-

posed to southerly aspects

� Enhanced diffuse or long-wave

radiation receipts will result

in more negative specific MB

� Effect of aspect on radiation

dependent on other factors in-

cluding elevation, aspect, po-

sition relative to surrounding

topography and surface eleva-

tion.

� Spatially and temporally vari-

able and this variability must

be considered for accurate as-

sessment of slope effects on ra-

diation receipt, SEB and MB

� Diffuse radiation dependent

on sky view factor (Oke, 1987)

whilst long-wave radiation de-

pends on position relative to

surrounding topography

Continued on Next Page. . .
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Table 2.1 – Continued

Geometric and

assoc. changes

Effects on SEB Possible effects on MB Further considerations

Elevation

� Temperature changes as a

function of adiabatic lapse

rates, increasing and decreas-

ing sensible heat flux within

total SEB

� Air pressure associated with

elevation is important to con-

sider for calculations of turbu-

lent flux - lowering resulting

in increased pressure, increas-

ing turbulent flux contrib. to

the SEB

� Precipitation gradients vary

adiabatically, resulting in in-

creased precipitation values

at higher elevations. For an

in-situ glacier, reduced eleva-

tions will result in reduced

precipitation receipt.

� Reduced elevations will result

in more negative MB values

� Higher air pressures con-

tribute to increasingly nega-

tive MB values (as a function

of air pressure alone)

� Ignoring other environmental

factors, reduced elevations re-

sulting in less summer rainfall

could result in less negative

MB values, as a function of

rainfall alone. However, cou-

pled with lower winter accu-

mulation values and a resul-

tant thinner snow pack could

enhance negative MB propa-

gation

� Enhancement effects of lower

elevations may be dampened

by other changes over time

(e.g. glacier retreat, changes

in hypsometry)

� Spatially and temporally vari-

able

� Precipitation effects on MB re-

quire careful consideration of

other factors including glacier

relationship to topography, as

well as mass movements of

snow across the glacier (drift-

ing and avalanching) as pre-

cipitation falling in one area

is often rerouted to other ar-

eas (which themselves may

not be susceptible to direct

precipitation receipt). Eleva-

tion changes on small glaciers

not likely to alter precipita-

tion gradients significantly

Continued on Next Page. . .
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Table 2.1 – Continued

Geometric and

assoc. changes

Effects on SEB Possible effects on MB Further considerations

Hypsometry

(area)
� Change in hypsometry affects

all of the above factors, lim-

iting or expanding the areas

over which they propagate

� Where a large % of total area

is located around the ELA,

an increase in ELA altitude

will increase area susceptible

to ablation - this infers an in-

crease in SEB surplus

� Where the above factors have

a larger area over which to

provide conditions for greater

SEB values, MB will become

more negative

� Increasing ELA altitudes

where a large % of area

exits around the initial ELA

position, can result in rapid

change in MB, becoming

increasingly negative where

swaths of former accumula-

tion zone are converted to

ablation zone

� Temporally dependent/ ELA

change dependent on a variety

of different factors within and

related to total SEB

Continued on Next Page. . .
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Table 2.1 – Continued

Geometric and

assoc. changes

Effects on SEB Possible effects on MB Further considerations

Topography

� Shading resulting in reduction

of shortwave radiation receipt

at the surface - greater shade

reduces contribution of short-

wave radiation to the SEB

� Important for considering the

contribution of diffuse radi-

ation - where topography is

more restrictive of surface sky

view factors, diffuse energy

contributions to the SEB will

be reduced

� A source of long-wave radia-

tion which affects snow and

ice near to it. These areas re-

ceive more energy in the form

of long-wave radiation which

enhances the energy available

within the SEB

� Greater shade results in re-

duced specific mass balance

(as a function of shortwave ra-

diation alone)

� More restricted sky view fac-

tors may result in less nega-

tive MB (as a function of dif-

fuse radiation alone)

� Snow and ice near to topo-

graphic features may have

more negative MB values than

areas further away (as a func-

tion of long-wave radiation

alone)

� Spatially and temporally vari-

able

� Diffuse radiation calculations

often used in conjunction with

the sky view factor (Oke,

1987)

� Effect of long-wave radia-

tion contribution to the sur-

face depends on other topo-

graphic factors which limits

the amount of direct short-

wave radiation reaching cer-

tain area of topography. Jux-

taposition of the glacier to

different topographies affects

their susceptibility to long-

wave energy contributions

from it.
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Table 2.1 is not exhaustive of all possible geometric effects on SEB and MB,

but has been constructed to identify key elements of importance - most often

associated with distributed SEB modelling approaches (section 2.5.3). As can be

seen in table 2.1, geometry is important in its effect on different elements of the

SEB which in turn affect the specific and total MB of a glacier. These effects

are further considered in the following subsections, as well as the importance of

spatial and temporal variability (and therefore requirement for their study).

2.3.1 Slope and aspect

Slope and aspect are particularly important when considering the receipt of

shortwave radiation on a surface (I). For mid-high latitude surface energy balance

studies (see section 2.5), radiation has occasionally been found to contribute as

much as 96-99% of the overall balance as in the study of Arendt (1999) on a high

Arctic glacier, although lower values more equal to 75% tend to be more common

(Arnold et al., 2006b). Not only is incoming radiation of vital importance in terms

of its contribution to the SEB, it is also highly susceptible to local environmental

variables - namely surface slope, aspect and hillshade values as represented in

equations 2.7 and 2.8, adapted from Burrough & McDonnell (1998):

I = H x cosi Sin,TOA exp(−τ/cosθ0) (2.7)

where H represents the mean % topographic shading for a given time period, i is

the solar illumination on the slope, Sin,TOA is the exoatmospheric flux, τ is the

atmospheric transmissivity, θ0 is the solar zenith angle. cosi is calculated using:

cosi = [cosθ0 cosβ + sinθ0 sinβ cos(φ0 − A)] Sin,TOA (2.8)

where φ is the solar azimuth, A is the slope aspect and β is the slope angle.

Radiation is often recognised to provide the largest contribution to the overall

SEB of a glacier (Benn & Evans, 1998). As a consequence of its importance

and sensitivity to surface geometry, distributed surface energy balance modelling

approaches pay careful attention to its calculation (e.g. Hock & Noetzli, 1997; Hock

& Holmgren, 2005). Due to lower sun angles, for Arctic glaciers, the implications of
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slope and aspect variability on shortwave radiation receipt are important, however

their effect may be reduced compared to lower latitudinal areas due to the amount

of daylight received on a daily basis during polar summers (Arnold et al., 2006b).

2.3.2 Surface geometry and surrounding topography

Equation 2.7 accounts for the effects of surface geometry on incoming direct

shortwave radiation, and the limiting effects of topographic shading. Shading

is the result of surrounding topography, which is recognised as a key factor in

controlling spatial patterns of SEB propagation and mass balance. The amount

of shade that propagates across the glacier surface depends on the juxtaposition

of the glacier to surrounding topography, as well as consideration of solar azimuth

and zenith angles which are time dependent (as well as latitudinally dependent)

(Burrough & McDonnell, 1998; Hock & Holmgren, 2005; Arnold et al., 2006b).

The effect of changing hillshade patterns relative to solar position are displayed in

figure 2.1.

Where an area of a glacier is shaded, it receives no direct radiation (Hock &

Holmgren, 2005). Shading effects have the potential to be much more considerable

at higher latitudes (such as in the High Arctic) due to lower solar zenith angles

(Arnold et al., 2006b). With surface lowering — another geometric change —

hillshade values are likely to increase, resulting in a reduction in the amount

of radiation reaching the surface and further reductions of sky view values and

therefore receipt of diffuse radiation (from the sky). Considering retreat of glaciers,

proportional hillshade of the total glacier area is also likely to change and this is

discussed further in chapter 4.

Equation 2.7 accounts for hillshade effects but is exclusive of more complex

relationships concerning radiation reflection from slopes and surfaces to one

another. Such complex relationships have been calculated in some distributed

SEB models such as in Hock & Holmgren (2005). This relationship is also a

key element of the Complex terrain module of the Alpine 3D model (Lehning

et al., 2006; Michlmayr et al., 2008). The sky view of a given point on a glacier is

22



Figure 2.1: Hillshade patterns as a function of solar position and topography. Changing solar
position is indicated by sun positions A and B. The expected shade patterns occurring as a
function of solar position relative to topography is indicated by the shaded areas. Shaded areas
labeled A represent shading expected when the sun is in position A. B+ is used to indicate
shading from position B, as it overlaps the areas shaded when the sun is in position A. Where
the glacier is completely shaded, no direct shortwave radiation is incident at the surface, with
radiation being contributed to the SEB in the form of diffuse and long wave radiation only.
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further controlled by topography which is important in its control on the amount

of diffuse radiation that can be received at a given point on the glacier surface,

which relates to the sky view factor (Oke, 1987). Diffuse radiation is calculated

in the distributed model of Hock & Holmgren (2005), considering the sky view

factor proposed by Oke (1987). The sky view factor (F ) is calculated by Hock &

Holmgren (2005) using:

F = 1/2π

∫ 2

0

πcos2γdϕ (2.9)

Where γ is the elevation of the horizon, d and ϕ is the azimuth, as defined by Oke

(1987). This requires a consideration of the elevation angle of the horizon which is

directly controlled by the geometry of a given area on the glacier being modelled

and which consequently changes as a function of geometric change. Equation

2.9 assumes a horizontal surface, however, as mentioned in Hock & Holmgren

(2005), the angle that should be used is that which describes the deviation from

the normal to the inclined surface and the direction of radiation.

2.3.3 Elevation

Surface elevation is of great importance for a number of components of the SEB

and this is often related to variability in adiabatics, thus change in pressure. As a

result of ablation, a glacier thins and consequently the surface elevation at a given

point lowers. This forces the surface into a region of greater air temperature, as

can be expressed via simple temperature lapse rate relationships. Such changes

have been used to explain differences between the reference and conventional

surface balance of South Cascade Glacier, Washington, USA (Huss et al., 2012).

Elevation changes resulting in such temperature variability have further effects.

Turbulent flux — the mixing of sensible heat and latent heat — is directly affected

by temperature and also by air density (which is affected by pressure). Both of

these factors vary with elevation and thus, a change in elevation will result, to

some extent, in a change in turbulent flux (although the change may be small)

(Cuffey & Paterson, 2010). The effects of changes in these parameters is best

illustrated when considering the calculation of sensible (QH) and latent heat (QL)
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flux as components of the aerodynamic approach at calculating turbulent flux

(Hock & Holmgren, 2005; Cuffey & Paterson, 2010):

QH = ρacaCHu[Ta − Ts] (2.10)

QL = ρaLv/sCEu[qa − qs] (2.11)

where ρa is air density, ca is the specific heat capacity of air at a constant pressure,

Lv/s is the latent heat of vaporization or sublimation, CH and CE are coefficients

for heat and moisture, u is wind speed, Ta − Ts represents the contrast in tem-

peratures of the lower boundary layer and qa − qs represent contrasts in absolute

humidity (Cuffey & Paterson, 2010). Giesen & Oerlemans (2012) further account

for the dependence of such factors in a simpler consideration of SEB in the form of

ψ which is explained further in chapter 5 — the value of ψ being directly affected

by air temperature.

Precipitation gradients are also of importance when acknowledging change in

elevation over a given glacier, as such gradients are directly dependent on elevation

(Nesje, 1992). Precipitation gradients are recognised as being important when

considering ELA position variability (e.g. Nesje, 1992; Carrivick & Chase, 2011).

As ELA is descriptive of the MB state of a glacier, such gradients should be

considered. Some modelling approaches account for such change (e.g. Adalgeirs-

dottir et al., 2006), whereby precipitation (adiabatically) increases with elevation.

Adalgeirsdottir et al. (2006) acknowledge 3-dimensional variations in precipitation

gradients by calculating precipitation at a point (p(x, y, z)) using:

p(x, y, z) = (1 + gz(z − z0))(1 + gx(x− x0) + gy(x− x0))pc (2.12)

where gx and gy are site specific horizontal precipitation gradients, gz is a site

specific vertical precipitation gradient, x and y are horizontal coordinates, z is

the altitude, x0, y0 and z0 represent the location of a reference position (the

meteorological station) in 3-dimensions and pc is a scaled precipitation value at
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a meteorological station. Topography and other factors are also responsible for

variations in precipitation with elevation and therefore precipitation gradients —

as represented by factors gx, gy and gy — are site specific. Such difficulties as

assessing spatial precipitation gradients are an inherent issue of many modelling

applications (e.g. Flowers et al., 2005). Where glacier elevation distributions

change over time, so will precipitation gradients. Accounting for elevation change

— as in this study — is key in modelling approaches reconstructing and predicting

future glacier responses to changes in climate as precipitation is key in its contri-

bution to surface mass.

It should be noted that the potential enhancement effects of surface lowering on

the SEB may be limited as a proportion of the total glacier when considering

changes in hypsometry and accounting for retreat. Considering proportional

change, retreat of a glacier to higher elevations may dampen the effect of point

specific elevation lowering.

2.3.4 Hypsometry

Glacier MB is extremely susceptible to changes in hypsometry over time. Hyp-

sometry is defined as the relationship between area distribution with elevation.

Where large proportions of total glacier area are located around the ELA, changes

in hypsometry in this region will result in significant shifts in the position of the

ELA, which in turn can result in faster or slower responses to changes in climate

(Benn & Evans, 1998). Change in the position of the ELA is particularly effective

in changing the balance of a glacier on ice caps, where increase in ELA altitude

can turn large parts of the accumulation zone into ablation zone (Nesje, 1992;

Brozovic et al., 1997; Carrivick & Brewer, 2004; Nesje et al., 2008; Giesen &

Oerlemans, 2010).

2.3.5 Spatial considerations of geometry

The effects of geometry highlighted above — especially with regard to slope,

aspect, elevation and position relative to topography — all vary in space. The

relationship of geometries between one another results in the presence of a variety
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of feedbacks across a glacier surface and analysis of the spatial distribution of

such components is key to further understand SEB/MB processes (Oerlemans,

2010a; Carturan et al., 2013). Spatial assessment is further recognised as key

in understanding decoupling that is observed between glacier geometries and

contemporary warming (Zemp et al., 2006; Carturan et al., 2013). Such study is

vital where predictions of future glacier change and contributions to hydrological

systems are to be made effectively. Failing to account for spatial variability is

misleading in studies of SEB and MB change, as smaller scale variations are

not accounted for. Klok & Oerlemans (2002) showed that by neglecting spatial

variations in hillshade, clear sky view, reflection from surrounding slopes as well

as surface slope and aspect, resulted in a 37% increase in modelled incoming

shortwave radiation, resulting in an increase in ablation of 0.34 mm yr-1. The

importance of spatial factors are revisited in section 2.5.3.

2.3.6 Geometric evolution: effects and quantification

Geometry is important to consider in the calculation of numerous components

of the SEB (as exemplified in equations 2.7, 2.10, 2.11 and 2.12). Many models

assume such geometry to be temporally invariant - a number of such models are

highlighted in table C.1. However, geometry does not remained fixed and extrap-

olating calculations of mass balance change into the future using models based

on fixed contemporary geometries is incorrect as it fails to acknowledge glacier

adjustment to their environments (Le Meur et al., 2007). Thus such calculations

should account for geometric change through time (see figure 2.2).

Gerbaux et al. (2005) found that by using a constant digital elevation model

(DEM) to assess mass balance change for a 23 year period, a considerable source

of error in this modelling was attributed to the lack of accounting for elevation

changes which were as large as 20 m in some areas of the glacier. Studies of

glacier melt also recognise that melt processes are spatially variable — a function

of a number of factors of which hillshade is often key (e.g. Hock & Holmgren,

2005; Arnold et al., 2006b) considering its effect on shortwave radiation which is

often attributed as the biggest contributor to SEB. Considering elevation change
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associated with melting of ice and the variability of such melt processes, this

inevitably results in changes in slope and aspect. With further thinning and

resultant retreat of a glacier, this affects hypsometry. Thus all components of

glacier geometry change over time and in response to MB change.

Figure 2.2: Geometric evolution through change in mass balance affects the SEB that acts over
it. Such geometric changes should be accounted for when modelling processes occurring at the
glacier/climate interface. Ignoring geometric change will provide inaccurate results, especially
over longer time periods.
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Reference balance modelling — discussed in section 2.2.2 — is an extremely

effective way of accounting for the effects of changing glacier geometry on MB,

allowing for the identification between climatic forcing and geometric forcing.

However, quantification of the effect of geometry on MB has only been carried out

in a few studies - namely Paul (2010) and Huss et al. (2012). Other studies have

also accounted for change according to geometry but preventing DEM updates

in distributed model applications (e.g. Arnold et al., 2006b) — differing from

the reference balance approach where all geometry is fixed. To quantify the

variability between calculated reference and conventional mass balances, thus

detailing the proportion of MB change attributed to geometric adjustment as

opposed to climate, Huss et al. (2012) use a fraction Fi, calculated using:

Fi = ∆Bc−r,i/Br,i (2.13)
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where ∆Bc−r,i is the difference between conventional and reference annual balance,

Br,i is the annual reference-surface balance and i represents the year for which

the balances represent (Huss et al., 2012).

Despite the importance of geometry in its requirement for the calculation of

a number of SEB components, many studies that have not accounted for its

evolution have been able to model MB values representative of those observed in

the field (e.g. Arnold et al., 1996; Brock et al., 2000a). Such models have usually

been operated over short time scales and oppose results of longer time scale model

applications such as the aforementioned study of Gerbaux et al. (2005). This is

explained in results from the 82 year study of Huss et al. (2012) where annual

variability was found in conventional mass balance values whereas no short-term

variability was found to exist in ∆Bc−r,i of equation 2.13, which exhibited instead

a steady increase in long term variability. This is implicit of the long-term impor-

tance of accounting for varying geometry, indicative that such change over shorter

time scales has little effect. Such a conclusion could equally be countered when

considering how drastic geometric changes are on a year-by-year basis.

However, considering the more general gradual geometric evolution of the vast

majority of glaciers and acknowledging the importance of geometry in terms of

the SEB and MB, a key issue that remains which limits further advances in better

quantification of geometric modification effects on SEB and MB is the availability

of data. Long term studies quantifying topography are required coupled with

meteorological records and in-situ MB observations where possible, to be able

to assess geometric effects on SEB and MB. Such data are limited, especially in

less populated glacierised areas (many more long-term studies exist in the Alps

than in the Arctic for example), and furthermore where such data are available,

their compilation is thwarted by issues often relating to resolution. These themes

of historical study and error are discussed further in section 2.4.1 and are fully

addressed by this thesis in chapters 4, 6 and 7.
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2.4 Addressing glacier and mass balance change

over time

Glacial behavior is controlled by both climate and the physical properties of ice

(Paterson, 1994). Due to this close relationship, a better understanding of glacier

behaviour and response over time (Oerlemans, 2005) can be sought through the

collation of data detailing changing climatic and glaciological conditions. Such

data compilation is possible through both glacier/climate monitoring and recon-

struction (Bauder et al., 2007; Knoll et al., 2009). Depending on the data available,

such data compilations can lead to an improved understanding of variability in

both glacier change and processes occurring over both spatial and temporal scales

(Carr & Coleman, 2007; Nussbaumer et al., 2011).

A number of different methods exist enabling assessment of glacier response to

changes in climate over time. These methods focus on the mass balance of a

glacier as discussed in section 2.2. The key approaches include the geodetic,

glaciological, flux and hydrological methods, as well as modelling mass balance

change from climate records, although this later method excludes all non-climatic

related processes (Kaser et al., 2003).

The glaciological method provides in-situ measurements of mass balance

change - something that can not be drawn where one of the other methods is

applied. This method requires the measurement of both accumulation and ab-

lation at specific points on a glacier, whereby changes are interpolated between

measurement points within a network (Østrem & Brugman, 1991; Kaser et al.,

2003; Zemp et al., 2013).

The basic methodology requires that changes in ice mass are assessed by changes in

surface elevation relative to measured stakes (the number of which is appropriate is

discussed in Fountain & Vecchia (1999)) and pits. Observed changes in ice elevation

are converted to mass assuming an ice density of 900 kg m-3 — this is modified

where the materials that change are snow. This requires additional measurements

to be carried out, requiring the excavation of glacier-wide representative snow
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pits and measurement of snow density (Braithwaite, 2002). A number of critiques

comparing the glaciological and the geodetic methods have been carried out (e.g.

Østrem & Haakensen, 1999; Hagg et al., 2004). Zemp et al. (2013) report that a

dozen mass balance studies exist whereby this method has been applied, coupled

with decadal geodetic surveys. On comparison of the two, sometimes there is

agreement between the MB values calculated and sometimes there is disagreement.

The differences between the methods are discussed further in section 2.4.1. The

glaciological method is very useful but is only of use for long term studies where

past interest in a specific glacier was of a magnitude enough to initiate such a

study. Other methods, including the geodetic method, can often be used to draw

data from sources that were not necessarily developed for specific glacier study.

The flux method is only useful under steady state conditions as under pos-

itive or negative balances which cause an acceleration or slow down of glacier

velocity, the method will fail (Kaser et al., 2003). This relates to the principal of

mass conservation whereby mass balance should be equally balanced by ice flux

divergence and thickness change (Zemp et al., 2010). Application of the method

requires consideration of mean glacier velocity as measured at the ELA and ice

thickness, from which cross sectional glacier area can be calculated. This method

is clearly illustrated and described mathematically in Brown et al. (1982).

The hydrological method can be used to assess mass balance as a storage

term in a given water balance (Hagg et al., 2004). Such a hydrological balance

(B) of an entire area, being calculated for example by:

B = P − Q − E ±∆S (2.14)

where P is precipitation, Q is runoff, E is evaporation ∆S is variation of other

storage elements within a defined catchment (not including glaciers) (Kaser et al.,

2003). Such an approach requires a very high level of instrumentation and the

maintenance of a high level of both spatial and temporal resolution if useful

assessments of mass balance change are to be sought (Hagg et al., 2004).
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The use of climate records offers another approach to assess glacier change

over time. As glacier MB is affected by both climate and the physical properties

of ice (Paterson, 1994), excluding the latter infers that MB can be assessed

climatically (Kaser et al., 2003). A number of studies have been conducted

whereby the annual balance of glacier has been reconstructed through modelling

applications (e.g. Vincent, 2002; Schöner & Böhm, 2007; Nemec et al., 2009).

Unlike the other methods, this approach does not account for elements specific to

the glacier other than its climatic location.

The geodetic method allows for an indirect assessment of glacier mass change

by subtracting successive glacier DEMs from one another. The method requires

the availability of accurate elevation surfaces that are then differenced providing

the geodetic balance. The method does not provide a true mass balance as this

would require the assumptions of static ice density and static bedrock (i.e. no

tectonic or isostatic rebound vertical related movement), to be met (Bamber &

Rivera, 2007). The methods of DEM acquisition can vary, with data coming from

topographic maps, satellite imagery and field surveying methods (ranging from

the use of dumpy levels and theodolites to GPS and terrestrial laser scanning)

and these are important considerations as the geodetic approach is extremely

sensitive to vertical error. As a result of this, surfaces for comparison should be

separated by a time step of a magnitude great enough that observed change is

greater than associated error (Bamber & Rivera, 2007). Despite the usefulness

of this method, where geodetic data have multi-annual time gaps, they cannot

be used to obtain accurate mass balance values of annual resolution. This is not

an issue where longer time period patterns are being assessed but the method

should not replace in situ measurements inherent of the glaciological method

where very high resolution data are required over shorter time periods (Fountain

et al., 1999b; Bauder, 2001; Bauder et al., 2007). Due to the interest of this

project in changing glacier geometry and its effect of the SEB, considering the

methods available, the geodetic method is that which is focused on, as it provides

a spatial assessment of change (Carturan et al., 2013). This method choice relates

partly to the data that are available for the glacier assessed in this study and

also to the way in which spatial reconstructions allow for a proper assessment of
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changing geometry of a glacier - something that the other methods do not focus on.

The surfaces used in the geodetic method can be derived from topographic maps

which also allow for a reconstruction of the pattern of retreat, advance, change in

area and hypsometry and changing geometry (slope and aspect) of glaciers through

time. It should be highlighted that although glacier terminus position changes

can be derived directly from total glacier area maps and imagery (e.g. Leclercq

et al., 2012a), there are a number of studies where glacier terminus position alone

is recorded, although often this contributes to a larger study (e.g. Zagórski et al.,

2008). The specific methods of such characteristic calculations are discussed in

chapter 4.

The equilibrium line altitude (ELA) can be derived from a combination of

the aforementioned methods and deserves to be addressed briefly here, particularly

considering the wide variety of approaches to its calculation. The ELA is a theo-

retical point where accumulation rates match those of ablation averaged over a

balance year (Paterson, 1994; Benn & Lehmkuhl, 2000). Rarely does one altitude

across a glacier surface maintain such a property and so the ELA is calculated

as a mean altitude across the glacier (Benn & Lehmkuhl, 2000). Such an ELA

position is known as the annual ELA. The steady-state ELA, whereby the mass

balance at the ELA mean altitude is 0, can only be estimated where multiple

annual ELA positions are estimated over a number of years. Where such data are

available, ELA mass balance can be plotted against elevation, and through the

points a line of best fit can be placed from which the steady state ELA can be

deduced (Benn & Lehmkuhl, 2000).

The ELA can be calculated using a variety of methods, many of which require

knowledge of the spatial and vertical extent of the glacier and are thus often

derived using methods and imagery inherent of the geodetic method (although a

single image may be used to derive the ELA where knowledge of mass balance

change occurring at positions equal to those represented by the map is available —

this links to ideas explored earlier in section 2.2.2). Where glacier geometry is

available — whereby geometry relates to area, hypsometry and knowledge of the
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altitudinal range — a number of methods can be used to assess ELA position

including the specific methodologies discussed in chapter 4:

1. Area x Altitude (AA) method

2. Kinematic method (Hess altitude)

3. Area weighted mean altitude (AWMA)

4. Accumulation Area Ratio (AAR)

5. Toe-to-headwall altitude ratio (THAR)

6. Toe-to-summit altitude method (TSAM)

Where knowledge of the glacier mass balance is known — and assuming positive

and negative balance gradients of a generalised balance curve are approximately

linear — the Area Altitude Balance Ratio (AABR) method can be used. This

was formerly the Balance Ratio (BR) method as in Furbish & Andrews (1984) but

later renamed by Osmaston (2005). Assuming the ELA is of an equal position

to the transient snow line (TSL), ELA position can be estimated directly from

images of the TSL of a given glacier (Kaser et al., 2003). However, such an

assumption is rarely true in polar regions due to complications introduced by the

presence of superimposed ice (Adams et al., 1998). Many of these methods are

very rudimentary and based on wide assumptions, applying only really where a

glacier is in steady-state. However, the ELA has been estimated in studies where

a glacier is known to not be in steady state, thus using the ELA as a kind of mass

balance proxy (e.g. Hawkins, 1985). Furthermore, due to the wide range of values

that can be acquired through the application of the different methods of ELA

calculation, it is common to approximate its position by taking the average of

multiple calculations (Carr & Coleman, 2007; Davies et al., 2012). It should be

noted that where the ELA is derived directly from topographic maps (such as via

the kinematic routine discussed in Cogley & McIntyre (2003)), the ELA position

will be directly related to horizontal and vertical map errors.
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2.4.1 The geodetic method: glacier monitoring and previ-

ous studies

It is widely recognised that studies assessing the changing characteristics of glaciers

in terms of thickness, area, length and volume over various time scales are impor-

tant for assessing the changing conditions of the cryosphere (Pelto, 2006; Tennant

& Menounos, 2013). Direct assessment of glacier change in terms of mass and

length did not develop with any particular accuracy until the late 19th century

(Nussbaumer et al., 2011). For use of the geodetic method for a specific glacier,

data must be sought that can be used to assess spatial change at a specific lo-

cation over time. Today, a number of methods exist which make this possible

— the specific approaches used have been subject to change over time and with

technological advances. Today, remote sensing — both satellite and aerial based

— provides the only real method of assessing glacier mass change over regional

scales (Bamber & Rivera, 2007). A key tool in the development and assessment

of change pertained from glacier monitoring and reconstructions are provided by

Geographical Information Systems (GIS) (Knoll et al., 2009), providing a simple

way to analyse the spatial nature of the data. This allows for simple (geodetic)

change analysis between data sets, particularly so relating to the use of raster file

types and datasets.

Early glacier studies with the aim of assessing glacier mass balance and change

required mass man power and extensive periods of time being spent in the field.

Such studies took place in Switzerland (with the initial co-ordination of the Swiss

Glacier Inventory (SGI) from 1894), with many studies being focused in Nordic

countries by Swedish and Norwegian researchers from the early 20th century

(including Ahlmann & Tryselius, 1929; Ahlmann et al., 1933; Ångstrom, 1933;

Sverdrup & Ahlmann, 1935; Wallén, 1949). More studies began to develop in the

European Alps from the 1930s (Hock, 2005). These studies often made use of the

glaciological method but were often associated with the development of glacier

scale maps. Map development required the use of manual surveying practices with

use later of aerial photography. Aerial photography surveys, as of the 1960s, were

taken of glaciers in Switzerland at regular intervals (Bauder et al., 2007). Despite
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a wealth of data being available from these studies, accurate position of maps and

images is difficult and prone to the errors inherent of pre-GPS methodologies.

The digital age brought the availability of accurate positioning through GPS

as well as satellite monitoring from the 1970s onwards, following the launch of

Landsat 1, which instigated a number of projects including the development of

the United States Geological Surveys (USGS) Satellite Image Atlas of Glaciers

of the World (Williams & Ferrigno, 2010). A number of tools are now available

to glaciologists, providing data in the form of satellite imagery. Examples of the

satellites providing imagery include the MSS, TM, ETM+ sensors associated with

the Landsat programme and ASTER, aboard the Terra satellite. The spatial

resolutions of the data available from the Landsat sensors range from 15-60 m

whereas ASTER data has a resolution of 15-30 m. Images used in different studies

are sought from a variety of sensors (some of which are no longer operational

e.g. those associated with the Corona programme) - knowledge of resolutions is

key when searching archives for imagery for a specific location. Glacier imagery

can be refined by band processing (bands TM4 and TM5 being used with data

from the Landsat TM sensor (Paul, 2002, 2004)) as well as by making use of false

colour composites (Paul, 2002). This latter approach can be useful for defining

the position of transient snow lines (Krimmel & Meier, 1975; Rott, 1976). The

use of satellite imagery is extremely helpful, providing a means of uniform and

frequent glacier monitoring (Tennant et al., 2012). Unlike other methods for which

their application is planned for a given study (e.g. the glaciological method), it

is often possible to make use of satellite imagery from non-specific pass overs

to assess glacier change. This means that much more data are now available

(of course, this extends to other fields of spatially associated research as well).

The methods mentioned above detail passive sensing units which detect naturally

available light. These differ to active sensors which provide their own source of

illumination (Lillesand et al., 2004). Such active sensing approaches include radar

altimetry, airborne laser scanning (ALS), terrestrial laser scanning (TLS) and

syntheic aperture radar (SAR).
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Today a number of monitoring programmes are in existence and a number of

authors are working with remote sensing data enabling high resolution glacier

change observations to be made in a number of regions (e.g. Kääb et al., 2002;

Ranzi et al., 2004; Raup et al., 2007a,b; Paul, 2008). With the advent of a variety

of international remote sensing projects including Global Land Ice Measurements

from Space (GLIMS) (Paul, 2002; Bishop et al., 2004; Raup et al., 2007a,b),

groups such as the World Glacier Monitoring Service (WGMS, 2013) and missions

(e.g. the Gravity Recovery and Climate Experiment (GRACE)), it has become

much easier to acquire data and evaluate glacier change over much larger spatial

scales compared to the studies of the pre-digital age. Spatially, they provide a

pathway by which we can better understand the complex earth surface processes

and feedback mechanisms that will both facilitate (and further develop) potential

changes in climate (Aniya et al., 1996). However, remote sensing approaches alone

are temporally limited and consequently long term reconstructions often require a

combination of digital and pre-digital data.

Despite the importance of glacier observations, the ability to maintain long term

programmes at a given site has always been thwarted by both funding limitations

and (lack of) dedicated researchers (Nussbaumer et al., 2011). To centralise

the information on glacier change over time that is available, the World Glacier

Monitoring Service (WGMS) was developed in 1986 (Aniya et al., 1997; WGMS,

2013). The WGMS collates information on glacier fluctuations, including mass,

area, volume and length which is classed as glacier fluctuation data, as well as on

perennial surface ice (glacier inventories) (WGMS, 2013). With the development

of the Global Land Ice Measurements from Space (GLIMS) project, for which a

global assessment of land ice is the main aim of the project (Paul, 2002; Bishop

et al., 2004; Raup et al., 2007a), the WGMS also works in conjunction with the

US based National Snow and Ice Data Center (NSIDC), together extending the

coverage and increasing the contents of the existing world glacier inventory (WGI)

(WGMS, 2013).

A number of monitoring/reconstruction studies are in existence and a sample of

these are accounted for in table B.1 in appendix B. The aforementioned geodetic
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acquisition methods relate to monitoring of glaciers either where the glacier has

been present to work on directly or where images of a glacier are available. Thus

the glaciers considered in table B.1 are those still in existence during the 20th

century. It is possible to reconstruct former glaciers using a variety of geomor-

phological indicators including moraines, trim lines, evidence of rock scouring to

name but a few (e.g. Derbyshire, 1961; Embleton, 1964; Clapperton, 1971; Russell,

1995; Evans & O Cofaigh, 2003; Evans et al., 2005; Carr & Coleman, 2007). Such

methods are not discussed here as they fall out of the remit of this study. Where

such methods have been incorporated with studies developed using the techniques

mentioned above to estimate uppermost extents for example, they are included

and highlighted in table B.1.

The glaciers that have been reconstructed as represented in table B.1 cover regions

around the globe including North and South America, the European Alps, India,

Tanzania, New Zealand, Russia, Norway and Svalbard. The reconstructions have

been possible using a variety of techniques including ground surveys (of varying

approaches) and remote sensing. A number of important points can be drawn

from the studies selected in table B.1. Issues can be related to the pre-digital and

digital methods of data acquisition. The former can be argued to have greater

resolution of localised attributes but being limited in terms of spatial resolution

and extent whereas the loss of extremely localised resolution is better accounted

for in terms of spatial resolution and error quantification by the latter. Such

an issue relating to spatial resolution can be exemplified by the data within the

SGI for which it is today acknowledged that much of the work carried out barely

assessed changes to smaller glaciers (Paul, 2002). This in part links to the sheer

number of glaciers within Switzerland. Consequently, the lack of information on

smaller glaciers resulted in their behaviour being relatively unknown and therefore

unaccounted for (Paul, 2002). The increased assessment of these smaller glaciers

was a key objective of SGI 2000 which used remote sensing methods, enabling

a more holistic swiss glacier assessment (Paul, 2002), supporting the ability of

remote sensing methods to better capture glaciers on a wider scale as addressed

by Bayr et al. (1994).
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Despite the methods that are available today enabling effective spatial glacier

change monitoring, a number of issues still exist. Local resolution is one such

issue related with the more modern approaches to accounting for individual glacier

change. Older aerial photography has been found to provide better resolution,

even 10 fold in some studies, compared to the resolution of Landsat TM acquired

data (Paul, 2002). This in turn can result in area magnifications that are relics

of the method applied as opposed to environmental phenomena. Resolution is

also an issue when related to techniques of automatic digitization and digitization

at low resolutions. This issue is spatially dependent and is mainly problematic

where imagery resolution is poorest.

Developing the point made regarding digitization, a common problem that is

clear from the literature is denoting the boundary of a glacier, which is extremely

subjective (Hanshaw & Bookhagen, 2013). Multiple methods of glacier outline

determination have been suggested (Paul & Kääb, 2005; Racoviteanu et al., 2009).

This is an important consideration when compiling multiple maps (assuming they

are digitized - i.e. where the original photographs are not available) and is further

complicated by poor data resolutions, especially where glacier boundaries are

covered with moraine (e.g. Paul, 2002; Carturan et al., 2013). Further considering

the resolution of remotely sensed imagery, where resolution is low (ergo pixel size

is large), and glacier size is small, the imagery cannot be used to make assessments

of change (e.g. Granshaw & Fountain, 2006). Apart from resolution issues, for all

remotely sensed images, there is a sensitivity associated with weather conditions,

particularly cloud cover, which can prevent useful photographs from being taken

(Aniya et al., 1997).

Another issue relates to the locating of and connections of images to ground

control points (GCPs). Where studies use more modern imagery, these can be

enhanced using different band ratios to uncover GCPs clear on other images

(James et al., 2012), reducing errors when georeferencing images. The use of

GCPs are also an extremely useful method of planar error assessment. Thus,

it is clear that images where clear GCPs cannot be found are at a comparative

disadvantage in terms of georeferencing potential and, consequently, associated
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horizontal errors. Such issues of error introduction are further magnified where

metadata for older images cannot be located. Where such information relates

to photography, details may pertain to camera settings. Regarding maps, such

metadata may be specific to a datum or projection used (often not displayed on

the map itself, especially where not developed for an official body, but as part of a

smaller study). Error introduction is further associated with interpolation (where

point measurements are available), especially where steeper slopes are concerned

(Shahgedanova et al., 2012). Interpolation, and specifically the method of kriging

is discussed extensively in Hock (1999).

The different sources of data — despite their limitations — as discussed above are

evidence of the spatial data avaialble today that can be used to inform changes in

glacier mass balance. Considering the data now available, the geodetic approach —

glacier surface comparison — provides both an attractive and convenient method

of quantifying such change. However, the method is not without complications. A

number of assessments have been carried out considering the merits and pitfalls

of the geodetic approach. Many of the errors associated with the method, when

considering the use of older analogue photographs, relates to interpretation —

an issue less and less related to the imagery that can be collected today such

as using radar approaches (Bamber & Rivera, 2007). Differences between the

geodetic and traditional glaciological methods when compared directly for the

studies identified by Hagg et al. (2004), these were found to vary from -0.48 -

+0.10 m yr-1. Andreassen (1999) attempted to combine geodetic and glaciological

data used to assess Storbreen (Norway) but found that both data sets were prone

to large uncertainties, rendering such a comparison void. The geodetic method

is extremely sensitive to map error and thus such errors must be considered

when interpreting the results of geodetic studies. Østrem & Haakensen (1999)

found that errors inherent of the geodetic method were more easily determined

than with the glaciological method and that the former is useful for long term

studies of changing mass, especially where the maps produced from images are

done so using the same approach. Error inherent of surface comparison can be

minimised by ensuring the time-step between an image pair allows the surface

change component to exceed the error component (Bamber & Rivera, 2007). A
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geodetic comparison error is calculated as the root mean square error (RMSE)

of the two surfaces and the time interval will always have to be greater than the

change in elevation between surfaces divided by the time between the surfaces

multiplied by the RMSE. For surfaces derived from poorly constrained data,

surface separation time steps of an appropriate length can prove ineffective. With

increasingly high resolution data becoming available, such as that derived from

interferometry (linking to data as collected by the German TerraSAR-X satel-

lite), data of sufficiently high resolution is becoming more and more easily available.

2.5 Mass balance modelling

Acknowledging the changes that glacier surfaces undergo as identified by many of

the authors cited in table B.1 and considering the importance of glacier geometry

on surface energy balance (Carturan et al., 2013), attention is now drawn to mass

balance modelling approaches that have been used in the past. Of particular

importance here is an assessment of models which consider the effects of spatial

variation and geometry on the calculation of Q and thus the effect that this has on

mass balance. Physical energy balance and temperature index/degree-day models

are the main approaches used for calculating glacier melt (Hock, 2003).

2.5.1 Temperature-index/degree-day models

Such models are based on the assumption of an empirical relationship existing be-

tween ice melt and air temperature (Hock, 2005) as has been proven by numerous

studies (e.g. Braithwaite, 1981). Such models are often applied where data are

limited to only temperature, and merits leading to their application, other than

limited data input requirements, relate to the ease of forecasting temperature

changes, good model performance compared to more complex approaches and their

computational simplicity (Hock, 2003). Such models are often based on the use of

degree-day factor values (DDF) where the DDF is the factor of proportionality

when considering melt relative to the sum of positive temperatures (Hock, 2003).

The positive degree notion is important as it differs to a daily temperature which
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includes cooler temperatures at night, whereas melt will predominantly have

occurred during the day (Hock, 2003). A variety of DDFs have been calculated,

varying for both snow and ice, by different authors (e.g. Schytt, 1964; Laumann &

Reeh, 1993; Johannesson et al., 1995; Vincent & Vallon, 1997; Hock, 1999) using

methods varying from energy balance computation to use of ablation stakes.

Although temperature-index models can be used on limited data sets, a number

of models apply much more complex models including other components such

as radiation, precipitation and refreezing (e.g. Cazorzi & Fontana, 1996; Hock,

1999; Braithwaite & Zhang, 2000). Such increased complexity leads almost to the

development of a physical surface energy balance model approach.

Despite relative model simplicity, there have been some attempts at considering

spatial and geometric effects on melt. Where such models are applied to a DEM,

simple lapse rate corrections can be applied to consider temperature variations

with elevation. Some studies (e.g. Dunn & Colohan, 1999) have considered the

effect of aspect on melt, by enhancing melt rates on south facing slopes. Hock

(1999) incorporated a radiation component that considered the local effects of

surface slope, aspect and clear-sky proportional view (i.e. the effect of hill shading)

in an attempt to further incorporate spatial mass balance variation.

2.5.2 Physical energy balance models

Compared to temperature-index/degree-day models, physical SEB models (referred

to as SEB models from here) are much more complex and require much larger

amounts of input data, which can restrict their application for more remote

or inaccessible locations. The approach differs considerably as melt is not a

function purely of temperature as in simple temperature-index models, considering

contributions to the total SEB from a variety of different factors as discussed

in section 2.2.3. SEB models are the most physically justified type of model

considering the factors considered in their make-up (MacDougall & Flowers, 2010).

A further benefit of this added complexity is being able to run sensitivity analyses

to assess contributions of specific components to the SEB and the MB (Le Meur
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et al., 2007). From the main components of which the SEB is comprised, the

energy for melt (Q) can be defined as in Hock & Noetzli (1997) using:

Q = G(1− α) + Lnet +QH +QE +QR (2.15)

where G is global radiation, α is albedo, Lnet is net long wave radiation, QH is

sensible heat flux, QE is latent heat flux and QR is the energy supplied by rain.

This equation can be represented using another approach by (Giesen & Oerlemans,

2012):

Q = (1− α)τSin,TOA + ψ (2.16)

where Sin,TOA is the incoming radiation at the top of the atmosphere. Equation

2.16 is taken from a new model developed to apply more complex considerations

of the SEB to glaciers for which data is relatively limited. Consequently, terms

QH and QE (known collectively as “turbulent flux”) as well as Lnet are considered

together, and thus a bulk function (ψ) is applied (Giesen & Oerlemans, 2012). In

essence, the resultant model based on equation 2.16 could be seen as a sophisti-

cated temperature-index model (akin to that of Hock (1999) where temperature

is coupled with radiation) when considering the limited data input, however its

treatment of ψ is very different in terms of its relationship to temperature. The

specific calculation of these and other SEB components applied in different models

are extensive and variable. Numerous parameterizations have been constructed

for the calculation of some parameters of the balance, many of which are reviewed

thoroughly in Hock (2005) and consequently they are not discussed here. However,

calculations of energy balance components are discussed in the make up of the

model developed for this study (see chapter 5), with consideration also being paid

to external factors affecting the specific contributions of the different components

such as surface albedo.

Point studies applying SEB models are numerous, and entail the calculation of SEB

at specific points across a glacier surface (e.g. Hock & Holmgren, 1996; Oerlemans,

2000). Point studies are more easily applied than distributed approaches, resulting

in a small number of applications apparent in the literature (Brock et al., 2000a).
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The latter model type requires consideration of extrapolation of SEB components

across a known extent (Hock, 2005). Distributed SEB models require either the

extrapolation or parametrization of SEB components across a grid (MacDougall

& Flowers, 2010). Difficulties in extrapolation across a glacier grid are further

enhanced as many existing bulk functions for parameter calculations cannot

easily be applied to different cells due to issues relating to the assumptions of

stationarity, homogeneity and constancy on which many bulk methods are based,

these assumptions not being met in a glacier environment (Hock & Noetzli, 1997).

Consequently, they allow for incorporation of glacier wide (therefore spatially

variant) characteristics in the calculation of SEB and MB and this is discussed in

section 2.5.3.

2.5.3 Spatially modelling MB

Many point MB models have been developed (a list of which are presented in

table 2 of Hock (2005)) but specifically grid-based SEB approaches are not that

common and this is associated with the difficulty in extrapolating input data

(often point based) over an entire grid (Hock, 2005). Many studies that have

applied sophisticated mass balance models do not consider geometrical surface

profile updates in tandem with mass balance change (Giesen & Oerlemans, 2010).

However, more and more studies are now apparent (e.g. Giesen & Oerlemans,

2012), trying to assess and incorporate the effects of glacier geometry and mass

balance changes in greater detail (Oerlemans, 2010a). A number of grid-based

studies are identified and presented in table C.1 in appendix C, selected where

applications have been sought to assess spatial variations in SEB and effects on

MB. Some of the models included use more simple temperature-index approaches,

but these are still relatively advanced, accounting for other processes including

radiation. Where such models account for changing geometry throughout the

model periods, this is highlighted. Due to the interest of this study on geometrical

changes and consequent effects and modifications of the SEB, table C.1 also

includes reference balance studies (discussed in section 2.2.2). The key findings of

the selected studies are highlighted in all cases.
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Of the studies selected and presented in table C.1, many have been facilitated over

mountain glaciers and icecaps. The complexity of the studies varies from relatively

simple distributed approaches using degree-day models (usually accounting for ra-

diation and precipitation effects) to more advanced approaches using full physical

SEB approaches to model mass balance. Depending on the study objectives, some

approaches are particularly complex, coupling mass balance methods with models

accounting for complex boundary level meteorological processes and glacier/ice

cap flow dynamics. Limitations in the more complex physical approaches (equally

inherent of more simplistic approaches, albeit indirectly), relate to methods of

parameterizing various processes, including albedo and surface roughness (Arnold

et al., 1996; Hock & Noetzli, 1997; Brock et al., 2000a). The level of parameteri-

zation is dependent on the number (and quality) of measured variables available

for different locales, which in turn affects model transferability (MacDougall &

Flowers, 2010).

The majority of the models highlighted in table C.1 account for the effects of

surface geometry, particularly in relation to its modification of incoming shortwave

radiation, but also with regard to multiple reflection and other considerations in

some cases, as with the Alpine 3D model (Lehning et al., 2006; Michlmayr et al.,

2008)). Despite accounting for surface geometry derived from input DEMs, not

all models account for geometric evolution in response to mass balance. Of the

models accounting for geometric evolution, its effect on SEB and MB is often more

profound over longer time scales. This consideration of time-dependence may in

part explain its exclusion from models with shorter time-scale objectives, and the

time factor may also explain why modelled MB values, calculated exclusive of

geometry dynamism, are often still in good agreement with observed values (e.g.

Arnold et al., 1996). Outside of glacier surface specific geometry, topographic

factors relating to shadows are frequently highlighted as being of total importance,

explaining spatial variations in SEB distribution and mass balance change.

Table C.1 is not inclusive of all distributed studies, highlighting only a number of

keys studies. It is however clear that many of these studies have been focused in

the European Alps (especially more recently) with few being focused north of the
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Arctic Circle, especially when considering dynamic surface geometric adjustment.

Specifically, no studies using reference balance methods have been facilitated in

this area.

2.6 Summary

The key findings of this review are summarised as follows:

1. Small mountain glaciers are excellent indicators of climate change, relating

predominantly to the close relationship between MB and climate and their

size determined fast response times.

2. Geometry is an important consideration, especially when addressing long

term glacier change. The omission of geometric evolution from modelling

studies results in unrealistic and erroneous outputs.

3. The specific effects of changing surface geometry on components of the SEB

and therefore on MB are complex and inter-related

4. The concept of the reference balance is very useful for addressing relationships

between glacier change and climate over time (Elsberg et al., 2001; Huss

et al., 2012). Few studies have so far used this approach to assess such

relationships and none of the examples from the literature have so far been

applied to glaciers north of the Arctic Circle.

5. Geodetic methods have been used for the assessment of change at a number

of locations for glaciers under a variety of climates. Methods of data assimi-

lation include field based methods coupled with remote sensing approaches

(using both aerial photography and satellite imagery). Where relative DEMs

of a surface can be produced, mass balance can easily be calculated. How-

ever, where relative DEM development is not possible, the acquisition of

numerous well established GCPs and a good geodetic network are key to

minimizing errors.
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6. Distributed SEB models are becoming more widely used which relates to

the increasing interest in spatio-temporal variations in the glacier surface

and the components of the SEB.

7. Despite many models acknowledging the effect of glacier geometry (slope,

aspect and elevation) and that of surrounding topography (e.g. shade) on cal-

culations of SEB components such as shortwave radiation, few acknowledge

these relationships temporally, especially geometric variability.

8. No applications considerate of surface geometric adjustment have been

applied to small mountain glaciers north of the Arctic Circle.
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Chapter 3

Study area and local climate

This project is based on K̊arsagalciären, a small mountain glacier in northern

Sweden. This glacier has an extensive record of past study which offers a catalogue

of data including full topographic maps as well as accounts of retreat and other

activity including jökulhlaups (including Ahlmann & Tryselius, 1929; Wallén,

1948, 1949; Wallén, 1959; Karlén, 1973; Holmlund, 1989; Bodin, 1993). Coupled

with the nearby research centre - the Abisko naturvetenskapliga station (ANS),

meteorological data since the early 20th century are available offering opportunities

for comparative analysis and integration of meteorological data as well as with

ground based cryospheric observations. The glacier is located 25 km east of the

nearby village of Abisko which is well connected to the mining hub of Kiruna from

which flights to Stockholm are frequently flown. During the winter, the glacier is

accessible by snowmobile or ski. During the summer months, the lack of snow

allows for site access by hiking. There is a commercial helipad nearby that can be

used where large payloads of equipment are required that cannot be taken out by

snowmobile during the winter.

3.1 Study site and description

K̊arsagalciären (referred to as K̊arsa from this point forwards) is a small mountain

glacier located in the Vuoittasrita massif, on the border between northern Sweden

and Norway. Small glaciers are defined here as being < 5 km2 in area. The

name K̊arsa can be translated from the Sami K̊ars̊a which means narrow valley,
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the translated name thus being the narrow valley glacier. The contemporary

glacier is located at 68.358739◦N, 18.323593◦E and sits between the peaks of

Gorsačohkka (1554 m a.s.l.) and Vássejietnja (1590 m) (see figure 3.1). It is

positioned at the head of west-east trending U-shaped K̊arsavagge (K̊arsa valley),

along which meltwater and valley drainage is channeled towards Lake Tornetraäsk,

approximately 25 km to the east. The valley floor shows evidence of numerous

glacifluvial deposits with little evidence of till (Bodin, 1993). K̊arsavagge is scarred

by past glacial activity with the presence of numerous moraine systems and other

landforms discussed in Sjögren (1909), Holdar (1959) and Karlén (1973).

Following repeat visits by a number of observers, the glacier was seen to advance

from 1886-1912 with noticeable thickening of the margin. Since around 1912,

the glacier has been in a state of near constant retreat, with some isolated ar-

eas of minor advance (Karlén, 1973; Bodin, 1993). Earlier studies comparing

temperature records from nearby stations acknowledge that a clear temperature

change/terminus position relationship was difficult to establish and this in part

owes to the varying nature of the bed topography as well as the state of annually

variable winter balance conditions (Karlén, 1973). As of 2008 the glacier had an

area of approximately 0.89 km2, with two detached lobes to the immediate SW

and SE, the lobe to the SE named in previous studies (see Ahlmann & Tryselius,

1929; Wallén, 1948) as the K̊arsa side glacier (see figure 3.2). Considering the

acknowledged sensitivity of small mountain glaciers, especially in Arctic areas

(Dowdeswell et al., 1997; Bingham et al., 2006), the small size of K̊arsa places it

within a category of 64.2% of all Arctic glaciers, identified in 2009 to have areas

of < 2 km2 (Rippin et al., 2011).

To assist in a basic description of the glacier today, a number of images of the

glacier taken in September 2012 are displayed in figure 3.2. During the sum-

mer months — when it is possible to see K̊arsa uncovered from its winter snow

conditions — the glacier displays a relatively clean ice surface and a three tier

structure. The lowest part of the glacier ramps up in a southerly direction to

an ice plateau which then forms a second ramp up to the highest part of the

glacier. Extending from the first and lowest tier of the glacier, there is a steep
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Figure 3.1: Study site map. The top panel shows the contemporary glacier outline as derived
from aerial photography (taken in July 2008) with the surrounding topography being extracted
from the Bodin (1993) map (also created from aerial photography). The K̊arsa side glacier is
omitted from this image. The middle panel shows the location of the study site, highlighted in
red, relative to the rest of Scandinavia and the Arctic Circle. The lower panel shows an excerpt
of the 2006 Lantmäteriet BD6 Fjällkartan of the Abisko-Kebnekaise-Narvik region. The area
displayed in the top panel is highlighted within the red box extent.

389000
.000000

389500
.000000

390000
.000000

390500
.000000

391000
.000000

391500
.000000

7
5
8
4
5
0
0

.0
0

0
0

0
0

7
5
8
5
0
0
0

.0
0

0
0

0
0

7
5
8
5
5
0
0

.0
0

0
0

0
0

7
5
8
6
0
0
0

.0
0

0
0

0
0

1400

1400

1400

1500

1565
1300

1300

1300

1200

1200

1100

11
00

1000

1000

950

900

100010501100

1150

1200

1250

13001350

1
4
0
01
4
5
0

1450

1400

1400

1400

1500

1565
1300

1300

1300

1200

1200

1100

11
00

1000

1000

950

900

100010501100

1150

1200

1250

13001350

1
4
0
01
4
5
0

1450

N
E

D
E

W
S

YA
W

R
O

N

D
NALNIF

ARCTIC CIRCLE 66.5622°

50



ramp which runs to the north-west. During the summer there is still evidence of

the presence of some snow in the highest reaches of the glacier however the depth

and structure of the snow in this specific region has not been assessed due to

difficulty relating to access. At the centre of the glacier there is a clear extrusion

of bed rock protruding through the centre of the glacier from which moraine can

be seen entrained in the surface ice down stream from the outcrop. Along the

south-eastern terminus margin, melt water from the upper reaches of the glacier

falls over the steep terrain and run underneath the glacier. The terminus of the

glacier and the area over the central bedrock protrusion are heavily crevassed. In

all previous studies of the glacier (discussed below), the glacier has always been

land terminating, however following observations in the winter of 2011, there is

now the development of a small proglacial lake, implying that the future of the

glacier terminus may be affected by buoyancy and calving related mass loss events

(see figure 3.2).

3.2 Past investigations of the glacier

K̊arsa was selected for this study as opposed to any of the other small sensitive

glaciers in northern Sweden due to the wealth of available data and information on

the glacier throughout the 20th century as well as its accessibility. The amount of

data in part owes to the Swedish national mass balance programme that has been

collating data since the early 1940s. The accessibility of the glacier to researchers

has always been of great value, particularly following the development of the

Ofotenbanan railway in 1903 (Bodin, 1993), and the modern infrastructure of

roads and nearby Kiruna airport.

The first documentation of study at the glacier was made by Svenious (1910)

and Pyk (1914), who accounted for a number of photographs being taken of the

terminus from 1884 and into the early 20th century. Early measurements of the

terminus were made by Rabot and Mercanton (1914 in Karlén (1973)), where

terminus advance was observed of between 10 and 20 m. The first major study

that resulted in the development of a full topographic map of the glacier in 1926
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Figure 3.2: Glacier photographs September 2012. The top photograph shows the glacier
from the north-east whereby the lower, mid and upper glacier are clearly visible. Crevassing
towards the terminus is clear as well as a bed rock exposure in the middle of the glacier. The
middle photograph is taken from the east of the glacier terminus and displays the proglacial lake
formation that appears to be continuing in its development although flotation of the terminus
is not yet apparent (Rippin, 2013 (pers. comm.)). The bottom image depicts the K̊arsa side
glacier taken from the north-east.
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was published by Ahlmann & Tryselius (1929). This paper also included a number

of smaller scaled maps regarding terminus positions in the preceding years. Con-

tinuous acknowledgment of the terminus position was recorded then in Ahlmann

& Lindblad (1940). From 1941-1947, C.C. Wallén, a student of Ahlmann’s, began

an intensive study of the glacier with regard to its relation to climate (see Wallén,

1948, 1949; Wallén, 1959), resulting in a second full topographical map of the

glacier (although only focused on the main glacier lobe and not the side glacier).

Due to the close-knit relationship between the glacier and its surrounding topog-

raphy, the retreat pattern of the glacier was not regarded as representative of

glacier retreat throughout Sweden and as a consequence of this, K̊arsa was put

under less scientific scrutiny. Another of Ahlmann’s students, V. Schytt, focused

on nearby Störglaciären due to its simple geometry and accessibility - this glacier

now having one of the longest mass balance records in the world, running from

1941 to the present, the latter glacier becoming the key study site of the Swedish

national mass balance programme.

Following the study of Wallén (Wallén, 1948, 1949), a couple of aerial photographs

of the glacier were taken in 1959 and 1978 with a map being constructed following

an expedition from Durham university in 1961, however errors were found to exist

with the elevations in the latter mapping effort (Schytt, 1963). Mass balance

study was not repeated on the glacier until the early 1980s (Eriksson, unpubl.)

with the next published study being undertaken by A. Bodin in 1989 (Bodin,

1993). The Bodin (1993) study resulted in the development of a new topographic

map as well as radar surveys to assess glacier thickness. This study is the first

to revisit the glacier since A. Bodin. Table A.1 in appendix A displays the data

available for the glacier including data collected as part of this study. Despite the

wealth of information available, accounting for all of the data available requires a

multi-lingual approach with some texts being only available in Swedish or German.

3.3 Climatic conditions

The location of the glacier in the mountains west of Abisko is no coincidence,

being related both to the favourable topographical and meteorological conditions
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Figure 3.3: Abisko climate conditions averaged over the period 1920-2012 as measured at ANS.
Total precipitation values are displayed with average monthly temperature values.
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offered and with this small area catching snow-laden south westerly winds (Wallén,

1949). Climatic conditions here are split between maritime and continental, the

maritime conditions often prevailing in the winter months, being replaced by more

stable continental conditions during the summer months (Wallén, 1948, 1949). A

continuous weather station has been maintained at the Abisko naturvetenskapliga

station (ANS) since the early 20th century, for which mean climatic conditions

are compiled and displayed in figure 3.3.

Mean July temperatures are calculated at 11.7 ◦C, compared to -10.7 ◦C in

February. July precipitation totals are greatest at 51.2 mm compared to the

lowest values in April of 11.7 mm yr-1. Previous studies of the glacier coupled

observations with meteorological records from nearby Riksgränsen, however these

records are difficult to acquire. To assess more accurate meteorological conditions

at the glacier itself (Riksgränsen meteorological conditions are not associated with
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Figure 3.4: AWS position and set-up at the glacier. Top left shows the AWS from the east
with the glacier terminus in the background. The bottom left shows the set-up during the
winter when maintenance and data download were carried out (March 2009-2012). The image
to the right shows data download in September 2012. The white tube that is visible contained a
Tinytag temperature sensor which acted as a back-up in case of thermometer issues with the
main weather station.

the presence of a nearby glacier), a Campbell Scientific automatic weather station

(AWS) (using a Campbell Scientific CR200 datalogger) was used to record a variety

of data from 2007, based at the terminus of the glacier. The location and AWS

set up are displayed in figure 3.4. This has been downloaded approximately every

six months since its installation, when any required maintenance is also carried out.

Mean temperature and wet precipitation records are displayed in figure 3.5. Mean

July temperatures were calculated at 8.6◦C, compared to -10.6◦C in February. July

precipitation totals are greatest at 515 mm. Winter accumulation values are not
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Figure 3.5: K̊arsavagge climate conditions averaged over the period July 2007 - October
2011 as measured at the AWS. Total precipitation values are displayed with average monthly
temperature values. The tipping bucket precipitation collection system does not allow for
assessment of frozen precipitation and is subject to adverse measurements where snow that
accumulates over the measurement equipment melts with increased temperatures. Winter snow
accumulation is discussed in chapter 5.
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measured at the station due to the limitations of the tipping bucket precipitation

collection method used. Snow pack thickness assessment and calculations are

discussed in chapters 4 and 5.

To quantify winter snow pack conditions across the glacier, a number of snow pits

were excavated during the winter field seasons of 2009, 2010 and 2011. The results

of these analyses are discussed further in chapters 4 and 5.
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Chapter 4

Geo-spatial and field based

methods

The aim of this study is to understand and assess spatio-temporal glaciological

change and this requires the construction of a full GIS, encompassing spatial

data representative of the glacier for a number of different time steps, ultimately

providing information on glacier geometry. With the availability of such geometric

data, it is possible to consider the wider effects that change in their values have

on SEB and mass balance (MB). These methods require the integration of a

variety of different data sets, acquired using both desk and field based approaches.

Contemporary data is reference to that acquired in the field (by the author) and

using aerial photography in the period 2008-2011. Historical data refers to data

acquired from previous studies in the period 1909-1991 (the 2010 surface falls into

this category allowing for 1991-2010 comparison, however the 2010 reconstruction

uses the contemporary approach). The terms contemporary and historical used

from this point forward refer to analysis or results of data created using the

aforementioned sources. Many of the methods used here are novel and different to

those used in prior studies, their development having arisen as a consequence of the

data available. In particular, these novel methods attempt to account for change

in as wide a spatial context as possible, avoiding errors that can be associated

with single point analyses. This chapter addresses the project objectives of:

� Collating historic topographic maps and reports as well as data from the
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field to ascertain glacier geometry, meteorological conditions and snow pack

characteristics

� Applying geostatistical methods to reconstruct 3D glacier geometry and

enable geometry and geometric change analyses (through development of a

GIS)

� Accounting for sensitivity of applied geostatistical techniques on recon-

structed surface properties

4.1 Co-ordinate systems and geodesy

All data in this study are projected in UTM WGS 1984 zone 34N. All georefer-

encing (discussed further in section 4.2.2) is relative to the Lantmäteriet BD6

Fjällkarta for the Abisko region. The BD6 map is published using the RT 90

projected co-ordinate system and plots elevation relative to the RH 2000 Swedish

National height system - the RT 90 projection was converted to UTM WGS 1984

zone 34N prior to all georeferencing. The RH 2000 Swedish National height system

is based on the Normaal Amsterdams Peil (NAP) vertical datum, as with most

other European height systems (Lantmäteriet website (Height systems RH 2000,

accessed April 2011)). The RH 2000 elevation model referenced here differs to the

preceding height models of RH 00 and RH 75 as it has been updated to account

for changes due to isostatic adjustment which is significant between revisions with

a mean increase in elevation by approximately 1 m between RH 00 (representative

of height in 1900) to RH 2000 (representative of height in 2000). These isostatic

adjustments are most exaggerated in northern Sweden (Lantmäteriet, 2011). Or-

thometric elevations on the BD6 map are in 20 m intervals and are all in metres

above sea level (m a.s.l.).

All maps used within this study (discussed in section 4.2.1) use orthometric heights.

For data collected using dGPS, heights were converted from ellipsoidal heights

to orthometric heights using a geoid correction. The geoid, an irregular surface

which is an approximation of mean sea level, differs to the ellipsoid which is a
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Figure 4.1: The surface, ellipsoid and geoid height (adapted from Lantmäteriet, 2010

hypothetical equipotential gravitational surface - see figure 4.1 (ESRI, 2009).

The correction of ellipsoidal to orthometric heights requires knowledge of the geoid

height (separation between the ellipsoid and the geoid). Where geoid height is N,

ellipsoidal height is h and orthometric height is H, ellipsoidal elevations can be

corrected to orthometric using the following equation:

H = h−N (4.1)

The geoid height changes in space and consequently a single value cannot be

assumed to represent a total area of interest. Upon investigation of the variability

of the geoid height, it was found to be no greater than 0.1 m. To account for a

mean geoid height across K̊arsa, a number of points were constructed across the

glacier (see figure 4.2) with a mean spacing of 200 m.

The geoid height ID points were constructed in UTM WGS 1984 zone 34N and

then converted to the geographic SWEREF 99 projection. A geoid model was

provided by Lantmäteriet, from which users were able to calculate geoid height

using the SWEN08 RH2000 geoid model (Lantmäteriet, 2010). Geoid heights

were computed for all geoid ID points and a mean of 32.01 m was calculated.
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Figure 4.2: Points (in red) created for the identification of geoid height across the area of
interest. The points are displayed in the WGS 1984 34N projected co-ordinate system - analysis
required them to be in the SWEREF 99 geographic projection

0 500 1000m
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This value satisfies the N portion of equation 4.1 and has been used to correct all

dGPS measured ellipsoidal heights to orthometric heights for this study.

4.2 Data acquisition and surface development

This project requires the development of a detailed GIS detailing K̊arsa in 3

dimensions for the period of 1926-2010. This has been facilitated using split

approach:

1. Reconstruction of the summer surface of the glacier on an approximate 20

year interval for the period 1926-2010

2. Reconstruction of the summer surface of the glacier on a 1 year interval for

the period 2007-2010

The first approach was a desk based study requiring the compilation of previously

constructed maps and other documents whereas the second approach requires

both field and desk based methodologies, so to provide data directly from the field

to enable the development of detailed contemporary maps, in combination with

data from other sources including aerial photographs where they are available.

Integrating point data acquired both in the field and from a variety of available

maps requires working up using a number of geostatistical approaches. The overall

process required for full GIS development is conceptualised in figure 4.3.

4.2.1 Historical data acquisition and compilation

As described in chapter 3, there is a wealth of data available for K̊arsa, which sig-

nificantly supports the decision to carry out a long term analysis of this particular

glacier. Complete topographic maps of the main glacier exist for the years 1926,

1943, 1959, 1963, 1973, 1978 and 1991, of varying quality and scale. These are all

derived from aerial photography, however the original photographs could not be

sourced. The maps resultant of photogrammetric methods applied by different

cartographers were used here for digitization purposes.
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Figure 4.3: GIS development conceptualisation. All references to kriging are expanded upon in
section 4.2.5. The application of kriging to area and historical surface development is discussed
in section 4.2.6 and section 4.2.7 for contemporary surface development. Data acquisition for the
historical reconstruction is described in section 4.2.1 and in section 4.2.7 for the contemporary
surfaces.
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Prior to digitization, maps were georeferenced to a georeferenced aerial photograph

of the glacier locale coupled with the 1: 100 000 topographic mountain map of the

area, using ArcMap v9.3. Georeferencing was difficult as the available maps vary

in resolution compared to the base maps to which they are georeferenced relative

to, and furthermore, the focus of the maps in many instances is restricted to the

glacier itself with little attention of surrounding topographic (and more stable

features) considered. For this reason, the 1963 and 1973 maps were discarded

as there were not enough points available by which to adequately position the

map. Of the maps remaining, georeference point pairs were selected according

to identifiable geological features including constrained streams crossing clear

contour lines, contour kinks of the valley side walls and isolated water bodies.

Using the more easily georeferenced contemporary aerial photograph of the region,

it was also possible to constrain the maps by areas of the glacier that according to

the maps had changed little, such as in topographically constrained and sheltered

regions. In the absence of other features, few other georeferencing options were

available. Spline fits were applied to the maps, with points that distorted the maps

significantly being disregarded. Maintaining minimal distortion of the available

maps required as wide a point coverage as possible.

Due to the restriction in georeferencing point pair synthesis - a product of both

limited identifiable features from topographic maps and disagreements between

maps as a function of varying resolution - assessing horizontal errors is extremely

difficult. This is further discussed in section 4.2.2.

Once the maps were georeferenced as best as possible, polygons and vectors

pertaining to the overall extent and contours were manually digitized within

ArcMap. The polygons were used within the area analysis. Contours were

converted to points to which elevation, eastings and northings data were attached,

allowing for the development of 3D point clouds for each of the maps.
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4.2.2 Horizontal error quantification

There are multiple sources of error that can be introduced through the data com-

pilation process, especially considering the nature of the data - maps developed

by different authors using different methods over time. Such issues are inherent of

other reconstruction studies (e.g. Nuth et al., 2007). The maps used here were all

derived form aerial photographs and the process of stereoscopy. Associated with

the 1926-1991 photographs, there are few details other than the location of the

glacier (lat/long) and a scale bar. There were no details such as with regard to the

orthorectification process applied (prone to numerous internal errors itself (Thibert

et al., 2008)) or details of the cameras used (which could also be used to indicate

distortion). Furthermore, no prior assessment of orthorectification error had been

carried out for the images in question. In this study, all surfaces have been

georeferenced relative to the 2006 Lantmäteriet BD6 1:100 000 map of the Abisko-

Kebnekaise-Narvik area and a georeferenced 2008 photograph of the western end

of K̊arsavagge in which K̊arsa resides. The historical maps from 1926-1991 vary

significantly in the level of detail available. The GCPs used to locate the different

maps included simple features including the edges of lakes, sharp breaks of slope

and stark kinks in contour profiles. However a number of details were found be-

tween maps that were in complete disagreement. These are illustrated in figure 4.4.

A further hindrance to georeferencing this area and a further issue relating to

the selection of GCPs is associated with the transient nature of the environment,

being in a state of deglaciation and with associated erosional processes being

active. Events during the study period such as the jökulhlaup mentioned in the

literature occurring in the 1980s (see Holmlund, 1989) will also have changed the

landscape. This further complicates identifying stable GCPs. Another issue is

that the maps used here have each been developed for a time specific study of

the glacier and this may have contributed to lesser attention being paid to the

surrounding topography - an issue when attempting to georeference all of the

maps into a single database.
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Figure 4.4: Selected feature differences for maps available for the 1926-2010 period. Images
displayed together on a single row are presented within the same view window in terms of
top-left corner xy coordinates. Horizontal distances are indicated for each row of images.

1959 20061991

1
0
0
m

2
0
0
m

2006

1400

1440

1360

1943

401 0

4014

1360

1
0
0
0
m

65



Considering the aforementioned details, it is prudent to quantify horizontal and

vertical errors. Knowledge of these errors in turn allows one to consider whether

glaciological observations derived from subsequent map analysis, including termi-

nus position change and surface elevation lowering, are a function of environmental

conditions or are an artifact/resultant limitation of the data processing method.

Horizontal errors are often calculated by identifying non-glacial (therefore assumed

static) points represented by successive maps, the residuals providing the error

and allowing for variance in error over a given area (e.g. Nuth et al., 2007). In

this instance (and as represented in figure 4.4), it is extremely difficult to fairly

represent horizontal errors between the maps here and no clear estimate can be

given for the individual maps considering the information available. However,

vertical errors are considered without a horizontal component for the development

of the glacier bed map, required for analysis of glacier thickness and consequently

volume. Considering vertical errors gives an indication of possible mean errors

and error ranges associated with the aforementioned glaciological variables for the

different mapped years. This is discussed in detail in section 4.3.5. These vertical

errors are likely a function of horizontal errors, which can have significant effects

in terms of elevation. This is of greater importance in steeper rather than flatter

areas, as great changes in elevation over small horizontal distances are associated

with the former. Isostatic rebound, which in northern parts of Sweden can be

up to 1.0 m yr-100, is not considered explicitly in the error calculation although

this is catered for in the errors reported in section 4.3.5 as the area elevation map

considers the most up to date elevation map of Sweden (Lantmäteriet, 2010).

4.2.3 Contemporary data acquisition and compilation

Unlike the data required for the historical reconstruction, contemporary data

required the collection of data directly from the field as well as integration with

an aerial photograph taken in 2008 and sought from Lantmäteriet (Lantmäteriet,

pers.comm.).
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Fieldwork was carried out in March 2008, 2009, 2010 and 2011 on K̊arsa. In 2008

and 2009, the lower reaches of the glacier were surveyed using a differential Global

Positioning System (dGPS). A Ground Penetrating Radar (GPR) survey was run

across the lower reaches of the glacier in 2009. The upper reaches of the glacier

were covered with dGPS in 2010 and 2011. For accurate surveying of the glacier

surface and also of all GPR traces, real time kinematic (RTK) dGPS data were

collected using a Leica GPS500 dGPS receiver (Rippin et al., 2011). The dGPS

was used whilst being mounted on a snowmobile (for the lower reaches of the

glacier) and in a backpack where terrain was more difficult to access, namely the

upper regions of the glacier. Where the mounting was changed, the antenna height

was altered to maintain accuracy. The dGPS base station, also a Leica GPS500

receiver unit, was located in front of the glacier at one of two base stations (see

figure 4.6). The specific location of the base station was known to extremely high

accuracy (<0.005 m) following an 8 hour static occupation and post-processing

of data relative to continuous dGPS receivers at Kiruna and Narvik. This was

carried out by Dr J. Carrivick in the summer of 2007. The location of data points

collected in the field are illustrated in figure 4.5.

The GPR data were collected using a PulseEkko Pro system, trailed both behind

a snowmobile and on foot (see figure 4.6). An antenna sledge, also carrying dGPS

equipment to precisely locate GPR traces, was towed approximately 6 m behind

the snowmobile (Rippin et al., 2011) or 1 m behind a person when being dragged

on foot. The antennas were set up parallel to each other and at 90◦to the direction

of survey (this set up was chosen to minimise offline reflections (Murray et al.,

2007)). The GPR data were collected at a 1 m step size with 50 MHz frequency

antennas (Rippin et al., 2011) and this was carried out so to obtain a long profile

trace of the W-E trending part of K̊arsa as well as smaller N-S trending transects

across the long profile. Post-processing of the dGPS and GPR data was carried

out using Leica GeoOffice and ReflexW respectively (Rippin et al., 2011).

Regarding dGPS readings, the points collected in the field did not extend to the

boundaries of the glacier. To obtain point elevation values at the perimeter, an

outline of the glacier was digitized from the 2008 aerial photograph sought from
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Figure 4.5: Field data collection: dGPS, GPR and snowpack thickness measurement point
locations. The points are shown relative to the 2008 glacier outline as identified from aerial
photography.
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Google Earth (Lantmäteriet, 2010). The glacier outline, as an ArcGIS polygon,

was layered over the area DEM and converted to points. The elevations of the

underlying DEM were then combined with the lat/long of each point of the glacier

outline. These points, now with latitude, longitude and elevation attributes, were

combined with the summer surface points, developed as mentioned above.

To approximate the thickness of the winter snowpack covering the glacier, to

ultimately enable an assessment of the sumer glacier surface elevation, snow

probing across the glacier was also carried out. This method has been applied

in other studies to measure winter snow thickness (Østrem & Brugman, 1991).

Snow probe surveys were carried out across as much of the glacier surface as

was possible considering time constraints, weather conditions and slope stability

whilst working in the field (see figure 4.6). These points were collected across

the northern portion of the glacier during 2009 with points being collected from

all over the glacier in 2010 and 2011. At each point, longitude and latitude was

measured using a combination of GPS units including a Leica dGPS 500 and a

hand held Garmin GPS device. Snow depth was estimated using a purpose made

aluminium snow probe. It was possible to assess when the base of the winter snow

pack had been reached as the probe could not be pushed any deeper (the density

increase being indicative of a firn layer). To ensure that the tip of the probe was

not lying on an ice lens, the snow probe was repeatedly inserted to break through

any such obstruction.

Coupled with snow probe assessment of the winter snow pack depth, a number

of snow pits were excavated across the glacier. Pits were dug to the ice surface.

In some cases, the firn layer was reached from which further excavation was not

possible. Following excavation, one face was left uncleaned so as not to smudge

layers and deform snow crystal structure. The structure of the snow pack was

then described with regard to the presence and thickness of ice lenses and the

apparent structure of the snow pack (which was usually found to be structure-

less). Following log structure assessment, three density measurements were taken

per 50cm from across the uncleaned snow pit wall, using a 250 cc snow sampler

(www.snowmetrics.com). Snow samples were then measured using a spring balance
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Figure 4.6: Field method photographs (clockwise from top left): dGPS measurements made
by snowmobile; Tandem snow thickness and dGPS measurement; dGPS base station at the
glacier terminus allowing for increased range between the base station and rover unit to allow
surveys of the upper glacier; Snow pit analysis and snow density measurement; Second dGPS
base station allowing for surveying of the lower glacier only (drawing of a short straw allowed
for a period of monitoring the generator during surveys); GPR survey of the upper glacier.
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(see figure 4.6). These were later averaged per 50 cm and per pit, and scaled up

giving a density in kg m-3. All snow pits showed evidence of both wind packing

and re-freezing processes, accounted for by snow crystal structure and the presence

of numerous ice lenses. A log profile of a stereotypical pit that was excavated

is shown in figure 4.7. All pits excavated were within the lower portion of the

glacier due to accessibility and observed snow stability. The mean density of the

winter snow pack derived from all of the snow pits excavated in the 2009-2011

period was 407.13 kg m-3 (which qualifies as an average density for wind slab

(Paterson, 1994)). More in depth assessment of density is continued in section 5.4.6.

4.2.4 Bed DEM development

The GPR and dGPS data, collected as described in section 4.2.3, were checked

for internal data consistency using a cross-over method. This involved selecting

locations where the transects crossed over one another. Three cross over locations

were observed and at each cross over, the two closest points were assessed and

the difference in elevation (both GPR and dGPS) were accounted for (see figure

4.8). A mean GPR and dGPS error was then calculated for each cross-over

location. Mean GPR error was found to be ±3.7 m however this was significantly

increased by the presence of a single GPR value where the individual error was 10.8

m. Exclusion of this outlier from the dataset rendered mean vertical GPR error

to ±1.4 m (Rippin et al., 2011). dGPS mean vertical cross-over error was ±0.07 m.

Post-processing of GPR data gave information on ice thickness and combined

with known surface elevations from combined use of both the GPR and dGPS

measurements, bed elevations were calculated for each point. A glacier bed DEM

was constructed using points from the 2009 radar survey, points of known elevation

calculated by Bodin (1993), points from the glacier perimeter extracted from

the area DEM model (discussed earlier) and a selection of dGPS points of the

pro-glacial area collected in 2008. These thickness points were coupled with points

measured in 1991/1992 by Bodin (1993). The need for combining the 2009 data

with data from surveys in 1991/1992 (Bodin, 1993) owes to the topographical
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Figure 4.7: Log profile of a characteristic snow pit as excavated during the 2010 and 2011
winter field seasons. The displayed snow pit was excavated in March 2011 towards the terminus
of the glacier. The density profile is displayed as is a general structure of the snow pack. Ice
lenses are evidence of melting and refreezing processes - they are likely more numerous deeper
in the snow pack due to increased freezing and thawing of the snow pack early on in the
accumulation season.
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constraints and equipment malfunction experienced during the 2009 and a 2010

field season respectively. Bodin (1993) acquired their points via a radio echo

survey which was carried out over the upper portions of the glacier in the spring

of 1991 and 1992, extending the coverage of measured ice depth over K̊arsa. The

surveys carried out in 1991/1992 used a Mark II echo sounder, with a frequency

transmission between 2 and 10 MHz, and a pulse width of 0.2 µsec (Bodin, 1993).

For each measured point, ice thickness is known. It was possible to create a bed

elevation data set from these points by subtracting ice thickness values from the

known ice surface elevation at each point at the time, extracted from a surface in-

terpolation of the glacier in 1991 (see below for details on the interpolation routine).

The combination of the two bed elevation data sets (those from Bodin (1993) and

from Rippin et al. (2011)) raised a number of issues:

1. Positional accuracy

2. Comparative spatial data scarcity of the 1991/1992 data compared with the

2009 data

3. Issues with accuracy of exact measurement sites

These issues were identified by Rippin et al. (2011) and consequently a method of

cross-over analysis was carried out, comparing the comparative reliability of the

two data sets between points within 5 m of one another (see figure 4.8). A ±11.912

m mean cross-over error was found between the 2009 bed and the 1991/1992 bed

points. This differs to the ±6.6 m in Rippin et al. (2011) which was reduced by

the removal of some of the Bodin points. The larger error is maintained as Bodin

(1993) also report that the error related to their own points could be ±8 m.

Accepting these errors, these points were integrated with contour points as well

as dGPS points collected during the summer of 2008 in the foreground of K̊arsa.

This compiled point cloud was then used to interpolate a single area-bed DEM

using via the kriging model highlighted in section 4.2.5.
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Figure 4.8: The location of the Rippin et al. (2011) 2009 GPR traces and Bodin (1993) 1991
thickness points are displayed as well as locations of the 2009 point cross-over sites (black circles)
and Bodin/Rippin cross-over locations (orange circles).
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4.2.5 Interpolation: Kriging and other methods

The point clusters collated from historical and contemporary data assimilation

were required to interpolate complete surfaces. Here, interpolation refers to the

development of a complete surface within a specified area, predicting unknown

points from points with known values. The routine applied for this in this study

is ordinary kriging which is in line with many other glacier studies (e.g. Hock &

Jensen, 1999; Bamber & Layberry, 2001).

Kriging is essentially a form of linear regression but differs from traditional regres-

sion as the variables considered are neither believed to be independent nor random

(Davis, 2002). It can also be described as an average weighted estimator whereby

weights are assigned according to the model that is fitted to the semivariogram

(Bamber & Layberry, 2001). Where all points within an input point data set are

paired together, the semivariogram is used to compare distance between points

(the lag) with the variance between them.

Kriging differs to the many other interpolation methods available as it provides

errors associated with each predicted point, which is particularly useful when

errors need to be quantified if interpolated surfaces are used as inputs into separate

applications (e.g. melt modelling of snow and ice surfaces). There are many types

of kriging including ordinary, universal and simple kriging but all can be linked

back to the following formula, as it is upon this that the different methods of

kriging are based:

Z(x) = µ(x) + ε(x) (4.2)

where Z is a reference to observations at all locations (x), µ represents a determin-

istic trend and ε is directly associated to autocorrelated (where autocorrelation

states that points close to each other will be more similar to one another than

points that are further apart) errors within the data (ESRI, 2009). So any value

is ultimately the summation of a trend and errors associated with that trend.
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Ordinary kriging is the most commonly employed form of kriging and is used

within this study, defined as:

Z(x) = µ+ ε(x) (4.3)

Here, µ is known to be a constant, but it is unknown by value. By assuming a

constant mean, all values of ε can be known (and then changed proportionately

with increases/decreases in the pseudo-value of µ) when using simple kriging.

This is again a large assumption but useful nonetheless (ESRI, 2009) where the

characteristics of a data set are largely understood from prior analysis (e.g. semi-

variogram analysis). This method of kriging is best applied where data are known

to have a trend but where that trend cannot be discerned as to being a product

of autocorrelation or an actual trend (ESRI, 2009).

The interpolation routine applied consisted of the following steps:

1. Assessment of trends present within the data (with trend removal if neces-

sary)

2. Semivariogram analysis of the points, comparing different semivariogram

models

3. Assessment of semivariogram statistics

4. Running of the best simple kriging model

All data points were analysed for any trend present amongst them by compar-

ing elevation against lat/long position. For each year, the glacier point clusters

showed a second order polynomial trend. Other than for the points used for the

development of the area DEM for which a clear trend was less discernible, the

aforementioned second order trend was removed for all kriging analyses. The

removal of the trend ensured that any statistical analysis carried out through

the kriging process was focused on short-range component variation between

points (ESRI, 2009) which was essential considering that the glacier surfaces being

constructed were to analyse changes to surface morphology. Trends were added
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back into the data following semivariogram analysis.

With the data points having been assessed for trends, semivariograms (which

represent spacing between point pairs against variance) were analysed for each set

using the following model types: Circular; Spherical; Tetraspherical; Pentaspherical

(pentaspher.); Exponential; Gaussian; Rational Quadratic; Hole Effect; K-Bessel;

J-Bessel; and Stable. Each model (a form of regression line) fits the data spread

in a slightly different fashion. The best model for the data was chosen, in part

using the procedure of Hock & Jensen (1999), according to:

1. Best model statistical score

2. Visual fit on the semivariogram (possible using Geostatistical wizard in

ArcGIS)

3. Visual assessment of the resultant surface when using the specific model

Following ESRI (2009) guidelines, statistically, the best semivariogram model for

a data set should have:

1. Standardised mean closest to 0

2. Smallest RMS prediction error

3. Average standard error closest to the RMS error (cross validation (Hock

and Jensen, 1999)

4. Standardised RMS closest to 1

For each model, each of these variables was treated equally and given a rank value,

whereby a higher value was explicit of a more favorable statistic. The model with

the highest score was then tested visually; both on the semivariogram and with a

surface interpolation developed using the specific model in question and viewed in

ArcScene. The ranking process applied to the model statistics is exemplified as

for the 2011 winter surface (applying a second order trend removal) in table 4.1.
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Table 4.1: Example of the ranking method applied to assess the statistical strength of applied semivariogram models to point data. The
data used here is based on the 2011 winter point data cloud. In this instance, the stable model was found to be strongest.

Model x̂ RMS Pst. Average
Std.
Error

x̂ Std.
error

Pst. Std.
RMS

Pst. RMS - x̄
Std.error

Pst. Pst.
totals

Circular 0.012 0.785 10 2.300 0.001 8 0.234 6 1.511 8 32
Spherical 0.012 0.787 9 2.331 0.001 9 0.230 5 1.544 7 30
Tetraspherical 0.012 0.788 8 2.353 0.001 10 0.228 4 1.565 6 28
Pentaspher. 0.012 0.789 7 2.364 0.001 11 0.227 3 1.575 5 26
Exponential 0.014 0.831 6 2.654 0.001 8 0.203 2 1.823 4 20
Gaussian -0.137 1.937 3 4.978 -0.028 4 0.389 9 3.041 3 19
Rational
Quadratic

-0.035 0.986 5 1.199 -0.029 3 0.784 10 0.213 11 29

Hole Effect -0.159 2.220 2 6.552 -0.025 5 0.338 8 4.332 2 17
K-Bessel -0.002 1.018 4 0.356 0.092 2 34.750 1 -0.662 9 16
J-Bessel -0.154 2.528 1 8.380 -0.019 6 0.300 7 5.852 1 15
Stable 0.006 0.694 11 1.016 0.002 7 0.793 11 0.322 10 39
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Table 4.2: Trend removal effects on mean surface elevation and standard error statistics. These
errors are calculated relative to the initial input data - this is pertinent for the 2008-2011 surfaces
which are representative of the winter (w) surface conditions. These surfaces are later converted
to summer surfaces with snow layer removal (resulting in the 2007, 2008, 2009 and 2010 summer
surfaces).

No trend removal Second order trend removal
x̂ elevation (m) Std. error (m) x̂ elevation (m) Std. error (m)

1926 1217.39 17.33 1217.79 22.05
1943 1180.58 22.16 1180.43 14.92
1959 1207.31 18.02 1207.30 12.02
1978 1206.52 6.09 1206.30 3.17
1991 1210.81 20.92 1211.57 15.64

2008 (w) 1251.29 40.42 1250.63 14.43
2009 (w) 1246.69 33.72 1245.73 11.69
2010 (w) - - 1240.95 6.93
2011 (w) 1243.65 31.13 1242.57 5.68

To ensure that trend removal was the best option for surface development, a full

run through of the aforementioned interpolation procedure was carried out with a

trend removal and without a trend removal. The results of the comparison can be

seen below in table 4.2.

The mean error was found to be less for the surfaces created following trend

removal and due to the objective of assessing morphological change, and therefore

short-range component variation, all glacier surface interpolations were treated

with complete trend removal.

4.2.6 Area DEM and Historical DEM development

The specific model statistics of the semivariogram models (second order trend

removed) used to develop the area DEM and the historical (1926-1991) surfaces

are summarised below in table 4.3.
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Table 4.3: Statistical report of strongest semivariogram models for area/bed and historical surface DEM development. These results
were combined with the overall best ordinary kriging application as discussed in section 4.2.5.

DEM Model type Mean RMS Avg. Std.
error

x̄ std error RMS std. RMS -
average std
error

(m) (m) (m) (m) (m) (m)
Area/Bed K-Bessel 0.000 0.300 3.946 0.000 0.074 3.65
1926 Exponential 0.009 5.946 22.810 0.000 0.284 16.86
1943 Pentaspher. -0.002 0.922 9.860 -0.000 0.100 8.94
1959 Exponential 0.008 2.185 13.490 0.001 0.166 11.31
1978 K-Bessel 0.004 3.691 4.973 -0.003 0.799 1.28
1991 Stable 0.001 0.362 5.942 0.000 0.044 5.58
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The model strength assessment, the results of which are visible in table 4.3, was

coupled with both a visual assessment of the models and the semivariogram, as

well as an assessment of the resultant surface, using the statistically strongest

model. Final surfaces were eventually developed using the models as identified in

table 4.3 as these models also showed the best visible fit and most realistic final

surfaces when considering knowledge of the real glacier surface from photographs

or field experience. As can be seen in table 4.3, different models were applied for

the different DEMs and this is a function of the varying structure of the different

input point clouds. All surface were then smoothed using a low-pass filter in

ArcMap v9.3 and v10.0.

4.2.7 Contemporary surface development

The specific model statistics of the semivariogram models (second order trend

removed) used to develop the contemporary (2007-2010) winter surfaces are

summarised below in table 4.4.
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Table 4.4: Statistical report of strongest semivariogram models for area/bed and historical surface DEM development. These results
were combined with the overall best ordinary kriging application as discussed in section 4.2.5.

DEM Model type Mean RMS Avg. Std.
error

x̄ std error RMS std. RMS -
average std
error

(m) (m) (m) (m) (m) (m)
2008 (w) Stable 0.001 0.967 2.390 0.002 0.691 1.423
2009 (w) Stable -0.001 0.844 2.894 0.000 0.390 2.050
2010 (w) K-Bessel 0.001 0.900 1.209 -0.003 0.800 0.309
2011 (w) Stable 0.006 0.694 1.016 0.002 0.793 0.322
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Table 4.5: Snowpack mean thickness values

Year x depth (m)
2008 2.36
2009 2.26
2010 2.26
2011 3.28

As mentioned in section 4.2.6, these statistics were taken into consideration along

with the other components of best interpolation approach selection as discussed

in section 4.2.5. Unlike with the historical surfaces, creating contemporary winter

surfaces is only part way through the contemporary surface development process

as for comparison with prior years (and to avoid comparing varying winter snow

accumulation patterns), all surfaces are normalised to summer conditions - the

2008-2011 winter surfaces being covered by winter snow accumulation. Summer

surfaces were created by subtracting winter snow thickness interpolation layers.

Complete winter snow thickness surfaces were developed for 2008-2010 using the

snow probe points collected during the winter field seasons (see section 4.2.3).

The 2008 and 2009 point data sets were comparatively limited, the 2010 data

set has a centre line running up the southern part of the glacier - the area that

2008/2009 lack data. The 2011 point collection was the most encompassing with

regard to the steeper southern part of the glacier. To populate the 2008 and

2009 snow thickness point clouds, the 2010 centreline was combined, based on the

assumption that the smaller centreline region is less subject to variation than the

wider region covered by the 2011 snow thickness points.

The 2010 depths along the centreline were not used in their raw state when joined

with the 2008 and 2009 point measurements. To attempt to correct depths to

possible 2008/2009 conditions, it is assumed that inter-annual snow accumulation

residuals for the glacier as a whole are relatively uniform. Mean depth of all points

in the accumulation zone was then calculated, the results of which can be seen in

table 4.5.
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The difference in mean thickness between 2009 and 2010 was found to be 0 m, and

0.10 m between 2008 and 2010. The centreline points were then merged with the

2008 and 2009 point clouds, the 2010 centreline points to be joined with the 2008

points being corrected by -0.10 m. These points were then used as an input for

second order global trend interpolation. The resultant surface was then smoothed

using a low pass filter. A simple regression based interpolator was used due to the

limited point input and, unlike kriging which honours input point z values, this

was not required to the same accuracy due to the dynamic nature of the snow

thicknesses measured on a day by day basis. A second order polynomial trend

was identified as being most appropriate through comparison of snow thickness

values against distance from the terminus. Snow depths were found to be greatest

at the centre of the glacier and least at the terminus and the south-western point

of the glacier. A first order polynomial did not account for this pattern whereas a

second order polynomial did.

Summer surfaces are then calculated by subtracting the snow thickness layers

from the winter surfaces.

4.2.8 Interpolation errors and sensitivity

Horizontal errors in terms of georeferencing and vertical errors with regard to the

dGPS are considered in the preceding sections. Kriging is a useful interpolator

as it provides evidence of the error in the prediction surface developed using a

given input data set. This can be acquired as a standard error value from which

distributed maps can be developed. It is found that the greatest errors occur with

increasing distance from measured points. Mean standard errors for the different

surfaces are displayed in table 4.6. The errors increase with distance from points

and this relates to the model fit with the semivariogram. With increasing lag

between paired input points, variance becomes increasingly noisy. Errors here

are found to be largest for the 1926 surface which maintains a relatively shallow

gradient resulting in larger lags between contour lines - this increases noise as the

semivariogram is less effective at longer lags. Thus, standard error can only be

used as an approximate indicator of interpolation accuracy, and not a definite sign
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Table 4.6: Trend removal effects on mean surface elevation and standard error statistics. These
errors are calculated relative to the initial input data - this is pertinent for the 2008-2011 surfaces
which are representative of the winter (w) surface conditions. These surfaces are later converted
to summer surfaces with snow layer removal (resulting in the 2007, 2008, 2009 and 2010 summer
surfaces).

Year (DEM) x̂ Std. error (m)
1926 22.05
1943 14.92
1959 12.02
1978 3.17
1991 15.64

2008 (w) 14.43
2009 (w) 11.69
2010 (w) 6.93
2011 (w) 5.68

of a surface being more or less accurate, being more related to model efficiency at

longer lags.

Whereas standard error alludes to the errors relating to point spacing, a further

consideration that must be made is the error associated with the input points

themselves. These are identified in this study using a Monte Carlo approach. As

with the standard error maps, errors are generally greatest where point concentra-

tions are least.

The application of a Monte Carlo analysis fits the triple approach that should

be considered when a user wishes to use the results of a quantitative modelling

approach (Burrough & McDonnell, 1998):

1. Input data accuracy (field data/digitization outputs)

2. Model quality (semivariogram model choice)

3. Input data/model interaction

Monte Carlo simulation allowed the assessment of the effect of input data on the

interpolation routine by adding random ‘noise’ to the input data points (Heywood
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Figure 4.9: Monte Carlo simulation work flow
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et al., 2006). Such an approach has been used in other GIS studies (e.g. Emmi

& Horton, 1995; Zhou et al., 2003). In the model simulations used here, the

random noise added to each point elevation of the input data set is between 0 and

100 m. These values were chosen to clearly identify areas that are particularly

susceptible to erroneous points (i.e. areas for which few points are available).

The maximum value of 100 m is also deemed suitable as it covers potential error

values that will have been introduced using point elevation data from the area

DEM developed from Lantmäteriet contour point data, used for the contemporary

surface reconstructions. It is reported that the 1:100 000 Fjällkarten product

series can have horizontal errors up to 20 m (Lantmäteriet, 2012). In mountainous

regions, such as those in which K̊arsa is located, 20 m horizontal error could result

in substantial vertical error (ignoring potential error in vertical elevations).

The Monte Carlo simulations were run separately for both historical and contem-

porary reconstructions. A combined work flow is illustrated in figure 4.9.
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The Monte Carlo simulation used here is described as follows:

1. Simulation initialized by importing a point file that will be used within the

interpolation algorithm to develop a continuous surface;

2. Point elevations are modified by the addition of a random number between

0 and 100 to each of the elevation values

3. Modified points passed into the kriging algorithm for which the kriging

parameters are specific to each model run, selected according to the different

point files for each year of data available (see section 4.2.5);

4. Kriging output is smoothed;

5. For the contemporary surfaces (for which the input points relate to winter

surface elevations as opposed to summer elevations, as with the historic point

sets), a snow layer is subtracted from the smoothed layer. This provides a

summer surface (the extent of which is the rectangular extent of the input

points). For the historic surfaces, this subtraction is not required.

6. The surface clipped according to the extent of the glacier;

The entire loop was then repeated 100x, each time adding random noise to a

clean input point file. Once all iterations have been carried out, the output

surfaces are collated and averaged - the simulation output representing distributed

standard deviations across the glacier surface. The simulation is run for the years

1926, 1943, 1959, 1978, 1991, 2008-2011. The years 2008-2011 require the extra

stage involving snow surface subtraction - this allows the development of summer

surfaces (2007-2010).

The final simulation output was the standard deviation surface. Where standard

deviation is high, this was indicative of areas highly susceptible to erroneous point

spikes. Low standard deviations indicate areas of lower sensitivity. Standard

deviation values should not be treated as absolutes. The values displayed in figures

6.2 and 7.1 (in chapters 6 and 7 respectively) are sensitive to the number of runs

used to create them. 100 runs have been carried out for each surface - had 1000
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runs been carried out, values would likely be different. The surfaces shown are

useful for pattern recognition regarding areas of high and low sensitivity (relating

to high and low standard deviations respectively).

The results of the Monte Carlo sensitivity analyses are discussed in chapters 6

and 7. The usefulness of this method is also discussed in chapter 10.

4.3 Calculation of glaciological parameters

4.3.1 Terminus retreat

The retreat of a glacier terminus is a frequently used feature to assess glacier

change over time (e.g. Finsterwalder, 1962; Jangpangi & Vohra, 1962; Allison &

Keage, 1986; Dobhal et al., 2004; Kaser et al., 2004; Cook et al., 2005; Kulkarni

et al., 2007), with increasing rates of retreat being used to exemplify changes in

glacier mass balance. They are also often used to imply mass loss although this

can be ambiguous as retreat due to increased temperature at lower elevations

could result in growth in the accumulation area.

Difficulty in estimating terminus retreat is introduced when assessing the end

point of the terminus itself. Retreat rates along a glacier terminus can vary due to

the location of the ice near to valley side walls, presence of moraines, undercutting

of sections of the terminus by meltwater outlets and subglacial bed form effects

(driving crevasse formation). As a result of this, it cannot be assumed that the

retreat rate of the most distal terminus point is representative of mean glacier

recession.

In an attempt to provide a solution to the problem of defining the terminus extent,

here the glacier terminus of K̊arsa is defined as being any part of the glacier

perimeter falling within a 300 m radius of the point on the glacier that is furthest

to the east. This is identified using a simple buffer technique (see figure 4.10).

When calculating near distances, the glacier terminus from which distances are

measured are represented by a series of points divided by an equal 10 m spacing,
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Figure 4.10: Identifying the glacier terminus using a 300 m buffer

positioned along the terminus boundary.

To assess the retreat of K̊arsa, six different methods were considered:

1. A furthest point method whereby retreat is inferred by calculating the

distance between the furthest eastern points of different glacier terminus

stances

2. A reference terminus to terminus function whereby the nearest difference is

calculated between the 1909 terminus and the 1926 - 2010 termini. A mean

value is taken.

3. A terminus to reference terminus function whereby the nearest difference is

calculated between the 1926 - 2010 termini and the 1909 terminus. A mean

value is taken.
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4. A terminus to line near function whereby points of a 10 m spacing are

distributed along a N/S trending line, the centre of which is based on the

most eastern point of the 1909 digitized terminus from Ahlmann & Tryselius

(1929). The near function is then used to assess the shortest distance

between each point along the boundary of the glacier for the years 1926,

1943, 1959, 1978, 1991 and 2008 and the line. Mean values are used. All

retreat is relative to the 1909 glacier terminus. This is made possible by first

calculating the distance between the 1909 terminus and the line. This value

is then subtracted from the mean distances of all other terminus positions

(1926 - 2008), essentially treating the 1909 distance as 0.

5. A line to terminus near function the same as the previous method except that

now the distance from the vertical line to the terminus points is calculated.

6. A recession by area as employed during analysis of the retreat of Scott

Glacier, Svalbard in Zagórski et al. (2008). This utilised the equation:

C =
P

GFa
(4.4)

where C is average recession (m), P is the area uncovered due to recession

(m2) and GFa is the length of the glacier front. This method is referred to

as the recession by area method from this point forward. Using this method

for K̊arsa, we take GFa to be the length of the average glacier terminus

position which falls between the terminus of interest (si) and the previous

terminus position (sp). The termini si and sp were derived from the 300 m

buffer analysis described above.

Terminus retreat values calculated using the aforementioned methods are reported

in table 4.7. These values are reported here as they were instrumental in assessing

the best approach to retreat assessment.
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Table 4.7: Terminus retreat values using different methodological approaches

Year Furthest
point

Reference
terminus to
terminus

terminus to
reference
terminus

Terminus
to line

Line to ter-
minus

Recession
by area

(m) (m) (m) (m) (m) (m)
1909 0 0 0 0 0 0
1926 35 28 32 34 24 33
1943 424 330 349 433 322 365
1959 728 618 609 717 596 439
1978 878 764 763 874 736 526
1991 1054 934 931 1048 902 621
2008 1336 1197 1188 1292 1160 785
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Limitations vary between the different terminus retreat methods. This is exempli-

fied by the 551 m range between the maximum (1336 m) and minimum (785 m)

retreat rates that have been calculated. The near method used within ArcMap

where terminus retreats in this study are assessed, calculates the shortest distance

between two points, where the points can be parts of multiple features. Depending

on the positioning of the different features, this can result in isolating features

whereby only one point from the feature is nearer to all of the points in another

feature class. This provides a significant limitation where a spatially distributed

method is required, as the near distance is then calculated using only this single

point. The problem is illustrated in figure 4.11.

The furthest point method is reliant on single points; one for each terminus position.

This differs to all of the other methods (2-5 in the above terminus retreat method

experiments list) which invoke a spatially distributed approach to terminus re-

treat. The furthest point is similar to the frequently employed centerline studies

(e.g. Dobhal et al., 2004; Shugar et al., 2010) which are more quickly carried

out (requiring fewer measurements) but lacking in acknowledgment of spatially

distributed variance (Barrand et al., 2010). As such approaches neglect spatial

variance, they are less accurate in approximating terminus retreat. Despite the

spatial accountability missed by the furthest point method, it, as well as methods 2–

5, are all susceptible to the limiting characteristics of near analysis in a similar way.

The distance values extracted when using the different methods (1-5) are not

necessarily inclusive of all points that make up the feature from which distance is

being calculated. Using the example of using the near function to measure the

near distance from the reference terminus to the terminus of interest, points could

be neglected from the terminus of interest. If one point within the overall terminus

of interest feature is closer to the total reference terminus feature, that point

may be the only one used to calculate distances (as can be seen in figure 4.11b).

This explains some of the variability between the measured values using this near

tool. This reasoning also explains the requirement for both feature of interest

to reference feature and reference feature to feature of interest measurements.

The points utilised in the near analyses vary according to the positioning of the
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Figure 4.11: Limitations of the use of a near function to assess retreat. Figure (a) shows a
situation where the use of the near function does not result in measurements relative to a single
point. Figure (b) displays how measurements can be affected by a single point, especially where
the reference points (in this case the 1909 perimeter points) are further away from the objective
(the 1943 terminus position).

4391

(a)

(b)

feature of interest relative to the feature from which distance is being measured -

this is more difficult when both features have more complex geometries. In some

instances, points will be shared i.e. multiple near distances will be calculated

according to a single point.

The terminus to line near approach was used to limit the point sharing effects

that can be experienced when using the terminus of interest to reference terminus

and reference terminus to terminus of interest methods. The north-south trending

line relative to which the point distances are calculated provides a feature of non-

complex geometry. By measuring the distance from each point of the terminus
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to this simple geometric line feature (see 4.12 (a and b)), the user ensures that

all distance lines between the two features remain equidistant from one another.

Consequently, the trigonometrical issues resulting in point sharing experienced

when using features of a more complex geometry as a reference to measure distance

from, are removed. These distances are therefore truly Euclidean. The retreat

rate that is of interest here is that relative to the earliest known terminus position.

For K̊arsa that is the 1909 frontal extent. The mean distance of the 1909 terminus

is measured relative to the north-south line (with the central point distance being

zero as it shares the same space as the north-south line). The mean of these

distances is then calculated providing an initial mean spatially corrected retreat

rate this provides a zero value. Distances are then calculated for all of the

other terminus positions (1926 2008), the mean then being calculated. From

these values, the mean 1909 distance from the north-south line is subtracted to

make all mean retreat values relative to the 1909 terminus position (and not the

north-south line itself).

The line to terminus approach is used for completeness. With this method, it is

still possible to experience point sharing effects, for the same reasons as for the

terminus of interest to reference terminus and reference terminus to terminus of

interest methods.

The recession by area method (Zagórski et al., 2008), along with a mean terminus

position requires a known area of glacier loss (i.e. area that has been uncovered as

a consequence of recession), which is located between the terminus of interest (si)

and the previous extent (sp). Calculating the area of loss value is simple where

the endpoints of sp and si join (see figure 4.13).

This is complicated however when the two do not connect. Where the latter

instance occurs, the area of loss due to retreat is calculated by joining the termi-

nus endpoints to one another, accounting for all of the area between the termini

constrained by the endpoint joins (see figure 4.14). However, this does not account

for all of the area lost by a retreating glacier, a large amount of which does not

occur around the terminus alone. This issue will vary between glaciers due to
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Figure 4.12: The line to terminus method. As with the near method, depending on terminus
geometry point sharing is still possible therefore giving inaccurate spatially distributed retreat
values. This is best exemplified by figure (b) (although not as exaggerated as in figure 4.11).
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Figure 4.13: Recession by area method whereby a simple area change calculation is possible,
the retreating area forming a complete polygon.
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variability in altitudinal distribution as well as juxtaposition to valley side walls

positions where increases in melt rates are likely (Hock & Holmgren, 2005; Benn

& Evans, 2010).

The recession by area method provides the lowest retreat rate value and this is likely

to be due to the difficulty in assessing the area of loss that equates to the value P .

This will also be affected by the mean length of the terminus, which highlights

the importance of defining exactly what part of the glacier is the terminus.

Centreline studies are easily carried out as they are quick, requiring only a single

measurement. The furthest point method is similar to centreline analysis, involving

the measurement of the distance between the furthest down glacier points along

the sp and si terminus outlines (which in this case is the most easterly point).

This is a simple and crude method which provides the retreat of the furthest point

alone. Using this method alone, it is impossible to account for spatial variation

of retreat along the glacier terminus. It is included within this assessment for

96



Figure 4.14: Recession by area method whereby only a complex area change calculation is
possible. This is a more realistic scenario whereby the area of retreat does not allow for area
loss within a closed polygon area, thus introducing problems of where to limit the assessment of
retreat and consequently requiring a careful definition of the position of the terminus.
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completeness.

Equidistant distance lines are required between the reference object (sp)and the

object of interest (si). The only method providing this that is tested here is the

terminus to line method. The results from retreat analysis are discussed in chapter

6.

4.3.2 Area

The surface area of the glacier for each year was calculated as the area within

polygons of the glacier which are used to extract the cells from rasters of the

glacier surface, derived from contours and dGPS points (sections 4.2.6 and 4.2.7).

This method of area is equal to the Raster Planar Surface Area (RPA) referred

to in Jiskoot et al. (2009) and is often used in glacier inventories (Jiskoot et al.,

2009).

4.3.3 Elevation change and surface slope and aspect

Surface elevation change between input raster was calculated using the raster

calculator tool within ArcGIS v9.3 and 10.0. The same functionality is built

into the model for which the main components are defined in chapter 5. Slope

and aspect are calculated using the interpolated surfaces for the historical and

contemporary periods using the inbuilt tools of ArcGIS v9.3 and v10.0. The

algorithms applied for both slope and aspect are derived from Burrough &

McDonnell (1998) and of a given raster, calculate spatially weighted slope and

aspect values using a 9 cell search window. The specific algorithms used within

Arc are replicated within the melt model which is discussed in detail in chapter 5.

4.3.4 Hypsometry

Hypsometry is reference to area distribution by elevation. Hypsometry was calcu-

lated in this study by accounting for the area distribution both within elevation

bands and generalised at specific point elevations (i.e. metre by metre). These

data are plotted both in categorised line charts and cumulative area charts in

98



chapters 6 and 7. It is also possible to quantify and analyse hypsometric change

using single values. Those used in this study include elevation-relief (ER) ratio

values (Wood & Snell, 1960) and hypsometric index (HI) values (Jiskoot et al.,

2009).

ER values (Wood & Snell, 1960) are calculated using:

ER =
zx̂ − zmin

zmax − zmin

(4.5)

where zx̂,zmin, and zmax are the elevation mean, maximum and minimum values.

Where the mean elevation within a range is high, a large ER value is calculated

compared to a lower value when mean elevation is low. This method is often used

for more geomorphological applications to compare different areas and associated

processes. However, it is worth mentioning here as it simply conveys changes in

the glacier catchment over time.

The ER value is very similar to the Hypsometric Index (HI) and these values have

been reported in other studies (e.g. Davies et al., 2012). HI is calculated using:

HI =
Hmax − Hmed

Hmed − Hmin

(4.6)

where Hmax and Hmin are the maximum and minimum glacier elevations and Hmed

is the elevation of the contour that halves the glacier (Jiskoot et al., 2000, 2009).

Jiskoot et al. (2009) used HI values to place glaciers into different categories,

summarising simple area distributions. The Jiskoot et al. (2009) study devised

five categories but they are summarised in three here:

1. Top heavy (HI < -1.5)

2. Equidimensional (-1.2 < HI < 1.2)

3. Bottom heavy (HI > 1.5)
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4.3.5 Glacier thickness and volume

Glacier thickness was calculated by subtracting a raster surface of the glacier

bed (see section 4.2.4) from the best surface topography interpolation of the

glacier for a given year. Due to the nature of the maps available - a mix of high

resolution glacier topographic maps (between 1:5000 and 1:25000) and the lower

resolution area contour map (1:100 000 with horizontal errors between 1 m and

100 m (Lantmäteriet, 2010)), as well as the variety of methods used to create them,

both from the digital and pre-digital mapping eras, there is a significant level of

disagreement. When subtracting the bed raster, constructed mainly using the

regional contour map, from the glacier surface rasters (higher resolution maps),

this results in negative thickness values occurring due to the bed raster being of a

higher elevation than the glacier surface raster. This is an artifact and needed to

be dealt with, as observed by Rippin et al. (2011).

The 2009 bed DEM exists within the overall Area-Bed DEM which was a combi-

nation of the 2009 bed DEM, regional contours and dGPS data collected from

the eastern fore-ground of K̊arsa. This was based on an assumption that, apart

from the area within the extent of the glacier in 2009, the present day surface is

representative of the former glacier bed surface. This is unlikely to be accurate

as such an assumption neglects the effects of glacial processes during retreats

and advances, fluvial reworking across the area, weathering processes and mas

movement. For example, under this assumption, the 1926 bed will show evidence

of all post-dated push/dump/lateral moraines occurring after the 1926 glacier had

long retreated, due to the activity of the glacier in its later stages. Unfortunately,

such features cannot be removed from the bed DEM and this increases likely error

with glacier thickness estimates.

To account for errors introduced by the overlaying of the glacier surface inter-

polations over the Area-Bed DEM, the most likely points to share a common

value are those on the glacier margin - the point where land cover crosses the

non-ice/ice boundary. A point perimeter was constructed around each glacier
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Table 4.8: Mean perimeter point agreement (statistical bias). Where value is positive, the
glacier surface was at a greater elevation than the Area-Bed DEM on average. Where the value
is negative, the glacier surface was lower than the elevation of the Area-Bed DEM on average

Year x̄ error
m

1926 +12.87
1943 -15.07
1959 +8.68
1978 -0.04
1991 +4.55

surface interpolation from 1926 - 1991 within ArcGIS. At each point location, ele-

vation values for both the glacier surface in question and the underlying Area-Bed

DEM were queried, the difference between them then being calculated. Mean

error values were than accounted for for each outline, indicating the overall level

of agreement between glacier surface perimeters and the Area-Bed DEM (see

table 4.8). This specific routine was not carried out for the contemporary glacier

as it was constructed from perimeter points for which elevations were extracted

directly from the Area DEM. The values calculated give an indication of vertical

error however, the method by which the contours of the actual glacier surface

available from the 1926-1991 maps were constructed is unknown and provides

unknown error itself. This has been identified as a problem in previous studies

(e.g. Nuth et al., 2007) and is extremely difficult to accurately quantify, especially

considering the limited information on the original cartographic methodological

process that is available.

To account for a maximum likely thickness surface the following conditions are

met:

1. If cell value is greater than the minus positive error value, then add the

positive error value

2. If cell value is between the most negative value in the data set and the minus

positive error value, then make cell value equal to zero

To account for a minimum likely thickness surface the following conditions were

met:
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1. If cell value is greater than the positive error value, then subtract the positive

error value

2. If cell value is less than the positive error value, then make cell value equal

to zero

All surfaces incorporate the bed surface created from the 2009 GPR/Bodin glacier

thickness points and therefore must account for the ±11.912 m error term asso-

ciated with it. Where perimeter agreement error values are less than the 2009

GPR/Bodin error term, we apply the latter.

Once surfaces of maximum and minimum error had been created, it was then

possible to calculate maximum and minimum mean values. It was then possible to

calculate the error boundary either side of these mean values. For the maximum

surface mean, this gives us a maximum mean ±error (resulting in a maximum

maximum mean (mean + error) and a minimum maximum mean (mean - error).

For the minimum surface mean, this gives us a minimum mean (resulting in a

maximum minimum mean (mean + error) and a minimum minimum mean (mean

- error).

Using these methods, maximum likely glacier thickness was then calculated

resulting in two values - one using the maximum error method and the second

using a minimum error method. Mean likely maximum thickness can then be

assessed as the mid-point of these two values. Mean thickness can also be calculated

using the maximum and minimum methods (providing a maximum method mean

and a minimum method mean). The mean with ± error is the mid-point of

these two values (see table 4.9). Using the maximum, minimum and mean likely

surfaces, respective volumes are then calculated (table 4.10).
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Table 4.9: Thickness analysis results. The * implies that the perimeter error was less than the contemporary bed error and so the latter,
larger error was used. The † implies that this was the contemporary bed error and is therefore from a different source to the historical
perimeter errors.

Year DEM com-
patability
error

Max.
thickness

Max.
thickness

Mean max.
thickness

Mean
thickness

Mean
thickness

Mean
thickness

(max. er-
ror calc.)

(min. error
calc.)

(max. er-
ror calc.)

(min. error
method)

(m) (m) (m) (m) (m) (m) (m)
1926 12.87 150.37 124.63 137.50 40.47 20.14 30.31
1943 15.07 106.03 75.89 90.96 24.19 8.70 16.45
1959 8.68* 116.33 92.50 104.42 38.35 18.83 28.59
1978 0.04* 100.61 76.78 88.70 29.97 14.15 22.06
1991 4.55* 113.62 89.79 101.71 34.60 16.87 25.74
2010 11.91† 67.91 44.09 56.00 24.67 6.13 15.40
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Table 4.10: Ice volume analysis results. The ∗ implies that the perimeter error was less than
the contemporary bed error and so the latter, larger error was used. The † implies that this was
the contemporary bed error and is therefore from a different source to the historical perimeter
errors.

Year Associated error Max. Volume Min. Volume x̄ Volume
(m) (x 10−3 km3) (x 10−3 km3) (x 10−3 km3)

1926 ± 12.87 166.94 83.69 125.31
1943 ± 15.07 47.69 17.31 32.50
1959 ± 8.68∗ 69.08 34.38 51.73
1978 ± 0.04∗ 46.58 22.24 34.41
1991 ± 4.55∗ 38.95 19.13 29.04
2010 ± 11.91† 21.28 5.39 13.33

4.3.6 Basal shear stress

Shear stress exerted on the bed of the glacier is calculated using the equation:

τb = ρi g h sinα (4.7)

where ρi is the density of ice (assumed here to be 900 kg m-3), g is gravitational

acceleration (9.81 m s-2), h is ice thickness and α is the surface slope angle (in

radians) (Benn & Evans, 1998). Ice thickness and slope values are taken from

rasters of the glacier. The slope raster is developed as described in section 4.3.3.

τb values are calculated directly from ice thickness and slope values and thus, any

errors associated with these parameters will be translated into the stress values

(Thorp, 1991). Shear stress is calculated in this study for centreline profiles for

each year. Stress at a given point is calculated from slope and thickness values

averaged from values taken from points of a distance equal to the mean glacier

thickness, either side of the point of interest. Slope is calculated for the point

of interest by considering the elevations of the points either side of it and the

distance between them. This in effect gives values of a moving average equal to

2x the glacier mean thickness and reduces the effects of longitudinal and lateral

variations that would be expected in stress values along the glacier (Raymond,

1980).
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4.3.7 Annual mass balance values

There are many ways of accounting for mass balance change as mentioned in

section 2.4 of chapter 2. Here, the geodetic method to assess change was used

and an approximation of annual mass balance values is calculated using the data

calculated using the methods described in section 4.3.3. Annual balance values are

also shown for the model runs although the change is observed using a geodetic

approach again (output surface DEM subtracted from the input surface DEM).

Mass balance was calculated by firstly accounting for the specific balance (equation

2.1), calculating the annual balance of the entire glacier (equation 2.2) and then

calculating the mean annual balance (equation 2.3) (Cuffey & Paterson, 2010).

Where bn has been calculated for a surface where data on surface change is only

available over large time steps, the value calculated for bn using equation 2.1 is

then divided by the number of years in the interval between t1 and t2. To convert

changes in mass to m w.e. (melt water equivalent) values, changes in terms of

ice thickness are considered. Glacier ice density is assumed to be 900 kg m-3

compared to water at 1000 kg m-3. Where Bn or b̄n are in m (ice), m w.e. is

calculated using equation 2.4.

4.3.8 ELA

As described in chapter 2, the ELA is a theoretical point at which ablation is

equal to accumulation over a year, thus giving a zero annual mass balance value.

The annual ELA is unlikely to occur along a single contour line due to a number

of topographic and morphological factors and consequently, the ELA is merely the

mean elevation contour at which zero mass balance values are calculated (Benn &

Lehmkuhl, 2000). Furthermore, the annual ELA differs to the steady state ELA

which is calculated from datasets accounting for glacier change over a number of

years (Benn & Lehmkuhl, 2000).

There are a number of different methods available to approximate the ELA and

these are discussed briefly in section 2.4 of chapter 2. Within this study the glacier

ELA was calculated using the following methods:

105



1. Hess altitude

2. Median elevation (Hmed)

3. Accumulation Area Ratio (AAR)

4. Accumulation Area (AA)

5. Area Altitude Balance Ratio (AABR)

The Hess altitude is defined as the point at which convex contour lines become

convex lines, as identified when considering the contour map of a given glacier.

The Hess altitude, also known as the “Kinematic ELA (Leonard & Fountain, 2003)

was introduced as a means of estimating firn-line elevation by Hess (1904 cited in

Leonard & Fountain, 2003). The transition from concave contour lines, on which

the method is based, develop in the accumulation area and convert to convex

contour lines in the ablation area. The convex profile is caused by snow being

blown from the glacier margins to the centre of the glacier whereas concavity is

caused by the reverse process (Leonard & Fountain, 2003). Use of the method is

limited (Cogley & McIntyre, 2003), although examples of its use include studies

by Zverkova et al. (1982), Fountain et al. (1999a) and Miller et al. (1975). The

method is alluded to in Davies et al. (2012) but is not used in the final results

of the study due to the scatter of ELA elevations it produced and its limited

application due to contour line profiles. The method is not discussed in Sugden

& John (1976) or Benn & Evans (2010). It is included within this study as a

point of interest and to see how well it correlates with the other ELA methods used.

The Hmed simply takes the median altitude from the elevation range of a given

glacier. This method was developed at the end of the 19th century by Höfer (1879)

and Kurowski (1891). It has been used in a few studies including (Carrivick &

Brewer, 2004) and (Davies et al., 2012). However its use is limited to glaciers with

more regular geometries from which calculations are most reliable (Porter, 1975).
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A frequently used method is the AAR. It is based on the broad assumption that

under steady-state conditions, the ratio of the accumulation area to the ablation

area is fixed. It can be represented mathematically using:

AAR =
Ac

Ac + Ab

(4.8)

A wide range of AAR values exist from 0.2 - 0.8, with values representing the

portion of the total glacier area representing the accumulation zone (i.e. an AAR

of 0.8 means the accumulation area is equal to 80% of the total glacier area)

(Benn & Evans, 2010). For glaciers located in high latitudes, common AAR values

representing steady state conditions are often between 0.5-0.8 (Meier & Post, 1962).

Using the AAR ratio, the elevation of the ELA is equal to that of the contour

which lies beneath the area of the accumulation zone as given by the AAR value.

A limitation of the AAR is that it does not account for glacier specific hypsometry

or the mass balance curve (Osmaston, 2005). These limitations increase the error

uncertainty around the value predicted.

Selecting the most applicable AAR is difficult and some studies have used multi-

ple AAR values to calculate ELA positions for a range of glaciers, selecting the

most appropriate AAR as being the one producing the smallest variance between

predicted ELAs (see Kaser & Osmaston, 2002). In this study, the AAR ratio is

approximated from the mass balance curve which is created between each mapping

interval as discussed above in section 4.3.7.

The AA method is similar to the AAR in that it assumes a fixed ratio to exist

between the accumulation and ablation zones. It differs however to the AAR

method as it requires information on the areas between contour bands, thus taking

into account glacier hypsometry. As with the AAR method, it still does not

account for the glacier mass balance, which is represented by the Balance Ratio

(BR) value (Osmaston, 2005). As with the other methods, it was devised at the end

of the 19th century by Kurowski (1891). Prior to automation of calculations, the

method had fallen out of use due to the number of calculations required (Osmaston,

2005). However, Sissons (1974, 1980) simplified the calculations required and
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to calculate the ELA using this method, where Ai is the area between a given

contour interval and hi is the mid-elevation of the contour interval, the following

equation is used:

ELA =

∑
Aihi∑
Ai

(4.9)

The method was originally based on using the mid-altitude of the glacier and the

simplification introduced by Sissons (1974, 1980) was that the mid altitude of any

given contour band for which the area was known, could be used (as in equation

4.9).

It is possible to work the equation to use different ratios, thus changing equation

4.9 which is akin to using an AAR of 0.5. For example, to calculate the ELA

using an assumed AAR ratio of 0.6 (therefore a larger accumulation area), the

following equation could be used:

ELA =

∑
Ai (hi (hi − (hi/5)))∑

Ai

(4.10)

Equally, to calculate the ELA using an assumed AAR ratio of 0.4 (therefore a

smaller accumulation area), the following equation could be used:

ELA =

∑
Ai (hi (hi + (hi/5)))∑

Ai

(4.11)

The BR is calculated from the ratio of the accumulation and ablation gradients of

a mass balance curve. BR values were calculated in this study by the use of simple

linear regression of the appropriate portions of the mass balance curves and taking

the gradients. None of the aforementioned methods account for hypsometry and

the BR. The AABR method, developed by Furbish & Andrews (1984), originally

named the BR method and renamed by Osmaston (2005) was developed to provide

such a method thus it accounts for both the glacier geometry and the mass balance

curve as opposed to geometry alone. AABR is based on two assumptions (Benn

& Lehmkuhl, 2000):
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Figure 4.15: AABR methodology diagram (modified from (Furbish & Andrews, 1984) and
(Benn & Gemmell, 1997))

ELA

zb

zc

db

dc

½ Ac A ½ Ab

0 +-

1. Ablation and accumulation gradients are approximately linear

2. The ratio between the two is known (this is the balance ratio of BR - the

ratio of the slopes of the mass balance/altitude curve below and above the

ELA (Osmaston, 2005))

The AABR method calculates the ELA by using linear ablation and accumulation

gradients and area-weighted mean altitudes (i.e. the AA method based on a median

value which is similar to using an AAR of 0.5). This results in the introduction of a

number of factors. Respectively, db and dc represent the ablation and accumulation

measured at the mean altitudes of the ablation (zb) and accumulation (zb) areas

(Furbish & Andrews, 1984; Benn & Gemmell, 1997). The ELA is located at the

position on the glacier where the values of these factors are equal to the balance

ratio, as in equation 4.12 (illustrated in figure 4.15):

BR =
zc.Ac

zb.Ab

(4.12)

The AABR method, as defined above, is applied in this study using the spread-

sheet created by Osmaston (2005). The spreadsheet and its application are also

discussed in Osmaston (2005). At the time of publication of Osmaston (2005), it

was possible to download a version of the spreadsheet. Unfortunately as the author

is now deceased, this is no longer possible and the spreadsheet must be built

by the user using the instructions in Osmaston (2005). It should be noted that
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these instructions require some modification, specifically for step 12 of appendix

A where the formula required should be [=$ E2 ($ D2-$ H$ 2)]. It is also useful

to disregard the pasting of individual cells I and J and to simply copy and paste

the IJK blocks using the aforementioned equation fix.

It is common to use 2 or more methods of ELA estimation to approximate the

ELA of a given glacier (Benn et al., 2005). To create a best estimate of the ELA,

an average value (ELAmean) was calculated as in Davies et al. (2012). ELAmean is

calculated using:

ELAmean =
ELA1 + ELA2 + ELAn

n
(4.13)

where the ELA1 - ELAn represent the ELA estimates using different methods and

n is the total number of ELA methods used.
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Chapter 5

Model methods

A bespoke computer based distributed SEB model has been developed specif-

ically to meet the aims of this study. The model has a graphical user in-

terface (GUI) and provides a platform that has been developed for a typical

small Arctic mountain glacier. The code for the model can be accessed from

https://github.com/Chris35Wills/SEB_model_java_files. This chapter dis-

cusses the methods used in the development of the SEB model, the geometric

inputs of which are derived using many of the methods discussed in chapter 4. The

combined application of these methods allows for an understanding of SEB effects

as a consequence of changing geometry on glacier MB. Treatment of the model

input data (predominantly with regard to meteorological inputs), the different

algorithms used and model set up are all discussed here as well as the consideration

of different approaches by which to implement certain parameters. Although this

chapter is principally methodological, the model for which the methods apply is

in itself a major outcome of this study and this is discussed further in chapter 10.

This chapter provides the basis for addressing the project objectives of:

� Developing a user friendly grid based distributed surface energy balance

model which uses reconstructed surfaces as an input, combined with meteo-

rological data from the field

� Conducting model scenarios with the developed model to assess the effects

of meteorological and topographic forcing as well as geometry change on

surface energy balance and mass balance change
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5.1 Contemporary data: Automatic Weather Sta-

tion (AWS) data integration

Meteorological data are available for K̊arsa from June 2007 - the present, collected

from an AWS installed by the University of Leeds. Automated observations

include surface measurements of incoming shortwave radiation (W m-2), air

temperature (◦C) (from approximately 2 m above the surface) and wet precipitation

(mm)(rainfall). AWS location is discussed in chapter 3 and the data are discussed

in section 9.2.1 of chapter 9. Due to AWS issues, relating partly to component

malfunctions but mainly problems due to data storage capacity and battery power

(a result of constant low temperatures), these records are not continuous, with

gaps of varying sizes occurring. The melt modelling carried out in this project

required a continuous stream of temperature and precipitation values. To enable

model run facilitation, gap filling methods were applied to the temperature and

precipitation data. The radiation data were treated separately (see section 5.3.2).

5.1.1 Temperature data: Gap filling and the use of multi-

ple imputation

The temperature data set collated by the AWS is 90% complete with some months

missing values due to AWS issues (see figure 5.1). Due to the requirement of a

continuous stream of temperature data for the model to run, these gaps needed

to be filled and a simple linear function was found not to be suitable as it failed

to account for the varying temporal frequencies inherent of the data that was

collected successfully.

Gaps in the temperature dataset were populated using a multiple imputation

method, implemented using the Amelia II package in R. Unlike mean missing

data imputation methods, MI allows avoidance of biases that become associated

with variances and covariances inherent of these methods (Honaker et al., 2012).

This method has been shown to perform well in a number of different missing

data situations (Wayman, 2003).
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Figure 5.1: Temperature line plot displaying the raw data collected by the AWS. The clear
gaps could not easily be filled using simple techniques as these failed to account for the varying
temporal frequencies inherent of the collected data values.
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Where K is the number of imputation runs carried out, the Amelia II programme

imputes K number of values for each gap within a given dataset, resulting in K

filled data sets. These filled data sets maintain known observations, providing im-

puted values for all gaps. In this sense, MI is similar to other exact interpolations

(such as kriging in spatial statistics). The resulting K number of imputed (and thus

complete) data sets can then be averaged to provide a final complete data set. The

method is summarised in figure 5.2. Using MI, missing values are predicted from

the existing values in the original dataset. These predicted values then replace any

missing values in the data set which results in an imputed data set (Wayman, 2003).

Use of Amelia II requires the assumptions that the data have a multivariate

normal distribution and that missing values are missing at random (MAR). The

K̊arsa AWS temperature data set used here has been shown to be approximately

normally distributed prior to performing the MI. The data set has thus been

used without subsequent transformations. The assumption of multivariate normal

distribution has been found to work well with the applied MI, even when compared

to more complex models (Honaker et al., 2012). The MAR assumption on the

other hand relates to the fact that missing values occur at random in relation to
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Figure 5.2: Multiple imputation work flow

Incomplete data set

Bootstrapped data sets

Imputed data sets

Final combined data set

the observed data. This assumption could be met in the present data set as given

any month between 2007 and 2011, missingness did not depend directly on the

observed temperature measurements.

Two MI runs (each of 20 imputations) were carried out. The results of the first

run can be seen in figure 5.3. The spike that can be seen occurring during the

spring of 2009 occurs prior to a period of thermometer malfunction. Thermometer

malfunction is likely to have begun prior to cessation of data recording, and this

spike, which exceeds the range of temperatures exhibited by the rest of the data

set, is likely to be evidence of this. The data points causing the spiking were

removed and a second full MI run was carried out - the removed values being

imputed as if they had been missing. The output of the second run can be seen

in figure 5.4. This temperature data set is that which is used fr the contemporary

model runs. The temperature data starts on the third day of AWS data collection,

allowing for a day of instrumentation equilibration.

A standard error of 2.78 was calculated for the imputations. The calculation of
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Figure 5.3: Temperature line plot (result of MI 1)
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Figure 5.4: Temperature line plot (result of MI 2)
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standard error in this instance requires evaluation of the mean of all imputed data

sets (θ̄) using θ̄ = K−1
∑K

k=1 θ̂k where θ̂k is the mean of an individual imputed

data set (Honaker et al., 2012). Total variance (T ) of θ̄ is then calculated for k

imputed data sets using:

T = W + (1 +K−1)B (5.1)

where:

W = K−1
K∑
k=1

Wk (5.2)

Figure 5.5 displays histograms of the original temperature data distribution as

well as the first, fifth, tenth, fifteenth and twentieth imputation outputs.

From the histograms, it is apparent that imputations are more limited towards

the extremes of the data, deviating from the input data most apparently for

the 0 - 10 ◦C bin. This is further supported by figure 5.6 where it is clear that

the majority of predictions fall between -10 - ˜3◦C, there is a low prediction

frequency between 3 - 10◦C and then there is an increase in prediction density

from ˜10 - 12◦C. Due to the nature of this method coupled with the available

data, extreme temperature events, both peaks and troughs, are likely to be under-

and overestimated respectively.

Figure 5.7 displays charts for the years 2007 - 2011 with imputations highlighted

along with associated error bars for each estimation. The 2008 and 2011 charts

show no imputations as there were no data gaps. They are included here for

completeness. The largest data gaps occur during the autumn of 2007 and the

springs of 2009 and 2010. These events are random relative to the temperature

trends and a function of temperature sensor malfunction.
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Figure 5.5: Histograms of the original and the first, fifth, tenth, fifteenth and twentieth
imputed temperature data sets
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Figure 5.6: Multiple imputation prediction density. Predictions are concentrated between -10
- ˜3◦C with fewer predictions in the 3 - 10◦C range. There is a small increase in prediction
density between ˜10 - 12◦C
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Figure 5.7: Annual temperature data sets with associated error of imputation estimates
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5.1.2 Contemporary precipitation data

The contemporary model is driven by precipitation data collected at the AWS over

the 2007-2011 period. Due to the relative sparsity of values, no attempt is made

to gap fill as such a process would be purely academic with too few observations

available for accurate reconstructions.

5.2 Historical data: Adjusting distal data (ANS)

to local conditions (AWS)

5.2.1 Historical temperature data

Temperature data are available from ANS from 1920 to September 2012 (data

collection at ANS is on-going, extending outside of the remit of this study). The

temperature data are available as daily means, with no gaps throughout the record.

ANS is located ˜25 km east of K̊arsa,and is located on the western shoreline of

Lake Torneträsk at an elevation of ˜370 m a.s.l.

To correct the temperature data available to be equivalent to the AWS, a lapse

rate was required. Data from the AWS that crossed over with data available from

the ANS provides a cross over data set from 2007 - 2011. The AWS data was

averaged over the month to allow it to be compared with the ANS data. The

completed AWS dataset developed using multiple imputation was not used during

this analysis, with any gaps in the record being ignored. The ANS and AWS

components of the cross-over dataset are plotted together and are displayed in

figure 5.8.

As can be seen in figure 5.8, there are differences between the two temperature

regimes. The mean difference between the two data sets was 1.96◦C, with a range

of 7.94 ◦C and a maximum difference of 4.29◦C. Temperature at ANS was generally

greater than at the AWS from March to November, with the differences being

lesser between approximately December and February. Temperature as measured

at ANS was lower than that measured at the AWS for some winter months as
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Figure 5.8: ANS/AWS temperature cross-over data: July 2007 - February 2011
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can be seen for February 2009 and January and February 2010 and 2011. These

differences can be explained in part by the differing levels of interplay between the

continental and continental/maritime regimes manifest over Abisko compared to

over K̊arsa, difference in elevation (in terms of adiabatic variations) as well as the

relative juxtaposition of ANS to Lake Torneträsk which will also have an effect.

A number of other effects including differences in the overall surface albedo of the

area, surface aspect and wind patterns will also be instrumental in the differences

in measured temperature (see Petersen & Pellicciotti, 2011).

To apply a single fixed lapse rate to correct the ANS data to the area around

the AWS was inappropriate in this situation. Furthermore, lapse rates are known

to vary temporally. Temperature from the cross over data set was first analysed

on a monthly basis, where tests were carried out for the validity of applying 1st,

second or third order polynomial models to assist in temperature lapsing. Only to

the months of May, August and December could significant 1st order polynomials

be applied. For all other months and models, results were insignificant (see table

5.1). This is largely a function of the restricted crossover dataset (a maximum of

4 ANS/AWS point pairs per month).

To acquire a stronger and more applicable prediction model, the crossover data
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Table 5.1: Monthly ANS/AWS temperature regression analysis results (NS refers to a non-
significant test and NA refers to a non-applicable test)

Polynomial
Month 1st order 2nd order 3rd order
J NS NS NS
F NS NS NS
M NA NA NA
A NS NA NA
M Sig. NA NA
J NS NA NA
J NS NS NA
A Sig. NS NA
S NS NS NA
O NS NA NA
N NS NS NA
D Sig. NS NA

Table 5.2: Seasonal ANS/AWS temperature regression analysis results

Polynomial
Month 1st order 2nd order 3rd order Best model
Summer Sig. Sig. Sig. 1st order
Winter Sig. Sig. Sig. 1st order

were then split into two seasonal groups - summer and winter. Where mean

monthly temperatures within the crossover dataset were greater than 0◦C, the

season was set as summer, otherwise winter. For all years, the months of May,

June, July, August and September were classed as summer with the remaining

months being winter. The split dataset was then assessed on an individual basis

for regression model significance (see table 5.2).

Significant 1st, 2nd and 3rd order polynomial regressions were found for both the

summer and winter data sets. ANOVA tests were run to test improvements in

model fit between the 1st, 2nd and 3rd order equations, resulting in the first order

being the most suitable. The seasonal data point distributions can be seen in

122



figure 5.9, both with a smooth line applied and the chosen linear regression model

of the summer regression equation (p = 5.886 x 10-13, r2 = 0.9638):

y = −3.26257 + 0.98692x (5.3)

and the winter regression equation (p = 2.288 x 10-11, r2 = 0.8739):

y = −2.84141 + 0.70835x (5.4)

Considering the strength of the seasonal model results, the equations 5.3 and 5.4

are used to alter the ANS monthly mean temperature dataset. The adapted ANS

dataset is compared next to the raw ANS temperatures below in figure 5.10.

Considering the application of regressions 5.3 and 5.4, peak temperatures mea-

sured at ANS were capped, as is to be expected when considering figure 5.8.

Equally, the ANS minimum temperatures on average have been reduced. The

regression method applied here provides results as would be expected, with regard

to generally lower temperatures in summer and similar temperatures during the

winter. However, as the regressions were calculated for the 2007 - 2011 cross-over

period, two assumptions had to be made. The first is that of homogeneity of

variance - variation and patterns within the cross-over data set are assumed to be

valid for the full 1920 - 2011 ANS dataset. The second assumption is based on

the stability of the regressions as they are extrapolated outside of the range of

values upon which the equations were derived through the monthly analysis of

the cross-over data.

The adjusted ANS data is used within the historical model runs.

5.2.2 Historical winter precipitation

Snow depth has been recorded at ANS since 1920 based on both a fixed point

and a transect of points from which is derived a daily average. For effective

modelling, winter precipitation was required to be distributed across a grid within

the model. This has been effected within the contemporary model by integrating
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Figure 5.9: Winter and summer temperature seasonal point distributions for ANS against
AWS. The upper charts have a smooth line superimposed to give an idea of the general trend.
The lower charts display the applied linear regressions of 5.3 and 5.4 for the summer and winter
months respectively.
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Figure 5.10: Raw and adjusted ANS temperature data 1920 - 2011. The top and lower charts
display the raw and adjusted data respectively.

−20

−10

0

10

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

A
ir 

Te
m

pe
ra

tu
re

 (
ºC

)

−20

−10

0

10

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

A
ir 

Te
m

pe
ra

tu
re

 (
ºC

)

125



data collected from the field on end of winter season snow depths, distributed

across the glacier (this is described in section 4.2.7 of chapter 4). Distributed

snow depth across the glacier at the end of the winter season is unknown prior to

the first snow probe assessment carried out in 2008. The following approach to

approximate distribution was applied:

1. Compare mean contemporary end of winter season snow accumulation from

the glacier with the accumulation as measured at ANS, for the years 2008 -

2011 (cross-over) and approximate a lapse correction

2. Approximate the distribution of end of winter season snow thickness as a

function of elevation across the glacier by means of polynomial regression

3. Using the “lapse” corrected end of winter season snow depth from ANS,

calculate snow thickness distribution across the glacier (for which the ele-

vation map is specific to the year in question) using the statistically most

appropriate regression model

The following assumptions were made in this analysis:

1. Homogeneity of variance between contemporary snow patterns (2008 - 2011)

and patterns that existed prior to data collection

2. Validity of applied corrections and regression equations is maintained through

extrapolation (important in terms of meteorological trends propagating

outside of the 2008-2011 ANS/AWS cross over period and with regard to

the glacier elevation range prior to snow thickness data assessment which

differs to the present, especially below approximately 900 m)

Records of daily snow depth measurements are available from ANS from 1st

January 1920 to the present day, with few gaps. The method of snow depth

assessment has been a combination of a transect of stakes from which a mean

snow thickness was derived and also the use of a single stake. The measurements

accumulate through the season, thus equating to total amount of snow as opposed

to daily snowfall amount. An end of winter season snow thickness for ANS,

comparable with that measured at the glacier using the snow probe technique
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through the 2008 - 2011 winter field seasons, always facilitated in March, has

been derived. The winter total thickness value is estimated by calculating the

maximum thickness recorded during the month of March for each year at ANS.

This provides a raw ANS dataset illustrated in figure 5.11. There were some gaps

in the ANS snow thickness data set. These gaps were filled, due to the model

requiring a continuous data input set, with the following considerations. Where

there is:

(a) only a transect measurement, this value is used

(b) only a single stake measurement, this value is used

(c) both stake type measurements, average of the two is used

(d) neither value but one the year before and after, an average of the before and

after values is used

(e) only a value before, use this value

(f) only a value after, use this value

(g) no value before or after, correct before and after and calc. the middle value

as the average of the two fixed values (a combination of methods e, f and d)

Due to the different geographic locations of ANS and K̊arsa, it was prudent to

consider variation in snow depth measurements between the two sites. Conse-

quently, the data cannot be used in its raw format. To estimate the difference

in mean snowfall between the two sites, the data was compared where it crossed

over, which was for the years 2008 - 2011. The mean measured snow depth values

from the glacier were compared with the March maximum values at ANS (an

assumption being made that the measurement of snow thickness during the field

work campaigns was a near as possible to the maximum winter snow thickness) -

see table 5.3. The difference between the two sites was calculated each year and

then averaged - the resultant value of 2.00 being an estimate of how much more

snow could be expected at the glacier, given a specific snow thickness measurement

at ANS.
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Figure 5.11: Raw and adjusted snow thickness measured at ANS 1920 - 2012
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Table 5.3: Mean end of winter season snow depth comparison: K̊arsa vs. ANS

Year K̊arsa thickness ANS thickness Difference
(m) (m) (m)

2008 2.36 0.47 1.90
2009 2.26 0.55 1.71
2010 2.31 0.48 1.83
2011 3.24 0.70 2.55
Mean 2.00
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The resultant mean difference was applied to lapse all ANS winter thickness values,

correcting them to the glacier locale. The results of the lapse can be seen in figure

5.11.

Snow thickness distribution as a function of elevation was approximated using

the data collected for the contemporary glacier analysis (winter snow depths for

2008 - 2011). Through analysis of the data, regression equations were drawn to

best estimate the distribution. The most appropriate equation was then used to

distribute winter snow as a function of elevation for the years where actual end of

winter season snow depth is unknown.

Snow thickness was plotted against glacier elevation (figure 5.12) to which lines of

best fit were applied to give an impression of the general trend. The data available

for the different years varies with regard to spatial extent (see chapter 4). During

the 2008 and 2009 field seasons, few snow thickness points were collected in the

upper reaches of the glacier, being isolated to the more easily accessible ablation

zone. Data collection in the 2010 and 2011 seasons was comparatively much more

extended, with points being taken up into the accumulation zone, thus allowing

for accountability of snow thickness at higher elevations.

With regard to regression analysis, the difference in spatial coverage of snow

thickness points between 2008 - 2011 results in interesting variance, with 3rd order

polynomials being most significant in 2008 and 2009 and 2nd order polynomials

being most significant in 2010 and 2011. 1st, 2nd and 3rd order polynomial regres-

sion were tested on the snow thickness data for individual years (2008, 2009, 2010

and 2011), all of the years, and 2010 and 2011 together. Analysis of the 2010 and

2011 thickness data together was deemed appropriate as these two years shared a

similar spatial data coverage, in both the lower and upper reaches of the glacier.

The exemplified analysis for 2010 and 2011 diverts analytical focus from the lower

elevations alone (as with the 2008 and 2009 data), enabling proportionally greater

inclusion of snow thickness distribution at higher elevations. Basic test results

can be seen below in figure 5.4.
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Figure 5.12: Winter snow thickness as a function of elevation: 2008 - 2011

1.5

2.0

2.5

3.0

3.5

●●●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

1000 1050 1100
Elevation (m a.s.l.)

S
no

w
 d

ep
th

 (
m

)

Year

● 2008

1.5

2.0

2.5

3.0

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

1000 1050 1100
Elevation (m a.s.l.)

S
no

w
 d

ep
th

 (
m

)

Year

● 2009

1

2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

1000 1100 1200 1300 1400
Elevation (m a.s.l.)

S
no

w
 d

ep
th

 (
m

)

Year

● 2010

2

3

4

5

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1000 1100 1200 1300 1400
Elevation (m a.s.l.)

S
no

w
 d

ep
th

 (
m

)

Year

● 2011

1

2

3

4

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1000 1100 1200 1300 1400
Elevation (m a.s.l.)

S
no

w
 d

ep
th

 (
m

)

Year

●

●

2010

2011

1

2

3

4

5

●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1000 1100 1200 1300 1400
Elevation (m a.s.l.)

S
no

w
 d

ep
th

 (
m

) Year

●

●

●

●

2008

2009

2010

2011

130



Table 5.4: 1st, 2nd and 3rd order polynomial regression analysis results for contemporary snow
thickness vs. elevation

Year 1st order polynomial 2nd order polynomial 3rd order polynomial
multiple r2 p multiple r2 p multiple r2 p

2008 0.07 0.09 0.08 0.24 0.24 0.02
2009 0.05 0.09 0.08 0.10 0.23 0.00
2010 0.04 0.02 0.13 0.00 0.14 0.00
2011 0.02 0.04 0.07 0.00 0.08 0.00
2010/2011 0.00 0.85 0.13 0.00 0.13 0.00
All 0.01 0.05 0.14 0.00 0.14 0.00

For the 2008 and 2009 data sets, 3rd order polynomial regressions were found

to be most significant. For the individual 2010 and 2011 analyses, both 1st and

2nd order polynomial fits were significant. Despite the regressions being signif-

icant, they were all found to be very weak. Following ANOVA analysis, where

the null hypothesis was that a 2nd order polynomial would not be a significant

improvement on a 1st order polynomial, in both instances, the null hypothesis was

proved incorrect (with p values of 0.0002 in both instances). For the 2010/2011

combined distribution, 1st and 2nd order polynomials were found to be significant.

An ANOVA test was used to assess whether 2nd order provided a significant

improvement, whereby the null hypothesis; a second order polynomial will not

be a significant improvement on a 1st order polynomial; was proved incorrect (p

= 0.3059). Analysis of all of the data available together resulted in 1st, 2nd and

3rd order polynomials being significant, although the individual coefficients of the

3rd order were themselves not significant. Nonetheless, ANOVA tests was carried

out for all polynomials. The 2nd and 3rd order polynomials were found to be

significant improvements on the 1st order polynomial (p = 0.00 in both cases).

However, the 3rd order was not found to be significantly stronger than the 2nd

order polynomial (p = 0.6173).

The winter snow thickness data for K̊arsa was all that was available for the glacier.

The data was collected once each year and therefore was essentially a snap shot of

the overall snow distribution pattern. It is likely that the spatial pattern of snow

depth is subject to wind re-distribution which will provide daily variations in depth
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distribution. However, the general pattern is captured by the data available. To

estimate thickness distribution as best as possible prior to the records illustrated

here (therefore predicting from 1920 onwards), the best data to base an estimation

on is that with the greatest elevation coverage, which was here attributed to the

combined 2010/2011 data. The data when combined with 2008 and 2009 which

has a data bias to lower elevations distorts the regression model, to satisfying

lower elevations, unlike the 2010/2011 data. The most significant regression from

the combined 2010/2011 analysis was used to distribute snow as a function of

elevation prior to the contemporary analysis, using a second order polynomial

regression equation of:

y = −28.39 + 0.05252x − 0.00002181x2 ± difference in mean (5.5)

By adding/subtracting the difference in the mean snow values (between the mean

for the year in question and the mean from which the regression equation was

derived), the curve was adjusted to suit different snow conditions. Using equation

5.5, its effectiveness was tested by predicting the measured 2010 and 2011 snow

depths according to elevation. The x̄ difference between the modelled and pre-

dicted values was 0.55 m with a range of 2.02 m. Experimentation with equation

5.5 showed that for elevations less than 820 m a.s.l., predicted snow depths were

negative - this is a function of the extrapolation of the regression equation beyond

its original constraints. The negative values and the stark reduction in snow

thickness are artifacts of the applied method. However, there are no other data

available for this region. In order to account for the aforementioned limitations,

where snow thickness values fall below predicted snow depth as calculated for

the minimum elevation from which the regression curve was created (with the

addition/subtraction of the difference in means), snow thickness will be set to this

calculated value. In implementing this method, snow thickness values will have a

finite limit.

Snow depth at a given elevation will therefore be calculated by multiplying the

mean (adjusted) end of season snow depth for a given year by equation 5.5 (where
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x is the elevation (m a.s.l.)).

5.2.3 Historical summer precipitation

Summer months within the ANS/AWS crossover dataset were identified as in

section 5.2.2 as a function of mean monthly temperature between the ANS and

AWS sites. Total precipitation was compared for the two sites for these summer

months, regardless of year (thus ignoring any annual trends). In doing so it is

possible to assess any relationship that exists between precipitation amounts at

the two sites as a function of the precipitation magnitude. To assist in correcting

ANS precipitation values to the glacier locale, regression models were tested with

the data. The only significant regression equation was a first order polynomial (p

= 0.04, r2 = 0.24) (see figure 5.13) of:

y = 0.02777 + 1.20866x (5.6)

Polynomials of 2nd and 3rd order were insignificant (with respective p values of

0.13 and 0.26).

The r2 of equation 5.6 is low. There was a weak positive correlation between AWS

and ANS datasets (Kendall’s τ : p = 0.03, τ = 0.39 and Spearman’s ρ: p = 0.03

and ρ = 0.51). Considering the weak correlation and regression coefficients, there

was no correction of the ANS precipitation data to the glacier locale.

5.3 Solar radiation

5.3.1 Calculating Sin,TOA

Sin,TOA was calculated as a daily mean using solar geometries acquired from the

NOAA (2012), using the equation (taken from Sellers (1965)):

Sin,TOA = I0(
Rm

R
)2 (cosη cosδ cosω + sinη sinδ) (5.7)

where I0 = 1368 Wm-2 (the solar constant taken from (Fröhlich, 1993)), Rm and

R are the mean and instantaneous sun-earth distances, η is latitude, δ is the solar
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Figure 5.13: ANS/AWS monthly precipitation totals point scatter. The equation of the line is
equal to 5.6.
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Table 5.5: Calculating mean daily Sin,TOA: comparing 6 hour intervals with 6 minute intervals

Date 6 hour interval mean 6 minute interval mean
Wm-2 Wm-2

15/1/10 3.22 0.65
15/2/10 53.56 43.41
15/3/10 114.46 137.99
15/4/10 286.58 281.82
15/5/10 427.90 419.14
15/6/10 503.17 503.31
15/7/10 466.84 466.18
15/8/10 353.03 341.62
15/9/10 174.94 194.73
15/10/10 76.48 75.74
15/11/10 17.72 8.93
15/12/10 0 0

declination and ω is the solar hour angle (Hock & Holmgren, 2005). Here we

treat Rm as equal to R (1 A.U. (IAU, 2012)) which is a reasonable assumption as

the variance between Rm and R never exceeds more than 3.5% (Sellers, 1965).

To calculate mean daily Sin,TOA using this method, Sin,TOA was calculated for

each day using time specific geometries at midnight, 6am, noon and 6pm - the

average Sin,TOA is then calculated in Wm-2. When using Sin,TOA to drive the

model, negative values for Sin,TOA (occurring during the Arctic winter) are set to

0 Wm-2. Otherwise values were not adjusted. The use of midnight, 6am, noon

and 6pm values was compared to calculating mean daily Sin,TOA from geometries

assessed every 6 minutes (providing greater coverage of changing geometrical

relationships throughout the day) for the 15th of each month in 2010 (table 5.5).

Compared to the 6 minute interval method, the 6 hour method underestimates

in March, June and September with a tendency to overestimate in the other

months. The overall mean error from the above assessment is ±0.365.As other

approximations are made for processes including transmissivity, it was prudent to

approximate Sin,TOA in a relatively simple way. To calculate it at much smaller

time steps would have resulted in unnecessarily high resolution.
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Figure 5.14: Daily mean interval calculated Sin,TOA (figure (i)) and daily mean Sin,TOA

integrated with expected Sin,TOA at other northern latitudes figure (ii). Figure (ii) is adapted
from Oerlemans (2010b)
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To compare this interval method of Sin,TOA calculation, a comparison was made

with expected daily mean values at a number of other northern latitudes taken

from Oerlemans (2010a)(figure 5.14).

The interval calculations appear more stepped which owes to the calculation being

derived from the times specified. This will lead to underestimations at certain

times of the year (particularly when Sin,TOA is low) - using a smaller time step

would result in fewer 0 Sin,TOA values being incorporated in the calculation of

mean daily Sin,TOA. As this effect was most exaggerated when Sin,TOA was small,

it was not expected to significantly affect melt modelling assessments.

Mean values for the intervals over the 1926 - 2011 period are displayed in figure

5.15. During the summer months, values were greatest and especially so at noon

as would be expected.

Sin,TOA was greater than zero for most of the year at noon, except at the very
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Figure 5.15: Average daily Sin,TOA values for the 1926 - 2011 period at K̊arsa at midnight,
6am, noon and 6pm
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beginning and end of the year (day numbers 1-11 and 335-366). Sin,TOA zero

values occur for days 1-150 and 198-366 at midnight. The occurrence of values

for day numbers 151-197 is indicative of longer Arctic daylight conditions during

which high latitude regions experience the midnight sun. Zero Sin,TOA values

occur for day numbers 1-78 and 273-366 at 6am and for 1-82 and 263-366 at

6pm. Sin,TOA values were greater than 0 at 6am 4 days earlier than at 6pm and

remained so 10 days after values at 6pm return to 0.

5.3.2 Accounting for radiation at the surface: Atmospheric

transmissivity (τ) estimation using a global/Sin,TOA

radiation ratio analysis

Atmospheric transmissivity (τ) is a vital component when calculating the amount

of incoming shortwave radiation incident to a surface from exoatmospheric flux

(top of atmosphere radiation (Sin,TOA)). Klok & Oerlemans (2002) calculated

incoming radiation at the surface using:

I = Sin,TOAcos(z)TRTgTwTasTcl (5.8)

137



where I is surface shortwave radiation, TR and Tg are transmission coefficients for

Rayleigh scattering and gas absorption respectively, Tw is water-vapor absorption,

Tas is the transmission coefficient for aerosol attenuation and Tcl is a cloud factor

(Klok & Oerlemans, 2002). The AWS installed at the terminus of K̊arsa was used

to collect global radiation for the period 1/7/2007 - 14/3/2011. Cloud observa-

tions were not carried out for K̊arsa and so such a calculation as 5.8 could not be

applied. Global radiation data were also available from ANS in nearby Abisko

(˜25 km east). To estimate transmissivity, a method is employed that does not

require cloud observations directly, as in Hock & Noetzli (1997), which requires

the multiplication of Sin,TOA by the ratio of measured global radiation over Sin,TOA.

To emulate the effect of transmissivity, the ratio of measured global radiation over

Sin,TOA is represented by τ (Hock & Noetzli, 1997; Hock & Holmgren, 2005):

τ =
I

Sin,TOA

(5.9)

To calculate τ , values for I were those measured at the AWS.

A mean value for τ was used throughout the model runs. Values for τ were

originally calculated using Sin,TOA and measured global radiation at the surface

data from ANS and the AWS for the periods 1/7/1984 - 21/8/2011 and 1/7/2007

- 14/2/2011 respectively. As discussed in Hock & Holmgren (2005), estimates

of τ are expected to decrease in accuracy as radiation amounts decrease. As

suggested by (Hock & Holmgren, 1996), τ estimates calculated where zenith

angles are greater than 85 (at 6am, noon and 6pm) and/or Sin,TOA estimates are

< 20 Wm-2 were ignored. Mean values of τ are calculated only from complete

years. Where there were instances of τ estimation values > 1 (i.e. measured

surface global radiation > Sin,TOA), these were treated as no data values so as not

to affect mean values for τ . This is acceptable as such instances are caused by

other radiation sources whereas here the concern is only with direct solar radiation.

Despite varying climatic conditions, estimates for τ for both ANS and the AWS

were compared. As the two sites are relatively close to one another (approx. 25 km),

138



analysis of τ in both instances was completed to assess the best methods by which

to calculate the value and also to provide information for its variability over time.

Single mean values for τ were estimated at 0.44 and 0.44 from the ANS and AWS

datasets respectively. The mean values reported here were calculated by averaging

daily τ estimates. Separate τ values were calculated for ANS and AWS at 0.44 and

0.45 respectively whereby τ was estimated using the ratio of annual mean global

radiation at the surface/annual mean Sin,TOA. The methodology leading to the

calculation of a mean value of τ is important. By calculating a mean τ using daily

values, all daily τ values will have the same weight in the end result. As τ estimate

accuracy is expected to decrease with reduced radiation amounts, this could result

in a more erroneous value. By using a mean τ calculated from using the ratio of

mean annual measured global radiation/mean annual Sin,TOA, the larger radiation

values will have more weight when calculating the mean, thus providing more

robust τ estimations (Giesen, 2012 (pers. comm.)). Both sets of values correlate

well with τ estimates approximated for other sites across the globe including Mid-

talsbreen (Norway), Storbreen (Norway) and Kongsvegen (Svalbard) where values

of 0.54, 0.48 and 0.55 were approximated respectively (Giesen & Oerlemans, 2012).

The effectiveness of the estimated τ values were assessed by comparing mean

annual measured global radiation at the surface values against estimated global

radiation at the surface values. Estimated and measured global radiation values

and estimation errors can be seen in table 5.6.

The daily average method for estimation of τ was most effective in both instances,

with the least error being associated with global radiation at the surface estimates.

The largest errors using both daily and annual means are associated with the

AWS data. This was likely to be a function of the juxtaposition of the AWS near

to valley side walls which will be a constant source of radiation which will interfere

with the equipment. During the mid-winter months when Sin,TOA was equal to

zero, the AWS still records radiation values (although small). This is not the case

with the ANS data which does not have this juxtaposition issue - zero values of

measured global radiation also exist during the winter months when Sin,TOA is
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Table 5.6: Estimated surface global radiation vs. measured global radiation at ANS and
AWS using mean daily and mean annual τ estimations. Estimate errors are considered only
where Sin,TOA is > measured global radiation at the surface, otherwise the resultant estimate it
disregarded.

Daily mean
Site Estimated Measured Diff. Error

Wm-2 Wm-2 Wm-2 %
ANS 97.16 97.18 0.02 0.02
AWS 114.30 111.21 -3.09 -2.78

Annual mean
Site Estimated Measured Diff. Error

Wm-2 Wm-2 Wm-2 %
ANS 96.33 97.18 0.85 0.88
AWS 117.17 111.21 -5.96 -5.36

equal to zero as would be expected.

The ANS dataset goes back much further in time than the data available from

the AWS and this is useful for estimating a value for τ that can be used with

confidence when predicting radiation receipt at the surface prior to the records

available. The mean τ values mentioned above are no more than ± 0.01 apart at

most. Annual variability in τ is assessed for the 1985-2011 ANS data to quantify

its stability overtime and thus deduce the validity of applying a single mean value

over the time period that is modelled. The 1985-2010 τ estimates conformed to

non-parametric correlation testing. Using a Spearmans R correlation test, values

of p = 0.703 and ρ = 0.08 were calculated. A Kendall tau test was also run giving

p = 0.631 and Kendall τ = 0.07. Both of these tests are indicative of the presence

of a weak and insignificant correlation between mean annual τ and time (years)

(see figure 5.16).

As τ is extrapolated back to 1926 for the model runs, the low r2 value and in-

significance of the correlations provides no basis on which to make the assumption

that the apparent trends observed extend back further than 1985. Therefore, due
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Figure 5.16: Correlogram for annual mean τ estimations vs. time (year) for the AWS 1985 -
2010 dataset
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to the temporal limits of the data, a single mean value for τ will be used for all

historical model runs.

To assess the variability in τ between the two sites, annual values were calculated

and compared using both daily and annual mean ratios (table 5.7). This was

carried out for the years 2008-2010 as these are the only complete years that

overlap between the two sites.

Table 5.7: Comparison of annual values for τ at ANS and the AWS calculated using daily and
annual mean ratios

Daily means Annual means
Year ANS AWS ANS AWS
2008 0.46 0.46 0.45 0.46
2009 0.46 0.45 0.46 0.46
2010 0.43 0.43 0.42 0.42
Mean 0.45 0.45 0.44 0.45
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Table 5.8: Estimation error of monthly global radiation at the surface (Wm-2) where τ = 0.45.
Positive errors indicate overestimates whereas negative values indicate underestimates.

Month Error
(%)

Jan 114.1
Feb 77.9
Mar 9.7
Apr -18.0
May -13.7
Jun -1.0
Jul 13.0
Aug 21.8
Sep 39.2
Oct 61.8
Nov 131.4
Dec -

Using the global/Sin,TOA ratio method, the daily average calculated values dis-

played a similar pattern in τ at both sites with little variation in mean values

(a joint mean τ estimate of 0.45). Similar variability is observed when using the

annual average method with similar mean estimates. Annual methods of averaging

are likely to be more reliable as they are more weighted to large Sin,TOA amounts

Hock & Holmgren (2005). ANS is subject to different meteorological conditions to

K̊arsa due to its proximity to Lake Torneträsk. Despite these climatic differences,

there is little noticeable difference in τ between the two sites.

As a result of this analysis, the annual mean value of 0.45 as calculated using the

AWS dataset was used for τ which is fixed for all model runs (in accordance with

the aforementioned ANS tau vs. time correlation analysis). Error as a function

of month using the AWS dataset was analysed to assess the months in which τ

estimates were most effective (see table 5.8).

The largest underestimates (%) occur for the months October - February when

radiation values are smallest. The results displayed in table 5.8 account only

for when Sin,TOA is greater than measured global radiation at the surface. As
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reported earlier, use of the 0.45 values of τ results in a mean error of ca. -5%

(underestimate). If accounting for instances where Sin,TOA < measured global

radiation at the surface, this increases the error to ca. 8%. The occurrence of such

incidents is indicative that the radiation received by the sensors at that time was

not from direct incoming solar radiation. Global radiation at the surface is best

estimated at the AWS during June which follows with better predictions for τ be-

ing made using the global/Sin,TOA ratio method when radiation values are greatest.

A τ value of 0.45 is used in all model runs.

5.4 Model algorithms and considerations

5.4.1 Calculating radiation incident at the surface (I)

I is defined here as:

I = H x [cosθ0 cosβ + sinθ0 sinβ cos(φ0 −A)] Sin,TOA x exp(−T0/cosθ0) (5.10)

where H is hillshade (mean % topographic shading for a given time period),

τ is the atmospheric transmissivity, θ0 is the solar zenith angle, φ is the solar

azimuth, A is the slope aspect and β is the slope angle. All of these factors are

calculated dynamically, changing over time thus enabling quantification of both

solar seasonality (Sin,TOA θ0 φ) and glacier surface adjustments(A and β) (modi-

fied from Burrough & McDonnell (1998)). I is calculated with all angles in radians.

Equation 5.10 operates well however its validity was compromised when the

sun was positioned low on the horizon. Where θ0 approaches π/2, the cosine

of θ0 becomes asymptotic with 0. In the term exp(−T0/cosθ0), with θ0 as the

denominator, a value asymptotic to infinity is calculated. Consequently, the use of

equation 5.10 is truncated for θ0 angles > 84◦. θ0 values greater than this result in

values with errors of an order of magnitude greater than 1 to occur. For instances

affected by this truncation, I is automatically set to 0. Given the potential order
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of magnitude errors associated with this range of the function, setting I to 0

introduces a trivial error, and is unlikely to be problematic in mountainous regions,

such as with the location of K̊arsa. In flatter areas where the sky view of a given

position is not so limited by surrounding topography, I would be set to the value

of that calculated for 84◦.

5.4.2 Albedo (α)

α refers to the reflectivity of a surface over the shortwave spectrum (0.35-2.8m)

(Jonsell et al., 2003; Hock, 2005). The effect of snow albedo on incoming radiation

has been quite well studied, however little has been done with regard to ice albedo

(Cutler & Munro, 1996; Jonsell et al., 2003) which is often treated as a spatial

and temporal constant (Hock, 2005).

Physical characteristics that may affect a surface include: grain size; water and

impurity content; surface roughness; ice crystal orientation and structure; surface

radiative properties (Hock, 2005). It is possible for these different characteristics

to interact with each other. For example, where water content is high, its presence

increases between individual ice increases grain size, reducing the potential albedo

of a surface (Hock, 2005). As grain size decreases, single scattering (as opposed

to multiple scattering) increases which results in an increase in surface albedo

(Carroll & Fitch, 1981). Increasing grain size leads to decreases in snow albedo

due to changes to the air-ice interface pathway within a snow mass (Warren,

1982). A photon can only be scattered when it is between ice crystals (travelling

along the air-ice pathway) once within an ice crystal, absorption as opposed to

scattering takes place. The increase in grain size reduces the air-ice pathway,

reducing scattering and increasing absorption (Warren, 1982).

Rock debris, sediments and atmospheric particles contribute to the modification

of glacier albedo (Warren & Wiscombe, 1980; Warren, 1982; Hock, 2005). Studies

comparing dirty, clean, smooth and hummocky ice revealed significant spatial

variations as a function of impurity content which proved more effective than

surface roughness (Cutler & Munro, 1996). The effect of impurities has more
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affect on the visible than the near-infrared spectrum if one considers hemispherical

reflectivity (Cutler & Munro, 1996). Small amounts of atmospheric particles have

been found to affect reflectivity significantly. 10 ppmw of desert dust or 0.1 ppmw

of carbon soot were found to reduce albedo by a few percent (Warren & Wiscombe,

1980), the effect of which is greater for coarse-grained than fine-grained snow

(Warren, 1982).

Where debris has been present over ice, ablation has been affected accordingly.

There appears to be two types of effect that can be induced by a debris layer

depending on its thickness. This is named its critical thickness. This has been

studied in particular for glaciers in the Himalaya (see for example Nakawo &

Takahashi, 1982; Nakawo & Young, 1982; Nakawo & Rana, 1999), for which

different threshold values have been identified for different glaciers ranging from

1-2 cm (Nakawo & Rana, 1999) to approximately 5 cm (Nakawo & Young, 1982).

Many parameterizations have been devised to deal with snow and ice albedo to

different levels of complexity (e.g. Escher-Vetter, 1980; Tangborn, 1984; Oerlemans

& Hoogendoorn, 1989; Oerlemans & Knapp, 1998; Arnold et al., 1996). These

are discussed in more detail in Brock et al. (2000b). To deal with morphological

changes to the snow pack over time, the methods devised in Brock et al. (2000b)

have resulted in good agreement with albedo observations in the field (Brock et al.,

2000b).

In some studies, remote sensing techniques have been used to identify changing

glacier albedo (e.g. Giesen & Oerlemans, 2010) however images of an appropriate

resolution are not readily available for K̊arsa.

Due to limited observations with regard to snow events, to use a parameterization

that accounts for such factors is not appropriate. Consequently, standard fixed

values are used for albedo to estimate attenuation of I. The values used are taken

from Paterson (1994) and can be seen in table D.1. A value of 0.70 is chosen for

snow to account for both fresh snow and developing firn. 0.70 falls between α

approximations made for firn to dry snow in Paterson (1994). A value of 0.39, a
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mid-value between 0.26 and 0.51 as approximated for slightly dirty ice to clean

ice in Paterson (1994), is used for ice as the surface of K̊arsa is relatively clean, as

observed both in the field and from summer photographs. These are approxima-

tions as quantitative measurements have not been possible as part of this study

(the sensitivity of the overall model to these assumptions is discussed in chapter 8).

Further to the aforementioned effect of debris on surface albedo, the thickness

of the overlying snow surface over ice has also been considered with regard to

adopting the reflective properties of the underlying surface (Ohata et al., 1980;

Kayastha, 1994). Ohata et al. (1980) found that where snow was of a thickness ≤
0.25 mm, the snow surface α was affected by the underlying surface. Giesen &

Oerlemans (2010) affected the albedo of snow once snow reached a small thickness,

according to a depth scale value (d∗ equal to 0.001 m w.e.), whereby the α instance

was then treated as a mix of αsnow and αice. This method was also employed in the

melt model of Leclercq et al. (2011). In the model of Giesen & Oerlemans (2010),

snow albedo was also altered as a function of temperature whereby snow αsnow

was equal to 0.90 when temperatures were ≤268.5 K and αsnow was equal to 0.69

for temperatures >274.6 K. This increased level of α complexity was coupled with

a time dependent α function for snow regarding the number of days since the last

snow fall.

This value has been used as a threshold whereby when snow surface thickness at

a given point falls below this value, the albedo that is then used to modify the

calculation of Q is taken to be that of the surface beneath - the ice. Equally, when

the snow thickness is greater than this threshold value, an albedo value specific

for the snow surface is adopted.

5.4.3 Bulk flux (ψ)

To account for other fluxes that are not explicitly calculated here including

turbulent flux and the effect of long wave radiation, a bulk parameterization was

used, estimated using ψ (see equation 5.13). This bulk method parameterisation
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was based on observations carried out at 11 glaciers (Giesen & Oerlemans, 2012),

situated in environments governed by differing climatic regimes. ψ depends upon:

ψ =

ψmin + cTa for Ta ≥ Ttip;

ψmin for Ta < Ttip.
(5.11)

whereby, under a threshold temp (Ttip), ψ maintains a constant value (ψmin) and

where air temperature (Ta) is ≥ to the threshold temperature, the value of ψ

increases in a linear fashion according to c multiplied by Ta. The values of factors

c, ψmin and Ttip are provided in Giesen & Oerlemans (2012). The factor values

vary according to the different climatic settings.

5.4.4 Lapse rate functions

Air temperature is an important variable to consider as it drives many processes

affecting energy fluxes which drive the energy balance (Petersen & Pellicciotti,

2011). Its importance is such that simpler models have been wholly reliant upon

temperature as an input, such as temperature index and degree day models (e.g.

Braithwaite & Zhang, 2000; Raper & Braithwaite, 2006). Knowledge of the

temperature distribution across an area of interest is limited by the number of

measurement points available. Consequently, to approximate temperatures at

unknown locations as a function of elevation, a lapse rate (LR) must be used.

A temperature LR can be defined as a change in temperature as a function of

height, where the change is positive if temperature increases, or negative if temper-

ature decreases, as a function of elevation (Glickman, 2000; Minder et al., 2010).

The LR that is usually employed is equal to the standard moist adiabatic lapse

rate (MALR) or standard environmental lapse rate which is to a value of -0.0065◦K

(Ballantyne, 2002; Michlmayr et al., 2008; Gardner et al., 2009). A range of other

LRs have been used by a number of authors, applied both as constant LRs (CLR)

and variable LRs (VLR), varying both spatially and temporally. CLR examples

include those of MacDougall & Flowers (2010), based on Kluane and Kaskawusch

Glacier, Canada where LRs of -0.006 and -0.0053 (x̄) were calculated respectively.

A CLR was also used in the generic alpine mass balance model developed by
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Oerlemans (1993). An example of a VLR application is that by Hock & Holm-

gren (2005), from Storglaciären, Sweden, where a LR of -0.0055 (x̄) was calculated.

Surface temperature is variable as a function of multiple factors including: surface

albedo, roughness and aspect; wind patterns; relative humidity; cloud cover and

the presence of a melting surface (Petersen & Pellicciotti, 2011). As a consequence

of the number of contributing factors affecting surface temperature, it is little

surprise that modelling applications prove to be highly sensitive to the LRs that

are employed (e.g. Hodgkins et al., 2012). Thus whenever possible, for small

scale studies it is prudent to consider small scale spatial and temporal variations

with regard to the calculation of LRs, and to then consider the most appropriate

method of employment of the LR within the model in question.

Within the model, a CLR is used as there is no knowledge of spatially variability of

temperature across K̊arsa due to limitations in the monitoring equipment installed

and available. A number of different LRs are experimented with and these are

discussed in section 8.4.6 of chapter 8.

5.4.5 Precipitation

Contemporary algorithm A seasonal component was calculated for the input

data as a function of air temperature. Where there are five consecutive days of

temperatures below 0◦C according to measurements recorded at the AWS, it was

assumed that the climate governing the area around the glacier had entered a

winter phase. Equally, following five consecutive days of temperatures greater than

0◦C, it was assumed that the summer season had begun. This relatively simplistic

approach was a consequence of the data available. When the air temperature is

above freezing, a tipping bucket rainfall gauge is operational at the AWS, for which

read outs are acquired at the programmed time step. However, once temperatures

shift to below freezing, the gauge becomes inoperable. Thus, in circumstances

where precipitation at the AWS was frozen, such events will have been missed.

By splitting the precipitation seasons between summer and winter, it was possible

to simulate precipitation using rainfall data in the summer and using knowledge
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of the end of season winter snow pack depth to simulate precipitation during the

winter.

When the season on a given day is equal to summer, temperatures are calculated

using a lapse rate function across the glacier surface as a function of elevation.

Where air temperature is greater than a given snowfall threshold factor (TThresh),

it is assumed that wet precipitation measured at the AWS will fall to an equal

amount at the cell in question. This precipitation is not stored within the model,

being assumed to run off the glacier surface. Where the air temperature is less

than or equal to TThresh, it is assumed that precipitation at the cell in question

falls as snow. The amount of snow that falls on the cell is calculated by dividing

the wet precipitation amount measured at the AWS by the density of summer

snow (see table D.1). This calculation uses the density in kg m-3 divided by 100

(e.g. where fresh snow density is 200 kg m-3 and temperature at a cell is below the

snow threshold, snowfall is equal to the wet precipitation amount divided by 0.2).

This snow is then accumulated within a summer snow layer. Any future summer

snowfall events occurring within the model will add to the overall summer snow

depth at the cell in question. The presence of summer snow has multiple effects

which propagate throughout the model, resulting in changes in albedo and density,

which affect the solar radiation and melting algorithms.

During the winter season, there is no precipitation data available from the AWS.

In this instance, a pre-calculated end of winter season snow depth layer is required

(discussed in section 4.2.7 of chapter 4). At the beginning of the winter season,

the summer snow thickness is set to 0.0 m at each cell as it is assumed that any

summer snow still present at the end of the summer season adds to the total snow

measured in the field at the end of the winter. At the start of the main model

loop (see figure 5.18, considering the input meteorological data (which specifies

day, month, year and “season”), the number of winter days occurring within a

winter season are counted. These are counted according to the month and the

year so that the number of winter days within a specific winter season are totaled

(e.g. winter 2007/2008). For example, assuming that the model was to be run

from 1/6/07 until 1/6/08, to calculate the number of winter days occurring in the
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2007/2008 winter season, winter days are counted where they occur in September,

October, November or December of 2007 and in January, February, March, April

and May of 2008. With the winter day total calculated, the amount of snow that

falls on each day within the winter season is equal to the end of winter season

snow depth at a given cell / by the number of winter days within the winter

season. This accumulates throughout the winter season until the total amount of

winter snow at a given cell is equal to that in the uploaded, pre-calculated end of

winter season snow depth surface for the winter season in question. The amount

of snow that accumulates at a specific cell position cannot exceed the value dic-

tated by the pre-calculated surface. This forms the winter snow thickness surface

which affects albedo and density, within the solar radiation and melting algorithms.

From field observations and snow pit analysis (see section 4.2.3 of chapter 4), it

was apparent that wind as a mode of snow redistribution and mass loss is an

active process. The average snow density from winter snowpack analysis for the

2008 - 2011 season revealed a value of 407.13 kg m-3 which is a typical density

associated with wind slab (Paterson, 1994). The model does not directly account

for wind. To cater for this, a wind factor is introduced to modify the winter snow

melt (see table D.1).

Historical algorithm As with the summer precipitation algorithm, seasonal

values were calculated for the input data as a function of air temperature. Where

monthly mean temperature < 0◦C, the season was set to winter. Conversely,

where temperature > 0◦C, the season was set to summer.

During the summer months, precipitation was calculated as for the summer pre-

cipitation algorithm. However, unlike for the contemporary model, the historical

model used monthly mean precipitation totals from the ANS field station. This

is discussed in detail in section 5.2.2. Using the same lapse rate method as

in the contemporary model, but using a monthly mean temperature, where a

cell temperature ≤ TThresh, precipitation falls as snow. Where cell temperature

> TThresh, precipitation falls as rain and was assumed to run off the glacier surface.
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Table 5.9: Mean winter snowpack density (kg m-3) from snow pit analysis. The density headers
refer to different snow pits assessed in the same field season.

Year Pit 1 Pit 2 Pit 3 Pit 4 x̄
2008 328.02 354.32 373.41 - 351.92
2009 349.63 361.86 - - 355.75
2010 514.40 508.80 520.40 - 514.53
2011 366.33 413.33 408.33 437.33 406.33
Overall - - - - 407.13

For the winter season, ANS snow thickness values for the end of the winter season

were scaled up to the glacier location. This is discussed in detail in section 5.2.2.

Winter snow was distributed across the glacier surface as a function of elevation

using equation 5.5 which was adjusted according to the mean snow value of the

given model run (see section 5.2.2). Considering the year and month of the model

time step, the number of winter months occurring in the given winter season are

calculated. The total winter accumulation at a given cell was then calculated

using equation 5.5, considering the elevation of the cell in question. This was

then recalculated as a monthly accumulation value by dividing the total winter

accumulation at the given cell by the total number of winter months occurring

within the given winter season. The total amount of accumulation in a winter

season cannot exceed the expected snow thickness at a given cell according to 5.5

considering the season specific total snow accumulation value. The wind factor as

described above is also considered here.

5.4.6 Snow and ice density

Ice density is fixed at 900 kg m-3 and the use of this is further discussed in chapter

4. Summer snow density was set at 200 kg m-3 which falls between typical densities

expected for damp new snow and settled snow, which range from 100 - 300 kg m-3

as taken from Paterson (1994). The winter snow density is fixed at 407.13 kg m-3

which is the average winter snowpack density as calculated from snow pit analysis

data collated through the 2008 - 2011 winter field seasons as discussed in section

4.2.3 of chapter 4, the results of which analysis can be seen below in table 5.9.
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5.4.7 Calculating ice melt

The energy available (Q in Wm−2) at the surface of the glacier was calculated

simply as:

Q = (1− α)τSin,TOA + ψ (5.12)

where the first term refers to net short-wave radiation and the latter refers to

and the latter to all other fluxes as a function of air temperature (Leclercq et al.,

2011; Giesen & Oerlemans, 2012). In this equation, α is albedo, τ is atmospheric

transmissivity and Sin,TOA is incoming radiation at the top of the atmosphere.

Equation 5.12 was modified here to capture daily/monthly changes in solar

relationships and surface geometry:

Q = (1− α)I + ψ (5.13)

The value used for α depends on the medium (snow or ice) over which Q is being

calculated (for more details see section 5.4.2). When Q is > 0, this positive energy

is used to facilitate surface melt. The model that is used in this study works

across a grid where cells have fixed dimensions of 5 m x 5 m, providing a total grid

of 25 m2 cells. When Q is calculated within the model as in equation 5.13, this

provides the energy for a second for a m2. This value is scaled up to give the total

amount of energy in one second (Joules (J)) for the 25 m2 cell (Q x 25) which

here is called “Available energy”. This is scaled up according to the time-step of

the model by multiplying it by the number of seconds within the time-step.

The amount of energy required to completely melt (here called Total energy)

a cell of snow or ice, was initially calculated whereby the cell type (snow/ice)

and volume was considered, as well as the respective associated density (see

table D.1). The mass was then calculated and then multiplied by the latent

heat of fusion (Lf - see table D.1). Ergo, Total energy is in J . In terms of

order of melting, this was dictated by the model architecture. The model is

layered whereby a snow layer, which accumulates according to the precipitation
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algorithm (see section 5.4.5), is above the glacier thickness layer (uploaded by

the user - see table D.2). Mass loss first affects the snow layer at a position [i,

j], only affecting the glacier thickness layer at position [i, j] when the snow layer is 0.

How much melt actually occurred at a given snow/ice cell was calculated in terms

of thickness is given by:

Available energy

Total energy
x Cell Thickness (5.14)

and in terms of volume:

Available energy

Total energy
x Cell V olume (5.15)

5.5 Slope and aspect routines

Slope was calculated according to the slope line which is defined here as ”[a]

line of locally greatest rate of change of altitude, along which a frictionless ball

starting from rest would roll” (pp. 316 Jones, 1998). Aspect is defined here as

“[t] he horizontal direction of movement down a slope line. The compass direction

(measured in degrees from a reference) in which the plane tangent to the surface at

a point faces, measured outward from the surface at right angles to the contours”

(pg. 315 of Jones, 1998). The algorithms defined below were calculated for each

cell of the input glacier surface at the beginning of each model run. Consequently,

where a given cell loses elevation through melting, slope and aspect values were

updated.

The slope algorithm implemented within the model was a third order finite

distance estimator taken from Horn (1981). Assuming a 9 square grid with

the cell of interest located at the centre, uses all eight surrounding cells. The

algorithm enabled assessment of variation in slope along the north-south and

west-east gradients, the estimated slope value being a product of these difference
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calculations (Burrough & McDonnell, 1998). Slope (in degrees) was calculated

using the following:

slope = ATAN(
√

[dz/dx]2 + [dz/dy]2) ∗ 180/π (5.16)

where [dz/dx] and [dz/dy] are the rates of change of the gradients along the north-

south and east-west planes respectively (Horn, 1981; Burrough & McDonnell, 1998;

ESRI, 2011b). Assuming the cell for which slope was calculated takes position

[i, j]:

[dz/dx] =[(zi−1,j+1 + 2zi,j+1 + zi+1,j+1)] (5.17)

− (zi−1,j−1 + 2zi,j−1 + zi+1,j−1)/8δx (5.18)

and:

[dz/dy] =[(zi+1,j−1 + 2zi+1,j + zi+1,j+1)] (5.19)

− (zi−1,j−1 + 2zi−1,j + zi−1,j+1)/8δx (5.20)

This algorithm is the same as that used in ArcGIS and is an example of one

of many slope algorithms that have been developed (e.g. Sharpnack & Akin,

1969; Fleming & Hoffer, 1979; Zevenbergen & Thorne, 1987). A selection of

these algorithms were ranked in Jones (1998) in which the Horn (1981) method

described above was found to perform well in both slope and aspect calculations.

Aspect was calculated here using:

aspect = 57.29578 ∗ ATAN2([dz/dy],−[dz/dx]) (5.21)

This used the same surrounding cells as the Horn (1981) method and is equal to

that used in ArcGIS (ESRI, 2011a).
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5.5.1 “Ice melts.... and so does rock” and other possible

scenarios

The total amount of mass loss was limited by the total mass that is available

i.e. that which exists at a given point in time in the snow or glacier thickness

layers active within the model. Where these layers already have a value of 0, no

melt occurs. Where Available energy > Total energy, it was possible that the

ratio methods (equations 5.14 and 5.15) would result in mass loss greater than

possible. To prevent these impossible mass loss occurrences, in such instances

where Available energy > Total energy, the cell thickness was reduced to 0 m and

then held at 0 m. When calculating surface change, the ratio of Available energy

to Total energy could not be used alone - only together with knowledge of the

thickness of ice that is available.

Where a snow cell at a given position was reduced to 0 during a single time step,

without exhausting the Available energy, the remaining energy was then used

to calculate the amount of melt experienced by the same cell position of the ice

thickness layer, which was then updated. If there was still energy once both the

snow and ice thickness layers had been zeroed, no more melt could occur and the

energy surplus was ignored.

5.6 Historical and contemporary model struc-

tures and descriptions

The historical model was based on data with a monthly time step, but considers

radiation data on a daily interval. The contemporary model differed to the

historical model as it was based on all data having a daily time step. The specific

data inputs used for the historical and contemporary models are described in

the aforementioned sections. Flow diagrams of the historical and contemporary

models are displayed in figures 5.17 and 5.18 respectively.
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Figure 5.17: Historical model flow diagram (monthly time step)
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Figure 5.18: Contemporary model flow diagram (daily time step)
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5.7 Programming considerations: floating point

precision

All of the aforementioned algorithms are coded in Java (the source code can be

downloaded from https://github.com/Chris35Wills/SEB_model_java_files).

Different programmes deal with the rounding of numbers using different protocols.

Differences in calculations involving decimal values can be computed to give one

value in one programme and a slightly different value in another. These rounding

issues essentially concern floating point precision. Two programmes that have

been used in this study include Microsoft Excel and ArcGIS which contain maths

functions of their own. The energy balance model has been developed in Java. The

aforementioned programmes and the Java language all deal with decimalisation

slightly differently. Repeating the same calculation in each programme can result

in slightly different results. To test this, ASCII grids of I and ψ were calculated

within the energy balance model. Using equation 5.13 and as described in section

5.4.7, a grid of Q was calculated. This was then compared to a grid of Q calculated

in ArcGIS, using exported grids directly from the model of I and ψ. The difference

of the two separately calculated Q grids was then explored. It was found that

there were small differences across the surface in the number of Watts available.

The approximate maximum error calculated from these differences was ±1.867

x 10-4 %. In this instance the error was found to be extremely small (much less

than 1 order of magnitude) but different none the less.

5.8 Transferable and user-friendly SEB model

development

The aforementioned algorithms and input data treatment allow for careful analysis

of complex distributed glacier surface geometrical effects on the SEB, in turn

affecting MB. This is enhanced by the ability to alter the level of geometry update

within the model. For the aim of understanding geometry effects on MB, such

numerical analysis suffices and this is often the case with scientific modelling

applications to complex problems. However, the ability for another user to come
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and simply use a model is hindered by the requirement to integrate all of the

appropriate algorithms within a frame work, which requires a level of programming

skill and large investment of time. On many occasions, models are outlined in

terms of their construction (e.g. Giesen & Oerlemans, 2010), however are rarely

made openly available. This is unlike some of the open source ice sheet models

including GLIMMER which invites users to work and integrate on versions of

the model directly (Rutt et al., 2009). There are some examples of mass balance

models that have been made available to allow researchers and students to manip-

ulate data and test changes in melt and mass balance, including that of Brock

& Arnold (2000). The Brock & Arnold (2000) model allows for SEB modelling

at the point scale through the manipulation of a Microsoft Excel spreadsheet.

However, this is still limited in terms of graphical user interface (GUI) of its own,

relying on the installation of Microsoft Excel on a user’s computer. Distributed

modelling is outside of the remit of the model exemplified. The Alpine 3D model

described by Lehning et al. (2006) and as used by Michlmayr et al. (2008), de-

spite its advancements and considerations of distributed SEB modelling does not

provide visualisation in an easy, complete and simple package. Furthermore, it

has extremely large data requirements.

The model designed in this study, using all of the aforementioned algorithms,

allows simple distributed SEB modelling in the form of a stand alone programme,

offering the user the ability to visualize model inputs and resultant processed and

modelled surfaces in the forms of standard planar maps. Use of the model on a

user’s computer requires only the installation of the freely available Java Runtime

Environment (Version 7). All data inputs are easily uploaded using a windows

style navigation pane, requiring data input in ASCII/ESRI GRID file format (for

surfaces) and CSV files (for meteorological inputs). On data upload, surfaces are

visible within the main programme viewing pane. When one of the processing

tools is selected and run, statements are constantly updated informing the user of

job progress. Upon the completion of processing, a number of calculations can

be carried out through the GUI directly including calculations of mean change

in thickness, elevation change and area change. It is also possible to export all

surfaces - such as glacier ice surface and thickness layers - as an ASCII file. This
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functionality enables further statistical analysis which can be preformed through

a wide range of open source GIS packages (including QGIS and GRASS) as well

as the open source R statistical package. ASCII file import is also possible where

a user has access to an ArcGIS license. A series of images of the model’s GUI can

be found in appendix E.
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Chapter 6

Results: Historical

reconstruction of K̊arsa

This chapter addresses changes that have occurred to K̊arsa over the 1926 - 2010

period, as identified from a reconstruction of the glacier facilitated using a variety

of topographic maps covering the glacier available for 1926, 1943, 1959, 1978, 1991

as well as a high resolution field study carried out in the winter of 2011 from

which a map of the glacier for the summer of 2010 was derived. All maps available

prior to that created for 2010 were derived from aerial photographs taken during

the summer months of the years stated (July or August). This is discussed in

detail in chapter 4. This 84 year reconstruction allows for an assessment of the

changing geometry of the glacier through time and is thus fundamental in its

contribution to the overall thesis aim of understanding the effect that changing

surface geometry has had on the glacier over the past century, discussed further

in chapter 10. The key changes in length, elevation, area, volume and thickness

are summarised in figure 6.1. This chapter meets the objective of

� Accounting for sensitivity of applied geostatistical techniques on recon-

structed surface properties

therefore addressing the project aim of:

� Providing a full 3D glacier geometry reconstruction and assessment of a

small mountain glacier, since the beginning of the 20th century, over decadal

time scales
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Figure 6.1: Geometry change summary. Short dashes, a solid line and long dashes represent
maximum, mean and minimum expected values respectively. Calculation of these parameters is
considered in chapter 4. Further description of these parameter changes are discussed in sections
6.2 - 6.6.
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Table 6.1: Absolute mean surface interpolation perimeter errors (vertical plane). The 2010
perimeter shows 0.0 m error as the perimeter elevations are taken directly from the area DEM
to which all other perimeter elevations are compared.

Year Absolute x̄ error
m

1926 ±25.0
1943 ±18.6
1959 ±15.8
1978 ±16.4
1991 ±19.6
2010 0.0

6.1 Surface reconstruction sensitivity analysis

To properly assess the results of surface change analysis, the methods and sensitiv-

ity of reconstructed surfaces is summarised here. The process of reconstructing any

dynamic landform over a long period using data from a variety of different sources,

each using different methods, is prone to numerous sources of error. Difficulties in

the quantification of error in the horizontal plane and a discussion of the method of

acquiring values for errors in the vertical plane are discussed in sections 4.2.2 and

4.3.5 of chapter 4 respectively. Absolute mean vertical errors associated with the

perimeter points of the different reconstructions, calculated where the elevation of

a perimeter point from a given reconstruction base map is compared with the eleva-

tion at the same point from the Lantmäteriet BD6 contemporary 1: 100 000 scale

DEM of the Abisko-Kebnekaise-Narvik mountain region, are displayed in table 6.1.

The historical glacier surface reconstructions have been developed using a number

of digitized points, derived for each year by digitising contour lines present on

georeferenced topographic maps, the digitised lines then being converted to point

clouds, containing xyz data (see section 4.2.1 of chapter 4). The maps and digitized

contours for most of the reconstructed years only provide information for the

glacier itself, with little information of the surrounding topography. As the glacier

surface is dynamic, the glacier itself cannot be used to quantify vertical plane

agreement between maps of different years. By assuming that where contour lines

end at the perimeter of the glacier the elevation matches non-glacial elevation,
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this offers the only real measure of agreement between maps according to the

aforementioned 1: 100 000 area DEM. The values in table 6.1 only act as a rough

indicator of vertical error as the only real comparison achieved by calculating

errors in this way is between higher resolution historic base maps (approx. 1:

5000) and a lower resolution area DEM (1: 100 000). Separate to this error

analysis, to assess the sensitivity of the interpolated surfaces for the different years

as a function of incorrect data points, should they be present on the maps or be

introduced through the data compilation stage, results of a Monte Carlo simulation

are presented. The specific methodology for this simulation is discussed in section

4.2.8. Standard deviation maps of the glacier for the 1926 - 2010 intervals are

displayed in figure 6.2. High standard deviations are indicative of areas of high

sensitivity to rogue data points.

The standard deviation patterns (figure 6.2) vary significantly and this appears

to link to the variability in the contour data and points available for each recon-

struction. The 1926 surface shows areas of greatest sensitivity (between 20 - 30

m) surrounding points along the contour lines. Points that are closer to areas of

unknown values have the most weight in affecting the interpolation value - points

further away have less of an impact on the final calculation. This is why for 1926,

areas further away from known points have smaller standard deviation values.

These areas are predicted from a set of points (which fall within a specified search

window) that are more equally weighted. Consequently, an erroneous value in one

point will be less influential as it will be evened out by the other known values.

The variance in standard deviation is relatively uniform across the surface. The

northern centre portion of the glacier displays areas of least sensitivity. These

areas occur specifically where the overall contour pattern alters from a convex to

concave pattern. As a consequence of this pattern change, the distance between

the contour lines available is increased (increasing the mean distance of points

being used to predict values between the contour lines). This convex/concave

pattern transition is discussed in section 4.3.8 of chapter 4.

A similar pattern to 1926 is observed again in 1943 and 1959. There is a noticeable

reduction in sensitivity in the 1943 surface which relates to the number of digitized
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Figure 6.2: Historical surface (1926-1991) standard deviations following Monte Carlo analysis
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Table 6.2: Point file populations and contour spacings used for 1926 - 1991 surface interpolations
(Point numbers are referred to as within the perimeter as these are the points most likely to
affect the glacier interior as a function of the search window value employed)

Year Contour
spacing
(m)

Total
Points

Points
within
glacier
perimeter

1926 25 1504 1050
1943 20 7693 3078
1959 10 3442 2367
1978 10 1691 1239
1991 20 39089 16631

points available along each contour line (3078 points fall within the glacier perime-

ter compared to 1050 in 1926 - see table 6.2). 1959 shows an increase in sensitivity

along the contour lines for the same reasons as in 1926. Compared to 1943, the

1959 surface also has fewer points within the glacier perimeter. Both 1943 and

1959 display similar reductions in sensitivity most clearly where contour lines alter

from convex to concave - where mean available contour spacing is greatest.

The 1978 and 1991 surfaces appear to have quite different standard deviation

spatial distributions compared to those observed for 1926-1959. Compared to 1926

and 1943, the 1978 surface has a smaller contour spacing (see table 6.2). This

however does not explain the shift in spatial variance as the 1959 surface is also

constructed from 10 m contours. Upon closer inspection, the 1978 contour lines

are considerably more convex and closer together than those that are present for

1926-1959. Consequently, the points constructed from these contour lines have a

much less linear appearance. This will then affect the kriging search window as

more points that are closer to an area of unknown value will be available. This

further reduces the effect of an erroneous point on unknown point prediction.

The same occurs for the 1991 surface although this can also be attributed to a

much greater point availability (16631 points compared to 1239 in 1978 - this is a

function of the method of line to point extraction employed within ArcGIS).
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The 1978-1991 standard deviation distribution forms a paradox with the 1926-1959

surfaces. Whereas the latter surfaces show reduced sensitivity with increased

distance from points (due to reduced weight of any single point on a prediction),

the 1978 and 1991 surfaces show the inverse of this. The 1978 surface shows

this more than the 1991 surface, with areas along the centre of the glacier with

standard deviations between 15 – 20 m between contour line positions. This

compares to standard deviations between 5 – 15 m occurring for the surfaces

1926-1959. For 1978, these areas of increased uncertainty are possibly linked to

large spacings between contours - this will have a lessened effect on reducing

known point errors than if the known point values were closer together and more

similar.

6.2 Area change and terminus retreat

Glacier areas are derived from glacier extents digitized from available topographic

maps and aerial photography as discussed in chapter 4. The change in area is

illustrated in figure 6.3, which also shows the position of the K̊arsa side glacier for

completeness.

Area change is illustrated in figure 6.1 with values displayed in table 6.3. There

has been a total area change of 3.41 km2 over the 84 year study period, with the

largest changes being attributed to the 1926-1943 period which is associated with

the disintegration of the glacier in to two distinct parts - the main glacier and the

side glacier. The area of the side glacier is only accounted for in the assessment of

the 1926 glacier, when all parts were joined.

Associated with the change in area is the retreat of the glacier terminus. The

terminus is identified as the area to the north east of the main glacier body. A

number of methods have been trialled to assess the retreat of the terminus relative

to the known terminus position of 1909 (see section 4.3.1). Only terminus position

is known for this year with no full area map being available. Figure 6.4 shows the

change in terminus position for years 1909 - 2008.
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Figure 6.3: The area of K̊arsa reconstructed for the years 1926 - 2008. Outlines are digitized
from available topographic maps and aerial photography. The side glacier is also displayed for
completeness.

Table 6.3: Surface area change 1926 - 2010

Year Area Mean change per year
since last measured

area

Total change since
last measured area

(km2) (km2 yr-1) (km 2)
1926 4.30 - -
1943 2.00 0.135 2.30
1959 1.86 0.008 0.14
1978 1.60 0.014 0.26
1991 1.16 0.034 0.44
2008 0.89 0.016 0.27
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Figure 6.4: The changing terminus position of K̊arsa. The 1909 terminus is highlighted within the inset box where it is also displayed as
a string of points.
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Table 6.4: Glacier terminus retreat for the 1909 - 2008 period using a terminus to line method.
Cumulative retreat rates, as well as total retreat between mapping intervals and annual retreat
rates between mapping intervals are displayed. Inter-annual variation of terminus retreat rates
is not available due to the temporal resolution of the data.

Year Cumulative
retreat

Retreat since
last measured
position

Annual terminus
retreat since last
mapped position

(m) (m) (m)
1909 0.0 - -
1926 34.0 34.0 2.0
1943 433.0 399.0 23.5
1959 717.0 284.0 17.8
1978 874.0 157.0 8.3
1991 1048.0 174.0 13.4
2008 1292.0 244.0 14.4

A number of methods were identified for calculating terminus retreat, including

both point specific and spatially distributed approaches. The methods applied

are detailed in section 4.3.1 of chapter 4 and the results of the different methods

are displayed in table 6.4. Retreat rate is reported here using the terminus to

line method. This method is used as it is the only method of those considered,

that does not have associated point sharing issues or problems linking to area

definition. The terminus to line method removes such limitations, allowing for true

euclidean retreat distances, not possible due to geometric interplay and difficulties

with the other methods. The terminus is defined as the perimeter of the glacier

falling within a 300 m buffer of the most eastern point of the glacier. The most

eastern point is chosen in line with definitions of flowline locations as in Giesen &

Oerlemans (2010), where the flowline extends from the flow start point to the low-

est point in the ice. The easter point is constantly the lowest point of ice for K̊arsa.

The most significant retreat is accounted for between 1926-1943, with the least

retreat from 1909-1926. From 1926-1943, annual retreat rates decrease to a second

minimum in 1959-1978 of 8.3 m yr-1, following which annual retreat rates increase

again.
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6.3 Elevation change

Glacier elevation maps are summarised in figure 6.5 and hypsometry charts are

displayed in figure 6.6. Elevation range change is illustrated in figure 6.1. There

are some very large changes with regard to the elevation bands represented by the

glacier. The 800-900 m band is represented at the terminus in 1926 and 1943 but

is no longer present by 1959 when the lowest band represented is the 900-1000 m.

With the loss of the side glacier between 1926 and 1943 and the loss of the

western lobe of the glacier between 1978 and 1991, the proportion of the glacier

represented by the different elevation bands changes dramatically. Hypsometric

changes, displayed in charts 6.6 help to better describe the changes that have

taken place.

For the 1926 surface, 47% of the total glacier area is within the 1100-1300 m

elevation band, peaking in the 1250-1300 m band. This is clearly discernible in the

1926 chart (6.6). A secondary smaller peak can be identified for the 1400-1450 m

band. Compared to the more subtle area peaks that can be identified from the 1926

surface, hypsometry charts for the other years show much clearer peaks in area.

These vary in altitude over time. In 1943, the majority of the surface area (60%) is

in the 1100-1250 m band with a secondary area bulge at 1400-1450 m (10%). The

1943 pattern is closely replicated in 1959 where 60% of the surface is at 1100-1250

m. However, the 1959 surface shows a secondary bulge stretching over both the

1400-1450 and 1450-1500 elevation bands, indicative of a proportional increase in

glacier area at higher altitudes between the 1943/1959 map intervals. The major

area bulge in 1978 is between 1000-1250 m (61%) - this peak begins at an elevation

100 m less than in 1943 and 1959. The same proportional area is present at 1400-

1450 m as in 1943. The 1991 surface shows peaks between 1000-1200 m (50%)

and 1400-1450 m (13%). The reduction in the lower bulge elevation range may be

attributed to the loss of the western lobe of the glacier which in 1978 represented a

large portion of area within the 1200-1300 m band. By 2010, the double area bulge

pattern is still clear as for all previous years, especially from 1943 onwards, with

25% of the surface area within the 1050-1150 m band and 20% in the 1400-1450 m
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Figure 6.5: Historical glacier elevation maps (Summer 1926 - 2010). The 1926 map is shown at
a different scale to the 1943- 2010 maps, which maintain the same scale as shown in the legend
to the bottom right of the figure. The 1943 - 2010 maps also hold the same spatial position so
that changes in area through time can be distinguished. Errors per year according to glacier
perimeter/area DEM agreement are as 1926: ±25.0 m, 1943: ±18.6 m, 1959: ±15.8 m, 1978:
±16.4 m, 1991: ±19.6 m and 2010: ±0.0 m
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Figure 6.6: Historical glacier hypsometry charts (Summer 1926 - 2010)
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band. The proportion of the 2010 surface within the 1400-1450 m band is greater

than for any other year. As with other years, increases in certain categories do not

necessarily imply growth, being equally a function of reduction in elevation area at

lower altitudes. For all years, there is a trough around the 1300-1350 m band. For

all years, this elevation band is present within a topographic constriction which

relative to the glacier today, divides the upper and lower catchments almost in half.

To compare hypsometry of the glacier for different years as succinctly as possible,

curves for all years are displayed against cumulative area (%), displayed in figure

6.7. To enable a numeric comparison, ER values over the period of interest here

are 0.53, 0.53, 0.50, 0.49, 0.48 and 0.51 for 1926, 1943, 1959, 1978, 1991 and

2010 respectively. There is a clear reduction from 1926 to 1991 in ER values

increasing again in 2010. Similar to the ER values, HI is calculated giving values

of -0.89, -0.95, -1.17, -1.27, -1.53 and -1.06 are calculated for K̊arsa. Considering

the Jiskoot et al. (2009) characterisation of glaciers when using HI (discussed in

section 4), the values derived here for K̊arsa from 1926 to 1959 place it within the
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Figure 6.7: Glacier hypsometry curves against cumulative area (%) 1926 - 2010
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equidimensional category. The glacier in 1978-1991 is categorised as being top

heavy and then in 2010 it is once again within the equidimensional category. These

changes are closely linked to the disintegration process of the glacier including

loss of the side glacier and the western lobe. The HI values are displayed over

time in figure 6.8.

6.4 Glacier profile change

Glacier elevation change is illustrated in both long profile and cross profiles in

figures 6.9 and 6.10. The long profile follows the centerline which satisfies all

years (i.e. running from the southern accumulation area to the terminus in the

east). The change in length linked with the long profile change is illustrated in

figure 6.1. Figure 6.9 clearly displays the retreat of the glacier terminus and an

incremental lowering of the glacier surface, especially when considering the profile

from a distance >900 m from transect point “A” at an approximate altitude of

1200 m a.s.l. Changes in the mid and upper sections are not clearly discernible

for most years although the 2010 surface is clearly the lowest relative to all other

mapped surface elevations. The long profile clearly shows the retreat of the glacier

terminus to higher elevations, as discussed in detail in section 6.2. There are some
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Figure 6.8: Hypsometry Index (HI) values over time 1926 - 2010
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changes in glacier slope apparent in figure 6.9 but these are better illustrated and

described in section 6.7.
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Figure 6.9: Long profile of the glacier for the years 1926 (±25.0 m), 1943 (±18.6 m), 1959 (±15.8 m), 1978 (±16.4 m), 1991 (±19.6 m)
and 2010 (±0.0 m). The profile is constructed along the mean centerline position, discussed in the above text, between points ‘A’ and ‘B’
as illustrated on the inset map.
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The cross profiles displayed in figure 6.10 account for all years from 1926-2010. To

be able to consider an 84 year comparative transect, the transects illustrated are

those constructed across an area of the glacier present for all years. The transects

are constructed within the boundaries of the contemporary glacier. A general trend

of lowering is observed in the lower, middle and upper transects displayed in figure

6.10 with each year tending to be lower on average than the year mapped previously.

The only year that does not fit this trend in any of these regions is the 1943 surface.

The lower section transect shows a smooth glacier surface in 1926 which becomes

increasingly concave towards 2010, with the most concavity in 2010 being ap-

proximately 350 m from (L)A where the ice begins to thin when considering the

rise in elevation of the bed profile. The 1943 profile falls below the 1959 surface

as well as below the 1978 and 1991 surfaces for distances >270 m from (L)A.

This may be indicative of either an increase in glacier mass or a result of glacier

dynamic change between 1943 and 1959, resulting in more mass being present in

this area. Considering vertical errors (see section 6.1), this may also be an error

associated with the mapped data (discussed in section 4). The 1943 was a partic-

ularly difficult map to integrate into the overall GIS database (see chapter 4) and

is associated with the largest vertical error, having a mean vertical error of -7.55 m.

The middle glacier transect shows a pattern similar to the lower glacier with each

profiles being lower than that mapped for the year previously. The 1926 surface is

relatively convex compared to later surfaces becoming increasingly convex. This

increase in convexity is particularly apparent for the 1978 surface, approximately

180-190 m from transect point (M)A at an altitude of 1300 m a.s.l. and for the

2010 surface 150 m from (M)A at an altitude of 1280 m a.s.l. The 1943 surface

is lower than all surfaces apart from the 2010 surface, possibly for reasons as

discussed above.

The upper glacier surface does not show as clear a pattern as for the other transects.

The 1959 surface has the greatest mean altitude, with the 1943 surface having

the lowest mean altitude. The 1926 surface remains below the mean elevations

of 1959, 1978, 1991 as well as large portions of 2010. The pattern of increasing
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Figure 6.10: Cross profiles of the lower, mid and upper sections of the glacier 1926 (±25.0 m),
1943 (±18.6 m), 1959 (±15.8 m), 1978 (±16.4 m), 1991 (±19.6 m) and 2010 (±0.0 m). The
profiles are constructed for sections of the lower, mid and upper contemporary glacier and also
consider the glacier surface at the same points for 1926 - 1991 to allow for comparisons to be
drawn as discussed in the text. Transect positions are between ‘A’ and ‘B’ for the lower (L),
mid (M) and upper (U) areas as illustrated on the inset map.
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concavity is not apparent for the upper transect.

Change in the geometry of K̊arsa is clearly displayed in figures 6.9 and 6.10.

These changes in geometry are expected to affect the components of the SEB and

therefore the MB. This is assessed further through SEB experiments, the results

of which are presented in chapter 9.

6.5 Map interval elevation change

Elevation change has been calculated for each interval between the complete

glacier surfaces that are available for K̊arsa. Resultant difference maps can be

seen in figure 6.12. Proportions of melt according to total melt categories can be

seen in figure 6.11.

The difference surface between 1943 and 1926 shows a general pattern of elevation

reduction (see figures 6.12 and 6.13), implicit of a negative mass state. The

mean elevation lowering total is -29 m. There is some elevation increase (mean

value of +0.39 m yr-1) at the extreme west of the glacier, at the edges of the

upper and lower accumulation zones (most clear on figures 6.12 and 6.13). This

should be treated with caution however as most uncertainty in the vertical plane

is associated with the glacier boundary. Between 1926 and 1943, there was the

detachment of the K̊arsa side glacier (Ahlmann & Tryselius, 1929). Its associated

elevation loss is not accounted for here where elevation change is relative only to

the most recent surface (in this case, 1943).

Glacier elevation increased between 1943 and 1959, with a mean positive elevation

change of 19.90 m. These increases occur across 97% of the glacier surface and

are most concentrated in the upper accumulation area. There is also calculated

surface lowering which occurs around the glacier terminus to the east. The mean

calculated lowering is -0.12 m and accounts for only 3% of the 1959 glacier surface

area.
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Figure 6.11: Proportional elevation change categories for periods between 1926-2010. These
categories are displayed spatially in figures 6.12 and 6.13 with associated errors.
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Figure 6.12: Total elevation change between mapping intervals where (a) 1926-1943 (±43.6
m)(b) 1943-1959 (±34.4 m) (c) 1959-1978 (±32.2 m) (d) 1978 - 1991 (±36.0 m) (e) 1991-2010
(±19.6 m). Errors are calculated according to glacier/area DEM perimeter point agreement.
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Figure 6.13: Mean elevation change per year between mapping intervals with change in m
per year where (i) 1926-1943 (±2.56 m) (ii) 1943-1959 (±2.15 m) (iii) 1959-1978 (±1.69 m) (iv)
1978 - 1991 (±2.77 m) (v) 1991-2010 (±1.03 m)
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The elevation lowering trend reappears following the elevation increase of 1943 -

1959. Elevation lowering accounts for 92% of the 1978/1959 difference surface,

with a mean value of -11.80 m. The pattern of lowering is interesting, showing a

concentration of reductions following a line from west to east across the northern

portion of the glacier. This shows lowering in the middle of the glacier body,

following a centre line, for which K̊arsa arguably has two with one running from

the terminus to the extreme west of the glacier and the second running from the

centre of the northern glacier area to the south west. With the loss of the western

lobe between 1978 and 1991, the second centre line is all that remains. There is a

small amount of elevation increase, occurring in the west and south-west, as well

as in the centre of the upper accumulation area.

The first two cases of elevation increase are possibly erroneous and should be treated

with caution. This caution relates to their proximity to the glacier boundary

which is the area of greatest uncertainty with regard to the initial summer surface

interpolations. The third case however, regarding elevation increase in the centre

of the accumulation zone can not be sufficiently explained with this alone. There

are three possible reasons why such an increase has been observed:

1. Interpolation error

2. Presence of snow from a summer snowfall event or snow drifts at the time

of mapping

3. Indication towards currently unaccounted for dynamic processes

The mean elevation increase is +0.15 m across the surface with a maximum

increase of +13.74 m. Accounting for only the central zone of elevation increase,

a mean of approximately +0.70 m and a maximum of +5.08 m are observed.

The centre-line lowering trend of 1959-1978 is continued between 1978-1991. The

mean observed lowering in elevation is -5.33 m. Lowering occurs over 55% of

the 1991 glacier area. The remaining 45% is accounted for by surface elevation

increases which occur across the majority of the southern portion of the glacier, as
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well as the tongue located to the north-west. Mean elevation increase is calculated

to be +2.74 m. The observed elevation increases to the north-east should be

treated cautiously. The mean value for this portion is +13.90 m with a maximum

value of +29.96 m. This point is highlighted as from work in the field, it is known

that this area is prone to avalanching and the likelihood of there being a thick ice

presence there is very small, especially one that would have increased by nearly

30 m.

Between 1978 and 1991, there was the detachment of the western accumulation

area. Its associated elevation loss is not accounted for here where elevation change

is relative only to the most recent surface (in this case, 1991).

Since 1991, there has been overall surface lowering with a mean value of -19.00 m.

As seen in figure 6.12, there is some extreme lowering on the southern tip of the

glacier but this is most likely attributed to interpolation error. This has not been

removed from the surface used to calculate the aforementioned mean lowering.

16% of the 2011 area is accounted for by positive elevation increase (mean value

of +1.53 m). These areas are focused around the glacier boundary to the east and

for a small region to the west (see figures 6.12 and 6.13). Again, these must be

treated with caution as they are located in regions that during the development

of the 2010 summer surface, were constructed only from points extracted from a

50 m DEM. As identified from the Monte Carlo analysis, these areas are sensitive

to rogue data points.

6.6 Glacier thickness change

Glacier thickness maps are represented in figure 6.14. The pattern shared by all

thickness maps is for a thick area to be located in the central north, thinning to

the glacier terminus in the east as well as towards the southern accumulation area.

In terms of proportional area within different 20 m thickness categories, the most

populated category for all years is 0 - 10 m. This category is smallest in 1959 (28%)

and largest in 1943 (56%) followed by 1978 (46%) and 2010 (40%). The majority
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Figure 6.14: Historical mean thickness maps 1926 (±12.87 m), 1943 (±15.07 m), 1959 (±11.91
m), 1978 (±11.91 m), 1991 (±11.91 m) and 2010 (±11.91 m). Errors here are based on the
statistical mean bias of the glacier/area DEM perimeter point elevation comparisons. The 1926
map is displayed using a different scale to those for 1943-2010 and this is specified by the two
scale bars on the figure.
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of the glacier thickness for all years is <50 m with 100% of the glacier in 2010

being <50 m. Thicknesses >50 m, account for 20% of the 1926 and 1959 glacier

with increasingly smaller values for 1978 and 1991 (15% and 14% respectively).

12% of the 1943 is within the >50 m which potentially implies great mass loss for

1926-1943 followed by great mass increase from 1943-1959. The mapped surfaces

show some areas of thick ice to along the south western periphery of the main

glacier lobe as well as along the side glacier in 1926. This is likely erroneous and

is associated with discrepancies between the glacier surfaces and the bed DEM.

Consequently thickness in these areas should be ignored.

The general trend is for a reduction in mean thickness whereby the trend falls

within the error margins (see figure 6.1). The 1943 surface has the most associated

vertical error (see section 6.1) and these errors may explain the greater proportion

values of the glacier being represented in the smaller thickness categories, as well as

the break in the general negative trend observed when considering change in mean

glacier thickness (figure 6.1). The large errors associated here with the thickness

surfaces are associated with the development of the bed DEM and this is discussed

along with the error limits applied to the thickness chart in figure 6.1, in section

4. The glacier thickness here is a best estimate and the spatial patterns are thus

more useful than specific values such as the mean when assessing changes over time.

Glacier volume change is summarised in figure 6.1 . The mean volume change

from 1926 - 2010 is estimated at 111.97 x 10-3 km3. Maximum and minimum

volume estimates for the different years are displayed in table 6.5. The pattern

of change is much stronger for volume than for thickness with a clear reduction

over time. The trend is also largely outside of the error margins of the individual

volume estimates. The 1943 surface still breaks the overall reduction trend and

this may be either a product of error or mass wasting followed by growth as

mentioned above.
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Table 6.5: Glacier volume: mean, maximum and minimum estimates (1926 - 2010)

Year Max. Vol. Min. Vol. x̄ Vol.
(km3 x 10−3) (km3 x 10−3) (km3 x 10−3)

1926 166.94 83.69 125.31
1943 47.69 17.31 32.50
1959 69.08 34.38 51.73
1978 46.58 22.24 34.41
1991 38.95 19.13 29.04
2010 21.28 5.39 13.33

6.7 Slope change

The slope of a glacier surface is extremely important when considering the receipt

of radiation. This is discussed in section 2.3.1. Considering equation 2.7, changes

in slope angles will change values of I and therefore contributions of I to Q (see

equation 5.13). Surface slope maps are displayed in figure 6.15. The general

pattern maintained throughout the period of investigation is of: more gentle

slopes within the central northern section of the glacier, with slope increasing

towards the terminus in the east; steep slopes along the perimeter to the north

west, along the southern edge of the glacier’s western flank (apparent in 1991 an

2010 following loss of the flank) and to the south east; slopes between 20-30◦at

the mid section between the area to the north/north east and the south west;

gentle slopes to the south west.

The 1926 surface shows steep slopes present along the northern and southern

flanks of the side glacier. Concerning the lower glacier to the north, from 1943 -

2010 it takes on a steeper profile, with increasing large areas being represented

more by the 10-20◦category than the 0-5◦. The mid section between the area to

the north/north east and that to the south west also becomes increasingly steeper

with more area being represented by the 20-25◦category in 2010 than in 1926.

There appears to have been little change in glacier slope to the south west. To

quantify categorical changes in slope over time, the appropriate data are presented

in the charts in figure 6.16.
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Figure 6.15: Glacier surface slope maps 1926 - 2010. The 1926 map is drawn at a different
scale to the 1943-2010 maps. The appropriate scale is indicated next to the 1926 map. Slope is
calculated from elevation and therefore elevation errors as indicated in figures 6.12 and 6.13 are
acknowledged.
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Figure 6.16: Glacier surface slope histograms 1926 - 2010.
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An assessment of the proportions of the glacier surface area represented by the

charts in figure 6.16 shows an increase in the larger slope categories through

time. 27% of the glacier surface in 1926 is between 10 - 15◦, with a further 20%

falling between 5- 10◦. 13% of the glacier surface is of an angle >30◦which is

largely accounted for by the presence of the K̊arsa side glacier where over 1/3

of the surface is of an angle >20%. These relatively steep angles are related to

the ridge over which the side glacier was located, which is east trending from

the peak of Gorsačohkka . The main lobe (to the north and trending from east

to west) generally maintains a slope angle of 5-15◦, which follows a relatively

steep terminus to the east (15-20◦). Stepping up to the accumulation area in the

south-west, there is a marked increase in slope angle (approx. 20-25◦) before the

surface flattens out to between 0-15◦to the extreme south-west. The steep slope

angles apparent around the glacier margins exemplify the interaction between the

glacier and the steep surrounding topography from which the glacier hangs.

By 1943, 29% of the glacier surface was between 10-15◦with only 5% of the

surface being than 30◦. The reduction in slope 30◦compared to 1926 relates to

the loss of the K̊arsa side glacier and also retreat around the glacier perimeter.

Retreat around the perimeter will have had quite a significant effect on the overall

proportions of the glacier’s slope distribution, with the main lobe retreating back

from the steep surrounding mountain slopes, moving into the gentler angle of the

main valley basin.

27% of the glacier in 1959 had slope angles between 10-15◦, the mean slope of

the glacier being approximately 17◦. The area of the glacier with an angle of

30% increased from the 1943 value by 3% to 8%. This is most noticeable on the

northern margins of the glacier perimeter. This may relate to increased melting

away from the margins, with differential melting and therefore surface lowering

occurring. Of interest is an increase in slope angles to the middle south-east

portion of the glacier where an increase in zones falling between 10-25◦becomes

more apparent. This is likely to be indicative of an increase in the stepped nature

of the glacier that is observed by 2010.
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The increase in mean slope angle from 1943 continues, with a mean of 18◦, in

1978. A noticeable reduction in the proportion of the surface falling between

10-15◦is observed with 22% by 1978 compared to 27% in 1959 and 29% in 1943.

A trend also begins to emerge with regard to the increasing area of the glacier

exhibiting slope angles >30◦, for which 10% of the 1978 surface represents. This

is an increase from the 6% value in 1943. Comparing the distribution maps of

1978 and 1959, the centre of the east-west trending northern portion of the glacier

appears to have become increasingly steep with a significant reduction in the area

of the glacier with slope angles between 0-15◦. There is a clear shift in the slope

proportions between 0-15◦, moving from 52% of the surface in 1959 to 45% in 1978.

This proportional loss of 7% is made up by an increase in the proportion of the

surface with slope angles between 15-30◦, moving from 39% in 1959 to 46% in 1978.

Mean slope in 1991 matched that of 1978 at 18◦however this is not a good repre-

sentation of the surface slope angle distribution. The matching mean values can

be explained by slightly steeper slopes at the northern glacier perimeter in 1978

compared to 1991 (with 10% of the 1978 surface being accounted for by slopes

30◦compared to 7% in 1991). There is a significant shift in the portion of the

surface with slope values between 5-10◦, with these slope angles representing only

10% of the surface in 1991 compared to 21% in 1978 which is attributed both to

retreat from the terminus in the east as well as loss of the western accumulation

zone. There is a slight increase in the area of the surface represented in the

10-15◦category from 22% in 1978 to 26% in 1991. These changes are further

reflected between 1978 and 1991 by changes in the area with a slopes 0-15◦(45%

to 37% respectively) and between 15-30◦(46% to 56% respectively). Consequently,

the majority of the surface by from 1978 to 1991 has steepened noticeably.

The mean slope in 2010 is 20◦. Compared to the 1991 surface, the most significant

increases occur in the proportion of the surface with slope values greater 30◦where a

8% shift is observed from 7% (1991) to 15% (2010). The area for the 0-15◦category

reduces from 37% in 1991 to 34% in 2010. A reduction is also observed for the

15-20◦category from 56% (1991) to 51% (2010). The areas where the steep slopes

are observed, particularly on the southern portion of the terminus (to the east)
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and the middle south-east section of the glacier are accounted for by few measured

points and should be treated cautiously. The stepped glacier profile of the glacier

is apparent as in 1991 (but the first plateau is not so well defined.

6.8 Aspect change

Surface aspect, as with slope is extremely important when considering the receipt

of radiation at the glacier surface. This is discussed in section 2.3.1. Considering

equation 2.7, changes in surface aspect changes the value of I and therefore

contributions of I to Q (see equation 5.13). Surface aspect maps are displayed in

figure 6.17. For the northern section of the glacier is for a reduction in E facing

slopes, with increases in slopes facing SE and NE through to 1991, and then a

reduction in SE slopes with loss of mass in the north. The central glacier area as

well as to the SW appear to have undergone few changes over time (as with slope

discussed in section 6.7). For the 1926-1978 surfaces, the western lobe appears

to have acquired an increasingly NE aspect from being more N in 1926. The E

periphery of the glacier has become increasingly N in aspect, although for the

2010 surface this should be treated with caution as considering this occurs in the

area of greatest sensitivity as highlighted in section 6.1.

To further investigate changes in aspect, data are presented using radar plots in

figure 6.18. Compared to the more N 1926 plot, those for 1943-1991 maintain

increasingly E aspects. The 2010 plot is much more akin to that of 1926 than

the 1943-1991 plots. This transition is related to the large areas of the side

glacier in 1926 which maintained N aspects. Following the detachment of the side

glacier between the 1926 and 1943 mapping intervals, the main lobe of the glacier

then maintains a more E aspect as is clear in the plots. Thus, despite similar

proportional representations between 1926 and 2010 as displayed in figure 6.18,

spatially the patterns are quite different.

Quantification of some of the major aspect changes reveals overall decreases in

easterly aspects (NE-SE) from 74% in 1926 to 67% in 2010, with increases in

easterly aspects for 1943-1991 being particularly associated with detachment
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Figure 6.17: Glacier surface aspect maps 1926 - 2010. The 1926 map is drawn at a different
scale to the 1943-2010 maps. The appropriate scale is indicated next to the 1926 map. Glacier
aspect is predominantly N-E, with the majority of the surface for all years holding a NE aspect
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Figure 6.18: Glacier surface aspect radar charts 1926 - 2010.
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of the side glacier.Overall, the proportion of the 2010 surface with a N aspect

almost matches that of 1926 (23% compared to 22%) despite decreasing between

1943-1991. There is also a noticeable increase in area with a westerly aspect

(SW-W) from 1926 to 2010, the former with a 2% coverage compared to 9% in

2010.

6.9 Glaciological parameters

The glacier is assessed here for different glaciological parameters, specifically mass

balance change, the position of the ELA, basal shear stress and annual estimated

sliding potential as a function of glacier morphology and an estimation of likely

temperatures at the glacier bed, as a function of thickness. The Methods by which

the results displayed here are calculated are discussed in section 4.3 of chapter 4.

6.9.1 Glacier mass balance change

Using the difference surfaces discussed in section 6.5 and displayed in figure

6.13, it is possible to calculate changes in glacier mass balance for the different

mapping intervals. Mass balance changes (m w.e) are displayed against elevation

for the different mapping intervals in figure 6.19. Glacier mass balance change is

calculated using a fixed ice density of 900 kg m-3 and this is discussed in section

4.3.7. The values displayed are generalised for elevations on a 1 m interval. Where

multiple bn values exist for a single elevation, a mean value is calculated. For

this reason, the mass balance curves in figure 6.19 give a different surface change

profile than is represented when considering the glacier long profile (figure 6.9).

This is mentioned as the more negative change displayed for the terminus area of

the 1943 long profile is not well represented in figure 6.19, as the values are raised

by averaging with positive growth in other areas of the glacier at the same altitude.

b̄n values are calculated for each of the mapping intervals, displayed below in

table 6.6. Both figure 6.19 and table 6.6 clearly show that for the majority of the

period of interest, the glacier was in a state of negative balance. From using the

geodetic approach, only for the 1943-1959 interval is the glacier identified as being
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Figure 6.19: Annual mass balance curves for map intervals 1926 - 2010
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Table 6.6: b̄n calculated for mapping intervals 1926 - 2010

Year b̄n
1926-1943 -1.53
1943-1959 +1.11
1959-1978 -0.55
1978-1991 -0.18
1991-2010 -0.84

in a state of positive balance. Indeed, for the 1943-1959 interval, the majority

of the glacier surface appears to have been in a state of positive balance despite

terminus retreat still occurring. This apparent inconsistency may be related to

the snapshot nature of the methodology applied which may hide any re-advances

that may have occurred throughout the 1943-1959 period, which results in only

retreat being identified. The 1926-1943 period is identified as having the most

negative balance and considering the pattern of change in bn as a function of

generalised elevation, this is most accentuated at elevations below 1200 m a.s.l.

The 1959-1978 and 1991-2010 surface appear to be mainly in states of negative

balance across the generalised altitudinal range with positive balance changes

being identified only at the most elevated portions of the glacier (>1490 m a.s.l.).

Considering bn as a function of elevation, the 1978 surface shows a different trend

to any of the other intervals which are either predominantly in states of negative

or positive balance. The 1978-1991 surface is negative below 1150 m a.s.l. and

positive above the same elevation, with negative balance being identified only for

a small range around 1460 m a.s.l.

6.9.2 ELA

Over the 1926-2010 period, considering overall surface lowering and thickness

change patterns as well as dramatic terminus retreat, on average K̊arsa has been in

a state of negative balance. As in Hawkins (1985), despite these negative balance

conditions, snapshots of the ELA are acquired for each map available by assuming

steady state conditions. Consequently, the ELA values unlikely represent actual 0

balance conditions as would be required for true steady-state conditions. ELA

methods are discussed throughout chapter 2 and the methods applied here are
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detailed in section 4.3.8 of chapter 4. As was previously discussed, for each of the

different methods, here specifically concerning the AAR and AA, a number of

factors can be used by which to calculate the ELA altitude. A brief sensitivity

analysis was carried out to assess the effect of using different AAR values from

0.4-0.8 and ratios of 0.5, 0.6 and 0.7 in the AA equations (the equations for which

are highlighted in section 4.3.8 of chapter 4). The values derived for the different

methods are displayed below in table 6.7. Between the different methods, the

mean range between the maximum and minimum elevations calculated is 485 m

which is evidence for the existence of large discrepancies between the methods.

The AA method using different ratios was particularly sensitive to 10% changes

in the accumulation area within the ratio applied.
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Table 6.7: ELA elevations 1926 - 2010 using different approaches

AA Hmed Hess AAR AABR Range
Year 0.4 0.5 0.6 0.4 0.5 0.6 0.7 0.8
1926 1470 1225 980 1222 1070 1263 1221 1177 1132 1088 - 490
1943 1417 1181 945 1167 1030 1206 1166 1123 1082 1048 - 472
1959 1450 1208 966 1191 1040 1225 1189 1146 1106 1066 - 483
1978 1449 1208 966 1184 1060 1222 1183 1146 1111 1066 - 483
1991 1460 1217 973 1178 1040 1227 1176 1137 1098 1057 1201 487
2010 1488 1240 992 1220 - 1298 1220 1160 1116 1078 - 496
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Figure 6.20: ELA positions for 1943 - 2010 with mass balance at each position indicated. Mass
balance values are taken from the generalised mass balance curves constructed in section 6.9.1
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To assess variations in elevation using the different methods over time, positions

using AABR, AA (0.5 ratio), Hmed and AAR (0.6 value) methods were plotted as

displayed in figure 6.20. The mean value is calculated by combining the AA and

AAR methods. Hess altitudes are also calculated although this was not possible

for all years with the 2010 surface not showing an apparent transition form concave

to convex contour lines. A 0.6 AAR value is used for AAR ELA estimates as

this is a common value used to assess steady state conditions (Torsnes et al.,

1993; Davies et al., 2012). A mean ELA position is calculated from the AAR, AA

and Hmed values for each year. The AABR was only calculated for 1991 as the

1978-1991 mass balance data (section 6.9.1) provided the only curve indicating a

split between positive and negative mass balance generalised across the surface.

To ensure the same treatment is paid to each data set, the AABR value is not

included in the calculation of the mean ELA position. The mean variation in pre-

dicted ELA between all of these methods (excluding the AABR elevation) is 146 m.

Using the same methods as used in figure 6.20, the changing ELA position against

mass balance values for 1943-2010 are displayed in figure 6.21. From the figure,

it is clear that 0 or positive mass balance values were at the ELA only in 1959
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Figure 6.21: ELA positions for 1943 - 2010 with mass balance at each position indicated.
Mass balance values are taken from the generalised mass balance curves constructed in section
6.9.1. No Hess altitude is calculated for 2010.
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(1943-1959 mass balance data) and 1991 (1978-1991 data). It must be reiterated

that the ELA values here assume steady state conditions, as in Hawkins (1985)

even though over the 1926-2010 period the glacier was on average in a negative

state of balance. A very general trend that can be drawn using the mean ELA

position is that it is higher in 2010 than it was in 1943 although of a similar

position to that in 1926 which is a function of the changing spatial distribution of

glacier mass, altering with the removal of the K̊arsa side-glacier and the western

lobe.

6.9.3 Basal shear stress (τb) 1926 - 2010

A calculation of stress exertion by the glacier over time is indicative of the effect

that changing morphology is likely to have had on glacier dynamics. This is useful

to consider despite dynamics not having being directly measured within this study,

providing a dataset that can be directly integrated with the study of the thermal

regime of K̊arsa carried out by Rippin et al. (2011), where it was proposed that an
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earlier glacier configuration (with different dynamics) may have been the reason

for the smaller glacier of 2010 having a thermal structure reminiscent of a much

large glacier. Basal shear stress is calculated using equation 4.7 described in

section 4.3.6 of chapter 4, where slope and thickness values are calculated for

a given point from elevation and thickness values taken at a distance equal to

the mean thickness of the glacier from either side of the point in question. This

method is used to minimize the effects that lateral and longitudinal variations in

both ice thickness and stress, associated with extensional and compressional ice

flow, may have on basal sheer stress calculations (Thorp, 1991). Raymond (1980)

proposed that elevation and thickness values should be calculated for a given point

from values of a distance equal to 10-20 times the ice thickness. Considering the

small nature of the glacier and still quite large thickness values, following this

method would result in very few basal stress estimates. Consequently a spacing

equal to mean ice thickness is deemed sufficient to estimate a trend in basal shear

stress change over time. Stress profiles are displayed in figure 6.22.

For all years except 1943, figure 6.22 illustrates that maximum τb occurs at ap-

proximately 700 m from the back of the glacier which is the region of greatest

ice thickness as displayed in figure 6.14 and of steeper slopes, as displayed in

figure 6.15. This was to be expected as ice thickness is closely linked to τb (Thorp,

1991). With the exception of 1943, from 1926 to 1978, τb reduces with time from

a maximum of 345 kPa in 1926 to 176 kPa in 1978 (averages of 119 and 69 kPa

respectively). However, τb increases in 1991 which relates to increasing slope

angles in the region of thickest ice as illustrated clearly in figures 6.15 and 6.16 -

maximum τb in 1991 increases to 221 kPa (with a mean τb of 86 kPa). The profile

by 2010 displays much lower stress values with an average τb of 31 kPa. There is

still a spike approximately 700 m from the back of the glacier with a maximum τb

of 102 kPa. The stark reduction of τb displayed by the 2010 profile compared to

the 1991 profile is predominantly a function of reduced ice thickness as illustrated

earlier in figures 6.10, 6.12 and 6.13.

Considering the close relationship between τb and thickness and surface slope

values (Thorp, 1991; Benn & Evans, 1998), the errors associated with these
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Figure 6.22: Centreline basal stress profiles 1926 - 2010. Profiles are constructed along the
A-B centreline as used in figure 6.9. The uppermost chart displays all profiles together with the
subsequent charts displaying the stress profiles for individual years.
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components must be considered. For the 1926-2010 surfaces, errors related to

the actual glacier surface and therefore calculation of slope are relatively small

with few areas of great sensitivity identified through the Monte Carlo surface

sensitivity analysis (section 6.1). The greatest errors are associated with the

calculation of ice thickness and thus the agreement between the glacier surface

DEMs and the area bed DEM (the development of which is discussed in chapter 4).

Of all years, the 1943 surface appears to exhibit the least stress. The τb spike

at approximately 700 m from the back of the glacier is not represented in 1943

either. The low values are likely the result of data errors, the 1943 surface being

identified as having the largest vertical error (sections 6.1 and 4.3.5 of chapter 4)

of all the historical surfaces, which relates to poor glacier surface/ area bed DEM

agreement.

6.10 Summary

Using geodetic observation techniques, the methods of which are defined in chapter

4, it has been possible to assess the change K̊arsa has undergone for the period

of 1909–2010. The glacier has reduced in area from 4.30 - 0.89 km2. The rate

of area loss increased from 1943–1991 (0.008–0.034 km2 yr-1) and slowed down

between 1991–2010 (0.016 km2 yr-1). Quantifying hypsometry change using the

HI categorisation of Jiskoot et al. (2009), the glacier has changed from being

equidimensional for the years 1926, 1943 and 1959; top heavy in 1978 and 1991;

equidimensional in 2010. The terminus of the glacier has retreated a total of 1292

m in the period of observation. The rate of retreat decreased between 1943–1978

(23.5–8.3 m yr-1) and increased from 1978-2008 (8.3–14.4 m yr-1). The glacier has

thinned by a rate of 0.35 m w.e. yr-1 which has resulted in an annual reduction in

the maximum thickness of 0.85 m w.e. yr-1 (from 137 m in 1926 to 56 m in 2010).

Thinning has been most focused along the glacier centre-line, especially in the

lower reaches of the glacier area to the north/north-east. The trend of thinning

has yielded a volume loss of 1.33 x 10-3 km3 yr-1. Glacier slope has increased with

the surface being represented by slope angles in the range 10–25◦in 2010 compared

to 5–20◦in 1926. The overall glacier aspect has varied between north-east and
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east, being primarily north-east in 2010. Coupling glacier thinning and changes in

slope, the basal stress exerted by the glacier along its centreline has reduced from

a mean of 119 kPa (1926) to 31 kPa (2010). These changes have been considered

in terms of mass balance change directly. Geodetic mass balance varies between

positive and negative between 1926 and 1959. From 1959-1991, mass balance

became increasingly less negative (-0.55 – -0.18 m w.e. yr-1), becoming more

negative from 1991–2010 (-0.18 – -0.84 m w.e. yr-1).

The results of this chapter address the objective of accounting for sensitivity of

applied geostatistical techniques on reconstructed surface properties which assists in

meeting the project aim of providing a full 3D glacier geometry reconstruction and

assessment of a small mountain glacier, since the beginning of the 20th century,

over decadal time scales. The resultant surfaces developed act as an input to

chapters 8 and 9. Changes in geometry are discussed in chapter 10.
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Chapter 7

Results: Reconstruction of K̊arsa

2007 - 2010

The key aim of this section is to address the changes that have occurred to K̊arsa

over the 2007-2010 (contemporary) period on an annual time scale as opposed to

the longer time scale changes discussed in chapter 6. This is made possible using a

combination of aerial photography, ground based surveying and geodetic analysis

methods. Consequently, the geometry of the glacier has been reconstructed using

a different approach to that applied in chapter 6. The data required here was

sourced from both the field and from colour aerial photography. Data from the

field are collected using a variety of techniques which are described extensively in

section 4.2.3 of chapter 4. Fieldwork was carried out each March/April of 2008,

2009, 2010 and 2011 providing data for the glacier at the end of the winter season.

The reconstruction here is for the summer season and is the result of processing of

the winter glacier reconstructions by subtracting snow cover interpolation surfaces.

Throughout the 2007-2011 study period, only one high resolution aerial photograph

was available, taken in June 2008 (Lantmäteriet, 2010). This photograph has

been the source of the glacier outline throughout this period. Due to the lack

of temporal data with regard to the glacier outline, it has not been possible to

consider change in the horizontal plane with regard to terminus retreat and area

change. This chapter meets the objective of:

� Accounting for sensitivity of applied geostatistical techniques on recon-
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structed surface properties

therefore addressing the project aim of:

� Providing a full 3D glacier geometry reconstruction and assessment of a

small mountain glacier, since the beginning of the 20th century, over annual

time scales

7.1 Surface reconstruction sensitivity analysis

The contemporary surface reconstruction process (section 4.2.3 of chapter 4)

was driven by dGPS points collected in the field. These varied in number and

distribution with each field excursion, limited by a number of factors including

accessibility to steeper slopes and snow depth with the associated ease of ma-

neuverability across the surface. Consequently in some years points have been

acquired whereas in other years they have not. The presence/absence of points

within the interpolation process has a very large effect on the final surface that

will be calculated (much like removing the central pole of a tent). To address the

issue of surface interpolation sensitivity, Monte Carlo simulations were carried out

for the contemporary surfaces, the results of which can be seen in figure 7.1. The

specific method of implementing the simulation is discussed in section 4.2.8 of

chapter 4. The results displayed in figure 7.1 are the winter surfaces from which

summer surfaces were constructed following the subtraction of year specific winter

snowpack layers.

The contemporary surface (2007-2010) standard deviation patterns displayed in

figure 7.1 have a very different spatial distribution compared to those observed

for 1926-1991 described in section 6.1 of chapter 6. This is particularly apparent

for 2007-2009 where there is a clear split between lower standard deviations in

the northern part of the glacier and higher values in the southern glacier. These

patterns appear to be highly susceptible to construction point (i.e. from dGPS

and contour data) distribution.
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Figure 7.1: Contemporary Monte Carlo surface sensitivity analysis results. The Monte Carlo
surfaces shown are the winter surfaces from which summer surfaces were calculated following
the subtraction of year specific winter snowpack thickness layers. Areas of highest standard
deviation (Std.Dev.) show locations across the glacier of greatest sensitivity in the interpolation
process. This is a function of the points available from which to create the surface. The input
elevation points used to create the different surfaces are also displayed.
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Table 7.1: Point file populations and contour spacings used for the 2007 - 2010 surface
interpolations (Point numbers are referred to as within the perimeter as these are the points
most likely to affect the glacier interior as a function of the search window value employed)

Year Total Points Points within glacier perimeter
2008 7122 3798
2009 9453 6690
2010 5714 4270
2011 14919 13110

The 2007 surface is constructed from a total of 7122 points of which approximately

50% fall within the glacier perimeter extent. Of this 50%, the majority of points

are located within the northern glacier area. Within this northern area, standard

deviation variance due to the effect of spurious point values are kept relatively

low (generally between 0-30 m). These lower standard deviations are maintained

around the glacier perimeter where there are also known points. The southern and

central portions show significantly greater standard deviation values, ranging from

40 m+. This is attributed to the lack of known points in these areas. Standard

deviations are likely to be particularly high in some regions rather than others as

a function of the points selected to calculate unknown values, selected according

to the kriging search neighborhood parameters. Where there are significant differ-

ences in the values of known points, noise will have a much greater influence than

if the known points are generally of a similar value.

The same pattern for 2007 is observed for 2008 however the central region shows

comparatively lower mean standard deviations. The points available for the 2008

surface construction extend much further from the northern glacier area than in

2007 (see also table 7.1). Consequently, there is a greater concentration of points

available from which to predict unknown values. This reduces the impact of spikes

in the known point data set on unknown point predictions. The southern area

maintains a similar pattern to 2007 where standard deviations are greatest where

there are fewest points available.

The glacier in 2009 has a greater spatial point coverage than 2007-2008, however
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the number of points available is only 60% of those used for the 2008 surface.

This reduction in point availability helps explain some of the variance observed

with regard to standard deviations in the central portion of the glacier. The point

coverage in this region is not as extensive as for 2007-2008, leaving larger gaps.

This results in more distant, and therefore potentially less similar, points being

used to predict unknown values within these gaps. In such cases, erroneous data

spikes can have significant weight in affecting predicted values.

Moving from the central zone to the southern zone, large standard deviations (50

m+) are apparent - the pattern similar to that of 2007. There are points available

in this region forming a centre line. Within the immediate vicinity of these points,

standard deviation is reduced. This differs to the patterns observed around points

for the 1926-1959 surfaces discussed above and may be explained by the higher

point concentration along the centerline in 2009. The higher point concentration,

resulting in greater weighting of all points, will reduce the effect of erroneous

points - this not being the case for the more sparse point data used for 1926-1959,

whereby the point closest to an unknown value will have a significantly greater

weight compared to other points falling within the kriging search neighborhood.

The large standard deviations occurring in the central and southern regions, despite

the availability of centerline points can still be explained by sparse data availability.

It is possible that apparent sensitivity is further increased by the presence of the

centerline points. The points that will be used to predict unknown values between

the centerline and the glacier perimeter will come from both of these regions,

specific points being selected that are closest to a prediction at a given time. The

distance between the points used to aid the predictions within these areas could

be within the order of 250 m and given the nature of the topography in which

these points exist, they are likely to be significantly dissimilar - the presence

of spikes in such a point selection will therefore affect predictions greatly, thus

explaining both high standard deviations and sensitivity. Without the centerline

points, the perimeter points alone would be used to predict values across the

center of the glacier - although resultant predictions would likely be inaccurate

(again linking to the concept of increased distance/reduced similarity), the points
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used would potentially be more similar - a scenario in which data spikes affect

predictions to a lesser degree. The centerline points provide too much dissimilarity

as described above. Ultimately, this sensitivity is a relic of the interpolation

method itself as opposed to a realistic measure of true surface values, highlighting

the inadequacy of this interpolation method in regions of sparse known data points.

The 2010 surface shows the smallest standard deviation values of the 2007-2010

surfaces. This is the result of a greater spatial point distribution across the entire

glacier. There are still some zone of higher sensitivity in the western central zone

and the south eastern southern zone which relate to point gaps and therefore

result in greater distances between points (potentially being more dissimilar) used

for prediction.

7.2 Elevation change

The glacier surface in terms of elevation and hypsometry is summarised in figure

7.2. There are few discernible changes in elevation distribution through the 2007-

2010 period. This is better observed when considering the hypsometry curves and

acknowledging elevation-area ratio values.

Regarding hypsometry, the smallest areas are associated with the extremes of the

glacier elevation range, with a trough in terms of area around the mid-glacier

elevation bands. The main area peak for all years is within the 1400-1450 m a.s.l.

range, accounting for approximately 20% of the total glacier area in 2007, 2008,

2009 and 2010. There is a smaller peak occurring within the 1050-1100 and the

1100-1150 m a.s.l. bands which account for approximately 11% and 12% of the

overall glacier area for all years respectively. Between years, in terms of the overall

distribution patterns identified in figure 7.3 there are no significant changes. There

is evidence of some small shifts in the 1100-1300 m a.s.l. range between the years

2007–2010, but these are likely to be the function of data availability for each

year; consequently such changes are likely artifacts of the reconstruction process.
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Figure 7.2: Contemporary glacier elevation maps and hypsometry charts (Summer 2007 -
2010). There is little noticeable change between the surface elevation maps. The most significant
changes are displayed by the hypsometry curves in the range 1100-1300 m a.s.l. and this is
discussed in the text.
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Figure 7.3: Glacier hypsometry curves against cumulative area (%) 2007 - 2010
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To compare the hypsometry distributions as succinctly as possible, cumulative

area curves are displayed in figure 7.3. These are best described numerically and

as with the historical hypsometry results discussed in section 6.3 of chapter 6, ER

values are reported. Values of 0.52, 0.51, 0.52 and 0.51 are calculated for 2007,

2008, 2009 and 2010 respectively. This gives a mean ER for the 2007-2010 period

of 0.52. HI values of -0.93, -1.07, -1.01 and -1.06 are calculated for 2007-2010

respectively and are displayed in figure 7.4. The lack of variance in ER and HI

values further supports the minimal variation in hypsometry altitudinal distribu-

tion during the 2007-2010 period.

To account for the change in the elevation between years, the surface prior to

a given year is subtracted from that of the given year. The results of these

calculations are displayed in figure 7.5. The figures for the total glacier area

have a lot of associated noise, with some areas being represented by large ±
differences in elevation, many of which are deemed as unrealistic annual changes.

The positive changes and large negative changes are most likely artifacts of the

reconstruction process and are not thought to be natural/observable phenomena.

This is discussed further in section 7.1. The least noise is associated with the

area to the north of the glacier. This area of all of the reconstructions is the least
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Figure 7.4: Hypsometry Index (HI) values over time 2007 - 2010

2007 2008 2009 2010

-0.6

-0.8

-1

-1.2

-1.4

-1.6

Year

H
I

sensitive in terms of the effect of data on surface interpolations and thus is the

most reliable in terms of changes which are environmentally controlled as opposed

to being the function of data availability or interpolation processes. To further

investigate this specific region, the second column of figure 7.5 is dedicated to this

region.

For all surfaces, the majority of surface change occurs within the 0 - -2 category.

There are areas of increase identified in the presented maps but these are located in

areas least represented by data points collected in the field and thus in areas of the

glacier reconstructions most sensitive to error. These regions are predominantly

towards the glacier periphery and along the centre of the upper glacier to the south

where points where well distributed points were only collected in 2011, making

them available only for the 2010 summer surface interpolation. Considering the

total glacier area, 39%, 29% and 27% of the calculated elevation change occurred in

the 0 - -2 m change category for 2007/2008, 2008/2009 and 2009/2010 respectively.

Considering where collected field data point density was greatest, in the lower

portion of the glacier located to the north, this area is focused on specifically in

terms of annual elevation change. This area is considered in the second column of

figure 7.5. The specific location of the lower glacier is illustrated in figure 7.6.
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Figure 7.5: Contemporary annual difference surfaces for 2007 - 2008, 2008 - 2009 and 2009 -
2010 for the total glacier and specifically the northern portion of the glacier. Areas of large ±
changes are discussed further in the text. The specific location of the northern portion of the
glacier which is focused on is indicated in figure 7.6.
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Figure 7.6: Photograph of K̊arsa in September 2012 highlighting the split between the lower
and upper portions of the glacier (defined by ease of accessibility during the winter months). The
lower part of the glacier which had the highest density of elevation measurement points in all
winter seasons is located beneath the dashed red line. Due to the increased point concentration
in this region, geodetic assessment of change is most reliable here, unlike in the upper glacier
above the red line where point density varied much more between different field seasons. The
inset map highlights the lower glacier in dark grey as opposed to the upper catchment depicted
in light grey. The lower glacier highlighted here represents 0.33% of the total glacier area.

Across the lower glacier, there are still areas of very large ± changes which is

also associated with the absence/presence of data points in intermittent years,

resulting in unequal surface interpolations. However, the vast majority of change

for all years falls within the 0 - -2 m change category with values of 55%, 48% and

47% for 2007/2008, 2008/2009 and 2009/2010 respectively. The -2 - -4 m change

category is not well represented in the 2007/2008 and 2009/2010 assessments

however there is a large increase in change within this range for 2008/2009 where

it accounts for 27% of all change compared to 11% and 14% for 2007/2008 and

2009/2010 respectively. Change in this range is reasonable within a year and thus

this can be taken as an indication of increased melt activity in 2008/2009 relative

to 2007/2008 and 2009/2010.

7.3 Long profile change

Change occurrences across the lower glacier are illustrated in both long profile

and cross profile in figure 7.7. The long profile follows the centerline of the lower

glacier running from the western end of the accumulation area to the terminus in

the east (AB).
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Considering the AB long profile, there is a clear trend of surface lowering with each

year being present below the last. There are no apparent changes in slope (these

are investigated in more detail in plan form in section 7.5). The A’B’transect

should only be considered between 0 m and 300 m (indicated by the vertical line)

from A’ as within this area, all surfaces have a high point density. Limited points

are available for 2007 and 2010 past the 300 m mark (see figure 7.1 compared to

the inset map of figure 7.7) and this distorts the transect as is apparent in the

surface profile illustrated for distances along the transect >300 m. Between 0 -

300 m, the pattern of lowering is again clear with no obvious changes in slope.

Patterns of increased convexity through time, identified for the historical transects

(section 6.4 of chapter 6) are not apparent here.

7.4 Thickness and volume change

The glacier in terms of thickness is summarised in figure 7.8. Generalizing the 2007-

2010 pattern, the thickest ice is located in the glacier centre and to the centre of

the north-east area, indicating two apparent troughs of thick ice. The largest thick-

ness values trend along the central line of the glacier from north-east to south-west.

Considering spatial thickness distribution on an annual basis, it is clear from

figure 7.8 that the greatest thickness is account for in 2007, the least so being in

2010. The 0-20 thickness category represents 49%, 58%, 62% and 68% of the 2007,

2008, 2009 and 2010 thickness surfaces respectively. This 20 m category therefore

represents the majority of the ice thickness of each of the surfaces. Considering

areas of greatest thickness, the 40-50 category represents 11%, 6%, 3% and 2% of

the 2007, 2008, 2009 and 2010 surfaces respectively. The 50+ thickness category

represents 6% of the glacier in 2007 compared to 2% of the 2008 surface and 0%

of the 2009 and 2010 surfaces.

There are clear reductions in thickness over the 2007-2010 scale and these are pre-

sented in figure 7.9. Mean annual thickness change for 2007-2008, 2008-2009 and

2009-2010 were 4.14, 1.61, 1.93 m yr-1 respectively. The general trend of reduced
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Figure 7.7: Contemporary glacier long profile and transect (Summer 2007 - 2010). The long
profile (AB) and the transect (A’B’) are constructed only for the lower glacier as this is where all
years have the highest density of elevation data points, therefore providing the most information
on surface change over time. The area between 0 m and 300 m along A’B’ is discussed in the
text.
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Figure 7.8: Contemporary glacier mean thickness maps (Summer 2007 - 2010)
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thickness is clearly illustrated with changes in the mean thickness from 22.97 m to

15.29 m from 2007-2010, giving a total change of 7.68±9.61 m. Considering that

the change is within the error margin, these changes are not reliable. The errors

used here are calculated from maximum, mean and minimum expected thickness

surfaces for the 2007-2010 created as per the methodology discussed in section

4.3.5 of chapter 4. Glacier volume change is also summarised in figure 7.9. Over

the contemporary period, volume reduced from 5.74 x 10-2 km3 to 3.82 x 10-2 km3.

Mean annual volume change for 2007-2008, 2008-2009 and 2009-2010 were 0.10,

0.04 and 0.05 x 10-3 km3 respectively. This gives an overall change of 1.92±2.30 x

10-3 km3. As with the thickness change pattern, the change is within the error

margin, these changes are not reliable.

7.5 Change in slope and aspect during 2007 -

2010

Slope and aspect of a glacier surface is extremely important when considering the

receipt of radiation. This is discussed in section 2.3.1 of chapter 2. Considering
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Figure 7.9: Contemporary mean glacier thickness and volume charts (Summer 2007 - 2010).
Short dashes, a solid line and long dashes represent maximum, mean and minimum expected
values respectively.
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equation 2.7, changes in slope and aspect angles will change values of I and

therefore contributions of I to Q (see equation 5.13). The glacier surface in terms

of slope is summarised in figure 7.10. Firstly, the entire glacier surface is described

in terms of slope distribution. Throughout the contemporary period the glacier

is steepest along the north-west tongue, along the southern edge of the glacier

terminus to the east and along the edges of the central glacier body. The flattest

areas are in the areas of highest and lowest glacier elevation, to the south-west

and north of the glacier centre respectively.

Considering slope distribution on a year by year basis, from 2008-2009 slope values

are particularly accentuated along the southern edge of the glacier terminus to

the east. In 2008 and 2010, the surface is particularly steep along the eastern

flank of the glacier centre. The 2008 surface appears steepest in the glacier centre

compared to all other years. The majority of the glacier area is represented by the

10-20 and 20-30◦categories. Of the 2007, 2008, 2009 and 2010 surfaces respectively,

34%, 38%, 38% and 41% of the area falls within the 10-20◦category and 37%,

29%, 30% and 31% falls within the 20-30◦category. These descriptives are likely a

function of data point distribution as opposed to any natural phenomena.
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Figure 7.10: Contemporary glacier slope maps and categorised histograms (Summer 2007 -
2010)
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The lower northern glacier area (defined in figure 7.6) is considered in terms of

slope distribution specifically as it is assumed to be representative of greatest data

consistency due to the highest collection of data points being available in this locale

for all years. In the lower glacier area, the majority of the glacier slope area for

all years falls within the 10-20◦category (more specifically within 10-15◦). There

are no strong patterns of change between the years, however, some subtle changes

can be drawn from the surfaces displayed in figure 7.10 and this in itself provides

an opportunity to test how sensitive the SEB is to these changes in slope in terms

of how it affects MB. Results of geometry effects on SEB for the contemporary

surface are described in section 9.2 of chapter 9. Even if changes in slope are a

function of data input and resultant interpolation, the effect of geometry change

on SEB is still an important consideration to make as it provides an indication as

to how important surface input surfaces are for simple SEB modelling applications.

The glacier surface in terms of aspect is summarised in figure 7.11. Considering

the glacier as a whole, the majority of the surface holds a NE aspect, the areas

meeting this condition being accounted for from the middle reaches of the glacier.

The northern reaches of the glacier as well as the area to the south west, associated

with least slopes and lowest and highest elevation respectively hold predominantly

easterly aspects. The south-east flank of the glacier has a N aspect (this area is

also associated with high hillshade values discussed in section 8.3.2). The only

areas with southerly aspects are the steep tongue to the far north-west and the

south-eastern tip.

On a year by year basis, no particularly strong trends become apparent. For all

years, the majority of the surface is represented by NE aspects with percentage

area values of 40%, 43%, 32% and 38% for 2007, 2008, 2009 and 2010 respectively.

Compared to all other years, 2008 has the least area represented by N aspects

with a slight increase in area in the NE category.

For the northern lower glacier (see figure 7.6) all years, the majority of the surface

is represented by NE/E aspects with percentage area values of 23%, 24%, 23%

and 23% for 2007, 2008, 2009 and 2010 respectively. There are no apparent strong
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Figure 7.11: Contemporary glacier aspect maps (Summer 2007 - 2010). Glacier aspect is
predominantly N-E, with the majority of the surface for all years holding a NE aspect.
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Table 7.2: Mean b̄n values calculated for annual periods 2007 - 2010.

Year b̄n
2007-2008 -4.38
2008-2009 -1.16
2009-2010 -2.33

changes in aspect across this part of the glacier throughout the 2007-2010 period.

As with the slope analysis, for the glacier as a whole there are no strong patterns

of change in aspect between 2007-2010, however, some subtle changes can be

drawn from the surfaces displayed in figure 7.11 and this in itself provides an

opportunity to test how sensitive the SEB is to these changes in slope in terms of

how it affects MB. As with the slope changes, results of geometry effects on SEB

for the contemporary surface are described in section 9.2 of chapter 9.

7.6 Change in glaciological parameters

The glacier is assessed here for different glaciological parameters, specifically mass

balance change and basal shear stress. The methods by which the results displayed

here are calculated are discussed in section 4.3 of chapter 4.

7.6.1 Glacier mass balance change

Using the glacier difference surfaces discussed in section 7.2, glacier mass balance

curves are calculated for 2007-2008, 2008-2009 and 2009-2010. Mass balance

change (m w.e) is calculated using a fixed ice density of 900 kg m-3 and this is

discussed in section 4.3.7 of chapter 4. The values displayed are generalised for

elevations on a 1 m interval. Where multiple bn values exist for a single elevation,

a mean value is calculated. Mass balance changes are displayed against elevation

for the different mapping intervals in figure 7.12. b̄n values are calculated for each

of the mapping intervals, displayed in table 7.2

The mass balance curves displayed in figure 7.12 are for the entire glacier surfaces

and are thus extremely sensitive to data point availability as required to produce
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Figure 7.12: Mass balance curves for map intervals 2007 - 2010

900

1000

1100

1200

1300

1400

1500

E
le

va
ti
o

n
 (

m
 a

.s
.l
.)

0

Specific net balance (b )(m w.e.)n

-10 10-20-30

2007-2008

2008-2009

2009-2010

225



the interpolations. Table 7.2 clearly shows that for the entire contemporary period,

the glacier has been in a state of negative balance with with 2008-2009 having

the least negative balance and 2007-2008 having the most negative balance. The

extreme variation in the patterns and the extremely high rates of change are not

environmental signals but a product of the methodology applied. It is useful

to compare figure 7.12 with figure 7.5 as the spikes and troughs can easily be

related and this relates directly to point gaps and areas of the interpolations with

the highest sensitivity discussed in section 7.1. Consequently, these curves are

displayed for completeness but are not reliable representations of mass balance

with many of the increases/decreases being directly related to data point presence

and absence between the different surfaces. It is extremely difficult to assess

which changes are real and which are artificial. The data set available for the

contemporary glacier (2007-2010) is appropriate for broad pattern changes but

not for statistical analysis as here.

7.6.2 Basal stress (τb) 2007 - 2010

As in section 6.9.3 of chapter 6, basal stress is useful to consider despite dynam-

ics not having being directly measured within this study. Basal shear stress is

calculated using equation 4.7 described in section 4.3.6 of chapter 4, along the

glacier centre-line as illustrated by the A-B line in figure 6.9. Slope and thickness

values are calculated for a given point from elevation and thickness values taken

at a distance equal to the mean thickness of the glacier from either side of the

point in question. Stress profiles are displayed in figure 7.13. For all years, figure

7.13 illustrates that maximum τb occurs at approximately 700 m from the back of

the glacier which is the region of greatest ice thickness as displayed in figure 7.8

and of steeper slopes, as displayed in figure 7.10. This was to be expected as ice

thickness is closely linked to τb (Thorp, 1991).

Of all of the surfaces, that of 2007 displays the greatest τb values (median =

56 kPa) compared to 2010 (median = 30 kPa). These differences are related to

point availability from which the elevation surfaces were constructed affecting

calculations of surface slope and ice thickness. The 2009-2010 stress profiles
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Figure 7.13: Centreline basal stress profiles 2007 - 2010. Profiles are constructed along the
A-B centreline as used in figure 6.9. The uppermost chart displays all profiles together with the
subsequent charts displaying the stress profiles for individual years.
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display a much smaller range in values when compared to the 2007-2008 profiles,

particularly closer to the back of the glacier. Centreline points were available

for surface interpolation for the 2009-2010 surfaces and this will have reduced

the surface slope profile. This does not however alter the general stress pattern

observed for all years. Caution is paid to making overly specific comments on

inter-annual τb values, considering the varying reliability of the input elevation

surfaces from which surface slope and ice thickness are directly derived.

7.7 Summary

Accounting for glacier change using the geodetic approach (the methods of which

are described in chapter 4) is less easily quantified than for chapter 6. This is

primarily a function of surface sensitivity to varying input data point cloud density

for the different years, as addressed in section 7.1. Nonetheless, acknowledgment

of glacier change for the 2007-2010 using an annual time step has been possible.

With regard to elevation change, for all years, the glacier shows the majority of

change to be within the 0–2 m elevation loss category. This is particularly clear

for the lower glacier (to the north as displayed in figure 7.6). Lowering of the lower

portion of the glacier is exemplified in long profiles (figure 7.7), although cross

profiles are more difficult to interpret (as a function of point cloud density issues).

In terms of thickness change, mean thickness has decreased from ˜23 m (2007) to

˜15 m (2010). Greatest thickness values are consistently found to the north/north-

east of the glacier. Change in thickness is quantified as an overall mean reduction

of 7.68 m ± 9.61 m and is coupled with a volume change of 1.92±2.30 x 10-3

km3. Both of these changes fall within the error margins and this is directly a

function of the aforementioned point cloud density issues. No significant changes

in slope and aspect are reported. The lack of reported change in slope can be

used to infer that changes in τb are purely a function of change in thickness.

Median τb values reduced from 48 kPa (2007) to 33 kPa (2010). As thickness

is likely the key driver in τb changes, the associated error with thickness change

questions how large the real changes in τb will have been, however a decrease in

stress is believable when considering elevation lowering of the lower glacier, where
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input point clouds were most dense and the greatest ice thickness values were found.

Neither area change or terminus retreat are considered for the period 2007-2010

as only one map of the glacier outline was available (for 2008). This is not to say

that it is not possible that area change or retreat may have occurred. It is possible

however to consider changes in hypsometry as a function of elevation change.

Quantifying hypsometric dynamism using the Jiskoot et al. (2009) classification sys-

tem, for 2007-2010, K̊arsa was found not to change from its equidimensional status.

This chapter addresses the objective of accounting for sensitivity of applied geo-

statistical techniques on reconstructed surface properties which assists in meeting

the project aim of providing a full 3D glacier geometry reconstruction and assess-

ment of a small mountain glacier, since the beginning of the 20th century, over

annual time scales. The surfaces developed for this chapter are used as inputs

for modelling experiments for which the results are presented in chapters 8 and

9. The geometric changes that have been considered here are discussed further

with the results of chapter 6 in chapter 10. Considering the associated issues

with point cloud density for the 2007-2010 glacier geometry analysis, alternative

approaches to point cloud acquisition of glacier surfaces are discussed in section

10.6 of chapter 10.
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Chapter 8

Results: Model sensitivity

analysis

Le Meur et al. (2007) acknowledge the usefulness of more physical SEB model

approaches in that they allow for sensitivity analyses to easily be carried out,

enabling assessment of the contribution and effects of different parameters within,

and associated with, the SEB. This ultimately leads to a better understanding of

spatial processes and their effects at the local scale. A grid based distributed SEB

model has been developed (see chapter 5) specifically for this study to test the

effects of changes in glacier surface geometry over time, in part using a reference

balance approach (as discussed in section 2.2.2 and further in chapter 9). This

chapter first addresses the set up of model parameters, sensitivity of the model to

the method of hillshade calculation and overall confidence in the model output

(sections 8.1 - 8.3.2). Following proof of model confidence, the results of scenario

model runs are described (section 8.4). The scenarios that are tested provide

information of the sensitivity of the model to varying parameter values relative to

the default values that are set up in priming the model as described in section

8.1, the methods behind which are explained in chapter 5.

Sensitivity of model parameters is considered separately to the sensitivity of

surface DEM development. The latter sensitivity assessment is with regard to

variability of input point cloud density to interpolation algorithms required for

historical and contemporary surface reconstruction - considered in sections 6.1
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and 7.1 of chapters 6 and 7 respectively. Due to the relatively simple approach to

calculating SEB applied here, it is prudent to carry out an in depth sensitivity

analysis of the different components and factors considered, especially where large

changes are found to be the functions of parameter adjustments. Model sensitivity

in itself provides information on the different conditions governing SEB and MB

change across K̊arsa.

This chapter meets the objectives of:

� Developing a user friendly grid based distributed surface energy balance

model which uses reconstructed surfaces as an input, combined with meteo-

rological data from the field

� Conducting model scenarios with the developed model to assess the effects

of meteorological and topographic forcing on surface energy balance and

mass balance change

therefore addressing the project aim of:

� Assessing the sensitivity of the surface energy balance and mass balance

change to meteorological and topographical forcing

8.1 Model set up and confidence testing: prim-

ing of c, ψmin, and Ttip variables

The mass balance model developed by Giesen & Oerlemans (2012) and further

developed in this study, requires the setting of a number of variables (see chapter

5). Some of these variables are set using measurements from data available from

the field (e.g. τ) whereas others are known or assumed constants (e.g. lapse

rate and Lf). Some variables, specifically those required for the calculation of

ψ, could not be derived from site specific measurements and are not constants.

A selection of values for these variables are provided for a number of different

glaciers in different climatic settings, following meteorological analysis by Giesen &

Oerlemans (2012). Considering the location to which the model is applied here, of
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Table 8.1: Variations in the variables used for the calculation of ψ

Variable Variable set 1 Variable set 2
c 8.7 8.4
Ttip -25 -19
ψmin -1.5 +0.2

the variables available, two sites best represent the climate specific to K̊arsa. These

are Midtdalsbreen and Storbreen, both located in Norway at 60.57◦N, 7.47◦E and

61.60◦N and 8.13◦E respectively. These positions compare with 68.35◦N, 18.29◦E

for K̊arsa. These two glaciers are the closest climatically to K̊arsa, therefore

variables from these sites are the most appropriate to tune the model with. Values

for τ and αice are also available for these sites but with data available from K̊arsa,

site specific values can be used.

Midtdalsbreen and Storbreen represent different glacier types. Midtdalsbreen is

an outlet glacier of the Hardangerjøkulen icecap and Storbreen is a valley glacier

located to in the Jotunheimen mountain massif (Giesen et al., 2009). In terms

of area, Storbreen is smaller at 5.4 km2 compared to Midtdalsbreen at 6.7 km2.

Both glaciers have a mean NE aspect. In terms of energy contributions to the

overall SEB, Midtdalsbreen has a higher portion attributed to turbulent flux

due to a strong katabatic regime, associated with the Hardangerjøkulen icecap.

Storbreen does not have such a significant turbulent flux contribution to the SEB,

but receives more in terms of net radiation (Giesen et al., 2009). In terms of

retreat, for the period 1982-2006, Midtdalsbreen retreated 25 m whilst Storbreen

retreated 80 m (Giesen et al., 2009).

The Midtdalsbreen and Storbreen variables are referred to as variable set 1 and 2

respectively. With regard to the variations in c, ψmin, and Ttip between the two

variable sets, see table 8.1.

To test the variability in modelled melt using the two variable sets, experiments

were carried out using both the contemporary and historical models for the periods

of winter 2009 - winter 2010 and winter 1959 - winter 1978 respectively. These
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Figure 8.1: Contemporary and historical modelled melt using different variables for the
calculation of ψ, taken from analysis of meteorological data collected at Midtdalsbreen and
Storbreen (Giesen & Oerlemans, 2012). Surface lowering is displayed as total surface lowering
for the map interval periods of 1959 - 1978 and 2009 - 2010.
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periods were chosen for the contemporary and historical models respectively as

they are regarded as the best mapped surfaces available. For the contemporary

model, this selection is supported as the 2009 and 2010 surfaces have the greatest

point coverages in terms of the 2007 - 2010 surface range. The historical model

is tested for the 1959 - 1978 period as of all the maps available for the 1926 -

2010 period, these are both created from aerial photographs providing the widest

glacier coverage and drafted by the same cartographer using the same process

(facilitated at Stockholm University in 1984), which further reduces error. Other

surface pairs for periods appropriate for integration with the application of the

historical model utilize surfaces derived from base maps developed by different

users using different methods and are therefore prone to greater error. Modelled

annual surface melt for the aforementioned periods can be seen below in figure

8.1.
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Table 8.2: Proportional surface elevation change for the 1959 - 1978 period. Positive and
negative values indicate growth and lowering respectively

Category Geodetic Variable set 1 Variable set 2
% % %

-40 - -30 2 0 0
-30 - -20 15 0 0
-20 - -10 38 1 13
-10 - 0 38 99 87
0 - 10 7 0 0

The best variable set up is chosen in accordance to the proximity of the propor-

tions of melt occurring within each elevation change band between modelled and

mapped surfaces. The proportions of melt for the contemporary and historical

periods, derived from geodetic and modelled assessments can be seen in tables 8.2

and 8.3.

For the 1959 - 1978 period, 64% of mapped surface lowering (see chapter 6)

occurred within the 0-10 m and 10-20 m ranges, with 32% of melt occurring within

each range. For the variable set 1 historical run, 99% of the surface lowering

occurred within the 0-10 m range. For the variable set 2 contemporary run, 87%

of the surface lowering occurred within the 0-10 m range, with 13% of change

within the 10-20 m range. Geodetic analysis of the 1959-1978 surface resulted

in the identification of changes greater than 20 m which were not accounted for

within the model runs.

For the 2009 - 2010 period, mapped surface lowering (discussed in chapter 7) was

greatest in the 0-1 m range, within which 32% of melt occurred, with 26% of

change occurring within the 1-2 m range. For the variable set 1 contemporary run,

100% of the surface lowering occurred within the 0-1 m range. For the variable set

2 contemporary run, 99% of the surface lowering occurred within the 0-1 m range,

with 1% of change within the 1-2 m range. Geodetic analysis of the 2009-2010

surface resulted in the identification of change within the 2-3 m range which was

not accounted for within the model runs.
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Table 8.3: Proportional surface elevation change for the 2009 - 2010 period. Positive and
negative values indicate growth and lowering respectively

Category Geodetic Variable set 1 Variable set 2
% % %

-3 - -2 22 0 0
-2 - -1 26 0 1
-1 - 0 32 100 99
0 - 1 13 0 0
1 - 2 7 0 0

When considering the difference between the variable 1 and variable 2 surfaces (fig-

ure 8.2) similar patterns can be identified for both the historical and contemporary

surfaces. More melt was accounted for using variable set 2 and consequently, when

considering the difference between variable set output 1 and variable set output 2,

most differences are negative. The least change for both surfaces (falling within the

0 and 0 - -1 m and 0 - -0.01 m change ranges for historical and contemporary runs

respectively) occurring at overall proportions of 43% and 35% for the historical

and contemporary surfaces respectively can be attributed to areas subject to the

greatest portions of hillshade throughout the melt season. Conversely, the areas

where change was greatest were confined to the southwest, central and north/north

eastern parts of the glacier with proportions of 57% and 65% in the -1 - -5 and -0.1

- -0.4 ranges for the historical and contemporary runs respectively. These areas

are those least affected by monthly mean hillshade during the summer months.

This is implicit that variable set 2 favours radiative processes over variable set 1

which is not surprising when considering variable set 2 is derived from a valley

glacier unlike variable set 1 which is derived from an icecap outlet glacier.

Both the historical and contemporary model runs do not account for any increases

in surface elevation. Elevation changes have been highlighted in sections 6.3 and

7.2 of chapters 6 and 7 respectively. Such increases accounted for in the geodetic

assessment may be the result of mapping errors between the surfaces used to derive

the elevation change maps. Some of these changes may of course be real. Glacier

growth is not accounted for in the model runs. Regarding melt and assuming that

some elevation increases are erroneous, benefits associated with the models are

235



Figure 8.2: Difference surfaces for the contemporary and historical modelled melt using
different variables for the calculation of ψ, taken from analysis of meteorological data collected
at Midtdalsbreen and Storbreen (Giesen & Oerlemans, 2012). Surface lowering is displayed as
total surface lowering for the map interval periods of 1959 - 1978 and 2009 - 2010.
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that they are not restricted by errors between the start and end surfaces in the

same way as the geodetic analysis, only ever considering the initial input surface

and the SEB that propagates across it.

In summary, from this assessment, the set 2 variables are most suitable for the

modelling of both contemporary and historical surface lowering as a function of

SEB energy surplus, driving glacier surface melt. In terms of the proportions of

melt occurring within specific ranges, both models replicate patterns of surface

lowering identified by geodetic analysis.

8.2 Model error quantification

Section 8.4 considers the sensitivity of the contemporary and historical models to

changes in the values of fixed factors and these results are ultimately summarised

in section 8.4.8. Assessing model error as a function of these different factors

would require a sub-factor Monte Carlo type sampling strategy whereby all factors

would have to be tested, within the range of reasonable distribution of the different

factors, whilst considering all factor combinations possible. This would amount to

a very large number of model runs and this approach is too intensive with regard

to computing power.

Error is thus considered by subtracting modelled change (using the set 2 variable

values) from geodetically calculated change for the 1959-1978 and 2009-2010

periods for the historical and contemporary models respectively. Maps representing

the spatial variability in model error is displayed in figure 8.3. Negative values

indicate model overestimates. The following median error values are calculated -

the lower glacier region is defined in figure 7.6 in section 7.2 of chapter 7:

1. Historical model (total glacier): -0.36 m (-0.33 m w.e.)

2. Contemporary model (total glacier): -1.96 m (-1.76 m w.e.)

3. Contemporary model (lower glacier): -0.08 m (-0.08 m w.e.)
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Figure 8.3: Model error analysis: historical and contemporary geodetic-model elevation change
differences. Negative values indicate model overestimates.
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8.3 Topographic shading and consequential hill-

shade effects

Prior to running a full sensitivity analysis on the different components of the

model, the spatial distribution of hillshade is considered first. The effect of

hillshade has been found to be extremely important in controlling spatial patterns

of SEB and resultant MB (e.g. Arnold et al., 2006b). Thus, by assessing hillshade

patterns, resultant coverage (and therefore potential controls on SEB and MB)

can be considered when assessing the spatial variability in the effects of other

components.

8.3.1 Direct solar radiation at the surface: 1926-2010

To account for the effect that hillshade has over the glacier surface during the

summer months when melt and therefore surface change is at its peak, topo-

graphic hillshade maps are considered. Hillshade is representative of the effect

of topographic shading across the surface, changing over time as a function of

solar position relative to surrounding topography and the relationship between a

given point on the surface and its relative position to the surrounding topography

- hillshade and topographic shade, where referred to, describe the same process.

These are displayed in figure 8.4 for all years addressed through the historical

reconstruction of the glacier (see chapter 6) at noon for the months of June,

July and August. For the 1926 hillshade maps, the K̊arsa side glacier is still

visible, not being detached until the mid-1930s. Following its detachment, during

the 1930s, it is not accounted for in the maps of the glacier from 1943 onwards

here, in line with Wallén (1948) who disregarded this portion of the glacier for

further study due to it no longer contributing to the main body of the glacier.

This rationale is further extended to the minor side lobe accounted for in the

Wallén (1948) study divided by the moraine ridge which existed along the southern

flank of the glacier. Consequently, considering the aforementioned details, change

in hillshade when considering the side-glacier is not considered post-1926. It is

included in the consideration of overall hillshade cover of the glacier as a whole how-
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ever (figure 8.5) as at the time, the side-glacier was a part of the main glacier body.

For all years, there is a clear increase in the hillshade across the glacier from June

to July which is due to increasingly lower sun angles relative to increasing time

following the summer solstice (mid-June). The June/July patterns show relatively

little change when compared to the August pattern. During these two months,

for the years 1926-1959, the ablation area to the north and north east, as well as

the south west of the glacier fall mainly within the 0-20% and 20-40 % hillshade

categories, the former category being represent of areas least affected by hillshade.

The centre of the glacier during these months falls within the categories 40 -

100% although predominantly in the 40-60% category. From 1978-1991 for the

June/July period, the ablation area, mainly focused in the east falls increasingly

into the 40-60% category more so than for the glacier prior to 1978. This is a

function of the glacier retreating back to the former position of the more sheltered

areas of the ablation zone where it existed (albeit at a higher elevation) prior

to 1978. Spatially, the 1978 and 1991 surfaces show less surface area within the

20-40% categories compared to the glacier prior to 1978. By 2010, during June

and July, there are still some areas of the glacier within the 20-40% and 80-100%

categories - these areas are equal to those represented in all of the surfaces prior

to 2010, being the areas that have showed least change - predominantly the area

to the south west and the northern flank. The ablation zone is largely within

the 40-60% category with a larger portion of the glacier within the 60-80% category.

Hillshade is much greater across the glacier during August. The area of greatest

shade falls at the join between the apparent glacier lobe to the south west (the

accumulation zone which is both at the highest elevation and where the slope

is steepest). As the glacier reduces in size from 1926-2010, the south western

lobe changes little in area when compared to the glacier area to the west and

east/north-east. Consequently, the pattern of retreat has resulted in the glacier

by 2010 being located in the area of greatest shade. A much larger portion of the

glacier appears to be represented by the 60-80% category by 2010 when compared

to all years previously, although this pattern propagates for the main glacier body
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Figure 8.4: Hillshade across the glacier surface at noon for June, July and August: 1926-2010
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Figure 8.5: Portion of hillshade across the glacier surface at noon for June, July and August:
1926-2010
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for all years from 1926.

The changing hillshade cover across the glacier during the melt season for the years

is quantified in figure 8.5. From 1926-1943, there is a reduction in the area of the

glacier represented by the 60-100% hillshade categories. This is attributed to the

detachment of the side glacier of which a large portion was in the shade during the

months of June-August. From 1943-2010, there is a clear increase in the portion

of the overall glacier area represented within the greater hillshade categories. The

portion of the glacier within the 60-100% hillshade category increases from 25% to

43% for the 1943 and 2010 surfaces respectively. The areas of least shade reduce

from 45% to 28% for the same years. This shows a clear increase in the effect

that shade has had over the glacier over time. The increasing hillshade cover of

the main lobe of K̊arsa from 1926 - 2010 is a function of the glacier retreating to

areas of increased shade. The most shaded portion of the glacier represented by

the glacier in 1926, making up only a small area of the glaciers then total area,

largely accommodates the glacier extent by 2010.

8.3.2 Direct solar radiation at the surface: 2007-2010

Two sets of experiments with regard to radiation incident at the surface as a

function of topographic hillshade effects were facilitated for the glacier surface

between 2007-2010. Experiments were run for the summer solstice of each year.

The first experiment accounts for incoming shortwave radiation at the surface

where topographic hillshade is accounted for. This differs to the second experiment

where clear-sky conditions are assumed and topographic hillshade is not accounted

for. The spatial variability of these experimental results are displayed in figure 8.6.

Experimental runs were also carried out for the spring and autumnal equinoxes.

Due to low sun angles associated with the shorter daylight hours at the latitude

in question, mean daily Sin,TOA are small and this results in very small values

for I (see equations 5.10 and 5.7). For this reason, the resultant surfaces are not

displayed.
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Figure 8.6: Surface radiation at the glacier surface: clear sky vs. shaded conditions (Summer
solstice). Maps of variability are display only for the solstice as this is when energy from
radiation is greatest and is most important for melt. Shade increases through July and August
(as identified in figure 8.4) but the spatial variation between 2007-2010 is negligible.
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Shading is greatest along the south eastern edge of the glacier with areas of least

shade occurring along the northern portion of the glacier towards the perimeter.

The south west portion of the glacier also receives little shade. This general

shading pattern is apparent for 2007-2010 although there are some very subtle

variations. The 2007 appears to receive more shade along the centre of the glacier

than 2008-2010. The 2009 and 2010 surfaces have less shade across the south west

lobe than 2007-2008.

Considering the surface measured shortwave radiation distribution, whilst account-

ing for the effects of topographic hillshade, the highest values occur along the

northern glacier edge and to the north west where shade is most limited. This is

where the glacier ablation zone occurs. The south west of the glacier also shows a

slightly higher radiation receipt than any areas to the south east where hillshade

is greatest.

Under clear sky conditions, the spatial distribution of surface radiation at the

glacier surface is inverse to that which occurs under shaded conditions. Generally,

areas receiving the most radiation occur along the south western edge whereas

those receiving the least occur to the north east. The extreme south western

edges show high levels of radiation receipt but this is likely a relic from the surface

interpolation process and thus should be disregarded. The 2008-2010 surfaces

are relatively uniform compared to one another. The 2007 surface, whilst still

displaying the same general pattern, shows some areas of increased radiation

receipt across the centre of the glacier - this may be due to micro-topographical

effects relating to the 2007 DEM.

8.4 Model sensitivity analysis

In this section, the sensitivity of the models to different parameters, in terms of

surface elevation change and mean summer Q (calculated from energy surfaces

for June, July and August) for test periods of August 1959- June 1978 (using the

historical model) and October 2009 - December 2010 (using the contemporary

model), are tested. These surfaces are considered the best available for the historic
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and contemporary periods respectively as described in section 8.3.1. The factors

to which model sensitivity is tested are:

1. Atmospheric transmissivity (proxy) (τ)

2. Snow albedo (αsnow)

3. Ice albedo (αice)

4. Wind factor value

5. Snowfall temperature threshold

6. Temperature lapse rate value

7. Winter snowpack thickness

8.4.1 Sensitivity Analysis: τ

Values of τ in the range of 0.35 - 0.55 with 0.05 increments were experimented

with, using both the contemporary and historical models for the 2009-2010 and

1959-1978 time periods respectively, for reasons discussed in section 8.1. The

results of these experiments are discussed within the context of the separate models.

Smaller values for τ resulted in a greater value being attributed to radiation com-

ponent I which results in a greater value for Q. This instigates a greater instance

of elevation change at a given cell, the effect of which is however dampened as

values for τ increase through to 0.55, reducing the value of I and therefore Q. The

spatial distribution for the effect of changing τ can be seen in figures 8.7 and 8.8.

For both model runs, the increases in melt and surface Q are most apparent in

the northern and south western portions of the glacier - the ablation zone and the

upper accumulation area respectively. The areas of the glacier where these changes

are most pronounced are affected less by hillshade than the more central portions

of the glacier where variations in spatial distribution of elevation change and Q are

more limited. Both Q and surface elevation change have similar spatial patterns
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Figure 8.7: Contemporary model response in terms of surface elevation change and
June/July/August mean summer Q, to changing values of τ from 0.35 - 0.55 for the pe-
riod of October 2009 - December 2010. Mean summer surface Q is calculated as the mean of Q
values extracted for the middle of June, July and August 2010.
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Figure 8.8: Historical model response in terms of surface elevation change and
June/July/August mean summer Q, to changing values of τ from 0.35 - 0.55 for the pe-
riod of August 1959 - July 1978. Mean summer surface Q is calculated as the mean of Q values
for June, July and August of 1969 (randomly selected from the year test range)
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as would be expected, with Q driving surface elevation change. Differences in the

patterns of Q and elevation change are more apparent in figure 8.7 than figure 8.8

which is in part attributable to the method of calculating the mean Q surfaces

using mid values for June, July and August - this method is likely to miss of

the most significant melt events, a signature of which will be left on the total

elevation change surfaces. For both figures 8.7 and 8.8, the surface change and Q

surfaces will inevitably show some disagreement as the former are totals whereas

the latter are averages. Also, throughout the model run time frames, snow melt

occurs. Whilst there is snow present, elevation change will not occur and thus

further disagreements between the surface change and Q surfaces may occur.

Considering changes in proportional elevation change following changes in τ (see

table 8.4), within the 0 - 0.25 m change category proportional surface melt reduced

for all experiments as τ was reduced from 0.55 to 0.35. For all experiment outputs,

proportional changes greater than 0.25 m increased as τ decreased. In terms of the

extreme values, within the 0 - 0.75 m change category, 97% and 90% of the change

occurred for τ values of 0.55 and 0.35 respectively, indicating greater surface

elevation change with lower τ values. For the historical experiment outputs (table

8.5), the proportion of melt occurring within the 0 change category decreased as

τ decreased. for change between 0 - 2.5 m, the melt proportion increased with de-

creasing values for τ which is balanced by the increase in the 0 m change category.

For all surfaces, the proportion of elevation change greater than 2.5 m collectively

increased as τ decreased, as would be expected for greater elevation change with

smaller values for τ . In terms of the extremes, within the 0 - 7.5 m change cate-

gory, 97% and 78% of the change occurred for τ values of 0.55 and 0.35 respectively.

The pattern of change in terms of the extreme values used to test τ sensitivity

can be seen in figure 8.9. For the historical surface, between the two τ values, the

greatest differences are to the north/ north east. This is where elevation (in terms

of m a.s.l.) is lowest and hillshade is least affecting. Consequently, where Q is

greater as a function of lower τ values, snow melt will be more efficient, revealing

the ice surface earlier during the ablation season and resulting in more significant

elevation change. Where changes are less pronounced, and thus sensitivity to
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Table 8.4: Contemporary surface categorical elevation change following changes in τ

Elevation change (m) Experimental Tau values
0.35 0.4 0.45 0.5 0.55
% % % % %

0.00 12.18 13.05 14.16 15.25 16.31
0.0 - 0.25 38.03 41.83 44.54 47.13 49.73
0.25 - 0.50 25.42 25.18 23.62 21.92 21.11
0.50 - 0.75 14.22 12.79 12.31 11.55 10.09
0.75 - 1.0 6.35 4.81 3.98 3.52 2.69
1.0 - 1.25 2.38 1.49 1.32 0.63 0.07
1.25 - 1.50 0.83 0.84 0.08 0.01 0.00
1.50 - 1.71 0.59 0.01 0.00 0.00 0.00

Table 8.5: Historical surface categorical elevation change following changes in τ

Elevation change (m) Experimental Tau values
0.35 0.4 0.45 0.5 0.55
% % % % %

0 35.06 38.21 42.72 48.37 52.79
0 - 2.5 25.26 24.06 21.88 18.35 16.47
2.5 - 5.0 9.74 10.25 10.61 11.63 13.56
5 - 7.5 8.29 9.35 11.98 15.78 14.24
7.5 - 10.0 9.77 12.60 10.58 4.81 2.23
10 - 12.5 8.90 4.66 1.79 0.87 0.70
12.5 - 15.0 2.38 0.70 0.44 0.20 0.00
15 - 17.5 0.59 0.17 0.00 0.00 0.00
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Figure 8.9: Historical and contemporary difference surfaces according to extremes in τ value
settings

0.0

0.0 - 0.2

0.2 - 0.4

0.4 - 0.6

0.6 - 0.8

Surface lowering 
difference (m)

0.0

0.0 - 2.5

2.5 - 5.0

5.0 - 7.5

7.5 - 10.0

10.0 - 12.5

Surface lowering 
difference (m)

H
is

to
ri

c
a

l
1

9
5

9
 -

 1
9

7
8

C
o

n
te

m
p

o
ra

ry
2

0
0

9
 -

 2
0

1
0

changes in τ is reduced, elevation (m a.s.l.) is greater resulting in lower tempera-

tures (therefore input of ψ to Q) and hillshade is greater. As a consequence of

this, snow melt rates will be reduced, therefore protecting the ice surface from

exposure and thus hindering elevation change. For the contemporary difference

surface, changes and therefore sensitivity to changes in τ are most pronounced

in the north and to the south west. There is much less relative change when

compared to the historical difference surface, changes for the contemporary surface

being limited to where hillshade is least affecting.

Considering the spatial variations of elevation change identified from the difference

surfaces created from the historical and contemporary model runs from the testing

of the extreme values of τ , hillshade appears to be quite important. Sensitivity to
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τ tends to be much greater where hillshade has less presence.

8.4.2 Sensitivity Analysis: αsnow

αsnow is tested for values in the range of 0.60 0.80 with 0.05 increments, using both

the contemporary and historical models for the 2009-2010 and 1959-1978 time

periods respectively to test the sensitivity of the model in terms of the distribution

of melt and the calculation of Q. These intervals are selected as they fall within

an established range of generic snow albedo values (Paterson, 1994). A default

value of 0.70 is used for αsnow as discussed in section 5.4.2 of chapter 5. The

results of these experiments are discussed within the context of the separate models.

Where αsnow was smaller than the 0.70 default setting, increased melt was observed

— converse to where αsnow was greater than the default. The spatial distribution

for the effect of changing αsnow can be seen in figures 8.10 and 8.11.

For all contemporary sensitivity tests, melt is consistently focused to the north

of the glacier in the presumed ablation zone. As the value of αsnow reduces, the

amount of modelled surface elevation changes also increases to the south west.

The melt pattern changes are also replicated by the distribution of Q across the

surface. The south west portion of the glacier is the most elevated and thus, as a

function of the applied lapse rate will be susceptible to the lowest air temperatures

which will in turn result in smaller contributions from ψ to the overall surface

energy Q and therefore ice melt. The areas of greatest melt are also located where

hillshade is of the lowest values.

The observed pattern for the contemporary tests also exists throughout the histor-

ical suite of experiment results. Obvious differences exist in the area of (relatively)

most melt which is more focused to the north east than the north in general as for

the contemporary results. This can be explained in part to the change in hillshade

distribution with the old glacier terminus being relatively more exposed to the

east than to the north alone, resulting in a relative increase in melt as a function

of location. As αsnow is reduced, glacier surface elevation increases from the north
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east to the west as well as in the south west region (as for the contemporary

experiments).

In terms of the proportions of melt occurring within the categories defined in

figures 8.10 and 8.11, for the contemporary model output (see table 8.6), surface

elevation change in the 0 - 0.25 m category decreased as αsnow decreased from 0.80

- 0.60. Conversely, melt occurring in categories between 0.25 - 1.66 m increased as

αsnow decreased. The decrease in the 0 - 0.25 m category with decreasing values

for αsnow can be explained as elevation changes migrate into the larger (> 0.25 m)

elevation change categories. Comparing the extreme values for the contemporary

experiments, for the 0 - 0.75 m elevation change category, 98% and 89% of melt

occurred for αsnow values of 0.8 and 0.6 respectively.

For the historical model outputs (see table 8.7), there is no change within the 0 m

elevation change category (with all instances being attributable to positions where

ice thickness is at 0 m from the beginning of the model run and therefore elevation

change is not possible). For the 0 - 2.5 m elevation change category, there is less

proportional melt modelled as αsnow decreases from 0.80 - 0.60. Collectively for

categories indicative of elevation change greater than 0.5 m, the proportion of

modelled melt increases with reductions in the value of αsnow. Comparing the

extreme values for the historical experiments, for the 0 - 7.5 m elevation change

category, 89% and 69% of melt occurred for αsnow values of 0.8 and 0.6 respectively.

To assess the main differences between using αsnow values of 0.60 and 0.80, differ-

ence surfaces are displayed in figure 8.12 for both the contemporary and historical

models. These surfaces are calculated by subtracting the 0.80 experimental sur-

faces from the 0.60 experimental surfaces. For the historical experiments, relative

changes are most pronounced across the northern area of the glacier with some

increases to the south west. Relative changes area least from the south east

perimeter to the west north west - this is where hillshade is greatest. Coupled with

a large value of 0.80 for αsnow, this appears to hinder snow melt, by limiting the

exposure of the ice surface, required for elevation change to be recorded. The most

noticeable changes are where the glacier elevation (m a.s.l.) is lowest and therefore
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Figure 8.10: Contemporary model response in terms of surface elevation change and
June/July/August mean summer Q, to changing values of αsnow from 0.60 - 0.80 for the
period of October 2009 - December 2010. Mean summer surface Q is calculated as the mean of
Q values extracted for the middle of June, July and August 2010.
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Figure 8.11: Historical model response in terms of surface elevation change and
June/July/August mean summer Q, to changing values of αsnow from 0.60 - 0.80 for the
period of August 1959 - July 1978. Mean summer surface Q is calculated as the mean of Q
values for June, July and August of 1969 (randomly selected from the year test range)
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Table 8.6: Snow albedo sensitivity results: contemporary results

Experimental snow albedo values
0.6 0.65 0.7 0.75 0.8

Elevation change (m) % % % % %
0 11.48 12.61 14.16 16.11 18.41

0 - 0.25 36.20 40.67 44.54 48.28 53.16
0.25 - 0.5 25.96 25.72 23.62 20.96 17.76
0.5 - 0.75 15.65 13.42 12.31 10.96 8.98

0.75 - 1 6.90 5.13 3.98 3.32 1.67
1 - 1.25 2.50 1.58 1.32 0.36 0.03

1.25 - 1.5 0.82 0.87 0.08 0.00 0.00
1.5 - 1.66 0.50 0.01 0.00 0.00 0.00

Table 8.7: Snow albedo sensitivity results: historical results

Experimental snow albedo values
0.6 0.65 0.7 0.75 0.8

Elevation change (m) % % % % %
0 6.63 6.63 6.63 6.63 6.63

0 - 2.5 26.93 30.17 36.09 45.30 50.93
2.5 - 5 24.80 24.76 21.88 16.08 16.55
5 - 7.5 10.17 9.94 10.61 12.63 15.57

7.5 - 10 7.42 8.62 11.98 15.91 8.89
10 - 12.5 9.14 12.36 10.58 2.55 0.97
12.5 - 15 10.46 6.05 1.79 0.78 0.47
15 - 17.5 3.43 1.29 0.44 0.14 0.00
17.5 - 20 0.95 0.19 0.00 0.00 0.00
20 - 22.5 0.08 0.00 0.00 0.00 0.00
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Figure 8.12: Difference surfaces of model outputs for αsnow values between 0.60 and 0.80. The
surfaces are calculated by subtracting the 0.80 surfaces from those calculated with a value of
0.60. Therefore, values indicate where surface change was greater under conditions where αsnow

was set to 0.60.
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air temperatures are highest (which directly influences ψ and its contribution to

Q). Where αsnow is of a lesser value, snow will melt faster exposing the ice surface

and allowing energy surplus to drive elevation change. For the contemporary

experiment difference surfaces, a αsnow of 0.60 results in greatest change in the

northern and south western areas of the glacier with little change across the centre

of the glacier. These areas are those least affected by hillshade and consequently

the rate of snow melt will increased, allowing exposure of the ice surface. The

difference between the two values of αsnow is not as apparent as for the historical

model as the change in glacier size by 2009/2010 results in a much larger portion

of the glacier being affected by hillshade which retards snow melt rates to a great

extent.

8.4.3 Sensitivity Analysis: αice

To test the sensitivity of the model in terms of the distribution of melt and the

calculation of Q, experiments are run using values of 0.29, 0.34, 0.39, 0.44 and

0.49 for αice. These intervals are selected as they fall within an established range

of generic ice albedo values (Paterson, 1994). A default value of 0.39 is used for

αice as discussed in section 5.4.2 of chapter 5. The results of these experiments

are discussed within the context of the separate models.

Where αice was smaller than the 0.39 default setting, small areas of increased melt

were observed. Decreases in the amount of total melt resulted from increasing

the value of αice relative to the default. The spatial distribution for the effect of

changing αice can be seen in figures 8.13 and 8.14.

The contemporary model outputs do not appear to be particularly sensitive to

changes in αice. There is some more melt associated with smaller values for

αice which can be identified to the far north east and the upper north west.

There are some very slight increases to the south west. Mean melt values of 0.28

m and 0.25 m are recorded for models using αice values of 0.29 and 0.49 respectively.
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As with the contemporary model, the historical model is not particularly sensitive

to changes in αice. Observable change appears to be along the north east perimeter

of the glacier, which is associated with low hillshade values, lower elevations and

thinner winter snow pack. The enhancement of Q can be seen clearly in figure

8.13, with the greatest changes being focused to the north of the glacier. Mean

melt values of 4.54 m and 4.19 m are recorded for models using αice values of 0.29

and 0.49 respectively.

Considering proportional melt across the surface (table 8.8), for the contemporary

model run, within the 0 - 0.25 m category, values decreased as αice decreased.

This would be expected as for all categories greater than 0.25 m change, values

increased as αice decreased. In the range 0 - 0.75 m, 94% and 95% of elevation

change occurred for model runs using αice values of 0.29 and 0.49 respectively.

In terms of elevation change relative to these model experiments, a significant

negative correlation exists between melt and increasing values of αice (p = 0.00 ,

Pearsons correlation coefficient = -0.99).

For the historical model runs, the proportion of melt (table 8.9) occurring within

the 0 - 2.5 m category decreased as αice decreased. Between 2.5 - 10 m change

the patterns of change between the different experiment runs is unclear. This

can be explained as the changes modelled filtered through to the larger elevation

change categories. Categories representing elevation change greater than 10 m

then increased with decreasing values for αice. In the range 0 - 7.5 m, 74% and

76% of elevation change occurred for model runs using αice values of 0.29 and 0.49

respectively. In terms of elevation change relative to these model experiments, a

significant negative correlation exists between melt and increasing values of αice

(p = 0.00 , Pearsons correlation coefficient = -0.99).

To assess the main differences between using αice values of 0.29 and 0.49, difference

surfaces are displayed in figure 8.12 for both the contemporary and historical

models. These surfaces are calculated by subtracting the 0.49 experimental

surfaces from the 0.29 experimental surfaces.
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Figure 8.13: Contemporary model response in terms of surface elevation change and
June/July/August mean summer Q, to changing values of αice from 0.29 - 0.49 for the period of
October 2009 - December 2010. Mean summer surface Q is calculated as the mean of Q values
extracted for the middle of June, July and August 2010.
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Figure 8.14: Historical model response in terms of surface elevation change and
June/July/August mean summer Q, to changing values of αice from 0.29 - 0.49 for the period
of August 1959 - July 1978. Mean summer surface Q is calculated as the mean of Q values for
June, July and August of 1969 (randomly selected from the year test range)
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Table 8.8: Ice albedo sensitivity results: contemporary results

Experimental ice albedo values
0.29 0.34 0.39 0.44 0.49

Elevation change (m) % % % % %
0 14.16 14.16 14.16 14.16 14.16

0 - 0.25 43.49 44.00 44.54 45.16 45.81
0.25 - 0.5 23.70 23.68 23.62 23.53 23.42
0.5 - 0.75 12.41 12.35 12.31 12.14 12.10

0.75 - 1 4.16 4.10 3.98 3.85 3.68
1 - 1.25 1.42 1.38 1.32 1.14 0.83

1.25 - 1.5 0.65 0.33 0.08 0.01 0.01

Table 8.9: Ice albedo sensitivity results: historical results

Experimental ice albedo values
0.29 0.34 0.39 0.44 0.49

Elevation change (m) % % % % %
0 6.63 6.63 6.63 6.63 6.63

0 - 2.5 34.51 35.33 36.09 36.95 37.95
2.5 - 5 22.42 22.09 21.88 21.57 21.02
5 - 7.5 10.68 10.68 10.61 10.67 10.87

7.5 - 10 10.72 11.23 11.98 12.54 13.28
10 - 12.5 11.80 11.34 10.58 10.04 8.94
12.5 - 15 2.52 2.10 1.79 1.26 1.08
15 - 18.0 0.72 0.60 0.44 0.34 0.24
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Figure 8.15: Difference surfaces of model outputs for αice values between 0.29 and 0.49. The
surfaces are calculated by subtracting the 0.49 surfaces from those calculated with a value of
0.29. Therefore, values indicate where surface change was greater under conditions where αice

was set to 0.49.
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8.4.4 Sensitivity Analysis: Wind factor

The wind factor is used to simply emulate the effect that wind would be expected

to have on stripping snow off the glacier surface. Wind patterns are not calculated

specifically within the model. From field observations, melt is not the only factor

leading to mass loss with wind being important. This has not been specifically

quantified by measurements however. The wind factor value is implemented within

the model by modifying the rate of snow melt. The factor is a value between 1

and 0. The closer the value is to 0, the greater the effect that the factor has on

snow mass loss; the inverse being true for a factor value closer to 1. References

to elevation change as a function of melt throughout this chapter and chapter 9,

although altered by the value of the wind factor (see below), represent ice surface

change as calculated using equation 5.13. This is separate to the elevation of the

top of the snowpack that sits on the glacier surface which is affected by the wind

factor (through varying snowpack thickness).

To test the sensitivity of the model in terms of the distribution of melt and the

calculation of Q, experiments are run using values of 0.3, 0.4, 0.5, 0.6 and 0.7

for the wind factor, using both the contemporary and historical models for the

2009-2010 and 1959-1978 time periods respectively, for reasons discussed in section

8.1. A default value of 0.5 is used within the normal model set up. The results of

these experiments are discussed within the context of the separate models. The

spatial distribution for the effect of changing wind factor values can be seen in

figures 8.16 and 8.17.

Spatially for the contemporary experiments, smaller wind factor values result in

melt extent occurring within the 0.5 - 1.0 m category to extend from the more

northern region, increasingly south. This migration is uphill, in terms of glacier

elevation (m a.s.l.). To the south west of the glacier, there is also an increase in

elevation change. Relative to the center of the glacier, snow thickness is less in

this region. Conversely, as the wind factor increases towards 0.70, melt within the

0.5-1.0 migrates north. The melt patterns are matched by the Q surface patterns.
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As with the contemporary experimental surface outputs, smaller wind factor values

result in greater elevation change. As the wind factor reduces from 0.70 to 0.30,

elevation change initially focused at the terminus to the east spreads increasingly

west. There is also increasing elevation change propagating from the south west

and then to the centre of the glacier. There is little change to the west using

different wind factors which may relate to hillshade.

Considering the proportion of melt occurring within different elevation change

categories, for the contemporary sensitivity experiments (see table 8.10), elevation

change within the 0 - 0.25 m category reduced as the wind factor size decreased

from 0.70 to 0.3. For elevation changes of 2.5 m or greater, the proportion of

melt increased as the wind factor decreased in size. Assessing the proportion of

melt occurring within the 0 - 0.75 m elevation change category, values of 83% and

99% are recorded for wind factor values of 0.3 and 0.7 respectively. These results

support the enhanced elevation change effect that a smaller wind factor value has

on the model.

For the historical wind factor sensitivity experiments (see table 8.11), the propor-

tion of melt occurring within the 0 - 2.5 m elevation change category decreased

with the application of smaller wind factor values. The general overall trend

was for an increase in melt occurring in the larger elevation change categories

(7.5 - 22.5 m) as smaller wind factor values were applied. The pattern of change

based on individual categories is not as clear as for some of the aforementioned

proportional change descriptions for other sensitivity experiments discussed here.

This may be explained in part due to local effects relating to the spatial variability

in snow thickness across the surface as well as other factors including hillshade.

Despite potentially localised effects, the overall trend of increased elevation change

with reduced wind factor values still stands. This is further supported when

considering the proportion of melt in the 0 - 7.5 m category for the extreme values

tested. Proportions in this category of 61% and 97% for wind factor values of 0.3

and 0.7 being recorded respectively.
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Figure 8.16: Contemporary model response in terms of surface elevation change and
June/July/August mean summer Q, to changing wind factor values from 0.3 - 0.7 for the
period of October 2009 - December 2010. Mean summer surface Q is calculated as the mean of
Q values extracted for the middle of June, July and August 2010.
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Figure 8.17: Historical model response in terms of surface elevation change and
June/July/August mean summer Q, to changing wind factor values from 0.3 - 0.7 for the
period of August 1959 - July 1978. Mean summer surface Q is calculated as the mean of Q
values for June, July and August of 1969 (randomly selected from the year test range)
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Table 8.10: Wind factor sensitivity results: contemporary results

Experimental wind values
0.3 0.4 0.5 0.6 0.7

Elevation change (m) % % % % %
0 5.13 7.75 14.16 28.38 51.62

0 - 0.25 14.29 31.15 44.54 42.60 28.22
0.25 - 0.5 44.42 37.93 23.62 19.09 14.79
0.5 - 0.75 18.66 12.78 12.31 7.17 4.32

0.75 - 1 11.47 7.18 3.98 2.33 1.04
1 - 1.25 4.23 2.27 1.32 0.42 0.01

1.25 - 1.5 1.21 0.93 0.08 0.00 0.00
1.5 - 1.75 0.60 0.01 0.00 0.00 0.00

Table 8.11: Wind factor sensitivity results: historical results

Experimental wind values
0.3 0.4 0.5 0.6 0.7

Elevation change (m) % % % % %
0 6.63 6.63 6.63 5.77 5.77

0 - 2.5 14.48 24.27 36.09 28.89 29.05
2.5 - 5 26.03 26.58 21.88 21.93 21.83
5 - 7.5 13.50 10.67 10.61 15.61 21.12

7.5 - 10 8.75 9.10 11.98 26.05 20.56
10 - 12.5 8.88 9.52 10.58 1.76 1.67
12.5 - 15 7.22 10.43 1.79 0.00 0.00
15 - 17.5 11.15 2.45 0.44 0.00 0.00
17.5 - 20 3.06 0.35 0.00 0.00 0.00
20 - 22.5 0.31 0.00 0.00 0.00 0.00
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Figure 8.18: Difference surfaces of model outputs for wind factor values between 0.3 and 0.7.
The surfaces are calculated by subtracting the 0.7 surfaces from those calculated with a value of
0.3. Therefore, values indicate where surface change was greater under conditions where the
wind factor value was set to 0.3.
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To assess the main differences between using different wind factor values of 0.3

and 0.7, difference surfaces are displayed in figure 8.18 for both the contemporary

and historical models. These surfaces are calculated by subtracting the 0.7

experimental surfaces from the 0.3 experimental surfaces.

8.4.5 Sensitivity Analysis: Snowfall threshold

The default snowfall factor employed within the model is 1.5◦C. When a cell is

at or below this temperature during the summer months and there is recorded

precipitation, the precipitation will fall at the cell in question as snow (the specifics

of this are discussed in section 5.4.5 of chapter 5). A value of 1.5◦C is used here as
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Table 8.12: Proportional melt resultant of the snowfall threshold sensitivity analysis for values
in the range of 0.5 - 2.5◦C using the contemporary model (2009 - 2010)

Experimental snow threshold values
0.5 1.0 1.5 2.0 2.5

Elevation change (m) % % % % %
0 13.78 13.91 14.16 14.42 14.71

0 - 0.25 44.46 44.55 44.54 44.74 44.78
0.25 - 0.5 23.82 23.69 23.62 23.35 23.09
0.5 - 0.75 12.39 12.42 12.31 12.16 12.14

0.75 - 1 4.07 4.00 3.98 3.96 3.93
1 - 1.25 1.38 1.34 1.32 1.30 1.30

1.25 - 1.45 0.11 0.09 0.08 0.07 0.04

Table 8.13: Proportional melt resultant of the snowfall threshold sensitivity analysis for values
in the range of 0.5 - 2.5◦C using the historical model (1959 - 1978)

Experimental snow threshold values
0.5 1.0 1.5 2.0 2.5

Elevation change (m) % % % % %
0 6.63 6.63 6.63 6.63 6.63

0 - 2.5 35.32 35.50 36.09 36.10 36.38
2.5 - 5 22.62 22.45 21.88 21.91 21.79
5 - 7.5 10.59 10.58 10.61 10.69 10.75

7.5 - 10 11.91 11.97 11.98 11.98 12.19
10 - 12.5 10.66 10.61 10.58 10.53 10.20
12.5 - 15 1.82 1.82 1.79 1.73 1.64

15 - 17 0.44 0.44 0.44 0.43 0.42

taken from Giesen & Oerlemans (2012). To test model sensitivity to this factor,

five experiments were run, with values deviating either side of the default by

0.5◦C, giving an experimental range of 0.5 - 2.5◦C.

Despite the variability of the values applied, there was very little spatial variation

in surface elevation change and Q propagation for both the contemporary and

historical model runs. Consequently maps are not displayed. Proportional melt

values are presented in tables 8.12 and 8.13.

For the contemporary results, it is clear that there is little change between the
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categories with regard to changing snowfall threshold values. Taking the 0 - 0.75

m elevation change for example, 94% and 95% of total melt occurred within this

range for threshold values of 0.5 and 2.5 respectively. Where there are changes

between categories, the maximum difference is <1% of proportional melt. Similar

trends are apparent within the historical results. Within the 0 - 7.5 m range,

75% and 76% of proportional melt was modelled for threshold values of 0.5 and

2.5 respectively. This is indicative of little change. There are some very small

increases in melt with threshold values closer to 0.5 identified within elevation

change categories >2.5 m but no changes are >1%.

8.4.6 Sensitivity Analysis: Temperature lapse rate

A default lapse rate of 0.0065◦K m-1 is set within the model, adopted from Giesen

& Oerlemans (2012) and discussed in section 5.4.4 of chapter 5. Sensitivity exper-

iments are reported here where lapse rates in the range of 0.0050 - 0.0070◦K m-1

were tested. Where the lapse rate was closer to 0.0050◦K m-1, far greater melt

was observed for both the contemporary and historical model runs compared to

using a lapse rate closer to 0.0070◦K m-1. The results of these experiments are

discussed within the context of the separate models and model run output maps

are displayed in figures 8.19 and 8.20.

A strong pattern is apparent for elevation change and change in Q in response to

different lapse rate values for the contemporary model run. Using a lapse rate

of 0.0070◦K m-1, melt within the 0.25 m+ elevation change category is restricted

to the south west and northern portions of the glacier with the centre of the

glacier being represented by elevation change within the 0 - 2.5 m elevation change

category. As the lapse rate reduces towards 0.0050, elevation change increases from

the south west to the centre of the glacier along a north east trajectory. Elevation

change in the far south west increases from being within the 0.25 - 0.5 m range

to mainly the 0.5 - 0.75 m range. The centre of the glacier becomes increasingly

represented by the 0.25 - 0.5 category as the lapse rate reduces to 0.0050. In the

northern area of the glacier, with lapse rate values closer to 0.0050, areas within

the 0.75 - 1.0 m elevation change category increase in size and elevation change
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Figure 8.19: Contemporary model response in terms of surface elevation change and
June/July/August mean summer Q, to changing lapse rate values from 0.0050 - 0.0070◦K
m-1 for the period October 2009 - December 2010. Mean summer surface Q is calculated as the
mean of Q values extracted for the middle of June, July and August 2010.
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Figure 8.20: Historical model response in terms of surface elevation change and
June/July/August mean summer Q, to changing lapse rate values from 0.0050 - 0.0070◦K
m-1 for the period August 1959 - June 1978. Mean summer surface Q is calculated as the mean
of Q values for the June, July and August 1969 (randomly selected).
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Table 8.14: Proportional melt (contemporary) resultant of temperature lapse rate variation
for values in the range of 0.0050 - 0.0070◦K m-1

Experimental lapse rate values
0.005 0.0055 0.006 0.0065 0.007

Elevation change (m) % % % % %
0 5.92 7.72 10.67 14.16 19.50

0 - 0.25 23.35 32.44 40.51 44.54 46.11
0.25 - 0.5 41.02 34.78 28.54 23.62 18.68
0.5 - 0.75 19.77 17.25 14.05 12.31 10.95

0.75 - 1 7.24 5.66 4.47 3.98 3.61
1 - 1.25 1.84 1.55 1.48 1.32 1.13

1.25 - 1.5 0.86 0.61 0.28 0.08 0.01

increases south towards the glacier centre. These changes in elevation change are

matched by changes represented by the summer Q maps.

A very similar response pattern is displayed by the historical model results with

increasing elevation change rates encroaching to the centre of the glacier from the

south west and the north/north east. These patterns are equally expressed by

the Q surfaces. Relative increases in elevation change in the northern portion of

the glacier advance on a more east-west/east-south west trajectory than for the

contemporary surfaces which matches the relatively different hillshade coverage

manifested over the glacier for these years.

For both models, even at 0.0050, the lowest lapse rate experimented with here,

elevation change is still most limited at the centre of the glacier. This region is

the most affected by hillshade and is also associated with the thickest winter snow

cover (see sections 8.3.1, 8.3.2 as well as 5.1.2 and 5.2.2 in chapter 5). Considering

the temperature forcing induced, these are identified as limiting factors to surface

elevation change.

For the contemporary model run, with regard to proportional elevation change

(see table 8.14) there is a large reduction in change occurring within the 0 m

category, reducing by 14% as the lapse rate shifts from 0.0070 - 0.0050. A small

percentage of the 0 category is fixed as it is associated with parts of the glacier
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Table 8.15: Proportional melt (historical) resultant of temperature lapse rate variation for
values in the range of 0.0050 - 0.0070◦K m-1

Experimental lapse rate values
0.005 0.0055 0.006 0.0065 0.007

Elevation change (m) % % % % %
0 6.63 6.63 6.63 6.63 6.63

0 - 2.5 20.99 24.83 29.45 36.09 45.02
2.5 - 5 23.73 28.04 26.20 21.88 14.95
5 - 7.5 17.63 11.58 10.93 10.61 10.90

7.5 - 10 9.65 9.75 10.24 11.98 14.32
10 - 12.5 12.00 13.41 12.97 10.58 6.83
12.5 - 15 7.99 4.91 2.94 1.79 1.02
15 - 17.5 1.14 0.75 0.65 0.44 0.33
17.5 - 20 0.24 0.10 0.00 0.00 0.00

where ice thickness is unknown and consequently set to 0. However, a large portion

of this category is not defined in this way and a reduction in this category for

increasingly smaller lapse rate values is because of increased surface melt relating

to an increase in Q. Within the 0 - 0.25 m category there is a reduction in the

proportion of melt occurring as lapse rate value reduces. This can be explained

as more melt is attributed to the larger categories. Overall, there is an increase

in the proportion of elevation change occurring between 0.5 - 1.5 m as lapse rate

values reduce towards 0.0050. The most noticeable increase occurs within the 0.25

- 0.75 m category where there is an increase from 30% to 61% of melt occurring

when using lapse rate values of 0.0070 and 0.0050 respectively. The drivers for

these changes are described above.

For the historical model, proportional melt (see table 8.15) decreases in the 0

- 2.5 m category as the lapse rate moves from 0.0070 to 0.0050. There is then

an overall increase in the proportion of melt between 2.5 - 20.0 m as the lapse

rate value decreases, with 75% and 48% of melt occurring within this category

for lapse rate values of 0.0050 and 0.0070 respectively. In the 0-7.5 m category,

more melt occurs using a greater lapse rate - model outputs being 69% and 78%

for lapse rates of 0.0050 and 0.0070 respectively. To assess the main differences

between using different lapse rates of 0.0050 and 0.0070, difference surfaces are
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Figure 8.21: Difference surfaces of model outputs for lapse rate values between 0.0050 and
0.0070◦K m-1. The surfaces are calculated by subtracting the 0.0070 surfaces from those
calculated with a lapse rate of 0.0050◦K m-1. Therefore, values indicate where surface change
was greater under conditions where the lapse rate was at 0.0050◦K m-1.
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displayed in figure 8.21 for both the contemporary and historical models. These

surfaces are calculated by subtracting the 0.0070 experimental surfaces from the

0.0050 experimental surfaces.

8.4.7 Sensitivity Analysis: Winter snowpack thickness

Snow thickness during the winter months is based on snow probe measurements

taken at the end of the accumulation season. It is assumed that depths measured

are representative of the total accumulation throughout the winter season at

a given point. The probe measurements are then used to interpolate a winter

snow surface. To assess the density of the winter snow pack, snow pits were

excavated and densities measured. It is possible that the method applied by

which to approximate winter snow thickness is either an over or underestimate -

largely due to the effects of wind. The snow surface once day can be very different

the next due to drifting. The snow density analysis (see section 5.4.6 in chapter

5) alludes to the density profile being similar to that associated with wind slab.

Consequently, to test model sensitivity to under or overestimates of winter snow

pack thickness, experiments were run testing overestimates of +0.5 m and +1.0 m

and underestimates of -0.5 m and -1.0 m. The default is tested for completeness.

For the contemporary model, this involved the addition/subtraction of the value

being tested to the input winter snow surfaces. For the historical model, it required

an alteration to the winter snow distribution algorithm, with specific regard to the

factor used to alter ANS analysis to the glacier mean snow thickness (see section

5.2.2 in chapter 5).

Forcing the model with a variable winter snowpack thickness has a very striking

result in the pattern of elevation change identified from the model outputs. Where

the snowpack is greatest (the +1.0 scenario), surface change is limited to the

north and south west of the glacier. As the snowpack forcing lessens, surface

change alters most noticeably in the glacier centre with the most limited surface

change being focused along the south east perimeter of the glacier (this is an area

affected largely by topographic shading) when using the default snowpack thick-

ness setting (±0.0 modification). With reduced snowpack thickness forced with a
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-0.5 modification, change affects the entire glacier with parts of the central glacier

contributing to change within the 0.25 - 0.5 m category (limited in all previous

runs to the 0 - 0.25 m change category). With -0.5 m forcing, the south-west of

the glacier has noticeable increases in the 0.5 - 0.75 m change category. With

-1.0 m forcing, across the glacier, change is limited within the 0 - 0.25 m change

category, with most change occurring at higher rates. The most limited melt is

at the glacier perimeter (where ice thickness is limited and therefore results in

0 change once depleted) and within the centre of the glacier - where the winter

snowpack is remains thickest (despite a change in overall snow thickness) and

topographic shading is greatest. These changes are replicated by the Q surfaces

although to a lesser extent, especially within the centre of the glacier where the

snowpack is thicker. A thicker snowpack will remain through the ablation season

longer than a thinner pack, largely due to its modification of I as a function of

αsnow (see equations 5.10 and 5.13).

Snow thickness forcing has an equally striking impact on the historical model

outputs. A modification of -1.0 drastically increases overall melt with mean melt

being 7.8 m compared to 2.6 m for when a +1.0 m modification is applied. The

area least affected by the change in snow thickness is the centre of the glacier

(which represents the middle of the overall elevation range) where the snow is

thickest relative to the rest of the surface (see section 5.2.2 of chapter 5) and

hillshade is most affecting (see sections 8.3.1 and 8.3.2). The areas of greatest

increase in melt with the -0.5 m and -1.0 m modifications are most notably the

north-east regions with significant change also to the south west. Q patterns

match the elevation change patterns, both of which are displayed in figure 8.23.

It should be noted that -1.0 m and +1.0 m scenarios are unrealistic during the

winter season, especially where the snowpack is already known/predicted to be

at its thinnest (i.e. ≤1.0 m) but these experiments are still useful in discerning

overall factors driving change over the glacier surface and for the identification of

the most sensitive regions.

Considering the elevation change resultant of the contemporary model runs (see

table 8.16), in all cases, as snow thickness reduced, the proportion of change
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Figure 8.22: Contemporary model response in terms of surface elevation change and
June/July/August mean summer Q, to winter snow thickness, modified by values in the
range +1.0 - -1.0 m for the period October 2009 - December 2010. Mean summer surface Q is
calculated as the mean of Q values extracted for the middle of June, July and August 2010.
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Figure 8.23: Historical model response in terms of surface elevation change and
June/July/August mean summer Q, to winter snow thickness, modified by values in the
range +1.0 - -1.0 m for the period October 2009 - December 2010. Mean summer surface Q is
calculated as the mean of Q values extracted for the middle of June, July and August 2010.

Surface elevation change (m) -2
Summer mean Q (Wm )

20 - 30

30 - 40

40 - 50

50 - 60

60 - 70

70 - 85

-2Q (Wm )

0

0 - 5

5 - 10

10 - 15

15 - 20

20 - 25

25 - 30

Elevation 
change (m)

0
.0

-0
.5

-1
.0

+
0
.5

+
1
.0

E
x
p

e
ri

m
e
n

ta
l 
s
n

o
w

 t
h

ic
k
n

e
s
s
 m

o
d

if
ic

a
ti

o
n

 v
a
lu

e
s

(m
)

280



falling within the 0 category reduced, in total by 53% between the greatest and

least snow thickness conditions. For the 0 - 0.25 m change category, the amount

of melt increased when moving from the greatest snow thickness to the lesser

default, however, values then decreased for greater snow thicknesses set by the

addition of +0.5 and +1.0 m. This can be explained as change associated with

these conditions were in the larger categories. For categories 0.25 - 1.75 m, in all

cases, as snow thickness reduced, elevation change increased. The proportion of

change occurring within this category for the most extreme settings of +1.0 m

and -1.0 m were 17% and 84% respectively. For the 0 - 0.75 m category, portions

of 79% and 99% elevation change are associated with the -1.0 and +1.0 settings

respectively. Less snow across the glacier surface resulted in vastly increased

surface change.

For the historical model outputs (see table 8.17), there is a decrease in the amount

of elevation change within the 0 - 5.0 m category as the amount of snow decreases

(from +1.0 m to -1.0 m). This is explained as where there is less snow, a larger

proportion of melt falls into the larger elevation change categories. For the 15.0

- 30.0 m category, there is a clear increase in the amount of elevation change

occurring for each modification towards a thinner snowpack. For model runs with

+0.5 m and +1.0 m modifications, no elevation change occurs within the 15.0 -

30.0 m category. The pattern of increasing elevation change with reduced snow

is not as clearly represented by the 5.0 - 10.0 m and 10.0 - 15.0 m categories

individually, but treated together, the increase is clear. To compare the extremes,

with a modification of +1.0 m, 21% of melt occurs within this collective category.

The portion of elevation change is increased to 44% with a -1.0 m modification.

To assess the main differences between the snowpack thickness forcing model

results, when using +1.0 m and -1.0 m, difference surfaces are displayed in

figure 8.24 for both the contemporary and historical models. These surfaces

are calculated by subtracting the +1.0 experimental surfaces from the -1.0 m

experimental surfaces.
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Table 8.16: Proportional melt (contemporary) resultant of experimental winter snow thickness
values

Experimental snow thickness values
-1.0 -0.5 0.0 0.5 1.0

Elevation change (m) % % % % %
0 5.13 7.25 14.16 32.27 58.27

0 - 0.25 11.06 27.34 44.54 42.93 24.42
0.25 - 0.5 40.78 38.08 23.62 15.54 12.38
0.5 - 0.75 22.44 16.19 12.31 6.72 3.90

0.75 - 1 13.82 7.76 3.98 2.07 1.02
1 - 1.25 4.75 2.43 1.32 0.47 0.01

1.25 - 1.5 1.49 0.94 0.08 0.00 0.00
1.5 - 1.75 0.53 0.01 0.00 0.00 0.00

Table 8.17: Proportional melt (historical) resultant of experimental winter snow thickness
values

Experimental snow thickness values
-1.0 -0.5 0.0 0.5 1.0

Elevation change (m) % % % % %
0 6.63 6.63 6.63 6.63 6.63

0 - 5.0 34.40 52.1 58.00 64.60 72.70
5.0 - 10.0 28.70 19.1 22.60 27.10 20.50

10.0 - 15.0 15.70 18.7 12.40 1.70 0.20
15.0 - 20.0 12.0 3.50 0.40 0.00 0.00
20.0 - 25.0 2.40 0.03 0.00 0.00 0.00
25.0 - 30.0 0.20 0.00 0.00 0.00 0.00
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Figure 8.24: Difference surfaces of model outputs for winter conditions forced with +1.0 m
and -1.0 m modifications. The surfaces are calculated by subtracting the +1.0 m surfaces from
those calculated with a modification of -1.0 m. Therefore, values indicate where surface change
was greater under conditions with a -1.0 m modification
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8.4.8 Summary

This chapter has provided an error analysis comparing the performance of a

bespoke designed SEB model against observed geodetically derived glacier change

for which model surface error values have been calculated. Annual errors (of

model overestimation) of -0.33 and -1.76 m w.e yr-1 were found for the historical

and contemporary models respectively. Considering the lower glacier alone, con-

temporary model error was reduced to -0.08 m w.e yr-1.

To summarise the sensitivity experiments of analysed in sections 8.4.1 through to

8.4.7, the main changes are displayed in table 8.18. Both the contemporary and

historical models were most sensitive firstly to decreases in the winter snowpack,

increases in the effect of wind (a value closer to 0), thirdly equally sensitive to

decreases in the applied temperature lapse rate (rates closer to 0.0050◦K m-1)

and reductions in αsnow values, and then τ . Comparatively, the models were

least sensitive when associated with reductions to the snowfall threshold and

αice. The nature of the experiments has resulted in the isolation of individual

factors and consequently does not account for co-linear relationships between

them. Such relationships are both likely to exist and also be important in terms

of mass loss sensitivity. Furthermore, as ice dynamics are not accounted for by

the modelling/sensitivity analysis approach, this may further influence the effect

of a given factor on the glacier’s sensitivity in terms of mass loss. Essentially, by

excluding the effects of dynamics, this results in the sensitivity experiments being

based on “reference” type dynamics. The dynamics are fixed as of the date and

time of the glacier at the beginning of any given model run and do not change.
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Table 8.18: Model sensitivity to factors discussed in sections 8.4.1 to 8.4.7.
Increases and decreases are in reference to the % change in surface elevation
change relevant to the default factor setting

Contemporary model Historical model

Experiment Increase Decrease Increase Decrease

% % % %

τ (0.35) 25.12 0.00 20.63 0.00

τ (0.40) 11.37 0.00 9.82 0.00

τ (0.45) - - - -

τ (0.50) 0.00 -9.51 0.00 -8.91

τ (0.55) 0.00 -17.45 0.00 -16.79

αsnow (0.60) 29.86 0.00 31.16 0.00

αsnow (0.65) 14.77 0.00 15.60 0.00

αsnow (0.70) - - - -

αsnow (0.75) 0.00 -13.68 0.00 -15.37

αsnow (0.80) 0.00 -25.92 0.00 -29.29

αice (0.29) 4.76 0.00 3.96 0.00

αice (0.34) 2.38 0.00 1.99 0.00

αice (0.39) - - - -

αice (0.44) 0.00 -2.37 0.00 -2.01

αice (0.49) 0.00 -4.72 0.00 -4.05

Wind (0.30) 77.23 0.00 65.66 0.00

Wind (0.40) 36.82 0.00 30.34 0.00

Wind (0.50) - - - -

Wind (0.60) 0.00 -31.89 0.00 -25.64

Wind (0.70) 0.00 -55.65 0.00 -46.38

Snowfall thresh. (0.5) 1.39 0.00 0.45 0.00

Snowfall thresh. (1.0) 0.68 0.00 0.33 0.00

Snowfall thresh. (1.5) - - - -

Snowfall thresh. (2.0) 0.00 -1.00 0.00 -0.27

Snowfall thresh. (2.5) 0.00 -1.79 0.00 -0.96

TLR (0.0050) 30.10 0.00 20.45 0.00

Continued on Next Page. . .
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Table 8.18 - Continued

Contemporary model Historical model

Experiment Increase Decrease Increase Decrease

% % % %

TLR (0.0055) 14.54 0.00 9.92 0.00

TLR (0.0060) - - - -

TLR (0.0065) 0.00 -13.67 0.00 -9.33

TLR (0.0070) 0.00 -26.19 0.00 -18.01

Winter snow thick. (-1.0) 93.03 0.00 72.30 0.00

Winter snow thick. (-0.5) 44.04 0.00 29.94 0.00

Winter snow thick. (0.0) - - - -

Winter snow thick. (+0.5) 0.00 -37.37 0.00 -25.87

Winter snow thick. (+1.0) 0.00 -62.96 0.00 -46.92

These experiments in themselves provide a lot of information to the melt pattern

of the glacier and the controls upon it and this is discussed in chapter 10. To

further address the change that the test parameters had on the model, the mean

summer energy available at the surface (Q), as calculated using equation 5.13,

is considered for which the results are displayed in figures 8.25 and 8.26. The

box-plots are constructed for the contemporary model outputs using mean daily

Q calculated for all days in June, July and August. The plots for the historical

model are constructed using the June, July and August monthly Q means.

The change in mean Q measured across the glacier surface for the different sensi-

tivity runs (figures 8.25 and 8.26) holds a very similar trend to the maps used

to illustrate surface elevation change under the same conditions in sections 8.4.1

to 8.4.7 as would be expected. For the historical model runs and with reference

to figure 8.25), with increasing distance from the origin along the x axis there

is a clear reduction in Q for the τ , αsnow, αice, and lapse rate experiments. The

same pattern is displayed by the wind and snow thickness modification charts also,

albeit much more subtly. There is no particular change for the summer snowfall

threshold experiment. For the contemporary experiments, clear reductions in Q
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Figure 8.25: Boxplots displaying sensitivity analysis results using the historical model for the
period of 1959 - 1978 (June, July and August)
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Figure 8.26: Boxplots displaying sensitivity analysis results using the contemporary model for
the period of 2009-2010 (June, July and August)
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can be observed for the τ , αsnow, lapse rate experiments and thickness modification

experiments. There is a subtle reduction in Q with increases in αice and no real

change when considering summer snowfall threshold temperature.

The differences between the two models in terms of sensitivity are that the

contemporary model shows a stronger sensitivity to winter snow thickness modi-

fication when compared to the historical model and the historical model shows

a greater sensitivity to αice. The increased sensitivity of the historical model to

ice albedo is possibly associated with the presence of a shallower snowpack at

lower altitudes which is more rapidly removed during the ablation period (due

to enhanced bulk flux contribution relating to higher temperatures as a function

of adiabatic change), exposing the ice and enabling modification of surface Q.

Importantly, this will couple with lower hillshade cover which further enhances

surface Q, further increasing the rate of winter snowpack removal during the

ablation period. The increased sensitivity of the contemporary model to increases

in the winter snowpack thickness is interesting. Due to increased hillshade cover

of the 2009-2010 glacier extent compared to that during the 1959-1978 period, the

surface of which is used in the historical sensitivity analysis,a thicker snowpack

will take considerably longer to remove during the ablation season, due both the

increased volume and the change in α that this brings, further reducing Q at

the surface. The reduced effect of hillshade across the 1959-1978 glacier surface

is likely to be a key factor in the relatively reduced sensitivity of the historical

model, which will result in relatively enhanced snow melt compared to a more

shaded surface. This is discussed in chapter 10.

Comparing the default settings for the different sensitivity experiments repre-

sented in the individual plots of figures 8.25 and 8.26, mean Q is lower when

using the contemporary model relative to the historical model, where mean Q

is approximately 18 Wm−2 and 21 Wm−2 respectively. As discussed in section

8.3, the glacier by 2010 is much more shaded than it was in 1959, and it is to

this which the reduction of mean Q is attributed. A true difference in Q between

the two models may in fact be greater than that calculated here as the mean

value of Q for the historical model may be underestimated when compared to
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the contemporary model as the former is driven by mean monthly temperatures

compared to the latter which is driven by daily temperatures. Monthly averaging

may result in the calculation of lower temperatures — which are then used as

the model input — as the mean will be sensitive to extremely low temperature

values, despite lower temperatures perhaps existing for fewer hours when melt is

not actually occurring.

This chapter, coupled with chapter 5 meets the aim of developing a user friendly

grid based distributed surface energy balance model which uses reconstructed sur-

faces as an input, combined with meteorological data from the field and addresses

the objective of conducting model scenarios with the developed model to assess

the effects of meteorological and topographic forcing on surface energy balance and

mass balance change. Considering the model performance compared to observed

glacier change, model sensitivity can be used to infer glacier sensitivity. The

model sensitivity results that have been considered here are coupled with the

results of glacier change assessment (chapters 6 and 7) and further discussed in

chapter 10 to derive an understanding of the effects of sensitivity on glacier mass

change for the period 1926-2010.
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Chapter 9

Results: Conventional and

reference mass balance modelling

Two models — the historical and the contemporary (the definitions of which are

outlined at the beginning of chapter 4) — are used to test the effect that changes

in surface geometry have on ice melt on K̊arsa over time. For each experimental

period (discussed in sections 9.1 and 9.2.1), four experiments were carried out.

Each experiment alters how the glacier surface changes through time in terms

of slope and aspect as a function of elevation. To look at the effect of these

properties, the experiments are defined as:

1. Dynamic: As the ice surface of the glacier melts, the elevation of a given

cell within the model reduces. As the elevation changes the relationship

with the surrounding cells is considered, resulting in changes in surface slope

and aspect angles.

2. Slope fixed [referred to as the Slope model]: As the ice surface of the

glacier melts, the elevation of a given cell within the model reduces. As the

elevation changes the relationship with the surrounding cells is considered,

resulting in changes in surface aspect angles. The surface slope angle does

not change, being calculated only once for the surface at the beginning of

the model run.
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3. Aspect fixed [referred to as the Aspect model]: As the ice surface of the

glacier melts, the elevation of a given cell within the model reduces. As the

elevation changes the relationship with the surrounding cells is considered,

resulting in changes in surface slope angles. The surface aspect angle does

not change, being calculated only once for the surface at the beginning of

the model run.

4. Slope and aspect fixed [referred to as the Slope and Aspect model]: As

the ice surface of the glacier melts, the elevation of a given cell within the

model reduces. Despite the elevation changes the surface slope and aspect

angles do not change, being calculated only once for the surface at the

beginning of the model run.

This chapter meets the objective of:

� Conducting model scenarios with the developed model to assess the effects

of geometry change on surface energy balance and mass balance change

therefore addressing the project aim of:

� Assess the effect of changing glacier geometry on the surface energy balance

and mass balance of a small mountain glacier throughout the 20th and

early 21st century with focus on solar radiation contributions and glacier-

topography relationships

9.1 Historical melt modelling experiment results

9.1.1 Meteorological inputs for model runs: 1926-2010

The historical melt model runs were carried out for the periods 1926-1943, 1943-

1959, 1959-1978, 1978-1991 and 1991-2010. These intervals are defined in con-

junction with the maps of the glacier available and that have been used for the

geodetic assessment of glacier change in chapter 6. As discussed at the beginning

of this chapter, four model runs were implemented for the different time periods.

Of interest in this study is the effect that changing glacier surface geometry has
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on ice melt. To assess the effect that the conditions of each different model had

on overall ice melt, results are addressed in terms of mean annual melt. There is

also consideration of any changes in the energy mix - specifically the contribution

of the separate components of I and ψ to Q and acknowledgment of changing

meteorological conditions.

The meteorological conditions — compiled using methods described in section 5.2

of chapter 5 — that are used as the model input are summarised in figure 9.1.

The mean end of winter season snow thickness and the temperatures displayed

are averaged from across the glacier surface (temperature as a function of eleva-

tion through time is discussed in detail in chapter 5). Summer (June, July and

August) and winter (November, December, January and February) temperatures

are displayed over time to further emphasise any trends observable from the data

available.

A visual assessment of the annual temperature data across the glacier from 1926

to 2010 reveals that there are no particularly discernible trends, especially when

considering the moving average. Considering mean annual temperatures, the

warmest years were 1990 and 1938 with average temperatures of -3.7 and -3.8◦C

respectively. The coolest years were 1955 and 1966 with average temperatures of

-7.1 and -6.9◦C respectively. The warmest decades were the 2000s and 1930s with

temperatures of -4.2 and -4.7◦C respectively. The coolest decades were the 1950s

and 60s with temperatures of -5.6 and -5.4◦C respectively.

Spring temperatures over the 1926-2010 period appear to be relatively stable.

Upon closer inspection there are some quite large changes. The warmest springs

were in 2003 and 2004, both with mean temperatures of 5.0◦C. The coldest springs

were in 1966 and 1955 with temperatures of -9.5 and -9.1◦C respectively. This is

indicative of a range in mean spring temperatures of approximately 4◦C.

The summer temperatures show more variation with peaks and troughs being

more apparent. Using a 10 point moving average, there are periodical peaks
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Figure 9.1: Meteorological data (as model input) for the 1926 - 2010 period (Air temperature
and mean winter snowpack thickness)
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approximately every 10-12 years and an approximate 10 year periodicity for tem-

perature troughs. The warmest summer decades were the 1930s and the 2000s

with means of 4.6 and 4.7◦C respectively. The coolest summer decades were the

1920s and 1960s, both with a mean temperature of 3.5◦C. The warmest summers

were in 1950 and 2002 with mean temperatures of 6.3 and 6.2◦C respectively. The

coolest summers were in 1975 and 1929 with mean temperatures of 1.5 and 1.9◦C

respectively.

The coolest autumn temperatures are recorded for 1968 and 1966 both with

temperatures of -5.2◦C. The warmest Autumn temperatures were in 2010 and

1951 with respective temperatures of 0.2 and -0.9◦C.

The winter temperatures show a slightly different periodicity compared to the

summer temperatures. Up to 1970, temperature troughs have an approximate 5

year periodicity. From the 1970s, the spacing increases to approximately every 10

years. A return to a shorter trough spacing appears to redevelop at the beginning

of the 2000s. The trough periodicity is approximately matched by the spacing

between winter temperature peaks. The coldest winter decades were the 1950s

and the 1960s with means of -12.4 and -12.3◦C respectively. The warmest winter

decades were the 1930s and 1990s/2000s, with mean temperatures of -10.8 and

-10.9◦C respectively. The coldest winters were in 1965/1966 and 1955/1956 with

mean temperatures of -15.1 and -15.4◦C respectively. The warmest winters were in

1991/1992 and 1948/1949 with mean temperatures of -8.4 and -8.8◦C respectively.

9.1.2 Surface melting under different experimental condi-

tions: 1926-2010

Considering mean glacier melt in terms of quartiles (figure 9.2) there appears to

be no significant change when considering the median, upper and lower quartiles

in annual melt for all experiments in the period 1943-2010. The only clear changes

are in the outliers and such variability is most apparent when considering the

results for experiments conducted for the 1959-1978 period, with there being more

outliers for the dynamic model than for the slope, aspect and slope & aspect
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models. This general lack of trend is not however followed by the results of

experiments conducted for the 1926-1943 period. In this instance, there is a stark

contrast between the dynamic model results and those for the slope, aspect and

slope & aspect models. There is a difference in mean melt from 0.31 m yr-1, for the

dynamic output, compared to 0.74 m yr-1 for the remaining three models. Consid-

ering the other models relative to the dynamic model run in terms of the lower and

upper quartiles, these are 0.1 m and 0.6 m greater respectively. Considering these

quartiles, it can be deduced that there is an increase in the interquartile range

from 0.36 m to 0.86 m for the dynamic and other runs respectively indicating

a greater dispersion of melt values. When considering the outliers, these are

not thought to be anomalous but are special cases, explained as being caused

by the positioning of areas of the glacier in particularly favorable conditions to

melt. Clearly from this, for the 1926-1943 period, surface melt was enhanced

where slope, aspect or both slope and aspect together were fixed, compared to

a dynamic model run where slope and aspect change through time in line with

surface elevation lowering occurring in response to ice melt.

Considering the limited changes between the model outputs for the 1946-2010

period following the assessment of figure 9.2, as to be expected, there is little

difference between the categorized melt patterns for the same period as can be

seen in figure 9.3. There are some subtle changes that can be identified but these

are most apparent as changes over time as opposed to changes between model

outputs and this will be discussed further below in relation to figure 9.4. Some

very subtle shifts in the proportional melt can be deduced between some model

runs, for example during the 1991-2010 test period, a slight increase in the 0 -

0.25 m category can be seen between the dynamic and aspect runs which then

reduces again for the slope and slope and aspect runs. Such changes are within

the order of <1% and consequently are not treated as being significant.

The most clear changes in proportional melt can be drawn from the 1926-1943 test

period where there is a very clear shift in the pattern of change when considering

the dynamic compared to the other model runs. Fixing geometry either in terms

of slope, aspect or both slope and aspect together results in a decrease from 77%
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Figure 9.2: Box plots of annual surface melting for experiments within the 1926 - 2010 period
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to 46% of melt occurring within the 0-0.5 melt category. For all other categories,

the dynamic model run proportions are exceeded by those of the other runs with

an increase in total glacier melt proportions of 7%, 8%, 10% in the 0.5-1, 1-1.5

and 1.5-2 m categories. For the slope, aspect and slope and aspect runs, there is

also melt accounted for in categories of melt >2 m which are not reached when

using the dynamic model. This further addresses the sensitivity of the glacier to

geometry change during the 1926 - 1943 period and the lack of sensitivity to it

from 1943 onwards, there being little or no change between dynamic and fixed

geometry model runs in this period.

So far, the model outputs have been considered in terms of the effects that ge-

ometry specifically has on melt rates. It is also both interesting and prudent to

consider the changes in melt patterns over time as well as considering the effects

of geometry change. Change over time, relative to the models used, are displayed

in figure 9.4. Irrespective of the models used and considering median annual melt

values, thus avoiding any skew that mean values will be susceptible to considering

some areas of comparatively high melt, annual melt rates were greatest during

1926-1943 jointly followed by 1959-1978 and 1978-1991, with the least melt jointly

for the 1943-1959 and 1991-2010 periods. The change in melt rate is displayed

for the dynamic model runs for all periods in figure 9.5. Specifically considering

annual melt rates >0.75 m yr-1 and again irrespective of the models used, the most

melt occurred during 1926-1943, followed by 1943-1959, 1991-2010, 1978-1991 and

1959-1978. Considering annual melt rates <0.75 m yr-1, the most melt occurred

during 1959-1978 followed by 1978-1991, 1991-2010, 1943-1959 and 1926-1943

which matches the pattern represented when using the median as a measure of

overall melt.

For all runs within the 1943-1959, 1959-1978, 1978-1991 and 1991-2010 periods,

the aforementioned patterns hold true and do not vary. The general patterns

mentioned above also hold for all model runs within the 1926-1943 time frame

however the specific proportions vary significantly. Using the median as a measure

of annual melt for dynamic and fixed geometry runs (treated together here), values

of 0.2 m yr-1 and 0.6 m yr-1 are found respectively. This still indicates that the
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Figure 9.3: Cumulative histograms of annual surface melt for experiments within the 1926 -
2010 period. Plots are displayed here to emphasize the changes within a set time frame as a
function of model type.
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Figure 9.4: Cumulative histograms of annual surface melt for experiments within the 1926 -
2010 period. Plots are displayed here to emphasize the change in melt patterns over time as a
function of Model type.
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Figure 9.5: Historical model experiment results: Change in melt rate over the 1926 - 2010
period (results from the dynamic model experiments)
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highest annual melt, based on the median, was during 1926-1943, but to a much

greater extent when considering fixed geometry. With regard to melt rates >0.75

m yr-1, 10% and 38% of melt occurred for the dynamic and fixed runs respectively.

The increased levels of melt for the fixed model runs in the 1926-1943 period are

matched by a reduction in the total glacier melt occurring within the 0.75 m yr-1

category with a 62% representation compared to 90% for the dynamic run.

9.1.3 Historical mass balance change

Mass balance curves for the individual model runs and map interval time periods

are displayed in figure 9.6. For all runs there is a general trend for reduced mass

balance change with elevation. The separate model runs appear to have had little

effect on mass balance patterns across the glacier elevation range following 1943.

Prior to 1943, the slope fixed, aspect fixed and both slope and aspect fixed model

runs have a strong effect on the 1926-1943 mass balance profile, dramatically

increasing melt, particularly at elevations below approximately 1200 m a.s.l. The

maximum modelled melt for the 1926-1943 increases from -1.25 m w.e for the

dynamic run to approximately -2.4 m w.e. Reductions in mass balance change are

clearly illustrated by the 1926-1943 curve under fixed model conditions between

the 1190 - 1300 m a.s.l. elevation range. Such changes are not easily discernible

for the other map intervals.

Figure 9.7 presents mass balance curves average from the results of the full length

historical model run, from 1926-2010, and represented according to the 2010

elevation range. The curves in figure 9.7 indicate enhanced melting conditions

under all fixed model runs, the most suppressed values being calculated for the

dynamic run. The fixed runs all have a maximum mass balance change value of

approximately -1.25 m w.e. compared to -0.5 m w.e. for the dynamic run. All

runs show mass balance changes to be most suppressed in the 1190 - 1300 m a.s.l.

elevation range and then above 1400 m a.s.l. but again, this is enhanced for the

fixed runs.
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Figure 9.6: Map interval mass balance curves for the aspect fixed, slope fixed, both fixed and
dynamic model runs. Curves are displayed in m w.e. and are generalised for elevation bands on
a 1 m interval across the different glacier ranges.

Both

-3 -2 -1-1.5-2.5 -0.5 0 0.5
800

900

1000

1100

1200

1300

1400

1500

-3 -2 -1-1.5-2.5 -0.5 0 0.5
800

900

1000

1100

1200

1300

1400

1500

Slope

1926-1943 1943-1959
1959-1978 1978-1991

1991-2010

-3 -2 -1-1.5-2.5 -0.5 0 0.5
800

900

1000

1100

1200

1300

1400

1500

Aspect

E
le

v
a

tio
n

 (
m

 a
.s

.l.
)

Specific net balance (b )(m w.e.)n

E
le

va
tio

n
 (

m
 a

.s
.l.

)

Specific net balance (b )(m w.e.)nn

-3 -2 -1-1.5-2.5 -0.5 0 0.5
800

900

1000

1100

1200

1300

1400

1500

Dynamic

303



Figure 9.7: Mass balance curves for the aspect fixed, slope fixed, both fixed and dynamic model
runs over the full 1926-2010 time period. Curves are displayed in m w.e. and are generalised for
elevation bands on a 1 m interval across the different glacier ranges.
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Table 9.1: Fi statistics representing melt differences between dynamic and non-dynamic
experimental model runs: 1926 - 2010

Model interval Aspect Fi Slope Fi Both Fi

1926-1943 -0.58 -0.58 -0.58
1943-1959 0.00 0.00 0.00
1959-1978 0.00 0.00 -0.01
1978-1991 0.00 0.00 0.00
1991-2010 -0.01 0.00 -0.01
1926-2010 -0.39 -0.41 -0.40

9.1.4 Fi statistics: 1926-2010

As discussed in section 2.3.6, Huss et al. (2012) proposed the use of the Fi statistic

to quantify the difference between conventional and reference balance calculations

(see equation 2.13). As few studies have acknowledged the specific variability be-

tween conventional and reference mass balance, the use of this analytical approach

is prudent in this study in an attempt to further integrate usage of the method in

future research. To further quantify change in the melt that propagates under the

different experimental conditions forced in this study, a modified version of the

Fi statistic is used, whereby the value of Fi is calculated using conventional and

reference mean elevation changes as opposed to mass balance values. The results

for the 1926-2010 runs are presented in table 9.1 - negative Fi values occur where

the reference balance is less than the conventional balance and vice versa. For

the individual periods between 1943-2010, there is no real difference between the

dynamic and experimental runs. The 1926-1943 period shows the strongest sensi-

tivity to all experimental runs with approximately equal differences between the

fixed (reference) surface runs and conventional (dynamic) runs. Similar variation

between the reference and conventional runs is also found for 1926-2010 period,

although the degree of variability is reduced and may be explained by the limited

variability identified between conventional and reference balances for the interim

periods of 1943-2010.

Huss et al. (2012) caution against generalising with the Fi statistic, which is

ultimately the % difference between conventional and reference balance surfaces,
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as it is only relevant to the specific year or period - and the associated conditions

- for which it is calculated. Comparing Fi between periods is made more difficult

if one considers the varying relationships that can exist between mass balance

change (with potential annual variability) and conventional/reference balance

differences (which can vary over longer time frames). These topics are discussed

thoroughly in Huss et al. (2012) with examples from a number of Swiss glaciers.

What can be drawn from this is that the Fi alone is limited outside of considering

a specific glacier in a specific period, yet provides a useful approach for considering

specific geometric effects within the given time frames.

9.1.5 Change in component contributions to Q: 1926-2010

The change in the proportional contributions of I and ψ to total Q across the

glacier surface during the summer months are displayed in figure 9.8. Other than

for the 1926-1943 period, there is no observable change in the energy mix, which

is implicit that the energy mix is not sensitive to changing surface geometry in

the period 1943-2010. Considering dynamic geometric changes in association

with a melting glacier surface compared to a surface with fixed geometry, there

is a clear difference in the component contributions to the energy mix through

the 1926-1943 period. With a fully dynamic geometry, the importance of ψ is

far greater than compared to when geometry is fixed when I is a much larger

component of Q. The contribution of ψ for the dynamic and fixed runs is 42%

and 23% respectively and this compares to contributions of I which are 58% and

77% respectively.

It is interesting to consider the change in energy mix contributions over time

(figure 9.9). There is a distinct reduction in the contribution of ψ to Q from 42% to

30% over the 1926-1978 period, which then increases back to 42% by the 1991-2010

period. Conversely, the contribution of I to Q increases from 58% to 69% from

1926-1978 and then reduces to 58% by 1991-2010. Considering the changing size

of the glacier in the 1926-1943 and 1991-2010 periods, it is interesting that the

proportional contributions are so similar.
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Figure 9.8: Surface energy balance (Q) composition change between model run types for
experiments during the 1926 - 2010 period.
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Figure 9.9: Surface energy balance (Q) composition change over the 1926 - 2010 period.
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9.2 Contemporary model results

9.2.1 Meteorological inputs for model runs: 2007-2010

The contemporary melt model runs were carried out for the periods 2007-2008,

2008-2009, 2009-2010 and 2007-2010. These intervals are defined in conjunction

with the maps of the glacier available and that have been used for the geodetic

assessment of glacier change (see chapter 6). As for section 9.1, the same four

model runs were used for the defined time periods. As in section 9.1, to assess the

effect that the conditions of each different model had on overall ice melt, results

are addressed in terms of mean annual melt and any changes in the contribution

of components I and ψ to Q and acknowledgment of changing meteorological

conditions.

Figure 9.10 illustrates the mean temperature and snow depth data used within the

contemporary model runs. This data was compiled using methods described in

section 5.1 of chapter 5. Both the temperature and mean end of winter season snow

thickness values displayed represent the mean as calculated from across the glacier

surface over time. There is an observable temperature fluctuation each January-

March where temperature rises and then drops again. This pattern appears

strongest in 2010. Spring temperatures were greatest in 2009 with temperatures

of -4.1◦C compared to the lowest temperature in 2010 at -6.5◦C, giving a range of

2.4◦C. With regard to the summer temperatures, the warmest year was in 2009

with a mean temperature of 4.2◦C. This was opposed by the coolest summer in

2010 with a mean temperature if 2.9◦C. Autumn temperatures were lowest in

2007 with temperatures of -6.7◦C compared to the warmest temperature of -1.5◦C

recorded in 2010, giving a 2007-2010 autumn temperature range of 5.2◦C. In terms

of winter temperatures, the warmest winter was during 2007/2008 with a mean

temperature of -9.6◦C. The coldest winter was during 2009/2010 with a mean

temperature of -12.6◦C.
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Figure 9.10: Meteorological data (as model input) for the 2007 - 2010 period (Air temperature
and mean winter snowpack thickness)
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9.2.2 Surface melting under different experimental condi-

tions: 2007-2010

Considering mean glacier melt in terms of quartiles (figure 9.11) there appears to

be no significant change when considering the median, upper and lower quartiles

in annual melt for all experiments in the period 2007 - 2010. The mean values

hold at 0.24 m yr-1, 0.47 m yr-1 and 0.27 m yr-1 for all model tests within the

2007-2008, 2008-2009, 2009-2010 experimental periods respectively. From this

it is apparent that for the 2007-2010 period, the glacier is insensitive to surface

geometry change. There are some very subtle changes between the upper and

lower quartiles for the models but these are <0.01 m yr-1 and consequently are

not discussed any further.

Following on from the limited changes between the model outputs discussed above

in relation to figure 9.11, there is no real difference between the categorized melt

patterns for all test periods as can be seen in figure 9.12.

The most clear changes occurring as a result of the contemporary melt model

experiments can be considered when assessing the changes in melt patterns over

time. Irrespective of the models used and considering both the mean and median

annual melt values, annual melt rates were greatest during 2008-2009 (x̂ = -0.47 m;

median = -0.41 m), followed by 2009-2010 (x̂ = -0.27 m; median = -0.20 m) and

then 2007-2008 (x̂ = -0.24 m; median = -0.16 m). Specifically considering annual

melt rates >0.75 m yr-1 and again irrespective of the models used, the most melt

occurred during 2008-2009 (18%)), followed jointly by 2009-2010 and 2007-2008

(5%). Considering annual melt rates <0.75 m yr-1, the most melt occurred during

2007-2008 and 2009-2010 jointly (95%) followed by 2008-2009 (82%). The general

patterns mentioned hold regardless of the models used, further emphasising the

apparent lack of sensitivity of the glacier surface to changes in geometry within

the time period tested.
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Figure 9.11: Box plots of annual surface melting for experiments within the 2007 - 2010 period
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Figure 9.12: Cumulative histograms of annual surface melt for experiments within the 2007 -
2010 period. Plots are displayed here to emphasize the changes within a set time frame as a
function of model type.
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Figure 9.13: Cumulative histograms of annual surface melt for experiments within the 2007 -
2010 period. Plots are displayed here to emphasize the change in melt patterns over time as a
function of model type.
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Table 9.2: Fi statistics representing melt differences between dynamic and non-dynamic
experimental model runs: 2007 - 2010

Model interval Aspect Fi Slope Fi Both Fi

2007-2008 0.00 0.00 0.00
2008-2009 0.00 0.00 0.00
2009-2010 0.00 0.00 0.00
2007-2010 0.00 0.00 0.00

9.2.3 Contemporary mass balance change

Mass balance curves for the individual model runs and time periods are displayed

in figure 9.14. A general reduction in mass balance change with increasing ele-

vation is clear for all model runs, with a trough in this trend appearing for all

runs between 1250-1350 m a.s.l. These charts display curves that appear to show

mass balance profiles which exhibit no change for the map interval model runs.

Changes in mass balance between years are clear, with the most change being

attributed to 2008-2009, but between model runs there appears to be little change.

Considering mass balance profile change for the long term model experiments

(figure 9.15), thus removing inter-annual variability, the minimal difference between

the different model runs is clear.

9.2.4 Fi statistics: 2007-2010

As for the 1926-2010 model runs, change in the melt that propagates under the

different experimental conditions is represented here using the modified version of

the Fi statistic proposed by Huss et al. (2012). The results for the 2007-2010 runs

are presented in table 9.2. As is clear, there is no difference between the different

runs.

9.2.5 Change in component contributions to Q: 2007-2010

The change in the proportional contributions of I and ψ to total Q across the

glacier surface during the summer months are displayed in fugure 9.16. There

are no observable changes in the energy mix between the models for all intervals
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Figure 9.14: Mass balance curves for the aspect fixed, slope fixed, both fixed and dynamic
model runs. Curves are displayed in m w.e. and are generalised for elevation bands on a 1 m
interval across the different glacier ranges.
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Figure 9.15: Mass balance curves for the aspect fixed, slope fixed, both fixed and dynamic
model runs over the full 2007-2010 time period. Curves are displayed in m w.e. and are
generalised for elevation bands on a 1 m interval across the different glacier ranges. The lack
of difference between the different runs is clear and differs significantly to the pattern shown
between model runs for the 1926-2010 period displayed in figure 9.7
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within the 2007-2010 period.

There is some observable change in the contribution of the energy mix components

from 2007 to 2010 as displayed in figure 9.17. From 2007-08 to 2008-09, there is an

increase in the contribution of ψ from 41% to 52% respectively and a comparative

decrease in I from 59% to 48%. From 2008-09 to 2009-10, ψ reduces from 52% to

47% whilst I increases from 48% to 53%.
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Figure 9.16: Surface energy balance (Q) composition change between model run types for
experiments during the 2007 - 2010 period.
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Figure 9.17: Surface energy balance (Q) composition change over the 2007 - 2010 period.
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9.3 Modelling experiments summary

Using two versions of the model developed specifically for this study — the histor-

ical and the contemporary (the definitions of which are outlined at the beginning

of chapter 4) — dynamic, slope fixed, aspect fixed and slope and aspect fixed

scenarios have been facilitated for the periods of: 1926-1943, 1943-1959, 1959-1978,

1978-1991, 1991-2010 and 1926-2010 (using the historical model) and 2007-2008,

2008-2009, 2009-2010 and 2007-2010 (using the contemporary model). As the

model accounts for changing glacier geometry over time as well as the relationship

between the glacier and surrounding topography (through hillshade), it has been

possible to meet the aim of assessing the effect of changing glacier geometry on

the surface energy balance and mass balance. Under fixed conditions (all model

runs other than the dynamic), for the period 1926-1943 (and then the 1926-2010

overall change), more negative mass balance conditions were observed. For the

period 1926-1943, modelled annual maximum MB under dynamic conditions was

calculated at -1.25 m w.e. compared to -2.40 m w.e. under fully fixed conditions.

For the period 1926-2010, modelled annual maximum MB under dynamic condi-

tions was calculated at -0.5 m w.e. compared to -1.25 m w.e. under fully fixed

conditions. This is implicit of the importance of changing surface geometry values

when considering SEB conditions and mass balance change over time. For other

periods however, little change was found in mass balance whether geometry was

fixed or not.

This chapter meets the objective of conducting model scenarios with the developed

model to assess the effects of geometry change on surface energy balance and mass

balance change which assists in meeting the project aim of assessing the effect of

changing glacier geometry on the surface energy balance and mass balance of a

small mountain glacier throughout the 20th and early 21st century with focus on

solar radiation contributions and glacier-topography relationships. The results of

this chapter are further considered along with the results of chapters 6, 7 and 8 in

chapter 10.
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Chapter 10

Discussion

The aims of this study established in chapter 1 were to provide a full 3D glacier

geometry reconstruction and assessment of a small mountain glacier, since the

beginning of the 20th century, over decadal and annual time scales; assess the

sensitivity of the surface energy balance and mass balance change to meteorological

and topographical forcing and to assess the effect of changing glacier geometry on

the surface energy balance and mass balance of a small mountain glacier throughout

the 20th and early 21st century with focus on solar radiation contributions and

glacier-topography relationships. In meeting the objectives outlined in chapter

1, it has been possible to address these aims, as well as to qualify field and desk-

based requirements for future studies of glacier mass balance change. The results

presented in chapters 6 to 9 depict a shrinking glacier throughout the 1909-2010

study period over which there has been a complex suite of glacier-climate feedbacks

which have altered over time.

10.1 Glacier change since the early 20th century

Warming and cooling temperature trends in the Swedish sub-Arctic have been

identified to hold similar patterns to European and global temperature trends,

with average annual temperatures for the region now being greater than 0◦C

(Callaghan et al., 2010). Mountain glaciers have been identified to be sensitive

to changes in climate by a variety of authors (e.g. Granshaw & Fountain, 2006;

DeBeer & Sharp, 2009) and the resultant melting reaction of many glaciers is
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expected to continue into the 21st century (Dyurgerov & Meier, 2000; Lenaerts

et al., 2013). In line with these warmer temperatures and considering sensitivity

of mountain glaciers, there are numerous acknowledgments of glacier retreat in

regions including Scandinavia, central Europe and North America (e.g. Holmlund

et al., 1996; Paul, 2004; Bauder et al., 2007; DeBeer & Sharp, 2007; Zemp et al.,

2008; Gardner et al., 2011; Lenaerts et al., 2013).

Holmlund et al. (1996) provide a succinct review of a number of longer term

studies of glaciers for the period 1915-1994, present within the Kebnekaise massif,

northern Sweden, which is within a short distance from the Vuoittasrita massif

in which K̊arsa is located. The general trend for these glaciers is one of retreat

and thus negative balance, for which the same pattern is found for K̊arsa as

acknowledged in this study. The pattern of change associated with K̊arsa is

discussed in a larger spatial context, particularly relative to other nearby glaciers

in Sweden and Norway (including Svalbard) in sections 10.1.1 to 10.1.7.

10.1.1 Retreat

In this study, K̊arsa is found to have retreated a total of 1292 m over the period

of 1909-2008. Annual retreat rates (as calculated between available maps) of the

whole glacier terminus were calculated as being greatest between 1926-1943 at 23.5

m yr -1, reducing to 8.3 m yr -1 between 1959-1978 and then increasing to 14.4 m

yr -1 for 1991-2008. Karlén (1973) proposed that retreat rates of the glacier would

vary as a function of change in the slope angle of the underlying bed. Many of the

assessments made of terminus position in earlier studies of the glacier were based

on single points (Ahlmann & Tryselius, 1929; Wallén, 1948; Karlén, 1973) unlike

the more distributed approach used here. Wallén (1949) states that the total re-

treat of the glacier from 1909-1943 was 200 m. This compares to the calculation of

433 m using the distributed terminus to line approach (see section 6.2 of chapter 6).

The difference between these values is either a product of different terminus retreat

distance calculation methodologies (whereby the method employed in this study

assesses a wider portion of the terminus that displays more recessive traits) or/and

may be related to errors in georeferencing of the topographic maps used (this is
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discussed in more detail in section 10.4.1). Despite some issues potentially relating

to methodologies, the general pattern observed for the total period is one of retreat.

Holmlund et al. (1996) reported retreat rates for Storglaciären, Isfallsglaciären,

Rabots Glaciär, Riukojietna, Mårmaglaciären and SÖ Kaskasatj̊akkoglaciären.

Retreat values for the period of 1915-1994 range from 121 m (Mårmaglaciären)

to 905 m (Riukojietna). No particular correlation can be drawn between total

glacier retreat range and glacier, with the glaciers at either end of the total retreat

distance scale having relatively large areas (3.92 km2 and 4.68 km2 for the least

and most retreat respectively). Based on area, of the glaciers with known retreat

rates as addressed in Holmlund et al. (1996), Isfallsglaciären is the most similar to

K̊arsa. Considering the 442 m of measured retreat of Isfallsglaciären, the retreat

of K̊arsa identified in this study, of 1028 m between 1906-1991, is comparatively

great, implicit of varying conditions in some capacity. Considering more distant

glaciers, the total retreat of K̊arsa, as assessed for the 1906-2008 period, of 1292

m is similar to that of the larger Scott glacier located in Spitsebergen (1230 m),

albeit the retreat of the latter is for a slightly longer period (1880-2006) (Zagórski

et al., 2008).

The total and annual retreat calculated for K̊arsa in this study is considered

relative to the numerous glaciers throughout (political) Sweden and Norway in

figures 10.1 (total retreat) and 10.2 (annual retreat), for which data have been

collected over a similar time period. The data presented are not associated with

full geodetic studies for all of these glaciers (examples of full geodetic studies being

discussed in section 2.4.1 of chapter 2). The glaciers include those from mainland

Sweden and Norway as well as Svalbard. Relative to these other glaciers, the total

retreat of K̊arsa falls in the middle of the ranges of measured retreat, although is

noticeably greater than the values derived for Swedish glaciers. The same pattern

is then represented when considering annual retreat rates (the results of which

vary slightly to the totals due to some glaciers having longer/shorter periods of

observation).
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Figure 10.1: Terminus retreat totals for glaciers in the political zones of Sweden and Norway. Data are taken from the WGMS (2013)
database. Bars in grey represent Norwegian glaciers, bars in light red represent glaciers in Sweden and the bar in dark red represents
K̊arsa. Only glaciers with records >90 years are presented - time scales are labeled on the figure.
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Figure 10.2: Terminus retreat totals for glaciers in the political zones of Sweden and Norway. Data are taken from the WGMS (2013)
database. Bars in grey represent Norwegian glaciers, bars in light red represent glaciers in Sweden and the bar in dark red represents
K̊arsa. Only glaciers with records >90 years are presented - time scales are labeled on the figure.
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Retreat of mountain glaciers is a common attribute of mountain glaciers in a

number of other areas globally, including the European Alps (e.g. Paul, 2002;

Zemp et al., 2008). Thus, the pattern exhibited by K̊arsa and the glaciers identi-

fied in figures 10.1 and 10.2 is not unusual. The size of glaciers has often been

found to be important with regard to retreat with studies identifying with single

catchments smaller glaciers (<1.0 km2) to retreat more than larger glaciers (>10

km2) (Tennant et al., 2012). Considering the larger glaciers of Sweden represented

in figures 10.1 and 10.2, a similar pattern of smaller glacier/faster retreat is

exhibited when considering nearby Storglaciären. Over the 1908-2008 observation

period, the retreat of the glacier has coupled with drastic area changes and this is

considered in section 10.1.2.

A limit of the geodetic method employed in this study is that it provides only

snapshots through time. As with the geodetic method for assessing mass balance

change, a reason that it should not be used to derive accurate annual MB conditions

where the intervals between observations are greater than 1 year (Bauder et al.,

2007) is that it misses out inter-annual variability. It is this lack of inter-annual

variability and thus the observation that the retreat trend is only general, that

temporal resolution must be considered. A number of authors have acknowledged

general retreat of glaciers in western Europe (e.g. Paul, 2004; Zemp et al., 2006;

Diolaiuti et al., 2012) over the 20th century. This pattern has been observed

in other areas including Scandinavia (e.g. Holmlund et al., 1996), the Arctic

Archipelagos (e.g. Nuth et al., 2007; Zagórski et al., 2008), Canada (e.g. DeBeer

& Sharp, 2009; Jiskoot et al., 2009; Gardner et al., 2012; Tennant et al., 2012),

South America (e.g. Baraer et al., 2012), North America (e.g. Arendt et al., 2002;

Berthier et al., 2010) and the Himalaya (Dobhal et al., 2004).

Inter-annual change combined with inter-catchment variability is important to

acknowledge when considering wider glacier change. Such catchment changes may

be a function of topography or of climate - acknowledging such variability can help

explain why some areas are in retreat whereas others experience glacier advance

and growth (Dyurgerov & Meier, 2000). For many regions, the 20th century is not

defined completely by retreat with many glaciers in the European Alps having
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been observed to have been in balance or to have advanced during the 1970s,

with negative balances becoming more characteristic from the 1980s onwards

(Hoelzle et al., 2007; Zemp et al., 2008). The balance of nearby Störglaciären was

stable for about 15 years from the mid-1970s (Holmlund et al., 1996). Considering

these observations from the 1970s, if such a trend occurred during the period of

assessment for in this study for K̊arsa, as maps were only available in 1959, 1978

and 1991, such advances would be missed. This equally applies to observations

of other variability including elevation change and terminus retreat. Thus in a

period of retreat, sporadic snap shot assessments which miss possible periods of

advance, likely create a more negative reconstruction than may be true.

10.1.2 Area change and disintegration

Following an assessment of records from the WGI (WGMS, 2013), the area of

K̊arsa today at 0.89 km2 places it between median area values representative of

Scandinavia (0.3 km2) and the Arctic Archipelagos (1.3 km2). Median values are

used here as a few very large glaciers within the records heavily distort mean values

(being 5.74 and 18.8 km2 for Scandinavia and the Arctic Archipelagos respectively).

Compared to the median value for western European glaciers (0.14 km2), the

contemporary area of K̊arsa is comparatively large. Although useful to compare

with the records of the WGMS (2013), an issue is that the values recorded are often

derived from single maps. Consequently this provides only a glimpse of glaciologi-

cal conditions. These maps range across the second half of the 20th century and

thus the above cited regional area values are only employed here to provide a rough

comparison. Through this study, the area of K̊arsa has decreased significantly from

4.30 to 0.89 km2 in only 82 years (1926-2008). This general reduction is akin to

many other glaciers as identified in other studies (Paul, 2004; Tennant et al., 2012).

Tennant et al. (2012) studied 523 mountain glaciers in the Canadian Rocky Moun-

tains over a similar time frame to this study (1919-2006). They found that over

the time period, proportional area loss decreased as a function of glacier size with

the greatest proportional loss being for glaciers within the 0.5 - 1.0 km2 area

category, losing 67.8% of their total area. For the same period, glaciers in the
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1.0 - 5.0 km2 category lost 53.3% of their area. Similar to Tennant et al. (2012),

Abermann et al. (2009) found in a study of 81 mountain glaciers in the Austrian

Ötztal Alps that area changes between 1969 and 2006 decreased proportionally

as a function of initial glacier size. Between 1969-1997, the greatest area loss in

their study was associated with glaciers <0.1 km2 (-52.2%), decreasing to -11.8 %

for 1997-2006. They also found that glaciers <5.0 km2 lost 11% of their area in

the 1969-1997 period, and -8.9% for 1997-2006, the change in area loss rate being

more exaggerated for smaller glaciers. The large contribution of smaller glaciers

to overall proportions of melt as identified in the aforementioned studies is also

identified in Paul (2002) where glaciers <1 km2 were found to contribute 59% of

overall area loss despite covering 1/3 of the glacier area of the Austrian Glacier

Inventory. This sensitivity of small glaciers is further observed in the Italian Alps

by both Knoll & Kerschner (2009) and Citterio et al. (2007). Both Abermann

et al. (2009) and Tennant et al. (2012) found that in more recent times, smaller

glaciers were contributing less to overall area loss changes compared to larger

glaciers. This is discussed in Abermann et al. (2009) who link this slow down to

the faster reaching of equilibrium of smaller glaciers, resulting in a less dramatic

response in terms of mass loss.

In this study, mean annual % area loss rates overall vary little over the time

periods studied. Considering two periods similar to the Abermann et al. (2009)

and Tennant et al. (2012) studies, in terms of absolute percentages, K̊arsa lost

73% of its initial area in 1926-1991 and 23% of its area from 1991-2008. The

difference in absolutes is not surprising considering the difference in length of

the two periods. Estimating annual retreat rates for the same periods, there is a

1.12% yr-1 loss for 1926-1991 compared to 1.37% yr-1 for 1991-2008. The difference

between these values is small and this is indicative of little variation in the area

change rate for K̊arsa over the period studied. The area change rates fund here

compare to a rate of -1.1% yr-1 as found for glaciers in the E. Italian Alps for the

1980s and 2000s (Carturan et al., 2013). Tennant et al. (2012) found that area loss

rates increased through 2001-2006 compared to 1985-2001 (-2±0.2% compared to

-0.5±0.2% respectively). An increase in area loss was also found by Diolaiuti et al.

(2011) in the Italian Alps, with a loss of 1.74 km2 and 0.67 km2 for 1991-2003
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and 1981-1991 respectively. Although there appears to be a slight increase in

annual area loss with K̊arsa in the latter part of the 20th century and early 21st

century as in Diolaiuti et al. (2011) and Tennant et al. (2012), the increase is

relatively subtle. Such area loss is common of mountain glaciers in many regions

other than those identified here, and this is often coupled with surface lowering

and disintegration (Paul, 2004).

Paul (2004) identified rapid disintegration — which here is used to refer to the

breakdown of one main lobe into numerous separate smaller lobes — of alpine

glaciers through a study of the Swiss Glacier Inventory. Such disintegration

has been observed in a number of other inventory based studies (e.g. Citterio

et al., 2007; Diolaiuti et al., 2011, 2012; Tennant et al., 2012). The process of

disintegration, linking directly to spatial variations in mass loss processes, in many

areas has led to an increase in the number of glaciers (although a decrease in mean

glacier area) (e.g. Diolaiuti et al., 2011) and is directly associated with increases

in mass loss due to relationships with surrounding topography which alters the

energy contribution to the glacier (Diolaiuti et al., 2011, 2012).

According to UNESCO, a glacier must be of an area > 0.01 km2 to be classed as

a glacier (UNESCO, 1970). This has been used as a cut-off in other studies (e.g.

Abermann et al., 2009) when discussing glacier change. The term glacieret is used

in some studies. UNESCO (1970) define a glacieret as being a small ice mass that

exists for two consecutive summers, often being present in hollows or river beds

and the result of snow drifting, avalanching or particularly heavy accumulation.

Carturan et al. (2013) define glacierets as being “distinguished from glaciers based

on the absence of evidence of motion and/or lack of a clear distinction between

accumulation and ablation areas on aerial photos” (pp275 of Carturan et al., 2013).

Some studies account for glacierets (e.g. Carturan et al., 2013) whereas others

do not (e.g. Diolaiuti et al., 2012) (although the latter reference also considers

size). This is an important consideration in terms of K̊arsa with regard to the

K̊arsa side-glacier. K̊arsa too has undergone the process of disintegration following

the separation of the main lobe and the side-glacier between 1926-1943. This
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disintegration matches observations of glaciers in similar negative balance states

such as in the European Alps (Diolaiuti et al., 2011, 2012) as well as in nearby

Spitsbergen (Ziaja, 2005). Following this separation, in the early study of K̊arsa

by Wallén (1948, 1949), the side-glacier was disregarded as it was not considered of

importance regarding mass transfer to the main glacier lobe. Consequently, aerial

photographs, resultant maps and details of mass balance change were focused only

on the main lobe (as in this study). Little is known of the side-glacier despite

it still being relatively large. It would likely be classed as a glacieret (especially

when considering the second component of the Carturan et al. (2013) definition)

although this is conjecture. This portion of ice (depicted in figure 3.2) is another

water store that will ultimately contribute meltwater to its local catchment within

K̊arsavagge and will therefore provide water that will contribute to future SLR.

However, its contribution is unknown due to limited glaciological study. The

GLIMS entry for K̊arsa includes this lobe (as well as the western lobe - also

detached from the main lobe) as a part of the overall glacier, albeit as separate

components. This better fits the UNESCO definition of a mountain glacier which

includes the main glacier body and any other smaller unit groups (UNESCO,

1970). Future studies should therefore acknowledge all components where possible.

10.1.3 Glacier surface lowering

Lowering of the long profile of K̊arsa is clear for successive years of analysis (figure

6.9). Coupled with the area loss and disintegration associated with glacier retreat,

glacier thinning has been widely observed (Thomson et al., 2000; Rignot et al.,

2003; Nuth et al., 2007; Shugar et al., 2010; Rasmussen et al., 2011; Zhang et al.,

2012). This is an important consideration regarding glacial contributions to SLR,

as it directly relates to reduced glacier volume which also has implications for

glacial dynamics (Thorp, 1991).

Through cross-profiling of K̊arsa in this study, it has been possible to consider

the lowering of the glacier relative to the present day surface. This lowering

is generally continuous, especially around the mid-glacier with each successive
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surface being generally lower than the last. The only surface against the trend is

that for 1943 which may be due to map error which is discussed in section 10.4.1.

As glacial dynamics are not considered here, it is possible that there is an issue in

considering elevation change as a function of mass flux over a given point. However

the cross profiles show the 1943 surface to be considerably lower than the other

years - this may be due to extreme surface lowering or may be a direct product of

map error. Considering the profiles related to all other years for the lower and

mid glacier regions, the most lowering is associated to the north (LA and MA

in figure 6.10) - the area associated with the lowest hillshade values across the

glacier. This is implicit of the influence of hillshade on surface changes and will

be discussed further in section 10.2. For the upper section of the glacier, there is

no clear pattern of lowering with the 1926 and 2010 surfaces maintaining a similar

profile below the profiles of the glacier in 1959-1991. As this is in the accumulation

area of the glacier, this may be related to varying snow conditions which may have

further caused issues during the map development process, especially if drifting

had occurred.

Repeat assessments of the glacier centreline have been used in many studies to

account for glacier surface change in a number of studies, sometimes altimetry

based (Arendt et al., 2008; Johnson et al., 2013) but are also inherent of GPS

profiling and as a means of assessment of change from topographic maps (e.g.

Hagen et al., 1999; Hodgkins et al., 2007; Davies et al., 2012). They are extremely

useful measures of changing surface conditions, even more so when there is a good

understanding of varying accumulation conditions (Hagen et al., 1999). However,

where used alone to assess change, there is a potential to miss out on spatial

variability in MB change. Thus, appropriate extrapolation is required to consider

glacier-wide change (Berthier et al., 2010). In this sense, cross profiling and

transect assessment is helpful for accounting for glacier evolution, highlighting

the spatial variability in mass change across the glacier.

The ability to account for spatial change over long time periods, as a function

of the spatial data available, is a key merit of this study. The opportunities

that the wealth of spatial data available for K̊arsa has afforded has been taken
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full advantage of, enabling assessments of spatial patterns in elevation change,

thickness change, as well as slope and aspect patterns (see chapters 6 and 7).

With regard to elevation change, although there is evidence of some elevation

increase, the overall trend derived is one of glacier surface lowering with a mean

total lowering of 32.6 m between 1926-2010, giving a mean annual lowering of 0.38

m yr-1. This is equivalent to a surface lowering of 0.34 m w.e. yr-1. This value is

extremely similar (although this does not mean the spatial pattern of change is

identical) to that calculated for nearby Rabots Glaciär for the period of 1910-2003

at -0.38 m w.e. yr-1 (as in Brugger et al. (2005) and assuming a fixed ice density

of 0.9 kg m-3 as in this study). An equivalent surface lowering value of -0.35 m

w.e. yr-1 is calculated for Storglaciären for the period 1910-2001 (Brugger et al.,

2005). Further consideration of the changes between K̊arsa, Rabots Glaciär and

Storglaciären are considered in section 10.1.5.

In the case of K̊arsa, the elevation change patterns observed are closely related

to areas of greatest hillshade during the summer months as identified in section

8.3.1 of chapter 8, to which the glacier was found to be sensitive (as found in

other studies including Arnold et al. (e.g. 2006b)). Winter snow pack distribution

was also important and tended to be thicker in the areas of greatest hillshade

(although not necessarily a direct function of hillshade but more of topography).

This resulted in melt being most concentrated to the north and north east of the

glacier, which included the terminus region. This area was also the lowest and

therefore exposed to warmer temperature as a function of adiabatic processes.

Elevation change maps have been constructed also for Rabots Glaciär for 1959-

1980, 1980-1989 and 1989-2003. The majority of melt is consistently focused to

the west of the glacier which covers the glacier terminus with most melt being

observed for the 1959-1980 period during which geometry change for the glacier

is considered to be greatest (Brugger et al., 2005). This differs slightly to K̊arsa

where, if we remove the likely erroneous 1943 surface, the most change occurred

between 1926 and 1959, especially with the associated disintegration of the glacier

into the main lobe and the side-glacier. Relative to 1978-1991, the 1959-1978

period for K̊arsa was one of increased surface lowering, so in this regard there is
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some agreement relative to the maps available (and thus the analysis possible) for

Rabots Glaciär.

10.1.4 Thickness and volume change: implications for change

in glacier thermal regime

As identified in section 10.1.3, glacier elevation change and therefore thinning

is directly related to a change in thickness and thus volume. Values of glacier

volume can be derived via scaling relationships (e.g. Bahr et al., 1997; Van de Wal

& Wild, 2001) but can be more specifically calculated from in-situ measurements

of thickness, often using GPR approaches. Such GPR methods have been applied

in Sweden (e.g. Björnsson, 1981; Petterson et al., 2003; Petterson & Jansson,

2004) as well as in other regions (e.g. Moran et al., 2003; Irvine-Fynn et al., 2006;

Machguth et al., 2006). Limits relating to the assumption of fixed density values

in the conversion of volumes to mass changes were recently discussed in Huss

(2013), where variations in density between different sites were acknowledged to

be significant.

A useful component of this study is that knowledge of the glacier bed, from which

thickness can be calculated, is available following GPR surveys in 2009 (Rippin

et al., 2011). With the compilation of GPR and dGPS points and the resultant

glacier bed construction — in combination with the area DEM — it has been

possible to consider glacier thickness both in the past and present. The general

trend, as with elevation change, has been of thickness reduction, with the thickest

ice being focused along the centreline of the glacier. This pattern of generally

continued thickness reduction is the same as has been identified for nearby Rabots

Glaciär (Brugger et al., 2005) mentioned in section 10.1.3 with regard to elevation

change. Relative to the glacier in 1926, the thickest ice was found at the middle

of the glacier. The greatest depths today are to the north of the glacier. Mean

thickness in 2010 is half (15 m) of that in 1926 (30 m). Consequently these

thickness changes have resulted in large changes in volume, with total volume

change being estimated at 111.97 x 10-3 km3 for the 1926-2010 period (the mean
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value is reported here, discussed in section 4.3.5 of chapter 4).

This change in volume can be compared to that of Rabots Glaciär which for

the 1910-2003 period is reported to have lost 153.2 x 10-3 km3 (Brugger et al.,

2005). Annual rates of volume loss for K̊arsa and Rabots Glaciär of 1.33 and 1.65

x 10-3 km3 yr-1 respectively can thus be calculated. K̊arsa and Rabots Glaciär

have contemporary areas of 0.89 and 3.70 km2 respectively. As Rabots Glaciär is

considerably larger, considering the similar thickness/elevation change to K̊arsa

(as reported in section 10.1.2), this larger value would be expected. If these values

are normalised according to the contemporary area ratios of K̊arsa : Rabots

Glaciär (0.89 : 3.70), then a respective annual volume change ratio of 1.33 x 10-3

km3 yr-1: 0.40 x 10-3 km3 yr-1 can be constructed. It is clear from this that for its

size, K̊arsa has lost considerably more in terms of volume.

Change in thickness and volume has significant effects on the stress exerted by

the glacier and this changes the dynamics of the glacier which in-turn can affect

glacier thermal regime. Rippin et al. (2011) proposed that K̊arsa exhibited signs

of a thermal lag, with its contemporary polythermal state being out-of-sync with

its contemporary geometry. It is discussed that polythermal conditions would

most likely have developed under thicker ice conditions, enabling greater strain

related heating as well as greater insulation against the penetration of colder winter

temperatures (Murray et al., 2000; Rippin et al., 2011). Assessing surface geometry

(slope) and thickness prior to the conditions of the glacier examined in Rippin

et al. (2011), it is clear that the glacier was once thicker, with maximum values

of 137 m and 55 m for 1926 and 2010 respectively, occurring in the centre of the

1926 glacier which is makes up the northern portion of the contemporary glacier

area. Coupling thickness and slope values together allowed for a consideration of

changes in basal shear stress, revealing mean values of 119 kPa and 31 kPa for

1926 and 2010 respectively. Maximum values for both years were associated with

the thickest ice which is in polythermal identified region in Rippin et al. (2011). In

this study, maximum stress values of 345 kPa and 102 kPa were found in the area

of thickest ice for 1926 and 2010 respectively, showing a decrease in more than

double the amount of stress. These findings strongly support the hypothesis that
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the contemporary thermal structure is a consequence of prior glacio-geometric

conditions.

10.1.5 Area, thickness and volume changes: glacier re-

sponse within a local context

In the aforementioned sections, comparisons are drawn between K̊arsa, Stor-

glaciären and Rabots Glaciär - all of which are located in Swedish Lapland albeit

with different areas (0.89, 3.10 and 3.70 km2 respectively (Brugger et al., 2005)).

An interesting pattern has been found previously regarding the varying response

of Storglaciären and Rabots Glaciär. Over the period 1959-1999, Storglaciären lost

-0.11 km2 of its area, -5.69 m in thickness and -18.95 x 106 m3 of its volume (Koblet

et al., 2010). Despite these negative summary statistics, negative change only

dominated the period 1959-1969 and 1969-1980, with 1980-1990 and 1990-1999

being periods of increased thickness and volume (Koblet et al., 2010). These

latter periods of growth and stability are seen to be a stabilisation of the glacier

following a response to climate warming earlier in the century (Brugger et al.,

2005). This differs to the response of Rabots Glaciär which has not stabilised

and has continued to thin. Between 1910 and 2003, Rabots Glaciär continuously

retreated and lost 153.2 x 106 m3 in volume (Brugger et al., 2005) with no apparent

periods of growth as with Storglaciären. Modelling enabled the disentanglement

of the response of the two glaciers, revealing Rabots Glaciär to have a response

time 1.5 x longer than Storglaciären (Brugger, 2007).

Despite similar annual thickness change values, the response of K̊arsa has not

been one of thickening and increased volume, especially in the 1980s-2000s, losing

111.98 x 10-3 km3 from 1926-2008. Thus the glacier exhibits a similar pattern of

mass change to Rabots Glaciär as opposed to Storglaciären. As the two glaciers

are much larger than K̊arsa, and considering smaller glaciers are known to exhibit

faster response times than those that are larger, the similar conditions of K̊arsa and

Rabots Glaciär, with specific regard to their shared continued volume reduction

and terminus retreat cannot simply be attributed to a shared response time to a
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specific shared event. This may be indicative that K̊arsa is already responding to

changes that Storglaciären and Rabots Glaciär are yet to react to.

10.1.6 Slope and aspect change

Considering World Glacier Inventory (WGI) statistics, the predominantly north

easterly (NE) aspect exhibited by K̊arsa is typical of many glaciers in western Eu-

rope, the Arctic Archipelagos and Scandinavia, where on average 57% of glaciers

exhibited north-west (NW) - NE orientations, with other aspects accounting

relatively equally for the remaining glaciers. More specifically, from a sample

of 510 glaciers in Scandinavia, Carrivick & Brewer (2004), easterly (E) aspects,

along with south-easterly (SE) were found to represent a large portion of glaciers.

As K̊arsa has retreated, its aspect has maintained a predominantly NE aspect,

with N aspect increasing by 2010 to the same % as in 1926. As the % aspect is

relative to the whole glacier, the loss of the side glacier which maintained a N

aspect resulted in significant aspect change for the glacier from 1926-1943. As the

glacier has receded up valley (in a W direction), areas of the glacier with mainly

NE aspects have gradually disappeared, reducing the % of glacier representing NE

aspects. The remaining parts of the glacier located on the more northerly slopes

which are also the most shaded. The change in aspect is thus closely related to

the elevation profile and aspect of the valley floor, which increases in altitude

from E K̊arsavagge to the W.

Coupled with the retreat of the glacier to the W to higher and more shaded

altitudes, the slope angle has also changed, with a larger portion of the glacier

falling within the 15-25◦category by 2010 than in any other year. Although steep

slopes were also associated with the side-glacier in 1926, which fell predominantly

within the 10-15◦category, the steepest slopes for all years have been focused

mainly about the centre of the 2010 glacier extent. This area of the glacier has

become steeper over time but more importantly, this steep area now accounts for

a far larger portion of the glacier (over 1/3) than at any point in the past. Thus,

considering proportional mean slope, the glacier surface in 2010 is the steepest

for the period 1926-2010. This steeper central area is associated with both the
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greatest amount of hillshade and snow thickness, the implications of which are

discussed in section 10.2.

10.1.7 MB and ELA position

Coupled with other glacier change assessments, negative mass balance over the

20th/21st century has been associated with many mountain glacier studies across

the globe and has been shown to be a precursor to area reduction, thinning and

retreat. MB cannot accurately be estimated using a geodetic approach, especially

where maps are not available on an annual basis, as such a calculation does not

allow for an assessment of inter-annual MB variation (Hagg et al., 2004). Thus,

to approximate the pattern of change in MB over the study period, generalised

long term mass balance curves were calculated between maps intervals (chapters

6 and 7) in this study.

The curves derived for the 1926-2010 period (not including the individual curves

form 2007-2010 show general trends of increasingly negative balance with decreas-

ing elevation which can be directly related to temperature gradients. Slightly

less negative MB conditions exhibited by some curves around 1280 m are likely

associated with increased hillshading, which may also assist in an explanation

for more negative MB conditions at lower elevations (as well as increased tem-

perature) for the 1926-1943 map (described below in section 10.2). Only the

1978-1991 curve shows evidence of a +/- MB value split. This might indicate

a transition between accumulation and ablation zone conditions with all other

surfaces being completely within the negative MB zone apart from the very highest

altitudes. The 1943-1959 period is counter to this trend, explained by observed

surface elevation increases in the geodetic study - this is likely to be largely erro-

neous and related to issues with the 1943 glacier map as discussed in section 10.4.1.

Unlike the generally negative MB profiles with elevation characteristic of the

1926-2010 MB curves, the 2007-2010 curves do not show such apparent trends.

Compared to the historic MB curves, calculated over longer time periods, the

2007-2010 curves should provide a better assessment of changing MB conditions
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as they are derived from annually updated glacier surface maps. However, this

is limited by data availability (point coverage) to an almost unusable level as

highlighted from the standard error and Monte Carlo sensitivity analyses, with

extremely large changes in MB being attributed to point gaps in coverages used

to derive surfaces.

Considering the ELA, its position calculated using AABR, AA, Hmed, Mean, AAR

and Hess approaches appeared to decrease between 1926 and 1943, then gradually

increasing in elevation to 2010 (following a slight dip in 1991). Of the methods

applied, AA, Hess and Hmed are dependent on topographic maps of the surface

and therefore glacier geometry; AAR is irrespective of glacier geometry and AABR

is the only method that accounts for MB and hypsometry for the calculation of

ELA. Although similar patterns were exhibited by the different methods, very

different altitudes were calculated. The source of this variability is directly related

to the differences in the methods used described above.

The observed patterns of increasing ELA for K̊arsa, especially from 1943-2010,

are to be expected considering the negative MB, area reduction and thinning of

many other long-term glacier studies. Despite assessed surface, area and volume

reductions (which would be indicative of an increasing ELA), the ELA lowered

between 1926-1943. The detachment of the side glacier between 1926-1943 ad-

justed the hypsometry significantly and the related changes in area and elevation

range will of affected ELAs calculated using the different methods described above.

Geometry does not change as dramatically from 1943-2010, and the observed

changes continue to be negative. Using hypsometric dependent methods, it is

easier to assess changes in ELA using the same methods. Dramatic changes in

geometry must therefore be considered when using hypsometric methods for ELA

calculation , and comparing values directly.

The AABR method, used in this study to calculate ELA whilst accounting for MB,

is only applied to the 1991 surface using MB data extracted from the 78/91 differ-

ence surface. In contrast, Bodin (1993) estimated ELA for K̊arsa for 1989/1990,

1990/1991 and 1991/1992 using AAR values estimated from a MB stake network.
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Bodin (1993) estimated AAR values of 0.70, 0.55 and 0.91 respectively. Using

the AABR method as in the present study, an ELA of 1201 m a.s.l. is calculated,

relating well to the geodetically derived MB curve, but being considerably higher

than that derived by Bodin (1993). The AABR values are calculated using mean

MB curve conditions for the 1978-1991 period, so such a deviation is not unex-

pected. Assuming the Bodin (1993) value to be more accurate (as based on in-situ

measurements - although this will also be prone to error), this highlights the issue

of calculating MB values from geodetic assessments of glacier change (Hagg et al.,

2004).

The best ELA method can only really be assessed when considering in-situ mea-

surements. Of all the methods applied in this study, the AABR method (Furbish

& Andrews, 1984; Osmaston, 2005) appears to be the most robust as it accounts

for the varying balance ratio curves above and below the ELA, varying with

distance from the ELA for a given glacier. As this method is based on actual

mass loss information and not purely on the length or shape of the glacier, the

AABR approach appears to be able to provide the most accurate (and glacier

specific) estimate of the ELA. However, there is not enough data available in this

study to quantify this. Here, using a steady state AAR of 0.6 provides similar

results to the ELA as calculated by an in-situ measurement derived AAR of 0.55

(Bodin, 1993) for the glacier in 1990/1991.

The main issue relating to ELA estimation is the wide range of elevations between

different methods. Due to the large difference in values calculated using different

methods, mean values have often been applied (Benn & Gemmell, 1997). This

approach is often used but should be done with caution when the range in elevation

between methods is large. In the absence of stake networks, if possible, repeat

annual centre line assessments could be used for a make shift method of estimating

AARs. Using a standard AAR seems too presumptuous, especially on an inter-

annual basis, although it does work well in some instances such as in the present

study of the glacier in 1991.
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10.2 Glacier sensitivity to components of the

SEB and surrounding topography

A distributed SEB driven melt model has been developed specifically for this

study, calculating the SEB whilst utilising a simple bulk flux approach developed

by Giesen & Oerlemans (2012) and applied by others (e.g. Leclercq et al., 2012b).

Validation is completed by comparing change in the ablation area of the 2009-2010

model run with field measurements, and comparing the results of a dynamic

1959-1978 run with geodetic results. In terms of proportional melt, comparison

between modelled and geodetically acquired different surfaces are presented in

tables 8.3 and 8.2. Mean surface errors of the historical and contemporary models

are discussed in section 8.2 of chapter 8.

Considering annual MB curves (see the dynamic charts in figures 9.6), the model

is also found to operate well compared to in-situ MB measurements. Wallén (1948)

calculated MB values of -0.42 m w.e. for the period of 1941-48 which compares to

an annual MB value of -0.20 m w.e. for the 1943-1959 period modelled in this

study. In-situ MB measurements are available from Bodin (1993) but only for the

period of 1989-1992, for which model MB values are only available for 1978-1991

and 1991-2010, proving less comparable than the time period cross overs between

the model and the Wallén (1948) study.

To assess the sensitivity of K̊arsa to different components of the SEB, a grid based

model, the details of which were outlined in chapter 5, was designed specifically

to provide a platform upon which to preform a variety of experiments. This

ultimately enabled an assessment of spatial variability in response to different

SEB components across the glacier surface. This is a benefit of such physical

approaches at modelling SEB and its effect on glacier MB (Le Meur et al., 2007).

For the test periods of 1959-1978 and 2009-2010, a sensitivity analysis of different

contributors to the SEB were tested (see chapter 8). Unlike the other factors

whose contribution was altered to assess their relative effect on melt, the effect of

hillshade was accounted for by taking a binary approach of presence or absence.

Testing hillshade and radiation receipt for summer solstice conditions 2007-2010,
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ignoring the effect of topographic hillshade was found to increase overall receipt

of the glacier by ˜40 Wm-2, inverting the pattern of high-low radiation receipt

on the glacier and resulting in increases in some regions in energy of up to 100

Wm-2. Considering topographic shading through the months of June-August

for 1959-1978 and 2009-2010, the increasing amount of shade with increasingly

lower solar zenith angles was also acknowledged. Greatest shade was continuously

found to be in the area shared by the middle of the contemporary glacier outline

(between approximately 1150 - 1400 m a.s.l. according to the 2010 elevation map).

This region is continuously identified as being related to the lowest melt rates

considering default component settings. The changing contribution of I to Q

as calculated in equations 5.10 and 5.12 respectively, considering the hillshade

patterns observed in figures 8.4 and 8.6, are attributed to the propagation of this

pattern as a function of hillshade. This relationship changes over time because as

the glacier has retreated from 1926-2010, total area hillshade cover has increased

(see figure 8.5) and this has resulted in a general reduction in the contribution of

I to the overall energy mix Q from 1959 (see figure 9.9). The increase in contribu-

tion of I to Q from 1926-1943 relates to spatially variant hypsometric changes,

particularly in relation to the loss of the K̊arsa side glacier. No change in area was

accounted for between 2007-2010 and the relationship between glacier elevation

and surrounding topography did not alter surface-topography relationships enough

to increase hillshade cover.

In terms of other factors, the model used in this study was found to be most

sensitive to the thickness of the winter snow pack, wind stripping, temperature

lapse rate, αsnow, and τ . With the arrival of greater temperatures and increased

radiation receipt at the surface, the winter snow layer insulates the underlying

ice from melt - the longer the snow pack lasts, the longer the more sensitive ice

that lies beneath can survive (in terms of the effect of its lower albedo and the

effect this has on radiation). The wind factor introduced here replicates (very

simply) the effect that wind would have on snow mass movements (i.e. drifting),

in effect thinning the snow pack in certain areas. A thinner snowpack under

favorable melt conditions will last a more limited period of time than a thicker

snow pack. The wind factor introduced here only strips snow, assuming this
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snow to be removed from the glacier. Whereas the aforementioned factors affect

the presence of the snow pack initially, the temperature lapse rate and αsnow

affect the way in which the SEB melts the snow. By introducing smaller lapse

rate functions (0.0050 rather than 0.0060◦K m-1 for example), there will be less

temperature decline to more negative temperatures with increased elevation. This

is important when considering the effect this has on ψ (equation 5.11) which

affects Q directly (equation 5.12), decreasing the energy available with a lower

temperature. Changes in αsnow directly affect the contribution of I (equation

5.10) to Q, with greater albedo values reducing both I and Q and smaller values

increasing energy contributions.

Similar sensitivities to the aforementioned factors have been found for other

mountain glaciers which supports the conditions and sensitivities found to exist at

K̊arsa. Arnold et al. (2006b) considered the spatial effect of hillshade on SEB of

Midre Lovénbreen and found it to play a key role, along with surface aspect and

slope, on melt change. Hillshade directly affects shortwave radiation incident at

the surface. By disregarding hillshade, total glacier melt was found to increase by

5.30%. Relative to assumed clear sky conditions, hillshade, as a function of sur-

rounding topography, reduced incident radiation by 10% at Morteratschgletscher

(Klok & Oerlemans, 2002), 5.2% at Haut Glacier d’Arolla (Arnold et al., 1996)

and 6.44% for Midre Lovénbreen (Arnold et al., 2006b).

The importance of temperature lapse rate is of little surprise across the glacier

surface, considering the gradient of the slope due to the glaciers large vertical

range over a short distance. The spatial variability of lapse rates is considered

in Petersen & Pellicciotti (2011) and is found to be particularly important when

considering the development of katabatic wind regimes. Testing a range of lapse

rates is reasonable as these have been found to vary for different sites as discussed

in section 5.4.4 of chapter 5. Temporal variation in lapse rates were not considered

here due to limited spatio-temporal meteorological data available.

Atmospheric transmissivity values for 9 glaciers located in different regions around

the globe are calculated in Giesen & Oerlemans (2012). Values for atmospheric
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transmissivity (τ) range from 0.32 (Chile) - 0.63 (Greenland). The testing of

τ using 0.05 increments is reasonable as 0.05 displacements around the default

model value used in this study can be expected as a function of varying cloudiness

(related to annual variation) and global dimming and brightening (to a larger

extent related to decadal variation) (Ohmura, 2009; Wild, 2009; Giesen & Oer-

lemans, 2012). Air pollution is key in the changing levels of true atmospheric

transmissivity of the lower atmosphere, and is also related to cloud development

(Huss et al., 2009). Increases in high altitude cloudiness coupled with low global

radiation and resulting in lower temperatures in the European Alps has been

linked to a period of more balanced glacier mass flux globally (Huss et al., 2009).

As of the 1980s, enhanced greenhouse effects and brightening of solar radiation

has resulted in warmer temperatures and this is associated with more negative

glacier mass balance (Huss et al., 2009).

The snowpack - in terms of both thickness and redistribution - has been found to

be extremely important for a number of glaciers. This is primarily as a function

of its insulation of a glacier surface and resultant modification of surface albedo

(Mernild et al., 2008). Mölg & Hardy (2004) related the mountain glaciers of Kili-

manjaro to be extremely sensitive to precipitation for these reasons. As radiation

was the key contributor to overall SEB, this modification resulted in significant

changes in glacier melt. Where precipitation reduced as a function of changing

climate in the study of future climate change over Hardangerjøkulen in Southern

Norway, thinner winter snow packs resulted in surface shortwave radiation receipt

occurring earlier in the year (Giesen & Oerlemans, 2010), ultimately lengthening

the melt season. Model results following the application of the Alpine 3D model

over Goldbergkees in Austria, were found to deviate primarily as a function of

snow thickness variation, largely driven by mass movements including avalanching

and wind drifting. Neglection of initial snow values and snow redistribution was as-

sociated with mass balance model underestimates in the study of Paul et al. (2005).

Albedo of the surface is often cited as a key factor in studies of SEB and MB

modelling. Low albedo values are normally associated with the ablation area, and

then decrease with altitude (Paul et al., 2005) - primarily as a function of melt
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and the presence of snow/ice (of varying levels of degradedness). The importance

of albedo is known from a number of glaciers. Variation in melt at the terminus of

Hintereisferner, Austria, was associated almost entirely with variations in albedo

(Van de Wal et al., 1992). Coupled with spatio-temporal patterns of glacier surface

albedo (e.g. Brock et al., 2000a; Jonsell et al., 2003; Klok et al., 2003; Strasser

et al., 2004), it has been found that albedo on Arctic glaciers is also sensitive to

temporal variations in solar geometry, with albedo effects having been observed

to be higher at lower sun angles (Jonsell et al., 2003). Temporal geometry change

is considered in all model runs in this study. Arendt (1999) found that for John

Evans glacier, Canada, neglecting diurnal variations in solar geometry coupled

with albedo resulted in a variance in received shortwave radiation by 16%.

The model was found to be least sensitive to changes in summer snowfall threshold

temperatures and αice. Summer precipitation is low at the glacier (see chapter 3)

and thus a lack of sensitivity to the summer snowfall threshold as fund in this

study is to be expected. This would be much more important on other glaciers

where summer time precipitation is an important contributor to overall mass

change. The relative lack of αice is surprising as this directly affects the rate

of ice melt due to modification of the I contributions to Q. Low sensitivity is

explained here due to the way in which snow is modelled - αice only having an

effect when the snow layer is removed. The low sensitivity is further explained

as sensitivity tests were run for a full year, of which only approximately 25% of

the year is associated with melt. Testing model sensitivity specifically over the

summer months would possibly have revealed different results.

The acknowledgment of the aforementioned sensitivities provide a large amount

of information that is instrumental in understanding the melt pattern of K̊arsa,

revealing a complex relationship between snow thickness patterns and hillshade,

coupled with changes in temperature. Integrating these modelled sensitivities,

it is possible to reason why the patterns of retreat presented and discussed in

chapters 6, 7 and 10.1 are observed.
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The snow pack is identified as a key control. Considering winter snowpack distri-

bution, greatest thicknesses as identified for the 2010/2011 season (when the most

measurements were carried out across the glacier), snow thickness was greatest

from the middle glacier trending north-east to the terminus, with least thickness

being identified to the south-east. A thinner snow pack in the south-east is

unusual as this is at the highest elevation, however this is likely due to the effect

of wind re-distribution, shifting the snow to lower elevations. This hypothesis is

supported by the snow pit analyses that were carried out in which the calculated

densities related closely to those found for wind slab see section 5.4.6 of chapter

4). Although thicker snow is associated with the terminus, this is within the

region of least hillshade. In this study it was found that coupling the effects of

the winter snowpack on ice melt rates with the considerable effect of hillshade on

surface radiation receipt, snow at the terminus nevertheless melts faster during

the ablation season than the more shaded snow in the middle of the glacier. This

results in earlier exposure of the ice surface at the terminus than the mid-glacier.

Coupled with lower temperatures in the more elevated and shaded area of the

mid-glacier (relative to the 2010 glacier shape), where thicker snow remains, melt

rates are lower. This is supported by the results of the dynamic model runs carried

out (illustrated throughout chapter 8 by melt surface images for the 1978 and

2010 surfaces under default conditions), where lowest melt rates are continuously

identified between ˜1170-1400 m a.s.l. for the 1978 surface and ˜1150-1400 m a.s.l.

for the 2010 surface. Snow modelling for model runs prior to the 2008-2011 field

data collection period are more limited due to little knowledge of glacier specific

winter snow thickness patterns and thus results for these earlier periods are to be

treated tentatively.

Whereas thicker snow, increased hillshade and lower temperatures are associated

with the continued presence of the glacier in its contemporary position, the con-

verse is associated with the retreat of its mass prior to 2010. Hillshade of the main

lobe has continuously increased since 1926, allowing for larger contributions of I

to Q. This has been coupled with steadily increasing temperature characteristic

of the region over the 20th century (Callaghan et al., 2010) and as identified from

temperature records collected at ANS mentioned in chapter 3. Thus, had hillshade
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been greater, the rate of retreat may also have been slower. Further contributors

to retreat are also associated with the bed slope as discussed in (Karlén, 1973)

which relates more to valley geometry than to topographic effects on SEB directly.

Considering the importance of the snow pack existing over K̊arsa, more com-

plex treatment of snow needs to be considered. Drifting and avalanching is

not considered here, as in other models (e.g. Klok & Oerlemans, 2002), how-

ever, a more complex consideration of snow processes would allow for better

estimation/replication of redistribution processes and snowpack evolution (density

change, albedo change etc.) Snow modelling has been considered by many authors

(e.g. Essery et al., 1999; Bartlet & Lehning, 2002; Strasser et al., 2002; Bernhardt

et al., 2009, 2010) but has not been employed in this study due to the volume of

data required to force and quantify the results of such modelling efforts.

In this study, hillshade patterns are calculated using a topographic DEM derived

from a 1: 100 000 map, which provides limited resolution, especially considering

the resolutions of the maps from which glacier geometry was derived (˜1: 5,000).

In other studies (e.g. Arnold et al., 2006b), LiDAR has been used to provide the

area base map. Equally, other methods could include the merging of ASTER data

(e.g. Quincey & Glasser, 2009) or derivement of a DEM using TLS methods (e.g.

Heritage et al., 2009). Higher resolution DEMs from which to calculate geometries

to assess hillshade effects on a surface will enable the calculation of more realistic

hillshade modelling. This could have large implications when calculating the

energy from incoming radiation - particularly at the transition zones between

more and less shaded areas. Therefore, where possible, the highest resolution

maps should be sought.

To consider how these varying factor sensitivities fit into to the SEB as a whole,

based on equation 5.4.7, a conceptual diagram is presented in figure 10.3. This

highlights the complexity of the system that has been considered in this study.

Snowpack thickness (represented in figure 10.3 without an associated seasonality

which varies as a function of temperature and precipitation), which has been

identified as a key control on the energy available at the surface, strongly controls
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the albedo of the glacier surface. Based on the treatment of albedo in this study,

where snow is present albedo is significantly higher than where there is no snow

and therefore bare ice. The importance of the wind factor is clear from its direct

effect on snow thickness. Radiation (component I) has been consistently found to

provide the majority of the energy to the overall SEB (see sections 9.1.5 and 9.2.5

of chapter 9). Whereby snow presence or absence can reduce the contribution

of I to Q by 30-65%, the importance of snowpack thickness as a control is clear.

Hillshade has also been found to relate to variations in elevation change through

time and this again is as a function of its modification of I - also clearly identified

in figure 10.3.

10.3 Conventional mass balance, the reference

balance and effects of surface geometry

The distributed SEB model developed in this study has been used dynamically

to assess changes in contributions of different SEB components to conventional

MB change and has also provided an opportunity to compare these changes to

reference balance conditions as described by Elsberg et al. (2001). Few studies

have made use of the reference mass balance approach with no such studies having

been taken on small mountain glaciers within sub-polar - polar areas, making

the present study unique. The model as applied in this study does not account

for mass gain over multiple years and nor does it account for dynamics. It is

assumed that under positive balance conditions, there will be zero net melt. This

is likely to be a source of error, although quantification is impossible due to a lack

of inter-annual data. For the dynamic model, the general trend of negative MB

matches that of the overall geodetic assessment for 1926-2010. However the period

of 1943-1959 is not represented by zero growth which is expected considering

the geodetic results for the same period. Coupled with 1991-2010, 1943-1959

melt rates yield the least negative total glacier MB value. This again brings in

to question the reliability (and associated issues) with the 1943 glacier recon-

struction and therefore implications for change assessment with results related to it.
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Figure 10.3: Conceptual diagram of the different contributions to the overall SEB. The factors
considered include those which are glacier, topographic and climate related. This is based on
the simple calculation of SEB (and therefore factor Q) as defined by equation 5.13 in section
5.4.7 of chapter 5. Solid lines indicate processes considered through the modelling preformed in
this study. Dashed lines highlight relationships that are not directly considered.
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Harrison et al. (2009) applied the reference-conventional balance comparison

techniques to assess the dynamic health of the Gulkana and Wolverine glaciers in

Alaska, USA. The differences between the two mass balance approaches varied for

the glaciers relative to response times. A reference-conventional balance compari-

son was carried out by Paul (2010) to assess changes in MB for a large sample of

glaciers in the Swiss Alps where the reference surfaces (and extents) used were for

1850 and 1973. 50-70% of the total change between the two derived mass balance

methods for the glacier overall was attributed to changes in geometry, although

the specific elements of geometry are not discussed. A key element derived from

the Huss et al. (2012) study was the spatial variations associated with differences

between conventional and reference mass balance values and temporal dependence,

with trends only being identified over longer time periods. This ties in particularly

well with the observations made by Harrison et al. (2009), all of which supports

the importance of taking into account glacier response time.

The results found in the present study, comparing conventional and reference

balance conditions for K̊arsa from 1926-2010 under the same meteorological forc-

ing, yield similar results to the study of Huss et al. (2012) carried out for 36

Swiss glaciers for the period 1926-2008. Conventional and reference MB values

of -0.31 m w.e. yr-1 and -0.74 m w.e. yr-1 are calculated respectively, comparing

to values of -0.36 m w.e. yr-1 and -0.45 m w.e. yr-1 from the Huss et al. (2012)

study. Fi statistics are calculated as in Huss et al. (2012) (see chapters 4 and

9) to allow for a inter-comparison, with fixed aspect, slope and both aspect and

slope having similar effects relative to conventional balances (all with and Fi of

-0.58). However, over longer time periods, slope appeared to have the largest

effect (-0.41), although only by a measure of 0.01 more compared to aspect change

(-0.39). Unlike the Huss et al. (2012) study, here, only slope and aspect are held to

account for a reference surface - elevation is not fixed. Thus, deviations between

comparable reference and conventional MB values are not only related to different

environments and climatic settings but also to the effect that changes in elevation

have.
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Fi in this case is an average value over specific time-periods and is thus not

representative of inter-annual contributions of geometric effects to MB change.

No short-term variability was found between conventional and reference balances

over short time scales in (Huss et al., 2012) and this is replicated by the data here

(e.g. see figure 9.15). Over longer time scales, difference in mass balance is clear,

as for 1926-2010. However, these changes do not appear to be fixed to a specific

time interval. The period of 1926-1943 is shown to have a significant difference

between conventional and reference MB values, whereas other ˜20 year intervals for

1943-1959, 1959-1978, 1978-1991 and 1991-2010 do not show such MB variability.

The Fi values for 1926-2010 are mainly evidence of the large effects experienced

following the 1926-1943 period, with very little change occurring afterwards. Thus

it appears here that the difference between conventional and reference MB is not

always temporally related, depending on initial glacier geometric configurations

and climatic conditions.

The acknowledged importance of geometric evolution is explained here in terms of

radiative forcing, affecting radiation receipt on a slope as defined by equation 5.10

(Hock, 2003), with fixed geometry strongly enhancing negative MB conditions and

resulting in a much steeper overall MB gradient. Considering the slope and aspect

charts in sections 6.7 and 6.8 of chapter 6, 1926 displays the most NE aspects and

lowest slope angles, both of which provide much more optimal radiative receipt

conditions than the increasingly steep and more northerly profiles of the glacier

in later years. By fixing geometry according to the 1926 configuration, thinning

and retreat of the terminus, normally resulting in steeper slopes under dynamic

conditions, does not have the dampening effect on MB change that the dynamic

model and glacier has. This enhancement of radiation is important considering

the contribution of I to Q identified from the dynamic glacier runs (see figure

9.9). Although slope and aspect are frequently acknowledged to be an important

control on glacier mass balance (e.g. Klok & Oerlemans, 2002; Hock & Holmgren,

2005; Arnold et al., 2006b), long term temporal evolution has been tested for

only a few glaciers (e.g. Harrison et al., 2009; Huss et al., 2012). No examples of

slope and aspect evolution are available for the Arctic, which makes these specific

results from the modelling carried out in this study unique. In the MB curves
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displayed in figures 9.14 and 9.15, the effect of topography is expressed within

the regions of greatest hillshade and thickest winter snow locations. The effect of

these factors is more enhanced than under dynamic conditions, resulting in much

steeper MB gradients to and from the zone most affected (˜1200-1300 m a.s.l.).

This emphasises how this region of the glacier changes much less over the total

assessed periods and therefore provides further evidence for the dampening effect

that topographic and snow insulating effects have on MB (Arnold et al., 2006b).

An overall steeper gradient would be expected if this were not the case.

Lowering of the glacier elevation also has large effects although these are not

assessed individually, contributing collectively to the dynamic and fixed model

responses. With lower elevations, higher temperatures will be experienced (adia-

batically) but equally potential hillshade will increase, therefore reducing surface

radiation receipt (Paul, 2010). This is considered in section 10.1 but is not tested

within the model and thus cannot be compared with other studies in terms of

reference balance.

Considering the results here and those of Paul (2010) and Huss et al. (2010),

the importance of dynamic glacio-geometric configuration in terms of reduced

MB response to changes in climate is clear as addressed in Harrison et al. (2009).

The difference between conventional and reference balance per year is variable,

with trends in differences tending to develop over longer time scales (Huss et al.,

2012). Trends in these differences will vary from glacier to glacier as a result of

topography, for which a clear example is drawn here considering the topographic

dampening on MB change around the middle of the glacier. Harrison et al.

(2009) found that the varying response of different glaciers can enhance or reduce

susceptibility to mass loss under less favorable climatic conditions (Harrison et al.,

2009), with some glaciers updating rapidly enough to counter adverse effects of

climate on mass loss whilst others do not. Thus it is vital that such geometric

changes are accounted for when considering longer term analysis of glacier change

and addressing expected responses in the future.
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10.4 Long term assessment and modelling re-

lated limitations

The complex nature of this project, considering the variety of data available

and the modelling carried out results in the application of a variety of different

methods. The methods that can be used and the results that can be derived are

of course directly affected by the data available. Data availability in turn affects

the methods that can be applied. This is considered in the following sections with

regard to limitations associated with different elements of long term assessment

(section 10.4.1) and limitations associated with the modelling approach taken

(section 10.4.2).

10.4.1 Issues related to long term assessment

Geodetic methods provide an alternative method of assessing glacier mass change,

other than by the more traditional glaciological approach of taking in-situ mea-

surements. The geodetic route should not replace the making of such in-situ

measurements however as the two approaches vary in resolution (Hagg et al., 2004)

and neither approach is error free (e.g. Østrem & Haakensen, 1999).

Focusing on the geodetic approach, this is most effective where there is a well

established geodetic network including accurately located and known GCPs (An-

dreassen, 1999; Østrem & Haakensen, 1999). The quality of results is completely

dependent on the combination of geodetic details of an area and, where maps are

used (as opposed to GPS for example - discussed below) and map resolution, the

former affecting the positioning of the latter, with the resolution being intrinsic

to accurate assessment of conditions between maps.

A number of GCPs were created in the foreground of K̊arsa, used for past aerial

photography campaigns and for early measures of glacier terminus recession

(Ahlmann & Tryselius, 1929). However, although these positions do exist, they

are only useful for georeferencing if they are depicted on the majority of maps

available, which is not the case here. Furthermore, where a selection of GCPs are
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available but are focused in one area, this is of little use for georeferencing other

more distant areas as georeferencing transformations require a spread of points for

best accuracy. Of the maps available in this study, the original terminus retreat

markers from the early studies of the glacier were marked on two of the maps

available. However, these points could only be referenced to one another, not being

visible on either the topographic base map or the contemporary aerial photograph.

Furthermore, they did not match particularly well with GPS measurements of the

markers which questions their mapped accuracy (or that of the GPS unit used).

Georeferencing and the identification of ad-hoc GCPs was further hindered by

the extremely varied resolution between the maps available with glacier maps to

a resolution of 1:5000 and the base map (the spatially most accurate nap due to

its coupling with an actual coordinate system as opposed to being just a picture)

to a resolution of 1:100 000.

Assuming a good geodetic network is available, georeferencing issues should be

minimal and accuracy assessments should be straight forward by simply comparing

GCP location details of different layers between one another (e.g. Brugger et al.,

2005; Nuth et al., 2007). Where aerial photographs are available, errors can

also be calculated by considering non-dynamic landforms surrounding the glacier

(e.g. mountains and ridges - often related to GCP locations) (Hagg et al., 2004;

Shahgedanova et al., 2012). The relatively limited surroundings accounted for in

the available maps, and the differing degrees to which they were accounted for,

resulted in a number of issues, many of which are identified in section 4.2.2 of

chapter 4, resulting in difficulties in both georeferencing and quantifying spatial

errors.

Of all the analyses carried out in this study, the most unexpected results are for

the geodetically calculated elevation change between 1943 and 1959, where the

glacier appears to have been in positive balance. These results were not replicated

in the modelling carried out as part of this study and the conditions accounted

for in the study of Wallén (1948) (running from 1942 - 1948) are not indicative

of extremely positive balance conditions. It is thus possible that the geodetic

assessment results for this map are indeed erroneous, relating to an underestimate
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of overall glacier elevation. This may be a function of the georeferencing issues

(relating to poor GCP identification) but may also be a function of map quality

which could be due to a number of reasons including the quality of the original

drafting and of the original aerial photograph (Andreassen, 1999; Hagg et al.,

2004). If these results are indeed erroneous, counter to the over-estimate in glacier

growth for 1943-1959, this implies the identification of overly negative conditions

between 1926-1943.

Much in the way that map resolution is key, the same can be said of GPS

trace resolution - the higher the resolution, the easier and more accurate any

comparisons that are made between data sets. For inter-survey comparison, the

same resolutions should be maintained as best as possible, as this allows limitation

of spatial errors and thus reasonable assessments of change. To address the effect

of changing point resolutions using a GPS approach, as well as accounting for

any errors in the point clouds, Monte Carlo experiments were carried out (see

section 7.1 of chapter 7). From analysis of the Monte Carlo simulation outputs

the following points can be drawn out:

1. Erroneous data points (spikes) are influential on unknown point prediction

where data are sparse and the search neighborhood window consist only of

distant points

2. Good spatial point distributions are required for more accurate interpola-

tions(especially where the environment results in large similarity changes be-

tween points over short distances i.e. there is a steep semivariogram/covariogram)

3. The southern region of K̊arsa should be treated with caution for the years

2007-2009 as there is a very poor spatial point distribution and consequently

it is highly susceptible to the presence of erroneous points

Generally, higher point density resulted in less error when using the points as

an input into interpolation algorithms (discussed below). Due to the varying

density of GPS points collected between the different surveys, comparing surfaces

spatially is difficult due to the noise. This furthermore complicates interpolations,
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especially when considering point changes. Although GPS is extremely useful

for positioning, especially considering its accuracy, its employment should be

limited to transect studies unless high resolution point clouds can be created.

However, this is difficult to achieve considering the often challenging nature of

the environments in which points are collected. This issue of point resolution is

significant where the objective of the employment of the method is for assessment

of (potentially small) surface changes, with the high accuracy of individual points

being of little importance when compared to the much larger potential errors of

interpolated surfaces which are being compared. The method of surface compari-

son has still allowed for relatively good mapping of the lower glacier where point

density was greatest. It also proved to be useful in so far as planning for other

assessments/field campaigns where similar methods are to be used (discussed in

section 10.6). As mentioned above, the point density directly affects resultant

surface interpolations with greater numbers and distributions of points better

constraining interpolation methods employed. The kriging method used in this

study was used as it qualifies as the optimum interpolator due to its consideration

of variance with distance and thus of variations in auto-correlation. The system

by which the best semivariogram model was chosen, as discussed in section 4.2.5

of chapter 4, highlights the differences between the various models available and

thus the careful consideration that must be paid to model selection, varying

directly as a function of the distribution of the input point cloud data. This

notion of susceptibility to varying point distribution can be extended to other

kriging methods (see Hock & Jensen, 1999) and interpolation methods in general.

A further consideration is the effectiveness of deriving summer glacier surface

profiles from winter field approaches. In this study, the 2007-2010 summer surfaces

were derived from dGPS and snow probe assessment in the winters of 2008-2011.

The key assumption made being that the summer surface is simply the winter

snow surface minus the winter snow pack depth. As has been identified in chapter

3 and with specific reference to figure 3.2, the summer surface of K̊arsa shows

evidence of large bed rock protrusions. These are not accounted for in the summer

surfaces constructed here and thus call for a requirement to quantify summer

surfaces derived using the method in this thesis with information from the ground
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- ideally aerial imagery. This is important as such bedrock outcrops will increase

long-wave radiation contributions to the SEB due to their different α values which

in turn strongly influences surface melt and MB (Diolaiuti et al., 2011).

These methodological issues are important and the consideration of the issues

relating to the geodetic method, including map resolution, GCP identification,

data point cloud density and distribution , as well as the interpolation routines

relate to a recent acknowledgment of stark differences in global glacier change

assessments between combined geodetic and field based glacier studies, with

remote sensing methods. For a number of regions around the globe, glaciological

methods have been found to account for MB change much more negatively when

compared to results from GRACE (Gardner et al., 2013). A number of reasons

including logistical constraints and the issues of in-situ measurements (such as

stakes melting in) are suggested for this more negative MB acknowledgment

using glaciological and geodetic approaches (Gardner et al., 2013; Kerr, 2013).

However, this also brings into question the accuracy of other geodetic studies

which is controlled by the maps available and the interpolation tools applied, as

acknowledged throughout this study.

10.4.2 Modelling related limitations

The simple model applied here is effective in that it operates according to field

observations (where points are of the highest resolution), provides a means to

test model sensitivity to different controls and allows for a consideration of geo-

metric effects on MB. The user friendly interface, distributed approach to SEB

calculation, site specific considerations of glacier geometry and effects on incident

radiation, as well as the ability for reference based modelling runs, make the

model developed in this study an advancement on past simple model approaches

(e.g. Arnold et al., 1996; Brock & Arnold, 2000; Leclercq et al., 2011; Giesen &

Oerlemans, 2012). However, a number of limitations relate to the application

of such a simple model. These are related to the omission of glacier dynamics

processes, lack of mass accumulation and simple modelling of snow and turbulent

fluxes. These limitations cannot be avoided in this instance as the data to validate
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more complex approaches are simply not available. Furthermore, considering

the validation carried out, for the purposes of this study, the advantages of such

enhanced complexity would likely be lost when one considers also input data

reliability. There are examples of simple dynamics models that have been applied

to longer term studies (e.g. Leclercq et al., 2011) however these often assume the

presence of a fixed thermal regime. For example, the Leclercq et al. (2011) study

assumes temperate conditions. This becomes difficult when a regime cannot be

assumed fixed as with K̊arsa for which the thermal regime is believed to have

changed over time (Rippin et al., 2011). Considering these issues with dynamics,

this leads to further issues relating to snow accumulation and how mass distribu-

tion is treated within the model. Without sufficient data, it could be argued that

the integration of further complexity does not necessarily improve accuracy and

may even introduce a false sense of detail.

Snow mass movement modelling, especially by wind, is required to better un-

derstand the processes occurring at K̊arsa, the evidence of wind redistribution

processes being highlighted in the snow pit analysis discussed in section 4.2.3 of

chapter 4. Taking refreezing into account, also identified to be of importance

from snow pit analysis, would be a further consideration and relatively easily

constrained as in Leclercq et al. (2011).

10.5 A simple transferable grid based model de-

signed for Arctic glaciers: adaptability and

availability

The model developed specifically for this study has provided an effective platform

to consider changes in SEB and MB over time as a function of dynamic and fixed

geometry with changing meteorological conditions. The model allows runs at

varying time steps (days and months) and can easily be developed to consider

higher temporal resolutions (this being a function primarily of the meteorological

input data). There are some limitations (see section 10.4.2) however these are

generally related to much higher resolution processes for which data would rarely
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be expected to be available, especially with regard to the simple modelling appli-

cations that the model was designed to be used for. The model has been tested

against the best available historical DEMs and change maps (see section 8.1 of

chapter 8) and is found to reproduce the general patterns of observed elevation and

thickness change. The model also operates within the constraints of in-situ mass

balance measurements as calculated by Wallén (1948) and Bodin (1993), despite

these mass balance values being calculated over daily time steps and the only

input surfaces being available throughout model development being calculated

on >10 year time steps, with meteorological data being available up to 2007 on

monthly time steps (this then being corrected from the location of ANS to the

glacier - see chapter 5).

The area of K̊arsa as calculated from its 2008 extent was 0.89 km2, placing it

within a category of 64.2% of all Arctic glaciers which in 2009 were reported to

have an area of <2 km2 (Rippin et al., 2011). A larger portion, 77.9% of Arctic

glaciers, were found to have an area of <5 km2 (Rippin et al., 2011). By developing

and testing the model specifically for K̊arsa, and acknowledging that the results of

processing fall within geodetic and in-situ mass balance observations, this study

has provided a grid based physical SEB model for a glacier representative of

other glaciers in the Arctic. As the model is grid based, it models change whilst

considering spatial variability which is a big advance on more common point based

models which are limited primarily by spatial coverage (Hock, 2005).

The model source code is freely available as mentioned in section 5.7 of chapter 5.

This code will be continuously updated. Under the GNU General Public License

(Version 2), users are free to download the code and manipulate it at will, so long

as future developments made available to other users include the same rights as

stated within the aforementioned license (see appendix F). The hope is that other

researchers will take advantage of the existing model structure developed for this

study and apply it to other glaciers to enable further SEB experimentation. With

the code itself being available, then further development is encouraged.
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10.6 Outlook: Considerations for future studies

This study has addressed a number of different elements of glaciological science -

in particular:

� Historical glacier reconstruction (3D) over decadal time scales

� Contemporary glacier reconstruction (3D) over annual time scales

� Distributed SEB modelling.

Relating to these different components, a number of suggestions are made with

regard to considerations for future studies. Historical surface reconstruction

constituted chapter 6 and provided the inputs for historical SEB modelling

addressed in chapters 8 and 9. A key issue relating to the integration of historical

maps as outlined in chapter 4 related to error analysis. Horizontal and vertical

errors are usually carried out through the identification of GCPs (e.g. Brugger

et al., 2005; Nuth et al., 2007). However, this is not possible where GCPs cannot be

identified. Furthermore, errors are invariably introduced where map development

is facilitated by different cartographers using different methods (the methods of

which are unknown for all of the glacier topographic maps used in this study,

other than that they are based on aerial photographs). To attempt to quantify

and therefore make known the accuracy of subsequent analyses, where possible,

the following suggestions should be considered:

� Acquire original aerial photographs (this should enable easier GCP identifica-

tion - many potential GCPs may be disregarded by cartographers depending

on the objective underlying map development)

� Identify details of the cameras used (for indication of possible distortion)

� If aerial photographs are available for successive years, develop maps and

therefore DEMs using a fixed and consistent method (therefore possible to

quantify methodological error introduction)
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Contemporary glacier reconstruction constituted chapter 7 and provided the

inputs for contemporary SEB modelling addressed in chapters 8 and 9. The

methods for contemporary glacier surface reconstruction are discussed in depth in

chapter 4. The main issues relating to these reconstructions were a consequence

of the pseudo-random point clouds developed as a consequence of the employed

snowmobile/dGPS method. The nature of the resultant point clouds, and their

effects on surface interpolations are analysed in section 7.1 of chapter 7. Clear

problems arise where gaps in the point clouds exist. This leads to a number

of suggestions for alternative methods for data collection, focused primarily on

accuracy:

� Drone, blimp, kite and UAV (Unmanned aerial vehicle) surveys - coupled

with high resolution cameras and a dGPS unit, it is possible to collect

numerous georeferenced photographs of the study site. Such approaches

has been used for other terrain analysis studies (e.g. Smith et al., 2009;

Niethammer et al., 2012). Photographs can then be used to create a point

cloud from which DEMs can be developed as described below.

� Static cameras networks placed around the object (in this case the glacier) of

interest taking photographs on a set interval (enables multiple time frames

to be accounted for following a single equipment set up procedure) (e.g.

James & Robson, 2012). Photographs can then be used to create a point

cloud from which DEMs can be developed as described below.

� TLS methods (e.g. Avian & Bauer, 2006; Heritage et al., 2009; Kociuba

et al., (in press)) - provide an automatic point cloud of the surveyed area

(LiDAR technique).

� ALS methods (e.g. Arnold et al., 2006b,a; Hopkinson & Demuth, 2006;

Kohler et al., 2007) - provide an automatic point cloud of the surveyed area

(LiDAR technique).

The UAV and static camera methods differ to the use of TLS and LiDAR studies in

both terms of affordability and the nature of the data collected in the first instance.

The latter two methods are considerably more expensive (and cumbersome) - with
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laser scanners costing between £50 - 100, 000 (Carrivick et al., 2013) and LiDAR

units normally being mounted on aircraft for which flight time is expensive. These

methods do allow for a large spatial coverage of data to be acquired but, especially

with regard to the laser scanning data, processing of data is not simple and is

thus time consuming. These methods ultimately provide data in the form of point

clouds from which DEMs can be constructed. Comparatively, the use of Drone,

blimp, kite and UAV surveys, as well as fixed camera networks are much lower in

cost and considerably less cumbersome which increases their ease of use in the

field. Unlike the laser methods, these depend on optical imagery. By collating

numerous photographs of an object, methods such as Structure from Motion (SfM)

(James & Robson, 2012; Westoby et al., 2012) can be used to extract 3D structure

from overlapping images (Westoby et al., 2012), and these can then be converted

to point clouds which can be used to develop DEMs. This method is discussed

extensively in Westoby et al. (2012). A variety of freely available software is

available to facilitate this procedure including Microsoft Photosynth and Bundler

(Carrivick et al., 2013). An issue that will remain and that cannot be addressed

by optical image analysis, especially during the winter months at higher elevations

where there is no sunlight for many months, is an accurate assessment of winter

snow pack thickness. Microwave remote sensing imagery would be an option but

is limited in coverage, spatial and temporal resolution.

SEB modelling has been instrumental throughout this study (chapters 5, 8 and

9), especially when considering the sensitivity of the glacier to different SEB com-

ponents and geometric change and its effect on these SEB components. Following

sensitivity analyses addressed in chapter 8 and the varying results addressed in

chapter 9, the following suggestions are made for future modelling studies:

� For modelling approaches over short time scales (months to a few years),

continuously updated DEMs are not of great importance with regard to

estimations of melt as geometry changes (slope and aspect) are found to only

propagate over longer time scales thus a better investment of time would be

in acquiring a single high resolution DEM of the glacier and surroundings

at the beginning of a given study
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� Meteorological data collection, especially with regard to τ and its associated

variability

� The snowpack is extremely important in its suppression of surface melt as

a function of thickness which results in surface insulation and control of

surface albedo - for improved modelling results, the spatial variability in the

snow pack thickness needs to be mapped as accurately as possible

� Where higher resolution and more complex considerations of SEB and MB

are to be carried out, the inclusion of wind and resultant snow redistribution

is found to be important, especially in complex mountain environments
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Chapter 11

Conclusions

To conclude this study, a summary is first presented, followed by a consideration

of areas for further study and then a presentation of the key findings.

11.1 Summary

The aims of this study are outlined in chapter 1. These aims have been achieved

through the completion of the set objectives also outlined in chapter 1.

The first, second and third objectives: Collate historic topographic maps

and reports as well as data from the field to ascertain glacier geom-

etry, meteorological conditions and snow pack characteristics, Apply

geostatistical methods to reconstruct 3D glacier geometry and enable

geometry and geometric change analyses (through development of a

GIS) and Account for sensitivity of applied geostatistical techniques

on reconstructed surface properties, are addressed fully in chapters 4, 6 and

7. Topographic maps of the glacier were acquired and compiled for the years

1926, 1943, 1959, 1978, 1991. Following field data collection, maps of the glacier

under summer conditions were developed for the years 2007, 2008, 2009, 2010.

Meteorological data was compiled from different sources (ANS and the installed

AWS) for the periods 1920-present (ANS) and 2007-2011 (AWS). Winter snow

accumulation was collated at AWS for the period 1920-present and measured at

the glacier following field data collection for the winters of 2007-2008, 2008-2009,
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2009-2010, 2010-2011.

The collated maps were digitized enabling the development of DEMs using a

carefully analysed ordinary kriging approach. DEM sensitivity was analysed as

a function of the interpolation process using statistics reported from the kriging

algorithm (trend removal results displayed in table 4.2 in section 4.2.5 of chapter

4). DEM sensitivity to the effects of point cloud density was considered using a

Monte Carlo sensitivity analysis approach, which involved the addition of random

noise to point clusters and acknowledgment of the effect of such noise on resultant

interpolations, highlighting the most sensitive regions to point noise. DEMs were

then analysed which revealed that the glacier has undergone large changes in

terms of its geometric characteristics. For the 1926-2010 period, elevation is

acknowledged to have lowered by 33 m on average, giving a mean rate of elevation

loss of 0.35 m w.e. yr-1. Thickness is assessed to have reduced from a maximum

of 137 m to 56 m — which equates to an annual change in maximum thickness of

0.85 m w.e. yr-1. Volume has reduced by 111.97 x 10-3 km3 from 125.31 to 13.33

x 10-3 km3 — a rate of loss of 1.33 x 10-3 km3 yr-1.

The fourth objective: Develop a user friendly grid based distributed

surface energy balance model which uses reconstructed surfaces as

an input, combined with meteorological data from the field, is detailed

in its construction in chapter 5. Examples of the model are displayed in ap-

pendix E and the computer code is available under open source licensing from

https://github.com/Chris35Wills/SEB_model_java_files. A model was de-

veloped with a user friendly interface enabling dynamic and fixed geometry (refer-

ence surface) model simulations. The model platform uses uploaded GRID/ASCII

surfaces as an input (as developed using the methods outlined in chapter 4 and

analysed in chapters 6 and 7). Distributed SEB energy was calculated using

equation 5.13 based on meteorological data collected in the field, and this was

achieved for monthly and daily time steps (for the historical and contemporary

models respectively). Radiation was calculated on a 6 hourly time step, regardless

of lower resolution time step input meteorological data (temperature etc.). By

altering the input GRID/ASCII surfaces as a function of energy availability, the
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model allowed for dynamic surface geometry updates every time step.

Compared to geodetic observations of MB and in-situ measurements as collated

by Wallén (1948), the model works extremely well. Annual errors based on the

geodetic surface/model surface analysis for the historic model were calculated at

-0.33 m w.e. and -1.76 m w.e. for the contemporary model. Considering the lower

glacier alone when using the contemporary model, mean annual error is reduced

to -0.08 m w.e. Difficulties in error analysis were a function of unquantifiable

mapped data errors addressed in sections 4.2.2 and 4.3.5 of chapter 4.

The fifth objective: Conduct model scenarios with the developed model to

assess the effects of meteorological and topographic forcing as well as

geometry change on surface energy balance and mass balance change,

is addressed in chapters 8 and 9. Sensitivity tests were carried out to see the

effect of small changes in key factors (namely atmospheric transmissivity, snow

albedo, ice albedo, wind, summer snowfall threshold, lapse rate and winter snow

thickness) and these are summarised in table 8.18 in section 8.4.8 of chapter 8.

The glacier was found to be highly sensitive to hillshade (and its modification of

radiation receipt at the surface) and snow thickness (as affected by wind, which

in turn affects surface albedo and then surface radiation receipt).

Dynamic, aspect fixed, slope fixed and slope and aspect fixed scenarios were

modelled for the following time steps:

� 1926-1943, 1943-1959, 1959-1978, 1978-1991, 1991-2010 and 1926-2010 (his-

torical model)

� 2007-2008, 2008-2009, 2009-2010 and 2007-2010 (contemporary model)

With regard to 1926-1943 (and then the 1926-2010 overall change), the fixed

geometry surfaces (i.e. all apart from the dynamic scenario) resulted in much

more negative mass balance conditions. For the period 1926-1943, modelled annual

maximum MB under dynamic conditions was calculated at -1.25 m w.e. compared

to -2.40 m w.e. under fully fixed conditions. For the period 1926-2010, modelled
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annual maximum MB under dynamic conditions was calculated at -0.5 m w.e.

compared to -1.25 m w.e. under fully fixed conditions. Changing values in terms

of slope and aspect angles were therefore found to be key in reducing melt - this

being directly related to the calculation of incident radiation (I) as calculated

using equation 5.10. This relates to the large changes in geometry during the

1926-1943 period as acknowledged through the geodetic assessment. This result is

important as the effect of changing geometry has often been neglected by SEB/MB

models in the past. Very little change was found in mass balance for other model

time steps inter-surface - particularly with regard to the contemporary surface.

11.2 Suggestions for further study

There are a number of exciting elements highlighted in this study that provide

impetus for future development and analysis. The increasing availability of low-

cost, low-bulk techniques for terrain analysis and point acquisition (e.g. Westoby

et al., 2012; Carrivick et al., 2013) offers new ways to develop DEMs as discussed

in section 10.6 of chapter 10. Such methods should be considered for multi-annual

survey programmes, such as carried out for K̊arsa in this study for the period

2007-2010. Coupled with error analyses (including the Monte Carlo simulations

implemented in this study), these surfaces could be used to assess terrain change

over time. It would be interesting to use resultant DEMs as inputs in the SEB

model developed here to assess model reliability and derive new error values. A

further area for development would be the assessment of snow mass movement

processes over small Arctic glaciers. Many of the existing snow models that have

been developed are specific to alpine catchments (e.g. Bartlet & Lehning, 2002;

Michlmayr et al., 2008). This would provide further insight into controls on SEB

and MB in mountainous Arctic regions, although such work would be highly data

intensive and inevitably site specific.

An important element that was not considered in this study was that of glacier

dynamics. In terms of glacier mass balance change and surface sensitivity to

different elements of the surface energy balance, this should in future be considered

to a greater extent. Although the geodetic method — applied throughout this
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study — is a useful method of assessing mass balance change over time, it gives

little or no insight as to why certain changes occur (Bamber & Rivera, 2007).

This is where other approaches including the mass conservation method and the

flux-divergence approach would be effective as they would allow dynamics and

mass balance components to be more effectively separated (Rott et al., 1998;

Bamber & Rivera, 2007; Seroussi et al., 2011; Morlighem et al., 2013).

During the final visits to the glacier, there was clear development of a proglacial

lake along the glacier terminus. The question of calving is key in glaciology today

and yet a fully comprehensive understanding remains elusive (Benn et al., 2007a,b).

This is primarily associated with tidewater glaciers linking to ice sheets thus also

relating to saline water conditions and tidal effects. However, should the lake

continue to grow at K̊arsa and should the margin begin to float, the effect of

calving would be interesting to consider, especially with regard to the effect that it

could have on enhanced glacier terminus retreat rates. This could be an exciting

avenue to pursue as should such an effect be found to occur, the consequences

could be significant.

11.3 Key findings

The key methodological findings can be summarised as follows:

� When mapping areas using point cloud approaches, high spatial resolution

and coverage is key in enabling accurate interpolation and therefore DEM

development

– Pseudo-random point collection does not allow for accurate surface

change assessments

– There are now a variety of low cost, low bulk methods available to

acquire point clouds of glaciers from which accurate DEMs can be

derived

– Monte Carlo simulations involving the introduction of randomly dis-

tributed point error values provide an extremely useful means to assess
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DEM interpolation sensitivity to varying point cloud densities. The

results of such analyses provide means of surface quality control when

considering spatial change.

– When integrating topographic maps or aerial photographs into such

analyses, a good geodetic network (with regard to identification of

shared GCPs between maps) is vital to ensure accurate error assessment

� Careful consideration needs to be taken as to the approaches used to derive

changes in glaciological parameters including ELA terminus retreat values

as these can vary significantly across the glacier terminus

– Differences in retreat of up to 551 m were found using different methods

of assessment

– The best assessment of terminus retreat considers retreat on a spatial

scale as opposed to the consideration of a single point

– Differences in ELA estimation of up to 496 m were calculated

– Multiple ELA methods must be considered as opposed to one - where

mass balance data are available, these will be significantly improved

(e.g. AABR)

� Simple SEB modelling approaches can be used to simulate mass balance

change processes with high accuracy, especially when considering variability

in spatial conditions so long as topographic conditions (namely hillshade)

are considered

– Available meteorological records and analyses for other glaciers provide

a database from which basic constants (varying as a function of location)

can be derived (see Giesen & Oerlemans, 2012)

– Coupled with available DEMs of a glacier and its surroundings (which

can be derived from relatively low resolution area maps), accurate ice

melt simulations are possible for a small mountain glacier by combining

the use of the now available aforementioned constants with basic site

specific meteorological data (air temperature, precipitation, incident
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radiation) which can be collected by the means of low cost, simple,

AWS set-ups

– Considering the limited input variables for the developed model and

the lack of site specific scaling factors, the model can easily be applied

to other glaciers - the code for the model can be freely downloaded from

https://github.com/Chris35Wills/SEB_model_java_files and of-

fers a user friendly GUI.

The key findings of this study are as follows:

� K̊arsa glacier, as with many other glaciers in Scandinavia and Europe, has

reduced in area, retreated and thinned extensively throughout the 20th

century, in line with climatic warming in the region as acknowledge by

Callaghan et al. (2010)

– Areas has reduced by 3.41 km2 for the period 1926-2008 coupled with a

retreat of 1292 m - the rate of retreat has increased since 1978 (8.3–14.4

m yr-1). Total and annual retreat values are similar to those observed

for other glaciers in Scandinavia.

– Surface lowering for the 1926-2010 period has been at a rate of 0.35 m

w.e. yr-1 which has resulted in an annual reduction in the maximum

thickness of 0.85 m w.e. yr-1. This gives a volume change of 1.33 x

10-3 km3 yr-1. The thinning of K̊arsa is found to be at a rate similar

to the much larger nearby Rabots Glciär, the rate of which for both

is continuing unlike for nearby Storglaciären which is evidence for

differences in glacier response times.

– Change on an annual basis for the period 2007-2010 is less clear with

changes in thickness being quantified as an overall mean reduction of

7.68 m ±9.61 m, coupled with a volume change of 1.92 ±2.30 x 10-3

km3.

– Coupled with retreat and thinning, the glacier has undergone disinte-

gration as observed of other glaciers in Scandinavia and the European

Alps.
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� Knowledge of glacier thinning aids in a better understanding of changes in

the thermal regime of the glacier

– Rippin et al. (2011) found K̊arsa to exhibit a thermal lag - proving to

have a polythermal core whereas it was expected the glacier would be

frozen to its bed

– This study has highlighted how the previous thickness and surface slope

distribution of the glacier resulted in increased basal stress which may

have resulted in increased ice temperature and the development of the

thermal regime discovered by Rippin et al. (2011)

� Topographic factors (hillshade) and the thickness of the snow pack are key

in the control of mass balance change at K̊arsa

– The effect of hillshade on the incident radiation budget of K̊arsa has

increased dramatically as the glacier has retreated.

– The thickness of the winter snow pack is found to have a significant

effect on the melt of the glacier, greatly affecting the length of the melt

season experienced by the glacier in a given year.

� Over very short time periods changes in slope and aspect have no significant

effect on MB change of K̊arsa.

– No significant changes in SEB and MB were found between dynamic

and fixed geometry melt simulations for the 2007-2010 period. These

results relate directly to the geodetic analysis of glacier change for the

same period, where geometry was found to change very little.

� Over longer time periods, specifically for the period 1926-1943, geometry

was found to have a significant effect on MB and SEB

– Fixed geometry runs results in much more negative mass balance for

the period 1926-1943 compared to any other map interval experiments.

This effect then propagates when considering the full 1926-2010 period.
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– This relates to the observed change through geodetic analysis - the

main lobe of the glacier in 1943 surface being steeper than in 1926.

This is important as lesser slope angles relate to increase radiation

receipt at the surface.

– Effect of geometry on SEB and MB cannot be simply related to time

as other modelling experiments for similar time periods (based on the

map intervals) do not replicate the results of the 1926-1943 period.

– As glacier geometry effects cannot be simply linked to time, it is

imperative that future studies consider changes in glacier geometry on

SEB and MB for accurate assessments of glacier response to climate.

11.4 The fate of K̊arsaglaciären

The final field season conducted by Leeds University at the glacier was completed

during the summer of 2013. This resulted in the retrieval of the AWS and also the

removal of a network of cameras that were being used by Dr David Rippin for a

photogrammetry study and that had been collecting images on a daily basis for the

past year. The final visit also saw the use of a TLS which enabled the acquisition

of a very high resolution DEM of the glacier and surrounding area. Photography

of the surface was also carried out. The TLS and surface photography outputs

were both in aid of a study into surface roughness upscaling — carried out by Dr

Mark Smith and Dr Duncan Quincey. Considering the trends identified in the

study presented here, the glacier will likely continue to retreat, however, the rate

at which it does so will likely be strongly influenced by the increasing proportion

of the glacier that is shaded by the surrounding mountains. The effect that the

developing proglacial lake will have on the terminus will also be of interest in terms

of potential calving and the effect that this may have on the rate of retreat and

disintegration of the glacier. This will prompt an interesting return to research of

the glacier in the future.
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Höfer, H. 1879. Gletscher- und Eiszeit-Studien. Abhandlungen der Mathematisch-

Physikalische Klasse der Königlich Bayerischen Akademie der Wissenschaften,

79, 331–367. 106

Holdar, C.G. 1959. The Inland Ice in the Abisko Area. Geografiska Annaler,

41(4), 231–235. 49
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Paul, F., Machguth, H., & Kääb, A. 2005. On the impact of glacier albedo under

conditions of extreme glacier melt: the summer of 2003 in the Alps. EARSeL

eProceedings, 4, 139–149. 344

Pelto, M. S. 2006. The current disequilibrium of North Cascade glaciers. Hydro-

logical Processes, 20(4), 769–779. 35

399



Petersen, L., & Pellicciotti, F. 2011. Spatial and temporal variability of air

temperature on a melting glacier: Atmospheric controls, extrapolation methods

and their effect on melt modeling, Juncal Norte Glacier, Chile. Journal of

Geophysical Research, 116. 121, 147, 148, 343

Petterson, R., & Jansson, P. 2004. Spatial variability in water content at the

cold-temperate transition surface of the polythermal Storglaciären, Sweden.
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Träsk region. Geografiska Annaler, 41(4), 236–244. 48, 53

Warren, S.G. 1982. Optical Properties of Snow. Reviews of Geophysics, 20, 67–89.

144, 145

Warren, S.G., & Wiscombe, W.J. 1980. A Model for the Spectral Albedo of Snow.

II: Snow containing Atmospheric Aerosols. Journal of the Atmospheric Sciences,

37, 2734–2745. 144, 145

Wayman, J.C. 2003. Multiple Imputation For Missing Data: What Is It And

How Can I Use It? Annual Meeting of the American Educational Research

Association. 112, 113

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M.

2012. Structure-from-Motion photogrammetry: A low-cost, effective tool for

geoscience applications. Geomorphology, 179, 300–314. 362, 367

405



WGMS. 2013. World Glacier Monitoring Service Homepage.

http://www.geo.uzh.ch/microsite/wgms/about.html, [Accessed 5th May

2013]. 37, 325, 326, 328

Wild, M. 2009. Global dimming and brightening: A review. J. Geophys. Res.,

114, D00D16. 344

Williams, R. S., & Ferrigno, J. G. 2010. Satellite Image Atlas of Glaciers of

the World. http://pubs.usgs.gov/fs/2005/3056, [Accessed 13th September

2011]. 36

Wood, W.F., & Snell, J.B. 1960. A Quantitative System for Classifying Landforms.

Quartermaster Research and Engineering Command, US Army. 99

Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y. U. N., &

Wilkes, A. 2009. The Melting Himalayas: Cascading Effects of Climate Change

on Water, Biodiversity, and Livelihoods. Conservation Biology, 23(3), 520–530.

7
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Appendix A

K̊arsaglaciären data availability

Table A.1: Data available for K̊arsa. Data
highlighted in bold is directly used in this study.
Where map data is omitted, this relates to an
inability for effective georeferencing (see section
4.2.1).

Year Data Source Other details

1884 Terminus photograph Svenious, 1890 -

1886 Terminus photograph Svenious, 1890 and

1910

-

1886 Map of the terminus Svenious, 1910 -

1903-08 Various photographs Sjögren, 1909 -

1908 Various photographs Svenious, 1910 -

1909 Terminus position

map

Svenious, 1910;

Ahlmann and Try-

selius, 1929

Swedish/German

1917 Terminus measure-

ments

Ahlmann and Lindbald,

1940

German

1919 Terminus measure-

ments

Ahlmann and Lindbald,

1940

German

1920 Map of the terminus Ahlmann and Tryselius,

1929

German

1924 Terminus measure-

ments

Ahlmann and Lindbald,

1940

German

1925 Map of the terminus Ahlmann and Lindbald,

1940

German

Continued on Next Page. . .
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Table A.1 – Continued

Year Data Source Other details

1926 Glacier map and

area study

Ahlmann and Try-

selius, 1929

German

1928 Terminus position Ahlmann and Tryselius,

1929

German

1927-32 Terminus measure-

ments

Ahlmann and Lindbald,

1940

German

1936 Terminus photograph Ahlmann and Lindbald,

1940

German

1939 Terminus position Ahlmann and Lindbald,

1940

German

1943 Glacier Map Wallen, 1948 -

1942-47 MB study Wallen, 1948 -

1950 Terminus photograph Holdar, 1957 -

1959 Glacier map/Aerial

photograph

University of Stock-

holm, 1984

August photo-

graph

1961 Glacier Map Schytt, 1963 -

1973 Glacier map/Aerial

photograph

University of Stock-

holm, 1984

July photo-

graph

1981-82 MB data Erikkson Unpublished

1984-85 MB data Erikkson Unpublished

1989-91 MB data Bodin, 1993 -

1991-92 GPR survey of the

glacier

Bodin, 1993 -

1991 Glacier map Bodin, 1993 -

2008 Satellite Imagery Lantmäteriet July image

2008-2011 Winter dGPS and

snowpack surveys

University of Leeds Unpublished

2009 GPR survey of the

glacier

Rippin et al., 2011 -

2010 Glacier map This study -
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Appendix B

Select long term geodetic glacier

studies

The following table presents a sample of geodetic glacier monitoring/reconstruction studies as

discussed in section 2.4.1 of chapter 2.
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Table B.1: A selection of geodetic glacier assessments and reconstructions, highlighting data acquisition methods and associated
issues

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1969 -

1998

Austria 96% of Aus-

trian glaciers

- Alpine Aerial pho-

togrammetry

Advance during the 1970s due to

assumption of stationarity regard-

ing glacier area. Linear interpola-

tion will have resulted in similar

issues from 1985 - 1998. Volume

assessment must account for er-

rors introduced by scaling meth-

ods used to derive bed elevations.

Abermann,

Kuhn and

Fischer

(2011)

1880 -

2006

Spitsbergen Scott glacier 4.75 Polar Aerial photogra-

phy, GPS (1987

onwards - direct

measurements of

extent 2000 on-

wards)

Difficulty discerning between the

glacier and moraine. Area of visi-

ble ice assumed as being glacier

surface.

Zagrski

and Bar-

toszewski,

2004; Zagrski

et al. 2008

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1919 -

2006

Canada Glaciers in

the Cana-

dian Rocky

Mountains

1.60 Alpine Topographic

maps (1: 62500

- methods in-

cluding aerial

photography

1903-1924);

Landsat (TM

and ETM+)

imagery

Older maps georeferenced using

GCPs identified from Landsat im-

agery with respective errors in

northing and easting of 12.2 m

and 11.5 m. Vertical errors asso-

ciated with the maps used ranges

from ±10 m - ±40 m. Errors in

area assessments ranged from 9.8

- 12.6%.

Tennant et

al., 2012

1919 -

2009

Canada Columbia ice-

field

8.22 Sub-

Polar

Topographic sur-

vey maps (1919),

aerial photogra-

phy (1948-1993),

satellite imagery

(1999-2009)

Errors present from different

data available and accounted for

within analysis.

Tennant and

Menounos,

2013

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1710 -

2009

Norway Outlet

glaciers of

Josteldals-

breen and

Folgefonna

13.05 Sub-

Polar

Pictoral evi-

dence (pictures,

engravings,

planar pho-

tographs),

topographic

maps, writ-

ten accounts,

satellite imagery

Spatial errors pertaining to dis-

agreements between historical

and contemporary locations re-

sulting in georeferencing issues.

Nussbaumer

et al. 2011

1962 -

1995

India Dokriani

glacier

7.00 Topographic

maps (aerial

photography

1962 and 1995),

field obser-

vations of

terminus (1991-

1995), GPR

measurements

for thickness

- Dobhal et al.,

2004

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1944 -

1986

Patagonia Outlet

glaciers of

the Southern

Patagonia

Icefield

234.56 Oblique pho-

tographs, aerial

photographs,

Landsat TM,

SPOT and

Landsat MSS

imagery

Remotely-sensed data limited due

to cloud cover. Landsat TM im-

ages corrected geometrically and

combined to which all other data

was located due to the poor to-

pographic map coverage of the

area.

Aniya et al.

1996, Aniya

et al. 1997

1926 -

1991

Sweden K̊arsa Sub-

Polar

Topographic

maps, field

measurements

and aerial

photography.

- Bodin, 1993

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1961 -

2005

Svalbard Austre

Brøggerbreen,

Grønfjordbreen,

Midtre

Lovénbreen,

Albrecht-

breen,

Gullfak-

sebreen and

Slakbreen

27.33 Arctic Stereo-aerial

photographs

and LiDAR

imagery

Oblique photographs (1930s)

were available but not used

due to poor quality. Errors con-

strained for aerial photographs as

information from the calibrated

metric cameras used available.

GCPs identified and enhanced

from contemp. LiDAR imagery

were used to locate aerial

photographs. Historic DEM

quality assessed by comparing

off-ice positions expected to have

undergone little physical change.

Murray et al.,

2012

1968 -

2006

Garhwal

Hi-

malaya

Glaciers in

the Bhagi-

rathi and

Saraswati/

Alaknanda

basins

3.70

(Saraswati/

Alak-

nanda)

13.7 (Bha-

girathi)

CORONA,

Landsat MSS &

TM , Cartosat-1

and ASTER

imagery

Mean accuracy of data sets used

˜19.2 m. Best resolution was 2.5

m compared to the pororest at 90

m (ASTER).

Bhambri et

al., 2006

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1981 -

2006

Italian

Alps

112 glaciers

within the

Ortles-

Cevedale

group

˜0.68 Alpine Landsat im-

agery, aerial

photogramme-

try, LiDAR

2-4% discrepancies found with

Landsat data relating to debris

covered glacier margins. Uncer-

tainties relating to the vompared

DEMs a consequence of the dif-

ferent procedures used by the dif-

ferent data acquisition methods.

Carturan et

al., 2013

1912 -

2011

Tanzania Kilimanjaro

glacier

1.76 Tropical Terrestrial pho-

togrammetry,

aerial photog-

raphy, Landsat

(MSS and TM)

, QuickBird

and Kompsat

imagery

To extend study fully, old and

new mapping methods had to

be integrated. Maps available in

1912 and 1962 at 1:50 000. Errors

quantified for satellite imagery

based on GCP agreement. Errors

of topographic maps not quan-

tified. Glacier boundaries were

reassessed for some past mapping

efforts based on photographic and

geomorphological evidence.

Cullen et al.,

2013

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1958 -

1998

Washington,

USA

All glaciers

in the North

Cascades

0.34 Oblique and ver-

tical aerial pho-

tography

Topographic maps available from

1958 updated for the region but

only in terms of man-made struc-

tures. Glacial and topographic

features not updated. ASTER

imagery experimented with but

resolution too coarse (15 m2) for

small cirque glaciers (>0.5 km2)

being studied. SRTM data not

used due to cloud cover and radar

shadowing. C-band synthetic

apeture radar (SAR) not used

due to presence of large amounts

of wet snow which SAR cannot

penetrate.

Granshaw et

al., 2006

1975 -

2012

Northern

central

Andes,

Peru

Glaciers

in the

Cordillera

Vilcanota

- Tropical Landsat MSS,

TM, ETM+;

ASTER and

Corona KH-9

imagery and

SRTM data

Study not restricted just to

glaciers, also including lake area

change. Images frequently ob-

structed by cloud cover.

Hanshaw and

Bookhagen,

2013

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1992 -

2010

Alaska,

USA

Bering

glacier sys-

tem

TOPEX/ Po-

seidon Geo-

physical Data

Record(GDR)

and Sensor Data

Record from

a 10-day re-

peat cycle 9364

(1992-2002) and

Envisat RA-2

GDR

Study assessed elevation changes.

Methods used previously only for

ice sheets as mountain glaciers

proved issuous due to steep and

rough terrain clashing with the

large footprint of radar altime-

try tracks. Method specific to

glaciers that are >7 km wide.

Lee et al.,

2013

1973 -

1999

Switzerland 930 glaciers

in Switzer-

land

1.05

(SGI)

Alpine Topographic

maps (1973);

Landsat TM

imagery

Results extrapolated to other re-

gions in the Alps. Data taken

from the Swiss Glacier Inventroy

(SGI) not as well represented due

to snow cover inhibiting glacier

quantification campaigns.

Paul et al.,

2004

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1969 -

1992

Austria 235 glaciers

in the Tyrol

0.80 Alpine Topographic

maps and aerial

photography

(used for the

Austrian Glacier

Index (AGI)),

Landsat TM

images

Errors in area associated with

debris cover and misinterpreta-

tion of debris/ glacier extent, re-

sulting in a 3% area error. Is-

sues related to shadowing, result-

ing in removal of certain glaciers

from the study. Difficulties in

area change introduced by vary-

ing temporary snow conditions,

present on available imagery. To-

pographic maps had a much bet-

ter spatial respolution than the

TM imagery, the latter causing

apparent area increases (approx.

5% for a 0.1 km2 glacier).

Paul, 2002

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1990 -

2003

Svalbard Finster

-walderbreen

29.60 Polar Photogrammetry,

GPS profiling

GPS methods provide high reso-

lution (pm 0.10-0.15 m) vert. ac-

curacy and prove a useful tool for

mass change, providing a larger

spatial coverage than would be

associated with traditional stake

methods. Problems associating

changes identified by GPS pro-

file changes with MB change and

change at a point incurred by

glacier flow.

Hodgkins et

al., 2007

1990 -

2007

New

Zealand

Tasman

Glacier

- Aerial photogra-

phy (1986 - from

which DEM is

derived); Land-

sat ETM+, TM;

ASTER.

Study more focused on change in

flow velocity. Elevations acquired

using DEM derived from aerial

photgrammetry and another de-

veloped using ASTER imagery.

respective vertical errors were

pm10 m (absolute) and pm20 m

(estimate) which gave a 1.4 m yr-1

error on elevation changes.

Quincey and

Glasser, 2007

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1950 -

2008

Russia Glaciers in

the Polar

Urals

<1.0 Polar Aerial photogra-

phy, theodolite

survey, ASTER,

Landsat ETM+,

GPS, DGPS.

Errors from a number of sources

due to variety of data integrated.

Aerial photographs of high reso-

lution (1-3 m). Older maps (de-

vloped using a theodolite) had a

vertical error of pm2.5 m. Or-

thorectification accuracy tested

via GCP collection and resultant

position comparison. Further er-

ror introduced by interpolation,

especially in areas of greater slope

angles.

Shahgedanova

et al., 2012

Continued on Next Page. . .
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Table B.1 – Continued

Study

period

Country Glacier x̄ glacier

size

(km2)

Climate Data acquisition Issues and other details Author

1861-

2004

Alpine Aerial pho-

tography and

topographic

maps (Siegfried

maps 1860-1890)

Non-glacierized areas accounted

for in map compilation, providing

numerous control points, increas-

ing ability to fit maps as accu-

rately as possible. All data in-

terpolated on regular grids en-

abling DEM comparison. Long

time scale of the DEMs available

allowed for observations of mul-

tiple advance and recession peri-

ods.

Bauder et al.,

2002
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Appendix C

Select glacier surface energy

balance modelling studies

The following table presents a sample of grid-based mass balance model approaches as discussed

in section 2.5.3 of chapter 2.
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Table C.1: Selected distributed MB models - key objectives, findings and results. The Geom. column refers to whether the model
calculates geometry dynamically as a function of surface lowering.

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB Swiss

Alps

Haut

Glacier

d’Arolla

Alpine Spatial approach at calculating

SEB whilst considering both the

glacier geometry and surround-

ing topography/ Surface aspect

and slope values derived from a

DEM were integrated into cal-

culations of shortwave radiation

on a cell by cell basis/ Hillshade

calculated as a function of sur-

rounding topography

Modelled values compared to ob-

servations made along the centre

line in 1990, against which there

was good agreement (correlation

coefficients of 0.99, 0.85 and 0.81

for elevation, albedo and abla-

tion change)/ Error and uncer-

tainty related to paramterisa-

tion of albedo within the model

(see model entry for Brock et al.

(2000a))

No Arnold et

al. 1996

Grid SEB Sweden StorglaciärenSub-

polar

Developed for assessment of spa-

tial melt and discharge patterns/

MB model coupled with a three

tier linear reservoir model/ Hill-

shade and atmospheric trans-

missivity, cell slope and aspect

accounted for/ Spatial distribu-

tion of model allowed for effec-

tive accountance of varying hill-

shade patterns.

Hourly assessment of discharge

for the melt seasons of 1993

and 1994 achieve/ Two bulk ap-

proaches were used to calculated

turbulent fluxes, both taking ac-

count of surface geometry, re-

sulting in very different melt wa-

ter estimates - links to uncer-

tainty of bulk aerodynamic ap-

proaches

No Hock and

Noetzli,

1997

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB Swiss

Alps

Haut

Glacier

d’Arolla

Alpine Use the model of Arnold et al.

(1996) to assess spatial varia-

tions in the effect of albedo and

aerodynamic roughness lengths

for a full ablation season using

new paramterisation schemes/

Aspect and slope values were

integrated into calculations of

shortwave radiation on a cell by

cell basis.

Glacier sensitive to variations

in albedo and roughness values,

particularly with break down

of the winter snowpack and

the transient snow line/ Spa-

tially, albedo found to vary with

elevation whilst summer snow

at higher elevations resulted in

large changes in roughness com-

pared to at lower, rougher eleva-

tions/ Effects of both were most

pronounced under high-energy

conditions.

No Brock et

al., 2000a

Grid SEB Swiss

Alps

Morteratsch

-gletscher

Alpine Corrects components to surface

geometry (slope, aspect and hill-

shade)/ Geometry fixed to that

of the original input DEM

Sw rad. provided most of the en-

ergy to the SEB/ Topographic

and geometric effects important,

especially for shortwave radia-

tion. Ignoring such factors re-

sulted in 37% more Sw radiation

and increased melt / Model lim-

ited by snow accumulation dis-

tribution, fractional cloud cover

estimation and albedo paramter-

isation

No Klok and

Oerle-

mans,

2002

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Deg-day Iceland Vatnajökull

(ice cap)

Maritime Assessment ice cap hydrological

and dynamics response to cli-

matic warming/ Degree-day ap-

proach combined with a thermo-

mechanical ice sheet and a

distributed hydrological model/

Geometry is a requirement for

the hydrological model and ac-

quired from the dynamics model

A number of parameters were

calculated including changing

ice cap geometry, mass bal-

ance and runoff relative to cli-

matic variability as assessed

from a 1961-1990 reference cli-

matology/ Considering a 2◦C in-

crease per century, there would

be a 13-36 km retreat over 200

years, along with increase sur-

face runoff/ Changing geome-

try particularly important when

considering areas susceptible to

increased discharge rates/ Un-

certainty in temperature varia-

tion across the icecap

Yes Flowers

et al.,

2005

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB French

Alps

Glacier

de Saint-

Sorlin

and

Glacier

d’Argentière

Alpine Developed to reconstruct mass

balance for 1981-2004 with

model results validated using

satellite imagery and geodetic

methods/ Based on the Crocus

snow model with meteorological

reconstruction devised using the

SAFRAN meteorological model/

SAFRAN model acquires eleva-

tion, slope and aspect values

from the input DEM

Effectively considers complex

meteorological effects on MB

considering surface geometry

(fixed)/ The SAFRAN and Cro-

cus models allow for all compo-

nents contributing to SEB and

MB change to be considered/

Use of a constant DEM is ac-

knowledged as a source of error,

as it ignores real surface changes

(amounting to 20 m in some ar-

eas over the 1981-2004 period).

Stated that further work would

require assessment of the evolu-

tion of the various meteorologi-

cal components considered

No Gerbaux

et al.,

2005

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Deg-day Iceland Hosjökull

and S.

Vat-

najökull

Maritime Monthly temperatures driven

Degree-day model is coupled

with an finite, vertically inte-

grated ice flow model/ Consid-

ers precipitation-elevation feed-

back excluded in other studies

such as Flowers et al. (2005)/

Model reference period is 1981-

2000 and projected climate

change variables are then used

to force the model

Glaciers projected to melt

slowly initially, speeding up as

climate warms further, resulting

in annual average runoff increas-

ing and volume modelled to

halve within 100-150 years/ MB

sensitivity is calculated as part

of the study, assessing sensitiv-

ity to future changes, although

calculation does not account for

time dependent changes in ge-

ometry

Yes Adalgeirsdóttir

et al,

2006

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB Spitsbergen Midre

Lovénbreen

Polar Application of SEB over a high

resolution LiDAR derived DEM

for the ablation season of 2000/

Used to consider the effect of to-

pography as well as glacier slope

and aspect on solar radiation re-

ceipt ergo surface melting/ The

use of LiDAR is key as many

DEMs in other studies are de-

rived from contour maps, the

method by which many small

scale features are smoothed out

Model preforms well compared

to in-situ stake derived mass bal-

ance measurements for the same

period/ Topography found to

play a key role in spatial pat-

terns of energy flux distribution/

Slope and aspect barely had an

effect on total calculated energy

but were extremely important in

terms of cross-glacier variation

and spatial patterns of melt/

These observed radiation effects

were further affected by other

feedbacks relating to tempera-

ture and snow thickness

No Arnold et

al., 2006

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB French

Alps

Saint

Sorlin

Glacier

Alpine Developed to reconstruct mass

balance for 1981-2004 coupled

together with an ice flow model,

with model results validated us-

ing satellite imagery and geode-

tic methods/ Uses Crocus and

SAFRAN models as in Gerbaux

et al. (2005)/ Unlike Gerbaux

et al. (2005), geometry change

is considered time

Modelled values found to largely

match observed values/ Results

show that the glacier will un-

dergo rapid decay under IPCC

projections, being non-existant

by 2070

Yes Le Meur

et al.,

2007

Temp-

index

Swiss

Alps

Glacier

de Zinal,

Glacier

de Mom-

ing and

Glacier

de Weis-

shorn

Alpine MB calc. using a coupled ac-

cumulation/ temperature-index

model/ DDF factors vary ac-

cording to direct solar radiation,

thus accounting for cell specific

slope, aspect and topog. shad-

ing, taken from Hock (1999)/

MB model is one of a number

of components of the GERM

glacio-hydrological model, ap-

plied here to assess future runoff

for the period 2007-2100

Retreat expected to be consider-

able, with hydrological regimes

altering from being ice melt to

snow melt dominated/ Runoff

peaks expected in autumn and

spring, being at their lowest

in summer/ Experiments with

keeping the glacier geometry

fixed (a reference balance type

approach), as opposed to letting

it be dynamic, result in runoff

values at the end of the 21st cen-

tury being twice as large

Yes Huss et

al., 2008

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB Austrian

Alps

Goldberg

-kees

Alpine Uses the module based Alpine

3D model of Lehning et al.

(2006) to model hourly dis-

charge and glacier mass balance/

Wind, temperature, humidity

and precipitation are interpo-

lated across the surface/ Ra-

diative fluxes and interaction

with atmospheric and terrain

effects are calculated on a cell

by cell basis using the “Com-

plex terrain radiation module”

of Alpine3D

Main observed MB patterns

reproduced by the model, al-

though in total, loss was over-

estimated/ Overestimates ex-

plained by a lack of mass re-

distribution within the model

(including wind drifting and

avalanches)/ Topography recog-

nised as an important factor con-

sidering spatial MB change pat-

terns

No Michlmayr

et al,

2008

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB Norway Hardanger

-jøkulen

Maritime/

Conti-

nental

transi-

tion

Developed to assess glacier re-

sponse through the 20th cen-

tury and to projected climate

changes/ Mass balance model

coupled with an ice dynamics

model with SEB functionality

taken from (Klok & Oerlemans,

2002)/ Glacier geometry is con-

tinuously updated in accordance

with MB change

Coupling of the mass balance

and ice dynamics model al-

lowed for feedback processes be-

tween the glacier and climate

to be modelled, allowing for

realistic assessment of glacial

change/ Assuming a projected

3◦increase over the next century,

the glacier would be expected to

disappear/ Large errors were as-

sociated with ice thickness val-

ues (up to 50 m) which resulted

in issues with volume calcs. But

model result variability was not

of a large enough value to be

affected

Yes Giesen

and Oer-

lemans,

2010

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Grid SEB NWT,

Canada

North

Glacier

and

South

Glacier

Alpine Study to assess model transfer-

ability between glaciers/ Slope

and aspect derived from DEM

to modify individual cell short-

wave radiation calculations

Model parameters found to be

transferable to within a ¡10% un-

certainty/ Model parameter and

meteorological function transfer

in space found to create large

errors in ablation/ Errors can

be minimised where local vari-

ables (such as albedo) can be

retained, resulting in improve-

ments of leq15%

No MacDoughall

and Flow-

ers, 2010

Grid SEB

(RB)

Swiss

Alps

Alpine Assesses importance of geomet-

ric change on a large selection of

glaciers using reference DEMs

for the years 1850 and 1973/

Uses a reference balance ap-

proach

50-70% of MB response to cli-

mate change hidden within ge-

ometric adjustment of glaciers,

with it being possible to only

model/reconstruct 30-50% /

Area reduction reduces negativ-

ity of balance (0.45 m w.e. less

negative) whereas elevation low-

ering increases negativity (av-

erage 0.05 m w.e. more nega-

tive)/ Shading also found to be

important, increasing over the

terminus and resulting in less

negative balance values

Yes Paul et

al., 2010

Continued on Next Page. . .
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Table C.1 – Continued

Approach Location Glacier Climate Objectives and methods Key findings and issues Geom. Author

Temp-

index

(RB)

Swiss

Alps

36

glaciers

Alpine Uses both a conventional and

reference balance approach to

assess MB change over time/

MB change driven by a cou-

pled accumulation/temperature-

index model taken from Hock

(1999)

First study to account for ref-

erence MB on a large scale/

Geometry effects found to be

very important/ Differences in

MB found to increase over time

when considering both fixed and

adapting geometry, indicating

the geometry effect is time de-

pendent/ Geometry not the only

thing that controls MB change,

with other factors including the

correlation between the glacier

tongue area with long term MB

Yes Huss et

al., 2012
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Appendix D

Model parameter values

The tables below provide the values for all model parameters as detailed in chapter 5. Where

values are stated to be a user input, this is implicit of data input from field studies (i.e. these

are not constants). Grid inputs imply data is in the form of a matrix - in this study, grid inputs

are in the format of ESRI GRID/ASCII files.
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Table D.1: Fixed model parameter values

Parameter Symbol Value Unit
Snowfall threshold TThresh 1.5 ◦C
Latent heat of fusion Lf 3.34 x 105 J kg-1

Solar constant I0 1368 Wm-2

Ice density ρice 900 kg m-3

Winter snow density ρsnow 407.13 kg m-3

Summer snow density ρsnow 200 kg m-3

Water density ρwater 1000 kg m-3

Temperature lapse rate Γ 0.0065 Km-1

Mean sun earth distance Rm 149, 597, 870, 700 m
Instantaneous sun earth distance R 149, 597, 870, 700 m
Albedo (snow) αsnow 0.70
Albedo (ice) αice 0.39 %
Wind factor wind 0.5

Table D.2: Dynamic model parameter values. These values will be continuously updated
from different sources. The snow thickness (end of season) value is used to initialise daily snow
thickness values.

Parameter Symbol Value source Unit
Air temperature Ta User input ◦C
Solar declination δ User input ◦

Latitude η User input ◦

Solar hour angle ω User input ◦

Solar zenith θ User input ◦

Solar azimuth φ User input ◦

Surface aspect A Internally calculated ◦

Surface slope β Internally calculated ◦

Melt energy Q Internally calculated Wm-2

Rain precipitation - User input m
Snow precipitation - User input m
Ice surface Elevation zicesurface Grid input m a.s.l.
Glacier thickness zglacierthickness Grid input m a.s.l.
Bed elevation zbed Grid input m a.s.l.
Snow thickness (end of season) - Grid input m
Snow thickness (daily) - Internally calculated m
Hillshade value i Grid input %
Cell volume V Internally calculated m3

436



Table D.3: Model run specific parameter values for τ , c (Wm-2K-1), ψmin (Wm-2) and TTip

(◦C). Runs 1-3 equate to parameters used for Midtdalsbreen (Norway), Storbreen (Norway) and
Kongsvegen (Svalbard) respectively, as used in Giesen & Oerlemans (2012).

Model run τ c ψmin TT ip

1 0.54 8.7 -25 -1.5
2 0.48 8.4 -19 +0.2
3 0.55 10.8 -33 -0.8
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Appendix E

Model GUI images

Here are displayed a number of screen shots of the SEB model GUI as described in chapter 5.

Screen shots are used to: illustrate the option menus for opening surfaces and input data (which

would be in the form of ASCII and CSV files for surfaces and meteorological data respectively

(figure E.1); surface visualisation of uploaded surfaces within the main viewing pane (figure

E.2); the model type option pane whereby each model available allows a full run depending

on the data upload method (also possible through the use of pre-developed configuration files)

and varies the level of surface geometric update (figure E.3); the tools available within the

programme to investigate changes in the surface (such as regarding elevation change, thickness

change and volume updates) which are printed out for the user to see both on screen and in

TXT files (figure E.4).

Figure E.1: Data upload options
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Figure E.2: Surface upload visualisation

Figure E.3: Model run options
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Figure E.4: Inbuilt tool options
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Appendix F

GNU license details

The details below regard the GNU General Public License (Version 2) under which the SEB

model developed for this study, available at (https://github.com/Chris35Wills/SEB_model_

java_files) is registered.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., [http://fsf.org/]

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Lesser General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it
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if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"
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means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a
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notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,
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c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.
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6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
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certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
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WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

448



Appendix G

Other project outputs

In addition to this thesis, there have been a number of other outputs which are listed here.

Published articles

� Rippin, D.M., Carrivick, J.L., Williams, C., (2011). Evidence towards a thermal lag in

the response of small Arctic glaciers to climate change. Journal of Glaciology 57(205),

pp895-903.

Proposed articles

� Williams, C., Carrivick, J.L., (in prep). Evaluating mountain glacier change and mass

balance sensitivity in Northern Sweden 1926-2010 (target journal: Journal of Glaciology).

� Williams, C., Carrivick, J.L., Carver, S., (in prep). Retreating glaciers and ice sheets:

user specific assessments (target journal: Journal of Glaciology).

� Williams, C., Carrivick, J.L., Evans, A., (in prep). A user friendly glacier melt model:

its wider application in research and teaching.

� Holmlund, P., Jonasson, C., Williams, C., (in prep). The interaction between perennial

snow fields and small glaciers in a sub-Arctic environment in a global change context.

Conference abstracts

� Williams, C., Carrivick, J., Evans, A., Numerical modelling of the effect of changing

surface geometry on mountain glacier mass balance (Accepted abstract at AGU 2012,

San Francisco, USA).

� Williams, C., Carrivick, J., Evans, A., Carver, S., Changing glacier morphology and

glacier mass balance (Leeds University School of Earth and Environment postgraduate

Conference, March 2012).
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� Williams, C., Carrivick, J., Evans, A., Carver, S., Evaluating mountain glacier change

over the 20th and early 21st century utilising a multi-scale approach (International

Glaciological Society British Branch meeting, Cambridge, September 2011).

� Williams, C., Carrivick, J., Evans, A., Carver, S., Evaluating mountain glacier change

over the 20th and early 21st century utilising a multi-scale approach (UK Arctic Science

Conference, University of Leeds, September 2011).

� Williams, C., Carrivick, J., Evans, A., Carver, S., Effects of changing glacier morphology

on glacier mass balance (Leeds University School of Geography postgraduate Conference,

March 2011).

� Williams, C., Arrell, K., Carrivick, J., Feedbacks between glacier morphology and mass

balance (RGS-IBG Annual Conference, September 2010).

Associated grants

� School of Geography (University of Leeds) Research Development Fund (£1400) (January

2012)

� INTERACT (EU-FP7) funding with Dr David Rippin and Dr Jonathan Carrivick (£8000)

(May 2011)

� RGS Peter Fleming Award, with Dr David Rippin and Dr Jonathan Carrivick (£9000)

(June 2010)

� Royal Society research grant with Dr David Rippin and Dr Jonathan Carrivick (£10,350)

(February 2010)

� School of Geography (University of Leeds) Research Development Fund (£1400) (January

2010)

� School of Geography (University of Leeds) Research Development Fund (£800) (January

2009)
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