
 

 

 

 

 

HYBRID CONTROL OF HUMAN-INDUCED 

VIBRATION 

 

By 

Nima Noormohammadi 

 

 

 

 

A thesis submitted for the Degree of Doctor of Philosophy (PhD) at the 

The University of Sheffield 

Department of Civil and structural Engineering 

 

 

January 2014 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Maral 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

To Raheleh (Akhtar), Davar and Rama 

 

  



iv 

Abstract  
A key objective in the design of any sports stadium is to include the maximum 

number of spectators with minimum obstruction in the visual cone. This functional 

requirement often results in employing one or more cantilevered tiers, which in turn 

culminates in more slender grandstands often with relatively low natural frequencies 

and modal damping ratios. These natural frequencies may sometimes fall in the range 

of frequencies of human movement, which can possibly excite the structure in 

resonance resulting in vibration serviceability issues. One of the available techniques 

to reduce excessive responses is to use passive vibration control techniques such as 

Tuned Mass Dampers (TMD). However, the off-tuning problem is a potential 

drawback of this technique, whereby changes in natural frequencies caused by 

crowd-structure interaction may detune the TMDs.  

This thesis presents a study into the possibility of using Hybrid Tuned Mass Dampers 

(HTMDs) to augment the vibration serviceability of structures. An appropriate 

control algorithm is developed. It shows a comparative analysis of vibration 

mitigation performances that are likely to be attained by utilising the proposed 

HTMD. Also, an appropriate control scheme is utilised with the proposed HTMD to 

deal with the off-tuning issues in TMDs caused by crowd loading, and is shown to be 

effective. 

In addition, it shows a comparative experimental investigation of a passive TMD and 

a prototype HTMD applied on a slab strip structure. The most effective control 

algorithm to enhance the performance of the HTMD and also deal with the off-tuning 

problem is investigated. The experimental results verify the developed simulation 

studies and also demonstrate the effectiveness of employing a HTMD considering 

both structural response and cost (actuator effort). 
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1. Introduction 
In recent years there has been a trend to design sports stadia in such a way as to have 

higher capacities for spectators in addition to providing a clearer visual field. 

Therefore, many designs have incorporated one or more cantilevered tiers. However, 

using cantilevers may result in grandstands with increased slenderness and which 

often have lower fundamental natural frequencies and modal damping ratios. These 

natural frequencies might fall in the range of excitation frequencies produced by 

human activities, potentially resulting in resonant responses. This can result in a 

vibration serviceability problem and can potentially be a safety concern if spectators 

become alarmed by the responses and a crowd panic situation develops. 

Past solutions to deal with observed or anticipated vibration serviceability problems 

have been mainly passive methods, such as tuned mass dampers (TMDs). These 

techniques have exhibited problems such as lack of performance and off-tuning 

caused by human-structure interaction. To address this issue, research is currently 

underway to investigate the possible application of hybrid TMDs (HTMDs), which 

are a combination of active and passive control, to improve the vibration 

serviceability of such structures under human excitation. 

Hybrid control contains an integration of passive and active control systems. It is 

created by the combination of active and passive segments (also known as composite 

active-passive controllers) to reduce structural response mostly by energy dissipation 

through the passive part, whereas the active part is included to improve its 

performance. In hybrid control systems the active part is smaller and less power is 

required than for a fully active system. 

This thesis presents a combined analytical and experimental programme of research 

carried out to investigate the potential of HTMDs for mitigation of vibrations in 

crowd-occupied stadium structures. The active part of the HTMD is expected to be 

advantageous in both the enhancement of vibration control performance and also to 

provide adaptability when structural characteristics change due to the variable crowd 

occupation. 
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1.1. Thesis outline  

This research work is presented in eight chapters. Chapter 1 briefly introduces the 

subject of vibration serviceability in stadia and different relevant methods for 

mitigation of these vibrations. It also presents an introduction to the HTMD as a 

possible solution and the focus of this research. Chapter 2 is the literature review 

section, which describes the background to vibration mitigation methods that have 

been employed in civil engineering structures in the past to suppress human-induced 

vibrations. It also has a review on various control algorithms related to HTMDs. 

Chapter 3 presents the development of structural model (both controlled and un-

controlled) with AMD (Active Mass Damper), TMD (Tuned Mass Damper) and 

HTMD (Hybrid Tuned Mass Damper) attached. Also, different control algorithms 

are investigated and compared.  

Chapter 4 introduces a new HTMD gain optimisation method using a Genetic 

Algorithm. The performance of the proposed optimised HTMD is compared against 

that of the AMD and TMD. Chapter 5 studies the off-tuning issue as one of the 

known disadvantages of passive TMD. It introduces two control algorithms in 

HTMD to deal with off-tuning problem.  

Chapter 6 presents an experimental investigation utilising a prototype HTMD on a 

laboratory structure and compares its performance against the uncontrolled structure 

and the structure controlled with a passive TMD and AMD. Chapter 7 describes a 

simulation study of the application of HTMD on a cantilevered seating deck in a 

stadium. It describes the development of the stadium model using real measurement 

data and compares the structural response using TMD and HTMD. Chapter 8 

presents conclusions and some recommendation for further studies.  



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

3 

2. Literature Review 

2.1. Introduction 

Advanced material technologies and building design codes often lead to slender 

structures with low fundamental natural frequencies. These structures, grandstands 

and concert arenas for instance, are sometimes susceptible to human movements 

such as walking, running, bobbing and jumping [1]–[8]. This happens particularly 

when humans’ jumping and walking frequencies or their harmonics are close to a 

structural natural frequency [9]. The feeling of fear and discomfort in building 

occupants due to high levels of vibration is an important consideration for vibration 

serviceability and safety [10]–[12]. 

For instance, there have been some footbridges mostly in town areas and under 

pedestrian forces that are designed more slender for artistic reasons. One important 

problem in designing medium to long span footbridges is to reduce vibrations caused 

by wind load or pedestrians. [13]. 

2.1.1. Structural Vibration Control 

During the past few decades, structural control has attracted the attention of many 

researchers in this field. The aim is to reduce excessive vibration using appropriate 

methods [14], [15]. A range of vibration control techniques have been introduced and 

applied to improve different structural vibration performance such as seismic and 

wind induced vibration. These can be classified as follows [16]: 

• Passive Vibration Control 

• Active Vibration Control 

• Semi-Active Vibration Control (Controlled Passive)  

• Hybrid Vibration Control (Active+Passive) 

In Passive Control methods,  the vibration energy is dissipated by introduction of 

additional material or devices to the primary structures, which raises their damping 

and sometimes stiffness. Passive control methods do not require an external power 

source. Generally, it is also relatively easy to design them [11]. However, they have 

relatively poor performance, particularly for low-level vibrations where they might 

not be fully engaged. 
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In active control, a control force is applied to a structure by applying external power 

via an actuator. This method adds energy to the structure that is intended to oppose 

the vibration caused by a disturbance. However, this method has some 

disadvantages, such as possible loss of external power, requirement of actuators, high 

running cost and high power demand in case of large disturbance forces [9], [11]. 

A semi-active control system can be considered as a passive system where its 

damping and/or stiffness can be changed in real time, without introducing additional 

energy to the controlled structure [17], [18]. They are sometimes known as 

controlled passive devices which is probably a more accurate term [11]. Semi-active 

controllers have many advantages. They are relatively cheap, require low power and 

are relatively simple devices without too many mechanical parts. Also because 

external energy is not applied directly to the structure, these devices are inherently 

stable. An important advantage for both hybrid and semi-active systems is their 

ability to work as purely passive systems in case of external power failure [9], [18]–

[21].  

However, there are some problems with semi-active controllers. One of the most 

important issues is highly complex and nonlinear nature of the control algorithms 

used. This means it is difficult to define the required relationship between damper 

force and the structural response that will give the best mitigation performance [10], 

[22].  

Hybrid control is usually a combination of passive and active control systems. It can 

be either a switching between or integration of active and passive parts. Most 

proposed hybrid controllers are the switching system type [15]. Where hybrid 

controllers are based on integration of active and passive parts (also known as 

composite active-passive controller), they reduce structural response mainly by 

dissipating energy through the passive part, whereas the active part reduces the 

sensitivity of the system to changes in structural dynamic properties and also 

enhances its performance. Because the force capacity of the active part is small in 

comparison with the passive part, lower power is required than purely active 

systems. In addition, the size of the active element is comparatively smaller than 
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those in purely active controllers and leads to fewer installation problems [2], [18], 

[21]. 

These methods have been applied successfully in other disciplines such as seismic 

and wind induced vibration control. The focus of this work is to examine the 

potential application of hybrid control on civil structures subjected to human induced 

vibration. 

It should be noted that the main difference between vibration due to human activities 

(e.g. in stadia) in contrast with wind and seismic induced vibration is the presence of 

human-structure interaction phenomenon that results in alteration of the dynamic of 

the primary structure. This can be a challenge for the controlling method since some 

types such as passive control is set to work in a specific bandwidth frequency.  

2.1.2. Vibration Serviceability of Grandstands 

Large audiences can be attracted by a pop concert and it has been largely usual to 

occupy sport stadia or concert arenas for these events. In addition, the spectator’s 

behaviour has been changed to have more jumping and dancing activities during 

concerts. Hence, grandstands compared to their original designs encounter more 

severe loading. It is known that the population of people can produce remarkable 

dynamic loads especially when rhythmic jumping exists in their movements. This 

situation may happen with some kinds of aerobics and dance activities. If the 

frequency of this load coincides with a resonant frequency of a structure, a high level 

of vibration might be expected. This is an important consideration for sport stadia, 

concert arenas and other similar types of structure, especially in those with long-span 

cantilever [1], [8], [23]–[30]. 

Vibration serviceability issues in stadia have been reported during some live events 

and sport matches. To remedy these problems, various different methods have been 

applied including adding extra columns, temporary struts, trussing below cantilevers, 

viscous dampers and using Tuned Mass Dampers [8], [17], [31], [32].  

One of the key issues in stadia is the phenomenon of human-structure interaction. 

This is the result of the combination of human occupants and the main structure 

which changes the structural dynamic properties. Since the activities of the occupants 

generally change during a live event, the properties of the structure can vary as well. 
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This can occur by presence of both active and passive spectators in the stadium. 

Active spectator refers to that group of people who have movement activities such as 

jumping or bouncing. Passive people on the other hand do not have any considerable 

motion such as those mentioned before [8], [33]–[37]. This has been investigated 

practically during a number of live events [36], [38]–[40].  

The problem therefore may arise that passive control technologies, such as tuned 

mass dampers, may become detuned as a result of the changing structural properties 

during a sports or concert event. Consequently, there should be a new proposed 

device that can deal with this problem by changing its frequency of operation in 

addition to have the capacity to deal with the magnitude of the excitation force (e.g. 

people’s jumping or bounding).   

2.2. Vibration Control 

In general, there are four types of structural vibration control including passive, 

active, semi-active and hybrid control methods. [41]. These methods are in addition 

to the structural modification and/or changing of their applications. These will be 

described and considered in more detail in this section. 

2.2.1. Passive Vibration Control 

In passive vibration control the reduction of vibration can be achieved by adding 

extra materials and/or devices to dissipate vibration energy. Hence it does not require 

external energy. Passive vibration methods can be employed in different type of 

vibration such as seismic, wind, machinery and human induced vibration [42]–[44].  

The are various mechanisms by which passive systems may operate, such as metal 

yielding, frictional sliding, transformation of the phases in metals and viscoelastic 

deformation in solid or liquid materials and fluid orifices. Some examples of passive 

controllers are tuned mass dampers, base isolation, viscoelastic dampers, metallic 

yield dampers, friction dampers, viscous fluid dampers and tuned liquid dampers 

[18] 

Passive vibration control techniques have many advantages including simplicity in 

design, inherently stable systems and relatively lower cost [9], [12], [14], [16]–[18], 

[45]–[48].  
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However, passive control methods typically have a number of drawbacks, such as 

lack of damping capacity and poor performance of tuned dampers when structural 

dynamic properties change (off-tuning) [16], [21]. 

2.2.1.1.Tuned Mass Damper 

A Tuned Mass Damper (TMD) is a conventional passive control method to decrease 

the response of flexible structures such as skyscrapers or long bridges. It consists of a 

mass, spring and damper, which interact with the structure to which they are attached 

to dissipate vibration energy. A TMD acts as a secondary moving mass attached to 

the main structure with frequency tuned close to the natural frequency of the primary 

system. The TMD vibrates out of phase of the main system and hence vibration 

energy of the structure is transferred to the auxiliary mass, to be dissipated through 

the TMD damping element. TMDs are tuned to operate in a specific frequency which 

is mostly one of the structural dominant mode’s frequency. This is why TMDs are 

effective mostly in resonant cases where the frequency of the external force is around 

the frequency of the structure. Dynamic properties of TMDs (i.e. mass, damping and 

stiffness) are not time varying [3], [13], [20], [46], [49]–[54]. 

TMDs have been widely used to mitigate vibration in civil, mechanical and 

aerospace structures and many theoretical and practical researchers have been 

performed in this area [17], [18], [20], [45]. TMDs have been found to be an 

effective device to reduce human induced vibration caused by pedestrian activities on 

footbridges [4]. 

However, there are some limitations in employing TMDs. Their performance 

depends highly on the amount of added mass and if the mass is too small the effect of 

a TMD is limited. Also, since the dynamic properties of structures typical vary 

during the occupation of the building, the TMDs may not remain well tuned and their 

performance may reduce. TMDs are sensitive to off-tuning and also they have a 

narrow effective frequency band. Also, TMDs are generally efficient when the 

primary structure has light damping and hence are not particularly effective for 

heavily damped structures. Moreover, the TMD inertial mass may continue to vibrate 

after the vibration of the primary structure supressed and this may lead to undesirable 

motion [2]–[4], [13], [20], [46], [47], [50], [52], [54]–[57].  
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2.2.2. Active Control 

The performance of active vibration control is based on force generation using an 

external source of energy. In this method, a control force is imparted to the structure 

through an actuator which aims to counteract the vibration caused by disturbance 

forces [16], [41], [58]. In this method, the disturbance (input) force and/or the 

response of the structure is monitored continuously and the output information is 

employed to calculate and generate the appropriate control force [59]. 

The force generator can be in the form of a shaker or actuator [9]. Generally an 

active scheme consists of sensors and actuators in combination with a digital control 

unit (Figure 2-1) [3], [14], [16]. The magnitude and/or frequency of the actuator’s 

force changes in real-time. The control force depends on different factors such as 

target structure’s acceleration or velocity [41].  

Active bracing and active mass damper (AMD) are typical examples of active 

control devices. Active control approach is the combination of several engineering 

disciplines such as electronic engineering, computer engineering, control engineering 

and materials engineering [18]. 

 

Figure 2-1- Schematic of a structure with active vibration controller [18] 

If the control force is calculated and generated by measuring external excitation, the 

term feed-forward control is used. However, if the control force calculation depends 

on both structural response and external excitation, the term feedback control is used 

[59]. Feedback control can be employed when the external force is not measureable.  

Active control technologies have a number of advantages. They have multi-usage 

abilities such as working in wind and earthquake engineering and also control of 
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human induced vibration in civil structures. Also, there are wide selections of control 

strategies depending on the main purpose of the control. For instance, the control 

algorithm for people serenity in non-dangerous vibration (vibration serviceability) is 

different from the control algorithm for building safety in earthquake. This is due to 

different reasons such as differences in the nature of the disturbance load  [18]. 

However, active control also has some disadvantages. Issues such as reliability, price 

and energy saving of active controllers should be carefully considered [16]. Also in 

civil engineering, uncertainties and non-linearity nature of structures introduce 

complexity to the system. In addition, types of actuators and sensors could be highly 

complicated and massive in size (for actuators) when required control forces are 

large [11], [59]–[63].  

Also, active control method highly depends on external power source and this can be 

a limitation of its performance [21], [64], [65]. In addition, the frequency band width 

of the controller is limited due to the dynamics of the actuator and it might be a 

restriction for its performance [46]. 

2.2.2.1.Active Tuned Mass Damper 

Active TMD (ATMD) is a TMD that has active external force acting on the structure 

to reduce the vibration level. This active force element is applied to the structure 

through the inertia mass [65]–[69]. In fact, the actuator is placed between the primary 

and auxiliary structure (Figure 2-2) [52]. First studies on active TMD were 

performed by [70].  



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

10 

 

Figure 2-2- Active TMD [51] 

The operational frequency band width of the ATMDs are wider than passive TMDs 

[71]. 

2.2.3. Semi-Active Control 

Semi-active control has been introduced as a method in which the parameters of the 

system (e.g. stiffness and damping) can be optimised and changed in real time. The 

basic energy dissipation principles of semi-active control belong to passive control 

[16]. In fact, there is no active force generation in both passive and semi-active 

control [47]. Initial employment of semi-active control was on car suspension 

systems including vehicle body acceleration and vertical movement of the axles [72].  

There are different kinds of semi-active control devices such as electro-rheological 

(ER), magneto-rheological (MR) dampers [14], active variable stiffness (AVS), 

active variable damping (AVD) [73]–[75] and magnetically tuned mass damper 

(MTMD) [57]. 

Semi-active control has many benefits including less external power requirement in 

comparison with active control and relative reliability on loss of power, since it can 

operate on batteries. Also, semi-active devices have better performance in 

comparison with passive control techniques in systems with uncertainties. They can 
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deal with off-tuning problems. Semi-active devices (such as semi-active dampers) 

have relatively simple mechanical design. In contrast with active control, semi-active 

control is inherently stable. Also the frequency bandwidth of semi-active control is 

wide (when it is employed in TMDs) [4], [9], [13], [18]–[20], [47], [49].  

However, semi-active control has some disadvantages as well. Its performance 

depends highly on the type of control algorithm, which can be very complex [10], 

[13], [19], [49], [76]–[78]. Also, semi-active control requires nonlinear control 

algorithms due to its inherent nonlinear force-velocity relationship [10], [13], [72], 

[79], [80]. Generally, there is no particular ‘closed form’ analysis of such systems 

since their characteristics are time-varying, although some approximate methods 

have been proposed [81].  

A magnetorheological (MR) fluid damper is a particular type of semi-active device 

in which the viscosity of the fluid within the damper is controlled through application 

of a magnetic field. This magnetic field can be varied in real-time and is controlled 

by a control voltage determined by complex control algorithms. A closed loop 

feedback control is often employed to update the control voltage by considering the 

actual and desired damping force in addition to the reaction capability of device. MR 

dampers have been widely used for semi-active controller devices such as SATMDs 

[4], [10], [11], [19], [49], [79], [82]–[97].  

MR Fluids are a type of material in which the material’s behaviour changes from 

free-flowing viscous liquid to semi-solid material in the presence of magnetic field 

(Figure 2-3). In fact when there is magnetic field, the particles in MR Damper obtain 

the chain formation and causes restriction in moving fluid [13], [19], [22], [49], [84], 

[88], [98]–[105]. 
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Figure 2-3- Schematic of MR Fluids operation 

Electrorheological (ER) dampers are similar to MR damper. However, the viscosity 

of the damper changes in the presence of electrical field rather that magnetic field. 

ER fluids transfer from liquid to solid material when subjected to electrical field 

[15], [106]. ER dampers have some disadvantages such as safety problems, relatively 

high-price, requirement of high level of electricity and power sources and limitation 

in obtainable yield stress. In addition, ER dampers are much larger in size in 

comparison with MR dampers [18]. 

2.2.3.1.Semi-Active Tuned Mass Damper 

As it was mentioned before, a semi-active tuned mass damper (SATMD) is a TMD 

with changeable damping and/or stiffness elements (Figure 2-4) [9], [65], [107]. An 

important aspect of SATMD is the ability of it to be tuned to wider range of 

frequencies and damping in comparison with passive TMDs [9], [20] 

Many studies show that semi-active TMDs have more effect rather than conventional 

TMDs in the presence of off-tuning and also dynamic response reduction [9], [20], 

[22], [49], [79], [108]–[111]. 
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Figure 2-4- Schematic of a structure with attached SATMD [49] 

2.2.4. Hybrid Control 

As noted previously, both active and passive control methods have some advantages 

and drawbacks. In an attempt to use the benefits of both and at the same time to deal 

with many of the disadvantages, hybrid control methods have been introduced [16]. 

A hybrid controller is a combination of passive and active control systems [12], [45], 

[47], [65], [112], which is an attractive option for structural vibration control [12], 

[21], [50], [113], [114]. 

Different types of hybrid control have been introduced. An active-passive switching 

system is a type of hybrid device in which the system can be changed between active 

and passive control automatically. For instance, for a tall building when the level of 

vibration is low (e.g. wind or moderate earthquake induced vibration), the system can 

operate as a purely active system. However, when the vibration magnitude increases, 

perhaps in response to more severe earthquake excitation, the system shifts to a 

purely passive operation to avoid over-heating or overloading of the active 

components. This system has been practically implemented in some real structures 

[12], [50], [115]–[119]. 

Another classification of hybrid control devices are integrated active-passive devices. 

In these systems, both the active and passive parts of the system work 

simultaneously. A hybrid tuned mass damper (HTMD) is an example of this type of 
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hybrid control. This consists of a TMD controlled actively by an additional active 

mass [2], [18], [45], [54], [120]. 

2.2.4.1.Hybrid Tuned Mass Damper 

HTMD is the combination of a passive TMD with an active element (actuator), as 

shown in Figure 2-5. The active part of the system increases the movement of the 

passive mass, which increases its inertia force. This leads to a system in which its 

inertia force can be changed in real-time [41], [56], [121]–[124], [51], [52], [54]. 

 

Figure 2-5- Schematic of HTMD  [51] 

Since the active element is relatively smaller in hybrid systems, power requirements 

are typically lower than for purely active systems. The passive part provides the 

majority of the energy dissipation capacity, whereas the active part both enhances the 

performance of the passive element and increases the robustness of the system to 

changes in structural dynamic properties (i.e. off-tuning). Another important 

advantage of hybrid systems is their ability to work as purely passive systems in case 

of power failure. HTMDs are appropriate devices to control both low and high 

frequency vibrations. In the presence of large magnitude vibration forces (e.g. during 

an earthquake), an HTMD still requires only a low power source. Moreover, the 
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TMD acts as a mechanical filter to reduce higher frequency vibration to the active 

part of the system [2], [3], [18], [21], [50], [52], [56], [64], [65], [121], [125]–[127].  

2.3. Off-Tuning 

Off-tuning occurs when the frequency of a controlled mode of the structure changes. 

There are various causes of off-tuning, including changes in structural frequency, 

inappropriate choice of TMD’s parameters, effect of live loads and environmental 

factors (such as temperature) [9], [20], [46], [47].  

For instance, in slender structures such as footbridges, human loads might cause the 

structures to behave in an unexpected way. The pedestrian mass may be high in 

comparison with the mass of the bridge structure and sometimes under-estimated. 

This leads to a significantly lower natural frequency than the original structure. 

Off-tuning is an important issue for TMDs since the operational frequency of a TMD 

is very narrow and it is set to a particular structural frequency [47], [48], [56], [71]. 

Experimental and numerical investigations have shown that the performance of a 

TMD can be reduced when the main structural properties such as frequency changes 

[57].  

Considering on the off-tuning problem as one of the possible results of human-

structure interaction in human induced vibration control, passive control methods 

such as TMD could be a non-practical solution to remediate the excessive vibration 

since the operation range of TMD is set to certain band of frequency. However 

HTMD on the other hand can be a possible solution to deal with this issue since the 

active part of HTMD can act as a tuning system.  

2.4. Control Algorithms 

An important consideration for HTMD design is control force generated by the 

actuator which can be calculated through combination of displacement, velocity and 

acceleration of the structure and TMD by applying different gain coefficients. 

Choosing the type and optimisation of the gains is an important factor to achieve the 

proper ability of the controller [3], [4], [13], [128]. 

The choice of control algorithm is an important factor to produce appropriate 

command voltages and the performance of the controller is highly dependent on this. 
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The type of algorithm depends on the non-linearity of the system, accessibility of 

feedback measurement and the number of devices to be used in the structure. The 

capacity of generated force in actuators should also be considered [19], [49], [65], 

[129]. The goal of control algorithm is to reduce the error between desired and actual 

structural response and/or to change some particular parameters linked to the 

structural response [2], [13]. 

2.4.1. PID Control 

The basics of PID control consists of the proportional, integral and derivative 

components of the response of the structure multiplied by their corresponding 

feedback gains [46]. Direct response feedback gains have an important role in control 

algorithm since they have a large effect on the final structural response [130]. 

However in reality, PID control is more complex in the presence of filtering and 

different compensators (such as actuator, sensor, etc.) 

Acceleration feedback is an early and appropriate approach which consists of a gain 

multiply by acceleration of the structure and gives the control force [3], [128]. Also, 

other kinds of direct response gains such as velocity and displacement of the 

structure and TMD’s mass were employed as a suitable control scheme for HTMDs. 

These type of control enhances the damping and inertia of the passive part of the 

system [2].  

2.4.2. Optimal Control 

Optimal control methods are conventional methods that have been employed widely 

and generally in the control area. [13], [19], [49], [75], [88], [91], [94], [131]–[134]. 

The role of this form of control is to make the states of the systems almost equal to 

zero [46].  

There are different types of optimal control methods such as Linear Quadratic 

Regulator (LQR) and Linear Quadratic Gaussian (LQG).   

2.4.2.1.Linear Quadratic Regulator (LQR) 

LQR is the most common type of optimal control. In LQR method, it is assumed that 

all states of the system are measurable. The goal of using this method is to place the 

poles of the structure in a way that results in more damping. [13], [46], [53], [119], 

[134], [135].  
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However, since the LQR control only works with the states of the system (i.e. 

displacement and velocity or velocity and acceleration), it is not possible to use this 

method to employ all responses of the system (i.e. displacement, velocity and 

acceleration at the same time). Author explains and shows its application in active 

control and HTMD on further chapters.  

2.4.2.2.State Derivative Feedback by LQR 

Since it is not possible to measure all the state of the systems and sometimes it is 

possible to measure the derivative of the system (e.g. acceleration instead of the 

velocity), a modified version of LQR is introduced [134] to apply LQR on derivative 

of the states of the system instead of the states directly. This is useful when velocity 

and acceleration of the system is considered instead of velocity and displacement 

[130], [134], [136].  

Although using this method make it possible to work with the derivative of the states 

(e.g. velocity and acceleration), still the ability of using all outputs (i.e. displacement, 

velocity and acceleration) is missed from this method. The application and 

performance of modified LQR in active control and HTMD is described in further 

chapters. 

2.4.2.3.Output Derivative Feedback by LQR 

Sometimes it is not possible to measure all the states of the system and the output 

matrix does not have all the state’s measurements. Hence, it is possible to use this 

modified version of LQR method in which the output matrix of a system’s sate space 

is considered for LQR method [134]. This is useful especially when the acceleration 

of the system is measurable [136]. This is addressed later on other chapters.  

2.4.3. Optimisation 

In different control methods, defining the proper control parameters (such as 

feedback control gain, TMD’s parameters, etc.) is an important and sometimes 

complex issue. The “Optimisation” term here explains different methods to calculate 

these parameters appropriately.  

Most structures are complex and inherently nonlinear and calculating the proper 

dynamic modelling is an important issue. Therefore, using conventional control 

algorithms are not suitable for these types of problems. Having a MDOF (Multi 
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Degree of Freedom System) is an example of a complex system. Modern control 

optimisation and techniques is an appropriate method to be employed instead of 

conventional methods for these types of problems [21], [137]–[139]. 

Also, since obtaining the closed-form solution of the TMD/HTMD with damping 

element is not possible, it is necessary to use numerical optimisation methods. This 

means that it is not possible to mathematically solve the conventional equation of 

motions for MDOF system in the presence of damping element and generate a 

parametric relation between structural response and TMD’s parameters [47], [48], 

[56], [57], [71], [121], [140].  

There are also different conventional optimisation methods (Figure 2-6) such as 

gradient-based or Hessian local optimisation in which the objective function is 

smooth and the aim is to achieve a local optimisation. Random search technique is 

another optimisation method which is considered as a very basic method. It is an 

unintelligent method since it only studies the search space randomly. Compared to 

some more developed techniques such as Genetic Algorithm, this method performs 

the random search without linking to earlier results. Also random search is 

considered as time consuming method in more complex problems [138].  

 

Figure 2-6- Different optimisation techniques [139] 
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Stochastic Hill Climbing as another method also has the disadvantage of reaching the 

first (i.e. local minimum) instead of the global one. To avoid this, the procedure must 

be repeated several times. This method is not suitable when there is more than one 

local minimum point. However this is a simple and quick method [138].  

Simulated Annealing is a similar method as Stochastic Hill Climbing with the 

difference of avoiding local optimum points. It is a competitive method with GA. 

However, these two have some differences on the type of searching in the population 

of the possible solutions. GA has wider range of the solution [138].   

2.4.3.1.Genetic Algorithm 

GA is the most popular approach in evolutionary computation techniques. It is a 

search and optimisation method first introduced by John Holland in 1975 [14], [138]. 

GA has been successfully applied in many optimisation fields. It follows Darwin’s 

rule of natural selection. The higher probability to pass to the next generation is with 

the individual which is more fit with the defined aim’s objective [14], [138]. This 

algorithm is based on information trading of each member in community and 

comprehensive search [22], [141], [142].   

GA has many advantages in comparison with other optimisation methods. It has a 

simple concept (Figure 2-7) and there is no requirement of gradient information. It 

has a wide application and any optimisation problem can employ GA. Also it is 

possible to use GA in combination with other methods such as Fuzzy Logic or 

Neural Network and even traditional techniques. It is a more reliable and quicker 

approach for more complex problems. Also since there is no complex mathematical 

requirement of the objective function and because GA is based on evolution of 

objective function, it can be applied to non-linear discrete or continuous constraint or 

unconstraint search spaces. Also, GA is a parallel method in which the calculation 

speed is significantly higher. Also as it noted earlier, GA looks for the population of 

points instead of one single point. “GAs are something worth trying when everything 

else has failed or when we know absolutely nothing of the search space” [138].  

However, defining an appropriate fitness function, population size, rates for mutation 

and cross over and also type of selection are some of the challenges when using GAs 

[138].   
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Figure 2-7- Schematic of an Evolutionary Algorithm [138]  

GAs have been applied in civil engineering problems since a few decades ago. It is 

very effective in solving complex problems and its application in civil engineering 

has been improving with the aid of computer science development [137], [138].  

2.4.3.2.Fuzzy Control 

Fuzzy Logic Control (FLC) has drawn the consideration of control engineers 

recently. It is appropriate for nonlinear and uncertain cases where the design data are 

unclear.  It consists of “fuzzication interface, rule base, decision making and a de-

fuzzication interface to simulate logical reasoning of human beings”. FLC initial 

parameters are hard to determine and it is found by error and trail methods. However, 

it is possible to use some other conventional method in parallel with FLC. Also, FLC 

performance depends on the mathematical formulation of the system [21], [46], 

[112], [137], [139], [143].  

2.4.3.3.Neural networks 

Neural Network is a strong and appropriate approach to be employed in complex 

non-linear structures. Hence, it is sometimes mixed with conventional control 
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methods [22]. It consists of mathematical functions which based on training and 

learning from measured data. In the area of structural control, Neural Network 

mostly is employed for state estimations [46]. Author shows and explains the 

application of some of these methods in further chapters. Several of these methods 

are modelled and compared to each other and the most appropriate method for the 

application of HTMD is introduced. 

2.5. Summary 

To summarise, there are different methods of vibration control with advantages and 

disadvantages depends on the type of vibration and application of the controller.  For 

instance, active control was employed to reduce the vibration level caused by human 

activities (e.g. walking) in office floors [31], [144]–[148] or passive tuned mass 

damper (TMD) is used for controlling the human induced vibration in footbridges 

[17].  

One of the known issues in human induced vibration control is the human-structure 

interaction phenomenon. This results in changing in the primary structure’s dynamic 

properties (such as frequency and damping of a cantilever in grandstand). Hence, 

passive control could be an inappropriate method of control when the effect of 

human-structure interaction is significant since they mean to work in a specific range 

of dynamic properties. Active control on the other hand has the ability to operate in a 

wider range of frequency. However, they could have the cost problem for large 

structures such as stadium since large actuators might be needed in order to control 

the higher magnitude of excitation force (e.g. spectator’s jumping force in a 

stadium). Hence, neither passive TMD nor Active Mass Damper (AMD) has been 

employed to control human-induced vibration in larger structures such as grandstand 

when the level of excitation force is larger and also the human-structure interaction 

effect is significant. 

Considering on both performance (e.g. vibration reduction in a wider range of 

frequency) and cost (e.g. using large actuator in the presence of large vibration 

force), the available human induced vibration control techniques could be an 

inappropriate method. On the other hand, HTMD systems proved to be highly 

effective solution for control of vibrations due to wind and earthquake [41], [56], 
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[121]–[124], [51], [52], [54]. However, HTMD has not been used for reducing 

human-induced vibration.  

This thesis is grounded on the hypothesis that HTMD is an effective method to 

reduce human-induced vibrations of grandstands. Author, in the present study, will 

introduce Hybrid Tuned Mass Damper as a type of hybrid control technique to 

reduce the vibration control for larger scales of the vibration forces (such as in 

stadium) with a wider frequency range of operation. In addition, author will employ 

Genetic Algorithm as one of the available optimisation methods to generate the 

appropriate parameter for the proposed device. The performance of proposed device 

will be considered both analytically and experimentally.  
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3. Development and application of HTMD for controlling human-

induced vibration 
A shorter version of this chapter was presented and published in [149]. 

3.1. Introduction 

As previously discussed in Chapter 2, a hybrid damper is a combination of different 

primary control technologies. In this research work, the Hybrid Tuned Mass Damper 

(HTMD) is the combination of a passive TMD with an active element (actuator) on 

top. The performance of the passive TMD is improved by the additional active part. 

In this chapter, analytical models of an empty structure in addition to the structure 

with passive TMD, AMD and HTMD attached will be developed. These models are 

to be developed in both transfer function and state space formulations. Following a 

review of these models, the properties of the passive TMD (and passive part of the 

HTMD) will be calculated using two different approaches. An active vibration 

control (AVC) scheme using an inertial actuator (AMD) is also developed.  

Three different control algorithms for the HTMD, based on past research and 

enhanced by further developments proposed by the author, are then investigated to 

develop the most suitable technique for HTMD design. In addition, two approaches 

are employed to check the closed-loop stability. All created analytical models will be 

verified experimentally later in chapter 6. 

3.2. Model of the uncontrolled structure 

The laboratory structure used in this study is a simply supported post-tensioned 

concrete slab strip with span 10.8 m, width 2.0 m and depth 0.275 m. The total 

weight of the slab is approximately 15 tonnes and its dynamic properties established 

from measurements are presented elsewhere [145], [146], [150]. 

Based on the first bending mode of vibration modelled as a SDOF system (Figure 

3-1), the structure has natural frequency 𝑓! = 4.44  Hz with modal mass 𝑚! =

7150  kg and damping ratio of 𝜉! = 0.5%. The derived damping coefficient and 

stiffness are 𝑐! = 1976  N. sec/m and 𝑘! = 5,588,071  N/m, respectively. This mode 

is susceptible to human activities such as walking [151]. Rayleigh damping is 
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assumed for the structure since in civil engineering structures damping mostly 

corresponds with stiffness and mass element [146]. 

 

Figure 3-1- SDOF model of the uncontrolled structure 

The equation of motion of the uncontrolled structure subjected to external force 

(𝐹!"#) is generated as 

𝑚!𝑥!(𝑡)+ 𝑐!𝑥!(𝑡)+ 𝑘!𝑥!(𝑡) = 𝐹!"#(𝑡) ( 3.1 ) 

3.2.1. Open loop structural model using transfer function formulation 

The open loop system (Figure 3-2) has the output (i.e. acceleration, velocity or 

displacement of the structure) in response to the input (i.e. external force such as 

human jumping force) in the absence of structural control. 

 

Figure 3-2- Block diagram arrangement of the uncontrolled structure as a 
SDOF system 

Converting ( 3.1 ) from time domain to Laplace domain,   

𝑚!𝑠!𝑋!(𝑠)+ 𝑐!𝑠𝑋!(𝑠)+ 𝑘!𝑋!(𝑠) = 𝐹!"#(𝑠) ( 3.2 ) 
hence the transfer function (TF) is given by 

𝑋!(𝑠)
𝐹!"#(𝑠)

=
1

𝑚!𝑠! + 𝑐!𝑠 + 𝑘!
 ( 3.3 ) 
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where 𝐹!"#(𝑠) and 𝑋!(𝑠) are the Laplace transforms of the external force and 

structural displacement response, respectively. To achieve the output as acceleration 

instead of displacement in the structure TF, equation ( 3.3 ) is multiplied by a s2 term. 

Hence Gs,2,unc, the accelerance TF between external force and the response is 

calculated as: 

H!"# = G!,!,!"# =
X!(s)s!

F!"#(s)
=

s!

m!s! + c!s+ k!
   ( 3.4) 

Figure 3-1 shows a comparison between the proposed SDOF model of the structure 

and the corresponding measured transfer function below 10 Hz. Higher structural 

modes are omitted since their contribution in this frequency range is small [146]. 

Also, it should be noted that the frequency of the structure in Figure 3-1 has been 

reduced to 4.33 Hz from 4.44 Hz due to the existence of an additional mass on the 

slab during the measurements (which was the locked TMD acting as a passive mass 

on the structure).  

 

Figure 3-3- FRF of the uncontrolled structure, structure model (red); 
experimental measurement (green)  

3.2.2. Open loop structural model using state space formulation 

To use some optimal control design techniques such as linear quadratic regulator 

(LQR), it is more convenient to derive a state space (SS) model of the system. Based 

on equation ( 3.1 ), the states of uncontrolled structure are introduced as 
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𝑋!,!"# = 𝑥!
𝑋!,!"# = 𝑥!

  ∴   
𝑋!,!"# = 𝑋!,!"#
𝑋!,!"# = 𝑥!

 ( 3.5) 

 

Hence, the SS representation of the system in the form of 𝑋!"# = 𝐴!"#𝑋!"# +

𝐵!"#𝑈!"# is developed as 

𝑋!,!"#
𝑋!,!"#

=
0 1

−
𝑘!
𝑚!

−
𝑐!
𝑚!

  ∗
𝑋!,!"#
𝑋!,!"#

+
0
1
𝑚!

∗    𝐹!"#  ( 3.6) 

  

To obtain displacement, velocity and acceleration of the system as outputs in the 

form of  𝑌!"# = 𝐶!"#𝑋!"# + 𝐷!"#𝑈!"# , the output matrix is established as 

𝑌!,!"#
𝑌!,!"#
𝑌!,!"#

=

1 0
0 1

−
𝑘!
𝑚!

−
𝑐!
𝑚!

∗
𝑋!,!"#
𝑋!,!"#

+

0
0
1
𝑚!

∗    𝐹!"#  ( 3.7) 

3.3. Model of the structure with attached TMD 

The tuned mass damper (TMD) used in this research work comprises of a mass 

attached to the main structure with a spring and a damper element as shown by the 

model in Figure 3-1. The model of the system is a 2 DOF arrangement including the 

primary structure as the first DOF and the passive TMD as the second DOF of the 

model. 
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 Figure 3-4- 2DOF model of the structure with attached TMD  

The set of equations of motions of the system with attached TMD subjected to 

external force (𝐹!"#) are given by 

𝑚!𝑥! 𝑡 + 𝑐! + 𝑐! 𝑥! 𝑡 + 𝑘! + 𝑘! 𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 𝐹!"# 𝑡
𝑚!𝑥! 𝑡 + 𝑐!𝑥! 𝑡 + 𝑘!𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 0

 ( 3.8 ) 

  

3.3.1. Open loop structural model using transfer function formulation 

Figure 3-5 shows the transfer function (TF) arrangement of the system, which is an 

open loop scheme. However, as is illustrated in Figure 3-5, the motion of the TMD is 

dependent on the acceleration of the structure and conversely the response of the 

structure is dependent on the dynamic interaction between it and the TMD. Hence, 

there are feedbacks between these two components of the model.  
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Figure 3-5- Block diagram arrangement of the structure with attached TMD as 
a 2DOF system 

Converting ( 3.8 ) from time domain to Laplace domain results in 

𝑚!𝑠!𝑋! 𝑠 + 𝑐! + 𝑐! 𝑠𝑋! 𝑠 + 𝑘! + 𝑘! 𝑋! 𝑠 − 𝑐!𝑠𝑋! 𝑠 − 𝑘!𝑋! 𝑠
= 𝐹!"#(𝑠)

𝑚!𝑠!𝑋! 𝑠 + 𝑐!𝑠𝑋! 𝑠 + 𝑘!𝑋! 𝑠 − 𝑐!𝑠𝑋! 𝑠 − 𝑘!𝑋! 𝑠 = 0
 ( 3.9 ) 

  

Rearranging ( 3.9 ) in terms of 𝑋! 𝑠 , 𝑋! 𝑠  and 𝐹!"#(𝑠) leads to 

𝑚!𝑠! + 𝑐! + 𝑐! 𝑠 + 𝑘! + 𝑘! 𝑋! 𝑠 − 𝑐!𝑠 + 𝑘! 𝑋! 𝑠 = 𝐹!"#(𝑠)
𝑚!𝑠! + 𝑐!𝑠 + 𝑘! 𝑋! 𝑠 − [𝑐!𝑠 + 𝑘!]𝑋! 𝑠 = 0

 ( 3.10 ) 

Defining G!,!,!"#,  G!,!,!"# and G!,! by considering the acceleration as the output of 

each block (i.e. by multiplying s! term) then 

G!,!,!"# =
X!(s)s!

𝑋! 𝑠 s!
=

𝑐!𝑠 + 𝑘!
𝑚!𝑠! + 𝑐! + 𝑐! 𝑠 + 𝑘! + 𝑘!

 ( 3.11 ) 

and 

G!,!,!"# =
X!(s)s!

F!"#(s)
=

s!

𝑚!𝑠! + 𝑐! + 𝑐! 𝑠 + 𝑘! + 𝑘!
 ( 3.12 ) 

and 

G!,! =
X!(s)s!

X!(s)s!
=

𝑐!𝑠 + 𝑘!
𝑚!𝑠! + 𝑐!𝑠 + 𝑘!

 ( 3.13 ) 
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Substituting ( 3.11 ), ( 3.12 ) and ( 3.13 ) into ( 3.10 ), the final TF of the system 

becomes as 

𝑥! = 𝑥!G!,!,!"# + 𝐹!"#G!,!,!"#
𝑥! = 𝑥!G!,!

 ( 3.14 ) 

 

Combining two parts of the equations generates the final transfer function (H!"#) 

between the structural response and external force as 

𝑥! = 𝑥!G!,! G!,!,!"# + 𝐹!"#G!,!,!"# 

∴ 1− G!,!G!,!,!"# 𝑥! = 𝐹!"#G!,!,!"# 
( 3.15 ) 

Then  

H!"# =
𝑥!
𝐹!"#

=
G!,!,!"#

1− G!,!G!,!,!"#
   ( 3.16 ) 

which is represented in Figure 3-5.  

3.3.2. Open loop structural model using state space formulation 

Considering equation ( 3.8 ), the states of the system are introduced as 

𝑋!"# =

𝑋!,!"# = 𝑥!
𝑋!,!"# = 𝑥!
𝑋!,!"# = 𝑥!
𝑋!,!"# = 𝑥!

  

∴   𝑋!"#

𝑋!,!"# = 𝑋!,!"#
𝑋!,!"# = 𝑥!

𝑋!,!"# = 𝑋!,!"#
𝑋!,!"# = 𝑥!

 

( 3.17) 

  

Hence, the SS representation of the model in the form of 𝑋!"# = 𝐴!"#𝑋!"# +

𝐵!"#𝑈!"# is given by 
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𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#

=

0 1 0 0

−
𝑘! + 𝑘!
𝑚!

−
𝑐! + 𝑐!
𝑚!

𝑘!
𝑚!

𝑐!
𝑚!

0 0 0 1
𝑘!
𝑚!

𝑐!
𝑚!

−
𝑘!
𝑚!

−
𝑐!
𝑚!

  ∗

𝑋!,!"#
𝑋!,!!"
𝑋!,!"#
𝑋!,!"#

+

0
1
𝑚!
0
0

∗    𝐹!"#  

( 3.18) 

 

To have displacement, velocity and acceleration of the structure and TMD as outputs 

in the form of  𝑌!"# = 𝐶!"#𝑋!"# + 𝐷!"#𝑈!"# , the output matrix is introduced as 

𝑌!,!"#
𝑌!,!"#
𝑌!,!"#
𝑌!,!"#
𝑌!,!"#
𝑌!,!"#

=

1 0 0 0
0 1 0 0

𝑘! + 𝑘!
𝑚!

−
𝑐! + 𝑐!
𝑚!

𝑘!
𝑚!

𝑐!
𝑚!

0 0 1 0
0 0 0 1
𝑘!
𝑚!

𝑐!
𝑚!

−
𝑘!
𝑚!

−
𝑘!
𝑚!

∗

𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#

+

0
0
1
𝑚!
0
0
0

∗    𝐹!"#  

( 3.19) 

 

3.3.3. TMD parameter optimisation 

The design of a TMD involves the calculation of its mass, stiffness and damping. To 

design these parameters, it is assumed that the structure is a SDOF system based on 

the first mode of vibration, since for the structure under consideration it is dominant 

and the target mode for control. Table 3-1 summarises the key parameters of the  

SDOF primary structure, which were discussed in section 3.2.  
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Table 3-1-Structural parameters employed in TMD design 

ms (kg) cs (N.sec/m) ks (MN/m) fs (Hz) 𝜉! 

7,150 1,976 5.59 4.44 0.5% 

 

To calculate the TMD parameters, two methods are employed. The first method is 

the classical tuning method initially introduced by den Hartog [152] and improved by 

Tsai and Lin [153]. Next, the author introduces an optimisation method using a 

genetic algorithm (GA) and the results of these two approaches are compared and 

assessed.  

3.3.3.1.Optimisation of TMD parameters using the classical method 

According to [153], the frequency ratio and damping ratio of the TMD can be 

determined following these formulas: 

𝑓 =
1− 0.5𝑚
1+𝑚 + 1− 2𝜉!

! − 1

− 2.375− 1.034 𝑚 − 0.426𝑚 𝜉! 𝑚

− 3.730− 16.903 𝑚 + 20.496𝑚 𝜉!
! 𝑚 

( 3.20 ) 

 

𝜉! =
3𝑚

8 1+𝑚 1− 0.5𝑚 + 0.151𝜉! − 0.170𝜉!
!

+ 0.163𝜉! − 4.980𝜉!
! 𝑚 

( 3.21 ) 

Where  

𝑚 =   
𝑚!

𝑚!
 ( 3.22 ) 

which is usually chosen by the designer, 

𝑓 =   
𝑓!
𝑓!

 ( 3.23 ) 

and 

𝜉! =   
𝑐!

2 𝑘!𝑚!
 ( 3.24 ) 
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Choosing 𝑚 as 4.8% and substituting parameters of Table 3-1 into the equations ( 

3.20 ), ( 3.21 ) and ( 3.22 ), the TMD parameters are calculated as shown in Table 

3-2. 

Table 3-2-TMD parameters using classical method 

𝑚 𝑓 fp (Hz) ξp (%) mp (kg) cp (Ns/m) kp (N/m) 

4.76% 0.94 4.18 13.33% 340 2,379 235,436 

 

3.3.3.2.Optimisation of TMD parameters using a GA approach 

Use of a GA as a searching method has been employed to explore in the area of 

feasible response and generate an optimised solution in that region, which gives the 

TMD parameters. Figure 3-6 shows the FRF of a SDOF system with and without a 

TMD attached to it. The TMD is used here to minimise the response of the structure 

((H!"# ω! ), the blue line) within a desirable band of frequencies (i.e. 𝜔! < 𝜔! <

𝜔!) by choosing the best possible parameters of the TMD (i.e. mass, damping and 

stiffness). However, it should be noticed that the FRF of the controlled structure 

should be inside the boundary of the FRF of the uncontrolled structure (H!"# ω! ) to 

avoid higher responses at non-resonant frequencies. Consequently, for each ω!, the 

response of the controlled structure due to the external force (H!"# ω! ) should be 

as minimum as possible. Also for each ω!, the response of the controlled structure 

due to the external force (H!"# ω! ) should be less than the response of the 

uncontrolled structure (H!"# ω! ) at the same frequency (ω!). Hence, the objective 

function of the optimisation problem is to minimise the FRF function of the 2DOF 

system (i.e. including the structure and the TMD, the blue line) within the constraint 

of the FRF of the uncontrolled structure (red line).  
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Figure 3-6- FRF of the controlled structure with TMD (blue) and uncontrolled 
structure (red) to be used in the GA  

The optimisation problem is generated as  

O. F. ∶   min(𝐻!"# 𝜔! ) ,        𝜔! < 𝜔! < 𝜔! ( 3.25 ) 
 

Constraint ∶   𝑆.𝑇.        𝐻!"# 𝜔! <   𝐻!"# 𝜔! ∴ 𝐻!"# 𝜔! − 𝐻!"# 𝜔! < 0    

𝜔! < 𝜔! < 𝜔! ( 3.26 ) 

 

where 𝐻!"# and 𝐻!"# are the FRF functions (TF) between the external force and 

structural acceleration for uncontrolled and controlled (with TMD) structures, 

respectively. These functions were derived in sections 3.2.1 and 3.3.1.  

In ( 3.4) and ( 3.16 ), substituting 𝑠 = 𝑗𝜔! where 𝑗 = −1 , 𝐻!"# and 𝐻!"# become  

𝐻!"#(𝜔!) =
(𝑗𝜔!)!

m!(𝑗𝜔!)! + c!(𝑗𝜔!)+ k!
 ( 3.27 ) 

 

𝐻!"# 𝜔! =

− 𝑗𝜔! !/[ !! !!! !!!
!

!! !!! !!!! !!! !!!
!
!! !!! !! !!!!! !!! ! !!!!!

− 1 ∗

𝑚! 𝑗𝜔! ! + 𝑐! + 𝑐! 𝑗𝜔! + 𝑘! + 𝑘! ]  

( 3.28 ) 
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It should be noted that the magnitude of FRF is the absolute value (complex 

magnitude) of these transfer functions.  

In addition, the constraint function becomes as  

(− 𝑗𝜔! !/[ 𝑐𝑝 𝑗𝜔𝑖 +𝑘𝑝
2

𝑚𝑝 𝑗𝜔𝑖 2+𝑐𝑝 𝑗𝜔𝑖 +𝑘𝑝
2 𝑚𝑠 𝑗𝜔𝑖 2+ 𝑐𝑠+𝑐𝑝 𝑗𝜔𝑖 + 𝑘𝑠+𝑘𝑝

− 1 ∗

𝑚! 𝑗𝜔! ! + 𝑐! + 𝑐! 𝑗𝜔! + 𝑘! + 𝑘! ])− (𝑗𝜔𝑖)
2

ms(𝑗𝜔𝑖)
2+cs(𝑗𝜔𝑖)+ks

  
( 3.29 ) 

 

Based on ( 3.28 ) and ( 3.29 ), this is a multi-objective nonlinear function with 

nonlinear semi-infinite constrains. To apply a GA to this problem, the penalty 

function method is introduced to create a fitness function of the GA as [138], [139] 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐹! + 𝑟! 𝐺!

!

!!!

 ( 3.30 ) 

 

The role of the penalty function is to convert the constrained problem to 

unconstrained. In the penalty method, usually some information about the infeasible 

solutions (the solutions out of the constraint) is required. This is achieved by a slight 

violation of the constraints [138], [139]. In ( 3.30 ) 𝑟! is the Penalty Factor, 𝐺! is the 

Constraint Function, 𝐹! is the Objective Function for the 𝑖th frequency and 𝑛 is the 

number of discreet frequencies. Implementing ( 3.30 ), both the OF and the 

constraint function convert to a single fitness function which can be applied using the 

MATLAB Optimisation Toolbox [138], [154], Multi-Objective Genetic Algorithm.  
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Table 3-3- GA parameters for optimisation of TMD parameters 

Number of variables 3 

Population Size 200 

Selection Function Tournament 

Tournament Size 2 

Reproduction/ Crossover fraction 0.8 

Mutation function Adaptive feasible 

Crossover / Crossover fraction Intermediate, ratio:1.0 

Migration Direction Forward 

Migration fraction 0.2 

Migration Interval 20 

Pareto population fraction 0.35 

Fitness Limit Infinity 

Stall generations 100 

Function tolerance 10-5 

Fitness function evaluation In serial  

 

Using the properties in Table 3-3 for GA, the optimised critical values (TMD 

parameters) are shown in Table 3-4. It should be noted that the upper and lower 

bounds of the GA are very important since these define the area of choosing the 

critical values. In this case, these bounds are the practical feasibility of the TMD’s 

parameters (i.e. mass, spring and damper). Hence, the lower bound is set to [mp=100 

cp=100  kp=50,000] and the upper band to [mp=340 cp=4,000  kp=500,000]. It took 

282 iterations to calculate the optimised parameters. In addition, 𝑟!, the penalty 

factor was changed from 101 to 10100. However, there is not a large difference 

between the outputs of the optimisation (TMD parameters) by changing 𝑟! and it was 

concluded that this number has not a significant effect on the result. This is the 

maximum of 3% changing in the result. 

Table 3-4- TMD parameters obtained using GA 

fp (Hz) ξp (%) mp (kg) cp (Ns/m) kp (N/m) 

4.42 11.38 335 2117 258,095 
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Figure 3-1 shows the FRF magnitude plot of the results from both Table 3-2 and 

Table 3-4 in comparison to that from the uncontrolled structure. 

 

Figure 3-7- FRF of the uncontrolled structure (green) in comparison with 
structure with TMD using classical design (red) and TMD designed with GA 

(blue) 

Both the classical and GA methods generate suitable TMD parameters. However, the 

GA approach gives more equal peaks of lower magnitude in comparison to the 

classical method. Using GA for optimising TMD parameters verifies the proposed 

methodology by the author and will be employed in optimising HTMD parameters 

(i.e. control gains).  

It should be noted that both classical and GA optimisation method have violation of 

boundary (i.e. responses out of the boundary of the uncontrolled structure). This 

could be firstly due to the narrower band of resonant frequency of the considered 

structure. Also for GA optimisation, since Penalty Function method is employed, 

violation of the boundary is expected.  

3.4. HTMD model 

The hybrid tuned mass damper (HTMD) in this research work comprises of a TMD 

with an actuator attached on top as shown by the schematic in Figure 3-8. The 

structural vibration energy is dissipated primarily through the passive part and the 



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

37 

active element improves the performance of the system by addressing the off-tuning 

problem and mobilisation of passive TMD under low level vibrations. The active 

element can also be used to augment the damping force provided by the passive part 

of the TMD.   

As illustrated in Figure 3-8, the model of the system is a 3DOF arrangement 

including the main structure as the first DOF, the passive TMD as the second DOF 

and an active actuator with inertial mass as the third DOF of the model. 𝑚!"#, 𝑐!"# 

and 𝑘!"# are the mass, damping and stiffness of the actuator DOF, respectively. 𝑥!"# 

is the absolute displacement of the active mass of the actuator. 

 
 

Figure 3-8- 3DOF model of the structure with attached HTMD 
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The equations of motion of the system with attached HTMD subjected to external 

force (𝐹!"#) and force developed in the electromagnetic coils of actuator (𝑈!"#) are 

given by 

a) 𝑚!𝑥! 𝑡 + 𝑐! + 𝑐! 𝑥! 𝑡 + 𝑘! + 𝑘! 𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 𝐹!"# 𝑡  

b) 𝑚!𝑥! 𝑡 + 𝑐! + 𝑐!"# 𝑥! 𝑡 + (𝑘! + 𝑘!"#)𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 −

𝑐!"#𝑥!"# 𝑡 − 𝑘!"#𝑥!"# 𝑡 = 𝑈!"#(t) 

c) 𝑚!"#𝑥!"# 𝑡 + 𝑐!"#𝑥!"# 𝑡 + 𝑘!"#𝑥!"# 𝑡 − 𝑐!"#𝑥! 𝑡 − 𝑘!"#𝑥! 𝑡 =

−𝑈!"#(t) 

( 3.31 ) 

 

3.4.1. Model of the actuator 

The actuator used in this research work is an APS Dynamics Model 400 

electrodynamic shaker which connects to an amplifier and generates an inertia force 

from the acceleration of the active mass [146]. This force also acts on the TMD as a 

reaction force. The actuator inertia force is controlled by applying a control voltage 

(maximum of 2.0 volt) to its amplifier. There are two operation modes; voltage and 

current mode. In this research, the voltage mode has been used and in this mode it 

can produce the harmonic force with the magnitude of around maximum 450 N) 

[155], [156].  

 

Figure 3-9- Free body diagram of the actuator 

Writing the equation of motion for the actuator mass 

m!"#x!"#(𝑡)+ c!"#x!"#(𝑡)+   k!"#x!"#(𝑡) = U!"#(𝑡) ( 3.32 ) 
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Converting this in terms of force where 𝐹!,!"#, 𝐹!,!"# and 𝐹!,!"# are inertia, damping 

and stiffness forces of the actuator, then: 

𝐹!,!"# 𝑡 + 𝐹!,!"# 𝑡 +   𝐹!,!"# 𝑡 = U!"# 𝑡   

∴ 𝐹!,!"# 𝑡 = −𝐹!,!"# 𝑡 −   𝐹!,!"# 𝑡 + U!"# 𝑡   ( 3.33 ) 

where  

U!"# 𝑡 = 𝑣!"#𝑉!",!"# ( 3.34 ) 
 

𝑉!",!"# is the input voltage of the actuator and 𝑣!"# is the force-voltage characteristic 

of the actuator. Considering Figure 3-9 and equation ( 3.33 ), it is possible to replace 

the actuator DOF with just one inertia force (i.e. 𝐹!,!"#) as in Figure 3-10. 

 
Figure 3-10- Replacing actuator DOF with the inertia force of actuator 

Combining ( 3.32 ) and ( 3.34 ) and transforming it to Laplace domain generates 

𝑋!"#(𝑠)
𝑉!",!"#(𝑠)

=
𝑣!"#

𝑚!"#𝑠! + 𝑐!"#𝑠 + 𝑘!"#
 ( 3.35 ) 

 

having  

F!,!"# 𝑡 = m!"#x!"#   𝑡 ∴ F!,!"# 𝑠 = m!"#𝑋!"#𝑠! ( 3.36 ) 
 

Substituting  ( 3.36 ) into ( 3.35 ) leads to 
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F!,!"# 𝑠
𝑉!",!"#(𝑠)

=
𝑚!"#𝑣!"#𝑠!

𝑚!"#𝑠! + 𝑐!"#𝑠 + 𝑘!"#
 ( 3.37 ) 

 

[147] showed that ( 3.37 ) needs a low pass element to be a third order model as a 

more realistic model of the actuator. Hence, G!"#, the TF between input voltage and 

inertia force of the actuator becomes 

𝐺!"# =
F!,!"# 𝑠
𝑉!",!"#(𝑠)

=
𝑚!"#𝑣!"#𝑠!

𝑚!"#𝑠! + 𝑐!"#𝑠 + 𝑘!"#
∗

1
𝑠 + 𝜀!"#

 ( 3.38 ) 

 

where 𝜀!"# is the coefficient of the low pass filter element of the actuator. Figure 

3-11 illustrates this TF. Also, the FRF of the actuator is demonstrated in Figure 3-12. 

This figure shows that for instance, at the frequency of around 2.5 Hz, for 1 volt of 

input voltage, there will be around 250 N inertia force from actuator. Considering on 

2 volt maximum, the maximum actuator inertia force will be around 500 N.  

 
Figure 3-11- TF of the actuator 

 

Figure 3-12- FRF of the actuator 

Table 3-5 shows the properties of the actuator [146]. 
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Table 3-5-Dynamic properties of the actuator 

𝑓!"# (Hz) 𝜁!"# ma (kg) cact (N.sec/m) kact (N/m) 𝑣!"# (N/v) 𝜀!"# 

2.00 52% 30.0 392 4737 418.9 8*2π 

 

3.4.2. Closed loop model of the structure incorporating the HTMD 

Considering equation ( 3.31 ) and also reflecting the discussion in section 3.4.1, the 

3DOF model of the structure with attached HTMD in Figure 3-8 is modified to 

Figure 3-13. 

 

Figure 3-13- 2DOF model of the HTMD 

Hence, the equations of motion of the system are generated as  

𝑚!𝑥! 𝑡 + 𝑐! + 𝑐! 𝑥! 𝑡 + 𝑘! + 𝑘! 𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 𝐹!"# 𝑡
𝑚!𝑥! 𝑡 + 𝑐!𝑥! 𝑡 + 𝑘!𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 𝐹!,!"# 𝑡

 ( 3.39 ) 

 

Where the F!,!"# t  can be calculated according to the TF between the actuator 

control voltage and inertia force in section 3.4.1. This control voltage is calculated 

and generated using suitable control algorithms that will be discussed later.  



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

42 

3.4.2.1.Transfer function of the HTMD 

Figure 3-14 shows the TF arrangement of the model. It is a closed loop system. As 

the sketch illustrates, both responses of the TMD mass and structure are measured 

and fed back to the controller. These two responses are in terms of acceleration since 

this is the most convenient motion parameter for practical measurement. Then, it is 

the act of controller to calculate and generate the control voltage for the actuator, 

which then produces the inertia force acting on the TMD mass.  

 

Figure 3-14- Block diagram arrangement of the structure with attached HTMD  

Converting equation ( 3.39 ) from time domain to Laplace domain leads to 

𝑚!𝑠!𝑋! 𝑠 + 𝑐! + 𝑐! 𝑠𝑋! 𝑠 + 𝑘! + 𝑘! 𝑋! 𝑠 − 𝑐!𝑠𝑋! 𝑠 − 𝑘!𝑋! 𝑠
= 𝐹!"#(𝑠)

𝑚!𝑠!𝑋! 𝑠 + 𝑐!𝑠𝑋! 𝑠 + 𝑘!𝑋! 𝑠 − 𝑐!𝑠𝑋! 𝑠 − 𝑘!𝑋! 𝑠 = 𝐹𝐼,𝑎𝑐𝑡 𝑡
 ( 3.40 ) 

  

Rearranging ( 3.40 ) in terms of 𝑋! 𝑠 , 𝑋! 𝑠 , 𝐹!"#(𝑠) and 𝐹!,!"# 𝑠  results in 

𝑚!𝑠! + 𝑐! + 𝑐! 𝑠 + 𝑘! + 𝑘! 𝑋! 𝑠 − 𝑐!𝑠 + 𝑘! 𝑋! 𝑠 = 𝐹!"#(𝑠)
𝑚!𝑠! + 𝑐!𝑠 + 𝑘! 𝑋! 𝑠 − [𝑐!𝑠 + 𝑘!]𝑋! 𝑠 = 𝐹𝐼,𝑎𝑐𝑡 𝑠

 ( 3.41 ) 

 

In comparison with the passive TMD, the response of the TMD mass depends on the 

actuator force as well as the acceleration of the main structure. Hence, G!,!, the TF 
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between the acceleration of the TMD mass and the inertia force of the actuator is 

introduced as 

G!,! =
X!(s)s!

𝐹𝐼,𝑎𝑐𝑡(s)
=

s!

𝑚!𝑠! + 𝑐!𝑠 + 𝑘!
 ( 3.42 ) 

 

Substituting ( 3.11 ), ( 3.12 ), ( 3.13 ) and ( 3.42 ) into ( 3.41 ), the final TF of the 

system becomes 
𝑥! = 𝑥!G!,!,!"# + 𝐹!"#G!,!,!"#

𝑥! = 𝑥!G!,! + 𝐹𝐼,𝑎𝑐𝑡G!,!  
 ( 3.43 ) 

 

Combining these equations generates the final transfer function between the 

structural response and external force (H!"#$ ) as 

𝑥! = 𝑥!G!,! + 𝐹𝐼,𝑎𝑐𝑡G!,! G!,!,!"# + 𝐹!"#G!,!,!"#   ( 3.44 ) 
It will be shown in further sections that since 𝐹!,!"# depends on the response of the 

structure and TMD, it is possible to simplify equation ( 3.45 ) by substituting 𝑥! and 

𝑥! in 𝐹!,!"#. Hence, the HTMD transfer function takes the form of 

H!"#$ =
𝑥!
𝐹!"#

   ( 3.45 ) 

 

This is represented in Figure 3-14.  

3.4.2.2.State space model of the HTMD 

To include the dynamic properties (TF) of the actuator in the SS model, the inverse 

Laplace transform is applied on equation ( 3.38 ) and it is written in terms of 

acceleration instead of inertia force, hence 

𝑋!"#(𝑠)
𝑉!",!"#(𝑠)

=   

𝑣!"#𝑚!"#

𝑚!"# 𝑠! + 𝑚!"#𝜀!"# + 𝑐!"# 𝑠! + 𝑐!"#𝜀!"# + 𝑘!"# 𝑠 + 𝑘!"#𝜀!"#
     

∴ 𝑚!"# 𝑥!"# t + 𝑚!"#𝜀𝑎𝑐𝑡 + 𝑐!"# 𝑥!"# t
+ 𝑐!"#𝜀𝑎𝑐𝑡 + 𝑘!"# 𝑥!!" t + 𝑘!"#𝜀𝑎𝑐𝑡 𝑥!!" 𝑡
= 𝑣!"#𝑚!"#𝑉!",!"# 𝑡  

 

( 3.46) 
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Setting 𝑋!,!!"# = 𝑥!"# leads to 

𝑋!,!"#$ =
1

𝑚!"#
(𝑣!!"𝑚!!"𝑉!",!!" − 𝑚!!"𝜀𝑎𝑐𝑡 + 𝑐!!" 𝑋!,!"#$

− 𝑐!!"𝜀𝑎𝑐𝑡 + 𝑘!!" 𝑋!,!"#$ − 𝑘!𝜀𝑎𝑐𝑡 𝑋!,!"#$) 
( 3.47) 

This is included in SS model as follows. Considering equation ( 3.39 ), the states of 

the system are introduced as  

𝑋!,!!"# = 𝑥!
𝑋!,!!"# = 𝑥!
𝑋!,!!"# = 𝑥!
𝑋!,!!"# = 𝑥!
𝑋!,!!"# = 𝑥!"#
𝑋!,!!"# = 𝑥!"#
𝑋!,!!"# = 𝑥!"#

  ∴   

𝑋!,!!"# = 𝑋!,!!"#
𝑋!,!!"# = 𝑥!

𝑋!,!!"# = 𝑋!,!!"#
𝑋!,!!"# = 𝑥!

𝑋!,!!"# = 𝑋!,!!"#
𝑋!,!!"# = 𝑋!,!!"#
𝑋!,!!"# = 𝑥!"#

 ( 3.48) 

  

Hence, the SS representation of the system in the form of 𝑋!"#$ = 𝐴!"#$𝑋!"#$ +

𝐵!"#$𝑈!"#$ becomes as 

𝑋!,!"#$
𝑋!,!"#$
𝑋!,!"#$
𝑋!,!"#$
𝑋!,!"#$
𝑋!,!"#$
𝑋!,!"#$

=

0 1 0 0 ⋯

−
𝑘! + 𝑘!
𝑚!

−
𝑐! + 𝑐!
𝑚!

𝑘!
𝑚!

𝑐!
𝑚!

⋯

0 0 0 1 ⋯
𝑘!
𝑚!

𝑐!
𝑚!

−
𝑘!
𝑚!

−
𝑐!
𝑚!

⋯

0 0 0 0 ⋯
0 0 0 0 ⋯
0 0 0 0 ⋯

 

  

⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 1 0
⋯ 0 0 1

⋯ −
𝑘!"# ∗ 𝜀!"#
𝑚!"#

−
𝑐!"# ∗ 𝜀!"# + 𝑘!"#

𝑚!"#
−

𝑚!"# ∗ 𝜀!"# + 𝑐!"#
𝑚!"#

 

( 3.49) 
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𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#

+

0 0 0
1
𝑚!

0 0

0 0 0

0
1
𝑚!

0

0 0 0
0 0 0
0 0 𝑣!"#

  
𝐹!"#
𝐹!,!"#
𝑉!",!"#

 

 

It should be noted that the TF of the actuator (representing the actuator dynamics) is 

included in the SS representation. To achieve the output as displacement, velocity 

and acceleration of the structure and TMD; and also displacement, velocity and 

inertia force of actuator in the form of  𝑌!"#$ = 𝐶!"#$𝑋!"#$ + 𝐷!"#$𝑈!"#$ , the 

output matrix is introduced as 

𝑌!,!"#$
𝑌!,!"#$
𝑌!,!"#$
𝑌!,!"#$
𝑌!,!"#$
𝑌!,!"#$
𝑌!,!"#$
𝑌!,!"#$
𝑌!,!"#$

=

1 0 0 0 ⋯
0 1 0 0 ⋯

−
𝑘! + 𝑘!
𝑚!

−
𝑐! + 𝑐!
𝑚!

𝑘!
𝑚!

0
𝑐!
𝑚!

⋯

0 0 1 0 ⋯
0 0 0 1 ⋯
𝑘!
𝑚!

𝑐!
𝑚!

−
𝑘!
𝑚!

−
𝑐!
𝑚!

⋯

0 0 0 0 ⋯
0 0 0 0 ⋯
0 0 0 0 ⋯

 

⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 1 0 0
⋯ 0 1 0
⋯ 0 0 𝑚!"#

𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#
𝑋!,!!"#

+

0 0 0
0 0 0
1
𝑚!

0 0

0 0 0
0 0 0

0
1
𝑚!

0

0 0 0
0 0 0
0 0 0

  
𝐹!"#
𝐹!,!"#
𝑉!",!"#

 

( 3.50) 
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3.5. Model of the structure with attached AMD (Active Control) 

In this research work for comparative purposes, an active vibration control (AVC) 

approach is designed. This is a simple direct velocity feedback (DVF) scheme [31], 

[146], [157] where the same actuator as was used in the HTMD is placed on the 

structure to control the first mode of the vibration. The velocity of the structure with 

appropriate gain factor applied is the control feedback signal. Figure 3-15 shows the 

model of the structure with AVC technique. It should be noted that as was derived 

previously, the actuator DOF is replaced with the generated inertia force. Hence, the 

inertia force of the actuator mass acts directly on the structure as the control force.  

 

Figure 3-15- model of the structure with attached AMD 

The equation of motion of the system with attached AMD (Active Mass Damper) 

subjected to external force (𝐹!"#) and inertia force of the actuator (𝐹!,!"#) is given by 

𝑚!𝑥! 𝑡 + 𝑐!𝑥! 𝑡 + 𝑘!𝑥! 𝑡 = 𝐹!"# 𝑡 +   𝐹!,!"#(𝑡) ( 3.51 ) 
 

where 𝐹!,!"#(𝑡) can be calculated according to the transfer function between 𝑉!",!"#  

(control input voltage) and 𝐹!,!"# in equation ( 3.38 ). Also, in DVF the control 
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voltage can be calculated using equation ( 3.52 ) where 𝐾!"# is the feedback control 

gain, 

𝑉!",!"# = 𝐾!"#𝑥𝑠    ( 3.52 ) 
 

The SS representation of the system in the form of 𝑋!"# = 𝐴!"#𝑋!"# + 𝐵!"#𝑈!"# 

becomes 

𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#

=

0 1 ⋯

−
𝑘!
𝑚!

−
𝑐!
𝑚!

⋯

0 0 ⋯
0 0 ⋯
0 0 ⋯

 

  

⋯ 0 0 0
⋯ 0 0 0
⋯ 0 1 0
⋯ 0 0 1

⋯ −
𝑘!"#𝜀!"#
𝑚!"#

−
𝑐!"#𝜀!"# + 𝑘!"#

𝑚!"#
−

𝑚!"#𝜀!"# + 𝑐!"#
𝑚!"#

 

∗

𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#

+

0 0 0
1
𝑚!

1
𝑚!

0

0 0 0
0 0 0
0 0 𝑣!"#

∗   
𝐹!"#
𝐹!,!"#
𝑉!",!"#

 

( 3.53) 

 

The actuator dynamics are again included in the SS representation. To achieve the 

output as displacement, velocity and acceleration of the structure and also 

displacement, velocity and inertia force of actuator in the form of  

𝑌!"# = 𝐶!"#𝑋!"# + 𝐷!"#𝑈!"# , the output matrix is introduced as 

𝑌!,!"#
𝑌!,!"#
𝑌!,!"#
𝑌!,!"#
𝑌!,!"#
𝑌!,!"#

=

1 0 ⋯
0 1 ⋯

−
𝑘!
𝑚!

−
𝑐!
𝑚!

⋯

0 0 ⋯
0 0 ⋯
0 0 ⋯

 ( 3.54) 
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⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 1 0 0
⋯ 0 1 0
⋯ 0 0 𝑚!"#

∗

𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#
𝑋!,!"#

+

0 0 0
0 0 0
1
𝑚!

1
𝑚!

0

0 0 0
0 0 0
0 0 0

∗   
𝐹!"#
𝐹!,!"#
𝑉!",!"#

 

 

3.5.1. Simulation 

Since the proposed AVC method is a single-input-single-output (SISO) system, it is 

possible to use root locus (RL) analysis to determine the appropriate control gain. 

The aim is to have the highest possible damping on the structure using the AVC 

technique within the limitations of the actuator capacity and stability. Figure 3-16 

shows the RL plot of the proposed system.  

 

Figure 3-16- Root locus of the DVF technique 

According to Figure 3-16 the DVF gain is calculated as 𝐾!"# = 521. Also, since the 

poles of the closed loop system are on the left hand side of the s-plane plot, then the 

system is stable. By applying this gain within the proposed state space model, Figure 

3-17 is generated. This is the accelerance FRF between external excitation and 

structural acceleration response. 
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Figure 3-17- FRF of the uncontrolled structure (green) in comparison with 
structure with AMD (red) 

As the figure demonstrates, the peak of the FRF is reduced from 0.0135 (m/s2)/N to 

0.0002 (m/s2)/N when the AMD is acting on the structure, which corresponds to a 

98% reduction in response compared with the uncontrolled structure. The 

performance of this AMD will be compared later against the performance of both the 

TMD and HTMD. 

3.6. Control Algorithm 

Based on Figure 3-14, developing a control algorithm is the key challenge to develop 

the controller block in a way to produce an appropriate actuator drive signal (voltage) 

from the measured response of the system. This signal is fed to the actuator (through 

the amplifier) and generates the control force that is acting on the TMD mass.  

As mentioned in Chapter 2, there are a number of recommendations from other 

authors [2], [3], [51], [52], [158]–[161] for designing the control algorithm for an 

HTMD. These suggestions are mostly based on measurement of one or two 

responses of the structure and/or TMD (e.g. acceleration of the structure, velocity of 

the TMD mass, etc.) and multiplying these by appropriate gains before feeding them 

back to the actuator as the input voltages. Also, there are various recommendations to 

optimise these gains.  
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Herein, the author investigates first the effect of different type of gains (including 

those types suggested from other authors and those proposed new gains in this 

research) on the structure. Then, some methods are suggested to optimise the 

appropriate gains.  

3.6.1. Direct Response Feedback 

The response of the TMD in the equations of motion is given in terms of absolute 

values. It means, for instance, 𝑥! is the absolute acceleration of the TMD. However, 

by replacing the absolute terms with relative (i.e. 𝑥!, 𝑥! and 𝑥! with 𝑥!,!"#, 𝑥!,!"# and 

𝑥!,!"# respectively) where  

𝑥!,!"# 𝑡 = 𝑥! 𝑡 − 𝑥! 𝑡
𝑥!,!"# 𝑡 = 𝑥! 𝑡 −   𝑥! 𝑡
𝑥!,!"# 𝑡 = 𝑥! 𝑡 − 𝑥! 𝑡

 ( 3.55 ) 

 

Then equation ( 3.8 ) is converted to   

𝑚!𝑥! 𝑡 + 𝑐𝑠𝑥𝑠 𝑡 + 𝑘𝑠𝑥𝑠 𝑡 − 𝑐!𝑥!,!"# 𝑡 − 𝑘!𝑥!,!"# 𝑡 = 𝐹!"# 𝑡

𝑚! 𝑥! 𝑡 + 𝑥!,!"# 𝑡 + 𝑐!𝑥!,!"# 𝑡 + 𝑘!𝑥!,!"# 𝑡 = 0
 ( 3.56 ) 

 

In ( 3.56 ), substituting the second part of the equation into the first part leads to  

(𝑚! +𝑚!)𝑥! 𝑡 + 𝑐𝑠𝑥𝑠 𝑡 + 𝑘𝑠𝑥𝑠 𝑡 = 𝐹!"# 𝑡 −𝑚!𝑥!,!"# 𝑡  ( 3.57 ) 
 

This means that the absolute inertia force of the TMD (i.e. 𝑚!𝑥!,!"# 𝑡 ) acts to 

attenuate the external force acting on the main structure. It means having more 

inertia force from the TMD causes more attenuation of the structural vibration. The 

goal of HTMD is to achieve a TMD with higher inertia force. On the other side and 

by modifying the second part of the equation ( 3.56 ) as 

𝑚!𝑥!,!"# 𝑡 + 𝑐!𝑥!,!"# 𝑡 + 𝑘!𝑥!,!"# 𝑡 = −𝑚!𝑥! 𝑡  ( 3.58 ) 
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This shows the acceleration of the main structure (𝑥! 𝑡 ) acts as an external force 

(excitation) on the TMD. The higher acceleration of the structure leads to higher 

acceleration of the TMD, which leads to more inertia force of the TMD. This inertia 

force attenuates the structural acceleration. 

Now considering the equation of motion of the HTMD in ( 3.39 ) and replacing 

𝐹!,!"# 𝑡  with 𝐾!𝑋!"#$ where 𝑋!"#$ is the response of the structure or TMD (i.e. 

displacement, velocity or acceleration) and 𝐾! is the feedback gain then  

𝑚!𝑥! 𝑡 + 𝑐! + 𝑐! 𝑥! 𝑡 + 𝑘! + 𝑘! 𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 𝐹!"# 𝑡
𝑚!𝑥! 𝑡 + 𝑐!𝑥! 𝑡 + 𝑘!𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 𝐾!𝑋!"#$ 𝑡

 ( 3.59 ) 

 

Based on ( 3.59 ) and also following the discussion of ( 3.57 ) and ( 3.58 ) leads to 

the conclusion that the first feedback gain should based on the acceleration of the 

structure which causes the TMD to have more acceleration and produces more inertia 

force. Hence combining ( 3.58 ) and second part of ( 3.59 ) and set 𝑋!"#$ = 𝑥! 𝑡  

leads to  

𝑚!𝑥!,!"# 𝑡 + 𝑐!𝑥!,!"# 𝑡 + 𝑘!𝑥!,!"# 𝑡 = −𝑚!𝑥! 𝑡 + 𝐾! 𝑥! 𝑡 ∴ 

𝑚!𝑥!,!"# 𝑡 + 𝑐!𝑥!,!"# 𝑡 + 𝑘!𝑥!,!"# 𝑡 = (−𝑚! + 𝐾! )𝑥! 𝑡  ( 3.60 ) 

 

This shows that using acceleration of the structure as a feedback results in the TMD 

having more inertia force. This can be described as the ‘driving force’ [159] of 

HTMD. 

To regulate the damping force of the TMD, it is possible to adjust the second 

feedback of the system, which is the velocity of the TMD (i.e. 𝑋!"#$ = 𝑥! 𝑡 ). Then ( 

3.59 ) is converted to  

𝑚!𝑥! 𝑡 + 𝑐!𝑥! 𝑡 + 𝑘!𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 𝐾!𝑥! 𝑡 ∴ 

𝑚!𝑥! 𝑡 + (𝑐! − 𝐾!)𝑥! 𝑡 + 𝑘!𝑥! 𝑡 − 𝑐!𝑥! 𝑡 − 𝑘!𝑥! 𝑡 = 0 ( 3.61 ) 

 

( 3.61 ) shows that feedback of the velocity of the TMD imparts an active damping 

force on the TMD. This can be called the ‘damping force’ of the HTMD [159]. 
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Also, utilising acceleration and displacement of the TMD as feedbacks (i.e. replacing 

𝑋!"#$ with 𝑥! 𝑡  and 𝑥! 𝑡 ) causes the TMD mass and stiffness to be changed 

actively. Hence, the frequency of the TMD can be adjusted and hence tuned to the 

demanded frequency. This can be called the ‘tuning force’ of the TMD [162].  

3.6.1.1.Simulations 

To see the effect of each feedback on the structure, a numerical study is performed 

on the structure discussed in section 3.2 using the HTMD model proposed in section 

3.4. The feedback terms considered are velocity and acceleration of the structure in 

addition to the displacement, velocity and acceleration of the TMD. The effects of 

these feedback terms are investigated individually in addition to combinations of 

them. Variation in both modal frequencies and magnitude of the FRF are considered. 

Feedback gain ranges for individual response parameters 

The initial step is to generate the range of gain factors that are going to be applied to 

the feedback terms. To achieve this, a RL analysis is employed based on the stability 

of the closed loop system proposed in Section 3.4.2. It should be noted that since the 

RL method is applicable for SISO systems and having more than one feedback leads 

to a MISO/MIMO system, it is necessary to apply RL for each feedback individually. 

This results in a range for each feedback gain that causes the system to be stable. The 

author shows later (in Section 4.1.2) that by using a combination of these ranges of 

feedback gains secures the stability of the system. 

Based on TF of the system in 3.4.2 and replacing 𝑉!",!"# with 𝐾!𝑋!"#$ in the 

controller block in Figure 3-14, it is possible to employ RL to check the range of the 

stability of the system for each gain. Figure 3-18, Figure 3-19, Figure 3-20, Figure 

3-21 and Figure 3-22 show the RL plots for different feedbacks. In addition, Table 

3-6 illustrates the range of the gains that ensures the stability of the system. 
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Figure 3-18- RL analysis, velocity of the structure as the response feedback. 

 

Figure 3-19- RL analysis, acceleration of the structure as the response feedback. 
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Figure 3-20- RL analysis, displacement of the TMD as the response feedback. 

 

Figure 3-21- RL analysis, velocity of the TMD as the response feedback. 
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Figure 3-22- RL analysis, acceleration of the TMD as the response feedback. 

It should be noted that these RL plots are zoomed to the region of interest. Hence, all 

loci are not presented in the plots.  

Table 3-6- Stability range of the gains  

Type of response feedback Gain Range 

K3, Velocity of the main structure, 𝑋!"#$ = 𝑥! [-58,0] 

K2, Acceleration of the main structure, 𝑋!"#$ = 𝑥! [-6.30,0] 

K1, Displacement of the TMD, 𝑋!"#$ = 𝑥! [-1330,0] 

K4, Velocity of the TMD, 𝑋!"#$ = 𝑥! [-100,0] 

K5, Acceleration of the TMD, 𝑋!"#$ = 𝑥! [-0.835,0] 

 

All these ranges were confirmed experimentally by manually changing the individual 

gains of the system in the lab which will be discussed further in Chapter 6.  

Manual optimisation of gain pairs 

For the simulations, the properties of the structure and TMD summarised in Table 

3-1 and Table 3-4 are used. In addition, the model proposed in Section 3.4 is 

employed. A MATLAB script is created to generate the FRF of the system between 

external force (𝐹!"#) and structural acceleration (𝑥!). Then the peaks of these FRF 

magnitudes and their corresponding frequencies are calculated. The smallest FRF 
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number in the graph corresponds to the appropriate sets of gain (less acceleration) as 

the most appropriate gain for each type of feedback is chosen.  

Figure 3-23 shows a contour plot of the combination of the structural acceleration 

and TMD velocity versus maximum magnitude of the FRF. Figure 3-24 and Figure 

3-25 show the same results with structural acceleration and velocity and also 

structural acceleration and TMD displacement for feedback respectively. Table 3-7 

summarises the results from plots generated from different combinations of gain 

pairs. 

 
Figure 3-23- Contour plot of variation of structural acceleration and TMD 

velocity gains against maximum of FRF magnitude. 
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Figure 3-24- Contour plot of variation of structural acceleration and velocity 

gains against maximum of FRF magnitude 

 
Figure 3-25-Contour plot of variation of structural acceleration and TMD 

displacement gains against maximum of FRF magnitude 

Table 3-7 shows the minimum of the maximum magnitude of the FRFs for different 

gains. It should be noted that 𝐾!  is feedback gain of the velocity of the main 

structure, 𝐾! is feedback gain of acceleration of the main structure, 𝐾! is feedback 

gain of displacement of the TMD, 𝐾! is feedback gain of velocity of the TMD and 

𝐾! is feedback gain of the acceleration of the TMD.  
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Table 3-7- Peak of FRF response and corresponding frequencies for different 
gains 

G
ai

n 
Ty

pe
 

Gains 

Min. of 

the FRF 

max 

(m/sec2/N) 

Frequency 

of the 1st 

FRF peak 

(Hz) 

Frequency 

of the 2nd 

FRF peak 

(Hz) 

Range of 

frequency 

of the 1st 

FRF peak 

(Hz) 

Range of 

frequency 

of the 2nd 

FRF peak 

(Hz) 

TMD 0 0.00095 4.06 4.87 - - 

𝐾! -3.19 0.00086 4.06 4.87 3.91-4.06 4.87-4.98 

𝐾! -0.441 0.00093 3.96 4.98 3.47-4.06 4.87-5.71 

𝐾! 0.00 0.00095 4.06 4.87 4.06-4.47 4.87-6.33 

𝐾! -2.5 0.00085 4.17 4.74 4.06-4.23 4.50-4.87 

𝐾! -0.036 0.00087 4.03 4.85 3.33-4.06 4.66-4.87 

𝐾! and 

𝐾! 

-6.30& 

-20.00 
0.00041 - 5.32 3.43-4.25 4.50-5.74 

𝐾! and 

𝐾! 

-1.764 & 

-10.44 
0.00078 3.79 5.20 3.39-4.05 4.87-5.71 

𝐾! and 

𝐾! 

-0.378 & 

0.00 
0.00093 3.97 4.96 3.47-4.47 4.87-6.73 

𝐾! and 

𝐾! 

-1.008 

& -0.096 
0.00082 3.80 5.01 3.05-4.06 4.66-5.71 

𝐾! and 

𝐾! 

-2.00& 

-1.16 
0.00084 4.13 4.77 3.91-4.22 4.50-4.98 

𝐾! and 

𝐾! 

-2.00& 

0.00 
0.00085 4.13 4.77 4.06-4.47 4.18-6.65 

𝐾! and 

𝐾! 

-2.00& 

0.00 
0.00085 4.13 4.77 3.20-4.14 4.50-4.87 

𝐾! and 

𝐾! 

0.00& 

-3.48 
0.00086 4.05 4.87 3.91-4.47 4.87-6.41 

𝐾! and 

𝐾! 

0.00& 

-0.032 
0.00087 4.02 4.85 3.33-4.47 4.66-6.33 

𝐾! and 

𝐾! 

-0.016& 

-1.74 
0.00086 4.04 4.87 3.17-4.06 4.66-4.98 
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Comparing the result of each single and gain pair in Table 3-7 with the equivalent 

passive TMD leads to Table 3-8, which can be used to draw some conclusions about 

employing single and couple feedback gains in HTMD.  

Table 3-8- Comparison of the response reduction and frequency variation for 
different gains against passive TMD 

Gain Type 

Further 

reduction of 

FRF 

maximum 

magnitude 

Changing of the 

frequency of the 1st 

FRF peak 

Changing of the 

frequency of the 

2nd FRF peak 

TMD 0% 0% 0% 

𝐾! 9% 4% -2% 

𝐾! 2% 15% -17% 

𝐾! 0% -10% -29% 

𝐾! 11% -4% 8% 

𝐾! 8% 18% 4% 

𝐾! and 𝐾! 57% -5% to 16% -18% to 8% 

𝐾! and 𝐾! 18% 17% -17% 

𝐾! and 𝐾! 2% -10% to 15% -38% 

𝐾! and 𝐾! 14% 25% -17% to 4% 

𝐾! and 𝐾! 12% -4% to 4% -2% to 8% 

𝐾! and 𝐾! 11% -10% -37% to 14% 

𝐾! and 𝐾! 11% -2 % to 21% 8% 

𝐾! and 𝐾! 9% -10% to 4% -32% 

𝐾! and 𝐾! 8% -10% to 18% -30% to 4% 

𝐾! and 𝐾! 9% 22% -2% to 4% 

 

As Table 3-8 reveals, employing one feedback gain does not have a large influence 

on response reduction. However, employing two gains improves the reduction in the 

maximum response. The combination of 𝐾! and 𝐾! has the most structural 

acceleration response reduction in comparison with passive TMD. Hence, using one 

response feedback gain is not an appropriate choice. 
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If we consider the effect of each gain on the variation of the frequency, it can be 

concluded from Table 3-8 that the combination of the displacement and acceleration 

of TMD feedback (i.e. 𝐾! and 𝐾!) with different gains has a significant effect on the 

changing of frequencies of both peaks of the FRF. This means that to tune the TMD 

to a new frequency, it is an appropriate choice to employ 𝐾! and 𝐾! as tuning gains. 

Moreover, using velocity of the structure as a feedback does not have a large 

influence neither on response magnitude nor on modifying the frequencies because 

the damping forces imparted by the actuator are small and have little influence on the 

structural damping.  

 

Figure 3-26- FRF of the uncontrolled structure (green) in comparison with 
structure with TMD (blue) and HTMD with manually optimised gains (red) 

Figure 3-26 shows the result of the simulation with 𝐾! and 𝐾! employed on HTMD 

as feedback gains. This result is compared with the TMD designed in Section 3.3.3. 

Table 3-9 shows the comparison of the peak response reduction between TMD and 

HTMD. As illustrated, there is a significant reduction in the response of the structure 

using HTMD in comparison with passive TMD. HTMD has 56% reduction in the 

maximum FRF response and 40% response reduction at the resonance frequency 

compared with passive TMD.  
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Table 3-9- Simulation result comparison of the manual optimised gains 

 
Uncontrolled 

Structure 

Structure 

with TMD 

Structure 

with HTMD 

Max. response 

magnitude (m/s2/N) 
0.0135 0.00095 0.00041 

Reduction of the max. 

response 
- 93% 97% 

Response magnitude at 

resonance (m/s2/N) 
0.0135 0.00064 0.00038 

Reduction of response 

at resonance 
- 95% 97% 

  

The manual optimisation method presented here can be employed for initial design 

of the system. However, there are some limitations of using this method. Firstly, 

since it is time consuming to utilise a small increment for the gains, it is possible to 

miss global maximum points of responses and only achieve local maxima. In 

addition, for the same reason it is not possible to combine more than two gains and 

check the effect of that on structure (i.e. driving force gain, active damping force 

gain and tuning force gains). Also, there exists the chance for the peaks of FRF to be 

outside of the boundary as discussed in Section 3.3.3.2. Hence, although the 

minimum responses between FRF peaks have been chosen in the above tables, these 

peaks could be outside the boundary of the uncontrolled structure FRF that leads to 

increase of the response at the non-resonant frequencies. 

To deal with this, the author introduces other optimisation methods which will be 

discussed here. 

3.6.2. LQR control  

As previously noted, linear quadratic regulator (LQR) is an optimal control method 

which involves minimising a selected cost function for a dynamic system. In this 

section, two LQR approaches are introduced. For the first LQR method, the common 

method described in [163] is chosen. In this method, the states of the system (i.e. 

displacement and velocity of the structure and TMD) are concerned. In the second 
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method, the derivative of the states (i.e. velocity and acceleration of the structure and 

TMD) are used instead as the feedback parameters of the system, as derived in [134]. 

The results of the two methods are then compared. 

3.6.2.1.LQR on the states of the system 

In a SS system such as 𝑋!"# = 𝐴!"#𝑋!"# + 𝐵!"#𝑈!"# the goal of LQR is to determine 

the control action 𝑈!"# = −𝐾!"#𝑋!"# to minimise the cost function 𝐽!"# where 𝐾!"# is 

the LQR feedback gain matrix, 𝑈!"# is the control force and 𝑋!"# is the state matrix 

of the system. The quadratic cost function is described as  

𝐽!!" = 𝑋!"#!𝑄!"#𝑋!"# + 𝑈!"#!𝑅!"#𝑈!"# 𝑑𝑡
!

!
 ( 3.62 ) 

 

𝑄!"# and 𝑅!"# are state and control weighting matrices, respectively, and 𝐾!"# can be 

determined from following equation 

𝐾!"# = 𝑅!"#!!𝐵!"#!𝑃!"# ( 3.63 ) 
 

where 𝑃!"# can be generated by solving the following Riccati differential equation. 

𝐴!"#!𝑃!"# + 𝑃!"#𝐴!"# − 𝑃!"#𝐵!"#𝑅!"#!!𝐵!"#!𝑃!"! + 𝑄!"# = 0 ( 3.64 ) 
 

In addition, 𝑄!"# and 𝑅!"# can be calculated from the following equations. 

a) 𝑄!!,!"# =
!

!!,!"#!
 

b) 𝑅!!,!"# = 𝜌!"#
!

!!,!"#!
 

( 3.65 ) 

 

Where 𝜌!"# is a trade-off factor between controller (actuator) and response, 𝑋!,!"# is 

the range of the states and 𝑈!,!"# is the range of the controller effort. According to 

BS6472 [164], the maximum RMS acceleration for the frequency of 4.5 Hz (fisrt 

vertical modal frequency of the structure) is 0.005 m/s2. Converting the acceleration 
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to the velocity and displacement by multiplying with 
!

(!.!∗!!)
 and 

!
(!.!∗!!)!

 

respectively, Table 3-10 is generated which is the range of the states (i.e. 𝑋!,!"#).  

Table 3-10- Range of the structure states and derivative of states at 4.5 Hz to be 
used in LQR 

State Maximum accepted RMS value 

Structure acceleration (m/s2) 0.005 

Structure velocity (m/s) 0.0001768 

Structure displacement (m) 0.00000625 

 

Also, considering the response of the TMD as other states of the system and using 

same methodology, it is possible to calculate the maximum range of the system states 

relating to the TMD based on the maximum displacement of the TMD mass of 0.1 m. 

Then by multiplying it by (4.5 ∗ 2𝜋) and (4.5 ∗ 2𝜋)! to get maximum range of the 

velocity and acceleration of the TMD respectively, it is possible to generate Table 

3-11. It should be mentioned the limit of the TMD displacement arises from the 

practical restriction of the prototype HTMD which will be discussed further in 

Chapter 6.  

Table 3-11- Range of the TMD states and derivative of states at 4.50Hz to be 
used in LQR 

State Maximum accepted value 

TMD acceleration (m/s2) 80 

TMD velocity (m/s) 2.8 

TMD displacement (m) 0.1 

 

Based on the maximum capability of the actuator (𝑈!"#) as discussed in chapter 

3.4.1, the maximum possible voltage input to the actuator is 2.0 V. Consequently, it 

is possible to create the 𝑄!"# and 𝑅!"# matrices. Now, if we consider the Figure 3-27 

as the standard form of the feedback control, it is possible to modify the state space 

model introduced in Section 3.4.2.2. This should have the control voltage as the only 

input vector of the state space model by rejecting the external excitation force (i.e. 
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𝐹!"#) as an input and considering it as the disturbance. Hence, the new state space 

system is introduced as equations ( 3.66).  

 

Figure 3-27- Configuration of the feedback system using LQR on system states  

 

a) 𝐴!"# = 𝐴!"#$ 

b) 𝑋!"# = 𝑋!"#$ 

c) 𝐵!"# =

0
0
0
0
0
0
𝑣!"#

   

d) 𝑈!"# = 𝑉!",!"#  

( 3.66) 

 

It should be noted that the modified state space system is employed only to calculate 

the LQR feedback matrix (i.e. 𝐾!"#). Then 𝐾!"# is applied to the original state space 

model that was introduced in Section 3.4.2.2 and all the simulations are executed 

based on that model. 

Now, based on equations ( 3.66) and also Table 3-10 and Table 3-11, it is possible to 

construct 𝑄!"# and 𝑅!"# as follows: 
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𝑄!"# =

1
0.00000625! 0 0 0 0 0 0

0
1

0.0001768!
0 0 0 0 0

0 0
1
0.1! 0 0 0 0

0 0 0
1
2.8! 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ( 3.67) 

 

and  

𝑅!"# = 𝜌!"#
1
2.0!  ( 3.68) 

 

𝜌!"# in this study is calculated by employing the sensitivity approach and is based on 

the change in the response by varying 𝜌!"# to achieve the desirable result. It should 

be mentioned that decreasing 𝜌!"# leads to putting more effort on the actuator. 

Therefore, there should be a balance between the control performance and the 

actuator capability. Solving the LQR equations and setting 𝜌!"# = 10!!" results in 

the following feedback matrix which will be employed for later simulation (Section 

3.6.2.3).  

𝐾!"# =   423.94   −24.82 −121.85   −4.59 0 0 0  ( 3.69) 
 

The last four columns are calculated as zero since there is no effect on these states as 

they relate to the actuator dynamics. 

3.6.2.2.LQR on the derivatives of the states 

As previously discussed, employing acceleration of the structure as one of the 

feedback parameters is important in terms of reduction in response using the HTMD. 

However, since acceleration of the structure (and TMD as well) is not a state of the 

system (i.e. it is a derivative of a state) it is not possible to use the normal LQR 

method as an optimal technique. However, [134] introduced a new technique in 
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which the derivative of the system is employed instead of the state itself (Figure 

3-28). 

 

Figure 3-28- Configuration of the feedback system using modified LQR on 
derivative of the system state 

 

 It means that instead of using 𝑈!"# = −𝐾!"#𝑋!"#, the new method proposed to use 

𝑈!"# = −𝐾!"#𝑋!"#. Then, the modified quadratic cost function is described as  

𝐽!"# = 𝑋!"#
!𝑄!"#𝑋!"# + 𝑈!"#!𝑅!"#𝑈!"# 𝑑𝑡

!

!
 ( 3.70 ) 

 

The modified 𝐾!"# can be determined from following equation. 

𝐾!"# = 𝑅!"#!!𝐵!"#!𝐴!"#!!𝑃!"# ( 3.71 ) 
 

And the modified 𝑃!"! can be generated by solving the following Riccati differential 

equation. 

𝐴!"#!!𝑃!"# + 𝑃!"#𝐴!"#!! − 𝑃!"#𝐴!"#!!𝐵!"#𝑅!"#!!𝐵!"#!𝐴!"#!!𝑃!"# + 𝑄!"#

= 0 
( 3.72 ) 

 

In addition, due to using the derivative of the state, the modified 𝑄!"# is introduced as 
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𝑄!"# =

1
0.0001768! 0 0 0 0 0 0

0
1

0.005!
0 0 0 0 0

0 0
1
2.8! 0 0 0 0

0 0 0
1
80! 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ( 3.73) 

 

Applying a similar sensitivity approach makes it possible to generate 𝜌!"#. Solving 

the modified LQR equations and setting 𝜌!"# = 10!!" results in the following 

feedback matrix which will be employed later in the simulation (Section 3.6.2.3).  

𝐾!"# =   −2.89 −1.12 −6.65 0.02 0 0 0  ( 3.74) 
 

Similar to the previous approach, the last four columns are calculated as zero since 

there is no effect on these states as they relate to the actuator dynamics. Furthermore, 

the velocities of the structure and TMD have are very small numbers in comparison 

with their applicable ranges. 

3.6.2.3.Simulation 

To simulate the system, the proposed state space model in Section 3.4.2.2 was 

programmed in MATLAB Simulink [165] using the dynamic properties of the 

structure and TMD calculated before in addition to the LQR feedback gain matrices 

determined for both proposed methods.  

Figure 3-29 shows the FRF results of these simulations. The two LQR techniques are 

compared against the passive TMD. 
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Figure 3-29- FRF of the uncontrolled structure (green) in comparison with 
structure with TMD (blue) and HTMD with modified LQR (red) and HTMD 

with conventional LQR (brown) 

Table 3-12 gives a numerical comparison of the different techniques. The modified 

LQR method has the reduction of 27% and 35% for the peak of the FRF and FRF’s 

response at the resonant frequency respectively in comparison with passive TMD. 

Meanwhile, the conventional LQR technique has the reduction of 8% and 29% for 

the peak of the FRF and FRF’s response on resonant frequency respectively in 

comparison with passive TMD. 
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Table 3-12- Simulation result comparison of LQR methods and passive TMD 

 
Uncontrolled 

Structure 

Structure 

with TMD 

HTMD with 

conventional 

LQR 

HTMD with 

modified 

LQR 

Max. response 

magnitude 

(m/s2/N) 

0.0135 0.00095 0.00087 0.00069 

Reduction of the 

max. response 
- 93% 94% 95% 

Response 

magnitude at 

resonance 

(m/s2/N) 

0.0135 0.00064 0.00067 0.00062 

Reduction of 

response at 

resonance 

- 95% 95% 95% 

 

3.7. Closed loop stability of the system 

A stability check of a closed-loop system is an important aspect in active control 

methods [7], [145]. One of the methods to determine the stability of a closed loop 

system is to investigate whether or not the poles of the system lie on the left hand 

plane of the s-plane plot. If so, the system is asymptotically stable [166].  

The stability of a SIMO system can be investigated by using two techniques. First by 

evaluating the zeros of the closed loop system (i.e. roots of 1+ 𝐾!(𝑠)𝐺(𝑠) where 

𝐾!(𝑠)𝐺(𝑠) is the transfer function of the loop in Figure 3-30). Second, by using the  

Nyquist plot of 𝐾!(𝑠)𝐺(𝑠) and considering whether it does not encircle point (-1,0) 

[150], [163].  
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Figure 3-30- Block diagram of typical feedback control scheme 

Developing the closed loop transfer function from Figure 3-30 leads to  

a) 𝑚 = 𝑑 − 𝐹!,!"#   ∴ 𝑚 = 𝑑 − 𝑘 𝑌 𝐺!"# 

b) 𝑌 = 𝑚{𝐺!"#$%} 
( 3.75 ) 

 

Substituting two parts of the equation results in  

𝑑
𝑚 = 𝑘 𝐺!"#$% 𝐺!"# ( 3.76 ) 

 

Where 𝑘  is the feedback vector of the different types of outputs (i.e. structure or 

TMD responses) and 𝐺!"#$%  is the vector of the transfer functions between the 

structure or TMD responses and the control force.  

For the first technique, the zeros of the following equation should be on the left hand 

side of the s-plane . 

1+ 𝑘 𝐺!"#$% 𝐺!"# ( 3.77 ) 
 

For the second technique, the Nyquist plot of the following equation should not 

encircle point (-1,0).  

𝑘 𝐺!"#$% 𝐺!"# ( 3.78 ) 
 



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

71 

From the state space model presented in Section 3.4.2.2 it is possible to generate 

transfer functions (i.e. 𝐺!"!"#) between different structural/TMD responses (i.e. 

𝑌!!"#) and the control force (i.e. 𝐹!,!"#) using the MATLAB [165] ‘SS2TF’ function 

(equations ( 3.79 )). In addition, 𝐺!"# is derived from equation ( 3.38 ). Depending on 

the type of control (e.g. LQR, modified LQR, Direct Response Feedback, etc.) the 

𝑘  matrix can be generated.  

a) 𝐺_(𝑃𝑙𝑎𝑛𝑡, 1) = (1.421𝑒 − 014  𝑠^6  +   1.364𝑒 − 012  𝑠^5  +

  0.0008698  𝑠^4  +   0.1668  𝑠^3  +   7.787  𝑠^2  +   97.97  𝑠  +

  887.1)/(𝑠^7  +   69.98  𝑠^6  +   2854  𝑠^5  +   1.21𝑒005  𝑠^4  +

  2.318𝑒006  𝑠^3  +   5.654𝑒007  𝑠^2  +   5.492𝑒008  𝑠 + 4.957𝑒9)  

b) 𝐺_(𝑃𝑙𝑎𝑛𝑡, 2) = (2.842𝑒 − 014  𝑠^6  +   0.0008698  𝑠^5  +

  0.1668  𝑠^4  +   7.787  𝑠^3  +   97.97  𝑠^2  +   887.1  𝑠  −   7.629𝑒 −

006)/(𝑠^7  +   69.98  𝑠^6  +   2854  𝑠^5  +   1.21𝑒005  𝑠^4  +

  2.318𝑒006  𝑠^3  +   5.654𝑒007  𝑠^2  +   5.492𝑒008  𝑠 + 4.957𝑒9)  

c) 𝐺_(𝑃𝑙𝑎𝑛𝑡, 3) = (0.0008698  𝑠^6  +   0.1668  𝑠^5  +   7.787  𝑠^4  +

  97.97  𝑠^3  +   887.1  𝑠^2  −   2.384𝑒 − 007  𝑠  −   4.768𝑒 −

006)/(𝑠^7  +   69.98  𝑠^6  +   2854  𝑠^5  +   1.21𝑒005  𝑠^4  +

  2.318𝑒006  𝑠^3  +   5.654𝑒007  𝑠^2  +   5.492𝑒008  𝑠 + 4.957𝑒9)  

d) 𝐺_(𝑃𝑙𝑎𝑛𝑡, 4) = (1.421𝑒 − 014  𝑠^6  +   0.003077  𝑠^5  +

  0.1966  𝑠^4  +   5.189  𝑠^3  +   188.7  𝑠^2  +   2109  𝑠  +

  2.041𝑒004)/(𝑠^7  +   69.98  𝑠^6  +   2854  𝑠^5  +

  1.21𝑒005  𝑠^4  +   2.318𝑒006  𝑠^3  +   5.654𝑒007  𝑠^2  +

  5.492𝑒008  𝑠 + 4.957𝑒9)  

e) 𝐺_(𝑃𝑙𝑎𝑛𝑡, 5) = (0.003077  𝑠^6  +   0.1966  𝑠^5  +   5.189  𝑠^4  +

  188.7  𝑠^3  +   2109  𝑠^2  +   2.041𝑒004  𝑠  −   6.676𝑒 − 006)/

(𝑠^7  +   69.98  𝑠^6  +   2854  𝑠^5  +   1.21𝑒005  𝑠^4  +

  2.318𝑒006  𝑠^3  +   5.654𝑒007  𝑠^2  +   5.492𝑒008  𝑠 + 4.957𝑒9)  

f) 𝐺_(𝑃𝑙𝑎𝑛𝑡, 6) = (0.003077  𝑠^7+   0.1966  𝑠^6+   5.189  𝑠^5+

  188.7  𝑠^4+   2109  𝑠^3+   2.041𝑒004  𝑠^2−   1.192𝑒 − 007  𝑠 −

2.861𝑒 − 006)/(𝑠^7  +   69.98  𝑠^6  +   2854  𝑠^5  +

  1.21𝑒005  𝑠^4  +   2.318𝑒006  𝑠^3  +   5.654𝑒007  𝑠^2  +

  5.492𝑒008  𝑠 + 4.957𝑒9)  

( 3.79 ) 
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where 𝐺!"#$%,! to 𝐺!"#$%,! are the transfer functions between 𝐹!,!"# and displacement, 

velocity and acceleration of the structure and TMD respectively.  

3.7.1. Stability of the closed loop system using the Direct Response Feedback 

method  

Figure 3-31 shows the pole-zero map of the structure with HTMD attached using the 

manually optimized gains discussed in Section 3.6.1.1. This is the scenario with 

acceleration of the structure and velocity of the TMD as two feedbacks. As 

demonstrated, all poles and zeros of the closed loop system are on the left hand side 

of the s-plane, which shows a stable system. 

 

Figure 3-31- Pole-Zero map of the closed loop HTMD system using manually 
optimised gains 

Figure 3-32 illustrates the Nyquist plot of the same system. Clearly, there is no 

encirclement around point (-1,0) and hence this guarantees the stability of the closed 

loop system.  
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Figure 3-32- Nyquist plot of the closed loop HTMD system using manually 
optimised gains 

3.7.2. Stability of the closed loop system using LQR method on the states of the 

system  

Figure 3-33 shows the pole-zero map of the structure with HTMD attached using the 

conventional LQR method discussed in Section 3.6.1.1. This is the scenario with 

displacement and velocity of both structure and TMD used as four feedback gains. 

As demonstrated, all poles and zeros of the closed loop system are on the left hand 

side of the s-plane, which shows a stable system. 

(-1,0) 
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Figure 3-33- Pole-Zero map of the closed loop HTMD system using conventional 
LQR method 

Figure 3-34 illustrates the Nyquist plot of the same system. Clearly, there is no 

encirclement around point (-1,0) and this secures the stability of the closed loop 

system. 

 

Figure 3-34- Nyquist plot of the closed loop HTMD system using conventional 
LQR method 

 

(-1,0) 
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3.7.3. Stability of the closed loop system using LQR method on the derivative 

of the states 

Figure 3-35 shows the pole-zero map of the structure with HTMD attached using 

modified LQR method discussed in chapter 3.6.1.1. This is the scenario with velocity 

and acceleration of both structure and TMD used as four feedback gains. As 

demonstrated, all poles and zeros of the closed loop system are on the left hand side 

of the s-plane, which shows a stable system. 

 

Figure 3-35- Pole-Zero map of the closed loop HTMD system using modified 
LQR method 

Figure 3-36 illustrates the Nyquist plot of the same system. Clearly, there is no 

encirclement around point (-1,0) and this secures the stability of the closed loop 

system. 
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Figure 3-36- Nyquist plot of the closed loop HTMD system using modified LQR 
method 

 

3.8. Conclusion and result discussion 

In this chapter, a set of models for the structure with TMD, AMD and HTMD 

attached were derived (These models will be further investigated and compared with 

experimental results in chapters 6). Then, three different control schemes will be 

proposed.  

In the first method, responses (i.e. displacement, velocity or acceleration) of both the 

TMD and primary structure were employed as the feedback-signal. To determine 

appropriate gains, a manual optimisation method was employed to check different 

gains and calculate the minimum structural response. Using this method makes it 

possible firstly to determine an appropriate combination of the gains and secondly to 

calculate the appropriate gains in the achieved combination. This method shows the 

largest reduction in response compared with conventional and modified LQR 

methods which are proposed as two additional techniques. However, due to the large 

amount of calculation, firstly it is not possible to check more than two combinations 

of gains. Also, using smaller incremental steps is highly costly since it increases the 

required computational effort. Hence the chance of missing the global minimum and 

achieving a local minimum response exists. However, the greatest advantage of 

(-1,0) 
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applying this technique is to investigate the behaviour and effect of each gain on the 

system. 

Conversely, using conventional and modified LQR methods are two formal methods 

in the case of time and cost of simulation. However, since each method is restricted 

to either states or derivative of states of the system, it is not possible to use all 

demanded combination of the gains which were investigated in the first method (e.g. 

using displacement of TMD as a state in the combination with acceleration of the 

TMD as the derivative of the state). Hence, the performance of HTMD is lower than 

for the first technique.   

Combining the results of the three proposed methods leads to the idea of applying a 

more suitable optimization method which can search through the areas of the 

responses and then generate the most appropriate control gains which ensure the 

minimum response inside the boundary of the uncontrolled structure. The new 

proposed method should be applicable for use with any combination of gains.  

Hence author will introduce an optimisation technique using a genetic algorithm is 

introduced in the next chapter which can evaluate any combinations of gains (not 

only two) and derive the most appropriate gains through that.  
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4. Optimisation of HTMD system 
As previously demonstrated, choosing and optimising the feedback control gains is a 

key aspect of HTMD performance. An approach is required that can produce the 

minimum possible structural response with optimum feedback gains combination and 

good computational efficiency. 

Hence, the author introduces a new optimisation approach using a genetic algorithm 

(GA). The study presented here will illustrate that the GA approach can find a set of 

gains of any combination which causes the structure to have the minimum possible 

response. Then, the stability of the closed-loop system is investigated. 

Finally, a numerical simulation using MATLAB Simulink is carried out to 

investigate three main aspects. Firstly, a comparison of the response reductions in the 

frequency domain between different control methods is presented. Then, a time 

domain analysis of structural response to a modelled jumping force is carried out and 

the response of the structure is checked against appropriate limits.  Finally, the 

amount of power required for the HTMD and AMD is determined and hence the 

actuator effort is investigated for each method.  

4.1. Gain optimisation  

Herein, the author employs a similar technique as proposed in Section 3.3.3.2, except 

that the same parameters of the passive TMD are used as previously and it is the 

feedback gains which need to be optimised. Hence, the critical variables are changed 

from TMD parameters (i.e. mass, damping and stiffness) to the HTMD control gains 

(i.e. 𝐾!). 

Also, to investigate the effect of all relevant gain factors simultaneously and to 

explore which combination of gains is most suitable, all five feedback gains from 

Table 3-6 are chosen as critical variables. 

4.1.1. Gain optimisation using GA 

As Figure 4-1 illustrates, the aim of using the HTMD is to minimize the response of 

the structure in a desirable band of frequencies (ω!) by using appropriate control 

gains. Hence, the critical values of the GA are the gains of the feedback system 

which should be optimized in a way that reduces the FRF of the structure 
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(H!"#$ ω! ) as the objective function. However, it should be noted that the FRF of 

the controlled structure should be inside the boundary of the FRF of the uncontrolled 

structure (H!"# ω! ) to avoid higher responses at non-resonant frequencies. This 

means for each ω!, the response of the controlled structure due to the external force 

(H!"#$ ω! ) should be as minimum as possible. Also for each ω!, the response of 

the controlled structure due to the external force (H!"#$ ω! ) should be less than the 

response of the uncontrolled structure (H!"# ω! ) at the same frequency (ω!). Using 

this explanation makes it possible to define the problem in optimisation standard 

language.  

 

Figure 4-1- FRF magnitude plot of an uncontrolled structure (red) and 
controlled with HTMD (blue) 

Considering Equation ( 3.44 ) and substituting the actuator input voltage (𝑉!",!"#) 

with the feedback signal as equation ( 4.1 ),  H!"#$ is generated using all feedback 

signals (both states and derivative of states of the primary structure and TMD).  

𝑉!",!"# = 𝐾!𝑥𝑠 + 𝐾!  𝑥𝑠 + 𝐾!  𝑥𝑝 + 𝐾!  𝑥𝑝 + 𝐾!  𝑥𝑝    ( 4.1 ) 
  

Then H!"#$ becomes  

H!"#$ =
𝐺!,!,!"#

𝐺!,!,!"# ∗ G!,! +   𝐺!"# ∗ G!,! ∗ 𝐾! +   𝐾! ∗ 𝐺!"#
𝐺!"# ∗ G!,! ∗ 𝐾! ∗ 𝐺!"#! +   𝐾! ∗ 𝐺!"# +   𝐾! −   1

+   1

  
( 4.2 ) 
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where G!"# is an integrator block. As Equation ( 4.2 ) demonstrates, all feedback 

gains (𝐾! to 𝐾!) are included in this transfer function. By generating H!"#$ and 

H!"# it is possible to create the objective function (OF) and constraint function (CF).  

Defining the optimisation problem  

The definition of the optimisation problem involves generating the OF and CF, 

which are formulated in terms of the FRF as a proxy for system performance. Hence, 

to generate the FRF of both the controlled and uncontrolled structure, it is possible to 

replace the 𝑠 term in H!"#$ and H!"# with 𝑗ω! where 𝑗 = −1. Consequently, by 

recalling the transfer functions from Section 3.4.2.1,  H!"#$ becomes  

H!"#$ = ω!
!  /⋯ 

⋯ ( 𝑘! +   𝑐! ∗ω! ∗ 𝑗 ∗ (  
𝑘! +   𝑐! ∗ω! ∗ 𝑗

−  𝑚! ∗ω!
! +   𝑐! ∗ω! ∗ 𝑗  +   𝑘!

+   ⋯   

⋯   𝑚!
! ∗ 𝑣! ∗ω!

! ∗ 𝐾! −
𝐾! ∗ 𝑗
ω!

  / 

⋯    𝜀!"# +   ω! ∗ 𝑗 ∗ −  𝑚! ∗ω!
! +   𝑐! ∗ω! ∗ 𝑗  +   𝑘! ∗ −  𝑚! ∗ω!

! +

  𝑐! ∗ω! ∗ 𝑗  +   𝑘! ))/  

⋯/(((𝑚!
! ∗ 𝑣!"# ∗ω!

! ∗
𝐾!
ω!
! −   𝐾! +

𝐾! ∗ 𝑗
ω!

)/⋯ 

⋯ ( 𝜀!"# +   ω! ∗ 𝑗 ∗ −  𝑚! ∗ω!
! +   𝑐! ∗ω! ∗ 𝑗  +   𝑘! ∗ −  𝑚! ∗ω!

! +

  𝑐! ∗ω! ∗ 𝑗  +   𝑘! + 1) ∗ 𝑘! +   𝑘! −   𝑚! ∗ω!
! +   ω! ∗ 𝑐! +   𝑐! ∗ 𝑗  

( 4.3 ) 

 

All variables in equation ( 4.3 ) are predetermined except 𝐾! to 𝐾!. These are the 

critical values which should be optimised in such a way that Equation ( 4.3 ) is 

minimised at each frequency ω!. Hence the OF is: 

OF ∶   min(𝐻!"#$ 𝜔! ) ,        𝜔! < 𝜔! < 𝜔! ( 4.4 ) 
and this is subject to the constraint: 

CF ∶       𝐻!"#$ 𝜔! <   𝐻!"# 𝜔! ∴ 𝐻!"#$ 𝜔! − 𝐻!"# 𝜔! < 0    

𝜔! < 𝜔! < 𝜔! ( 4.5 ) 
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Equations ( 4.4 ) and ( 4.5 ) show that this optimisation problem is a multi-objective 

non-linear function with non-linear semi-infinite constraints. Similar to the TMD 

parameters optimisation, a penalty function method is used to create a fitness 

function of the GA as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐻!"#$ 𝜔! + 𝑟! 𝐻!"#$ 𝜔! − 𝐻!"# 𝜔!

!

!!!

 ( 4.6 ) 

 

where 𝑟! is the penalty factor and 𝑛 is the number of the discreet frequencies. 

Implementing ( 4.6 ), both the OF and CF are converted to a single fitness function 

which can be utilised in the Multi-Objective Genetic Algorithm from the MATLAB 

Optimisation Toolbox [154]. The GA properties in Table 3-3 are used, except for the 

number of variables which has changed from 3 to 5. 

Table 4-1 illustrates the results of GA, which are the optimum critical values (i.e. 

feedback gains). In addition the properties in Table 3-1 and Table 3-4 as the 

properties of the primary structure and passive TMD are employed. Also 𝜔! is set 

from 0  to 10 Hz with an increment of 0.05 Hz. 

Table 4-1- HTMD feedback gains using GA 

𝐾! 

(Vol.sec/m) 

𝐾! 

(Vol.sec2/m) 

𝐾! 

(Vol /m) 

𝐾! 

(Vol.sec/m) 

𝐾! 

(Vol.sec2/m) 

0 -5.95 -191.17 -15.28 -0.151 

 

It should be noted that the upper and lower bands of the GA are very important since 

this is the region in which the critical values are chosen. To generate these two 

bands, the stability ranges of the gains which are calculated from RL approach 

(Table 3-6) are employed. Hence, the lower band is set to [𝐾!=-58 𝐾!=-6.30 𝐾!=-

1330 𝐾!=-100 𝐾!=-0.835] and the upper band to [𝐾!=0 𝐾!=0 𝐾!=0 𝐾!=0 𝐾!=0]. 

Using these bands ensures the initial stability of the closed loop system before further 

stability check.  
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137 iterations were required to converge on the optimised parameters. In addition, 

the penalty factor 𝑟! was changed from 101 to 10100. However, there was not a large 

alteration between the outputs of the optimisation (HTMD gains). This is the 

maximum of 5% variation. Also, the effect of changing the lower band of 𝐾! from -

58 to 0 was investigated and it was concluded that this gain does not have significant 

influence on the response reduction and hence is redundant. 

 

Figure 4-2- FRF of the uncontrolled structure (green) in comparison with 
structure with TMD (blue) and HTMD with GA employed (red)  

Figure 4-2 shows a comparison of the FRFs of the uncontrolled structure, structure 

controlled with TMD and structure controlled with HTMD. Also, Table 4-2 shows a 

numerical comparison of the response reduction. It can be noted that the HTMD has 

54% and 45% reduction in FRF peak and magnitude of the resonant response, 

respectively, in comparison with the passive TMD. 
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Table 4-2- Comparison of results using gains determined from GA 

 
Uncontrolled 

structure 

Structure with 

TMD 

Structure with 

HTMD 

Max. response 

magnitude (m/s2/N) 
0.0135 0.00095 0.000438 

Reduction of the 

max. response 
- 93% 97% 

Response 

magnitude at 

resonance (m/s2/N) 

0.0135 0.000639 0.000352 

Reduction of 

response at 

resonance 

- 95% 97% 

   

4.1.2. Closed loop stability of the control system 

The same methods with similar type of transfer function as discussed in chapter 3.7 

were used to check the stability of the closed loop system. Figure 4-3 shows the pole-

zero map of the structure with HTMD attached using gains determined from the GA 

(Table 4-1). As can be seen, all poles and zeros of the  1+ 𝑘 𝐺!"#$% 𝐺!"# are on the 

left hand side of the s-plane which indicates a stable system. 
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Figure 4-3- Pole-Zero map of the closed loop HTMD system using GA optimised 
gains 

Also, Figure 4-4 shows the Nyquist plot of 𝑘 𝐺!"#$% 𝐺!"#. Clearly, there is no 

encirclement around point (-1,0) hence indicating the stability of the closed loop 

system.  

 

Figure 4-4- Nyquist plot of the closed loop HTMD system using GA optimised 
gains 

(0,1) 
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4.2. Analytical simulations 

In this section, the models, properties, control algorithm and gains that were 

proposed and designed previously are employed to run a number of analytical 

simulations. Both time and frequency domain analysis are carried out. The 

MATLAB Simulink package [165] was employed to analyse the previously proposed 

state space models. 

4.2.1. Excitation forces  

Two specific excitations were used for these simulations. First, a random white noise 

excitation is applied to the uncontrolled structure and controlled structure using 

passive TMD, AMD (direct velocity feedback) and HTMD with different control 

algorithms (including conventional LQR, modified LQR and GA). Using the 

calculated responses, the frequency response functions were determined through 

appropriate Fourier analysis and used for comparison of the performance of the 

various controllers. 

Second, a simulation was carried out using a modelled measured human jumping 

force to evaluate both the control performance of the various controllers and also to 

assess the actuator effort, based on both device capability and required electrical 

power. To do this, the actuator inertia force (control force) and input voltage were 

assessed.  

It should be noted that the main reason of choosing jumping as human activity in 

contrast with bouncing or jogging is that the magnitude of the jumping force is 

higher than the other types of activity and it is considered as more human energetic 

activity relevant to design of the stadium. 

Random excitation  

To perform a frequency response function analysis and to characterise the response 

of the structure, a random noise signal was applied as an input to the simulation. The 

signal was generated using the Data Physics digital spectrum analyser [167] and was 

used as input force for both the analytical simulations and later experimental work.  

The random noise signal generated had frequency span of 0-50 Hz and peak 

magnitude of 2.0 V, which was appropriate for use as an input voltage signal to the 
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actuator amplifier. This type of signal is appropriate for classification of the system 

transfer functions. The Data Physics spectrum analyser [167] produces a random 

signal that has a uniform spectral density across the chosen frequency range and has 

zero mean value as Gaussian amplitude distribution [167]. A time domain plot of the 

signal is shown in Figure 4-5. 

 

Figure 4-5- Random signal; frequency span of 0-50 Hz 

Jumping Excitation  

To produce the simulated jumping force, a recommendation in [24] is employed to 

use a generated load factor (GLF) instead of dynamic load factor (DLF). 

Accordingly, the crowd jumping force is generated as  

𝐹!"#$ = 𝑚𝑔 +   𝜌!"#$𝑚𝑔 𝐺!"#,!cos  (2𝜋𝑖𝑓!"#$𝑡 + 𝜃!)
!!!

!!!

 ( 4.7 ) 

where  

𝑚𝑔 = 𝑔 𝑚!" ∗ 𝜙!

!!

!!!

 ( 4.8 ) 

𝜌!"#$ is the crowd effectiveness factor, 𝑚 is the mass of the crowd, 𝑔 is acceleration 

due to gravity, 𝐺!"#,! is the GLF, 𝑓!"#$ is the frequency of the crowd activity, 𝑡 is 

time and 𝜃! is the phase difference of the harmonics. Also, 𝑚!" is the mass of each 
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person (assumed to be 80 kg), 𝜙! is the amplitude of the mode shape at the location 

of the individual jumpers and 𝑁! is the number of people. Because the modelled 

structure is a SDOF system, the amplitude of the mode shape was set as 𝜙! = 1. It 

was also assumed that the number of jumping people on the slab is four each with 

weight 80kg. The activity frequency was set as the half of the frequency of the 

structure (i.e. 𝑓!"#$ = 4.46/2). This leads to the second harmonic of the jumping 

activity to be tuned to resonance. 

Based on [24], scenario 4 is selected where “The whole crowd active”. Since the 

RMS acceleration is used for performance assessment, the phase angles are 

unimportant and hence 𝜃! = 0 is chosen. The crowd effectiveness factor (  𝜌!"#$ ) for 

scenario 4 can be calculated as: 

𝜌!"#$ 𝑓!"#$ = sech  (𝑓!"#$ − 2) ( 4.9 ) 
 

GLFs for scenario 4 are applied as 𝐺!"#,! = 0.375, 𝐺!"#,! = 0.095 and 𝐺!"#,! =

0.026. The generated force as the result of this approach is shown in Figure 4-6.  

 

Figure 4-6- Simulated jumping force of four people  

4.2.2. Analysis of structural response 

As mentioned previously, the performance assessment of the various structural and 

control configurations was carried out in the frequency and time domains.  
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4.2.2.1.Comparison of frequency response functions 

To generate FRFs from the numerical simulations using random excitation, the 

acceleration response and force input to the structure were used. The 𝐻! 𝑓  approach 

was used [168] to properly take account of the effect of the noise on both input and 

output signals. According to this, 𝐻! 𝑓  can be calculated as: 

𝐻! 𝑓 =
𝐺!! − 𝐺!! + (𝐺!! − 𝐺!!)!   + 4 𝐺!"

!

2𝐺!"
 ( 4.10 ) 

where 𝐺!! and 𝐺!! are the auto spectral density (ASD) functions of the input and 

output signals respectively. Also 𝐺!" and 𝐺!" are the cross spectral density (CSD) 

functions between the input and output. Also, a Hanning window with 50% overlap 

was applied to the data when calculating the ASD and CSD functions. The 

magnitude and phase of the calculated FRF functions are shown in Figure 4-7 and 

Figure 4-8. 

 

Figure 4-7-- FRF (magnitude) of the uncontrolled structure (green) in 
comparison with structure with TMD (blue), AMD (cyan) and HTMD (red)  
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Figure 4-8- FRF (phase) of the uncontrolled structure (green) in comparison 
with structure with TMD (blue), AMD (cyan) and HTMD (red) 

The numerical results of each technique are discussed earlier (in Chapter 3). 

However, it should be noted that the model used in chapter 3 was Transfer Function 

method. Herein this chapter, State Space approach and numerical analysis are 

employed. Same as TF method, HTMD using Genetic Algorithm, HTMD using 

conventional LQR, HTMD using modified LQR and AMD using Direct Velocity 

Feedback have 54%, 8%, 27% and 72% reduction respectively in the peak of FRF in 

comparison with passive TMD. Also, they have 45%, 29%, 35% and 65% reduction 

respectively in the FRF magnitude at the frequency of the resonant in comparison 

with passive TMD. It shows that in case of response reduction, AMD has greater 

reduction in comparison with HTMD. Also, using Genetic Algorithm gains in 

HTMD has more redution in contrast with conventional and modified LQR.  

4.2.2.2.Analysis of jumping excitation 

The structural acceleration responses due to the previously described simulated 

jumping force was calculated then frequency weighted according to [169]. Wk was 

chosen as the frequency weighting curve in which z-axis of the person is exposed to 

the vibration.  

After weighting the acceleration signal, a number of different assessment criteria 

were calculated, which were peak acceleration, RMS, running 1 s RMS and 

maximum transient vibration value (MTVV) of the acceleration response. 
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Figure 4-9- Structural weighted acceleration and corresponding running RMS 
(1 sec.) response from simulated jumping force (4 people); TMD (blue), AMD 

(cyan), HTMD (red), uncontrolled structure (green) 

 

 

Figure 4-10- Structural weighted acceleration and corresponding running RMS 
(1 sec.) response from simulated jumping force (4 people); TMD (blue), AMD 

(cyan), HTMD (red) (zoomed version of Figure 4-9) 

As Figure 4-10 and Table 4-3 show, AMD has the highest reduction in peak, and 

MTVV of structural acceleration in comparison to both uncontrolled structure and 

structure with passive TMD.  
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Table 4-3- Simulation results comparison of Time Domain analysis, weighted 
acceleration of the primary structure 

 
Uncontrolled 

Structure 

Structure 

with TMD 

Structure 

with AMD 

Structure 

with HTMD 

Peak acceleration 

(m/s2) 
3.9841 0.2373 0.1192 0.1546 

Reduction from 

uncontrolled 

structure 

- 94% 97% 96% 

Reduction from 

passive TMD 
- - 50% 35% 

Weighted  MTVV 

(m/s2) 
2.796 0.1398 0.0633 0.082 

Reduction from 

uncontrolled 

structure 

- 95% 98% 97% 

Reduction from 

passive TMD 
- - 55% 41% 

 

Also, considering on RMS of the acceleration, both AMD and HTMD have large 

reductions in structural response in comparison with passive TMD. However, 

comparing AMD and HTMD, there is not a big difference in RMS of the structural 

acceleration (around 23% reduction).  

4.2.2.3.Actuator effort under human jumping excitation 

The actuator effort can be checked by considering both input electrical voltage to the 

amplifier and the force generated by the actuator. It should be noted that the 

maximum capacity of the actuator in voltage mode is 450 N.   

Herein, the voltage command signal to the amplifier and the corresponding generated 

control force of the actuator are compared with each other for the various control 

schemes. Similar to the response evaluation, peak, MTVV of the voltage and force 

are calculated.  
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Figure 4-11- Actuator input voltage and corresponding running RMS (1 sec.); 
response from simulated jumping force (4 people); AMD (cyan), HTMD (red) 

 

Figure 4-12- Actuator force and corresponding running RMS (1 sec.); response 
from simulated jumping force (4 people); AMD (cyan), HTMD (red) 

As shown in Figure 4-11 and Figure 4-12, the AMD needs a much higher control 

force in comparison with the HTMD. This force and voltage is higher than the 

capacity of the actuator and hence cannot be achieved in reality. However, the 

HTMD has lower demand for actuator force and hence in this case its capacity is not 

exceeded.  



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

93 

Table 4-4- Actuator force demand from jumping excitation simulations 

 AMD 
HTMD with 

GA gains 

HTMD with 

conventional 

LQR gains 

HTMD with 

modified 

LQR gains 

Peak force (N) 979 78 29 22 

Reduction from 

AMD 
- 92% 97% 98% 

MTVV (N) 620 66 28 16 

Reduction from 

AMD 
- 89% 95% 97% 

 

As can be seen from Table 4-4, when the jumping force has the harmonic component 

at the structure’s frequency (resonant scenario), AMD requires actuator capability 

around 10 time greater than HTMD. Also HTMD with the gains optimised by 

modified LQR requires the minimum control effort and input voltage. 

4.3. Discussion of simulation results 

In this chapter, an optimisation approach using GA was introduced. The goal of this 

method is to optimise the feedback control gains such that minimum structural 

response is achieved whilst being in the boundary of the uncontrolled structure’s 

FRF.  

It is shown that unlike the other optimisation methods such as conventional and 

modified LQR techniques, it is possible to combine different states (i.e. 

displacement, velocity and acceleration of both primary structure and TMD) of the 

system as feedback signal during the process of optimisation. Also, when compared 

to the manual optimisation method, the time and cost of calculation is very low and 

using GA makes it possible to have a smaller frequency increment step. This leads to 

achieving global optima rather than local ones. Consequently, employing the GA 

approach leads to the most appropriate gains and hence it was found that these gains 

gave the best reduction in structural response when using HTMD in comparison with 

the other optimisation methods utilised. 
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It is shown that only structure with AMD and HTMD have lower RMS of structural 

acceleration when the amount of vibration force is high. However, AMD required 

more power which is out of the practical capability of actuator whereas HTMD can 

achieve the reduction within the boundary of practical capacity of actuator.   

Also it is shown that using HTMD with a different optimisation method (i.e. 

conventional and modified LQR and GA needs much less power and actuator inertia 

force in comparison with AMD method. This happens especially when the harmonics 

of the people’s jumping placed at the frequency of the structure (i.e. resonant 

scenario) and the amount of force is high.  

As another comparison, the performance of HTMD is compared with AMD based on 

both performance (reduction in structural response) and actuator effort. It was shown 

that the reduction in structural response using AMD is higher than the similar case 

using HTMD. However, for the particular loading scenario considered the control 

force demand was very high for the AMD in comparison with the HTMD. This 

shows that the larger actuator (AMD) is needed where the magnitude of the external 

excitation force is high.  

In conclusion, considering on both structural response and cost, the HTMD has more 

appropriate performance when simultaneously considering all factors including the 

structural response reductions in the presence of larger force and also when 

considering the amount of required power source and actuator inertia force. 

As it was noted before, off-tuning is a potential problem in structures such as stadia 

which could be due to human-structure interaction. Author will introduce new 

control algorithms to be employed in HTMD in order to deal with this problem. This 

is considered in the next chapter.  
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5. HTMD as a solution to off-tuning problems with TMDs 
A shorter version of this chapter was presented and published in [162].  

5.1. Introduction 

A passive tuned mass damper (TMD) is a conventional and generally well accepted 

method to deal with vibration problems in structures. However, the off-tuning 

problem is a substantial drawback of this technique, whereby changes in structural 

natural frequencies may detune the TMDs.  

Changes of structural natural frequencies is one of the possible effects of the human-

structure interaction phenomenon. It was mentioned earlier that in a structure such as 

a stadium, the frequency of the structure could change depending on the proportion 

of active and passive spectators, even if the number of spectators remains the same 

[38], [39]. Since a TMD is optimally tuned to work in a specific frequency band, 

changes in the structure or TMD parameters may lead to a deterioration in 

performance. 

In this chapter, the use of an HTMD is proposed for a structure subjected to dynamic 

excitation and in which off-tuning occurs due to a change in structural dynamic 

properties. Following a simulation of off-tuning in the structure showing a lack of 

performance from a detuned passive TMD, two different control schemes are 

introduced and applied in HTMD to overcome this issue. The performance of such 

an HTMD system is evaluated by comparing both simulated FRFs and responses due 

to simulated human excitation.  

5.2. Implementation of off-tuning in the structural model 

As mentioned before, there are several factors that can cause off-tuning of passive 

TMDs. These include changes dynamic properties of both the primary structure and 

the TMD [9], [20].  

Herein, to simulate the off-tuning problem, the mass of the primary structure is 

changed, resulting in a change in natural frequency of the primary structure. It should 

be noted that in the later experimental work, the off-tuning will be achieved by 

changing the TMD mass rather than the mass of the primary structure since it is 

impossible to change the structural mass significantly. 
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Table 5-1 shows the variation in the mass of the primary structure and the 

corresponding natural frequencies. As can be seen, there is a change of -41% and 

+18% in the structural natural frequency when the mass of the structure is scaled by 

0.5 and 1.5 respectively. The change in natural frequency causes the passive TMD to 

be out of tune (off-tuning), hence the TMD is essentially no longer effective.  

  

Table 5-1- Frequency of the structure corresponding to different masses 

Structural mass (ms) 

kg 

Structural frequency 

(fs) Hz 

Change in 

frequency 

0.5* 7150 6.29 -41% 

1.0* 7150 4.46 0% 

1.5* 7150 3.63 18% 

 

It should be noted that the natural frequency of the structure can be changed (off-

tuning) by changing the stiffness of the instead of mass. However, in this study only 

changing in the mass is considered.  

5.3. Control algorithm 

To deal with the off-tuning problem, two control algorithms are proposed. Firstly, 

direct response feedback with robust gains designed using a GA, in which just one 

set of gains is calculated and applied to the system for the situation where the 

frequency of the structure may change in the range 3.63 Hz to 6.29 Hz. This means 

that the HTMD can perform as an effective vibration mitigation device where the 

frequency of the structure changes significantly by using just one set of gains. 

For the second method, at each frequency (4.45 Hz as the initial tuning frequency 

and 3.63 Hz and 6.29 Hz as modified frequencies) the system has a set of gains and 

the appropriate set of gain is chosen depending on the current frequency of the 

structure. This is an adaptive control method using the GA. The advantages and 

disadvantages of each method are investigated through simulation. 
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It should be noted that in both methods, the control signal of the HTMD actuator 

should be as proposed in Equation ( 4.1 ) to ensure good vibration mitigation 

performance and to provide a solution for off-tuning. 

5.3.1. Direct response feedback with robust gains using GA 

A similar approach to the one shown in Section 4.1.1 is applied by employing a GA 

to optimise the feedback gains. However, in this case, instead of having a single m!, 

the optimisation problem is specified three mass values (i.e. 𝑚!, 0.5𝑚! and 1.5𝑚!) 

simultaneously. 

As shown in Figure 5-1, the objective of the HTMD design is to minimise the 

response of the structure over a specified band of frequencies (𝜔!) for three different 

frequencies of the primary structure by using appropriate control gains. Hence, the 

critical values of the GA are the gains of the feedback system, which should be 

optimized in such a way that reduces the FRF of the structure (𝐻!"#$ 𝜔! ) as the 

objective function in three different scenarios simultaneously. Also, similar to the 

earlier discussion, the FRF of the controlled structure should be inside the boundary 

of the FRF of the uncontrolled structure (𝐻!"# 𝜔! ) in all three scenarios. This 

means that for each 𝜔!, the response of the controlled structure due to the external 

force (𝐻!"#$ 𝜔! ) should be as low as possible. Also for each ω! of individual m!, 

the response of the controlled structure due to the external force (𝐻!"#$ 𝜔! ) should 

be less than the response of the uncontrolled structure (𝐻!"# 𝜔! ) at the same 

frequency (𝜔!). Hence, it is possible to define the problem in optimisation standard 

language, as discussed earlier.  
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Figure 5-1- FRF magnitude plot of an uncontrolled structure (red) and 
controlled with HTMD (blue) for three different frequencies of the structure 

simultaneously 

Definition of the optimisation problem  

Based on equation ( 4.3 ), it is possible again to derive 𝐻!"#$ 𝜔! , except this time 

with three different values of 𝑚! instead of one fixed value. Hence, the optimisation 

problem is to achieve the appropriate gain values of 𝐾! to 𝐾! as critical values with 

following criteria: 

OF ∶   min 𝐻!"#$ 𝜔! ,        𝜔! < 𝜔! < 𝜔!   

𝑚!,! =
0.5m!  
m!
1.5m!

   
( 5.1 ) 

 

and  

CF ∶   𝐻!"#$ 𝜔! <   𝐻!"# 𝜔! ∴ 𝐻!"#$ 𝜔! − 𝐻!"# 𝜔! < 0    

𝜔! < 𝜔! < 𝜔! and 𝑚!,! =
0.5m!  
m!
1.5m!

 ( 5.2 ) 

 

A similar fitness function as was given in Equation ( 4.6 ) can be generated using 

Equations ( 5.1 ) and ( 5.2 ). Figure 5-2 shows the plot of the fitness function 
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employed in the GA. As it illustrates, 𝜔! is chosen from 0 Hz to 10 Hz with three 

different structural frequencies simultaneously.  

 

Figure 5-2- Fitness function for robust gain using GA 

Using a GA with the properties of Table 3-3 leads to the optimised gains in Table 5-2 

after 135 iterations. 

Table 5-2- HTMD feedback gains for off-tuning using GA 

𝐾! 

(Vol.sec/m) 

𝐾! 

(Vol.sec2/m) 

𝐾! 

(Vol /m) 

𝐾! 

(Vol.sec/m) 

𝐾! 

(Vol.sec2/m) 

0 -6.23 -362.11 -34.47 -0.0149 

 

Applying these gains should lead to a HTMD which can perform at three different 

frequencies of 4.45 Hz, 3.63 Hz and 6.29 Hz  to reduce the structural response in the 

presence of external excitation force.  

Closed loop stability of the control system 

As previously noted, the Pole-Zero map and Nyquist plot are both employed to check 

the stability of the closed loop system. These checks were performed with three 

different frequencies and gains in Table 5-2 
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Figure 5-3- Nyquist plot (left) and Pole-Zero map (right) of the closed loop 
HTMD system using robust gains; fs=6.29 Hz 

 

Figure 5-4- Nyquist plot (left) and Pole-Zero map (right) of the closed loop 
HTMD system using robust gains; fs=4.46 Hz 
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Figure 5-5- Nyquist plot (left) and Pole-Zero map (right) of the closed loop 
HTMD system using robust gains; fs=3.63 Hz 

 

As Figure 5-3, Figure 5-4 and Figure 5-5 illustrate, the closed loop system is stable 

using the proposed gains in the structure with three different frequencies.  

5.3.2. Adaptive control method using GA 

The adaptive control method using Genetic Algorithm is an approach where the 

system is solved for different scenarios offline. Then, a database for these situations 

is generated. For instance there are three different frequencies of the structure due to 

changing in the primary structural mass. Therefore, there are three individual 

optimisation problems corresponding to three different structural frequencies.  

The solution of these optimisation problems are three sets of gains corresponding to 

the three different scenarios. These gains form the database of the adaptive control 

method. Now, the challenge is to determine the frequency of the structure real time 

and choose the appropriate set of gains from the database while the system is online 

and the structure is under occupation. To do this, a power spectral density (PSD) 

approach is proposed to determine the frequency of the primary structure online.  

Hence, this method introduces an adaptive HTMD in which the system gains change 

whilst the structure is under occupation to take account of changes in structural 
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frequencies caused by human-structure interaction. This is an enhancement of the 

previous control approach, in which there was only one constant set of gains. 

5.3.2.1.Constructing the database for the control system  

To generate the database of the control scheme, it is possible to simply employ the 

same approach as in Section 4.1.1 for three different scenarios separately. This 

means that the fitness function given in Equation ( 4.6 ) is employed three times with 

individual  𝑚!, 1.5𝑚! and 0.5𝑚! corresponding to structural frequencies of 4.45 Hz, 

3.63 Hz and 6.29 Hz respectively. Herein, there are fitness function plots with one 

peak each in contrast with Figure 5-2 which has one fitness function with three 

peaks. 

Table 5-3 shows the database of the adaptive control scheme, which is the solution of 

three optimisation problems by employing GA. As can be seen, there are three sets of 

gains for three different frequencies.  

Table 5-3- Database for adaptive control method 

Index 
ms 

(kg) 

fs 

(Hz) 

Off-

tuning 

% 

K! K! K! K! K! 

1 0.5*7150 6.29 -41% 0 -6.22 -1118.1 -37.1 -0.0004 

2 1.0*7150 4.46 0% 0 -5.95 -191.17 -15.28 -0.151 

3 1.5*7150 3.63 18% 0 -6.2 -80.4 -22.2 -0.65 

 

It should be noted that the stability of the closed loop system has been checked using 

a similar approach as before (i.e. by employing pole-zero map and Nyquist plot 

methods).  

5.3.2.2.System identification using PSD of the response  

Here the author here expands on the idea of [47] in which the PSD of the response is 

employed to determine the frequency of the primary structure. In this work, the PSD 

of the output sensor signal corresponding to the structural acceleration is used for the 

system identification. 
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In principle, there should be the frequency components in the output signal 

corresponding both with the input signal (i.e. excitation force) and structural 

vibration modes. 

Based on the assumption of using a simple SDOF model of the structure and also 

using the simulated jumping force as in Equation ( 4.7 ) where three harmonics of the 

jumping force are considered, there should be four peaks in the PSD of the system 

output in an ideal situation. However, it should be noted that the structure here has a 

HTMD attached. Therefore, there are more frequency components in the output PSD. 

Also, depending on the frequency of the jumping, the number of the peaks can 

reduce when the jumping frequency or one of its harmonics coincides with the 

structure frequencies.  

 

Figure 5-6- PSD of the structural acceleration; fs = 6.29 Hz with jumping force 
of 6.29/3 Hz.  

To analyse the PSD of the output, nine different scenarios have been considered. 

These are the combination of three structural frequencies (i.e. 3.36, 4.45 and 

6.29 Hz) with three different jumping forces frequencies (i.e. 3.36/2, 4.45/2 and 

6.29/3 Hz). Figure 5-6 shows the PSD of the structural response when the frequency 

of jumping is 6.29/3 Hz and the structural frequency is 6.29 Hz. 
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There are four peaks in the PSD plot (one is very small) which corresponding to 2.1, 

4.2, 6.3 and 8.04 Hz. These are the three harmonics of the jumping force at 6.29/3 Hz 

in addition to the structural natural frequency in the presence of the HTMD.  

Table 5-4 shows the frequency and magnitude of the PSD peaks for nine different 

scenarios. As is demonstrated, for each set of structural frequency and jumping 

frequency, the frequency components of the force and structure are generated from 

PSD. The structural FRF peaks can be seen further in Section (5.4.2.1).  

Table 5-4- PSD analysis of the structural acceleration output 

fs 

(Hz) 

External force 

frequency 

(Hz) 

fpeak-1 

(Hz) & 

PSD 

Mag. 

fpeak-2 

(Hz) & 

PSD 

Mag. 

fpeak-3 

(Hz) & 

PSD 

Mag. 

fpeak-4 

(Hz) & 

PSD 

Mag. 

fpeak-5 

(Hz) & 

PSD 

Mag. 

3.63 

3.63/2 
1.82 2.86 3.64 5.44 - 

0.0225 0.0000 0.0967 0.0030 - 

4.46/2 
2.22 2.86 4.46 6.68 - 

0.0777 0.0000 0.1095 0.0016 - 

6.29/3 
2.10 2.84 4.2 6.3 - 

0.0641 0.0000 0.1181 0.0022 - 

4.46 

3.63/2 
1.82 3.64 5.44 - - 

0.0179 0.2118 0.0144 - - 

4.46/2 
2.22 3.66 4.46 6.68 - 

0.0425 0.0000 0.1659 0.0076 - 

6.29/3 
2.10 4.20 6.30 - - 

0.0415 0.1823 0.0121 - - 

6.29 

3.63/2 
1.82 3.64 5.44 8.02 - 

0.0139 0.0282 0.0469 0.0000 - 

4.46/2 
2.22 4.46 5.48 6.68 8.10 

0.0260 0.1556 0.0000 0.0407 0.0000 

6.29/3 
2.1 4.2 6.3 8.04 - 

0.0277 0.0891 0.0497 0.0000 - 
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To employ the result of the PSD method in an online situation where the structure is 

occupied and the frequency of the structure is altering in real time (e.g. in a live 

concert event when the number of active people changes together with their jumping 

frequency) the following method is recommended. In this technique, 8 second blocks 

of the acceleration time histories of the structure are discretized with a sampling 

frequency of 512 Hz and the PSD calculated. The peaks of the PSD and their 

corresponding frequencies are determined and the magnitudes of the PSD peaks are 

multiplied by their corresponding frequencies. 

Solving this method offline for different scenarios (three structural frequencies with 

three jumping frequencies and four different sets of gains including robust gain from 

last technique in addition to three sets gains calculated in this method) generates 

Table 5-5. This table is the index table of the database.  

Table 5-5- Index table for adaptive control database 

fbeat 

fs = 6.29Hz fs = 3.63Hz fs = 4.46Hz 

In
de

x 

G
ai

n 
Ty

pe
 

PS
D

*F
re

q.
 

In
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x 

G
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n 
Ty

pe
 

PS
D

*F
re

q.
 

In
de

x 

G
ai

n 
Ty

pe
 

PS
D

*F
re

q.
 

4.46/2 

1 Robust 223 13 Robust 56 25 Robust 664 

2 1.0ms 319 14 1.0ms 57 26 1.0ms 204 

3 1.5ms 754 15 1.5ms 70 27 1.5ms 332 

4 0.5ms 191 16 0.5ms 92 28 0.5ms 1513 

3.63/2 

5 Robust 41 17 Robust 577 29 Robust 184 

6 1.0ms 58 18 1.0ms 200 30 1.0ms 290 

7 1.5ms 31 19 1.5ms 133 31 1.5ms 82 

8 0.5ms 106 20 0.5ms 2008 32 0.5ms 183 

6.29/3 

9 Robust 116 21 Robust 150 33 Robust 845 

10 1.0ms 112 22 1.0ms 87 34 1.0ms 267 

11 1.5ms 215 23 1.5ms 173 35 1.5ms 227 

12 0.5ms 131 24 0.5ms 169 36 0.5ms 3116 
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The indices in Table 5-5 are employed to select the appropriate sets of gain in Table 

5-3. Consequently, indices 1 to 12 correspond with set 1 of the gain in Table 5-3, 

indices 13 to 24 are linked to set 3 and 25 to 36 are associated with set 2 of the gains. 

Consequently, it is possible to calculate the structural frequency every 8 seconds 

using the above approach and by applying the appropriate set of gains by linking the 

measured structural frequency to the control database for every specific segment of 

time. This operation is performed in pseudo-real time. 

5.4. Analytical Study and Simulation  

In this section, the proposed control scheme is investigated by performing a 

numerical simulation using the MATLAB Simulink package [165]. Similar to the 

last chapter, the proposed state space model that was generated in Chapter 3 is 

employed and the model of uncontrolled structure, structure with attached TMD and 

structure with attached HTMD (including both control algorithms to solve off-tuning 

issue) is used. 

To investigate both performance of the system in the case of structural response 

reduction and also to check the actuator effort and capability, both time and 

frequency domain responses are investigated. 

In addition, two different sets of simulations are executed in the time domain. In the 

first set, the simulations were implemented separately for individual structural 

frequencies to achieve the results for each frequency independently. In fact, a 

simulation was carried out for each structural and input force frequency and the final 

results were compiled from these simulations. 

In the second set of time domain analyses, a new model was created in which the 

frequency of the structure and input force was altered in real-time. This was done to 

investigate the response and effect of HTMD due to a system with changing dynamic 

properties representing changing states of human occupation. 

5.4.1. Excitation forces  

To perform the three types of simulations (i.e. frequency domain approach and two 

time domain approaches), three different input forces were applied.  
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First, similar to Section 4.2.1, random noise with frequency span of 0-50 Hz and 

magnitude of 2.0V as the input voltage to the amplifier was employed. The results of 

simulations using this input force are the sets of FRFs between the input force and 

structural acceleration. These show the performance of controller and reduction in 

the structural response in different situations. 

For the second set of simulations, the same jumping force as was used in Section 

4.2.1 was applied. As before, it was assumed that the number of jumping people on 

the slab was four, each with weight 80 kg. Also as for the SDOF structure, the 

amplitude of the mode shape is set as 𝜙! = 1. However, as was mentioned earlier, 

there are three sets of simulations each with one frequency of the structure and 

corresponding frequency of jumping. Therefore, three individual jumping forces are 

produced including jumping with 𝑓!"#$ = 4.46/2 Hz, 𝑓!"#$ = 3.63/2 Hz and 

𝑓!"#$ = 6.29/3 Hz which correspond to the structural frequency of 𝑓! = 4.46 Hz, 

𝑓! = 3.63 Hz and 𝑓! = 6.29 Hz, respectively. This leads to the second or third 

harmonic of the jumping activity to coincide with the frequency of the structure. The 

results of these simulations using this set of input forces are performance 

comparisons (peak accelerations and MTVV of acceleration) in addition to the 

actuator inertia force and input voltage. The running time for each of the input forces 

is set to 120 seconds.  

It should be noted that for the jumping frequencies of 3.63 and 4.45 Hz, the second 

harmonic has been chosen since it is possible to jump at 3.36/2 and 4.45/2 Hz. 

However, for structural frequency of 6.29 Hz, the third harmonic of 6.29/3 was 

chosen since it is not possible to jump at 6.29/2 Hz. 

For the final input force signal, a combination of the three jumping frequencies 

mentioned above is employed (Figure 5-7). This excitation time history contains 540 

seconds jumping force from four people. It includes up to the third harmonic of 

jumping. The frequency of the jumping changes every 60 seconds. Also, it will be 

noted later that at every 180 seconds of the simulation, the frequency of the structure 

changes. This generates a situation where the structure in three different frequencies 

experiences three different jumping forces with three different frequencies.  
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Figure 5-7- Simulated jumping force of 4 people (scaled version on time axis) 

Figure 5-8 illustrates the PSD of the generated jumping force. As can be seen, it has 

all components of three different frequencies including their second and third 

harmonics at 1.82, 2.1, 2.22, 3.64, 4.2, 4.46, 5.44, 6.3 and 6.7 Hz.  

 

Figure 5-8- PSD of the input force 

The result of the third type of simulation using the latest type of jumping force is a 

set of structural acceleration RMS comparisons for both TMD and HTMD 

performances and also operation result of the HTMD when the frequency of the 
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structure and force changes. Also, the RMS of the actuator inertia force is compared 

in both HTMD control algorithms.  

5.4.2. Structural response 

The FRFs and responses of the structure are compared for different scenarios. In 

addition to these, the inertia force and voltage of the actuator are also examined here. 

5.4.2.1.Frequency domain response to random excitation 

Using the aforementioned random signal in a similar way as in Section 4.2.2.1, the 

FRFs between external excitation force and structural acceleration were generated 

for various scenarios. A Hanning window with 50% overlap was applied to the data 

when calculating FRFs. 

The comparison is made between the uncontrolled structure, structure with attached 

TMD tuned to a frequency of 4.45 Hz and structure with attached HTMD using the 

two aforementioned control algorithms. The frequency of the structure is altered as 

noted before to three different frequencies. Also, it should be noted that for the first 

type of HTMD control algorithm, just one set of gains is used for three different 

frequencies of the structure. However, on the second type of control algorithm, three 

different sets of gains are employed each linked to a specific structural frequency. 

Direct response feedback with robust gains for individual frequencies 

Figure 5-9 shows the magnitude of the FRF of the structure between input force and 

external excitation. As can be seen, when the frequency of the TMD is tuned to 

4.45 Hz (left figure), both TMD and HTMD have similar structural acceleration 

response at the uncontrolled resonant frequency. However, the HTMD has greater 

reduction at other frequencies even when the TMD is properly tuned. 
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Figure 5-9- FRF of the uncontrolled structure (green) in comparison with 
structure with TMD (blue) and HTMD (red); off-tuning using robust gains with 

fs=4.46 Hz (left), fs=3.63 Hz (middle) and fs=6.29 Hz (right), 

When the structural natural frequency changes to 3.63 and 6.29 Hz (middle and right 

figures), the TMD becomes detuned and its performance is reduced. However, the 

HTMD still shows relatively good performance even when the structural frequency 

changes.  

Table 5-6 compares the results of the simulation for different scenarios for both FRF 

response at the resonant frequency and also peak of the FRF magnitudes. 

Table 5-6- Frequency domain simulation result comparison for different 
structural frequencies using direct response with robust gain 

fs (Hz) Type 

Maximum response Response on resonance 

FRF 

magnitude 

(m/s2/N) 

Reduction 

FRF 

magnitude 

(m/s2/N) 

Reduction 

3.63 

Uncontrolled 0.0111 - 0.0111 - 

TMD 0.00319 71% 0.00109 90% 

HTMD 0.000717 94% 0.000594 95% 

4.46 

Uncontrolled 0.0135 - 0.0135 - 

TMD 0.000949 93% 0.000639 95% 

HTMD 0.000661 95% 0.000622 95% 
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6.29 

Uncontrolled 0.0198 - 0.0198 - 

TMD 0.00472 76% 0.00275 86% 

HTMD 0.00127 94% 0.00079 96% 

 

As the numbers show, the HTMD displays relatively good performance when the 

TMD becomes detuned. There are the reductions of 78%, 30% and 73% in the FRF 

maximum response with HTMD compared with passive TMD for the structural 

frequencies of 3.63 Hz, 4.46 Hz and 6.29 Hz respectively. Also, reductions of 46%, 

3% and 71% are achieved based on the response of the FRF at the uncontrolled 

resonant frequency between HTMD and passive TMD for the structural frequencies 

of 3.63 Hz, 4.46 Hz and 6.29 Hz respectively. 

Adaptive control method using GA for individual frequencies 

Figure 5-10 shows the magnitude of the FRF of the structure between input force and 

external excitation. As noted before, three sets of gain factors are applied for these 

three scenarios. As the figure illustrates, even when the TMD is tuned (left figure), 

the HTMD has much larger reduction in the structural acceleration response. 

 

Figure 5-10- FRF of the uncontrolled structure (green) in comparison with 
structure with TMD (blue) and HTMD (red); off-tuning using adaptive control 

method with fs=4.46 Hz (left), fs=3.63 Hz (middle) and fs=6.29 Hz (right), 
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As the frequency of the structure changes (middle and right figure), the performance 

of the TMD deteriorates. Meanwhile, the HTMD still achieves a large reduction of 

structural response. Table 5-7 expresses the numerical result of simulation. It can be 

seen that the HTMD has greater reduction in structural response both at the 

resonance frequency and peak FRF magnitudes. 

Table 5-7- Frequency domain simulation results comparison for different 
structural frequency using adaptive control method 

fs (Hz) Type 

Maximum response Response on resonance 

FRF 

magnitude 

(m/s2/N) 

Reduction 

FRF 

magnitude 

(m/s2/N) 

Reduction 

3.63 

Uncontrolled 0.0111 - 0.0111 - 

TMD 0.00319 71% 0.00109 90% 

HTMD 0.000291 97% 0.00028 97% 

4.46 

Uncontrolled 0.0135 - 0.0135 - 

TMD 0.000949 93% 0.00064 95% 

HTMD 0.000434 97% 0.00034 97% 

6.29 

Uncontrolled 0.0198 - 0.0198 - 

TMD 0.00472 76% 0.00275 86% 

HTMD 0.001 95% 0.00074 96% 

 

Also, there are the reductions of 91%, 54% and 79% in HTMD FRF maximum 

response in comparison with passive TMD for the structural frequencies of 3.63, 4.46 

and 6.29 Hz, respectively. Also the reduction of 74%, 46% and 73% is achieved 

based on the response of the FRF at resonance between HTMD and passive TMD for 

the structural frequencies of 3.63, 4.46 and 6.29 Hz, respectively. 

To conclude, based on the FRFs of both proposed control algorithms, the adaptive 

control method has greater reduction in structural response in comparison with the 

robust control gains method when the frequency of the structure alters. However, 

since the performance of the adaptive control method depends on system 

identification of the structural frequency at time of operation, the third set 
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simulations will be executed to check the ability of the controller to adapt to changes 

in the frequencies of the force and structure.  

5.4.2.2.Time domain response 

Two sets of simulations are performed here. Similar to the frequency domain 

analysis, the first time domain approach simulates the system at different structural 

frequencies with their corresponding excitation force individually using the two 

proposed control algorithms separately. The purpose of this particular simulation is 

to check the actuator effort. 

The second time domain approach is performed to check the performance of the 

system in a more realistic situation when the frequency of the structure and force 

may change during operation. In addition, the performance of the proposed system 

identification method will also be investigated.  

The weighted acceleration of the structure according to [169] was used. Wk is chosen 

as the frequency weighting curve in which z-axis of the person is exposed to the 

vibration. 

Direct response feedback with robust gains for individual frequencies 

Here, the performance of the proposed control algorithm using the robust gain 

control method is investigated. As Table 5-8 and Table 5-9 display, the response of 

the structure at different structural frequencies with their corresponding external 

jumping force is investigated. The results are in terms of peak, RMS and MTVV of 

the weighted acceleration.  

As can be seen, in general there is greater reduction in response when the HTMD is 

employed in comparison with the passive TMD when the frequency of the structure 

changes. This can be seen in all scenarios when excitation force components coincide 

with the structural frequency.  

Table 5-8- Time domain simulation result comparison for different structural 
frequency using robust control gains method; comparison of the peak of the 

structural weighted acceleration (m/s2) 

fs 

(Hz) 
Type 

Peak weighted 

acceleration(m/s2) 

Reduction 

from 

Reduction 

from 
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uncontrolled 

structure 

structure 

with  

TMD 

3.63 

Uncontrolled 3.1940 - - 

TMD 0.3020 91% -  

HTMD 0.1829 94% 39% 

4.46 

Uncontrolled 3.9841 - - 

TMD 0.2373 94% -  

HTMD 0.2287 94% 4% 

6.29 

Uncontrolled 1.8636 - -  

TMD 0.3176 83%  - 

HTMD 0.1500 92% 53% 

 

Table 5-9- Time domain simulation result comparison for different structural 
frequency using robust control gains method; comparison of MTVV of the 

structural weighted acceleration (m/sec2) 

fs 

(Hz) 
Type MTVV(m/sec2) 

Reduction 

from 

uncontrolled 

structure 

Reduction 

from 

structure 

with  

TMD 

3.63 

Uncontrolled 2.2711 - - 

TMD 0.2083 91% - 

HTMD 0.1159 95% 44% 

4.46 

Uncontrolled 2.7960 - - 

TMD 0.1398 95% - 

HTMD 0.1363 95% 3% 

6.29 

Uncontrolled 1.2751 - - 

TMD 0.1825 86% - 

HTMD 0.0754 94% 59% 
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As was shown in the FRF analysis, using HTMD with robust gain does not have 

greater reduction in structural response in comparison with passive TMD when the 

frequency of the excitation force is at resonance and the TMD is tuned. However, 

when the frequency of the structure changes, the TMD becomes detuned and yet the 

HTMD performs relatively more consistently. 

Adaptive control method using GA for individual frequencies 

The performance of the adaptive control method is investigated here. Table 5-10 and 

Table 5-11 show the time domain analysis results due to different structure 

frequencies. As these tables reveal, the HTMD performs well in the presence of the 

off-tuning problem. Also, as noted before, this performance is better in comparison 

with the HTMD using the robust gain method. The exception to this case is when the 

frequency of the structure increases in which the reductions are similar between both 

methods.  

Table 5-10- Time domain simulation result comparison for different structural 
frequency using adaptive control method; comparison of the peak of the 

structural weighted acceleration 

fs (Hz) Type 

Peak 

weighted 

acceleration 

(m/sec2) 

Reduction 

from 

uncontrolled 

structure 

Reduction 

from 

structure 

with TMD 

3.63 

Uncontrolled 3.1940 - - 

TMD 0.3020 91% - 

HTMD 0.1074 97% 64% 

4.46 

Uncontrolled 3.9841 - - 

TMD 0.2373 94% - 

HTMD 0.1546 96% 35% 

6.29 

Uncontrolled 1.8662 - - 

TMD 0.3192 83% - 

HTMD 0.1505 92% 53% 
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Table 5-11- Time domain simulation result comparison for different structural 
frequency using adaptive control method; comparison of MTVV of the 

structural weighted acceleration 

fs 

(Hz) 
Type MTVV(m/sec2) 

Reduction 

from 

uncontrolled 

structure 

Reduction 

from 

structure 

with TMD 

3.63 

Uncontrolled 2.2711 - - 

TMD 0.2083 91% - 

HTMD 0.0582 97% 72% 

4.46 

Uncontrolled 2.796 - - 

TMD 0.1398 95% - 

HTMD 0.082 97% 41% 

6.29 

Uncontrolled 1.2785 - - 

TMD 0.1835 86% - 

HTMD 0.0756 94% 59% 

  

Multi-frequency variable structure model  

As is shown in Figure 5-11 and Figure 5-12, when the jumping excitation acts on a 

structure with altered frequency, the performance of HTMD is generally better than 

the TMD. This applies for the HTMD with both control methods. However, when the 

structural frequency is nominal, the HTMD with robust gain has quite a similar 

performance as the TMD. However, the HTMD with adaptive control has much 

more reduction even when the frequency of the structure doesn’t change in 

comparison with TMD. 
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Figure 5-11- Structural weighted acceleration and corresponding running RMS 
(1 sec.) response from simulated jumping force (4 people); TMD (blue), HTMD 

with robust gain (cyan), HTMD with adaptive control (red)  

Also, based on the figures, at the moment of the changing of the structural frequency, 

there might be a large peak in response using HTMD with adaptive gain. This looks 

to happen when two structural frequencies are placed in the same time segment of 

the PSD, which then has two structural frequencies instead of one.   

 

Figure 5-12- Structural weighted acceleration and corresponding running RMS 
(1 sec.) response from simulated jumping force (4 people); TMD (blue), HTMD 
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with robust gain (cyan), HTMD with adaptive control (red) (zoomed version of 
Figure 5-11) 

However, it should be considered that when the frequency of the structure doesn’t 

change, if the force frequency has a component except resonant frequency, then 

HTMD with robust gain causes more reduction in structural response in comparison 

with passive TMD.  

5.4.2.3.Actuator capability and effort 

Based on Table 5-12 and Table 5-13, it can be concluded that the amount of inertia 

force of the actuator depends on the frequency of the structure. When the TMD is 

tuned, the HTMD maximum required inertia force is higher when robust gain is 

employed in comparison with adaptive control method.  

When the frequency of the structure increases, less force is required in HTMD with 

adaptive control in comparison with robust gain. However, when the frequency of 

the structure decreases, it is adaptive control which needs more inertia force for 

actuator.  

Table 5-12- Time domain simulation result comparison for different structural 
frequency using robust control gains method; comparison of actuator effort 

fs (Hz) Type Magnitude 

3.63 
Peak of inertia force (N) 85 

MTVV of inertia force (N) 60 

4.46 
Peak of inertia force (N) 96 

MTVV of inertia force (N) 54 

6.29 
Peak of inertia force (N) 116 

MTVV of inertia force (N) 61 

  

Generally, in all cases, the maximum demanded actuator force is around a quarter of 

the maximum capacity of the actuator. This shows that a smaller and lower cost 

actuator would satisfy the requirements of the HTMD for these scenarios. 
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Table 5-13- Time domain simulation result comparison for different structural 
frequency using adaptive control method; comparison of actuator’s effort 

fs (Hz) Type Magnitude 

3.63 
Peak of inertia force (N) 160 

MTVV of inertia force (N) 86 

4.46 
Peak of inertia force (N) 78 

MTVV of inertia force (N) 66 

6.29 
Peak of inertia force (N) 98 

MTVV of inertia force (N) 55 

 

Figure 5-13 displays the time history of the actuator inertia force and its 

corresponding 1 second running RMS when the multi-frequency simulation is 

performed. It shows that generally the HTMD with robust control requires less 

control force compared with adaptive control. Also, when the structure or force 

frequencies changes, there are quite sudden changes in the control force envelope in 

adaptive control. However, robust gain shows more fixed pattern in comparison to 

the adaptive method.  

 

Figure 5-13- Actuator inertia force and corresponding running RMS (1 sec.); 
response from simulated jumping force (4 people) for 3 frequencies; HTMD 

with robust gain (cyan), HTMD with adaptive control (red)  
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Table 5-14- Time domain simulation result comparison for multi-frequency 
variable structure model; comparison of actuator effort 

Type RMS of actuator inertia force (N) 

HTMD with robust gain 47 

HTMD with adaptive control 76 

 

Also, as Table 5-14 reveals, HTMD with robust gain method needs almost around 

38% less inertia force of actuator in comparison with adaptive method when the 

frequencies of both the structure and force alter in real time. 

5.5. Conclusion and result discussion 

In this chapter, two different approaches were introduced to improve the 

performance of an HTMD in the presence of the off-tuning problem. The goal of 

these methods was to achieve minimum structural response in the situation in which 

the structural mass and/or frequency alters.  

The gains from each control method were generated and optimised using a GA 

approach. In the first method, one set of gains was applied to the system to perform 

over a range of structural frequencies, whereas in the second method, individual sets 

of gains corresponding with each structural frequency were employed.  

It was shown that when the frequency of the structure changes from 4.45 Hz to either 

3.63 Hz or 6.29 Hz, the performance of the HTMD deteriorates. This is both in 

situations where the excitation force (e.g. jumping force) has a component at 

resonance and when it doesn’t.  

It is demonstrated that HTMD with adaptive control has greater reduction in 

structural response in comparison with HTMD with robust gain method when the 

frequency of the structure does not change or decrease. However, when the 

frequency of the structure increases, both adaptive and robust control have similar 

performance and both show greater reduction in comparison with a similarly sized 

passive TMD.  

Also, it is illustrated that the actuator effort is less when using robust gain control 

method for the cases which the frequency of the structure reduces. However, as the 
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frequency of the structure increases, the adaptive control requires less power to 

perform.  

It can be argued that based on both response reduction and actuator effort, adaptive 

control has the best overall performance.  

Also, a multi-frequency simulation was performed in which both the frequencies of 

the structure and force were altered throughout the simulation. It was shown that the 

adaptive control performed better in comparison with the robust gain approach. This 

was due to the similar performance of TMD and HTMD with robust gain when the 

TMD was tuned, whereas the HTMD with adaptive gain had better response 

reduction in this scenario.  

As an important point, although the adaptive control approach in general was more 

suitable control method in comparison with robust gain method, its performance 

highly depends on the size of the data base and also the accuracy of the system 

identification algorithms. With increased size database, the adaptive control approach 

would be expective to achieve even better performance.  

On next chapter author will investigate and verify the proposed HTMD and its 

control algorithm by building and testing a prototype HTMD in a laboratory 

structure.  
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6. Experimental investigation of dynamic performance of a HTMD 
A shorter version of this chapter was presented and published in the [170].  

6.1. Introduction 

The HTMD used in this research work comprised of a TMD with an active inertial 

actuator attached to the passive mass. This HTMD was designed and built by the 

author with appropriate technical support. Tests were conducted on the HTMD both 

while it was on solid ground (stiff laboratory floor) and when it was located on the 

experimental laboratory structure (post-tensioned slab strip). 

The main goal of experiments on the stiff floor was to determine the dynamic 

properties and performance of the HTMD as a SDOF system, prior to installation on 

the primary structure. After this, the HTMD was placed on the laboratory slab strip 

for the main experiments. In general, the following aims were investigated: 

• Investigation of the performance of the HTMD and TMD on the slab 

• Verify all proposed control algorithms and compare the experimental results 

with analytical models and simulations  

• Investigate the performance of HTMD and TMD in the presence of off-tuning 

To achieve these aims, several tests were performed including FRF measurements, 

time domain measurements using sinusoidal input force, human jumping force at 

different frequencies and heel-drop tests. Also the force of the active element of 

HTMD was recorded in all tests. 

6.2. Mechanical design and construction of HTMD 

 TMD parameters 

The parameters of the proposed TMD (i.e. mass, stiffness and damping) were  

summarised in Table 3-4. These parameters were calculated according to the 

available model of the primary structure (i.e. the laboratory slab). 

 TMD components  

TMD components consist of springs, damper and masses. In this research job, 4 

compression springs with the stiffness coefficient of 63.47N/mm are employed. Also, 

an air damper with viscos behaviour is purchased. However, due to the practical 
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limitation of the damper, it was decided to remove it and use the active part to 

produce damping force in the HTMD.  

However, it should be noted that the absence of damper does not imply zero damping 

since there is inherent friction which produces damping inside the system. This is 

investigated in further parts of this chapter.  

 

As noted before, the HTMD consists of a passive TMD in addition to an active mass 

damper. Hence, the first step was to design the mechanics of the TMD.  

A TMD comprises of three major elements; mass, spring and damper, which 

determine the performance of TMD. However, from a practical point of view there 

are other factors which require consideration. These factors include the geometry of 

the TMD, the physical stability of the TMD, the capacity of the material (i.e. plates 

of the TMD body), total weight of the TMD, maximum displacement of the TMD 

mass and friction in its bearings. 

Weight of the TMD and handling  

It is very important to calculate the precise weight of the TMD. This is necessary 

both for the dynamic properties of the TMD and also its handling to place it on the 

target structure 

 

Figure 6-1- placing the TMD on the slab 
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After construction of the TMD, the weight of the basket without any masses was 

measured as 110 kg. Also, the weight of the base plate with the four cylinders was 

100 kg.  

As the total weight is around 220 kg (without additional masses placed in the basket), 

it is possible to move and lift the TMD using a portable crane. Figure 6-1 shows the 

lifting and placing operation of the TMD on the laboratory slab strip using a portable 

crane with a capacity of 400 kg. 

TMD geometry design 

Figure 6-2 shows rendered images of the TMD. As can be seen, it consists of a base 

plate which is placed onto the primary structure and hence is the interface between 

the TMD and the primary structure. On top of this plate, there are four cylinders 

which have springs inside. Using these cylinders causes the system to have a support 

reaction force above the centre of gravity of the moving mass, which leads to a more 

physical stable system. It is possible to use different stiffness springs according to the 

application at hand. 

The springs support the basket which has the masses inside. It is possible to vary the 

TMD mass by changing the number of mass blocks placed inside this basket.  

As shown in the figure, the actuator (active DOF) is placed on the top of the TMD 

passive mass. Using this arrangement has the advantage of allowing the use of 

different sized actuators. 
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Figure 6-2-Schematic design of HTMD 

The base plate of the TMD has size of 130 x 40 cm and the height of the TMD is 

58 cm.   

Displacement of TMD mass  

Maximum displacement of the TMD passive mass is an important factor since it 

gives the maximum required space below the basket and hence the required height of 

the cylinders.  
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To do that, an initial and brief Matlab Simulink simulation was performed with the 

input force of 10 ∗ 1000sin  (4.5 ∗ 2𝜋) to just determine the maximum possible 

displacement of the TMD/HTMD’s basket. 

This simulation shows that the maximum displacement on TMD’s mass is around 80 

mm.  

6.3. Experimental evaluation of TMD performance 

The purpose of this test was to verify the dynamic performance of the constructed 

TMD/HTMD. Whilst it was located on stiff ground, the shaker on top of the TMD 

provided an input force and accelerometers on the TMD were used to measure its 

acceleration response. 

Two sets of tests were performed; measurement of frequency response functions and 

free decay measurements.  

Instruments 

      

Figure 6-3- Shaker (left) and amplifier (right) 

      

Figure 6-4- Spectrum analyser (left) and signal conditioner (right) 
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Endevco 7754A-1000 accelerometers were used to measure the acceleration of the 

TMD passive mass. These accelerometers were connected to a 16 channel signal 

conditioner. Also, APS Electrodynamics shakers 400-HF is employed as the actuator. 

The shaker’s driving force is supplied by an Amplifier. Finally, DP730 Data Physics 

32-channel spectrum analyser performs the data acquisition and lively FRF 

measurements.   

It should be noted that the dynamic properties of the sensors is neglected for the 

frequency range of interest since system can be assumed as linear and not dependent 

on frequency in this range. 

6.3.1. Experimental Results 

In this experiment, eight 25 kg additional masses were placed on the TMD (in 

addition to the weight of the basket). However in the set of experiments where the 

TMD/HTMD was placed on the slab, only six 25 kg masses were used. Also as 

noted, the damper was removed from the system.  

Two accelerometers were used to measure the acceleration response of the TMD; 

one at the top of the basket and one at the bottom. An additional accelerometer was 

mounted on the active inertial mass to measure the input force from the active DOF.  

FRF test  

A random signal with frequency band 0-100 Hz was used as the input force. As can 

be seen from Figure 6-5, both top and bottom sensors show a very clear modes at 

4.37 Hz. Additional modes can be observed at 22.19 and 38.44 Hz, with the latter 

having greater response at the top of the TMD. 
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Figure 6-5- FRF magnitude of the TMD placed on the stiff ground; sensor on 
top of TMD (cyan), sensor at the bottom of the TMD (black) 

Free decay test 

Two sets of free decay tests were performed to investigate the damping and decay 

characteristics of the TMD. In the first test, a burst random signal is employed and 

the shaker is set to off (zero force) after a segment of time. This leads to free-decay 

response of the TMD. However, the magnitude of the force is restricted since the 

actuator has a maximum of 450 N inertia force. The second set of tests was carried 

out using hand-excitation instead of a shaker to produce free-decay response with 

higher magnitude.  

The results of these tests were analysed using a MATLAB-based analysis application 

called Modal [171]. The damping ratio of the TMD was estimated as 2.8% and 

0.41% for the burst signal input and manual excitation respectively. Also, the 

respective frequencies were estimated as 4.05 Hz and 4.06 Hz.  
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Figure 6-6- Damping estimation of the free-decay response using burst random 
force from shaker  

 

Figure 6-7- Curve fitting of the free-decay response using burst random force 
from shaker 
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Figure 6-8- damping estimation of the free-decay response using hand excitation 

As Figure 6-9 and Figure 6-10 reveal, when the magnitude of the force is low, the 

amplitude dependency plots show a linear behaviour of frictional damping. This 

result is similar for higher magnitude of force (hand-excitation) except with less 

damping result. This confirms the non-linear behaviour of the system’s damping.   

 

Figure 6-9- Amplitude dependency test on free decay response using burst 
signal excitation  
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Figure 6-10 Amplitude dependency test on free decay response using hand 
excitation 

6.4. Preparing active damping force on passive TMD  

As noted, there was no physical damping element attached to the TMD and the only 

available damping force was primarily friction in the bearings. To obtain a constant 

damping force regardless of friction, it is proposed to use the active element of the 

HTMD to produce a damping force even when it is considered as a passive TMD. 

This results in a TMD with an active (simulated viscous) damping force. As noted 

earlier, to produce the active damping force of both TMD and HTMD, the velocity of 

the TMD passive mass should be used as the feedback signal. In addition, the 

displacement and acceleration of the TMD were also employed for tuning purposes. 

However, the gains and corresponding control forces were very low and considered 

negligible.  

6.4.1. Parameters optimisation 

Herein, the author used a similar GA approach as described previously to optimise 

the proposed gains to achieve a damping force which leads to a TMD with a similar 

performance as the desired passive TMD. 

However, the difference is the constraint function which is the FRF magnitude of the 

structure with attached desired passive TMD. This means the optimisation problem is 
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changed to a new one in which the feedback gains are optimised subject to the 

constraint of the FRF of the passive TMD.  

Also, the minimisation problem is converted to a maximisation to achieve as close as 

possible the FRF of the desired passive TMD. Table 6-1 illustrates the optimised 

gains using this method.  

Table 6-1- Optimised gains for HTMD acting as a TMD 

𝐾! 

(Vs/m) 

𝐾! 

(V.s2/m) 

𝐾! 

(V/m) 

𝐾! 

(Vs/m) 

𝐾! 

(V.s2/m) 

0.000 0.000 -3.094 -1.816 -0.111 

6.4.2. Analytical and experimental verification 

The performance of the proposed TMD with active damping force was investigated 

both analytically and experimentally against the performance of the desired TMD 

with pure viscous damping. 

Figure 6-11 displays the structural FRF magnitude with a TMD attached. As it 

shows, both practical (blue line) and analytical simulation (red line) TMDs using 

proposed feedback gains are acting the same as the required and desired passive 

TMD (green line) mentioned and designed before.  
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Figure 6-11- FRF of the desired analytical TMD (green), practical TMD with 
active damping force (blue) and analytical model of TMD with active damping 

force (red) 

6.5. Application of HTMD to laboratory structure  

Two main sets of tests were executed. Firstly, the performance of HTMD was 

compared against that of the passive TMD. This comparison was carried out both in 

the frequency domain (using FRFs) and in the time domain using a range of input 

forces. For comparative purposes, the performance of the HTMD was also compared 

against an active control scheme.  

Secondly, the performance of the HTMD was compared against passive TMD in the 

presence of off-tuning, both in the frequency and time domains.  

    

Figure 6-12- Laboratory slab strip; empty (left) and attached with HTMD 
(right) 
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Instruments and test grids  

In addition to the same instrumentation described in Section 6.3, a dSPACE control 

unit was employed to implement the feedback control schemes on the structure.    

 

Figure 6-13- arrangement of the equipment on the laboratory slab (sensors are 
accelerometers)  

As shown in Figure 6-13, in addition to the actuator on the HTMD (active part), a 

similar actuator is located on the slab, next to the HTMD, to apply external force to 

the primary structure. Five accelerometers were employed; one on the TMD passive 

mass to measure the response of the TMD, two on the structure (one below and one 

next to the HTMD) to measure the response of the structure and one on each of the 

actuators to measure the corresponding inertia forces.  

The locations of the accelerometers on the structure were chosen to be at the nodal 

point of the target mode. Also, a low pass filter was applied to avoid measurement 

noise due to dynamics of the accelerometers [7], [46], [150]. 

As shown in Figure 6-15, the control cabinet including the shaker amplifier, signal 

conditioner, spectrum analyser and dSPACE control unit was placed next to the slab.  
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Figure 6-14- HTMD and instrumentation arrangements on the laboratory 
structure (back and front view) 

 

    

Figure 6-15- HTMD and controller cabinet arrangements on the laboratory 
structure  

For measurements where it was necessary to measure the response of the 

uncontrolled structure, the TMD/HTMD basket was locked  as shown in Figure 6-16. 

This was to minimise the requirement to mount and dismount the TMD/HTMD on 

the slab, which was a difficult and time-consuming operation. This was done by 

placing wooden chocks below the TMD basket. However, it should be noted that the 

weight of the TMD/HTMD then had to be considered as an additional passive mass 

attached to the primary structure which was included in the analytical models. 
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Figure 6-16- locked TMD on the structure for measurements on the 
uncontrolled structure  

 

Filter Design 

In order to remove the DC offset and low frequency noise of the signal and also 

remove the higher frequency part of the signal, a band pass filter is required. The 

high pass part of the filter was intended to remove the DC-offset of the sensors and 

low frequency noises using high-pass filter. In addition to this, since the performance 

of the system is important for the frequency below 50Hz and the first vibration mode 

is targeted to be controlled, a low pass filter is applied to avoid the high frequencies 

component of the response.  

This band-pass filter is placed before each integrator block in the controller block 

diagram (Figure 6-19). Also, the lower and higher bands of the frequencies are set to 

0.7 Hz and 50 Hz respectively. The proposed band-pass filter is a second order 

Butterworth filter. This type of filter is characterized by a magnitude response that is 

maximally flat in the pass band [165].  

The Transfer Function of the filter is generated using MATLAB [165] as follow: 

𝐺!"#$%& =
9.595 ∗ 10!𝑠!

𝑠! + 438.1𝑠! + 9.872 ∗ 10!𝑠! + 6.053 ∗ 10!𝑠 + 1.909 ∗ 10! 

 
( 6.1 ) 

 Figure 6-17 shows the Bode plot of the proposed filter. 
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Figure 6-17- Bode plot of the band-pass filter  

Controller Unit 

As noted before, a dSPACE control unit was employed in this research to implement 

the designed control algorithms. This was a dSPACE model ACE1103 consisting of 

a DS1103 PowerPC GX/1 GHz controller board and CLP1103 LED panel (Figure 

6-18). 

 

Figure 6-18- dSPACE control unit 

The proposed control algorithm (Figure 6-19) was uploaded to the dSPACE unit. As 

is shown, two measured signals are used for control. The first is the acceleration of 

TMD and the second is the acceleration of the main structure (sensor No. 1 in Figure 
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6-13). As is shown in Figure 6-19, integrator blocks are used to obtain velocity and 

displacement of each signal. These are multiplied by the control gains and summed 

to generate the control signal, which is fed back to the shaker amplifier. 

 

Figure 6-19- MATLAB Simulink model uploaded to dSPACE control unit 

6.5.1. Analytical model verification 

The proposed analytical model of HTMD was verified by performing a FRF test on 

the structure when the HTMD was in operation. It should be noted that to have more 

accurate feedback gains, a new model was generated including the designed band-

pass filter.  

Table 6-2- Optimised gains for laboratory HTMD 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

𝐾! 

(V/m) 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

0.000 -6.156 -277.332 -22.695 -0.052 

 

Table 6-2 shows the result of the optimisation of the revised structural/TMD 

properties using the previously described GA approach. Setting these gains in the 

dSPACE controller unit and performing a FRF test with the frequency span of 10Hz 

resulted in Figure 6-20. As can be seen, the experimental results correlate well with 

the analytical model of the structure/HTMD system. The presence of noice can be 

seen below the frequency of 1Hz. This is the accelerometer dynamics.  
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Figure 6-20- comparison of the FRF of analytical model of HTMD (red) with 
experimental HTMD (blue) 

6.5.2. FRF measurements 

For the FRF measurements, band-limited random noise signals was employed with 

frequency bands of: 

• 0-10 Hz to see in detail the effect of the HTMD/TMD on the target control 

mode, and 

• 0-100 Hz to check the effect of TMD/HTMD on higher modes.  
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Figure 6-21- FRFs of the uncontrolled structure with responses at accelerometer 
No 1 (blue) and 2 (red)  and excitation at shaker location 

Figure 6-21 shows the FRF of the uncontrolled structure from both sensor No 1 and 

No 2. As can be seen, there is a torsional mode at 27 Hz (sensor No. 1 bottom of 

TMD) and bending mode at 17 Hz (sensor No. 2 next to TMD). 

 

Figure 6-22- Experimental FRF magnitude comparison of the uncontrolled 
structure (green), structure with TMD (blue) and structure with HTMD (red); 

frequency span of 10 Hz 
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Figure 6-23- Experimental FRF magnitude comparison of the uncontrolled 
structure (green), structure with TMD (blue) and structure with HTMD (red); 

frequency span of 100 Hz 

As can be seen in Figure 6-22, both the TMD and HTMD achieve a significant 

reduction in structural acceleration response. Also, it can be seen that the HTMD has 

higher reduction than the TMD and the response of the structure with HTMD is 

almost completely inside the boundary of the response of the uncontrolled structure.  

In addition, as Figure 6-23 illustrates, there is no significant reduction in response of 

using HTMD/TMD on higher modes. However, at around 38Hz, there is a response 

amplification using TMD/HTMD which is the local mode of the TMD, as shown 

before. The local mode herein means that this is an existing mode in the TMD. 
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Table 6-3- Experimental result comparison of different control methods 

 
Uncontrolled 

Structure 

Structure 

with TMD 

Structure 

with HTMD 

Max. response 

magnitude (m/s2/N) 
0.01853 0.00112 0.00049 

Reduction of the max. 

response 
- 94% 97% 

Response magnitude at 

resonance frequency of 

uncontrolled structure 

(m/s2/N) 

0.01853 0.00056 0.00047 

Reduction of response 

at resonance frequency 

of uncontrolled 

structure 

- 97% 97% 

   

Table 6-3 compares the experimental results of the structural acceleration FRF. It 

shows 56% and 16% reduction in maximum response and resonant response of 

structure with HTMD in comparison with structure with TMD.  

6.5.3. Measurement of responses to controlled excitations 

For the comparison of responses in the time domain, three sets of experiments were 

performed including using sinusoidal input force (from shaker to check the 

performance at resonance), jumping force (from a human participant) and a heel-

drop test (to check the response on impulse input and have a rough FRF).  

Sinusoidal input force 

Two sinusoidal input forces were applied to the structure using excitation actuator, 

their frequencies being those of the frequency of the uncontrolled structure resonance 

and the frequency of the largest peak of the FRF with passive TMD applied. The 

magnitude of the force in both scenarios was set to the maximum capability of the 

actuator (i.e. 2 V).  
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Figure 6-24- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the uncontrolled structure (green), 
structure with TMD (blue) and structure with HTMD (red); sinusoidal input 

force with frequency of 4.35Hz 

Based on the previous FRF comparison, both TMD and HTMD have similar 

performance for response reduction at the resonant frequency of the uncontrolled 

structure. This is verified from the sinusoidal time domain response at this frequency, 

as shown in Figure 6-24. 

However, at the frequency of the maximum FRF peak of the structure/TMD system 

(i.e. 4.88 Hz), the HTMD showed a large reduction in structural response in 

comparison with the passive TMD. This is verified in Figure 6-25. Table 6-4 

compares the result of time domain using these two sinusoidal inputs. As is shown, at 

the sinusoidal input with frequency 4.88 Hz, the HTMD gives 79% and 80% 

reduction in peak acceleration and MTVV of the acceleration respectively in 

comparison with the passive TMD. 
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Figure 6-25- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with TMD (blue) and 
structure with HTMD (red); sinusoidal input force with frequency of 4.88Hz 

Table 6-4- Experimental time domain result comparison of different control 
methods; sinusoidal input force on the structure  

 
Peak Acc. (m/s2) MTVV of Acc. (m/s2) 

Unc. TMD HTMD Unc. TMD HTMD 

Sinusoidal 

@4.35 Hz 
1.839 0.144 0.1928 1.306 0.09956 0.1394 

Reduction - 92% 90% - 92% 89% 

Sinusoidal 

@4.88 Hz 
- 0.8599 0.1816 - 0.6118 0.1211 

Reduction - - - - - - 

 

Jumping force  

Similar to the sinusoidal input force, two jumping frequencies were applied to the 

structure. In this test, a human participant jumped on the structure with a frequency 

such that the second harmonic coincided with the natural frequency of the 

uncontrolled structure and also at the peak of the FRF with passive TMD, i.e.  

2.16 Hz (i.e. 4.32/2 Hz) and 2.44 Hz (4.88/2 Hz) respectively.  
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With second harmonic of jumping tuned to the structural natural frequency, both 

TMD and HTMD have similar amount of structural response reduction, as is shown 

in Figure 6-26. However, at the FRF peak frequency (i.e. second harmonic of 

2.44 Hz), the HTMD has much greater reduction in structural response (Figure 6-27). 

These observations support the results from the FRF measurements. A comparison of 

the jumping test results is shown in Table 6-5. 

 

Figure 6-26- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the uncontrolled structure (green), 
structure with TMD (blue) and structure with HTMD (red); jumping input 

force with frequency of 2.16 Hz 
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Figure 6-27 Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with TMD (blue) and 
structure with HTMD (red); jumping input force with frequency of 2.44 Hz 

 

Table 6-5- Experimental time domain result comparison of different control 
methods; jumping on the structure  

 
Peak Acc. (m/s2) MTVV of Acc. (m/s2) 

Unc. TMD HTMD Unc. TMD HTMD 

Jumping 

@2.16 Hz 
2.37 0.3577 0.3762 1.59 0.1178 0.1327 

Reduction - 85% 84% - 93% 92% 

Jumping 

@2.44 Hz 
- 0.7643 0.3542 - 0.4824 0.1325 

Reduction - - - - - - 

 

According to this table, at the jumping frequency of 2.16 Hz, HTMD has 54% and 

73% reduction in peak acceleration and MTVV of the acceleration respectively in 

comparison with TMD.  

Heel Drop 



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

147 

To investigate the free vibration decay of the structural response for different 

configurations, the heel-drop test was implemented on the structure. In these tests, 

the time for the response to reduce to 1% of its peak was examined for the 

uncontrolled structure, the structure with TMD and the structure with HTMD 

attached (Figure 6-28, Figure 6-29 and Figure 6-30). 

 

Figure 6-28- Experimental time history of structural acceleration response to 
heel-drop test on the structure with HTMD 

 

Figure 6-29- Experimental time history of structural acceleration response to 
heel-drop test on the structure with TMD 



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

148 

 

Figure 6-30- Experimental time history of structural acceleration response to 
heel-drop test on the uncontrolled structure 

Table 6-6- Decay time to achieve 1% of the peak response  

 
Uncontrolled 

Structure 

Structure 

with TMD 

Structure 

with HTMD 

Decay Time (s) 26.1 3.5 2.5 

Comparison - 87% 90% 

 

Table 6-6 compares the result in these three scenarios. According to this, the HTMD 

has faster decay time compared with the passive TMD.  

6.5.4. Experimental determination of actuator effort 

To investigate the required control force, the control force was recorded in all of the 

above scenarios. As can be seen in Figure 6-31 to Figure 6-35, in all cases the 

required control force from the actuator was less than its capacity. The maximum 

actuator forces were 60, 91, 318 and 378 N for sinusoidal input with 4.35 Hz and 

4.88 Hz and jumping forces at 2.16 Hz and 2.44 Hz, respectively. The MTVV of 

actuator force for jumping at 2.16 Hz and 2.44 Hz are 122 N and 139 N respectively. 
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Figure 6-31- Experimental actuator control force of HTMD with harmonic 
input force with frequency of 4.35Hz 

 

Figure 6-32- Experimental actuator control force of HTMD with harmonic 
input force with frequency of 4.88Hz 
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Figure 6-33- Experimental actuator control force and corresponding 1 second 
running RMS of HTMD with jumping input force with frequency of 2.16 Hz 

 

Figure 6-34- Experimental actuator control force and corresponding 1 second 
running RMS of HTMD with jumping input force with frequency of 2.44 Hz 
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Figure 6-35- Experimental actuator control force of HTMD for heel-drop test 

6.5.5. HTMD vs AMD 

In another set of measurements, the performance of the HTMD was compared 

against the AMD (active control method) using the direct velocity feedback scheme. 

Table 6-7 shows the employed gains in both HTMD and AMD. It should be noted 

that in this test, the band-pass filter with frequency range 0.7 to 100 Hz was 

employed. Hence, new gains were obtained from the optimisation problem. The 

performance was investigated in both the frequency domain (i.e. through FRF 

measurements) and time domain using human participants jumping . 

Table 6-7- Optimised gains for laboratory HTMD and AMD 

Device 𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

𝐾! 

(V/m) 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

HTMD 0.000 -5.926 -438.024 -25.864 -0.215 

AMD -300.000 0.000 0.000 0.000 0.000 

 

FRF measurements 

A random noise signal with frequency band of 0 to 100 Hz as input force was 

employed to investigate the frequency response of the structure in different 

scenarios. As can be seen in Figure 6-36, both HTMD and AMD have very positive 

effects on response reduction of the structure in comparison with the uncontrolled 
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structure. It can also be seen that the AMD has greater decrease in structural response 

in comparison with the HTMD. 

 

Figure 6-36- Experimental FRF magnitude comparison of the uncontrolled 
structure (green), structure with AMD (black) and structure with HTMD (red); 

frequency span of 100 Hz 

As noted previously, at a frequency of 38 Hz, there is an amplification in response 

when the HTMD is used since this is a local mode of the HTMD device which exist 

in the HTMD. Figure 6-37 shows a zoomed FRF plot around the first two vibration 

modes of the slab, where it can be seen that although AMD has more reduction in 

response in comparison with HTMD, it has a negative effect (increase in structural 

response) on second mode of the structure (around 17 Hz). However, the HTMD 

does not have a significant effect on other modes, including the second mode of 

vibration.  
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Figure 6-37- Experimental FRF magnitude comparison of the uncontrolled 
structure (green), structure with AMD (black) and structure with HTMD (red); 

(zoomed of Figure 6-36) 

Table 6-8- Experimental FRF numerical comparison of different control 
methods 

 
Uncontrolled 

Structure 

Structure 

with AMD 

Structure 

with HTMD 

Max. FRF magnitude 

(m/s2/N) 
0.00742 0.00031 0.00064 

Reduction of the FRF 

peak 
- 96% 91% 

FRF magnitude at 

uncontrolled resonance 

(m/s2/N) 

0.00742 0.00031 0.00058 

Reduction of FRF 

magnitude at 

uncontrolled resonance 

- 96% 92% 

   

Table 6-8 compares the magnitudes of the FRFs due to the various control scenarios. 

As can be seen, AMD and HMTD have greater response reduction for the first mode 

of vibration in comparison with TMD. Also there is 52% and 47% in maximum 
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response and at the uncontrolled resonant frequency for the AMD in comparison 

with the HTMD.   

Experimental time domain response  

For the time domain measurements, a single human participant carried out a 

bouncing excitation at a frequency of 2.25 Hz. As both Figure 6-38 and Table 6-9 

show, the performance of the HTMD and AMD are similar, which was also 

demonstrated by the FRF plot in Figure 6-37. 

 

Figure 6-38- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with AMD (blue) and 

structure with HTMD (red); bouncing at 2.25 Hz 

Table 6-9- Summary of experimental time domain results of HTMD and AMD 
control methods; bouncing on the structure  

 
Peak Acc. (m/s2) 

MTVV of Acc. 

(m/s2) 

AMD HTMD AMD HTMD 

Bouncing 

@2.25 Hz 
0.1082 0.1067 0.05777 0.06185 

Reduction - 1% - 7% 

 

Experimental actuator effort control 
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In the above measurements, the actuator control forces were monitored. Figure 6-39 

compares the actuator forces between the AMD and HTMD for the random noise 

signal with the frequency band of 0-100 Hz. It shows a higher force demand for the 

AMD in comparison with the HTMD. 

 

Figure 6-39- Experimental actuator control force and corresponding 1 second 
running RMS of HTMD (red) and AMD (blue) with input force of random noise 

of 0-100 Hz 

 

Figure 6-40- Experimental actuator control force and corresponding 1 second 
running RMS of HTMD (red) and AMD (blue) with bouncing at 2.25 Hz 
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Figure 6-40 compares the actuator forces between AMD and HTMD due to 

excitation from the human bouncing force. Similar to the random force, it reveals 

much higher actuator effort in AMD in comparison with HTMD. 

Table 6-10- Experimental actuator control force of HTMD and AMD control 
methods  

 
Peak Force (N) 

MTVV of Force 

(N) 

AMD HTMD AMD HTMD 

Random 

force 
82 36 33 13 

Reduction - 56% - 61% 

Bouncing 

@2.25 Hz 
240 60 199 45 

Reduction - 75% - 77% 

 

Table 6-10 compares the results from both types of input. It shows that the HTMD 

requires less than half of the actuator capacity in comparison with AMD. This is even 

less when the excitation force has a component at the structural resonant frequency.  

6.6. Investigating the performance of HTMD for off-tuning  

As discussed before, passive TMDs can become out of tune in some structures when 

the structural natural frequency changes, for example in a stadium due to human-

structure interaction. In this section, the effect of off-tuning on the performance of 

the passive TMD and HTMD in the same scenarios are investigated experimentally. 

6.6.1. Implementation of off-tuning in the structural model 

Since there was practical restriction for implementing off-tuning on the primary 

structure (laboratory slab), the dynamic properties of the TMD were changed by 

adding or removing inertial mass. This led to changes in the mass and frequency of 

the TMD and generated off-tuning situations in the structure/TMD system (Figure 

6-41). The TMD mass was changed from 340 kg (tuned scenario) to 250, 500 and 

700 kg. It should be noted that there are other ways to change the laboratory 

structure’s properties which will be explained in last chapter.  
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Similar to previously, FRF and time domain response measurements were carried out 

and the actuator force was monitored. 

  

   

Figure 6-41-practical implementation of off-tuning to the TMD/HTMD; mp=340 
kg (top-left), mp=250 kg masses (top right), mp=500 kg masses (bottom left), 

mp=700 kg masses (bottom right) 

6.6.2. Control algorithm and gain optimisation  

Similar control algorithm (robust control method) and gain optimisation introduced 

in the simulations in Chapter 5 were applied here. The only difference was the 

presence of the band-pass filter required for the measurements. Table 6-11 shows the 

feedback gains result from the GA. These gains were applied using the dSPACE 

control unit for all off-tuning scenarios. 

Table 6-11- Optimised gains for robust control method of laboratory HTMD 
(off-tuning gains)  

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

𝐾! 

(V/m) 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

0.000 -6.252 -396.835 -30.743 -0.089 
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6.6.3. FRF measurements 

Two different random noise inputs with frequency band of 0-10 Hz and 0-100 Hz 

were applied to the structure for the different scenarios. 

Figure 6-42, Figure 6-43 and Figure 6-44 show the FRF magnitude of the structural 

acceleration response in different scenarios. As these show, the performance of the 

passive TMD deteriorates when the off-tuning is applied to the system. 

Also, as these figures show, the HTMD FRF is almost completely inside the 

boundary of uncontrolled structure at all frequencies. Also, based on Figure 6-45, 

Figure 6-46 and Figure 6-47 except at the frequency of 38 Hz (i.e. the local mode of 

the TMD), there is little effect on higher modes from both TMD and HTMD. 

 

 

Figure 6-42- FRF comparison of structure with  mp=250 kg; uncontrolled 
structure (green), structure with TMD (blue), structure with HTMD (red); 

frequency span of 10 Hz 
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Figure 6-43- FRF comparison of structure with  mp=500 kg; uncontrolled 
structure (green), structure with TMD (blue), structure with HTMD (red) ); 

frequency span of 10 Hz 

 

Figure 6-44- FRF comparison of structure with  mp=700 kg; uncontrolled 
structure (green), structure with TMD (blue), structure with HTMD (red) ); 

frequency span of 10 Hz 

Table 6-12 compares the FRF magnitude in different scenarios between TMD and 

HTMD. As can be seen, the performance of the HTMD has at least 85% greater 

reduction in comparison with passive TMD for these off-tuning scenarios. 
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Table 6-12- Comparison of the FRF magnitude with different frequencies of the 
TMD and HTMD 

 
TMD mass 

Max. FRF magnitude 

((m/s2)/N) 

Reduction of 

max. FRF 

magnitude 

TMD 
500 

0.004772 - 

HTMD 0.0005455 89% 

TMD 
700 

0.006545 - 

HTMD 0.0009721 85% 

TMD 
250 

0.004857 - 

HTMD 0.00070771 85% 

 

 

Figure 6-45- FRF comparison of structure with  mp=250 kg; uncontrolled 
structure (green), structure with TMD (blue), structure with HTMD (red); 

frequency span of 100 Hz 
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Figure 6-46- FRF comparison of structure with  mp=500 kg; uncontrolled 
structure (green), structure with TMD (blue), structure with HTMD (red); 

frequency span of 100 Hz 

 

Figure 6-47- FRF comparison of structure with  mp=700 kg; uncontrolled 
structure (green), structure with TMD (blue), structure with HTMD (red); 

frequency span of 100 Hz 

6.6.4. Measurement of responses to controlled excitations 

Similar to earlier experiments, both sinusoidal and jumping tests were performed on 

the structure for different off-tuning scenarios. The responses of the structure were 

compared between TMD and HTMD. 
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Sinusoidal input force 

The sinusoidal input force applied to the structure in various scenarios had a 

frequency corresponding with the uncontrolled structural natural frequency. As 

shown in Figure 6-49 and Figure 6-50, the HTMD is more effective than the passive 

TMD in the presence of off-tuning. 

 

Figure 6-48- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with TMD (blue) and 

structure with HTMD (red); sinusoidal input force with frequency of 4.70 Hz; 
mp=700 kg 

 

Figure 6-49- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with TMD (blue) and 
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structure with HTMD (red); sinusoidal input force with frequency of 4.22 Hz; 
mp=250 kg 

However according to the Figure 6-48, the performance of the HTMD deteriorates 

for the scenario of mp=700, which is due to actuator saturation.  

 

Figure 6-50- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with TMD (blue) and 
structure with HTMD (red); sinusoidal input force with frequency of 4.70Hz; 

mp=500 kg 

Also, as Table 6-13 shows, except for the case mp=700, the HTMD is much more 

effective in reducing structural response than the passive TMD. 
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Table 6-13- Experimental time domain result comparison between TMD and 
HTMD in off-tuning situation; sinusoidal input force on the structure  

Scenario 
Peak Acc. (m/s2) 

MTVV of Acc. 

(m/s2) 

TMD HTMD TMD HTMD 

Sinusoidal @ 4.70Hz, 

mp=700 kg 
1.492 2.534 1.056 1.806 

Reduction - -70% - -71% 

Sinusoidal @ 4.22Hz, 

mp=250 kg 
0.7471 0.3098 0.545 0.2234 

Reduction - 59% - 59% 

Sinusoidal @ 4.70Hz, 

mp=500 kg 
2.182 0.2504 1.545 0.1775 

Reduction - 89% - 89% 

 

Jumping force  

The human jumping force was applied to the structure with frequency component of 

the resonant (peak of the FRFs) for individual scenarios. As can be seen from Figure 

6-51 and Figure 6-52, the HTMD is more effective in the presence of the off-tuning 

than the passive TMD.  
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Figure 6-51- Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with TMD (blue) and 
structure with HTMD (red); jumping input force with frequency of 2.30Hz; 

mp=700 kg  

 

Figure 6-52 Experimental time history of structural acceleration response and 
corresponding 1 second running RMS of the structure with TMD (blue) and 
structure with HTMD (red); jumping input force with frequency of 2.12Hz; 

mp=250 kg 

The numerical results from these measurements are compared in Table 6-14. The 

HTMD has at least 50% more reduction for cases when off-tuning is present in 

comparison with the passive TMD in the presence of human jumping force.  
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Table 6-14- Experimental time domain result comparison between TMD and 
HTMD in off-tuning situation; jumping input force on the structure  

Scenario 
Peak Acc. (m/s2) 

MTVV of Acc. 

(m/s2) 

TMD HTMD TMD HTMD 

Jumping @2.30 Hz, 

mp=700 kg 
1.256 0.3695 0.8 0.1964 

Reduction - 71% - 75% 

Jumping @2.12 Hz, 

mp=250 kg 
0.8702 0.4572 0.5865 0.2363 

Reduction - 47% - 60% 

 

6.6.5. Experimental determination of actuator effort 

The actuator control force was recorded and plotted for the different excitation and 

off-tuning scenarios. In all cases except the previously mentioned scenario (i.e. 

jumping force at 4.70 Hz with TMD of mp=700 kg), the actuator was operating 

within its capacity. 

 

Figure 6-53- Experimental actuator control force of HTMD with jumping input 
force with frequency of 2.30 Hz, mp =700 kg 
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Figure 6-54- Experimental actuator control force of HTMD with sinusoidal 
input force with frequency of 4.70 Hz, mp =700 kg  

 

Figure 6-55- Experimental actuator control force of HTMD with jumping input 
force with frequency of 2.12 Hz, mp =250 kg  
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Figure 6-56- Experimental actuator  control force of HTMD with sinusoidal 
input force with frequency of 4.22 Hz, mp =250 kg  

 

Figure 6-57- Experimental actuator control force of HTMD with sinusoidal 
input force with frequency of 4.70 Hz, mp =500 kg  
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Table 6-15- Experimental actuator control force of HTMD in off-tuning 
scenarios  

Scenario Peak Force (N) 
MTVV of Force 

(N) 

Jumping @ 2.30 Hz, mp=700 kg 280 168 

Sinusoidal @ 4.70 Hz, mp=700 kg 518 438 

Jumping @ 2.12 Hz, mp=250 kg 321 169 

Sinusoidal @ 4.22 Hz, mp=250 kg 198 123 

Sinusoidal @ 4.70 Hz, mp=500 kg 257 175 

 

Table 6-15 illustrates the maximum actuator force for the above experiments. It 

should be noted that the maximum capacity of the actuator is around 450 N.  

6.7. Conclusion and result discussion 

In this chapter, the design and construction of a laboratory HTMD was presented, 

which was then used for a range of experiments. The aim of this chapter was to 

verify the analytical models proposed previously and to experimentally investigate 

the performance of the HTMD on the laboratory structure.  

After explaining the design restriction and procedure, different tests were executed to 

approach the dynamic properties and behaviour of the HTMD/TMD. It was decided 

to remove the physical damper from TMD/HTMD since it did not work as expected. 

Instead, the damping force of the HTMD/TMD was designed to be generated by the 

actuator as an active damping force. The performance of this TMD with active 

damping force was compared with desired TMD with physical damper and it was 

demonstrated that the proposed TMD had the characeteristics of the desired TMD.  

The measurements on the laboratory structure demonstrated in general that the the 

HTMD was more effective for response reduction than the passive TMD. Also from 

time domain tests it was demonstrated that for different types of input force, HTMD 

can have more reduction with available capacity of the actuator.  

After implementing a number of off-tuning scenarios on the TMD/HTMD, it was 

demonstrated that although the TMD performance deteriorates when out of tune, the 
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HTMD continues to be effective and is still effective in reducing the structural 

response. 

Finally, the performance of HTMD was compared against that of the AMD. It was 

demonstrated that although AMD had more reduction in the structural response in 

the targeted mode, it had a negative effect on the second mode of vibration. 

Meanwhile, the HTMD reduces the response of the structure only in the targeted 

mode without having a negative effect on the second mode of vibration. Also, it was 

shown that the AMD required higher control force from the actuator in comparison 

with the HTMD. This shows that in the presence of a high level of vibration 

magnitude, HTMD is potentially more efficient in comparison with the AMD. 

After proposing HTMD and relevant control algorithm in earlier chapters and then 

practically test and verify these, author uses the proposed HTMD is a simulation 

model of a real stadium occupied by spectators. This will be the topic of next 

chapter.  
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7. Simulation of HTMD implementation on a stadium structure 
A shorter version of this chapter was presented and published in [149] and [162]. 

7.1. Introduction 

Off-tuning is one of the key disadvantages of passive TMDs, which are accepted as 

appropriate and established vibration control devices. In stadium structures, this issue 

may be the result of crowd-structure interaction which can lead to changes in 

structural natural frequencies. Because a TMD is designed to work at a particular 

frequency, this variation in the dynamics of the primary structure causes the TMD to 

become detuned and hence less efficient. 

In this chapter the data presented in  [38], [39] have been used to create a model of a 

stadium structure. Both transfer function and state space models are employed. These 

two models are used both in gain optimisation and analytical studies, respectively. 

Next, similar approaches as were presented in Sections 3.3.3 are used to design a 

TMD and HTMD and carry out simulations of the modelled structure. Similar 

investigations as were described previously for the laboratory structure are 

performed for the stadium structure by examining both frequency and time domain 

responses. Both structural acceleration response and the actuator effort are compared 

between the uncontrolled structure  and the structure with TMD and HTMD.  

Finally, the proportion of active people in the stadium is changed to simulate changes 

in structural dynamic properties and to and induce an off-tuning situation. The ability 

of the two proposed control algorithms to deal with off-tuning are determined and 

compared against the passive TMD. 

7.2. Grandstand model  

The structure for this research work is a stand in a football stadium in the United 

Kingdom (Figure 7-1) [39]. There is a short segment of upper tier seating in one of 

the corners of the stadium that is of particular interest. The length of this part is 

18.9 m and it has a cantilever length of about 7 m. Previous in-service vibration 

monitoring results carried out whilst the stadium was used for a concert event show 

that this area is quite lively [39]. 
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Figure 7-1- View of the modelled seating deck (left) and cross section of the tier 
(right) [39] 

Through both ambient vibration test [39] and updating of the finite element (FE) 

model of the empty structure [172], the modal properties of the structure were 

determined. The first local vertical mode appears at approximately 4.34 Hz. From 

both the auto-spectral density of the acceleration response of the structure and also 

from appropriate modelling of the stadium in the presence of both active and passive 

spectators structure considering human-structure interaction [172], the frequency 

reduced from 4.34 to 3.20 Hz, which coincided with the second harmonic of the 

musical beat the one song which produced maximum response, which had a beat 

frequency of 1.6 Hz. 

Table 7-1- Dynamic properties of the stadium 

Structure 
Frequency 

(Hz) 

Damping 

Ratio (%) 

Modal 

Mass (kg) 

Modal 

Damping 

(Ns/m) 

Modal 

Stiffness 

(N/m) 

Empty 4.34 3.70 82,811 167,105 61,578,233 

Full 3.20 11.00 108,019 567,396 61,578,233 

 

The proposed structural model is a 3 degree of freedom (3DOF) idealisation 

encompassing the empty structure and the active and passive spectators (Figure 7-2). 

The subscripts s, p, a, as and ps stand for structure, passive part of TMD/HTMD, 

actuator, active spectator and passive spectator, respectively.  
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Figure 7-2- 3DOF model of the stadium cantilever with active and passive 
spectators  

Based on Figure 7-2, the set of equations of motion of the system is given by: 

a) 𝑚!𝑥! 𝑡 + 𝑐! + 𝑐!" + 𝑐!" 𝑥! 𝑡 − 𝑐!"𝑥!" 𝑡 − 𝑐!"𝑥!" 𝑡 +

𝑘! + 𝑘!" + 𝑘!" 𝑥! 𝑡 − 𝑘!"𝑥!" 𝑡 − 𝑘!"𝑥!" 𝑡 = 𝑃!" 𝑡  

b) 𝑚!"𝑥!" 𝑡 −𝑐!"𝑥! 𝑡 + 𝑐!"𝑥!" 𝑡 −𝑘!"𝑥! 𝑡 + 𝑘!"𝑥!" 𝑡 = −𝑃!" 𝑡  

c) 𝑚!"𝑥!"   𝑡 −𝑐!"𝑥! 𝑡 + 𝑐!"𝑥!" 𝑡 − 𝑘!"𝑥! 𝑡 + 𝑘!"𝑥!" 𝑡 = 0 

( 7.1 ) 

 

𝑚!" and 𝑚!" are the mass of active and passive spectators. Also, 𝑃!" is the motion 

induced force produced within the active body unit. 

Table 7-2 shows the recommended frequencies and damping ratios of the active and 

passive spectators according to [24]. In the first instance, the passive TMD is used 

based on a design assumption of active/passive spectator ratio of 40%:60%. 
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Table 7-2- Dynamic properties of the passive and active spectators 

Crowd Population 
Frequency 

(Hz) 

Damping Ratio 

(%) 

Active 40% 2.3 25 

Passive 60% 5 40 

 

Table 7-3 shows the frequency of the first vertical mode of the structure when the 

ratio of active/passive spectators changes. As can be seen, the frequency of the 

structure varies from 2.71 to 4.17 Hz when the percentage of active people changes 

from 1% to 80% respectively. This is a -30% to 15% change in frequency in 

comparison with 3.20 Hz as the initial design frequency of the TMD.  

Table 7-3- Variation of spectator active/passive ratio and corresponding 
frequencies of the first vertical mode 

Scenario 

Active 

people 

(%) 

Mass of 

Active 

people mas 

(kg) 

Mass of 

Passive 

people mps 

(kg) 

Frequency of 

the first 

vertical mode 

structure (Hz) 

Changing of 

the frequency 

of the main 

structure (%) 

1 1% 970 96005 2.71 15% 

2 5% 4849 92126 2.74 14% 

3 10% 9698 87278 2.79 13% 

4 20% 19395 77580 2.9 9% 

5 30% 29093 67883 3.02 6% 

6 40% 38790 58185 3.2 0% 

7 60% 58185 38790 3.57 -12% 

8 80% 77580 19395 4.17 -30% 

 

7.2.1. Transfer function model of the structure 

To generate a transfer function model of the uncontrolled structure, equation ( 7.1 )  

is converted from time domain to Laplace domain:  

a) 𝑚!𝑠!𝑋! 𝑠 + 𝑐! + 𝑐!" + 𝑐!" 𝑠𝑋! 𝑠 − 𝑐!"𝑠𝑋!" 𝑠 − 𝑐!"𝑠𝑋!" 𝑠 + ( 7.2 ) 
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𝑘! + 𝑘!" + 𝑘!" 𝑋! 𝑠 − 𝑘!"𝑋!" 𝑠 − 𝑘!"𝑋!" 𝑠 = 𝑃!" 𝑠  

b) 𝑚!"𝑠!𝑋!" 𝑠 −𝑐!"𝑠𝑋! 𝑠 + 𝑐!"𝑠𝑋!" 𝑠 −𝑘!"𝑋! 𝑠 + 𝑘!"𝑋!" 𝑠 =

−𝑃!" 𝑠  

c) 𝑚!"𝑠!𝑋!" 𝑠 −𝑐!"𝑠𝑋! 𝑠 + 𝑐!"𝑠𝑋!" 𝑠 − 𝑘!"𝑋! 𝑠 + 𝑘!"𝑋!" 𝑠 = 0 

  

Rearranging ( 7.2 ) in terms of 𝑋! 𝑠 , 𝑋! 𝑠 , 𝑋!" 𝑠 , 𝑋!" 𝑠  and 𝑃!" 𝑠  leads to: 

a) 𝑚!𝑠!𝑋! 𝑠 + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘!" + 𝑘!" 𝑋! 𝑠 −

  𝑐!"𝑠+𝑘!"   𝑋!" 𝑠 −   𝑐!"𝑠+𝑘!"   𝑋!" 𝑠 =   𝑃!" 𝑠  

b) 𝑚!"𝑠! + 𝑐!"𝑠 + 𝑘!" 𝑋!" 𝑠 − [𝑐!"𝑠 + 𝑘!"]𝑋! 𝑠 = −𝑃!" 𝑠  

c) 𝑚!"𝑠! + 𝑐!"𝑠 + 𝑘!" 𝑋!" 𝑠 − [𝑐!"𝑠 + 𝑘!"]𝑋! 𝑠 = 0 

( 7.3 ) 

 

Defining G!,!,!"#,!,  G!,!,!"#,! , G!,!,!"#,!, G!,!,!"#,!, G!,!,!, G!",!,!, G!",!,! and G!",!,! 

by considering the acceleration as the output of each block (i.e. by multiplying s! 

term) as follows: 

𝐺!,!,!"#,! =
𝑋! 𝑠 𝑠!

𝑃!" 𝑠
=

𝑠!

𝑚!𝑠! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘!" + 𝑘!"
 ( 7.4 ) 

 

𝐺!,!,!"#,! =
𝑋!(𝑠)𝑠!

𝑋!" 𝑠 𝑠!
=

  𝑐!"𝑠+𝑘!"
𝑚!𝑠! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘!" + 𝑘!"

 ( 7.5 ) 

 

𝐺!,!,!"#,! =
𝑋!(𝑠)𝑠!

𝑋!" 𝑠 𝑠!
=

  𝑐!"𝑠+𝑘!"
𝑚!𝑠! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘!" + 𝑘!"

 ( 7.6 ) 

 

𝐺!",!,! =
𝑋!" 𝑠 𝑠!

𝑋! 𝑠 𝑠!
=

𝑐!"𝑠 + 𝑘!"
𝑚!"𝑠! + 𝑐!"𝑠 + 𝑘!"

 ( 7.7 ) 

 

𝐺!",!,! =
𝑋!" 𝑠 𝑠!

𝑃!" 𝑠
=   

−𝑠!

𝑚!"𝑠! + 𝑐!"𝑠 + 𝑘!"
 ( 7.8 ) 
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𝐺!",!,! =
𝑋!" 𝑠 𝑠!

𝑋! 𝑠 𝑠!
=   

𝑐!"𝑠 + 𝑘!"
𝑚!"𝑠! + 𝑐!"𝑠 + 𝑘!"

 ( 7.9 ) 

 

Substituting equations ( 7.4 ) to ( 7.9 ) into equation ( 7.3 ) and rearranging leads to:  

a) 𝑥! = 𝑃!"𝐺!,!,!"#,! + 𝑥!"𝐺!,!,!"#,! + 𝑥!"𝐺!,!,!"#,! 

b) 𝑥!" = 𝑃!"𝐺!",!,! + 𝑥!𝐺!",!,! 

c) 𝑥!" = 𝑥!𝐺!",!,! 
( 7.10 ) 

 

Rearranging equations ( 7.10 ) in terms of 𝑥! and 𝑃!" results in: 

𝑥! = 𝑃!"G!,!,!"#,! + (𝑃!"G!",!,! + 𝑥!G!",!,!)G!,!,!"#,! + (𝑥!G!",!,!)G!,!,!"#,! ( 7.11 ) 
 

Rearranging equation ( 7.11 ) generates the transfer function of the uncontrolled 

structure between the force from human occupants 𝑃!" and the acceleration of the 

primary structure 𝑥!. 

𝐻!"#,! =
𝑥!
𝑃!"

=   −(𝐺!,!,!"#,! + 𝐺!",!,! ∗ 𝐺!,!,!"#,!)/(𝐺!",!,! ∗ 𝐺!,!,!"#,!   

+   𝐺!",!,! ∗ 𝐺!,!,!"#,!   −   1) 
( 7.12 ) 

 

The transfer function in equation ( 7.12 ) is depicted in Figure 7-3.  



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

177 

 

Figure 7-3- Block diagram arrangement of the uncontrolled stadium as a 3DOF 
system 

7.2.2. State space model of the structure 

Based on equation ( 7.1 ), the states of uncontrolled structure are introduced as 

𝑋!,!"#,! = 𝑥!
𝑋!,!"#,! = 𝑥!
𝑋!,!"#,! = 𝑥!"
𝑋!,!"#,! = 𝑥!"
𝑋!,!"#,! = 𝑥!"
𝑋!,!"#,! = 𝑥!"

   ( 7.13) 

 

Hence, the SS representation of the system in the form of 𝑋!"#,! = 𝐴!"#,!𝑋!"#,! +

𝐵!"#,!𝑈!"#,! is developed as 

𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!

=

0 1 0 ⋯

−
𝑘! + 𝑘!" + 𝑘!"

𝑚!
−

𝑐! + 𝑐!" + 𝑐!"
𝑚!

𝑘!"
𝑚!

⋯

0 0 0 ⋯
𝑘!"
𝑚!"

𝑐!"
𝑚!"

−
𝑘!"
𝑚!"

⋯

0 0 0 ⋯
𝑘!"
𝑚!"

𝑐!"
𝑚!"

0 ⋯

 ( 7.14) 
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⋯ 0 0 0

⋯
𝑐!"
𝑚!

𝑘!"
𝑚!

𝑐!"
𝑚!

⋯ 1 0 0
⋯ −

𝑐!"
𝑚!"

0 0

⋯ 0 0 1

⋯ 0 −
𝑘!"
𝑚!"

−
𝑐!"
𝑚!"

  

𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!

+

0
1
𝑚!
0
−1
𝑚!"
0
0

   𝑃!"  

 

To obtain displacement, velocity and acceleration of the system as outputs in the 

form of  𝑌!"#,! = 𝐶!"#,!𝑋!"#,! + 𝐷!"#,!𝑈!"#,! , the output matrix is established as 

𝑌!,!"#,!
𝑌!,!"#,!
𝑌!,!"#,!

=

1 0 0 ⋯
0 1 0 ⋯

−
𝑘! + 𝑘!" + 𝑘!"

𝑚!
−

𝑐! + 𝑐!" + 𝑐!"
𝑚!

𝑘!"
𝑚!

⋯
 

  

⋯ 0 0 0
⋯ 0 0 0

⋯
𝑐!"
𝑚!

𝑘!"
𝑚!

𝑐!"
𝑚!

𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!

+

0
0
1
𝑚!

   𝑃!"  

( 7.15) 

 

This proposed state space model was employed in the subsequent analytical 

simulations.  

7.3. Grandstand model with attached TMD 

Figure 7-4 shows the model of the grandstand with a TMD attached to it. It is a 

4DOF system model including empty structure, active spectators, passive spectators 

and the TMD.  
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Figure 7-4- 4DOF model of the stadium cantilever with active and passive 
spectators and mounted TMD 

 

The properties of the designed TMD are summarised in Table 7-4. These properties 

has been calculated as Section 3.3.3.  

Table 7-4-TMD parameters employed in stadium model 

𝑚 𝑓 fp (Hz) ξp mp (kg) cp (Ns/m) kp (N/m) 

2.6% 0.98 3.15 5.1% 2,174 4,412 850,786 

 

Based on Figure 7-4, the set of equations of motion of the proposed 4DOF system is 

generated as :  

a) 𝑚!𝑥! 𝑡 + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑥! 𝑡 −𝑐! ∗ 𝑥! 𝑡 − 𝑐!"𝑥!" 𝑡 −

𝑐!"𝑥!" 𝑡 + 𝑘! + 𝑘! + 𝑘!" + 𝑘!" 𝑥! 𝑡 −𝑘!𝑥! 𝑡 − 𝑘!"𝑥!" 𝑡 −

𝑘!"𝑥!" 𝑡 = 𝑃!" 𝑡  

b) 𝑚!𝑥! 𝑡 −𝑐!𝑥! 𝑡 + 𝑐!𝑥! 𝑡 −𝑘!𝑥! 𝑡 + 𝑘!𝑥! 𝑡 = 0 

( 7.16 ) 
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c) 𝑚!"𝑥!" 𝑡 −𝑐!"𝑥! 𝑡 + 𝑐!"𝑥!" 𝑡 −𝑘!"𝑥! 𝑡 + 𝑘!"𝑥!" 𝑡 = −𝑃!" 𝑡  

d) 𝑚!"𝑥!"   𝑡 −𝑐!"𝑥! 𝑡 + 𝑐!"𝑥!" 𝑡 − 𝑘!"𝑥! 𝑡 + 𝑘!"𝑥!" 𝑡 = 0 

 

7.3.1. Transfer function model of the structure 

The transfer function of the 4DOF system was generated by converting the equation ( 

7.16 ) from time domain to Laplace domain as: 

a) 𝑚!𝑠!𝑋! 𝑠 + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑠𝑋! 𝑠 −𝑐!𝑠𝑋! 𝑠 − 𝑐!"𝑠𝑋!" 𝑠 −

𝑐!"𝑠𝑋!" 𝑠 + 𝑘! + 𝑘! + 𝑘!" + 𝑘!" 𝑋! 𝑠 −𝑘!𝑋! 𝑠 − 𝑘!"𝑋!" 𝑠 −

𝑘!"𝑋!" 𝑠 = 𝑃!" 𝑠  

b) 𝑚!𝑠!𝑋! 𝑠 −𝑐!𝑠𝑋! 𝑠 + 𝑐!𝑋! 𝑠 −𝑘!𝑋! 𝑠 + 𝑘!𝑋! 𝑠 = 0 

c) 𝑚!"𝑠!𝑋!" 𝑠 −𝑐!"𝑠𝑋! 𝑠 + 𝑐!"𝑠𝑋!" 𝑠 −𝑘!"𝑋! 𝑠 + 𝑘!"𝑋!" 𝑠 =

−𝑃!" 𝑠  

d) 𝑚!"𝑠!𝑋!" 𝑠 −𝑐!"𝑠𝑋! 𝑠 + 𝑐!"𝑠𝑋!" 𝑠 − 𝑘!"𝑋! 𝑠 + 𝑘!"𝑋!" 𝑠 = 0 

( 7.17 ) 

  

Rearranging ( 7.17 ) in terms of 𝑋! 𝑠 , 𝑋! 𝑠 , 𝑋!" 𝑠 , 𝑋!" 𝑠  and 𝑃!" 𝑠  leads to: 

a) 𝑚!𝑠!𝑋! 𝑠 + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 +

𝑘! + 𝑘! + 𝑘!" + 𝑘!" 𝑋! 𝑠 −   𝑐!𝑠+𝑘!   𝑋! 𝑠 −

  𝑐!"𝑠+𝑘!"   𝑋!" 𝑠 −   𝑐!"𝑠+𝑘!"   𝑋!" 𝑠 =   𝑃!" 𝑠  

b) 𝑚!𝑠! + 𝑐!𝑠 + 𝑘! 𝑋! 𝑠 − [𝑐!𝑠 + 𝑘!]𝑋! 𝑠 = 0 

c) 𝑚!"𝑠! + 𝑐!"𝑠 + 𝑘!" 𝑋!" 𝑠 − [𝑐!"𝑠 + 𝑘!"]𝑋! 𝑠 = −𝑃!" 𝑠  

d) 𝑚!"𝑠! + 𝑐!"𝑠 + 𝑘!" 𝑋!" 𝑠 − [𝑐!"𝑠 + 𝑘!"]𝑋! 𝑠 = 0 

( 7.18 ) 

 

Defining 𝐺!,!,!"#,!,  𝐺!,!,!"#,! , 𝐺!,!,!"#,!, 𝐺!,!,!"#,!, 𝐺!,!,!, 𝐺!",!,!, 𝐺!",!,! and 𝐺!",!,! 

by considering the acceleration as the output of each block (i.e. by multiplying s! 

term) as follows:  
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𝐺!,!,!"#,! =
𝑋! 𝑠 𝑠!

𝑃!" 𝑠

=
𝑠!

𝑚!𝑠! + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘! + 𝑘!" + 𝑘!"
 

( 7.19 ) 

 

𝐺!,!,!"#,! =
𝑋!(𝑠)𝑠!

𝑋! 𝑠 𝑠!

=
  𝑐!𝑠+𝑘!

𝑚!𝑠! + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘! + 𝑘!" + 𝑘!"
 

( 7.20 ) 

 

𝐺!,!,!"#,! =
𝑋!(𝑠)𝑠!

𝑋!" 𝑠 𝑠!

=
  𝑐!"𝑠+𝑘!"

𝑚!𝑠! + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘! + 𝑘!" + 𝑘!"
 

( 7.21 ) 

 

𝐺!,!,!"#,! =
𝑋!(𝑠)𝑠!

𝑋!" 𝑠 𝑠!

=
  𝑐!"𝑠+𝑘!"

𝑚!𝑠! + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑠 + 𝑘! + 𝑘! + 𝑘!" + 𝑘!"
 

( 7.22 ) 

 

𝐺!,!,! =
𝑋!(𝑠)𝑠!

𝑋!(𝑠)𝑠!
=

[𝑐!𝑠 + 𝑘!]
𝑚!𝑠! + 𝑐!𝑠 + 𝑘!

 ( 7.23 ) 

 

Substituting equations ( 7.19 ) to ( 7.23 ) into the equation ( 7.18 ) results in: 

a) 𝑥! = 𝑃!"𝐺!,!,!"#,! + 𝑥!𝐺!,!,!"#,! + 𝑥!"𝐺!,!,!"#,! + 𝑥!"𝐺!,!,!"#,! 

b) 𝑥! = 𝑥!𝐺!,!,! 

c) 𝑥!" = 𝑃!"𝐺!",!,! + 𝑥!𝐺!",!,! 

d) 𝑥!" = 𝑥!𝐺!",!,! 

( 7.24 ) 

 

Rearranging equations ( 7.24 ) in terms of 𝑥! and 𝑃!" results in:  
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𝑥! = 𝑃!"G!,!,!"#,! + (𝑥!G!,!,!)G!,!,!"#,! + (𝑃!"G!",!,! + 𝑥!G!",!,!)G!,!,!"#,!

+ (𝑥!G!",!,!)G!,!,!"#,! ( 7.25 ) 

 

The transfer function of the system between external force 𝑃!" and primary structure 

acceleration 𝑥! is derived as:  

𝐻!"#,! =
𝑥!
𝑃!"

= −(𝐺!,!,!"#,!   +   𝐺!",!,! ∗ 𝐺!,!,!"#,!)/(𝐺!",!,! ∗ 𝐺!,!,!"#,!   

+   𝐺!,!,! ∗ 𝐺!,!,!"#,!   +   𝐺!",!,! ∗ 𝐺!,!,!"#,!   −   1) 
( 7.26 ) 

 

The transfer function block diagram of this system is depicted in Figure 7-5.  

 

Figure 7-5- Block diagram arrangement of the stadium with TMD as a 4DOF 
system 

7.3.2. State space model of the system 

Based on equation ( 7.16 ), the states of the system are introduced as:  



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

183 

𝑋!,!"#,! = 𝑥!
𝑋!,!"#,! = 𝑥!
𝑋!,!"#,! = 𝑥!
𝑋!,!"#,! = 𝑥!
𝑋!,!"#,! = 𝑥!"
𝑋!,!"#,! = 𝑥!"
𝑋!,!"#,! = 𝑥!"
𝑋!,!"#,! = 𝑥!"

   ( 7.27) 

 

Hence, the SS representation of the model in the form of 𝑋!"#,! = 𝐴!"#,!𝑋!"#,! +

𝐵!"#,!𝑈!"#,! becomes  

𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!

=

0 1 0 0 ⋯

−
𝑘! + 𝑘! + 𝑘!" + 𝑘!"

𝑚!
−

𝑐! + 𝑐! + 𝑐!" + 𝑐!"
𝑚!

𝑘!
𝑚!

𝑐!
𝑚!

⋯

0 0 0 1 ⋯
𝑘!
𝑚!

𝑐!
𝑚!

−
𝑘!
𝑚!

−
𝑐!
𝑚!

⋯

0 0 0 0 ⋯
𝑘!"
𝑚!"

𝑐!"
𝑚!"

0 0 ⋯

0 0 0 0 ⋯
𝑘!"
𝑚!"

𝑐!"
𝑚!"

0 0 ⋯

 

( 7.28) 



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

184 

  

⋯ 0 0 0 0

⋯
𝑘!"
𝑚!

𝑐!"
𝑚!

𝑘!"
𝑚!

𝑐!"
𝑚!

⋯ 0 0 0 0
⋯ 0 0 0 0
⋯ 0 1 0 0

⋯ −
𝑘!"
𝑚!"

−
𝑐!"
𝑚!"

0 0

⋯ 0 0 0 1

⋯ 0 0 −
𝑘!"
𝑚!"

−
𝑐!"
𝑚!"

𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!

  +

0
1
𝑚!
0
0
0

−
1
𝑚!"
0
0

   𝑃!"  

 

To obtain displacement, velocity and acceleration of the structure and TMD as 

outputs in the form of  𝑌!"#,! = 𝐶!"#,!𝑋!"#,! + 𝐷!"#,!𝑈!"#,! , the output matrix is 

introduced as 

𝑌!,!"#,!
𝑌!,!"#,!
𝑌!,!"#,!
𝑌!,!"#,!
𝑌!,!"#,!
𝑌!,!"#,!

=

=

1 0 0 0 ⋯
0 1 0 0 ⋯

−
𝑘! + 𝑘! + 𝑘!" + 𝑘!"

𝑚!
−

𝑐! + 𝑐! + 𝑐!" + 𝑐!"
𝑚!

𝑘!
𝑚!

𝑐!
𝑚!

⋯

0 0 1 0 ⋯
0 0 0 1 ⋯
𝑘!
𝑚!

𝑐!
𝑚!

−
𝑘!
𝑚!

−
𝑐!
𝑚!

⋯

 

  

⋯ 0 0 0 0
⋯ 0 0 0 0

⋯
𝑘!"
𝑚!

𝑐!"
𝑚!

𝑘!"
𝑚!

𝑐!"
𝑚!

⋯ 0 0 0 0
⋯ 0 0 0 0
⋯ 0 0 0 0

𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!
𝑋!,!"#,!

  +

0
0
1
𝑚!
0
0
0

   𝑃!"  

( 7.29) 
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7.4. Grandstand model with attached HTMD 

As noted earlier, the HTMD consists of a passive TMD in addition to an inertial 

actuator. Figure 7-6 illustrates the 5DOF model including the empty structure, active 

spectators, passive spectators, passive TMD and actuator.  

The actuator used in this chapter is similar to those employed in earlier chapters for 

the laboratory simulations and testing. However, since the scale of the force and 

vibration is much larger, it is assumed that the capacity of the actuator is higher than 

450 N by removing the saturation block in the simulations.  

 

Figure 7-6- 5DOF model of the stadium cantilever with active and passive 
spectators and mounted HTMD 

Based on Figure 7-6, the set of equations of motion of the proposed 5DOF system is 

generated as:  

a) 𝑚!𝑥! 𝑡 + 𝑐! + 𝑐! + 𝑐!" + 𝑐!" 𝑥! 𝑡 −𝑐!𝑥! 𝑡 − 𝑐!"𝑥!" 𝑡 − 𝑐!" ∗ ( 7.30 ) 
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𝑥!" 𝑡 + 𝑘! + 𝑘! + 𝑘!" + 𝑘!" 𝑥! 𝑡 −𝑘!𝑥! 𝑡 − 𝑘!"𝑥!" 𝑡 −

𝑘!"𝑥!" 𝑡 = 𝑃!" 𝑡  

b) 𝑚!𝑥! 𝑡 −𝑐!𝑥! 𝑡 + 𝑐!𝑥! 𝑡 −𝑘!𝑥! 𝑡 + 𝑘!𝑥! 𝑡 = 𝐹!,!"# 𝑡  

c) 𝑚!"𝑥!" 𝑡 −𝑐!"𝑥! 𝑡 + 𝑐!"𝑥!" 𝑡 −𝑘!"𝑥! 𝑡 + 𝑘!"𝑥!" 𝑡 = −𝑃!" 𝑡  

d) 𝑚!"𝑥!"   𝑡 −𝑐!"𝑥! 𝑡 + 𝑐!"𝑥!" 𝑡 − 𝑘!"𝑥! 𝑡 + 𝑘!"𝑥!" 𝑡 = 0 

e) 𝑚!"#𝑥!"# t + 𝑚!"#𝜀!"# + 𝑐!"# 𝑥!"# t + 𝑐!"#𝜀!"# + 𝑘!"# 𝑥! t +
𝑘!𝜀!"# 𝑥!"# 𝑡 = 𝑣!"#𝑚!"#𝑉!",!"# 𝑡  

 

Also, as was derived in earlier chapters, the actuator degree of freedom is replaced 

by its inertia force (i.e. 𝐹!,!"#) acting on the TMD mass.  

7.4.1. Transfer function model of the structure 

The transfer function of the 5DOF system is generated by converting equation ( 7.30 

) from the time domain to the Laplace domain. Defining 𝐺!,!,! based on the 

acceleration as the output of each block (i.e. by multiplying s! term) as follows:  

𝐺!,!,! =
𝑋!(𝑠)𝑠!

𝐹𝐼,𝑎𝑐𝑡(𝑠)
=

𝑠!

𝑚!𝑠! + 𝑐!𝑠 + 𝑘!
 ( 7.31 ) 

 

Substituting and rearranging these equations as before leads to : 

a) 𝑥! = 𝑃!"𝐺!,!,!"#,! + 𝑥!𝐺!,!,!"#,! + 𝑥!"𝐺!,!,!"#,! + 𝑥!"𝐺!,!,!"#,! 

b) 𝑥! = 𝑥!𝐺!,!,! + 𝐹𝐼,𝑎𝑐𝑡𝐺!,!,! 

c) 𝑥!" = 𝑃!"𝐺!",!,! + 𝑥!𝐺!",!,! 

d) 𝑥!" = 𝑥!𝐺!",!,! 

( 7.32 ) 

 

Regenerating equation ( 7.32 ) in terms of 𝑥! and 𝑃!" and also rewriting the equation 

of motion of the actuator as part a and b of equation ( 7.33 ) gives:  

a) 𝑥! = 𝑃!"𝐺!,!,!"#,! + (𝑥!𝐺!,!,! + 𝐹𝐼,𝑎𝑐𝑡𝐺!,!,!)𝐺!,!,!"#,! + (𝑃!"𝐺!",!,! +

𝑥!𝐺!",!,!)𝐺!,!,!"#,! + (𝑥!𝐺!",!,!)𝐺!,!,!"#,! 

b) 𝐹!,!"# = 𝑉!!,!"# ∗ 𝐺𝑎𝑐𝑡 = 𝐾3𝑥! + 𝐾2  𝑥! + 𝐾1  𝑥! + 𝐾4  𝑥! + 𝐾5  𝑥! ∗ 𝐺𝑎𝑐𝑡   
( 7.33 ) 
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Combining part a and b of equation ( 7.33 ) results in: 

𝑥! = −(𝐺!,!,!"#,!𝑃!"   +   𝐺!",!,!𝐺!,!,!"#,!𝑃!")/(𝐺!",!,!𝐺!,!,!"#,!   

+   𝐺!,!,!𝐺!,!,!"#,!   −   (𝐺!,!,!"#,!(𝐺!,!,! +   𝐺!"#𝐺!,!,!(𝐾!   

+   𝐺!"#𝐾!)))/(𝐺!"#𝐺!,!,!(𝐾!𝐺!"#! + 𝐾!𝐺!"#   +   𝐾!)− 1)   

− 1) 

( 7.34 ) 

 

 

Figure 7-7- Block diagram arrangement of the stadium with HTMD as a 5DOF 
system 

Therefore, the transfer function of the system between the human force 𝑃!" and 

acceleration of the primary structure 𝑥! is derived as: 
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𝐻!"#$,! =
𝑥!
𝑃!"

= 

−(𝐺!,!,!"#,!   +   𝐺!",!,!𝐺!,!,!"#,!)/(𝐺!",!,!𝐺!,!,!"#,!   +   𝐺!",!,!𝐺!,!,!"#,!   

−   (𝐺!,!,!"#,!(𝐺!,!,!   +   𝐺!"#𝐺!,!,!(𝐾!   

+   𝐺!"#𝐾!)))/(𝐺!"#𝐺!,!,!(𝐾!𝐺!"#!   +   𝐾!𝐺!"#   +   𝐾!)   −   1)   

−   1) 

( 7.35 ) 

 

It should be noted that 𝐾! to 𝐾! are similar types of feedback gains as defined in 

Section 3.6.  

7.4.2. State space model of the system 

Based on equation ( 7.30 ), the states of the system are introduced as  

𝑋!,!"#$,! = 𝑥!
𝑋!,!"#$,! = 𝑥!
𝑋!,!"#$,! = 𝑥!
𝑋!,!"#$,! = 𝑥!
𝑋!,!"#$,! = 𝑥!"
𝑋!,!"#$,! = 𝑥!"
𝑋!,!"#$,! = 𝑥!"
𝑋!,!"#$,! = 𝑥!"
𝑋!,!"#$,! = 𝑥!"#
𝑋!",!"#$,! = 𝑥!"#
𝑋!!,!"#$,! = 𝑥!"#

   ( 7.36) 

  

Hence, the SS representation of the system in the form of 

𝑋!!"#,! = 𝐴!!"#,!𝑋!!"#,! + 𝐵!!"#,!𝑈!!"#,! becomes: 
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𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!",!"#$,!
𝑋!!,!"#$,!

=

0 1 ⋯

−
𝑘! + 𝑘! + 𝑘!" + 𝑘!"

𝑚!
−

𝑐! + 𝑐! + 𝑐!" + 𝑐!"
𝑚!

⋯

0 0 ⋯
𝑘!
𝑚!

𝑐!
𝑚!

⋯

0 0 ⋯
𝑘!"
𝑚!"

𝑐!"
𝑚!"

⋯

0 0 ⋯
𝑘!"
𝑚!"

𝑐!"
𝑚!"

⋯

0 0 ⋯
0 0 ⋯
0 0 ⋯

 

  

⋯ 0 0 0 0 0 0 ⋯

⋯
𝑘!
𝑚!

𝑐!
𝑚!

𝑘!"
𝑚!

𝑐!"
𝑚!

𝑘!"
𝑚!

𝑐!"
𝑚!

⋯

⋯ 0 1 0 0 0 0 ⋯

⋯ −
𝑘!
𝑚!

−
𝑐!
𝑚!

0 0 0 0 ⋯

⋯ 0 0 0 1 0 0 ⋯

⋯ 0 0 −
𝑘!"
𝑚!"

−
𝑐!"
𝑚!"

0 0 ⋯

⋯ 0 0 0 0 0 1 ⋯

⋯ 0 0 0 0 −
𝑘!"
𝑚!"

−
𝑐!"
𝑚!"

⋯

⋯ 0 0 0 0 0 0 ⋯
⋯ 0 0 0 0 0 0 ⋯
⋯ 0 0 0 0 0 0 ⋯

 

⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 0 0
⋯ 0 1 0
⋯ 0 0 1

⋯ −
𝑘!"#𝜀!"#
𝑚!"#

−
𝑐!"#𝜀!"# + 𝑘!"#

𝑚!"#
−

𝑚!"#𝜀!"# + 𝑐!"#
𝑚!"#

⋯ 

( 7.37) 
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⋯

𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!",!"#$,!
𝑋!!,!"#$,!

  +

0 0 0
1
𝑚!

0 0

0 0 0

0
1
𝑚!

0

0 0 0

−
1
𝑚!"

0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 𝑣!"#

  
𝑃!"
𝐹!,!"#
𝑉!",!"#

 

 

It should be noted the TF of the actuator (actuator dynamics) is included in the SS 

representation. To achieve the output as displacement, velocity and acceleration of 

the structure and TMD, and also displacement, velocity and inertia force of actuator 

in the form of  𝑌!!"#,! = 𝐶!!"#,!𝑋!!"#,! + 𝐷!!"#,!𝑈!!"#,! , the output matrix is 

introduced as: 

𝑌!,!"#$,!
𝑌!,!"#$,!
𝑌!,!"#$,!
𝑌!,!"#$,!
𝑌!,!"#$,!
𝑌!,!"#$,!
𝑌!,!"#$,!
𝑌!,!"#$,!
𝑌!,!"#$,!

⋯

=

1 0 0 0 ⋯
0 1 0 0 ⋯

−
𝑘! + 𝑘! + 𝑘!" + 𝑘!"

𝑚!
−

𝑐! + 𝑐! + 𝑐!" + 𝑐!"
𝑚!

𝑘!
𝑚!

𝑐!
𝑚!

⋯

0 0 1 0 ⋯
0 0 0 1 ⋯
𝑘!
𝑚!

𝑐!
𝑚!

−
𝑘!
𝑚!

−
𝑐!
𝑚!

⋯

0 0 0 0 ⋯
0 0 0 0 ⋯
0 0 0 0 ⋯

 

( 7.38) 
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⋯
𝑘!"
𝑚!

𝑐!"
𝑚!

𝑘!"
𝑚!

𝑐!"
𝑚!

0 0 0

⋯ 0 0 0 0 0 0 0
⋯ 0 0 0 0 0 0 0
⋯ 0 0 0 0 0 0 0
⋯ 0 0 0 0 0 0 0
⋯ 0 0 0 0 0 0 0
⋯ 0 0 0 0 1 0 0
⋯ 0 0 0 0 0 1 0
⋯ 0 0 0 0 0 0 𝑚!"#

𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!,!"#$,!
𝑋!",!"#$,!
𝑋!!,!"#$,!

  ⋯ 

⋯+

0 0 0
0 0 0
1
𝑚!

0 0

0 0 0
0 0 0

0
1
𝑚!

0

0 0 0
0 0 0
0 0 0

∗   
𝑃!"
𝐹!,!"#
𝑉!",!"#

 

 

7.5. HTMD control algorithm 

To optimise the feedback gains, a similar approach as depicted in an earlier chapter 

(Section 4.1.1) was employed by using a GA. To set the upper and lower band of the 

gains, the root locus method was applied. Table 7-5 summarises the ranges of these 

gains based on the stability of the closed-loop system. 

Table 7-5- Stability range of the gains  

Type of response feedback Gain Range 

K3, Velocity of the main structure, 𝑋!"#$ = 𝑥! [-4040,0] 

K2, Acceleration of the main structure, 𝑋!"#$ = 𝑥! [-207,0] 

K1, Displacement of the TMD, 𝑋!"#$ = 𝑥! [-5670,0] 

K4, Velocity of the TMD, 𝑋!"#$ = 𝑥! [-261,0] 

K5, Acceleration of the TMD, 𝑋!"#$ = 𝑥! [-22,0] 
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Employing the transfer functions derived earlier (eq. 7.35), the optimised feedback 

gains for the scenario when the ratio of active/passive spectators is 40:60 were 

calculated. The result of the optimisation is shown in Table 7-6.  

Table 7-6- Optimised performance gains for stadium model with HTMD 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

𝐾! 

(V/m) 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

0.000 -40 -4125 -60 -11 

 

A similar approach as was used in Section 5.3 to determine the appropriate gains for 

off-tuning scenarios. Both approaches were used for the off-tuning design; robust 

gain and adaptive control. 

By applying the derived transfer functions of the system and using the GA method, 

the gains for both control methods were generated. These are shown in Table 7-7 and 

Table 7-8.  

Table 7-7- Optimised adaptive control gains for stadium model with HTMD 

Scenario 
Active 

people (%) 
𝐾! 𝐾! 𝐾! 𝐾! 𝐾! 

1 1% 0 0 -44.16 -2 0 

2 5% 0 0 -41.4 -1.8 0 

3 10% 0 0 -35.88 -1.7 0 

4 20% 0 0 -27.6 -1.2 0 

5 30% 0 0 -16.56 -0.7 0 

6 40% -40 -4125 -60.72 -11 -40 

7 60% -40 -1375 -22.08 -1.6 -40 

8 80% -10 -4400 -8.28 -2.2 -10 

 

As noted before, when using the robust control approach just one set of gains was 

used to deal with the off-tuning in different scenarios. Conversely, for the adaptive 

control approach, different sets of gains were used for the various proportions of 

active occupants.  
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Table 7-8- Optimised robust control gains for stadium model with HTMD 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

𝐾! 

(V/m) 

𝐾! 

(Vs/m) 

𝐾! 

(Vs2/m) 

0.000 -50 -475 -99 -0.6739 

 

7.6. Analytical simulation 

The generated state space models were used to simulate the modelled structure in 

different scenarios. These included the uncontrolled structure, structure with attached 

TMD and finally structure with attached HTMD. 

Similar to previous simulations, both FRFs and time domain responses were 

investigated. In addition to the structural response comparison, the actuator effort and 

required control force was also explored.  

7.6.1. Excitation forces  

Similar to the earlier chapter (section 4.2.1), two types of forces were used. For FRF 

simulations a random noise signal with frequency span of 0-50 Hz and magnitude of 

2.0 V as the input voltage to the actuator amplifier. This was applied directly to the 

structure DOF. 

To simulate the input force for the time domain response analyses, the 

recommendation of [24] was applied. This is similar to the force that was used in the 

earlier chapter. In this case the motion induced force is produced as a force couple 

applied to both the body unit and the structure (i.e. 𝑃!"). Accordingly, this can be 

generated as: 

𝑃!" = 𝜌!"#$𝑚𝑔 𝐺!"#,!cos  (2𝜋𝑖𝑓!"#$𝑡 + 𝜃!)
!!!

!!!

 ( 7.39 ) 

where  

𝑚𝑔 = 𝑔 𝑚!"𝜙!

!!

!!!

 ( 7.40 ) 

and 𝜌!"#$ is the crowd effectiveness factor, 𝑚 is the mass of the crowd, 𝑔 is the 

gravity acceleration, 𝐺!"#,! is a generated load factor (GLF) for harmonic i, 𝑓!"#$ is 
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the frequency of the crowd activity (music beat in this model), 𝑡 is time and 𝜃! is the 

phase difference for harmonic i. Also 𝑚!" is the mass of each person (i.e. 80 kg), 𝜙! 

is the amplitude of the mode shape at the location of each individual and 𝑁! is the 

number of people.  

For this particular structure, there were seven rows in the grandstand each with 45 

people. Hence, each row’s people weights should be multiplied to its corresponding 

mode shape amplitude (with the maximum of 𝜙! = 1 at the tip of cantilever).  

The beat frequency was set as the half of the frequency of the structure for each 

scenario. This meant that, depending on the ratio of active/passive spectators, the 

frequency of the human activity is assumed to vary as well. This led to the second 

harmonic of the jumping activity always to be applied at the structural resonant 

frequency for each scenario.  

Based on [24], the scenario 4 condition is selected where “The whole crowd active”. 

Since the RMS of the acceleration is used, 𝜃! = 0 is chosen (due to summing the 

responses using SRSS method). The crowd effectiveness factor (  𝜌!"#$ ) for scenario 

4 can be calculated as: 

𝜌!"#$ 𝑓!"#$ = sech  (𝑓!"#$ − 2) ( 7.41 ) 
 

The GLFs for scenario 4 were applied as 𝐺!"#,! = 0.375, 𝐺!"#,! = 0.095 and 

𝐺!"#,! = 0.026. The generated modal force as the result of this approach is shown in 

Figure 7-8.  
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Figure 7-8- Extract from the modal force time history from an active spectator 

 

7.6.2. Results from simulations 

Results are given here for both the FRF simulations and the time domain responses 

due to human excitation. 

It should be noted that each part of the analysis contains three parts. Firstly, the 

proposed feedback gains for the 40:60 scenario in which the performance of HTMD 

is compared against the tuned TMD. 

Secondly, the performance of HTMD in the off-tuning scenario using the robust gain 

method is investigated by changing the frequency of the human/structure system by 

varying the ratio of active/passive people. 

Finally, the performance of the HTMD is compared against the passive TMD with 

the same off-tuning scenarios using adaptive control gains.  

7.6.2.1.FRF simulations 

The results of simulations using band-limited random input force are the sets of FRFs 

between the excitation and resulting structural acceleration. It should be noted the 

crowd’s DOF is included in the simulation. These show the performance of 

controller for different control scenarios. A Hanning window with 50% overlap was 

applied to the data when calculating FRFs. 
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Structural response reduction using HTMD 

Figure 7-9 shows the FRFs between the structural acceleration response and input 

force applied to the structure DOF for the scenario where the TMD is tuned to the 

structure (40:60 ratio of active/passive people). As can be seen, both the passive 

TMD and HTMD reduce the structural response compared with the uncontrolled 

structure. However, the performance of the HTMD is better in comparison with 

passive TMD.  

 

Figure 7-9- FRF magnitude comparison of the stadium model; uncontrolled 
structure (green), structure with TMD (blue) and HTMD (green) 

Table 7-9 shows the key numerical results corresponding with the FRF plots. 

Although the TMD is well tuned, the FRF including HTMD still has around 11% 

greater reduction in comparison with the passive TMD.  

Table 7-9- FRF reduction comparison of the stadium model 

Type 

FRF magnitude at highest peak 

(m/s2)/N 

FRF magnitude at 

uncontrolled resonant 

frequency (m/s2)/N 

Unc. TMD HTMD Unc. TMD HTMD 

Magnitude 2.49E-05 2.19E-05 1.95E-05 2.49E-05 1.90E-05 1.78E-05 

Reduction from 

unc. 
- 12% 22% - 24% 29% 



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

197 

Reduction from 

TMD 
- - 11% - - 6% 

 

Off-tuning scenario using robust gain approach  

The active/passive crowd ratio was varied as described previously, resulting in a 

range of dominant frequencies of the human/structure system in the range of 2.71 to 

4.17 Hz. The single set of robust gains were used for all of these configurations.  

Figure 7-10 to Figure 7-17 show the FRFs of the uncontrolled structure, structure 

with TMD and HTMD. In scenario 6 (i.e. fs=3.20Hz with active/passive ratio of 

40:60), the passive TMD is tuned. As can be seen from Figure 7-15 shows, when the 

robust gain method is employed for the tuned scenario, the maximum response of the 

structure with HTMD is mainly within the boundary of the TMD response.  

 

Figure 7-10- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 1(1:99); uncontrolled structure (green), structure with TMD (blue) and 
HTMD (green) 
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Figure 7-11- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 2 (5:95);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 

 

Figure 7-12- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 3 (10:90);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 
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Figure 7-13- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 4 (20:80);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 

 

Figure 7-14- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 5 (30:70);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 
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Figure 7-15- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 6 (40:60);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 

 

Figure 7-16- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 7 (60:40);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 
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Figure 7-17- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Robust Gains method; 

scenario 8 (80:20);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 

As Figure 7-10 to Figure 7-17 show, when the frequency of the structure changes 

from 3.20 Hz due to the varying crowd configurations, the TMD becomes detuned 

and hence its performance is reduced. However, the HTMD is capable of 

compensating for this lack of tuning and hence shows relatively good performance 

for all crowd configurations.  
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Table 7-10- FRF reduction comparison of the stadium model in the presence of 
off-tuning using Robust Gain control method 

Scenario 

Type 

FRF magnitude at highest 

peak (m/s2)/N 

FRF magnitude at 

uncontrolled resonant 

frequency (m/s2)/N 

Unc. TMD HTMD Unc. TMD HTMD 

1 

Magnitude 6.65E-05 6.55E-05 4.11E-05 6.65E-05 6.34E-05 3.70E-05 

Red. Unc. - 2% 38% - 5% 44% 

Red. TMD - - 37% - - 42% 

2 

Magnitude 5.48E-05 5.37E-05 3.56E-05 5.48E-05 5.21E-05 3.30E-05 

Red. Unc. - 2% 35% - 5% 40% 

Red. TMD - - 34% - - 37% 

3 

Magnitude 4.52E-05 4.40E-05 3.07E-05 4.52E-05 4.25E-05 2.91E-05 

Red. Unc. - 3% 32% - 6% 36% 

Red. TMD - - 30% - - 32% 

4 

Magnitude 3.42E-05 3.27E-05 2.44E-05 3.42E-05 3.10E-05 2.39E-05 

Red. Unc. - 4% 29% - 9% 30% 

Red. TMD - - 25% - - 23% 

5 

Magnitude 2.83E-05 2.63E-05 2.09E-05 2.83E-05 2.35E-05 2.08E-05 

Red. Unc. - 7% 26% - 17% 27% 

Red. TMD - - 21% - - 11% 

6 

Magnitude 2.49E-05 2.19E-05 1.90E-05 2.49E-05 1.90E-05 1.90E-05 

Red. Unc. - 12% 24% - 24% 24% 

Red. TMD - - 13% - - 0% 

7 

Magnitude 2.16E-05 2.07E-05 1.75E-05 2.16E-05 2.05E-05 1.74E-05 

Red. Unc. - 4% 19% - 5% 19% 

Red. TMD - - 15% - - 15% 

8 

Magnitude 2.18E-05 2.15E-05 1.92E-05 2.18E-05 2.15E-05 1.87E-05 

Red. Unc. - 1% 12% - 1% 14% 

Red. TMD - - 11% - - 13% 
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As can be seen from Table 7-10, when the dominant frequency of the 

human/structure system is much lower than the tuning frequency (Scenario 1), the 

HTMD has 42% further reduction in the structural response in comparison with 

passive TMD.  

Meanwhile when the frequency of the human/structure system increases, although 

the reduction in structural response with HTMD is less in comparison with the 

scenario of the structure with lower frequencies than the tuning frequency. 

Nevertheless, there is still almost 13% reduction in comparison with passive TMD.  

Also as the figures show, the FRF of the structure with HTMD is almost inside the 

boundary of the uncontrolled structure and structure with TMD and this avoids 

amplification in response for non-resonant frequencies.  

Off-tuning scenario using adaptive control approach 

Herein, a different control approach as section 5.3.2 is employed on the similar off-

tuning scenarios. However, in the current method for individual structural 

frequencies, a specified set of gains is employed.  

Figure 7-18 to Figure 7-25 demonstrate the FRF of the structure in different 

scenarios. As can be seen, the HTMD can reduce the response over a range of 

scenarios with different dominant frequencies of the human/structure system 

compared with the passive TMD.  

In addition, the FRFs of the structure with HTMD are almost completely inside the 

boundary of the FRFs of the uncontrolled structure and structure with passive TMD. 

This avoids the amplification of the response at non-resonant frequencies.  



HYBRID CONTROL OF HUMAN-INDUCED VIBRATION                          Nima Noormohammadi 

 

204 

 

Figure 7-18- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 
scenario 1 (1:99);  uncontrolled structure (green), structure with TMD (blue) 

and HTMD (green) 

 

Figure 7-19- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 
scenario 2 (5:95); uncontrolled structure (green), structure with TMD (blue) 

and HTMD (green) 
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Figure 7-20- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 

scenario 3 (10:90);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 

 

Figure 7-21- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 
scenario 4(20:80);  uncontrolled structure (green), structure with TMD (blue) 

and HTMD (green) 
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Figure 7-22- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 
scenario 5(30:70);  uncontrolled structure (green), structure with TMD (blue) 

and HTMD (green) 

 

Figure 7-23- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 

scenario 6 (40:60);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 
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Figure 7-24- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 

scenario 7 (60:40);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 

 

 

Figure 7-25- FRF magnitude comparison of the structural acceleration of the 
stadium model in the presence of off-tuning using Adaptive Control method; 

scenario 8 (80:20);  uncontrolled structure (green), structure with TMD (blue) 
and HTMD (green) 

Figure 7-23 shows the FRFs of the structure for the well-tuned TMD scenario. In this 

case the adaptive control approach gives similar gains as for the robust control 
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approach and hence the HTMD again has around 11% more reduction in comparison 

with the passive TMD. 

Table 7-11 shows the numerical results from the FRF analysis for the adaptive 

control approach. As can be seen, when the frequency of the human/structure system 

reduces, the HTMD has better performance compared with when the frequency of 

the human-structure system increases. This is a similar conclusion to the robust gains 

method. 

Table 7-11 also shows that when the dominant frequency of the human/structure 

system increases (higher number of active people), the adaptive control method 

causes more reduction initially in comparison with robust gain approach. However, 

when number of active spectators increases (i.e. higher structural frequencies), both 

adaptive control and robust gain have similar performance of response reduction.    
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Table 7-11- FRF reduction comparison of the stadium model in the presence of 
off-tuning using adaptive control gains 

Scenario 

Type 

FRF magnitude at highest 

peak (m/s2)/N 

FRF magnitude at 

uncontrolled resonant 

frequency (m/s2)/N 

Unc. TMD HTMD Unc. TMD HTMD 

1 

Magnitude 6.65E-05 6.55E-05 4.23E-05 6.65E-05 6.34E-05 3.95E-05 

Red. Unc. - 2% 36% - 5% 41% 

Red. TMD - - 35% - - 38% 

2 

Magnitude 5.48E-05 5.37E-05 3.75E-05 5.48E-05 5.21E-05 3.58E-05 

Red. Unc. - 2% 32% - 5% 35% 

Red. TMD - - 30% - - 31% 

3 

Magnitude 4.52E-05 4.40E-05 3.38E-05 4.52E-05 4.25E-05 3.11E-05 

Red. Unc. - 3% 25% - 6% 31% 

Red. TMD - - 23% - - 27% 

4 

Magnitude 3.42E-05 3.27E-05 2.73E-05 3.42E-05 3.10E-05 2.61E-05 

Red. Unc. - 4% 20% - 9% 24% 

Red. TMD - - 17% - - 16% 

5 

Magnitude 2.83E-05 2.63E-05 2.36E-05 2.83E-05 2.35E-05 2.24E-05 

Red. Unc. - 7% 17% - 17% 21% 

Red. TMD - - 10% - - 5% 

6 

Magnitude 2.49E-05 2.19E-05 1.95E-05 2.49E-05 1.90E-05 1.78E-05 

Red. Unc. - 12% 22% - 24% 29% 

Red. TMD - - 11% - - 6% 

7 

Magnitude 2.16E-05 2.07E-05 1.68E-05 2.16E-05 2.05E-05 1.44E-05 

Red. Unc. - 4% 22% - 5% 33% 

Red. TMD - - 19% - - 30% 

8 

Magnitude 2.18E-05 2.15E-05 2.01E-05 2.18E-05 2.15E-05 1.82E-05 

Red. Unc. - 1% 8% - 1% 17% 

Red. TMD - - 7% - - 15% 
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7.6.2.2.Time domain response to simulated human loading 

The response of the structure is compared here for the various scenarios in terms of 

peak, 1 second running RMS and MTVV of weighted acceleration. The weighted 

acceleration of the structure according to [169] was used. Wk was chosen as the 

frequency weighting curve in which z-axis of the person is exposed to the vibration. 

Structural response reduction using HTMD 

Table 7-12 shows the acceleration response of the structure due to the occupied 

structure with 45*7 people. This is for the scenario when 60% of the people are 

jumping with the frequency of the half of the dominant frequency of the 

human/structure system.  

Table 7-12- Time domain result comparison of the stadium model 

Type Comparison Unc. TMD HTMD 

Peak (m/s2) 

Magnitude 0.243 0.189 0.180 

Red. Unc. - 22% 26% 

Red. TMD - - 5% 

RMS (m/s2) 

Magnitude 0.149 0.113 0.107 

Red. Unc. - 24% 29% 

Red. TMD - - 6% 

MTVV 

(m/s2) 

Magnitude 0.156 0.119 0.113 

Red. Unc. - 24% 28% 

Red. TMD - - 5% 

 

In this scenario, as the TMD is tuned, both HTMD and TMD exhibit good 

performance in terms of reduction of structural response. However, the HTMD still 

has slightly better performance, as was observed in the FRF analysis.  

Off-tuning scenarios using robust gains approach 

Figure 7-26 shows a portion of the time history of structural acceleration from 

scenario 1, which has lower dominant frequency of the combined human/structure 

system than the original TMD tuning frequency. As can be seen, the structure with 
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HTMD has lower amplitude acceleration response in comparison to the structure 

with only a passive TMD.  

 

Figure 7-26- Comparison of the structural acceleration and the corresponding 1 
second running RMS in Scenario 1 (1:99) using Robust Gains method; TMD 

(blue) and HTMD (red) 

Also, Table 7-13 and Table 7-14 summarise the numerical results from the time 

domain simulations of response to crowd excitation. These are the peak, and MTVV 

of the weighted acceleration of the uncontrolled structure, structure with TMD and 

HTMD. 

These confirm the results from the FRF analysis, that there is a reduction in 

performance from the TMD when the human/structure dominant frequency changes 

yet  the performance of the HTMD remains relatively good.  
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Table 7-13- Comparison of time domain response of the stadium model in the 
presence of off-tuning using robust gains method; peak acceleration of the 

structure  

Scenario 

Type 
Peak of weighted acceleration (m/s2) 

Unc. TMD HTMD 

1 

Magnitude 0.011 0.010 0.006 

Red. Unc. - 10% 46% 

Red. TMD - - 40% 

2 

Magnitude 0.047 0.043 0.028 

Red. Unc. - 10% 41% 

Red. TMD - - 35% 

3 

Magnitude 0.081 0.073 0.051 

Red. Unc. - 11% 37% 

Red. TMD - - 30% 

4 

Magnitude 0.135 0.117 0.092 

Red. Unc. - 14% 31% 

Red. TMD - - 21% 

5 

Magnitude 0.184 0.149 0.133 

Red. Unc. - 19% 28% 

Red. TMD - - 10% 

6 

Magnitude 0.243 0.189 0.185 

Red. Unc. - 22% 24% 

Red. TMD - - 2% 

7 

Magnitude 0.421 0.395 0.356 

Red. Unc. - 6% 15% 

Red. TMD - - 10% 

8 

Magnitude 0.931 0.910 0.938 

Red. Unc. - 2% -1% 

Red. TMD - - -3% 
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Table 7-14- Time Domain result comparison of the stadium model in the 
presence of off-tuning using robust gains method; MTVV of the acceleration of 

the structure 

Scenari

o Type 
MTVV of weighted acceleration (m/s2) 

Unc. TMD HTMD 

1 

Magnitude 0.008 0.007 0.004 

Red. Unc. - 9% 46% 

Red. TMD - - 41% 

2 

Magnitude 0.033 0.030 0.019 

Red. Unc. - 9% 41% 

Red. TMD - - 36% 

3 

Magnitude 0.056 0.050 0.035 

Red. Unc. - 10% 37% 

Red. TMD - - 31% 

4 

Magnitude 0.090 0.079 0.062 

Red. Unc. - 13% 31% 

Red. TMD - - 22% 

5 

Magnitude 0.119 0.099 0.087 

Red. Unc. - 17% 27% 

Red. TMD - - 12% 

6 

Magnitude 0.156 0.119 0.118 

Red. Unc. - 24% 24% 

Red. TMD - - 1% 

7 

Magnitude 0.252 0.234 0.210 

Red. Unc. - 7% 17% 

Red. TMD - - 10% 

8 

Magnitude 0.481 0.465 0.470 

Red. Unc. - 3% 2% 

Red. TMD - - -1% 
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Off-tuning scenarios using adaptive control approach 

Figure 7-27 shows a portion of the time history of structural acceleration from 

scenario 1, which has lower dominant frequency of the combined human/structure 

system than the original TMD tuning frequency. As can be seen, the structure with 

HTMD using the adaptive control approach has lower amplitude acceleration 

response in comparison to the structure with only a passive TMD. 

 

Figure 7-27- Comparison of the structural acceleration and the corresponding 1 
second running RMS in Scenario 1 using Adaptive Control method; TMD 

(blue) and HTMD (red) 

Table 7-15 and Table 7-16 summarise the numerical results of the time domain 

response analyses. These show a similar conclusion as the FRF analysis.  
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Table 7-15- Time Domain result comparison of the stadium model in the 
presence of off-tuning using Adaptive Control method; peak acceleration of the 

structure 

Scenario 

Type 
Peak of weighted acceleration (m/s2) 

Unc. TMD HTMD 

1 

Magnitude 0.011 0.010 0.007 

Red. Unc. - 10% 40% 

Red. TMD - - 34% 

2 

Magnitude 0.047 0.043 0.031 

Red. Unc. - 10% 35% 

Red. TMD - - 27% 

3 

Magnitude 0.081 0.073 0.056 

Red. Unc. - 11% 31% 

Red. TMD - - 23% 

4 

Magnitude 0.135 0.117 0.103 

Red. Unc. - 14% 23% 

Red. TMD - - 11% 

5 

Magnitude 0.184 0.149 0.145 

Red. Unc. - 19% 21% 

Red. TMD - - 2% 

6 

Magnitude 0.243 0.189 0.180 

Red. Unc. - 22% 26% 

Red. TMD - - 5% 

7 

Magnitude 0.421 0.395 0.310 

Red. Unc. - 6% 26% 

Red. TMD - - 22% 

8 

Magnitude 0.931 0.910 0.822 

Red. Unc. - 2% 12% 

Red. TMD - - 10% 
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Table 7-16- Time Domain result comparison of the stadium model in the 
presence of off-tuning using Adaptive Control method; MTVV of the 

acceleration of the structure 

Scenario 

Type 
MTVV of weighted acceleration (m/s2) 

Unc. TMD HTMD 

1 

Magnitude 0.008 0.007 0.005 

Red. Unc. - 9% 42% 

Red. TMD - - 36% 

2 

Magnitude 0.033 0.030 0.021 

Red. Unc. - 9% 36% 

Red. TMD - - 30% 

3 

Magnitude 0.056 0.050 0.038 

Red. Unc. - 10% 32% 

Red. TMD - - 25% 

4 

Magnitude 0.090 0.079 0.068 

Red. Unc. - 13% 25% 

Red. TMD - - 14% 

5 

Magnitude 0.119 0.099 0.093 

Red. Unc. - 17% 22% 

Red. TMD - - 6% 

6 

Magnitude 0.156 0.119 0.113 

Red. Unc. - 24% 28% 

Red. TMD - - 5% 

7 

Magnitude 0.252 0.234 0.182 

Red. Unc. - 7% 28% 

Red. TMD - - 22% 

8 

Magnitude 0.481 0.465 0.425 

Red. Unc. - 3% 12% 

Red. TMD - - 9% 
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7.6.2.3.Actuator effort 

The actuator effort can be examined based on the inertia force through the actuator 

predicted by the time domain simulations. It should be noted that the restriction of 

the maximum capacity of the actuator (i.e. 450 N) was removed due to the larger 

scale of the simulation and the assumption that larger actuators would be designed 

for such a purpose. 

Figure 7-28 shows the time history of the actuator effort for Scenario 6, when the 

TMD is well-tuned.  

 

Figure 7-28- Time history of the actuator force in HTMD and the corresponding 
1 second running RMS 

Also, Table 7-17 shows the numerical result of the actuator force in the same 

scenario. As can be seen, although the scale of the excitation force is very high and 

60% of people jumping at the most onerous frequency, still the amount of the 

required active force is low and is less than the maximum capacity of the available 

actuator.  

Table 7-17- HTMD actuator force in stadium model 

Peak force (N) 
RMS of the 

force (N) 

MTVV of the force 

(N) 

159 127 134 
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Off-tuning scenarios using robust gains approach 

Figure 7-29 illustrates the time history of the actuator force for one of the off-tuning 

scenarios when robust gains method was employed for the HTMD.  

 

Figure 7-29- Time history of the actuator force in HTMD and the corresponding 
1 second running RMS in Scenario 1 using Robust Gains method 

 

Table 7-18- HTMD actuator force in stadium model in the presence of off-
tuning using Robust Gains 

Scenario 
Peak force 

(N) 

RMS of the 

force (N) 

MTVV of 

the force 

(N) 

1 53 36 38 

2 222 148 158 

3 349 230 250 

4 425 286 322 

5 372 331 370 

6 1127 607 645 

7 5196 2827 2962 

8 13365 10969 11348 
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Also, Table 7-18 shows the numerical results of the actuator force for the full range 

of different scenarios. As can be seen, except the last two scenarios (when 80% of 

people are active and jumping on resonant frequency), the required actuator force 

within the capacity of the available laboratory actuator.  

Off-tuning scenarios using the adaptive control approach 

Figure 7-30 shows the actuator effort for off-tuning Scenario 1 when the adaptive 

control approach was implemented for the HTMD.  

 

Figure 7-30- Time history of the actuator force in HTMD and the corresponding 
1 second running RMS in Scenario 1 using Adaptive Control method 

Also, Table 7-19 shows the numerical results of the required actuator control force 

for the full range of scenarios. Also, it illustrates that the amount of required force in 

higher frequencies is less in comparison with HTMD with robust gain method.  

Table 7-19- HTMD actuator force in stadium model in the presence of off-
tuning using Adaptive Control 

Scenario 
Peak force 

(N) 

RMS of the 

force (N) 

MTVV of 

the force 

(N) 

1 50 36 37 

2 203 143 148 

3 331 234 241 
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4 391 276 281 

5 326 230 232 

6 159 127 134 

7 3687 1764 1866 

8 4845 3121 3255 

 

7.7. Conclusion and result discussion 

In this chapter a model of a real stadium cantilever was used with the size of 7*45 

people as the primary structure. This was a 3DOF system including empty structure, 

active and passive spectators. Similar control algorithms and gain optimisation 

methods as introduced before were applied to this structure. This was for both 

response reductions in tuned and out-of-tune scenarios with respect to the passive 

TMD component. 

It was shown that when the percentage of the active spectators changes in the 

structure, the frequency of the structure varies as well. This means that the employed 

TMD becomes relatively out-of-tune and hence relatively less effective. Meanwhile, 

the HTMD with both of the proposed control techniques could still reduce the 

structural response, even in the presence of off-tuning.  

It was shown that the HTMD performance was relatively better when the frequency 

of the structure reduced from tuning frequency in comparison with increase in the 

structural frequency. Also, the required actuator effort was less when using adaptive 

control in comparison with robust gains.  

To conclude, it is recommended to design the HTMD for the worst scenario (more 

active people) as the tuning frequency since the performance of HTMD is much 

better when the frequency of the structure reduces.  
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8. Conclusions and recommendations for further work 
Chapters 3 to 7 of this thesis have presented detailed conclusions from the analytical 

and experimental studies. Here, a summary of the key conclusions is given and 

recommendations are made for avenues of further research that may be explored. 

8.1. Conclusions  

A generic model of a SDOF representation of an uncontrolled structure, structure 

controlled with passive TMD, AMD and HTMD in both state space and transfer 

function formulations was developed.  

It was concluded that it is not suitable to use conventional gain optimisation methods 

such as conventional or modified LQR in HTMD since it is a 3DOF system and these 

methods are restricted to fewer gain combinations or may result in local minimums 

instead of global ones. Hence, a genetic algorithm (GA) approach was introduced as 

a comprehensive search method. A new method was introduced to convert the 

problem of choice of HTMD gains to standard optimisation problem language and 

then utilising GA to solve this optimisation problem.   

It was found that employing GA is an appropriate optimisation method to determine 

suitable sets of gains for implementation in a HTMD. The resulting HTMD 

demonstrated improved (reduced) structural response in contrast with the same 

HTMD with gains optimised using other methods (manual, conventional LQR and 

modified LQR).  

Also, it was concluded that structural acceleration plus the velocity of the TMD mass 

are two appropriate sets of feedback parameters which have the most effect on the 

HTMD performance for both reducing the response of the primary structure and also 

tuning the HTMD (e.g. actively control the HTMD damping). Two methods were 

also introduced and employed to check the stability of the closed loop system. 

Following choice of appropriate feedback control gains, the operation of HTMD was 

compared with the uncontrolled structure and the structure controlled with TMD and 

AMD. It was concluded that the HTMD provides higher reduction in structural 

response at resonance in contrast with TMD. Also, compared against AMD, it was 

found that the HTMD requires less power (actuator effort) to reduce the structural 
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response for the same scenario when DVF (Direct Velocity Feedback) control 

method is employed in AMD. 

The performance of a TMD and HTMD in the presence of off-tuning (i.e. when the 

frequency of the structure changes) was also investigated. Two control algorithms 

were introduced to deal with this based on GA optimisation. The performance of 

both control techniques was compared and the benefits and disadvantages of each 

were studied. It was concluded that in addition to the two proposed gains, feedback 

of the acceleration and displacement of the TMD mass provide two new gains for re-

tuning and modifying the HTMD frequency. The results show that when off-tuning 

occurs in the structure, the passive TMD does not operate efficiently. However, the 

HTMD can still effectively reduce the structural response by its properties in real 

time. 

The two proposed control algorithms were also compared together and it was 

concluded that one method has more structural response reduction, whereas the other 

one needs less actuator effort (power) to reduce the structural response.  

The design and construction of a prototype HTMD was presented. The built HTMD 

had the same properties as the one used in the analytical studies (simulations). The 

aim was to verify the developed analytical models and to experimentally investigate 

the performance of the HTMD on the laboratory structure. In addition, the suggested 

control algorithms were verified using these laboratory experiments.  

Similar to the analytical simulation, it was demonstrated that the HTMD reduces the 

response of the structure in comparison with the passive TMD. Also, it was shown 

that the HTMD required less power in comparison with the AMD. The stability of 

the closed loop system was investigated and it was concluded that the proposed 

methods can be utilised to check and ensure the stability of the HTDM.  

As to the other part of the experimental investigation, the performance of the HTMD 

in off-tuning was investigated experimentally and it was concluded that the HTMD 

can still reduce the structural response when the frequency of the primary structure 

changes. It was also concluded that although the AMD can decrease the structural 

response in off-tuning, HTMD requires less actuator effort.  
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Finally, the performance of HTMD was investigated using a simulation model of an 

actual stadium, which had both active and passive spectators. Both state-space and 

transfer function models of this structure were developed as uncontrolled, controlled 

with TMD and controlled with HTMD.   

It was demonstrated that when the structural frequency changes (due to the variation 

in the ratio of active and passive spectators), the HTMD had better performance in 

structural response reduction in comparison with passive TMD. This was achieved 

with the proposed HTMD and actuator and hence it was concluded that the HTMD 

has potential application in real stadium. This is especially so for the scenarios when 

the spectator activity (such as jumping) has a harmonic close a structural frequency 

(resonance scenario).  

To summarise, considering both structural response and cost of the actuator, the 

hybrid tuned mass damper (HTMD) is an appropriate and effective device to reduce 

structural vibration due to human activities in stadiums, which can adapt to off-

tuning caused by variation in the crowd configuration during real events. 

8.2. Recommendations for further work  

As was shown previously, the performance of HTMD in off-tuning using an adaptive 

control method depends on the size of the database and the on-line system 

identification. Further work is required to develop a larger database for the adaptive 

control approach to deal with the off-tuning problem. The proposed database should 

consider all possible frequencies with fewer increments. A larger database would 

probably result in improved structural response reduction and lower actuator cost. 

Also,  further work is required to develop and improved on-line system identification 

method on which the adaptive gains are selected. 

Also, it would be beneficial to investigate the performance of the HTMD in a real 

stadium cantilever structure with both actuator excitation and also in the presence of 

a crowd. In this thesis, the proposed control algorithms were implemented in a 

laboratory structure. However, the performance of the HTMD in a real stadium (the 

last chapter of this study) should also be tested and verified experimentally. This 

opens more challenges including finding the appropriate HTMD location, restriction 
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and protection of the HTMD in a real concert or sport event, health and safety issues, 

mobility of the HTMD to the site, etc.  

It would be beneficial to investigate the performance of employing multi-HMTD 

(several HTMDs) in larger structures and to develop the appropriate control 

algorithms for both structural response reduction and also dealing with off-tuning as 

a potential problem in grandstands.  

Power-cut is one of the possible problems could happen in the operation time of 

HTMD. Since power cut causes the actuator to be out of work and hence, an extra 

degree of freedom system on top of TMD without no tuning, it could even increase 

the vibration of the structure. Hence, author recommends of using/manufacturing an 

actuator with a locking/ emergency mechanism which stop/lock the mass of the 

actuator in the event of power cut. This can be extend to design a control algorithm 

to also stop/lock the actuator when the system becomes unstable or even un-expected 

structural response is monitored.  

As it was noted earlier, in order to investigate off-tuning effect in the experimental 

studies, the properties of the TMD/HTMD changed instead of the primary structure. 

However, it is recommended for future experimental studies that the dynamic 

properties of the primary slab is changed by using actuator beneath the slab or 

employing human participant and changing their numbers.  

Finally, it would be valuable to design an appropriate actuator specifically for the 

HTMD, considering the appropriate damping and frequency of the actuator itself, the 

frequency range of the operation and optimised power consumption. 
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