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Quantitative empirical relationships for the prediction of subsurface fluvial sedimentary architecture
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EMPIRICAL RELATIONSHIPS BASED ON ARCHITECTURAL PROPERTIES EMPIRICAL RELATIONSHIPS BASED ON SYSTEM INTERPRETATION BEYOND GEOMETRIC EMPIRICAL RELATIONSHIPS: ANALOG-BASED CORRELABILITY MODELS
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- O mean thickness in volume = LOWER-QUALITY DATASETS O mean width (any type) in volume - - - Empirical relationships for predicting the lateral extent of a genetic unit from its Thus, the application of such empirical relationships for predicting the lateral extent of a genetic unit is severely limited by the
LOWER-QUALITY DATASETS o I PREDICTING CHANNEL COMPLEX GEOMETRIES 0 au SETS (( Y yp)) A SINGLE-THREAD SYSTEM MODEL ARCHITECTURE _ 100%] WIDTH TO THICKN ESS RE LATIONSHIPS FOR CHANNEL EVALUATION OF TRADITIONAL EMPIRICAL RE LATIONSHIPS thickness are commonly employed. The FAKTS channel-complex width-to- actual natural variability in genetic-unit geometry they fail to consider, embodied by the wide scatter in the datasets from which
max thickness in volume max width (any type) in volume — - o thickness scatterplot displays substantial scatter, even if only real widths are these relationships were derived. Tailoring such relationships (as shown on the left) on classifications that possibly incorporate
HIGHEST-QUALITY DATASETSi mean thickness in volume FROM BORE H OLE'D E RIVE D P RO PORTIONS HIGHEST-QUALITY DATASETS g mean width (any type) in volume — § 80%1 ‘ COM PLEXES C LASSIFI E D ON C HAN N E L PATTE RN FOR G U I DIN G CORRE LATION OF FLUVIAL C HAN N E L BODIES considered, with three to four order of magnitudes in width possibly associated with  the minimum intra-type architectural variability and maximum inter-type architectural variability helps improve the predictive
i thick : | in width { . | A = o any given value of thickness: the power-regression best fit of all channel-complex value of such expression; yet, the significant data scatter shown in scatterplots demonstrates how, for certain geological

m!n ickness in vo umg o FAKTS can be usec_! to select stratig(aphic_volur_nes suite_ible_ for inyestigation a_t the char}ngl-complex scale, for min w! (any type) in yo.um.e 2 s Braided systems Single-thread systems The EAKTS assif Auvial Past approaches to the generation of correlation panels of subsurface fluvial architecture made use of empirical relationships real-width data shows a significant discrepancy with the most-likely case predicted bodies (channel complexes), this approach is still only of limited use.

# thickness standard deviation in volume each VOI.Ume for which at least two-dimensional Informat[on IS aVa!lable. Descriptive statistics can be Computed ¢ any width standard deviation in volume - % —— . — — . — e database c¢ a§S|.|eS UV|ad to guide the lateral traCing of each individual channel elements, for example, relating Channel-bOdy width to the formative- by Fielding & Crane (1 987), especially for channel complexes thicker than 8 m. Therefore, a new method to guide and rank subsurface well-to-well correlations has been developed as part of this StUdy
concerning the geometry of channel complexes, and their proportion as based on the product of their thickness 3 N S— E . gfz“gztgog 30.57-(CC thickness) gfz"‘g%%g 13.31+(CC thickness) systems on Iobserved an dlnterprelzl’ge channel bankfull depth. The considerable scatter observed in the architectural data presented here demonstrates the 60 that entails the lateral tracing of geological bodies; the method uses probabilistic tools to assess the geological realism of
and lateral extent. Based on this approach, relationships between channel-complex geometry and proportions e 84 ’ 100000 environmental parameters and controlling difficulty of reliably inferring channel-body width from the formative-channel bankfull depth, formative-channel bankfull depth o real width (N = 1650) correlations, provided that the well array has constant spacing. Crucially, the approach is not based on expressions applicable

g N can be used as a general constraint to inform well-to-well correlations and stochastic reservoir models. 100000 /\ T— Q fac;tors, therdeby pgrmlttlng tlhe d_e]rclvatlop of from the thickness of a channel sandstone body, or channel-body width directly from its thickness. For example, considering = apparent width (N = 1688) s to individual bodies; instead, it makes use of outcrop/modern analog-derived distributions of the horizontal extent of geobody
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Quantitative empirical relationships for the prediction of subsurface fluvial sedimentary architecture
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FAKTS-DERIVED CORRELABILITY FOR FLUVIAL-SYSTEM TYPES
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TOTAL-PROBABILITY CURVES BASED ON CHANNEL-COMPLEX WIDTH
FROM ALL FAKTS SYSTEMS AND BRAIDED SYSTEMS ONLY

The FAKTS database permits derivation of width distributions for a variety
of genetic-unit types (e.g. channel complexes, coal seams), drawn from
several ancient and/or modern systems that can be considered as suitable
analogs to given subsurface fluvial successions. Analog information can
therefore be used to generate correlability models with which to inform
well-to-well correlation panels of subsurface stratigraphy. System analogy
needs to be established on any of several system parameters, such as
channel-pattern planform types. Next, the FAKTS database is
filtered accordingly, so that bespoke probability density

functions of genetic-unit lateral extent can be derived. The

probability density functions are included in the total-

probability expressions to derive curves describing total-probability of
genetic-unit penetration and correlation as a function of interwell distance
for different classes of fluvial depositional systems. These curves have
general applicability: total-probability values can be drawn from them to
tailor the correlability model on the well spacing.

In the example below, total-probability curves were derived for
channel complexes belonging to a generic fluvial system model — by
including all FAKTS channel-complex widths — and to an ideal braided
system model — by including only FAKTS data from systems intepreted as
braided. These curves have been applied to test three published alternative
interpretations of the same well array (on the right).
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TOTAL-PROBABILITY CURVES BASED ON EMPIRICAL RELATIONSHIPS
LINKING CHANNEL-COMPLEX WIDTH STATISTICS AND PROPORTION

Total-probability-based models of channel-complex correlability such as
the ones presented for braided systems (see above) can be customized
on any fluvial environmental type (e.g. fluvial coastal plain, meandering
system in subhumid basin; cf. Colombera et al., 2013), provided that a
channel-complex width distribution is available.

Such models can be constructed on architectural properties that are
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distinctively associated with a given distribution of channel-complex

width; it is thus useful to be able to generate models categorized on

properties that can directly be derived from interpreted well data, such as
the relative proportion of channel and floodplain deposits.

Therefore, assuming a log-normal distribution as appropriate for

describing channel-complex width distribution for any proportion,

empirical relationships have been employed that relate channel-complex

mean width and width standard deviation to express location and scale

parameters of the log-normal pdf as a function of proportions. Curves of

total probability of channel-complex penetration and correlation by a well

array in stratigraphic volumes with channel-deposit proportions

variable between 10% and 90% were then derived (see

below). The application of the resulting correlability model

only requires well-derived channel-deposit proportion.

TOTAL PROBABILITY OF PENETRATION
for model systems with variable channel-complex
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TRAVIS PEAK FM. CASE STUDY: RANKING THE GEOLOGIC REALISM OF 3 CORRELATION PANELS | EMPIRICAL RELATIONSHIPS AND PIXEL-BASED RESERVOIR MODELS

(a)

Travis Peak Fm., Zone 1 — Interpretation by Tye (1991)
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(c)

Travis Peak Fm., Zone 1 — Interpretation by Miall (2006)
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Above: comparison between the geometry of channel
complexes represented in the three Travis Peak Fm.
panels by Tye (1991; figure a), Bridge & Tye (2000; figure
b), and Miall (2006; figure ¢) and the geometry of channel
complexes included in the FAKTS database, in the form
of width-to-thickness scatterplots. The widths in the
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e channel-complex real width (all FAKTS analogs)

o channel-complex apparent width (all FAKTS analogs)

o channel-complex partial/unlimited width (all FAKTS analogs)
@ channel-complex width (subsurface interpretation)

o channel-complex partial width (subsurface interpretation)

graphs consider the positions of lateral channel-body
pinch-out as represented in the panels. These graphs do
not provide information about the likely geometry of
penetrated channel complexes; also, the fact that
thickness values associated with well data are obtained
from one-dimensional sampling strongly limits the
significance of the comparison, as FAKTS channel-
complex thickness refer to maximum thickness instead,
and the thickness of these bodies can be highly variable
laterally. Nevertheless, these plots can be useful for first-
order assessment of interpretations that are certainly
unrealistic (figure a) and for improving the realism of the
panels by a-posteriori adjusting the likely position of
pinch-out of channel bodies within two wells.
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- and the expected width distribution of those channel complexes, given by the
difference between the analog channel-complex width probability density function and the
curve obtained as the product between the same probability density function and the

To illustrate the application of the
probabilistic method for informing
correlation-based deterministic models of
subsurface fluvial sedimentary architecture,
the technique is here applied to rank the
architectural likelihood of three alternative
interpretations proposed by Tye (1991),
Bridge & Tye (2000) and Miall (2006) for the
same well array, through a stratigraphic
interval of the Lower Cretaceous Travis
Peak Formation, Texas. The correlation
panels are represented on the left. This
dataset was chosen because it is a good
published example of different models of
fluvial subsurface architecture based on
different assumptions; however, it is not the
most suitable dataset for the method as the
channel/floodplain interpretation of the logs
differs slightly for the different panels anditis
therefore necessary to assume that the
wells were equally spaced (spacing = 1.54
km), even tough in reality the actual spacing
varies between 0.8 and 2.2 km. These
limitations are ignored in the following
discussion, as our only purpose is to
illustrate the method.

The scope is to rank the interpretations by
determining which of these panels
represents the most realistic subsurface
fluvial architecture by comparison with an
ideal channel-complex width distribution
obtained by (1) all FAKTS analogs or (2) a
synthetic analog based on many systems
matching the dataset in terms of interpreted
planform type (i.e. braided river). Thus, from
the curves describing the total probability of
penetration and correlation obtained for the

/

RANKING INTERPRETATIONS ON DISCREPANCY FROM SYNTHETIC
ANALOG MODEL INCLUDING ALL SUITABLE FAKTS CASE STUDIES

two types of synthetic analogs (panel on the
left) values of total probability of penetration
for S = 1540 m and total probability of
correlation for S and multiples of S were
derived. A penetrability model based on
total probabilities could thus be plotted as
the ratio between total probability of
correlation and total probability of
penetration for S and its multiples.

The definition of subsurface units must
match with the definition of outcrop-analog
units. So, the channel bodies depicted in the
panels were subdivided geometrically to
match with the FAKTS definition of channel-
complex, to ensure that results are
comparable with penetrability models
based on width probability density functions
derived from the database. Then, the ratio
between the number of correlated channel-
complexes and the number of channel-
complexes in each panel was computed for
multiples of S. Resulting ratios relating to
the subsurface interpretations were plotted
together with the total-probability-based
penetrability model based on FAKTS
analogues for graphical comparison
against correlation distance (figure a). It is
evident how, as compared to either of the
other models, the interpretation by Tye
(1991) consisted of lateral correlations that
were significantly too optimistic. To facilitate
comparison and quantification of the
discrepancy between the subsurface
interpretations and each of the two
correlability models (i.e. all analogs vs.
braided systems), the difference between
the ratio of correlated and penetrated

conditional probability of penetration.

From this information volumetric proportions of non-penetrated channel complexes can
then be estimated relating widths to likely thickness, for example by following usual

empirical relationships.
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channel complexes for the interpretation and for the model were also
plotted, independently for the two models (figures b and c). The total
discrepancy can then be measured as the sum of the absolute values
of the discrepancy at each correlation distance to rank the realism of
the interpretations. The interpretation panels by Bridge & Tye (2000)
and Miall (2006) show comparable results: they both appear to be
overly optimistic with well correlations, especially over a single well
spacing (i.e. between adjacent wells), and have similar values of
discrepancy; the interpretation panel by Miall (2006) has the lowest
total discrepancy value and ranks highest when compared with both
correlability models.
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RANKING INTERPRETATIONS ON DISCREPANCY FROM SYNTHETIC
ANALOG MODEL INCLUDING FAKTS BRAIDED FLUVIAL SYSTEMS

MATERIAL UNITS AND INDICATOR VARIOGRAMS

FAKTS material units are defined (Colombera et al. 2012b) as contiguous volumes of sediment
characterized by having the same value of a given categorical or discretized continuous variable, or of

any combination of two or more of them. An individual material unit corresponds with all the physically
adjacent FAKTS genetic units having the required attribute values. Practically, this enables derivation of
virtually any type of user defined reservoir and non-reservoir categories and their relative reservoir-

modeling constraints.

One important implication is that the geometry of material units defined on genetic-unit types are different
from the geometry of genetic units of that type, invariably resulting in larger size distributions, which will

importantly control indicator variogram ranges.

For every direction of FAKTS' space, descriptive statistics (mean and coefficient of variation) of the size of
material units (thickness, strike-width and dip-length) can be used in conjunction with their proportions to
derive the ranges of material-unit indicator auto-variograms, whereas their sills can be calculated from
material-unit marginal probabilities (i.e. proportions) and the variogram model inferred from the
coefficient of variation of the dimensional parameters, as formulated by Ritzi (2000).

GENETIC UNITS

MATERIAL UNITS

A

YD|R(h) 4 INDICATOR VARIOGRAM MODEL

Method based
on work by
Ritzi (2000)

FAKTS-INFORMED

FOR A GIVEN DIRECTION

SILL

MATERIAL-UNIT DIMENSIONS FOR THE
GIVEN DIRECTION:

MEAN EXTENSION

COEFFICIENT OF VARIATION

FAKTS permits informing indicator variogram models referring to any type of material unit, and so to any user-

defined reservoir and nor-reservoir modeling categories, whenever the scarcity of direct data impedes the typical
curve-fitting procedure: for hydrocarbon reservoirs this is routinely the case in the horizontal directions as the
majority of boreholes are vertically oriented and too widely spaced to provide usable horizontal indicator
variograms.

EXAMPLE PIXEL-ORIENTED MODELS OF FLUVIAL ARCHITECTURE BASED ON EMPIRICAL RELATIONSHIPS

Channel-complex indicator variograms
(horizontal cross-stream direction)

Approach based on values of sill and range obtained after equations
by Ritzi (2000) employing empirical relationships linking channel-
complex proportions with average width and standard deviation.
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0.05
0
0 800 1600 2400 3200 4000
h(m)
CC prop Sill avg(W) std(W) cv(W) Model Phi Range

0.1 0.09 62.624 59.693796 0.95321 Exponential 3 169.085
0.2 0.16 92.4944 87.551579 0.94656 Exponential 3 221.987
0.3 0.21 136.612 128.40998 0.93996 Exponential 3 286.886
0.4 0.24 201.774 188.33609 0.9334 Exponential 3 363.193
0.5 0.25 298.016 276.22841 0.92689 Exponential 3 447.025
0.6 0.24 440.164 405.13814 0.92042 Exponential 3 528.197
0.7 0.21 650.114 594.20721 0.914 Exponential 3 585.103
0.8 0.16 960.206 871.51066 0.90763 Exponential 3 576.124
0.9 0.09 1418.21 1278.2255 0.9013 Exponential 3 425.462

Empirical relationships linking depositional-
element width descriptive statistics (mean,
standard deviation, coefficient of variation)
with proportions have been employed to
derive range, sill and model for indicator
variograms for the horizontal cross-stream
direction, for both channel-complex (as
represented on the left) and floodplain
depositional elements. These horizontal
indicator variogram models could be
employed in real-world situations by
coupling them with indicator variograms for
the vertical direction, which could be readily
derived through the common curve-fitting
approach applied to well data.

Here, this approach has been used to
simulate the sedimentary architecture of
ideal fluvial systems with variable
proportion of channel deposits with a SIS
algorithm (sisim; Deutsch & Journel
1998). The same work undertaken to obtain
horizontal variograms has been performed
for the vertical direction for material units
built from channel complexes, by
employing relationships linking channel-
complex connected thickness with
proportion, and the same vertical range
value has been applied to floodplain
depositional elements for sake of simplicity.
Results are presented in the form of
simulated (2 km wide x 0.3 km high) cross
sections for 20% channel-proportion
increments (to the right).
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Nnex

The FAKTS database stores data that quantifies the sedimentary
architecture of several ancient and modern fluvial depositional
systems that may be considered as analogs to subsurface fluvial
hydrocarbon-bearing successions. Therefore, the system has
application to the guidance of deterministic reservoir models by
providing analog information that can be variably employed.

Here we have shown how database information can be used for:

- identification of large-scale architectural styles based on the
geometry of channel complexes, which typically act as flow units;
the recognition of architectural styles has implications concerning
the appropriateness of analog choice and allows for placing a
constraint on channel-body geometry;

- derivation of empirical relationships describing the
association of different architectural properties (genetic-unit
geometries, proportions and spatial relationships); such
relationships provide quantitative constraints that can be applied
whenever partial architectural information is available (e.g. use of
relations to derive analog genetic-unit width descriptive statistics if
genetic-unit proportion is known from borehole data), and can be
referred to as general predictive models (e.g. linking genetic-unit
lateral spacing as a function of their proportion);

- derivation of empirical relationships between system controls
or parameters and architectural properties, which can be
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referred to whenever analogy in terms of boundary conditions
governing the subsurface depositional system can be established;
as different system types show distinctive architectural signatures,
tailoring relations to match with the interpretation of subsurface
systems provides tighter constraints;

- derivation of probability density functions of genetic-unit lateral
extent with which to generate correlability models based on total
probabilities of genetic-unit penetration by a well array with given
well spacing and of correlation between two wells with given
spacing; these models can be employed to inform well-to-well
correlations or to test the realism of a correlation panel against
one or more field analogs.

Significantly, correlability models permit the likelihood of the
subsurface interpretation to be assessed by comparison with
dimensional parameters obtained by outcrop analogs not just by
considering the most likely width of individual units, but by ensuring
geological realism for the whole succession: the approach is
integrative to traditional methods based on the use of empirical
relationships for predicting the lateral extent of individual units.

Empirical relationships describing descriptive statistics of genetic-
unit dimensional parameters as a function of unit proportions can
also be employed in the generation of database-informed
indicator-variogram models for horizontal directions.

M

TULLOW

11

%7 woodside

Bridge J.S., Tye R.S. (2000) AAPG Bull. 84, 1205-1228.

ColomberalL., Felletti F., Mountney N.P., McCaffrey, W.D. (2012b) AAPG Bull. 96, 2143-2166.

ColomberalL., Mountney N.P., McCaffrey, W.D. (2012a) Petrol. Geosci. 18, 129-140.

ColomberalL., Mountney N.P., McCaffrey, W.D. (2013) Sedimentology, in press.

Cuevas Martinez J.L., Cabrera Pérez L., MarcuelloA., Arbués Cazo P., Marzo Carpio M., BellmuntF.
(2010) Sedimentology 57, 162-189.

Dalrymple M. (2001) Petrol. Geosci. 7, 115-122.

DarmadiY., Willis B.J., Dorobek S.L. (2007) J. Sed. Res. 77, 225-238.

Deutsch C.V., Journel A.G. (1998) GSLIB: Geostatistical Software Library and User’s Guide. Oxford
University Press.

Donselaar M.E., Overeem . (2008) AAPG Bull. 92, 1109-1129.

Fielding C.R., Crane R.C. (1987) SEPM Spec. Publ. 39, 321-327.

FisherJ.A., Nichols G.J. (2013) J. Geol. Soc. London 170, 57-65.

Friend P.F., Raza S.M., Geehan G., Sheikh K.A. (2001) J. Geol. Soc. London 158, 163-177.

Geehan G., Underwood J. (1993) IAS Spec. Publ. 15,205-212.

Hajek E.A., Heller P.L., Sheets B.A. (2010) Geology 38, 535-538.

Hampson G.J., Gani M.R., Sahoo H., RittersbacherA., Ifan N., RansonA., Jewell T.O., GaniN.D.S.,
Howell J.A., Buckley S.J., Bracken B. (2012) Sedimentology 59, 2226-2258.

Hirst J.P.P. (1991) SEPM Conceptsin Sed. and Paleo. 3, 111-121.

KjemperudA.V., Schomacker E.R., Cross T.A. (2008) AAPG Bull. 92, 1055-1076.

Labourdette R. (2011) AAPG Bull. 95, 585-617.

Martinius A.W. (2000) J. Sed. Res. 70, 850-867.

Martinius A.W., Nieuwenhuijs R.A. (1995) Petrol. Geosci. 1,237-252.

McCammon R.B. (1977) Math. Geol. 9, 369-382.

McRae L.E. (1990) J. Geol. 98, 433-456.

MiallA.D. (1985) Earth-Sci. Rev. 22, 261-308.

MiallA.D. (1996) The Geology of Fluvial Deposits. Springer Verlag.

MiallA.D. (2006) AAPG Bull. 90, 989-1002.

OlsenT.(1995) Norw. Petrol. Soc. Spec. Publ. 5, 75-96.

Ritzi R.W. (2000) Wat. Resour. Res. 36, 3375-3381.

Robinson J.W., McCabe P.J. (1997) AAPG Bull. 81, 1267-1291.

Rygel M.C., Gibling M.R. (2006) J. Sed. Res. 76, 1230-1251.

Sanchez-Moya., SopenaA., RamosA. (1996) J. Sed. Res. 66, 1122-1136.

Tye, R.S. (1991) SEPM Concepts in Sed. and Paleo. 3, 172-188.




	print_AAPG_2013_part 1.pdf
	Page 1

	print_AAPG_2013_part 2.pdf
	Page 1

	print_AAPG_2013_part 3.pdf
	Page 1


