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Abstract

A wide range of novel on-chip integration techniques were developed to explore the

low-temperature perturbation of GaAs/AlGaAs based confined electron systems at

terahertz frequencies. A new methodology for pump-probe transmission measurements

of THz pulses along on-chip coplanar waveguides is demonstrated, allowing generation

of guided THz signals and subsequent detection after propagation through in-plane

integrated nanoscale devices at sub-Kelvin temperatures and under magnetic fields.

Initially, several methods that demonstrate introducing a guided-wave THz

signal into an embedded two-dimensional electron system (2DES), involve the assembly

of discrete substrate chips containing either the THz photoconductive material or a

2DES. The introduction of novel, monolithic integration of the 2DES layer and the THz

photoconductive layer into a fully integrated epitaxially grown heterostructure, allowed

successful incorporation of both the 2DES and the on-chip THz waveguides onto a

single chip. The independent characterisation measurements of both the incorporated

systems allowed optimisation of the monolithic structure, resulting in achievement of

undiminished performance for both the 2DES and the on-chip THz waveguides.

A full characterisation of THz pulses interacting with an embedded 2DES, using

both injected and capacitive, evanescent field coupling of the THz signal, are first

performed at variable temperatures from (4 K to 300 K). It is found from the

experimental observations that the temperature dependent 2DES resistivity can be

directly probed from the time-domain transmitted THz pulses. Independently, a new

method for sub-Kelvin excitation and detection of on-chip THz frequency radiation at

temperatures as low as 200 mK and magnetic fields up to 12 T is also demonstrated,
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which was employed to probe the magneto conductivity of the 2DES through THz pulse

injection using on-chip waveguides.

The successful demonstration of THz pulse injection in low-dimensional

electron systems using on-chip waveguides at sub-Kelvin temperatures and under

magnetic fields paves the way for enhancing the studies of single electron transport, by

investigating the properties of 1D or 0D quantum systems in the terahertz-frequency

range.
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Chapter 1: Introduction

1.1. Motivation

The development of future electronic devices based on nanostructures operating at very

high frequencies requires the understanding of the underlying fundamental physics. Over

the past few decades, the studies of electron transport in low-dimensional quantum

confined semiconductor systems have revealed some of the elemental features of the

physics of nanostructures. The nature of electron transport in such systems has led to

some of the major discoveries in the field, such as the Quantum Hall Effect [1] and the

conduction measurement of ballistic channels [2], enabling physicists to define universal

quantum standard of resistance. However these studies have mainly been carried out

using steady state measurements. The work presented in this thesis is aimed at studying

electron transport properties under THz frequency excitation, through time-resolved

measurements with picosecond resolution. This will allow monitoring the spatial

position of single electrons by changing their quantum state on a picosecond time scale.

The field of terahertz science and technology has seen a significant advancement

in wide range of spectroscopy applications [3-6]. With the energy range from 1 meV to

100 meV, the THz radiation is sensitive to the energy response of charge particles in

quantum confined systems. Moreover, the THz frequency region is well suited for the

study of carrier resonances and intraband transitions in low-dimensional semiconductor

systems. The time resolved pulsed terahertz spectroscopy systems has developed into an

influential means for studying charge carrier dynamics in semiconductor nanostructures
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[7-11]; since, it also allows phase information to be extracted as oppose to frequency

domain spectroscopy studies.

Initially, the free-space mode of propagation was employed for pulsed THz

spectroscopy of quantum confined systems, but more recently with the development of

on-chip pulsed THz guided technology, the latter is becoming a more favourable

alternative. The on-chip THz technology offers key advantages for spectroscopy

applications [12, 13]. These include a compact THz generation and detection scheme

using photoconductive switches and larger interaction length between the probing signal

and the nanoscale device under test. Other benefits of on-chip THz technology over free

space THz systems include its adaptability in operation at cryogenic environments and

under high magnetic fields. These properties make it an ideal choice for making time-

resolved measurements of quantum electron transport properties in confined

semiconductors and in doing so, a compelling new approach for defining a quantum

standard of electronic current.

In addition to integration of on-chip time-resolved THz systems with nanoscale

devices, this project had the aim of developing an underpinning generic measurement

technology that can allow spectroscopy applications of on-chip THz systems to be

realized for the first time at milli-Kelvin temperatures.

1.2. Thesis outline

The rest of this chapter involves an overview of the mesoscopic electron transport

properties observed in low-dimensional confined semiconductor nanostructures,

particular two-dimensional electron systems (2DES). It is followed by a discussion on

several areas of THz technology, including generation, propagation and detection in free
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space and on-chip systems. Lastly, pulsed THz time-resolved studies of quantum

confined systems are reviewed.

Chapter 2 presents a review of techniques used for integration of the on-chip

THz systems with the 2DES for measuring time resolved ballistic transport within the

2DES. An in depth discussion on the optimisation of the monolithic integration approach

that is used in the current work for coupling on-chip THz waveguides with the 2DES is

presented.

Chapter 3 presents the first measurements of on-chip THz pulse generation and

detection using conventional pump-probe techniques at milli-Kelvin temperature range

and under magnetic fields. The chapter provides a detailed description of the generic

measurement setup developed and used, followed by a discussion on the device designs

and fabrication.

Chapter 4 reviews two different methods employed in this work used for

variable temperature time-domain spectroscopy of a 2DES using on-chip coplanar

waveguide devices.

Chapter 5 is focussed on the investigation of electron transport in a 2DES under

the influence of ps time scale pulses electrically injected at temperatures down to the

sub-Kelvin range and under magnetic fields. The experimental results, together with

analytical modelling are presented and discussed.

The final chapter gives an overview of the project, with a discussion on the

possible future directions for continuing the work presented in this thesis.
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1.3. Mesoscopic electron transport

The classical charge transport in metals considers 3D Cartesian coordinates of freedom

and is described by the Drude theory [14]. For this case, the DC-conductivity of the

metal is given by,

ଶ

where, n is the electron density with charge (-e), m is the effective mass and τ is the

mean free time. The mean free time τ in this case, incorporates all of the scattering

processes the electrons suffer from static impurities, vacancies, dislocations, and also

from elementary processes like electron-phonon and electron-electron scattering. Since

these scattering processes are independent and additive, they make the electron transport

incoherent and diffusive, thereby affecting the important physical length scales

associated with the electron transport. At sufficiently low temperatures, the scattering

process that cause the incoherent electron transport, such as electron-phonon scattering,

more or less freezes out, leaving electron transport dominated by impurity scattering

(which is not incoherent). An illustration of diffusive transport dominated by impurity

scattering with rare phase randomizing processes at low temperatures is shown in

Figure 1.1. The conductivity will therefore deviate from the classical form (given by

Equation 1.1) according to the quantum nature of the electrons, which forms the

backbone of the physics of mesoscopic electron transport phenomena.
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Figure 1.1 Illustration of the diffusive motion of a charge particle in an impure metal at
temperature close to absolute zero. The electron motion shows the influence of impurity
scattering (shown by the mean free path le), and rare inelastic scattering events (blue
circles, shown by the phase coherence length lφ).

The quantum nature of electron transport such as ‘Quasi – ballistic’ and

‘ballistic' behaviour is primarily observed in a mesoscopic system, in which the physical

dimensions of the system are restricted to the physical length scales of electrons – such

as the mean free path length le, the phase coherence length lφ, and the Fermi wavelength

λF [15]. Due to the importance of these physical length scales, a brief discussion on each

of them is as follows.

The electronic mean free path length le is determined by the quantity of

imperfections in a mesoscopic system and as shown by Equation 1.2, it is directly

dependent on the mean free time between the electron scattering events, τ and Fermi

velocity, νF. It is important to note here, that the mean free path length of electrons does

not influence the destruction of phase coherence. For metallic systems, le is generally in

the order of nanometres whereas for highly conductive semiconductor heterostructures it

is considerably larger (in the order of 10 µm) [16].

௘ ி

As opposed to impurity scattering, the electron scattering events from electron-

phonon interactions are in general inelastic and therefore leads to phase incoherence.

Since the occurrence of these events is rare at low temperatures, the phase coherence
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length lφ between these events can be determined by assuming diffusive transport due to

impurity scattering between two phase destroying events.

ఝ ఝ��

where, τφ is the phase coherence time or mean free time between two phase randomising

events and D is the diffusion constant that contains only the impurity scattering which

does not destroy phase coherence.

The Fermi wavelength or the de Broglie wavelength of electrons at the Fermi

edge λF has been a key length scale for studying ‘size quantization’ in semiconductor

heterostructures [2, 17-23].

ி
∗

ி

where, m* denotes the effective electron mass (which is 0.068 me for GaAs) and EF the

Fermi energy. Usually, for GaAs based heterostructures, the Fermi wavelength can be as

large as 100 nm, and hence can be comparable to the at least one dimension of the

mesoscopic device. This realisation makes the wave character of the electrons become

more important, because the electron density of states is quantised in the restricted

direction according to the allowed standing-wave modes, which changes the

dimensionality of the system. For example, size quantization in only one direction

results in the electron system being confined to two dimensions, normally referred as

‘quantum films’ or ‘two-dimensional electron systems’. Size quantization effects on

conductivity have been fundamental to research on mesoscopic electron transport during

the last two decades [24-27]. Further work, involving quantum confinement in a second

spatial direction, resulting in one-dimensional motion of electrons (‘quantum wires’) has

also revealed an enormous amount of information related to ballistic transport [28-38].
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Figure 1.2 illustrates the ‘size quantization’ for two- and one-dimensional electron

systems.

Figure 1.2 Demonstration of ‘size quantization’, as the dimensions of the electron system
become comparable to the Fermi wavelength λF, resulting in (a) two-dimensional and (b)
one-dimensional electron systems.

All the work presented in this thesis is based on observing picosecond time

resolved electron transport properties in these mesoscopic systems, with consideration of

the fundamental physical length/time scales of charge particles as discussed above.

1.4. Two-dimensional electron systems

(2DES)

A two-dimensional electron system (2DES) is the simplest type of mesoscopic system

commonly used for researching the fundamental physics of condensed matter electron

transport. It was first employed in the form of a Si MOS-FET transistor by W. Shockley

and G. L. Pearson [39]. A schematic illustration of the Si MOS-FET transistor is shown

in Figure 1.3.
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strong coulomb scattering from the charged impurities at the oxide-semiconductor

interface [24, 40, 41]. This problem led to research on the growth of high quality 2D

electron systems, which were required not only from the perspective of understanding

applied physics but also from the perspective of understanding fundamental physical

science.

The development in growth techniques of pure crystalline semiconductors using

Molecular Beam Epitaxy (MBE) over the previous few decades has allowed the

formation of ultra-high quality 2DESs between two III-V compound semiconductor

interfaces, for example using modulation doped GaAs/AlxGa1-xAs heterostructures [17,

42-48]. A typical choice of x is 0.3. The formation of these heterostructures together

with their energy band structure and measured electron transport properties are discussed

below.

1.4.1. 2DES in GaAs/AlxGa1-xAs heterostructure

Since undoped GaAs and AlxGa1-xAs are very similar compound semiconductor

structures but with different band gap energies (Eg for GaAs ~1.4 eV and Eg for AlxGa1-

xAs ~2 eV), it allows parent doping impurities to donate their free carriers into a separate

close-by structure but, as will be shown, it also allows the scattering of free carriers from

the resulting ionized impurities to be minimised. A sequential process illustrating the

formation of a 2DES at a GaAs/AlGaAs heterojunction is shown in Figure 1.4 [49]. As

shown in Figure 1.4 (b), in contrast to a Si MOS-FET based 2DES, the free electrons are

provided by the doping layer of integrated Si-donors inside the AlGaAs, while the bulk

GaAs remains undoped. A ‘modulated doping’ technique first demonstrated by Dingle

[50] is typically used for incorporating Si donor atoms in the AlGaAs layer. For this

technique, most of the doping electrons are thermally excited into the conduction band,

while as little as ~10 % contributes to the free carriers confined in the triangular
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quantum well (Figure 1.4c). The positive charge of ionized donor impurities in the

AlGaAs and the negative charge of the free carriers trapped at the interface build up a

charge dipole, resulting in the band structure shown in Figure 1.4 (c).

Figure 1.4 Energy band across the GaAs/AlGaAs heterostructure. (a) for the undoped scenario,
(b) after n-type doping of AlGaAs with Si dopants, and (c) resulting band structure after
2DES formation at the heterojunction, with the Fermi energy at equilibrium across the
GaAs/AlGaAs structure.

It was demonstrated by Stormer et al [51], that an additional undoped AlGaAs

spacer layer can be introduced between the modulation Si-doped AlGaAs layer and the

GaAs layer having the 2DES at the interface, to reduce the dominant ionized impurity

scattering experienced by the free electrons in the 2DES. An illustration of such a

modified heterostructure to achieve high electron mobilities is shown in Figure 1.5.

An added advantage of using a GaAs/AlGaAs heterojunction for creating a

2DES is that there is very little lattice mismatch between the two crystal structures

resulting in very negligible strain induced defects (i.e. dislocations) in the 2DES. Hence

the electrons undergo much less scattering subjected to the interface as compared to the

oxide-semiconductor interface in a Si MOS-FET.
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Figure 1.5 Schematic of a MBE grown GaAs/AlGaAs heterostructure having 2DES confined at
the heterojunction. The addition of the undoped AlGaAs ‘spacer’ layer between the Si-
doped AlGaAs and GaAs layer reduces the impact of ionized scattering on the confined
charge carriers.

In recent years, the optimization of layer sequences and composition of AlxGa1-

xAs layers, together with modified doping techniques has resulted in 2DESs with carrier

concentrations of ~1011 cm-2 having remarkable low-temperature electron mobilities

from roughly 5 x 103 cm2/Vs in 1977 to 36 x 106 cm2/Vs by 2008 [52]. Correspondingly,

it has allowed the physical length scales of electron transport, such as mean free path

length le to be increased to the order of millimetres. These advances in the improvement

of the electron mobility in the 2DES over the past few decades as compiled by Schlom

et al [53] and presented in Figure 1.6, promises to enable the study of quantum effects

which have been previously immeasurable in earlier materials.
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Figure 1.6 Progress in improving carrier mobility in 2DESs, up to the present record of
36,000,000 cm2/Vs, together with the information on the technical modifications and
innovation required for GaAs/AlGaAs heterostructures, displayed for the last three
decades [53].

1.4.2. Electron transport properties in a 2DES

As mentioned earlier, the transport properties of the electrons in a confined 2DES is

greatly influenced by the ‘size quantization’ effect of the electron system, it is therefore

essential to understand the distribution of the electron density of states in the 2DES that

contributes to the electric current.

The width of the 2DES defined at the GaAs/AlGaAs heterojunction in the

direction of layer growth is very thin and typically in order of ~10 nm, as shown in

Figure 1.4 (c). This corresponds to Fermi wavelength of electrons λF confined in a 2D

plane. For this reason, the energy of the electron density states that can exist within the

2DES are quantized into discrete levels (sub-bands). A schematic of the distribution of

density of states in a 2DES is shown in Figure 1.7 (a), while Figure 1.7 (b) clearly



13

illustrates the influence of the λF and the boundary conditions of the 2DES on quantized

discreet energy levels [54]. It is noted that for a typical 2DES, usually only a single sub-

band is occupied.

Figure 1.7 (a) Density of states for a 2DES. (b) Heterojunction interface showing quantized sub-
band energies (E1, E2, E3) and Fermi energy EF, where V(z) is the potential barrier
controlling the boundary conditions of the 2DES.

The low-temperature transport properties of the electrons in the filled sub-band

of the confined 2DES are examined usually through measurement of resistivity or

conductivity under the effect of an in-plane applied electric field E and a perpendicular

magnetic field B. This technique exploits the fact that the motion of electrons parallel to

E is disturbed by the Lorentz force, which directs the electrons in a direction

perpendicular to the direction of E, forcing them to execute circular orbital motion as a

result. The resulting two-dimensional transport can be described in terms of a resistivity

tensor, including a diagonal component (in the direction parallel to E):

௫௫
ఙೣೣ

ఙೣೣ
మାఙೣ೤

మ

and an off-diagonal (Hall) component (in the direction perpendicular to E):

௫௬
௫௬

௫௫
ଶ

௫௬
ଶ

where, σxx and σxy are the corresponding elements of the conductivity tensor.

(b)(a)



14

A typical four-terminal Hall bar geometry patterned into the GaAs/AlGaAs

heterostructure (see Appendix 1 for fabrication details) as shown in Figure 1.8, is used

for resistivity tensor investigation under magnetic fields. The measurements are carried

out by passing electric current (I) with current density j between Ohmic contacts S and

D. The voltage between contacts A and B or A and C are then simultaneously measured

to observe ρxx or ρxy.

Figure 1.8 A four-terminal Hall bar geometry formed on GaAs/AlGaAs heterostructure
containing the 2DES with source and drain ohmic contacts shown by S and D. The
electron transport coefficients are measured using ohmic contacts A-D, under influence of
electric E and magnetic fields B, with x, y and z axes showing their respective direction.

The diagonal resistivity tensors can be written in terms of the Hall bar device

geometry and the longitudinal voltage can be written as,

௫௫
௫

௫

஺஻

௫

where, Ex = VAB / L and jx = Ix / W. Similarly the Hall resistivity evaluated considering

the measured Hall voltage is given by,

௫௬
௬

௬

஺஼

௬

where, Ey = VAC / W and jx = Ix / W.
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In the classical case of a 2D electron transport within small applied magnetic

fields, i.e. where Boltzmann’s approximation is valid, the above expressions for

resistivity tensors shows the diagonal resistivity to be independent of the magnetic field

and Hall resistivity to be linearly dependent on the magnetic field. Subsequently, the

transport properties that characterize the 2DES such as sheet density ns and carrier

mobility µe can be calculated using,

௦ ௫௬

and

௘
ு

௫௫

where, RH is the Hall coefficient, given by 1/ns.

1.4.3. The quantum Hall Effect

The study of quantum mechanical behaviour of the 2DES at high magnetic fields

resulted in the discovery of the quantum Hall effect, which was highly significant in the

field of solid state experiments [1]. Figure 1.9 shows an illustration of the quantum Hall

effect measured for a 2DES at temperatures < 24 mK, having sheet density ns of 1.7 x

1011 cm-2 and electron mobility µe, of 1.2 x 106 cm2/Vs. It was found that in strong

magnetic fields, ρxy does not increase proportionally with B but forms plateaux at

quantized values of h/ie2, where i is an integer, and ρxx is not constant but oscillates and

vanishes to zero where the plateaux appear in the Hall resistivity.
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Figure 1.9 The Quantum Hall effect measurement using the Hall bar geometry at T < 24 mK,
showing the Hall resistivity ρxy getting quantized at values of h/ie2 and the Shubnikov-de
Haas oscillations occurring in the diagonal resistivity ρxx.

This quantum behaviour of the electron transport can be understood by

considering the effect of perpendicular magnetic fields on the density of states of the

2DES. In the presence of a magnetic field, the energy spectrum of the lowest filled sub-

band is no longer continuous as observed for zero magnetic fields (seen in Figure 1.7)

but divided into several discreet energy levels as illustrated in Figure 1.10. These

discreet energy levels, known as Landau levels (LLs) [54] are energy separated by ћωC,

where ωC is the cyclotron frequency of the circular orbital motion of electrons in the

2DES and it is given by,

஼ ∗

Hence, when the Fermi energy is in between LLs, there is no longitudinal

conduction current, as a result the diagonal resistivity vanishes to zero with Hall

resistivity showing a plateaux. When the Fermi energy is pinned at a LL, the current
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flows, and the diagonal resistivity rises correspondingly, with the Hall resistivity

showing a linear increase.

It is also important, as shown in Figure 1.10, that at high magnetic fields, each

of these LLs can split further into two separate energy levels due to spin degeneracy,

indicating spin up and spin down. The process is commonly known as ‘spin splitting’ of

LLs.

Figure 1.10 Energy spectrum of the 2DES under magnetic fields, demonstrating the occurrence
of LLs and spin splitting, taken from reference [54]. The spectrum shown here is
considered for an ideal case (i.e. disorder free system).

Due to the distribution of the energy spectrum for the density of states under

finite magnetic fields, the overall carrier density ns of the 2DES is contributed to by a

number of filled LLs up to the Fermi energy. It can be derived by considering the

interdependence of the resistivity tensor elements due to the two dimensional motion of

electrons, given by,

௫௫
ఙೣೣ

ఙೣೣ
మାఙೣ೤

మ ௫௬
ఙೣ೤

ఙೣೣ
మାఙೣ೤

మ
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considering that ρxx, drops to zero when ρxy shows a plateau at h/ie2, and using Equation

1.9, we obtain

௛

௜௘మ
஻

௘௡ೞ
(1.13)

and consequently

ௌ
௘஻

௛

Hence, the number of filled LLs up to the Fermi energy, indicated by the filling

factor, can be determined by the carrier density. The effect of increasing magnetic field

causes the Fermi energy to move through successive LLs as the higher energy LLs

depopulate. The process is illustrated in Figure 1.11. It is noted that, for disordered

systems (i.e. with impurities) the LLs are generally broadened and considered to have a

Lorentzian shape, in contrast to the one shown for ideal systems in Figure 1.10.

Figure 1.11 Illustration of the density of states in a 2D electron system for increasing magnetic
fields. At B =0, there is a uniform density of states. At finite magnetic field, discreet LLs
are formed and separated by ћωc, The LLs are delta functions in the ideal case, but are
broadened due to disorder in the system. As the magnetic field further increases the Fermi
level passes through successive LLs.
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1.5. THz time-domain spectroscopy

Over recent years, pulsed THz time-domain spectroscopy (THz-TDS) has been a well-

established technique for studying molecular vibrations in various crystals [3, 5, 55].

Also, having a key advantage of coherent generation and detection of pulsed THz

radiation using a pump-probe scheme, THz-TDS has also been a powerful tool in

studying carrier dynamics in semiconductor nanostructures with picosecond time scale

resolution [7, 8].

In addition, the energy/frequency range of THz radiation encompasses many

types of resonant absorption by charged particles in low dimensional solid state

nanostructures - such as two-dimensional electron systems (2DESs) [56], quantum wires

[2], carbon nanotubes [57, 58] and single- and bi-layer graphene [59]. This makes THz

time-domain spectroscopy systems ideal for studying frequency dependent physical

phenomena in these structures, such as carrier resonances and intraband transitions. The

techniques that are typically used to perform these measurements are the free-space

THz-TDS and the on-chip waveguide spectroscopy method, in which picosecond time

scale electromagnetic pulses can be directly coupled from an adjacent waveguide to the

nanoscale device under test (NDUT). So, the measured transmitted signal will in general

contain the features corresponding to the resonant absorptions in the nanoscale devices.

A detail discussion on THz generation and detection in both the free-space THz-

TDS and the waveguide spectroscopy systems is given in the following sections.

1.5.1. THz generation and detection

The generation and detection of THz electromagnetic radiation based on

photoconductivity or optical non linearity of the medium is discussed here, since these
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two methods are primarily used in THz sources and detectors based on femtosecond

pulsed lasers.

Photoconductive switching is the most common and effective approach used for

coherent generation and detection of ps pulses, in which a semiconductor surface is

illuminated by using a train of femtosecond laser pulses (with above-band gap pulse

energy) [60-62]. As initially demonstrated by Auston [63], the THz is generated by

acceleration of photo-induced electrons and holes in a semiconductor. An electric field is

applied across the semiconductor by means of metal electrodes fabricated on the

semiconductor surface. As soon as a portion of a femtosecond infra-red laser pulse

(referred to as the pump beam) is focused onto the semiconductor in the gap between the

electrodes, the photo-induced carriers accelerate under the applied electric field. The

electromagnetic field of the resulting transient current generated, radiates in the THz

frequency range.

The relation between the radiating electric field and the change in the

photocurrent density is given by,

௥௔ௗ

and

௘ ௛

where, Erad, is the electric field of the THz radiation, J is the total current density, n and

p are the electron and hole densities, ve and vh are their corresponding net drift velocities.

The radiation pulse from this transient current can propagate either on a transmission

line or in free space. Figure 1.12 shows the schematic of a typical semiconductor based
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photoconductive antenna used for THz generation and radiation in free space TDS

systems [62, 64].

Figure 1.12 Schematic of the dipole-like photoconductive switch used for emission of free space
pulsed THz radiation.

Since the THz electric field generated is directly proportional to the duration of

the current transient (Equation 1.15), it is essential to consider the limitations on the

current transient caused by the carrier lifetimes of the semiconductor used. The

conventional semiconductor materials used for THz photoconductive switches are MBE-

grown GaAs and silicon-on-sapphire. However, the carrier lifetime in these materials are

relatively long (in order of 5-10 ps) [65] and so not very suitable for emission of THz-

bandwidth pulses.

The carrier lifetimes can be significantly reduced in MBE grown GaAs by

reducing the growth temperature (forming what is known as low-temperature-grown

GaAs, or LT-GaAs) [65, 66]. The LT-GaAs is epitaxially grown at temperatures

~200 oC as compared to standard GaAs growth temperatures ~600 oC. This introduces

point defects in the GaAs lattice which creates low-lying donor states below the

conduction band edge. The recombination rate of electrons and holes is consequently

increased, reducing the average carrier lifetime to as low as 90 fs [67]. On the other
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hand, the large number of donor states available for electrons makes the resistivity of the

LT-GaAs unacceptably low, allowing electron conduction even in the absence of optical

excitation. It was found by Gupta et al [66] that the post-growth annealing of LT-GaAs

at high temperatures of ~600 oC reduces the number of point defects, thereby increasing

the resistivity. With properties like high resistivity, short carrier lifetime, and high

carrier mobility; LT-GaAs is considered to be an ideal semiconductor material for

photoconductive generation of THz radiation with a sub-picosecond time duration.

The portion of the femtosecond near infra-red laser pulse used for THz detection

is usually referred to as the probe beam. Similarly to the photoconductive generation

process of THz electromagnetic transients, the photoconductive detection can be realized

by using the same working principle of the photoconductive antenna. In this case, the

probe beam which is time delayed with reference to the pump beam generates

photocarriers in the detector switch. However, the THz electric radiation field which hits

the detector switch in coincidence with the probe laser pulses then accelerates the laser-

induced photocarriers to produce a train of photocurrent pulses. A series connected lock-

in amplifier measures this generated photocurrent signal, which consecutively can be

used to extract the THz electric field amplitude.

An alternative method of detection of the THz radiation using electro-optic

sampling in a non-linear material has been widely used for free space THz-TDS systems

[68, 69]. The electro-optic (EO) detection employs the linear EO effect (also known as

Pockel’s effect), where a birefringence in the non-linear material (such as ZnTe, GaP,

and GaSe) is created upon application of a bias electric field. For the THz detection

scheme, the electric field of the incident THz radiation acts as this bias field. The

induced birefringence causes a change in polarisation of the infrared probe beam (from

circular to elliptical) propagating through the crystal at the same instance. The
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Figure 1.14 Example of a free-space THz time-domain spectroscopy, showing the THz
generation using a photoconductive antenna and the THz detection using an electro-optic
crystal, taken from reference [71]. The internal reflection of the electro-optic crystal shows
the probe beam propagating at an angle β to the THz beam in the crystal. The quarter wave 
plate is labelled λ/4, and the Wollaston prism is labelled W. 

A femtosecond pulsed laser beam from a mode-locked laser having a pulse

duration of at a wavelength of 800 nm is split into two parts – a pump beam and a probe

beam. The pump beam is focused onto the photoconductive emitter switch. The probe

beam, introduced at a defined time by means of an optical delay line (retroreflector) is

then used to electro-optically sample the generated THz radiation by using an electro-

optical crystal. [69, 72, 73]. As shown in Figure 1.14, the polarised probe beam from the

electro-optic crystal is then passed through a quarter-wave plate (indicated by λ/4) to 

make it circularly polarised before being split into its orthogonal components by the

Wollaston prism (indicated by W). The intensity of each component is then

independently measured using photodiodes. The relative difference in the polarization

components measured through two photodiodes yields a relative measure of the

instantaneous THz electric field. The frequency spectra obtained from the time-domain

THz pulses measured using free space THz-TDS systems typically ranges from 0.3 –

8 THz.
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It is important in the THz-TDS systems to have an efficient coupling between

the emitter and the detector. A common configuration practised, consists of using a

pair(s) of parabolic mirrors to guide the THz radiation in the free space from the emitter

to the detector. The arrangement often includes a midpoint in the confocal planes

between the emitter and the detector, making it ideal for THz imaging and spectroscopy

purposes of various samples. An example of such an arrangement used in a free space

THz-TDS system for spectroscopy analysis of molecular vibrational modes is shown in

Figure 1.15 [55]. As shown, the THz radiation generated using a LT-GaAs

photoconductive emitter passes through explosive samples under test and then detected

electro-optically.

Figure 1.15 Example of a free-space THz-TDS system employing pairs of parabolic mirrors to
guide the propagating THz radiation through various ‘sample’ under test, taken from
reference [55]. The propagating THz waves are enclosed in a nitrogen-purged box to avoid
absorption by water content in the surrounding atmosphere.

1.5.3. THz waveguide spectroscopy systems

The strong absorption of THz radiation by water in humid environment has been a big

limiting factor in terms of bandwidth of free space THz-TDS systems and feasibility of



26

using THz frequencies. They are often purged with dry air or nitrogen gas to isolate THz

radiation from water absorption [74]. Also, although having the benefit of a wide

bandwidth spanning several THz, free-space systems are usually not efficient in

coupling THz radiation in and out of nano or microscale structures. The relatively large

wavelength of the THz beam (λ ~100µm) makes it incapable of focusing to a diameter 

less than few hundreds of microns without losing frequency components at or below

1 THz. The addition of waveguides in THz-TDS systems is considered to be a very

important development in spectroscopy research [75, 76]. The mode of propagation of

THz radiation on waveguides is fundamentally different to free-space propagation of

THz radiation, and the field pattern can take a form that offers useful advantages over

free-space waves for spectroscopy applications.

Recent advances included “free-standing waveguides”, having a straight, bare

metal wire as a waveguide, with the intention of coupling free space THz waves into the

waveguide so that they propagate along the waveguide surface [76-78]. As THz waves

couple into the metal wire, the THz electric field pulse dislocates charge carriers in the

metal wire on a picosecond time scale resulting into a disturbance of carriers

propagating along the surface of the wire. The associated electro-magnetic field created

along the metal wire is the guided THz wave. A similar technique was adopted by

Walther et al [79], where the THz pulses propagating along the metal wire waveguide

was used to perform molecular spectroscopy of lactose powder dispersed on top of the

metal wire. As shown in the schematic, the THz pulses are generated by a

photoconductive switch at one end of the metal wire and detected at the other end by

electro-optic sampling in a ZnTe crystal.
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Figure 1.16 Example of THz-TDS system using free-space coupled metallic wire waveguide,
taken from reference [79]. (a) Side view of the photoconductive emitter with the metallic
wire tip connecting the positive electrode. (b) The schematic of the experimental setup
used (BS represents beam splitter, PC represents photoconductive switch emitter, WP
represents Wollaston prism, and BPD represents balanced photodiodes).

The reported technique is considered to be a compact and a novel form of THz

spectroscopy setup with high sensitivity for molecular resonant absorption analysis.

However, the large loss in coupling of free space THz radiation with the waveguides

was a major limitation of the approach. This has been a strong motivation behind the

development of techniques that allow in plane integration of THz sources and detectors

with the waveguides.

1.6. On-chip THz-TDS systems

On-chip THz systems have been an active area of development while THz technology

has advanced over the last decade. In contrast to the free space coupled waveguides, it

allows generation and detection of THz radiation to be coupled locally with the planar

transmission lines lithographically patterned on one chip. Also, as most of the

propagating evanescent field of the THz radiation is contained within the host dielectric
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substrate, it avoids absorption of THz radiation by water content present in the

atmosphere. This method allows highly sensitive, spatial resolution detection of the

evanescent field of the THz radiation, promising new capabilities for THz spectroscopy

and imaging of various materials [80-82]. A detailed review of on-chip THz-TDS

systems are given in this section, since it is this technique used in the project for ps pulse

interaction of low-dimensional semiconductor systems.

1.6.1. On-chip THz generation and detection

For on-chip THz pulse generation and detection, a similar photoconductive excitation

and detection mechanism as discussed in section 1.5.1 for free space THz-TDS systems

is primarily used. The photoconductive semiconductor material (such as LT-GaAs) used

for patterning on-chip THz emitters and detectors can either form the substrate for the

overlaid waveguides [83], or can be epitaxially transferred onto a separate substrate,

using a epitaxial lift-off and film transfer process [84, 85].

Figure 1.17 shows an illustration of the photoconductive switch (Auston switch)

operation used for on-chip THz generation. Similar to the technique discussed

previously for free space photoconductive emitter (in section 1.5.1), the generation and

recombination of photocarriers in the semiconductor under applied electric field

produces a picosecond time scale current transient, which is then directly coupled with

the integrated transmission line.
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Figure 1.17 Illustration of ps time scale electrical transient generated using a photoconductive
switch for on-chip THz systems. (a) 2D cross section of a typical photoconductive switch,
with NIR laser beam illuminating the switch gap and (b) photogenerated charge separation
in the applied DC electric field.

Figure 1.18 shows a typical example of the switch region defined between the

metal electrode and the centre conductor of an integrated on-chip coplanar waveguide

overlaid on a LT-GaAs photoconductive substrate. The property of the photoconductive

region, defined as ‘switch region 1’ in Figure 1.18 is usually characterised in terms of

photocurrent generated across the pump switch as a function of applied bias and laser

power. The generated ps electrical transient propagating along the waveguide can be

delivered to desired locations in order to perform time resolved experiments of the

NDUT. A similar photoconductive switch pair can then be used to detect the current

transients at various distances along the waveguide.
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Figure 1.18 Schematic representation of a pair of photoconductive switch region defined
between the metal electrodes and the integrated signal conductor of the CPW. The
experimental configuration is also shown for measuring the characteristics of a switch
region in terms of photocurrent generated across applied bias.

1.6.2. Waveguide geometries

The different geometries of planar transmission lines that have been demonstrated for

on-chip transmission of signals at THz frequencies and THz-TDS absorption

spectroscopy applications, include microstrip lines [86], slot lines [87], coplanar

waveguides (CPW) [88] and planar Goubau lines [89]. A brief review on each of these

transmission lines including the structure of the transmission lines and the property of

field propagation pattern is as discussed, defining the underlying reasons behind the final

choice of the transmission line used for this project.

Figure 1.19 2D cross section of (a) the microstrip line, and (b) the planar Goubau line. Also
shown are the electric and magnetic fields surrounding an electrical pulse as it propagates
along the signal conductor.



31

Microstrip lines

Microstrip lines have been extensively used in microwave circuits with its operation

pushing into the THz frequency range. As shown in Figure 1.22 (a), it consists of a

signal conductor and a ground plane separated by a dielectric where the electric field is

mostly concentrated, with some fraction in the air above. This as a result, having a

quasi-transverse electromagnetic (quasi-TEM) mode of electromagnetic field

propagation along the microstrip line [90]. Having a low-permittivity dielectric placed

between the two conductors has allowed the evanescent field of microstrip lines to be

used for THz-TDS absorption spectroscopy of polycrystalline materials up to 1.2 THz

[82]. The main drawback of the microstrip lines for its application in this project, is the

complexity in its fabrication and integration of a ground plane within the LT-GaAs

based photoconductive heterostructure grown using MBE.

Planar Goubau lines

The planar Goubau line structure is very similar to that of microstrip lines, having a

single conductor on the dielectric substrate with a difference of having no ground planes,

as shown in Figure 1.22 (b). The electromagnetic field propagation mode supported in

this case is only a quasi-transverse magnetic (quasi-TM) mode, with a radial electric

field propagating along the waveguide. This mode of propagation makes transmission

along the Goubau lines lossy at low frequencies, but with much lower attenuation

experienced by propagation of THz frequency components [91]. The recent

demonstration of increase in bandwidth of planar Goubau lines up to 1.5 THz and its

application for spectroscopy of overlaid polycrystalline materials by Russell et al [92],

made it a promising choice of planar transmission line for the work in this project.

Although, for planar Goubau lines, the field extends much further than on e.g. microstrip
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lines, so is more prone to interference. As a result, it is not suited for the particular work

carried out in this project.

Coplanar transmission lines

Another planar waveguide geometry which has been widely popular for THz frequency

applications are coplanar transmission lines [88, 93], due its simple structure of having a

both signal conductor and ground conductor in the same plane. The tightly confined

quasi-TEM mode of field propagation along the waveguide makes them a very attractive

geometry for absorption spectroscopy applications of various materials including

quantum confined systems [10].

Figure 1.20 2D cross section of (a) the coplanar slot line, and (b) the coplanar strip line. Also
shown the electric and magnetic fields surrounding an electrical pulse as it propagates
along the signal conductor.

Considering the structure of the planar waveguide, the coplanar transmission

lines are further sub-categorized into coplanar slot lines (CPSlot), coplanar strip lines

(CPStrip) and coplanar waveguides (CPW). The geometry of CPSlot and CPStrip lines

are shown in Figure 1.23 (a) and (b), are the simplest form of coplanar transmission line.

They have a similar structure that consists of only a signal conductor and a ground plane

overlaid on the same surface of the dielectric substrate material with the electric field

confined between them. The primary difference between CPSlot and CPStrip line is the
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variation in the confined field pattern due to the physical dimensions of the two

conductors.

A coplanar waveguide (CPW) is a coplanar transmission line consisting of three

conductor geometry, with two ground planes separated by a gap on either side of the

signal conductor. As opposed to the single mode of propagation observed in other

waveguide geometries, the coplanar waveguide has an ability to support two different

quasi-TEM modes depending on the symmetry of the electric field on either side of the

signal conductor. The modes are referred to as the odd mode (also known as symmetric

mode) as shown in Figure 1.24 (a), or the even mode (also known as asymmetric mode

or slot line mode) as shown in Figure 1.24 (b).

Figure 1.21 2D cross section of the CPW structure including the signal conductor and the ground
planes. It also illustrates (a) the symmetric mode and (b) the anti-symmetric mode for the
transverse propagating electric and magnetic fields.

With key advantages such as ease of design, fabrication and integration of

waveguide geometry with the LT-GaAs photoconductive material and having flexibility

of preferential excitation of different quasi-TEM modes, the CPW geometry was used

for the on-chip THz-TDS work discussed in this thesis. Since the efficient transmission

of THz pulses along the CPW is important for the experiments in this project, it was

essential to understand the fundamental characteristics of CPWs as a transmission line.

A brief review of transmission line theory of CPW is discussed in the following section.
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1.6.3. Transmission line theory for coplanar waveguides

The properties of any transmission line (for TEM wave propagation) can be understood

by considering a lumped element model represented by a two wire line. Due to

symmetry of the electric field propagation in three conductor CPW, the lumped element

model of the CPW can also be represented using an equivalent two conducting line

geometry. Figure 1.22, shows a lumped-element circuit model of a short piece of CPW

having length Δx.   

Figure 1.22 (a) Arial view of a short length (Δx) coplanar waveguide, showing the physical 
geometry dimensions, and (b) an equivalent two wire line lumped element circuit model
representing the three terminal coplanar waveguide. The single ground conductor in the
lumped element model represents both the ground planes of the CPW.

As shown in the lumped element circuit model, the series resistance per unit

length (labelled R) represents the losses in the transmission line due to the finite

conductivity of each of the metal conductors. Whereas, the shunt conductance per unit

length (labelled G) between the metal conductors represents the non-zero conduction in

the dielectric. The circuit element labelled Lo represents the self-inductance in the line

caused by the propagating electrical signal, and the circuit component labelled Co

represents the capacitance caused by the close proximity of the parallel conducting

surfaces. The propagation constant (also known as damping coefficient) which shows

the effect of these lumped elements on the propagating high frequency signal is given

by,
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௢ ௢

where, mainly represents the attenuation in the signal due to the radiation,

conductor and dielectric losses and β(f) determines the degree of dispersion a signal 

experiences.

An important fundamental entity for considering transmission line properties in

terms of signal propagation is the overall impedance representation of the transmission

line, also known as the characteristic impedance Zo, which can written as,

௢
௢

௢

considering the lumped element circuit model representation and the propagation

constant, the characteristic impedance can be re-written as,

௢
௢

Considering the physical geometry of the CPW (as shown in Figure 1.22) and

the dielectric substrate used, the characteristic impedance Zo of a CPW is given by [94],

஼௉ௐ
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where, eff is the effective permittivity depending on the permittivity of the dielectric

material used r and K(k) is the integral of the CPW geometry defined constant k.
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The characteristic impedance Zo of a CPW as described above, determines the

capability to propagate signals in either direction, however is essential to understand the

effect on the properties of signal propagation (i.e. signal reflections) when the

characteristic impedance of the line changes. Considering the on-chip waveguide

technology used in this project for measuring properties of nanoscale devices with

different characteristic impedances, it is especially important to understand the effect of

waveguide discontinuities. These discontinuities can be quantified by the reflection

coefficient.

Figure 1.23 Example of a lossless transmission line terminated with a load impedance ZL.

Figure 1.23 shows a lossless transmission line (in this case a CPW) terminated

with an arbitrary load impedance ZL, where ZL ≠ Zo. The inequality between Zo and the

ratio of voltage to current at the load results in excitation of a reflected wave with an

appropriate amplitude. The amplitude of the reflected signal normalised to the amplitude

of the incident signal is known as the reflection coefficient, Γ [95]

௅ ௢

௅ ଴

where, Γ = 0 for ZL = Zo, Γ = 1 for an open circuit termination, and Γ = -1 for a short

circuit termination. It is observed that the polarity of the reflection coefficient relates

directly with the phase polarity of the reflected signal [96].
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1.6.4. Pump Probe measurement

The pump-probe arrangement similar to free space THz-TDS systems is used for on-

chip THz pulse generation and detection of propagated pulses along the waveguide. As

shown in Figure 1.24, a portion of the fs near infrared laser beam (NIR, λ ~800 nm) is 

used to excite LT-GaAs based pump photoconductive switch in order generate a ps time

scale current transient, while the time delayed probe beam is used to sample the current

transient at various points along the waveguide.

Figure 1.24 Pump-probe arrangement used for on-chip THz-TDS systems.

In order to determine the transmission characteristics of an on-chip waveguide,

two different arrangements were mainly used in this project. Both enabled the terahertz

pulse to be sampled before and after propagating along the waveguide.

The geometry that is used for the terahertz pulse generation and time resolved

sampling before and after travelling along the transmission line (in this case, a coplanar

waveguide) is shown in Figure 1.25. As shown, the electrical transient generated using a

pump switch is sampled before propagating along the transmission line by aligning the

time delayed probe beam at switch region on the same side of the waveguide and

adjacent to the pump switch region (displayed as position 1). Whereas, the propagated

pulse along the waveguide is detected by illuminating the switch region at position 2

with the probe beam.
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Figure 1.25 Example of a pump-probe arrangement for on-chip generation and detection of THz
pulses. A DC voltage bias is applied across the pump switch gap. The electrical transient
generated with the pump beam, is launched on to the on-chip waveguide and can be
sampled before and after propagation along the waveguide using probe beam at position 1
and 2 respectively.

The pulse measurement before and after propagation along the waveguide also

allows the velocity of the guided pulse vP to be calculated, as shown in Figure 1.26. The

probe beam is first aligned at position 1 at an angle θ to the waveguide axis, to measure 

the pulse before propagation along the signal conductor. It is then repositioned to

position 2 for measuring the pulse after propagation along the waveguide. The pulse

velocity can be derived by considering the time delay between the peaks of the pulses

measured in each position (Δt = tposition 2 – tposition 1) and the distance travelled by the pulse

(length of the waveguide, L).
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Figure 1.26 Diagram of the procedure used for extracting propagating pulse speed by measuring
the pulses before and after propagation (position 1 and 2 respectively), along the active
length of (L) of the on-chip waveguide. The diagram illustrates the change in the probe-
beam path length by a distance ~L cosθ when it is transferred from position 1 to position 2, 
or vice-versa.

However as illustrated in Figure 1.26, it is important to consider the change in

the beam path lengths during this process, as the probe beam was aligned on switch

position 1 for measuring the pulse before propagation and then aligned to switch

position 2 for measuring the pulse after propagation. Considering this modification the

pulse speed can be calculated by,

௅
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1.7. THz-TDS studies of 2DES

Since the discovery of the quantum Hall effect, the high frequency or time-resolved

ultrafast measurements that are sensitive to the physical time scale of electron transport

are widely used to study dynamic properties of 2DES. The pulsed THz techniques,

including free space and on-chip systems, have shown potential for spectroscopy studies

of 2DES with the observation of fundamental physical phenomena such as cyclotron

resonance (absorption due to cyclotron motion of electrons) [97], magneto plasmon
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resonance [10] and ballistic electron transport [98]. In free space THz-TDS systems,

transmission and reflection measurements through thin 2DES structures placed in optical

access cryostats, has allowed extraction of spectroscopic information of the 2DES. Also,

the advancement in polarisation sensitive free space THz transmission systems has

allowed investigation of the optical Hall effect in the quantum Hall regime [9], which

gave some potentially useful insights into the dynamic behaviour of electron

conductivity of 2DES.

The on-chip THz technique has an advantage of having much longer lengths of

interaction as compared to the free space THz systems, since the evanescent field of the

propagating pulses can be directly coupled with the incorporated 2DES within the

dielectric substrate or superstrate of the on-chip waveguide. In addition, the difficulty of

THz coupling into the cryostats used for free space spectroscopy studies of 2DES at

cryogenic temperatures can be avoided using on-chip THz systems. An illustration of

such a system with integrated on-chip coplanar waveguide with photoconductive switch

regions and the 2DES superstrate as ‘NDUT’ is shown in Figure 1.27. The change in

transmission properties such as loss and dispersion within the waveguide can be used to

extract the properties of the 2DES.

An on-chip time-resolved measurement system similar to the one shown in

Figure 1.27 with small variation, successfully demonstrated the use of gold coplanar

strip (CPStrip) lines for measuring high frequency 2DES conductivity as a function of

magnetic field [10]. The CPStrip with integrated photoconductive switches was

fabricated on a multilayer substrate consisting of the LT-GaAs photoconductive layer,

with fringing fields of the THz radiation capacitively coupling to the 2DES employed as

superstrate. The measurements revealed plasmon resonances in the 2DES resulting from

the geometry of the 2DES strip.
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Figure 1.27 Similar pump-probe arrangement as shown in Figure 1.25, for generation and
sampling of THz pulses along an on-chip waveguide. In this case, the evanescent field of
the propagating pulses along the waveguide is used for spectroscopy of the nanoscale
device under test (NDUT).

Alternatively, a direct electrical coupling of ps time scale pulses from on-chip

waveguides into the 2DES using a flip-chip bonding process has revealed ps time

resolved ballistic electron transport, as demonstrated by Shaner and Lyon [98]. The

reported measurements showed accurate time of flight of electrons to be extracted by

magnetic focusing of the ps time scale electrical current transients.

The work presented in this thesis will concentrate on the improvements in the

integration methods used for interacting ps time scale pulses propagating along the

waveguides with the nanoscale devices such as the 2DES. With the aim of enhancing

on-chip THz generation, propagation and detection techniques in cryogenic

environments and under presence of high magnetic fields, this work has clear

significance for advancing picosecond time resolved studies of nanoscale devices.
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Chapter 2: On-chip THz waveguide

and its integration with 2DES

2.1. Introduction

For picosecond (ps) pulse interaction studies of a 2DES at cryogenic temperatures and

under magnetic fields, as demonstrated later on this thesis, it was essential to incorporate

both the on-chip THz waveguide and the 2DES in close proximity.

The first purpose of this chapter is to present characteristic measurements of the

on-chip THz coplanar waveguides, independent of any integration with the 2DES.

Following this will be a detailed discussion on the implementation of various techniques

demonstrated in the literature for incorporating THz waveguides in close proximity with

the 2DES, including in each case a consideration of their suitability for this project.

Finally, the optimization and development of the integration method chosen for

this work will be presented, including detailed characterisation measurements of the

integrated waveguide devices.
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2.2. Characterisation of on-chip THz

waveguides

This section describes the operation of the on-chip coplanar waveguide devices using

TDS, which are used to study various integration methods with 2DES structures as

discussed later on this chapter. The planar waveguide structure consisted of a metal strip

formed on a LT-GaAs heterostructure substrate grown using MBE. Figure 2.1 (a) shows

the schematic of the GaAs based heterostructure used as a substrate for the overlaid

CPW. As shown in the schematic, a 400 nm AlAs optical barrier layer was first grown

on top of the semi-insulating GaAs substrate at ~600 oC, followed by a low-temperature

growth of the 2 µm thick LT-GaAs photoconductive material at ~215 oC. Before

defining switch regions on top of the LT-GaAs surface, for on-chip THz generation and

detection, the structure was annealed in-situ at ~550 oC for 15 minutes to increase the

LT-GaAs resistivity [99].

Figure 2.1 (a) Schematic of the SI-GaAs based heterostructure, containing the LT-GaAs
photoconductive layer grown on top of the optical barrier (AlAs), using MBE. (b) The
overlaid CPW device design consisting of the four switch regions coupled with the Ti/Au
signal conductor and ground planes.

The pattern of the metal coplanar waveguide with four integrated

photoconductive switch regions as shown in Figure 2.1 (b), was fabricated on top of the

LT-GaAs surface using conventional UV lithography followed by thermal evaporation

(a) (b)
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of a 20/200 nm thick Ti/Au layer. The centre Ti/Au strip acted as signal conductor, with

ground planes placed on either side in close proximity. The two pairs of

photoconductive switch regions defined on either side of the signal conductor were used

to generate and detect ps electrical transients, before and after propagation along the

1.5 mm ‘active region’ of the waveguide. The 0.65 mm long parasitic region of signal

conductor, i.e. the region between the switch regions and the line termination, was

defined to delay the resulting time-domain reflections.

Figure 2.2 Diagram of the on-chip waveguide measurement setup operating at room temperature.
The beam from the Ti:sapphire laser was split into pump and probe beams using the beam
splitter. The pump beam was passed along paths 4-7, before being focussed onto the
sample. The probe beam was optically modulated and passed along an optical delay line
via paths 8-11, before being focussed onto the sample.

The THz-TDS system diagram for operating on-chip THz coplanar waveguides

is shown in Figure 2.2. As shown, the laser beam from the Ti:sapphire laser (centre

wavelength 800 nm, pulse duration 100 fs and, repetition rate of 80 MHz) was split into

pump and probe beam using a beam splitter. The two beams were aligned using various

mirrors and were focused very precisely onto switch gaps using focusing lenses. The

pump beam was focused onto the pump switch to generate THz pulses, while the probe

beam was used to detect the pulse by focusing on the probe switch. The probe beam was

reflected through a reflector mounted on a motorized translation stage, in order to
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control the time delay τ between the two pulsed beams. Also the pulse train was 

modulated by mechanically chopping the beam at ~3 kHz, and the lock-in amplifier

measuring the detected current transient I(τ) from the detection switch was tuned to this 

modulation frequency.

The electrical transport properties of the switch gap regions defined on LT GaAs

material were first observed in terms of the photocurrent generated across the switch

gap, with respect to the DC bias applied at the metal electrode. The experimental

configuration used for this measurement is illustrated in Chapter 1, Section 1.6.1 and

shown in Figure 1.18. The current-voltage measurements carried out for the one of the

pump-probe switch regions with varying optical beam intensity are shown in Figure 2.3.

Figure 2.3 (a) shows the I-V characteristics for the switch region 1, and Figure 2.3 (b)

shows the I-V characteristics of the switch region 3.

Figure 2.3 DC characteristics measured in terms of current versus applied voltage at varying
laser powers, for (a) pump and (b) probe photoconductive switch gap defined on either
side of the waveguide.

The I-V characteristics for both the switch regions under different illumination

intensities (using ND filters) showed a relatively ohmic behavior. At low voltages there

was a slight non linearity which was expected due to charge screening of electrons

[100]; also the metal-semiconductor contact formed in the switch region was a Schottky

(a) (b)
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contact rather than an ohmic. The generated photocurrent variation with increasing beam

powers at identical bias voltages showed a linear response, with dark resistance (under

no illumination) across the switch gap measured to be ~500 MΩ.  

Following the switch characterisation, the pulse transmission measurements

were carried out for observing the CPW properties overlaid on LT-GaAs substrate. The

pump-probe arrangement used for measuring the generated and transmitted pulses is

identical to the one illustrated in Chapter 1, Section 1.6.4, and as shown in Figure 1.25.

The pump and probe beam powers for these measurements were kept identical to

10 mW, with the pump switch (switch region 1) biased at 20 V. A time-domain

measurement of the generated pulse undertaken with the probe beam focused at the

switch region 2 (as shown in Figure 2.1 (b)) is demonstrated in Figure 2.4.

Figure 2.4 The time-domain scan of the generated THz pulse using switch region 1 as the source
and switch region 2 as the detector. The main THz peak with time duration of 2.4 ps is
followed by the two time delayed reflection peaks, a and b.

The time-domain pulse scan as shown, consists of the main THz pulse peak with

time duration of 2.4 ps (measured using Full Width Half Maximum), followed by

secondary oscillations a and b. For the CPW device design used, these oscillations were
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expected to arise from the reflections of the main pulse from the grounded ends of the

conductor. The accurate origin of these reflections was determined by considering the

time delays between the THz peak and each reflected signal. Using the calculated phase

velocity, the distance travelled by each reflection was determined, and the origin

inferred from the CPW device geometry. Figure 2.5 shows the demonstration of the

pulse path required for generating time-domain reflections following the main pulse.

Figure 2.5 Demonstration of the pulse paths required to generate the two time-domain reflections
peaks, a and b (in Figure 2.4), following the generated THz pulse peak.

The time-domain scan of the pulse after transmission along the 1.5 mm active

region of the CPW was then measured, using identical beam power and pump switch

bias as used for the measurement of the generated pulse. For the pump-probe

arrangement in this case, the probe beam was focused at switch region 3 with pump

beam focused on switch region 1. Since the CPW device geometry under test was

symmetrical, the characteristic features of the transmitted signal were found to be similar

to the main signal (i.e. the main THz pulse with secondary reflections) and are shown in

Figure 2.6. However, a clear demonstration of attenuation and dispersion of the pulses

was seen after propagating along the CPW on LT-GaAs dielectric substrate.
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Figure 2.6 Example of the time-domain pulse transmitted along the 1.5 mm coplanar waveguide,
measured using switch region 1 as the source and switch region 3 as the detector. The
FWHM was measured to be 3.2 ps.

The time-domain THz pulse signal was then converted into the frequency

domain by performing a Fast Fourier Transform (FFT) of the data points around the THz

pulse peak, thereby allowing analysis of the frequency components contained within the

time-domain signal. Figure 2.7 shows the normalised FFT of the measured transmitted

THz signal, revealing the usable bandwidth of ~400 GHz for the CPW devices used,

with a resolution of 50 GHz.

Figure 2.7 Fast Fourier Transform performed on the THz peak seen in Figure 2.6, showing the
usable frequency bandwidth of the CPW devices up to ~400 GHz with peak signal-to-
noise ratio of ~100:1.
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Both the time-domain and frequency domain analysis of the THz pulse

measurement propagating along the CPW showed a reasonable performance in terms of

pulse peak amplitude and frequency bandwidth. Therefore, the demonstrated CPW

device design on the LT-GaAs heterostructure was used for implementing various

techniques to integrate a 2DES, as discussed in the next section.

2.3. Integration of on-chip THz waveguides

and 2DES

This section describes various experimental arrangements carried out for incorporating

2DES and THz pulse transmitting waveguides, which can allow observation of

picosecond timescale response of the mesoscopic system at cryogenic temperatures.

Since the THz generation and detection is carried out using switches patterned on

photoconductive material, it was essential to have the photoconductive material with

integrated waveguide in close proximity to the GaAs/AlGaAs heterostructure containing

the 2DES.

The system integration techniques discussed here involved both external post-

processing integration of multiple chips (i.e. after sample fabrication), and pre-

processing (i.e. before sample fabrication) methods. The first method limits the

sensitivity in picosecond pulse coupling to the 2DES, while the second has a greater

sensitivity owing to incorporating both the photoconductive layer and the 2DES on one

single chip.
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2.3.1. Flip-chip technique

The flip-chip approach exploits the propagating evanescent fields above an on-chip

waveguide to perform spectroscopic measurements of an overlaid superstrate material. It

has been previously used in on-chip THz technology to study molecular signatures of a

wide range of materials [81, 82]. The first demonstration of picosecond time resolved

electron transport measurements in low-dimensional electron systems [101] used the

flip-chip method for integration of on-chip THz waveguides and the 2DES. It consisted

of an on-chip THz CPW fabricated on one chip brought in close proximity with a

separate GaAs/AlGaAs heterostructure chip containing the 2DES. Figure 2.8 (a) shows

the schematic of the chip containing the waveguide overlaid on the host dielectric

substrate (in this case sapphire), with integrated LT-GaAs photoconductive material

capable of generation and detection of ps timescale electrical transients. The schematic

structure of the GaAs/AlGaAs heterostructure formed on a separate chip containing the

2DES is shown in Figure 2.8 (b). Since the 2DES is formed close to surface of the

heterostructure, it is flipped and then overlaid on the on-chip waveguide.

Figure 2.8 Illustration of the two separate chips used for ‘flip-chip’ integration technique. Where,
(a) shows the chip containing the sapphire substrate with the photoconductive material and
the overlaid CPW. (b) shows the chip containing the GaAs substrate with the
GaAs/AlGaAs heterostructure containing the 2DES grown on top.

The flip-chip substrate assembly method has an advantage of allowing

spectroscopy of the 2DES to be carried out by either capacitively coupling the electric

field of the propagating ps timescale pulses to the 2DES or by direct electrical coupling

(a) (b)
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of the signal through the electrical contacts patterned on the 2DES. A brief discussion on

the representation of each of these methods is given below.

2.3.1.1. Evanescent field coupling

The flip-chip method of capacitively coupling the evanescent fields of the ps pulse to the

2DES allows absorption spectroscopy without making direct electrical contact. A

pictorial representation of the evanescent field coupling method is shown in Figure 2.9,

with a CPW used for propagating ps timescale pulse generated and detected using

integrated photoconductive switches.

Figure 2.9 Graphical illustration of the ‘flip-chip’ approach, showing coupling of the propagating
pulse along the CPW with the flipped GaAs/AlGaAs heterostructure chip containing the
2DES. The integrated generation and detection photoconductive switch shows the location
points for pulse launch and detection.

The setup showing implementation of the technique demonstrated in Figure 2.9

by E. Shaner [10], for waveguide spectroscopy of the 2DES is shown in Figure 2.10.

The Ti/Au CPW pattern fabricated using lift-off technique on the epilayer substrate, with

pump and probe laser beams delivered to the launch (L) and detection (D) points on the

waveguide, is shown in Figure 2.10 (a). Figure 2.10 (b), shows the illustration of the

flipped 2DES chip epoxied (non-conductively) to the waveguide, with the substrate

containing the LT-GaAs photoconductive layer on sapphire. It is noted, since the surface
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of the waveguide together with switch regions was covered with the 2DES chip as a

superstrate, the optical excitation using pump and probe fs laser pulses was made

through the via holes in the silicon layer forming the base of the integrated chip.

Although the sensitivity of the ps pulse measurement through the 2DES was

limited by the evanescent field coupling configuration, it did successfully demonstrate

measurement of ps pulse interactions with the 2DES. Hence, an analogous example

reproducing this method was demonstrated in this project.

Figure 2.10 Experimental arrangement showing the demonstration of ‘flip-chip’ evanescent field
coupling technique, taken from reference [10]. (a) shows the geometry of the CPW used,
with the location points for ps pulse generation and detection along the CPW shown by L
and D. (b) The configuration of the integrated structure used, showing the 2DES chip
flipped and epoxied to the waveguide chip.

A similar ‘flip-chip’ experimental configuration previously established at Leeds

for sub-wavelength THz imaging, using on-chip waveguides based on BCB

(benzocyclobutene) dielectric [71], was used for interacting the evanescent fields

propagating along the CPW devices with a 2DES superstrate. Figure 2.11 shows the

experimental arrangement used for room temperature interaction between a flipped

2DES sample and a CPW device fabricated on the LT-GaAs heterostructure.

(b)(a)
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Figure 2.11 Diagram of the experimental arrangement for evanescent field coupling of on-chip
CPW with the 2DES, taken from reference [71].

As shown in the schematic, the 2DES sample containing the GaAs/AlGaAs

heterostructure on GaAs substrate, similar to one illustrated in Chapter 1, Section 1.4

(shown in Figure 1.5) was cleaved and glued to a custom-designed brass sample holder

using GE (general electric) varnish. The computer-controlled 3-axis motorized stage

attached to the sample holder was used to sequentially move the 2DES sample along the

z-axis. In doing so, the sample was brought in close proximity with the CPW device,

with the surface plane-parallel to the waveguide. This process was carried out by

avoiding any obstruction to the pump and probe laser beams focussed on to the

generation and detection photoconductive switches. The measured time-domain spectra

of the pulse transmitted along the CPW with the 2DES sample surface in full contact,

and at several separation distances from the CPW surface is shown in Figure 2.12.
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Figure 2.12 Experimental data showing the time-domain scans of the transmitted pulse measured
after propagation along the 1.5 mm active length of the CPW (as shown in Figure 2.1 (b)),
with the flipped 2DES chip in close proximity distances and in full contact with the
waveguide surface.

From the data shown in Figure 2.12, at first instance, no significant change was

observed in terms of attenuation or dispersion of the transmitted pulses upon interaction

with the 2DES sample in close proximity. This can be explained by considering the 2D

cross-section of the evanescent field propagating along the CPW. A large proportion of

this field was mostly being concentrated in the GaAs substrate due to its high dielectric

permittivity ( GaAs =12.9) [102], hence resulting in relatively weak interaction with the

2DES.

Considering the limited sensitivity of the evanescent coupling method for the

2DES interaction measurement, together with complications in system integration in

much smaller sample volumes in cryogenic environments; the flip-chip coupling method

in this case was found to be not suitable for the absorption spectroscopy of the overlaid

2DES structure.
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2.3.1.2. Direct electrical coupling

An alternate method using ‘flip-chip’ configuration for measuring ps timescale electron

transport in 2DES involves direct coupling of pulses along the waveguide into the 2DES

through electrical contact made between the 2D electron layer and the waveguide.

Figure 2.13 Graphical illustration of the ‘flip-chip’ approach, showing direct electrical coupling
of the propagating pulse along a CPW with the flipped GaAs/AlGaAs heterostructure chip
containing the 2DES. The electrical connection is made through the direct contact between
the signal conductor and the ohmic contacts. The integrated generation and detection
photoconductive switch shows the location points for pulse launch and detection.

Figure 2.13 illustrates the ‘flip-chip’ configuration with electrical bonding

between the 2DES and the on-chip waveguide. As shown, the ps timescale pulses

generated and propagating along the signal conductor of the CPW are coupled into the

flipped 2DES sample through electrical connections formed between the signal

conductor and the ohmic contacts formed to the 2D electron layer. A similar electrical

connection is then used for the pulse transmitted through the 2DES to be coupled back

onto the signal conductor and detected using the detection switch region.

The experimental implementation of the ‘flip-chip bonding’ technique was also

established by E. Shaner [98], where ps time-resolved ballistic transport in the 2DES

was observed using transverse magnetic field focusing of the injected pulse at cryogenic

temperatures. Figure 2.14 shows the schematic of the CPW device used, with the 2DES
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chip having four ohmic contacts ‘flip-chip’ bonded for electrical connection with the

waveguide.

Figure 2.14 Experimental configuration previously established for demonstrating the ‘flip-chip’
arrangement to electrically couple the ps pulses travelling along the CPW with the flipped
2DES chip, taken from reference [98]. The four ohmic contacts formed on the flipped
2DES chip surface are directly bonded to the signal conductor and the ground planes of the
CPW. The location points for ps pulse generation and detection along the CPW shown by
L and D respectively.

This integration approach was found to be much more sensitive for time-

resolved electron transport measurements in the 2DES; however the integration of the

CPW with the 2DES chip by electrically connecting the ohmic contacts on flipped 2DES

carefully to the CPW would require micron accuracy flip-chip bonders. Hence, it was

not employed in this particular work.

2.3.2. Three-chip substrate assembly technique

Another post fabrication approach for integration of on-chip THz waveguides with the

2DES was recently demonstrated by D. Maryenko [103]. It followed the

accomplishment of a reflection-free ps timescale electrical pulse propagation along a

CPW, which was overlaid onto two separate ErAs:InGaAs photoconductive material

chips and electrically connected between the interface (at cryogenic temperatures and

under magnetic fields) [93].

The technique established was referred to as a ‘three-chip substrate assembly’,

since the substrate chip containing the 2DES was assembled between the two



57

photoconductive material substrate chips. The CPW pattern was then aligned and

electrically connected across the three-chips. Figure 2.15 shows the graphical illustration

of the three-chip substrate assembly technique.

Figure 2.15 Graphical illustration of the ‘three-chip substrate assembly’ method, showing the
‘post-fabrication’ assembly of the CPW overlaid on three different chips onto a supporting
host substrate. The left and right chips contain the photoconductive switch gaps for THz
generation and detection, whereas the chip in the middle contains the active 2DES device
coupled with the signal conductor of the CPW.

As shown, the 2DES device was fabricated on a GaAs/AlGaAs heterostructure

with a subsequent formation of CPW electrically connecting the ohmic contacts on the

2DES. In parallel to this processing, the CPW with integrated photoconductive switches

was separately formed on a photoconductive material substrate. Thereafter the chip with

the CPW on the photoconductive material is cleaved and placed on either side of the

chip containing the ‘active’ 2DES device. All the three chips were placed and glued on a

separate host Si substrate. The coplanar waveguide was then aligned at the interface

between the separate chips and the signal conductor and ground planes were electrically

contacted by applying conductive silver epoxy. The advantage of this technique over

flip-chip configuration is that it provides flexibility with the ‘active device’ under test;
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i.e., it can be used to interact ps pulses with more confined quantum systems such as 1D

quantum wires or 0D quantum dots instead of just a 2DES, provided the dielectric

constant of the active material is comparable to the photoconductive material.

Figure 2.16 Optical image of an integrated device using three-chip substrate assembly method
for coupling on-chip CPW with a 2DES device, taken from reference [103]. The left and
right chips containing the photoconductive switches are fabricated from the ErAs:InGaAs
photoconductive material, while the central chip containing the 2DES is fabricated from a
GaAs/AlGaAs heterostructure.

The successful demonstration of three-chip substrate assembly method by D.

Maryenko is illustrated in Figure 2.16. It is seen from the schematic that the left and

right chips are fabricated from ErAs:InGaAs photoconductive material and contain the

photoconductive switches. The central chip is fabricated from a GaAs/AlGaAs

heterostructure containing the 2DES. Also as demonstrated, the electrical connection of

the CPW between chips after aligning the ground planes and centre conductor is carried

out using silver epoxy droplets. This method did allow ps pulse coupling with the 2DES

device, however the experimental results showed no strong evidence of ps time-resolved

electron transport.

In this current project, the multiple chip substrate assembly technique was also

attempted in order to integrate the 2DES with on-chip THz coplanar waveguides.
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Initially, the CPW device fabricated on LT-GaAs photoconductive material substrate, as

shown in Figure 2.17 (a) with CPW active region of 1.5 mm, was cleaved from the

middle, re-assembled and glued onto a host Si substrate (no inclusion of the chip with

2DES). Figure 2.17 (b) shows an optical image of the re-assembled CPW device, with

signal conductor and ground planes of the CPW electrically connected using conducting

silver epoxy.

Figure 2.17 Optical microscopic image of the CPW device geometry implementing ‘multiple-
chip assembly’ technique. (a) shows the image of a continuous CPW device with
integrated generation and detection photoconductive switch gaps on a single LT-GaAs
substrate chip. (b) shows the image of an interface between multiple CPW sections (after
cleaving and re-assembling of the continuous CPW device). The CPW sections including
the integrated generation and detection photoconductive switch gaps on multiple LT-GaAs
substrate chips were electrically connected using a conductive epoxy.

The pulse transmitted along the active region of the CPW was measured before

and after the multiple chip assembly process. Figure 2.18 shows the comparison of the

time-domain pulse scan after propagation along a continuous CPW sample and along a

CPW across multiple chips. A clear demonstration of a transmitted pulse with no

reflection occurring from the multiple chip interface was noted, resembling the pulse

propagated along a continuous CPW on a single chip.

(a) (b)
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Figure 2.18 Experimental data showing the comparison between the transmitted pulse
measurements along a CPW overlaid on a single LT-GaAs substrate chip and along a
electrically connected multiple CPW sections overlaid on two different LT-GaAs substrate
chips.

However, the successful application of this integration method was limited to

the cleaving and re-assembly of the same chip. With the inclusion of the third (separate

chip), the assembly of the three chips was found to be difficult. The reason was that any

dislocations or roughness at the interface of the two separate chips (e.g. the central

2DES chip and photoconductive material chip) cleaved independently would be more

prominent as compared to the re-assembly of the same chip cleaved in two halves. The

presence of these dislocations would cause a finite gap (~1-5 µm wide) at the interface

of the separate dielectric substrate chips, as illustrated in Figure 2.19, thereby preventing

reflection-free pulse propagation through multiple chips.
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Figure 2.19 Optical microscopic image of the interface between CPW sections cleaved and re-
assembled from the separate GaAs substrate chips. The image shows the resulting finite
gap between the two chips due to presence of interface dislocations.

A major drawback of this method for integrating 2DES with on-chip

waveguides was the poor yield and repeatability of device fabrication, which was in turn

largely dependent on the post-fabrication multiple chip assembly. And so, it was decided

against using this integration approach.

2.3.3. Epitaxial transfer method

After attempting several previously established techniques by other research groups for

incorporating the 2DES with on-chip waveguides, two alternate methods were proposed

in this work, which had not been demonstrated before and were expected to allow

successful incorporation of both 2DES and THz waveguide on a single chip.

The first method was based on the principle of epitaxial lift-off and transfer

process of ultra-thin films onto an arbitrary dielectric substrate. Figure 2.20 shows a

layer-by-layer view of the integrated device design based on the epitaxial transfer

method. As shown, both the 2DES and the LT-GaAs photoconductive material films,

initially grown on a GaAs substrate using MBE, can be separately lifted-off and

transferred onto a host substrate (in this case quartz). Since quartz has a comparatively
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low dielectric permittivity ( quartz ~2.3), and has already been established as a suitable

substrate for THz bandwidth on-chip waveguides, it was chosen for this work [92].

The subsequent processing of the ohmic contacts on the 2DES mesa, followed

by overlaying the CPW with integrated switch regions, would enable pulse interaction

measurements on a single chip.

Figure 2.20 Layer-by-layer view of the implementation of the epitaxial transfer method, for
integrating ultra-thin films of the LT-GaAs photoconductive layer and 2DES on a host
substrate (quartz). The electrical coupling of the 2DES with the overlaid on-chip CPW is
carried out via ohmic contacts formed on the film containing the 2DES. While the LT-
GaAs films are used defining switch regions for generation and detection of propagating
ps timescale pulses.

The likelihood of this integration approach was firstly based on the initial

demonstration of epitaxial lift-off and transfer of thin LT-GaAs photoconductive films

(< 1 µm) [84, 85], with dimensions of 4 mm x 2 mm. In this demonstration, the

multilayer heterostructure containing the thin film on top of the AlAs release layer was

initially grown on a GaAs substrate using MBE. The thin photoconductive film was then

lifted-off from the rest of the substrate by selectively etching away the release layer

using a dilute hydrofluoric (HF) solution. The etch selectivity in HF solution was found

to be (~107) for AlxGa1-xAs (with x > 0.6) alloy as compared to AlxGa1-xAs (with
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x < 0.4). This allowed the integration of the thin film onto a separate dielectric substrate

using covalent bonding.

Another independent experiment showed successful operation of a 2DES,

following epitaxial lift-off and transfer of the GaAs/AlGaAs heterostructure layers

containing the 2DES onto a quartz substrate [104, 105]. Both of these experiments

encouraged the idea of the epitaxial transfer method being implemented in this work for

integrating both the photoconductive layer and the 2DES on one single chip.

The schematic of the heterostructures independently grown using MBE for

implementing epitaxial transfer process are shown in Figure 2.21. The GaAs/AlGaAs

heterostructure containing the 2DES grown on top of the AlAs release layer is illustrated

in Figure 2.21 (a), whereas Figure 2.21 (b) shows the layer structure of a heterostructure

containing the LT-GaAs photoconductive layer on top of the AlAs release layer.

Figure 2.21 Schematic of the MBE grown layer structures used for the epitaxial lift-off and
transfer of (a) GaAs/AlGaAs heterostructure containing the 2DES, and (b) LT-GaAs
photoconductive layer. The incorporation of the AlAs release layer shown in both
structures aids the epitaxial lift-off process.

Two chips were first cleaved to the dimensions of 4 mm x 4 mm from the LT-

GaAs heterostructure, while a single chip cleaved to the dimension of 3 mm x 3mm

from the GaAs/AlGaAs heterostructure was used. The dimensions were initially chosen

(a) (b)
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for aiding the handling of the chips. For selectively etching the AlAs release layer, as

described earlier, a dilute hydrofluoric (HF) acid solution was used, with a dilution

concentration of HF:H2O ~ 1:10. Also, in order to assist the handling of the ultra-thin

epilayers (from both the structures) during the transfer and integration process onto the

quartz substrate, a layer of black wax (or Apiezon wax) was coated on the top surface of

the heterostructure. The bonding of the epilayers with quartz took place via van der

Waals forces.

After the bonding of both the GaAs/AlGaAs and the LT-GaAs epilayers onto

the quartz substrate, the film surfaces observed optically showed a high occurrence of

micro-cracking. An example of the micro-cracks across the surface of the transferred

LT-GaAs film is shown in Figure 2.22. A similar observation was seen for the

transferred GaAs/AlGaAs epilayers containing the 2DES.

Figure 2.22 Optical microscopic image demonstrating the micro-cracking of the LT-GaAs film
after epitaxially transferred from the MBE structure and covalently bonded onto a quartz
substrate.

The key reason for the micro-cracking of the transferred epilayers was found to

be the creation of byproducts from the chemical reaction between the etching solution

and AlAs release layer [106], especially the gaseous H2. The gas bubbles trapped in the

area between the epilayer and the substrate cause surface tension in the epilayer film,

thereby resulting in micro-cracks. The consistency of substrate cracking was seen across
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several attempts with the 2DES and LT-GaAs epilayer transfer processes. Also, the

presence of layer cracking was very critical for functioning of the 2DES, and therefore

required a lot more research work to be carried out in terms of optimizing the overall

fabrication process (i.e. etching solution concentration, the physical dimensions of the

lifted-off epilayer, the temperature during the etching process and the handling

technique of the epilayers during the transfer process). Due to time constraints in the

project, this method was not considered to be a viable option for successful integration

of the 2DES and the LT-GaAs photoconductive material on one chip.

2.3.4. Monolithic integration technique

The second method proposed and established here for incorporation of the 2DES with

the on-chip waveguides involved a novel scheme, demonstrating a monolithic

integration of an epitaxially grown LT-GaAs photoconductive layer with the 2DES.

Since both LT-GaAs and GaAs/AlGaAs based 2DES have a similar lattice structure, it

allows the epitaxial integration of two layers on the GaAs substrate without changing the

lattice parameter of the structure.

However, the difference in epitaxial growth temperatures of the LT-GaAs and

the 2DES poses a great difficulty in achievement of the monolithic approach. The

optimum epitaxial growth temperature of the LT-GaAs photoconductive layer is widely

known to be ~200 oC [65, 107, 108], (for excitation of ps lifetime carriers), also shown

in Figure 2.23. This growth temperature is comparatively much lower than the

conventional growth temperatures of a GaAs/AlGaAs based 2DES [44]. As a result, the

epigrowth of the 2DES on the same wafer will effectively change the properties of the

LT-GaAs (assuming the LT-GaAs layer is grown first).
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Figure 2.23 Typical dependence of the photo-generated carrier lifetime on the MBE growth
temperature for as-grown (un-annealed) LT-GaAs photoconductive layer, taken from
reference [65].

On the other hand, the successful implementation of this technique shows

numerous advantages; most importantly, unlike the previous integration methods

discussed, the coupling of THz waveguides with the active ‘2DES’ device is only

dependent on processing of the structure (i.e. selective etching and overlaying metal

contacts). Therefore, it avoids any ‘post-fabrication integration’ processes which could

result in decreasing the overall functioning device yield. Also, having the 2DES coupled

with the waveguide overlaid on the same substrate allows more efficient and low loss

electric field coupling of the propagating ps timescale pulses, resulting in high

sensitivity for observing electron transport.

The following sections discuss the application in this project of the monolithic

approach for integration of the 2DES and LT-GaAs photoconductive layers. Individual

characterisation data and optimization of the performance of each layer is given below.
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2.4. First generation of monolithic integrated

structures

The first generation of the monolithic integrated structure demonstrated in this work

consists of a GaAs/AlGaAs epilayer sequence first grown on top of the semi-insulating

(SI) GaAs substrate, followed by the subsequent growth of LT-GaAs photoconductive

layer. A similar monolithic integration scheme was presented earlier at Leeds [109],

showing free-space THz emission from a photoconductive semiconductor switch grown

on the same wafer as the 2DES. Also, the low temperature electron transport

characteristics separately measured in the 2DES were not compromised by the integrated

photoconductor. The detailed layer structure grown on the SI substrate for the first

generation integrated structures is as shown in Figure 2.24.

Figure 2.24 Schematic of the MBE grown layer structure used for the first generation monolithic
integration of the LT-GaAs photoconductive layer with the 2DES heterostructure.

It is noted from the schematic that the first layer sequence consists of a

conventional 2DES GaAs/AlGaAs heterostructure, containing the 20 nm undoped

AlGaAs spacer layer, followed by a 40 nm Si-doped AlGaAs layer and a 10 nm GaAs

cap layer. A 400 nm AlAs optical barrier layer was then grown followed by a

subsequent growth of a 2 µm LT-GaAs photoconductive layer. The growth temperature
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across all the layers was ~600 oC, with the exception of the LT-GaAs layer, which was

grown at ~215 oC. The wafer was then annealed in situ at 530 oC for 15 minutes, to

increase the LT-GaAs resistivity.

Before individually investigating the properties of the LT-GaAs and the 2DES

layers integrated monolithically using MBE, the conduction band profile of the structure

shown above was simulated using a Poisson-Schrodinger 1D numerical solver to

determine the carrier distribution as a function of depth into the wafer at cryogenic

temperatures (~4 K). The simulation result is shown in Figure 2.25.

Figure 2.25 Simulated conduction band profile showing the distribution of carrier concentration
across the layer structure for the first generation monolithic integration of LT-GaAs layer
on top of the 2DES heterostructure.

It is noted that in addition to the 2DES forming at the GaAs/AlGaAs

heterojunction interface, a second electron system in parallel to the 2DES was induced at

the AlAs-GaAs cap layer interface. This resulted from the conduction band bending

below the Fermi energy near the AlAs-GaAs cap layer interface. The second electron
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layer in parallel to the 2DES could act as a very low resistance parallel conducting layer,

thereby affecting the properties of both the LT-GaAs and the 2DES layers.

The subsequent sections show characteristic measurements for the first

generation integrated structure, independently showing the ps pulse transmission

properties using the LT-GaAs based CPWs and the low-temperature electron transport

properties in the 2DES.

2.4.1. Characterisation of photoconductive layer

Since the photoconductive layer was located at the top of the integrated layer structure,

the quality of the LT-GaAs layer was characterised first using ps pulse generation and

transmission pulse measurements on CPW devices. The LT-GaAs based CPW device

geometry used for integrated structures were identical to ones previously characterised

in section 2.2 (for LT-GaAs structure without the 2DES).

The properties of the switch region defined on the LT-GaAs for generation and

detection of ps timescale electrical transients were tested in terms of generated current

across the switch gap with respect to the applied bias. Figure 2.26 shows the I-V

measurement carried out across one of the four identical switches integrated with the

CPW overlaid on the integrated structure surface. The inset of the Figure shows a

comparable I-V measurement previously carried out across an identical switch geometry

overlaid on the reference structure (i.e. LT-GaAs heterostructure without the 2DES). As

noted from Figure 2.26, the photocurrent generated across the switch gap on LT-GaAs

with 2DES underneath was comparable to the photocurrent generated across the

photoconductive switch gap structures without the 2DES.

However, the contribution of the low-resistance parallel conducting layer

induced at the AlAs-GaAs cap interface within the integrated structure (as seen in Figure
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2.25 ) was clearly observed in terms of dark current measurement. The dark resistance of

the photoconductive switch gap on the integrated structure was measured to be ~2 MΩ. 

This was much lower than the ~500 MΩ dark resistance measured earlier for the 

photoconductive switch material without the 2DES structure.

Figure 2.26 Main figure: the DC characteristics of one of the four switch gaps defined on the
surface of the monolithically integrated LT-GaAs layer, measured in terms of current
generated with respect to the applied bias in dark and illumination conditions. Inset: the
DC characteristics of the switch gap defined on the surface of the reference structure (i.e.
containing the LT-GaAs with no 2DES, as shown in Figure 2.1(a)) under similar
conditions.

The pulse generation and transmission measurements were then carried out to

observe carrier lifetimes and intensity of ps timescale electrical transients generated

using the LT-GaAs layer within the integrated structure. Figure 2.27 shows the

generated (input) and the transmitted (output) pulse measurement performed using

pump-probe arrangement. The pump-probe beam powers throughout the measurement

were kept at 10 mW with switch bias of 20 V applied at the pump switch.
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Figure 2.27 Experimental data of the THz pulses propagating along the CPW defined on the
surface of the monolithically integrated LT-GaAs layer. The measurement show the time-
domain ps pulse comparison observed at the input of the device (prior to the propagation
down the CPW) and the device output.

The time-domain THz signal amplitudes observed (for input and output pulses)

along the CPW demonstrated a poor performance of the LT-GaAs photoconductive layer

within the integrated structure (having 2DES and low-resistance conducting layer in

parallel) as compared to the LT-GaAs structure demonstrated earlier without the 2DES

heterostructure (discussed in section 2.2). A tabulated comparison of the measured LT-

GaAs photoconductive layer properties between the LT-GaAs structures with and

without the 2DES is shown in Table 1.

LT-GaAs structure

Dark current
amplitude at
20 V switch

bias (µA)

Generated
photocurrent
amplitude at
20 V switch

bias (µA)

Transmitted
THz peak

amplitude at
20 V switch

bias (nA)

Signal-to-
noise ratio

Transmitted
pulse

duration (ps)

First generation
integrated structure

(LT-GaAs with
2DES)

12.6 18.5 6 20:1 3

Reference LT-GaAs
structure (with no

2DES)
0.059 13.5 70 500:1 3.2

Table 1 LT-GaAs heterostructure and ps timescale transport properties measured from
transmitted pulses along the CPW.
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The deterioration and correspondingly poorer signal-to-noise ratio of the

transmitted THz signal along the CPW patterned on integrated structure was anticipated

due to the presence of the parallel conducting layer (at AlAs-GaAs cap interface). The

low-resistance layer in close proximity to the waveguiding surface acts as a lossy ground

plane, thereby attenuating or preventing the transmission of THz frequency electrical

transients.

The properties observed for the LT-GaAs photoconductive material

monolithically grown above the 2DES were found not to be ideal for integrating on-chip

waveguides due to the transmission properties of the overlaid waveguide being affected

by the unwanted formation of the electron system in close proximity.

2.4.2. Characterisation of 2DES

After observing the properties of the LT-GaAs photoconductive layer, the transport

properties of the monolithically integrated 2DES were then independently characterised

using Hall bar measurements. From the LT-GaAs characterisation, the parallel

conducting layer realized at the AlAs/GaAs cap interface was found to affect the LT-

GaAs properties as a photoconductive material. Hence, in order to observe the electron

transport properties of the 2DES independently from the low-resistance parallel

conducting layer, it was essential to selectively remove the latter without changing the

properties of the 2DES. This was carried out by selective etching of the overlaying LT-

GaAs and AlAs layers. Since the Fermi energy of the structure is pinned at the mid-gap,

the etching process will result in raising the conduction band edge above the Fermi

energy, thereby resulting in depopulation of the unwanted electron layer induced in

parallel to the 2DES. The Hall bar geometry as illustrated in Chapter 1, Section 1.4 and

as shown in Figure 1.8, was then fabricated on top of the exposed GaAs/AlGaAs
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heterostructure surface (see Appendix 1-2, for selective etching and Hall bar fabrication

details).

To assess the carrier transport co-efficients such as sheet density ns and carrier

mobility µ, magneto resistance measurements in the quantum Hall regime were then

carried out at 1.4 K. Figure 2.28 shows the observed diagonal and Hall component of

2DES resistivity using a typical four-terminal resistance measurement configuration.

Using Equation 1.9 and 1.10 which shows the dependence of electron transport

coefficients on the measured resistivities, the sheet density of the 2DES was found to be

1.57 x 1011 cm-2 with electron mobility of 70.5 x 103 cm2/Vs.

Figure 2.28 Experimental data for the dark measurement of Hall (ρxy) and diagonal (ρxx)
resistivity of the first generation monolithically integrated 2DES, taken using a four-
terminal Hall bar device configuration at 1.4 K.

The transport properties of the 2DES were re-measured to observe its

dependence due to photo excitation. Figure 2.29 shows the four-terminal resistivity

measurement at 1.4 K after illumination with 800 nm wavelength radiation (using a

LED). As demonstrated earlier by Reed et al [110], both the measured diagonal and Hall

component of the 2DES resistivities showed decrement by illuminating the Hall bar
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sample. The altered sheet density and carrier mobility were found to be 3.44 x 1011 cm-2

and 295 x 103 cm2/Vs.

Figure 2.29 Experimental data for the light (after illumination) measurement of Hall (ρxy) and
diagonal (ρxx) resistivity of the first generation monolithically integrated 2DES, taken
using a four-terminal Hall bar device configuration at 1.4 K.

The 2DES properties confined within the integrated structure (after etching the

top LT-GaAs and AlAs layers) showed similar sheet density and carrier mobility to a

second reference GaAs/AlGaAs heterostructure grown to identical design but without

the LT-GaAs-AlAs layers grown on top, thereby demonstrating uncompromised

performance of the 2DES by the integrated growth approach.

To summarize the performance of the first generation monolithically integrated

structure, both the 2DES and the LT-GaAs properties were found to be affected by the

formation of a parallel low-resistance conducting layer, which was unintentionally

induced during the integrated growth process. However the 2DES properties assessed

after the removal of the overlaid layers showed uncompromised performance.
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2.5. Second generation of monolithic

integrated structures

Following the full characterisation of the first generation integrated structure containing

both the 2DES and the LT-GaAs; a second generation heterostructure with modifications

in the order of the layer structure was proposed and grown using MBE. Figure 2.30

shows the detailed schematic of the epitaxially grown layer structure.

Figure 2.30 Schematic of the MBE grown layer structure used for the second generation
monolithic integration of the LT-GaAs photoconductive layer with the 2DES
heterostructure.

As shown for this generation of the integrated structure, the LT-GaAs

photoconductive layer with the AlAs optical barrier layer is grown first on the SI GaAs

substrate, followed by the epitaxial overgrowth of the GaAs/AlGaAs heterostructure

containing the 2DES. This modification was carried out in order to avoid forming an

additional conducting electron layer in close proximity to the 2DES and the LT-GaAs.

The conduction band profile simulation results for the second integrated structure

design, illustrating the carrier distribution as a function of depth into the wafer, is shown

in Figure 2.31. It is clearly noted from the carrier distribution that the parallel
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conducting electron layer that was observed in the previous generation (as shown in

Figure 2.25) has now been eliminated by the modified layer structure.

Figure 2.31 Simulated conduction band profile showing the distribution of carrier concentration
across the layer structure for the second generation monolithic integration of LT-GaAs
layer below the 2DES heterostructure.

However, the MBE growth process for successful monolithic integration of the

2DES on top of the LT-GaAs layer proved to be more complicated than the previous

structure due to the temperature variation through the growth process. Since, the 2 µm

thick LT-GaAs layer was grown on 400 nm AlAs layer at 215 oC, the following high

temperature growth (~600 oC) of the 2DES heterostructure on top effectively annealed

the LT-GaAs, thereby increasing the carrier lifetimes in the photoconductive layer.

Also a direct dependence of the growth and the structural properties of the LT-

GaAs layer on the crystallinity of the overgrown layers were observed, as previously

demonstrated in the literature [111-113]. It was found that the lattice parameter of the

over layer structure changes depending on the growth temperature and critical thickness

dc of the LT-GaAs layer. Growth of an LT-GaAs layer with thickness greater than dc can
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cause a polycrystalline formation of the 2DES heterostructure. Previous estimations of

dc are of the order of 0.1-3 µm for the LT-GaAs layers grown at low-temperatures

~200 oC [112].

After several growth iterations of the monolithic integrated structure, the growth

temperature and the thickness of the LT-GaAs layer were optimized to avoid

polycrystalline growth of the 2DES heterostructure above and also to maintain photo-

generated carrier lifetimes in ps timescales.

2.5.1. Characterisation of 2DES

In this generation of the integrated structure, as the 2DES was easily accessible through

the top surface, the electron transport properties of the 2DES was first characterised

using standard four-terminal Hall bar measurements. As before, the Hall bar geometry

together with the ohmic contacts was fabricated on top of the GaAs cap surface.

The magneto resistance measurement in the quantum Hall regime carried out at

1.4 K demonstrating the behavior of the diagonal and Hall resistivity is shown in

Figure 2.32. The sheet density and carrier mobility extracted from the 2DES resistivity

measurements under dark conditions were found to be 3.65 x 1011 cm-2 and

500 x 103 cm2/Vs. The corresponding sheet density and mobility measured from

magneto resistance measurements after illumination (as shown in Figure 2.33) were

found to be 6.3 x 1011 cm-2 and 900 x 103 cm2/Vs.
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Figure 2.32 Experimental data for the dark measurement of Hall (ρxy) and diagonal (ρxx)
resistivity of the second generation monolithically integrated 2DES, taken using a four-
terminal Hall bar device configuration at 1.4 K.

Figure 2.33 Experimental data for the light (after illumination) measurement of Hall (ρxy) and
diagonal (ρxx) resistivity of the second generation monolithically integrated 2DES, taken
using a four-terminal Hall bar device configuration at 1.4 K.

The transport coefficient measurements for the monolithically integrated 2DES

above the LT-GaAs photoconductive layer showed a six-fold increase in carrier mobility

as compared to the 2DES confined in the previous monolithic integrated structure. In

this particular case, the performance of the 2D electron layer was also found to be

considerably better than the reference GaAs/AlGaAs based 2DES with no

monolithically integrated LT-GaAs layer. Hence, the 2DES in the second generation
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monolithic integrated structure was found to be ideal for ps timescale electron transport

studies using integrated on-chip waveguides.

2.5.2. Characterisation of photoconductive layer

For the second generation integrated structure, in order to characterize the

monolithically integrated LT-GaAs properties as a photoconductive layer, it was

essential to expose the LT-GaAs surface by selectively etching away the overlaying

layers (the details of the selective etch process is shown in Appendix 3). Following the

removal of the overlaying structure, the CPW design geometry as shown earlier in

Figure 2.1 (b) was overlaid on top of the exposed LT-GaAs surface.

The I-V characteristics of one of the four identical photoconductive switch gaps

used for ps pulse generation and detection propagating along the CPW are shown in

Figure 2.34. The inset of the Figure shows a comparable I-V measurement previously

carried out across a identical switch geometry overlaid on the reference structure (i.e.

LT-GaAs heterostructure without the 2DES).

Under similar bias and illumination conditions, a clear similarity was seen in

terms of the photocurrent amplitude generated in the LT-GaAs photoconductive switch

gap based on structures integrated with or without the 2DES. Also the dark resistance of

the LT-GaAs switch after removing the overlaid 2DES was found to be very similar

(~550 MΩ ) to that of the LT-GaAs switch based on the reference structure (~500 MΩ).  
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Figure 2.34 Main figure: the DC characteristics of one of the four switch gaps defined on the
exposed surface of the monolithically integrated LT-GaAs layer, measured in terms of
current generated with respect to the applied bias in dark and illumination conditions.
Inset: the DC characteristics of the switch gap defined on the surface of the reference
structure (i.e. containing the LT-GaAs with no 2DES, as shown in Figure 2.1(a)) under
similar conditions.

The following ps pulse generation and transmission measurements were then

carried out to characterize the properties of the CPW. As before, the pump-probe beam

powers throughout the measurement were kept at 10 mW with switch bias of 20 V

applied at the pump switch. Figure 2.35 shows the generated (input) and the transmitted

(output) pulse measurement performed using the pump-probe arrangement. As shown,

the input THz peak amplitude was measured to be ~120 nA with pulse duration of

2.4 ps, while the output pulse peak amplitude was measured to be 94 nA with pulse

duration of 3.8 ps.

The input and output pulse measurements showed a great resemblance to the

signals observed with a similar geometry CPW based on the reference structure with no

2DES.
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The comparison of these properties, as tabulated in Table 2, showed

uncompromised performance of the LT-GaAs photoconductive layer for on-chip THz

generation and detection after its monolithic integration with the 2DES.

Figure 2.35 Experimental data of the THz pulses propagating along the CPW defined on the
exposed surface of the monolithically integrated LT-GaAs layer. The measurement show
the time-domain ps pulse comparison observed at the input of the device (prior to the
propagation down the CPW) and the device output.

LT-GaAs structure

Dark current
amplitude at
20 V switch

bias (µA)

Generated
photocurrent
amplitude at
20 V switch

bias (µA)

Transmitted
THz peak

amplitude at
20 V switch

bias (nA)

Signal-to-
noise ratio

Transmitted
pulse

duration (ps)

Second generation
integrated structure

(LT-GaAs with
2DES)

0.055 18.5 90 500:1 3.8

First generation
integrated structure

(LT-GaAs with
2DES)

12.6 18.5 6 20:1 3

Reference LT-GaAs
structure (with no

2DES)
0.059 13.5 70 500:1 3.2

Table 2 LT-GaAs heterostructure and ps timescale transport properties measured from
transmitted pulses along the CPW.
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2.6. Summary

This chapter has given a brief overview of the performance of LT-GaAs

photoconductive material within on-chip THz CPWs using THz-TDS. The characteristic

measurements showing the performance of the LT-GaAs photoconductive layer for on-

chip THz generation and detection, together with the ps pulse transmission properties of

the overlaid CPW were consequently understood prior to integration with a 2DES.

A detailed discussion on the execution of various methods that permits

incorporation of on-chip THz CPWs in close proximity with the confined electron

system was also presented. Initial implementations of previously established methods in

the literature were not found to be ideal due to the overall complexity in the ‘post-

fabrication’ assembly and also the limited sensitivity achieved in interacting the electric

field of the ps pulses travelling along the waveguide with the adjacent 2DES.

Out of the two methods that were later proposed and implemented to overcome

the complexity issues in the assembly of the THz waveguides with the 2DES, the

monolithic integration approach showed the greater potential for application in this

work. The properties of the monolithic approach, such as ‘pre-fabrication’ assembly of

the LT-GaAs with the 2DES, allows the on-chip THz waveguides with photoconductive

switches to be processed with the in-plane adjacent 2DES. This significantly increases

the sensitivity of the ps timescale measurement of the 2DES as compared to previous

methods demonstrated in the literature. Also, the independent characterisation of both

the LT-GaAs and the 2DES layers allowed the optimization of their performances by

modifying the monolithic growth parameters, thereby successfully achieving an

undiminished performance following monolithic integration of both layers.
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The material covered in this chapter completes the necessary background for the

remainder of this thesis, which will describe an investigation of the characteristics of on-

chip THz CPWs at cryogenic temperatures and under magnetic fields and their

application to studying ps timescale electron transport in a 2DES using the established

monolithic integrated structures.



84

Chapter 3: THz generation and

detection at Milli-Kelvin

temperatures and under magnetic

fields

3.1. Introduction

This chapter will describe the first attempts within this project to perform on-chip THz

spectroscopic measurements at milli-Kelvin temperatures and in high magnetic fields.

The methodology follows that described in Chapter 2, where a coplanar waveguide is

used to support the propagation of THz electrical pulses. In order to obtain quantitative

information about the 2DES from ps pulse interaction measurements using planar

waveguides, it was first necessary to understand the pulse transmission properties of the

waveguides without the 2DES present under similar environments. This was achieved

by using a LT-GaAs substrate for the coplanar waveguide, which is relatively non-

conductive and which supported the propagation of conventional waveguide modes

[114]. The THz waveguides were first characterised at room temperature by the pulsed

THz-TDS technique described in Chapter 2, Section 2.2. However for milli-Kelvin

measurements, the NIR laser beams were coupled to standard optical fibers inserted into

the dilution fridge, to illuminate the photoconductive switches. This technique removed

any need for optical access windows for the laser beams. Section 3.2 describes in detail

the experimental setup and methodology used to perform these measurements. This
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work also gave rise to a new technique for dynamic imaging of the photoconductive

switches, the results of which are also presented.

3.2. Experimental setup

This section briefly outlines the operation of the 3He/4He dilution refrigerator. Details

about the experimental setup used for on-chip THz transmission measurements,

including the use of optical fibers, are also described, followed by a description of

structure and geometry of the coplanar waveguide devices used for this work.

3.2.1. 3He/4He dilution refrigerator

The conventional cryostats achieving operation temperatures in the range 300 K to 1 K

utilize liquid cryogens such as 4He. Pumping on 4He enables temperatures down to about

1 K to be reached [115]. The P-T phase diagram of 4He is shown in Figure 3.1.

Figure 3.1 P-T phase diagram of 4He.
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The lighter isotope of helium, 3He, is used only to achieve the lowest

temperatures in this range; it is very scarce and highly expensive. The dilution

refrigerator takes advantage of the peculiar low-temperature behavior of the 3He-4He

mixtures. When a mixture of two stable isotopes of helium is cooled below a tri-critical

temperature, it separates into two phases. The concentration of 3He in each phase

depends upon the temperature. Since the enthalpy of the 3He in the two phases is

different, the evaporation of 3He from the concentrated phase into the dilute phase

provides the cooling power of the dilution fridge. The phase diagram of 3He- 4He

mixtures is shown in Figure 3.2 [115].

Figure 3.2 Phase diagram for 3He- 4He mixtures.

The concentrated phase is rich in 3He and lighter than the dilute phase (4He).

The concentrated phase of the mixture composes mainly liquid 3He, and the dilute phase

consists of 3He gas. The 4He which composes majority of the dilute phase is inert, so the

3He gas moves through the liquid 4He without interaction. The formation of 3He gas

from the 3He liquid takes place at the phase boundary in the mixing chamber of dilution
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fridge. This process continues to works even at the lowest temperatures, as the

equilibrium concentration of 3He in the dilute phase is finite as the temperature

approaches absolute zero.

The dilution refrigerator that is used for this work is shown in Figure 3.3. It

consists of an integrated pulse tube cooler, a gas handling system and a compressor for

the pulse tube. With cooling power of over 200 µW at temperature of 100 mK, it can

reach a base temperature < 10 mK. The integrated superconducting cryo-free magnet can

reach high fields up to 12 T.

Figure 3.3 Oxford instruments DR 200 cryo-free dilution refrigerator.

During the pre-cooling procedure, the pulse tube cooler is used to condense the

3He/4He mixture into the dilution unit. It does not cool the mixture sufficiently to form

the phase boundary but simply to bring it to 1.2 K. In order to get phase separation, the

temperature should fall below the tri-critical point at 0.86 K. This cooling is provided by

the still; it cools the incoming 3He before it enters the heat exchangers and the mixing
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chamber. Gradually, the rest of the dilution unit is cooled to the point where phase

separation occurs. Figure 3.4, indicates the different critical temperature regions inside

the dilution unit. It is important for the operation of the dilution refrigerator that the 3He

concentration and the volume of the mixture is chosen correctly, so that the phase

separation occurs inside the mixing chamber.

Figure 3.4 Diagram of various critical temperature plates inside the dilution unit.

For continuous operation, the 3He must be extracted from the dilute phase to

prevent saturation and resupplied to concentrated phase keeping the system in dynamic

equilibrium. The 3He is pumped away from the liquid surface in the still, which is

typically maintained at 0.6-0.7 K, and the 3He leaving the mixing chamber is used to

cool the returning flow of concentrated 3He in a series of heat exchangers. In the regions

where the temperature is below 50 mK, conventional counter flow heat exchangers are

not very efficient and so special sintered heat exchangers are used for this purpose as

shown in Figure 3.4.
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A room temperature vacuum pumping system is used to remove the 3He from

the still and compress it before passing it through impurity removing filters and cold

traps (at 77 K). The gas is returned to the cryostat, where the mixture is pre-cooled by

the pulse tube cooler. Primary impedance is used to maintain high enough pressure for

the gas to condense.

The experimental apparatus is mounted on the mixing chamber plate (shown in

Figure 3.4), ensuring that it is in good thermal contact with the dilute phase. For the

experiments carried out at higher temperatures, the mixing chamber can be warmed by

applying heat directly to the mixing chamber.

3.2.2. Photonic crystal fibers

The key reason for using optical fiber coupling for photoconductive sampling in

dilution fridge is to avoid the need for optical access windows, which would admit

300 K black body radiation and cause unwanted thermal loading. The access window

materials that transmit at the laser wavelength λ = 810 nm are transparent to large 

portions of the thermal black body spectrum that peaks near 10 µm. For example, the

thermal loading from a 300 K black body looking through a 1 cm radius quartz window

at 77 K is calculated to be 7 mW [116]. Hence optical fibers are a suitable alternative for

laser radiation coupling in this work.
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Figure 3.5 Cross-section schematic, showing structure of (a) Solid core and (b) Hollow core
optical fibers.

At first, both solid core silica and hollow core fibers were considered. The

schematic of the structure of these fibers is shown in Figure 3.5. Both of these fibers

offered important properties such as single-mode transmission and extreme non-

linearity. The solid core fibers are similar to conventional fibers, typically known as high

index guiding fibers, guide light in a solid core, usually pure silica. Total internal

reflection is caused by the lower refractive index in the air-filled region. On the other

hand, hollow core fibers typically known as low index guiding fibers, guide light by the

photonic bandgap (PBG) effect. The periodic microstructure in the fiber cladding results

in a photonic bandgap, where light of certain wavelengths cannot propagate; hence the

light is confined to the low index core as the PBG effect makes propagation in the

microstructured cladding region impossible.

(b)(a)
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For this work, the transmission properties of each of these fibers, including

optical beam intensity and dispersion of spectral components, were tested independently

using an interferometric autocorrelation measurement. The system diagram of the

experimental arrangement is shown in Figure 3.6. As shown in the schematic, the pulsed

NIR laser beam from the Ti:sapphire laser is passed along through a pair of neutral

density (ND) filters via paths 1-4 and focused into the central core of the fiber with a

diameter of ~6 µm. For preliminary tests, a 1 meter long fiber was used, and its ends

were carefully sheathed and cleaved for beam coupling. The optical power of the laser

beam was kept limited to 10 mW in order to avoid causing damage to the central core.

Also, a half-wave plate retarder is used in order to overcome polarization dispersion in

the optical fibers, resulting from the finite refractive index of the optical medium. The

coupling ends of the fiber were mounted on a linear x direction translation stage in order

to optimize beam coupling from the focusing lens.

Figure 3.6 Diagram of optical setup used for testing optical fibers.

The efficiency of coupling in both solid core and hollow core fibers after careful

alignment was measured to be around 70 %. The pulse duration measured through a 1 m

long zero dispersion, single mode hollow core fiber is shown in Figure 3.7. The pulse

duration measured after travelling through the fiber was compared directly with the
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autocorrelation of the free space femtosecond laser pulse. It was demonstrated for

hollow core fibers that the transmitted pulse duration of the laser beam with centre

wavelength of ~810 nm was not affected; this result was found to be consistent for fiber

lengths up to 10 m. As a result, using hollow core fibers for guiding laser beam pulses in

the cryostat would not require any external dispersion compensation.

Figure 3.7 Experimental data showing the comparison of pulse duration at λ ~810 nm, between a 
free space laser pulse and a transmitted laser pulse through a ~1 m long hollow core fiber.

However, the zero dispersion property of the hollow core fiber was found to be

wavelength dependent. The refractive index of the periodic microstructure in the fiber

cladding would alter for different wavelengths, thereby deviating the pulse dispersion

from a zero value [117]. A clear demonstration of the pulse being dispersed is seen in

Figure 3.8, when the centre wavelength was altered from ~810 nm to ~780 nm.
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Figure 3.8 Experimental data showing the comparison of laser pulse durations for transmission
through a ~1 m long hollow core fiber at two different wavelengths (λ ~780 and 810 nm).  

The 1 m long hollow core fiber was then replaced by similar length solid core

silica fiber. Figure 3.9 shows the transmitted pulse duration measured through the fiber

and compared with a free space femtosecond laser pulse. The refractive index of the

solid core silica glass induces negative dispersion on laser pulses at ~810 nm

wavelength. This meant that the longer wavelengths travel faster than the shorter

wavelengths, as a result causing optical pulses of high bandwidth to broaden in time. It

was noted that the dispersion of pulse duration was strongly dependent on the length of

the solid core fiber (for both wavelengths, λ = 780 nm and λ = 810 nm). This material 

dispersion is acceptable for experiments where relatively long pulses (several

picoseconds) are used, however for the shorter pulses used for this work (~100 fs) this

material dispersion was undesirable. In order to compensate for this dispersion, a

Grating Dispersion Compensator (GDC) was required.
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Figure 3.9 Experimental data showing the comparison of pulse duration at λ ~810 nm, between a 
free space laser pulse and a transmitted laser pulse through a ~1 m long silica core fiber.

After studying the transmission properties of both types of optical fibers at room

temperatures, hollow core fibers seemed an obvious choice to be used for guiding pulses

in the cryostat, as they do not require external dispersion. However, when the tests were

repeated at operating temperatures down to 77 K, it was observed that the hollow core

fibers underwent physical contraction, which seriously affected the transmission

properties. Conversely, the transmission properties of the solid core fibers remained

unchanged at cryogenic temperatures. As a result, the solid core fibers were chosen for

the purposes of this work. A GDC was designed for optimizing the pulse duration at the

fiber’s end.

The GDC used in the experimental setup as shown in Figure 3.10, employed

‘Littrow’ pulse compression, which uses two precisely designed blazed gratings. These

gratings are usually fabricated by moulding the epoxy coated glass substrate. The first

grating acts as a diffraction grating which separates out the wavelengths according to the

grating relation as shown below in Equation 3.1, where m refers to the diffracted order,
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d is the grating spacing,  is the incident angle with respect to the normal, and β is the 

diffracted angle.

Typically, only first-order diffraction from the Littrow arrangement is

considered for dispersion compensation, as the power is diffracted preferentially into the

first order. The wavelengths of the input pulse (~100 fs) are spread spatially and re-

collimated by a second grating. The pre-chirped output pulse envelope is broadened in

time (~25 ps). The natural (negative) dispersion of the silica core then recompresses the

pulse. Using this technique, the subsequent pulse duration measured after passing

through 10 m of solid core optical fiber was found to be reduced below ~300 fs. The

main advantage of using the GDC is that it provides flexibility in using variable lengths

of fiber, as the output pulse width is easily tuneable through the positioning of the

second grating.

3.2.3. On-chip THz-TDS system

In order to operate THz coplanar waveguides at milli-Kelvin temperatures, an on-chip

THz-TDS setup similar to the setup used for room temperature characterisation was

used, as shown in Figure 3.10. The use of optical fibers is helpful to implement the

pump-probe sampling measurements in a cryogenic environment with high magnetic

fields. A pair of 10 m long solid core silica optical fiber was used to guide the pump and

probe beams into the sample space of the dilution refrigerator. The horizontally

polarized beam from the pulsed infrared Ti:sapphire laser (centre wavelength 800 nm,

pulse duration 100 fs, repetition rate 80 MHz) was pre-chirped using GDC in order to

compensate for the pulse dispersion in the fibers.
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Figure 3.10 System diagram of THz-TDS used for operating on-chip waveguides at cryogenic
temperatures. The 100 fs laser pulses from Ti:sapphire laser are beam split and
compressed before being channelled down two optical fibers for accessing the dilution
fridge.

The laser beam was then passed along a 45o angle beamsplitter as shown via

paths 1-4 in Figure 3.10, where it is split into pump and probe sections. The pump beam

passed along paths 5-8, and was focused directly onto central core of the optical fiber.

The probe beam was passed along an optical delay line via paths 9-10 and through an

optical chopper. It was then focused onto the central core of an identical optical fiber.

The pair of optical fibers guiding pump and probe beams were coupled into the

refrigerator through a top-access insert and were carried all the way to the mixing

chamber plate.

Previous on-chip THz transmission studies at cryogenic temperatures by E.

Shaner [98] demonstrated a method for gluing optical fibers directly to the

photoconductive switches. This fixed arrangement of the fibers was trialed within this

project, and worked satisfactorily at room temperature; however, at liquid helium



97

temperatures the thermal contraction during cooling caused misalignment of the laser

beams and strongly affected the photoconductive excitation.

In order to avoid these limitations, a novel approach was demonstrated in this

work. A cryogenic sample holder consisting of brass ferrules, free-space optics and

piezo-electric stages was custom designed in order to focus the pump and probe beams

from the optical fibers onto the appropriate photoconductive switches of the coplanar

waveguide device. This technique enabled dynamic control over positioning of laser

beams with sub-micron accuracy. The cryogenic sample holder used is shown in Figure

3.11 [83].

Figure 3.11 Illustration of the cryogenic sample holder used, together with the two pairs of
piezoelectric stages for positioning and alignment of free space laser beams.

The fibers guiding the dispersion-compensated pump and probe beams are

coupled inside brass ferrules which are pivoted at the bottom of the mixing chamber

plate of the dilution refrigerator, around 30 cm above the on-chip THz system. An
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aspherical lens fixed at the end of each of these ferrules is used to collimate the laser

beams, while the free end of the ferrules is connected to two sets of crossed, linear

piezo-electric stage pairs (one pair for each ferrule) via brass clamps as shown in Figure

3.11. This allowed micron-precision control in translating the laser beams across the

plane of the sample surface. In order to maximize the optical excitation efficiency, the

collimated pump and probe beams were focused onto the photoconductive switches

using a focusing lens placed at a fixed height above the on-chip system.

3.2.4. On-chip THz waveguide devices

The transmission characteristics of THz microstrip and Goubau lines have already been

explored extensively both at room temperatures and at low-temperatures by the present

group at Leeds [4, 118]. However these transmission lines require a low dielectric

permittivity substrate (e.g. quartz or BCB) and also the transfer of thin LT-GaAs films

onto these substrates to enable photoconductive generation and detection.

The choice of the substrate for the present work was a 500 µm-thick GaAs

wafer, which has a relative permittivity of ~12.9 for frequencies between 0.3-2.0 THz

(much larger than quartz or BCB), hence it was more appropriate to use a coplanar

waveguide as the transmission line. The GaAs substrate was used in this work, as LT-

GaAs can easily be monolithically integrated onto it using MBE. The layers of this

monolithic heterostructure are shown in Figure 3.12.
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Figure 3.12 Schematic of LT-GaAs/AlAs/GaAs photoconductive heterostructure grown using
MBE.

The metal coplanar waveguide was fabricated on the surface of the LT-GaAs

photoconductive layer using UV lithography followed by thermal evaporation of a

20/200 nm thick Ti/Au layer. The centre Ti/Au strip acted as a signal conductor, and on

both sides in close proximity, ground planes were placed. These ground planes guided

the picosecond pulse of charge which was generated and detected by the

photoconductive switches. The basic design for each device studied in this chapter is

based on the parallel pump and probe layout described in Chapter 1, Section 1.6 and as

shown in Figure 1.25. A total of four probe arms (or biasing electrodes) were integrated

into the design, forming two pairs of photoconductive switches, to allow input and

output measurements to be made. The length of the ‘active region’ of the CPW, also

regarded as the length of transmission line between two switches was 1.2 mm, while its

width was 30 µm. The ground plane separation from the signal conductor and electrodes

was 20 µm, resulting in 50 Ω characteristic impedance for the waveguide (as calculated 

using Equation 1.20). The parasitic region of the transmission line was kept 2.48 mm.

Using the phase velocity formulation as discussed in Chapter 1, Section 1.6, the parasitic

region should considerably delay the pulse reflections from transmission line

discontinuities, thereby giving an expected time-window of ~40 ps for THz pulse

measurements.
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Figure 3.13 shows one of the CPW device designs studied here (Sample 1). The

enlarged view of the photoconductive switch (PCS) regions is shown in the inset,

showing the separation gap between the transmission line and the biasing electrodes was

5 µm.

Figure 3.13 Main figure: Diagram of a THz coplanar waveguide device (Sample1) used in this
work, containing a transmission line between contact pads (2 and 5) and four converging biasing
electrodes defining simple PCS gap regions. Inset: Enhanced view of one of the four switch
regions showing dimensions of the switch gap, transmission line and probe arms.

An alternative design of PCS geometry consisting of an interdigitated metal-

semiconductor configuration was also studied for understanding the effect of switch

geometries on the generation and detection of ps timescale electrical transient. As shown

in Figure 3.14, a second CPW device design (Sample 2) was also investigated,

employing an interdigitated arrangement of photoconductive switch (IPCS) gaps for the

pulse detection switches. This work was undertaken in order to understand the effect of

switch geometries on the amplitude and shape of the THz pulses, both at room and
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cryogenic temperatures. Previous theoretical modelling studies of PCS gap geometries

have shown a direct comparison between a simple PCS and IPCS gap [119].

Figure 3.14 Main figure: Diagram of a THz coplanar waveguide device (Sample2) used,
containing a transmission line between contact pads (2 and 5) and four converging biasing
electrodes defining two simple PCS gap regions (pump switch) and two IPCS gap
regions(probe switch). Inset: Enhanced view of one of the IPCS pairs showing dimensions
of the switch gap, transmission line and probe arms.

As shown in the inset of Figure 3.14, for switch regions 3 and 4, the simple

5 µm switch gap between the transmission line and the biasing electrode is replaced with

pair of interdigitated fingers. The dimensions of the finger width and gap spacing were

kept identical to 2 µm.

The next two sections provide a detailed study of the operation of the two CPW

device designs at both room and cryogenic temperatures. The comparison between

simple PCS and IPCS gap characteristics is also discussed.
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3.3. On-chip THz transmission studies at

room temperature

The operation of the THz CPW devices was first examined at room temperature. This

work also involved a consideration of the DC properties of PCSs integrated with

waveguides, as they play an important role in the generation and detection of THz

electrical transients. The LT-GaAs based photoconductive switches on two independent

devices were thoroughly characterised on the basis of photo-carriers generated across the

switch at both room and cryogenic temperatures.

3.3.1. DC characterisation of photoconductive switches

The biasing arrangement for measuring DC current across one of the switch region is

similar to the one demonstrated in Chapter 1, Section 1.6 and as shown in Figure 1.18.

The dark current measurements (with no laser beam focussed on the switch region) were

measured to be negligible (in order of nA) due to the high dark resistivity of LT-GaAs.

The photocurrent measurement at varying bias voltages on both pump and probe

switches for varying laser beam intensity is shown in Figure 3.15(a) and 3.15 (b) for

Sample 1, and Figure 3.16(a) and Figure 3.16(b) for Sample 2. The observed responses

showed ohmic behaviour as expected [120]. The inset shows the response of current

across the switch region with varying beam power at constant bias of 30 V, which was

also found to be linear.
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Figure 3.15 Main figure: Current versus applied voltage for Sample 2, for (a) the simple
PCS gap pump switch and (b) IPCS gap probe switch at varying laser powers. Inset:
Current achieved at 30 V for each power.

Figure 3.16 Main figure: Current versus applied voltage for Sample 1, for (a) the pump
switch and (b) probe switch at varying laser powers. Inset: Current achieved at 30 V
for each power.

(b)(a)

(b)(a)
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As shown in Figure 3.15, both pump and probe switch with simple PCS

geometry for Sample 1 show similar photocurrent generation for equal biasing and

illumination conditions, thereby demonstrating equal carrier generation across each

switch. However for Sample 2, it is noted from Figure 3.16, that the photocurrent

generated across the probe switch with IPCS geometry was ~1.5 times that across the

pump switch with simple PCS geometry under equal biasing and illumination

conditions. This result can be explained by the fact that the electric field density

generated by applying bias to the switch is larger for IPCS because the smallest distance

between the interdigitated electrodes is 2 µm, much smaller than the 5 µm gap for the

simple PCS geometry of the pump switch.

3.3.2. Input pulses

Having characterised the properties of PCS under varying biases and laser beam powers,

the THz pulse transmission experiments were carried out on two devices using a room

temperature THz-TDS setup. The pump and probe beam were set to the same powers

(10 mW) in order to achieve equal carrier generation across each PCS on the device.

Initially the generated (input) THz pulse was measured using two adjacent switch

regions on either side of the transmission line. The position of the pump and probe

beams together with bias arrangement is similar to one demonstrated in Figure 3.18.

Both pairs of switch regions (1-2, 3-4) were tested in order to show reproducibility for

generating and detecting THz pulses with similar amplitude and pulse shape.
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Figure 3.17 Comparison of the generated THz pulse scans for both pairs of switch regions on
Sample 1 showing the two main reflection peaks.

Figure 3.17 shows the single THz pulse scan generated and detected using both

adjacent switch pairs on Sample 1 with a 30 V pump bias voltage applied. The first peak

identified as the THz pulse is followed by several other reflections which are explained

with reference to reflections within the waveguide geometry. It is noted that the

generated THz pulse shape (with FWHM ~2 ps) and pulse amplitude using both simple

PCS switch pairs on Sample 1 are very similar, as expected, thereby showing a good

reproducibility of generation and detection of the pulses across all switch pairs. The two

reflection features labeled as ‘a’ and ‘b’ in Figure 3.17 are readily identifiable by

considering the calculated pulse propagation velocity of 1.24 x 108 ms-1, (using

Equation 1.24) . In Chapter 1, Section 1.6, it was shown that the reflections occurring

from a short circuit undergo a 180o phase inversion, whilst reflections from open circuits

retain their original phase. The origin of the two reflections from the discontinuities in

the waveguide is demonstrated in Figure 3.18.
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Figure 3.18 Demonstration of the pulse paths required for the origin of the two subsequent
reflections a and b, following the main generated THz pulse.

For a positive-polarity THz pulse, the first subsequent reflection (labeled a) is

negative in sign since it undergoes a single reflection from a short circuit interface of the

transmission line as shown in Figure 3.17. The second reflection (labeled b) in the pulse

scan is identified as arising from the open circuit interface of the 3.36 mm-long probe

electrode connected to the lock-in amplifier for pulse measurement. This propagation

path of the pulse is only possible when the resistance of the switch becomes relatively

low during each laser illumination pulse, and also when the characteristic impedance of

the biasing electrodes and the transmission line are similar.

On the other hand, under a similar bias voltage (30 V) and illuminated power

density of laser beams (10 mW), the input pulse measurement on Sample 2 showed a

great influence on the photoconductive switch gap topology over the generated electrical

pulse shape and amplitude. Figure 3.19 shows the single THz scan using both adjacent

simple PCS pairs (S1-S2) and IPCS pairs (S3-S4).
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Figure 3.19 Comparison of the generated THz pulse scans for both pairs of switch regions
(SPCSs and IPCSs) on Sample 2 showing the two main reflection peaks. Also shown
added reflections ‘x’ occurring between different geometries of pump and probe switch.

It is noted that the electrical pulse peak generated and detected is almost twice

that for the IPCSs even when identical pump bias voltage and beam power density is

used for both geometry switch pairs. This result was expected, as the photocurrent

generated across IPCSs was also almost twice that generated across simple PCSs. The

device design of Sample 2 was identical to Sample 1, apart from the difference in switch

geometry used. At first glance, the single scan of the THz pulse on Sample 2 reveals

similar features following the main peak (i.e. reflections generated from the transmission

line geometry-labeled ‘a’ and ‘b’). An added small reflection feature observed in the

pulse scan (labeled ‘x’) is identified as the reflection arising from having two different

switch geometries on either end of the transmission line, each presenting a different

impedance.
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Figure 3.20 Normalised generated THz pulse scans for Sample 2 using both pairs of switch
regions (SPCSs and IPCSs), showing the variation of FWHM of the THz pulse with
respect to the switch pair geometry used.

Figure 3.20 shows a comparison of the normalised input pulses generated and

detected by simple PCSs and IPCSs. It is shown that the FWHM is broader for the IPCS

(~4 ps as compared to ~2 ps for the simple PCSs). This is attributed to the increase in the

switch gap capacitance for smaller gap IPCS geometry as compared to the larger gap

simple PCS geometry.

3.3.3. Output pulses

The response of the transmitted (output) THz pulses on CPW devices reveals important

properties of the THz interconnect. Since both the THz CPW devices under test were

symmetrical, the overall response of the detected pulse was expected to be the same as

the input pulses (i.e. the main pulse peak with secondary reflections). However the

output pulse shape, detected after transmission along the waveguide, is affected by

attenuation and dispersion arising from the dielectric substrate. The biasing and

illumination arrangement used for output THz pulse measurements is identical to that

described in Chapter 1, Section 1.6.4 and as shown in Figure 1.25. To detect the output

pulse, the pump beam is focused on one of the pump switch regions (switch region 1)
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and the probe beam is focussed on one of the probe switch regions (switch region 3).

The pump and probe beam powers were maintained at 10 mW each, and 30 V bias

applied at the pump switch. Since both the devices have an identical transmission line

design, the signal exhibits the same reflection features originating from specific points

on the transmission line (as discussed in section 3.3.2). It is important to note that for

output THz pulse measurements on Sample 1, a simple PCS is used for detection of the

pulse, while for Sample 2, an IPCS gap is used. Figure 3.21 shows the comparison of

THz pulse scans for Samples 1 and 2.

Figure 3.21 Example of a pulse transmitted along the 1.2 mm coplanar waveguide for Samples 1
and 2, using switch region 1 as the source and switch region 3 as the detector in both
cases.

At first instance, the time-domain output THz pulse scans for both devices

showed a strong similarity, since they are mainly influenced by the identical ‘active

region’ of the waveguide. It was also observed that the detected output pulse amplitude

for Sample 2 was almost twice that for Sample 1, owing to the use of the IPCS gap for

detection. The FWHM of transmitted pulses on both the devices was found to be

identical (~4 ps), indicating very similar dispersion. In order to perform transmission
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measurements at cryogenic temperatures, much lower laser beam powers (< 5mW) were

required, in order to avoid thermal loading of the fridge. Therefore, while still operating

at room temperature, the SNR for the transmitted pulses was carefully observed while

using similarly low laser powers.

Figure 3.22 shows the transmitted pulse scans obtained on Sample 2 by varying

both pump and probe beam powers simultaneously to 1 mW, 2 mW, 5mW and 10 mW.

The inset shows the effect of the laser power on the magnitude of the THz signal

measured at the output switch.

Figure 3.22 Main figure: Transmitted THz pulse scans for Sample 2 at varying pump and probe
beam powers. Inset: Variation of transmitted pulse peak amplitude with respect to beam
powers.

The time-domain signal was then converted into the frequency domain by

performing an FFT of the data points around the THz peak. Figure 3.23 shows a

comparison of the spectrum of frequency components contained within the transmitted

pulse, for both devices. It reveals that for both Samples 1 and 2, the usable bandwidth

for allowing analysis on frequency components is up to at least 500 GHz, and the

frequency resolution achieved on these devices was close to 10 GHz. The overall room
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temperature transmission properties of both waveguide devices were considered suitable

for further investigation at cryogenic temperatures and within magnetic fields.

Figure 3.23 Fast Fourier transform of the transmitted time-domain signals shown in Figure 3.21
for Sample 1 and 2.

3.4. On-chip THz transmission studies at

cryogenic temperatures and under

magnetic fields

In room temperature on-chip TDS systems, laser beam powers up to 10 mW or higher

can be used for generating and detecting THz pulses; however this is not possible for

low-temperature measurements performed in the dilution refrigerator. The optical laser

beam power is limited by two major factors; first, the cooling power of the dilution

refrigerator, which is generally around 200 µW for reaching operating temperatures of

~100 mK (for the DR 200 system used). Secondly, the power handling capacity of

optical fibers is also limited. Owing to these challenges, cryogenic photoconductive

sampling with LT-GaAs photoconductors was previously unproven at sub-Kelvin
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temperatures. Sample 2 was chosen for the cryogenic temperature measurements in this

work, owing to its higher sensitivity for THz signal detection as demonstrated in room

temperature characterisation.

3.4.1. DC characterisation and dynamic imaging of

photoconductive switches

Following room temperature characterisation, the CPW device was placed in the

cryogenic sample holder shown in Figure 3.11. Several cool-down runs with the

cryogenic sample holder were carried out in order to make sure that the cooling power of

the dilution fridge was sufficient to reach the base temperature of < 10 mK (with laser

beams switched off). The optical intensity of pump and probe beams were set to 2 mW

throughout these measurements to achieve minimal thermal loading. A bath temperature

of 100 mK (measured at the mixing chamber plate using a RuO2 thick film resistor) was

achieved, limited solely by the thermal loading from the laser beams. Following careful

alignment of both collimated pump and probe beams on appropriate switches on the

CPW device using x-y piezo electric stages, the DC I-V characteristics of the switches

were measured. Figure 3.24 shows the DC current passing though the switch regions at

varying bias voltages. Each current measurement was repeated on pump and probe

switches for varying magnetic fields. The behaviour of both simple PCS and IPCS on

Sample 2 observed at cryogenic temperatures was identical to its properties measured at

room temperature as shown in Figure 3.16 (a) and (b).
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Figure 3.24 Current versus applied voltage for Sample 2 for (a) the pump switch and (b) the
probe switch taken at 100 mK and varying magnetic fields.

The variation of magnetic field revealed a striking feature in terms of its

dependence on switch region characteristics. As discussed by Zamdmer et al [9], the

‘sub-linear’ behaviour of current at lower biases is mainly dependent on the mobility of

photo-generated carriers. However, the ‘super-linear’ behaviour of the photocurrent at

higher biases is found to be strongly dependent on the combination of photo-generated

carriers and additional carriers excited from the lower energy As donor states due to

high density electric fields. This effect is commonly referred as localised electron

heating or impact ionization within the switch region [121, 122]. It was clear from the

Figure 3.24 that the ‘sub-linear’ region of the generated photocurrent across both switch

regions was independent of the magnetic field; however, a slight decrease in the

photocurrent density with increasing magnetic fields was observed for ‘super-linear’

current region. This dependence was attributed to the overall carrier transit time between

photoconductive switch gap exceeding the photo-generated carrier lifetimes due to the

cyclotron motion resulting from magnetic fields. This magnetic field dependence on the

PCS gap characteristics has also been reported in literature [93]. Since the ‘sub-linear’

photocurrent region at lower switch biases was found to be independent of magnetic

(b)(a)
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fields, it was decided to use low pump switch bias of 5 V for on-chip THz transmission

experiments undertaken in presence of magnetic fields.

As discussed in section 3.2.3, an added advantage of the setup used for this work

over setups used in previous research work, was the ability to dynamically control the

position of collimated laser beams with micron-precision across the sample surface,

using a pair of x-y piezo electric stages and the pivoted fiber ferrules. This allowed

imaging of the active region of the PCS in terms of the photocurrent generated, while

raster scanning the pump laser across the switch gap. Figure 3.25 shows such an image

of the pump switch regions at a temperature of 200 mK and at 0 T and 9.5 T magnetic

field, as shown in (a) and (b) respectively.

Figure 3.25 The photocurrent image map of the pump switch pair (light regions showing higher
current) taken at (a) 200 mK, 0 T and, (b) 200 mK, 9.5 T. The comparison between the
actual physical switch pair geometry design on the sample and its photocurrent image map
is also shown.

3.4.2. Transmitted THz pulses

The first experimental results of the THz pulse transmission through CPWs at < 1K

temperatures are discussed here. Following the photocurrent imaging of the PCS, the

positions of the stages were fixed to align the pump and probe beams on the

corresponding switches. The transmitted pulses were measured at bath temperatures

(b)(a)
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down to 100 mK and in varying magnetic fields. The measurements were expected to be

identical to the room temperature characterisation results as discussed in section 3.3,

since the attenuation and dispersion characteristics of the waveguide were expected to be

independent of temperature and magnetic field.

Figure 3.26 Main figure: Experimental measurement of a transmitted pulse along the CPW
(Sample 2) taken at 100 mK and 0 T. Inset: FFT of the portion of the time-domain signal
before first reflection.

The pump and probe beam powers were maintained at 2 mW each, and a 5 V

pump switch bias was used. Figure 3.26 shows a transmitted THz pulse measured at

100 mK and at 0 T field. It is noted that since the laser beam intensity used here is

considerably lower than that in the room temperature characterisation, the amplitude of

the THz pulse was correspondingly much reduced. Also the subsequent reduction of the

pump bias voltage to 5 V resulted in a reduction in the FWHM from 4 ps (as measured

at room temperature for a 30 V pump bias) to 3 ps. The inset of Figure 3.26 shows the

spectrum of frequency components contained within the transmitted pulse.
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The transmitted pulse data was then obtained for varying magentic fields

between 0 and 9.5 T. Figure 3.27 shows output pulse scans taken at intervals of 1 T from

0 to 9 T. The output pulse shape and amplitude, including the reflection features were

found to be completely independent of varying magentic fields, as expected. These

results confirmed the suitability of these waveguides for subsequent excitation and

measurement of the THz-frequency electrical transients in a 2DES.

Figure 3.27 The normalised amplitude time-domain spectra of the transmitted pulse taken at
100 mK and varying magnetic fields from 0 – 9.5 T offset by 1 unit per trace.

Using the successfully demonstrated method of imaging the PCS gap by means

of the generated photocurrent (see section 3.4.1), the transmitted THz pulse amplitude

was continually monitored at the detected switch, while precisely moving the position of

the pump beam over the switch region. This allowed generation of a directly comparable

image map based on the THz pulse amplitude.
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Figure 3.28 (a) The photocurrent image map of the pump switch pair (light regions showing
higher current) and, (b) the corresponding image map based on the transmitted THz pulse
amplitude (red regions showing peak transmitted pulse amplitude detected). Data were
taken at 200 mK and 0 T.

Figure 3.28 shows the images based on (a) generated photocurrent and (b)

output THz pulse peak amplitude, measured at 200 mK and 0 T magnetic field. Figure

3.29 shows the corresponding images measured in a magnetic field of 9.5 T.

Figure 3.29 (a) A photocurrent image map of the pump switch pair (light regions showing higher
current) and, (b) the corresponding image map based on the transmitted THz pulse
amplitude (red regions showing higher peak transmitted pulse amplitude detected). Data
were taken at 200 mK and 9.5 T.

(b)(a)

(b)(a)
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3.5. Summary

In this chapter, the geometry and room temperature transmission characteristics of two

CPW devices with different PCS geometries (simple PCS and IPCS) have been

presented, showing the significance of different switch gap geometries for the measured

DC current-voltage characteristics, THz pulse amplitudes and THz pulse shapes.

Also, this chapter has demonstrated a previously unexplored method of THz

generation and detection using CPWs at sub-Kelvin temperatures and in magnetic fields,

establishing a good basis for integration of the waveguides with nanoscale devices. The

most important properties of the CPWs, such as attenuation and dispersion caused by the

dielectric substrate, were shown experimentally to be independent of magnetic field,

thereby confirming the suitability of this technique for excitation and time-resolved

detection of THz-frequency electrical transients in a 2DES.

The ability to create a photocurrent image map of the THz generation switch

region at cryogenic temperatures and in magnetic fields was demonstrated by raster-

scanning the laser beams across different regions of the PCS. A novel method was also

demonstrated whereby a corresponding image map was simultaneously generated based

on the peak amplitude of the transmitted THz pulse. The work undertaken here

represents a novel approach for performing pump/probe magneto-spectroscopy

measurements with on-chip waveguides at cryogenic temperatures.

A summary of this chapter has been published as reference [83].
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Chapter 4: THz interaction with a

2DES between 300 K and 4 K

4.1. Introduction

This chapter discusses time-resolved measurements of picosecond electron transport in

the 2DES under varying temperatures between 4 K and 300 K. These measurements

were performed to develop a quantitative understanding of how pulse propagation

through a 2DES is affected by temperature-related changes in the conductivity. Also,

this work proved to be a convenient intermediate step on the way to the subsequent

measurements at sub-Kelvin temperatures and high magnetic fields, which will be

discussed further on in Chapter 5.

Two different approaches for interacting picosecond pulses with the 2DES will

be presented in this chapter. For both methods, the waveguide substrates containing the

LT-GaAs and 2DES layers are formed from the optimised monolithic integrated wafer

structure discussed in Chapter 2.

4.2. 2DES integrated THz waveguides and

experimental techniques

The two different methodologies for THz-frequency excitations of the 2DES allowed

either ‘transmission spectroscopy’ or ‘reflection spectroscopy’ of the 2DES to be

performed at both room and cryogenic temperatures. The details of the coplanar
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waveguide devices used for testing both methods and the experimental setup used in

these measurements are discussed below.

4.2.1. Pulse injection waveguide devices

The first technique was based on the direct injection of picosecond current pulses into a

2DES through ohmic contacts. The injection and subsequent measurement of the pulses

was achieved using a coplanar waveguide deposited on the surface of the

heterostructure. As shown in the schematic diagram of the pulse injection device in

Figure 4.1, the 2DES was selectively etched away to leave a 100 um-long strip, and

AuGeNi ohmic contacts were formed at each end. The centre conductor of the CPW

guiding the picosecond pulses overlapped the (source-drain) ohmic contacts, which were

annealed beforehand to make electrical contact with the 2DES situated 70 nm below the

surface. The current pulses were transmitted into and out from the 2DES by these ohmic

contacts, and then propagated to the detection region at the other end of the transmission

line, where they were sampled using on-chip THz-TDS. The ‘sub-mesa’ shown in the

schematic was formed to aid the process of selectively etching away the LT-GaAs

photoconductive material; this is explained in a greater detail in the following section.

Figure 4.1 Schematic of ‘picosecond pulse injection’ device with 2DES embedded into coplanar
waveguide with probe arms defining regions for photoconductive excitation of exposed
LT-GaAs layer.
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4.2.1.1. Device fabrication

The layout of the monolithic integrated heterostructure grown using MBE used for

device fabrication is shown in Figure 4.2 (a). In order to expose the LT-GaAs

photoconductive layer surface to define THz generation and detection switch regions on

either side of the rectangular mesa containing the 2DES, it was necessary to chemically

etch the layers grown above. This was systematically carried out using a selective wet

chemical etch for different layers using Shipley S1813 photoresist as a protective layer.

In the first etch procedure, a dilute citric acid etch (C6H8O7 : H2O2 with a volume

ratio 3:1) was used to etch the overlaid 2DES layers which terminated at the AlAs etch

stop layer (100 nm thick). This etch-stop later was then removed using a hydrofluoric

acid etch (HF : H2O with a volume ratio 1:10), revealing the smooth LT-GaAs surface

on either side of the ‘sub-mesa’ containing the 2DES, as shown in Figure 4.2 (b). Since

both the wet etch procedures used gave anisotropic etch profiles[123], it was essential to

create a larger 300 µm wide and 3.5 mm long ‘sub-mesa’ to support the ‘super-mesa’ of

100 µm width and 30 µm length, as shown in Figure 4.1. The ‘super-mesa’ strip

containing the confined 2DES was then defined from the sample surface to a depth of

~100 nm using a subsequent dilute sulphuric acid etch (H2SO4 : H2O2 : H2O with a

volume ratio 1:8:71) procedure, as shown in Figure 4.2 (c). Owing to the width of the

centre conductor for the overlaid CPW being chosen as 30 µm, the width of the super-

mesa was kept the same to ensure a continuous overlap between CPW-2DES interface.

Ohmic contacts formed from AuGeNi alloy were then deposited by thermal

evaporation across the edge of the etched smaller mesa to define source and drain

contacts. As shown in Figure 4.2 (d), these contacts were diffused laterally to make

contact with the electron layer situated 70 nm below the sample surface using ex-situ

thermal annealing at 430° C for 80 seconds under a nitrogen atmosphere. For the final
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step, the coplanar waveguide with centre conductor, ground planes and bias electrodes

for defining switch regions was overlaid using conventional UV lithography followed by

thermal evaporation, as shown in Figure 4.2 (e). The THz waveguide consists of a

20/250 nm-thick Ti/Au strip with the centre conductor overlapping the ohmic contacts

defined on the 2DES ‘super-mesa’. This relatively thick metal waveguide strip was used

to avoid conductor losses induced by the skin effect [124] as well as possible breakage

of the metal running over multiple defined mesas.

Figure 4.2 Schematic diagram showing the main stages of fabrication for the picosecond pulse
injection devices (a) Monolithic integrated structure grown using MBE. (b) ‘sub-mesa’
etching. (c) 2DES ‘super-mesa’ etching. (d) AuGeNi metallisation for Ohmic contact. (e)
CPW metallisation.
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Figure 4.3 shows the complete design of pulse injection waveguide devices with

integrated 2DES ‘super-mesa’ coupled with the centre conductor of the CPW through

ohmic contacts. It also shows the four defined switch regions used for measuring

picosecond time-scale pulses before and after transmission through the 2DES.

Figure 4.3 Main figure: Diagram of the THz CPW device fabricated, containing the 2DES strip
integrated in the signal conductor and four biasing electrodes defining PCS gap regions.
Inset: Detailed view of one of the four switch regions.

4.2.1.2. Lumped element model

For pulse injection waveguide devices, the transmission of the picosecond pulses

through the 2DES is highly dependent on the conductivity of the electron layer since this

determines its impedance. Therefore, the behaviour of the 2DES connected to the

transmission line was modelled as a lumped element circuit, as shown in Figure 4.4.
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Figure 4.4 A lumped element circuit model representation of the 2DES integrated with coplanar
waveguide for picosecond pulse injection.

A standard lumped circuit element representation is used for the CPW which

forms a transmission line for picosecond pulses injection into the 2DES, and for carrying

the transmitted pulse back from the 2DES to the detection region (as previously

discussed in Chapter 1, Section 1.6.3). The short 2DES region electrically connected to

the centre conductor of the coplanar waveguide through the source-drain ohmic contacts

can be modelled as a mismatched load Z2DES connected between the CPW regions [95].

The conductance of the 2D electron layer was related to the real part of the impedance of

the 2DES region, as shown by Equation 4.1. Where, w is the width and l is the length of

the 2DES strip.

ଶ஽ாௌ

This resistive element representing the resistance of the 2DES is greatly

dependent on temperature. At room temperature, the electron transport in the 2DES is

diffusive due to electron-phonon scattering and so the mean free length of the electrons

le is much smaller than the 2DES mesa length L (le<<L) . As a result the conductivity of

the electron layer is low; thereby it appears as a relatively large resistive element when

compared to the characteristic impedance of the transmission line (~50 Ω). This results 
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in impedance mismatch between the transmission line and the 2DES strip, resulting in

greater reflection from the CPW/2DES interface than pulse injection. However, at

cryogenic temperatures most of the electron-phonon scattering is suppressed, and the

electron transport in the 2DES becomes ballistic with a mean free length le of the

electrons exceeding the length of the mesa L (le>>L). This means the resistivity of the

2DES strip becomes more comparable to the characteristic impedance of the

transmission line (~50 Ω), resulting in more efficient pulse injection and transmission 

through 2DES region. A full spectrum of pulse injection and transmission studies at

varying temperatures through 2DES is discussed in section 4.3.

4.2.2. Capacitive coupling waveguide devices

The second method presented here for THz frequency excitation of 2DES involved

capacitively coupling the electric field of the propagating electromagnetic wave on the

CPW with the 2DES laterally situated in close proximity (~70 nm below sample

surface). This approach is particularly useful in understanding the behaviour of magneto

conductivity of the 2DES layer at high frequencies, as demonstrated recently [125].

Figure 4.5 shows a illustration of a capacitively coupled waveguide device. As shown, a

continous metallic coplanar waveguide is deposited on the sample surface. The

transmission line of characteristic impedance ~50 Ω directly connects the generation and 

detection photoconductive switches. Once again, a ‘sub-mesa’ is formed to selectively

expose the LT-GaAs photoconductive material.
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Figure 4.5 Schematic of ‘capacitive coupling waveguide’ device with active region of the CPW
overlaid on the sub-mesa containing the 2DES system located ~70 nm below.

4.2.2.1. Device fabrication

The MBE grown monolithic integrated heterostructure containing the LT-GaAs and

2DES layers used for device fabrication was same as the one used for fabricating

picosecond pulse injection devices (shown in Figure 4.6 (a)). The surface of the

heterostructure was chemically etched to a depth of about 670 nm using the ‘Sub-mesa’

etch procedure as described and shown in Figure 4.6 (b). This step exposed the LT-

GaAs surface on either side of the rectangular mesa containing the 2DES as shown in

Figure 4.5, for defining photoconductive switch regions. Finally, the pattern of the CPW

with continuous centre conductor and ground planes was lithographically defined and

then formed from a 20/250 nm-thick Ti/Au layer deposited on the surface using thermal

evaporation as shown in Figure 4.6 (c).
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Figure 4.6 Schematic diagram showing the main stages of the capacitive field coupling CPW
device fabrication. (a) Monolithic integrated structure grown using MBE. (b) ‘sub-mesa’
etching. (c) CPW metallisation.

Since there were no electrical connections to the 2D electron layer, the 2DES

was characterised separately using Hall bar devices. The QHE measurements performed

on a Hall bar sample from the same wafer at 1.2K gave a carrier density of

3.5 x 1011 cm-2 and a mobility of 500,000 cm2Vs-1. The detailed Hall Effect experiments

under magnetic fields including Shubnikov-de Haas oscillations were carried out on a

Hall bar device from the same wafer structure (as discussed in Chapter 2, Section 2.5.1).

4.2.2.2. Lumped element model

For capacitive coupling waveguide, no direct electrical contact was made between the

transmission line and the 2DES, in contrast to the pulse-injection approach. However the

transmission of pulses on the CPW in this case is strongly dependent on the conductivity

of the 2DES layer, due the interaction between the propagating electric field and the
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2DES. Once again, a lumped circuit element model is used to model the behaviour, as

shown in Figure 4.7.

Figure 4.7 A lumped element circuit model representation of capacitively coupled waveguide
overlaid on top of the 2DES layer.

In this case the conductivity of the 2DES is represented by a real part of the

shunt admittance element (Y2DES), for the portion of the CPW overlaid on top of the

sample surface containing the 2DES (i.e. CPW on ‘sub-mesa’) [125, 126]. The value of

the shunt admittance can be related directly to the conductivity of the electron layer as

shown in Equation 4.2.

ଶ஽ாௌ

This indicates at room temperatures with lower conductivity of the 2DES layer,

the shunt conductive element should not greatly affect the propagating THz signal

travelling on the CPW above. However, at cryogenic temperatures as the conductivity of

the 2DES increases, the highly conducting electron layer will capacitively absorb the

transmitted signal propagating along the overlaid metal CPW. The consequent variations

in the insertion loss of the transmitted THz signal are directly related to the changing

conductivity, thereby allowing ‘attenuated total reflection spectroscopy’ of the
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conductivity of the 2DES layer to be performed. Experimental studies carried out using

the technique described here are discussed in section 4.4.

4.2.3. Experimental setup

An identical pump-probe on-chip THz-TDS setup was used as for the room temperature

characterisation of CPW devices discussed in Chapter 2 and as shown in Figure 2.2. A

schematic layout of the setup used for THz pulse transmission measurements through

2DES at varying temperatures is shown in Figure 4.8.

Figure 4.8 System diagram of THz-TDS used for operating 2DES integrated THz waveguides at
cryogenic temperatures using continuous He flow cryostat.

As shown in Figure 4.8, the transmission measurements at both room and

cryogenic temperatures (down to 4 K) were performed with the waveguide device

mounted in the continous flow cryostat behind transparent quartz windows to allow

direct comparisons between different temperture conditions. The pump beam passed

along the paths 4-7 and was focussed through the quartz windows onto the pump-

photoconductive switch. The probe beam passed through a time delayed path 8-11 using
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an optical delay stage before focussing through the quartz windows onto the probe-

photoconductive switch.

Figure 4.9 Schematic diagram of the THz waveguide device mounted within the continuous flow
cryostat, with optical access provided by transparent quartz windows.

Figure 4.9 shows the schematic layout of a CPW device mounted within a

continous flow cryostat on a cold finger attached to the probe with electrical

connections. The transparent quartz windows provide optical access for both pump and

probe beams to be aligned on PCS regions. A reduction of 15 % in optical beam

intensity was revealed for both pump and probe beams after transmission through the

quartz windows due to multiple reflections of the laser beams at the window interface.

Also, the varying temperature measurements on CPW devices were carried out while

pumping the vacuum line of the cryostat, as shown in Figure 4.9.
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4.3. Picosecond pulse injection in 2DES

In order to obtain quantitative information about the 2DES using pulse injection

waveguide device as discussed earlier, a reference device was also fabricated with a

break in the CPW replacing the 2DES. Figure 4.10 (a) shows an optical microscope

image of a 100 µm strip of 2DES mesa integrated into the gap of the centre conductor,

with electrical connection made through ohmic contacts. While Figure 4.10 (b) shows an

identical reference device made in parallel with no integrated 2DES strip (skipping the

2DES mesa processing shown in Figure 4.2 (c) and (d)). Discontinuous ground planes

were also introduced in order to suppress direct coupling of the pulse across the centre

conductor gap.

Figure 4.10 (a) Microscope image of a pulse injection device with integrated 100-µm-long 2DES
strip. (b) Microscope image of a reference device with 100 µm long gap.

Measurements of picosecond times-scale pulses before and after transmission on

both devices at varying temperatures from 300 K to 4 K are reported below. From the

comparative pulse transmission studies on both integrated waveguide structures with and

without 2DES, it was expected to see a clearly distinguishable contribution from the

conductivity of the electron layer.

(b)(a)
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4.3.1. Input pulses

As described earlier, for both of the pulse-injection devices fabricated, the 2DES mesa

strip or a gap integrated with the centre conductor acts as a series lumped element with

mismatched impedance compared with that of the CPW transmission line. For example,

the measured room temperature resistance of the 2DES strip of 30 µm width and 100 µm

length was ~5 kΩ, while the reference device with a similar sized gap in the centre 

conductor acted as an open circuit. In order to study the behaviour of reflections arising

from these mismatch conditions and the efficiency of THz pulse transmission from the

generator to the detector, it was essential to observe the “input” THz pulses on one side

of the transmission line. Figure 4.11 shows the room temperature (300 K) input pulse

scan measured for the ‘reference device’ with 100 µm long gap in the centre conductor,

by focusing pump and probe beams of identical beam powers (10 mW) at switch regions

1 and 2 respectively as shown in Figure 4.3. The pump switch (switch region 1) was

biased at 30 V.

Figure 4.11 Experimental data of the generated THz pulse scan for the reference device taken at
300 K, showing the secondary reflection ‘a’ arising from the integrated gap.
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It was observed in the normalised time-domain input THz pulse scan, that the

first peak identified as the THz pulse was followed first by an identical amplitude

reflection (labelled as ‘a’). This reflection feature in the time-domain was readily

identifiable using the pulse propagation velocity of 1.24 x 108 ms-1 (as evaluated earlier).

The origin of the reflection from the discontinuity in the transmission line is illustrated

in Figure 4.12.

Figure 4.12 Demonstration of the pulse path required for the origin of the reflection ‘a’,
following the main generated THz pulse.

In a reference device where the ‘active region’ in the centre conductor

corresponds to a gap, the positive THz pulse generated at the pump switch undergoes a

single reflection from the open ciruit interface of the gap in the transmission line due to

impedance mismatch. The propagation path of this reflection feature is identified as ‘a’.

It is noted, that the reflection feature retains the original phase of the main THz pulse

owing to its reflection from a open circuit interface (as discussed in Chapter 1,

Section 1.6.3). In addition, since the impedance mismatch due to the gap interface in the

transmission line was impervious to varying temperatures, the amplitude of the

reflection was expected to remain unchanged.
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For the actual pulse injection device with integrated 2DES mesa strip ‘active

region’, the input THz pulse scan measurement showed an similar result to the reference

device at room temperatures. Figure 4.13 shows the normalised input THz pulse

measured using switch region 1 as pump switch and switch region 2 as a probe switch.

The main THz pulse generated was followed by a similar time-domain reflection feature

labelled ‘a’ as seen for the reference device. This was because the 2DES mesa strip,

having a resistance of ~5 kΩ at room temperature, acts as high impedance lumped 

element as compared to the transmission line with characteristic impedance of 50 Ω. 

However since the resistivity of the 2DES strip decreases with decreasing temperatures,

a drop in the amplitude of the pulse reflection from the 2DES interface was then

expected.

Figure 4.13 Experimental data of the generated THz pulse scan for the 2DES Mesa device taken
at 300 K, showing the secondary reflection ‘a’ arising from the integrated 2DES-CPW
interface.

A full set of input THz pulse measurements was undertaken for both the

reference and the pulse injection CPW devices at varying laser powers and pump switch
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biases. The variation in the main THz pulse peak and the reflection peak amplitude for

varying laser powers and pump switch bias voltages is shown in Figure 4.14 (a) and (b)

respectively.

Figure 4.14 Peak amplitudes of incident and reflected pulses for (a) reference device and (b)
2DES mesa device at different biases and beam powers.

Firstly, a decrease in THz amplitudes was observed for pulse injection devices

having integrated 2DES mesa as compared to the reference device with no 2DES, which

was attributed to degradation in the quality of the exposed LT-GaAs photoconductive

layer by post-2DES mesa processing. Secondly, for both devices, a linear response was

seen in the increase of peak THz amplitudes with respect to increasing laser beam

intensities and switch biases. This behaviour was previously demonstrated for

continuous microstrip transmission lines with LT-GaAs used as emitter and detector of

THz radiation [118].

(b)(a)
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Figure 4.15 Normalised pulse peak amplitude comparison between the THz pulse and the
reflection for (a) reference device and (b) 2DES mesa device.

Furthermore, for identical beam powers, if we consider the relative decrease in

the reflected THz amplitude peak with respect to the generated THz pulse peak, we see a

marginally smaller drop in the reference device as compared to the pulse injection

device as shown in Figure 4.15 (a) and (b). This clearly suggests that as the impedance

of the 2DES mesa is much smaller than the gap (open circuit) impedance, and a small

amount of THz pulse energy couples into the 2DES mesa and gets transmitted even at

room temperatures, thereby showing a larger decrease in the amplitude of reflection

pulse peak.

Input pulse measurements for both devices were then carried out for varying

temperatures by cooling the device mounted in the cryostat using a continuous flow of

liquid helium. A PID (proportional-integral-derivative) temperature controller linked

with the thermocouple mounted on the cold finger was used to precisely control the

temperature of the device. Figure 4.16 shows the input pulse measurements carried out

at different temperatures for the ‘reference device’. It was observed that the THz pulse

peak and the reflection feature from the open circuit interface of the gap remain

unaltered with varying temperatures, as expected. The beam powers of 10 mW and

pump switch bias of 30 V were kept constant throughout these measurements, and the

(b)(a)
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alignment of the position of the beams was optimised at every temperature, in order to

compensate for thermal contraction of the cold finger.

Figure 4.16 Comparison of the normalised generated THz pulse scans for the reference device,
measured at varying temperatures, using switch region 1 as source and switch region 2 as
detector.

The input THz pulse measurements for the CPW injection device with 2DES

mesa integrated with the centre conductor at varying temperatures is shown in

Figure 4.17. The most striking observation from Figure 4.17 is that the amplitude of the

reflected THz signal from the 2DES drops with decreasing temperature, as the 2DES

conductivity increases. As explained earlier, the electron transport in the 2DES becomes

ballistic at low temperatures, the measured resistance of the 2DES mesa drops from

~5 kΩ at room temperatures to ~200 Ω at cryogenic temperatures, and hence it is 

anticipated that more THz pulse energy should couple into the 2DES and gets

transmitted.
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Figure 4.17 Comparison of the normalised generated THz pulse scans for the 2DES mesa device,
measured at varying temperatures, using switch region 1 as source and switch region 2 as
detector.

The reflection pulse amplitude plot with decreasing temperatures as shown in

Figure 4.18 clearly shows that for the reference device the reflection peak remains

impervious to changing temperatures, in contrast to the results for the 2DES mesa

device.

Figure 4.18 Comparison of the first reflection amplitude seen in the reference device and the
pulse injection device as a function of temperature



139

4.3.2. Transmitted pulses

The pulses transmitted through the ‘active region’ of both CPW integrated devices are

examined at different temperatures. In the same way as for the input pulse

measurements, the pump and probe beams were set at beam powers of 10 mW and the

pump switch was biased at 30 V. Figure 4.19 shows the alignment position of the pump

and probe beams, and the arrangement used for applying bias to the switches.

Figure 4.19 Setup for measuring transmitted pulses, showing the bias arrangement and the
alignment of pump and probe beams.

The transverse electric field patterns for the guided THz pulses consists of two

possible modes of pulse propagation, which depend on the symmetry of the electric field

direction in the gaps either sides of the centre conductor. The mode with symmetrical

electrical field pattern is described as the ‘odd mode’ as shown in Figure 4.20 (a) while

the one with anti-symmetrical field pattern is referred as the ‘even mode’

Figure 4.20 (b).
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Figure 4.20 2D cross-section of the CPW, showing (a) the odd mode and (b) the even mode for
the transverse propagating electric and magnetic fields.

Typically, for the THz pulse generated from a single photoconductive switch

region on one side of the transmission line, the propagating pulse along the CPW has a

field pattern consisting of a superposition of both these modes. A measurement of such a

transmitted pulse in the reference device with a gap in the centre conductor and ground

planes is shown in Figure 4.21, for varying temperatures.

Figure 4.21 Comparison of transmitted pulses along the reference device with integrated gap,
measured at different temperatures using switch region 1 as the source and switch region 3
as the detector.

The measured transmitted pulse in this case was expected to consist of mainly

the even mode owing to its field pattern [127]. The ‘open circuit’ representation of the

(b)(a)
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gap in the centre conductor and the ground planes suppresses a large amount of the

direct coupling power coming from the odd-mode, however the more strongly radiating

even mode does get directly coupled through the integrated gap due to the shape of its

field pattern.

Further analysis on the transmitted pulses on the reference device at varying

temperatures was carried out by preferentially exciting both the odd and even modes as

using a method previously demonstrated for photo-conductively excited coplanar

waveguides [114, 128]. The preferential odd mode excitation was performed by

applying equal bias voltages (V1 and V2) across the switch gap regions 1 and 2 as shown

in Figure 4.19 ,while simultaneously illuminating both switches with the pump laser

beam, and the even mode excitation was carried out by applying opposite polarity

voltages (V1 = -V2).

Figure 4.22 shows examples of the pulse transmitted along the reference device,

with preferential excitation of the odd and even modes. In each case the pulse was

launched using pump beam power of 20 mW and detected using 10 mW. For odd mode

excitation, +30 V was applied across both switch gaps 1 and 2, while for even mode

excitation +30 V was applied to switch region 1 and -30 V applied to switch region 2. A

direct comparison of the amplitudes of the two modes shows that the discontinuities in

the centre conductor and the ground planes suppresses considerably the direct coupling

of the odd mode, hence confirming that the transmitted pulse measured across the

reference device consists mainly of the direct coupled even mode across the centre-

conductor gap.
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Figure 4.22 Examples of pulses transmitted through the CPW with integrated gap, with odd
mode and even mode preferentially excited. The transmitted pulse scans measured at
300 K and 4 K are shown.

The measurement of the pulse transmitted through the 2DES strip for CPW

injection device taken at room temperature is shown in Figure 4.23 (a). The propagating

pulse in this case consists of superposition of both modes, as a single photoconductive

switch was used for generation. The resemblance seen in the transmitted pulse shape for

CPW coupled with 2DES (shown in Figure 4.23 (a)) and for the CPW with integrated

gap at room temperatures (shown in Figure 4.21) suggested that the ‘high impedance’

representation of the 2DES strip at room temperatures also suppresses a large amount of

direct coupling power coming from the odd-mode, as a result the measured transmitted

pulse is likely to arise mostly from the direct coupling of the even mode.
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Figure 4.23 Example of transmitted pulses along the CPW device with integrated 2DES strip,
measured at (a) 300 K and (b) 4 K, using switch region 1 as the source and switch region 3
as the detector.

The input pulse measurements on the CPW injection device shown in

Figure 4.17 at low temperatures suggested the increase in the conductivity of the

electron layer leads to more THz radiation being coupled and transmitted through the

integrated 2DES region. The measurement of the pulse transmitted through the 2DES at

4 K as shown in Figure 4.23 (b) suggests that the odd-mode power coupling through the

2DES layer is now more prominent due to change in the transmitted pulse shape and

increase in transmitted THz amplitude. This dependence of the 2DES conductivity on

the transmitted pulses is clearly illustrated by preferentially exciting odd and even

modes separately. Examples of the pulses transmitted along the CPW coupled with

2DES strip with preferential excitation of different modes are shown in Figure 4.24. The

comparison of the transmitted pulses using preferential odd-mode excitation at 300 K

and 4 K temperatures shows a striking dependence of the 2DES conductivity on the

transmitted pulse amplitude with varying temperatures, whereas the directly coupled

even-mode component of the electromagnetic radiation remains unchanged against

varying temperatures. It confirms that as the 2DES conductivity increases the odd mode

coupling and transmission of the THz pulse through the 2DES also increases. These

(b)(a)
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results are in qualitative agreement with theoretical predictions and the experimental

results reported for preferential mode excitation in CPW [114].

Figure 4.24 Examples of pulses transmitted through the CPW with integrated 2DES, with odd
mode and even mode preferentially excited. The transmitted pulse scans measured at
300 K and 4 K are shown.

A direct comparison of the transmitted pulse peak amplitude while preferentially

exciting the odd-mode for the reference device with integrated gap and for the injection

device with integrated 2DES strip at varying temperatures is shown in Figure 4.25,

demonstrating the rise in the transmitted pulse for injection device as the conductivity of

the 2DES layer increases. Whereas, for the reference device with discontinuities in

ground planes and centre conductor, the transmitted pulse amplitude remains unchanged

with varying temperatures.
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Figure 4.25 With odd mode preferentially excited, the transmitted pulse amplitude variation with
decreasing temperatures compared for the reference device and the 2DES mesa device. For
a direct comparison, the transmitted pulse amplitude data set shown is normalised to the
maximum amplitude observed between both the devices.

4.4. Waveguide spectroscopy of 2DES

As discussed earlier, an alternative approach undertaken in this work to study

picosecond time-resolved electron transport in 2DES involved waveguide spectroscopy

using THz coplanar waveguides as reported previously by E. Shaner [101]. The THz

electric field propagating along the waveguide can capacitively interact with the 2DES,

thereby allowing the conductivity behaviour of the 2DES to be extracted as described in

section 4.2.2. In addition, measuring the interaction between the picosecond timescale

pulses with the 2DES acting as a dielectric layer can lead to a more thorough

understanding of the origin of collective 2D plasmon resonances in the electron layer.
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Figure 4.26 Diagram of the capacitive field coupling THz CPW device, containing active region
of the signal conductor and ground planes overlaid on top the 1.2 mm long ‘sub-mesa’
containing the 2DES.

Figure 4.26 shows the complete design of the coplanar waveguide devices. The

waveguide geometry used consists of a 30 µm wide centre conductor with 20 µm gap

between the ground planes on either side. The active region of the waveguide (i.e. the

region between the PC switches) was 1.5 mm long and overlaid on top of the 1.2 mm

long defined 2DES mesa. The integrated photoconductive switches for THz generation

and detection were patterned on the exposed LT-GaAs surface. The preliminary

experiments for waveguide spectroscopy of the 2DES using ‘capacitively coupled

waveguide devices’ at room and cryogenic temperatures are discussed below.

4.4.1. Room temperature device characterisation

Using the THz-TDS setup as discussed in section 4.2.3 and shown in Figure 4.8,

waveguide spectroscopy was performed on the 2DES. First with the capacitively

coupled waveguide devices mounted in the continuous flow cryostat, pump/probe pulse

measurements were performed at room temperatures (300 K). Figure 4.27 shows the

generated pulse before propagation along the waveguide measured by focusing pump

and probe beams of identical beam powers (10 mW) at switch regions 1 and 2

respectively. The pump switch was biased at 10 V.
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Figure 4.27 Example of an input pulse measured for a capacitive coupling waveguide device at
300 K, using switch region 1 as source and switch region 2 as detector.

The time-domain THz pulse scan consists of the main THz pulse with a FWHM

of ~2.4 ps followed by secondary reflections ‘b’ and ‘c’, identified to be arising from the

discontinuities in the transmission line. The propagation path of these reflection features

is demonstrated in Figure 4.28.

Figure 4.28 Schematic of the pulse path creating secondary reflections ‘b’ and ‘c’, following the
main generated THz pulse.
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Since the parasitic regions of the waveguide in this CPW device pattern were

much shorter than the CPW device pattern used for picosecond pulse injection

experiments, the time delay between the THz pulse and secondary reflections was much

shorter, thereby reducing the resolution of the CPW frequency spectra. The pulse

transmitted along the waveguide with active region overlaid on top of the 2DES was

then measured by probing at switch region 3, and the time-domain pulse scan obtained is

shown in Figure 4.29.

Figure 4.29 Example of a transmitted pulse measured for capacitive coupling waveguide device
at 300 K, using switch region 1 as source and switch region 3 as detector.

It was observed from the transmitted pulse scan that the pulse shape was

identical to the generated pulse as shown in Figure 4.27, with the main THz pulse peak

with a FWHM of ~3.9 ps followed by secondary reflection in the time-domain signal.

As understood from section 4.2.2, the conductivity of the 2DES layer is very low at

room temperatures, so the impact of the 2DES acting as a shunt conductance element on

the transmitted pulses propagating along the waveguide above would be negligible.

Hence the attenuation observed in the transmitted pulses is mainly due to the frequency

dependent conductor loss αcond(ω),
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where ZS is the surface impedance of the Au conductor used and g is an additional

geometrical factor [129]. Waveguide loss is discussed in more detail in Chapter 1,

Section 1.6.3. Also, the pulse broadening results mainly from the frequency dependent

loss cause by dielectric GaAs substrate, having effective permittivity of eff,
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4.4.2. 2DES spectroscopy at cryogenic temperatures

The pulses transmitted along the CPW were then measured as the operating temperature

of the device was systematically reduced to the base temperature of the continuous

helium flow cryostat (4 K). Figure 4.30 shows the comparison of the normalised time-

domain pulse scan observed for pulses transmitted along the CPW overlaid on top of the

2DES mesa at temperature intervals of 20 K from 120 K to 4 K.

Figure 4.30 Comparison of time-domain transmitted pulse scan measured at varying
temperatures on capacitive field coupling device.
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Examining Figure 4.30, the amplitude and pulse shape of the picosecond time-

resolved pulse has been altered by effectively increasing the conductivity of the 2DES

with decreasing temperature. As expected, with increase in conductivity of the 2DES,

the portion of the propagating signal being absorbed by the electron layer increases.

This attenuation in the transmitted signal due to 2DES can be understood as

shown in [130], if V(t, 0) is considered to be the generated time-domain waveform. The

propagating waveform along the waveguide overlaid on conductive substrate at a point z

is V(t, z), is given by,

ିଵ

where, F{·} denotes the Fourier transform of {·}, and F—1 [·] the inverse Fourier

transform of [·], and (f) the damping coefficient given by [131],

௘௙௙

The parameters α(f) and β(f) of the damping coefficient (f) are the frequency

dependent attenuation and phase factors of the voltage signal. Where, α(f) mainly arises 

from the radiation, conductor and dielectric losses and β(f) determines the degree of 

dispersion a signal experiences. For a highly conductive plane such as a 2DES layer

located in close proximity to the CPW, the dielectric loss dominates the damping

coefficient, considering the amount of the electric field mode residing in the 2D electron

layer. Hence from Equation 4.2, 4.5 and 4.6, it can be understood that the 2DES in

parallel with the CPW acts as shunt admittance, thereby reducing the amplitude of the

transmitted signal. The variation of the transmitted pulse peak with reducing

temperatures, i.e. increasing 2DES conductivity, is shown in Figure 4.31.
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Figure 4.31 Variation of transmitted pulse amplitude with decreasing temperatures or increasing
2DES conductivity.

The data also show low amplitude oscillations observed in the time-domain

transmitted signal at 4 K, as shown in Figure 4.32. These oscillations were tentatively

attributed to a standing wave being created within the 2DES mesa of length 1.2 mm as

shown in Figure 4.26.

Figure 4.32 Example of a time-domain pulse transmitted along the CPW on capacitive coupling
device at 4 K, using switch region 1 as source and switch region 3 as detector.
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Considering the electric field propagation along the CPW patterned over 2DES

mesa at low temperatures, the conductive 2DES layer below the CPW acts as a

secondary ground plane located in close proximity to the signal (centre) conductor,

consequently creating a transmission medium similar to lossy microstrip line for

sustaining a standing wave. The fundamental frequency of the standing wave is

governed by the length of the 2DES mesa and is given by,

௉

where, VP is the pulse propagation velocity along the CPW and λ is the length of the

2DES mesa along the CPW.

To further characterise the frequency of the standing wave being created in the

2DES mesa, a frequency domain analysis was implemented. Figure 4.33 shows the

Fourier transform amplitude of the signals displayed in Figure 4.30 at various

temperatures. To produce a clean transform, a rectangular window was first applied to

the data to cut off the data beyond 10 ps (i.e. before the first reflection occurring due to

waveguide discontinuity).
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Figure 4.33 Frequency spectrum comparison of the transmitted time-domain signals observed at
varying temperatures and as shown in Figure 4.30. The (grey) dashed line corresponds to
the fundamental frequency of the standing wave, with resonance frequencies of the second
and third order harmonics shown by (red and blue) dashed lines.

The frequency spectra shown for the transmitted pulses at low temperatures

clearly shows absorption at frequency corresponding to the fundamental frequency of

the standing wave created within the 2DES mesa. Also, the absorption at frequencies

corresponding to the higher harmonics of the fundamental frequency of the standing

wave was also observed. It is noted, that the frequency resolution of the measurement

was limited due to the short time delay between the main pulse and the secondary

reflections and can be easily improved in future generation devices.

4.5. Summary

This chapter has examined the effect of interaction between ultra-short timescale pulses

with a highly conductive 2D electron layer. The capability of THz waveguides for

spectroscopy of 2DES at varying temperatures has been demonstrated.
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The transmission spectroscopy work discussed using ‘picosecond pulse injection

waveguides’, shows the direct electrical measurement of transport through the electron

layer at picosecond timescales by integrating the 2DES into the signal conductor of the

waveguide. It clearly illustrates the transmission of picosecond pulses through a short

strip of 2DES as the conductivity of the electron layer increases by decreasing

temperatures. On the other hand, the waveguide spectroscopy of the 2DES was also

established by using ‘capacitive coupling waveguides’, where the electric field from the

propagating pulses capacitively interacted with the 2D electron layer. The behaviour of

2DES conductivity against varying temperatures was understood in terms of transmitted

pulse shape and amplitude.

The work shown in this chapter provides a very good platform for understanding

ballistic transport and charge density perturbation (plasmons) in 2DES at picosecond

time scales under magnetic fields, which will be the subject of the following chapter.

The work presented in this chapter formed the basis of several publications,

listed on page 187.
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Chapter 5: THz interaction with

2DESs at milli-Kelvin temperatures

and under magnetic fields

5.1. Introduction

Having established CPW-based techniques for interacting THz radiation with 2DESs at

cryogenic temperatures, work was undertaken subsequently to investigate the response

of the system under magnetic fields, which is the subject of this chapter. It is understood

that high frequency electrical characterisation of a 2DES under magnetic fields permits

the study of important physical phenomena such as cyclotron resonance and magneto

plasmons [11, 24, 132, 133]. Firstly, analytical modelling of high frequency phenomena

observed in a confined 2D electron layer under influence of magnetic fields will be

presented. The rest of the chapter will be devoted to experimental measurements of

picosecond pulse propagation through the 2DES under magnetic fields at milli-Kelvin

temperatures. The results presented here represent an important step in improving the

capabilities for studying quantum-confined ballistic electron transport on a picosecond

timescale. Further details of the CPW devices, having capabilities of simultaneous DC

and picosecond characterisation of the 2DES, will also be presented.
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5.2. Analytical modelling of THz pulse

interactions with confined 2DES

The electron velocities within the 2DES is much slower than the typically measured THz

signal propagation times (typically a few ps) over similar length scales. Hence, the

electrons entering from one end of the coupled 2DES (source) are not the same ones that

leave the other end (drain). The electromagnetic field associated with the charge carriers

instead affects adjacent electrons, allowing the disturbance to propagate along the mesa

at the speed of an electromagnetic wave. In effect, putting an electron at one end of a

conductive 2DES causes one to come out the other end. This resulting non-equilibrium

in the charge density of 2DES causes plasmon excitation of the 2DES. The origin and

behaviour of these plasamonic oscillations under magnetic fields for the geometry of the

2DES used for this work is as discussed.

If we assume ballistic transport in the 2DES (i.e. negligible scattering), the

picosecond pulses injected into the 2DES cause electrons to move beyond their

equilibrium positions in the initially electro-neutral 2DES, due to inertia. As a result

charge density fluctuations are created along the confined layer. As shown in Figure 5.1,

if a band of electrons with length L is shifted by a small distance x in the X-direction

under the influence of an electric field E, a charge density fluctuation has been created.

This extra charge induces an electric field, which drives the electrons along its direction

to compensate for the initial charge. The repeating process causes a plasma oscillation,

and the collective excitations of charge carriers in a 2DES are called 2D (bulk) plasmons

[134].
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Figure 5.1 Charge fluctuation in a 2DES of length L, created by primary applied electric
field E.

As demonstrated by F. Stern [135], the 2D plasmon dispersion in the long

wavelength limit for a confined 2DES can be modelled using,

௣
ଶ
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where ωp describes the frequency of the collective charge oscillation in a 2DES with

charge density n, dielectric permittivity and effective mass m* at a wave vectors k1 and

k2 oriented in a 2D plane. The allowed values for the wave vectors depend on the

physical dimensions of the 2D electron layer, and are given by,
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where, w is the width of the 2DES, l is the length of the 2DES and i is an integer

representing the number of plasmon oscillation modes.
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Figure 5.2 Charge fluctuation in a 2DES of length L, created by a externally applied electric field
E and also external magnetic field B perpendicular to the 2DES.

However, in presence of a perpendicular magnetic field, the plasmon excitations

in the 2DES are also governed by the cyclotron motion of electrons. Figure 5.2 shows an

illustration of the modified charge density fluctuations under a magnetic field. This leads

to a resultant dispersive mode which is influenced by both the plasmon oscillations and

the cyclotron motion of electrons in a 2DES [136]. The resultant bulk magneto plasmon

resonance frequency, ωbmp as a function of magnetic field B, can be modelled using,

௕௠ ௣
ଶ

௣
ଶ

௖
ଶ

where ωc, as discussed in Chapter 1, Section 1.4.3, corresponds to the cyclotron

resonance frequency and is given by,

௖
∗

Considering the pulse injection waveguide device described in the previous

chapter (as shown in Figure 4.1), the THz pulses are electrically channelled directly to

the 30 µm wide and 100 µm long 2DES. The bulk magneto plasmon modes generated

under magnetic field by the ps-timescale pulse injection into the 2DES, were modelled

using a MatLab program based on Equations 5.1 – 5.4. The physical properties of the

2DES (such as sheet density, ns) required for the simulation were determined by

performing QHE measurements under magnetic field on a Hall bar sample fabricated
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from the same wafer as discussed in Chapter 2, Section 2.5.1. The values of ns were

found to be 3.5 x 1011 cm-2 in dark conditions and 6 x 1011 cm-2 under illumination

(using a 800 nm red LED). The observation of magneto plasmon resonances in the

2DES under illumination was crucial to provide understanding of the influence of

800 nm radiation on the electron density of the 2DES, as similar wavelength radiation is

used for photoconductive THz generation and detection in LT-GaAs-based

photoconductive switches used in all devices presented in this thesis.

Figure 5.3 Analytical simulations showing the first six magneto plasmon modes (i = 1...6) in a
2DES with a fixed confinement width of (x um), for different charge densities measured
under (a) dark conditions (Sheet density, ns = 3.5 x 1011 cm-2) and (b) under illumination
(Sheet density, ns = 6 x 1011 cm-2).

Figure 5.3 shows the MatLab simulation of the first six bulk magneto plasmons

modes generated in the 2DES coupled to the THz CPW waveguide device, both (a) in

the dark (b) when illuminated. From the simulation results shown, and considering

Equation 5.3 and 5.4, it is noted that with increasing magnetic field, the resonance due to

cyclotron motion of electrons in the 2DES dominates the resultant bulk magneto

plasmon dispersion, as the dispersion modes observed due to 2D bulk plasmons is

independent of magnetic fields (ωc >> ωp). It is also observed that, a device of equal

physical size, the frequency spacing between the bulk magneto plasmon resonances

(b)(a)
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modes increases as the charge density of the 2DES increases (achieved here by

introducing extra carriers under illumination).

In addition, the influence of physical dimensions of the confined 2DES on the

resulting magneto plasmons modes was also simulated. Figure 5.4 shows a comparison

between the simulation of magneto plasmon resonance modes for a 2DES having charge

density of 6 x 1011 cm-2 and two different confined electron layer size of (a) 30 x 30 µm

and (b) 1 x 1 mm. A clear dependence of the physical confinement of the 2DES on the

frequency spacing of individual magneto plasmon modes was observed. It is also noted,

as the 2DES confinement size increases, the spacing between the resonance modes

decreases.

Hence, in bigger samples with larger 2DES confinement perimeter, it was found

that the resonance features due to the cyclotron motion of electrons is the dominating

dispersion mode in the 2DES, even at low magnetic fields, and masks the weaker bulk

plasmon dispersion modes.

Figure 5.4 Analytical simulations showing the first six magneto plasmon modes in a 2DES,
considering identical charge densities under illumination (ns = 6 x 1011 cm-2) with different
2DES confinement width of (x um) (a) 30 µm and (b) 1 cm.

The analytical simulations carried out in this work clearly show that the

frequency of the magneto plasmons observed in a confined 2DES lie in the THz

(b)(a)
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frequency range and are therefore expected to interact with a THz pulse propagating

along the coupled on-chip waveguide. For the pulse injection waveguide device used in

this work, it was anticipated to see a resemblance between the bulk magneto plasmon

frequencies derived from analytical simulations and any resonant absorption frequencies

determined from the pulse injection measurements of the 2DES.

5.3. Picosecond pulse injection into a 2DES

under magnetic field

This section presents the measurements of ps timescale pulse transmission through a

2DES at milli-Kelvin temperatures and under magnetic fields, using a dilution

refrigerator. The on-chip THz-TDS setup, discussed in Chapter 3, Section 3.2.3, was

used to implement pump-probe sampling measurements in a cryogenic environment.

The sample was held at the centre of the 12 T magnet integrated into the dilution

refrigerator, using the sample holder as shown in Figure 3.11. Ohmic contacts on either

side of the 2DEG mesa, connected to the CPW centre conductor, allowed 2-terminal

DC characterisation of the 2DES' transport characteristics under magnetic field [137],

together with ps pulse transmission measurements.

5.3.1. DC characteristics of 2DES

The experimental arrangement used for observing DC transport properties of the 2DES

coupled to the CPW centre conductor is shown in Figure 5.5. Two-terminal

measurement geometry was used in order to measure the DC magneto conductivity of

the 100 µm long and 30 µm wide 2DES strip. With the sample mounted in the cryogenic

sample holder and the pump-probe laser beams off, the bath temperature was noted to be

< 26.14 mK.



162

Figure 5.5 The experimental arrangement for measuring DC transport properties of the coupled
2DES with the centre conductor. The 2DES resistance is extracted by measuring the
current under constant DC bias applied using a two-terminal geometry.

A contact resistance of 500 Ω was measured across the centre conductor / 2DES 

mesa at cryogenic temperatures. As anticipated, owing to ballistic behaviour in the

2DES at low temperatures, the resistance value was considerably lower than the 5 kΩ 

measured at room temperature. The DC electrical current through the 2DES, measured

by applying constant voltage of 100 µV to either side of the centre conductor and

sweeping the external magnetic field, is shown in Figure 5.6.

Figure 5.6 Current measured through a 2DES coupled with the centre conductor of a THz
waveguide device, measured as a function of applied magnetic field.
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The current measured under varying magnetic field showed direct dependence

on the magneto conductivity of the 2DES, given by Equation 5.5, where j is the current

density arising from carrier motion in the 2DES driven by an electric field E.

ଶ஽ாௌ

From the discussion of transport coefficients in a 2DES in Chapter 1, Section

1.4.2, due to the two dimensional nature of the motion of carriers, the 2DES

conductivity tensor measured by the two-terminal conductance measurement technique

is given by:

ଶ஽ாௌ
௫௫ ௫௬

௬௫ ௬௬

where σxx (σyy) represent the diagonal conductivity in the direction of E, and σxy (σ-xy)

represents the Hall conductivity perpendicular to E. Figure 5.7 shows the behaviour of

2DES conductivity under magnetic fields.

The pronounced features of a Hall conductivity plateauing is clearly illustrated

as the system approaches quantum Hall regime, while the diagonal conductivity

represents the finite conductivity of the 2DES at zero magnetic fields.
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Figure 5.7 Two-terminal 2DES conductance measured as a function of magnetic field.

Since the 2DES resistivity tensor is an inverse matrix of σ, the resistance 

measurement of the 2DES at zero magnetic field should include only the diagonal

resistance component and the contact resistance. After subtracting the zero field

resistance, the resistance plot shown in Figure 5.8, which is dominated by the quantum

Hall resistance, illustrates plateauing at precisely quantized integer values of h/νe2

(where ν is an integer).  
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Figure 5.8 The Hall resistance measured from the 2DES coupled with the THz waveguide. Hall
resistance is quantized at values of h/νe2.

5.3.2. Sample temperature

For the DC transport measurements through the 2DES discussed in the previous section,

the sample was placed in the cryogenic sample holder with no pump-probe laser beams

illuminating the sample space.

In order to perform THz frequency transport measurements, the optical intensity

of the pump-probe laser beams illuminating the PCS was kept to 4 mW. This increased

the bath temperature to 400 mK due to thermal loading. However the actual temperature

of the sample with the integrated 2DES (which influences the transport characteristics)

cannot be accurately determined from the bath temperature or mounted thermometry

devices.

It is suggested by Ma et al [137], in order to measure the sample temperature

accurately, the temperature dependent transport characteristics of the 2DES, such as the

amplitude of diagonal resistivity oscillations should be monitored. Owing to the two-

terminal measurement setup, it was not possible to measure the weaker diagonal



166

resistivity component independently. The stronger Hall resistivity component of the

2DES was then observed while illuminating the photoconductive switches that are

integrated on the sample.

Figure 5.9 The Hall resistivity measured from the 2DES coupled with the THz waveguide (a) in
the dark and (b) under illumination by an 800nm pump-probe laser beam arrangement.
Hall resistance is quantized at values of h/νe2.

The comparison of the Hall resistivity measured through the 2DES strip under

dark and laser-illumination conditions is shown in Figure 5.9 (a) and (b) respectively. A

significant change in the quantum Hall features were observed due to the influence of

the scattered laser beams on to the charge density of the 2DES. The system degeneracy

observed in the form of lower field quantum Hall features smearing out, suggested a

distinct increase in the sample temperature under (~4 mW laser power) illumination

conditions. This increase in the sample temperature under illumination conditions can be

limited by considering optical excitation of PCS using lower optical beam power.

Also, four-terminal Hall bar geometry of the 2DES, as illustrated in Figure 5.10,

is suggested to be coupled with THz CPW in the future. This will enable determination

of both the Hall and diagonal 2DES resistance independently, required in order to

determine accurately the sample temperature.

(b)(a)
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Figure 5.10 Hall bar configuration for coupling 2DES with THz CPW to perform in situ four-
terminal quantum Hall characterisation.

5.3.3. Input pulses

After measuring the DC electron magneto transport properties of the 2DES integrated

into the CPW, the corresponding THz frequency behaviour of same system was

investigated. Both generated (input) and transmitted (output) pulses through the 2DES

were measured, to obtain quantitative information about the 2DES magneto

conductivity. The pump and probe laser beams with intensities of 1 mW were used for

PCS excitation, while the pump switch was biased at 10 V. The operating bath

temperature at the mixing chamber plate was noted to be 200 mK. As previously

mentioned in Chapter 3, Section 3.4.1, the PCS photocurrent was optimised using

piezoelectric stages to maximise THz generation and detection efficiency. The generated

time domain pulse scan measured by illuminating adjacent photoconductive switch

regions (1 and 2) at 200 mK and 0 T magnetic fields is shown in Figure 5.11.
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Figure 5.11 Experimental data of the generated THz pulse with secondary reflections
for pulse injection device taken at 200 mK and 0 T magnetic field, using PCS 1 as
the source and PCS 2 as the detector.

The input time domain pulse scan showed the main THz pulse peak, followed

by several secondary reflections arising from waveguide discontinuities. Owing to the

impedance mismatch between the CPW (~50 Ω) and the coupled 2DES strip (~200Ω) at 

cryogenic temperatures, the first reflection, ‘a’, identified as originating from the CPW-

2DES interface, showed no further decrease in amplitude relative to the generated pulse

than was observed in the previous measurements carried out at 4 K (Chapter 4, Section

4.3.2) . This observation was validated by comparing the measured contact resistance of

the 2D electron layer both at 4 K and 200 mK, which was found to be identical. The two

subsequent reflections, ‘b’ and ‘c’, were attributed to waveguide discontinuities, as

discussed in Chapter 3, Section 3.3.2.
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Figure 5.12 A contour plot of the time-domain generated pulse scan illustrating the behaviour of
main THz pulse and secondary reflections with varying magnetic fields at 200 mK.

The magnetic field dependence on the input pulse was then investigated by

sweeping the field from 0-1 T in 0.01 T steps. Figure 5.12 shows a contour plot of the

time domain window observed for the generated pulse (as shown in Figure 5.11) at

different magnetic fields. The THz pulse and the secondary reflections ‘b’ and ‘c’ were

found to be not influenced by the external magnetic field. The reflection feature ‘a’,

arising from the CPW-2DES interface, showed an increase in amplitude with increasing

magnetic fields, as the impedance mismatch between the CPW and the 2DES increases.

This may be explained by considering the two terminal DC transport measurements of

the 2DES strip in Figure 5.7, which illustrated a decrease in the 2DES conductivity with

increasing magnetic field. Also, as the two-terminal DC resistance of the 2DES

increases to > 1 kΩ after 1 T magnetic field no THz signal was expected to couple into 

the 2DES from the 50 Ω waveguide. For that reason, all the on-chip THz measurements 

with adjacent 2DES were performed up to 1 T.
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The dependence of the proportion of THz pulse energy reflected from the 2DES

strip on increasing magnetic field is more clearly presented in Figure 5.13. The higher

resolution contour plot compares just the generated and reflected THz pulse amplitude

across magnetic fields, shown in Figure 5.13 (a). The normalised peak amplitude

comparison of the generated pulse and the reflected pulse with increasing magnetic

fields is shown in Figure 5.13 (b). A clear illustration of increasing amplitude of the first

reflected pulse is noted as the 2DES conductivity decreases with increasing magnetic

field. This implies that a decreasing portion of the incident THz pulse energy will

propagate through the 2DES owing to the quantum Hall behaviour of the 2D electron

layer.

Figure 5.13 (a) A higher resolution contour plot showing the behaviour of the main generated
THz pulse and the following time-domain reflection pulse from the CPW-2DES interface
with increasing magnetic fields.
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Figure 5.13 (b) A direct comparison of the trends observed between the generated THz pulse
amplitude and the amplitude of the pulse reflected from the 2DES interface, for magnetic
fields between 0-1 T.

5.3.4. Transmitted pulses

The transmission of picosecond timescale pulses through the 2DES was then examined

under varying magnetic fields to detect the high frequency dynamic behaviour of the 2D

electron layer. The beam alignment and PCS biasing setup for detecting transmitted

pulsed was identical to the one demonstrated in Chapter 4, Section 4.3.2 and as shown in

Figure 4.19. The pump and probe beams, each with optical intensities of 1 mW, were

carefully aligned at switch regions 1 and 3 using piezoelectric stage pairs with pump

switch (switch region 1) biased at 10 V. As mentioned in Chapter 4, Section 4.3.2; since

a single PCS was used for THz pulse generation, the transmitted pulse scan observed

through the 2DES in this case should consist of a superposition of both the odd and even

guided modes.
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Figure 5.14 Main figure: Experimental data of the transmitted THz pulse propagated through the
2DES strip taken at 200 mK and 0 T magnetic field, using PCS 1 as the source and PCS 3
as the detector. Inset: Experimental data of the transmitted THz pulse propagated through
the 2DES strip taken at 4 K, using PCS 1 as the source and PCS 3 as the detector.

Figure 5.14 shows the transmitted pulse scan observed at a bath temperature of

200 mK and at 0 T magnetic field. This result represents the lowest operating

temperature THz pulse transmission through a semiconductor-based 2DES reported

within the literature [138]. The inset shows a similar transmitted pulse measurement

observed previously on the same 2DES-CPW injection device at 4K temperature in the

continuous flow cryostat setup, using 10 mW optical beam powers and 30 V pump

switch bias. It is noted for the time domain transmitted pulse scans taken at both 200 mK

and 4 K temperatures, the main THz pulse is followed by several secondary, low

amplitude reflections. These time-domain reflections are attributed to the impedance

mismatch between the 2DES-CPW interface along the signal conductor and the 100 µm

long discontinuity in the ground planes, as illustrated in Chapter 4, Section 4.3 and as

shown in Figure 4.10.
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Also as expected, since the 2DES conductivity remained unchanged from 4 K to

sub-Kelvin temperatures, no further increase in the transmitted THz pulse amplitude was

observed as compared to previous measurements at 4 K. However, as can be seen in

Figure 5.14, there was a considerable reduction in the transmitted THz amplitude from

~8 nA to < 400 pA and correspondingly poorer signal-to-noise ratio, owing to the

reduced pump-probe laser power. The power reduction, from 10 mW at 4 K to 1.0 mW

at milli-Kelvin temperatures, may have masked further conductivity-related changes to

the transmitted THz peak amplitude.

The effect of magnetic field on the time-domain transmitted pulses through the

2DES was then observed while sweeping the field from 0 – 1 T in 0.01 T steps. A clear

dependence of the electron conductivity in the 2DES on the transmitted pulse shape and

amplitude was observed, as demonstrated through a contour plot of the time-domain

pulse window at varying magnetic fields (Figure 5.15). The plot shows the amplitude of

the transmitted THz pulse diminishing with increasing magnetic field, corresponding to

the decreasing DC conductance of the 2DES, and in agreement with the previous input

pulse measurements.
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Figure 5.15 A contour plot of the time-domain transmitted pulse scan illustrating the behaviour
of the main THz pulse peak (around 0 ps) and secondary reflections after propagating
through the 2DES in varying magnetic fields.

A direct comparison between the transmitted THz signal amplitude as a function

of magnetic field with the two-terminal 2DES strip conductivity is shown in Figure 5.16.

The error bars fitted to the transmitted THz amplitude data shows the standard deviation

from the previously measured DC conductivity of the 2DES. It was also observed that

any low-field oscillations in the transmitted THz peak amplitude (resembling the

oscillations observed in the two-terminal DC conductivity) as the system approaches the

quantum Hall regime (solid line) were not apparent. This was attributed to the low

transmitted THz power and correspondingly poor signal-to-noise ratio.
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Figure 5.16 Comparison of the transmitted THz signal amplitude as a function of magnetic field
(symbols) with the 2-terminal 2DES conductivity (line) measured at 200 mK temperature.

The time-domain transmitted pulse measured at 200 mK and 1 T magnetic field

is shown in Figure 5.17, with the inset showing the transmitted pulse scan measured

previously at 300 K on the same device. It is apparent that the transmitted pulse scan

observed at increasing temperatures and increasing magnetic fields are very similar (the

difference in the amplitude, as mentioned earlier, is attributed to different beam

excitation powers at 200 mK and 300 K). This means that as the magnetic field

increases, the consequence of increase in mismatch between the highly resistive 2DES

and CPW interface is very similar to the increase in mismatch previously observed due

to high operating temperatures as discussed in Chapter 4, Section 4.3.2. Also, as

demonstrated previously through transmission of preferentially excited odd and even

modes, it was found that the measured transmitted pulse with increasing magnetic fields

consists mainly of the even mode electric field pattern, resulting from direct coupling

between the centre conductor (bypassing the integrated 2DES).
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Figure 5.17 Main figure: Experimental data of the transmitted THz pulse propagated through the
2DES strip taken at 200 mK and 1 T magnetic field, using PCS 1 as the source and PCS 3
as the detector. Inset: Experimental data of the transmitted THz pulse propagated through
the 2DES strip taken at 300 K, using PCS 1 as the source and PCS 3 as the detector.

In order to enable comparisons with the analytical modelling shown in

section 5.2, a frequency domain analysis on the transmitted pulses was then

implemented. The frequency spectra of the transmitted pulses obtained by performing

Fast Fourier transforms on the time domain signals is displayed in Figure 5.18 at various

magnetic fields. A direct comparison with occurrences of the magneto plasmon

resonance in the 2DES region, theoretically modelled in section 5.2, is used to illustrate

the expected positions of plasmonic features with respect to magnetic field. The

behaviour of the first six plasmon resonance modes is illustrated.
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Figure 5.18 Frequency spectra of the time-domain transmitted pulses shown in Figure 5.15 at
selected magnetic fields, normalised between 0 –1. Data offset by 1 for clarity. The dotted
lines show the anticipated magneto plasmon resonance frequencies at corresponding
magnetic fields, analytically modelled for the pulse injection device used.

From the comparison between measured results and the analytical modelling

data shown in Figure 5.18, it was noted that the occurrence of magneto plasmon

resonances in the strip of 2DES were not clearly observed in the frequency domain of

the transmitted pulses at different magnetic fields. This was attributed to two limiting

factors, as discussed below.

An important limiting factor was the poor frequency resolution of the pulse

injection device. This was caused by secondary reflections in the time-domain

transmitted pulse from the CPW-2DES interface and the discontinuity in the ground

planes, as shown in Figure 5.14. The transmitted pulse measurement time window for a

CPW of equivalent geometry, but without the coupled 2DES, measured at 100 mK

temperatures (see Chapter 3, Section 3.4.2 and Figure 3.26) showed the time delay

measured between the first reflection and the main transmitted THz peak to be ~40 ps,

resulting in a frequency resolution of ~25 GHz. However, for measurement taken from
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the pulse injection devices, the time delay between the first reflection and the

transmitted THz peak was noted to be <10 ps, resulting in a relatively poor frequency

resolution of >100 GHz. An additional drawback of having such a small time window

before the secondary reflections is that, any distinctive ringing trailing the main

transmitted THz pulse due to the presence of magneto plasmon resonances, as shown in

previous experiments [10, 139], can easily be overshadowed by the presence of the

secondary oscillations. To investigate further the high frequency ballistic transport in a

2DES, a higher frequency resolution device is required, including a longer time delay

window between the transmitted pulses and secondary reflections to improve the

sensitivity.

The considerably low transmitted THz power and its further reduction with

increasing magnetic fields was also a limiting factor. Despite the limited information in

the frequency spectra of the transmitted pulses, the measurements presented in this

chapter have clearly demonstrated a controllable technique for picosecond time-scale

excitation and detection of magneto transport in a quantum-confined electron system at

sub-Kelvin temperatures.

5.4. Summary

In this chapter, the capability of on-chip THz CPWs to inject and measure picosecond

time-scale pulses in a monolithically integrated 2DES, at milli-Kelvin temperatures and

under magnetic fields, has been demonstrated for the first time. The frequency domain

physical phenomena anticipated in the 2DES were modelled analytically using the

physical properties of the 2DES in the experiments, and their comparison with

experimental pulse injection measurements was presented and discussed.
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The DC magneto conductance measurement of the integrated 2DES was

demonstrated using a two-terminal technique. A clear prominence of Hall resistivity

over diagonal resistivity was observed, with plateaus occurring in Hall resistivity at

quantized integer values. Importantly, a spurious effect of scattered NIR radiation from

the pump and probe laser beams causing electron heating in the adjacent 2DES was

identified, by observing the degeneracy of the 2DES electron states. A four-terminal

integrated 2DES Hall bar geometry as outlined in Figure 5.10, is proposed for future

injection devices in order to accurately determine the level of degeneracy, and hence the

sample temperature (through independent Shubnikov-de-Haas and Hall measurements).

The ability to sample both the input THz signal injected into the 2DES and the

output THz signal transmitted along the 2DES was established at 200 mK and in

magnetic fields of up to 1 T has been presented, which hitherto has not been

demonstrated in the literature. A clear influence of the magnetic field dependent

conductivity of the 2DES was observed on the time-domain injected and transmitted

THz signals in terms of pulse shape and amplitude.

For observing frequency domain resonances in the 2DES due to THz pulse

injection, a drawback of electrically coupling the 2DES with the CPW was identified in

terms of the increasing impedance mismatch at the CPW-2DES interface under

increasing magnetic fields. This restricted the picosecond magneto transport studies to

conditions only where the resistance of the 2DES and the CPW design used for pulse

coupling are of the same order. In order to resolve this dilemma, an alternative approach

of capacitively coupling the electric field of the THz pulses propagating along the CPW

with the 2DES located in close proximity as demonstrated in Chapter 4 could be used for

future generation devices.
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The on-chip techniques demonstrated in this work are an extremely important

addition to the field of ultrafast magneto transport measurements through nanoscale

devices. Consequently, the future investigation of fundamental physics and applications

in this field look more feasible.

A summary of this chapter has been published as reference [138].
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Chapter 6: Conclusions and Future

work

6.1. Project overview

The motivation for the work demonstrated in this thesis was to perform picosecond time-

resolved electron transport measurements in a 2DES. The use of on-chip terahertz

waveguides for studying low-temperature interactions between picosecond timescale

electrical pulses and a GaAs/AlGaAs based 2DES in presence of high magnetic fields is

presented. In the course of this work, several novel device designs and experimental

techniques were developed, which could lead to further technological applications.

In order to demonstrate generation and detection of THz pulses with ps time

duration, optoelectronic excitation was carried out using photoconductive switches

adjacent to a planar, on-chip CPW formed on an LT-GaAs substrate material. The

characteristics of the CPW device measured at room temperatures showed electrical

transients of ~3 ps duration in the time domain after propagation along the 1.5-mm-long

waveguide, containing frequency components up to 400 GHz. The time and frequency

domain pulse transmission properties of the on-chip CPW devices were found to be

suitable for its integration with the 2DES.

The integration of a 2DES with a THz waveguide was initially carried out using

‘post-fabrication’ methods, with the 2DES and the THz waveguide fabricated on

separate chips. These methods involved using either a flip-chip configuration or a three-

chip assembly technique for sandwiching the two devices into a single structure. In the
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later stages of the project, a novel monolithic integration approach using MBE was

developed to address the limited sensitivity of the ps pulse to the overlaid 2DES, and to

reduce the complexity of the fabrication process. After several modifications to the MBE

growth process, the first ever successful concurrent demonstration of both low-

temperature electron transport measurements showing the quantum Hall regime, and

THz transmission measurements using on-chip CPW from the same structure, is

presented. This approach indicates that neither the 2DES nor the photoconductive

response of the LT-GaAs is compromised by the monolithic integrated growth approach.

The observation of the ultra-fast response of the 2DES integrated with the on-

chip waveguides at cryogenic temperatures and under magnetic fields was another

important aspect of this work which had not been matured. The few instances of similar

measurements in the literature [98] involved the use of a complex and non-repeatable

method for performing pump-probe measurements using optical fibres glued to on-chip

waveguides at cryogenic temperatures (~4 K). By de-coupling the fibres from the

waveguide surface, and collimating then re-focusing the free-space emission onto the

optical switches, the system presented in this thesis offers a much more versatile and

repeatable excitation technique. In addition, having the ability to control dynamically the

positioning of the refocused laser spots on the device surface, an in-situ photocurrent

imaging of the active switch region was demonstrated. Full characterisation of on-chip

CPW devices with two different photoconductive switch geometries for generation and

detection of ps timescale pulses were performed at sub-Kelvin temperatures and under

magnetic fields. The experimental results demonstrated that the performance of on-chip

CPWs based on LT-GaAs substrates experienced no adverse effects when exposed to

cryogenic temperatures and magnetic fields. This emphasises one of the main
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advantages of the cryogenic operation of the on-chip waveguides to be used for

interacting ps pulses with the adjacent 2DES, using monolithic integrated structures.

To study the temperature dependence of ps pulse interactions with integrated

2DESs, two different device geometries were studied. The first geometry involved ps

pulse injection directly into a 100 µm long and 30 µm wide 2D electron layer using via

ohmic contacts patterned onto the 2DES and overlapping the CPW centre conductor.

The second geometry involved capacitive coupling of the THz electric field to a

submerged 2DES located in close proximity to the substrate surface. The on-chip THz-

TDS measurements of pulse injection devices showed a distinct increase in the

transmitted pulse amplitude as the conductance of the 2DES increased with decreasing

temperatures, and hence the impedance mismatch between the CPW and 2DES mesa

was reduced. Conversely, in measurements of capacitively coupled devices, an increase

in attenuation of the transmitted THz signal was observed as the temperature was

reduced. This occurs owing to the increasing conductivity of the submerged 2DES

introducing a strong parasitic capacitance with the overlaid waveguide. The

characterisation of both integrated device geometries with varying temperatures from

(4 K to 300 K) showed successful ps pulse interaction with the conductive 2DES layer.

The capability of THz CPWs to inject and measure picosecond time-scale pulses

in a monolithically integrated 2DES was then established at milli-Kelvin temperatures

and under magnetic fields, which up until now has not been demonstrated in the

literature. A clear dependence of the 2DES magneto resistance was seen on the

behaviour of the transmitted THz pulse. In addition, analytical modelling was also

presented to understand physical effects, including plasmon resonances in a confined

2DES upon ps pulse injection under magnetic fields. However, the experimental studies

of ps time-resolved magneto transport properties in the 2DES were found to be limited
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above 0.5 T magnetic fields due to an increasing impedance mismatch between the

signal conductor of the CPW (ZCPW ~50 Ω) and the linearly increasing magneto 

resistance of the coupled 2DES (magneto resistance, Z2DES found to be > 1 kΩ for 

magnetic fields above 1 T). Additional design considerations are required to improve

further the coupling of the metal-2DES transitions, before a clear observation of ps time-

resolved electron transport in 2DES can be demonstrated.

6.2. Future Work

The work established in this thesis has shown a step forward in the use of on-chip

guided wave THz systems in the study of the ultra-fast response of low-dimensional

semiconductor nanostructures, by allowing measurement of their dynamic properties

through ps timescale pulse interactions at cryogenic temperatures. However, there is still

much room for subsequent development in this exciting technology, which will continue

the work in this thesis. Some suggested points are discussed below:

6.2.1. Improvements and modifications in pulse injection

geometry

The achievement of ps time resolved electron transport in the 2DES using pulse

injection devices at sub-Kelvin temperatures and under magnetic fields was primarily

limited to low-magnetic fields (~0.5 T). This was due to the impedance mismatch at the

interface of a 50 Ω characteristic impedance CPW and 2DES, which exhibited 

considerably larger magneto resistance (in the order of kΩ) above 0.5 T. Therefore, 

suggested future work may involve designing CPW waveguide geometries with

characteristic impedance corresponding to the magneto resistance of the 2DES at a

chosen field of interest. The successful implementation will allow ps timescale

measurements of higher magnetic field QHE, which is typically observed in steady state
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measurements. In addition, this will also prevent any time-domain reflections from the

metal-2DES interface following main THz pulse, thereby increasing the frequency

resolution of the measurements essential to observe frequency domain plasmonic

resonances.

The development in pulse injection technology for the coupled 2DES has the

potential to allow probing of single nanostructures for the first time, using ps timescale

current pulses. A quasi-1D electron system formed in a constricted GaAs/AlGaAs based

2DES is essentially predicted to be a THz frequency device, with the ability to support

current propagation up to a cut-off frequency > 1THz [140]. The pulse injection

geometry developed in this work can allow investigation of this prediction and also

allow observation of the change in dynamic conductivity of 1 D and 0 D electron

systems arising from the interaction of ps pulses with strong carrier confinement.

Figure 6.1 shows proposed device geometry to measure the ps response of (a) a 1DES

and (b) a 0DES quantum dot system at cryogenic temperatures, using on-chip THz-TDS

demonstrated.

Figure 6.1 Schematic diagrams of CPW based devices designed to measure the ps response of (a)
a 1DES and (b) a quantum dot system.

(a) (b)
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6.2.2. Measurement of ps pulse interaction using capacitive

coupling geometry under magnetic fields

The dynamic magneto conductivity behaviour in the quantum Hall regime has also been

frequently observed in a 2DES confined in a GaAs/AlGaAs heterostructure using an

alternate method. This involves evanescent field coupling of the electromagnetic

radiation propagating along a waveguide in close proximity to 2DES [10, 125]. Since no

direct electrical contact is made between the CPW and the 2DES, it allows probing of

the 2DES conductivity behaviour regardless of potential impedance mismatches between

2DES and CPW. As discussed in Chapter 4, the evanescent coupling of ps pulses

propagating along a CPW with a 2DES in close proximity was also established as an

alternate approach to probe the dynamic conductivity of the 2DES at cryogenic

temperatures ranging from 4 K to 300 K. However due to time constraints in the project,

these ps pulse interaction measurements using capacitive coupling devices are yet to be

carried out using higher frequency resolution CPW device designs (as demonstrated in

Chapter 3) and in presence of magnetic fields and at sub-Kelvin temperatures.
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Expose the sample
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radiation.
Develop the
pattern using

319 followed
by DI H2O rinse.

Appendix 1: Hall bar fabrication

Etching

 Hall bar mesa etch
using an
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mixed at 1:8:71.

 100 nm mesa etch
at an etching rate
of
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followed by DI
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 Deposition of
150 nm thick
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at a rate of
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mBar.
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Etching

Hall bar mesa etch
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solution of
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etching rate
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Appendix 1: Hall bar fabrication

Resist strip

 Resist strip using
quick rinse in
acetone followed
by IPA rinse.

 Blow dry using
nitrogen.

Lift-off and
annealing

 Metal lift-off
process by soakin
the sample in
acetone for >
2 hours.

 Diffusion of
AuGeNi metal
using in-situ
annealing at
temperatures
~430 oC.
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 Sample cleaning using acetone and
IPA.

 Blow dry using nitrogen.
 Shipley 1813 photoresist coating at

5000 rpm for 30 seconds.

 Soft bake S
60 seconds.

 Expose the sample using UV
radiation.

 Develop the pattern using MF
followed by DI H

 Selective LT
an etchant solution of C
mixed at 3:1.

 2 µm thick LT
etching rate of ~300 nm/minute
followed by DI H

 Selective AlAs (etch
using an etchant solution of HF:H
mixed at 1:10.

 100 nm thick
approximate
~5 µm/minute followed by DI H
rinse.

 Resist strip by sample soak in
acetone and IPA.

Appendix 2: Selective etch for first

generation integrated structure

Selective etch process
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an etchant solution of C
mixed at 3:1.

m thick LT-GaAs layer etch at an
etching rate of ~300 nm/minute
followed by DI H2O rinse.

Selective AlAs (etch stop) layer etch
using an etchant solution of HF:H
mixed at 1:10.

thick AlAs layer etch at an
approximate etching rate of

m/minute followed by DI H

Resist strip by sample soak in
acetone and IPA.

Selective etch for first

generation integrated structure

Selective etch process

Sample cleaning using acetone and

Blow dry using nitrogen.
Shipley 1813 photoresist coating at
5000 rpm for 30 seconds.

1813 at 115 oC for

Expose the sample using UV

Develop the pattern using MF-319
O rinse.

layer etch using
an etchant solution of C6H8O7:H2O2

GaAs layer etch at an
etching rate of ~300 nm/minute

O rinse.

stop) layer etch
using an etchant solution of HF:H2O

As layer etch at an
etching rate of
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Resist strip by sample soak in

Selective etch for first

generation integrated structure

Selective etch process

Shipley 1813 photoresist coating at

layer etch using

2

GaAs layer etch at an

stop) layer etch
O

O

S1813 resist

Exposed AlAs surface

Exposed GaAs cap surface

Selective etch for first

generation integrated structure

Selective etch process

S1813 resist

Pattern for measuring
etch thickness

Exposed AlAs surface

Exposed GaAs cap surface

Selective etch for first
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etch thickness
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 Sample cleaning using acetone and
IPA.

 Blow dry using nitrogen.
 Shipley 1813 photoresist coating at

5000 rpm for 30 seconds.

 Soft bake S
60 seconds.

 Expose the sample using UV
radiation.

 Develop the pattern using MF
followed by DI H

 Selective GaAs/AlGaAs
heterostructure containing the 2DES
etch using an etchant solution of
C6H8O7:H

 570 nm thick GaAs/AlGaAs
heterostructure etch at an etching
rate of ~300 nm/minute for GaAs
layers and a
for AlGaAs layers.

 DI H2O rinse.

 Selective AlAs (etch stop) layer etch
using an etchant solution of HF:H
mixed at 1:10.

 100 nm thick
approximate
~5 µm/minute followed by DI H
rinse.

 Resist strip by sample soak in
acetone and IPA.

Appendix 3: Selective etch for

second generation integrated

structure

Selective etch process

Sample cleaning using acetone and

Blow dry using nitrogen.
Shipley 1813 photoresist coating at
5000 rpm for 30 seconds.

Soft bake S-1813 at 115
seconds.

Expose the sample using UV
radiation.
Develop the pattern using MF
followed by DI H2O rinse.

Selective GaAs/AlGaAs
heterostructure containing the 2DES
etch using an etchant solution of

:H2O2 mixed at 3:1.
m thick GaAs/AlGaAs

heterostructure etch at an etching
rate of ~300 nm/minute for GaAs
layers and a rate of ~10 nm/minute
for AlGaAs layers.

O rinse.

Selective AlAs (etch stop) layer etch
using an etchant solution of HF:H
mixed at 1:10.

thick AlAs layer etch at an
approximate etching rate of

m/minute followed by DI H

Resist strip by sample soak in
acetone and IPA.

Selective etch for

second generation integrated

Selective etch process

Sample cleaning using acetone and

Blow dry using nitrogen.
Shipley 1813 photoresist coating at
5000 rpm for 30 seconds.

1813 at 115 oC for

Expose the sample using UV

Develop the pattern using MF-319
O rinse.

Selective GaAs/AlGaAs
heterostructure containing the 2DES
etch using an etchant solution of

mixed at 3:1.
m thick GaAs/AlGaAs

heterostructure etch at an etching
rate of ~300 nm/minute for GaAs

rate of ~10 nm/minute

Selective AlAs (etch stop) layer etch
using an etchant solution of HF:H2O

As layer etch at an
etching rate of

m/minute followed by DI H2O

Resist strip by sample soak in

Selective etch for

second generation integrated

Selective etch process

Shipley 1813 photoresist coating at
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Selective AlAs (etch stop) layer etch
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S1813 resist
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