

A database approach to fluvial facies models: example results from the Lower Jurassic Kayenta Fm. (SE Utah)

L. Colombera, N.P. Mountney, W.D. McCaffrey - Fluvial Research Group, University of Leeds, Leeds, LS2 9JT, UK

FAKTS DATABASE	Code Leger	d Architectural element type	308° Cross-sectional sketch 128°	Planform sketch		Architect	ural elemen	t properties	6	Facies unit properties	Facies unit transitions
	СН	Aggradational channel fill	NW SE	V 76	AE nr	Туре	Thickness	Width	Length	FU nr AE nr Type Thickness Width Length	
The Fluvial Architecture Knowledge Transfer System	DA	Downstream accreting macroform		75	56	СН	1.8	unltd 200		1 41 SI 1.1 unitd 65	
(FAKIS), is a relational database for the digitization of fluxial architecture (Colombora et al. 2012a); it has been	LA	Laterally accreting macroform			57	DA	1.2			3 41 SI 0.45 part 32 part 10	
nonulated with literature- and field-derived data from	DLA	Downstream + laterally accreting macroform	V	74	58	DA	2.2			4 41 SI 0.75 part 31 part 37	
studies of both modern rivers and their ancient	НО	Scour-hollow fill	61 71	59 ^{IV}	59	DLA	2.4	app 38		5 43 SI 1.0 part 18 6 43 St 1.2 part 39	
counterparts preserved in the stratigraphic record. The	AC	Abandoned-channel fill	16 from LC05	\	60	СН	1.6			7 43 Si 0.9 part 21	dip-directed (upstream) transition and strike-
database records all the major features of fluvial			4 th -orderⅣ → 19 from LC05		61	Aeolian D	1.6			8 43 St 0.7 app 31	() $()$ (1)
architecture, including style of internal organization,			surface V_1 4 4 74 V_1 4 60	VI	62	LA	1.3	part 7	19	9 5 Gcm 0.1 10 5 Sm 0.15	(g) - (13)
geometries, spatial distribution and reciprocal	SF	Sandy sneetflood dominated floodplain	accretion 1 59 K 58 K	IV 57	63	СН	2.2			11 5 St 0.4	
relationships of genetic units. Datasets are classified -	CR	Crevasse channel	surface		64	DLA	2.4		part 47	12 5 Ss 0.2	V 14
either in whole or in part - according to both controlling	CS	Crevasse splay	direction paleocurrent direction 79	VI 173	65	Aeolian D	3.0			13 5 Ss 0.45 part 2.6 14 5 St 0.7 part 2.2	
context-descriptive characteristics like river pattern. The		Aeolian elements	Segment D from outeron I COG (Seven	eile Cenven)	66	Aeolian SS	0.8			15 5 St 0.6 part 4.3	(19)
stratigraphy of preserved ancient successions is	Other architect	ural element types are included in FAKTS	Segment D from outcrop LC06 (Sevenin	me Canyon)	67	СН	1.3	14		16 7 Gp 0.85 unltd 30 17 7 SI 0.5 port 18	17 4th
translated into the database schema by subdividing it into	Code Leger	d Lithofacies type	Sketch location		68	DA	2.3			17 7 31 0.3 part 18 18 8 SI 0.45 unitd 21	
geological objects belonging to different scales of	Gmm	Matrix-supported massive gravel			69	AC	1.4	part 26		19 8 SI 0.8 unitd 21	\vee
observation, nested in a hierarchical fashion: facies units	Com			60	70	LA	1.5	part 11		20 8 Sm 0.2 part 19 21 8 SI 0.25 part 17	
are contained in architectural elements, in turn contained	GCIII			and the second	71	Aeolian ID	1.1			21 0 01 0.23 part 17 22 8 St 0.5 part 18	
into large-scale depositional elements. Adopted	Gh	Horizontally-bedded or imbricated gravel			72	СН	0.7			23 8 Sd 0.4 part 3.1	
classifications of facies units and architectural elements	Gt	Trough cross-stratified gravel		- Contraction	73	СН	1.4			24 8 St 0.45 part 18 25 8 Sm 0.3 unitd 15	\bigvee D D 21
are largely based on Miall's (1996) schemes.	Gp	Planar cross-stratified gravel			74	DA	1.8	unltd 23	part 110	26 10 St 0.3 unitd 6	
	St	Trough cross-stratified sand			75	DLA		10		27 10 Sp 0.65 unitd 3 unitd 18	Sth
CASE STUDY	Sp	Planar cross-stratified sand			76	SF	2.0	part 200		28 10 St 0.4 part 16 29 11 Ct 0.4	
The Lower Lurage (Sinemurian Tearsian) Keyente Em	Sr	Ripple cross-laminated sand		A Carlos and a carlos	77	CR	1.0	13		30 11 St 0.5	transition through 5 th -order
is a continental assemblace consisting dominantly of	Sh	Horizontally-bedded sand			78	DA	1.8		part 140	31 11 Gcm 0.9	– (27)
coarse- to fine-grained sandstones interpreted as a	SI	I ow-angle cross-bedded sand	Reoto taken from 36°38'54" N, 109°44'16" W	The second second second	79	SF	2.3				
broad alluvial plain - with minor aeolian deposition -	Ss	Scour-fill sand	Most of the	fieldwork was conduc						Segment A fro	om outcrop LC09 (Sevenmile Canyon)

developed in the overall arid/semiarid climatic context of the Glen Canyon Gp., in the Colorado Plateau province of the United States. Six studies on the Kayenta by other authors (Miall 1988; Bromley 1991; Luttrell 1993; Stephens 1994; North & Taylor 1996; Sanabria 2001) are also included in FAKTS; here mainly purposely-acquired field data from SE Utah (USA) is presented in order to provide examples of the information that can be incorporated into a FAKTS quantitative facies model.

Sm		Massive or faintly laminated sand			
Sd		Soft-sediment deformed sand			
FI		Laminated sand, silt and clay			
Fm		Massive clay and silt			
Fr		Fine-grained root bed			
Р		Paleosol carbonate			
Other facies unit types are included in FAKTS					

FIELD TECHNIQUES elements were indexed by numerical identifiers, some of their properties were tabulated (element type and dimensions), and their spatial arrangement was sketched - in form of cross-sectional and planform sketches - including bounding surface order (scheme by Miall, 1996) and paleocurrent information . Also facies units were indexed and their properties (facies type, dimensions and element they belong to) tabulated. The reciprocal relationships between facies units were depicted in transition diagrams, storing strike-, dip-, and vertical-directed transitions between facies units, including bounding surface order information. The unique numerical identifiers are used to keep track of the transitions between facies units and of the containment of facies units in architectural elements, similarly to what is done in the database itself. Differently from logging or measuring architectural panels, this field technique does not generate standalone representations, but all the data required are contained, and acquired faster than traditional methods.

GENETIC-UNIT PROPORTIONS

The subsets into which the digitized stratigraphy is subdivided allow the attribution of temporal and spatial relative relationships, so that a representation of sedimentary trends in time and space can be derived.

Since only data from a part of SE Utah is included in this study, the spatial variability of the Kayenta fluvial system, for example in terms of proximal to distal variations, cannot be appropriately represented, although it would be a key feature

in a complete FAKTS quantitative depositional model. On the left, it is shown how architectural element and facies proportions as well as facies proportions within selected architectural elements vary across a tripartite Kayenta stratigraphy. We could use such database output to gain insights on temporally-varying controlling factors on the depositional system by means of quantitative objective comparisons, inferring variations in controls from changes in

architecture. For example, comparing the three stratigraphic segments, it appears that the intermediate portion of the Kayenta Fm. is characterized by no aeolian deposits, a larger amount of CH elements, which are also more poorly sorted, and more frequent fine deposits within floodplain. This may suggest that in the long term the intermediate Kayenta Fm.

One of the main goals of FAKTS is to understand how architectural features respond to changes in their boundary conditions. This can be achieved by analysing output derived by filtering subsets on their attributes, but it requires constraints (e.g. independent proxies for climate change) that are not available for this dataset.

FAKTS allows not only to characterize the internal composition of a given genetic unit type, but also each individual unit, so that observation of distinctive features is permitted. For example, as shown below, not only we are able to compare the internal composition of individual DA elements. It appears in this case that the internal facies organization can differ significantly, likely depending, as suggested by the lithofacies,

GENETIC-UNIT DIMENSIONS

FAKTS quantitative depositional model would include also descriptors of dimensions and geometries of genetic units, possibly presenting figures from both the overall dataset and from its subdivision into spatial and temporal segments. The output is generally presented in form of frequency distributions or distribution functions of given parameters and scatterplots of dimensional parameters, from which aspect ratios can be derived. Cross-valley widths and downstream lengths are classified according to the completeness of the observations into complete, partial and unlimited dimensions (Geehan & Underwood 1993), since some observations are truncated at one limit of the observation window (partial lengths), whereas some others at both ends (unlimited lengths), or as apparent widths in case the observation is oblique to the local paleocurrent. Partial and unlimited widths are useful for (i) obtaining more realistic unit proportions and (ii) constraining to a minimum value the largest dimensional parameters.

GENETIC-UNIT TRANSITIONS

CONCLUSIONS

Depositional models are often found as qualitative descriptions of the depositional features of individual case histories; supposedly through a process of synthesis, models for the classification of fluvial systems have been elaborated (e.g. facies models; Miall 1996). Such schemes are used as conceptual frameworks for subsurface interpretations, but they lack guantitative information, therefore their predictive power is relatively poor.

Here we present a database approach that is able to generate quantitative depositional models that account for all the essential features of fluvial architecture. In this case, we show partial information from a quantitative model for the Kayenta Fm; however, the application of multiple filters to the data enables the generation of synthetic models (cf. Baas et al. 2005) of fluvial depositional systems, constructed by integrating data from modern and ancient fluvial systems. Thus, we aim to be able to generate facies models classified according to controlling factors (e.g. basin climate type) or context-descriptive parameters (e.g. river pattern).

The database output presented here demonstrates that FAKTS has a wider range of applications: FAKTS has also potential impact on fluvial geology research as an instrument for:

i) improving our understanding of fluvial architecture in different settings and testing sensitivity to different controlling factors;

ii) assisting prediction of subsurface reservoir architecture through deterministic or stochastic models (Colombera et al. 2012b).

REFERENCES

BAAS J.,, MCCAFFREY W.D., KNIPE R.J. (2005)	MIALL A.D. (1988) Sed. Geol. 55, 233-262.
Petr. Geosc. 11, 309-320.	MIALL A.D. (1996) The geology of fluvial deposits:
BROMLEY M.H. (1991) Sed. Geol. 73, 77-99.	sedimentary facies, basin analysis and petroleum
COLOMBERA L., MOUNTNEY N.P., MCCAFFREY	geology. Springer-Verlag.
W.D. (2012a) Petr. Geosc. 18, 129-140.	NORTH C.P., TAYLOR K.S. (1996) AAPG Bull. 80,
COLOMBERA L., FELLETTI F., MOUNTNEY N.P.,	811-830.
MCCAFFREY W.D. (2012b) AAPG Bull. 96, 2143-	SANABRIA D.I. (2001) Sedimentology and Sequence
2166.	Stratigraphy of the Lower Jurassic Kayenta
GEEHAN G., UNDERWOOD J. (1993) IAS Spec.	Formation, Colorado Plateau, USA. PhD Thesis, Rice
Publ. 15: 205-212.	University, Houston.
LUTTRELL P.R. (1993) Sed. Geol. 85, 411-434.	STEPHENS M. (1994) Sed. Geol. 90, 179-211.

Fluvial & Eolian Research Group School of Earth and Environment University of Leeds Leeds LS2 9JT UK

contact: Luca Colombera email: eelc@leeds.ac.uk mobile: +44 (0)7554096074 http://frg.leeds.ac.uk URL:

