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A database approach to fluvial facies models: example results from the Lower Jurassic Kayenta Fm. (SE Utah)
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conceptual frameworks for subsurface interpretations, but they lack
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UGBS quantitative information, therefore their predictive power is relatively poor.
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; 8 | type, but also each individual unit, so that observation of distinctive features is GENETIC UNIT TRANSITIONS CONCLUSIONS
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£ | permitted. For example, as shown below, not only we are able to compare the internal
= | overall facies proportions of DA and LA elements, we can also investigate the Lateral . N =19 Depositional models are often found as qualitative descriptions of the
composition of |nd|_V|dua_I DA elemeqts. It appears in this case that the |nte.rnal fac_les e S HGMN depositional features of individual case histories; supposedly through a
N=1482 | Organization can differ significantly, likely depending, as suggested by the lithofacies, trefds process of synthesis, models for the classification of fluvial systems have
on the relative dominance of upper (e.g. DA1310) or lower (e.g. DA1342) flow regime. involving Strike Upstream been elaborated (e.g. facies models; Miall 1996). Such schemes are used as

DA element 1310 5
DA Here we present a database approach that is able to generate quantitative
depositional models that account for all the essential features of fluvial
architecture. In this case, we show partial information from a quantitative
model for the Kayenta Fm; however, the application of multiple filters to the
” data enables the generation of synthetic models (cf. Baas et al. 2005) of
fluvial depositional systems, constructed by integrating data from modern

Summed thicknesses Product of thickness and Downstream - . ) -
(N = 24) lateral or dip extent and ancient fluvial systems. Thus, we aim to be able to generate facies
(N = 18) : models classified according to controlling factors (e.g. basin climate type) or
DA element 1342 Ve rtl_c_al context-descriptive parameters (e.g. river pattern).
> Quantitative depositional models [REEUEIIEN
must take into account the trends The database output presented here demonstrates that FAKTS has a wider
reciprocal relationships between involving range of applications: FAKTS has also potential impact on fluvial geology
genetic units. Direct database Sd facies research as an instrument for:
output describing these relations
is represented by transition count i) improving our understanding of fluvial architecture in different settings and
matrices. From the matrices we testing sensitivity to different controlling factors;
S P can derive specific information ) o o _ _
(N=;ﬂ)x about individual genetic units, ii) assisting prediction of subsurface reservoir architecture through
predicting the likelihood of lateral deterministic or stochastic models (Colombera et al. 2012b).
All DA eHIements All LA elements

and vertical occurrences in the
way shown in these examples.
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