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1.  Introduction 

Abstract
Self-assembly of well-defined polymer microstructures is of interest for applications

such as polymer solar cells, light emitting diodes, microelectronics and biosensors.

Chemically patterned substrates can direct the phase separation of thin films of polymer 

blends, producing controlled morphologies.  This has been demonstrated using 

patterned self-assembled monolayers.  Binary-patterned polymer brushes provide a

robust, chemically and topographically patterned surface which can interact with the 

blend, potentially resulting in interesting new behaviour, and greater control over phase

separation.

Binary-patterned polystyrene/poly(methyl methacrylate) brushes were synthesised by a

novel method.  A self-assembled monolayer of triethoxysilane was patterned by 

exposure to ultraviolet light.  This produced amine-terminated areas that could react 

with 2-bromoisobutyryl bromide to produce initiators for atom transfer radical

polymerisation, allowing the synthesis of patterned polymer brushes.  Dehalogenation

of the first brush, followed by deprotection, modification and a second polymerisation

produced binary-patterned brushes.  Unpatterned and patterned polymer brushes were

characterised using ellipsometry, x-ray photoelectron spectroscopy, contact angles, 

atomic force microscopy, lateral force microscopy, optical microscopy and secondary 

ion mass spectrometry.  An alternative approach, based on direct microcontact printing 

of an atom transfer radical polymerisation initiator, 11-(2-bromo-2-

methyl)propionyloxyundecyltrichlorosilane, was also investigated, although this 

approach was ultimately unsuccessful. 

The behaviour of thin films of polystyrene/poly(methyl methacrylate) blends on silicon, 

patterned self-assembled monolayers and binary-patterned polymer brushes was 

studied.  The morphologies were investigated using atomic force microscopy, optical 

microscopy, nuclear reaction analysis and secondary ion mass spectrometry, in order to 

determine the effect of the binary-patterned polymer brushes on the domain structure of

the blend.  The blend morphology was complex and reflected interactions between the

blend and the brushes (as well as other factors).  When the natural length scale of the 

blend is commensurate with the underlying pattern, phase separation may be spatially 

directed by the substrate.
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1.  Introduction 

Chapter 1 

Introduction

The surface of a material controls its interaction with the environment, so thin coatings

can dramatically alter and improve the properties of the material1.  For example,

conventional paint or varnish can be used to protect and waterproof wood.  This has led 

to the coatings industry becoming a multibillion dollar business.  However, there is 

increasing interest in functional coatings for a vast variety of different high tech 

applications1.  Conventional polymer coatings are widely used to tailor surface 

properties such as wettability, biocompatibility, corrosion resistance, friction and

adhesion1,2.  A layer only a few ångstroms thick can completely hide the chemical

nature of the underlying material and dictate the interaction of the system with the 

environment (for example, oxidised silicon has an advancing contact angle of < 20º; 

coating it with a self-assembled monolayer of octadecyltrichlorosilane (OTS) only 2 nm 

thick increases this to over 90º 3,4).  Simple coatings rely on intermolecular interactions

between a disordered array of coating molecules and the substrate, so can fail by a 

variety of mechanisms including desorption, displacement, dewetting and delamination.

More robust coatings can be obtained by chemically bonding the coating molecules to 

the surface.  Attachment of coating molecules to a surface by one end can lead to the 

formation of densely packed, well-defined layers that may have interesting and useful 

properties.  Two such coatings are self-assembled monolayers (SAMs) and polymer

brushes.  SAMs form spontaneously by chemisorption and self-organisation of 

functionalised organic molecules on a suitable substrate5.  Polymer brushes are long 

chain polymer molecules attached by one end to a surface or interface, with a density of 

attachment points high enough that the chains are obliged to stretch away from the

surface/interface, sometimes much further than the typical unstretched size of a chain6.

Polymer brushes have been extensively studied, particularly since the development of 

controlled radical polymerisation methods such as atom transfer radical polymerisation

(ATRP).  Controlled surface-initiated polymerisation from an initiator-functionalised

SAM can be used to produce densely grafted polymer brushes and block copolymer 
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1.  Introduction 

brushes of controlled thickness.  These methods allow the production of mechanically

and chemically robust coatings, with a high degree of synthetic flexibility towards the 

introduction of functional groups2.  Functional and diblock copolymer brushes allow 

access to �smart� or responsive surfaces which can change a physical property such as 

hydrophilicity or biocompatibility in response to an external trigger such as heat 

(polymers that have a lower critical solution temperature (LCST)), pH or salt

concentration (polyelectrolytes)2.

Microfabrication, the generation of small structures, is essential to much of modern

science and technology; it supports information technology and permeates society 

through its role in microelectronics and optoelectronics5.  The majority of commercial

microfabrication is performed using photolithography, but this has several 

disadvantages.  It is expensive, and only applicable to a limited range of photosensitive 

materials (photoresists), mainly on semiconductor substrates.  The minimum feature

size is defined by the wavelength of light used.  It is also poorly suited for introducing 

specific chemical functionalities or producing three dimensional structures5,7.  There is 

great interest in the development of alternative patterning techniques that can produce 

chemically and/or topographically patterned materials.  Microcontact printing ( CP)

can be used to form patterned SAMs, which can then be used as resists for selective 

etching or to self-assemble droplets of liquids on particular regions of the pattern5,7,8.

This may lead to a range of applications, including uses in microelectronics and 

biosensors.  Amplification of a patterned SAM into a patterned polymer brush (regions 

coated with polymer brush separated by regions of SAM-coated or bare substrate) or a

binary-patterned polymer brush (adjacent regions of two chemically different polymer

brushes) produces a more robust layer with fewer defects9,10, and allows much greater

control over the surface chemistry11.  At the present time there have been few examples

of the synthesis of binary-patterned polymer brushes, and little study of their properties. 

Polymers are used in all areas of modern life and a vast range of polymers with very

different properties have been synthesised.  It would be useful, and commercially 

desirable, if new materials could be made by mixing two polymers, each with some of 

the required properties.  This is not usually possible because most polymer blends

which are mixtures of two (or more) polymers, are thermodynamically incompatible and 
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1.  Introduction 

phase-separate12,13.  Understanding and predicting the behaviour of polymer blends has 

been a subject of intensive study.  The properties of a phase-separated blend are

determined by the nature of the domain structure14 and the strength of the interfaces 

between domains13.  This can be controlled to some degree by changing the conditions

e.g. blend composition, solvent, annealing temperature and time etc.  In thin films of 

polymer blends, preferential attraction of one of the polymers to the substrate can affect 

the structure of the entire film, so changing the nature of the substrate can completely

change the domain structure15-17.  Patterned substrates can be used to direct the phase

separation of thin films of polymer blends, giving control over the domain structure18.

This pattern-directed phase separation has been demonstrated on patterned SAMs, and 

has been shown to have practical uses, for example the efficiency of polymer LEDs can 

be improved by controlling the domain structures of blends of semiconducting

polymers19-21.  However, there has been little study of the behaviour of polymer blends 

on patterned (or homogeneous) polymer brushes.  Polymer brushes have different 

properties to SAMs, which may result in interesting new effects on these surfaces, and 

possibly increased control of phase separation. 

The work presented in this thesis attempts to address some of the gaps in knowledge 

about the behaviour of polymer brushes and blends.  The aims of this work were to 

synthesise binary-patterned polymer brushes and investigate the phase separation of a

polymer blend on the patterned substrates.  It was decided to concentrate on polystyrene

(PS) and poly(methyl methacrylate) (PMMA), as there are many examples of the 

synthesis of PS and PMMA brushes, and they form an incompatible blend that has been

well studied.  It was decided to concentrate on brush synthesis by ATRP from an 

alkyltrichlorosilane-based initiator SAM.  Silicon was chosen as the substrate, as it is

used commercially (especially in the semiconductor/computer industry), has analogous

surface chemistry to glass, silica particles and plasma-treated polymers.

The experimental work was split into several stages:

Reproducible synthesis of smooth PMMA and PS brushes of controlled 

thickness.

Production of patterned polymer brushes. 

3



1.  Introduction 

Development of the patterning method to allow the synthesis of binary-patterned 

PS/PMMA brushes. 

Investigation of the behaviour of thin films of PS/PMMA blends on both 

homogeneous and patterned substrates to determine the effect of a binary-

patterned polymer brush on the blend morphology.

The rest of this thesis presents and discusses the results of these experiments with 

reference to other relevant work.

1.1 Polymer Brushes 

�Polymer brushes� can be formed by polymer micelles, block copolymers at fluid � fluid 

interfaces (e.g. vesicles and microemulsions), graft copolymers at fluid � fluid

interfaces, adsorbed diblock copolymers and grafted polymers on a solid surface22.  This 

thesis only considers brushes on solid substrates.  These can be formed by 

physisorption, chemisorption or surface-initiated polymerisation.

1.1.1 Conformations of Polymers Attached to Interfaces 

The behaviour of polymer chains attached by one end to a surface or interface is

determined by the grafting density, , the number of chains grafted per unit area.  If the

grafting density is low, the distance between individual chains will be greater than their

radius of gyration, Rg, so each chain will be isolated from its neighbours13.  The

conformation of the chains depends on the interaction of the polymer with the substrate. 

Where this is weak (or repulsive), a �mushroom� morphology forms to minimise the 

polymer � substrate contact.  This consists of typical random polymer coils attached to

the surface by stems of varying size.  If the polymer strongly adsorbs onto the surface, a

flat �pancake� will be formed1.  This is shown schematically in Figure 1.1 a) and b).

Once the distance between the grafting points becomes less than Rg, the polymer chains

begin to overlap1,13.  The unfavourable interactions between adjacent molecules can

4



1.  Introduction 

Figure 1.1 Segment density profiles (volume fraction,  – height, h) and schematic
illustrations of conformations of surface-attached polymers.  a) mushroom, b) pancake, 
c) brush (parabolic brush density profile)1.

be reduced by stretching away from the surface, but this decreases the number of 

possible polymer configurations, resulting in a reduction in the entropy of the system1.

The polymer chains have two conflicting tendencies: to maximise their configurational

entropy, which favours short, dense brushes, and to maximise wetting by solvent, which 

favours tall, sparse brushes6.  Where the distance between grafting sites is smaller than

the radius of gyration of the equivalent free polymer, both conditions cannot be met, 

and at equilibrium the polymer chains adopt a stretched configuration.  This is referred 

to as a polymer brush1,6,22 (see Figure 1. 1 c).  The eventual thickness of the brush layer 

is a balance between two free energy costs � stretching, which reduces the 

configurational entropy, and overlap of neighbouring chains, which reduces the

energetically favourable interaction with solvent molecules6.

A simple model of brush behaviour was developed by Alexander23 and de Gennes24,25.

It considers a system of monodisperse polymer chains, with degree of polymerisation,

N, and statistical segment (or monomer) size, a, tethered to a flat, non-adsorbing 

surface22, and exposed to a solvent6.  The free energy of the polymer brush, F, is a

balance of the interaction energy between the statistical segments, Fint, and the energy 

difference between stretched and unstretched chains, caused by the entropy lost by 

stretching, Fel (elastic free energy) 1,22,26:

elFFF int         (1.1) 
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The discussion that follows considers grafted polymer chains exposed to a good solvent.

At relatively low grafting densities, conditions inside the brush are semidilute, and 

scaling arguments can be used to construct the dependence of the brush height on the 

grafting density and chain length13.  A schematic diagram of the model is shown in 

Figure 1.2. 

The average distance between attachment sites is given by13,25:
21ad         (1.2) 

A grafted chain may be subdivided into �blobs� of linear size d, each containing Nb

monomer units.  At small scales (e.g. less than d), the correlations are dominated by

excluded volume effects25.  This means that, within each blob, the chain segments

behave as random coils13,25, and: 
53

baNd         (1.3) 

In the region occupied by the grafted chains, the blobs behave as hard spheres and fill 

space, so the polymer volume fraction within the brush ( b) takes the form:13,25:

d
Na b

b 3

3

        (1.4) 

(The symbol  is used to mean �approximately equal to�, or �equal to, within a 

numerical factor of order one�26).

Figure 1.2 Schematic illustration of the Alexander model1,25,26 (reproduced with 
permission from de Gennes, P. G., Macromolecules, 1980, 13, 1069-107525.  Copyright 
1980 American Chemical Society).
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Substitution using equation (1.2) gives the relation between the volume fraction and the 

grafting density: 

321

3

a
Na b

b

32N bb         (1.5) 

The thickness of the brush layer can then be calculated: the volume per grafted chain is 

hd2, and it contains N monomers, so: 

hd
Na

b 2

3

        (1.6) 

Substitution using equation (1. 2) gives:

12

3

ha
Na

b         (1.7) 

Substitution using equation (1.5) and rearrangement gives the approximate expression

linking the brush thickness with the degree of polymerisation and grafting density13,25:

32
12

3

bN
ha

Na

31
31

Na
N

Nah
b

       (1.8) 

The most important feature of this expression is that the brush thickness increases

linearly with N.  In comparison, the radius of gyration of free polymer chains in solution 

in a good solvent is given by the Flory formula, so NRg
53 13.  Polymer molecules in a 

brush are strongly stretched and their properties may be expected to be quite different 

from those of free chains in solution6.

For higher grafting densities, where the whole area of the interface is taken up by

grafting sites, the Flory approximation can be used to obtain an explicit expression for

the free energy22 (NB. The scaling approach can also be used to obtain expressions for

the free energy � see Halperin26).  Two assumptions are made: firstly, the concentration 

of statistical segments within the brush is constant, so 
hd

Na
2

3

.  Secondly, all the free

chain ends are found at a distance, h, from the substrate22,26.  The first simplifies the

calculation of Fint, and the second yields a simple expression for Fel
26.  The Flory 
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approximation estimates the reduction in configurational entropy from results for an 

ideal random walk chain constrained to travel a distance h from the grafting surface to

the outer edge of the brush.  This form of the equation emphasises the physical origin of 

the stretching of tethered polymer chains13.  The free energy per chain can be expressed 

by the following equation22:

R
h

a
hdv

kT
F

2
0

2

3

22

       (1.9) 

where v is a dimensionless excluded volume parameter, 21v , where  is the Flory 

� Huggins interaction parameter26, and aNR 21
0 is the radius of an ideal, unperturbed

coil22,26.  The first term represents the interaction energy between statistical segments

and the second represents the elasticity of the Gaussian chains22,26.  Minimisation with 

respect to h gives the following relation: 

31
32

N
d
aN

a
h        (1.10) 

so this approach yields the same dependence of the layer thickness on N and  as the 

scaling approach. 

For polymer chains exposed to a theta solvent, the binary interaction between the 

statistical segments essentially disappears ( 21 or v = 0) (in a theta solvent 

polymers exhibit ideal chain behaviour27).  The expression must now account for three-

body interactions: 

aN
h

a
hdw

kT
F

2

2

3

23

      (1.11) 

where w is the dimensionless third virial coefficient.  Minimisation with respect to h

gives:

21N
d
aN

a
h        (1.12) 

Similar arguments can be used to derive expressions for the behaviour of polymer

chains exposed to poor solvents, and in the bulk state. 

In conclusion, under all conditions (in the presence of a good solvent, a theta solvent or 

a poor solvent, or in the absence of solvent (melt conditions)), the polymer chains in 

tethered polymer brushes exhibit deformed configurations.  The degree of deformation
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depends on the environmental conditions to which the polymer chains are exposed22.

However brush height always increases faster than the equivalent free chain dimension

as N increases6 and stretched configurations are found under equilibrium conditions22.

The relationship between chain length and the dimensions of free and tethered chains

under different conditions are summarised below:

Tethered polymer chain Free polymer chain 

Good solvent 31Nh NRg
53

Theta solvent 21Nh NRg
21

Bulk state 32Nh NRg
21

Although this is a simple model, based solely on free energy arguments, it can be used 

to predict the experimentally observed scaling behaviour more or less completely, and 

can be used to roughly describe some of the key properties of polymer brushes1

including the hydrodynamic properties, free energy per chain, and rough measurements

of the stretching � repulsion balance6.  These factors allow prediction of the 

hydrodynamic thickness, permeability, and force needed to compress a brush, as well as 

the lubrication properties that arise when two brushes are brought into near contact22.

However, some important properties depend more sensitively on details of the brush 

structure such as the density profile of chains, the location of the free ends of the 

polymer chains, how the polymer chains segregate or mix in a system with either

different chain lengths or different chemical compositions and how the polymer chains 

interpenetrate each other22.  More sophisticated models have been devised to describe 

the detailed structure and behaviour of polymer brushes.  For example the �parabolic� 

brush model allows the free chain ends to be located at any distance from the substrate,

and allows prediction of chain unit density profiles6.  This, and other models, are 

discussed in more details in the references6,13,26.
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1.1.2 Types of Polymer Brushes 

1.1.2.1 Physisorption

Brushes can be prepared by physisorption of block copolymers with �sticky� segments.

This can be done by a selective solvent approach, where the solvent is poor for one

block, which collapses onto the substrate, and good for the other block, which stretches

out to form the brush.  Alternatively, there may be preferential adsorption if one block

interacts strongly with the substrate22.  Although this is a simple way to prepare polymer

brushes, the polymer is only held onto the substrate by relatively weak intermolecular

interactions such as van der Waals forces or hydrogen bonds.  Desorption can occur on 

exposure to a good solvent for both blocks, and the brush can be displaced by other

polymers or low molecular weight compounds.  Also, thin polymer layers often dewet 

the substrate on heating above the glass transition temperature (Tg)22.  A more versatile 

approach is to covalently bond the polymer to the substrate22.  This is done by two main 

methods.

1.1.2.2 Grafting To 

As shown in Figure 1.3, end-functionalised polymers can react with suitable functional 

groups on the substrate under appropriate conditions to form a tethered polymer brush22.

End-functionalised polymers with narrow molecular weight distributions can be

synthesised by living anionic, living cationic, living radical, group transfer and ring 

opening metathesis polymerisations.  The substrate can be modified to contain suitable

functional groups by coupling agents or SAMs etc22.  However, there are some serious 

problems with the use of the �grafting to� approach.  Firstly, there are strict limits in the 

functional groups that can be present in the anchor group and/or in the polymer chain.

Reactive groups in the polymer can lead to competing reactions with the substrate, or

reactions between the anchor and the main polymer chains1.  Secondly, the amount of 

polymer that can be immobilised is limited, both in terms of film thickness and grafting

density, for both kinetic and thermodynamic reasons.  As more and more polymer

chains are grafted onto the surface, the polymer concentration at the substrate soon

becomes higher than the concentration in solution (or in the bulk).  Additional chains

must diffuse against this concentration gradient to reach the surface.  The rate of the

10
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Figure 1.3 Grafting to.  Initially, end-functionalised polymer molecules can react
with reactive sites on the substrate to produce a grafted polymer layer.  Once the 
concentration of the grafted layer exceeds the concentration of polymer in solution, 
addition of further chains becomes thermodynamically and kinetically unfavourable. 

attachment reaction soon levels off, and attachment of further polymer becomes

kinetically hindered and so very slow1.  As the grafting density increases, the polymer 

chains must adopt a stretched conformation to avoid chain overlap.  However, the loss 

of entropy during chain stretching is only offset by the formation of a single chemical

bond, so attachment of further chains rapidly becomes thermodynamically

unfavourable1.

In a related approach, polymerisation is carried out in the presence of a substrate 

functionalised with monomers.  When a growing polymer chain incorporates a surface 

bound monomer, it becomes attached to the surface, resulting in brush formation1.

Unfortunately, the rate-limiting step is the surface-confined reaction, so the maximum

grafting density is limited (as for the �grafting to� approach)1.  The random

incorporation of the surface-bound monomers into the polymer may also lead to chain

branching and chains that are attached to the surface at more than one point1.

Some examples of physisorbed and grafted to brushes are discussed on page 52. 

1.1.2.3 Grafting From/Surface-Initiated Polymerisation

A substrate with functional groups that can initiate polymerisation is exposed to a

mixture containing monomer and catalyst, other reagents, solvents etc.  Polymer chains 

can only grow from the initiator groups, so the reaction is surface-initiated, and (ideally) 

surface-confined, with no reaction occurring in solution2.  When monomers approach 

the surface they react with the initiators, or add to growing chains.  As the initial chains

11
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Figure 1.4 Grafting from/surface-initiated polymerisation.  Surface-bound initiators
can react with monomers in solution.  As the polymer chains grow, monomer can 
continue to add to the active chain ends. 

are very short, very high grafting densities can be achieved without steric hindrance. 

The polymer chains grow from the free ends, so monomer can continue to add to the 

growing chains without steric constraints.  This method allows the production of dense, 

uniform brushes with highly stretched conformations and predictable and reproducible 

thicknesses.  This is shown above in Figure 1.4.

This highly versatile approach has become the most popular technique for brush 

synthesis.  Initiator groups can be immobilised onto the substrate by exposure to plasma

or glow discharge in the presence of a gas or, more commonly, by forming an initiator-

containing SAM22.  In principle, almost any polymerisation can be used to �grow� the 

brush.  In order to achieve maximum control over brush density, polydispersity and 

composition, as well as allowing the production of block copolymer brushes, controlled 

polymerisation is highly desirable2.  There have been reports of polymer brushes 

produced by conventional radical polymerisation, living ring-opening polymerisation

(ROP), living anionic polymerisation, living cationic polymerisation, ring-opening 

metathesis polymerisation (ROMP), nitroxide-mediated polymerisation (NMP), 

reversible addition-fragmentation chain transfer (RAFT) polymerisation, and group

transfer polymerisation2,22.  Controlled radical polymerisations, most notably ATRP, 

have become the most popular methods, mostly because of their tolerance of a wide 

range of functional monomers and requirement of less stringent experimental

conditions2.  The synthesis of thiol- and silane-derivatised ATRP surface-bound

initiators is easier than the 2,2�-azobisisobutyronitrile (AIBN) or nitroxide derivatives 

required for conventional free radical or nitroxide-mediated polymerisations2.  ATRP 

and the formation of SAMs are discussed in more detail in the following sections.

12
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1.1.3 Atom Transfer Radical Polymerisation 

A polymerisation is said to be living when it proceeds in the absence of irreversible 

chain transfer and termination28-30.  If there is complete and rapid initiation, and rapid 

exchange between reactive species, all the polymer chains grow at essentially the same

rate, resulting in a linear increase in molecular weight with conversion and the 

production of polymers with low polydispersity (polydispersity = Mw/Mn).  The degree 

of polymerisation can be controlled by varying the concentration of monomer relative to

initiator.  In the absence of termination, the reactive species are retained at the end of 

the polymerisation.  Addition of fresh monomer results in continued polymerisation,

and an increase in molecular weight (and the formation of block copolymers if a

different monomer is used)29,30.  Living polymerisations provide a route for the 

synthesis of polymers with well-defined structures including end-functionalised

polymers, block copolymers, and star and comb polymers29.

The first reported living polymerisation, living anionic polymerisation, was developed 

by Szwarc in the 1950s31,32.  This approach can be used to produce well-defined 

polymers and block copolymers with very low polydispersities (Mw/Mn < 1.1).  In this 

reaction the propagating species are stabilised anions.  Under strictly aprotic conditions

there is no formal termination step, so the active chain ends persist, even after complete

monomer conversion.  However, living anionic polymerisation can only be performed

with a limited range of monomers � the monomer must contain substituents that can 

stabilise the negative charge (by delocalisation), and must not contain acidic, protic or 

strongly electrophilic groups that can react with bases or nucleophiles30.  Living anionic 

polymerisation is also extremely sensitive to impurities, requiring the use of specialised

glassware and the rigorous purification and drying of reagents2,30.  This limits its use for

the synthesis of polymer brushes2.

Free radical polymerisation is the leading industrial method used to produce commercial

polymers due to its relative synthetic ease and tolerance of functional groups and 

impurities28,29, but it does not allow control of macromolecular structure29 or molecular

weight, and produces material of high polydispersity33.  Controlled radical

polymerisation is highly desirable, but difficult to achieve as radicals undergo very fast,

near diffusion-controlled coupling and disproportionation reactions29,34.  A more 
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controlled reaction could occur if there was a fast dynamic equilibrium formed between

a very low concentration of active radicals and a vast majority of dormant chains.  The 

low concentration of radicals minimises termination.  Rapid exchange between active 

and dormant species allows a small number of radicals to propagate a large number of 

chains, and means that all the chains add monomer at essentially the same rate, giving 

control over molecular weight and polydispersity29.  Since the mid-1990s several 

controlled radical polymerisations that fulfil these requirements have been developed.

In 1995 Wang and Matyjaszewski35,36 and Kato et al.34 independently developed ATRP, 

which is an extension of atom transfer radical addition (ATRA).  ATRA is the transition

metal-catalysed insertion of an alkene into the C-X bond of an alkyl halide (X 

represents a halogen atom).  The transition metal complex reversibly abstracts the 

halogen atom from the alkyl halide, generating a radical which then reacts with the 

alkene, forming a C-C bond.  The high efficiency of the transition metal-catalysed atom 

transfer reaction in producing the target product in good yield suggests that the process 

can effectively induce a low concentration of free radicals, resulting in reduced 

termination35.  Both groups modified this reaction to allow more than one addition step

to occur, resulting in a controlled radical polymerisation that could produce well-

defined PS35,36, poly(methyl acrylate)35 and PMMA34,35.

ATRP has been used produce a wide variety of polymers with good control over 

molecular weight and polydispersity.  It has been used to synthesise polymers with 

controlled architectures including block copolymers37-39, end-functionalised polymers40-

42, polymer brushes, and star, network and comb polymers29.

The mechanism of ATRP is shown below (Scheme 1.1).  Fast, efficient initiation 

establishes a constant concentration of growing radicals, which propagate a large 

number of polymer chains by rapid exchange between active and dormant species. 

Thermodynamically, the equilibrium must lie towards the side of the dormant chain

ends to maintain a low enough steady-state concentration of radicals to minimise

bimolecular termination.  Kinetically, the exchange between dormant and active 

polymer chain ends must be fast, otherwise not all the chain ends will grow at the same

rate, and polydispersity will increase43.
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Scheme 1.1 Mechanism of ATRP 
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The rate law for ATRP is29,44-46:
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n

I
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II
n

k
kK
deact

act
eq       (1.13) 
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II

I

0n KkkkR eqppappp    (1.14) 

This means that the rate of polymerisation is first order with respect to the concentration

of monomer29,35.

Rearrangement and integration of this expression gives: 

ktt

M
M

ln
0

       (1.15) 

where  is the initial concentration of monomer, andM 0 M t  is the concentration of 

monomer at time t.  This can be used as a test for the controlled nature of an ATRP 

reaction: if a plot of MMln 0t  against time is linear, it suggests that there is a 

constant concentration of radicals28,35.

ATRP is not a true living polymerisation � termination is suppressed, but it can still 

occur, and in fact plays an important role in the early stages of the reaction.  At the start 

of the polymerisation, the concentration of radicals and Cu(II) is close to zero.  As Cu(I) 

reacts with the initiator, the concentration of both radicals and Cu(II) increases.  During 

the initial stages of the polymerisation, the concentration of radicals is sufficiently large 

that the rate at which the radicals revert to the dormant state ( RXCuRate 2
IIkdeact )

is slower than the rate at which they undergo termination ( ). With each 

termination reaction, the concentration of Cu(II) increases, which shifts the position of 

equilibrium towards the dormant side, and reduces the concentration of radicals. 

Eventually the concentration of Cu(II) is high enough that the rate of termination

becomes insignificant, and a controlled/�living� polymerisation starts to occur.  This 

self-adjustment during the initial stages of the polymerisation is also known as the 

persistent radical effect

2RRate k t

45,46.  An electron paramagnetic resonance spectroscopy study 

found that 4 � 6 % of Cu(I) was converted to Cu(II) during the early stages of an ATRP 

reaction47.  Termination can occur by two mechanisms: combination, where two 

polymer radicals, Pn and Pm collide and form a bond, generating a longer chain, Pn+m.

Alternatively, one radical can abstract a hydrogen atom from another, resulting in the
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production of a hydrogen-terminated polymer chain, Pn
H, and an unsaturated, alkene-

terminated polymer chain, Pm
= (see Scheme 1.1). 

ATRP has been reported for various monomers including (meth)acrylates, styrenes, 

(meth)acrylamides, certain dienes and acrylonitrile28,48.  The monomer must contain 

substituents that can stabilise radicals, so at present ATRP cannot be used to polymerise

less reactive monomers such as simple alkenes and vinyl acetate28,29.  The structure of 

the monomer determines the position of the equilibrium between active and dormant

species, Keq, which controls the concentration of radicals, and the rate of propagation, 

Rp, which determines how fast they react (see Equations 1.13 and 1.14)28,29.  This means

that the optimum reaction conditions vary depending on the monomer, and changing the 

reaction conditions can greatly affect the polymerisation control.  The catalyst, ligand,

solvent and reaction temperature modify the position of equilibrium and the propagation 

rate, enabling controlled polymerisation28,29.

The initiator is a species with a weakly-bound halogen atom that can be readily

exchanged with the catalyst.  A wide range of different (pseudo)halides with weak R-X 

bonds (C-X, N-X, S-X, O-X45) have been used to initiate ATRP45, including 

halogenated alkanes, benzylic halides, -haloesters, -haloketones, -halonitriles and 

sulfonyl halides28.  The amount of initiator defines the total number of radicals 

generated, so the monomer: initiator molar ratio determines the final degree of 

polymerisation, N (and so the polymer molecular weight)28,33,35,49:

I
MM

0

t0N        (1.16) 

where [I]0 is the initial concentration of initiator33,44,45,50.

To obtain well-defined polymers with low polydispersities, the rate of initiation must be

faster than the rate of propagation to ensure efficient generation of polymer chains28,44.

This means that all the chains are established, and begin to add monomer at essentially 

the same time.  The initiator must be appropriate for the monomer and catalyst system:

for example, 1-phenylethyl chloride was found to be an efficient initiator for ATRP of 

styrene in diphenyl ether solution using CuCl or CuBr/4,4�-di-n-nonyl-2,2�-bipyridine

(dnNbpy) as the catalyst46.  However, it gave a poorly-controlled polymerisation of 
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MMA under similar conditions44, due to the faster rate of propagation for MMA28,48.

Various groups have studied the effect of initiator structure on ATRP of different

monomers33,44,45, producing a set of rules that describe initiator efficiency28,44.

The catalyst, a transition metal complex, reversibly abstracts a halogen atom from the

initiator or a dormant polymer chain and generates a free radical that can propagate the 

polymerisation28.  In this process the metal atom undergoes one-electron oxidation and 

increases its coordination number by one. The catalyst can be used to adjust the 

position of the atom transfer equilibrium and the dynamics of exchange between active 

and dormant species48.  Complexes of copper(I) halides with multidentate, nitrogen-

containing ligands (such as 2,2�-bipyridine derivatives or alkyl amine ligands such as 

N,N,N�,N��,N��-pentamethyldiethylenetriamine (PMDETA)) are the most popular 

ATRP catalysts, due to their versatility48.  However, a wide range of transition metals

including ruthenium(II), molybdenum(V), rhenium(V), iron(III), nickel(I) or (II), and 

palladium(0), complexed by a similar variety of nitrogen- or phosphorus-containing

ligands (or other ligands) have been used successfully in ATRP28,48.  The ligands 

control the solubility of the catalyst in the reaction medium and can be used to fine-tune 

its electronic properties (generally, more electron-donating ligands better stabilise the 

higher oxidation state of the metal and accelerate the polymerisation)29.

Further fine-tuning of the initiator efficiency is possible by halogen exchange between 

the catalyst and the growing chains28, 51.  In ATRP systems, alkyl bromide and chloride 

initiators are commonly used with the corresponding copper(I) halide catalyst. 

However, mixed halide systems (e.g. CuCl and RBr) have been shown to give better

control of ATRP reactions than either CuBr/RBr or CuCl/RCl51, 52.  The kinetic 

requirements for a controlled polymerisation are fast initiation followed by slow

propagation, with fast, reversible deactivation of the majority of the polymer chains. 

The C-Br bond is weaker than C-Cl, which allows faster initiation.  The growing chain 

is then deactivated by halide coupling. Model studies have shown that, in mixed

halogen systems, predominantly C-Cl bonds are found in the dormant polymer chains, 

i.e. there is substantial halogen exchange in the early stages of the reaction, and alkyl 

chlorides are preferentially formed over alkyl bromides.  The stronger C-Cl bond 

reduces the concentration of active polymer chains, resulting in slower propagation52.
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ATRP can be carried out in bulk, in solution or in heterogeneous media.  ATRP of 

different monomers has been performed in solvents including benzene, toluene, anisole,

diphenyl ether, acetone, ethylene carbonate, various alcohols and water28,48.  The use of 

a solvent can have several effects on the polymerisation.  For a controlled reaction to 

occur, the growing polymer chains must be soluble in the reaction mixture53.  In some

rare cases, the polymer is insoluble in its own monomer (e.g. acrylonitrile), and a

solvent is essential28,29,48.  Bulk ATRP is usually carried out at a temperature above the 

glass transition temperature of the polymer, but use of a suitable solvent allows lower 

temperatures to be used48.  This can be particularly advantageous for the brush growth if 

temperature-sensitive initiators such as functionalised thiol SAMs are used54.  In 

addition, the solvent dilutes the reaction mixture, reducing the concentration of radicals. 

Although this leads to slower polymerisation, it can reduce the amount of termination,

improving control.  This approach is commonly used for the ATRP of MMA, where the 

high value of Keq, and so high concentration of radicals, can result in an uncontrolled 

polymerisation48.  Finally, the catalyst complex may adopt different structures in 

different solvents, changing its level of activity28,48,55.  However, the solvent must be 

chosen carefully to avoid side reactions, e.g. polar solvents are known to promote the 

elimination of HX from the dormant polystyrene chains, and so should be avoided in the

ATRP of styrene56.

1.1.3.1 Surface-Initiated ATRP 

ATRP was first used to synthesise polymer brushes by Ejaz et al.57, who used 

Langmuir-Blodgett techniques to produce a monolayer of a surface-bound initiator, 

which was then used for the surface-initiated polymerisation of MMA, generating 

PMMA brushes up to 70 nm thick.  ATRP has become the most popular method for the

synthesis of polymer brushes by surface-initiated polymerisation2, and has been used to 

produce a wide variety of different polymer brushes57-77, block copolymer brushes78-82,

patterned polymer brushes54,68,83-90, and binary patterned polymer brushes91-96.  As well 

as planar substrates such as gold or silicon wafers, brushes have also been synthesised

on silica particles97-100 and carbon nanotubes101-103.

The amount of material present in a surface-bound layer is very small, which means that

the concentration of the surface bound initiator is very low, and this has some
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consequences for surface-initiated ATRP.  As discussed above, termination in the early

stages of ATRP leads to the build-up of Cu(II), which reduces the concentration of 

radicals until a steady state is reached.  This persistent radical effect results in the 

termination of approximately 5 % of the polymer chains during the initial short, non-

stationary process46.  In solution reactions, the concentration of initiator is relatively

high (usually equimolar to the catalyst), so termination can produce enough deactivator

in solution to give a controlled polymerisation53,63.  For the growth of polymer brushes, 

the effective concentration of the surface-bound initiator is too low for this mechanism

to operate efficiently.  Therefore, to get controlled brush growth, it is necessary to add

either free initiator57, or extra copper(II)63,67,70 to reduce the concentration of active 

radicals enough to suppress termination.  There are advantages and disadvantages to 

each approach.  Adding free initiator generates polymer chains in solution as well as 

polymer brush.  The free polymer can then be analysed, allowing measurement of the

molecular weight and polydispersity.  The disadvantage of this approach is that the free

polymer tends to adsorb onto the brush, necessitating extensive solvent treatment,

soxhlet extraction, sonication etc. to ensure it is removed.  In some cases, it can even 

interfere with the surface polymerisation53, or damage the brush surface68.  The surface 

radical concentration, after the halogen exchange equilibrium is established, is directly

proportional to the CuX: CuX2 molar ratio53, so adding Cu(II) directly reduces the 

concentration of active radicals, inhibiting termination63.  Use of this approach makes

sample purification easy: a simple rinse in solvent to remove excess reagents is all that 

is needed.  However, there is no free polymer generated, so it is not possible to directly 

measure molecular weight and polydispersity. 

Some groups have concentrated on direct measurement of molecular weight and 

polydispersity of polymer brushes, by growing them on large wafers or silica gel, then 

degrafting the polymer for analysis69,73,79,97,104-106.  Husseman et al.105 grew PS brushes 

on silica gel by NMP from an initiator containing a cleavable benzyl ether group.  They 

added free initiator, so polymer was produced in solution at the same time as the 

polymer brushes.  They observed a linear relationship between the molecular weight of

the free polymer and the brush thickness (this has also been found for brushes produced 

by ATRP57,67).  They also found closely corresponding molecular weight and 

polydispersity for the free polymer and the degrafted brush, suggesting that brush 

thickness is directly proportional to polymer molecular weight.
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The low amount of surface-bound initiator also alters the reaction kinetics.  Solution

ATRP is first-order with respect to the concentration of monomer ([M])29,35:

PMM
npk

dt
dRate       (1.17) 

In a surface-initiated reaction, the amount of polymer produced is negligible compared

to the amount of monomer in solution (i.e. the monomer conversion is close to zero), so 

the reaction follows pseudozero-order kinetics and the rate does not depend on the

concentration of monomer.  Under these conditions the effective change in 

concentration of monomer with time is negligible.  Instead, a plot of brush thickness (or 

molecular weight of free polymer) against time should be linear70.

One of the criteria for a living polymerisation is the retention of the active species at the 

end of the reaction30.  In the absence of termination, addition of fresh monomer should 

restart the polymerisation, resulting in chain extension.  The living character of surface-

initiated ATRP has been demonstrated by production of block copolymer 

brushes2,67,69,78-82, or by chain extension on addition of a second portion of the same

monomer.  Kim et al.79 were able to produce �heptablock PMMA� by using a quenching 

and reinitiation approach: polymerisations were stopped by adding excess copper (II), 

favouring the production of dormant radicals.  This was then washed off the brush, and 

the reaction could be restarted.  Brush growth could also be stopped and restarted 

without quenching, although there was some termination, resulting in lower than 

expected layer thickness79.

1.1.4 Self-Assembled Monolayers 

Self-assembly is the spontaneous organisation of molecules (or meso scale objects) into

stable, well-defined structures by non-covalent forces.  SAMs are one of the best 

examples of non-biological self-assembly7.  They were first studied by Bigelow et al.107

who found that solutions of eicosyl alcohol (C20H41OH) in n-hexadecane formed

coatings on glass or platinum that were oleophobic (e.g. they were not wet by the

solution or the solvent), due to the adsorption of the long-chain alcohol molecules into a 

close-packed, orientated monolayer on the substrate.  Since then it has been found that a

wide range of functionalised long-chain organic molecules (of general form Y(CH2)nX)
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can form SAMs on various substrates by chemisorption and self-organisation5,7.  The 

final structure is close to, or at, thermodynamic equilibrium, so it tends to form

spontaneously and reject defects7.

SAMs can be formed by exposing a suitable substrate to a solution or vapour of a SAM-

forming molecule, or by CP.  SAMs can be formed on a range of substrates by 

selecting an appropriate binding group, for example, thiols or disulfides on gold, silver, 

or copper; tri- or mono-chlorosilanes on silica, glass and plasma-oxidised polymers; and 

carboxylic acids on metal oxides5.  The layer thickness can be adjusted by changing the

number of CH2 groups in the alkyl spacer, and functional groups such as fluorocarbons,

esters, amines, amides, alcohols, nitriles and ethers can be added onto the chain, 

allowing modification of the interfacial and chemical properties of the surface108

(though the presence of functional groups can alter the packing of the monolayer109).  If 

necessary, the chemistry of the SAM can be modified by further reactions of terminal

functional groups: for example, this can be used to introduce functional groups that

would react with the �anchoring� functionality and so interfere with SAM 

formation110,111.  The formation of SAMs with suitable terminal functional groups

allows the synthesis of polymer brushes by surface-initiated polymerisation.

The most studied and best characterised SAMs are formed by alkanethiolates �

CH3(CH2)nS- on gold substrates5, 108, 7.  Alkanethiols or disulfides chemisorb

spontaneously onto gold surfaces to form adsorbed alkanethiolates (this presumably

occurs with the loss of hydrogen for thiols, though the fate of the hydrogen atom is still 

not known5).  Alkanethiols with n > 11 form closely-packed, essentially two-

dimensional organic quasi-crystals on gold surfaces5.  In a high-quality complete

monolayer, the alkyl chains extend from the surface in a nearly all-trans configuration, 

tilted on average ~ 33° from the surface normal112,113 to maximise the van der Waals

interactions between adjacent CH2 groups7,109,114 (shown in Figure 1.5 a).  The adsorbed

alkanethiolates form a hexagonal 33 R30º lattice commensurate with the

underlying gold structure114 (this means that the intermolecular spacings in the SAM are 

3  larger than those of the gold atoms, and the lattice is rotated 30º relative to the Au 

(111) lattice109).  The adsorption and self-organisation is rapid � studies have shown that
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Figure 1.5 Schematic illustration showing the structure of a) alkylthiolate SAMs on 
gold substrates, and b) alkyltrichlorosilane SAMs on oxidised silicon substrates5, 115.

well-ordered SAMs can be formed within a few minutes from solution108, and in less 

than a second by CP114.

Alkyl chlorosilanes, ClnH3-nSi(CH2)xR and alkoxysilanes (RO)nH3-nSi(CH2)xR form

SAMs on hydroxyl-terminated surfaces such as oxidised silicon, glass, silica particles, 

Al2O3, and plasma-treated polymers3,7,83.  It is generally thought that the SAM is formed

via the production of silanol intermediates, which then react laterally with surface-

bound hydroxyl groups and other silane molecules to give a network polymer that is 

covalently bound to the substrate115,116.  The molecules align to form a highly

orientated, crystalline-like structure, with the hydrocarbon chains tilted approximately

8º from the normal to the surface115 (see Figure 1.5 b).  Although silane SAMs can have 

densities approaching those found in bulk hydrocarbon crystals, they lack the long-

range translational ordering found in thiol SAMs on gold115.

The reaction of alkyltrichlorosilanes with �OH terminated surfaces is more complicated

than the equivalent reaction of alkanethiols on gold, and has been a subject of 

considerable study4,112,113,116-127.  Alkyltrichlorosilanes are capable of polymerising in 

the presence of water, which gives rise to a number of possible surface structures:

covalent attachment and surface-induced polycondensation leading to horizontal

polymerisation (self-assembly) or vertical polymerisation117.  This is shown in Scheme

1.2 below.
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Scheme 1.2 Possible products of the reaction of alkyltrichlorosilanes with silicon 

dioxide surfaces117
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The structure formed is very sensitive to the deposition conditions, including 

temperature, solvent, amount of surface water, presence of base118, concentration of 

trichlorosilane, and preparation method: solution, vapour or CP115.

There is consensus in the literature that water must be present to allow the formation of 

a well-ordered SAM, but there is some debate about whether silane molecules actually 

react with surface bound �OH groups.  Hair and Trip118 used infra-red spectroscopy to 

study the reaction of alkyltrichlorosilanes with silica. They found that OTS did not 

react with silica under strictly anhydrous conditions at room temperature. Under less

stringent conditions, where some water was present adsorbed on the surface of the 

silica, the silane reacted with the molecular water, but there was no sign of reaction with 

surface bound �OH groups.  Allara et al.121 found that equivalent layers of OTS could 

be formed on SiO2 and gold substrates in the presence of water, suggesting that there is 

an insignificant amount of bonding to the substrate.  Sung et al.124 produced SAMs of 
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alkyltrichlorosilanes on silicon nitride substrates, again suggesting that the presence of 

surface water is more important than reaction with surface silanol groups.  Addition of 

an amine was found to alter the process: the amine forms strong hydrogen bonds to 

surface �OH groups.  This increases the nucleophilicity of the surface �OH groups, 

allowing them to react directly with the silicon of the alkyltrichlorosilane118.

1.2 Patterned SAMs and Polymer Brushes 

1.2.1 Microcontact Printing 

Patterned SAMs can be produced by a variety of methods, including photochemical

methods (either photolithography or scanning near-field photolithography)128,129, dip-

pen nanolithography or nanoshaving/nanografting128, but one of the simplest is CP,

first developed by Whitesides and Kumar in 1993130.  An elastomeric stamp, usually 

made of poly(dimethylsiloxane) (PDMS), is prepared by cast moulding of a master with 

the desired relief structures.  This stamp is exposed to an �ink� � a solution of a

chemical which can form SAMs on the desired substrate, dissolved in a suitable solvent.

This can be done by directly applying the ink to the stamp, or indirectly, by transferring 

the ink from a flat �stamp pad� (a flat piece of PDMS) so that only the raised parts of the 

stamp are inked.  The stamp is applied to the substrate, transferring molecules of the ink

onto the surface by direct contact, producing a patterned SAM.  The remaining exposed 

surface can then be �backfilled� by immersing the patterned substrate in a solution of a

second SAM forming molecule, or left bare5. This is shown schematically in

Figure 1.6.

The CP of alkanethiols on gold (and silver) surfaces has been extensively

studied5,7,8,114,130-137.  Well-ordered SAMs with few defects can be produced much more 

rapidly by CP than by adsorption from solution.  One study even reported that

alkanethiol SAMs were formed within 0.3 seconds by CP114.  Less is known about the 

mechanism of film formation of alkyltrichlorosilanes by CP138.  The end result is very 

sensitive to the deposition conditions, including the amount of water present in the
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Figure 1.6 Microcontact printing5,7,8,85,135,139

reaction environment (in the solvents and reagents, on/in the stamp and in the ambient

air), the temperature, the type and cleanliness of the substrate, the solvent used in the 

ink, the concentration of the active molecule in the ink115,138, and the contact time115.

Many of these variables are difficult to control, and can vary widely between different 

laboratories115 (or even on different days in the same laboratory!). 

Patterned SAMs, produced by CP (or by other methods) can be employed as barrier 

layers, or to control wetting, dewetting, nucleation or deposition of other materials on 

the surface.  Thiol SAMs have been used as resists for certain wet chemical etches, e.g.

cyanide/ferricyanide.  The gold is removed from the underlying substrate (usually 

silicon), apart from areas protected by the SAM.  The remaining gold-coated regions 

can then be used as resists for the anisotropic etching of silicon, generating three

dimensional patterns in silicon.  Thiol SAMs have also been used as barriers for the 

electroless plating of nickel, although there were some problems due to the disruption of 

the thiol SAM at the raised temperatures needed (35 � 60 ºC).  More thermally robust 

alkylsiloxane SAMs have been used as templates to control the nucleation and growth 

of metals and ceramics such as copper140 or LiNbO3
7 by selective chemical vapour 

deposition.  Where a surface is patterned with regular arrays of hydrophilic and 
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hydrophobic SAM (usually done by printing a hydrophobic, methyl-terminated SAM, 

then backfilling with a SAM of different polarity), water will preferentially condense on 

the hydrophilic regions, and organics on the hydrophobic regions, due to the 

minimisation of interfacial tension.  This produces a surface patterned with droplets of 

liquid, which may act as microreactors8 or �microfactories�.  If the aqueous liquid 

contains dissolved salts, such as copper sulphate or potassium iodide8, evaporation of 

water from the wetted areas can be used to produce arrays of salt micro- or nano-

crystals of controlled shape and size7, 8.  The organic phase can contain prepolymers, for

example polyurethane5, which can then be polymerised in situ by exposure to UV light, 

to self-assemble polymer microstructures8.  Patterned SAMs can also be used to 

selectively bind particular species, which may lead to applications in biosensors and 

immunoassays.  For example, oligo(ethylene glycol)-based SAMs were microcontact-

printed with a pattern of biotin ligands.  These were able to immobilise fluorescently-

labelled antibodies or proteins, giving a direct visual response141.

1.2.2 Patterned Polymer Brushes 

Patterned polymer brushes are most commonly produced by CP followed by surface-

initiated polymerisation � often ATRP54,68,83-86,88, although other methods including 

ROMP10,142 and ROP9 have been used.  The usual approach is to print a pattern of a

non-functionalised SAM, such as OTS or hexadecanethiol, then backfill with the 

initiator, probably because the CP of these methyl-terminated molecules has been well 

studied and is reasonably well understood.  It is also possible however to directly print 

an initiator SAM83,85, which in principle allows CP to be used for the synthesis of 

binary patterned polymer brushes.

Several other methods have also been used to produce patterned polymer brushes.  Rühe

and co-workers143-145 used UV light to pattern polymer brushes in three different ways:

either by etching exposed regions of a homogeneous brush, passivating exposed areas of 

an initiator layer or by UV-induced free radical polymerisation from a surface-attached

initiator.  These approaches could also be used to produce binary patterned polymer

brushes (see below)143-145.  Schmelmer et al.146 used electron beam lithography to 

crosslink and chemically alter a SAM.  The cross-linked regions could then be 
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converted into an initiator for free radical polymerisation.  Lift-off electron-beam

lithography has been used to produce a pattern of gold features on a silicon substrate, 

which were then modified with an initiator and used to grow poly(N-

isopropylacrylamide) (PNIPAM) brushes by ATRP.  The brushes were found to 

increase feature height and width, and decrease the spaces between the raised features,

and were responsive to changes in solvent.  It was suggested that nanopatterned 

polymer brushes with inducible phase transition behaviour, such as PNIPAM, could be 

exploited for protein-affinity separations and switches in microfluidic devices89.

Brushes were also grown on chemical and topographical features by Hou et al.90, who 

used local oxidation by AFM to produce patterns of oxidised silicon on a wafer 

protected by an OTS SAM.  The silica dots were then modified with an ATRP initiator

and used to grow PMMA brushes, amplifying the original features.  Brushes have also 

been grown from the surface of features produced by contact moulding a UV curable 

photopolymer resin which contained groups that could initiate ATRP or NMP, allowing 

growth of brushes.  This was shown to be able to produce features less than 60 nm 

across, and the spaces between features could be reduced by brush growth87.

1.2.3 Binary-Patterned Polymer Brushes 

A binary-patterned polymer brush consists of adjacent regions of two (or more)

chemically different polymer brushes.  They have been much less studied than patterned

polymer brushes: at the present time (September 2009), there have been only 12 papers 

reporting their synthesis, and there has been little investigation of their properties.

Further study and development of an efficient, general synthetic route are needed before 

these materials can be fully understood, and their potential properly assessed.

The first synthesis of binary-patterned polymer brushes was reported by Tovar et al.143

in 1995: a homogeneous PS brush was grown by thermally-induced free radical 

polymerisation, then patterned by deep-UV photoablation in the presence of a mask.

The exposed silicon substrate was then coated with fresh initiator and used to grow a 

second polymer brush by thermally-induced polymerisation143,144.  The same research 

group has since used similar initiators to generate patterned polymer brushes by UV-

induced polymerisation through a mask.  A second brush was then grown on the rest of 

the surface by thermally-induced polymerisation from the remaining initiator.  They
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found that it was necessary to ensure that the first brush adopted a collapsed 

conformation during the polymerisation of the second monomer to block the remaining

initiator groups and prevent the formation of mixed brushes145.  In a similar approach, 

Zhou et al.92 used ATRP to synthesise homogeneous polymer brushes, which were then 

etched with UV.  The exposed surface was then recoated with initiator and used to grow 

a second brush.  It was necessary to dehalogenate the first brush with sodium azide to

�kill� the polymer chains and prevent the unwanted formation of block copolymer

brushes during the second polymerisation.  Husemann et al.147 produced binary-

patterned poly(tert-butyl acrylate) (PtBA)/poly(acrylic acid) (PAA) brushes by spin 

coating a homogeneous PtBA brush with a layer of photoresist that contained bis(tert-

butylphenyl)iodonium triflate.  On exposure to UV light, this produced an acid that 

diffused into the brush and converted it to PAA.  This approach is monomer-specific,

and the loss of the tertiary butyl groups results in a decrease in chain volume, so there is

a step of 10 � 20 nm between the domains � it would be useful if the thickness of each

brush could be controlled independently.  Maeng et al.91 used electron-beam

lithography to selectively dehalogenate areas of a homogeneous PS brush (produced by 

ATRP).  The remaining halogen-capped chains were then extended by a further ATRP 

reaction to produce patterned PS/PS-block-PMMA brushes.  An alternative approach is 

to assemble a pattern consisting of initiators for two different polymerisations: Xu and 

co-workers95,96 used UV-induced hydrosilylation to attach an ATRP initiator to 

hydrogen-terminated silicon, either by irradiation through a mask96, or by protection of 

regions of silicon oxide with a resist, followed by etching with HF95.  A second initiator, 

for either RAFT96 or NMP95, was then attached to the silicon oxide regions of the 

surface.  Binary-patterned polymer brushes could then be grown by sequential 

polymerisations (it was found that the brushes produced by ATRP did not react under 

RAFT or NMP polymerisation conditions, and vice versa).

There have only been two reports of the synthesis of binary-patterned polymer brushes 

without the use of UV light or electron-beams: Liu et al.94 used capillary force 

lithography to form a physical barrier over some parts of an epoxy-based macroinitiator.

ATRP of NIPAM, removal of the mask, and a second ATRP reaction produced binary-

patterned brushes.  It was found that the PS mask blocked the surface, preventing

polymerisation from the covered areas (as long as no good solvents for PS were used). 

PNIPAM does not generally undergo a living reaction under ATRP conditions, so 
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dehalogenation was not necessary.  However, if other polymers were used, this could be

necessary to prevent the formation of block copolymer brushes.  Finally, CP has been

used to print a thiol ATRP initiator onto gold substrates.  It was found that it was not

necessary to backfill the gold surface with a second SAM, so successive CP � ATRP � 

dehalogenation reactions could be performed to produce up to quaternary-patterned

polymer brushes.  A feature of the patterned surfaces was the formation of �nanogaps�

(100 � 500 nm wide) between different brushes, due to incomplete contact of the PDMS

stamp around existing raised brush features.  This may be a disadvantage for some

applications, but, if controllable, could provide a route for maskless patterning of (sub) 

100 nm features93.

The sequential microcontact printing method has since been used to produce patterns of 

two oppositely-charged polyelectrolyte brushes: poly[(methacryloyloxy)ethyl-

trimethylammonium chloride] (PMETAC) and poly(methacryloyl ethyl phosphate) 

(PMEP).  After treatment with suitable palladium-based catalysts, the patterned brushes

provided templates for site specific electroless plating of copper (on PMETAC) and 

nickel (on PMEP), generating bimetallic patterns148.  The same group also synthesised a 

binary-patterned polymer brush consisting of two different oligo(ethylene glycol)-based 

brushes.  Hydroxyl-terminated poly[oligo(ethylene glycol)methacrylate] (POEGMA) 

brushes produced a reactive surface that could be modified to bind biomolecules such as 

biotin.  Methyl-terminated POEGMA brushes provided an antifouling surface that was 

much more resistant to protein adsorption than a methyl-terminated SAM. 

Poly(methacrylic acid)/POEGMA brushes were also produced and used in similar

selective adsorption experiments149.

1.3 Applications of Polymer Brushes 

The development of controlled surface-initiated polymerisations has allowed the 

synthesis of well-defined, densely-packed polymer brushes with a wide range of 

chemical functionality.  This provides a versatile method to modify surface properties.

The strong polymer � substrate interaction and the high density of polymer chains 

within the brush means that polymer brushes can have a high tolerance for temperature
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changes, harsh chemical environments and radiation84.  Preparation of a polymer brush-

coated surface may be more complicated (and so expensive) than using a conventional 

coating (although the synthesis of coatings such as paints and varnishes may be very 

complex), so they are likely to be used under conditions where conventional coatings

would not be stable, or to access particular functionality.  Brushes produced by �grafting

from� have only been synthesised relatively recently, and currently have few 

commercial uses.  Existing synthesis methods use large excesses of reagents for

performing surface attachment reactions and cleaning brush surfaces.  Improved

reactions that use small excesses of reagents, and cleaning procedures that are fast,

efficient and minimise solvent use are needed before brushes are considered seriously

for industrial technology150.  However, it has been suggested that brushes may find uses 

as colloidal stabilisers, adhesives and lubricants, to control surface properties such as 

friction, wettability and corrosion resistance and as functional surfaces in microfluidic

systems, sensors, electronic and biological applications22,68,150.  One of the areas of 

greatest interest is the development of �smart� or responsive surfaces (for example block 

copolymer brushes that can change conformation to minimise unfavourable solvent 

interactions, producing switchable surfaces69,80-82,91).  A few possible applications of 

homogeneous and patterned polymer brushes are discussed below.

The earliest, and to date, only commercial use of physisorbed or �grafted to� polymer

brushes was to stabilise colloidal suspensions.  It was discovered in the 1950s that 

grafting polymer molecules to colloidal particles could prevent flocculation, as the 

polymer chains on different particles would avoid overlapping22.  More recent uses for

polymer brushes on particulate substrates have included the synthesis of 

organic/inorganic hybrid nanoparticles98 and core � shell polymer nanocomposites99.

Polymer brushes have also been found to improve the solubility of multiwalled carbon

nanotubes in organic solvents101,103.

Patterned polymer brushes have been used as resists for a wide range of wet 

etchants9,54,68, and reactive ion etching10.  In comparison with patterned SAMs, the 

brush forms a thicker, more durable layer (chemically, thermally and mechanically)10.

In addition there are fewer defects, as the thicker brush layer covers defects in the 

underlying SAM9.
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One of the areas of greatest interest is the uses of polymer brushes that can selectively

adsorb cells or proteins, or act as antifouling coatings, leading to uses in various 

biomedical applications such as the development of new types of biosensors and 

immunoassays.  PNIPAM brushes have a LCST at ~ 35 ºC.  Below the LCST, the 

polymer swells in water to create a relatively hydrophilic surface that resists the 

attachment of hydrophobic proteins.  Above the transition temperature the polymer

collapses, expelling the water and producing a much more hydrophobic surface83,84,151.

It has been found that proteins could be reversibly adsorbed and released as a brush-

coated substrate was heated and cooled using a micro hot plate151.  De las Heras Alarcón

et al.86 demonstrated temperature-controlled adsorption and release of proteins from

patterned PNIPAM brushes above and below the LCST respectively (although 

behaviour over longer times was more complicated).  The brushes were also used to 

switchably adsorb Streptococcus mutans (a common species of oral bacterium that

adheres to hydrophilic surfaces).  As mentioned above (see p. 30), POEGMA brushes 

provide antifouling surfaces that resist the adsorption of proteins and cells61,150.

However, hydroxyl-terminated POEGMA brushes contain reactive groups that can be 

modified to provide binding sites for particular proteins through specific chemical

interactions (see p. 27 for an example of this)61,149.

Poly(glycidyl methacrylate) (PGMA) brushes have been used as adhesives to bond 

quartz wafers together: a substrate coated with PGMA brush and a substrate coated with 

an aminopropyltriethoxysilane (APTES) SAM were pressed together and annealed at 

300 ºC.  This caused the epoxide group of the GMA to react with the amine group of 

APTES, covalently bonding the substrates together.  This was found to give an invisible

bonding layer, and allowed the use of rougher substrates than other methods such as 

anodic or fusion bonding.  The solid nature of the adhesive could also be an advantage 

for use in microfluidic systems, where liquid adhesives could block the channels60.

Patterned PGMA brushes have also been cross-linked and used to produce quasi-2D 

polymer objects which could then be released from the substrate by cathodic stripping. 

It was suggested that these objects could be exploited in applications such as polymeric

nanoactuators, biomimetic systems and drug delivery vehicles88.

Ito152-154 and Iwata155 and co-workers used stimuli-responsive polymer brushes to 

modify the flow properties of porous membranes.  Both pH-152,153,155 and redox-154
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sensitive brushes have been shown to undergo conformation changes when exposed to 

appropriate environmental changes.  This change in conformation resulted in the

brushes acting as chemical gates that could regulate flow through porous membranes

depending on the chemical conditions. 

Patterned and homogeneous polymer brushes with liquid crystalline side chains have 

been used as alignment layers to control the orientation of molecules in liquid crystal

thin films, which may lead to uses in displays and organic electronics applications85.

Recently, Sontag et al.156 reported the synthesis of polythiophene and poly(p-

phenylene) brushes, two well known conducting polymers.  Surface-grafted conductive

polymers may help to improve the connectivity between metal or conducting oxide 

layers and conducting polymers in hybrid electronic devices such as solar cells, LEDs 

and sensors.  They may also allow connections to be made between macroscopic

electrodes and molecules or nanoscale objects in nanotechnology applications. 

1.4 Phase Separation 

1.4.1 Bulk Polymer Blends

Since synthetic polymers were first discovered, a massive range of materials with varied 

properties has been synthesised, and they have become ubiquitous.  Although it may be 

possible to synthesise a polymer with the desired properties for a particular application, 

this can be expensive and time consuming. A simpler approach would be to mix two

polymers, each having some of the desired properties, to make a material that fits the 

specification12, but this is not usually possible because most polymer blends are 

thermodynamically incompatible and phase-separate12,13.  If PS and PMMA are 

mechanically mixed, the result is a very brittle material with properties much worse than

either of the pure polymers.  The two polymers separate to form coarse domains of pure 

polymer, with no intimate mixing of the components and weak interfaces between the 

domains13.  Phase-separated blends can still be useful: for example high impact

polystyrene is a blend of PS with around 20 % polybutadiene (PBD).  This phase-

separates to produce a matrix of PS containing small (5 � 10 m diameter) spherical
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domains of rubbery PBD.  These can absorb energy under stress, increasing the 

toughness of the brittle, glassy PS, while maintaining good stiffness27,157.

Understanding and predicting the behaviour of polymer blends has been a subject of 

extensive study.  The properties of a blend depend on whether it is miscible at a given 

composition and temperature, and, for immiscible systems, the nature of the domain

morphology14 and the strength of the interfaces between the domains13.

Consider a system of two polymers, A and B.  If a small amount of B is added to pure

A, the blend will be miscible and form a single phase.  As more B is added, the blend 

becomes unstable and separates into two phases, one rich in polymer A, the other rich in 

B.  The miscibility of the system is also affected by temperature.  Some blends phase-

separate on heating, while others phase-separate as the temperature decreases14.  The

composition and temperature behaviour of a polymer blend can be shown in a phase 

diagram.  Two examples are shown below.

In Figure 1.7 a) the miscibility increases with temperature, and at the Upper Critical 

Solution Temperature (UCST), the blend forms a single phase, e.g. PS/PMMA blends. 

In Figure 1.7 b) the polymers form a single phase at low temperatures, and phase-

separate as the temperature is increased above the LCST e.g. PS/poly(vinyl methyl

ether) (PVME) blends.  This can occur if there are specific interactions between the 

Figure 1.7 a) UCST type phase diagram, b) LCST type phase diagram.  Solid lines
show the binodal curve, broken lines show the spinodal curve13,14,27.
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polymers (such as hydrogen bonds), or if mixing results in a decrease in volume.  As the

temperature is increased, these attractive interactions eventually become disrupted, and 

the blend begins to phase-separate.  Both these effects are relatively insensitive to 

composition, hence the fairly flat shape of the phase diagram27  More complicated

behaviour is also possible, resulting in phase diagrams with both UCST and LCST, or in 

some cases with neither feature14.  In the figures, the region where a single phase is 

stable is separated from the two-phase region by the binodal or coexistence curve13.

Within this, the spinodal line separates compositions that are unstable from those that 

are metastable with respect to small composition fluctuations13.

The mixing of a blend is determined by the behaviour of the free energy of mixing as a 

function of temperature and composition (constant pressure is assumed, so it is the

Gibbs free energy, Gmix, that is relevant)13.  Mixing can occur if the total free energy of 

the homogeneous system (GAB) is less than that of two separate phases (GA and GB), so 

Gmix is negative.

GGGG BAABmix       (1.18) 

This can be illustrated by looking at the free energy as a function of composition.  In 

Figure 1.8 a), the total free energy of two separate phases with compositions 1 and 2 is

Gi.  The concave shape of the free energy profile means that, whatever the starting

Figure 1.8 Gibbs free energy of mixing as a function of composition.  a) The two 
species are miscible for all compositions; b) the two species are immiscible for
compositions between 1 and 2.  See text for further details13.
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conditions, the free energy can be reduced to Gf by forming a single phase (with 

composition 0), so the system is fully miscible13.  In Figure 1.8 b), within a certain 

range of compositions the free energy profile is convex.  In this range, the free energy of 

the system can be reduced by forming two phases of compositions 1 and 2.  The

lowest possible free energy is obtained when the phase-separated compositions are 

defined by the points at which a line is tangential to the free energy curve in two places;

these two limits define the limits of composition within which a single phase is not 

stable13.

1.4.1.1 Flory – Huggins Theory 

The Flory � Huggins theory can be used to determine the mixing properties of two 

polymers as a function of composition and temperature13,27.  It is a mean field lattice 

model and an extension of the regular solution model commonly used for liquids.  It 

provides an expression for the change in Gibbs free energy on mixing two dissimilar

polymers, A and B.  Initially, consider a system with nA moles of polymer A in a 

container of volume VA and nB moles of polymer B in a volume VB.  Mixing may be

initiated by removing the barrier between the containers, giving a total volume, V = VA

+ VB.  For mixing to occur, the Gibbs free energy of mixing, Gmix, must be negative.

Gmix can be represented as the sum of two contributions27:

GSTG loctmix       (1.19) 

Mixing leads to an increase in the translational (or configurational) entropy, St, so St is 

always negative and favours mixing14.  However,
N

S t
1 , where N is the degree of 

polymerisation of a polymer, so for high molecular weight polymers, it is very small in

magnitude14. Gloc refers to a change in the local interactions and motions of the

monomers.  This can be further split into the enthalpy change of mixing, Hmix, and the

entropy change, Sloc, due to changes in the number of available conformations, for 

nA nB nA, nB

VA + VBVA VB
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example due to shrinkage or expansion in the total volume on mixing, so 

. Glocmixloc STHG loc may be positive or negative depending on the nature of 

the monomer � monomer interactions27.  For most polymers, the Van der Waals 

attractive energies between equal monomers are stronger than those between unlike 

pairs, so Gloc > 0 and opposes mixing27.  The small negative value of St, and the 

larger positive value of Gloc mean that Gmix is usually positive, so most polymer pairs

are immiscible, and compatibility is only found if there are specific interactions such as 

hydrogen bonds27.  NB. the equations presented below assume that Gloc is solely of 

energetic origin.

Expressions can be produced for St and Gloc:

V
V

n
V
V

nR
S

B
B

A
A

t lnln       (1.20) 

If the volume fraction of component i,
V
V i

i , then:

BBAA
t nnR

S lnln       (1.21) 

The change in local interactions is expressed by:

BA
c

loc
V
VRTG       (1.22) 

Where A is the volume fraction of polymer A and Vc is an arbitrary reference volume,

usually chosen to be the volume occupied by one of the monomer units.  is the Flory � 

Huggins interaction parameter, which defines in an empirical manner the change in 

local free energy per reference unit.  Another way to describe this is that  is the energy

change (in units of RT) when a segment of polymer A is taken from an environment of 

pure A and swapped with a segment of B in an environment of pure B.

Combining these expressions gives: 

BA
c

BBAA

loctmix

V
V

nnRT

GSTG

lnln
    (1.23)
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By defining the number of moles of polymer i, 
V
V

n
i

i
i , the molar number of reference 

units,
V
V

n
c

c  , the degree of polymerisation of a polymer i, 
V
VN

c

i
i , and substituting

these into the equation, it can be rewritten as:

BAB
B

B
A

A

A
cmix

NN
RTnG lnln    (1.24) 

This is the Flory � Huggins equation (see Jones13 and Strobl27 for a more complete

derivation/description).  This allows discussion of the properties of a polymer blend in 

terms of the value of : where it is positive, a blend will undergo phase separation, 

where it is negative, it will be miscible13,27.  The Flory � Huggins equation can be used 

to derive expressions for the spinodal and binodal curves and compute phase diagrams,

or these can be measured experimentally and used to determine 14.  For systems where, 

Gloc is mainly of energetic origin,
T
1  so  decreases with increasing temperature,

resulting in increased miscibility and UCST behaviour.  Where entropic factors have a

more significant effect,  may increase with temperature, producing LCST 

behaviour13,27.  For example, mixing two polymers with some type of attractive

interaction may lead to a reduction in the volume of the system, lowering the entropy. 

This reduction in entropy usually increases with temperature, and eventually overcomes

the initial attractive interactions27 (see Figure 1.7 b).  In reality,  may be a complex

function of the degrees of polymerisation, volume fraction and temperature14, resulting 

in the wide range of phase diagrams observed experimentally.

1.4.1.2 Mechanisms of Phase Separation 

When a blend is quenched into the two-phase part of the phase diagram it will begin to 

phase-separate.  This can be done by changing the temperature or by evaporation of a 

common solvent from a solution of both polymers, for example during spin coating. 

For bulk homopolymer blends, phase separation leads to the formation of an isotropic,

disordered phase morphology with a characteristic length scale that increases over time

with no specific equilibrium value158.  The mechanism of phase separation, and the

morphologies formed depend on the conditions.  If the blend is quenched inside the
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spinodal line, it will be unstable with respect to small composition fluctuations and will 

immediately and spontaneously begin to phase-separate (see Figure 1.9)13.  This 

spinodal decomposition results in the formation of two structurally equivalent

interpenetrating phases27.  Concentration fluctuations of different sizes grow at different 

rates.  Fluctuations grow in amplitude by diffusion of material from the troughs to the 

peaks (formally a negative concentration gradient).  This suppresses the growth of long 

wavelength composition variations13.  Short wavelength fluctuations are dissipated by 

thermal motion so also grow slowly.  This leads to a characteristic spinodal wavelength

of fluctuations which grows fastest, and is the dominant length scale in the early stages 

of phase separation (the domains later coarsen as phase separation progresses)13.

If the blend is quenched into the metastable region between the binodal and spinodal

lines, a single phase is globally unstable with respect to separation into two phases, but

small composition fluctuations lead to an increase in free energy (see Figure 1.9)13.

There is an energy barrier, which can only be overcome by a large fluctuation which

directly leads to the formation of a nucleus of a new equilibrium phase (of a certain 

critical size).  This can then grow by conventional diffusion of polymer chains towards 

areas of lower concentration13,27.  This nucleation and growth leads to the formation of 

spherical domains of the minority phase dispersed in a matrix of the majority phase27.  It 

Figure 1.9 Magnification of Figure 1.8 b) between 1 and 0.  The free energy
profile shows that separation into two phases is globally energetically favourable.  For 
a single phase of composition a, small fluctuations in composition result in an increase
in free energy from Ga to G’a, and the system is metastable (within the binodal curve).
For a single phase of composition b, any fluctuations lead to a lowering of free energy
from Gb to G’b, so the system is unstable with respect to small composition fluctuations
and will immediately and spontaneously begin to phase-separate by spinodal 
decomposition13.  The curvature of the free energy curve can be determined from the 
value of the second differential, d2G/d 2.
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is worth noting that for most polymer systems, the rate of homogeneous nucleation is 

vanishingly small, and the presence of impurities such as dust, and interaction of the 

polymers with the container walls play an important role in heterogeneous nucleation13.

1.4.2 Surface-Directed Spinodal Decomposition 

The presence of the polymer � air and polymer � substrate interfaces breaks the 

symmetry of phase separation.  The lower surface free energy component of the blend is 

enriched at the air interface to minimise the total surface energy16,159.  For example, the 

surface of 50/50 PS/PVME blends may be over 95 % PVME at the air interface, due to 

the lower surface energy of PVME13,160,161.  In many cases there is also preferential 

segregation of one of the polymers to the substrate, again to minimise the interfacial 

energy with the boundary surface162.  As the film thickness is decreased (to less than ~ 1 

m162), the preferential attraction of the blend components to the interfaces begins to 

significantly affect phase separation throughout the polymer layer. 

During bulk spinodal decomposition, random composition fluctuations are amplified

with a strong selection of fluctuations of a certain wavelength.  This results in an 

isotropic structure consisting of a superposition of composition waves of roughly

constant wavelength, but random phase and direction163.  Interaction of the polymers

with the free surface (and the substrate) pins the direction and phase of the composition

waves, so they propagate from the surface of the film into the bulk164.  This surface-

directed spinodal decomposition can result in the formation of well-defined layered

morphologies.  This was first shown experimentally by Jones et al.165 for a blend of 

poly(ethylenepropylene)/perdeuterated poly(ethylenepropylene) (PEP/dPEP).  Forward-

recoil spectrometry analysis showed the presence of a dPEP-rich surface layer and the

formation of a composition wave propagating into the bulk, and coarsening over

time165.  Similar behaviour has been found in a range of blends such as deuterated 

polystyrene/poly( -methyl styrene (dPS/P MS)164, PS/PBD163,and deuterated 

polystyrene/poly(styrene-co-4-bromostyrene) (dPS/PBrxS)166.  The spinodal waves 

originating from the surface and substrate can interfere with each other resulting in the 

formation of complicated multilayered structures167.  Constructive interference results in 

the production of almost perfectly ordered lamellar structures167.  Where there is 

destructive interference of the spinodal waves, lateral structure consisting of droplets of 
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either of the two phases can develop.  This can be understood as the compromising

reaction of the system to competing surface fields which tend to enrich the particular

layer in both polymers at the same time167.  For example, Geoghegan et al.163 found that 

dPS/PBD blends on silicon substrates formed dPS-rich layers at the surface and 

substrate, with a laterally phase-separated, PBD-rich layer in between.  Bruder and 

Brenn166 found that a stable layered structure could only be found where both interfaces 

were completely wet by one of the blend components166,167.  For films that are thinner

than the characteristic wavelength of composition fluctuations (typically 200 - 300 nm),

surface-directed spinodal decomposition is suppressed and lateral phase separation 

occurs within the plane of the film168.

1.4.3 Phase Separation in Thin Films

Understanding and controlling the morphology of phase-separated thin blend films has 

been a subject of extensive study, due to the potential commercial applications.

Suggested uses include dielectric coatings17,169, lubricants16,169, lithographic photoresist 

masks169, polymer LEDs158,170, photovoltaic devices (solar cells)170,171, antireflection

coatings172,173, photographic materials17, paint systems17, gas separating membranes158,

polymer photodiodes158 and coatings to control blood compatibility16.  Antireflective

coatings for glass can improve the efficiency of solar cells and increase the quality of 

lens systems.  Their manufacture requires materials of very low refractive index (~ 

1.22), which cannot be achieved using conventional dielectric coatings.  One solution to 

this is to use a nanoporous film.  If the pore size is significantly smaller than the

wavelength of light, the effective refractive index of the nanoporous medium is given by 

an average over the film172.  Thin films of low molecular weight PS/PMMA (both Mw ~ 

10,000 g mol-1) phase-separate to produce domains that are approximately 100 nm

across.  Selective dissolution of PS by cyclohexane produces nanoporous films which 

were found to make highly effective antireflective coatings172,173.  The properties could 

be tuned by altering the amount of PMMA in the blend173.  Exceptionally low refractive

index coatings were obtained by selective removal of PS and partial removal of 

PMMA172.

It is thought that the performance of titanium dioxide/conjugated polymer solar cells

could be improved by generating an interdigitated structure of 10 � 50 nm domains of 
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titanium dioxide and polymer.  PS/PMMA blends (PS Mw 280,000 g mol-1, PMMA Mw

120,000 g mol-1) were used as a template for the synthesis of nanoscale pillars of 

titanium dioxide on glass and titanium dioxide substrates.  The blend composition and 

concentration was optimised to produce isolated PMMA domains in a PS matrix.  The 

PMMA domains were removed, and the resulting pores were infiltrated with a sol � gel

mixture.  Thermal treatment removed the remaining PS and produced crystalline 

titanium dioxide pillars.  Although the structures were not of the desired height and 

diameter, tuning of the method could allow the production of structures suitable for use 

in interdigitated solar cells, which may lead to improved power conversion 

efficiencies171.

Polymer thin films are commonly prepared by spin coating, which is shown

schematically in Figure 1.10 b.  The polymers are dissolved in a common solvent and 

the solution is deposited on a spinning substrate.  Most of the solution is flung off,

leaving a thin fluid layer on the substrate.  This layer then thins, firstly by fluid flow and 

then by solvent evaporation.  As the solvent evaporates, the concentration of the

Figure 1.10 a) Ternary phase diagram for two polymers dissolved in a common 
solvent174.  b) Schematic diagram of film formation and phase separation during spin 
coating; i), ii) the initial spin-off process where both polymer and solvent are removed; 
iii) the film separates into two layers and the film thins due to solvent evaporation; iv) 
the interface between the phases destabilises; v), vi) a laterally phase-separated 
structure forms and develops175.  In this case, the blue polymer is less soluble in the 
common solvent and so solidifies first, the blue polymer also has lower surface tension,
resulting in a rounded domain shape15.
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solution increases until the polymer � polymer interactions become significant and the 

blend begins to phase-separate (see Figure 1.10 a)13,164,174,176.

At the intermediate point when the phases are still liquid due to their solvent content,

the sample surface is essentially flat due to the small difference in surface tension

between the two phases.  Even though the solvents used in spin coating dissolve both

polymers, the relative solubility of the two polymers in these solvents vary.  For 

example, toluene is a better solvent for PS than for PMMA15.  Therefore during spin

coating of a PS/PMMA blend, the PS-rich phase retains more solvent than the PMMA-

rich phase.  As the solvent evaporates, the PMMA-rich phase becomes virtually solvent

free when the PS-rich phase is still swollen with toluene.  Further evaporation results in

the collapse of the PS domains to produce a topographically structured surface15.  The 

domain structure continues to develop until one or both of the polymers becomes

glassy, preventing further changes176,177.  The rapid evaporation of solvent means that 

the final phase morphology may be far from thermodynamic equilibrium15.  Annealing

above the glass transition temperature can lead to changes in surface composition and

topography159, although there may be kinetic barriers which prevent relaxation towards 

equilibrium15.

Phase separation in thin films is much more complicated than in the bulk.  The initial 

morphology of a spin-coated polymer blend film is determined by the chemistry of the 

polymers and their molecular weights, the blend composition, nature of the substrate,

film thickness (controlled by the solution concentration), cast solvent, chain end groups 

and the presence of block copolymer additives177-179.  The final morphology is also 

affected by the annealing time and temperature177,178.  Different preparation methods

may also result in different morphologies180.  Some of these factors will be discussed in 

more detail below, mainly with reference to PS/PMMA blends.

Changing the composition of the blend, e.g. the volume fraction of the polymers, ,

necessarily leads to changes in the phase-separated morphology.  This has been reported 

by a large number of studies, both for PS/PMMA blends16,171-173,180-183, and other

polymers176,184,185.  There are a wide range of possible morphologies, depending on the 

polymers used and the preparation conditions, so it is difficult to make generalisations

43



1.  Introduction 

about structure.  However, starting from pure polymer A, and adding increasing 

amounts of polymer B, it can be expected that at first there will be a matrix made up of 

the A-rich phase, with isolated domains of B.  As the amount of B increases, at some

point an interconnected structure will form, then there will be a stage where B forms the

matrix, and A forms isolated domains.  However, other morphologies can also occur, 

for example, minimisation of surface energy can lead to the formation of bilayers when 

there is strong surface or substrate segregation (see p. 46). 

Polymer blends with a wide range of molecular weights have been investigated, but 

there has been little systematic study of how this affects the process of phase separation. 

Most researchers simply choose two polymers, usually with fairly similar molecular

weights, and then investigate other factors.  There is some evidence that the use of 

lower molecular weight polymers results in a reduction in domain size172,186.  Reduction 

of molecular weight also reduces the viscosity of the polymers181 (and reduces Tg
187),

which results in more rapid approach towards equilibrium during annealing181,188.

Where there are large differences in molecular weight between the two polymers there 

can be more dramatic effects.  For example, Tanaka et al.189 observed a surface excess

of low molecular weight PMMA in blends with high molecular weight PS due to 

entropic effects, even though PMMA has higher surface energy.

As discussed previously, preferential segregation of the polymers to the surface and

substrate results in a change from bulk phase separation to surface-directed spinodal

decomposition to lateral phase separation as the film thickness is reduced.  In very thin

films, lateral domains reappear, then there are further changes in morphology as the film 

thickness approaches the size of the individual polymer molecules.16,160,161,177,179,182.

Polymer blend films with a thickness less than twice the radius of gyration of the higher 

molecular weight polymer are defined as two-dimensional ultrathin blend films160,178.  A 

flexible polymer chain in an ultrathin blend film is in a non-equilibrium state, since the 

conformational entropy of an individual chain is less than in the three-dimensional solid 

state160.  This means that the number of pair interactions between foreign segments is 

reduced compared to in the bulk state, so 2D becomes smaller than 3D.  This increases

the miscibility of the two polymers and may result in very thin films becoming

homogeneous16.  Secondly, reducing the film thickness can result in a change in the
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cloud point160,161.  This can be sufficient to alter the mechanism of phase separation 

from spinodal decomposition to nucleation and growth161.  Finally, in extremely thin 

films, the polymer chains are very constrained, with little entanglement between chains,

so begin to behave as individual molecular chains16.  This can eventually overcome the 

improved miscibility due to the lower value of 2D, and lead to the reappearance of a 

phase-separated structure16.

For thin blend films, preferential segregation of one of the phases to the substrate can 

affect the morphology of the entire film, so changing the nature of the substrate can 

completely change the morphology15-17.  For PS/PMMA blends on (oxidised) silicon, 

there is a fairly strong attractive interaction between the carbonyl groups of PMMA and 

polar silanol groups on the substrate surface16, which leads to the formation of a

continuous PMMA layer wetting the substrate15, and both PS and PMMA domains at 

the free surface15-17.  On gold, an intermediate surface energy substrate, it is not as 

strongly favourable to have PMMA at the substrate, so a greater area of the surface is

covered by PMMA-rich domains15-17.  If the substrate is hydrophobic

(octadecylmercaptan SAM15, siliconised cover glass16 or cobalt17) the substrate � 

surface interfacial energy can now be minimised by the selective adsorption of PS 

(lower surface free energy16), which results in a much greater amount of PMMA at the

air interface16, and in some cases formation of a PS � PMMA bilayer15.

The solvent used for spin coating can have significant effects on the final domain

morphology15,177,181.  In most cases, one of the polymers is more soluble than the other

in the common solvent.  The less soluble polymer solidifies earlier in the spin coating

process, while the other polymer is still swollen with solvent, resulting in a 

topographically structured surface with raised domains of the less soluble component15

(see Figure 1.10).  This effect can also lead to the less soluble polymer forming a 

continuous layer covering the substrate, even where this is thermodynamically

unfavourable159,181.  During spin coating, phase separation progresses until the 

morphology is frozen in by vitrification of one (or both) of the polymers.  The longer 

the polymers have to phase-separate, the closer the morphology will be to equilibrium.

This time is determined by the vapour pressure of the solvent (along with other factors 

such as the spin speed and the solution concentration), so Cui et al.177 found very 
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different morphologies for the same PS/PMMA blend spin-coated from

dichloromethane, tetrahydrofuran (THF), toluene and ethyl benzene, even though they 

are all better solvents for PS than PMMA. Ethyl benzene was the least volatile solvent

studied, so the observed structure was expected to be closer to equilibrium due to the

longer interval before the polymers became glassy. 

Polymer blend films produced by spin coating may not be at thermodynamic

equilibrium due to rapid solvent evaporation during film formation159,178,180,190.  The 

solvent effects may be removed or reduced by annealing the as-cast films under 

appropriate conditions159,180,190.  Annealing refers to heating the system to a temperature

above the glass transition temperature of both polymers, and in the two-phase part of the 

phase diagram, which allows the morphology to develop towards equilibrium (although 

there may be kinetic barriers that prevent relaxation towards equilibrium15).  The effect 

of annealing on thin films of various polymer blends has been reported by a large 

number of researchers15,17,159,161,178,181,185,186,188,190-192.  For PS/PMMA blends on 

hydrophilic substrates (such as oxidised silicon and mica), the more polar PMMA is

strongly attracted to the substrate and forms a wetting layer on annealing181.  This

results in the formation of a transient bilayer structure.  The stability of such a structure

can be calculated using Young�s equation:

PMMAPSPMMAPSPSS /       (1.25)

Where SPS is the spreading coefficient for PS, PS and PMMA are the surface energies of 

PS and PMMA, and PS/PMMA is the interfacial tension.  At normal annealing 

temperatures, PS/PMMA is larger than the difference in surface energies, so SPS is

negative, and the bilayer is unstable.  The system tries to minimise the interfacial area

rather than the surface area of a specific polymer181, so the late stage of phase separation 

is dominated by the dewetting of PS on top of the PMMA layer178.  This results in the 

formation of the equilibrium morphology of PS droplets in a PMMA matrix181, though 

in many cases kinetic factors mean that the equilibrium morphology will never be 

reached178,181.
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1.4.4 Pattern-Directed Phase Separation 

Phase-separated polymer blends have many potential applications (see p. 41).  The 

domain size and morphology can be controlled by the choice of suitable polymers and 

preparation conditions, but in most cases there is no long-range order and there are a

range of domain shapes, sizes and spacings.  For some applications it would be useful if 

phase separation could be directed, allowing the production of structures of 

predetermined shapes and length scales.

The lateral morphology of a phase-separated polymer blend film can be controlled by 

breaking the symmetry of the substrate by chemical (and/or topographical) patterning18.

Spin coating of a polymer blend onto a chemically patterned substrate offers a one step 

deposition process in which phase domains rich in each of the blend components are 

formed and spontaneously self-organise193.  This pattern-directed phase separation is 

driven by preferential adsorption of each polymer to different areas of the patterned

surface (see Figure 1.11)18.

An example of the ordered structures that can be produced by pattern-directed phase 

separation is shown in Figure 1.12193.

Pattern-directed phase separation was first investigated by Krausch et al.194, who found 

that an array of alternating 1 m wide lines of chromium and hydrogen-terminated

silicon was replicated by spin coating it with a PS/partially brominated polystyrene 

(PBrxS) blend194.  Since then, extensive study has helped to identify the key factors for

successful pattern replication.  The nature of the substrate is very important � for 

example there was no evidence of pattern replication when the PS/PBrxS blend

mentioned above was deposited on a pattern of chromium and oxidised silicon194.  For 

successful pattern replication, there must be preferential segregation of at least one of 

Figure 1.11 Schematic diagram showing pattern-directed phase separation.  A 
polymer blend is spin-coated onto a patterned substrate. Preferential adsorption of the 
polymers results in replication of the substrate pattern by the phase-separated domains.
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Figure 1. 12 Example of pattern-directed phase separation: a) Fluorescence
microscopy image of PS/poly(3-dodecylthiophene) (P3DDT) blend film spin coated 
from chloroform onto a patterned substrate consisting of alternating 2 m wide lines of 
gold and hexadecane thiol SAM, showing pattern replication over a wide area, b) 
Schematic representation of the phase separated morphology on the patterned 
substrate.  Reproduced from Jaczewska et al., Soft Matter, 2009, 5, 234-241,
http://dx.doi.org/10.1039/b811429c193, by permission of the Royal Society of Chemistry.

the polymers to one of the substrates158,195.  This can be detected by the formation of a

bilayer when the blend is spin-coated onto a homogeneous substrate.  If the substrate � 

polymer attraction is strong enough, this can force the domain structure to follow the

substrate pattern. 

Secondly, the periodicity of the substrate pattern must be comparable to the natural

length scale for phase separation (on a homogeneous substrate) for the conditions 

used19.

The natural domain size of a thin polymer blend film can be adjusted by changing the 

film thickness18,196.  During spin coating, phase separation begins when the polymer � 

polymer interactions become significant13,164,174,176, and ends when the polymers 

become glassy176,177.  For thicker films, solvent drying and phase coarsening take place

over a longer period of time, leading to an increase in domain size with film

thickness196.  Domain size can also be tuned by changing the blend composition18.  The

characteristic length scale of phase separation for a laterally structured sample is usually

determined by analysis of the diffuse isotropic ring of the Fourier transform of AFM
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images18,168,193.  Where the length scale of the substrate pattern and the blend match,

there can be nearly perfect alignment over macroscopic areas193,195.  Where there is a 

mismatch, there will be the formation of defects.  Bridges between lines form when the 

pattern is smaller than the characteristic length scale158,197, and secondary polymer

domains when the pattern is larger than the characteristic length scale195.  However, it is

not necessarily that simple: Cui et al.198 found perfect pattern replication for a PS/PVP

blend spin coated onto OTS/oxidised silicon patterns, even when the length scale of the 

patterns was over three times larger than the characteristic length scale of phase 

separation.  They concluded that this was because the substrate � polymer interactions

dominated over the interfacial tension between the two polymers198.  Conversely, 

Cyganik et al.197 found that spin coating a dPS/PVP blend onto a COOH-/CH3-

terminated patterned SAM resulted in worse pattern replication than on a gold/CH3-

terminated SAM, despite the larger difference in surface energy between the two areas 

of the pattern.  This was thought to be due to a more favourable interaction between 

gold and PVP than between the COOH-terminated monolayer and PVP197.

Finally, the match of the blend composition to the patterned area fraction should be

considered.  This has a relatively complicated effect, as changing the blend composition

changes the characteristic length scale of phase separation18.  Where the pattern size is 

comparable to the characteristic length, matching the area fraction of the pattern to the

blend composition may allow the ordering to propagate throughout the film194.

However, matching the pattern periodicity to the characteristic length scale of phase 

separation is more important since good pattern replication can be obtained when this 

condition is satisfied, even if the area fraction is very different to the blend 

composition18.

Most of the work on pattern-directed phase separation has focussed on the use of CP to

produce patterned SAMs as it offers a quick, (relatively) simple route to the production 

of suitably sized, almost flat, chemically patterned substrates.  There has been extensive

study of the behaviour of a range of polymer blends on patterned SAMs and other 

impenetrable chemically patterned substrates (e.g. alternating lines of metals etc), 

including PS/PVP18,195,198-201, dPS/PVP158,197, dPS/PBD168,202,203, PVP/PBrxS158,195,197,

Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole/Poly(9,9�-dioctylfluorene)
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(F8BT/PFO)19, F8BT/Poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-((4-sec-butyl

phenyl)imino)-1,4-phenylene) (TFB)20, PS/poly(3-alkylthiophene) (P3AT)193,201 and

dPS/PMMA/PVP196.  There have also been various theoretical studies modelling the 

behaviour of polymer blends on patterned surfaces202,204-206. Only one report of phase 

separation of PS/PMMA on patterned surfaces was found.  Jerome et al. 169 used phase-

separated PS/PMMA films as templates to produce gold/silicon patterns by argon ion 

etching.  50/50 PS/PMMA blends were then spin-coated and annealed on the chemical

patterns, but there was little evidence for pattern-directed phase separation/pattern

replication (although the patterned surfaces definitely affected the domain morphology). 

There has been some study of the behaviour of polymer thin films on substrates that are

both chemically and topographically patterned.  Raised patterns produced by CP of

OTS can be used to direct dewetting of thin films of PS into regular arrays207.

Rockford208, Geoghegan209 and co-workers investigated the behaviour of thin PS 

films209 and PS/PMMA blends208 on patterned surfaces produced by annealing miscut

silicon single crystal wafers, and then evaporating gold at glancing angle.  PS/PMMA 

blends formed micron-scale irregularly-shaped domains on these substrates.  At small

scales, close to the substrate there was selective adsorption of PS onto the gold-coated 

regions of the substrate, but the patterning did not extend to the air interface.  However, 

the length scale of the substrate patterns (~ 60 nm) was significantly smaller than the

characteristic domain size (~ 1 m), so complete pattern replication would not be 

expected.  This is supported by models of thin blend films on patterns with periodicity 

less than the initial wavelength of spinodal decomposition ( sp), which show 

macrophase separation at the free surface as the patterns are too small204.

1.4.4.1 Applications of Pattern-Directed Phase Separation 

The ability to pattern surfaces on a microscopic length scale is important for

technological applications such as the fabrication of microelectronic circuits and digital 

storage media195.  Pattern-directed phase separation is one technique that could be used 

to produce microstructured materials for use in polymer LEDs19, non-linear optical 

devices194, polymer-based microelectronic circuits195,210, optoelectronic devices211 and 

templating in lithographic processes211.  For example, Fichet et al.19 used a patterned 

SAM to direct the phase separation of a F8BT/PFO blend into a regular array of 
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domains.  This was then used to make polymer LEDs, which were twice as efficient

(external and power conversion efficiencies) as devices made from unpatterned blends, 

due to the efficient outcoupling of waveguided light within the device (e.g. the domain 

boundaries reduce total internal reflection of light within the polymer layer)19,21.

Similar performance improvements were observed in LEDs made from patterned 

F8BT/TFB blends � charge carrier injection was confined to the TFB-rich domains,

which led to higher electroluminescence efficiency20.

Bulk heterojunction solar cells are fabricated by blending conjugated polymers with 

fullerenes.  The ideal morphology consists of vertical domains with an average 

interspacial distance equal to or less than the exciton diffusion length.  The

interdigitated structure must be aligned perpendicular to the electrodes to provide direct 

pathways for efficient charge transportation.  Chen, Lin and Ko212 used pattern-directed

phase separation to control the phase separation of a blend of poly(3-hexylthiophene) 

(P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) (PCBM is a fullerene

derivative, not a polymer, but the blend still undergoes phase separation).  As the 

pattern size was reduced, the power conversion efficiency of the solar cells improved.

The smaller domain size resulted in more complete phase separation during spin coating 

(e.g. higher percentage P3HT in the P3HT-rich phase etc).  This increased the hole 

mobility, due to the improved ordering of the P3HT chains.

1.4.5 Polymers on Polymer Brushes 

There has been little study of the behaviour of polymers on homogeneous or patterned 

polymer brushes, probably because of the extra synthesis steps required to produce

these substrates, and their more complex behaviour.  The use of brushes allows access

to a greater range of chemical functionality including the ability to create a surface that

consists of the same monomers as found in a particular polymer blend or copolymer.

The use of random copolymer brushes allows tuning of surface affinities, from neutral 

surfaces to those that are strongly selective for each polymer213.  Polymer chains 

undergo a large loss of conformational entropy at solid interfaces, which can result in 

dewetting.  Polymer molecules can interact with the penetrable brush surface, which can 

reduce the driving force for dewetting, improve adhesion and ensure that polymer � 

brush interactions are averaged over a large volume213.  Finally, brushes form a 
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macromolecular barrier, which, unlike SAMs, can rearrange to screen defects, and offer 

improved resistance to etching9.

Several groups have investigated the behaviour of thin films of PS on substrates coated 

with PS brush214-217.  For example, Maas et al.214 studied the effect of varying the 

grafting density of a �grafted to� brush and the molecular weight of the free polymer.  At

low grafting densities, the polymer did not wet the brush because of the lack of 

attraction between polymer and substrate. At intermediate grafting densities, the 

polymer film was stable on the brush surface (complete wetting).  As the grafting

density of the brush was increased further, and for fairly high molecular weight free

polymer, the free melt was gradually expelled from the brush, resulting in a return to 

partial wetting214.  Voronov and Shafranska216 found similar behaviour with brushes 

prepared by free radical polymerisation from a surface-bound initiator.

Edwards et al.218 grafted OH-terminated PS and random PS � PMMA copolymers to 

silicon, then used extreme UV interference lithography and oxygen plasma etching to 

produce a pattern of alternating lines of oxidised silicon and polymer brush.  These 

substrates were found to direct the phase separation of a PS-block-PMMA copolymer.

The PMMA block was attracted to the polar silicon, and the PS to the brush.  As the 

percentage of PS in the brush was increased, perfect ordering was found for pattern 

periodicities further away from the natural length scale218.  Stoykovich et al.219 used a 

similar approach to graft OH-terminated PS to silicon.  The PS brush was then patterned 

by oxygen plasma treatment to produce a binary patterned brush.  Exposure to oxygen 

plasma caused a significant change in contact angle, and an increased amount of oxygen 

in the brush219, suggesting that there was partial breakdown and removal of the PS.  It is 

debatable whether the �oxygenated brush� was actually a true polymer brush, but it is 

clear that a chemically patterned surface was produced.  The patterned substrates were 

used to direct phase separation of PS/PS-block-PMMA/PMMA ternary blends, and 

could again produce perfectly ordered linear domains for length scales within 10 nm of 

the natural length scale.  Features such as sharp corners could also be replicated,

providing that the domain size at the apex of the corner was no more than 10 nm larger 

than the natural length scale of the blend219.  Fukunaga et al.162 produced a binary 

polymer brush by spin-coating silicon with a thin layer of PS-block-P2VP-block-

PtBMA) triblock copolymer.  The polar PVP middle block physisorbs onto the silicon, 
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and the PS and PtBMA end blocks microphase-separate, resulting in a patterned brush

surface.  Spin-coating this with a PS/PtBMA blend resulted in a significant reduction in 

domain size compared to the morphology found on silicon substrates.  The affect of the 

patterned substrate on phase separation was found to strongly depend on film thickness. 

1.5 Objectives of Thesis and Outline of Work

No previous work investigating the phase separation of a binary polymer blend on a 

binary-patterned polymer brush was found in the literature.  The rest of this thesis

presents work aimed to address this omission via the synthesis of binary patterned 

PS/PMMA brushes, and the investigation of phase separation of PS/PMMA blends on 

these substrates.  The remainder of the thesis introduces the relevant surface analysis

techniques, with the results presented in four chapters: Synthesis of polymer brushes,

Synthesis of patterned polymer brushes by CP, Synthesis of binary-patterned polymer

brushes (by patterning a photosensitive SAM), and Pattern-directed phase separation

(studying the phase separation of a PS/PMMA blend on silicon, patterned SAMs and

binary-patterned polymer brushes).  The final chapter presents the conclusions and 

discusses subjects for further study. 
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Chapter 2 

Major Analytical Methods

2.1 Introduction

The goals of this project were to synthesise binary patterned polymer brushes and 

investigate the influence of patterned substrates on the phase separation of a polymer

blend.  Consequently, reactions to produce or modify SAMs and polymer brushes were

essential.  However, molecules covalently bonded to a substrate cannot be analysed by 

routine methods such as NMR and size exclusion chromatography.

The amount of material present in a surface-bound polymer brush is very small: for a 

PMMA brush with a theoretical degree of polymerisation (N) of 100, and an area per 

polymer chain of ~ 100 Å2 1, the surface coverage can be estimated to be ~ 2 ng/cm2.

Even if the polymer brush or SAM can be degrafted from the substrate, this makes it 

challenging to collect enough material to analyse (though there are examples in the 

literature of degrafting polymer brushes grown on large wafers or silica gel and 

subsequent GPC analysis of the free polymer1-8).  One of my colleagues, Keqin Xu, has 

investigated growing polymer brushes on colloidal particles in order to increase the 

amount of polymer that can be collected.

Finally, the properties, reactivity and morphology of surface-bound molecules are 

different to in the bulk state or in solution.  For example, polymer chains adopt a highly 

stretched conformation in a brush due to the proximity of other chains, compared to the 

random coils found in solution and bulk.  This makes it important to study the

properties of the materials in situ. 

This section will briefly introduce the main techniques used to measure the morphology,

thickness and chemistry of polymer brushes, SAMs and polymer blends.  Each method

is discussed with reference to the systems used in this project.  A full description of 

62



2.  Major Analytical Methods 

each method is beyond the scope of this report – for more information the reader is 

directed to the references for each section. 

2.2 Atomic Force Microscopy

Atomic force microscopy (AFM) is a type of scanning probe microscopy (SPM): a 

group of techniques that measure the interaction of a probe with the surface of a sample

to obtain information about its properties.  The first SPM technique was scanning 

tunnelling microscopy (STM), developed by Binning and Rohrer in 1981.  It can be

used to image the topography of conducting samples with atomic resolution.  A voltage 

is applied between the probe (usually a platinum-iridium or tungsten wire) and the 

sample.  As the probe approaches the surface, electrons begin to tunnel across the gap. 

The tunnelling current varies exponentially with the probe – sample separation, 

allowing an image of the sample surface to be built up9,10.

AFM, first developed in 1986, allows imaging of the topography of a wide range of 

materials including insulators and soft or delicate samples such as cells and polymers. 

The probe is a sharp tip, with a diameter of ~ 10 nm (or less) at the end, attached to a 

long thin cantilever (usually 100 – 150 m long).  The tip is moved back and forwards

across the surface by a piezoelectric scanner to build up an image of the desired area. 

Intermolecular interactions deflect the tip, causing the cantilever to bend.  The 

movement of the cantilever can be measured and used to build up an image of the 

topography of the sample.  In contrast to conventional microscopy, where the resolution 

is limited by the wavelength of light, the resolution of AFM (and other SPM techniques) 

is defined by the diameter of the tip, which allows the routine imaging of features as

small as tens of nanometres across (and smaller if special tips are used)10.

The first AFM used a STM to measure the position of the cantilever11.  In modern 

instruments, a laser beam is reflected off the back of the cantilever onto a position 

sensitive photodetector.  Interaction of the tip with the sample alters the position of the 

cantilever, which results in deflection of the laser beam, and a change in the output of 

the photodetector.  Software is used to convert the voltage changes into an image of the 

sample9,11.  A schematic diagram of an AFM is shown in Figure 2.1 below: 
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laser
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photodetector

cantilever

sample

scanner

Figure 2.1 Schematic diagram of an AFM (reproduced from 10, image courtesy of 
Veeco Instruments Inc).

The three basic AFM techniques measure the attractive or repulsive intermolecular

interactions at different parts of the force – distance curve (Figure 2.2): 

Contact mode operates by measuring the repulsion between the atoms of the tip and the 

sample.  A constant force is applied to hold a flexible silicon nitride cantilever in 

contact with the surface.  As the tip is scanned over the surface, variations in height 

cause measurable deflection of the cantilever, which is used to build up an image.  A 

feedback loop is used to maintain a constant cantilever deflection or ‘set point’.  Contact 

mode imaging can damage the surface of soft samples.  In addition, under ambient

conditions most samples are covered by a thin layer of adsorbed water (and other 

species).  This tends to wick around the tip, applying a strong attractive force that can 

hold the tip in contact with the sample10,11.  This can be avoided by performing the

measurements in liquid.  Furthermore, scanning the tip across the sample surface can 

lead to the build-up of electrostatic charge, contributing to the attractive force between

the tip and the sample.  All these factors mean that a certain minimum normal force

must be applied to the sample, but this creates a substantial frictional force as the probe
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Figure 2.2 Force – distance curve showing tip – sample interactions (reproduced 
from 10, image courtesy of Veeco Instruments Inc).

scans over the sample, which can damage the sample, dull the cantilever probe and

distort the resulting data11.

In non-contact mode, the tip is maintained a small distance above the surface, and the 

attractive Van der Waals interactions between the tip and the sample are measured.  The 

forces measured are much weaker than for contact mode, so a very sensitive detection

system is required.  Non-contact mode imaging is difficult to perform: a high degree of 

precision is needed to prevent the tip becoming trapped in the surface fluid layer or 

hovering beyond the effective range of the forces it attempts to measure11 (although 

imaging under vacuum, or in liquid can limit these effects).  Because of this it is 

probably the least popular type of AFM.

Tapping, or intermittent contact mode solves some of the problems of contact and non-

contact mode.  A stiff cantilever made of single crystal silicon is oscillated at close to its

resonant frequency at constant amplitude, so that it intermittently contacts the sample

surface.  Changes in the sample topography change the amplitude of oscillation, which 
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is detected as a change in the output of the photodetector.  The feedback loop then 

moves the tip until the original ‘set point’ amplitude is reached.  The output of the

feedback loop (i.e. the movement of the scanner in the z direction) is used to produce

the height image9.

Because the tip only contacts the sample intermittently, and is only moved laterally

when it is not in contact with the surface, it can be used to image soft or easily damaged

materials such as biological samples.  The oscillation of the cantilever is also large 

enough to overcome the adhesive forces caused by adsorbed water on the sample11.

Phase images can be acquired simultaneously with topography information, and can 

give additional information about the chemistry, adhesion, friction, viscoelasticity, 

hardness and contamination of the sample. To produce a phase image, the phase of the 

periodic oscillation of the cantilever is measured relative to the oscillating driving signal

(see Figure 2.3 below).  Changes in phase can be used to identify changes in the 

properties of the sample, in some cases giving improved contrast than shown by 

topography10-12.

Lateral Force Microscopy (LFM) or Friction Force Microscopy (FFM) is a variant of 

contact mode which can be used to image samples with changes in chemical/physical

properties, but low topographical contrast, such as patterned SAMs.  As the tip is 

Figure 2.3 Schematic diagram showing phase imaging (reproduced from 10, image 
courtesy of Veeco Instruments Inc).
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Figure 2.4 Example of the frictional forces on the tip during a scan (reproduced
from 10, image courtesy of Veeco Instruments Inc).

scanned across the sample, changes in the frictional properties of the surface cause the 

cantilever to twist.  This causes lateral deflection of the laser beam which can be 

measured by the photodetector.  The torsion is greatest if the sample is scanned at 90º to 

the cantilever axis.  Height features also cause the cantilever to twist, due to delay in the

feedback loop, so also produce a signal. When scanned in the opposite direction, the

friction changes cause the cantilever to twist in the opposite direction (see Figure 2.4). 

Changes in height produce the same response whatever the scan direction.  Subtracting 

the trace from the retrace data (or vice versa) removes the height artefacts, producing an 

image of the frictional properties of the sample9,10.

In the following chapters, tapping mode imaging was used extensively to image and 

measure polymer brushes, patterned samples and polymer blends.  FFM was used to 
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produce images of patterned SAMs, which showed no height or phase contrast in 

tapping mode.  There is more information about AFM, including how to produce an 

image of a sample, and descriptions of other AFM techniques, in the references9-13.

2.3 Ellipsometry

Ellipsometry is a non-contact, non-destructive method which can be used to measure the 

thickness, refractive index and other optical properties of thin films14 with thicknesses

from less than a nanometre to several microns.  Ellipsometry consists of measuring and 

interpreting the change in polarisation that occurs following reflection from (or

transmission through) a sample15.

2.3.1 Polarisation

Light can be described as a transverse electromagnetic wave propagating through space. 

The polarisation of the wave describes the behaviour of the electric field vector ( ) in

the plane x, y, perpendicular to the direction of propagation z16.  The usual approach is 

to resolve the electric field vector into its x and y component.  The amplitude and 

relative phase of the two orthogonal components define the nature of polarisation. 

Unpolarised light has random orientation and phase of the electric field components.

Linear polarisation occurs when the two orthogonal electric field waves have equal 

amplitudes and are in phase.  When the x and y components are 90 º out of phase and 

equal in amplitude, it is described as circular polarisation.  Looking along the direction

of travel, the electric field vector would trace out a spiral around the z axis; an end on 

view would show the vector tracing out a circle over time.  Elliptical polarisation occurs

when the orthogonal components have unequal amplitude and any phase difference17.

Following the direction of travel, the electric field vector would be seen as a ‘skewed’ 

spiral, and projected it forms an ellipse.  Different types of polarisation are illustrated in 

Figure 2.5 below. 

68



2.  Major Analytical Methods 

2.3.2 Ellipsometry Measurement and Theory

The interaction of polarised light with a sample results in a change in its polarisation. 

All ellipsometers contain a light source with a polariser to produced polarised light. 

The reflected light is passed through an analyser (a second polariser), before hitting a 

detector.  The amount of light allowed to pass through to the detector depends on the 

orientation of the analyser relative to the electric field ellipse coming from the sample. 

The response of the detector is compared to the known input polarisation to determine

the change in polarisation.  There are several different ellipsometer configurations: in 

the rotating analyser ellipsometer (RAE) configuration, linearly polarised light is 

Figure 2.5 Different types of polarisation: x and y components of the electric field
vector show (a) linear; (b) circular; and (c) elliptical polarisation (reproduced from 17,
image courtesy of J A Woollam Co., Inc).
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incident on the sample.  Reflection from the surface changes the phase and amplitude by 

a different amount for the s and p components, so the reflected beam becomes

elliptically polarised.  The reflected beam is passed through a continuously rotating 

analyser.  The amount of light allowed to pass depends on the orientation of the 

analyser relative to the electric field ellipse coming from the sample.  The detector 

converts light to electronic signal to determine the reflected polarisation. This

information is compared to the known input polarisation to determine the polarisation 

change caused by the sample17 (see Figure 2.6).

A two-layer system will now be considered in more detail.  Linearly polarised light 

passing through a medium of refractive index n0 (usually air) is incident on the bare

surface of a material with refractive index n1.  The path of the incident and reflected

light waves defines the plane of incidence.  The angles of incidence ( i), reflection (also 

i) and refraction ( r) (all measured relative to the surface normal) describe the 

trajectory of the light.  The electric field vector ( ) can be split into two components;

parallel ( p) and perpendicular ( s) to the plane of incidence.  Interaction with the

surface causes both the phase and amplitude of the reflected light components (r) to 

change, so it becomes elliptically polarised (and attenuated)15.  This is shown below in 

Figure 2.7. 

Figure 2.6 RAE measurement: a polarizer defines the incoming polarization and a
rotating analyser after the sample measures the outgoing light. The detector converts 
light to a voltage whose dependence yields the measurement of the reflected
polarization (reproduced from 17, image courtesy of J A Woollam Co., Inc). 
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Plane of 
incidence

Figure 2.7 Plane of incidence and change in polarisation following reflection from 
a surface (reproduced from 18, with permission of the authors).

Comparison of the initial and final state of polarisation produces the fundamental

ellipsometry equation: 

i
r
r

isrs

iprp

s

p exptan      (2.1) 

The complex reflection coefficient ( ): the ratio of the amplitudes of the parallel and

perpendicular parts of the reflectivity, rp and rs, is a complex number.  This is usually 

split into two parameters: , related to the amplitude ratio, and , the phase 

difference, which are actually measured by the ellipsometer.

A similar equation can be written for a thin film on a substrate.  For this more complex

(but more useful) situation  and  depend on the wavelength of the light, the angle of 

incidence, the complex refractive indices, n and k, for the film and the substrate, and the 

film thickness15.  The equation can be solved in terms of the thickness and refractive 

index of the intermediate layer.  A model is constructed and used to calculate the

predicted response from Fresnel’s equations (which describe each material with 

thickness and optical constants).  A sensible estimate of film properties is used as the 

starting point.  The calculated values are then compared to the experimental data, and 

the unknown material properties are varied to improve the fit.  Typically an estimator

like the mean square error (MSE) is used to quantify the difference between curves.

The unknown parameters are varied until the minimum MSE is reached.  Care is needed 
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when selecting the starting thickness and MSE structural conditions to ensure that the 

true film thickness is found17.

Spectroscopic ellipsometry provides amplitude and phase change information across the 

wavelength spectrum (samples in this project were measured for wavelengths from 300 

to 700 nm).  This allows a more extensive and precise determination of optical 

constants, and solves some of the correlation effects that can affect single wavelength

ellipsometric measurements.  However, the use of a range of wavelengths also 

complicates the results, as n and k vary with wavelength.  The Cauchy approximations

can be used to overcome these problems15: e.g. for refractive index: 

42

CBAn        (2.2) 

Where n( ) is the refractive index at wavelength , and A, B and C are constants (A is 

the refractive index at infinite wavelength). 

More information about ellipsometry can be found in the references14,15,17-21.

In this project, ellipsometry was used in a very simple way to determine the thickness of 

polymer brush and SAM layers.  Two different ellipsometers were used: a single 

wavelength RAE ellipsometer (Gaertner Scientific 116B) and a spectroscopic (variable

wavelength) phase-modulated ellipsometer (Jobin Yvon Uvisel).  The layer thicknesses 

were obtained in slightly different ways (see p. 93 for details), but both rely on a model 

to convert  and to layer thicknesses.

Brush thickness can also be measured directly by AFM: a scalpel blade was used to 

scratch the sample, removing a thin strip of brush from the substrate.  The scratch was 

then imaged using tapping mode AFM.  The software was used to flatten the image, and

then measure the height difference between the bottom of the scratch and the

undisturbed film (this measures the brush thickness and the initiator SAM together).  At

least ten measurements were averaged to give a value for the brush thickness.  An 

example showing a single measurement is shown in Figure 2.8 below.

Both ellipsometry and AFM measurements can be subject to errors: for ellipsometry

this can be caused by use of unsuitable parameters in the model; for AFM, the scratch
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may also damage the underlying silicon, or not completely remove the polymer layer

(leading to an overestimate or underestimate of brush thickness respectively). 

Comparison of the ellipsometric and AFM thicknesses for different PMMA and PS 

brushes revealed that the differences were relatively small (maximum difference 4.3 

nm) – see Table 2.1.  AFM tended to give a higher layer thickness than ellipsometry.

The reasonable agreement between the two methods suggests that either could give a

good estimate of brush thickness.  It is much more time consuming to image a scratched

sample by AFM, so for the rest of the work presented in this thesis, ellipsometry was 

used to measure brush thickness. 

Figure 2.8 Tapping mode AFM image (25 x 25 m) of a scratched PMMA brush 
(PMMA B in table below), showing an example of a section used to calculate brush 
thickness.  Horizontal distance between marks 2.59 m, vertical distance 11.89 nm. 
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Table 2.1 Comparison of polymer brush thicknesses measured by ellipsometry and 

AFM.

Sample

Reference

Ellipsometric Brush 

Thickness/ nma

AFM Brush Thickness/ nmb

PMMA A 7.5 ± 0.3 7.4 ± 0.6 

PMMA B 11.9 ± 0.8 14.1 ± 0.7 

PMMA C 2.6 ± 0.4 4.1  ±0.8 

PS A 13.8 ± 0.3 17.0 ± 0.6 

PS B 20.1 ± 0.8c 24.5 ±  1.3 

aEllipsometric thickness = total thickness – oxide thickness (measured separately), ± 

one standard deviation.  Thicknesses reported here include the polymer brush layer and 

the initiator SAM layer. bAFM thickness determined from average of ten sections 

across a flattened AFM image ± one standard deviation. cPS B was measured using the 

spectroscopic ellipsometer, model parameters as p. 94, ± MSE.

2.4 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for

chemical analysis (ESCA), is a relatively non-destructive technique which can measure

and quantify the atoms present within approximately 10 nm of the surface of a sample,

and give some information about their chemical environment. XPS is based on the 

photoelectric effect, first explained by Einstein in 1905.  An x-ray photon of energy h

can interact with an atom, causing electronic excitation, and resulting in the ejection of a

core (or valence) electron without energy loss (see Figure 2.9).  The energy of the

emitted electron is described by: 

spBK EhE (2.3)

where EK is the kinetic energy of the emitted electron, EB is the electron binding energy 

(which is characteristic of a particular orbital and atom), and sp is the work function of 

the spectrometer.
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Figure 2.9 X-ray induced photoemission of an oxygen 1s electron22.

XPS analysis was developed by Kai Siegbahn in the 1950s, and became commercially

available in the 1970s.  The sample is held under high vacuum and irradiated with x-

rays.  The kinetic energy of the emitted electrons is measured and used to calculate the 

binding energy.

In a modern XPS, an aluminium or magnesium anode is used to generate 

monochromatic x-rays, which are focussed onto the sample surface.  These produce x- 

rays of sufficient energy to excite photoemission from at least one core level for any

atom (except hydrogen).  The ejected photoelectrons are collected and their energy 

distribution is measured using an electrostatic hemispherical analyser.  Emission of

electrons from the surface of an insulator leads to the development of a positive charge,

which over time decreases the kinetic energy of the emitted electrons (resulting in an 

apparent increase in binding energy).  This is corrected by the use of an electron flood 

gun (a high current, low energy electron source). 

The spectrum is produced as a plot of electron intensity against binding energy.  X-ray 

irradiation causes the emission of electrons by several different mechanisms, which all 

contribute to the observed spectrum.  Electrons emitted without undergoing energy loss 

produce the main photoelectric peaks.  The binding energy of an electron depends on 

the type of atom and orbital (electrons in orbitals closer to the nucleus will be more

tightly bound) and the bonding of the atom, which alters its electronic structure. 

Overlaps between elemental peaks are rare, so measurement of the binding energy 
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allows unambiguous identification of the elements present.  Subtraction of the 

background allows measurement of peak areas, which can used to calculate the 

abundances of different atoms in the sample.  Different chemical environments cause 

small changes (typically < 10 eV) in the binding energy of the core electrons.  These

‘chemical shifts’ can be measured in high resolution spectra, and then curve-fitted to 

give information about the surface chemistry of the material.

X-rays penetrate several microns into the sample, and stimulate electron emission

throughout the sample.  The probability of an electron escaping the sample without 

undergoing an energy loss event decreases with depth, which explains the surface

sensitivity of XPS.  Electrons emitted from the surface zone which have lost some

energy due to inelastic interactions produce a continuous background observed in all 

spectra.  The background intensity increases with increasing binding energy (decreasing 

kinetic energy).  Other spectral features include Auger series, valence band features, 

shake-up and shake-off satellites and plasmon loss peaks.  Shake-up satellites are 

commonly found in systems containing aromatic structures.  Irradiation of an atom can 

promote a valence electron from an occupied energy level to a higher unoccupied level 

(e.g. a to * transition), reducing the energy of the emitted photoelectrons, and 

producing a peak at higher binding energy than the main C 1s peak.  This was observed 

in the spectra of polystyrene brushes. 

The discussion above is very simplified: subtraction of the background spectrum and 

referencing of the binding energy scale are not trivial, and can affect the results.

Surface roughness and inhomogeneity of the sample with depth also affect the 

measurements in a complex way.  For a more detailed description of XPS, the reader is 

directed towards the references22-24, in particular for more complete descriptions of 

background subtraction, curve fitting, and other spectral features.
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2.5 Scanning Electron Microscopy 

Scanning Electron Microscopy can be used to produce high resolution images of 

conductive samples, allowing visualisation of features as small as ~ 2 nm.  The images

produced have excellent depth of focus and are simple to interpret because they 

resemble conventional photographs.  A beam of moderate energy electrons (usually less 

than 50 keV) is focussed to produce a narrow spot, 2 – 10 nm diameter, which is 

rastered across the surface.  The incident primary electrons are inelastically scattered

through a teardrop-shaped interaction volume, resulting in the emission of secondary

electrons, backscattered electrons, Auger electrons, x-rays, and light 

(cathodoluminescence) and also induce a current through the sample (see Figure 2.10 a).

Each of these is produced by interactions at different depths within the sample, and can 

be used to obtain different information about its topography and physical and chemical

properties.  Many SEMs contain several detectors to allow more information about the

sample to be obtained.  This is discussed in more detail in the references15,25,26.  The 

images presented in Chapter 4 are secondary electron images, so the other signals are

not discussed here.

In a typical SEM, electrons are thermionically emitted from a tungsten or lanthanum

hexaboride filament (or a field emission gun), drawn to an anode and focussed into a 

narrow beam by two sets of condenser lenses.  Scanning coils are used to raster the

electron beam over the surface.  The emitted electrons and x-rays are collected and

analysed by suitable detectors.  The whole system is held under vacuum to allow

Figure 2.10 a) The electron interaction volume and regions from which secondary 
electrons, backscattered electrons and x-rays can be detected b) effect of surface 
topography on electron emission 
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transmission of electrons both to and from the sample.  Secondary electrons are usually 

detected by an Everhart-Thornley detector: a scintillator/photomultiplier combination.

The scintillator is surrounded by a metal grid which is biased to a potential of a few

hundred volts.  This prevents the scintillator interfering with the primary electron beam, 

and attracts secondary electrons, collecting even those that were not originally moving

towards the detector (for flat samples, almost all the secondary electrons are captured). 

Secondary electrons are produced by inelastic collisions between the energetic primary

electrons and valence/conduction band electrons in the sample.  Only a small amount of 

energy is transferred to the secondary electrons, so only those produced within the top 

few ångstroms can escape from the surface of the sample (although secondary electrons

are produced throughout the interaction volume).  This also explains why sloping 

surfaces and edges appear brighter in SEM images: the portion of the interaction 

volume at the surface is larger when the sample is tilted (see Figure 2.10 b) below).

Secondary electron images have excellent depth of focus, and clearly show sample

topography as they resemble conventional light images.  When a sample is diffusely 

illuminated light arrives from all directions, so whatever the orientation of the surface

some light is reflected towards the eye.  In SEM, the primary electrons are incident from

above, but they are all attracted towards the detector.  Although the direction is 

reversed, the appearance of the images is very similar (see Figure 2.11). 

Irradiation of an insulating sample with electrons leads to the build-up of negative

charge, which repels the incoming electrons and results in image distortion (there are 

equivalent problems with positive charge in XPS and SIMS).  This is not a problem if

Figure 2.11 a) An object viewed from above with diffuse illumination.  b) Equivalent 
situation for secondary electron imaging in SEM. 
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the sample surface is conductive, and the sample is earthed.  Charge build-up can be

prevented by sputter-coating insulating samples with a thin layer of gold (or carbon).

SEM was used to image PDMS stamps and patterned polymer brushes.  PDMS stamps

were coated with gold before imaging; patterned polymer brushes on silicon were found 

to be sufficiently conductive to avoid charging without surface treatment.

2.6 Secondary Ion Mass Spectrometry 

Secondary Ion Mass Spectrometry can be used to identify and image the distribution of 

particular species (ions) on a sample.  The sample is bombarded by a beam of high 

energy ions (or neutral atoms).  This causes a complex cascade of fragmentation and 

ionisation resulting in the emission of neutral species, and a much smaller amount of 

positive and negative secondary ions.  These are extracted and analysed using a mass 

spectrometer.  Different materials produce different characteristic ions which can be

used to identify the composition of the surface.  It is extremely surface selective: most 

of the signal comes from the top nanometre or so of the sample, and it is very sensitive:

species present at parts per million or femtomolar concentration on the surface can be

detected, with lateral resolution down to 60 nm.

Initially SIMS was used for depth profiling: the destructive primary ion beam was used 

to analyse the elemental composition of materials as a function of depth.  This dynamic

SIMS mode is used extensively throughout the semiconductor industry.  Static SIMS, 

allowing true surface analysis, was first developed by Benninghoven in the 1960s27. A

very low primary ion current is used to allow spectral data to be collected in a timescale

that is short compared to the lifetime of the surface layer.  Static conditions can be 

defined so that successive measurements of the same area of the sample produce the 

same spectrum.  To obtain this, the total ion dose must be limited.  Calculations based 

on the area affected by a simple ion impact suggest that all the surface atoms of a 

sample will be affected by an ion dose of around 1013 ions/cm2 24.  For all the SIMS data

presented in this thesis, the total ion dose for each measurement was limited to 1012

ions/cm2, and each measurement was performed on a different area of the sample.
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All SIMS instruments contain a source of primary ions (or atoms), a mass spectrometer

and an electron source (for charge compensation), all enclosed in a vacuum chamber.

There are many possible variations within this.  Most modern SIMS instruments use a

liquid metal ion source to produce the primary ions, commonly Ga+ (although in this 

work a field emission bismuth cluster ion source was used), and a Time of Flight (ToF)

mass spectrometer to collect and analyse the secondary ions.  In a ToF mass

spectrometer, the secondary ions are accelerated to 3 – 5 keV over a very short distance,

so they all have virtually the same kinetic energy (EK).  As 2
2

1 mvE K , ions of 

different mass have different velocities, so the time of flight through a field-free drift

tube, and arrival at the detector depends on the mass of the ion, allowing the spectrum

to be produced.  ToF mass spectrometry allows the whole spectrum to be acquired in 

parallel, minimising the ion dose needed.  Ion bombardment and the emission of 

secondary electrons cause the sample to become positively charged.  Over time, this

would suppress the emission of negative ions, and increase the energy of the emitted

positive ions.  To prevent this, it is necessary to provide a source of electrons to control 

the surface potential.  However, electron beams can also produce secondary ions, 

distorting the measurement.  For ToF SIMS, a very short pulse of primary ions is 

directed at the sample, and the extraction voltage is raised to allow capture of the 

secondary ions.  During the data analysis period, the extraction voltage is dropped to 

zero, and a long pulse of low energy electrons is directed at the sample to correct the 

Figure 2.12 Schematic diagram of a secondary ion mass spectrometer (reproduced
from28, image courtesy of Ion-ToF).
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charge.  There is then a pause before the extraction voltage is raised, and the next pulse 

of ions sent, to avoid the extraction of any ions produced by electron impact.  A 

diagram of a ToF SIMS is shown in Figure 2.12.  The relevant literature contains a 

more complete description of SIMS instrumentation24,28-30.

SIMS can be used to map the distribution of particular ions over the sample and build

up images.  The primary ion beam is focussed to produce a small spot at the surface (as 

small as ~ 60 nm), and the beam is rastered over the sample.  ToF MS allows the entire 

mass spectrum to be measured at each pixel, allowing retrospective analysis after 

acquiring the complete positive and negative ion spectra for each pixel. 

The formation, fragmentation and ionisation of secondary particles is complicated and 

not fully understood.  There are two main processes: sputtering and ionisation. 

Sputtering is the process by which secondary particles are emitted from the surface as a 

result of high energy primary particle impact.  Various models have been used to

explain the key mechanisms.  The linear cascade model (developed by Sigmund) is 

based on elastic collisions between point particles.  The incident particle transfers its 

energy to the target atoms, initiating a cascade of collisions between atoms within about 

3 nm of the surface.  Some of these collisions return to the surface and cause the 

emission of sputtered particles.  This can occur up to 10 nm away from the initial

impact site.

Sputtering produces mainly neutral species (~ 99 %), with a small amount of positive

and negative ions.  Ionisation can occur by several different processes, including direct 

emission of preformed cations and anions, ionisation of neutral clusters by attachment

of small ions such as hydrogen, halogens or metal ions, or ionised species can undergo 

unimolecular fragmentation before they reach the mass spectrometer.  The probability

of ionisation varies by several orders of magnitude for different ions, both across the 

periodic table and depending on the chemical environment of the surface.  This makes

quantification of SIMS very challenging.

The complex nature of SIMS spectra and their high sensitivity to surface contamination

make it difficult to assign all the peaks present.  A common approach is to ‘fingerprint’

the material by comparing the SIMS spectrum to a reference spectrum.  SIMS of 
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polymers results in well-defined fragmentation patterns (frequently from cleavage of the 

polymer backbone or loss of pendant groups).  These were identified using the

Handbook of SIMS31.  For polymer films and polymer brushes, a selection of 

characteristic ions was chosen, and used to identify PS and PMMA in all samples.  For 

chemicals where there was no reference spectrum (e.g. most of the SAMs), chemical

intuition was used to identify likely fragment ions.  The SIMS data presented in this

thesis are ion images.  For each sample, a list of candidate ions was identified, and each 

ion image was examined.  A selection of these ions, mainly those that clearly showed

the surface pattern and changes in chemistry, are presented in the following

chapters24,29,30.
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Chapter 3 

Synthesis of Polymer Brushes 

3.1 Introduction

The aims of this project were to synthesise a binary patterned PS/PMMA brush, and to 

investigate the phase separation of a polymer blend on the chemically-patterned surface.

The first step towards this goal was the reproducible synthesis of smooth PMMA and 

PS brushes of controlled thickness. 

It was decided to focus on brush growth by surface-initiated ATRP from silicon 

substrates.  ATRP is a controlled radical polymerisation that has been used extensively

to synthesise polymer brushes.  It can be used to polymerise a wide range of functional 

monomers with control over molecular weight and low polydispersity, and also allows

the synthesis of block copolymers.  ATRP is particularly popular for brush growth 

because it is relatively straightforward to synthesise silane or thiol derivatised ATRP 

initiators that can form SAMs on silicon or gold substrates respectively1.  It was decided 

to use silicon as the substrate as it is used commercially (especially in the 

semiconductor/computer industry), and has analogous surface chemistry to glass, silica 

particles and plasma-treated polymers.  In addition, alkyltrichlorosilane SAMs form a

robust, thermally stable layer (in contrast to thiol SAMs on gold, which undergo 

degradation at relatively low temperatures2, or on exposure to air3).  However, the self-

assembly of alkyltrichlorosilanes on silicon is more complicated than the analogous

formation of SAMs from alkanethiols on gold substrates, and in particular is very

sensitive to the amount of water present in the reaction environment.  This will be

discussed in more detail in Chapter 4. 

11-(2-bromo-2-methyl)propionyloxyundecyltrichlorosilane (BMPUS) was synthesised 

according to the literature method4, and characterised by NMR, mass spectrometry and 

elemental analysis.  This was then allowed to self-assemble on oxidised silicon, 

producing a surface-bound ATRP initiator which was then used to grow PMMA and PS 
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brushes.  The chemical differences between the two monomers meant that different 

reaction conditions were needed to polymerise them.  Several different methods were

tested for each monomer, and the resulting polymer brushes were analysed by 

ellipsometry, AFM and XPS.  The results are presented and discussed below. 

3.2 Materials

Methyl methacrylate (Aldrich, 99 %) and styrene (Aldrich,  99 %) were dried over 

calcium hydride, then vacuum distilled prior to use.  Distilled monomers were stored in 

sealed flasks in the freezer, and used within 24 hours (styrene), or 5 days (MMA).

Copper(I) chloride and copper(I) bromide were purified by stirring with at least three

portions of glacial acetic acid under nitrogen.  The acetic acid was decanted off the solid 

residue, which was then washed with petroleum ether and ethanol, followed by 

thorough drying in a vacuum oven at room temperature4,5.  They could be stored under 

nitrogen for 3 � 4 months before cumulative exposure to atmospheric oxygen caused 

significant oxidation, detectable by a colour change from white/grey to green.

2,2�-Bipyridine (Aldrich,  99 %) was recrystallised from hot n-hexane, and filtered

when hot to remove brown solid impurities, yielding white, needle-shaped crystals. 
1H NMR: (CDCl3, 250 MHz), : 7.23 (2H, t, J = 8 Hz), 7.73 (2H, t of d), 8.32 (2H, d, J

= 8 Hz), 8.61 (2H, s).  This was a good match to the reference spectrum6.

Anhydrous THF, toluene and n-hexane were obtained from a Solvent Purification

System (Innovative Technology Inc., SPS-400-6 and SPS-200-6).  Typical water 

contents were 23-27 ppm for THF, 16 ppm for toluene, and 8 ppm for n-hexane.

Single crystal silicon wafers were obtained from Compart Technology Ltd (100 mm 

diameter, 525 m thick, boron-doped, <100> face polished). 

Triethylamine (Aldrich, 99 %) was filtered through a 0.45 m PTFE filter (Whatman or 

Acrodisc) immediately before use. 
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All other reagents were obtained from Aldrich and used as received. 

3.3 Experimental Methods 

Glass and plastic syringes were used extensively to transfer liquid reagents between 

containers.  Before use, they were purged three times with nitrogen gas, to displace the 

residual air in the syringe needle. 

3.3.1 Synthesis of 10-undecen-1-yl 2-bromo-2-methylpropionate

10-Undecen-1-ol (8.52 g, 50 mmol) and dry THF (50 ml) were added to a dry two-

necked flask equipped with a stirrer bar, nitrogen inlet/outlet, and a suba seal.  The 

mixture was left stirring for 10 minutes under flowing nitrogen, then pyridine (4.2 ml,

50 mmol) was added by syringe.  The flask was cooled in an ice bath for 5 minutes,

then 2-bromoisobutryl bromide (6.2 ml, 50 mmol) was added dropwise.  After 30 

minutes, the ice bath was removed, and the yellowish mixture was left to react at room

temperature overnight. 

This yielded a cream solid suspended in a brownish liquid, which was diluted with 100 

ml n-hexane, then washed with 100 ml of 2 mol dm-3 hydrochloric acid and twice with 

water.  The brownish liquid was dried with sodium sulphate and the solvent was 

removed under reduced pressure to give a pale brown oil.  The crude product was 

purified by flash column chromatography (silica gel, 25:1 hexane: ethyl acetate), to give 

10-undecen-1-yl 2-bromo-2-methylpropionate (13.62 g, 43 mmol) as a pale yellow oil 

in 85 % yield4.

1H NMR (CDCl3, 250 MHz), : 1.28-1.41 (12H, br, m), 1.61-1.72 (2H, m), 1.92 (6H, 

s), 1.98-2.07 (2H, q), 4.15 (2H, t, J = 7 Hz), 4.89-5.02 (2H, br, m), 5.72-5.89 (1H, br, 

m).
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13C NMR (CDCl3, 250 MHz), : 25.78, 28.34, 28.92, 29.09, 29.15, 29.38, 29.42, 30.80 

(CH/CH3), 33.81, 66.18, 114.15, 139.21 (CH/CH3).  All signals are CH2/C unless

otherwise stated.

3.3.2 Synthesis of 11-(2-bromo-2-methyl)propionyloxyundecyl

trichlorosilane

10-Undecen-1-yl 2-bromo-2-methylpropionate (13.62 g, 43 mmol) was added to a dry 

two-necked flask equipped with a magnetic stirrer, nitrogen inlet/outlet and a suba seal. 

This was left to stir for 20 minutes under flowing nitrogen, then trichlorosilane (43.4 ml,

0.43 mol) was added by syringe and the flask was cooled in an ice bath for at least 10 

minutes.  Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex solution 0.1 

mol dm-3 in xylenes (0.05 ml, equivalent to 5 mmol Pt) (�Pt�, also known as Karstedt�s 

catalyst) was added dropwise over 10 minutes.  The mixture was left to slowly warm to

room temperature, and then to react overnight, to ensure that the reaction was 

complete4.

The crude reaction mixture was purified by high vacuum distillation using a short path 

distillation apparatus.  Initially, the excess trichlorosilane was removed under high 

vacuum at room temperature over several hours (and collected in a second flask).  The 

product was then distilled: it was necessary to use a yellow flame (temperature > 220 

ºC) to achieve distillation, even at 3 x 10-5 Torr pressure.  11-(2-Bromo-2-

methyl)propionyloxyundecyltrichlorosilane was collected as a yellow oil.

1H NMR (CDCl3, 250 MHz), :  1.18-1.43 (16H, br, m), 1.54-1.74 (4H, br, m), 1.93 

(6H, s), 4.17 (2H, t, J = 7 Hz).

13C NMR (CDCl3, 250 MHz), : 22.25, 24.31, 25.77, 28.34, 28.99, 29.14, 29.29, 29.44, 

30.79 (CH/CH3), 31.80, 55.98 (very weak), 66.14.  All signals are CH2/C unless

otherwise stated.

29Si NMR (CDCl3, 500 MHz), : 12.95. 
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Mass Spectrum: The mass spectrum of this compound is complicated, with groups of 

peaks due to the presence of different isotopes of bromine, chlorine, silicon (and 

carbon) within the initiator.  There is a group of peaks from m/z 452 � 462, which 

correspond to the mass ion (m/z 452 fits C15H28O2Si35Cl379Br, m/z 460 fits 

C15H28O2Si37Cl381Br).  The next intense peaks occur at m/z 286 � 291, which could 

correspond to the loss of the -bromoester group (C4H6O2Br � m/z 165 or 167 

depending on bromine isotope).  Below this, there are many peaks down to m/z 55. 

Elemental Analysis: 

Element % (by mass) predicted % (by mass) measured

C 39.61 41.33

H 6.22 6.86

Br 17.57 15.09

Cl 23.39 20.23

3.3.3 Preparation of Initiator SAM on Silicon Wafers 

Silicon wafers cut into 1 cm2 pieces were cleaned and rendered hydrophilic by heating 

to 80 °C for 10 minutes in 100 vol hydrogen peroxide (50 ml), 37 wt % ammonia 

solution (50 ml) and deionised water (250 ml) (RCA clean).  The cleaned wafers were 

rinsed with copious quantities of distilled water, dried with nitrogen, then heated to 120

°C under vacuum for two hours to remove any remaining traces of water.

The cleaned, dried wafers were added to a PTFE dish with a tight-fitting lid, polished

face up, then covered with BMPUS (22.5 l) in dry toluene (15 ml), and triethylamine

(1.5 ml), and left overnight.  The wafers were then removed from the initiator solution 

and washed twice with toluene, once with acetone and finally with ethanol, for at least 

10 minutes in each solvent, before being dried and stored5.

3.3.4 Brush Growth Reactions: General Points 

ATRP is tolerant of a wide range of functional groups present in the monomer, solvent

and initiator7, but it is rather sensitive to the presence of oxygen8.  To obtain a well
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controlled, reproducible polymerisation, thorough deoxygenation of all reagents was 

necessary.  This was done by bubbling nitrogen gas (from a needle inlet) through the 

reaction liquid, for at least 10 minutes to displace dissolved oxygen. 

Brush growth reactions were performed in custom-made 4- or 8-necked flasks that

allowed up to eight initiator-coated wafers to be reacted at any one time with all the 

wafers in identical chemical environments5.  For all reactions, the 8-necked flask was 

set up in the same way: initiator-coated wafers were put into stainless steel wire holders, 

with the shiny side facing downwards.  The wire was then pushed through a suba seal, 

and the whole assembly was put into one neck of the clean dry flask.  This was

repeated, leaving one neck equipped with a plain suba seal (see Figure 3.1 below).  The

whole apparatus was then purged with flowing nitrogen for at least 30 minutes before

the premixed reagents were added by syringe.  Once all reagents had been added, the 

nitrogen flow was increased, and the blank suba seal was replaced with one with a wafer

holder and initiator-coated wafer.  The same procedure was used to remove wafers from 

the flask after the desired reaction time, to allow immediate rinsing of the reaction 

mixture off the wafers.  As long as the nitrogen flow was high, this did not result in

Figure 3.1 8-necked reaction vessel used to perform multiple brush growth 
experiments under identical conditions5.  Reproduced from Topham et. al, Polymer 
International, 2006, 55, 808-8155, by permission of John Wiley & Sons, Inc. 
http://www3.interscience.wiley.com/journal/117946201/grouphome/home.html
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noticeable oxidation of the polymerisation solution (detectable as a colour change, e.g. 

for PMMA brushes, the dark brown reaction mixture changed colour to turquoise on

exposure to air).

Alternatively, the reaction could be performed in carousel tubes (Radleys Scientific): an 

initiator-coated wafer was placed shiny face down in each carousel tube.  Tubes were

sealed with rubber septa and purged with nitrogen for at least 10 minutes.  Reagents

were degassed and mixed in a round-bottomed flask to produce a homogeneous

polymerisation solution.  Then 5 � 6 ml of this solution was added to each tube by 

syringe.  Quantities of reagents were adjusted according to the number (and size) of 

substrates to be reacted.  Wafers were left to react without stirring for the desired

reaction time. 

3.3.5 Synthesis of Poly(methyl methacrylate) Brushes 

Methyl methacrylate (25.03 g, 0.25 mol), 20 ml methanol and 5 ml water were added to 

a round-bottomed flask equipped with a suba seal and a magnetic stirrer.  The mixture

was degassed for 15 minutes, with stirring.  2,2�-Bipyridine (0.98 g, 6.25 mmol), 

copper(II) bromide (0.028 g, 0.125 mmol), and copper(I) chloride (0.25 g, 2.5 mmol) 

were added, and degassing continued for 10 minutes.  The homogeneous, dark brown 

solution was then transferred to the 8-necked flask by syringe.  The wafers were 

immersed in the reaction mixture, and left to react under a positive pressure of nitrogen

at room temperature (approximately 20 ºC), for up to 9 hours9.  After the desired

reaction time, the wafers were removed from the flask and rinsed twice in 4: 1

methanol: water, then once in dichloromethane.

3.3.6 Synthesis of Polystyrene Brushes: Anisole, PMDETA 

Styrene (20.907 g, 0.20 mol) and 27 ml anisole were added to a dry round-bottomed

flask equipped with a magnetic stirrer and degassed for 15 minutes, with stirring.  The 

flask was then opened to allow addition of PMDETA (0.73 g, 4.2 mmol), CuBr2 (0.045 

g, 0.2 mmol) and CuBr (0.29 g, 2.0 mmol). The flask was sealed, and degassing 

continued, as the mixture was heated up to 90 ºC in an oil bath, and until the solids had 

dissolved giving a homogeneous solution.  The pale green solution was then transferred 
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to the nitrogen-filled 8-necked flask by syringe.  The wafers were immersed in the

reaction mixture, and left to react under a positive pressure of nitrogen at 90 ºC10,11.

After the desired reaction time, the wafers were removed from the flask, and rinsed in 

portions of toluene, distilled water and finally acetone, before being dried and stored.

3.3.7 Synthesis of Polystyrene Brushes: Cyclohexanone, PMDETA 

Styrene (20.90 g, 0.20 mol) and cyclohexanone (28 ml) were added to a dry round-

bottomed flask equipped with a magnetic stirrer, and degassed for 10 minutes.

PMDETA (0.73 g, 4.2 mmol) was added, and degassing continued for a further 10 

minutes.  The 8-necked flask was set up with initiator-coated wafers, and purged with 

flowing nitrogen for 10 minutes, before CuBr (0.29 g, 2.0 mmol) or CuCl (0.199 g, 2.0 

mmol) and CuBr2 (0.045 g, 0.20 mmol) were added. The flask was then left under 

flowing nitrogen.  Styrene, cyclohexanone and PMDETA were transferred into the 8-

necked flask by syringe.  The pale turquoise-coloured reaction mixture was heated to 90 

ºC in an oil bath, then the reaction was started by immersing the initiator-coated 

wafers12.  After the desired reaction time, the wafers were removed from the flask and 

sequentially rinsed in portions of cyclohexanone, acetone and dichloromethane.

3.3.8 Synthesis of Polystyrene Brushes: Bulk, dnNbpy 

Styrene (22.725 g, 0.218 mol) and CuBr2(dnNbpy)2 (0.1135 g, 0.10 mmol) were added 

to a dry round-bottomed flask equipped with a magnetic stirrer and degassed, with 

stirring, until a pale purple/maroon solution formed (about 10 minutes).  The flask was

opened and dnNbpy (1.81 g, 4.43 mmol) and CuBr (0.4875 g, 2.18 mmol) were added 

and degassing continued until all the solids had dissolved (~ 15 minutes) leaving a

brown solution.  The reaction mixture was transferred into the 8-necked flask by

syringe, and heated to 100 ºC4.  Polymerisation was started by immersing the initiator-

coated wafers into the reaction mixture.  Wafers were reacted for the desired length of 

time, then withdrawn from the reaction flask, and immediately rinsed twice with

toluene, then with acetone, water, methanol or ethanol and finally with THF.
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3.3.9 Synthesis of Copper (II) bromide bis-(4,4’-di-n-nonyl-2,2’-

bipyridine)

CuBr2 (0.25 g,  1.1 mmol) and dnNbpy (0.92 g, 2.3 mmol) were added to a round 

bottomed flask, along with 10 ml THF and 10 ml acetonitrile.  The resulting green

solution was allowed to stir under nitrogen for 90 minutes.  The flask was attached to a 

high vacuum line, and the solution degassed by two freeze � vacuum � thaw cycles. 

The solvents were then removed by vacuum distillation (trap to trap distillation), and

the solids left to dry under high vacuum overnight.  Bright green CuBr2(dnNbpy)2 was 

obtained in 45 % yield, and used without further purification4.

3.3.10 Dehalogenation of Polymer Brushes

Polymer brush-coated wafers were placed shiny face down in carousel tubes.  Tubes

were sealed with rubber septa, covered with silver foil and purged with nitrogen for at 

least 10 minutes.  In a separate flask a saturated solution of sodium azide in N,N-

dimethylformamide (DMF) was made up and 5 � 6 ml of this solution was added to 

each carousel tube by syringe.  Wafers were left to react at 50 ºC for at least 48 hours.

Wafers were then rinsed with DMF, sonicated in water for 15 minutes and rinsed with 

methanol and THF. 

3.4 Characterisation

3.4.1 Ellipsometry

Ellipsometry measurements were performed with a Gaertner Scientific 116B 

ellipsometer with a 633 nm He/Ne laser set at an angle of incidence of 70°.  The 

resulting values were fitted using a single layer model with the refractive index set to 

1.5 for PMMA brushes and 1.59 for PS on a silicon substrate of n = 3.875, k = 0.018. 

The silicon oxide, initiator SAM and polymer layer were all measured together.  The 

thickness of the oxide layer and SAM were measured on separate reference wafers, and 

then subtracted from the other measurements to give the thickness of the polymer brush 

layer.  Measurements were made at five randomly chosen spots on the sample surface,
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to allow calculation of the mean thickness and standard deviation. All values of brush 

thickness given in this report have been corrected for the thickness of the SAM and 

oxide layer (which was 33 � 40 Å, depending on the batch of wafers used).

3.4.2 Spectroscopic Ellipsometry 

Measurements were performed using a Jobin Yvon Uvisel Spectroscopic phase

modulated ellipsometer.  Measurements were performed in two different configurations, 

with an angle of incidence of 70º.  A measurement was taken every 10 nm over a range 

of wavelengths from 300 � 700 nm.  Each spot was integrated for 1000 ms.

WVase software was then used to model the brushes, and convert the raw ellipsometry

data into a value for the layer thickness.  A 3-layer model was used: 

Layer Layer Name Thickness

Substrate SI-ASP 1 mm

Oxide SIO2 2 nm

Initiator SAM and polymer

brush

CAUCHY Fit

Refractive index (An): 

1.5 for PMMA and SAMs 

1.59 for PS 

The model gives a value for the layer thickness, and its mean square error (MSE).  All

values of brush thickness given in this thesis have been corrected for the thickness of 

the SAM and oxide layer.

3.4.3 Atomic Force Microscopy 

Tapping mode and LFM AFM images were acquired using a Multimode AFM with an 

Extended Nanoscope 3A controller and Nanoscope V5.12r4 software.  The images

presented in this thesis were produced using Nanoscope V6.11r1 software.  Tapping 

mode images were produced using single crystal silicon cantilevers obtained from

Olympus (Micro Cantilever AC 160TS), with a resonant frequency of approximately

300 kHz, spring constant of 42 N/m and a tip radius of 10 nm.
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3.4.4 Contact angles 

Equilibrium contact angles were measured using a home-made set-up: 2 l drops of 

water were placed onto the surface to be analysed, and allowed to equilibrate/spread for 

two minutes.  Magnified photographs of the droplets were taken.  Once the photographs 

had been cropped and converted to black and white, the contact angle could be

calculated using the DropSnake plugin for ImageJ software.  At least two droplets were

measured for each sample (giving four separate contact angles), and two separate 

samples were measured for each type of surface, allowing calculation of the average

contact angle and standard deviation. 

3.4.5 NMR
1H and 13C NMR spectra were acquired using Bruker AV1-250 or AC-250 

spectrometers, at 250 MHz.  The 29Si spectrum was acquired on a Bruker DRX-500 

spectrometer at 500 MHz.  All samples were dissolved in deuterated chloroform.

3.4.6 XPS

XPS spectra were collected on a Kratos Axis Ultra X-ray Photoelectron Spectrometer

(Kratos Ltd, Manchester) operated with a base pressure of 10-9 mbar. The X-ray source 

was a monochromated Al source.  The X-ray emission current was set at 10 mA and the

anode high throughput (acceleration voltage) was 15 kV. All survey scans were 

collected at a pass energy of 160 eV and a step size (resolution) of 1.0 eV. Narrow

scans of the Br 3d, N 1s and Cl 2p regions were collected at a pass energy of 160 eV, 

with a step size of 0.1 eV.  C 1s spectra were collected at a pass energy of 20 eV, with a 

step size of 0.1 eV.  All samples were run as insulators. All spectra were charge-

corrected to saturated hydrocarbon at 285 eV.  Data were analysed using CasaXPS 

software (www.casaxps.com), with the help of the searchable XPS database available at 

www.lasurface.com.  XPS spectra were acquired and analysed by Tracie Whittle.

3.4.7 Mass Spectrometry

The mass spectrum was measured on a VG Autospec, Magnetic Sector Mass

Spectrometer, using electron ionisation (EI +). 

95

http://www.casaxps.com)
http://www.lasurface.com


3.  Synthesis of Polymer Brushes 

3.4.8 Size Exclusion Chromatography 

Analysis of polystyrene samples were obtained using a Knauer apparatus (K-501 HPLC 

pump) fitted with two PL gel mixed C 300 x 7.5 mm (particle size 5 m) columns

running at room temperature with a THF flow rate of 1 ml/minute, having refractive

index detector (Knauer K-2301), and calibrated using linear polystyrene standards (from

1200 � 900,000 g mol-1).

3.5 Results and Discussion 

3.5.1 Synthesis of the Initiator 

The initiator, 11-(2-bromo-2-methyl)propionyloxy)undecyltrichlorosilane, was 

synthesised in two steps, broadly according to the method described by Matyjaszewski

et al.4 (see Scheme 3.1): 

Firstly, 10-undecen-1-ol was reacted with 2-bromoisobutyryl bromide in the presence of

pyridine to produce the ester 10-undecen-1-yl 2-bromo-2-methylpropionate.  Addition

of 2-bromoisobutyryl bromide resulted in a rapid exothermic reaction generating an 

opaque cream solid (pyridine hydrobromide) suspended in a brown liquid.  The brown 

colour was thought to be due to bromine containing species generated by thermal

degradation of 2-bromoisobutyryl bromide.  This was felt to be undesirable, so in 

subsequent reactions, the reaction mixture was cooled in an ice bath during the addition

of the 2-bromoisobutyryl bromide, then allowed to slowly warm to room temperature.

The final appearance of the reaction mixture was the same whether the reaction mixture

was cooled or not.  After purification, the product was obtained as a pale yellow oil, 

estimated to be 99 % pure by NMR.  This could be stored in the fridge, with no sign of 

degradation (by NMR) for at least 18 months.

10-Undecen-1-yl 2-bromo-2-methylpropionate was then hydrosilylated with

trichlorosilane catalysed by Karstedt�s catalyst.  Addition of the catalyst resulted in the

rapid evolution of hydrogen gas and was strongly exothermic.  To control this, the 

reaction mixture was cooled in an ice bath for 90 minutes after the addition of the
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Scheme 3.1 Synthesis of 11-(2-bromo-2-
methyl)propionyloxy)undecyltrichlorosilane, a surface-attachable ATRP initiator 
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catalyst, then allowed to slowly warm to room temperature and react for at least 12 

hours.  The literature describes filtering the product through a plug of silica gel to 

remove the catalyst4.  This was not done, as BMPUS would react with the silanol 

groups present on the surface of the silica, resulting in significant loss of the product.

Instead, the crude BMPUS was purified by high vacuum distillation.  Firstly, the excess 

trichlorosilane was removed under high vacuum at room temperature.  The initiator was

then distilled using a short path distillation apparatus.  The previously reported boiling 

point of the initiator was 80 � 85 ºC at 2.0 x 10-2 Torr 4.  However, the boiling point was 

found to be much higher than this: even with extensive heating at 140 ºC, 3 x 10-5 Torr 

no product could be collected.  It was necessary to use a yellow flame (temperature > 

220 ºC) to distil the initiator.  This aggressive heating caused the platinum catalyst to 

decompose, leaving a black residue.  BMPUS was analysed by 1H, 13C and 29Si NMR,

mass spectrometry and elemental analysis, and found to be 96 % pure by NMR.  Alkyl

trichlorosilanes are very water-sensitive, but BMPUS could be stored under nitrogen in 

a Young�s flask for up to a year, before cumulative exposure to traces of moisture 

caused it to degrade.
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3.5.2 Preparation of Initiator SAM on Silicon Wafers 

This was done using a standard literature method5,9: pieces of silicon wafers were

treated with ammonia and hydrogen peroxide.  This removes surface organic

contaminants, and ensures the presence of a high concentration of surface hydroxide 

groups, making the surface very hydrophilic.  After thorough drying, the wafers were 

then exposed to a dilute solution of the initiator (1.5 l/ml) in dry toluene, in the 

presence of triethylamine.  A SAM is formed via hydrolysis of the trichlorosilane group 

and reaction of the �OH terminated product with silanol groups on the surface of the

silicon wafers and other BMPUS molecules, generating a cross-linked siloxane 

network.  The triethylamine mops up the acidic by-products of this reaction, giving a

smoother surface layer9.  The thickness of this layer was measured as approximately 1 

nm, although this was quite variable between batches of BMPUS-coated wafers.  The 

reaction is more complicated than described above, and will be discussed in more detail 

in Chapter 4.

3.5.3 Polymer Brushes 

The initial stage of this project involved finding suitable methods to synthesise PMMA 

and PS brushes.  It was important to find methods that could reliably and reproducibly 

generate smooth, dense brushes of predetermined thickness, to allow the future

production of binary patterned brushes.  ATRP is the most widely used technique for 

the synthesis of polymer brushes, allowing the production of a wide range of well-

defined polymers from surface-immobilised initiators, under experimentally accessible

conditions1.  ATRP is a controlled/�living polymerisation�, which can produce polymers 

with predictable molecular weights13-16 and narrow molecular weight distributions (1.05 

< Mw/Mn < 1.5)16-19.  The mechanism (see Scheme 3.2) relies on establishing a rapid 

dynamic equilibrium between a very low concentration of active free radicals and a 

large majority of dormant chains14,18.  The low concentration of radicals minimises

termination, and the rapid exchange between active and dormant species ensures that all 

the chains add monomer at essentially the same rate8.
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Scheme 3.2 Mechanism of Copper-Mediated ATRP18,20,21
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The controlled nature of an ATRP reaction depends on the position of the equilibrium

between active and reversibly-deactivated radicals (Keq = kact/kdeact) and the rate of 

propagation (kp).  Each monomer has a specific value of Keq which determines the 

concentration of active radicals and kp which determines how fast they react8,18.  This

means that the optimum reaction conditions vary depending on the monomer, and 

changing conditions may have totally different effects on different systems.  The role of 

the catalyst, ligands, solvent, temperature and additives are to adjust the position of this

equilibrium and the propagation rate to ensure that the reaction is controlled8,18. MMA 

is more reactive under ATRP conditions than styrene22, so quite different conditions are

required to allow controlled synthesis of each polymer.

For both monomers, a well-controlled, reproducible polymerisation was desirable.  The 

literature was used to identify suitable methods, which were tested by investigating the

reaction kinetics and analysing the surface chemistry.  In a controlled/�living� reaction, 

termination is limited, so there is an (almost) constant concentration of active radicals,

which results in first-order kinetics with respect to the concentration of monomer.  In a 

surface-initiated polymerisation, the amount of polymer produced is negligible, so the 

concentration of monomer, and the rate of polymerisation remains approximately

constant throughout the reaction.  Under these conditions, a linear increase in brush 

thickness with time indicates a controlled reaction with a constant concentration of 

propagating radicals.

A polymerisation is said to be living when it proceeds in the absence of irreversible 

chain transfer and termination8,18,23.  Although ATRP is not a true living polymerisation,

the majority of the polymer chains do not undergo termination during the reaction, and 

are retained as dormant, halogen-capped species.  Addition of fresh monomer (and 
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catalyst etc.) restarts the reaction, resulting in an increase in molecular weight or brush

thickness.  Chain extension, or �self blocking� experiments were used as another test of 

the �livingness� of the reaction.  In addition, XPS was used to analyse the surface 

chemistry, directly confirming the presence of bromine (and chlorine) on the surface. 

In contrast to truly living polymerisations, such as living anionic polymerisation,

termination plays an important role in ATRP.  During the early stages of an ATRP 

reaction, the concentration of radicals is relatively high, and bimolecular termination

occurs at a significant rate.  With each termination, the concentration of copper(II) 

increases, which shifts the position of the atom transfer equilibrium back towards the 

dormant side, and eventually reduces the concentration of radicals to a level where 

termination becomes insignificant8,20.  In solution reactions, the concentration of 

initiator is relatively high (usually equimolar to the catalyst), so termination can produce 

enough deactivator in solution to give a controlled polymerisation24,25.  For polymer

brushes, the effective concentration of the surface-bound initiator is too low for this 

mechanism to operate efficiently.  Therefore, to get controlled brush growth, it is 

necessary to add either free initiator26 (which produces polymer in solution), or extra

copper(II)4,9,25 (added deactivator) to reduce the concentration of active radicals enough 

to suppress termination.  For these experiments, the added deactivator approach was

chosen, as removal of free polymer requires purification by techniques such as soxhlet

extraction.  This could affect the first brush or the exposed initiator SAM, which would 

further complicate the synthesis of binary-patterned polymer brushes.

ATRP can be performed under a wide range of conditions, but it was decided to focus 

on homogeneous polymerisation methods.  A heterogeneous reaction could lead to the

deposition of solid material onto or within the brush, and on exposed regions of the 

substrate.  It would be difficult to ensure the complete removal of these residues,

especially if they penetrated into the brush or reacted with the silicon, and these 

contaminants could then interfere with subsequent synthetic steps. 

To allow later use of the methods for the synthesis of binary-patterned polymer brushes, 

it was necessary to find methods for the growth of PMMA and PS brushes that gave:

Reproducible and reliable production of polymer brushes 
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Linear increase in brush thickness with time27

Retention of active chain ends.

Surface-confined reaction (e.g. no polymer generated in solution)

Reaction under homogeneous conditions. 

3.5.4 PMMA Brushes 

The ATRP equilibrium constant for MMA is among the largest of any monomer, so 

PMMA can be produced using a wide range of ATRP catalysts, even very weak

systems.  Under some conditions, the value of Keq can be too high to allow a fully

controlled reaction, e.g. the concentration of radicals is not low enough to suppress 

termination22.  Most polymerisations of MMA by ATRP are carried out in solution at 

temperatures below 90 ºC.  A solvent dilutes the reaction mixture, reducing the 

concentration of radicals, which can improve the control.  In addition, it solubilises the 

growing PMMA which has a fairly high glass transition temperature22 (Mw 2400 Tg 77 

ºC, Mw 4500 Tg 99 ºC28).

Early in the development of ATRP it was found to be tolerant of polar and protic 

additives20,29.  Since then Armes, Huck and other groups have developed �aqueous 

ATRP� for the synthesis of a wide range of hydrophilic and hydrophobic polymers in 

water, or mixtures of polar solvents and water7,30-38.  This method has also been used 

extensively for the synthesis of polymer brushes9,11,25,27,39-51.  Water and other polar 

solvents accelerate ATRP.  For example aqueous ATRP of oligo(ethylene glycol)

methacrylate is faster than bulk polymerisation, despite the higher concentrations of 

reagents present in the bulk system7.  Similar effects have been found for brush growth:

surface-initiated polymerisation of glycidyl methacrylate (GMA) in a 2: 1 mixture of 

DMF and water produces 28 nm thick brushes in 6 hours, compared to only 6 nm for an 

equivalent reaction with pure DMF as the solvent43.  It is thought that the catalyst 

changes structure depending on the polarity of the reaction medium.  In non-polar 

systems, it is thought to adopt a neutral, binuclear structure with bridging halide ligands.

In polar solvents, the structure changes to the more active, mononuclear, cationic 

[Cu(I)bpy2]+, resulting in faster reactions7.
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The use of aqueous systems allows ATRP to be performed in reasonable amounts of 

time at room temperature using (relatively) environmentally-friendly solvents.  This

allows the production of polymer brushes on temperature-sensitive substrates such as 

thiol SAMs on gold1.  Low temperatures also suppress side reactions such as thermal

autopolymerisation and cross-linking, transesterification and elimination reactions1,41.

However, too much water can lead to a loss of control: aquation and hydrolysis can 

displace halide ligands from copper complexes, reducing the concentration of the 

deactivator36,37.  For hydrophobic monomers, the amount of water also needs to be 

balanced to give a homogeneous mixture of monomer, solvent and water. 

Initial experiments were performed, testing several different aqueous ATRP systems.

The most promising method was the �aqueous ATRP� system used by Edmondson and 

Huck9 to produce poly(glycidyl methacrylate) (PGMA) brushes and PGMA � PMMA

random copolymer brushes.  The reagents used were MMA (monomer), copper (I) 

chloride (catalyst), bpy (ligand) and copper (II) bromide (added deactivator) in a 100: 1: 

2: 0.05 molar ratio.  Polymerisation was initiated by the bromoisobutyrate functional 

groups bound to the silicon surface.  The solvent was a 4: 1 mixture of methanol and 

water, in a 1: 1 (v/v) ratio with the monomer.  This gave a homogeneous reaction 

mixture that dissolved PMMA.  All reactions were performed at room temperature9,24.

This produced smooth PMMA brushes (typically Ra < 0.5 nm � an example is shown in 

Figure 3.2), with a reasonably linear increase in brush thickness with reaction time.

However, results were not very repeatable, and the reaction could not reach the degree 

of control originally reported for aqueous ATRP of MMA9,27,52.

This poor reproducibility had two causes: the reaction mixture was hydrophilic, so 

droplets of liquid adhered to the surface of the wafers after they were lifted out of the

solution.  This allowed polymerisation to continue for an indefinite length of time (until 

the reagents in the surface drop were exhausted), resulting in inaccurate reaction times

(it is also possibly that the residue of the reaction mixture could cause problems in 

subsequent reactions24).  This was prevented by removing wafers from the 8-necked 

flask under a high flow of nitrogen, allowing immediate rinsing. Providing that the 

flow of nitrogen was high, this could be done without significant ingress of oxygen into 

the flask.  Secondly, dissolved oxygen was not completely removed from the reaction
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Figure 3.2 Tapping mode AFM of a typical PMMA brush, 5 x 5 m, Ra 0.278 nm, 
Rms 0.352 nm, and a typical height profile across the brush surface, maximum height
difference 2.018 nm.  NB. Ra and rms (Rq) are measurements of surface roughness.  Ra
is the arithmetic average of the absolute values of the surface height deviations
measured from the mean plane.  Rms is the root mean square average of height 
deviations taken from the mean data plane. 

system.  Oxygen rapidly traps propagating radicals53, and thorough deoxygenation of 

reagents is necessary for a controlled reaction.  The method was modified slightly: 

MMA, methanol and water were added to a dry round-bottomed flask, and degassed by 

bubbling nitrogen through the liquids from a needle inlet for around 10 minutes.  The

other reagents were then added, and degassing continued until all the reagents had 

dissolved (usually 10 � 15 minutes).  The reaction mixture was then transferred into the 

8-necked flask by nitrogen purged syringe (a cannula could also be used), and the 

reaction started by immersing the wafers into the reaction mixture.  These changes to 

the method gave a well-controlled, reproducible method for the growth of PMMA

brushes with thicknesses up to 15 nm. Typical results are shown in Figure 3.3. 

As discussed above, in a �living� ATRP reaction, termination is suppressed, and the 

dormant, halogen-capped chain ends are retained, allowing the polymerisation to be

restarted18,54.  To test this, PMMA brushes were grown for set lengths of time, then 

removed from the reaction mixture, and rinsed.  After measuring the ellipsometric 

thickness, the wafers were replaced in the reaction mixture, and left to react for an

additional period of time.  The second reaction resulted in an increase in film thickness,

103



3.  Synthesis of Polymer Brushes 

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7

Reaction Time / hours
8

Figure 3.3 Plot of the evolution of polymer layer thickness from a modified silicon
surface as a function of reaction time. Conditions: methyl methacrylate, methanol, 
water 5: 4: 1 by volume, CuCl 1 %, CuBr2 0.05 %, bpy 2.5 % (mole % relative to 
MMA), room temperature.  Different data series for reactions done on different days 
under the same conditions:  6.8.2006,  15.8.2006,  17.8.2006,  17.10.2006, 

10.5.2007.  Line of best fit for all data included to guide the eye (R2 = 0.87).  Error
bars indicate one standard deviation. 

which correlated well with brushes grown for equivalent amounts of time without 

interruption.  The grow � measure � regrow process was repeated up to 4 times on a

single wafer � the results are shown in Figure 3.4.  Wafers which had been stored for 

several weeks could be reacted again, with a linear increase in thickness, indicating the 

stability of the halide-capped chain ends.  This provided further evidence of the absence 

of termination, and the pseudo-living nature of the polymerisation.

AFM and ellipsometry do not provide any information about the chemistry of the 

surface layer (although AFM phase images give some qualitative information about 

chemical inhomogeneities across a sample).  XPS is a surface-specific analysis

technique which allows direct identification and quantification of elements present 

within approximately the top 10 nm of the material.  The sample is exposed to a beam 

of x-rays, which can electronically excite any atom except hydrogen, leading to the 

ejection of photoelectrons: quantised, core level electrons which are characteristic of 

particular atoms (and chemical environments).  Electrons emitted from the sample
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Figure 3.4 Regrowth of PMMA brushes on silicon. , , ,  separate initiator
functionalised wafers that have been removed from the reaction mixture, analysed, then 
allowed to react further.  Thicknesses of PMMA brush grown without interruption are 
included for comparison ( ).  Line of best fit for all the data included to guide the eye 
(R2 = 0.95).  Reaction conditions as Figure 3.3, error bars indicate one standard 
deviation.  This data is also presented in Figure 3.3. 

without undergoing an energy loss event form the main, identifiable photoelectric peaks

(this emission is unlikely if the atom is more than 10 nm from the surface, hence the 

surface sensitivity).  Electrons which have lost some energy due to inelastic interactions

form a continuous background55.  Two types of scan are commonly used: the survey

scan covers a wide range of binding energies, and is used mainly to identify (and

quantify) the atoms present. High resolution scans of a particular peak can be used to 

identify different chemical environments within the substance, helping with the 

identification of organic substances.  For example, high resolution scans of the C 1s

region are presented below, and used to help identify the presence of PMMA or PS 

brushes.

The XPS survey scan of a PMMA brush, 10.9 nm thick (see Figure 3.5) indicates the 

presence of carbon, oxygen, chlorine, bromine and silicon.  The low thickness of the

brush means that silicon from the substrate can be detected. The ratio of carbon: 

oxygen was 2.8: 1.  Assuming that all the polymer chains in the brush had N = 100, each
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Figure 3.5 XPS of PMMA brush; a) survey scan, b) magnified view of Cl 2p region 
of survey scan, c) magnified view of Br 3d region of survey scan.

with a single initiator group, the ratio of C: O would be 2.54: 1.  The excess carbon 

could indicate that the polymer has a lower than predicted degree of polymerisation, or 

alternatively that there is a considerable amount of unreacted initiator present (which 

has a C: O ratio of 7.5: 1).  This would fit with calculations of the grafting densities of 

polymer brushes which suggest that each growing polymer chain blocks 10 � 12 

initiator groups52,56.  The presence of both chlorine and bromine gave direct evidence 

that the halogen capped chain ends were retained. 

Several studies21,57-59 have suggested that a mixed halogen system (an alkyl bromide 

initiator and a copper chloride catalyst) can give improved control of the ATRP of 

MMA.  For a controlled polymerisation, the rate of initiation must be faster than the rate 

of propagation21,57.  The position of equilibrium for the initiation and propagation steps

must be shifted towards the dormant state57, and the deactivation step should be rapid to 

maintain a low concentration of active radicals, and so limit termination and side 

reactions21.  In a mixed halogen system, the weaker C-Br bonds in the initiator promote

rapid initiation.  The majority of the chains then react with the catalyst to produce Cl

capped chains21,57,59.  This exchange process results in the formation of Cu(II)-Br bonds, 
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which are weaker than Cu(II)-Cl bonds, and increase the rate of deactivation21.

Matyjaszewski et al. 57 used gas chromatography and 1H NMR to follow halogen

exchange in model systems:

RBr + CuCl/2L RCl + CuBr/2L (3.1)

They found that, regardless of the starting conditions, the position of equilibrium gave 

80-90 % RCl (the different values depend on the nature of the R group, and the 

measurement technique).

In this case, the mixed halogen system used to produce PMMA brushes gave a well-

controlled polymerisation of MMA.  The XPS spectrum showed that both bromine and 

chlorine were present in a ratio of 1: 2.35.  This meant that approximately 70 % of the

polymer chains were chlorine-terminated, which fits well with the results from the 

model study discussed above.  Halogen exchange has not been directly measured for

PMMA, either for free polymer or brushes.  This confirms that the polymer behaves in a 

similar manner to the small molecule alkyl halide models.

The high resolution spectrum of the C 1s region is shown below in Figure 3.6.  Curve

fitting (using a normal PMMA curve fit) revealed four different carbon environments in 

an approximate 2: 1: 1: 1 ratio.  These could be assigned to saturated hydrocarbon (C-C)

(C1), -C*-C(=O) (C2), alkoxy carbon (C*-O-C(=O), (C3) and carbonyl carbon

(-C(=O)OR, C4) respectively.  The different carbon environments present in PMMA are 

illustrated on the spectrum.
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Figure 3.6 High resolution XPS scan of C 1s region of PMMA brush, showing curve 
fit, with carbon environments identified and quantified.

3.5.5 Polystyrene Brushes 

PS brushes have been synthesised using a range of polymerisations including ATRP4,

NMP60, reverse ATRP61 and conventional free radical polymerisation62,63.  It was 

decided to focus on producing PS brushes by surface-initiated ATRP.  As mentioned

earlier, styrene is less reactive than MMA under ATRP conditions22.  Elimination of HX 

from the polymer end groups plays a significant role in the ATRP of styrene, limiting

the maximum molecular weight and resulting in a slower reaction and increased 

polydispersity at higher molecular weights. Model studies showed that elimination was 

minimised when the concentration of monomer was high (i.e. bulk polymerisation) and 

the concentration of Cu(II) was as low as possible to retain control of the 

polymerisation.  Polar solvents were found to promote significant decomposition of the 

end groups64.  Because of this, styrene is most commonly polymerised in the bulk

although (relatively) non-polar solvents are also used8.  Reactions are usually performed 

at temperatures between 90 and 130 ºC.  This allows reactions to be carried out in a

reasonable length of time, and is above the glass transition temperature of PS22 (Mw

108



3.  Synthesis of Polymer Brushes 

2950 Tg 74 ºC, Mw 9200 Tg 96 ºC28).  Lower temperatures (e.g. 90 ºC) may lead to 

better control over molecular weight by reducing the amount of thermal self-initiation22.

Reaction under homogeneous conditions was desirable to prevent the deposition of solid 

residues onto or in the brush.  It also ensures that the effective concentration of copper

(II) is high enough to give rapid exchange between active and dormant chains, ensuring 

that all the chains grow at the same rate8,65.  Copper � bpy complexes are not completely

soluble in most styrene-solvent mixtures, leading to heterogeneous reactions.  Solubility 

can be improved by using alkyl-modified bipyridines such as dnNbpy or multidentate

amine ligands such as PMDETA and 1,1,4,7,10,10-hexamethyltriethylenetetramine

(HMTETA) (these are cheaper and more tunable than bipyridines, give less strongly 

coloured copper complexes and can lead to higher polymerisation rates)66.

There are fewer references describing the production of PS brushes by ATRP compared

to PMMA.  Several different systems were investigated to find a method that gave well-

controlled, reproducible growth of smooth PS brushes.  First it was decided to try a 

method based on that of Granville et al.10, who synthesised PS brushes from BMPUS 

coated silicon (these were then used to produce block copolymer brushes by chain 

extension with methyl acrylate67, tert-butyl acrylate68 or pentafluorostyrene10).  The 

original method used 2-bromoisobutyrate as a sacrificial initiator, in a 0.8 mole ratio 

relative to copper (I) bromide.  It was decided to replace this with 10 mole % CuBr2, to 

promote a controlled reaction without generating free polymer.  The molar ratios were

also altered to give the same theoretical degree of polymerisation as for PMMA brushes 

� i.e. 100: 1: 2.1: 0.1 styrene: copper bromide: PMDETA: CuBr2.

Some of the test reactions gave a linear increase in thickness with time (up to reaction

times of ~ 25 hours), indicating some degree of control, but reproducibility was poor � 

the most linear examples are shown in Figure 3.7 below.

According to the references, the polymerisation mixture becomes homogeneous when it 

is heated to 90 ºC10.  It was found that even after extended stirring at 90 ºC there was

always some solid material left in the flask.  During the reactions a dark-coloured solid

precipitate (thought to be copper complexes) was deposited on the wire wafer holders,
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Figure 3.7 Plot of the evolution of polymer layer thickness from a modified silicon
surface as a function of reaction time.  Conditions: styrene, anisole, 23:27 (v/v).  CuBr
1 %, PMDETA 2.1 %, CuBr2, 0.1 %, (mole % relative to styrene), 90 ºC.  Different data
series for reactions done on different days under the same conditions:  11.10.2006, 
1.11.2006, , 29.11.2006.  Error bars indicate one standard deviation. 

the initiator-coated wafers and sometimes on the walls of the 8-necked flask.  It is 

possible that the addition of CuBr2 and the alteration of the reaction stoichiometry

prevented the formation of a homogeneous reaction mixture.  The limited control and

reproducibility however, suggests that the active concentration of catalyst and 

deactivator decreased over time.  The poor reproducibility between reactions could also 

be explained by variation in the amount of material deposited in different reactions. 

The solid material seemed to be removed by soaking the wafers in water � where this 

was successfully done, the brush surface was smooth.  However, in other cases, the 

brush surface was rough, presumably due to incomplete removal of the solid residue. 

Typical AFM images of smooth and rough PS brushes are shown in Figure 3.8.
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Figure 3.8 Tapping mode AFM images of polystyrene brushes.  a) 1 x 1 m, smooth 
brush, rms 0.518 nm, Ra 0.388 nm, b) 5 x 5 m, rough sample, with surface features, 
rms 4.741 nm, Ra 1.881 nm. 

Another method was evaluated, using cyclohexanone as the solvent, CuCl or CuBr as

the catalyst, with PMDETA and CuBr2 at 90 ºC.  This was adapted from the method

used by Xu et al.12 to polymerise styrene with a triphenylmethyl chloride initiator � very 

different in structure from BMPUS. The reaction mixture was homogeneous, but 

ellipsometry showed that the brush thickness increased rapidly at first, then levelled out 

and stopped growing, and reproducibility was very poor (results not shown).  The

reaction mixture became more viscous over time; it was decided to test if this was due

Figure 3.9 XPS of PS brush produced by ATRP in cyclohexanone solution catalysed
by CuBr: magnified view of Br 3d region of survey scan, showing the absence of
bromine on the sample surface 
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to polymerisation in solution.  The reaction mixture was dissolved in THF and stirred 

with silica to remove copper residues, then precipitated in methanol. Whatever the 

catalyst, free polymer was obtained (and analysed by GPC: CuBr: Mn 27,200, Mw/Mn

1.55.  CuCl: Mn 8600, Mw/Mn 2.01).  As there was no free initiator present in solution, 

this must be produced by chain transfer and/or thermal autopolymerisation.  XPS 

analysis of a sample produced using CuBr showed the presence of PS, but there was no 

detectable bromine peak (the Br 3d region of the spectrum is shown above in Figure 

3.9).  These results suggest that the polymerisation followed a conventional (or only 

partially controlled) free radical mechanism, with chain transfer to solvent producing 

free polymer and termination, leading to the loss of the �living� chains.

Matyjaszewski et al.4 reported the production of PS brushes on silicon wafers by well-

controlled, homogeneous ATRP.  The reaction was performed in bulk, using CuBr, 

dnNbpy and CuBr2(dnNbpy)2 at 100 ºC.  Brush growth under bulk conditions is 

wasteful, because greater amounts of reagents are needed to maintain the same molar

ratios, but conversion to polymer is minute.  This was a particular concern because of 

the relatively high cost of dnNbpy.  However, this method reliably produced PS bushes 

with a linear increase in thickness with time, and reasonable reproducibility.  It was

possible to regrow brushes, resulting in a total film thickness equivalent to samples

grown without interruption and providing further evidence for the living nature of the 

reaction.  Some results are shown below in Figure 3.10 ( shows samples that were 

regrown).

AFM showed that this method produced smooth PS brushes: a typical image is shown 

in Figure 3.11 below.
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Figure 3.10 Plot of the evolution of polymer layer thickness from a modified silicon 
surface as a function of reaction time.  Conditions: styrene, CuBr 1 %, dnNbpy 2 %, 
CuBr2(dnNbpy)2 0.05 %, (mole % relative to styrene), 100 ºC.  Different data series for 
reactions done on different days under the same conditions:  4.4.2007,  19.11.2008, 

 24.11.2008,  24.11.2008: cumulative reaction time for regrown samples; arrows
indicate which samples were regrown.  Line of best fit for all data included to guide the 
eye (R2 = 0.68).  Error bars represent the MSE (except : error bars represent one
standard deviation).

Figure 3.11 Tapping mode AFM image of PS brush grown for 6 hours.  5 x 5 m,  Ra
0.348 nm, rms 0.597 nm. 
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XPS analysis showed peaks due to silicon, oxygen (from the substrate), carbon and 

bromine.  The presence of a bromine peak provided further evidence for the controlled 

nature of the polymerisation.  The high resolution C 1s spectrum was curve-fitted to two 

carbon environments, aromatic carbon (C1) and saturated carbon (C2), based on 

standard PS spectra (see Figure 3.12).  The ratio of C1: C2 was 2.1: 1, compared to the 

1.7: 1 predicted from the structure of PS.  It is not clear why there was this discrepancy, 

however, the C 1s spectrum of a PS brush grown using the cyclohexanone method had 

almost exactly the expected ratio, although the polymerisation was not controlled, and 

the brushes were not halogen terminated (see p. 111).

Figure 3.12 XPS of bromine-terminated PS brush; a) survey scan, b) magnified view 
of Br 3d region of survey scan, c) high resolution spectrum of C 1s region. 
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3.5.6 Dehalogenation of Polymer Brushes

The presence of halogen-capped polymer chains confirms that controlled ATRP is

occurring, but they present a problem for the production of binary-patterned brushes. 

When the second reaction is performed, polymerisation will occur from the initiator, 

and from the dormant chains of the first brush, resulting in the formation of patterned

polymer/block copolymer brushes.  To prevent this, it is necessary to

dehalogenate/terminate (or �kill�) the first brush11.  Bromine-terminated SAMs69-71

polymer brushes11,45 and free poly(methyl acrylate)72 have been successfully

dehalogenated by nucleophilic substitution with sodium azide.  Methods were tested by 

reacting samples of polymer brush with sodium azide, then attempting to regrow the 

brush.  Changes in thickness were measured using ellipsometry.

Dehalogenation of PMMA brushes was attempted using several different sets of 

reaction conditions11,45,69,70.  All the reactions resulted in a small decrease in the brush

thickness, which was thought to be due to a change in brush conformation after 

exposure to DMF and sodium azide.  The second polymerisation resulted in a 

significant increase in brush thickness, even when the samples were exposed to 

saturated sodium azide in DMF at room temperature for 72 hours.  XPS analysis of a 

sample reacted under milder conditions (0.12 mol dm-3 NaN3 in DMF, room 

temperature, 48 hours) suggested that there had been no reaction, as there was no 

detectable nitrogen signal, and no obvious decrease in the intensity of the Br 3d peak.

However, the second polymerisation reaction seemed to give a lower increase in 

thickness than predicted from the reaction time, so it is possible that some of the 

halogen groups were removed.  The reaction of azide with alkyl halides goes via a SN2

mechanism.  The reactivity of a molecule towards nucleophiles is strongly affected by 

the degree of substitution of the electrophilic carbon.  For example, a secondary alkyl

halide, 2-bromopentane, is more than 500 times more reactive than a tertiary group, 

tertiary-butyl bromide73.  The nature of the leaving group is also important: bromine is a 

much better leaving group than chlorine73.  The end group of PMMA synthesised by 

ATRP is a tertiary alkyl halide (see Figure 3.13). PMMA brushes were synthesised 

using a mixed halogen system, so the chains were terminated by a mixture of chlorine 

and bromine (see p. 106).  This suggests that the end groups were relatively unreactive
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Figure 3.13 Structures of end groups of polymer brushes and BMPUS. 

towards nucleophiles, and that not all the halogen groups were removed under the 

conditions used.  An additional consideration is that the surface-bound reactions

undergo considerable kinetic retardation compared to equivalent reactions in solution, 

accentuating these effects70.

It was decided to try dehalogenation of PS brushes: the end group of PS forms a less 

hindered secondary alkyl halide (see Figure 3.13), and all the polymer chains were

bromine-terminated.  PS brushes were grown for different lengths of time, then some of
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Figure 3.14 Reaction of PS brushes with sodium azide. Plot of changes of 
ellipsometric brush thickness through various reactions.  Conditions: growth of PS 
brushes: styrene, CuBr 1 %, dnNbpy 2 %, CuBr2(dnNbpy)2 0.05 %, (mole % relative to 
styrene), 90 ºC.  Reaction times: 1, 2, 4.5, 7, 8.5, 0 hours for wafers 1 � 6 respectively. 
Dehalogenation: saturated NaN3 in DMF, 50 ºC, 63 h, all samples except 2 and 4. 
Second polymerisation, conditions as above, additional reaction times: 6, 6, 0, 4, 6, 6 
hours for wafers 1 - 6 respectively.
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them were reacted with saturated sodium azide in DMF at 50 ºC for 63 hours, resulting 

in a small decrease in brush thickness.  The samples were then placed in a second

polymerisation solution.  The samples that had been exposed to sodium azide (samples

1 and 5) had a much smaller increase in thickness than those that had simply been 

stored (samples 2 and 4), suggesting that the dehalogenation was at least partially 

successful (sample 1 still showed a significant increase in thickness during the second

reaction): the results are shown in Figure 3.14 above. 

XPS analysis (Figure 3.15) showed complete loss of the Br 3d peak after reaction with 

excess azide.  Nitrogen could be detected on the sample, but only as a trace signal. 

However, Lee et al.69 found that azide-terminated monolayers were very susceptible to 

x-ray damage, with the N 1s photoemission almost disappearing after a single high 

resolution scan.  BMPUS-coated samples were also reacted with sodium azide, then 

exposed to polymerisation conditions (sample 6 in Figure 3.14).  There was no 

significant increase in layer thickness, and no halogen signal could be detected by XPS. 

The high resolution N 1s scan (shown in Figure 3.16) showed a clear doublet, with

peaks at around 405 and 401 eV, characteristic of an azide terminal group69,71,74.

BMPUS is a tertiary alkyl halide, so this suggests that the dehalogenation of PMMA 

was inhibited by the chlorine-terminated chains.  It is also possible that the end groups 

of polymer brush are more sterically hindered than BMPUS.  This seems unlikely, as a 

polymer brush should be more flexible than a SAM, but it could occur if the chain ends 

were buried within the brush. 

Figure 3.15 XPS of a) Br 3d and b) N 1s regions for samples of PS brush before (red 
traces) and after (green traces) reaction with sodium azide. Conditions: saturated 
NaN3 in DMF, 50 ºC, > 48 h).
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Figure 3.16 High resolution XPS of the N 1s region for a sample of BMPUS after
treatment with sodium azide (saturated NaN3 in DMF, 50 ºC, > 48 hours).

3.6 Summary

PMMA and PS brushes were synthesised on silicon substrates by surface-initiated 

ATRP from a BMPUS SAM.  Well-controlled, homogeneous polymerisation methods

were established that gave linear increases in brush thickness with time and acceptable

reproducibility.  Chain extension experiments and XPS gave further evidence for the 

controlled /�living� character of these polymerisations.

To allow these methods to be used for the synthesis of binary-patterned polymer

brushes it will be necessary to terminate the first brush to prevent the unwanted

formation of block copolymer brushes during the second ATRP reaction.  Bromine-

terminated PS brushes were effectively dehalogenated by reaction with sodium azide, 

but the same conditions did not �kill� PMMA brushes, which were synthesised using a 

mixed halogen system and had both bromine- and chlorine- terminated chains.  This 

means that it will be necessary to grow the PS brush first.  However, if this later causes

problems, PMMA could be produced by an alternative method, avoiding the use of a 

mixed halogen system.
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Chapter 4 

Synthesis of Patterned Polymer Brushes by 

Microcontact Printing 

4.1 Introduction

Microstructured and microfabricated materials are essential for much of modern

technology, as a vital part of microelectronics and optoelectronics.  Most 

commercial manufacture of such materials is done using photolithography1.

However, there are disadvantages to this approach, so alternative patterning

techniques are being investigated, giving access to new types of micropatterned

materials, such as patterned SAMs.  These can be made using microcontact

printing ( CP): a SAM-forming molecule is deposited onto the substrate by 

direct contact with a relief-patterned elastomeric stamp.  Patterned SAMs can be 

used as etch resists1,2, or as templates to control the deposition of metals or to 

direct self-assembly of patterns of liquid droplets2 (see p. 26 for further details). 

However, SAMs have several limitations: they form by self-assembly, so it is 

practically impossible to obtain large area defect-free monolayers3, and pattern 

transfer is not as reliable as can be obtained routinely using photolithography4.

SAMs form a very thin layer, and  are not robust enough to be used as resists for 

dry processes such as reactive ion etching5.

The amplification of a patterned SAM into a patterned polymer brush produces a 

macromolecular barrier which can mask defects within the underlying 

monolayer.  The thicker, more robust layer is resistant to a wider range of 

etchants5,6.  The use of polymers also allows much greater control over the

chemical composition of the film: although a large range of functional groups 

can be incorporated in a SAM, these groups can only be introduced at the 

surface.  In theory, any monomer can be used to prepare a polymer brush, 
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allowing the introduction of functional groups all along the polymer backbone, 

and, by the synthesis of block copolymer brushes, in spatially controlled 

architectures3.  This gives access to interesting new patterned materials such as

temperature-responsive, pH-sensitive or block copolymer brushes.  Further 

amplification into a binary-patterned polymer brush may allow access to an even

greater range of interesting materials with novel properties. 

One of the goals of this project was to synthesise a binary-patterned polymer

brush.  At the start of this project (March 2005), this had only been done by 

methods requiring a photolithographic step7-11.  It was felt to be desirable to 

develop an alternative approach, based on the use of CP, and in principle, 

applicable to any polymer brush. The proposed method was to produce a 

patterned BMPUS SAM, then use it to grow a polymer brush by ATRP.  The

first brush would then be dehalogenated (to prevent the formation of block 

copolymers), and the remaining areas of the substrate coated with fresh initiator 

and used to grow the second brush.  This is shown schematically in Figure 4.1 

below.

Figure 4.1 Proposed synthesis of a binary-patterned polymer brush by CP
and surface-initiated ATRP.  i) CP of BMPUS, ii) ATRP of first polymer brush, 
iii) dehalogenation of first brush, iv) backfill bare regions of substrate with
BMPUS, v) grow second brush. 
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Methods for the synthesis of PMMA and PS brushes and the dehalogenation of

PS brushes were discussed in Chapter 3.  The next target was CP of BMPUS

and the production of patterned polymer brushes.

The formation of SAMs has been a subject of extensive study, and is well 

understood for alkylthiolate SAMs on gold substrates.  Unfortunately, thiol 

SAMs are not stable to ambient conditions, and can undergo significant 

degradation within a day12.  Alkyltrichlorosilanes can self-assemble on a wide

range of substrates: oxidised silicon, silica particles, plasma-treated polymers13,

and, with suitable preparation, gold14 and silicon nitride15.  The self-assembly

process is much more complicated and more sensitive to conditions than the

gold/thiol system.  Well controlled self-assembly is needed to produce a robust, 

dense initiator layer for the growth of patterned polymer brushes.  Attempts were 

made to optimise the printing conditions to allow the reproducible production of 

dense, defect-free patterned polymer brushes.  Patterned SAMs and polymer

brushes were studied using AFM, SEM and optical microscopy.

4.2 Materials

Three different masters were used to make PDMS stamps:

1. Custom-made gallium arsenide master (EPSRC National Centre for III-V 

Technologies, University of Sheffield): arrays of squares, circles and 

triangles approx 100 m across and 50 m high, with varying spacing 

between the features.  PDMS replicas of this master were made by Dr

Shaomin Mai. 

2. Blazed diffraction grating (Edmund Optics Ltd.), consisting of angled 

grooves, 1200/mm (approximately 833 nm per groove), blaze angle 36º

52 .  The relief features were made of epoxy coated with aluminium.

3. An AFM calibration grid (TGZ04 silicon calibration grating, Mikro 

Masch) with square section lines, period 3 m, step height 1040 nm.  The

master was made of silicon, with silicon dioxide steps, coated with a thin

layer of silicon nitride.
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PDMS stamps were made using Sylgard 184 silicone elastomer kit (Dow

Corning), consisting of base and curing agent supplied in a 10: 1 ratio. 

Anhydrous dichloromethane, toluene and n-hexane were obtained from a Solvent

Purification System (Innovative Technology Inc., SPS-400-6 and SPS-200-6). 

Typical water contents were 9 ppm for dichloromethane, 16 ppm for toluene and 

8 ppm for n-hexane.

All other reagents were prepared as described in Chapter 3, or used as received. 

4.3 Experimental Methods 

Homogeneous BMPUS SAMs and PMMA brushes were synthesised using the 

methods described in Chapter 3. 

4.3.1 Preparation of PDMS Stamps 

PDMS base (15 g) and curing agent (1.5 g) were added to a round-bottomed

flask and degassed by stirring under low vacuum until the viscous mixture was 

homogeneous, and had stopped producing bubbles (~ 15 minutes).  Pieces of 

poly(tetrafluoroethylene) (PTFE) were used to make a support for the master in a 

plastic petri dish.  The degassed PDMS was carefully poured into the petri dish, 

and the master was placed face down in the PDMS, resting on the PTFE 

supports.  The dish was transferred to a vacuum oven at 50 ºC and put under 

vacuum for ~ 2 minutes to encourage the PDMS to fill all the channels of the 

master, then left to cure at atmospheric pressure for at least 4 hours.  Once the 

PDMS had set, it was removed from the petri dish and trimmed with a scalpel 

blade to leave the PDMS replica of the master2,4.
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4.3.2 Preparation of Master 3 

Concentrated sulphuric acid (70 ml) was carefully added to 100 vol hydrogen 

peroxide (30 ml) (Piranha solution). The mixture reacts exothermically and 

bubbles violently. Warning: Piranha solution should be handled with extreme

care.  In some circumstances, most probably when it has been mixed with

significant quantities of oxidisable organic material it has detonated 

unexpectedly5.  After 1 hour, the master was removed from the piranha solution, 

rinsed with deionised water, then rendered hydrophilic by heating to 80 °C for 10 

minutes in 100 vol hydrogen peroxide (50 ml), 37 wt% ammonia solution (50 

ml) and deionised water (250 ml).  The cleaned master was rinsed with copious 

quantities of deionised water, surface dried with nitrogen, then heated to 120 °C 

under vacuum for four hours to remove any traces of water.

The master was put into a PTFE dish with a tight fitting lid, covered with 20 ml

dry dichloromethane and 12 l OTS and left to react for 1 hour 10 minutes.  The 

master was then rinsed with dichloromethane, then ethanol and finally with

water16.

4.3.3 Microcontact Printing 

4.3.3.1 Method 1 

Silicon wafers were cleaned and rendered hydrophilic as described in Chapter 3. 

BMPUS (0.8 ml) was added to dry toluene (32 ml) under nitrogen in a Young�s 

flask.  This BMPUS solution (25 l/ml v/v) could be stored and used again.  A 

small portion of the BMPUS solution was placed in a sample tube, then painted 

onto the surface of the PDMS stamp with a cotton bud.  The stamp was dried

with a stream of nitrogen, then placed on a freshly-cleaned piece of silicon, 

pressed gently to ensure complete contact, and left for between 10 and 120 

seconds.  The patterned wafers were then rinsed twice with toluene, once with 

acetone and finally with ethanol. 
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4.3.3.2 Method 2: Use of a Stamp Pad 

Silicon wafers were cleaned and rendered hydrophilic as described in Chapter 3. 

A featured PDMS stamp and a plain, flat piece of PDMS (the ink pad) were 

plasma-oxidised with oxygen plasma, under varying conditions (see p. 134 for 

details).  BMPUS (5 ml) was added to 20 ml dry n-hexane under nitrogen.  A 

drop of the BMPUS solution was placed onto the ink pad, left for 5 seconds, then 

the excess liquid was blown off the surface, and the ink pad dried with a stream 

of nitrogen gas.  The featured stamp was placed on the ink pad, pressed lightly to 

ensure complete contact, and left for 30 � 60 seconds.  The stamp was then 

immediately placed on a piece of cleaned, surface oxidised silicon, pressed 

lightly and left for 30 � 60 seconds.  The printed wafers were rinsed twice with 

n-hexane, once with acetone and finally with ethanol17.

4.4 Characterisation

Characterisation by ellipsometry, XPS, and tapping mode AFM were performed

as described in Chapter 3. 

4.4.1 Scanning Electron Microscopy

Scanning electron microscopy was performed using a Camscan Mk 2 SEM with 

an X and Y motorised stage, 7 nm resolution in secondary electron (SE) mode,

and SE, BSE and SC detectors.

4.4.2 Optical Microscopy/Differential Condensation 

Images were collected with an Olympus BX50 microscope, using a Prior Lite 

high intensity illuminator (Prior Scientific) as an external light source (NB. This 

only works for relatively low magnifications, where the focal length is high

enough to allow the external light source to illuminate the sample sufficiently). 

Samples were cooled using a Linkam THMS 600 Heating and Freezing Stage 

controlled by Linksys software.  Transitory condensation figures were produced 
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by cooling the samples in the ambient air.  The cooling conditions had to be fine-

tuned for each measurement � presumably due to changes in humidity and air 

temperature near the microscope.

4.5 Results and Discussion 

4.5.1 Preparation of PDMS Stamps 

PDMS is the most commonly used material to make stamps for CP18.  It is

usually purchased in kit form (e.g. Sylgard 184) which consists of PDMS base

(vinyl silane-terminated PDMS prepolymers), and a curing agent/catalyst, which 

contains short PDMS chains (cross-linkers), and a platinum-based catalyst.

When the components are mixed, vinyl silane groups in the prepolymers react 

with silane hydrogens in the cross-linkers in the presence of the platinum 

catalyst, to form a cross-linked PDMS elastomer18, as shown in Scheme 4.1.

PDMS stamps for CP were made by mixing PDMS base and curing agent in a 

10: 1 ratio, degassing to remove air bubbles, then pouring over a master: a 

substrate with suitably sized relief features.  The PDMS was cured at 50 ºC for at 

least 4 hours, although other curing temperatures and times have been used by 

other workers2,18-21.  The flexible nature of the elastomer meant that it could be

released easily from the mould structures22.  Three different structures were used 

as masters to make PDMS stamps.

A wide range of different structured materials have been used as masters to make

stamps for CP.  Some groups used masters without any preparation2,4,23.  Others 

coated masters with alkyl-19,  or fluoro- 18,20,22,24 functionalised SAMs, to ensure 

that the PDMS stamp could be cleanly removed from the master after curing. 

The first two masters were used to make stamps without any preparation (they 

had already been used to produce stamps by other members of the group without 

any problems).  It was decided to prepare the third master by coating it with

OTS.  The master was cleaned and surface-oxidised, then placed in a 1.5 mM
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Scheme 4.1 Structure of PDMS prepolymers, and cross-linking reaction to 

generate PDMS elastomers25
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solution of OTS in dichloromethane.  After this treatment, the master was used to

make good quality PDMS stamps which could be released easily from the mould.

An elastomeric stamp is required for CP.  PDMS can conform to the surface of

the substrate over a large area, even if it is non-planar on the sub-

micrometre scale.  Its low interfacial energy means that most molecules do not 

adhere to, or react with the stamp.  Cross-linked PDMS is elastic and durable, so 

stamps can be released easily from complex and fragile surfaces, and stamps can

be used many times without degradation.  PDMS is homogeneous, isotropic and 

optically transparent down to 300 nm (this allows in situ ultra-violet curing of 

suitable polymers)1,22.  Finally, its surface properties can be readily modified, 

most commonly by plasma treatment22,26, sometimes followed by chemical

attachment of desired functional groups27-29.
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The PDMS stamps were imaged using SEM.  The stamps replicated the features 

of the masters over large areas, although there were defects on both small and 

large scales (cracks, surface roughness, tears and holes).  As the focus of this

project was the production of binary-patterned brushes, these defects were not 

considered to be a problem.  Some examples of typical images are shown in 

Figure 4.2 below.

Feature sizes were measured from the SEM images, and compared to the

reported values for each master.  The measured values were all close to the

reported feature sizes.  For the third master, SEMs were recorded at different

angles, and trigonometry was used to calculate the feature height.  The average 

feature height was calculated to be 933 nm, compared to the reported feature 

height of the master (1040 nm).  The difference is probably due to inaccuracies

in the measurement technique, though PDMS is known to shrink by 

approximately 1 % during curing22.  For this project, the fidelity of replication of 

Figure 4.2 SEM micrographs of PDMS stamps, scale bars as shown.  (a), (b)
Stamp 1, some surface roughness and cracking is visible.  (c) Stamp 2, (d) Stamp 
3.  Scale bars as shown. 
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the master was not important.  What was required was a stamp with features that

could be visualised by AFM and other techniques, and sufficient relief to reduce 

reactive spreading and prevent sagging.

All three stamps were used to produce patterned SAMs and polymer brushes. 

Stamp 1 was used in the early stages of the project, but the features were too 

large to image by AFM.  Patterned SAMs were visualised indirectly by cooling 

samples under ambient conditions, and recording the transitory condensation 

patterns (an example is shown below in Figure 4.3).  Patterned polymer brushes 

produced using this stamp were imaged using SEM (see p. 141).  The second 

stamp was a replica of a blazed diffraction grating, which had a much smaller

pattern size that could easily be visualised by AFM.  However, the angled nature

of the features was felt to be a potential problem: Xia et al.30 used blazed 

diffraction gratings to produce stamps for CP.  They found that attractive forces 

between stamp and substrate resulted in deformation of the stamp, so the printed 

area was much larger than the bare areas.  This would not be ideal for the 

formation of binary-patterned brushes, as excessive pressure and/or contact time

could easily result in loss of the pattern.  The comparatively small size and low 

height of the features could encourage diffusion of silane vapour from the ink 

into the voids between the stamp features, followed by deposition onto areas of 

silicon not contacted by the stamp31,32.  To overcome these potential problems, a

third master was obtained and used to make PDMS stamps with a pattern of

Figure 4.3 Optical micrograph of transitory condensation pattern formed by
cooling a printed SAM under ambient conditions.
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square section lines, period ~ 3 m, height ~ 1 m.  This feature size could be 

easily imaged using AFM and other techniques, and the height of the lines would 

hopefully limit the amount of silane spreading. 

4.5.2 Non-patterned Initiator SAMs 

SAMs are formed spontaneously by chemisorption and self-organisation of 

functionalised long chain organic molecules onto the surface of an appropriate

substrate, for example alkanethiolates on gold substrates, and alkyl 

trichlorosilanes on silicon.  Densely packed, ordered layers can be produced by 

adsorption from solution, exposure to vapour or by CP1,22.

Functionalised SAMs have been used for the growth of polymer brushes by 

several different surface-initiated polymerisation methods.  For example,

Husseman et al.33 used an alkoxyamine-functionalised SAM to initiate NMP of 

styrene, Feng et al.34 synthesised an AIBN-based thiol which was used to grow 

mixed PS/PMMA brushes by photoinitiated free radical polymerisation.

However, ATRP has become the most popular method for brush growth, as it is

easier to synthesise initiator-functionalised thiols or silanes35.  For example, -

mercaptoundecyl bromoisobutyrate, HS(CH2)11OCOC(CH3)2Br, has been widely 

used for the synthesis of unpatterned36-38, patterned39,40 and binary patterned 

polymer brushes41 on gold substrates.

As discussed in Chapter 3, it was decided to focus on the synthesis of polymer

brushes on silicon substrates by ATRP from BMPUS, an -bromoester

functionalised alkyltrichlorosilane.  In addition to this initiator, other similar

silanes have also been used for the synthesis of unpatterned42-50 and 

patterned13,17,51 polymer brushes.  The reaction of alkyltrichlorosilanes with �OH 

terminated substrates is very sensitive to the deposition conditions32,52, and the

trifunctional nature of the alkyltrichlorosilane group also means that there is 

more than one possible surface structure (see p. 23).
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Unpatterned BMPUS SAMs were produced using a common literature method:

silicon wafers were cleaned and rendered hydrophilic, then dried and exposed to 

a dilute solution of the initiator silane in toluene, in the presence of

triethylamine43,45.  Several studies have suggested that alkyltrichlorosilane SAMs 

form by hydrolysis of the trichlorosilane groups and polymerisation of the 

resulting silanol groups to produce a cross-linked siloxane network, without 

significant bonding to surface �OH groups14,15,52.  However, addition of an amine

was found to alter the process: the amine forms strong hydrogen bonds to surface 

�OH groups, increasing their nucleophilicity, and allowing them to react directly 

with the silicon of the alkyltrichlorosilane52.  The reaction was performed under 

�semi-dry� conditions: dry solvents were used, and the silicon substrates were 

dried at 120 ºC under vacuum (though this may still leave 1 � 2 monolayers of

residual water on the surface53).  The substrates were then left to react with the

initiator solution exposed to a limited amount of ambient, moisture-containing, 

air.  Under similar conditions, Edmondson and Huck43 found that adding 

triethylamine to the initiator solution improved the quality of surface-attached

layers of a similar molecule.  Without base, large particles of cross-linked 

siloxanes were deposited on the surface.  The method used was found to produce 

a smooth initiator layer (an example is shown in Figure 4.4), which could then be 

used to produce polymer brushes (see Chapter 3 for details of brush growth). 

Some samples were prepared using different methods: silicon substrates were

also oxidised by exposure to UV/ozone for 30 minutes, then dried and exposed to 

the initiator solution as above.  The drying step could be omitted without any 

apparent change in the quality or function of the initiator SAM (this fits well 

with the discussion above).  Finally, an initiator layer was also produced by 

immersing freshly oxidised silicon in a solution of 1.25 l initiator in 10 ml cold 

toluene, and leaving it to react for 5 � 15 hours in the freezer50.  This also gave a 

smooth active initiator layer, although it was approximately 0.8 nm thicker than 

the SAMs produced at room temperature.
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Figure 4.4 Tapping mode AFM of BMPUS SAM, 2 x 2 m.  Rms 0.678 nm, 
Ra 0.345 nm.

The XPS of BMPUS-coated silicon is shown in Figure 4.5 below.  It revealed the 

presence of silicon, oxygen (mainly from the substrate), carbon and bromine.

The ratio of C: Br was 25: 1, higher than 15: 1 predicted from the structure of 

BMPUS.  However, bromine-terminated monolayers are known to be susceptible 

to x-ray-induced damage54, which could explain the discrepancy.  The high 

resolution spectrum of the C 1s region was curve-fitted to four different carbon 

environments in a ratio of 9: 1: 2: 1.  These can be assigned to saturated 

hydrocarbon (C1, chain CH2 groups and methyl groups adjacent to Br), C*-C-O-

C(=O) (C2), C*-O-C(=O) and C(=O)-C*-Br (C3) and �O-C(=O) (C4)  (see 

Figure 4.5 c) for details of the assignment of the different environments).  The 

structure of BMPUS has 11 aliphatic chain carbons (C1).  The lower than 

predicted abundance of C1 is a common feature of ordered systems such as

SAMs.  The signal for carbons nearer the substrate is somewhat attenuated 

compared to the signal from surface carbons due to the lower probability of the 

photoelectrons escaping the surface without undergoing an energy loss event55.
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Figure 4.5 XPS of BMPUS SAM on silicon; a) survey scan, b) magnified
view of Br 3d region of survey scan, c) high resolution spectrum of C 1s region 

4.5.3 Patterned SAMs and Polymer Brushes

The PDMS stamps were used for CP of BMPUS. CP of simple

alkyltrichlorosilanes has been well studied31,32,56-58.  If a pattern of a 

functionalised silane is required (e.g. for the synthesis of patterned polymer

brushes), the most common approach is to print a solution of a simple

alkyltrichlorosilane, such as OTS5,31,32,51,56-60, then �backfill� the unpatterned

areas with a solution of a second alkyltrichlorosilane with the desired functional 

group5,51,59.  However, this approach would prevent the production of binary 

patterned polymer brushes, so it was necessary to print BMPUS.  There are 

examples in the literature of CP of functionalised alkyltrichlorosilanes13,17,

including examples of the printing of shorter chain -bromoesters, and their use

to produce patterned polymer brushes13,17; however, no examples of the CP of

BMPUS were found.  As discussed in Chapter 1, the formation of 
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alkyltrichlorosilane SAMs by CP is very sensitive to the deposition conditions,

including the amount of water present in the reaction environment (in the 

solvents and reagents, on/in the stamp and in the ambient air), the temperature,

the type and cleanliness of the substrate, the solvent used in the ink, the 

concentration of the active molecule in the ink32,58, and the contact time32.  Many 

of these variables are difficult to control, and can vary widely between different 

laboratories32 (or even on different days).  This makes optimisation of conditions 

something of a difficult and black art!  Because of this, it was necessary to try a 

range of different conditions to attempt to optimise the process.  After growth of 

the first brush, the desired result was a clearly patterned surface, made up of 

smooth, dense polymer brush, with little or no brush outside the printed regions.

In initial experiments, a solution of BMPUS in dry toluene was painted onto the

stamps with a cotton bud.  The stamp was either left until it appeared dry, or 

dried with nitrogen for 30 s, then applied to a prepared piece of silicon for 

varying contact times.  Excess reagents were removed by rinsing in toluene, 

acetone and ethanol.  Printing was tried with concentrations of �ink� between

0.15 % and 20 % (v/v), and contact times between 10 and 120 seconds.  Samples

were then used to grow PMMA brushes, which were analysed by AFM.

The results of these experiments were disappointing: the most convincing 

patterns were produced by printing 2.5 % (v/v) initiator solution for 60 s. 

Although the samples were definitely patterned, with linear features with a

period of approximately 800 nm, the patterns were faint and obviously made up 

of discontinuous islands of material (up to 25 nm high).  One of the best 

examples is shown in Figure 4.6. 

It was thought that the �islands� were formed by deposition of cross-linked 

siloxane particles produced by polymerisation of BMPUS on exposure to 

moisture from the atmosphere and stamp.  These features were then amplified by 

brush growth from the unevenly distributed, dense initiator regions. 
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Figure 4.6 Tapping mode AFM of patterned PMMA brush, 20 x 20 m.
Conditions: Stamp 2, 2.5 % initiator in toluene, printing time 60 s.  PMMA 
brush, reaction time 8 hours (for PMMA brush growth conditions see Chapter 
3).

A second approach was tried, based on a method used to print a similar

alkyltrichlorosilane; 2-bromo-2-methylpropionic acid 3-trichlorosilanylpropyl 

ester17.  5 l of BMPUS was dissolved in 20 ml dry n-hexane.  A drop of this 

solution was placed on a flat piece of PDMS (the ink pad).  After 5 � 10 seconds,

the excess material was blown off the surface with a stream of nitrogen.  The

featured stamp was placed on the ink pad, pressed very gently to ensure 

conformal contact, and left for 30 s.  The featured stamp was then transferred to a 

prepared piece of silicon, lightly pressed, and again left for 30 s17.  This resulted 

in very faint, but apparently even, patterns (not shown).

The low brush thickness was not surprising considering the extremely low 

concentration of the initiator solution (equivalent to 0.25 l/ml or 0.025 % v/v) � 

100 times more dilute than the �ink� which gave the patterns in Figure 4.6.  It

was decided to try oxidising the stamp and ink pad with an oxygen plasma.  This

is used to increase the hydrophilicity of PDMS to allow hydrophilic �inks� to wet

the stamp, and improve the quality of printing26-29.  Plasma oxidation acts on the 

siloxane chains of the PDMS, producing a thin, glassy silica-like layer at the

surface26,27,29.  The �ink� used is hydrophobic, so this preparation should not be

necessary to wet the surface of the PDMS.  It is more likely that the glassy silica
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layer at the surface acts as a barrier, preventing loss of the minute amounts of 

BMPUS by diffusion into the stamp, and so increasing the transfer of initiator to 

the silicon surface.  This method gave clearly patterned polymer brushes: an 

example is shown in Figure 4.7.

In the first experiments the PDMS stamp and ink pad were plasma-oxidised for

120 s at a power of 300 W at 0.8 Torr.  This was loosely based on conditions

found by Langowski and Uhrich26 to prevent the transfer of low molecular 

weight siloxane fragments to surfaces and retain a smooth or rippled PDMS 

surface with no cracks.  The plasma oxidiser used in these experiments was not

designed for use with organic substrates, and it was not possible to access the gas 

pressures used in the reference; it was also difficult to predetermine the 

parameters (except exposure time). The relatively long exposure time did 

produce patterned brushes, but several samples show defects which appear to be 

due to cracking of the glassy layer on the surface of the stamp (some examples

are shown in Figure 4.8).  An attempt was made to investigate the effect of 

different plasma oxidation conditions. Pieces of PDMS were exposed to an 

oxygen plasma for different lengths of time (as discussed above, it was difficult 

to control the other parameters), then contact angles were measured.  Untreated

Figure 4.7 Tapping mode AFM of PMMA brush, 10 x 10 m.  Conditions: 
ink pad method, with a plasma-oxidised stamp, plasma exposure time 120 s. 
PMMA brush: reaction time 10 hours. 
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PDMS has an average contact angle of ~ 73º.  Exposure to plasma for as little as 

10 seconds was found to decrease the contact angle by ~ 20º.  The contact angle 

tended to decrease further with increasing exposure time, although this was not a 

linear trend, and there were some exceptions.  It was anticipated that a shorter

plasma oxidation would give a thinner, and hopefully more flexible, glassy 

surface layer.  Patterned polymer brushes were successfully produced using

Figure 4.8 Tapping mode AFMs of patterned PMMA brushes showing 
cracking and hillocks.  a), b) stamp and ink pad plasma-oxidised for 120 s, n-
hexane method, stamp in contact with stamp pad 30 s, stamp in contact with Si 
30 s, PMMA brush grown for 7 hours , b) height profile (location shown by white
line in a), height difference between markers: 2.97 nm, maximum height 
difference ~ 6.73 nm.  c) three-dimensional view of a different sample, ink pad 
and stamp plasma-oxidised for 120 s, n-hexane method, stamp in contact with 
stamp pad 30 s, stamp in contact with Si 30 s, PMMA grown 11 hours. 
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stamps which were plasma-oxidised for 20 s, and there was no sign of surface 

cracking.

A second defect, which can also be seen in Figure 4.8, was the formation of 

raised �rims� at the edges of the printed regions.  Imperfect casting and solvent-

induced swelling means that PDMS stamps are not exact replicas of the master,

and usually have rounded edges.  If there is any excess ink it undergoes capillary 

condensation towards the edges of the raised features of the stamp, resulting in

the formation of rims at the edges of the printed features19.  In this case, the

excess BMPUS can then react with atmospheric moisture, generating a stable, 

cross-linked hillock which was still visible after the growth of polymer brush.  It 

seems surprising that these formed considering the low concentration of the 

active molecule in the ink.  It is possible, however, that the higher concentration 

of initiator results in a higher grafting density, and so thicker brush (more

stretched polymer chains) at the edges of the pattern. 

Excess ink and contact times can lead to diffusion/spreading of the 

trichlorosilane into regions not contacted by the stamp32.  This �reactive

spreading� was observed at longer contact times (e.g. 120 s).  The process is 

quite complex, with several different mechanisms operating at the same time.

Delamarche et al.61 described the processes involved as part of work on 

optimising CP of alkanethiols on gold � the reader is referred to their work for a

fuller explanation. 

SEM was also used to image patterned brushes (see Figure 4.9).  The patterns 

could be seen clearly, but there was extensive cracking and islands of material

outside the printed regions.  It is worth noting that the low height of the patterned 

brushes (from the AFM images) is around the minimum height resolution of the 

SEM, so it was not possible to produce clearer images.

Printing was tried with different plasma oxidation conditions, ink concentrations 

and contact times, to try to find conditions which would give a defect-free 

initiator layer that could produce patterned polymer brushes.  A balance was
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Figure 4.9 SEM images of patterned PMMA brushes, scale bars as shown. 
(a), (b) large scale patterns produced using stamp 1 showing cracking and 
reactive spreading, (c) small scale pattern produced using stamp 2. 

needed between too much ink, leading to hillock formation and brush growth 

outside the printed areas, and too little ink, giving a discontinuous layer made up 

of islands of brush.  Another factor is the amount of water in the reaction 

environment.  Water plays an important role in the formation of

alkyltrichlorosilane SAMs.  Insufficient humidity leads to lower film growth 

rates and lower mass coverage58, but excessive moisture can lead to cross-linking 

of the initiator in solution.  Humidity was not controlled or monitored in these

experiments, which were performed in an open laboratory, so this could explain 

some of the variation between samples.

A final piece of the puzzle was the low thickness of the patterned polymer

brushes � the maximum thickness was < 5 nm, compared to ~ 15 nm for non-

patterned brushes grown for similar reaction times.  It is possible that the low 

concentration of BMPUS in the ink produced a homogeneous, but submonolayer 

coverage of initiator.  When exposed to polymerisation conditions, the low
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Figure 4.10 Different chain morphologies produced by polymer growth from 
complete and incomplete initiator SAMs36.

density of initiating sites meant that the polymer chains did not adopt the highly 

stretched conformation of a true polymer brush, but instead spread across the 

surface in a �pancake� morphology.  Similar effects have been observed for 

polymer brushes grown from SAMs where the initiator is diluted by a non-

functionalised analogue36.  This is shown schematically in Figure 4.10. 

4.6 Summary

The CP of alkyltrichlorosilanes on oxidised surfaces is more difficult than

printing thiols on gold.  Film formation in CP is affected by many variables,

including the amount of water present in the reaction environment, temperature,

type and cleanliness of substrate, solvent, concentration of the ink32,58, contact 

time32 and method used (such as use of a ink pad)19.  It proved impossible to 

control and optimise all these factors to reliably produce defect-free patterns of

dense polymer brush.  This prevented further development towards the 

production of binary-patterned brushes.  Zhou et al.41 used an analogous 

approach to produce up to quaternary-patterned brushes on gold substrates. -

Mercaptoundecyl bromoisobutyrate was printed, and used to grow polymer

brushes by ATRP.  Sequential printing and brush growth with different stamps

and monomers produced up to quaternary-patterned brushes. 
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A further problem, not anticipated at the start of the project was the need to 

activate/oxidise the silicon to provide sufficient silanol groups for the initiator to

interact with.  Polymer brushes could not be grown from silicon wafers that were

not oxidised by RCA or UV/ozone before reaction with the initiator solution.

However, exposure of a patterned brush to such oxidising conditions would 

probably alter the structure of the polymer, or remove it.  It is possible that the 

surface activation of the silicon may be retained through the first polymerisation,

allowing backfilling with BMPUS.  Alternatively, PS is known to be more

resistant to air plasma etching than PMMA62, and may be able to withstand brief 

exposure to reactivate the silicon surface.  A final option would be to use two 

different polymerisation techniques.  For example, a pattern of ATRP initiator

could be produced by CP, then a NMP initiator-functionalised silane could be 

used to backfill the surface.  A binary-patterned brush could then be produced by 

sequential ATRP and NMP.  This approach was used by Zhao and He63 to 

produce mixed PMMA/PS brushes, and a related approach has since been used to 

synthesise binary-patterned brushes, although the patterned initiator layer was 

not produced by CP9.
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Chapter 5

Synthesis of Binary-Patterned Polymer Brushes 

5.1 Introduction

The majority of methods for the synthesis of binary-patterned polymer brushes involve 

at least one photolithographic step1-7.  The previous chapter describes attempts to

synthesise a binary-patterned brush on silicon via direct microcontact printing of 

BMPUS, a silane-functionalised ATRP initiator.  This approach was unsuccessful due

to major difficulties with CP of BMPUS.  In view of this, it was decided to collaborate

with Prof. Graham Leggett’s group to try to develop a photodeprotection based method

for the synthesis of binary-patterned polymer brushes. 

The use of photolytic protecting groups was developed to allow the synthesis of solid 

state arrays of biomolecules such as peptides8 and DNA9,10.  Ahmad et al.11 developed 

this approach to produce photopatternable surfaces.  {N-[2-(2-Nitrophenyl)propan-1-

oxycarbonyl]-3-aminopropyl}triethoxysilane (NPPOC-silane) forms SAMs on silicon. 

Exposure to ultra-violet light removes the NPPOC group, revealing an amine-

terminated layer.  Irradiation through a mask results in the production of a patterned 

NPPOC-/amine-terminated SAM. 

Several groups have synthesised surface-bound initiators for ATRP by a two step

method: first an (aminopropyl)triethoxysilane layer is allowed to self-assemble on 

silicon substrates, then the amine-terminated layer is reacted with suitable bromoester-

functionalised acid halides or carboxylic acids to generate an -bromoester-terminated

surface which can initiate brush growth12-17.  The amine-terminated SAM produced by 

deprotection of NPPOC-silane can be converted to an ATRP initiator by an analogous

reaction with 2-bromoisobutyryl bromide. This gives an alternative route to the 

synthesis of binary-patterned polymer brushes, using the brush growth reactions

discussed in Chapter 3. 
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The results presented in this chapter show that this approach can be used to produce 

binary-patterned PS/PMMA brushes (see p. 160 for the reaction scheme).  This 

represents a proof of concept experiment: most of the reactions were not fully

optimised, so further work would be needed to obtain good quality binary patterned

polymer brushes.  The samples were analysed by AFM, contact angles, XPS and SIMS. 

5.2 Materials

Methyl methacrylate, styrene, copper(I) chloride, copper(I) bromide, 2,2’-bipyridine

and CuBr2(dnNbpy)2 were prepared/synthesised as described in Chapter 3. 

Anhydrous toluene, THF and DMF were obtained from a Solvent Purification System

(Innovative Technology Inc., SPS-400-6 and SPS-200-6).  Typical water contents were 

10-16 ppm for toluene, 23-27 ppm for THF and 11 ppm for DMF. 

All other reagents were obtained from Aldrich and used as received. 

5.3 Experimental Methods 

NPPOC-silane was synthesised by Lu Shin Wong and NPPOC-silane SAMs were

prepared by Shahrul Ahmad.  Photodeprotection of NPPOC-silane SAMs, to generate 

patterned and homogeneous amine-terminated SAMs was carried out by Shahrul

Ahmad.  All other synthesis was performed by the author. 

PMMA and PS brushes were synthesised and dehalogenated using the methods

described in Chapter 3.  All reactions were performed in silver foil-covered carousel

tubes (to prevent deprotection of NPPOC-silane coated areas), without stirring. 

5.3.1 Synthesis of NPPOC-protected SAMs 

{N-[2-(2-Nitrophenyl)propan-1-oxycarbonyl]-3-aminopropyl}triethoxysilane was

synthesised according to the published method8,11.  Pieces of silicon (or glass) were 
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cleaned and rendered hydrophilic by treatment with piranha solution for 45 minutes

followed by RCA cleaning at 80 ºC for 40 minutes (see Chapter 3 and 4 for details of

RCA and piranha solution).  The cleaned silicon was then rinsed with ultrapure water

and dried in an oven at 120 ºC for at least 24 hours. 

Cleaned substrates were put into a Schlenk tube, evacuated to 10 mbar, then refilled 

with dry nitrogen.  The cycle was repeated twice more to ensure complete removal of 

oxygen and water.  A 1 mM solution of NPPOC-silane in dry toluene was added to the 

Schlenk tube by cannula (enough to cover all the pieces of silicon/glass).  The substrates

were left to react for 48 hours, at room temperature, in the dark.  NPPOC-silane coated 

wafers were rinsed with toluene and ethanol, then dried in a vacuum oven at 120 ºC for

45 minutes.  The NPPOC-functionalised wafers were light-sensitive, so they were

stored in the dark to minimise degradation. 

5.3.2 Photodeprotection of NPPOC-silane SAMs 

NPPOC-silane coated wafers were exposed to light from a 325 nm laser at a power of 

11 mW for 3 minutes (area of irradiation 1.78 cm2), then rinsed with ethanol.  Previous 

work indicated that this was sufficient to completely remove the NPPOC protecting 

group, leaving an amine-terminated SAM11.

Patterned samples were produced by placing 1500 mesh electron microscope grids on 

the sample before irradiation.  A quartz lens was used to hold the grids in intimate 

contact with the sample surface. 

5.3.3 Synthesis of 3-(2-Bromoisobutyramido)propyl(triethoxy)silane

SAMs

Amine-SAM or patterned amine/NPPOC-SAM coated substrates were placed shiny face 

down in clean dry carousel tubes.  The tubes were covered with silver foil to exclude

light, and sealed with rubber septa.  Each tube was then flushed with nitrogen for at 

least 10 minutes (using needles as gas inlets and outlets).
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Triethylamine (0.30 ml, 2.1 mmol) and dry THF (20 ml) were added to a round-

bottomed flask, and degassed by bubbling nitrogen through the liquid for 10 minutes.

2-Bromoisobutyryl bromide (0.25 ml, 2.0 mmol) was then added by syringe.  The 

reaction mixture immediately became cloudy.  Then 3 – 5 ml of this solution was added

to each carousel tube and left to react at room temperature for 3 hours.  The wafers were 

removed from the reaction mixture and sequentially rinsed with THF, water, methanol

and acetone.

5.4 Characterisation

Characterisation by contact angles, XPS, spectroscopic ellipsometry, and tapping mode

AFM was performed as described in Chapter 3. 

5.4.1 Lateral Force Microscopy

LFM AFM images were acquired using a Multimode AFM with an Extended

Nanoscope 3A controller and Nanoscope V5.12r4 software.  The images presented in 

this thesis were produced using Nanoscope V6.11r1 software.  LFM images were 

produced in contact mode, using silicon nitride tips with four cantilevers (Veeco, NP) 

with spring constants of 0.06-0.58 N/m, and tip radii of 20 nm.  To maximise the 

sensitivity of the measurement, samples were imaged using the long, thin cantilever. 

5.4.2 SIMS

SIMS spectra and images were produced using an ION-TOF ToF.SIMS 5 instrument 

with a field emission bismuth cluster ion source with a cycle time of 100 ns.  For each 

sample, positive and negative ion spectra were recorded at high mass resolution.

Images (150 m2) were produced using burst mode, which has high lateral resolution, 

but lower mass resolution.  To limit sample damage, each spectrum/image was recorded

on a different part of the sample, and the total ion dose for each area was limited to 1 x 

1012 cm-2 18.  The SIMS instrument was operated by Tracie Whittle.
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5.5 Results and Discussion 

The use of photolabile protecting groups is well established in nucleic acid, 

carbohydrate and peptide chemistry.  Controlled synthesis of well-defined sequences of 

multifunctional biomolecules requires that certain groups are prevented from reacting.

This is done by the use of protecting groups: chemicals that selectively bind to, and 

block reaction of certain functionalities within a molecule.  The protecting group must 

be quickly and easily removable, under conditions that do not affect the biomolecules,

to allow subsequent reactions of the protected functionality.  o-Nitrobenzyl derivatives 

have been used as protecting groups for hydroxyl, amino, thiol and carbonyl

functionalities.  The 2-nitrophenylpropyloxycarbonyl (NPPOC) group has been found to 

undergo rapid photodeprotection compared to 2-(o-nitrophenyl)ethoxycarbonyl 

(NPEOC) derivatives19.  NPPOC has been used as a protecting group for nucleoside 5’-

hydroxyls9,19, allowing improved synthesis of DNA microarrays compared to 5’-O-(( -

methyl-2-nitropiperonyl)oxy)carbonyl (MeNPOC) protected phosphoramidites9,10.

Bhushan et al.8 used NPPOC as a protecting group for the amine group of a series of

amino acids.  They found that the rate of NPPOC photolysis was at least twice that of 

nitroveratryloxycarbonyl (NVOC) protected amino acids, opening opportunities for 

improved solid phase peptide synthesis. 

NPPOC undergoes rapid efficient photodeprotection by a mechanism that gives an 

alkene and carbon dioxide as by-products.  This makes it more suitable for the 

protection of amine functionalities than other protecting groups such as NVOC and

MeNPOC, which generate carbonyl compound by-products which can react with the 

deprotected amine to form imines (unless a reactive carbonyl scavenger is added)11.

Ahmad et al.11 developed the use of NPPOC-protected aminosilane monolayers for

micro and nanopatterning on silicon surfaces.  For this project, NPPOC-silane was 

synthesised according to the published method.  NPPOC-silane SAMs were produced

by immersing cleaned, surface-oxidised silicon or glass substrates in a 1 mM solution of 

NPPOC-silane in dry toluene under nitrogen in the dark.  Previously published work

showed that a limiting composition and morphology was reached after 48 hours.  The

resulting layer was smooth (rms roughness < 0.5 nm) with a contact angle of 75º.  XPS 

analysis revealed the presence of carbon, silicon, nitrogen and oxygen.  In particular, the 
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high resolution spectrum of the N 1s region showed two peaks at 400.0 and 406.2 eV, in 

approximately equal amounts.  These signals were assigned to the amine and nitro 

groups respectively.  Photolysis of the NPPOC group was monitored by comparing the

size of the amine and nitro N 1s peaks by XPS, and by contact angles.  For samples

irradiated with a UV laser at a wavelength of 325 nm, a limiting value was reached after

3 minutes of light exposure11.

The XPS of the deprotected amine-silane SAM is shown in Figure 5.1.  The sample

analysed was on a glass slide, explaining the presence of sodium, zinc, phosphorus and 

aluminium in the survey scan, and potassium near the C 1s region.  The C: N ratio was 

6.5: 1, which is more carbon-rich than predicted.  The high resolution C 1s spectrum 

revealed the presence of four different carbon environments in a ratio of 3: 1: 0.2: 0.2. 

The main peaks, C1 and C2, can be assigned to saturated hydrocarbon (e.g. C-C) and 

–CNH2 respectively.  According to the expected structure of the SAM, these should

occur in a 2: 1 ratio, not the 3: 1 ratio actually found.  The remaining peaks were only

present in small quantities: C3 has a chemical shift that fits the presence of an N-C-O 

linkage.  This group is not present in amine-silane, but is present in the NPPOC-silane 

starting material.  C4 could be due to a -C(=O)O group, which is also present in 

NPPOC-silane, although it is also possible that this is not a true peak, and is caused by 

noise leading up to the K 2p peak.  The spectrum suggests that the surface was mainly

covered by an amine-terminated layer, but that deprotection was incomplete, and a 

small amount of NPPOC-silane remained. This would also explain the excess amount

of saturated hydrocarbon (C1).

Ahmad et al.11 used XPS to follow the photolysis of NPPOC-silane by comparing the

ratio of the N 1s peaks due to –NO2 (406 eV) and –NH2 (400 eV) with increasing UV 

exposure times.  Even after 350 seconds exposure at 364 nm, some residual –NO2 was 

detected.  This was thought to be because there was some degree of multilayer

formation, screening some of the nitro groups from UV exposure.
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Figure 5.1 XPS of amine-SAM; a) Survey scan, b) high resolution spectrum of N 1s 
region, c) high resolution spectrum of C 1s region . 

In Figure 5.1 b), the high resolution N 1s spectrum has a peak at 400.5 eV, which is 

consistent with an amine group.  Unfortunately it does not show high enough binding 

energies to check the presence of nitro groups.  However, the XPS of the bromo-silane

SAM (shown in Figure 5.2) does show a second nitrogen environment, at approximately

406 eV, which gives more evidence for incomplete removal of the NPPOC group. 

5.5.1 Synthesis of 3-(2-Bromoisobutyramido)propyl(triethoxy)silane

SAMs

In Chapters 3 and 4, a surface-bound ATRP initiator was produced by allowing an -

bromoester-functionalised silane (BMPUS) to self-assemble on the substrate.  An 

alternative approach is a two-step process to synthesise the initiator: 3-

(Aminopropyl)triethoxysilane was allowed to react with a silicon substrate (using

solution or vapour methods).  The amine-terminated surface can then be reacted with 2-
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bromoisobutyryl bromide14, 2-bromo-2-methylpropionic acid12,13 or 2-bromopropionyl

bromide15-17 in non-polar solvents, in the presence of a base, to produce an -

bromoester-terminated SAM that can initiate ATRP.  This approach was used to convert 

amine-silane into an ATRP initiator.  Deprotected amine-silane coated silicon wafers

were reacted with 2-bromoisobutyryl bromide and triethylamine in dry THF for 3 hours.

After addition of 2-bromoisobutyryl bromide, the reaction mixture became cloudy – this 

was thought to be due to reaction of 2-bromoisobutyryl bromide with traces of water,

generating a precipitate of Et3N+Br-.  The reagents were present in massive excess 

compared to the number of surface-bound amine groups, so this side reaction did not 

effect the conversion, but it did necessitate extensive rinsing to ensure that no solid 

residue was left on the bromoester-silane coated substrates.

After reaction with 2-bromoisobutyryl bromide, the contact angle changed from 52 ± 4º 

for amine-silane, to 63 ± 7º.  The XPS of the -bromoester-silane SAM (shown in 

Figure 5. 2 below) had peaks due to carbon, nitrogen, oxygen, bromine, silicon (and 

sodium – probably indicating some surface contamination).  As discussed in Chapter 2, 

XPS probes approximately the top 10 nm of the sample20, resulting in the observation of 

silicon and oxygen signals from the oxidised silicon substrate.  The carbon, nitrogen, 

and bromine peaks are present in an 11.7: 1: 0.16 ratio.  The predicted structure should 

give a ratio of 7: 1: 1.  The sample is more carbon-rich than expected, which is difficult

to explain, especially as both the precursors (NPPOC-silane and amine-silane) have 

similar, or lower C: N ratios.  The relatively low abundance of bromine suggests that the 

reaction is incomplete, with only ~ 20 % of the amine groups reacting with 2-

bromoisobutyryl bromide.

The high resolution C 1s spectrum is also shown below.  There are four different carbon 

environments in a ratio of 3.2: 1: 0.3: 0.3.  The first two peaks can be assigned to 

saturated hydrocarbon (e.g. C-C) and –CNH2 respectively (as in Figure 5.1).  C3 can be 

assigned to the quaternary carbon adjacent to the bromine atom (or alternatively to an 

N-C-O linkage).  C4 fits the amide carbon, or possibly a –C(=O)O group (the

alternative assignments of these peaks represent groups found in the starting material,

NPPOC-silane).  The low intensity of these peaks compared to C1 and C2, and the

lower than predicted amount of C1, again suggest that the reaction with
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Figure 5.2 XPS of bromoester-silane SAM; a) survey scan, b) high resolution scan
of N 1s region, c) high resolution scan of C 1s region, d) magnified view of Br 3d region 
of survey scan. 

2-bromoisobutyryl bromide is incomplete. This low yield seems unlikely considering 

the large excess of reagents used, but it is possible that reaction of bulky 2-

bromoisobutyryl bromide groups with the surface-bound amine groups is sterically 

hindered, or some interaction with the by-products of the reaction reduces their 

reactivity.  A longer reaction time or more stringent conditions may help to improve the 

efficiency of the reaction.  It is also known that bromine-terminated SAMs are 

susceptible to x-ray damage21, which could explain some of the discrepancy in intensity 

for the Br 3d peak. 

5.5.2 Growth of PMMA Brushes From 3-(2-Bromoisobutyramido) 

propyl(triethoxy)silane SAMs 

The bromoester-silane coated wafers were then used to grow PMMA brushes, using the 

method described in Chapter 3.  The pieces of silicon (and glass) used in this part of the
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project were too small (3 – 4 mm2) to use wire holders and the 8-necked flask, so 

initiator-coated substrates were placed face down in carousel tubes, covered with the 

reaction mixture and left to react without stirring, for the desired time.  PMMA brush-

coated wafers were then analysed by measurement of contact angles, ellipsometry,

AFM and XPS. 

There was a small change in contact angle from the -bromoester-silane SAM (63 ± 7º) 

to PMMA brush (62 ± 5º), but, allowing for the experimental errors, this was not 

significant.  The contact angle compares well with that of PMMA brush grown from 

BMPUS (59 ± 2º).  PMMA brushes grown from bromoester-silane were much thinner

than brushes grown from BMPUS under equivalent conditions, and the increase in 

brush thickness with time was not linear (shown below in Figure 5.3).  In addition, there 

also appeared to be considerable variation in the thickness of the bromoester-silane

layer between samples.  However, only a small number of samples were measured, and 

they were very small (approximately the same size as the ellipsometer spot size), which 

could lead to errors in measurement.  Further work would be needed to confirm these 

observations.  If a lower thickness is consistently observed, this could be due to the low 

concentration of initiator groups on the surface (see p. 154).  Calculations of the cross-

sectional area of individual polymer chains in a brush suggest that each polymer chain
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Figure 5.3 Uncorrected thickness of PMMA brush grown from bromoester-silane 
initiator.  Error bars indicate the MSE.
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blocks 10 – 12 initiator molecules22,23.  This suggests that brushes grown from a SAM

containing 10 % initiator groups should have the same thickness as those grown from 

100 % initiator. 

Jones et al.22  and Bao et al.24 investigated the effect of initiator density on brush

thickness by growing polymer brushes from initiator SAMs diluted with an unreactive

molecule.  Both groups found that a lower initiator density resulted in lower brush 

thickness after equivalent reaction times.  Low conversion of amine-silane to

bromoester-silane is equivalent to a mixed SAM with a low percentage of initiator 

groups, resulting in a lower brush thickness (see Figure 4.10, p. 142).

AFM showed that the brush surface was relatively smooth, with an rms roughness of ~ 

1.6 nm (not shown).  There were more dust particles/raised features visible than on the

PMMA brushes discussed in Chapter 3 (see p. 103), but no dramatic differences in 

appearance.  These features were thought to be residues of material deposited during 

polymerisation, as the reaction mixture was not stirred.

The XPS of a bromoester-silane initiated PMMA brush 4.0 nm thick is shown in Figure 

5.4.  The survey scan has peaks due to silicon, oxygen, carbon, nitrogen and bromine

(and sodium).  In contrast to the XPS of PMMA brush grown using BMPUS as the 

initiator (see p. 106), chlorine was not detected.  The Br 3d area is split into two peaks:

the higher binding energy peak at ~ 74 eV suggested the surface was contaminated with 

BrO3 or aluminium (although it is not clear where either of these species would have 

come from).  A small amount of nitrogen was detected, presumed to be from the amine 

linkage within the initiator (and any unreacted NPPOC- and amine-silane).

The high resolution spectrum of the C 1s region corresponds with the previous spectrum 

for a PMMA brush, and with other examples of PMMA films20.  Curve-fitting reveals 

four carbon environments in an approximate 2: 1: 1: 1 ratio, which can be assigned to 

saturated hydrocarbon (C-C), -C*-C(=O), C*-O-C(=O) and ester carbon (-C(=O)OR 

respectively, as shown below in Figure 5.4. 
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Figure 5.4 XPS of PMMA brush initiated by bromoester-silane; a) survey scan, b)
high resolution scan of N 1s region, c) high resolution scan of C 1s region, d) 
magnified view of Br 3d region of survey scan.. 

There are clearly differences between PMMA brushes grown from bromoester-silane

and BMPUS.  It is likely that at least one of the reactions used to prepare bromoester-

silane does not go to completion, which may explain the difference in thickness.

Nevertheless, it is possible to synthesise PMMA (and PS) brushes from bromoester-

silane.  Optimisation, and a better understanding of this process could be a subject for

further study, but it was decided to proceed with the production of patterned and binary-

patterned polymer brushes. 

5.5.3 Patterned and Binary-Patterned Polymer Brushes 

As discussed on p. 28, binary-patterned polymer brushes have been synthesised by a 

variety of methods, most of which use photopatterning in some way1,3-7,25.  One

approach is to produce a homogeneous brush, then use UV light to selectively etch (or

chemically alter3) the first brush, before growing a second brush4,6,7.  However, etching
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a thick polymer brush may be slow and is certainly wasteful.  An alternative method is

to grow a patterned brush by UV-induced free radical polymerisation through a mask, 

leaving areas of initiator that can later grow a second polymer brush5.  However this 

method can only be used with (uncontrolled) free radical polymerisation and requires 

the masked sample to be immersed in the reaction mixture, which may cause problems.

In addition, active initiator groups remain within the first brush.  To prevent unwanted 

growth, it was found to be necessary to ensure that the first brush adopted a collapsed 

conformation during the second polymerisation. This could either be done if the first

polymer was not soluble in the reaction mixture for the second polymerisation, or by 

chemical modification of the first brush5, but it limits the combinations of polymer

brushes that can be produced by this method.

The use of photopatternable NPPOC-silane SAMs should allow the development of a 

more general method for the synthesis of binary-patterned brushes.  The proposed 

reaction scheme is shown in Scheme 5.1.

5.5.3.1 Synthesis and Modification of Patterned SAMs

To produce patterned NPPOC-/amine-silane surfaces, 1500 mesh copper electron 

microscope grids were used as masks.  They were placed onto a NPPOC-silane coated

silicon substrate and held in contact with the surface by a quartz lens.  The system was 

exposed to UV laser light for 3 minutes, then the side products were removed by a quick 

rinse in ethanol.  The grids used give a pattern of squares with a period of 

approximately 12 m.

Tapping mode AFM (Figure 5.5 a) showed a smooth surface with no detectable pattern

in the height or phase.  LFM can be used to image samples with different frictional

properties but low height variation, such as patterned SAMs11,26-28.  This clearly showed 

a square pattern covering the sample, with a period of approximately 12 m (Figure 5.5 

b).  There was also a small ‘droplet’ type feature on each square: this was thought to be

surface contamination produced when locating the patterned part of the sample.
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Scheme 5.1 Synthesis of binary-patterned polymer brushes 
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Figure 5.5 a) Tapping mode image of a patterned NPPOC-silane/amine-silane 
sample (Ra 0.18 nm, rms 1.0 nm), b) LFM image of the same sample. 

SIMS is a versatile surface analysis technique, which can be used to identify and image

the distribution of particular ions on a sample.  It is very surface-sensitive, showing 

mainly the composition of the top 1 nm of the sample.  The sample is bombarded with a

beam of primary ions (or neutral atoms), causing a complex cascade of fragmentation

and ionisation resulting in the emission of secondary ions (and neutral species).  The

secondary ions are captured and analysed by a time of flight mass spectrometer.  SIMS 

imaging relies on measurement of the mass spectra of very small areas of the sample,

which can then be used to map the spatial distribution of particular ions.  For each 

sample, positive and negative ion spectra were recorded at high mass resolution (not

shown).  Images were produced using burst mode, which has high lateral resolution, but

lower mass resolution.  As the processes involved in secondary ion production are

complex and not fully understood, the literature was used to identify likely fragments

for each material.  SIMS is not quantitative because some ion yields are much more

intense than others.  A selection of ion images (mainly those showing the best contrast)

are presented for each sample.  SIMS is an inherently destructive technique: ion 

bombardment and fragmentation cause progressive damage to the sample surface.  To 

limit this, each spectrum/image was recorded on a different part of the sample, and the

total ion dose for each area was limited to 1 x 1012 cm-2 18.

The negative and positive ion images for a patterned NPPOC-/amine-silane SAM are 

shown in Figure 5.6 below: 
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Figure 5.6 a) Negative and b) positive SIMS images of patterned NPPOC-
silane/amine-silane SAM. 

The pattern was clearly visible – in particular NO2
- (m/z 46) and C7H7

+ (m/z 91) show 

NPPOC-silane forming the ‘grid’, and C2H5N+ (m/z 43) (and others) show the amine-

silane squares.  CN- (m/z 26) and CNO- (m/z 42) gave a strong signal, but no visible 

pattern, presumably because these species could be generated by the fragmentation of 

either silane.  There was no bromine signal. 
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Figure 5.7 a) Tapping mode image of a patterned bromoester-silane/NPPOC-silane 
sample, (Ra 0.30 nm, rms 0.62 nm), b) LFM image of the same sample. 

The samples were then reacted with 2-bromoisobutyryl bromide to produce bromoester-

/NPPOC-silane SAMs.  Tapping mode AFM again showed a smooth, featureless

surface.  The sample was difficult to image by LFM, but a faint pattern of squares could

be seen (see Figure 5.7). 

SIMS images (Figure 5.8), provided clear evidence for the successful incorporation of 

-bromoester groups: there was now an intense bromine signal from the squares 

(bromine yields are typically high in SIMS).  As before, NO2
- showed the NPPOC-

silane forming the grid of the pattern.  Both NPPOC-silane and bromoester-silane can 

produce amine ions, hence the almost homogeneous signal observed for C2H3N+,

C2H5N+ and C3H5N+.
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Figure 5.8 a) Negative and b) positive SIMS images of patterned bromoester-
silane/NPPOC-silane SAM. 

5.5.3.2 Patterned Brushes 

PMMA and PS brushes were grown from the initiator-patterned wafers.  In an initial

experiment, PMMA brushes were grown for either 4 or 6 hours.  This produced patterns 

of raised squares 7 – 8 m across and ~ 4.5 nm high.  There was no significant 

difference in thickness between the two samples: after 4 hours the squares were
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Figure 5.9 Tapping mode AFMs of patterned PMMA brushes grown for a) 4 hours,
b) 6 hours.

4.5 ± 0.3 nm high, after 6 hours the average height was 4.3 ± 0.6 nm.  The raised 

squares had some symmetrical micropatterning, which can be seen in Figure 5.9 above. 

To allow the synthesis of binary-patterned polymer brushes, it was necessary to grow 

the PS brush first (see p. 115), so in subsequent reactions, patterned PS brushes were

produced.  A reaction time of 12 hours was predicted to produce homogeneous PS brush 

approximately 17 nm thick, but the patterned samples were only 3 – 7 nm thick.  This 

was probably a consequence of the incomplete conversion of NPPOC-silane to 

bromoester-silane.  As already discussed, a low surface concentration of initiator results

in the growth of thinner brushes22,24.  Production of a patterned brush can also affect the 

brush conformation and apparent thickness.  Koutsioubas and Vanakaras29 modelled the

behaviour of polymer chains within a patterned brush for different pattern sizes and 

solvent conditions.  Under good solvent conditions, the polymer chains extended out

from the edges of the patterned regions, increasing the apparent width of the pattern. 

Under poor solvent conditions, the polymer chains were collapsed and formed dense, 

column-like structures with very limited lateral expansion.  The patterned PS and 

PMMA brushes shown here were analysed in the absence of solvent, so should adopt a 

collapsed conformation, but any spreading of the brush onto the non-patterned areas 

would result in a reduction in apparent brush thickness. 
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Figure 5.10 Tapping mode AFM images of patterned PS brushes.  a) PS-N3/amine-
silane, b) and d) PS-N3/bromoester-silane, c) PS-Br/NPPOC-silane.

All the samples were microstructured.  The precise pattern formed varied between

samples, but they all reflected the square geometry of the main pattern, and were larger

than the wavelength of the light used to deprotect the NPPOC-silane SAM (325 nm).  In 

some cases, the microstructuring spread beyond the edges of the squares, into areas

originally covered by the mask, resulting in a ‘tartan’ pattern.  Some examples of

microstructured patterned PS brushes are shown above in Figure 5. 10 (both bromine

and azide-terminated samples are included).

The micropatterning was not detectable by FFM, which showed that the squares were 

completely covered by polystyrene (albeit of varying thickness).  No examples of 
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substructuring of patterned SAMs or polymer brushes could be found in the literature. 

Several possible explanations for this phenomenon are discussed below:

1. A quartz lens was used to hold the copper grid in contact with the sample during 

laser exposure.  A reduced image of the grid could be formed at the surface of 

the lens and reflected back onto the sample.  Variations in the relative position

of the lens and the grid could alter the focal length, resulting in different patterns

on different samples.  However it is difficult to explain how this mechanism

would produce the ‘tartan’ patterns, as these spread into the area covered by the

grid.

2. Production of an intense laser beam requires a long path length through the 

active medium (to obtain sufficient overall gain).  This is achieved by multiple

reflections in an optical resonator.  The length of the cavity defines the allowed 

resonant frequencies, or longitudinal modes of the laser.  Each of these 

frequencies may be subdivided into transverse modes: an electric and magnetic

field configuration at some position in the laser cavity, which on propagating

one round trip in the cavity, returns to that position with the same pattern. 

Laguerre-Gaussian transverse modes have rectangular symmetry and can 

generate patterns which look similar to those seen in some examples of 

patterned brushes30.  The transverse modes are a function of the size and shape 

of the resonant cavity, so it seems unlikely that the same laser would produce

different patterns with different samples, and the patterns involved are quite 

complex.  Also, other researchers using the same laser and patterning technique 

have not reported the formation of secondary patterns, although most of the

other work has involved patterned SAMs, where it may not show up due to the 

low (or absent) height contrast. 

3. The substructures may be due to formation of stationary patterns of diffusing 

reagents during the polymerisation reactions.  Chemical patterns have been 

observed in complex, multi-step reactions such as the Belousov-Zhabotinsky or

CIMA/CDIMA chemical oscillators.  Dolnik et al.31 investigated a two-

dimensional reaction – diffusion model which produced regularly patterned

standing waves (with square, rhombic, striped, or hexagonal morphologies).
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The morphology found depended on the starting conditions, degree of 

supercriticality and many other parameters.  A multi-step reaction mechanism

was required to produce a system that exhibited a wave instability which could 

lead to standing wave formation.  The polymerisation reactions used to produce 

polymer brushes were unstirred, which could allow standing waves to develop, 

but each sample was shaken several times during the course of a reaction, which 

would presumably destroy any local concentration gradients.  Also, in the model

system, patterns of several different symmetries could be produced depending 

on the randomly selected starting conditions, whereas all the micropatterned

polymer brushes had square symmetry.  If this mechanism applied to the 

synthesis of patterned polymer brushes by ATRP, it seems extremely unlikely 

that it has not been observed before and reported in the literature.

4. Laser irradiation can induce electromagnetic fields (evanescent waves) in 

metals32  The grid structure could result in this field forming standing waves,

which could result in the observed microstructuring.  However, for this to be 

observed, the angle of incidence of the light must be low enough that total 

internal reflection occurs.  This is highly unlikely, as the laser was mounted 

directly over the samples (angle of incidence close to 90º).  No similar examples

were found in the literature, and it is difficult to explain how irradiation of the

same type of grid with the same laser could result in the production of so many

different patterns. 

5. Aberrations and defects in the lens used to hold the grid down could produce 

patterns, though these would probably not be regular and symmetrical. 

6. The secondary patterns could be an artefact of TM AFM imaging.  However, 

they were only observed on patterned brushes (not on homogeneous brushes and 

polymer blend films which were also imaged at the same time), and 

micropatterns were consistently observed on all patterned brushes, over several 

sessions, using different tips and AFM parameters.  Each sample had a 

consistent microstructure, which was retained after further reactions: an example

is shown in Figure 5.11. 
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Figure 5.11 AFM images of a) patterned PS and b) PS/PMMA binary brush – 
sequential images of the same sample, showing retention of similar micropatterning. 

None of these effects can completely explain the observed structures.  It is possible that

several factors combine to generate the micropatterns, but further study would be 

required to understand exactly how and why these micropatterns form.

SIMS also showed the production of patterned PS brushes (Figure 5.12).  The images

showed a patterned surface, with PS ions and Br- found mainly on the squares of the 

pattern, and nitrogen-containing ions (from NPPOC-silane) on the grid.  The patterns 

were less distinct than in the previous SIMS images (see Figure 5.8).  This can be 

explained by looking at the AFM of this sample, shown in Figure 5.10 c, which showed

that it was ‘tartan’ patterned, with PS covering part of the grid.

5.5.3.3 Towards Binary-Patterned Polymer Brushes 

The patterned PS brushes were reacted with saturated sodium azide in DMF at 50 ºC for

at least 48 hours to ‘kill’ the active polymer chains, then exposed to laser light for 3 

minutes to remove the NPPOC protecting groups. There was no change in the 

appearance of the samples by AFM (see Figure 5.10 and Figure 5.11).  SIMS was used 

to confirm the changes in surface chemistry.  Initially, the PS brush was bromine-

terminated, with characteristic ions for PS and Br observed on the squares.  After 

reaction with NaN3, PS ions were still emitted from the squares, but there was now no 

detectable bromine signal, suggesting complete debromination of the polymer chains.
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Figure 5.12 a) Negative and b) positive SIMS images for a patterned PS-Br/NPPOC-
silane sample. 

Irradiation resulted in an increase in the intensity of amine ions (especially C2H3N+,

C2H5N+ and C3H5N+), showing effective photolysis of NPPOC from the remaining areas 
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of the sample.  There was also a weak signal for NO2
-, which suggests that there may be 

some residual NPPOC-silane.  The SIMS images are shown in Figure 5.13 below. 

Figure 5.13 a) Negative and b) positive SIMS images for a patterned PS-N3/amine-
silane sample. 
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Reaction with 2-bromoisobutyryl bromide converted the remaining amine-silane to 

bromoester-silane.  Bromine ions reappeared in the SIMS image (see Figure 5.14), now 

located on the grid.  The signal seemed less intense than after the previous bromination

reaction (see Figure 5.8).  This could be due to variation between samples, but could 

also suggest that the second bromination reaction was less complete than the first.

It is possible that one of the previous reactions also affects the NPPOC-silane (or 

amine-silane), or a slow degradation over time reduces the amount of surface-bound 

groups that can react with 2-bromoisobutyryl bromide.  Alternatively, the PS brush may

hinder access to the surface amine groups – the bromination reaction is performed in

THF, a good solvent for PS, so the brush will be swollen, and could spread laterally, 

covering part of the surface. 

The patterned samples were finally used to grow PMMA brushes.  SIMS analysis of a 

sample grown for 5 hours indicates the successful production of a binary-patterned 

PS/PMMA brush (Figure 5.15).  Species characteristic of PMMA form the grid of the 

pattern, with PS found on the squares.  Cl- and Br- are associated with the PMMA grid, 

suggesting that the ATRP reaction was controlled/‘living’, and the active chain ends

were retained (37Cl- appears indistinct, probably due to an overlap with C3H-, a 

characteristic PS ion, which occurs at the same m/z).  A second binary brush, with the

PMMA grown for 20 hours produced very similar SIMS images (though the halogen 

signal was less well-defined), showing that the synthesis was reproducible.  AFM 

showed that the binary brushes were not smooth: there was no obvious change in 

surface morphology from the patterned PS brushes.  Initially the PMMA brush was 

grown for 5 hours, predicted to produce PMMA brush around the same thickness as the 

PS features (5 – 10 nm).  Longer reaction times were investigated to see if a flat binary 

brush (or even one with inverted topography) could be produced, but even 26 hours of 

PMMA growth did not significantly alter the appearance of the samples.  Some AFM 

images of binary-patterned brushes are shown below in Figure 5.16.
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Figure 5.14 a) Negative and b) positive SIMS images for a patterned PS-N3/
bromoester-silane sample. 
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Figure 5.15 a) Negative and b) positive SIMS images for a binary-patterned 
PS/PMMA brush. 
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Figure 5.16 AFM images of binary-patterned PS/PMMA brushes.  PS brushes grown
for 12 hours, PMMA brushes grown for a) 12 hours, b), c)  20 hours, d) 5 hours . 
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5.6 Summary

Binary-patterned PS/PMMA brushes were successfully synthesised.  The SIMS images

showed that PMMA was chemically present, but AFM suggested that it formed a very

thin layer, and did not increase in thickness with increasing reaction time.  Some of the

reaction steps used in preparing the functionalised surfaces were not 100 % efficient. 

Each additional step will amplify the inefficiency, resulting in a very low grafting

density of PMMA, the surface-bound equivalent of a low yield.  A polymer brush forms

when polymer molecules are attached by one end to a substrate with a density of 

attachment points high enough that the chains are forced to adopt a stretched 

conformation33,34.  At lower grafting densities, surface-attached molecules adopt a

mushroom or pancake morphology, depending on the interaction of the polymer with 

the substrate34.  In this case it would appear that the PMMA layer forms a ‘pancake’, 

and as the polymer chains grow longer, they spread further over the surface without any 

observable increase in thickness.  Further work would be needed to optimise the 

synthesis: in particular there seemed to be problems with converting amine-silane into 

the bromoester-silane ATRP initiator.  The efficiency of this reaction might be 

improved by using more aggressive reaction conditions, or reacting amine-silane with a

less bulky molecule to produce an alternative surface-bound ATRP initiator.

This work has shown that it is possible to use this approach to synthesise binary-

patterned polymer brushes. In principle, this method can be used to make binary brushes

using any monomers that can be polymerised by ATRP.  At present, the first

polymerisation must use copper bromide as the catalyst to allow effective 

dehalogenation by reaction with sodium azide.  It may be possible to modify amine-

silane to produce initiators for alternative polymerisation reactions, increasing the range

of accessible polymers.  Patterning by irradiation through masks limits this technique to 

producing brushes on planar substrates, and means that the minimum feature size is 

dictated by the wavelength of light.  This could be overcome by the use of near-field 

techniques such as scanning near-field photolithography (SNP) which allow maskless

patterning to produce features much smaller than the wavelength of light11,35.
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Chapter 6 

Pattern-Directed Phase Separation 

6.1 Introduction

The properties of a polymer blend depend firstly on whether it is homogeneous or 

phase-separated.  For phase-separated blends, the properties depend on the domain

morphology1, and the strength of the interfaces between the domains2.

Most blends of high molecular weight polymers are thermodynamically incompatible3.

As the molecular weight is reduced, the polymers become miscible within a particular

composition and temperature range.  The phase separation behaviour of a blend is

determined by the nature of the interactions between the two polymers, which can be 

discussed in terms of the Flory � Huggins interaction parameter, : when  is positive,

the polymers are immiscible.  Different types of phase diagrams are produced according 

to the value and temperature dependence of  (this is explained in more detail by 

Balsara1).  PS/PMMA blends have positive  which increases linearly with 1/T1.

Blends of intermediate molecular weight are miscible at the extremes of composition

and show UCST behaviour in the mid-composition range4.  Experimentally determined

cloud points can be used to calculate the binodal curve and critical point of a blend. 

As the thickness of a polymer blend film is reduced (below ~ 1 m5), the interaction of 

the polymers with the surface and substrate begin to affect phase separation throughout

the film6.  In most cases, one of the polymers preferentially segregates to each

interface7, resulting in significant changes in morphology.  The sample preparation and 

processing can also have significant effects on the observed structure.  For example, 

spin coating produces blend films by the rapid evaporation of a common solvent, 

resulting in morphologies that may be far from thermodynamic equilibrium8.  The phase 

separation behaviour of thin blend films is more varied, and affected by many more
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factors than in the bulk.  This makes it more challenging to understand the morphology

of a polymer blend thin film, but offers the potential for more control over structure. 

Control of the lateral microstructure of polymer blends is a subject of great interest for

applications such as polymer LEDs9, non-linear optical devices10, polymer-based

microelectronic circuits11,12, optoelectronic devices13 and templating in lithographic 

processes13.  Phase separation in polymer mixtures can be altered by the presence of a 

substrate with a lateral pattern of surface energy14.  Each polymer has a different affinity 

for the pattern, leading to preferential adsorption and segregation of each polymer on 

different areas of the patterned surface15.  This pattern-directed phase separation has

been studied both experimentally9-22 and theoretically16,23-25.  The key parameters for 

pattern replication are the ratio of the characteristic length scale of phase domains to the 

pattern periodicity, and the match of the blend composition to the area of the pattern15.

Blends of PS/PMMA (with a wide range of molecular weights and compositions) have

been extensively studied1,4,8,12,19,26-48.  We used small-angle light scattering (SALS),

AFM, nuclear reaction analysis (NRA), optical microscopy and SIMS to investigate the 

phase separation of a low molecular weight blend of PS/PMMA on homogeneous and 

patterned substrates.  SALS was used to measure cloud points and determine the 

binodal curve and critical point of the bulk blend.  AFM and NRA were used to 

investigate the morphology of thin films of the blend on silicon substrates.  Blends were 

also spin-coated onto patterned SAMs and binary-patterned polymer brushes then AFM

and optical microscopy or SIMS was used to measure the affect of the patterns on the

domain structure. 

6.2 Materials

Hydrogen-terminated PMMA, Mp 4900 g mol-1, Mw 4960 g mol-1 (GPC), Mn 4530 g 

mol-1, Mw/Mn 1.10, was obtained from Polymer Laboratories, Shropshire, UK. 

Polystyrene, Mn 5180 g mol-1, Mw/Mn 1.04, was synthesised by Laurence Corvazier. 

Deuterated PS, Mw 5680 g mol-1, Mn 5220, Mw/Mn 1.09 synthesised by Pierre Chambon 

was used to make samples for NRA. 
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Anhydrous toluene was obtained from a Solvent Purification System (Innovative

Technology Inc., SPS-400-6 and SPS-200-6).  Typical water content was 10-16 ppm.

Single crystal silicon wafers were obtained from Compart Technology Ltd (100 mm 

diameter, 525 m thick, boron doped, <100> face polished). 

Glass slides were Chance Coverglasses, 16 mm diameter, 1.5 thickness (0.155 � 0.185 

mm), obtained from Agar Scientific. 

6.3 Experimental Methods 

All blend compositions are given as % PS / % PMMA (w/w). 

6.3.1 Small Angle Light Scattering/Cloud Point Determination 

PS and PMMA were weighed out to the desired compositions (30/70, 40/60, 50/50, 

60/40, 70/30 w/w), then made up to 20 % (w/v) solutions with dry toluene.  The

polymers were left to dissolve for at least an hour.  Glass slides were cleaned by 

sonicating for 15 minutes each in water, acetone and toluene, then dried with a stream 

of nitrogen.  A single drop of 20 % (w/v) polymer solution was placed on the centre of a 

clean glass slide.  Once most of the solvent had evaporated, a second drop was added to 

produce a thick polymer film.  Samples were stored for at least two days, then heated to 

115 ºC under vacuum overnight to remove any residual solvent (above Tg for both 

polymers).  Samples were left to cool to room temperature under vacuum. 

The polymer blend films were found to dewet the glass slides at high temperatures.  To 

prevent this, small pieces of glass were placed around the edge of the slide, and used to

support a second slide (see Figure 6.1).  This limited the movement of the blend film 

during cloud point determination, and ensured that the laser beam passed through the

polymer film.
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Figure 6.1 Sample preparation for SALS 

A home-made SALS apparatus, built by Yoshii Ishii, was used to determine the cloud

points of the blends.  Light from a 20 mW He-Ne laser with a wavelength of 632.8 nm

(Uniphase) was passed through optics to produce a homogeneous light source.  The

sample was mounted in the path of the laser on a Linkam THMS 600 hot stage with 

LNP and CI 93 temperature programmers (controlled by LinkSys 2.3a software).  Light

scattered by the sample fell onto a flashed opal diffuser (Comer) with a simple beam 

stop to prevent transmission of the unscattered beam.  The scattering patterns were

captured by a SITe 512 x 512 pixel camera (Princeton Instruments)49 and integrated 

using WinView 32 software.  The blend films were heated to 300 ºC under nitrogen, 

then the scattering pattern was captured every 30 s as the sample was cooled at 1

ºC/minute.  The stage temperature was recorded at different frame numbers to allow 

calibration of the data.  The cloud points were determined by examining plots of total

scattering intensity � temperature for each sample.

6.3.2 Morphology of Thin Polymer Blend Films

PS and PMMA were weighed out to the desired compositions (30/70, 50/50, 70/30 

w/w), then made up to 2 % (w/v) solutions with dry toluene.  The polymers were left to 

dissolve for at least 30 minutes, then the solution was passed through a 0.45 m

microfilter before use. 

The substrates were cleaned before use: 

Silicon wafers were cut into 1 cm2 pieces, and rinsed with water, methanol, THF 

and acetone.

Patterned NPPOC-silane/amine-silane coated samples were stored in the dark, 

then rinsed with ethanol immediately before use. 
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Binary-patterned polymer brushes were rinsed repeatedly in toluene (at least 5

rinses).

All samples were dried with nitrogen immediately before spin coating. 

A substrate was mounted onto the spin coater, covered with 2 � 3 drops of polymer 

solution, then spun at 3000 rpm for 120 s. The acceleration and deceleration were set to

equal values and kept constant for all samples.  Samples were stored for at least 24 

hours to allow the solvent to evaporate, then samples were annealed at 115 ºC under 

vacuum overnight and allowed to cool slowly to room temperature under vacuum.

6.3.2.1 Selective Dissolution 

Information about the phase-separated morphology of polymer blend films was

obtained by removing one of the components with a selective solvent.  The sample was 

scratched with a scalpel blade, then the AFM tip was aligned with respect to the

intersection of two scratches using an optical microscope (it was helpful to mark the

position of the scratches, tip and other surface features on the optical microscope

monitor screen).  The sample was immersed in the selective solvent for 3 minutes:

cyclohexane was used to dissolve PS, glacial acetic acid to remove PMMA8,26.  Samples

were rinsed quickly with cyclohexane or water respectively, then dried.  The scratches

and surface features were used to relocate and image the original area of the sample8,26.

Results from selective dissolution experiments need to be treated with caution, as

immersion in solvent is an invasive process that can introduce artefacts15.  This is

discussed in more detail below (see p. 189). 

6.3.2.2 Phase Separation on Patterned SAMs

Samples were heated on a hot stage mounted on a reflection optical microscope.

Images were captured every 30 s, starting when the temperature reached 100 ºC, and 

finishing after approximately 200 frames. All samples were heated using the same

settings:
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Heating Rate/ 

ºC min-1

Limit/

ºC

Time at 

Limit/

minutes

Frame Number 

When Limit 

Reached

Frame Number 

When Limit 

Changed

10 100 0 1 1

2 150 10 51 71

2 155 10 76 91

2 160 7.5 96 111

2 200 7.5 150 -

6.4 Characterisation

Characterisation by spectroscopic ellipsometry, tapping mode AFM and SIMS was 

performed as described in Chapters 3 and 5. 

6.4.1 Reflection Optical Microscopy 

Images were acquired using a Nikon Eclipse ME600 optical microscope with a

PixeLINK camera and PixeLINK Capture OEM software.  Blends on patterned SAMs 

were heated in situ using a Linkam THMS 600 hot stage with a TP 93 controller. 

6.4.2 Nuclear Reaction Analysis

2 % (w/v) solutions of dPS/PMMA were spin-coated onto silicon wafers at 3000 rpm 

for 120 s (see above).  NRA measurements were performed by Mark Geoghegan, 

Richard Thompson and Parvaneh Mokarian-Tabari using a National Electronics

Corporation 5SDH series Pelletron accelerator facility at the University of Durham. 
3He2+ ions were accelerated to 700 keV before being incident on the polymer film at a 

glancing angle of 5º.  Protons were detected and used to determine the depth profiles. 

The 3He+ exposure delivered to the sample during any measurement was limited to 5 

C50.  Film thicknesses were measured by ellipsometry.  The film thickness multiplied

by the volume fraction dPS was used to define the area under the depth profile.  This

area was used to calibrate the data obtained from the ion beam experiments.  Data were 
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fitted using a 100 % dPS profile measured at 750 keV.  These conditions gave a depth

resolution of ~ 5 nm.

6.5 Results and Discussion 

6.5.1 Cloud Point Determination 

PS/PMMA blends are immiscible at high molecular weight, and become fully miscible 

only when the weight-average molecular weights are reduced to 2950 g mol-1 and 2400 

g mol-1 for PS and PMMA respectively4.

The cloud point is defined as the temperature at which a blend first becomes cloudy4,

which can be taken to represent the onset of phase separation.  SALS was used to

measure cloud points and produce a phase diagram.  Based on the work of Callaghan 

and Paul4, the cloud points were predicted to be between 150 and 250 ºC.  Samples were 

heated to 300 ºC under nitrogen, and the scattering patterns were recorded as the

samples were cooled at 1 ºC/minute.  The cloud point was determined by plotting the

total scattering intensity against temperature.  A sample plot is shown below in Figure 

6.2.

The plot could be split into three sections: at high temperatures above the cloud point, 

the blend was clear, so the scattering intensity was low.  As the temperature was 

reduced, the formation of phase-separated domains led to a rapid increase in scattering 

intensity.  The cloud point was determined by calculating the intersection point of lines

of best fit for each of these regions.  An approximate solution was found by looking at

the graph, then the fits were adjusted to maximise the R2 value for both lines (it is worth 

noting that this only resulted in small changes in the determined temperature).  As the 

temperature was further reduced, the progression of phase separation resulted in the 

polymer film becoming more opaque, eventually blocking the transmission of light, and 

slowly decreasing the scattering intensity.
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Figure 6.2 SALS profile to allow determination of the cloud point for 70/30 
PS/PMMA.  high temperature region, blend clear,  onset of phase separation, blend 
becoming cloudy,  domain size increasing, blend becoming opaque. 

Cloud points were determined for blends from 30 � 70 % (w/w) PS.  At least two 

samples were measured for each composition.  Cloud points agreed to within ± 3 ºC, 

except for 70/30 PS: PMMA where there was an uncertainty of ± 5 ºC over three 

measurements.  The approximate phase diagram is shown below (Figure 6.3).

This represents the binodal curve for the blend.  The critical point was found at 

approximately 290 ºC, 52 % PS.  This was higher than expected: Callaghan and Paul

reported a critical point of 250 ºC, PMMA 0.57 for a blend of PS (Mw 9200) and PMMA 

(Mw 4250)4.  It is possible that the discrepancy may be partially due to differences in 

experimental method (which was not completely explained in the reference).  It is also 

possible that there were differences between the (measured) stage temperatures and the 

actual temperature of the samples, though any differences are likely to be small.

PMMA is known to undergo thermal depolymerisation by several different mechanisms

with significant rates at temperatures below 280 ºC51,52, which could also affect the 

results (in fact, thermal depolymerisation can be used to recycle high yields of MMA 

from PMMA53,54).  Use of a lower molecular weight blend was abandoned due to 

obvious changes in appearance after heating, so this may be a significant effect. 
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Figure 6.3 Measured cloud points for PS/PMMA blend, error bars as shown.  Line
of best fit is a second order polynomial, R2 = 0.87. 

6.5.2 Phase Separation in Thin Films

For bulk polymer blends, phase separation leads to the formation of an isotropic,

disordered phase morphology with a characteristic length scale increasing in the course 

of the process14.  As the film thickness is reduced, the interaction of the polymers with 

the substrate and the air interface begin to have significant effects on the process of 

phase separation6.  There is generally preferential segregation of one component of the 

blend to each of the interfaces7.  The polymer of lower surface energy is attracted to the

surface2 in order to minimise the air-polymer interfacial free energy30,31.  One of the 

blend components is also likely to be adsorbed onto the substrate, again to minimise the 

interfacial energy, for example, for PS/PMMA blends, the more polar PMMA is 

attracted to hydrophilic silicon (oxide) substrates8,30.  Changing the substrate can 

dramatically alter the morphology of a phase-separated blend8,30,38.

In relatively thin films (thickness less than ~ 1 m5) preferential segregation of one or 

other component of the blend to the interfaces can induce the formation of composition

waves normal to the surface6.  This surface-directed spinodal decomposition results in a 

layered structure, which coarsens over time due to the high interfacial energy of the

composition waves20,55.  For films that are thinner than the wavelength of the 
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composition waves (thickness < ~ 200 nm), surface-directed spinodal decomposition is

suppressed, and lateral phase separation occurs within the plane of the film20.

The morphology of a polymer blend film is affected by the chemical structure of the

polymers and their molecular weights, the blend composition, nature of the substrate,

film thickness, casting solvent, solution concentration, chain end groups and 

temperature26,44.  Thin films of PS/PMMA blends have been extensively studied: 

different groups have investigated the effect of molecular weights35,47, blend 

composition32,40-42,48, substrate8,30,38, casting solvent8,44, film thickness26,30, solution 

concentration40,41,44, end groups28, alternative preparation methods27, the effect of block 

copolymer additives34 and annealing time and temperature31,35-37,39,48.  This project 

investigated the behaviour of thin films of three different compositions of a low 

molecular weight PS (Mn 5180)/ PMMA (Mn 4530) blend.  Blends were spin-coated 

onto silicon substrates from toluene, then annealed 115 ºC under vacuum overnight, and 

allowed to cool slowly to room temperature.  This is above the glass transition 

temperature of both polymers: based on DSC measurements of other low molecular

weight PS and PMMA samples, Tg(PMMA) ~ 99 ºC, Tg(PS) 74 � 96 ºC4, and so could 

be expected to have some affect on the domain structure.  However the annealing 

conditions were quite mild, so any changes in structure could be expected to be 

relatively small.  This was supported by AFM images of as-cast dPS/PMMA blends that 

appeared to be only slightly different to the annealed PS/PMMA films.

Film thicknesses, determined by AFM and ellipsometry were between 51 and 85 nm. 

AFM showed very similar morphologies for all the blend films.  The surfaces were very

smooth, with small circular raised features ~ 200 nm in diameter and ~ 5 nm high (or 

similar sized holes).  The phase images (not presented here) were also very smooth,

suggesting that there was a chemically homogeneous layer covering the surface.

Selective dissolution was used to obtain more information about the internal phase 

morphology.  Separate (but equivalent) samples were rinsed with either cyclohexane, 

which selectively dissolves PS8,26, or glacial acetic acid, which is a good solvent for

PMMA8.  The original scan areas were then relocated and imaged, revealing the 

underlying phase morphology.  Care must be taken when analysing selective dissolution 

images, as immersion in solvent can affect the film structure or introduce artefacts. 

These include damage to the remaining film morphology arising from partial solubility 
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and/or swelling of the non-selected polymer, the removal of thin surface layers of either 

polymer and the washing away of small inclusions of the insoluble phase suspended

completely within the solvated polymer15.  Sets of images, showing the initial and 

selective solvent treated morphologies are presented on the following pages: Figures 6.4 

and 6.5 show the effects of cyclohexane and acetic acid treatment respectively. 

Most samples had a few larger, irregularly-distributed features up to 1.5 m across and 

100 nm high.  These were still visible after samples had been treated with either 

cyclohexane (e.g. Figure 6.4 a, b) or acetic acid (e.g. Figure 6.5 a, b), which suggests 

that they were probably caused by dust particles trapped in the polymer film during spin 

coating.

Treatment with cyclohexane selectively dissolved the PS, revealing the PMMA 

morphology.  All samples showed an increase in surface roughness e.g. 30/70 PS/

PMMA (Figure 6.4 a) had an rms roughness of 1.16 nm, which increased to 3.74 nm 

after treatment with cyclohexane (Figure 6.4 b).  There was no obvious lateral domain

structure revealed.  The 50/50 PS/PMMA blend was rougher than the other samples:

cyclohexane rinsing revealed a network of irregularly-shaped depressions ~ 30 nm deep

with raised rims ~ 30 nm above the height of the background across part of the image

(see Figure 6.4 d). 

Cyclohexane only becomes a good solvent for PS above ~ 35 ºC56.  However, various 

different groups have used cyclohexane at unspecified temperatures (assumed to be 

room temperature) to selectively dissolve the PS component of polymer blend 

films7,8,15,27,43,57 (in addition, Jerome et. al45 used cyclohexane at 28 � 30 ºC to 

selectively dissolve PS from a PS/PMMA blend film).  For the low molecular weight PS

used in these experiments, three minutes exposure to room temperature cyclohexane 

seemed to dissolve the vast majority of a 100 % PS film.  The success of the selective 

dissolution is further supported by the significant changes in morphology observed

when blend films on binary-patterned brushes were rinsed with cyclohexane (see p. 

204).  However, the results should still be interpreted with caution.  An interesting 

further test would be to treat the samples with warm cyclohexane (> 35 ºC) to see if this 

alters the observed morphologies.
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Figure 6.4 PS/PMMA blends on silicon.  Images in the left-hand column show the 
complete blend film morphology, images in the right-hand column show the same areas 
after rinsing with cyclohexane.  a), b) 30/70 PS/PMMA; b),d) 50/50 PS/PMMA; e), f)
70/30 PS/PMMA.  Image sizes and scales as shown. 
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Treatment with acetic acid (a selective solvent for PMMA) resulted in dramatic changes 

in appearance, shown in Figure 6.5.  Highly textured, irregularly-shaped interconnected 

domains 100 � 130 nm high were observed on 30/70 and 50/50 blends (one area).  The 

depressed areas between these features were extremely smooth, and were thought to be 

the silicon substrate.  70/30 and a different part of the 50/50 sample showed a smooth

surface layer covered by circular holes around 1.5 m in diameter and 50 nm deep, with 

rims raised ~ 20 nm above the rest of the film.  These images conflicted with the other 

evidence: some of the raised features were significantly higher than the total blend film

thickness, but were not visible when the unmodified samples were imaged.  In other 

words, if the PS and PMMA morphologies were added together, the result would not 

resemble the structure of the complete blend film.  There were also difficulties in

imaging films after treatment with acetic acid, especially for 50/50 blends (it took 

several attempts to successfully obtain the image presented in Figure 6.5 d): in some

cases it looked like the film had been partially removed from the surface then 

redeposited.  The results suggest that the low molecular weight PS used in this work

was affected by acetic acid.  This was tested by exposing a 100 % PS film to acetic acid 

for three minutes.  Optical microscopy showed cracking and partial removal of the film 

(see Figure 6.6).  The PS was completely removed in areas close to the scratches used to 

align the AFM tip, presumably because they allow acetic acid to reach the substrate and 

begin to undercut the polymer film.  This means that the morphologies observed on 

samples exposed to acetic acid need to be treated with extreme caution, as the 

morphology shown is very likely to be different from the morphology of the PS 

domains within the blend film.
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Figure 6.5 PS/PMMA blends on silicon.  Images in the left-hand column show the 
complete blend film morphology, images in the right-hand column show the same areas 
after rinsing with acetic acid.  a), b) 30/70 PS/PMMA; b),d) 50/50 PS/PMMA; e), f) 
70/30 PS/PMMA.  Image sizes and scales as shown. 
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Figure 6.6 Optical micrograph showing PS on silicon after treatment with acetic 
acid showing partial removal of the PS, and cracking of the film.  The scratches were
used to align the AFM tip on the surface.  10 x magnification. 

NRA can be used to determine the composition of a sample as a function of depth58.

One of the polymers must be deuterated to give contrast, so samples were made using

dPS with Mw 5680 g mol-1.  The samples were analysed as cast, without any annealing. 

In NRA, the sample is bombarded by a monoenergetic 3He+ beam at a low angle of 

incidence.  When an ion hits the film surface it loses its second electron to form a 3He2+

ion.  At some depth within the polymer it reacts with deuterium to form an unstable

lithium nucleus, which decays yielding a proton and an alpha particle, either of which

can be detected (in these experiments, protons were detected): 

3He2+ + d    (5Li3+)*  + p (6.1)

The protons emitted from the film have a characteristic energy spectrum which is 

dependent on the energy of the reaction and the depth at which the reaction 

occurred50,59, which can be used to build up a volume fraction ( ) � depth composition

profile for the sample.  The depth profiles (Figure 6.7), showed that PMMA was

enriched at the substrate, which could be expected due to a favourable interaction 

between the PMMA and the polar silicon substrate30.  The thickness of this substrate

layer, and the degree of enrichment depended on the composition of the blend: for 30/70 

dPS/PMMA, PMMA > 0.88 in the bottom 24 nm of the sample; when the amount of 

PMMA was reduced to 50 %, this layer was only 9 nm thick.  For the blend with 30 % 

PMMA, there was obviously some PS within the wetting layer at the substrate, but a

layer 12 nm thick exceeded the bulk concentration of PMMA.  Conversely, dPS was 
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Figure 6.7 NRA depth profiles for dPS/PMMA blends on silicon.  30/70 
dPS/PMMA (68 nm thick),  50/50 dPS/PMMA (73 nm thick), 70/30 dPS/PMMA (75 
nm thick).

enriched at the free surface.  For 70/30 and 50/50 blends, there was an almost pure dPS 

layer ( dPS > 0.9) 24 and 15 nm thick respectively, at the surface.  For 30/70 dPS/ 

PMMA, the surface layer contained more PMMA, but dPS > 0.6 within 15 nm of the

surface.

As discussed on p. 43, the morphology of thin films of phase-separated polymer blends 

is affected by many variables.  For PS/PMMA blends spin-coated onto silicon (or other

hydrophilic substrates such as mica) there appear to be three main effects: 

The attractive interaction between the carbonyl groups of PMMA and the polar 

silanol groups on the silicon substrate30, which favours the formation of a

PMMA wetting layer at the substrate.

The relative solubility of PS and PMMA in the common solvent � the least

soluble polymer will solidify earlier in the spin coating process, while the more

soluble polymer is still swollen with solvent8.

The surface tension of the polymers � the lower surface free energy polymer is 

attracted to the air interface2.
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There is some debate in the literature about the role of surface tension for PS/PMMA 

blends.  PS has lower surface tension, so should be enriched at the surface.  However, 

the differences in surface tension are small, and in some cases insignificant e.g. PS (Mn

90k)  = 40.2 mJ m-2, PMMA (Mn 69k)  = 41.2 mJ m-2 30 or PS (Mv 44k)  = 40.7 mJ

m-2, PMMA (Mv 3000)  = 41.1 mJ m-2 60.  Tanaka et al.30 found evidence for surface

enrichment of PS in bulk blends, but when the film thickness was reduced to 100 nm, 

there was lateral phase separation with both polymers present at the surface.  This is

supported by the work of Harris et al.48 used near-edge x-ray absorption fine structure 

spectroscopy (NEXAFS) to rule out the presence of a homogeneous PS surface layer in

annealed blends.  For PS/PMMA blends, the relatively small differences in surface 

tension are dominated by substrate and solvent effects, and have little impact on the

final film morphology. 

When PS/PMMA blends are spin-coated onto silicon from toluene solution the 

solubility and solvent effects combine, favouring the formation of a bilayer morphology

with a PMMA-rich layer at the substrate, with PS-rich layer deposited above.  This

bilayer structure is far from equilibrium.  As the remaining solvent evaporates, or the 

film is annealed, the PS-rich layer becomes unstable and begins to dewet the PMMA-

rich layer27,44.  The equilibrium morphology is dewetted droplets of PS suspended in a 

PMMA-rich matrix26,27,35,38,44,48.  However, the high viscosity of high molecular weight 

polymers may inhibit flow through the film, making changes very slow26, which can 

kinetically trap a non-equilibrium morphology.  Very different morphologies can be 

obtained when the solvent and substrate effects conflict.  Ton-That et al.31,41 spin-coated

PS/PMMA blends onto mica substrates from chloroform solution.  PS was deposited 

first onto the substrate due to its lower solubility in chloroform, leaving the surface rich 

in PMMA31,41.  Annealing resulted in dewetting of the PMMA from the PS-rich phase,

eventually producing a laterally phase-separated film with a continuous, but non-

homogeneous PS layer at the surface31.  However, for a similar system, Harris and co-

workers48 found that longer annealing at a higher temperature allowed it to reach the

equilibrium morphology of PS droplets in a PMMA matrix.  Large differences in 

molecular weight between the polymers can also alter the domain structure: high 

molecular weight PS/low molecular weight PMMA blends were PMMA-rich at the

surface due to the lower entropic penalty for shorter polymer chains at the surface47.

195



6.  Pattern-Directed Phase Separation 

A diverse range of intermediate morphologies (and an equally wide range of 

explanations of these!) have been reported depending on the properties of the polymers,

sample preparation conditions and annealing time and temperature.  The polymers used 

in this work had very low molecular weights, so it can be assumed that they are less

viscous and more mobile than higher molecular weight blends, resulting in a quicker 

approach to equilibrium during spin coating and annealing35.  However, the annealing 

conditions used (115 ºC, ~ 12 hours) were mild, so the blends are unlikely to have

reached equilibrium.

AFM showed that the film surfaces were almost featureless: quite different in 

appearance to most of the references (a similar structure; a gently undulating surface

with small, raised circular features was found after annealing a 50/50 mixture of PS (Mw

100k)/ PMMA (Mw 120k) spin-coated onto mica from chloroform at 142 ºC for 2 

hours31, but this is probably only a superficial similarity as the polymer molecular

weights and preparation methods were very different).  Selective dissolution of PS with 

cyclohexane left rough PMMA layers with no large surface features, and reduced the

total film thickness.

AFM images of samples rinsed with acetic acid produced highly textured morphologies

that resembled different stages of dewetting.  The most likely explanation for this is that 

the low molecular weight PS was partially soluble in acetic acid, and the observed PS 

morphology does not represent the structure of the blend. Alternatively, dissolution of 

PMMA molecules within the PS-rich phase may lead to changes in the structure.

Finally, removal of the PMMA-rich layer at the substrate may physically lift and break 

up the overlying PS-rich layer (this probably occurred in some samples where solvent 

rinsing caused destruction of the polymer film).  NRA suggested that there was a

PMMA-rich layer wetting the substrate and a PS-rich layer at the surface.  These results

suggest that the blends formed bilayer structures, with PMMA-rich layers at the silicon 

substrate, and PS-rich layers at the free surface, and little, if any, lateral domain

formation.

The morphology of the blend on PS and PMMA brushes was also (indirectly) studied. 

The domain structure was very different, and will be discussed in more detail from p. 

201 onwards. 
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6.5.3 Phase Separation on Patterned Substrates 

The production of laterally microstructured materials is a subject of great commercial

interest for a wide range of applications, mainly in microelectronic and optoelectronic 

devices (see p. 41 and 50). The lateral morphology of a phase-separated polymer blend 

film can be controlled by breaking the symmetry of the substrate through heterogeneous 

chemical patterning of the surface energy or by topographical surface patterning15.  This 

pattern-directed phase separation was first studied by Krausch et al. in 199410.  Since 

then, the effect of chemical and/or topographical patterning on phase separation has

been investigated both experimentally9-22 and theoretically16,23.

Several parameters are important for pattern replication: there must be preferential

segregation of at least one of the polymers to one of the areas of the chemically

patterned surface11,14.  Secondly, the periodicity of the substrate pattern must be 

comparable to the natural length scale for phase separation under the conditions used9,11.

The natural length scale of phase separation can be altered by varying the film thickness 

or blend composition15.  Finally, the blend composition should match the pattern area 

fraction (although this is less important than the match of the length scales)15.

The phase separation of a PS/PMMA blend was investigated on patterned NPPOC-

/amine-silane SAMs and binary-patterned PS/PMMA brushes (see Chapter 5 for details

of the synthesis of these substrates).  AFM images of the binary-patterned brushes were

used to calculate the area fraction of the patterns.  On average the squares were 6.92 m

across, and the grid was 5.58 m across, giving a square repeat unit 12.50 m across. 

This allowed calculation of the area fraction of the squares and the grid: fsquares = 0.3, 

fgrid = 0.7.  The surface chemistry and dimensions of the patterns are shown in

Figure 6.8.  The pattern periodicity was significantly larger than the natural length scale 

of phase separation observed on unpatterned polymer brush substrates, but time

constraints meant that smaller patterns could not be synthesised.  However, this could 

be done via the use of a mask with smaller features. 
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Figure 6.8 Schematic diagram showing patterned SAM and binary-patterned 
polymer brush substrates. 

6.5.3.1 Phase Separation on Patterned SAMs

The behaviour of 30/70 PS/PMMA was investigated on patterned SAMs.  The blend 

was spin-coated onto the patterned substrates, then heated to 115 ºC under vacuum

overnight.  After this there was no evidence of lateral phase separation: optical

microscopy showed a smooth surface with a few tiny scattered holes and dust grains 

(see Figure 6.9 a) and AFM showed a largely smooth surface (rms roughness 1.98 nm)

with some circular raised features and depressions about 1 m in diameter (see Figure 

6.10 a). 

As there was no evidence of pattern replication, it was decided to slowly heat the

samples, monitoring changes as they happened with optical microscopy.  Heating a 

polymer blend in the two-phase region of the phase diagram, above the glass transition

temperature for both polymers allows phase separation to progress3.  As the sample was 

heated, there was an increase in the number of small holes (visible as bright spots in the 

microscope images), first noticeable at ~ 138 ºC (Figure 6.9 b).  As the temperature was 

increased further, the number of holes and their diameter slowly increased.  Smaller

surface corrugations, which did not seem to pass through the entire thickness of the film
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Figure 6.9 Optical microscopy images of heating 30/70 PS/PMMA on patterned 
SAM.  All 10 x magnification except f) 5 x. a) as cast, b) 138 ºC, c) 160 ºC, d) 185 ºC, e)
200 ºC, f) structure after cooling to room temperature. 

also began to appear.  By ~ 185 ºC (Figure 6.9 c), it became apparent that the features in 

the upper part of the image were following a square lattice.  The sample was then held 

at 200 ºC to allow the surface features to develop.  Dewetting progressed on one part of 

the surface, starting from holes arranged in a square pattern.  The rest of the sample 

showed a square pattern which appeared to consist of thinner and thicker regions of 

polymer (see Figure 6.9 d, e).  A final image is included which shows the extent of the

pattern, and the boundary between patterned and homogeneous NPPOC-silane regions

of the substrate (Figure 6.9 f). 
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Figure 6.10 30/70 PS/PMMA on patterned NPPOC-silane/amine-silane substrates. 
a) as cast morphology, b) after heating to 200 ºC (see p. 180 for heating conditions), c)
same area as b) after rinsing with cyclohexane.  Image sizes and scales as shown. 

After heating, AFM showed an undulating surface, with rounded square-shaped

depressions arranged in a square lattice (Figure 6.10 b).  Examination of the bright areas 

visible optically confirmed that these were dewet, with large irregularly-shaped droplets 

up to 400 nm high separated by areas of substrate covered in smaller droplets.  PS was

selectively dissolved with cyclohexane to give more information about the phase

morphology (shown in Figure 6.10 c).  This resulted in the square depressions becoming

more clearly defined and approximately 15 nm deeper.  The raised grid was less 

obviously affected, but there was an increase in the number of holes.  This suggested 

that the squares were covered with a thin layer of PS, with PMMA attracted to the 

NPPOC-silane covered grid.  The increased number of surface holes suggested that 
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there could be a PS overlayer or secondary domains of PS located on the PMMA coated 

grid.  There were also small secondary PMMA domains left on the square part of the

pattern.  The dewet areas suggest that these were transient morphologies and that the 

blend film was unstable on the amine-silane SAM. 

The heating experiments were repeated with several samples.  The conditions used were

decided on by watching the behaviour of the first sample.  Although this was fairly 

arbitrary, all samples were heated using the same conditions, allowing some

comparison.  Similar patterned/dewet areas were produced by heating different samples,

but the onset of changes occurred at varying temperatures and times.  In one case, there

was no detectable patterning, even after around 25 minutes at 200 ºC.  The behaviour of 

the samples appeared to be very sensitive to local variations such as fluctuations in layer

thickness, variation in substrate properties and the presence of defects such as dust 

particles and scratches � this can be seen in Figure 6.9 � some areas were dewetted, 

initiating from a small scratch on the surface, where other areas retained a continuous,

but corrugated polymer layer. 

The wetting/dewetting behaviour of thin polymer films is important to applications such

as coatings, paints, dielectric layers, thin film lubrication and microelectronic and 

optoelectronic devices7.  It is known that bilayers of PS and PMMA on silicon are 

unstable and undergo dewetting12,61 (whatever the order of the layers).  In the case of 

PS/PMMA blends spin coated onto NPPOC-silane/amine-silane patterned SAMs, it 

would seem that during spin coating and at temperatures below ~ 130 ºC the polymer

film is stable on the patterned substrate.  As the temperature is increased, the blend

eventually dewets from the pattern, beginning from the amine-silane-covered squares. 

It is difficult to comment further on the phase separation morphology, although it seems

likely that PMMA is preferentially attracted to the NPPOC-silane regions.

6.5.3.2 Phase Separation on Binary-Patterned Polymer Brushes 

Next, the phase separation of the blend was investigated on binary patterned PS/PMMA 

brushes.  These substrates were both chemically and topographically patterned: the PS 

brush squares were around 9 nm higher than the PMMA brush grid.  There has been 

some study of the behaviour of polymer thin films on substrates that are both
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chemically and topographically patterned (see p. 49)19,62,63, but there has been little 

study of phase separation on binary-patterned brushes, possibly because they are 

relatively new materials and they are still challenging to synthesise.  Edwards64 and 

Stoykovich65 studied the behaviour of PS-block-PMMA copolymers64 and ternary 

blends of block copolymers and homopolymers65 on patterns produced by 

photolithographic treatment of �grafted to� PS brushes.  They found that well-ordered 

structures were produced providing the pattern periodicity was close to the natural

length scale of phase separation.  Fukunaga et al.18 investigated phase separation on a 

randomly patterned binary polymer brush produced by physisorption of a poly(styrene-

block-2-vinylpyridine-block-tert-butyl methacrylate) triblock copolymer onto silicon. 

Spin coating this microphase separated brush with a PS/poly(tert-butyl methacrylate)

blend resulted in a significant reduction in domain size compared to the morphology

found on silicon substrates. 

PS/PMMA blends of three different compositions (30/70, 50/50, 70/30) were spin-

coated onto the binary-patterned PS/PMMA brushes and annealed at 115 ºC overnight. 

The morphologies were examined by optical microscopy, AFM and SIMS.  Changes 

were immediately detected as the patterns became clearly visible: this is shown by the 

optical micrographs in Figure 6.11 below. 

AFM showed different morphologies on PS and PMMA brush, and for each of the three

Figure 6.11 Optical micrographs of a) PS/PMMA binary-patterned polymer brush, b) 
50/50 PS/PMMA blend spin-coated onto PS/PMMA binary-patterned polymer brush – 
note how the pattern is much more clearly visible in b).  Both 10 x magnification. 
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blend compositions.  The 30/70 PS/PMMA sample most closely matched the area

fraction of the patterned brush (assuming that PS is attracted to PS brush etc), so could 

be expected to give the best pattern replication15.  The squares (PS brush) were clearly 

visible and (on average) higher than the PMMA brush grid.  The grid was covered by a

relatively smooth layer, though there was some smaller scale structure visible on most

samples.  The squares were covered by a raised polymer layer with irregularly

distributed holes, ~ 25 nm deep and ~ 1 m in diameter (e.g. Figure 6.12 a).  However 

there was some variation between samples, probably due to differences between the 

substrates, for example, one sample had much higher relief than the others: the squares 

were about 30 nm higher than the grid, and the holes were up to 75 nm deep and 1.5 m

in diameter (see Figure 6.12 c).

Samples were then rinsed with cyclohexane, to reveal the PMMA morphology.  There 

were no major changes, but the microstructure on the grid became much more clearly 

defined.  The morphology on the squares remained the same, but the depth of the holes 

increased, typically by ~ 10 nm, suggesting that there was a layer of PS at the bottom of 

the holes.  There was little change in the height difference between the squares and the

grid (see Figure 6.12 b).

The samples were also rinsed with acetic acid to remove the PMMA.  Acetic acid was

found to alter the morphology of PS/PMMA blends and pure PS films on silicon 

substrates (see p. 191), so the results need to be interpreted with caution as they may not 

be a true representation of the PS morphology.  However, in this case (Figure 6.12 d), 

the morphology revealed was complementary to the PMMA structure described above. 

On the PS brush squares, there were isolated cylinders ~ 1.5 m across in the same

places as there had been circular holes in the complete blend film.  The top of these 

features was dish-shaped, with a raised rim and depressed centre.  This suggested that 

the PMMA layer at the surface was dewetting, and pulling up the underlying PS, 

producing raised cylinders with curved menisci.  The background level of the squares 

was about 20 nm above the background of the grid.  On the grid there were many 

smaller features 100 - 120 nm high.  This suggested that the PS brush was covered by a 

continuous layer of PS, but that it was less favourable for PS to be at the surface of the
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Figure 6.12 30/70 PS/PMMA blends on binary-patterned polymer brush. a), c) As-
cast, b) same area as a) after rinsing with cyclohexane, d) same area as c) after rinsing 
with acetic acid.  Image sizes and scales as shown. 

PMMA brush, so it formed smaller, more raised domains to reduce the unfavourable 

contact.  The PMMA-rich phase formed a continuous layer at the surface, almost

completely covering the underlying structure and leaving an almost smooth film surface 

on the grid. 

SIMS was also used to map the distribution of characteristic PS and PMMA ions on the 

samples.  It was decided to map the same ions used to identify the chemistry of the 

binary-patterned PS/PMMA brushes (though other ion images were also looked at). 

The ion images, presented in Figure 6.13, show PS forming a homogeneous layer 

covering the sample, suggesting that there could be a very thin layer of PS covering the
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Figure 6.13 a) Negative and b) positive SIMS images of 30/70 PS/PMMA spin-coated 
onto binary-patterned PS/PMMA brush. 

whole surface.  PMMA was clearly patterned, and appeared to be mainly located on the 

squares.  SIMS is very surface-sensitive66, so any surface layer of PS would have to be 

extremely thin (< 1 nm), or it would prevent detection of the PMMA ions.  However, 

the lateral resolution of SIMS is around 60 nm, which may not be sensitive enough to 

detect the small scale patterning on the grid.  The larger, micron scale structure on the 
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squares could be detected, showing the PMMA-rich surface.  The topography of the 

samples may also have some effect on the recorded ion images.

AFMs of the samples coated with 50/50 PS/PMMA had less obvious surface features 

than those of the 30/70 blend (see Figure 6.14 a, c).  The squares and grid were still 

clearly visible, but the edges of the squares were less clearly defined.  Some structure

was visible on the surface of the squares, and smaller scale patterning could be detected 

on the grid regions.  The height difference between the squares and the grid was 15 � 25 

nm, but varied quite a lot between samples, and was as much as 35 nm in one case � as 

mentioned earlier, this is probably due to differences between the individual substrates.

Figure 6.14 50/50 PS/PMMA on binary-patterned polymer brush.  a), c) As-cast, b) 
same area as a) after rinsing with cyclohexane, d) same area as c) after rinsing with 
acetic acid.  Image sizes and scales as shown. 
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Rinsing with cyclohexane revealed an interconnected network of PMMA domains

(Figure 6.14 b).  The domains were larger on the PS brush squares (typically ~ 500 nm

across and ~ 100 nm high) than on the PMMA brush grid (~ 300 nm across, 40 nm 

high), but the general morphology was similar.  Treatment with acetic acid revealed a 

complementary interconnected morphology on the squares, and spreading over the grid. 

The centre of the grid regions were covered by a continuous layer with scattered holes

(see Figure 6.14 d).  The AFM images suggest that there was a higher percentage 

coverage of PMMA domains on the PMMA grid, but this is difficult to measure.  SIMS

again showed a homogeneous PS layer, with squares faintly visible in the PMMA signal 

(though they were less clear than for 30/70) � see Figure 6.15. 

The samples were covered by an interconnected and interpenetrating network of phase-

separated PS and PMMA.  Surprisingly, there seemed to be little preferential adsorption

of either polymer on the PS or PMMA brush surface.  SIMS suggested that the PS brush 

squares were enriched in PMMA at the free surface, so there may be a PS-rich layer 

next to the brush.  On the PMMA brush, the domains were smaller.  AFM and SIMS 

suggested that the substrate was slightly enriched in PMMA, and that PS almost 

completely covered the PMMA structure, resulting in the smooth surface observed by 

AFM, and the lack of PMMA ions from the grid in SIMS. 

Figure 6. 15 a) Negative and b) positive SIMS ion images of 50/50 PS/PMMA on 
binary-patterned polymer brush.  Images presented are the sums of the same ions as 
shown in Figure 6.13.
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Finally, 70/30 PS/PMMA was spin-coated onto the patterned substrates.  In this case 

there was a large mismatch between the pattern area fraction and the blend composition

(assuming that PS is attracted to PS brush etc).  AFM (Figure 6.16 a, c), clearly showed

the expected pattern.  The squares were covered by small raised circular features up to 

300 nm in diameter.  There was no surface structure on the grid � this was confirmed by 

looking at the blend morphology on the homogeneous PMMA brush at the edge of the 

patterned region, which showed a gently undulating surface with a few small circular

blobs � similar in appearance to Figure 6.4 a, c.  Removal of PS by rinsing with 

cyclohexane showed that the surface was densely covered with small round PMMA 

domains (Figure 6.16 b).  These were up to 100 nm high, and 200 � 300 nm in diameter

Figure 6.16 70/30 PS/PMMA on binary-patterned polymer brush.  a), c) As-cast, b) 
same area as a) after rinsing with cyclohexane, d) same area as c) after rinsing with 
acetic acid.  Image sizes and scales as shown. 
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Figure 6.17 a) Negative and b) positive SIMS ion images for 70/30 PS/PMMA on 
binary-patterned polymer brush.  Images presented are the sums of the same ions as 
shown in Figure 6.13.

on the squares, and slightly smaller (~ 200 nm diameter, 60 nm high) on the grid.

Rinsing with acetic acid produced a highly structured surface (see Figure 6.16 d): the

squares were covered by a continuous layer, which showed the microstructure of the 

underlying PS brush (see p. 166).  On the grid there was a polymer layer covered in 

circular holes with raised rims (similar to those seen in Figure 6.5 f). 

As discussed earlier, the low molecular weight PS used in these experiments was 

affected by exposure to acetic acid.  For these samples, the PMMA morphology and the

morphology revealed by rinsing in acetic acid were not complementary, suggesting that

that exposure to the solvent had altered the PS domain morphology.  Also the 

appearance of this sample (both before and after solvent treatment) was different to 

other examples of this blend.  Possible reasons for this are discussed below.

SIMS images (Figure 6.17), showed that both PS and PMMA ions were present at the

surface, but there was no detectable pattern, and the PMMA signal was noticeably 

weaker than for the other blends.  This can be explained in part by the lower amount of 

PMMA present in the blend, but it also suggests that there is a homogeneous PS rich 

layer covering the surface (within the lateral resolution of the technique).
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Figure 6.18 50/50 PS/PMMA on binary brush: recoated sample.  a) As-cast, b) same 
area as a) after rinsing with acetic acid. 

In some cases, different morphologies were observed for the same blend composition

spin-coated onto two different samples. This may be caused by small chemical and

physical differences between the individual patterned substrates.  Only a small number

of binary-patterned polymer brush samples were made, so in some cases it was

necessary to clean and recoat samples.  The first blend film was removed by repeatedly

rinsing samples with toluene.  A second blend composition was then spin-coated onto

the cleaned substrates.  There is some evidence that this affected the blend morphology,

for example, a sample recoated with 50/50 PS/PMMA had a different morphology to

the same blend on a new substrate � compare the images in Figure 6.18 above to Figure 

6.14 c, d. 

The sample shown in Figure 6.16 c and 6.16 d had also been recoated, and again 

seemed to have a different morphology from a fresh sample.  It is possible that during 

spin-coating, the free polymer chains penetrate the brush (which will become swollen

by toluene), and become trapped/entangled.  They may then be very difficult to remove,

even after extensive rinsing with a good solvent for the brush and the free polymer, as 

diffusion of the free chains out of the brush may be very slow.  Another possibility is 

that the polymer brushes are permanently affected by exposure to cyclohexane and/or 

acetic acid, resulting in altered properties when a second polymer blend is placed on the

substrate.
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Very different morphologies were observed for each of the different composition

PS/PMMA blends on the PS and PMMA regions of the binary-patterned polymer

brushes.  As already discussed, the morphology of thin films of polymer blends are

affected by many different parameters including the chemistry and topography of the 

substrate, blend composition and the nature of the common solvent26,44.  In addition, 

films prepared by spin-coating may be far from equilibrium8, so annealing at 

temperatures above the glass transition temperatures of the polymers can lead to large

changes in blend morphology31.  The results discussed in this chapter were produced by 

annealing samples at a relatively low temperature, so the morphologies were still likely 

to be far from equilibrium.  The observed morphologies of phase-separated PS/PMMA

blends on binary-patterned brushes can be explained by considering the different 

solubility of the polymers in the common solvent, the match of the blend composition to 

the area of the pattern, and the preferential attraction of the polymers to different areas 

of the substrates. 

For 30/70 PS/PMMA, the blend composition was matched to the area fraction of the 

binary-patterned polymer brush.  The domain structure was mainly determined by the

chemical (and topographical) differences across the substrates.  The PS brush was 

completely covered by a PS-rich layer, with a layer of PMMA at the air interface.

Bilayers of PMMA on PS are unstable and can undergo spinodal dewetting61.  This may

have produced the holes seen in the AFM images, and also deformed the underlying PS 

layer.  On the PMMA brush, the domain size was much smaller: the substrate was 

covered by smaller domains of PMMA, with a surface layer of PS.  It seems likely that

both polymers were present at the brush interface, although the data presented here 

cannot rule out the presence of a thin PMMA layer covering the substrate.  This 

suggested that there was a weaker attraction between free PMMA and PMMA brush 

than between PS and PS brush � a surprising result.  The PMMA brush on the patterned 

substrates was very thin, and probably does not adopt the stretched conformation of a

true polymer brush.  To test that the brush conformation/thickness did not affect the 

phase morphology, the blends were spin-coated onto thicker PMMA brush samples

(~ 10 nm thick), which resulted in almost identical morphologies.  A schematic diagram

of the phase-separated structure is shown below in Figure 6.19. 
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Figure 6.19 Schematic diagram showing the phase-separated structure of 30/70 
PS/PMMA on PS/PMMA binary brush.  PS brush: dark grey, PMMA brush: dark blue, 
PS pale grey, PMMA pale blue.  Not to scale, but vertical scale is much exaggerated 
compared to the horizontal scale. 

The 50/50 blend formed an interpenetrating network structure, with domains of each 

polymer present next to the brush (see Figure 6.20).  The general morphology was the

same on both PS and PMMA brush, although the feature size was slightly smaller, and 

there may have been a slight excess of PMMA, next to the PMMA brush surface.  This

suggested that, under the conditions used, the patterned substrates had little effect on the 

phase separated morphology.  The laterally phase-separated structure also suggested 

that there was not a strong preferential attraction between the free polymers and either 

of the polymer brushes, although thin wetting layers could not be detected by the

techniques used here. 

For 70/30 PS/PMMA, AFM and SIMS results suggested that PMMA was deposited at 

the brush surface, forming a discontinuous layer of small domains, which were then 

covered by an almost smooth PS overlayer.  PMMA is less soluble than PS in toluene, 

so was deposited earlier in the spin coating process8.  For this blend there was a large 

Figure 6.20 Schematic diagram showing the phase-separated structure of 50/50 
PS/PMMA on PS/PMMA binary brush.  PS brush: dark grey, PMMA brush: dark blue, 
PS pale grey, PMMA pale blue.  Not to scale, but vertical scale is much exaggerated 
compared to the horizontal scale. 
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Figure 6.21 Schematic diagram showing the phase-separated structure of 70/30 
PS/PMMA on PS/PMMA binary brush.  PS brush: dark grey, PMMA brush: dark blue, 
PS pale grey, PMMA pale blue.  Not to scale, but vertical scale is much exaggerated 
compared to the horizontal scale. 

mismatch between the pattern area fraction (fPS = 0.3) and the blend composition ( PS

0.7).  The observed structure of the blend suggests that in this case, the difference in 

solubility had a greater effect on the domain morphology than the surface patterning or 

preferential attraction of either polymer to the brush surfaces (see Figure 6.21).

6.6 Summary

Phase separation in thin films of polymer brushes is affected by many different

variables.  In this chapter, the effect of blend composition and substrate chemistry was 

investigated for thin films of a low molecular weight PS/PMMA blend.  The blend was

spin-coated onto binary-patterned polymer brushes to see if the patterns would affect the 

domain structure of the blend.  Very different morphologies were observed on each 

substrate, and for different blend compositions.

On silicon the blend formed a bilayer structure, with a PMMA-rich layer wetting the 

silicon substrate, and a PS-rich layer at the free surface.  The degree of enrichment and 

the thickness of the layers depended on the blend composition.

30/70 PS/PMMA was spin-coated onto patterned NPPOC-/amine-silane SAMs.  There 

was no evidence of pattern replication, or of a difference in morphology on the NPPOC-

silane and amine-silane coated areas.  Heating resulted in dewetting, beginning from the 
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amine-silane coated squares.  Further study is required to gain a more complete

understanding of the behaviour of the blend on these substrates.

The morphologies observed on binary-patterned PS/PMMA brushes were complex. 

Different structures were found on the PS and PMMA brush regions, and for each blend

composition.  The eventual structure was determined by the interaction of the polymers 

with the substrate and solubility effects.  Where the blend composition matched the area 

fraction of the pattern, there was some evidence of preferential segregation of each 

polymer to the chemically equivalent brush.  Where there was a large mismatch

between composition and area fraction, solubility effects seemed more important,

resulting in a laterally phase-separated structure covering both polymer brushes. 

Surface chemical patterns may direct the phase separation of a polymer blend when the 

natural length scale for phase separation under the conditions used is close to the

periodicity of the pattern9.  In the system discussed above, the period of the pattern was 

significantly larger than the natural length scale of phase separation of the polymer 

blend, so pattern-directed phase separation, as defined in the literature, did not occur. 

Different morphologies were observed on PS and PMMA brush substrates, but identical 

morphologies were observed on the large homogeneous regions of brush at the edges of 

the samples and on the corresponding parts of the pattern. 

The challenges involved in the synthesis of binary-patterned polymer brushes mean that 

only a few samples have been produced, and the pattern size has not been optimised.

The results presented in this thesis suggest that phase separation of polymer blends on 

binary-patterned polymer brushes is an interesting field for further study.  However, it 

would first be necessary to solve the problems associated with the synthesis of binary-

patterned polymer brushes, allowing the reproducible production of samples with 

predetermined thickness of both polymer brushes, and varied pattern size.   In these 

experiments, the patterns were produced using electron microscope grids as masks, but

there is no reason why smaller features (or different shapes) could not be produced by 

using different structures as masks.  It would then be interesting to see if reduction of 

the pattern periodicity (or increase in the blend domain size) would result in an altered

morphology, and under which conditions this might occur.  The effect of brush 

thickness and height changes on phase separation could be studied by deliberately 
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synthesising topographically patterned samples.  It might also be useful to investigate 

the role of blend film thickness on morphology and pattern replication.  Finally, samples

could be annealed for different times and at different temperatures to investigate how 

the blend morphology develops as the film approaches equilibrium.

The results presented in this chapter show that a wide range of phase-separated 

morphologies can be produced by varying the composition of a low molecular weight 

PS/PMMA blend and the chemistry of the substrate.  There has been little previous

study of the interaction of polymer blends with polymer brushes.  The binary-patterned 

polymer brushes had a pattern periodicity that was too large to direct phase separation 

by templating the PS/PMMA domain structure, but the observed structures may still 

lead to useful applications. 
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Chapter 7 

Summary and Conclusions 
Binary-patterned polymer brushes are an interesting and little studied class of 

micropatterned materials.  Since the first example was reported in 19951, there have

only been 12 papers reporting their synthesis and properties.  The first papers reporting 

applications of binary-patterned polymer brushes were published in 2009, suggesting 

that certain systems can be used to template chemical vapour deposition of metals, or as 

antifouling/selective adsorption surfaces for biochemical applications2,3.

This thesis describes the development of a novel method for the synthesis of binary-

patterned polymer brushes on silicon substrates.  Firstly, well-controlled, reproducible 

methods for the growth of unpatterned PS and PMMA brushes by homogeneous

surface-initiated ATRP were identified. Binary-patterned PS/PMMA brushes were 

synthesised via the use of a photopatternable SAM.  A NPPOC-silane monolayer was 

allowed to self-assemble on silicon.  It was then selectively deprotected by exposure to 

UV light through a mask, producing a chemical pattern of amine-terminated and 

NPPOC-terminated regions.  The exposed amine groups were reacted with 2-

bromoisobutyryl bromide to generate an -bromoester-functionalised surface which 

could be used to initiate the growth of PS or PMMA brushes by ATRP.  The NPPOC-

protected regions of the SAM were (relatively) unaffected by the reactions required to

grow the first brush.  The protecting groups could subsequently be removed by 

exposure to UV light, and the surface modification reactions repeated to generate a 

binary-patterned polymer brush.  As ATRP is a ‘living’ polymerisation, it was 

necessary to dehalogenate, or ‘kill’, the first brush by reaction with sodium azide to 

prevent the formation of block copolymer brushes during the second polymerisation.

This was only found to be possible for bromine-terminated polymer brushes, so the PS 

brush had to be grown first.  A mixed halogen system was used to grow PMMA 

brushes, so the polymer chains were terminated by both bromine and chlorine.  There 

are, however, literature methods for the synthesis of PMMA brushes that use copper(I) 

bromide as the catalyst, which would produce bromine-terminated PMMA brushes and 

remove this restriction. 
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Although chemical analysis (by SIMS) indicated the presence of both PS and PMMA, 

AFM measurement showed that the second brush (PMMA) formed a very thin layer, 

and that the layer thickness did not increase with increasing reaction time.

Homogeneous polymer brushes grown from bromoester-silane were significantly 

thinner than brushes grown from BMPUS under equivalent conditions.  These results

suggest that the reaction of 2-bromoisobutyryl bromide with amine-SAM was

inefficient, and that the density of surface-bound initiator groups was low.  This was

thought to be because attachment of bulky bromoisobutyrate groups to the surface

would quickly hinder further reaction of the surface-bound amines.  Surface-initiated

ATRP from the bromoester-silane SAM resulted in a polymer layer with a grafting

density too low to force the polymer chains to adopt the stretched configuration of a true 

polymer brush.  Improving the efficiency of this reaction is essential for further

development of this system.  It may be possible to use more aggressive reaction 

conditions to increase the amount of surface-attached bromoester groups, or use a 

longer alkyl ‘spacer’ to increase the conformational flexibility of the SAM, and allow a 

greater number of bulky groups to be incorporated.  Many different halogen-containing 

groups can be used as ATRP initiators, so another option might be to react the amine-

SAM with a less bulky reagent to produce a surface-attached alkyl halide which can 

initiate ATRP.  Extension of this method to allow the synthesis of other binary-

patterned polymer brushes (for example those containing temperature or pH responsive

groups) is likely to lead to interesting ‘smart’ materials with a range of practical

applications.

One of the original goals of this work was the synthesis of binary-patterned polymer

brushes without the use of photolithography.  At the start of this project this had not 

been done (although two different methods have since been reported4,5).  Attempts were

made to use CP to print BMPUS, then grow patterned brushes by surface-initiated 

ATRP.  It did not prove possible to produce good-quality patterned brushes by this 

method, so an alternative approach was pursued (see above).  The failure of this 

approach was surprising, as other groups have successfully printed other silane-

functionalised ATRP initiators including 2-bromo-2-methylpropionic acid 3-

trichlorosilanylpropyl ester6.  However, self-assembly of alkyltrichlorosilanes on silicon 

is very complicated and is affected by many different variables (which can be hard to 
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control).  It is possible that a more systematic study of the reaction, and printing under 

more controlled conditions might allow this approach to succeed in the future. 

It has been shown that chemical patterns can direct the phase separation of polymer

blends.  Controlled, regular domain structures can self-assemble provided that there is

preferential segregation of at least one of the polymers to one of the areas of the 

chemically patterned surface7,8, and the periodicity of the substrate pattern is

comparable to the natural length scale for phase separation under the conditions used7,9.

Pattern-directed phase separation has been demonstrated for a range of polymer blends

on patterned SAMs.  A controlled domain structure has been shown to improve the 

efficiency of polymer LEDs9-11 and  bulk heterojunction solar cells12.  There has been

little study of the behaviour of polymer blends on polymer brushes.  Polymer brushes 

allow access to a greater range (and density) of functional groups than is possible for

SAMs.  In addition, the polymer molecules in the brush can change their configuration 

according to the conditions.  This has been shown to lead to interesting behaviour such

as autophobic dewetting12-16.

This thesis presents a preliminary investigation of the phase separation of a PS/PMMA 

blend on a binary-patterned polymer brush.  The phase separation of the blend was

investigated on silicon, patterned NPPOC-/amine-silane SAMs and binary-patterned 

polymer brushes.  NRA and AFM showed that the blend formed a bilayer structure on 

silicon, with a PMMA-rich layer wetting the substrate and a PS-rich layer at the free 

surface.  On binary-patterned PS/PMMA brushes, domains rich in each polymer were 

present at the surface.   Different morphologies were found on the PS and PMMA brush 

regions and for each blend composition. Where the blend composition matched the 

patterned area fraction (e.g. 30/70 PS/PMMA), there was some evidence of preferential

segregation of PS to PS brush, and vice versa.  Unfortunately, the pattern periodicity 

was too large for true pattern-directed phase separation to occur.  This meant that the

blend morphology was the same on an unpatterned PS or PMMA brush and on the 

equivalent part of the pattern.  Smaller scale binary-patterned polymer brushes could be

synthesised using the methods described herein (via use of a mask with smaller

features), but this was not done due to time constraints.  A more thorough understanding 

of the system is needed before applications can be developed.  Further study should 

investigate how changing the pattern periodicity affects the blend morphology as it 
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approaches the characteristic length scale of phase separation.  It would also be 

interesting to investigate the effect of altering the properties of the blend, for example 

by changing the film thickness, the molecular weights of the polymers in the blend and 

annealing time and temperature.

The original goals of this project were to synthesise binary-patterned polymer brushes 

and to use them to investigate pattern-directed phase separation of a polymer blend. 

After working to overcome significant difficulties and gaining an improved

understanding of ATRP reactions, brush synthesis, self-assembly, polymer blends and 

pattern-directed phase separation, both these goals were achieved.  Further work is

required to improve the quality of the binary-patterned PS/PMMA brushes, and to fully 

understand how the patterned substrate influences the phase separation of the blend. 
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