A relational database for the digitization of fluvial architecture: toward quantitative synthetic depositional models
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ABSTRACT

Facies models for fluvial depositional systems aim to summarize the sedimentological features of a specific = database classifies datasets — either in whole or in part — according to both controlling factors (e.g. climate type,
fluvial type (e.g. braided, ephemeral) through a process of distillation of several real-world examples, in orderto  tectonic setting) and context-descriptive characteristics (e.g. river pattern, dominant transport mechanism). The
provide conceptual frameworks that are straightforwardly applicable to subsurface prediction problems. data can therefore be filtered on the parameters according to which they are classified, allowing the exclusive
However, such models are often based on few case studies and are qualitative in nature, thereby resulting in  selection of data relevant for the model.

poor predictive power. Our aim is to generate quantitative depositional models for fluvial systems that are based To demonstrate the value of the approach, an example synthetic depositional model for braided fluvial
on the synthesis of many different case histories and continuously refined by adding data when they become  systems in arid/semiarid basins is presented here, and some of its features are compared with analogous data
available. from other settings. Resultant models are based on outcrop studies of the Permian Organ Rock Fm. and

Arelational database for the storage of data relating to fluvial architecture has been devised, developedand  Jurassic Kayenta Fm. (both from Utah, USA), the Chester Pebble Beds Fm. and Helsby Fm. (both Cheshire
populated with literature- and field-derived data from studies of both modern rivers and their ancient Basin, UK), together with literature-derived data. In comparison to traditional facies models, the improved
counterparts preserved in the stratigraphic record. The database scheme characterizes fluvial architecture at  usefulness of synthetic models derived from this database approach to subsurface predictions is evident, as
three different scales of observation, corresponding to many genetic-unit types (large-scale depositional their quantitative content is particularly suitable to inform well-to-well correlations and to constrain stochastic
elements, architectural elements and facies units), recording all the essential architectural features, including  reservoir models.
style of internal organization, geometries, spatial distribution and reciprocal relationships of genetic units. The
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Authors Subset height Depositional element type Original arch. element type Original facies type The Fluvial Architecture Knowledge Transfer System (FAKTS) is a relational database storing fluvial architecture data populated with
Geographic location Original target scale Thickness Miall's architectural element type Facies type literature- and field-derived case studies from modern rivers and ancient successions. The database scheme characterizes fluvial architecture at
Basin Subset target scale Apparent width Architectural element type Facies type DQ three different scales of observation, recording style of internal organization, geometries and spatial relationships of genetic units, classifying
Lithostratigraphic unit Spatial observation type Partial width Arch. element type DQ Thickness datasets according to controlling factors and context-descriptive characteristics. The database can therefore be filtered on both architectural
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_ - s genetic units contain a combination
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dominant transport mechanism, channel/river pattern, relative distality o o1 Every single object is assigned a
of each stratigraphic volume), external controlling factors (e.g. description of climatic and tectonic context, subsidence numeric index that works as its
rates, relative base-level changes), and associated dependent variables (e.g. basin vegetation type and density, a facies 1D | arch_eLID | facies. type Abovel/left: hypothetical | unique identifier; these indices are
suspended sediment load component). Some of these attributes are only expressed as relative changes (=, -, +) in a — o . - example showing object used to relate the tables (as primary
given variable (e.g. relative humidity) between stratigraphic or geomorphic segments, which are implemented as = - : : and foreign keys) reproducing the
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quality index (DQI), incorporated as a threefold ranking system of perceived dataset quality and reliability based on 1915 771 sr in the tables by making subsets, architectural elements
established criteria. Moreover, subsets are classified according to their suitability for a given query (i.e. for obtaining 1916 774 Fi use of the unique indices within depositional elements, facies
dimensional parameters, proportions, transitions or grain-size data) for a specified scale (target scale). ' units within architectural elements).
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503 505 o st relationships, are also used downstream Iength.s, cross-sectional areas, .qnd
— — — — for object neighboring - outcrop . planfodr_m atretar?. Wldtht and Ien?thbs are ct:_lasswfletd
4 Vertical transition - upwards d°dvivr”eit£§im , relationships, represented according to the completeness of observations into
i p 603 606 vertical 5th within tables containing - — ~| == complete lengths complete, partial or unlimited categories, as
Lateral transition - dextral 50 50 t iti in th rtical proposed by Geehan & Underwood (1993).
4 S lateral 4th ransitions In € Vveritca y _ I I . I I h ) )
X Dip transition - upstream , cross-vallev and alona- E——1 partial lengths Apparent widths are stored whenever only oblique
604 607 vertical 4th ey 4 g o 5 " ith f ot | H
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. . , : . escriptors of genetic-unit shape, implemente
Above/left: hypothetical example illustrating how and architectural element Above: either pby Iinkingg these objectsp o 2D/gD vector
transitions between neighboring architectural sgales,the bounding surfape representation of categories of completeness (after Geehan & graphics or by adding table attributes (columns)
elements are stored within the FAKTS database in hierarchy proposed by Miall Underwood 1993) of observed/sampled dimensional parameter. elating fo crose.sectional. olanform ard/or 3D
the form of relationships between numeric indices. (1996) has been adopted. Correlated genetic-unit dimensions are stored as unlimited. shape%ypes » P

FA KTS G E N ETI C U N ITS : c I ass ifi Cati O n s FaCIes unlts In FAKTS, facies units are defined as genetic bodies characterized

by homogeneous lithofacies type down to the decimetre scale,
Code | Legend | Lithofacies type bounded by second- or higher-order (Miall 1996) bounding
G surfaces. Lithofacies types are based on textural and structural

- characters; facies classification follows Miall's (1996) scheme,
Gmm ‘ Matrix-supported massive gravel with minor additions (e.g. texture-only classes — gravel to boulder,
sand, fines — for cases where information regarding sedimentary

I‘ Matrix supported graded gravel structures is not provided).
j:‘ Clast-supported massive gravel

j‘ Clast-supported inversely-graded gravel
ﬂ-‘ Horizontally-bedded or imbricated gravel

E:‘ Trough cross-stratified gravel
Floodplain segmentation into depositional elements is subsequent to

@‘ Planar cross-stratified gravel
channel-complex definition, as floodplain deposits are subdivided

. y P = e \ : R # , - W, ;‘ .
according to the lateral arrangement of channel-complexes. 3‘ Sand - undefined structure
Rakaia River channel-belt (New Zealand.) From Google Earth™

Gravel to boulders - undefined structure

Depositional elements

Depositional elements are classified as channel-complex or floodplain
elements. Channel-complexes represent channel-bodies defined on
the basis of flexible but unambiguous geometrical criteria, and are not
related to any particular genetic significance or spatial or temporal
scale; they range from the infills of individual channels, to compound,
multi-storey valley-fills. This definition facilitates the inclusion of
datasets that are poorly characterized in terms of the geological
meaning of these objects and their bounding surfaces (mainly
subsurface datasets).

St Trough cross-stratified sand
Sp Planar cross-stratified sand
Architectural elements Following Miall’'s (1985, 1996) concepts, architectural elements are E-‘ Ripple cross-laminated sand
defined as components of a fluvial depositional system with the Sh Horizontally-laminated sand
Code | Legend ‘Architectural element type characteristic facies associations that compose individual elements
. . interpretable in terms of sub-environments. Low-angle cross-bedded sand
CH -‘ Aggradational channel fil FAKTS is designed for storing architectural element types classified :-‘ Scour-fill sand
DA -‘ Downstream-accreting macroform according to both Miall's (1996) classification and also to a
classification derived by modifying some of Miall’s classes in order to Massive or faintly laminated sand
LA -‘ Laterally accreting macroform make them more consistent in terms of their geomorphological
: expression, so that working with datasets from modern rivers is Soft-sediment deformed sand
DLA -‘ Downstream- & laterally-accreting macroform| easier. Architectural elements described according to any other

i i ificati i Fines (silt, clay) - undefined structure
SG E‘ Sediment gravity-flow body alternative scheme are translated into both classifications following I‘ ( y) -

the criteria outlined by Miall (1996) for their definition. Laminated sand, silt and clay
HO Scour-hollow fill
AC Abandoned-channel fill
LV Levee

Laminated to massive silt and clay

Fm ‘ “ Massive clay and silt
Fr Fine-grained root bed
FF ‘ Overbank fines J
_ _ P Paleosol carbonate i : - "
SF -‘ Sandy sheetflood-dominated floodplain ' - )
:-‘ Coal or carbonaceous mud Above: example sandy facies units from the Lower Jurassic Kayenta

CR -‘ Crevasse channel
CS -‘ Crevasse splay
-‘ Floodplain Lake

Coal-body Above: example preserved architectural elements (DA and LA barforms) A °
from the Lower Jurassic Kayenta Formation at Sevenmile Canyon (SE Q‘

. » an | -
Undefined elements Utah, USA). AREVA  bhpbiliton ConocoPhillips nexen eudi Aramto @ \’ woodside

Formation in the Moab area (SE Utah, USA).
‘ ‘ Undefined facies ( )
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FAKTS OUTPUT 1: R CASE-STUDY FILTERING BLOCK-MODELS OF THE DEPOSITIONAL-ELEMENT-SCALE
FI E L D T E C H N IQU ES Jurassic Kayenta Formation at Sevenmile Canyon (SE FUnr | AEnr| Type | Thickness | Width | Length ] -;% » Sagavanirktok River Tye (2004) -
. R ic.uni i SEDIMENTARY ARCHITECTURE OF THE CHOSEN SYNTHETIC MODELS
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308 Cross-sectional sketch 1822 p : p. P 5 | | s 10 | panis L; \a,ﬁ;u:tarlike- - - . T < 4 _ y( ) ( ) CIaSSIIfled. FILTERING ON The application of multiple filters to the data enables the generation — for every set of parameters — of synthetic models of fluvial depositional systems, which are represented by distinctive stacking patterns and lithosome geometries, modes of internal
P —— = /V\m ! A AEnr| Type |Thickness| Width | Length 6 | 43 | 12 part 39 dip-directed (upstream) transition Shanaens FAI\KTS t(:f\ntrl])e quetllz:es in orgelr ttr? f;lter out thet knowled?e-pass tlhat is 2 3 Ormskirk Sandstone Fm., Sherwood Sandstone Gp. Meadows (2006) genetic-unit RIVER PATTERN organization and reciprocal relationships, all of them referring to an ensemble of hierarchically-nested genetic units that are commonly recognized in fluvial systems (Colombera et al. 2012), integrating data from modern and ancient fluvial systems.
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S e 2 = - T 57 DA 1.2 R A A S (9) KT Y (1) 3r\o/: (D) }0 fr?S?'St;Jd;eS Wlttlt: s;&e;(b_ll_esbouncﬁr;;_conddltlong:{._ | odel indlud T Abdullatif (1989) The ultimate goal is the infusion of quantitative data into otherwise qualitative facies models of fluvial sedimentary architecture.
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order 61 71 59 " | s st 04 descriptors of' ghmenspns anq geome’grles qf genetlc units. FAKTS 5 € |Thomson River (Cooper Creek) FRG data — photointepretation F AKTS data b ase: At the largest scale, the architecture of the chosen synthetic fluvial systems is described in terms of depositional elements, categorized as channel-complexes or floodplain segments on the basis of geometrical criteria. Thus, at this scale, each model is fully
... e \ 59 DLA 2.4 app 38 I babilitv d tv f t f d th = o n . " . . : : : : . :
surface 16 from LGOS 12 | 5 | ss 0.2 y N allows probability density functions of given dimensions or syntheses £ 2 ol 1989 characterized by depositional-element volumetric proportions, geometries and stacking patterns. Example models referring to systems associated to parameters on which the data were filtered are presented below.
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74 DA 1.8 unitd 23 | part 110 9 = Miall & Turner-Peterson (1989) FILTERING ON Loglogistic Channel-belt width (m)
75 | DLA 10 Segment A from outcrop LC09 (Sevenmile Canyon) Baghmati River Friend & Sinha (1993) DISCHARGE REGIME y  sraideq arid and 0-0010" oo Sedo N Body or bankfull width (m)
76 SF 2.0 part 200 - _ semiarid — 5185 05639 608 y
Brahmaputra (Jamuna) River Bristow (1993); Best et al. (2003) psystems 0.0005- — 5219 07321 927 o0 10 100 1000 10000 100000
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atabase-oriented field technique was developed and tested during field data collection in SE Utah (U.S.A.), mapping the annei-Ti ICKNess © & s SR AR £ R e —
sedimentary architecture of the Lower Jurassic Kayenta Formation, a continental succession dominantly consisting of coarse- to . = 04 m § Catuneanu & Bowker (2001) Other systems 3 RECAR BA0-)| R T
fine-grained fluvial sandstone elements, with minor occurrences of associated argillaceous fluvial and aeolian elements, Outcrop LC09-A 2 ® all systems o = R AR S A L !
developed in th rall arid/semiarid climatic context of the Glen Canyon Gr Interpreted architectural element r P c Labourdette (2011) = SIS
developed In the overall aria/semiarid climatic context of the Glen Canyon Group. Interpreted architectural elements were S (3 ® braided systems Fabuel-Perez et al. (2009a; 2009b) DRYLAND BRAIDED SYSTEMS PERENNIAL DRYLAND BRAIDED SYSTEMS R o TateT | . a0
indexed by numeric identifiers, some of their properties (element type and dimensional parameters) were tabulated, and their 2 : ) 24 case studies with 11,506 genetic units 7 case studies with 547 genetic units 8 *
spatial arrangement was sketched — in form of cross sectional and planform sketches — including bounding surface order along the indicated direction. So, similarly to what is done in the database itself, the unique numeric identifiers = ® braided-semiarid systems Jones et al. (2001) |
(scheme by Miall, 1996) and paleocurrent information. Facies units were also indexed and their properties (facies type, were used to keep track of the transitions between facies units and of the containment of facies units in Q2 02 © bra o Hiollbakk (1997 EPHEMERAL DRYLAND BRAIDED SYSTEMS
dimensional parameters and identifier of the parent architectural element within which they occur) tabulated. As the number of  architectural elements. The same type of transition diagram is applicable to the architectural element scale, and S g;es"t‘ier’ﬁs"sem'a”d'ephemera' jellbakk ( ) 9 case studies with 6,587 genetic units
facies units per outcrop is far larger than the number of architectural elements, the reciprocal relationships between facies units the ‘table-and-diagram’ approach is also applicable at the depositional element scale. In contrast to sedimentary % 01
were not drawn as sketches but were instead depicted in transition diagrams, storing strike-, dip-, and vertical-directed logging or the construction of drawn architectural panels, this field technique does not generate standalone ' * Channel-complex width
tranﬁltllc()jr)stpgt\f[\{een ﬁﬁles u.?lts, mcludlngtbgtljondlngIsurfac(:je (C)Irderlngc_)rm?tl?rr]\. l]:lo §cale c_z{r spatla_l s_lgnlfﬁgnce IS at;cﬁcr:ed to_t’Fhe repre_sedntfatlogs{ Euch as those commgn_ly expressid as f?rgwr; archltect_ural panel_s. R?ther, ﬁ”t thc?t_dataI 0 DEPOSITIONAL-ELEMENT TYPE CHANNEL-COMPLEX CHANNEL-COMPLEX WIDTH/THICKNESS CHANNEL-COMPLEX :issxgmdms CHANNEL-COMPLEX ASPECT RATIO o Channel bankull width
spatial distribution of the units — represented by circles coded according to the facies unit numeric identifiers — on the transition required for database use are acquired in a more time-efficient manner in comparison to such traditiona 9 ) 4 5 8 10 1 PROPORTIONS THICKNESS DISTRIBUTIONS ASPECT RATIO DISTRIBUTIONS ASPECT RATIO SCATTERPLOTS - Perielvine VS. THICKNESS
diagram in the figure above; the spatial relationships are exclusively expressed by means of arrows representing transitions methods, with data recorded in a format that is well suited for coding into the database structure. thickness (m)
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