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ABSTRACT 
	
  
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disorder, 

characterised by the degeneration of upper and lower motor neurons. Multiple 

mechanisms have been associated with ALS pathology, however the precise molecular 

events leading to selective motor neuron degeneration have yet to be understood. 

Prominent neuronal RNA oxidation has been reported during ageing and presymptomatic 

stage of ALS, with specific transcripts selectively modified during disease, which may 

contribute towards selective cellular degeneration. 

 

Gene expression changes using microarray technology has been widely used to 

investigate pathways underlying ageing and neurodegenerative disease. The aim of our 

study was to investigate the gene expression profile of an oxidised fraction of RNA 

extracted from the anterior spinal cord of normal mice aged six, twelve, and eighteen 

months. In data presented here, we identify specific classes of genes to be enriched within 

the oxidised fraction at each age. Furthermore, genes previously linked to the 

pathogenesis of ALS and normal ageing, such as those involved in RNA processing and 

transcriptional regulation, are identified as being differentially oxidised in the anterior 

spinal cord.  

 

The presence and distribution of oxidative damage to nucleic acids within an in vivo 

model of familial ALS and age-matched controls is demonstrated.	
  The predominance of 

cytoplasmic 8-hydroxyguanosine reactivity within motor neurons supports previous data 

of RNA susceptibility to oxidative modification in neurodegenerative disease. 

Investigation of RNA oxidation in an in vitro model of fALS harbouring G93A and 

H48Q human SOD1 mutations identified prominent levels of RNA oxidation in 

comparison to controls, which correlated with a reduction in human SOD1 protein 

expression within these cells. Subsequent work demonstrated the G93A mutation to be 

the most susceptible to oxidative stress related cellular decline, in terms of mitochondrial 

bioenergetics, mitochondrial morphology, and cell viability. The heterogeneity of various 

SOD1 mutations on cellular function is demonstrated.  
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Chapter 1 
Introduction 

	
  
	
  

1.1 Amyotrophic Lateral sclerosis 

1.1.2 Clinical Presentation and Diagnostic Criteria   

 

Motor neuron diseases are a series of rapidly progressive adult-onset disorders 

characterised by the selective degeneration of motor neurons (MNs) within the brainstem, 

spinal cord, or motor cortex, leading to paralysis of voluntary muscles. The major site of 

degeneration distinguishes the clinical subtypes of motor neuron disease (MND) (table 

1.1), which are classified by clinical signs and symptoms (table 1.2). 

 

Table 1.1: Clinical Subtypes of Motor Neuron Disease 
 

Site of degeneration 

 

Disease classification 

Combined upper and lower motor neuron 

degeneration 

 

Amyotrophic lateral sclerosis (ALS) 

Predominantly lower motor neuron (LMN) 

degeneration 

 

Progressive muscular atrophy (PMA) 

Predominantly upper motor neuron (UMN) 

degeneration 

 

Primary lateral sclerosis (PLS) 

Motor neuron degeneration accompanied 

by neuronal degeneration in cognitive 

association areas 

ALS with fronto-temporal dementia (ALS-

FTD) 

 

 Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder; with an 

incidence of 1-2/100,000 people, it is the most common form of MND. MNs are the cells 
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that form the basic functional unit of the motor system, which is the component of the 

central nervous system (CNS) responsible for voluntary movement of the musculature. 

The first description of ALS was by Charcot in 1869, and despite extensive research the 

aetiology and underlying pathogenesis of this MND remains unclear, as evident by the 

current lack of effective treatments. The impaired activation and degeneration of MNs, 

reduction in central motor drive, and atrophy of muscle fibres causes progressive 

weakness, plasticity, and wasting of the voluntary muscles, leading to progressive 

paralysis which is presented clinically (Wijesekera and Leigh 2009). Death of patients 

most frequently results from the failure of the respiratory muscles and diaphragm (Shaw 

2005).  

The onset of disease may present predominantly with lower motor neuron (LMN) 

degeneration, upper motor neuron (UMN) degeneration, or bulbar signs (Kirkwood and 

Austad 2000). Patients clinically present with limb-onset (70%), bulbar onset (25%), or 

with respiratory involvement (5%) (Ravits and La Spada 2009, Vucic 2007). The clinical 

presentation, rate of progression, and prognosis, often differ between patients, creating 

difficulties for diagnosis. These differences are likely due to the selective distribution of 

damage. The diagnosis of ALS is based on the presence of characteristic clinical features 

in conjunction with laboratory investigations to exclude overlapping conditions (table 

1.2) (Oliveira and Pereira 2009). 

Typical characteristics of ALS revealed from post-mortem examination are degeneration 

and loss of MNs in the anterior horn and in the motor nuclei of cranial nerves VII, X, XI, 

XII, accompanied by axonal loss in the lateral and anterior corticospinal tracts. There is, 

however, relative preservation of MNs in the nuclei supplying the extraocular muscles 

(III, IV, and VI). Corticobulbar and corticospinal tract degeneration is detected at the 

level of the internal capsule and cerebral peduncles in the midbrain (Brockington, et al. 

2013, Mannen, et al. 1977). As the MNs degenerate they are replaced by gliosis, leading 

to hardening of the corticospinal tracts (Ravits and La Spada 2009). The progression of 

clinical features and symptoms in ALS relates to cumulative MN loss within a given 

region as well as anatomical spread of disease. This propagation of degeneration has 

given rise to two hypotheses regarding the onset of disease (Kiernan, et al. 2011). The 

“dying-forward” hypothesis proposes that cortical MNs are the primary sites of disease 

and damage is propagated through the monosynapses formed with LMNs, mediating 

anterior degeneration of anterior horn cells. Subclinical UMN involvement is invariably 

found in all forms of MND, and clinical observations that the oculomotor, abducens, and 

Onuf’s nuclei do not synapse with cortical MNs and do not degenerate in ALS provide 

support for this hypothesis (Browne, et al. 2006, Eisen, et al. 1992). The “dying-back” 
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hypothesis proposes that the muscle cells or the neuromuscular junction (NMJ) are the 

primary site of disease, with damage propagated retrogradely from the distal synaptic and 

axonal compartments of the neuron, causing upper and lower MN loss. Evidence of 

synaptic denervation preceding MN degeneration and clinical manifestation of symptoms 

provides support for this hypothesis (Fischer, et al. 2004, Frey, et al. 2000).   

 

Table 1.2: Clinical presentation, clinical tests, and diagnosis criteria 
 
 

Signs and symptoms Clinical laboratory 

tests 

Requirements for 

diagnosis UMN LMN 

• Pseudobulbar 

features 

• Spastic Tone 

• Pathologic 

tendon 

reflexes 

• Pathologic 

responses 

• Atrophy  

• Fasciculations 

• Weakness 

• Blood count 

• Urinalysis 

• Neuromuscular-

related tests 

• Cerebral spinal 

fluid 

• Muscle and bone 

marrow biopsy 

• Magnetic 

resonance 

investigation-

brain & spinal 

cord 

• DNA analysis 

• Evidence of LMN 

and UMN 

degeneration on 

clinical, 

electrophysiologic, 

or neuropathologic 

examination 

• Absence of any 

evidence suggesting 

other explanations 

for UMN and LMN 

signs 

• No neuroimaging 

evidence of other 

disease processes 

 

There is no definitive diagnostic test or biomarker for ALS. Riluzole is the sole drug 

approved for use in ALS, and only moderately prolongs survival (Miller, et al. 2007). 

Understanding the molecular basis of ALS will hopefully lead to the development of 

diagnostics for improving the classification of different disease subtypes, and contribute 

effectively towards identifying specific therapeutic targets and treatments for patients 

(Gonzalez de Aguilar, et al. 2007). 
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1.1.3 Pathogenic mechanisms underlying MND 
 
ALS is a multi-factorial disorder in which combinations of factors interact and contribute 

towards neuronal viability. The pathogenic mechanisms influencing susceptibility and 

resistance to neuronal degeneration are discussed in this section; determining how the 

distinct pathways involved in disease overlap and converge to cause similar phenotypes is 

pivotal (figure 1.1) (Ravits and La Spada 2009). These are important to consider when 

developing therapeutics and investigating other mechanisms underlying disease, as these 

may converge and influence susceptibility. The interaction between these proposed 

pathogenic mechanisms is complex, and they characterise the progressive neuronal 

degeneration and muscular paralysis. The majority of ALS cases are sporadic (sALS) but 

around 10% of cases are familial (fALS) (Andersen 2006). Studies of sALS and fALS 

patients, accompanied by use of in vitro and in vivo models, have extended the 

understanding of ALS pathophysiology. Multiple perturbations in cellular function have 

been identified in ALS MNs, which will be discussed in the following sections.  

 

The complex nature of the disease allows for many potential targets of therapeutic 

intervention. Although MNs are selectively vulnerable to degeneration in ALS, other 

neuronal subgroups are affected in some patients, in particular following a prolonged 

disease course (Brockington, et al. 2013). Selective cellular vulnerability may be 

characterised by individual predispositions such as genetic background, systemic factors 

such as vascular lesions, glial reactions and the immune system, advancing age, and the 

accumulation of toxic species (Saxena and Caroni 2011). The basis of selective 

vulnerability of MNs remains unclear, which subsequently contributes towards the 

challenges faced in developing therapeutics.  

 

 

 



5 
 

 
 

Figure 1.1: Molecular mechanisms of motor neuron injury in ALS 

ALS is a complex disorder in which multiple mechanisms interact to cause cellular 

decline and degeneration. Several cellular pathways are activated in MNs and disease is 

propagated through interaction with glial cells. Molecular mechanisms contributing 

towards MN injury include mitochondrial dysfunction and oxidative stress, which along 

with dysregulated RNA processing and metabolism can reduce transcriptional fidelity 

leading to the production of aberrant proteins with a tendency to aggregate. Aberrant 

proteins can lead to endoplasmic reticulum stress and proteasome impairment, along with 

disruption of multiple metabolic pathways. Mitochondrial impairment and subsequent 

disruption to calcium homeostasis can cause activation of autophagy and apoptotic 

pathways, and an energy deficit leads to impaired axonal transport. The release of 

inflammatory mediators from glial cells and reduced expression of glutamate transporters 

results in excitotoxicity. Although a number of cases are familial, the pathology of both 

sporadic and familial disease appears consistent. Abbreviations: ALS, amyotrophic lateral 

sclerosis; BAX, BCL2-Associated X; Ca2+, Calcium; ER, endoplasmic reticulum; IL, 

interleukin; NO, nitric oxide; PGE2, prostaglandin E2; ROS, reactive oxygen species  

(Adapted from Ferraiuolo, et al. 2011) 
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1.1.3.1 Genetic factors 

 

The genetically diverse, rapidly progressive, heterogeneous nature of ALS makes it a 

difficult disease to study. Familial cases of ALS typically only account for 5-10%, but the 

clinical presentation of fALS and sALS can be very similar (Traynor, et al. 2000). The 

identification of genes implicated in fALS offers an approach to study common 

mechanisms underlying pathogenesis (table 1.3). Gene discoveries for juvenile-onset as 

well as typical ALS, which commences in later life, have been made (Valdmanis, et al. 

2007). The limitation of working with genetic variants results from the small patient 

group carrying the mutations, bringing uncertainty to extending the findings in to the 

ALS population as a whole.  

 

Autosomal dominant fALS was first linked to chromosome 21q22 and subsequently 

mutations in Cu/Zn Superoxide Dismutase 1 (SOD1) (Rosen, et al. 1993). Mutations in 

SOD1 account for approximately 2% of all ALS cases (Andersen, et al. 2003, Valentine, 

et al. 2005) and approximately 20% of fALS cases (Andersen 2006), though this varies 

depending on the population sampled. SOD1 is an ubiquitously expressed metalloenzyme 

that catalyses the dismutation of superoxide radicals into hydrogen peroxide and 

molecular oxygen. More than 150 individual SOD1 mutations have been reported (ALS 

Online Genetic Database, ALSOD: http://alsod.iop.kcl.ac.uk/) (Wroe, et al. 2008), and 

the pathogenicity of mutant SOD1 is thought to be toxic by a mechanism that is 

independent of its dismutase activity (Boillee, et al. 2006). This was determined in mouse 

studies where inactivation of SOD1 did not lead to ALS, or alternatively, the transgenic 

expression of SOD1 mutants in mice was pathogenic but did not alter enzyme activity. In 

addition, SOD1 deficient mice do not develop ALS, and mutations in SOD1 are not 

restricted to the active site of the enzyme (Deng, et al. 1993, Gurney, et al. 1994, 

Reaume, et al. 1996). However, despite these and other studies, the exact mechanisms by 

which mutant SOD1 causes selective MN degeneration remains to be established. There 

is no clear correlation between SOD1 enzymatic activity, clinical progression and disease 

phenotype (Andersen, et al. 1997, Yamanaka and Cleveland 2005). The characterisation 

of mutations in SOD1 has led to the development of in vitro and in vivo models, from 

which much understanding of the mechanisms involved in ALS pathology have been 

derived (Bendotti and Carri 2004). 

 

Mice carrying a human mutant SOD1 transgene develop a fatal neurological disease 

exhibiting muscle wasting and progressive paralysis, which clinically resembles human 
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ALS (Gurney, et al. 1994, Martin 2007). Histopathological features include aggregation 

of ubiquitinated proteins in MNs, microglial activation, and selective degeneration of 

MNs within the spinal cord (Cheroni, et al. 2005, J. Lee, et al. 2009). In vivo models are 

extremely valuable for investigating the manifestation of disease at different stages, and 

can be used to decipher mechanisms underlying sALS. However, in order to induce a 

pathological phenotype the level of mutant SOD1 expression required is considerably 

higher than that in patients harbouring the mutation, which needs to be accounted for 

when using this model to study the pathology of ALS (Bendotti and Carri 2004).   

 

Over 40 mutations in the glycine-rich carboxy terminal of the TAR-DNA binding protein 

(TARBP) gene encoding the TAR-DNA binding protein 43 (TDP-43) have been 

identified, which may account for up to 6% of fALS cases and 0-5% of sALS cases 

(Kabashi, et al. 2008, Mackenzie, et al. 2010, Van Deerlin, et al. 2008). TDP-43 

functions as an RNA/DNA binding protein involved in transcriptional regulation, 

alternative splicing, and mRNA stabilisation. The discovery of mutations within genes 

coding for proteins involved in RNA processing provided evidence for defects in RNA 

processing/metabolism as a pathological mechanism underlying ALS (Sreedharan, et al. 

2008). Wild-type TDP-43 is predominantly present in the nucleus, whereas pathological 

TDP-43 displays increased cytoplasmic localisation, inclusion formation, and stress 

granule association (Neumann, et al. 2006). A loss of nuclear function and a gain of 

cytoplasmic function have both been suggested as pathogenic activities of the mutant 

protein. 

 

Fused in sarcoma (FUS) also encodes an RNA/DNA binding protein which is found to 

be mutated in a further 4% of fALS cases and 1% of sALS cases (Kwiatkowski, et al. 

2009, Vance, et al. 2009). FUS is a component of the ribonucleoprotein complexes 

involved in transcriptional regulation, alternative splicing, and RNA transport. Like TDP-

43, FUS is normally located within the nucleus; however, examination of post-mortem 

tissue from patients carrying the FUS mutations identified abnormal cytoplasmic 

inclusions within neurons and glia (Kwiatkowski, et al. 2009). These inclusions were not 

immunoreactive for TDP-43, indicating that the neurodegenerative process due to a 

mutation in FUS is independent of TDP-43 mislocalisation (Vance, et al. 2009). The 

precise roles of TDP-43 and FUS have not been elucidated, but they are both structurally 

related to the heterogeneous ribonucleoprotein family, and have been implicated at 

multiple levels of RNA processing, including transcriptional regulation, alternative 

splicing, microRNA (miRNA) processing, RNA subcellular localisation, translation, 

decay, and overall contributing towards genome stability.  
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A large hexanucleotide (GGGGCC) repeat expansion in a non-coding region of 

chromosome 9 open reading frame 72 (C9ORF72) was recently identified as the most 

common cause of familial FTD and ALS to date (DeJesus-Hernandez, et al. 2011, 

Renton, et al. 2011). The expansion is found in intron 1 of C9ORF72 between two non-

coding exons, and the minimum size of the pathogenic expansion is undefined. This 

expansion is present in around 40% of fALS and 7% of sALS cases, making it the most 

frequent genetic abnormality identified in ALS patients (Mahoney, et al. 2012, van 

Rheenen, et al. 2012). Whilst the unaffected control population is found to carry less than 

30 repeats, FTD and ALS patients carry very large expansions containing hundreds of 

repeats. Familial cases of C9ORF72 ALS are inherited in an autosomal dominant manner; 

with sporadic cases potentially arising due to the inherent genomic instability at the site 

of the expanded repeat sequence. Studies have found the repeat to form G-quadruplexes, 

which are highly stable nucleic acid secondary structures formed through association of 

short tracts of G-rich sequences (Fratta, et al. 2012). G-quadruplexes forming on the 

template or non-coding strand, could enhance transcription by keeping the template 

strand single-stranded (Bochman, et al. 2012). This suggests a mechanism that is 

consistent with the identification of nuclear foci containing the repeat in patient tissue 

(DeJesus-Hernandez, et al. 2011). Cases with histopathological correlation show TDP-43 

deposition, and ubiquitin positive neuronal cytoplasmic inclusions in FTD-ALS cases 

linked to the C9ORF72 expansion. A recent paper from our laboratory (Cooper-Knock, et 

al. 2012) identified a unique pathological signature in C9ORF72 cases. In a cohort of 563 

cases, all the cases with the hexanucleotide repeat expansion of C9ORF72 displayed the 

features of a typical variant of ALS. The expansion was absent from most cases with a 

previously identified mutation, supporting independent pathogenesis. C9ORF72 cases 

were distinguished from the rest of the cohort by the extra motor pathology in the frontal 

cortex and the hippocampal CA4 subfield neurons. Interestingly the inclusions present in 

CA4 neurons were limited to C9ORF72 cases only, indicating this pathology is a 

relatively reliable indicator of mutation status (Cooper-Knock, et al. 2012). Despite the 

recent findings, the pathogenic mechanism whereby the expansion leads to 

neurodegeneration has yet to be defined.  

 

Other genetic mutations have been identified in ALS cases, with some mutations present 

in both fALS and sALS cases (table 1.3). Those implicated in sALS cases could represent 

a novel mutation in the particular gene, or the sporadic forms may harbour mutations that 

have incomplete penetrance, with the onset of symptoms due to other underlying 

pathogenic mechanisms. It must also be noted that aberrant epigenetic 
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regulation/silencing of particular genes essential to MN function and survival could 

underlie sALS. Greater comprehension of genetic variants and how their pathologies 

converge will provide insight into prospective new targets for MND. Whole genome 

sequencing is becoming increasingly useful for identifying rare genetic variants 

underlying ALS, and identifying how genes potentially interact to produce a MN specific 

phenotype and how these may propagate other proposed pathogenic mechanisms is of 

importance when developing therapeutics. 
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Table 1.3: Genetic loci associated with MND categorised by clinical phenotype 
 

ALS 
Disease 

Type 

Chromosomal 
Locus 

Gene Onset/ 
Inheritance 

 

Action of Protein References 

ALS1 21q22.1 Superoxide 
dismutase 1 (SOD1) 

Adult/Ad 
 

Detoxification 
enzyme  

(Rosen, et al. 
1993) 

ALS2 2q33 Alsin (ALS2) Juvenile/AR 
 

GEF signalling, 
endosomal dynamics 

(Hadano, et 
al. 2001) 

ALS3 18q21 Unknown Adult/Ad 
 

- 
 

(Hand, et al. 
2002) 

ALS4 9q34 Senataxin (SETX) Juvenile/Ad 
 

DNA/RNA helicase, 
RNA processing 

(Chen, et al. 
2004) 

ALS5 15q15-21.1 Spatacsin (SPG11) 
 

Juvenile/AR - (Hentati, et 
al. 1998, 
Orlacchio, et 
al. 2010)  

ALS6 16q12 Fused in Sarcoma 
(TLS/FUS) 

Adult/Ad 
 

RNA binding and 
processing, DNA 
repair 

(Kwiatkowski
, et al. 2009, 
Vance, et al. 
2009) 

ALS7 20ptel-p13 
 

Unknown Adult/Ad 
 

- (Sapp, et al. 
2003) 

ALS8 20q13.3 VAMP-associated 
membrane protein B 
(VAPB) 

Adult/Ad 
 

Intracellular 
membrane 
trafficking, calcium 
metabolism  

(Nishimura, 
et al. 2004) 

ALS9 14q11.2 Angiogenin (ANG) Adult/Ad 
 

Neovascularisation, 
RNA processing  

(Greenway, et 
al. 2006, Wu, 
et al. 2007) 

ALS10 1p36.2 TAR-DNA binding 
protein (TARDBP) 

Adult/Ad 
 

DNA/RNA binding, 
splicing, 
transcriptional 
regulation  

(Sreedharan, 
et al. 2008) 

ALS11 6q21 
 

Polyphosphoinositid
e phosphatase 
(FIG4) 
 

Adult/Ad Endosomal 
trafficking 

(Chow, et al. 
2009) 

ALS12 10p15-p14 
 

Optineurin (OPTN) 
 

Adult/Ad&A
R 
 

Endosomal 
trafficking 

(Maruyama, 
et al. 2010) 

ALSX Xp11-q12 Ubiquilin 2 
(UBQLN2) 
 

Adult/x-
linked 

- (Deng, et al. 
2011) 

ALS-
FTD 

9p21-p22 Chromosome 9 open 
reading frame 72 
(C9ORF72) 
 

Adult/Ad 
 

 - (DeJesus-
Hernandez, et 
al. 2011, 
Renton, et al. 
2011) 

ALS-
FTD 

9q13-p12 Valosin-containing 
protein (VCP) 
 

Adult/AD 
 

- (Johnson, et 
al. 2010) 

ALS–
FTD 

9p13.3 σ _Non-opioid 
receptor 1 
(SIGMAR1) 
 

Adult/Ad 
Juvenile/AR 

- (Luty, et al. 
2010) 

ALS-
dementa-
PD 

17q21 Microtubule-
associated protein 
tau (MAPT) 

Adult/Ad 
 

Cytoskeletal 
dynamics  

(Hutton, et al. 
1998, 
Zarranz, et al. 
2005) 
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1.1.3.2 Oxidative Stress 

 

Oxidative stress is a biological phenomenon resulting from an imbalance between the 

production and detoxification of reactive oxygen species (ROS). ROS can arise as by-

products of aerobic metabolism within cells, as a result of the leakage of electrons from 

the mitochondrial respiratory chain, by cellular oxidative enzymes such as cytochrome 

P450 and xanthine oxidase, from peroxisomes in the catabolism of long chain fatty acids, 

and they are released from phagocytes and lymphocytes (Lenaz, et al. 1998). ROS have 

important physiological roles in signalling, and variation of the normal redox state may 

lead to toxicity and damage (Ray, et al. 2012, Shukla, et al. 2011). Redox homeostasis is 

maintained through the antioxidant defence system, which targets and detoxifies or 

removes ROS, preventing free radical mediated damage (Inoue, et al. 2003, Pratico 

2008). Cellular biomolecules are continuously modified by ROS, reactive nitrogen 

species (RNS), and non-radical species arising from environmental exposure and 

oxidative cellular metabolism. Some ROS mediated post-translational modifications are 

necessary for cells to function normally including physiological signalling; however, an 

excess of these molecules results in macromolecular damage. Numerous studies implicate 

increased intracellular oxidative toxicity in the process of biological ageing, and although 

oxidative stress is well documented as an early feature in neurodegeneration, the full 

extent of its interaction and contribution to the underlying pathology of disease remains 

to be elucidated (Chang, et al. 2008, Nunomura, et al. 1999, Xu, et al. 2011, Ying 1997, 

Zhang, et al. 1999).  

 

The role of oxidative stress in ALS pathogenesis has received particular interest because 

of the high incidence of mutations in SOD1, which encodes a major antioxidant protein, 

in fALS cases. Widespread oxidative damage in familial and sporadic disease can be 

correlated to deterioration in neuronal function, and has been associated with many of the 

other pathophysiological factors that underlie neurodegenerative diseases, including 

mitochondrial dysfunction, excitotoxicity, and protein aggregation (figure 1.2) 

(Ferraiuolo, et al. 2011). Oxidative damage to proteins, lipids, and nucleic acids can 

occur during periods of cellular stress, and has been implicated in neurodegenerative 

pathologies. Elevated markers of free radical damage have been identified in sALS and 

fALS patients, including protein and lipid oxidation in the brain and spinal cord 

(Bowling, et al. 1993, Mitsumoto, et al. 2008, Shaw 2005, Simpson, et al. 2004). 

Increased levels of nucleic acid oxidation have also been detected in sALS cases and 

transgenic murine models of disease (Chang, et al. 2008, Fitzmaurice, et al. 1996). In the 

human mutant SOD1 transgenic mouse model, oxidative damage to mRNA was 
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concomitant with reduced expression of encoded proteins. Interestingly oxidative damage 

of the mutant SOD1 protein is observed, which potentially causes further perturbations in 

its antioxidant properties and increases the likelihood of its aggregation, thereby 

sustaining a cycle of oxidative stress (Andrus, et al. 1998). The identification of 

misfolded and oxidised wild-type SOD1 in sALS patients suggests post-translational 

modifications of SOD1 may cause the protein to acquire toxic properties similar to fALS-

linked mutant SOD1, and identifies a common SOD-dependent toxicity between fALS 

and a subset of sALS (Guareschi, et al. 2012). 

 

Oxidative modification of biomolecules can depend upon a number of factors such as the 

location of ROS production, the relative ability of the molecule to be oxidised, and the 

availability of metal ions. These modifications may contribute towards disease 

pathogenesis by altering protein expression/function, disrupting cellular and metabolic 

processes, and causing a redundancy in the defence and repair pathways elicited by cells 

to protect against damage (Uttara, et al. 2009). A reduction in the functionality of the 

defence and repair mechanisms protecting cells from oxidative damage accompanies an 

increase in oxidative stress during ageing and neurodegeneration (Nakabeppu, et al. 

2004), and will subsequently render cells vulnerable to insult whilst reducing the ability 

of cells to cope with physiological stress. The intrinsic selectivity of response to stress of 

neuronal subpopulations may be determined by their connectivity and excitability 

properties, with several stressors converging to form a vicious cycle driving dysfunction 

and degeneration. 

 

Antioxidants have been investigated as potential therapeutics against neuronal loss, and 

some of the antioxidants tested in ALS clinical trials include Vitamin E, N-acetylcysteine, 

Coenzyme Q10, and Catalase. Vitamin E is the most potent scavenger of reactive oxygen 

known (Tucker and Townsend 2005). However, two clinical trials involving the oral 

administration of Vitamin E showed no effect on survival of ALS patients (Ascherio, et 

al. 2005, Desnuelle, et al. 2001). N-acetylcysteine when administrated orally replenished 

pools of glutathione (Burgunder, et al. 1989), which is an ROS scavenger. However 

clinical trials in ALS patients saw no improvement in disease progression or survival 

(Louwerse, et al. 1995). Although it remains unclear whether antioxidant therapies are 

indeed effective, trials have focused on the treatment of subsets of disease and have 

trialled individual compounds. Despite the ineffectiveness of these trials, the importance 

of oxidative stress in disease pathogenesis cannot be ignored, as it integrates with 

numerous other mechanisms proposed to underlie the pathogenesis of ALS and other 
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neurodegenerative pathologies (figure 1.2). Combinatorial therapies across a spectrum of 

patients with ALS may see greater improvements in prognosis. 

 

 

  
Figure 1.2: The interaction of oxidative stress with the other proposed 

mechanisms of ALS pathology	
  

Oxidative stress is central to neurodegenerative pathologies and can interact and 

potentially exacerbate other mechanisms known to contribute towards neurodegeneration. 

Some of these mechanisms may interact and form vicious cycles of activation and 

damage. Abbreviations: EC, extracellular; mtDNA, mitochondrial DNA; ROS, reactive 

oxygen species. . 

  
 

1.1.3.3 Mitochondrial Dysfunction 

 

Mitochondria are responsible for oxidative phosphorylation and energy production, and 

have roles in calcium buffering and initiation of apoptosis. Neurons are dependent on a 

highly efficient electron transport chain to maintain their energy demands, and thus 

maintaining the functional integrity of mitochondria is essential for neuronal survival.  
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Evidence implicates oxidative stress and mitochondrial dysfunction in the ageing process 

and underlying the pathogenesis of neurodegenerative disease. Studies from both ALS 

patients and transgenic animal models have identified widespread morphological and 

functional changes to mitochondria including abnormal distribution and fragmentation, a 

decline in mitochondrial bioenergetic capacity, and increased generation of mitochondrial 

oxidants, as contributors towards disease pathogenesis (Navarro and Boveris 2007). 

Accompanying this, a loss of mitochondrial membrane potential, impaired electron chain 

transport, and a disruption of calcium homeostasis have also been identified during 

neurodegeneration (Borthwick, et al. 1999).  

 

The accumulation of oxidative damage to mitochondrial proteins, lipids, and DNA has 

been demonstrated in tissues from both ALS patients and transgenic models of disease 

(Borthwick, et al. 1999, Kikuchi, et al. 2002, Mattiazzi, et al. 2002). This is associated 

with respiratory chain dysfunction and cellular energy deficits that can lead to 

paradoxical ROS production and changes at the transcriptional level (figure 1.3). 

Functional impairment of mitochondria including decreased activity of the electron 

transport chain have been observed in human patients, and in vitro and in vivo models of 

familial ALS-linked mutant SOD1 (Cashman, et al. 1992, Fujita, et al. 1996, Mattiazzi, et 

al. 2002, Menzies, et al. 2002). Murine models of ALS demonstrate mitochondrial 

pathology as an early feature of MN injury, with vacuolation of degenerating 

mitochondria seen in the axons and dendrites of vulnerable neurons at presymptomatic 

stages of disease (Higgins, et al. 2003, Wong, et al. 1995). Abnormal mitochondrial 

distribution, swelling of cristae, and fragmentation of mitochondrial networks have been 

observed in sALS and fALS patients (Afifi, et al. 1966, Curtis 1971, Hirano, et al. 1984, 

Sasaki and Iwata 2007). Mitochondrial localisation of mutant SOD1 has been identified 

in isolated mitochondria and in MNs in situ (Higgins, et al. 2002, J. Liu, et al. 2004, 

Sasaki, et al. 2004), which consequently may impact the mitochondrial morphology and 

bioenergetic function. There is a strong argument for mitochondrial abnormalities 

participating in the disease causing mechanisms of neurodegenerative disorders, 

supported by an abundance of evidence for their dysfunction in neurodegenerative 

disease and during the ageing process.  
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Figure 1.3: Mitochondrial dysfunction and oxidative stress interaction in 

neurodegeneration	
  

Energy depletion due to mitochondrial defects may underlie the wider dissemination of 

energy metabolism defects that have been reported in patients and familial animal models 

of ALS. There is no clear evidence whether mitochondrial dysfunction is a primary or 

secondary defect in the pathological cascade of ALS. 

 

1.1.3.4 Excitotoxicity 

 
Glutamate is the major excitatory neurotransmitter in the mammalian CNS. Upon 

membrane depolarisation, glutamate is released from the presynaptic terminals of neurons 

into the synaptic cleft where it can interact with the ionotropic and metabotropic receptors 

on the postsynaptic terminal. Glutamate reuptake transporter proteins, including 

excitatory amino acid transporters (EAAT), are located on surrounding neurons and 

perisynaptic astrocytes, and act to terminate the excitatory signal by removing glutamate 

from the extracellular space (Doble 1999). Excitotoxicity results from an increase in 

synaptic glutamate concentration in the synaptic cleft and the excessive stimulation of 

glutamate receptors, due to aberrant production of glutamate or impairment in its 

reuptake. This, in turn, leads to an excessive influx of calcium and an imbalance in 

calcium homeostasis. Levels of free intracellular calcium rise, leading to the activation of 

calcium dependent pathways and mechanisms to restore calcium homeostasis through 

compartmentalisation, transportation, and sequestration into organelles (Heath and Shaw 

2002). Mitochondria are important reserves of calcium, and excessive calcium load 
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within cells will disrupt overall calcium homeostasis and may result in the diminished 

ability of mitochondria to sequester calcium (Bezprozvanny 2009). Mitochondrial 

dysfunction due to disturbances in calcium homeostasis leads to increased ROS 

production, which increases the likelihood of oxidative stress potentially initiating a 

vicious cycle leading to neuronal injury and death (Dykens 1994). 

 

Substantial evidence supports excitotoxicity as a pathogenic mechanism of ALS, which 

either result as a primary defect within neurons, or occur as a secondary process of 

neurodegeneration. Abnormal editing of the GluR2 AMPA receptor subunit, which alters 

the calcium permeability of the channel, and low expression of calcium buffering proteins 

have been reported as contributory factors towards calcium mediated toxicity of MNs 

(Carriedo, et al. 2000, Kwak, et al. 2010). Mutant SOD1 murine models also support a 

role for excitotoxicity, exhibiting altered electrophysiological properties and AMPA 

receptor subunit expression, accompanied by defective glutamate metabolism and 

increased glutamate signalling due to an accumulation of glutamate at the synapse 

(Meehan, et al. 2010, Milanese, et al. 2011, Van Damme, et al. 2007, Van Damme, et al. 

2005). An increase in glutamate signalling has been observed in a subset of ALS patients, 

accompanied by reduced EAAT2 expression and activity in pathologically affected areas 

of the CNS (Rothstein, et al. 1990, Shaw, et al. 1995), suggesting a substantial 

contribution of astrocytes to the excitotoxic environment on MNs. Genetic mutations, 

aberrant RNA processing, or oxidative damage to EAAT2 protein may contribute towards 

a reduction in its expression (Bruijn, et al. 1997, Munch, et al. 2002, Trotti, et al. 1999).  

 

Riluzole, the only approved drug for use is ALS, acts to ameliorate excitotoxicity, and 

provides a modest increase in patient survival (Cheah, et al. 2010, Miller, et al. 2012). A 

review of the literature found Riluzole to have a wide range of effects on factors 

influencing neuronal activity, including inhibition of the persistent sodium current, 

reduction of neuronal firing, potentiation of calcium-activated potassium currents, 

presynaptic reduction of neurotransmitter release, and enhanced production of 

neurotrophic factors through activation of the MAPK signalling pathway (Bellingham 

2011). 

 

1.1.3.5 Protein Aggregation 

 

Protein aggregation is a pathological hallmark of numerous neurodegenerative diseases 

including ALS, and understanding the correlation between protein deposits, causes of 
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aggregation, neuronal dysfunction and subsequent loss are of interest (Ross and Poirier 

2004). There is still debate over whether these aggregates are central to disease 

pathogenesis, harmless by-products, or potentially beneficial through the sequestration of 

toxic proteins. Protein aggregation may result as the consequence of a mutation that has 

changed the primary structure of the protein or resulted in the production of a short 

polypeptide. Aberrant protein folding or defects in post-translational modifications may 

result in proteins with a greater tendency to aggregate, and oxidative damage to nucleic 

acids may lead to the production of faulty proteins due to reduced fidelity of 

transcription/translation. In ALS, pathological protein aggregates that can be identified by 

immunoreactivity for ubiquitin and p62 are a fundamental feature of disease (Niwa, et al. 

2002). TDP-43 has been identified as major constituent of these cytoplasmic aggregates 

(Neumann, et al. 2006). TDP-43 inclusions are not restricted to MNs and the 

redistribution of TDP-43 to the cytoplasm appears to be an early pathogenic event 

(Giordana, et al. 2010). SOD1 inclusions have been found within MNs of fALS patients 

and transgenic models of disease (Shibata, et al. 1996), and small eosinophilic Bunina 

bodies containing cystatin C are observed in MNs in the majority of cases (Okamoto, et 

al. 1993, Piao, et al. 2003). Some patients with FUS mutations exhibit cytoplasmic 

inclusions of the protein (Hewitt, et al. 2010). These aggregates have also been found to 

contain proteins such as neurofilament and peripherin (Arai, et al. 2006). 

 

Evidence suggests that the protein aggregates formed in neurodegenerative diseases 

reflect the production of aberrant or misfolded proteins, which under disease 

circumstances or as a consequence of ageing may not be removed efficiently from cells. 

Intracellular aggregates may mediate MN degeneration through sequestration of essential 

cellular components or reduced functionality of defence mechanisms such as the 

molecular chaperones and the ubiquitin proteasome system (UPS) (Bruening, et al. 1999, 

Bruijn, et al. 1998).  

 

1.1.3.6 Axonal Transport Defects 

 

The communication between the cell body and its processes is essential to neuronal 

function and survival. Axonal transport serves to supply axons and synaptic structures 

with essential components, such as RNA, proteins, and organelles. Microtubule-

dependent kinesin molecular motors are used for transport towards the neuromuscular 

junction (NMJ) (anterograde), and cytoplasmic dynein molecular motors transport 

components towards the cell body (retrograde). Impairments in axonal transport have 
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been proposed as a contributory mechanism towards MN dysfunction in ALS 

pathogenesis, and have been demonstrated in mouse models of ALS (Zhang, et al. 1997). 

Transgenic mice expressing human mutant SOD1 manifest axonal defects early in disease 

(Williamson and Cleveland 1999), and the movement of neurofilaments, vesicles, and 

mitochondria are affected under these circumstances. Evidence has also shown that 

mutant SOD1 damage to mitochondria is associated with a reduction in their anterograde 

transport (Miller and Sheetz 2004), and promotion of their retrograde transport along 

axons (De Vos, et al. 2007). The consequence of the net accumulation of mitochondria 

within the cell bodies and a reduction in their distribution along the axon may result in a 

decline in energy production for the molecular motors, further restricting axonal 

transport. Damage or impairment of molecular motors, mitochondria, or microtubules, as 

consequences of oxidative damage or other defective cellular mechanisms, may all 

contribute towards the disruption of axonal transport (Mattson 2000). A recent study 

demonstrated the susceptibility of axons to exogenous ROS in comparison with nerve cell 

bodies and dendrites, and suggests increases in ROS generation and inflammation during 

neurodegenerative disease may preferentially affect axons (Fang, et al. 2012, Lucas, et al. 

2006, Zipp and Aktas 2006). 

 

1.1.3.7 Glial Pathology 

 

Evidence for the involvement of non-neuronal cell populations in the cellular pathology 

of ALS suggests these are integral to neuronal dysfunction (Ince, et al. 2011). An 

increased understanding of glial cell function in the CNS accompanies the emerging role 

they have in disease. Glial cells provide structural, metabolic, and trophic support to 

neurons. They influence neuronal excitability by regulating neurotransmitter activity, 

integrate and process synaptic activity, and provide support to the blood brain barrier.  

 

Glial cells may directly contribute to the underlying aetiology of ALS and thus the overall 

phenotype, or owing to their position in the surrounding environment of neuronal cells 

indirectly impact upon neuronal function and survival in disease states. A decline in 

functional glia would reduce trophic support for neurons, potentially increasing their 

vulnerability to extracellular damage and toxic insults, particularly from ROS released by 

inflammatory mediators (Lucin and Wyss-Coray 2009). Such inflammatory mediators 

include vasoactive amines, cytokines and nitric oxide, which are released by immune 

cells and are up-regulated in the brain and spinal cord of ALS patients (Almer, et al. 

2002). This accompanies the increased activation of astrocytes and microglia, which may 
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initially result from the release of ROS from damaged MNs (Kawamata, et al. 1992). The 

further release of ROS from the activated glia continues to activate their neighbouring 

cells (Zhao, et al. 2004), and can disrupt the reuptake of glutamate by the surrounding 

astrocytes (Rao, et al. 2003) potentially producing a neurotoxic effect (Banati, et al. 

1993), and promoting the spread of neuronal damage.  

 

A non-cell autonomous mechanism of ALS is supported by studies of mutant SOD1 

transgenic mouse models, and it is widely accepted that toxicity of mutant SOD1 is not 

confined to MNs. Initial attempts to generate disease by specific expression of mutant 

SOD1 selectively in MNs or astrocytes failed (Gong, et al. 2000, Pramatarova, et al. 

2001). However, a later study showed transgenic mice expressing G93A mutant SOD1 

specifically in neurons develop an ALS-like disease, characterised by the loss of MNs 

and muscle denervation (Jaarsma, et al. 2008). In this model, the disease developed at late 

stages and progressed slowly, without reaching the same degree of paralysis relative to 

those models where the mutant gene was ubiquitously expressed, supporting a non-cell 

autonomous element during ALS. Accompanying this, chimaeric mice with mixtures of 

normal and SOD1 mutant expressing cells, showed that increased expression levels of 

mutant SOD1 in MNs is not sufficient for early onset disease, implicating non-neuronal 

cells in driving disease initiation (Clement, et al. 2003, Yamanaka, et al. 2008). 

Pathological analysis has demonstrated astrogliosis as an accompanying factor to 

neuronal degeneration in the CNS, and cytoplasmic protein aggregates similar to those 

seen in neurons, are also present within glia in both ALS patients and models of disease 

(Ince, et al. 2011, Miller, et al. 2004, Nishihira, et al. 2008). In addition, these astrocytic 

inclusions are early indicators of mutant SOD1 toxicity, precede symptom onset and 

increase with disease progression (Bruijn, et al. 1997). Understanding how the support 

and regulatory functions of glia are altered during ALS is critical for determining how 

they might contribute towards the underlying pathogenesis of disease. 

 

1.2 Ageing  
	
  
Understanding the factors that lead to normal ageing is important, as ageing is associated 

with processes related to neurodegenerative disease. In addition, our study focuses on 

whether genes are differentially oxidised during ageing. The factors discussed here 

include oxidative stress, mitochondrial dysfunction, gene expression changes, RNA 

processing, and nucleic acid damage, along with how they relate to neurodegenerative 

disease and have links to our study on RNA oxidation. 
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1.2.1 The Ageing CNS 
 
Ageing is an inevitable biological consequence which results from a combination of 

factors. The complexity of these contributory factors means there is no unifying theory to 

explain ageing, and this could be said to be true for age-associated diseases. Ageing is 

associated with a reorganisation of brain in structure accompanied by a general decline in 

cognitive and motor function, and the reduced ability to respond to and overcome 

physiological stress (Sun, et al. 2012). The success of research and the advances in 

medicine, along with improved socio-economic factors, have brought about an increase in 

the elderly population. While the achievements made should be recognised, the 

consequences of a population with greater survival rates must also be addressed, due to 

the huge economic implication it poses along with the increase in age-associated diseases. 

Although the processes underlying biological ageing remain controversial and poorly 

understood, it is generally accepted that at the cellular level ageing is associated with 

processes related to neurodegenerative disease including oxidative stress, mitochondrial 

dysfunction, and impaired DNA repair (Sahin and Depinho 2010). Investigation of these 

factors within the context of disease and their comparison to non-pathological ageing may 

provide valuable insights into the factors underlying neurodegeneration.  

 

The gradual and progressive structural and functional deterioration of the CNS during 

ageing is accompanied by accumulated damage to a variety of cellular macromolecules 

and organelles that is not easily removed. As the molecular mechanisms associated with 

mammalian ageing become increasingly understood, it is clear there are changes that 

disrupt the homeostatic balance. The progressive decline in the functionality of defence 

and repair systems accompanying ageing leads to physiological vulnerability to 

endogenous and exogenous stresses imposed on tissues and cells, which in response can 

result in a loss of homeostasis and an overall increase in cellular vulnerability whilst 

inflicting a constraint on longevity (Kirkwood and Austad 2000). Although evidence 

points towards a deterioration of homeostatic control and an accumulation of damage 

during ageing, what actually causes these changes remains perplexing. The classical 

laboratory model species (such as flies, nematodes, and rodents) have been widely 

utilised by those seeking to understand the fundamental processes controlling ageing. 

New mutants and transgenics within these species have produced important insights into 

the nervous system and ageing itself. Whilst the use of model organisms is advantageous 

to understanding the processes of ageing, whether these changes reflect what happens 

under natural selection must be considered. 
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1.2.1.1 Free Radical Theory 

 

Harman (1956) suggested that the production of free radicals by aerobic respiration leads 

to an accumulation of oxidative damage, resulting in ageing and culminating in cell death 

(Harman 1956). He hypothesised that endogenous oxygen radical formation occurs in 

vivo, as a by-product of enzymatic redox chemistry, and iron and other metals would 

catalyse oxidative reactions in vivo through Fenton-type chemistry (figure 1.4). This 

principle has received much attention in the last 50 years. The free radical/oxidative stress 

theory of ageing implicates oxidative stress, an imbalance between the production and 

detoxification of reactive oxygen species/reactive nitrogen species (ROS/RNS), as a 

prime candidate for causing ageing. It proposes that the cumulative damage to biological 

macromolecules by these species contributes to the functional decline of neurons and 

disrupts the support properties of glia (Andersen 2004). ROS and RNS can function as 

signalling species in many physiological processes through the selective 

activation/inhibition of other enzymes such as protein kinases and phosphatases 

(Trachootham, et al. 2008). Detrimental effects of ROS and RNS on cellular signalling 

may result from disruption of their normal physiological levels due to enhanced/reduced 

production, or as result of the direct attack of these species on biomolecules.   

 
Figure 1.4: The generation of reactive oxygen species	
  
The transfer of electrons to molecular oxygen results in the generation of partially 

reduced oxygen species. The generation of hydroxyl radical occurs from an interaction 

between superoxide and hydrogen peroxide (3). This superoxide anion radical can 

dismutate to water and oxygen, which is catalysed by superoxide dismutase (1). The 

Haber Weiss reaction generating the hydroxyl radical can be broken down in to two 

chemical reactions (2&3). The initial reaction catalyses the reduction of ferric ions to 

ferrous (2), then iron reacts with hydrogen peroxide to produce a highly reactive hydroxyl 

radical (Fenton Reaction, 3). The net reaction can be simplified (4). 
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Oxidative damage is identified by the accumulation of markers of oxidative injury such 

as lipoperoxides, carbonylated proteins, and oxidised nucleic acids. Modification of 

existing structures such as lipid peroxidation of membranes, and depletion of enzymatic 

activity and/or functional mitochondria are also indicators of oxidative damage due to 

increased stress (Finkel and Holbrook 2000). The CNS is particularly vulnerable to 

oxidative insults by ROS due to the high content of unsaturated fatty acids that are more 

liable to peroxidation, the abundance of redox-active metals (iron and copper), high 

oxygen consumption, and a low reserve of antioxidant capacity. Markers of increased 

oxidative stress have been extensively studied in animal models of ageing, along with 

oxidative stress-response gene expression, to determine whether ageing is the cumulative 

result of oxidative damage to cells. Several lines of evidence have been found to support 

the free radical theory including: (1) metabolic rate and antioxidant activity correlates 

with species life span; (2) expression of antioxidant enzymes in experimental animals can 

produce a significant increase in longevity; (3) cellular levels of free radical damage 

increase with age; and (4) dietary restriction leads to reduced ROS production and an 

increase in lifespan (Fontana, et al. 2010, Johnson, et al. 2013, Parkes, et al. 1998, 

Wickens 2001). Although, conflicting results from similar studies make it difficult to 

determine the actual impact of these on lifespan (Griswold, et al. 1993). Accumulation of 

deleterious effects caused by free radicals and the ability of an organism to cope with 

damage induced by ROS play an important role in determining organismal lifespan. The 

bulk of evidence suggests an overall age-associated reduction in the intrinsic ability of 

cells to degrade damaged products.  

 

Antioxidants are classified as exogenous or endogenous compounds responsible for the 

removal of free radicals, scavenging ROS or their precursors, inhibiting formation of 

ROS, and binding metal ions needed for catalysis of ROS generation (Gilgun-Sherki, et 

al. 2001) (details on redox regulation can be found in section 3.1). Antioxidants are 

sorted in two major groups, enzymatic and non-enzymatic. Enzymatic antioxidants 

comprise superoxide dismutase, catalase, glutathione reductase, and glutathione 

peroxidase. Non-enzymatic antioxidants, which include ascorbic and lipoic acid, 

polyphenols and carotenoids, are majority derived from dietary sources (Poulsen, et al. 

1998, Uttara, et al. 2009). Indirectly acting antioxidants include Chelating agents, which 

are indirect acting non-enzymatic antioxidants that bind to redox metals to prevent free 

radical generation (Gilgun-Sherki, et al. 2001). Given their functions in neutralising ROS 

and other kinds of free radicals, antioxidants have attracted attention because of their 

therapeutic potential. However, in general the overexpression of enzymatic antioxidants 
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and lifelong administration of non-enzymatic antioxidants in model organisms have failed 

to provide consistent and reproducible lifespan extension (Brewer 2010). One 

complication is that defence mechanisms/enzymes are induced in response to stress. 

Interactions between antioxidants are also complex, making it difficult to measure their 

activity and utilise them for therapies. Despite these challenges, multiple lines of 

evidence suggest progressive oxidative damage is a conserved central mechanism of age-

related functional decline. How the cell responds to oxidative stress may change during 

ageing, making it particularly complicated to target therapeutically.  

 

1.2.1.2 Mitochondrial Theory  

 

Support for the free radical theory came from an increased understanding of 

mitochondrial bioenergetics, with evidence from such studies supporting the role of 

electron transport defects and increased ROS production during ageing and age-

associated neurodegenerative diseases. In 1972, Harman extended his original studies to 

include the involvement of mitochondria in the physiological processes of ageing 

(Harman 1972). The premise of the mitochondrial free radical theory of ageing is that 

mitochondria are both producers and targets of ROS. Miquel et al. in the 1980s suggested 

that oxidative damage to mitochondrial DNA (mtDNA) in post-mitotic cells caused by an 

accumulation of ROS, would impact the mitochondrial respiratory complexes in terms of 

energy production and inflict damage upon mtDNA (Miquel, et al. 1983, Miquel, et al. 

1980). Mutations and blocks to replication of the respiratory complex proteins as result of 

this damage, would consequently lead to mitochondrial dysfunction, further ROS 

production, and ultimately physiological decline. This vicious cycle of continuous 

mitochondrial dysfunction and chronic oxidative stress is considered to be one of the 

causative factors in the ageing process, as a result of insufficient supply of energy and/or 

increased susceptibility to apoptosis (Judge and Leeuwenburgh 2007). Energy 

transduction capacity of the mitochondria is essential for maintenance of neuronal 

function. Redox sensitive signalling between the mitochondria and the rest of the cell 

establishes a homeostatic balance of the redox environment whilst controlling cellular 

energy levels (Yin, et al. 2012). Impairments to the metabolic network during ageing 

would negatively influence cytosolic signalling, transcriptional regulation, and general 

homeostasis.  

 

However, along with the support for this theory of ageing came conflict, also supported 

by advances in mitochondrial biology. The conserved nature of the respiratory chain 
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would suggest that the mechanisms for controlling ROS would have evolved to be highly 

efficient. Studies suggest that increased cellular oxidative metabolism could lead to 

beneficial effects that would expand lifespan and low levels of ROS are in fact important 

signalling molecules within many redox regulation pathways (section 1.3.1) (Calabrese, 

et al. 2010, Stranahan and Mattson 2012). The free-radical theory assumes oxygen 

radicals are generated in direct proportion to oxygen consumption, damaging cellular 

macromolecules and organelles causing them to lose functionality, however increased 

oxygen consumption does not inevitably increase mitochondrial radical production (Barja 

2007). While it is still plausible that oxidative stress and mitochondrial dysfunction are 

contributory towards the ageing phenotype there are likely to be other interacting 

mechanisms that are instrumental in this process. Simply reducing oxidative stress is 

likely to have minimum impact on lifespan, unless specific gene expression changes are 

identified as particular targets or stress is targeted in combination.  

 

Studies that link mitochondrial respiration/ATP production and longevity have given 

conflicting results that are difficult to reconcile in a unifying theory (Bratic and 

Trifunovic 2010). The mitochondrial theory of ageing extends from the free radical 

theory and proposes that the free radicals produced during oxidative phosphorylation 

inflict damage upon mitochondrial macromolecules such as mtDNA, proteins or lipids, 

and are thus responsible for ageing. Oxidative damage induced mtDNA mutations have 

been reported to accumulate with age (Ames, et al. 1993, Khaidakov, et al. 2003, 

Mecocci, et al. 1993). These can significantly impair the assembly and/or the function of 

the respiratory chain, which will in turn trigger further accumulation of ROS, resulting in 

a vicious cycle that leads to energy depletion in the cell and ultimately cell death. The 

abundance of mtDNA also declines with age in various tissues of humans and rodents 

(Barazzoni, et al. 2000). The abundance of mtDNA correlates with the rate of 

mitochondrial ATP production, suggesting age-related reduction in function due to loss of 

mtDNA. Whether and how mutations and deletions of mtDNA cause the ageing 

phenotypes are not clear; however, molecular events leading to altered expression of 

mtDNA encoded genes or impairment in biogenesis of mitochondria would cause a 

deficiency in energy metabolism in the affected cells/tissues. In the ageing brain reduced 

autophagic clearance of dysfunctional mitochondria and increased mtDNA damage may 

reduce ATP levels and elevate the levels of ROS (Batlevi and La Spada 2011). ROS can 

further damage cellular macromolecules resulting in reduced transcription, and damage to 

RNA and protein, leading to protein misfolding and aggregation. Aggregated proteins 

may accumulate in the brain as consequence of inefficient clearance through the 

autophagic and ubiquitin-protease pathways.  
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1.2.1.3 Gene Expression Changes 

 
Microarray technology allows global gene expression analysis in humans and model 

organisms of ageing and disease, which not only leads to the identification of 

evolutionarily conserved changes in gene expression, but also those that may accompany 

neurodegeneration (Bishop, et al. 2010, Reuter-Lorenz and Park 2010). Microarray 

studies are used to detect the expression of specific gene transcripts or determine their 

activity within an organism, tissue, or specific cell population. It is used to compare gene 

expression between two or more states. Combining this with bioinformatics approaches 

allows an unbiased approach to uncover whole-organism wide or tissue specific gene 

expression profiles and identifies novel cellular pathways that are altered between the 

groups examined. The transcriptional effects of ageing have been studied in model 

organisms such as Caenorhabditis elegans (C.elegans) (Lund, et al. 2002, McCarroll, et 

al. 2004), Drosophila (Pletcher, et al. 2002), mice (Jiang, et al. 2001, Lee, et al. 2000), 

and humans (Fraser, et al. 2005, Lu, et al. 2004). The evidence shows that gene 

expression changes occur in only a fraction of the genes studied, which indicates specific 

pathways/classes of genes are targeted and altered during the ageing process. Stress 

response and DNA repair genes saw a common up-regulation with increasing age across 

the four organisms, and in the brains of mice and humans protein folding, metal ion 

homeostasis, and inflammatory or immune response genes were also up-regulated. 

Examples of some of the processes with genes that were down regulated with age across 

the organisms include those involved in protein turnover, neuronal plasticity, and energy 

metabolism. Transcriptional profiling of human prefrontal cortex revealed defined sets of 

genes with reduced expression over the age of forty. These included genes with 

fundamental roles in synaptic plasticity, vesicular transport and mitochondrial 

homeostasis. Gene expression patterns were also relatively homogeneous in both aged 

populations and young adults (Lu, et al. 2004), but varied between people in the middle 

years. This suggests that age-associated gene expression changes developed earlier in 

some individuals and the processes occurring at this time may be important in later 

ageing. This evidence provides support for altered gene expression within the CNS 

during ageing, and poses the question whether gene expression changes contribute 

towards the susceptibility of developing neurodegenerative disorders.  

 

When investigating oxidative damage during ageing and age-related neurodegenerative 

disorders, it is important to consider whether some regions of the genome and particular 

transcripts are/become more vulnerable to oxidative modification (Yankner, et al. 2008). 

One study found markedly increased 8-oxoguanine levels in the promoters of genes 
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down-regulated with age (Lu, et al. 2004), suggesting promoters driving high levels of 

transcription may be more vulnerable to oxidative insult, resulting in reduced levels of 

transcription (Fraser, et al. 2005). The importance and consequences of nucleic acid 

damage, and the gene expression changes it leads to, may be more pronounced in disease 

states. Differences in transcriptional profiles may result from activation of compensatory 

or homeostatic genes during ageing to compensate for the ageing phenotype, or a loss of 

these mechanisms leading to cellular dysfunction and a predisposition to disease. The 

reduced ability or investment in cellular maintenance and repair are likely to underlie 

age-associated accumulation of damage and subsequent cellular changes. The up-

regulation of transcriptional repressor activity genes and age-dependent methylation 

patterns suggests transcriptional activity decreases with age (Oberdoerffer and Sinclair 

2007). A large number of oxidative stress responsive transcription factors and genes have 

been identified, and some of these have been implicated in the ageing process. A 

conserved feature appears to be an increase in the expression of genes involved in stress-

response pathways, which may be used as a mechanism by the brain to protect against the 

pathology of neurodegenerative disorders. ROS may also induce the stress response by 

altering the expression of respiratory genes to uphold energy metabolism.  

 

Whether the mechanisms of ageing are conserved remains to be established. Molecular 

genetics have identified mutations that affect longevity and gene expression changes 

associated with ageing. But whether the genes identified in the laboratory are under 

selection in natural populations remains controversial. Specific molecular pathways 

implicated in ageing appear conserved across species, however, the contribution of these 

to the ageing phenotype remains unresolved, along with identifying specific gene 

expression changes across studies, which are specific to a given organism or tissue. The 

pathways altered during ageing have also been implicated in neurological diseases, 

however, it remains unknown how normal ageing translates into neurodegenerative 

disease. 

 

One of the remaining problems in the biology of ageing is an understanding of the genetic 

basis of variation in lifespan among species. This remains difficult as many theories of 

ageing exist. Ageing may not be dictated by genetics and might arise as a by-product of 

mutation accumulation or antagonistic pleiotropy; underlying mechanisms that have not 

been programmed or evolved by natural selection (Ackermann, et al. 2007, Partridge and 

Gems 2006, Rose and Graves 1989). Alternatively, different signalling pathways may act 

to regulate ageing, with roles in ensuring development and function and consequently 

fitness (Kenyon 2005, Paaby and Schmidt 2009, Reznick 2005); implicating the 
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mechanisms of ageing to be shaped by selection on pleiotropic functions that enhance 

early fitness (Flatt and Schmidt 2009). 

 

1.2.1.4 RNA Processing 

 

The identification of multiple species of non-coding RNAs (ncRNA) accompanied by a 

more complex understanding of RNA biogenesis has led to a shift in the study of the 

molecular mechanisms of ageing and neurodegenerative disease towards epigenetics and 

post-transcriptional regulation. The multiple layers of gene regulatory mechanisms may 

stabilise or disrupt networks during ageing. A study in C.elegans of the expression of the 

developmental timing microRNA (miRNA), lin-4, provided the first evidence for a role 

of miRNAs in ageing (Boehm and Slack 2005). Previously, studies had observed age-

associated miRNA expression changes in discrete organisms and tissue but they have not 

provided a direct link (Ibanez-Ventoso, et al. 2006, Lund, et al. 2002). Recently, a deep-

sequencing study in C.elegans revealed several classes of small ncRNAs that undergo 

age-related expression changes (Kato, et al. 2011). This study identified the majority of 

miRNA gene expression changes occur during early adulthood, rather than in mid to late 

stages of lifespan. Small ncRNAs showed significant differential expression with age, 

which appeared to be caused by aberrant transcriptional activity at miRNA promoters. 

Uncontrolled transcriptional activation would affect the activities of many target genes, 

disrupting homeostasis leading to cellular decline. Another deep-sequencing investigation 

identified numerous differentially expressed miRNAs during ageing in the mouse brain 

(Inukai, et al. 2012), providing further support for these gene expression changes and 

altered regulation during ageing. A global downward trend of miRNA expression was 

observed, which was in agreement with previous studies (de Lencastre, et al. 2010, Noren 

Hooten, et al. 2010).  

 

Gene expression profiles can also be altered through ncRNA instability, impacting 

genome stability, and affecting post-transcriptional processing, leading to functional 

decline. This may be determined by a few key miRNAs and/or is tissue-specific during 

ageing (Bates, et al. 2010). Other types of ncRNA are also likely to be involved in the 

ageing process; however only a few tissues have been analysed, and this mostly has been 

limited to miRNA changes (Lukiw 2007). RNA surveillance genes including those 

associated with RNA editing and RNA interference pathways have been implicated in 

human longevity (Sebastiani, et al. 2009), suggesting unresolved complexity in the 

mechanisms underlying the ageing phenotype. Gene expression changes are accompanied 
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by changes in the regulation of RNA processing and metabolism. Deciphering how 

dysfunction of gene regulatory networks is associated with changes in gene expression 

and vice versa remains to be established. 

 

1.2.1.5 Nucleic Acid Damage 

 

Evidence in the literature identifies an accumulation of nucleic acid damage in the form 

of base modifications including oxidation, single-stranded breaks (SSBs), and double 

stranded breaks (DSBs), during the ageing process and in various neurodegenerative 

disorders (Coppede and Migliore 2010, Fishel, et al. 2007, Halliwell 2006, Weissman, et 

al. 2007b). Oxidative modifications to DNA and RNA can either occur through direct 

modification of the bases or base damage within the nucleotide pool. The most abundant 

and characterised oxidised bases are 8-hydroxydeoxyguanosine and 8-hydroxyguanosine 

for DNA and RNA respectively. Guanine has the lowest oxidation potential compared to 

adenine, thymine/uracil, and cytosine; consequently, it is more readily oxidised (section 

1.6) (Fiala, et al. 1989, Wamer, et al. 1997).  

 

Oxidative damage to DNA and RNA has been shown to increase in the human brain 

during ageing (Kregel and Zhang 2007, Nunomura, et al. 2012), and in the case of DNA, 

oxidative damage to both nuclear and mitochondrial DNA is significantly increased in all 

major tissues in aged organisms, including rodents and humans, suggesting that this is a 

widespread phenomenon and not tissue specific (Gianni, et al. 2004, Hamilton, et al. 

2001, Takabayashi, et al. 2004). In long-lived post-mitotic neurons, the removal of 

oxidative lesions is crucial for maintaining genomic stability. Transcription coupled 

repair, a specialised sub-pathway of NER, removes DNA lesions from the transcribed 

strand of active genes within neurons (Bohr, et al. 1985, Mellon, et al. 1987). If DNA 

remains unrepaired within neurons it leads to an accumulation of lesions, which may 

interfere with DNA-dependent processes, affecting the fidelity of the information 

transferred during transcription and translation (McMurray 2005). The accumulation of 

damage to DNA as a mechanism of neurotoxicity has been demonstrated (Chen, et al. 

2007), and DNA damage was found to be increased in the promoters of genes whose 

expression were reduced in ageing (Lu, et al. 2004). Impairments or redundancy of the 

transcriptional machinery and/or DNA damage responses during ageing and 

neurodegenerative disease may lead to an increased accumulation of damage resulting in 

genome instability. Evidence suggests that neurodegeneration is linked with aberrant 

neuronal cell re-entry into the cell cycle, which could lead to uncontrolled cell growth or, 
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more typically, induction of cell death and neurodegeneration (figure 1.5) (Liu and 

Greene 2001, Wartiovaara, et al. 2002). Cell cycle protein expression and activation has 

been identified in the dying neurons of patients with neurodegenerative disorders, 

supporting DNA damage initiated apoptosis in disease (Herrup and Busser 1995, 

Husseman, et al. 2000, Yang, et al. 2001). 

 

 
 
Figure 1.5: The consequences of DNA damage in post-mitotic neurons	
  
Activation of the DNA damage response following insult would lead to initiation of DNA 

repair, resulting in the production of functional proteins and maintenance of cellular 

homeostasis. Transcription through the unrepaired lesion may occur if the transcription 

machinery fails to recognise a defect, which could lead to the production of aberrant 

proteins that have a tendency to aggregate. Attempted entry into the cell cycle has also 

been identified following DNA damage, which can either activate apoptotic pathways or 

lead to a redundancy in repair. A reduction in the level of functional proteins would lead 

to cellular decline, and potentially neurodegeneration.  

 

 Evidence for an increase in oxidative damage to RNA has also been documented in 

ageing brain (Liu, et al. 2002, Nunomura, et al. 2012). The effective removal of oxidised 

bases from RNA remains to be established, suggesting sub-lethal insults may be a major 

contributory factor to the ageing phenotype, as a reduction in RNA biogenesis and 
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fidelity would considerably impact metabolic processes. However, RNA quality control 

mechanisms can target aberrant RNAs for degradation. Oxidised RNA may simply be 

targeted for removal rather than repaired. RNA half-life varies for housekeeping and 

regulatory genes (Rabani, et al. 2011, Schwanhausser, et al. 2011, Sharova, et al. 2009, 

Yang, et al. 2003), and the rapid turnover of some transcripts may indicate that 

degradation of aberrant transcripts is more efficient than repair. This may be problematic 

if the machinery for surveillance and degradation is damaged. With the increasing 

understanding of RNA processing and metabolism, and as the repertoire of small RNAs 

grows, greater understanding of how damage to RNA may underlie the ageing phenotype 

should result.  

 
 

1.2.2 Other contributory factors  
 

1.2.2.1 Signalling Pathways 

 

An alternative way of investigating genetic changes underlying and contributing towards 

the ageing phenotype is to study the signalling pathways and transcription factors (TF) 

that have been shown to influence longevity. Dietary calorific restriction is one of the 

best-known physiological mechanisms seen to extend lifespan in many species from yeast 

to primates (Colman, et al. 2009). Initially the processes proposed to be responsible for 

the anti-ageing effects of dietary restriction included a reduction in ROS production by 

the mitochondria. This would effectively reduce oxidative stress and subsequent damage 

to biomolecules. Another mechanism is hormesis, a process by which exposure to a sub-

lethal level of stress increases the resistance of cells and tissues to a subsequently higher 

and otherwise lethal level of the same stress (Barja 2004, Mattson, et al. 2002). It is now 

recognised that although these may still have an influence, the longevity response is 

principally regulated by nutrient sensing pathways including rapamycin (TOR), 

adenosine monophosphate-activated protein kinase (AMPK), sirtuins and insulin/insulin-

like growth factor (IGF-1) signalling (Greer and Brunet 2009, Greer, et al. 2007, Honjoh, 

et al. 2009, Rogina and Helfand 2004). Lifespan extension results from gene expression 

changes, with the TFs affected up-regulating or down-regulating diverse genes that 

cumulatively produce significant effects on lifespan. For example the inhibition of the 

TOR pathway or mutations that inhibit the IGF-­‐1	
  signalling	
  pathway,	
  or its upstream 

regulators and downstream effectors, can extend lifespan through gene expression 

changes (Harrison, et al. 2009, Tullet, et al. 2008). In addition sirtuins are NAD-
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dependent protein deacetylases whose overexpression also results in extended lifespan 

(Kenyon 2005). Studies demonstrate that these pathways coordinately regulate each other 

along with a variety of stress response pathways, which are proposed to participate in 

ageing (Sengupta, et al. 2010).  

 

1.2.2.2 Insulin/insulin-like growth factor-1 signalling 

 

The insulin/insulin-like growth factor-1 (IGF1) signalling pathway (IIS) is an 

evolutionary conserved pathway reported to be a key determinant of lifespan (Kaletsky 

and Murphy 2010, van Heemst, et al. 2005). The insulin receptor is expressed throughout 

the brain and signalling through IGF1 receptor functions as a nutrient sensor and controls 

the transcription of stress response genes. Information about the importance of the IIS 

pathway in ageing has come from genetic studies in nematodes, fruit flies, and rodents. It 

was the first pathway to be associated with lifespan, with mutations in several genes 

involved in the pathway shown to influence longevity (Kenyon 2005). Targeted deletion 

of specific genes has demonstrated that multiple components of the IIS pathway play a 

role in the ageing process (Bartke 2008). Mutations in daf-2, an insulin receptor ortholog 

in C.elegans, substantially extended lifespan, and mutation of Chico, an insulin receptor 

substrate which functions in an insulin-like growth factor pathway in Drosophila, 

extended lifespan significantly in both homozygotes and heterozygotes (Clancy, et al. 

2001, Kenyon, et al. 1993, Kimura, et al. 1997, Tatar, et al. 2001). The long-lived 

mutants share some phenotypic characteristics including enhanced sensitivity to insulin, 

and reduced insulin signalling and IGF1 plasma levels coupled to reduced sensitivity to 

this growth factor (Piriz, et al. 2011). Although evidence supports the therapeutic 

advantage of IGF1 administration in model organisms of ageing and AD (Carro, et al. 

2006, Carro, et al. 2002), contradictory reports suggest inhibition of IGF1/insulin 

signalling could be equally beneficial against AD pathology in animal models (Cohen, et 

al. 2009, Killick, et al. 2009), highlighting the complexity of these changes in ageing and 

disease. Differences in lifespan are seen between different species, which could have 

arisen due to changes in regulatory genes, adding further complexity. Further evidence 

also supports the notion that the beneficial effects of calorific restriction (CR) are 

mediated in part by the IIS pathway (Bishop and Guarente 2007, Greer and Brunet 2009), 

as CR does not extend the already long lifespans of mice with mutations in the gene for 

the growth hormone receptor (Arum, et al. 2009). However, a recent study in primates 

questions the robustness and nature of restricting calorie intake in studies relating to 
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lifespan, as no significant difference in lifespan was seen between rhesus monkeys given 

a normal diet and those with a 30% CR (Mattison, et al. 2012). 

 

1.2.2.3 Inflammation 

 

Inflammation is a localised response activating a complex network of molecular and 

cellular interactions to restore physiological homeostasis. The inflammation hypothesis of 

ageing describes a state of chronic, low-level inflammation that potentially is a 

convergent process linking ageing to neuropathological disease (Chung, et al. 2001). 

Disturbances in immune response and altered redox homeostasis during ageing support 

this hypothesis, in which both may lead to increased activation of inflammatory 

mediators. Inflammation is fundamentally a protective response, however the increased 

release of inflammatory mediators can cause direct damage to the surrounding cells. 

Microglia are the resident immune cells of the CNS, they constitutively express surface 

receptors and following cellular damage respond by inducing a protective immune 

response. This consists of a transient up regulation of inflammatory molecules such as 

cytokines and chemokines, along with neurotrophic factors. However, activated microglia 

are the most abundant source of free radicals in the brain and release radicals such as 

superoxide and nitric oxide. Microglia-derived radicals, as well as their reaction products 

hydrogen peroxide and peroxynitrite, can inflict damage on cells. With the ageing brain 

more susceptible to events associated with neuroinflammatory processes, this could 

provide an explanation for a source of toxins that account for damage and degeneration of 

neurons (Floyd 1999). The proinflammatory phenotype of astrocytes in the ageing brain 

despite having a neuroprotective response can also have several detrimental effects. 

Increased cytokine secretion can activate inflammatory neurodegeneration by triggering 

oxidative stress involving nitric oxide-provoked pathways (Brown and Bal-Price 2003). It 

remains to be established whether inflammation is a key pathogenic feature of 

neurodegenerative disease and contributes towards the ageing phenotype, or whether its 

detrimental effects result from increased activation of mediators trying to maintain 

cellular homeostasis resulting from perturbations of other processes.   

 

1.2.2.4 Replicative Senescence  

 

Cellular senescence is a growth arrest programme that limits the lifespan of proliferative 

mammalian cells, typically driven by a persistent DNA damage response (DDR) 
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(Campisi and d'Adda di Fagagna 2007). Replicative senescence is associated with 

changes in gene expression, nuclear structure, protein processing, and metabolism, but 

cells remain metabolically viable (Ben-Porath and Weinberg 2004, Itahana, et al. 2004). 

Senescent cells activate downstream signalling pathways, resulting in the induction of 

synthesis and release of ROS and pro-inflammatory cytokines and chemokines (Coppe, et 

al. 2008, Passos, et al. 2010). The cell hypothesis of ageing proposes that the progressive 

accumulation of senescent cells has a causal role in ageing and age-related pathology 

through their impact on their surrounding environment (Wang, et al. 2009). Studies report 

an increase in the expression of senescent markers in the brain during ageing, particularly 

in astrocytes, and suggest senescent cells induce a bystander effect that propagates DNA 

damage (Nelson, et al. 2012). Post-mitotic neurons are generally not considered in studies 

on senescence, as they do not proliferate. Despite this, neurons accumulate DNA damage 

during ageing and some of their phenotypic changes may be a result of this. A recent 

study in ageing mice reports DNA damage to be interconnected with other markers of the 

senescent phenotype in Purkinje cells (Jurk, et al. 2012), with neurons displaying pro-

oxidant and pro-inflammatory characteristics. The data questions the conventional view 

of cell cycle arrest as a defining feature of the transition of a cell in to a state of 

senescence, and suggests senescence induced changes may be due to signalling pathways 

downstream of the DDR.  

 

1.2.3 Effects of ageing on nervous system function 
	
  

1.2.3.1 Cognitive Decline 

 

Cognitive ageing can be described as a pattern of age-related impairment in cognitive 

functions. The aim of many cognitive ageing studies is to investigate ‘normal’ or non-

pathological ageing, which rarely extends beyond the categorical exclusion of specific 

medical conditions known to impair cognition (for example dementia or stroke). This 

makes it difficult to separate the effects of normal ageing from the effects of age-

associated diseases, which may have long, progressive preclinical histories (Hedden and 

Gabrieli 2004). Human cognitive studies have been considerably enhanced through the 

availability of neuroimaging technology. Functional imaging studies have given an 

insight in to neural activity and how this can change depending on the physiological 

circumstances (Bishop, et al. 2010, Reuter-Lorenz and Lustig 2005). There is the 

consensus that the blood-oxygen-level-dependent (BOLD) signal obtained from 

functional magnetic resonance imaging (fMRI) is a reasonable, although indirect, index 
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of neural activity, especially the synaptic activity reflected in local field potentials 

(Mukamel, et al. 2005). Neuroimaging can be combined with behavioural and genetic 

approaches to investigate the differences that underlie successful ageing. Age-related 

differences are seen in tasks involving working memory, attention, and task switching, 

with older adults generally displaying slower processing speeds (Madden 1990, McCabe, 

et al. 2010, Salthouse 1996). However, some aspects of cognition are maintained with 

age (Deary, et al. 2009), and this variability indicates how ageing has distinctive effects 

on the neural systems and the changes are not predetermined.  

 

Challenges faced when exploring age-related differences in cognition include the 

difficulty in separating the effects of normal ageing from those of pathological processes 

that compromise cognition. Most adults experience some form of age-related neural 

pathology and brain functions may be perturbed by undetected neuropathological 

changes, and ageing is associated with a strong risk for AD, PD, diabetes, hypertension, 

and arteriosclerosis (Bowling and Beal 1995). Cross sectional comparisons between age-

groups is often the basis for ageing studies, although these are time and money efficient 

and have contributed most of what we know to date about ageing of the brain, they are 

vulnerable to cohort effects. From the extensive literature on non-pathological brain 

ageing it is clear that ageing is influenced by a large number of factors that vary from 

individual to individual. A limitation of these studies is that inferences about age-related 

changes in cognition depend on how the changes are measured and the sample 

population.  

 

Mild cognitive impairment (MCI) is a known transitional stage between normal ageing 

and dementia in which a patient has memory difficulties and poor performance on 

memory tasks but does not meet the diagnostic criteria for AD. Individuals with MCI 

display an increase in neurofibrillary tangles in the temporal lobes, which is correlated 

with their poorer memory performance. The precise neuropathological relationship 

between the biological changes of cognitive ageing and those of AD remains uncertain. 

Population based neuropathological studies such as the MRC Cognitive Ageing Study 

(CFAS) reveal a spectrum of neuropathological changes in ageing brains. CFAS studies 

have highlighted the coexistence of different pathologies across age-associated 

neurological disorders. The overlap in pathology between demented and non-demented 

individuals is such that thresholds of pathology for dementia are difficult to be 

established, and the overlap in pathology appears to increase with age (Lace, et al. 2009, 

Matthews, et al. 2009, Simpson, et al. 2010). Studies of age/disease related changes 
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carried out post-mortem makes identifying the sequence of events leading to pathological 

changes difficult as it only provides a fragment of information. 

 

1.2.3.2 Structural brain changes 

 

A reduction of brain volume accompanying ageing has been identified through post-

mortem and in vivo animal studies. Originally this atrophy was thought to be the 

consequence of neuronal loss, however further investigations revealed only a slight 

reduction in total cell number during ageing (Esiri 2007, Raz and Rodrigue 2006). 

Atrophy appears not to result from cell death but rather is the result of cell shrinkage, 

dendritic regression, and reduced synaptic densities in older adults (Resnick, et al. 2003, 

Terry 2000). A significant reduction in synapses has been demonstrated in the prefrontal 

cortex during ageing, and synaptic loss is the best pathological correlate of dementia 

(Honer 2003, Peters, et al. 2008, Terry, et al. 1991). Regional changes in brain volume 

however are not uniform. Structural imaging techniques show age-related differences in 

the reduction of grey and white matter structures in the brain (Kaup, et al. 2011), with 

volume loss displayed in the prefrontal cortex and sub-regions of the hippocampus during 

human ageing (Rajah, et al. 2011). Functional connectivity can provide information as to 

how activity within a network of brain regions is correlated, or how activity in a 

particular brain area is correlated with the rest of the brain, and assessing the integrated 

activity among groups of brain regions may be used as a way of defining functional 

decline in brain networks with age. Indeed imaging studies have identified differences in 

activation patterns with advancing age, accompanied by a global loss of integrative 

function (Fling, et al. 2011).  

 

It is also important to consider how brain activity is related to other aspects of brain 

ageing, such as changes in structure or neurotransmitters. Functional MRI studies aid this 

by providing evidence of age differences in task related brain activity (Eyler, et al. 2011, 

Spreng and Grady 2010). To what extent individual variability in behavioural, genetic, 

and neurobiological markers of cognitive ageing reflects normal and pathological ageing 

remains to be understood. Future studies should focus on variability in older populations 

rather than merely differences between age groups.  
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1.2.4 Relation to neurodegeneration 

 

Intensive research on brain ageing has been partly driven by the effect it has on enhanced 

susceptibility to cardiovascular disease, cancer, and neurodegenerative disorders. Cellular 

and molecular changes induced by ageing are likely to interact with genes and 

environmental factors to influence which cells age successfully and which succumb to 

degeneration. It remains unclear how selective neuronal vulnerability arises, resulting in 

distinct patterns of neurodegeneration in different diseases (Hindle 2010). At the cellular 

level ageing is associated with processes additionally related to neurodegenerative disease 

including oxidative stress, mitochondrial dysfunction, and impaired DNA repair (Sahin 

and Depinho 2010). Investigation of these factors within the context of disease and their 

comparison to non-pathological ageing may provide valuable insights into the factors 

underlying neurodegeneration. One clear difference is that the number of neurons lost in 

normal ageing is substantially lower than those lost as a result of neurodegenerative 

disease, suggesting that although the mechanisms for neuronal deterioration may be 

similar, there are other influencing factors which differentiate between non-pathological 

ageing and neurodegenerative disease. 

 

Oxidative stress is a prominent feature of neurodegenerative diseases, and is of 

considerable interest in brain ageing owing to the association of oxidative damage with 

many age-related diseases, and because it provides a plausible mechanism for cellular 

decline and degeneration. Several questions relating to the processes of normal ageing 

can be queried; does oxidative stress and subsequent damage increase during brain 

ageing, what are the underlying processes causing the oxidative stress changes observed 

with age, and are there potential therapeutic strategies to alter or inhibit these changes? 

Neurons are highly energetic which leads to increased oxygen consumption and a reliance 

upon efficient mitochondria for proper functioning. Mutations implicated in PD have 

directly linked mitochondrial dysfunction to disease, and pathological studies have 

demonstrated increased ROS in affected brain tissues of patients with neurodegenerative 

diseases (Andersen 2004, Filosto, et al. 2011). Studies have also shown activities of 

Cu/Zn SOD1, catalase, glutathione peroxidase, and glutathione reductase are reduced in 

the affected brain regions of AD patients (Pappolla, et al. 1992, Zemlan, et al. 1989). 

Interactions between oxidative stress and other molecular mechanisms involved in the 

process of neurodegeneration, such as protein misfolding, proteasomal malfunction, glial 

cell activation, and mitochondrial dysfunction have also been implicated in the ageing 

process.  
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Signalling pathways that play a part in regulating ageing and specifically lifespan have 

also been implicated in the development of age-related pathologies that themselves may 

be influenced by changes to the molecular mechanisms of ageing (Bishop, et al. 2010). 

The IIS pathway functions as a nutrient sensor and modulates cellular stress. Reduced IIS 

specificity has been shown to extend lifespan in model organisms of ageing (Broughton 

and Partridge 2009). In mammals, the levels of IGF1 are reduced with age, and 

administration of IGF1 has shown widely neuroprotective responses and ameliorates 

neurodegenerative disease in animal models (Sonntag, et al. 2000). However, recent 

observations suggest that insulin can be neuroprotective against oxidative stress, and 

insulin resistance impairs memory inhibition and may contribute towards amyloid 

neurodegeneration underlying AD (Cholerton, et al. 2011, Duarte, et al. 2008). This 

highlights the potential differences in signalling pathways in normal ageing of the brain 

compared to neurodegenerative disease, and how insulin signalling may have opposing 

effects on different aspects of disease aetiology (Niccoli and Partridge 2012).  

 

Particular types of gene expression changes might increase/reduce the susceptibility of an 

ageing brain to neurodegeneration and neurological disorders. The molecular signatures 

of ageing may reflect transcriptional responses to ageing of healthy cells and their 

adaptation to degenerative processes (de Magalhaes, et al. 2009), and the influence of 

other interacting factors may predispose an individual to the development of an age-

related neurodegenerative disorder. 

 

Increasing evidence demonstrates the impact of aberrant of RNA processing and 

metabolism in neurodegeneration. Integrating ageing, maintenance of the brain, and 

susceptibility to neurological disorders is necessary to understand the connection between 

them. A study in Drosophila recently provided a molecular link between ageing and 

neurodegeneration, via the conserved miRNA miR-34. Liu et al. reported that a loss of 

miR-34 induced age-associated gene expression changes characteristic of accelerated 

brain ageing, and flies displayed defects in protein misfolding and reduced survival (Liu, 

et al. 2012). This not only links the ageing process to neurodegeneration, but also 

indicates that RNA processing is influential in the process. Theories of ageing include the 

antagonistic pleiotropy theory, in which certain genes are beneficial at one age but 

detrimental at another. miRNA pathways may provide a mechanism by which potentially 

harmful age-related activities of genes are suppressed through alteration of the 

transcriptome with age, and aberrant expression of these genes may promote age-

associated decline and potentially lead to disease (de Lencastre, et al. 2010, Kirkwood 
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2005, Williams and Day 2003). The aberrant processing of transcripts, including 

transcription and translation, due to nucleic acid damage may increase cellular 

vulnerability to degeneration. Evidence supporting this includes an accumulation of DNA 

damage in post-mitotic neurons during ageing (Mandavilli and Rao 1996, Rutten, et al. 

2007), and increased DNA damage and markers of cell cycle re-entry in models of 

disease and in AD and PD patient brains (Weissman, et al. 2007a). The attempted re-

entry of neuronal cells into the cell cycle is most likely to activate apoptotic pathways 

potentially leading to neurodegeneration (figure 1.5) (Barzilai 2010). Oxidative 

modification to DNA and RNA has also been documented in neurodegenerative diseases, 

with the consequences of this damage shown to cause increased production of aberrant 

proteins and short polypeptides (section 1.6) (Ding, et al. 2005, Shan, et al. 2007, Tanaka, 

et al. 2007). 

 

Selective neuronal vulnerability refers to the differential vulnerability of neuronal 

populations to stresses that cause cellular damage leading to different neurological 

diseases. Specific brain regions exhibit different vulnerabilities in various neurological 

disorders causing difficulties when comparing age-related changes to those seen in 

neurodegenerative disease. These differences may reflect the heterogeneity in neuronal 

responses to the cell damaging processes associated with each disease (Wang and 

Michaelis 2010). Evidence from some neurodegenerative diseases, particularly AD, 

suggests there is a lengthy preclinical period, providing further difficulties in 

distinguishing between normal ageing and early phases of disease progression. The 

development of therapeutic interventions for age-associated diseases requires an 

increased understanding regarding the processes contributing towards normal and 

pathological ageing of the brain, as the ageing process and age-associated diseases may 

be different manifestations of the same fundamental intracellular processes. Therapies 

targeting the ageing process may be advantageous in potentially attenuating the 

development of many diseases simultaneously rather than specifically targeting 

individual diseases in isolation. 

 

1.2.5 Conclusions 

 

The factors proposed to contribute towards the ageing phenotype have been outlined in 

this section. It is important to understand how particular cellular processes change during 

ageing and identify how this might influence the ageing phenotype. How these changes 

correlate to what is reported in neurodegenerative disease is also discussed, as 
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determining the difference between normal and pathological ageing may facilitate the 

development of therapeutics for neurological disorders. The complexity of ageing 

remains a significant challenge in determining the molecular basis underpinning it. 

Reductions in the fidelity and coordinated activities of signalling pathways and repair 

networks, which act to maintain cellular and organismal homeostasis, may modulate the 

rate of ageing and the appearance of age-related pathology. Controversy remains over a 

genetic basis of ageing (Antebi 2007, Martin, et al. 2007). Whilst some believe ageing 

could be genetically determined, others accept a more generalised concept that ageing is 

the result of an interaction between environment and genes (Bishop, et al. 2010, 

Kirkwood 2005), not a controlled process. The most studied negative environmental 

factor is stress, whilst cognitive demanding activities, diet, and physical exercise can lead 

to successful ageing of the brain.  

 

Though ageing and longevity studies mainly focus on singling out the contribution of 

individual physiological traits to the ageing process, these remain difficult to interpret and 

consolidate. Furthermore, given the emergent complexity due to their co-dependence, 

these factors should not be studied in isolation and understanding the interplay between 

longevity traits is crucial.  

 

The importance of studying ageing is an acknowledgement of the many underlying 

features the process shares with neurodegenerative diseases, and understanding these in 

the ageing processes may provide directions to pursue for therapeutic targets in these 

diseases. Studies investigating normal cellular metabolism and neurodegenerative disease 

are beginning to shape our knowledge of the ageing brain, however, the question of how 

the brain ages at the molecular level remains complex (Reuter-Lorenz and Park 2010). 

The studies in short lived animal models in ageing research have provided much 

knowledge on the process of ageing, but can also pose potential problems such as being 

definitive that the cause of death is actually due to an acceleration of ageing, as it can be 

difficult to disentangle underlying disease processes from normal ageing mechanisms. 

 
 

1.3 Oxidative Stress 
	
  
This section will focus on the importance and consequences of oxidative stress to the 

CNS during ageing and neurodegeneration. Under pathological conditions abnormally 

large concentrations of ROS may lead to permanent changes in signal transduction and 

gene expression, which is typical of disease states and important to consider when 
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developing therapeutics. An increase in oxidative stress may lead to increased nucleic 

acid oxidation which in turn may affect numerous cellular processes, so it is important to 

understand which cellular and metabolic processes may be affected with relation to 

oxidative stress. 
 
Under normal physiological conditions reactive oxygen species (ROS) are involved in 

redox-sensitive signalling to maintain cellular homeostasis through signalling pathways 

and changes in gene expression. However, an imbalance between the production of free 

radicals such as superoxide, hydroxyl radical, hydrogen peroxide, peroxynitrite, and their 

detoxification by antioxidant processes can result in oxidative stress (figure 1.6). 

Oxidative damage is marked by lipid peroxidation, nitration, protein and nucleic acid 

oxidation, and reactive carbonyls, and can lead to cellular degeneration due to functional 

decline. Because the direct detection of ROS is difficult, oxidative stress is often 

measured by the alteration of antioxidant status or the accumulation of relatively stable 

products of lipid, protein, and nucleic acid interactions (Radak, et al. 2011).  

 

Increased ROS generation has been associated with dysfunctional mitochondria in ageing 

and neurodegenerative disease, and exposure to chronic oxidative stress is considered a 

central contributory factor towards processes (Radak and Boldogh 2010). This section 

will focus on the importance and consequences of oxidative stress to the CNS during 

ageing and neurodegeneration. Under pathological conditions abnormally large 

concentrations of ROS may lead to permanent changes in signal transduction and gene 

expression, which is typical of disease states and important to consider when developing 

therapeutics.  
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Figure 1.6: Redox sensitive signalling and oxidative stress responses to ROS 	
  
ROS are generated by endogenous and exogenous sources, and their detoxification by 

enzymatic and non-enzymatic antioxidants prevents the detrimental effects ROS can 

inflict on cells if their production exceeds their removal. ROS can modify cellular 

macromolecules leading to redox sensitive changes in cell signalling. An excess of ROS 

within cells can lead to oxidative stress and cellular and molecular mechanisms may be 

compromised, leading to cellular decline and degeneration. 

 
 

1.3.1 ROS and cellular signalling  
	
  
Endogenous ROS molecules can have differential effects depending on cellular context 

and specific modulators to their activity. It is important to consider ROS as signalling 

molecules as the modification of substrates may lead to different phenotypes. It may be 

plausible that RNA is reversibly oxidised as a regulatory mechanism so it is important to 

understand how these molecules act in signalling pathways.  

	
  
The free radical theory of ageing originally implied that the targets of ROS were random, 

indiscriminate, and cumulative. However, evidence suggests ROS act as specific 

signalling molecules under both physiological and pathophysiological conditions (Cui, et 
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al. 2012, Finkel and Holbrook 2000). The generation of ROS within certain limits is 

essential to maintain homeostasis. Low and intermediary ROS levels have been reported 

to be physiologically important in intracellular signalling pathways encompassing redox 

regulation. Redox signalling is a well-recognised stress response that leads to a variety of 

downstream effects. The mitochondrial respiratory chain produces the majority of ROS 

and due to their importance in cellular signalling pathways the release of ROS into the 

cytosol is a tightly regulated process (Bae, et al. 2011). ROS can directly interact with 

critical signalling molecules to activate signalling in a variety of diverse cellular 

processes, including proliferation and survival (MAP kinases, PI3 kinase, PTEN, and 

protein tyrosine phosphatases), antioxidant gene regulation (thioredoxin, peroxiredoxin, 

Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, iron homeostasis (IRE–IRP), 

and DNA damage response (ATM) (as reviewed in Ray, et al. 2012). The activation and 

inactivation of transcription factors by ROS also acts to alter gene expression patterns in 

response to the cellular environment, which may be important in ageing and 

neurodegenerative disease. In addition, ROS can modulate the activity of membrane 

channels and metabolic enzymes, and regulate calcium dependent and phosphorylation 

dependent signalling pathways (Suzuki, et al. 1997, Trachootham, et al. 2008). The 

degree to which given pathways/transcription factors are targeted by ROS is dependent 

on the nature and duration of the stress, as well as the cell type. Determining which 

intracellular signalling pathway specific free radicals are involved in, and the precise 

mechanisms by which they alter the activity or stability of components of these pathways 

will improve our knowledge of ROS instigated cellular signalling under homeostatic 

conditions (Janssen-Heininger, et al. 2008, Poyton, et al. 2009). 

 

The modification of proteins resulting in their activation/inactivation may depend upon 

redox sensitive amino acids, and evidence suggests the activation of oxidative stress 

response pathways consists mainly of the redox regulation of redox-sensitive cysteine 

residues on proteins by ROS (Barford 2004, Trachootham, et al. 2008). The reversible 

oxidation of proteins enables a dynamic regulatory process that varies in accordance with 

the redox conditions of the cell. The successive and reversible transfer of electrons and 

protons alternatively triggers functionally active or inactive states in many proteins and 

enzymes (Stolc, et al. 2011). Target proteins are transiently oxidised to enable 

transmission of the signal and then reduced to their basal oxidation state, with the ratio of 

oxidised to reduced forms dependent upon the redox potential of the cell. The oxidation 

and reduction of proteins is a major mechanism by which reactive oxidants influence 

cellular signal transduction pathways. The change in enzymatic activity or binding 

characteristics due to oxidation provides a mechanism for transduction of the signal. 
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Alternatively there may be a subset of sensor proteins, which serve as intermediary 

molecules, and once oxidised facilitate the oxidation of other protein targets through 

selective protein-protein interactions and thiol exchange.   

 

1.3.2 Oxidative stress and gene expression changes 

 
Changes in gene expression are another feature of cellular response to stress, as rapid 

adaptation to stress is crucial for maximising cell survival. Cellular adaptation 

mechanisms include induction of efficient changes in gene expression by intracellular 

signalling networks. Post-transcriptional effects provide immediate responses and the 

regulation of gene expression is essential for slower long-term adaptation and recovery 

phase. The control of gene expression is tightly regulated, and has fast response kinetics, 

enabling the cell to rapidly change its transcriptional capacity in the presence of stress (de 

Nadal, et al. 2011). Transcription factors stimulated by ROS may mediate gene 

expression induction by oxidative stress and subsequently regulate protein homeostasis. 

Global transcriptional responses to stress have been studied by gene expression profiling 

in worms, flies, and mammals (Lee, et al. 2000, Lund, et al. 2002, McCarroll, et al. 2004, 

Zou, et al. 2000). Microarray based methods also enable investigation of transcript decay 

and translation rates to identify targets under specific conditions. Sophisticated regulatory 

mechanisms adjust the induction and decay rates of mRNA to control mRNA stability, 

depending on the nature of the stress and the phase of response (Miller, et al. 2011, 

Shalem, et al. 2008). Stress response mRNAs are selectively stabilised or selectively 

degraded independently from global mRNAs, highlighting the importance of gene 

expression changes in response to cellular stress (de Nadal, et al. 2011). Investigating the 

molecular basis of gene expression regulation in response to stress has provided insight 

into the transcriptional processes regulated during stress, the importance of gene 

expression changes, and how stress-signalling molecules influence chromatin structure 

(Petesch and Lis 2008). Regulation specifically depends on the particular stress, cell type, 

and organism (Lopez-Maury, et al. 2008, Ni, et al. 2009).  

 

Defence genes encode detoxifying enzymes, such as NAD(P)H:quinone oxidoreductase 1 

(Nqo1), glutathione S-transferases (GST), and haem oxygenase 1 (Hox-1), antioxidant 

and related proteins such as thioredoxins, and γ-glutamate cysteine ligase (γ-GCS), 

ubiquitination enzymes and proteasomes. These have a wide-range of functions involving 

antioxidant response. The antioxidant response element (ARE) is found in the promoter 

of genes encoding antioxidant proteins and detoxifying enzymes, and acts to mediate the 
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transcriptional induction of genes during oxidative stress (Reddy 2008). Activation of 

gene transcription through ARE is primarily mediated by nuclear factor erythroid 2-

related factor 2 (Nrf2) (Nguyen, et al. 2009). Nrf2 is a major transcription factor activated 

by oxidative stress. It acts to regulate the expression of several important antioxidant 

enzymes such as superoxide dismutases, peroxiredoxins, glutathione peroxidases and 

haem oxygenases (de Vries, et al. 2008, Itoh, et al. 2003, Lee, et al. 2003). Nrf2 binds to 

the ARE site in the promoter of these genes leading to their activation. Studies on the role 

of Nrf2 in ARE-mediated regulation of Nqo1 gene expression provided evidence for the 

role of Nrf2 in protection against oxidative and/or electrophilic stress (Venugopal and 

Jaiswal 1996). Nrf2 null-mice exhibit a marked decrease in the expression and induction 

of Nqo1, indicating that Nrf2 plays an essential role in the in vivo regulation of Nqo1 

(Itoh, et al. 1997). Post-translational modification of Nrf2 results in ARE-induction by 

cysteine modification or serine phosphorylation. Modifications in Keap1, the protein that 

retains Nrf2 in the cytoplasm, have also been proposed to be important for the activation 

of Nrf2. The activation and repression of Nrf2 expression has been demonstrated to 

protect cells from free radical damage, prevent apoptosis and promote cellular survival 

(Copple, et al. 2008, Jaiswal 2004, Kirby, et al. 2005). 

 

The p53 tumour suppressor produces different downstream gene expression responses 

according to the level and type of stress encountered by a cell. It exerts transcription 

dependent pro-apoptotic effects through induction of pro-oxidant genes during increased 

cellular stress and high ROS concentrations, leading to the inhibition of the cell cycle or 

initiation of apoptosis (Polyak, et al. 1997, Vousden and Lane 2007). p53 also presents a 

pro-survival role in response to low ROS levels by activating several antioxidants, 

including glutathione peroxidase, SOD2, ALDH4, and activating key signalling pathways 

and transcription factors (Hussain, et al. 2004, Tan, et al. 1999, Yoon, et al. 2004).  

 

1.3.3 Oxidative stress and ageing  

 
The susceptibility to developing cardiovascular and neurodegenerative diseases increases 

with age. The basis for this remains undetermined but one explanation is that such 

diseases may share common mechanisms with ageing. An age-dependent increase in the 

rate of ROS generation or reduction in cellular repair or degradation mechanisms has 

been reported, which will increase the oxidative load on the cell, resulting in a 

corresponding increase in oxidised macromolecules. There is abundant evidence for an 

age-related increase in products of oxidative damage within the mammalian brain, which 
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is in good agreement with findings in other tissues (reviewed in Droge 2002). How the 

cell responds to oxidative stress may change during ageing. A large number of oxidative 

stress responsive transcription factors and genes have been identified, and some of these 

have been shown to influence the ageing process. A conserved feature of ageing appears 

to be an increase in expression of genes involved in stress-response pathways (Haigis and 

Yankner 2010), and the brain may use conserved mechanisms of stress resistance during 

ageing to protect against the pathology of neurodegenerative disorders.  

 

A reduction in cellular repair or degradation mechanisms, possibly due to the loss of 

physiological responses associated with stress tolerance, has also been reported, which 

further increases the oxidative load on the cell (Squier 2001). Experimental evidence 

suggests reduced mitochondrial function during ageing is due to age-dependent gene 

expression changes and the subsequent impairment of respiratory chain function and 

progressive oxidative damage is a conserved central mechanism of age-related functional 

decline. Autophagy enables the removal of misfolded proteins and dysfunctional 

organelles from cells, and although ROS act as signalling molecules in the early events of 

autophagy induction, if the pro-survival attempt fails, ROS induces cell death. Whether 

autophagy is a non-specific degradation process or rather some proteins/organelles being 

targeted for clearance is still being deliberated (Mammucari and Rizzuto 2010). A decline 

in GSH peroxidase activity has been found in the hippocampus and hypothalamus of aged 

rats (Rodrigues Siqueira, et al. 2005). A decrease in the activities of Manganese (Mn) and 

Cu/Zn superoxide dismutase isoenzymes and catalase has been found in the brain of 

ageing mice (Navarro and Boveris 2007). However, this has not been confirmed by other 

studies and remains controversial (Serrano and Klann 2004). The proinflammatory 

phenotype of astrocytes in the ageing brain can have both detrimental and neuroprotective 

responses. For instance increased cytokine secretion can activate inflammatory 

neurodegeneration by triggering oxidative stress involving nitric oxide-provoked 

pathways (Brown and Bal-Price 2003). 

 

The coordinated action of redox signalling accompanied by other signalling pathways, 

gene expression changes, and RNA processing events maintain cellular and organismal 

homeostasis. Multiple lines of evidence suggest the regulation and execution of critical 

cellular and metabolic processes gradually decline, affecting the rate of ageing and the 

appearance of age-related pathologies. Although a great deal is known about ROS, the 

relationship between ROS induced damage on cellular metabolism, the damaging effects 

of redox imbalance, and the redox levels critical to regulation, remain unanswered. 
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1.3.4 Oxidative stress and neurodegeneration 

 
The accumulation of intracellular oxidative toxicity has been linked to the degeneration 

of selective loss of neuronal populations in neurodegenerative disease. As previously 

discussed, increased intracellular levels of ROS, beyond the clearance capacity of the cell 

causes oxidative stress, potentially leading to cellular dysfunction and death. The 

underlying mechanism of oxidative stress has been reported in ALS, PD, and AD (Alam, 

et al. 1997, Ferrante, et al. 1997a). Oxidatively modified products of nucleic acids, 

proteins, and lipids are increased in the brains of patients with neurodegenerative 

diseases, and this can lead to functional disruption of these biomolecules. This has led to 

extensive research particularly in ALS, as mutations in antioxidant enzyme Cu/Zn SOD1 

and the subsequent gain of function of this enzyme, is accountable for around 20% of 

fALS cases. In most neurological diseases overproduction of ROS has been linked to 

other mechanisms, such as cellular damage to proteins, lipids, and nucleic acids, 

mitochondrial dysfunction, neurotoxic aggregates, excitotoxicity, and endoplasmic 

reticulum stress (figure 1.2) (Duffy, et al. 2011, Kanekura, et al. 2009, Wood, et al. 

2003). These features create an additive effect making the neurons and glia highly 

susceptible to damage by free radical species leading to a progressive reduction in 

neuronal structure and function (Shukla, et al. 2011).  

 

Whether oxidative stress is a secondary effect of a pre-existing disease condition or 

whether it is a central mechanism of disease remains unknown. The continuous increase 

in ROS generation during neurological disorders due to dysfunction of related 

mechanisms and an insufficient antioxidant response might cause a shift in the redox 

homeostasis of cell. Equilibrium may still be reached; however, signal transduction and 

gene expression may be persistently modified, potentially giving rise to pathology. 

Underlying mechanisms of disease pathogenesis may be due to the loss of normal 

biological function of proteins due to mutation, or structural and functional changes due 

to ROS modification may lead to aggregation, mislocalisation, or aberrant activation of 

signal transduction cascades.  

 
 

1.4 Mitochondrial Dysfunction 
	
  
Mitochondria are the primary site of ATP production, maintain calcium homeostasis, 

influence calcium signalling, and participate in apoptotic cascades, making them critical 

to cellular function. Mitochondrial dysfunction is documented in normal ageing and 
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neurodegenerative disease. This section will discuss the relationship between 

mitochondrial dysfunction and neurodegenerative disease. Understanding the link 

between mitochondria and the oxidative stress hypothesis is important as our study 

investigates mitochondrial bioenergetics in a cellular model of ALS, with relation to 

susceptibility to oxidative stress. This is also an attractive area of research for targeting 

therapeutic approaches. 

	
  

1.4.1 Mitochondrial dysfunction and neurodegeneration 

 
Evidence of mitochondrial dysfunction in ALS comes from studies of familial and 

sporadic patients and transgenic models of disease (Cozzolino, et al. 2009, Sasaki and 

Iwata 2007, Wiedemann, et al. 2002). Changes in mitochondrial bioenergetics, clustering 

of abnormal mitochondria, calcium buffering, and induction of mitochondrial apoptosis 

are all features of ALS (Navarro and Boveris 2007). Although evidence implicates 

mitochondrial dysfunction in the pathogenesis of various neurodegenerative diseases, 

support is lacking for exactly what perturbations may lead to their physiological 

malfunction, and whether diminished function plays a primary role underlying the 

pathogenesis of neurodegenerative disorders such as ALS. In neurodegenerative diseases 

the selective loss of distinct neuronal populations is often observed, which in combination 

with mitochondrial dysfunction may place a greater responsibility on the surviving tissue 

to maintain an adequate energy supply to meet cellular demand.  

 

Histological analysis of samples from ALS patients and murine models of the disease 

have revealed the presence of swollen and vacuolated mitochondria as a morphological 

feature of pathology (Higgins, et al. 2003, Sasaki and Iwata 2007, Sasaki, et al. 2004, 

Siklos, et al. 1996). Reduced mitochondrial function is correlated with altered 

mitochondrial morphology; a reduction in the activity of respiratory chain complexes has 

been observed in post-mortem tissue from ALS (Borthwick, et al. 1999, Wiedemann, et 

al. 2002). The expression of human mutant SOD1 in cultured primary MNs has also been 

shown to increase mitochondrial depolarisation, impair calcium homeostasis, and reduce 

ATP production (Damiano, et al. 2006, Jung, et al. 2002, Menzies, et al. 2002). A 

reduction in the energy generation capacity of cells will lead to impaired electron chain 

transport and increased ROS production. The accompanying gene expression changes 

subsequently cause a shift in redox potential, leading to compromise of normal cellular 

processes associated with a reduction in the ability to adapt to physiological stress 

(Shigenaga, et al. 1994).  
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SOD1 can localise to the mitochondria, despite it normally having predominantly a 

cytosolic localisation. Targeting SOD1 to the mitochondrial intermembrane space (IMS) 

prevented motor neuropathy in mice lacking SOD1 (Fischer, et al. 2011). The function 

that mitochondrial localised SOD1 provides remains unclear, however mutations in 

SOD1 do not prevent the ability of the protein to accumulate in mitochondria 

(Bergemalm, et al. 2006, Ferri, et al. 2006, C. Y. Liu, et al. 2004, Pasinelli, et al. 2004, 

Vijayvergiya, et al. 2005). Mutant SOD1 associates with the mitochondria in an 

oligomeric and aggregated form (Deng, et al. 2006, Ferri, et al. 2006, Furukawa, et al. 

2006), which may have a direct role in mitochondrial damage and cellular dysfunction in 

ALS. The presence of oligomerised mutant SOD1 in the IMS has been linked to an 

impairment of respiratory chain complexes, via alteration of the redox state of the 

mitochondria (Ferri, et al. 2006). Studies have also indicated the recruitment of mutant 

SOD1 to the inner mitochondrial space leads to the aberrant production of ROS 

(Ahtoniemi, et al. 2008, Goldsteins, et al. 2008). 

 

In vivo mouse studies have demonstrated disturbances to calcium buffering and storage in 

the presence of human G93A mutant SOD1 is linked to mitochondrial dysfunction 

(Jaiswal and Keller 2009). Studies of mitochondria isolated from the brain and spinal 

cord of mutant SOD1 transgenic mice demonstrated an early reduction in the calcium 

buffering capacity, leading to a reduction in their membrane potential and possible 

dysfunction (Damiano, et al. 2006). In addition, nerve terminals of ALS patients have 

displayed chronic calcium overload (Siklos, et al. 1996). An elevation of intracellular 

calcium has been associated with depolarisation of the mitochondrial membrane potential 

and subsequent ROS generation, excitotoxicity, and ATP depletion (Dykens 1994, 

Gunter, et al. 1994, Schinder, et al. 1996). 

 

Mitochondria are the major sites of ROS formation, with disturbances to their function 

often exacerbating this process. The uncoupling of mitochondrial respiration and 

oxidative phosphorylation during neurodegenerative disease, due to disturbances in 

mitochondrial function, can lead to a reduction in the activity of respiratory enzymes, an 

increase in proton leak, and subsequent increase in ROS production (Wei, et al. 1998). 

Mitochondria are particularly vulnerable to ROS damage, which can lead to disruption of 

their membrane due to lipid peroxidation, oxidation of iron-sulphur clusters in their 

proteins, and oxidative modification to mtDNA (Beckman and Ames 1998, Cozzolino 

and Carri 2012, Harman 2006, Vina, et al. 2003). Despite the evidence, this ‘vicious 

cycle’ hypothesis has been challenged, with controversy surrounding the extent of ROS 

mitochondrial damage required to functionally impact the electron transport chain due to 
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its highly conserved nature. The mtDNA genome is dependent upon nuclear-encoded 

proteins for its maintenance and transcription. Alterations of mitochondrial gene 

expression associated with disease or due to the accumulation of unrepaired mtDNA 

damage would cause respiratory chain dysfunction. Transcription of mtDNA determines 

the rate of assembly of new respiratory chain complexes (Lane 2011). Respiratory 

insufficiency, indicated by free radical leak, will activate the necessary mitochondrial 

transcription factors for the generation of new complexes. A threshold of free radical leak 

has been suggested, where a drop below the threshold would stimulate mitochondrial 

biogenesis. However a breach of the threshold may activate apoptotic pathways (Lane 

2011). This may be affected by mutation and provide an explanation for the differences in 

mitochondrial bioenergetics seen between cells harbouring different mutant SOD1 

transgenes. Mitochondrial pathology is an early preclinical feature of MN injury in SOD1 

transgenic mouse models of ALS (Wong, et al. 1995) suggesting an importance in 

pathogenesis, however, whether mitochondrial dysfunction is a result of oxidative stress, 

or whether oxidative stress arises due to mitochondrial dysfunction remains to be 

established (figure 1.3). 

 
 

1.5 RNA Processing and Disease 
	
  
This section discusses RNA processing and metabolism dysfunction and its relation to 

neurodegenerative disease, as this has become increasingly linked to pathogenesis. RNA 

oxidation may have extensive effects on RNA processing and metabolism, so 

understanding these under normal cellular conditions is pertinent to understanding how 

they may be perturbed in ageing and neurodegenerative disease.  

 

1.5.1 RNA processing and metabolism 

 
The large number of proteins and regulatory RNAs in post-transcriptional RNA 

processing and the complex network of interactions among them provide cells with the 

ability to adjust their transcriptome and hence rapidly alter their proteome in response to 

stimuli. However, this provides significant opportunities for pathological alterations to 

RNA metabolism and extends cellular vulnerability to dysregulation that may lead to 

numerous diseases (Cooper, et al. 2009). The study of RNA processing and metabolism 

has revealed complex pathways in the generation, maturation and maintenance of 

functional RNA, and research has focused on how these may contribute towards neuronal 

dysfunction and death. The human transcriptome is comprised of protein-coding 
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messenger RNA (mRNA) and multiple classes of different structural and regulatory non-

coding RNAs (ncRNA). The identification and characterisation of a non-coding portion 

of genome generates further complexity and mechanisms by which disturbances at the 

RNA level may contribute towards disease (Wapinski and Chang 2011). Maintaining the 

proper processing of these different RNA molecules is fundamental for maintaining 

sufficient levels of protein synthesis and limiting translational errors (figure 1.7). 

 

Mutations in genes that encode factors important for ribonucleoprotein biogenesis and 

RNA processing, or perturbations of RNA processing, including splicing regulation, 

transcript stabilisation, translational repression and localisation of mRNA can result in 

MN degeneration. Many proteins involved in RNA processing are connected to a variety 

of neurodegenerative disorders. Perturbations of RNA processing events can have wide-

ranging downstream effects on the expression of multiple genes. Complete understanding 

of how these pathways interact and elucidation of specialised mechanisms for mRNA 

targeting and processing in MNs are likely to produce new targets for therapy in ALS and 

related disorders. RNA processing was initially linked to MN degeneration by the 

identification of mutations in the survival motor protein (SMN1) in spinal muscular 

atrophy (SMA) (Lefebvre, et al. 1995). Since then RNA processing perturbations in 

transcription, mRNA stabilisation and transport, and translational regulation have been 

described in ALS, accompanied by a greater understanding of the importance and 

complexity of RNA processing events in many cellular processes and other complex 

diseases. 
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Figure 1.7: RNA processing and metabolism	
  
Displayed here are some of the points at which aberrant RNA processing can lead to 

cellular dysfunction. There are multiple checkpoints and quality control mechanisms 

within the cell to initiate a response to aberrant processing through targeted sequestration 

or degradation of the transcript. The biogenesis and functioning of RNAs involves a 

series of transitions through different complexes and cellular compartments, all of which 

pose a potential threat to the cell if disrupted. Aberrant RNAs can arise through multiple 

events including gene mutations, transcriptional/translational error, nuclear pre-RNA 

processing, and ribonucleoprotein (RNP) assembly amongst others. 

 

1.5.1.1 Transcription  

 

For coding RNAs, RNA polymerase II carries out transcription to produce heterogeneous 

nuclear pre-mRNA (hnRNA) transcripts containing introns and exons. Pre-mRNA is 

spliced into its mature form through removal of the introns, and fusing of the exons by 

the spliceosome machinery, which is composed of small nuclear RNAs (snRNA), 

splicing factors, and RNA binding proteins (RBP) (Chen and Manley 2009, Smith and 

Valcarcel 2000). Splicing is part of the post-transcriptional processing of transcripts. 
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Alternative splicing allows cellular control over the protein isoforms expressed and is a 

key process in determining the properties of individual neurons within the CNS (Li, et al. 

2007). These proteins, generated from a single pre-mRNA precursor, differ in their 

peptide sequence and thus can have different biochemical characteristics. Failure of 

splicing efficiency may result in the production of truncated or dysfunctional proteins, 

which may arise due to the presence of a premature stop codon or inaccurate peptide 

sequence.  

 

1.5.1.2 Post-transcriptional regulation 

 
Following transcription, RNA undergoes complex processing including splicing and 

editing, and associates with specific proteins that determine its subcellular localisation 

and stability. Post-transcriptional regulation of different RNA molecules is fundamental 

for generating diversity and maintaining sufficient levels of protein synthesis through 

limiting translational errors. ncRNA increases the dimension of control over spatial and 

temporal gene expression patterns. ncRNA molecules include microRNAs (miRNA) 

which function to control mRNA translation and stability, small nucleolar RNAs 

(snoRNA) important for post transcriptional modifications of ribosomal RNA, PIWI-

interacting RNAs (piRNA) which suppress transposable element expression and mobility, 

and the heterogeneous family of long non-coding RNAs (lncRNA) involved in 

transcriptional regulation of gene expression, including mediating epigenetic 

modifications (Huttenhofer, et al. 2005, Taft, et al. 2010). ncRNAs are important 

regulators of RNA processing and oxidative modification or dysfunction of these 

transcripts may lead to disease phenotype.  

 

Alternative splicing generates different protein isoforms through variation in splice site 

selection. Proteins generated by alternative splicing differ in their chemical and biological 

characteristics. RNA editing is an additional post-transcriptional modification, which 

involves base substitution/ modification of the RNA transcript. RNA editing is prominent 

in neuronal tissues, altering gene and adding further diversity to the proteasome (Paul 

2008). The extent and specificity of RNA editing is co-regulated with pre-mRNA 

splicing, with RBPs influencing the capacity of the transcript to be edited or spliced 

(Farajollahi and Maas 2010, Reenan, et al. 2000, Rosenthal and Seeburg 2012, Ryman, et 

al. 2007). Adenosine to inosine base modification is the most prevalent change in base 

sequence, and is catalysed by double stranded RNA specific adenosine deaminases 

(ADARs) (Bass 1997). The inosine subsequently behaves like a guanosine in RNA 
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folding and is recognised as this base by the translation machinery resulting in the site-

specific substitution of an amino acid and altered secondary/tertiary structures. The 

development of RNA sequencing technology has enabled investigation in to genome 

wide RNA editing (Lee, et al. 2013, Ramaswami, et al. 2013).  

 

Ribonucleoprotein complexes (RNPs) formed within cells are composed of one or more 

types of RNA and typically numerous RNA-binding proteins (RBPs) (Dreyfuss, et al. 

1993, Glisovic, et al. 2008). The RNPs are the functional forms of the corresponding 

RNAs, and their normal activity depends on both the specific composition and the precise 

arrangement of their protein constituents. As there are numerous RNAs and a very large 

number of RBPs, the biogenesis of RNPs must be orchestrated with great fidelity. 

Various RBPs are involved in the maintenance of splicing and processing, export of 

mRNA to the cytoplasm and subsequent retention for translation, and ultimately mRNA 

decay. These post-transcriptional RBP-mediated regulatory mechanisms allow a precise 

spatio-temporal control of mRNA translation, associated with transport and subcellular 

compartmentalisation of mRNAs in dendrites and axons (Besse and Ephrussi 2008).  

 

1.5.1.3 mRNA stability and turnover 

 
The rate of transcription is pertinent in the regulation of gene expression; however 

equally important is mRNA half-life (Bolognani and Perrone-Bizzozero 2008). mRNA 

stability is important for the temporal order of gene induction (Hao and Baltimore 2009), 

but also forms part of the quality control mechanisms of cells to ensure defective RNA 

molecules are rapidly degraded. The rate of mRNA turnover is determined in part by 

RBPs that directly interact with mRNAs to form mRNA-protein complexes. After 

transcription, RBPs recognise and bind to cis-regulatory RNA elements within the 

precursor mRNA sequence to form mRNP complexes, which can regulate gene 

expression by stabilising or destabilising a particular mRNA (reviewed in Kapeli and Yeo 

2012). The aberrant expression of RBPs involved in the regulation of mRNA stability 

may be associated with disease (Hollams, et al. 2002). 

 
mRNA decay is a part of post-translational mechanisms that play a critical role in 

modulating gene expression by adjusting the abundance of transcripts available for 

translation. This provides a cell specific transcriptome, increasing or decreasing 

degradation rates in response to development/differentiation cues, hormonal stimulus, and 

stress (Guhaniyogi and Brewer 2001). Evidence suggests the specific half-life of each 

mRNA is closely related to its physiological function and sequence features (Rabani, et 
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al. 2011, Schwanhausser, et al. 2011, Sharova, et al. 2009). mRNAs with long 3’ 

untranslated regions (UTR) on average are less stable and the density of AU-rich 

elements negatively correlates with mRNA stability (Schwanhausser, et al. 2011). RNA 

structure has also been identified in influencing the transcription, splicing, cellular 

localisation, translation and turnover of the RNA. mRNA half-life is in part related to the 

functional role of the protein they encode, and this can change in response to a variety of 

stimuli including environmental factors, mitogens, growth factors and intracellular 

messengers (Hollams, et al. 2002). mRNAs of most house-keeping genes and those 

involved in constitutive cellular processes have been reported to be relatively stable, 

whereas mRNAs encoding proteins that are required for short-periods of time for 

example transcription factors, signalling genes and cell-cycle specific proteins often have 

short half-lives (Schwanhausser, et al. 2011, Tani, et al. 2012). 

 

1.5.2 RNA processing and neurodegeneration 

1.5.2.1 Transcriptional regulation 

 

The expression of the Per 28 isoform of peripherin is an example of the expression of a 

toxic splice variant in ALS. Peripherin is a type III intermediate filament that is 

associated with spinal motor neuron inclusions in ALS (Corbo and Hays 1992). The Per 

28 isoform retains exons three and four; with exon three encoding for a premature stop 

codon that subsequently results in the production of a truncated protein (Xiao, et al. 

2008). Its expression within cells leads to the formation of peripherin inclusions (Sanelli, 

et al. 2007), formed through selective aggregation of the aberrant proteins. 

 

ANG encodes an angiogenic ribonuclease whose expression is increased in response to 

hypoxic/ischaemic events, and is a known target gene of hypoxia inducible factor 1 

(HIF1) (Kishimoto, et al. 2005, Sebastia, et al. 2009). ANG acts as a transfer RNA 

(tRNA) specific ribonuclease, regulates ribosomal RNA (rRNA) transcription, is required 

for tRNA derived production of stress-induced small RNAs (sitRNAs), and binds directly 

to DNA thereby regulating gene expression (Fu, et al. 2009, Xu, et al. 2003, Yamasaki, et 

al. 2009). Its normal function is to prevent cell death by inhibiting the translocation of 

apoptosis inducing factor to the nucleus. ANG mutations have been identified in both 

sALS and fALS patients, and are likely to have a deleterious effect through loss of 

function in ALS cases. The mutations result in reduced rRNA biogenesis, impacting 

subsequent protein synthesis and affecting cell proliferation, angiogenic activities and 
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nuclear localisation (Ainscow and Brand 1999, Gellera, et al. 2008, Greenway, et al. 

2006). 

 

Missense mutations in SETX are associated with MN degeneration and ALS4 (Chen, et 

al. 2004). The C-terminus contains a classical seven-motif domain characteristic for 

RNA/DNA helicases. RNA helicases are frequently found in large ribonucleoprotein 

complexes and in general maintain genome integrity and regulate RNA biogenesis 

(Hickson 2003, Tanner and Linder 2001, Tuteja and Tuteja 2004). SETX is involved in 

the modification of chromatin structure and interacts with proteins associated with 

transcription and pre-mRNA spicing, and although the precise mechanism underlying 

ALS pathogenesis remains to be elucidated, dysfunction of transcriptional termination 

and pre-mRNA splicing is suggested (Chen, et al. 2004, Suraweera, et al. 2009). This is 

supported in part by the homology of SETX to the regulator of nonsense transcripts-1 

(RENT1 or Upf1), Immunoglobulin Mu-binding protein 2 (IGHMBP2) and splicing 

endonuclease1 (Sen1p), which are all involved in RNA processing (Guenther, et al. 2009, 

Mendell, et al. 2002). 

 

Elongator protein is a complex that associates with RNA polymerase II and has histone 

acetyltransferase activity conferred by the elongator protein complex subunit 3 (ELP3) 

(Svejstrup 2007). Genetic variants of ELP3 have been associated with ALS, and its 

knockdown in zebrafish embryos strongly implicated ELP3 in axonal biology and as a 

gene that confers a risk of neuronal degeneration (Simpson, et al. 2009). ELP3 is 

primarily cytoplasmic in neurons and is part of the RNA Polymerase II complex, with 

roles in RNA elongation (Winkler, et al. 2001), modification of tRNA wobble 

nucleosides (Huang, et al. 2005), and when part of the Elongator complex has histone 

acetyltransferase (HAT) activity directed towards core histones H3 and H4 (Winkler, et 

al. 2002). It remains unknown which loss of function associated with reduced ELP3 

expression is responsible for the increased risk of developing ALS (Lemmens, et al. 

2010). 

 

1.5.2.2 Post-transcriptional regulation 

 
A significant advance in the understanding of the pathophysiology of ALS and also 

placing RNA metabolism as a key pathogenic mechanism was the discovery of mutations 

in the RNA processing genes Tar DNA binding protein 43 (TARDBP) and Fused in 

Sarcoma/Translocated in Liposarcoma (FUS/TLS). TDP-43 is homologous to the 
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heterogeneous nuclear ribonucleoproteins (hnRNPs) and was initially discovered to be a 

major component of the ubiquinated inclusions within motor neurons in ALS cases 

(Neumann, et al. 2006). FUS/TLS is structurally related to Ewing’s sarcoma and TATA 

binding protein-associated factor 15, and has been found in cytoplasmic inclusions within 

the brain and spinal cord of ALS and FTLD patients (Kwiatkowski, et al. 2009, Tan, et 

al. 2012, Vance, et al. 2009). 

 

TDP-43 and FUS/TLS are both RNA/DNA binding proteins involved in alternative 

splicing, transcriptional regulation, mRNA stabilization and microRNA processing. 

Investigations have shown that mutations in the TARDBP gene, which encodes TDP-43, 

and FUS/TLS mutations, targeted RNA processing and are causative of some cases of this 

disease, highlighting the importance of RNA metabolism for normal cellular functioning. 

There is evidence from both cellular and animal models to support both loss of nuclear 

function and gain of cytoplasmic function as pathogenic mechanisms conferred by these 

mutant proteins, however, the exact cause of the selective vulnerability of MNs carrying 

these mutations remains to be elucidated (Da Cruz and Cleveland 2011, Feiguin, et al. 

2009, Kabashi, et al. 2010). In a subset of ALS and FTLD patients TDP-43 positive 

cytoplasmic inclusions are present in the CNS, even though the gene is not mutated 

(Lagier-Tourenne, et al. 2010, Renton, et al. 2011). How wild-type TDP-43 is pathogenic 

in these cases is also of interest.  

 

TDP-43 has a primary structure that is characteristic of other hnRNPs, containing two 

RNA recognition motifs (RRM1 and RRM2) that are evolutionary conserved and 

involved in both RNA and DNA binding, nuclear export and cellular localisation 

sequences, and a glycine rich region enabling protein-protein interactions (Buratti and 

Baralle 2001, Wang, et al. 2004). Interestingly, nearly all the mutations identified in 

TARDBP in ALS patients are localised in exon 6, coding for the C-terminal domain (Arai, 

et al. 2010, Johnson, et al. 2009, Kabashi, et al. 2010, Lagier-Tourenne, et al. 2010). 

TDP-43 is intrinsically aggregation prone, and in vivo studies revealed increased 

aggregation when mutations were present in the C-terminal domain. In both ALS and 

FTD cases there is an abundance of cytosolic TDP-43, some of which forms aggregates 

or skeins, some of which are ubiquitinated (Arai, et al. 2006, Benajiba, et al. 2009, 

Neumann, et al. 2006). The redistribution of TDP-43 to the cytoplasm potentially causes 

a loss of function leading to neurodegenerative disease (Barmada, et al. 2010, Nonaka, et 

al. 2009). In response to stress and neuronal injury TDP-43 localises to stress granules, 

which are transient, dynamic cytoplasmic sites of mRNA triage, and act to sort mRNAs 

for storage, degradation or translation when required in neuronal repair (Anderson and 
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Kedersha 2006, Moisse, et al. 2009). Stress granules contain a myriad of mRNAs and 

proteins including RBPs, transcription factors, RNA helicases, nucleases, kinases, and 

signalling molecules (Anderson and Kedersha 2008, Anderson and Kedersha 2009). 

TDP-43 has also been found in processing bodies (P-bodies), which are spatially, 

compositionally, and functionally linked to stress granules (Kedersha, et al. 2005, Parker 

and Sheth 2007). P-bodies contain components of the mRNA decay pathways and 

proteins involved with translational control, suggesting they function as mediators of 

mRNA biogenesis including translation and decay. P-bodies can intermittently and 

transiently dock at stress granules, potentially facilitating the transfer of selected mRNPs. 

The numerous processes linked to TDP-43 have generated differing hypotheses about the 

pathogenic mechanism of the mutant protein (Strong 2010, Volkening, et al. 2009, Wang, 

et al. 2004), with its principal roles linked to mRNA processing and stress-granule 

formation. Cytoplasmic mislocalisation and aggregation of TDP-43 may itself be toxic to 

cells, and/or it could sequester other proteins important for normal cellular function. 

Alternatively, the loss of nuclear TDP-43 may be detrimental to the processing of pre-

mRNA transcripts.  

 

FUS/TLS protein structure is characterized by a N-terminal domain composed of 

sequences enriched in glutamine, glycine, serine and tyrosine residues (QGSY-region), a 

glycine-rich region, an RRM domain, two multiple Arginine-Glycine-Glycine (RGG) 

repeats flanking a zinc finger motif, and a C-terminal NLS region (Iko, et al. 2004). 

FUS/TLS has been demonstrated to bind to RNA targets in specific sequences recognised 

by the zinc finger domain, while the RGG and RRM domains mediate the specificity of 

this interaction (Iko, et al. 2004). The NLS-containing C-terminal region of the protein, in 

which the majority of ALS mutations occur in a similar fashion to TDP-43 mutations, has 

been implicated in the cytoplasm retention of FUS/TLS, since it has been found as 

extranuclear cytoplasmic aggregates in affected individuals (Gal, et al. 2011, Ito, et al. 

2011, Vance, et al. 2009). FUS/TLS is a component of the hnRNP complex involved 

with pre-mRNA splicing and mRNA export (Iko, et al. 2004), which may be disrupted in 

the presence of a mutation. Although FUS/TLS is an RNA processing gene, the precise 

mechanism leading to MN degeneration remains unclear (Blair, et al. 2010).  

 

A motor neuron disease linked directly to splicing failure is spinal muscular atrophy 

(SMA), caused by mutations in the survival motor neuron (SMN) gene. In humans, the 

SMN gene exists as two homologous copies, SMN1, which encodes the full-length 

protein, and SMN2, which encodes a truncated isoform (Lorson, et al. 1999, Monani, et 

al. 1999). The SMN complex consists of SMN and other proteins such as the gemins, and 
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it functions in the assembly of snRNP complexes. A risk factor reported for ALS is 

abnormal copy numbers of SMN1, with studies demonstrating a significant increase in 

the frequency of abnormal SMN copy number in ALS patients (Corcia, et al. 2006, 

Corcia, et al. 2002). Genotypes resulting in low levels of SMN protein are also thought to 

be instrumental in ALS pathogenesis, with studies in human G93A mutant SOD1 

transgenic mice reporting that a reduction in levels of spinal cord SMN protein which 

contributes towards MN degeneration (Corcia, et al. 2006, Turner, et al. 2009, Veldink, et 

al. 2005). Alternative splicing in SMN interacting protein 1 (SIP1, now known as 

gemin2), which is essential for snRNP biogenesis, were reported in tissue from ALS and 

SMA patients (Aerbajinai, et al. 2002). The disruption of alternative splicing regulation 

can affect gene expression and subsequently impact the production of protein isoforms, 

potentially leading to disease. Homozygous deletions of SMN2 are also suspected to act 

as a susceptibility factor for ALS, and as a prognostic factor affecting survival time in 

sALS patients (Echaniz-Laguna, et al. 2002, Kim, et al. 2010, Moulard, et al. 1998, 

Veldink, et al. 2001). 

 

Ataxin 2 (ATXN2) has been implicated in RNA processing, possibly through direct RNA 

binding, translation, or transport and stability of mRNAs. Intermediate length 

polyglutamine (PolyQ) expansions (27-33 glutamines) in ATXN2 are associated with 

ALS. The mechanisms by which ATXN2 expansions contribute towards ALS 

pathogenesis remain unknown; however the PolyQ expansion has enhanced interaction 

with TDP-43, promoting its sequestration to the cytoplasm increasing stress-induced 

TDP-43 C-terminal cleavage and phosphorylation (Hart and Gitler 2012, Nonhoff, et al. 

2007). Intermediate-length ataxin 2 PolyQ expansions have also been linked to the stress-

dependent activation of multiple caspases, including caspase 3, suggesting cells with the 

expansion have a lower threshold for such activation in response to stress (Hart and Gitler 

2012). 

 

RNA editing is an alteration in the primary nucleotide sequence, and is observed in 

mRNA, ncRNA, tRNA, and rRNA. The most common modification in the mammalian 

CNS is adenosine to inosine (A to I). A to I editing has been reported to be associated 

with excitotoxicity in ALS.  The glutamate receptor subunit Glur2 undergoes editing at 

the Q/R site, during which the glutamine (Q) codon is substituted by an arginine (R) 

codon. RNA editing of this subunit alters the calcium permeability of the receptor 

(Seeburg, et al. 1998). A decrease or loss of editing for this receptor could lead to 

increased calcium permeability of these AMPA receptors. The excitotoxicity associated 

with ALS would result in excessive activation of these receptors, resulting in excessive 
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calcium influx and disruption to calcium homeostasis (Akbarian, et al. 1995). A reduction 

in editing of the Q/R site in GluR2 has been identified in ALS patients (Kwak and 

Kawahara 2005, Kwak, et al. 2008). Aberrant RNA processing of EAAT2 in ALS has also 

been reported, with a correlation between increased editing of EAAT2 and activation of 

alternative polyadenylation site demonstrated in ALS patients (Flomen and Makoff 

2011). RNA processing defects may lead to loss of protein function and activity, leading 

to functional decline. 

 

A noncoding GGGGCC hexanucleotide repeat expansion in intron 1 of the C9ORF72 

gene has recently been identified in significant amounts of both sALS and fALS cases 

(DeJesus-Hernandez, et al. 2011, Renton, et al. 2011). Hypotheses surround C9ORF72 

pathogenesis however the precise mechanism underlying disease remains to be 

discovered. One possible mechanism is described in the sequestration model, in which the 

repeat expansion results in a toxic RNA gain of function. The expanded RNA may form 

pathogenic foci that sequester RBPs disrupting other RNA processing and metabolic 

events, or the reduction could results in a loss of normal protein function. The removal of 

RNA and RBPs from the active pool can impact RNA metabolism potentially leading to 

pathogenesis. Another model that of haploinsufficiency suggests a mechanism by which 

the expansion leads to loss of C9ORF72 function, affecting its ability to be 

processed/translated, with one copy insufficient to retain its function. A 50% reduction in 

C9ORF72 transcript has been observed in patients with the expansion (DeJesus-

Hernandez, et al. 2011).  

 

ncRNAs have diverse roles in RNA processing and metabolism and are increasingly 

being investigated in relation to disease (Delay and Hebert 2011, Enciu, et al. 2012). 

MicroRNAs (miRNA) regulate mRNA stability and translation (Eacker, et al. 2009), and 

studies have investigated the impact of global miRNA synthesis on neuronal function in 

neurodegeneration, the consequences of alterations in miRNA expression in models of 

disease, and disruption of miRNA regulatory networks due to mutated disease proteins 

(Gehrke, et al. 2010, Packer, et al. 2008, Schonrock, et al. 2010). For mature miRNAs to 

be generated transcripts must undergo two rounds of cleavage by two separate RNases, 

Drosha and Dicer, which reside in the nucleus and cytoplasm respectively. Studies have 

shown TDP-43 to be important in pre-miRNA synthesis through its interaction with 

Drosha.  Mislocalisation to cytoplasmic aggregates or the presence of a mutation in TDP-

43 is likely to affect processing by Drosha and Dicer, potentially affecting miRNA 

expression (Haramati, et al. 2010). An miRNA profiling study on skeletal muscle from 

human G93A mutant SOD1 transgenic mice discovered the skeletal muscle specific 
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miRNA miR-206 was up-regulated in the lower limbs. However mice deficient for miR-

206 displayed accelerated disease progression, suggesting the induction of miR-206 acts 

as a compensatory mechanism by sensing motor neuron injury and promoting 

regeneration of neuromuscular synapses to delay MN degeneration (Williams, et al. 

2009).  

 

1.5.2.3 mRNA stability 

	
  
Neurofilament (NF) aggregates have been identified within MNs of both fALS and sALS 

patients (Troost, et al. 1992). In transgenic mice carrying human G93A mutant SOD1, 

p190 Rho guanine nuclear exchange factor (p190RhoGEF) was identified in aggregates 

containing the low molecular weight NF (NFL) (Lin, et al. 2005). p190RhoGEF forms 

part of an RNA-protein complex that stabilises NFL mRNA through interaction with the 

3’UTR. Aggregation of p190RhoGEF appears to trigger neurotoxicity, and the human 

homologue RGNEF was immunoprecipitated with NFL mRNA in ALS, but not control, 

lysates (Volkening, et al. 2009). RGNEF is a RNA binding protein that acts as a 

destabilising factor for human NFL mRNA and can regulate NFL protein levels in cells 

(Droppelmann, et al. 2013). The aggregation of NFL and p190RhoGEF reduces the 

availability of p190RhoGEF to stabilise NFL mRNA, which could contribute towards 

pathogenesis but this remains to be determined. The presence of mutant SOD1 has also 

been shown to impair a network of RBPs and causes the destabilisation of mRNA species 

such as human hNFL and VEGF mRNAs (Ge, et al. 2005, Lu, et al. 2007).  

 

1.5.3 Conclusion  
 

RNA metabolism refers to evolutionally conserved processes involved in RNA 

biogenesis from transcription initiation through to mRNA decay. As discussed here as the 

regulatory roles of RNA begin to be uncovered, RNA processing is becoming 

increasingly associated with human disease, including neurodegenerative disease. The 

spatial and temporal separation of transcription and translation allows eukaryotes to 

specifically regulate gene expression in accordance with cellular requirements. The 

proper processing of RNA molecules is fundamental for maintaining transcriptome and 

proteome integrity and overall homeostasis. Alternative splicing expands the versatility of 

genomic sequences and with RNA editing is used as a mechanism to generate many 

different messages from the same gene (Farajollahi and Maas 2010). The rate of 

transcription and mRNA stability and turnover are the key determinants of the gene 
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expression profile, by adjusting the abundance of transcripts available for translation and 

targeting aberrant mRNAs for degradation to maintain quality control of RNA biogenesis. 

Improper processing of mRNA can lead to the degradation or nuclear retention of 

transcripts, or lead to the production of nonsense protein products. RNA surveillance has 

an integral role in regulating gene expression, and adds to the complexity of RNA 

processing. Non-coding RNAs and RBPs are both essential to RNA processing and gene 

expression patterns by increasing the dimension of control over the transcriptome.  

 

Greater understanding and characterisation of RNA populations, their complexity, and the 

processes in which they are involved, will hopefully provide valuable insights in to how 

their dysregulation can lead to human disease and identify potential therapeutic targets. 

Here we have discussed the increasing evidence of RNA metabolism and processing 

defects in the pathogenesis of ALS. Dysregulated RNA processing, loss of function, and 

RNA toxicity are previously established in neurological disorders and are ever more 

being related to pathogenic mechanisms of degeneration. The intricate networks of 

interaction and functional control increase the opportunity for exposure to mutations and 

misregulation that cause disease. 

 

1.6 Nucleic Acid Oxidation 
 
The basis of our study was formed from the substantial evidence demonstrating an 

increase in nucleic acid oxidation during ageing and other neurodegenerative diseases. 

This section describes some of the key findings linking oxidative damage to nucleic acids 

and neurodegeneration. The consequences of nucleic acid modification and the repair 

processes identified are also discussed. 

 

1.6.1 Oxidative modification to nucleic acids 

 
The high content of unsaturated fatty acids, elevated oxygen consumption, and the lack of 

antioxidant defences in comparison to other organs, are believed to contribute towards 

CNS vulnerability to oxidative damage (Nunomura, et al. 2006). The accumulation of 

oxidative damage to cellular macromolecules including nucleic acids during ageing and 

in age-associated diseases identifies the importance of studying oxidative stress related 

damage and its association with neuronal degeneration (Ding, et al. 2004).  

 
RNA may be more vulnerable to oxidative damage, in comparison to nuclear DNA, due 
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to its lack of protective histones, associated proteins, and single-stranded nature; or as a 

consequence of the abundance and subcellular distribution of RNA, locating in the 

vicinity of mitochondria (Bregeon and Sarasin 2005). It could also be the consequence of 

differential turnover/repair rates for RNA and DNA damage. As our understanding of 

RNA processing and metabolism develops it is becoming increasing evident that RNA is 

essential for controlling gene expression and maintaining cellular homeostasis. The 

susceptibility to oxidative damage might also vary among the different classes of non-

coding RNAs and mRNA species. The degree of protein association or structural 

conformation of RNA may protect some species against damage. Different RNAs have 

varying degrees of expression, turnover rates and temporal patterns of association with 

proteins and while evidence suggests differing levels of oxidative damage between 

transcripts the reasons behind this potentially selective vulnerability is not fully 

understood. 

 
The oxidation of mRNA can occur through direct damage to the bases and by the 

incorporation of the oxidised base from the cytosolic pool through the normal action of 

RNA polymerase II (Ishibashi, et al. 2005, Yanagawa, et al. 1992). Guanine, due to its 

high oxidation potential, is the most abundant and characterised oxidised base (Burrows 

and Muller 1998). Guanines are susceptible to base attack by singlet oxygen and electron 

transfer reactions. Modification of the base at carbon 8 by hydroxyl radicals, results in the 

production of a reducing neutral radical, which through reaction with oxygen or electron 

transfer leads to the formation of 8-hydroxyguanine (8-oxoG) (Burrows and Muller 1998, 

Candeias and Steenken 2000). Other oxidised purine and pyrimidine bases have been 

identified (reviewed in Bjelland and Seeberg 2003), and at least two other modifications 

have been identified in yeast RNA (Yanagawa 1992). Our study focuses on guanine 

oxidation products, as this a common oxidation product which is often used as a 

biomarker for oxidative stress (Kasai 1997, Mosley, et al. 2006) . 

 
8-hydroxydeoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG) are guanine 

oxidation products (figure 1.8), and can be formed by direct oxidation of the base in DNA 

and RNA respectively or, as has been stated, through incorporation of the oxidised base 

from the nucleoside pool (Fiala, et al. 1989, Wamer, et al. 1997). The oxidised nucleoside 

when present in DNA is particularly important since it can pair with either adenine or 

cytosine during DNA synthesis, leading to potential base mispairing and hence erroneous 

protein production (Shibutani, et al. 1991). Our work focuses on 8-OHG and 8-OHdG so 

the literature reviewed will correspond to understanding these two oxidation products. 

We chose these modifications due to extensive reporting of them in the literature with 
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regards to age-associated diseases. They have also been identified as biomarkers for 

oxidative stress. 

 

 
 
 

 
 

 
 

Figure 1.8: Hydroxyl radical attack of deoxyguanosine (A) and guanosine (B) 

nucleosides leading to the formation of 8-Hydroxydeoxyguanosine and 8-

Hydroxyguanosine respectively	
  

 
 
There is substantial evidence to associate RNA oxidation with the pathogenesis of 

neurodegenerative disorders. Further work involving the elucidation of the processing, 

surveillance and removal mechanisms related to this damage will provide greater 

understanding of their consequences and potential therapeutic strategies. 
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Figure 1.9: The consequences of nucleic acid oxidation	
  
Oxidative damage to nucleic acids may alter the genetic information carried by nuclear 

and mitochondrial DNA and RNA. The potential detrimental effects of nucleic acid 

modification to nucleic acids are shown here. Oxidative damage may affect the fidelity of 

transcriptional and/or translational processes, lading to erroneous protein production and 

disturbances to cellular and metabolic processes.  

 

1.6.2 Nucleic acid oxidation prevention and repair 

1.6.2.1 Oxidative DNA damage  

 

Cells have evolved intricate mechanisms for DNA and RNA damage prevention, 

detection, and removal. The DNA repair mechanisms constitute a complex system and 

defects in maintaining genome integrity are associated with aging and disease 

development (Hoeijmakers 2009). DNA damage in neurons can be repaired through the 

direct reversal of the modified bases, the removal of a modified base or small lesions by a 

base excision repair (BER), the removal of bulky, helix distortion lesions by nucleotide 

excision repair (NER), the correction of single base mismatches or deletions by mismatch 

repair (MMR), or repair of DSBs by the non-homologous end joining (NHEJ) pathway 

(Karran 2000, Kolodner and Marsischky 1999, Krokan, et al. 2000, Nakabeppu, et al. 
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2004). Oxidative damage to DNA includes single strand breaks (SSBs), double strand 

breaks (DSBs), base modifications, abasic sites, and DNA-protein cross-links. The BER 

pathway is believed to be the major pathway for repairing oxidative modifications to 

DNA (Fishel, et al. 2007). The first step in BER is the recognition of the damaged base 

by a substrate specific DNA glycosylase. Most DNA glycosylases have broad substrate 

specificities but can have preferences for either purines or pyrimidines. The major 

bifunctional glycosylase for purines is OGG1, which initiates excision of 8-OHdG from 

resting DNA, in which the oxidised guanine is paired with cytosine (Klungland, et al. 

1999, Minowa, et al. 2000). Inefficient removal of the oxidised base may lead to 

mutagenesis and gene expression changes if the transcript is transcribed. Investigations 

into the coding properties of 8-OHdG demonstrated that the modified transcript does not 

block DNA replication catalysed by DNA polymerase and the enzyme can incorporate 

either adenine or cytosine opposite 8-oxoG (Grollman and Moriya 1993). MUTYH, the 

human homolog of the MutY protein in E.Coli, was discovered to act as an additional 

step of surveillance in mammalian cells to prevent mutagenesis by excising adenine 

incorporated opposite 8-OHdG from the progeny strand during replication (Michaels and 

Miller 1992, Slupska, et al. 1999). Endonuclease III-like protein UNG, and Nei-like DNA 

glycosylases NEIL-1 and 2 remove most of the oxidised pyrimidine bases (Krokan and 

Bjoras 2013).  

 
The NHEJ pathway is a predominant form of DSB repair in mammalian cells, and of 

essential importance in post-mitotic neurons (Subba Rao 2007). Initiation of the pathway 

is governed by phosphoinositide-3-kinase related protein kinases (PIKKs) and accessory 

factors that directly sense the DNA damage and initiate a cascade of protein 

phosphorylation events that ultimately determine cell fate (Ciccia and Elledge 2010, 

Sancar, et al. 2004). The PIKKs participate in signal transduction pathways involved in 

DNA repair genome maintenance. They function as redox sensors, and respond to various 

stresses by phosphorylating targets in appropriate pathways. DNA-dependent protein 

kinase (DNA-PK) and ataxia telangiectasia mutated (ATM), which are members of the 

superfamily of PIKKs, transduce the signal for DNA damage. The members of the 

superfamily are grouped on the basis of a high degree of sequence similarity in the C-

terminal region and possess serine/threonine kinase activity (Abraham 2004). The Mre11-

Rad50-Nbs1 (MRN) complex is a DNA damage sensor in mammals that is rapidly 

recruited to DSB sites in DNA (Stracker, et al. 2004), and is involved in the early steps of 

propagating the DNA damage signal. DSBs are recognised and bound by the 

heterodimeric regulatory subunits of DNA-PK (Ku80/Ku70) thereby recruiting the 

catalytic DNA-PK (Sawchuk, et al. 2004, Yoo and Dynan 1999), which can activate p53 
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through phosphorylation of the amino terminal site and trigger the onset of DNA repair or 

apoptosis (Soubeyrand, et al. 2004). H2A histone family member X (H2AX) is a 

substrate of some of the PIKKs, and is phosphorylated on serine 139 in response to DSB 

formation to become γ-H2AX (Rogakou, et al. 1998, Stiff, et al. 2004), with which many 

DDR proteins interact to initiate repair and maintain genome stability (Fernandez-

Capetillo, et al. 2004, Stucki and Jackson 2006).   

 

1.6.2.2 Oxidative RNA damage  

 

By comparison, studies of mechanisms for the protection or removal of RNA damage 

have been limited to investigation into RNA surveillance and degradation. It remains to 

be determined whether repair processes for the removal of RNA lesions exist. 

Controversy surrounds the action of repair processes for RNA as it may be more efficient 

for cells to degrade damaged RNA rather than repair it (Krokan, et al. 2004). Multiple 

enzymes are able to recognise the same target RNAs, making redundancy a general 

feature and enhancing the overall efficiency of degradation pathways (Houseley and 

Tollervey 2009). RNA turnover may also represent an additional surveillance mechanism 

for the removal of aberrant RNA transcripts, thereby increasing the quality control of 

mRNA biogenesis (section 5.1.4). The emerging role of ncRNAs in gene expression 

regulation, chromatin structure, and translation highlights the importance for rapid 

turnover of damaged transcripts in cellular homeostasis. RNA surveillance pathways 

appear to act on all classes of RNA, efficiently identifying and degrading defective RNA 

transcripts. Insights into how nuclear RNA surveillance play an important role in 

regulating eukaryotic gene expression, adds to the complexity of RNA metabolism and 

presents potentially unexplored ways of cells to regulate the quality of RNA. 

 
Although uncertainty surrounds the direct repair of RNA, specific enzymes known as 

ribonucleases (RNases) efficiently remove damaged RNA transcripts from the cell to 

ensure efficiency of RNA metabolism and processing. The three major classes of 

intracellular RNases are the endonucleases that cut RNA internally, the 5’ exonucleases, 

and the 3’ exonucleases. Whether selective degradation by specific RNases act to repair 

or remove the oxidised bases in RNA remains unresolved (Deutscher 2006, Li, et al. 

2006). The E.coli polynucleotide phosphorylase (PNPase), a 3’-5’ exonuclease, is 

important for mRNA turnover and degradation of aberrant non-coding RNAs (Deutscher 

2006). In vivo experiments have suggested human PNPase (hPNPase) is a candidate for 

the turnover of oxidatively damaged RNA, demonstrating binding specificity for the 
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modified transcripts (Hayakawa, et al. 2001, Hayakawa and Sekiguchi 2006). The 

knockdown of PNPase in HeLa cells and their subsequent exposure to hydrogen peroxide 

resulted in increased levels of 8-oxoG containing RNA and reduced cell viability (Wu 

and Li 2008). Y-box binding protein (YB-1) is another candidate shown to be active in 

the handling of oxidatively damaged RNA. In E.coli the gene confers high resistance of 

the bacterial cell to oxidative stress, and has been found to regulate processes including 

transcription and translation (reviewed in Kohno, et al. 2003), and to aid in the winding 

and unwinding of RNA duplexes (Skabkin, et al. 2001). In vitro experiments have 

demonstrated YB-1 to bind specifically to 8-oxoG-containing oligonucleotides 

(Hayakawa, et al. 2002), and knockdown of YB-1 in mouse embryonic fibroblasts results 

in increased sensitivity to oxidative stress (Lu, et al. 2005). YB-1 has also been found to 

localise to P-bodies and stress granules where active mRNA degradation occurs (Yang 

and Bloch 2007), further indicating a potential role in RNA surveillance. However, the 

numerous roles of YB-1 make interpretation of the phenotypes difficult, as it may be 

involved in stress resistance at multiple levels. YB-1 has the capacity to stimulate the 

base excision repair activity of the nei endonuclease VIII-like 2 (NEIL2) protein, a DNA 

glycosylase which removes oxidised bases from DNA (Das, et al. 2007), demonstrating 

its involvement in the handling of oxidatively damaged nucleic acids. While oxidatively 

damaged RNAs are considered to be degraded rather than repaired these findings suggest 

a model wherein YB-1 binding to 8-oxoG-containing RNA may assist removal of these 

RNAs from the cells through the action of other proteins. However, this remains 

uncertain and it could be another surveillance mechanism generally targeting defective 

transcripts for removal.  

 
The discovery of a mechanism of RNA alkylation repair (Aas, et al. 2003) suggested that 

other unidentified processes for the repair of RNA might exist, and cells may invest more 

into the protection of RNA than initially thought (Bregeon and Sarasin 2005, Krokan, et 

al. 2004). This would be understandable considering the identification of multiple 

metabolic and processing features of RNA required for normal cellular function. 

Alkylation damage in RNA is repaired by the human homologue hABH3 of AlkB, a 

DNA repair enzyme for E.coli, by oxidative demethylation of the damaged DNA and 

RNA bases (Aas, et al. 2003, Duncan, et al. 2002). The major apurinic/apyrimidinic 

endonuclease/redox factor-1 (APE/Ref-1) participates in base excision repair of DNA and 

activation of stress inducible redox transcription factors (Jayaraman, et al. 1997). 

APE/Ref-1 has also been suggested to possess activity toward RNA (Barnes, et al. 2009) 

and plays a role in the rRNA quality control process (Vascotto, et al. 2009b). Human 

APE/Ref-1 in APE/Ref-1 knockdown cells the ability to remove 8-hydroxyguanine-
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containing rRNA upon oxidative damage is observed, along with impaired translation and 

reduced cell growth rate (Vascotto, et al. 2009b).  

 

1.6.2.3 Oxidative damage to the nucleotide pool  

 

Since the persistence of 8-oxoG in RNA would cause a reduction in the fidelity of gene 

expression, organisms must have a mechanism for scavenging oxidised molecules. 

Oxidation of nucleotides can occur in the cellular nucleotide pool, which can then be 

incorporated into newly synthesised DNA or RNA. Avoidance of such incorporation 

would provide a mechanism of coping with and possibly preventing nucleic acid damage 

(Bellacosa and Moss 2003, Bregeon and Sarasin 2005, Li, et al. 2006). Here we focus on 

what is known about 8-oxoG, however the nucleotide pool is likely to contain numerous 

oxidised nucleoside, nucleotides, and many of the intermediate products formed from 

these.  

 
Proteins that specifically bind to oxidatively damaged RNA and selectively eliminate 

mRNA containing 8-oxoG have been reported to preferentially discriminate the oxidised 

transcripts (Hayakawa, et al. 2010, Hayakawa, et al. 2001, Hayakawa and Sekiguchi 

2006, Hayakawa, et al. 2002). Preventing the incorporation of oxidised bases into nucleic 

acids may also be an essential mechanism for minimising damage in both DNA and RNA 

(Li, et al. 2006). The MutT protein in E.Coli hydrolyses 8- hydroxydeoxyguanosine 

triphosphate (8-oxodGTP) and 8- hydroxyguanosine triphosphate (8-oxoGTP) to their 

monophosphate forms thus removing the oxidised bases from the nucleotide pool and 

preventing their incorporation into DNA and RNA respectively (Maki and Sekiguchi 

1992). Several mammalian MutT homolog hydrolases, including human oxidised purine 

nucleoside triphosphatases 1 and 2 (MTH1, MTH2) and nucleoside diphosphate linked 

moiety X type 5 (NUDT5) have been identified (Ishibashi, et al. 2003). These proteins all 

share a nudix motif, and are collectively called nudix proteins because most of them 

possess magnesium requiring enzyme activities to catalyse the hydrolysis of nucleoside 

diphosphates that are linked to another moiety. MTH1 efficiently hydrolyses 2-

hydroxydeoxyadenosine triphosphate (2-oxodATP), 8-hydroxydeoxyadenosine 

triphosphate (8-oxodATP), 8-oxodGTP, and their corresponding ribonucleotides thus 

preventing their incorporation into DNA or RNA (Furuichi, et al. 1994, Nakabeppu 2001, 

Nakabeppu, et al. 2004, Sakumi, et al. 1993). Two other proteins containing the nudix 

motif, MTH2 (NUDT15) and NUDT5, were identified with the potential to hydrolyse 

either 8- hydroxydeoxyguanosine triphosphate (8-oxodGTP) or 8- 
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hydroxydeoxyguanosine diphosphate (8-oxodGDP) to 8-hydroxydeoxyguanosine 

monophosphate (8-oxodGMP), respectively (Cai, et al. 2003, Ishibashi, et al. 2005, 

Ishibashi, et al. 2003). A study investigating the hydrolysing properties of the NUDT18 

protein, found the protein to hydrolyse 8-oxodGDP and 8-oxoGDP to their 

monophosphate forms. NUDT18 was subsequently found to hydrolyse 8-

hydroxydeoxyadenosine diphosphate (8-oxodADP) and 2-hydroxydeoxyadenosine 

diphosphate (2-oxodADP), and has a sequence closely related to those of MTH1 and 

MTH2, suggesting it is to be named MTH3 (Takagi, et al. 2012). This presents an 

alternative to repair mechanisms, where supplementary support is in place to maintain 

high-quality RNA ensuring transcriptional fidelity. Evidence in support of these proteins 

comes from in vivo studies demonstrating an up-regulation of MTH1 expression in 

response to oxidative stress. Another study showed significantly higher levels of RNA 

oxidation in the hippocampus of MTH1-null rats (Kajitani, et al. 2006). Increased 

expression of MTH1 in vulnerable neuronal populations of the brain has been reported in 

AD (Furuta, et al. 2001) and PD (Shimura-Miura, et al. 1999) patients, which may 

represent an up-regulation in response to oxidative stress.  

 

1.6.3 Nucleic acid oxidation in neurodegenerative disease 

 
Previous work investigating RNA oxidation in neurological disorders forms the basis for 

its importance and investigation in ALS. Immunocytochemical and biochemical studies 

have shown that RNA oxidation is increased in neurological disorders, and the regional 

distribution of the damage is consistent with selective neuronal vulnerability (Nunomura, 

et al. 2002, Nunomura, et al. 1999, Zhang, et al. 1999). The presence of oxidatively 

damaged DNA and RNA in the post-mortem brains of AD (Nunomura, et al. 1999) and 

PD (Zhang, et al. 1999) cases has been demonstrated through in situ approaches using the 

8-hydroxydeoxyguanosine/8-hydroxyguanosine (8-OHdG/8-OHG) specific antibodies. In 

both studies immunoreactivity was predominantly localised in the cytoplasm, and there 

was a significant increase in intensity in patients, compared to age-matched controls. 

Immunostaining of DNase treated post-mortem brain sections from these AD and PD 

patients revealed increased 8-OHG content of RNA in vulnerable neuronal populations. 

RNA oxidation appeared prominent in the frontal, temporal, and entorhinal cortex, 

hippocampus, and subiculum in AD patients, and in the substantia nigra in PD patients. 

Double labelling using an 8-OHG antibody and either neuron or astrocyte specific 

markers further demonstrated that oxidation occurred in the distinct groups of vulnerable 
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neurons that degenerate and have previously been shown to degenerate in these 

neurological disorders. 

 
Immunocytochemistry of neurons from the cerebral cortex of double knock-in mice 

expressing familial AD linked mutations in amyloid precursor protein (APP) and 

Presenilin 1 (PS1) displayed increased RNA oxidation (Lovell and Markesbery 2008, 

Lovell, et al. 2011). Studies on post-mortem brain tissue from mild cognitive impairment 

(MCI) subjects have also demonstrated increased oxidation/nitration to proteins, lipid 

peroxidation, and DNA oxidation (Butterfield, et al. 2006, Keller, et al. 2005). A study of 

familial PD revealed elevated 8-OHG immunoreactivity in cells which had not developed 

α- synuclein aggregation, a hallmark of neuronal degradation (Nunomura, et al. 2004), 

supporting suggestions that RNA oxidation is an early event in the pathogenesis of 

neurodegenerative diseases, and not merely a consequence of dying cells. However, 

recent studies of RNA oxidation in vulnerable neurons of preclinical AD have shown 

inconsistent results. One study reported a significant increase in the level of 8-OHG 

immunoreactivity in preclinical AD patients in comparison to controls (Lovell, et al. 

2011), which was not observed in another study (Nunomura, et al. 2012). The differences 

seen may have been due to the areas of the brain studied. The former study, that identified 

differences, was investigating damage in the hippocampus whereas the latter study was 

carried out in the cerebral neocortex. This result coincides with other work, which has 

also shown increased levels of oxidation products in hippocampus but not neocortex, and 

highlights the potential selective neuronal vulnerability to oxidative damage during 

different disease situations (Aluise, et al. 2011, Bradley, et al. 2010). 

 
In a mixed astrocyte and neuron culture model, increased RNA and DNA oxidation was 

observed following proteasome inhibition, which also has been described as a feature of 

several neurodegenerative disorders (Ding, et al. 2004). Exposing primary rat cortical 

cultures to hydrogen peroxide and other oxidative insults caused prominent oxidative 

damage to RNA four hours post-treatment, as shown by immunoreactivity for 8-OHG, 

with diminished reactivity at ten hours post-treatment. RNA oxidation occurred at an 

early stage and was identified in a distinct group of neurons that later died. Treatment of 

cultures with RNase diminished fluorescence confirming it was RNA that been primarily 

oxidised (Shan, et al. 2007). The cytoplasmic predominance of oxidised RNA suggests 

that during disease states enhanced ROS production by the mitochondria inflicts damage 

on surrounding species.  
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Biochemical approaches have additionally been used to isolate and identify oxidised 

RNA species. Northwestern blotting using a monoclonal 8-OHG antibody demonstrated 

significant amounts of poly(A)+ mRNAs are oxidatively damaged in the brains of AD 

patients. Subsequent Southern blotting of the oxidised and non-oxidised RNA species 

revealed selective oxidative damage in AD frontal cortex but not in AD cerebellum or 

control samples. Quantitative polymerase chain reaction (RT-qPCR) and filter analysis 

revealed some mRNA species to be more susceptible to damage (Shan, et al. 2003). The 

transcripts targeted had either been characterised in AD or their protein functions had 

been implicated in AD pathogenesis. Among these were p21ras protein (Gartner, et al. 

1999), carbonyl reductase (Balcz, et al. 2001), SOD1 (Omar, et al. 1999), Apo D 

(Terrisse, et al. 1998) and transferrin (Loeffler, et al. 1995). Further quantification of 

oxidised mRNAs by immunoprecipitation revealed 52.3 ± 6.15% of mRNAs contained 8-

oxoG in the frontal cortices of AD patients compared to 1.78 ± 0.56% in age-matched 

control (Shan and Lin 2006). However, the magnitude of RNA oxidation in patients 

diagnosed with advanced stage AD was lower, which may be expected due to RNA loss 

as the neurons degenerate.  

  

Oxidation of mRNA has also been observed in neurons in the motor cortex and spinal 

cord of ALS patients (Chang, et al. 2008), demonstrating this to be a feature common to 

neurodegeneration. Using a mouse model of ALS, oxidation was observed to be most 

prominent at the early pre-symptomatic stage and then to have subsided at later stages of 

disease. This supports previous studies of RNA oxidation in other neurodegenerative 

disorders, and demonstrates oxidative damage in vulnerable motor neurons and glia of the 

ALS-affected areas precedes MN death. Further investigation of the oxidised mRNA 

species by microarray analysis revealed that some species are more susceptible to 

oxidation. Furthermore, the identified oxidised mRNAs had already been described in 

relation to ALS. The role of mRNA oxidation in disease progression appears complex, as 

vitamin E treatment blocked mRNA oxidation and delayed disease onset but did not alter 

mean lifespan.  

 

The data presented provides a firm basis for implicating oxidative damage to nucleic 

acids as a pathogenic mechanism underlying neurodegenerative disorders, including 

ALS. Oxidation as an early event in ALS pathogenesis suggests it may reduce the 

affected neurons resistance to other forms of damage. ALS is a multi-factorial disease and 

it is unlikely that there is any one initiating factor. It may be a multitude of disorders with 

a common phenotype; there might be many overlapping initiating factors rather than a 

primary cause for disease; alternatively an as of yet unidentified single specific factor 
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may cause ALS. These proposed mechanisms are described in the previous section, and 

although the relative importance of oxidative stress, the variety of damage it may cause, 

and the relationship of these consequences to neurodegeneration remains unknown, the 

complexity of ALS suggests it acts in combination.  

 

1.6.4 Consequences of oxidative damage to RNA 

 
Little work has focused on the relationship between oxidant-induced impairments in 

cellular function and the selective neuronal death that follows. Generally oxidative 

modifications may contribute towards disease pathogenesis by reducing protein 

expression/function, disrupting cellular and metabolic processes, and causing a 

redundancy in the defence and repair pathways elicited by cells to protect against damage 

(Uttara, et al. 2009). Possibly the most abundant result of oxidation is direct strand 

breaks, which have been suggested to constitute 40-90% of the reactions (Poulsen, et al. 

2012). One mechanism for this, involves the initial formation of a nucleobase radical, 

which subsequently attracts a hydrogen atom from the ribose ring, ultimately resulting in 

strand scission (Jacobs, et al. 2011).  

 

After the description of RNA oxidation as being a feature of neurodegeneration, work 

began to characterise the consequences RNA oxidation and how these may contribute 

towards the pathogenesis of neurodegenerative diseases. Luciferase mRNA was 

synthesised in vitro then treated with hydrogen peroxide in order to cause oxidative 

damage. Rabbit reticulocyte lysate was used to translate the oxidised RNA into protein, 

and their functional activities and protein levels subsequently analysed. In the oxidised 

mRNA samples, a reduction in both luciferase activity and protein level of the damaged 

mRNA was seen (Shan, et al. 2003). Furthermore, immunostaining of cells transfected 

with either oxidised or non-oxidised luciferase mRNA displayed the presence of protein 

aggregation in the cells containing the oxidised mRNA, potentially due to the formation 

of truncated or abnormal proteins that have a tendency to aggregate. The production of 

short polypeptides from the oxidised mRNA was observed in the presence of proteasome 

inhibitors, which may be due to both premature termination of translation and protease 

degradation of aberrant full-length protein (Tanaka, et al. 2007). Polyribosomes isolated 

from vulnerable brain regions of AD patients displayed a reduction in protein synthesis in 

an in vitro assay suggesting that oxidation of ribosomal RNA (rRNA) leads to defects in 

rRNA processing and ribosomal function (Ding, et al. 2005), associated with a reduced 

rate and capacity for protein synthesis. Other studies show that oxidation of specific 
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classes of mRNAs in the affected regions of AD brains is associated with low protein 

expression for those genes (Shan, et al. 2007), which may be cause by ribosomal stalling 

on the oxidised transcripts, and oxidised mRNA can induce translational errors leading to 

short polypeptides and/or degradation of the truncated protein (Shan, et al. 2007, Tanaka, 

et al. 2007). While oxidation of RNA transcripts may not fully inhibit protein synthesis it 

is clear that the fidelity of translation is affected.  

 

1.7 Summary of Aims 
 

Oxidative stress has been extensively studied with relation to the mechanisms 

contributing towards ageing and ALS pathology. Nucleic acid oxidation has been 

reported to increase during ageing and be prominent in areas of selectively neuronal 

vulnerability in ALS and other neurological disorders. The hypothesis that increased 

oxidative stress and nucleic acid oxidation contributes towards cellular decline and 

degeneration in ageing and ALS was to be investigated. Specific classes of RNA are 

targeted for oxidative modification in a murine model of familial-ALS; however it is 

currently unknown whether similar classes are also targeted for modification during 

ageing. The aim was to investigate differential gene expression changes due to oxidative 

modification of RNA during ageing, and identify genes selectively enriched within the 

oxidised fraction. We wanted to investigate whether the differentially enriched genes are 

enriched in pathways previously implicated in neurodegeneration, to link our gene 

expression profiling data in an aging study to age-associated diseases. The second aim 

was to investigate whether the presence of different SOD1 mutations influences the 

amount of oxidative damage to RNA and determine the susceptibility of the mutations to 

oxidative stress related mitochondrial dysfunction and cellular decline.  
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Chapter 2 
Materials and Methods 

 

2.1 Materials 
 

All commonly used chemicals were purchased from Melford laboratories (UK), unless 

otherwise specified. Analytical grade solvents ethanol, methanol and isopropanol were 

purchased from Fisher Scientific (UK). RNase free water was purchased from Ambion 

(UK). Filtered pipette tips were purchased from Fisher Scientific (UK). Primers for PCR 

and quantitative PCR (qPCR) were purchased from Eurofins MWG Operon (Germany). 

 

For RT-qPCR, the Quantitect Reverse Transcriptase kit from Qiagen (UK) was used for 

cDNA synthesis. SYBR green master mix was purchased from Agilent (UK). PCR plates 

and sealing caps were purchased from BIOplastics (The Netherlands). SYBR Green was 

purchased from Agilent Technologies (UK). For PCR product electrophoresis, agarose 

was purchased from Melford Laboratories (UK), DNA Hyperladders IV and V, and 5x 

DNA loading buffer were from Bioline (UK).  

 

For cell culturing of the mouse motor neuron-like hybrid cell line (NSC34), Dulbecco's 

Modified Eagle Medium (DMEM) media was purchased from Gibco (UK), fetal calf 

serum was from Biosera (UK), and Geneticin Selective Antibiotic (G418 Sulfate) was 

from Invitrogen (UK). Transfection of NSC34 cells was carried out using the mammalian 

expression vector pIRESneo from Clontech, Saint-Germain (France), using 

Lipofectamine 2000 from Invitrogen (UK) for delivery of the vector into cells. For cell 

viability assays, hydrogen peroxide and trypan blue were purchased from Sigma (UK).  

 

For RNA extraction from NSC34 cells and mouse tissue, the RNeasy Mini Kit from 

Qiagen (UK) was used. GlycoBlue reagent for RNA precipitation was purchased from 

Ambion (UK). RNA concentration was measured on the Nanodrop Spectrophotometer 

(ND1000) supplied by Labtech International (UK).  

 

For RNA immunoprecipitation, protein L beads were purchased from Thermo Scientific 

(UK). Pheynl chloroform isoayml alcohol (PCI) was purchased from Sigma (UK), and 

the 8-hydroxyguanosine 15A3 mouse monoclonal antibody was from Abcam (UK). 
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For the microarray study, 3’ IVT Express amplification kits were purchased from 

Affymetrix (UK). All the materials and reagents required for assessing RNA quality on 

the Agilent 2100 Bioanalyzer were purchased from Agilent (US). Mouse Genome 430 2.0 

GeneChip Microarrays and reagents used for RNA labelling, fragmentation, GeneChip 

hybridisation, and GeneChip stringency washes were purchased from Affymetrix (UK).  

 

For Western blotting, protein concentration was measured by BCA assay, with reagents 

and protein standards purchased from Pierce (UK) and Thermo Scientific (UK) 

respectively. Sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) was prepared 

using SDS from Melford Laboratories (UK), 30% acrylamide from National Diagnostics 

(UK), ammonium persulphate (APS) from Sigma (UK), and Tetramethylethylenediamine 

(TEMED) from Melford Laboratories (UK). Polyvinyl difluoride (PVDF) Immobilin 

transfer membrane was purchased from Millipore (US). Anti-mouse and anti-rabbit 

secondary antibodies were from DakoCytomation (Denmark). An enhanced 

chemiluminescence (ECL) kit for chemiluminescence based-immunodetection of 

horseradish peroxidase (HRP) was purchased from Biological Industries (UK). 

Development of membranes was performed on the G:BOX, purchased from Syngene, a 

division of the Synoptics Group (UK). 

 

For metabolic activity assays, XF-24 Flux Packs and XF-assay media were purchased 

from Seahorse Bioscience (US). Gelatin was purchased from Sigma (UK). Oligomycin, 

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and rotenone were 

purchased from Sigma (UK), and Calcein was purchased from Invitrogen (UK). Glucose 

and glutamine added to the XF-assay media were both purchased from Sigma (UK). 

 

For mitochondrial morphology assessment rhodamine 123 was purchased from 

Invitrogen (UK). Cells were plated in to Lab-Tek chamber slides from Fisher Scientific 

(UK). Imaging was performed on a resonant scanning confocal microscope supplied by 

Leica Microsystems (Germany). 

 

For immunohistochemistry, Haematoxylin and Eosin stains were purchased from Leica 

(UK) and cresyl violet stain purchased from Raymond A. Lamb, now Fisher Scientific 

(UK). Vectastain Elite ABC kits for mouse IgG and rabbit IgG along with the bromo-4-

chloro-3'-indolyphosphate p-toluidine salt/nitro-blue tetrazolium chloride (BCIP/NBT) 

alkaline phosphatase substrate kit were purchased from Vector Laboratories (UK). 

Imaging was carried out on the BX61 upright microscope supplied by Olympus (UK). 
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2.1.1 Solutions 

	
  
50mM Phosphate buffered saline (PBS) 

3.2mM Na2HPO4, 0.5mM KH2PO4, 1.3mM KCl, 135mM Nacl, pH 7.4 

 

PBS-Tween (PBST) 

0.05% (v/v) Tween-20 (Sigma, UK) in 50mM PBS 

 

PBS-NP40 

0.04% NP-40 in 50mM PBS 

 

10% Sodium Dodecyl Sulphate (SDS) 

10% (w/v) SDS in deionised water 

 

Sodium Acetate 

3M NaOAc, adjust to pH 5.2 with glacial acetic acid 

 

Tris-acetate-EDTA (TAE) (1x)  

40mM Tris base (Sigma, UK), 20mM acetic acid (Fisher Scientific, UK), 1mM EDTA 

(Sigma, UK), pH 8.0 

 

Extra strong lysis buffer 

100mM TrisHCL, 7mM NaCl, 0.5% (w/v) SDS, 1% (v/v) Triton X-100, 2mM Na3VO4, 

1.25mM NaF, 1mM Na4P2O7, 10mM EDTA 

 

Running buffer (10x) 

144g Glycine, 30.2g Tris, 10g SDS, made up to 1L with deionised water, 1x working 

solution 

 

Transfer buffer (10x) 

144g Glycine, 30.2g Tris, made up to 1L with deionised water, 1x working solution 

 

Resolving buffer (4x) 

1.5M Tris-HCL, 0.4% (w/v) SDS 
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Stacking buffer (4x) 

0.5M Tris-HCL, 0.4% (w/v) SDS 

 

10% Ammonium Persulphate (APS) 

0.9g APS in 9ml deionised water 

 

Laemlli sample buffer (2x) 

1.5M Tris-HCL, 4% (w/v) SDS, 100mM dithiothreitol (DTT), 20% (w/v) Glycerol, 

0.02% (w/v) Bromophenol blue (Fisher Scientific) 

 

50mM Tris-buffered saline (TBS) 

50mM Tris, pH 7.6, 150mM NaCl 

 

TSB-Tween (TBST) 

0.1% (v/v) Triton X-100 in 50mM TBS 

 

4% Paraformaldehyde (PFA) 

4% (w/v) PFA in 50mM PBS 

 

Blocking buffer 

5% (w/v) powdered milk in PBS-Tween (0.05%) 

 

Trisodium Citrate buffer (TSC) 

3g Na3C6H5O7, made up to 1L with deionised water, pH6 

 

Cresyl Violet stain 

0.1% (w/v) Cresyl Violet, 0.05% (v/v) acetic acid in distilled water 

 

Blocking solution 

15% (v/v) normal goat serum or 15% (v/v) normal horse serum (Vector Laboratories UK, 

antibody dependent) in 50mM TBST 

 

Avidin-biotin peroxidase complex 

Vectastain Elite ABC Kit (Vector Laboratories, UK) in 50mM TBS 

 

Protein molecular weight marker 

Precision plus protein dual colour standards (Bio-Rad, UK) 
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Supplemented XF-assay media 

XF-assay media (Seahorse Biosciences), 25mM glucose, 2mM glutamine (pH 7.4 at 

37°C) 

 

2.1.2 Antibodies 

Table 2.1: IHC primary antibodies 
	
  

Antibody Species Dilution and 
conditions 

Antigen retrieval  Source 

8-OHG Mouse 
monoclonal 

1/200 
1 hour RT 

Pressure cooker 
TSC pH6 

Abcam 

H2AX Rabbit 
polyclonal 
 

1/2000  
1 hour RT 

Pressure cooker 
TSC pH6 

R&D Systems 

GFAP Rabbit 
polyclonal 
 

1/1000  
Overnight 4°C  

Pressure cooker 
TSC pH6 

DakoCytomation 

OGG1 Rabbit 
polyclonal 
 

1/50 
1 hour RT 

Pressure cooker 
TSC pH6 

Abcam 

DNA-
PK 

Mouse 
monoclonal 

1/100 
1 hour RT 

Pressure cooker 
TSC pH6 

Abcam 

 

Table 2.2: SDS-PAGE primary antibodies 
	
  

Antibody Species Dilution Source 

SOD1 Sheep monoclonal 
 

1/1000 Calbiochem 

Actin Mouse monoclonal 
 

1/1000 Abcam 

Tubulin Mouse monoclonal 
 

1/1000 Sigma 

 

Table 2.3: SDS-PAGE secondary antibodies  

 

Antibody Species Dilution Source 

Goat anti-mouse 
HRP 

Mouse polyclonal 
 

1/5000 Abcam 

Goat anti-rabbit 
HRP 

Rabbit polyclonal 
 

1/5000 Dako 
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2.1.3 Mice Details 

 
All mouse experiments were carried out in accord with the Animals (Scientific 

Procedures) Act 1986 under a UK Home Office project license. Animals were housed and 

cared for according to the Home Office Code of Practice for the Housing and Care of 

Animals Used in Scientific Procedures 

(http://www.homeoffice.gov.uk/publications/science-research-

statistics/animals/transposition_of_eudirective/codeofpracticegeneralsection). 

 

2.1.3.1 G93A mutant SOD1 transgenic mice 

 

G93A mutant SOD1 transgenic mice, B6SJL-Tg (SOD1-G93A) Gur/J (002726), were 

obtained from the Jackson Laboratory (USA) and backcrossed onto the C57BL/6 

background from Harlan (UK) for 20 generations to create a line with a inbred C57BL/6 

genetic background. This reduces genetic variation to improve the data generated using 

this model. The SOD1 G93A transgene is maintained as a hemizygous trait by breeding 

hemizygous males with wild-type females. 

 

The disease course and motor function of these mice were investigated in comparison to 

normal mice (Mead, et al. 2011). These SOD1 G93A mice typically survive for 140 days. 

Mice are routinely checked daily from 125 days of age for signs of distress. 30-60 day old 

transgenic mice are classed as presymptomatic stage of disease; however a reduction in 

motor function is observed from approximately 45 days of age (Mead 2011). 90-120 day 

old transgenic mice are classed as symptomatic, and can be identified readily by their 

phenotype by 90 days of age. The natural lifespan of a non-transgenic mouse in the lab is 

typically about 24 months. 

 

2.1.3.2 Aged mice 

 

For the microarray study, the spinal cord from the common inbred laboratory C57BL/6 

(Harlan, UK) mice aged six, twelve, eighteen months was used. These mice typically live 

for two years in a laboratory (Curtis 1971, Goodrick 1975), and therefore six-month 

animals were classified as the young animals, twelve month animals were classified as 

middle aged, and eighteen month old mice were classified as old.  
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2.2 Methods  
 

2.2.1 Microarray 

2.2.1.1 Preparation of materials for gene expression analysis 

	
  

2.2.1.1.1 Tissue preparation 
 
Mice were euthanased with an overdose of anaesthetic (intraperitoneal injection of 

approximately 2.5ml/kg pentobarbitone). Mice were perfuse-fixed with 30% sucrose in 

PBS whilst under terminal anesthesia. The whole spinal cord was dissected and split into 

upper and lower sections, before mounting and frozen on dry ice. Subsequent storing of 

tissue was at -80°C. 

 

2.2.1.1.2 Dissection of anterior horn 
 
Dr. Ke Ning kindly dissected the anterior part of the thoracic spinal cord from the aged 

mice. This was performed in PBS and samples were transferred to ice-cold lysis buffer 

(RNeasy kit, Qiagen), and RNA extraction carried out immediately.  

 

2.2.1.1.2 RNA extraction from anterior horn 
 
RNA extraction was carried out using the RNeasy kit (Qiagen), according to the 

manufacturer’s protocol.  Briefly, tissue was disrupted in lysis buffer using a hand-held 

homogeniser. An equivalent volume of ethanol was added to the lysate and this was 

transferred to a spin column. The RNA is bound to the column by centrifugation. The 

column is subsequently washed three times and the RNA eluted in RNase free water.  

 

2.2.1.1.3 Determination of RNA concentration 
 
RNA concentration was determined using the Nanodrop Spectrophotometer (Labtech 

International). For this 1µl of sample was pipetted on to the spectrophotometer pedestal. 

Fibre optic technology and surface tension hold the sample in place between two optical 

surfaces, forming a liquid column. The sample is assessed at both a 1mm and 0.2mm 

path, as determined by the gap between the optical surfaces (Gallagher and Desjardins 

2007). The software automatically calculates the RNA concentration.  
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2.2.1.1.4 Immunprecipitation of oxidised RNA 
 
Fractions of oxidised and non-oxidised RNA were separated by immunoprecipitation 

using the 8-hydroxyguanosine (8-OHG) antibody (Abcam). Total RNA was extracted 

from the mouse cord using the RNeasy mini kit as described in section 2.2.1.1.2. The 

tissue was homogenised in lysis buffer using a hand-held homogeniser and RNA was 

extracted as outlined in section 2.2.1.1.2. Following extraction, RNA concentration was 

determined on the Nanodrop Spectrophotometer (section 2.2.1.1.3). 1µg total RNA was 

incubated with 1.5µg 8-OHG antibody for six hours at 4°C, with regular mixing. 40µl of 

protein L beads (Thermo Scientific, UK) were added to each sample and mixed 

thoroughly. Samples were incubated for 16 hours at 4°C. Samples were centrifuged at 

4°C for five minutes at 15,000 rcf. The supernatant i.e. the non-oxidised fraction was 

aspirated in to a fresh eppendorf and stored at -20°C. Two washes in 200µl of PBS-NP40 

were carried out. Samples were centrifuged at 4°C for five minutes at 15,000 rcf. 300µl 

PBS-NP40, 30µl 10% SDS, and 1ml phenyl chloroform isoamyl alcohol were added to 

each oxidised fraction, and incubated at 37°C for 30-40 minutes, vortexing every five 

minutes, until the aqueous fraction was clear. Samples were centrifuged at 4°C for five 

minutes at 15,000 rcf, and the aqueous fraction aspirated in to a fresh eppendorf. The 

organic phase was discarded. 1ml 95% ethanol, 40µl 3M sodium acetate, and 2µl of 

5mg/ml glycoblue were added sequentially to each sample. The samples were frozen at 

80°C for one hour and centrifuged for 25 minutes at 4°C. The pellet was washed with 

75% ethanol, air-dried and then resuspended in 10µl of nuclease free water.  

 

2.2.1.1.5 Quality assessment of RNA 
 
Following immunoprecipitation, the quality of the RNA was analysed on the Agilent 

2100 Bioanalyser (Agilent, Palo Ato, CA) using an RNA 6000 Nano kit. This allows 

analysis of 5-500ng/µl RNA by calculating the 28s/18s ribosomal ratio and providing a 

qualitative assessment of RNA integrity. 

 

2.2.1.1.6 Linear Amplification of RNA 

 
Oxidised and non-oxidised fractions of RNA were linearly amplified and biotin labelled 

using the 3’ IVT Express Kit (Affymetrix) according to the manufacturer’s protocol. 

Briefly, an oligo-dT primer containing a T7 RNA polymerase promoter anneals to the 

poly-A tail of mRNA, and a first strand cDNA is synthesised.  Following second strand 

synthesis, a double stranded cDNA molecule with the T7 polymerase promoter 
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incorporated in its sequence is generated. This is used as a template to produce multiple 

single stranded biotin-labelled complementary RNA (aRNA). The aRNA is purified using 

RNA binding beads to remove enzymes, salts, and unincorporated nucleotides.  

 

Following elution of the purified aRNA from the RNA binding beads, the quantity of 

aRNA generated was analysed on the NanoDrop spectrophotometer (as described in 

section 2.2.1.1.3). To assess RNA quality before running the GeneChips, 1µl aRNA was 

loaded on to Nano LabChip 6000 and run on the Agilent 2100 Bioanalyser. 

 

 The efficiency of the amplification process was assessed by the poly-A RNA control kit 

(Affymetrix), which involves the addition of serial concentrations of in vitro synthesised 

polyadenylated transcripts corresponding to the B.subtilis genes, lys, phe, thr and dap, to 

the RNA during the first amplification cycle.  The amplification and target labelling 

process is monitored based on the expression levels of probe sets corresponding to the 

poly-A exogenous controls genes on the Eukaryotic GeneChip array. 

 

2.2.1.2 Microarray analysis to detect differential gene expression in oxidised 

versus non-oxidised RNA fractions  

	
  

2.2.1.2.1 GeneChip Microarrays 
 
Mouse Genome 430 2.0 GeneChip Microarrays (Affymetrix) are high-density 

oligonucleotide arrays produced by using in situ light directed chemical synthesis of short 

oligonucleotide sequences on to a glass slide. A known gene or potentially expressed 

sequence tag (EST) are represented on the GeneChip by a 25-mer oligonucleotide probe. 

Multiple copies of a probe sequence with a perfect match (PM) to a region of an 

expressed transcript are synthesised in discrete cells on the GeneChip. Each PM sequence 

is paired to a mismatch (MM) probe sequence containing a single monomeric base 

substitution at the 13th nucleotide of the probe. The MM probes serve as a control for 

non-specific hybridisation. The difference in signal contributed by PM and MM probes 

for a specific probe pair is a measure of the interfering background signal and non-

specific hybridisation. This is used downstream to determine the true signal contributed 

by a given probe set. The Mouse Genome 430 2.0 GeneChips have 45,000 probe sets that 

are able to analyse the expression level of over 39,000 transcripts.   
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2.2.1.2.2 RNA fragmentation, RNA hybridisation and GeneChip scanning 
 
15µg of biotin labelled aRNA (section 2.2.1.1.6) was fragmented using array 

fragmentation buffer containing Mg2+ ions (as part of the 3’ IVT express kit, Affymetrix) 

by heating to 94°C for 35 minutes. Longer RNA molecules form secondary structures 

causing non-specific cross hybridisation. This step is carried out to generate smaller RNA 

molecules, which increases specificity and overall intensity of the array. 1µl of 

fragmented aRNA was loaded on to Nano LabChip 6000 and run on the 2100 Bioanalyser 

(Agilent, Palo Ato, CA) to analyse the size of fragmentation reaction products (figure 

3.2). 

 

12.5µg fragmented and labelled aRNA was mixed with control oligonucleotide B2 and 

hybridisation controls (Affymetrix). The arrays were prepared with 200µl pre-

hybridisation mix for ten minutes at 45°C. After removing the pre-hybridisation mix the 

hybridisation mix containing the aRNA and the controls was added to the GeneChip. 

Hybridisation was carried out for 16 hours at 45°C, 60 RPM in a hybridisation oven 

(Affymetrix). The hybridisation controls in the hybridisation mix are biotinylated 

oligonucletotides corresponding to B2, E coli genes bioB, bioC and bioD and P1 

bacteriophage gene cre. The oligo B2 hybridises to features along the outer edge and is 

used to provide alignment signals for each array during image analysis. The bioB, bioC, 

bioD and cre oligos are present in serial concentrations and the signal intensities of these 

genes on the GeneChip are a measure of efficiency of hybridisation, washing and staining 

steps during GeneChip scanning.  

 

Following hybridisation for 16 hours, the GeneChips were vented through insertion of a 

pipette tip in to one of the septa. The hydridisation mix was removed through the 

remaining septa. The GeneChips were stained with streptavidin phycoerythrin (SAPE) 

and underwent stringency washes in a GeneChip Fluidics Station 400 (Affymetrix), 

before another round of staining with a biotinylated anti-streptavidin antibody. The 

fluorescent intensity of hybridised transcripts was determined with the high-resolution 

laser of the GeneChip 3000 Scanner (Affymetrix) 

 

2.2.1.2.3 GeneChip normalisation 
 
The oligo B2 control hybridises to features along the outer edge and is used to provide 

alignment signals to identify relative position of the probes and the probe set they belong 

to, for each array during image analysis. The scanning software acquires a raw image of 

probe fluorescent intensity, which is relative to the amount of hybridisation and presented 
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in the form of a DAT file. Normalisation acts to equalise the overall signal intensity 

across all the GeneChips to be compared. The signal intensity for each probe is generated 

and then normalised to the same probe set across the array to generate a single value. 

Using the smoothing algorithm the CEL file computes the intensity calculation on the 

DAT file pixel values to assign a present or absent state, based on the perfect match (PM) 

to mismatch (MM) fluorescent ratios. Signals from MM probes are thought to represent 

cross-hybridisation and these serve as a biological background correction for the PM 

signals. 

 

2.2.1.2.4 Statistical analysis to investigate genes selectively expressed in an oxidised 

fraction of RNA 

 
Statistical analysis of microarray data was performed using the Partek Genomics Suite 

version 6.5 (Partek Inc., St. Louis, MO, USA) for microarray technology. Data was 

imported into the software as a CEL file with Partek default settings selected. 

Interrogating, but not control, probes were imported, GC content of transcripts was 

adjusted for, an RMA background correction was performed, and quantile normalisation 

of GeneChips to assume a normal distribution was carried out. For the analysis, only 

known well-characterised genes were included. An expression signal for all genes in all 

cases is established as part of quality control. The raw data for the probes is presented in 

log scale; this was transformed into fold-change values using base 2. The oxidised and 

non-oxidised fractions from the same animal were paired and identified by age. One-way 

ANOVA was performed between individual genes in the oxidised and non-oxidised 

fraction from the same mouse spinal cord. The analysis uses oxidation as the factor and 

performs a within subjects analysis to identify differentially oxidised genes. Genes are 

identified as been up-regulated or down-regulated in the oxidised fraction in comparison 

to the non-oxidised fraction. The difference in expression for each gene was calculated 

for each animal at each age investigated, then an average of this difference calculated 

across the three subjects in each group. This increases statistical power, reduces the effect 

of individual animals, and enables differences due to oxidation to be identified. The data 

was then manually categorised as differentially oxidised if the gene had a fold-change 

greater or less than +/-1.5, and a p-value of less than 0.01.  
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2.2.1.2.5 Enrichment analysis  
 
The Database for Annotation, Visualisation, and Integrated Discovery (DAVID) is a 

bioinformatics resource 6.7 (National Institute of Allergy and Infectious Diseases 

(NIAID), NIH) that can assign biological meaning to a large list of genes (Huang da, et 

al. 2009b). This tool was used to identify enriched classes of genes from the differentially 

oxidised and non-oxidised gene lists at each age. DAVID identifies enriched annotation 

terms associated with a gene list and clusters them by function. A gene list from six, 

twelve, and eighteen months was up-loaded and classes of differentially oxidised genes 

identified by functional annotation clustering. A threshold of three genes belonging to an 

annotation term was required before the term is used. A p-value or EASE score, which is 

a one-tail Fisher Extract Probability value, is calculated for each annotation term. The 

geometric mean of all the enrichment p-values for each annotation term that is associated 

with the genes within the enriched group is used to rank overall importance of gene 

groups to identify ones to investigate further. An enrichment score of 1.3 is equivalent to 

a non-log scale score of 0.05; therefore, groups with an enrichment score of ≥1.3 have 

greater significance. 

 

2.2.1.3 Validation of differentially oxidised genes identified from GeneChips 

 

2.2.1.3.1 cDNA Synthesis 
 
RNA was extracted using the RNeasy kit (Qiagen), as outlined in section 2.2.3.6. The 

concentration of RNA was determined using the Nanodrop Spectrophotometer (section 

2.2.1.1.3). 5µl of oxidised or non-oxidised RNA was synthesised into cDNA using the 

Quantitect Reverse Transcriptase kit (Qiagen), as according to manufacturer’s 

instructions, on a Peltier Thermal Cycler PTC-200 (MJ Research, USA). The RNA 

sample was incubated in gDNA Wipeout Buffer at 42°C for two minutes to effectively 

remove contaminating genomic DNA. Genomic DNA contamination can be co-amplified 

during the PCR reaction, producing erroneous results. Primers designed to anneal to 

sequences spanning exon boundaries also reduce the possibility of genomic DNA 

amplification. After genomic DNA elimination, the RNA sample is reversely transcribed 

using a master mix prepared from Quantiscript Reverse Transcriptase, Quantiscript RT 

Buffer, and RT Primer Mix. The samples are incubated at 42°C for 15 minutes, and the 

reaction is then inactivated by heating to 95°C for 15 minutes. The samples are placed on 

ice for one minute and stored at 4°C. 
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2.2.1.3.2 Primer design 
 
RT-qPCR primers were designed using Primer-BLAST (basic local alignment search 

tool) software (NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi). Primers were designed to 

span an exon-exon boundary where possible to avoid potential genomic DNA 

contamination, with an amplicon length of 50-150 base pairs, a melting temperature (Tm) 

between 58-60°C, and 20-80% GC content. Probeset IDs of genes to be validated were 

searched for using NetAffx (http://www.affymetrix.com/). This provided details of the 

sequence used to build the probe. A standard nucleotide BLAST using the sequence was 

performed to identify which part of the transcript the sequence is from. Where possible 

the primers were designed to span the exons from which the probe was designed. 

 

2.2.1.3.3 Primer optimisation 
 
The optimum combination of primer concentrations was determined by carrying out RT-

qPCR reactions with different concentration combinations of forward and reverse 

primers. For primer optimisation, 1µg of total RNA extracted from the spinal cord of a 

normal six-month mouse was reversed transcribed to cDNA as outlined in section 

2.2.1.3.1. RT-qPCR was performed with 12.5ng universal cDNA, 1X Brilliant II SYBR 

Green PCR Master Mix (Stratagene), along with appropriate volumes of forward and 

reverse primers (table 2.4), to a final volume of 20µl. The assay was run on an MX3000P 

Real-Time PCR system (Stratagene). The optimum forward and reverse primer 

concentration was chosen based on the lowest threshold cycle (Ct), the amplification of a 

single product, and the absence of primer dimers. Using the optimal primer 

concentrations for each gene of interest (table 2.5), a standard curve was prepared from 

serial dilutions of control cDNA, to test the efficiency of the PCR over a range of 

template concentrations. 
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Figure 2.1: Assessing the efficiency of the primers over a range of concentrations 
 

 

Table 2.4: Reactions for primer optimisation 
	
  
Using starting stock concentrations of 5pmol/µl, appropriate volume of forward and 

reverse primers were added to test range of primer concentrations. 

 

Forward primer 
concentration [nM] 
(volume added) 

Reverse primer 
concentration [nM] 
(volume added) 

SYBR Green 
master mix (2X) 

Template 
RNA (stock 
50 ng/µl) 

Water 

900 (3.6µl) 900 (3.6µl) 10µl 1µl 1.8µl 

600 (2.4µl) 600 (2.4µl) 10µl 1µl 4.2µl 

300 (1.2µl) 300 (1.2µl) 10µl 1µl 6.6µl 

150 (0.8µl) 150 (0.8µl) 10µl 1µl 8.4µl 
 
	
  

2.2.1.3.4 RT-qPCR 
 
For each gene of interest, RT-qPCR was performed using the optimal concentration of 

primers (table 2.5). The fluorescent signal intensity was analysed using the MxPro 

software (Stratagene) and its gene expression value normalised to housekeeping gene 

GAPDH using the ddCT method (ABI PRISM 7700 Sequence Detection System 

protocol, Applied Biosystems). One-way ANOVA with Bonferroni post-test was 

performed using GraphPad Prism version 5.0d for Mac (GraphPad Software, La Jolla 

California USA) to determine statistical significance in differential expression. 
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Table 2.5: RT-qPCR primer sequences and optimised concentrations for 

microarray validation 

 

  Gene Name Gene Primer Sequences Concentration 
Poly(A) polymerase 

alpha 

Papola 

 

F 5’ TTCACAGAAACCAGAATGCCA 

GTA 3’ 

600nM 

R 5’ TTCTAGCCATGGGACCAAAGTT 3’ 600nM 

Apoptotic chromatin 

condensation inducer 1 

Acin1 F 5’ ACTTGGTCCTGGGAGGTCAAA 3’ 

 

300nM 

R 5’ CAGCACTGAGCAATGGTGTGA 3’ 

 

600nM 

ATP-dependent helicase 

 

 

Atrx F 5’ CCCAAGTCCAAGCACTAGCATTA 

3’ 

 

150nM 

R 5’ GGAGCCGTCTATTCATAAGTATT 

CG 3’ 

150nM 

DEAD (Asp-Glu-Ala-

Asp) box helicase 6 

Ddx6 F 5’ TGTCCATGCTGCAGAAAGCT 3’ 300nM 

R 5’ AGCGATTTACAATGCAAAACGA 3’ 600nM 

18s rRNA 18s 

 

F 5’ GCAATTATTCCCCATGAACGA 3’ 300nM 

R 5’ CAAAGGGCAGGGACTTAATCAA 3’ 300nM 

Suppressor of G2 allele 

of SKP1 (S. cerevisiae) 

Sugt1 F 5’ GAAACGTGCCATGAACAAGTCA 3’ 150nM 

R 5’ TCCTTTTACCTACATCAGACCAG 

TTG 3’ 

150nM 

CREB-binding protein 

 

 

Crebbp 

 

F 5’ AAATTGGGGTATGTGACAGGA 

CA 3’ 

300nM 

R 5’ GGGGATTTTCTGGTCAGGGG 3’ 300nM 

Glutamate receptor, 

ionotrophic, AMPA4 

 

Gria4 F 5’ CAAGCCCTGTGACACCATGA 3’ 300nM 

R 5’ GGTTTACGGGACCTCTCAGG 3’ 

 

300nM 

SWI/SNF related, matrix 

associated, actin 

dependent regulator of 

chromatin, subfamily a, 

member 2 

Smarca2 F 5’ AAGTCATCCAGCCACGAGC 3’ 300nM 

R 5’ CTGGTACCTCATCTTCTTCCTCA 

TT 3’ 

300nM 

Serine/arginine-rich 

splicing factor 18 

Sfrs18 

 

F 5’ TCCGAATCCCCCGGAAGTAG 3’ 300nM 

R 5’ AGGGGTTGTTGATCTTGATCGG 3’ 300nM 
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2.2.2 Immunohistochemistry 

 

2.2.2.1 Tissue Preparation 

 
Immunostaining was carried out on formalin-fixed paraffin-embedded spinal cord tissue 

taken from G93A mutant SOD1 transgenic mice and littermate controls at 

presymptomatic (60 day), symptomatic (90 day), and end-stage (140 day) disease. 8µm 

sections were cut on to positively charged slides (Leica microsystems, UK) and dried 

overnight at 37°C. Prior to staining sections were de-waxed in two changes of xylene and 

re-hydrated to water through a graded series of alcohols, then transferred to distilled 

water for further work. 

 

2.2.2.2 Cresyl Violet stain 

 
Cresyl violet staining was used to determine morphology of the spinal cord of G93A 

mutant SOD1 mice and littermate controls. Sections were incubated in 0.1% Cresyl violet 

solution (Raymond A. Lamb, now part of Fisher Scientific, UK) at room temperature for 

five minutes. They were then rinsed quickly in distilled water and differentiated in 95% 

ethanol for 15-30 minutes, checking under the microscope for optimal staining. Sections 

were dehydrated in two changes of 100% ethanol for five minutes each, then cleared in 

two changes of xylene for five minutes each before being mounted in p-xylene-

bis(pyridinium bromine) (DPX). 

 

2.2.2.3 Haematoxylin and Eosin stain 

 
To provide direct visualisation of cytoarchitecture, sections of spinal cord of G93A 

mutant SOD1 mice and littermate controls were stained with Haematoxylin and Eosin 

dyes. Sections were mounted on to positively charged slides and dried overnight at 37°C. 

Sections were de-waxed in two changes of xylene for five minutes, then rehydrated 

through a graded series of alcohols. Sections were stained with Haematoxylin for 30 

seconds, rinsed in water, washed in Scott’s tap water for 30 seconds, rinsed in water, 

stained with Eosin for 30 seconds, rinsed in water, dehydrated through a graded series of 

alcohols before clearing in xylene and mounting in DPX.  
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2.2.2.4 Immunohistochemical staining 

 
To assess nucleic acid oxidation and DNA damage repair response in G93A mutant 

SOD1 transgenic mice and littermate controls, a series of sections were 

immunohistochemically stained for 8-hydroxyguanosine, 8-oxoguanine DNA 

glycosylase, DNA-dependent protein kinase, and H2A histone family member X (table 

2.1). 

 

Sections were prepared as described in section 2.2.6.1. Prior to staining sections were de-

waxed in two changes of xylene and re-hydrated to water through a graded series of 

alcohols. Antigen retrieval was optimised, and final conditions for retrieval were using an 

auto-retriever (Labvision, UK) and TSC, pH 6. Sections were incubated in 30% hydrogen 

peroxide in methanol for 20 minutes to quench endogenous peroxidase activity, followed 

by three five-minute washes in TBS. To block non-specific antibody binding, sections 

were incubated in 15% (v/v) normal serum in TBS-T for 30 minutes. Sections were 

incubated in the appropriate primary antibody diluted in IHC antibody incubation 

solution 15% (v/v) normal serum in TBS-T, for one hour at ambient temperature. 

Negative controls were incubated with IHC antibody incubation solution with the 

antibody omitted. After three five-minute washes in TBS-T sections were incubated with 

the biotinylated secondary antibody diluted in TBS-T, for one hour at ambient 

temperature. Sections were washed and incubated with an avidin-biotin peroxidase 

complex (Vectastain Elite ABC Kit, Vector laboratories) for 30 minutes at ambient 

temperature. Sections were rinsed in TBS and immunoreactivity visualised by incubation 

in a DAB solution (Vector Laboratories) for five minutes. The reaction was quenched in 

distilled water, and sections were dehydrated through a graded series of alcohols and 

cleared in xylene before being cover slipped with DPX.  

 

2.2.3 Cell Culture Methods 

2.2.3.1 Maintenance of cell lines 

 
Murine neuroblastoma spinal cord hybrid cells (NSC34) were produced through somatic 

fusion between the N18TG2 aminopterin sensitive neuroblastoma and motor neuron 

enriched embryonic day 12-14 spinal cord cells (Cashman, et al. 1992). NSC34 cells 

were transfected with pIRESneo (Clontech, Saint-Germain, France) using Lipofectamine 

2000 (Invitrogen). Cells were transfected with empty vector (pIRES cells) or pIRESneo 
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containing the cDNA of wild-type human SOD1 (WTSOD1) or the human SOD1 mutants 

G93A, G37R, H48Q. NSC34’s were maintained in DMEM containing 4.5g/l glucose, L-

glutamine without Na pyruvate, supplemented with 10% fetal calf serum (FCS, BioSera 

Ltd), at 37°C in a humidified atmosphere of 5% CO2/95% air. 50mg/ml neomycin (G418) 

was used for the selection of stably transfected NSC’s. Media was changed every 2-3 

days with addition of fresh G418. Cellular morphology was assessed daily using a 

microscope to ensure consistency between cell lines and passages. 

 

Table 2.6: Details of control and transfected NSC34 cells 
 

Cell line Transfection Information 
NSC34 Non-transfected 

 
NSC34 transfected with 
pIRES-6 

Mammalian expression vector only control 
 

NSC34 transfected with 
WTSOD1-11 

Wild-type human SOD1 

NSC34 transfected with 
G93A-5 

Mutant human SOD1-single amino acid substitution of 
glycine to alanine at codon 93 
 

NSC34 transfected with 
G37R-2 

Mutant human SOD1-single amino acid substitution of 
glycine to arginine at codon 37 
 

NSC34 transfected with 
H48Q-9 

Mutant human SOD1-single amino acid substitution of 
histidine to glutamine at codon 48 
 

 

2.2.3.2 Cryo-preservation of control and transfected NSC34 cells 

 
NSC34s were harvested and centrifuged at 400 RCF for four minutes to pellet. The media 

was removed and the pellet re-suspended in 500µl FCS with 10% Dimethyl sulfoxide 

(DMSO, Sigma). This cell suspension was transferred to a cryovial and placed in to the 

Cell Freezing System containing isopropanol, which lowers the temperature by 

1°C/minute. The cryovials were initially frozen at -80°C, and transferred to liquid 

nitrogen for long-term storage. 

 

2.2.3.3 Harvesting of NSC34 cells 

 
NSC34 cells were cultured to reach 70-80% confluency. Media was aspirated and the cell 

layer washed with 5mls of PBS. A fresh 5mls of media was added to the cell layer and 
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cells were removed from the plate by pipetting. The suspension of cells was transferred to 

a 15ml falcon on ice, before centrifuging at 400 RCF for four minutes. The supernatant 

was discarded and the pellet taken forward.  

 

2.2.3.4 Hydrogen Peroxide treatment of NSC34 cells 

 
Control and transfected NSC34 cells were cultured to 70-80% confluency in a 10cm 

diameter petri dish. The cells were stressed by adding 30% (v/v) hydrogen peroxide 

(Sigma) at a final concentration of 50µM, 100µM, 250µM, 500µM, or 1mM. Treatments 

were carried out for two, six, and ten hours. Conditions were selected and a further four-

hour time point incorporated. Following treatment cells were harvested and cell viability 

was measured by trypan blue exclusion. 10µl of Trypan blue was mixed with 10µl of cell 

suspension, and 10µl loaded on to a Countess chamber slide (Invitrogen, UK), this was 

placed into the Countess® Automated Cell Counter (Invitrogen, UK). Readout of the 

number of live, dead, and total cells is provided. After stressing the cells with hydrogen 

peroxide, the cells were harvested and conditions selected to take forward for analysis. 

 

2.2.3.5 Preparation of cell lysates 

 
Cells were harvested as described in section 2.2.3.3, and the pellet re-suspended in 200µl 

extra strong lysis buffer. Following 15 minutes incubation on ice the lysates were 

sonicated then centrifuged at 4°C for 25 minutes at 14,000 RPM. The supernatant was 

collected in fresh tubes and taken forward for analysis. Protein extracts were stored at -

20°C. 

 

2.2.3.6 RNA Isolation 

 
Total RNA was extracted from Control and Transfected NSC34 cells using the RNeasy 

Mini Kit (Qiagen) according to the manufacturer’s protocol.  Briefly, cells were lysed and 

homogenised in lysis buffer using a 25-gauge needle and 5ml syringe. An equivalent 

volume of ethanol was added to the lysate and this was transferred to a spin column. The 

RNA is bound to the column by centrifugation. The column is subsequently washed three 

times and the RNA eluted in RNase free water. RNA concentration was determined using 

the Nanodrop Spectrophotometer (section 2.2.1.1.3). All steps were performed at ambient 

temperature.  
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2.2.3.7 Immunoprecipitation and quantification of oxidised RNA 

 
The immunoprecipitation of oxidised RNA was carried out as described in section 

2.2.1.1.4. The concentration of RNA in the oxidised fraction was too low to be accurately 

quantified using the Nanodrop spectrophotometer, so the oxidised and non-oxidised 

fractions were quantified by RT-qPCR. cDNA was prepared as described in 2.2.1.3.1. A 

standard curve was set up using serial dilutions of total RNA from pIRES vector only 

NSC34 cells with 18S rRNA used as the reference gene. The Ct values for the respective 

fractions were compared against the Ct values of known RNA concentrations on the 

standard curve to determine the relative percentage of oxidised to non-oxidised RNA in 

each sample. 

 

 
 
Figure 2.2: Standard curve to investigate expression levels in an oxidised versus 

non-oxidised fraction of RNA 

 

2.2.3.8 Oxidative stress response analysis following exposure to hydrogen 

peroxide 

 
Following RNA isolation, cDNA was prepared as outlined in section 2.2.1.3.1. For each 

gene of interest, RT- qPCR was performed as described in section 2.2.1.3.4 using the 

optimal concentration of primers (table 2.7). 
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Table 2.7: RT-qPCR primer sequences and optimised concentrations for 

investigating oxidative stress response 

  

Gene Name Gene Primer Sequences Concentration 

Haem oxygenase HOX-1 F 5’ CACTTCGTCAGAGGCCTGCTA 

3’ 

900nM 

R 5’ GCGGTGTCTGGGATGAGCTA 3’ 900nM 

Nuclear erythroid-2-

related factor2 

NRF2 F 5’ TGGAGGCAGCCATGACTGA 3’ 100nM 

R 5’ CTGCTTGTTTTCGGTATTAAG 

ACACT 3’ 

100nM 

NAD(P)H 

dehydrogenase, 

quinone 1 

NQO1 F 5’ CGCCTGAGCCCAGATATTGT 3’ 600nM 

R 5’ ACTGCAATGGGAACTGAAATA 

TCA 3’ 

600nM 

Cu/Zn Superoxide 

dismutase 1 

mmSOD1 F 5’ ATGGCGTAGAAACCGGTG 3’ 500nM 

R 5’ TGTCCTGACAACACAACTGGT 

3’ 

500nM 

Oxoguanine DNA 

glycosylase 

OGG1 F 5’ ATCCCAGGCTAAGGGCCCGA 3’ 150nM 

R 5’ GGTGGCTCCCGAGACAGGCT 

3’ 

150nM 

 
 

2.2.3.9 Statistical analysis of oxidative stress response of NSC34 cells 

 
The fluorescent signal intensity was analysed using the MxPro software (Stratagene) and 

its gene expression value normalised to housekeeping gene GAPDH using the ddCT 

method (ABI PRISM 7700 Sequence Detection System protocol, Applied Biosystems). 

One-way ANOVA with Bonferroni post-test was performed using GraphPad Prism 

version 5.0d for Mac (GraphPad Software, La Jolla California USA) to determine 

statistical significance in differential expression. 

 

 

2.2.3.10 Evaluating expression levels of human SOD1 transgenes in NSC34 cells 
 

RT-qPCR and western blotting was used to evaluate the expression of human mutant 

SOD1 in the NSC34 cells. RT-qPCR was carried out as described in section 2.2.1.3.4 and 

western blotting was detailed in section 2.24. Following RT-qPCR the difference in the 
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threshold cycle (Ct) between human SOD1 and endogenous mouse Sod1 and 

housekeeping gene GAPDH was used to determine the relative expression of the human 

SOD1 at the mRNA level (Pan, et al. 2012). 

 

2.2.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

2.2.4.1 Determination of protein concentration 

 
 Protein concentrations of cell lysates were determined using a bicinchoninic acid (BCA) 

protein assay. A series of BSA standards in extra strong lysis buffer were freshly 

prepared at concentrations ranging from 0-2mg/ml each time the assay was performed, 

and plated in duplicate on a 96-well plate. This assay combines the known reduction of 

Cu2+ to Cu by protein in an alkaline medium (the biuret reaction), with the highly 

sensitive and selective colorimetric detection of Cu by BCA (Smith, et al. 1985). The 

protein samples were diluted 1:5 in extra strong lysis buffer and plated in duplicate on to 

a 96-well plate. The working reagent was prepared by mixing 50 parts of BCA Reagent A 

with 1 part of BCA Reagent B (50:1). 200µl of working reagent was added to each 

standard and all unknown samples. The plate was covered and incubated at 37°C for 30 

minutes. Absorbance readings were recorded at a wavelength of 550nm using a 

Fluorostar Omega plate reader (BMG Labtech). Values obtained were compared to a 

standard curve to determine protein concentration in µg/µl. Before blotting samples were 

diluted in an appropriate volume of extra strong lysis buffer to ensure equal protein 

concentrations for loading.  

 

2.2.4.2 SDS-PAGE preparation 

 
The percentage resolving gel required depends upon the size of the protein of interest. 

Polyacrylamide gels were prepared as detailed in table 2.8 with volumes adjusted 

accordingly to the number of gels prepared. A 4% stacking gel was used for all gels. 

(table 2.9) Protein samples were mixed with an appropriate volume of either 6x or 2x 

Laemmli sample buffer. Samples were heated at 95°C for five minutes before 

centrifugation at 13,000 RPM for 15 seconds. Molecular weight standards and proteins 

were loaded on to the polyacrylamide gel. Gels were electrophoresed at 50 volts (V) for 

30 minutes, and then for 90-120 V depending on size of protein for detection, until the 

dye front reached the bottom of the gel.  
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Table 2.8: 5mls resolving gel preparation 
 

Solution 8% (mls) 10% (mls) 12% (mls) 15% (mls) 

Water 2.3 2.0 1.7 1.2 

30% Acrylamide 1.3 1.7 2.0 2.5 

1.5M Tris 1.3 1.3 1.3 1.3 

10% SDS 0.05 0.05 0.05 0.05 

APS 0.05 0.05 0.05 0.05 

TEMED 0.003 0.002 0.002 0.002 

 

Table 2.9: 2mls stacking gel preparation 
 

Solution 4% (mls) 

Water 1.35 

30% Acrylamide 0.67 

1.5M Tris 0.5 

10% SDS 0.04 

APS 0.04 

TEMED 0.004 

 

2.2.4.3 Immunoblotting 

 
PVDF was activated by immersing in methanol for 15 seconds and then soaked in 1x 

transfer buffer before use. Gels were placed on to PVDF membrane and sandwiched 

between Grade 1A filter papers (Whatman Laboratories) and sponges soaked in transfer 

buffer in a trans-blot cell transfer cassette (Bio-rad, UK), immersed in transfer buffer. 

Proteins were transferred onto PVDF at 250mA for 60 minutes. Non-specific binding of 

primary antibodies was blocked by incubating membranes in blocking solution, 5% (w/v) 

skimmed milk powder in PBS-T for 60 minutes at ambient temperature, and membranes 

were incubated overnight at 4°C with primary antibodies diluted in blocking solution. 

 

Following incubation with primary antibodies, membranes were washed three times for 

ten minutes in PBS-T prior to the addition of the species specific HRP-conjugated 

secondary antibodies diluted in 5% (w/v) skimmed milk powder in PBS-T. Membranes 

were incubated for 60 minutes at ambient temperature, followed by an additional three 

washes for ten minutes in PBS-T. Proteins were detected using ECL chemiluminescence. 
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Equal volumes of EZ-ECL Reagent A and EZ-ECL Reagent B (to give sufficient 

coverage of the membrane) were mixed for two minutes prior to addition to the 

membrane.  

 

2.2.4.4 Development of membrane and densitometric analysis 

 
The membrane was scanned for an automatically calculated period of time and an image 

captured using the Intelli Chemi setting in the GeneSnap software and the G:BOX 

(Syngene). Intelli Chemi works through patented technology to detect chemiluminecence 

and automatically capture a sub-saturated image of the membrane. A histogram is 

generated which presents the raw data of the image, and enables detection of saturation. 

Densitometric analysis was carried out in GeneTools (Syngene). Bands were selected 

manually, using equal size boxes for each band. Background correction was performed 

automatically using the software. Raw data of the pixel intensity and the intensity of the 

bands in relative to a defined control is calculated. The intensity for the sample of interest 

is normalised to the loading control.  

 

2.2.5 Seahorse Metabolic Assay 

2.2.5.1 Preparation of cell culture plate 

 
NSC34 cells transfected with either pIRES vector control, WTSOD1, G37R mutant 

SOD1, H48Q mutant SOD1, or G93A mutant SOD1 were counted using the Countess 

Automated Cell Counter (Invitrogen, UK) and seeded at 60-70,000 cells/well in a 24 well 

Seahorse cell culture plate (Seahorse Bioscience) in 250µl DMEM supplemented with 

10% Biosera fetal calf serum.  

 

2.2.5.2 Preparation of plate for assay 

 
The cells were incubated at 37°C/5% CO2 overnight. The following day the cells were 

washed with 1ml supplemented XF Assay Media pH 7.4 (section 2.1.1), and incubated at 

37°C for 60 minutes. Meanwhile, a 24 well, 4-port XF microplate (Seahorse Bioscience) 

was loaded with 5.0µg/ml Oligomycin (Sigma, UK), 2.50µM carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP) (Sigma, UK) and 5.0µM Rotenone (Sigma, 

UK). All were diluted in supplemented XF assay media. The XF microplate was 
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calibrated in a Seahorse XF24 analyzer prior to addition of the cell culture plate. Three 

basal measurements were recorded (three minutes each) prior to addition of Oligomycin, 

FCCP and finally Rotenone. The effect on oxygen consumption and pH by the drugs 

were measured for three minutes each.  

 

2.2.5.3 Determining cell viability following assay 

 
Cell number was normalised by addition of 4.0µM Calcein (Invitrogen, UK) to each well 

of the cell culture plate, which was incubated at 37°C for 30 minutes. Fluorescence was 

measured on a Fluorostar Omega plate reader (BMG Labtech) at Ex485nm/Em530nm 

every ten minutes for 40 minutes, with the reading at 30 minutes taken for normalisation.  

 

2.2.5.4 Oxidative stress assay 

 
For the stress assays, the cells were seeded as described in section 2.2.5.1. The following 

day the media was aspirated and cells were incubated with 50, 100, or 200µM H2O2 

diluted in supplemented DMEM for one hour at 37°C/5% CO2. The cells were washed 

with 1ml supplemented XF Assay Media pH 7.4 (section 2.1.1), and incubated at 37°C 

for 60 minutes before running the assay. 

 

2.2.5.5 Statistical analysis 

 
For each cell line, the metabolic assay was carried out three times under both basal and 

stress conditions, with three technical replicates generated for each cell line per 

experiment. One-way ANOVA with Bonferroni post-test was performed using GraphPad 

Prism version 5.0d for Mac (GraphPad Software, La Jolla California USA) for statistical 

analysis under basal conditions. A two-way ANOVA by H2O2 dose was performed to 

investigate the effect of the stress on oxygen consumption and extracellular acidification 

rate across the mutations. 
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2.2.6 Mitochondrial Morphology 

 

2.2.6.1 Plating NSC34 cells 

 
Control and transfected NSC34 cells (table 2.6) were cultured as described in section 

2.2.3.1. 30,000 cells were seeded into an 8-well cell culture plate (ibidi, UK) designed for 

in vitro microscopy. Prior to imaging, the media was aspirated from the cells that were 

subsequently washed in PBS. 200µl rhodamine 123 (Invitrogen, UK) was added to cells 

and incubated at 37°C/5% CO2 for five minutes. The cells were washed twice in PBS and 

200µl PBS was added to cover the cells whilst imaging. For investigation of 

mitochondrial morphology following exposure to oxidative stress, cells were exposed to 

100µM H2O2 for one hour subsequent to rhodamine staining. 

 

2.2.6.2 Live cell imaging 

 
Mitochondrial morphology was imaged using Leica TCS SPSII (Leica, Germany). For 

three-dimensional reconstruction of mitochondria, 3µm thick z-stacks were acquired for 

at least 10-15 cells under both basal and oxidative stress conditions. Three-dimensional 

projections were generated using Image J version 1.46.  

  

2.2.6.3 Statistical analysis of mitochondrial morphology 

 

Analysis of mitochondrial morphology was performed using an Image J macro (Dagda, et 

al. 2009). The green channel of cells stained with rhodamine 123 was extracted to 

grayscale, inverted to show mitochondria-specific fluorescence as red pixels. The mean 

area/perimeter ratio was employed as an index of mitochondrial interconnectivity, with 

mitochondrial elongation measured as inverse circularity.  
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Chapter 3 
Gene expression profiling to identify genes 

differentially oxidised during ageing 

 
3.1 Introduction 
	
  
The selective oxidation of certain classes of RNA species have been identified in various 

neurodegenerative disorders, with an accumulation of oxidative modification to nucleic 

acids reported in ageing and neurological pathologies. Transcriptional profiling of the 

anterior spinal cord from ageing mice revealed differential oxidation of certain classes of 

RNA at each of the ages investigated. This novel study highlights transcriptome changes 

in an oxidised fraction of RNA during ageing and identifies the potential impact this 

might have on cellular function. This study builds on the methodology and findings 

reported in a recent study by Chang et al. (2008). 

	
  
A complex combination of biological processes lead to the general decline in cognitive 

and motor function associated with ageing (section 1.2). The progressive structural and 

functional deterioration of biological systems with age leads to an increased risk of 

disease. Understanding the molecular changes underpinning this functional decline will 

potentially lead to therapeutics aimed at age-associated diseases, and address the 

subsequent social and economic connections. Gene expression profiling of ageing tissue 

has revealed genes whose expression changes with advancing age, and studies have 

identified shared characteristics of ageing across species. However, the rate of ageing and 

the nature and magnitude of gene expression changes differ between tissues and across 

species, adding further complexity to defining the causes of ageing (Fraser, et al. 2005, 

Miller, et al. 2008, Zahn and Kim 2007). Also to be considered when investigating the 

mechanism of ageing is whether candidate genes identified in the laboratory are 

genetically variable and affect lifespan in the natural population (Flatt 2004, Schmidt, et 

al. 2000).  

 

Microarray technology facilitates the study of genome-wide patterns of transcriptional 

changes in model organisms and human tissue. Thousands of mRNA transcripts within a 

sample are quantified simultaneously, which can then be compared across samples. The 

principle of a DNA microarray is the hybridisation of an mRNA molecule in the test 
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sample to a cDNA probe, designed from the oligonucleotide sequence that it originated, 

which is immobilised to a glass slide (Courtney, et al. 2010). This type of microarray is 

most commonly seen in Affymetrix platform GeneChips, which is what were used in our 

study (figure 3.1). The RNA is labelled with a fluorescent tag and hybridises to its 

complimentary probe sequences on the GeneChip. The fluorescent signal generated by 

the hybridisation is proportional to the amount of transcript in the sample. The 

distribution of probe intensities across an array can be identified and converted to 

expression values to calculate the amount of transcript present for each probe set. By 

profiling the global RNA content of a sample in this manner it is possible to monitor in 

parallel all expressed genes, which can then be compared across samples (Schena, et al. 

1998). Analysis of the gene expression levels can be used to identify pathways and 

regulatory networks for further investigation (Lyons 2002). Generating transcriptional 

profiles of ageing across species has been used to understand the evolution of ageing and 

identify potential biological changes that affect the physiological decline of an organism 

(Butler, et al. 2004, de Magalhaes, et al. 2009, Flatt and Schmidt 2009). Identifying gene 

expression changes during non-pathological ageing is important for understanding the 

relation to pathological neurodegeneration, and identifying features that may distinguish 

between the two. Many factors and pathways associated with ageing appear to be 

conserved, but it remains to be established whether evolutionary changes lie at the level 

of gene expression (Fraser, et al. 2005).  
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Figure 3.1: Outline of a microarray experiment 

RNA is isolated from the target sample and a single stranded DNA molecule is produced 

by reverse transcription. Second strand synthesis generates a double stranded cDNA 

molecule, which serves as template for the production of multiple single stranded biotin-

labelled complementary RNA (aRNA). The aRNA is purified and fragmented before 

hybridisation to the array. Subsequent staining and scanning of the array generates a 

signal where the aRNA has bound to the array. Statistical analysis reveals genes present 

on a particular array, which can then be compared between samples. 

 

Multiple studies have identified large numbers of genes that display age-related changes 

in expression. Although these changes offer insight into what is happening at the 

transcriptome level, how they interact at a mechanistic level to drive ageing remains 

unknown. The changes identified during ageing are also open to different interpretations, 

for example rather than producing a detrimental effect, the gene expression changes seen 

may represent compensatory mechanisms or reflect a response to other changes (de 

Magalhaes and Toussaint 2004). Transcriptional profiling of the human frontal cortex 

identified a set of genes whose expression was variably reduced over the age of forty 

demonstrating specific transcriptome changes with age (Lu, et al. 2004). The inter-

individual variation in gene expression in the middle-aged population (between 40-70 

years of age) was a main finding of this study. This highlights how individuals diverge in 

their rates of ageing, which may be defined during development or in young adult life and 

1. Isolate RNA 

2. cDNA synthesis 

3. aRNA synthesis and labelling 

4. Fragmentation 

5. GeneChip hybridisation  

6. Stain and scan 

Hybridisation signals 

7.Analyse data 
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may be a potential factor in the susceptibility to developing an age-associated disease. 

Genes with reduced expression were found to have roles in synaptic plasticity, 

mitochondrial function, stress response, and DNA repair. However, whether these 

changes are due to reduced activation patterns, or are a consequence of increased 

activation of other genes in response to cellular changes remains unknown. In 

comparison, younger adults exhibited relatively homogeneous expression patterns.  

 

Comparison of microarray studies across model organisms of ageing revealed that 

specific biological pathways are altered during the ageing process, and the age-induction 

of stress response genes is common across C.elegans, Drosophila, rodents, chimpanzees, 

and humans (Fraser, et al. 2005, Lee, et al. 2000, Lund, et al. 2002, McCarroll, et al. 

2004, Pletcher, et al. 2002). Other similarities in gene expression changes across these 

species were also identified as described in section 1.2.1.3. Numerous studies have shown 

the ability to manipulate longevity through altering the expression of a small number of 

genes (Clancy, et al. 2001, Kimura, et al. 1997, Sun, et al. 2004, Tatar, et al. 2001, L. 

Wang, et al. 2007). However, the multifactorial nature of ageing, the insights from gene 

expression profiling, plus the increasing importance of RNA processing and metabolism, 

suggests this approach is too simplistic to understand physiological decline.  

 

The free radical/oxidative stress theory of ageing has been extensively studied and a 

conserved feature of ageing appears to be an increase in expression of genes involved in 

stress-response pathways, which is associated with an increase in products of oxidative 

damage (Bishop, et al. 2010, Droge 2002, Haigis and Yankner 2010, Yankner, et al. 

2008). An increase in cellular stress is exhibited by an increase in oxidative damage to 

nucleic acids, proteins, and lipids (Poon, et al. 2004), and has been linked to numerous 

other mechanisms proposed to underlie ageing and neurodegeneration (figure 1.2) 

(Boveris and Navarro 2008, Douglas and Dillin 2010). Oxidative modifications to nucleic 

acids have been shown to increase during ageing and neurodegenerative diseases, with 8-

hydroxydeoxyguanosine and 8-hydroxyguanosine, modifications in DNA and RNA 

respectively, gaining the majority of attention because guanine is the most abundant 

among the oxidised bases (Bregeon and Sarasin 2005, Kasai 2002, Nunomura, et al. 

1999, Nunomura, et al. 2012, Shan, et al. 2007). Evidence from post-mortem tissue and 

experimental models has demonstrated RNA oxidation to be a feature of ageing neurons 

with damage predominantly observed in vulnerable neurons at early stages of age-

associated neurodegenerative disorders (section 1.6.3). Further investigations have been 

aimed at understanding the processes, mechanisms and consequences related to oxidative 

damage (section 1.6.4). Oxidised mRNA species have been implicated directly in 
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contributing towards the pathogenesis of neurodegenerative disorders. In 2008, Chang et 

al. used microarray technology to investigate mRNA oxidation in the spinal cord of the 

G93A human mutant SOD1 murine model of ALS (Chang, et al. 2008). The array results 

indicated certain classes of mRNA transcripts are more susceptible to oxidative damage, 

with some oxidised mRNAs identified previously linked to ALS, which was also 

consistent with other studies in AD (Shan, et al. 2003). Modification of RNA transcripts 

may not only affect translational regulation, with damage to non-coding RNA (ncRNAs) 

potentially disrupting multiple cellular and metabolic processes simultaneously, however, 

this remains to be investigated.   

 

Although evidence supports the preferential oxidation of certain classes of RNA during 

neurodegenerative diseases (Chang, et al. 2008, Shan, et al. 2003), it remains unknown 

whether similar classes are targeted for modification during ageing. In this study, we 

aimed to build on the methodology and research by Chang et al. (2008) to identify 

whether oxidative modification of RNA transcripts is a non-selective phenomenon or 

whether specific classes of transcripts are targeted for damage during ageing. 

Modifications of transcripts are potentially one mechanism influencing the gene 

expression changes identified in global genetic profiling, or may contribute towards the 

physiological decline of cells through downstream disruption to metabolic/homeostatic 

processes. Using Affymetrix GeneChips we sought to identify differentially oxidised 

genes by comparing an oxidised and non-oxidised fraction of RNA extracted from the 

anterior spinal cord of normal mice aged six, twelve, and eighteen months.  

	
  

3.2 Results 
	
  
This study aimed to identify whether transcripts are differentially oxidised during ageing 

by comparing an oxidised and non-oxidised fraction of RNA extracted from the anterior 

spinal cord of normal mice aged six, twelve, and eighteen months. The oxidised fraction 

of RNA was immunoprecipitated with an anti-8-OHG antibody. Subsequently the 

oxidised and non-oxidised fractions were analysed on Affymetrix GeneChips.  Having 

identified differentially oxidised genes at six, twelve, and eighteen months of age using 

Genespring and Partek analysis software, gene ontology analysis was used to identify 

enrichment of gene classes at each age. RNA processing genes were found enriched 

within the oxidised fraction at all ages. The genes identified in this ontology group were 

subject to further functional and pathway analysis, and a select few taken forward for 

validation. We identified the majority differentially oxidised transcripts changed during 
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ageing, and few of these over-lapped with those found to be differentially oxidised in a 

transgenic mouse model of ALS (Chang et.al 2008).	
  

	
  

3.2.1 Gene expression profiling and quality control 

	
  
Gene expression profiling of the anterior thoracic spinal cord of normal mice aged six, 

twelve, and eighteen months identified selectively oxidised genes. Immunoprecipitation 

using an antibody against 8-Hydroxyguanosine was used to separate the oxidised fraction 

from the non-oxidised fraction of RNA. The method for RNA immunoprecipitation was 

previously described (Chang, et al. 2008), and optimised for our study using RNA 

extracted from NSC34 cells (described in chapter 4). 15µg of linearly amplified oxidised 

or non-oxidised RNA was fragmented to yield smaller molecules and hybridised onto 

microarray chips. Prior to hybridisation a series of quality control steps were carried out 

(figure 3.2). 

 

 
Figure 3.2: Representative electropherograms of RNA quality control obtained 

using the Agilent Bioanalyser 

A) Ladder B) Total RNA extracted from anterior horn C) Linearly amplified fraction of 

RNA D) Fragmented fraction of RNA 

 

	
  
The Affymetrix software generates data files containing information from the GeneChips 

(section 2.2.1.2.3). Quality control reports based on the transcriptional profile of the 

oxidised and non-oxidised samples at each age were produced using the microarray 

A. 

 

B. 

 

C. 

 

D. 

 

!
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analysis software Expression Console (Mas5.0) (table 3.1). The numbers of probe sets 

called present are expressed as a percentage of the total number of probe sets on the 

array, calculated by the Affymetrix detection algorithm. Approximately 50% of the 

45,000 probe sets arrayed on the GeneChip were detected as present for each of the 

oxidised and non-oxidised samples, with no significant difference between these or the 

average background signal across the arrays at each condition (figure 3.3). The 

percentage present should be similar across all samples, and an average background 

signal of 20-100 is typical for a good quality array (McCall 2011). Both of these are 

similar across the arrays in our study.  Other parameters measured include the RawQ, 

which is the noise level and is measured from pixel-pixel variation across probe cells. 

The scale factor, used for the normalisation of arrays, provides a constant factor for every 

gene on the array. This allows adjustment of the average signal value for each array to an 

equal value, which enables the arrays to be compared. Within an experiment, arrays are 

expected to have a scale factor within three-fold of each other (McCall 2011).  The 3’-5’ 

ratio is the signal intensity ratio of the 3’ probe set over the 5’ probe set, which provides 

qualitative information on sample quality and amplification efficiencies.  
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Table 3.1: Quality control parameters determined following hybridisation of 

samples to GeneChips 

	
  
	
  

Sample 

% 

present 

Background 

signal RawQ 

Scale-

factor 

GAPDH 3'-5' 

ratio 

6 month oxidised 50.42 27.88 0.68 2.13 62.36 

6 month non-oxidised 54.20 35.16 1.04 0.70 99.47 

6 month oxidised 55.78 30.04 0.76 1.28 13.03 

6 month non-oxidised 55.11 32.53 0.93 0.82 49.32 

6 month oxidised 49.97 29.14 0.75 1.97 42.02 

6 month non-oxidised 53.94 30.54 0.84 1.12 48.38 

12 month oxidised 50.65 26.83 0.72 1.75 23.08 

12 month non-oxidised 50.97 29.82 0.77 1.54 97.82 

12 month oxidised 54.36 30.83 0.86 0.99 36.89 

12 month non-oxidised 53.37 31.06 0.85 0.89 38.37 

12 month oxidised 46.79 28.31 0.70 2.40 43.48 

12 month non-oxidised 48.31 30.44 0.83 1.12 46.75 

18 month oxidised 50.07 28.94 0.75 2.08 32.94 

18 month non-oxidised 49.34 28.97 0.77 1.99 110.37 

18 month oxidised 45.35 29.48 0.76 2.44 150.66 

18 month non-oxidised 32.06 29.20 0.75 5.45 103.28 

18 month oxidised 53.22 29.73 0.79 1.30 58.41 

18 month non-oxidised 52.92 37.53 1.06 0.73 30.74 
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A. 

 
 
B. 

	
  
	
  

Figure 3.3: The average percentage of transcripts present and the background 

signal for the transcripts in each group 

There was no significant difference between the percentage of transcripts deemed present 

by the Affymetrix detection algorithm (A), and the background signal of transcripts 

between the oxidised and non-oxidised fraction at each age (B). Data presented as mean 

with standard deviation (n=3), statistical analyses by one-way ANOVA with Bonferroni 

post-test. 

 

 

The signal values produced from the image file (DAT file) represent quantification of 

transcript abundance for each probe set, which is generated based on the fluorescent ratio 

of present match (PM) to mismatch (MM) signal (section 2.2.1.2.3). The distribution of 

probe set intensities for each array is calculated from the median signal intensity across 

all arrays, which are transformed on to a logarithmic scale. This allows visualisation of 
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the variation of transcript abundance for an array and between a set of arrays (figure 3.4). 

Discrepancies between samples can be identified, which may represent low quality data 

possibly caused by differences in amplification or labelling. In this study, an outlier 

identified was an oxidised sample from a twelve-month-old mouse (figure 3.2 (A)). This 

dataset and the corresponding non-oxidised dataset were removed from the experiment 

and additional oxidised and non-oxidised sample were run on GeneChips. The 

distribution of probe set intensity for these samples were then compared to the rest of the 

arrays (figure 3.2 (B)). The data in table 3.1 and in figure 3.2 represent the data from 

figure 3.2 B.  
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A. 

	
  
 
B. 
	
  

	
  
	
  

Figure 3.4: The relative expression signal for each array generated by microarray 

analysis software (MAS5.0) 

This represents, for each GeneChip, the overall deviation from the corresponding median 

gene expression levels across all arrays. The Y-axis is the relative log expression signal 

for all samples which are represented along the X-axis. This demonstrates the overall 

deviation of probe set intensities across all arrays. The relative log expression values are 

calculated by subtracting the median gene expression estimate across arrays from each 

gene expression estimate.  

 

3.2.2 Identifying differentially oxidised RNA transcripts during ageing  

 

The transcription profiles of the oxidised and non-oxidised fractions from mice aged six, 

twelve, and eighteen months were analysed using Genespring and Partek software 
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(section 2.2.1.2.4). The genes differentially oxidised at each age are enriched in the 

oxidised fraction in comparison to the non-oxidised fraction. Transcripts were identified 

as significantly differentially oxidised if the expression level in the oxidised fraction was 

altered with a fold change of ≥1.5, and a p-value ≤0.01 when compared to the non-

oxidised fraction (table 3.2 and 3.3). Genes were identified as significantly enriched in 

the non-oxidised fraction in comparison to the oxidised fraction, if their fold change and 

p-value was ≤-1.5 and 0.01 respectively. The probe set IDs of differentially oxidised 

genes from each age were compared using genevenn (http://genevenn.sourceforge.net/) to 

identify the number of genes that were differentially oxidised at each age, and how many 

were expressed at multiple ages (figure 3.5) identified by both Partek and Genespring 

analysis software.  

 

Table 3.2: Summary of total genes identified and classified as differentially 

oxidised from Genesping and Partek analyses 

 

 6 months 12 months 18 months 
GeneSpring –Total 
number of genes 

6133 
 

4883 1698 

GeneSpring FC>1.5 973 up 
115 down 

831 up 
210 down 

322 up 
87 down 

GeneSpring  
FC>2 

284 up 
7 down 

300 up 
12 down 

172 up 
2 down 

Partek –Total 
number of genes 

7038 
 

5049 4559 

Partek  
FC>1.5 

1014 up 
180 down 

660 up 
179 down 

703 up 
118 down 

Partek  
FC>2 

296 up 
7 down 

265 up 
12 down 

184 up  
0 down 

 

 
Table 3.3: Summary of number of differentially oxidised genes taken forward 

from both analyses for further investigation 

 

 6 months 12 months 18 months 
GeneSpring  
FC>1.5 P<0.01 

595 up 
62 down 

394 up 
99 down 

68 up 
17 down 

Partek  
FC>1.5 P<0.01 

395 up 
54 down 

141 up 
45 down 

188 up 
28 down 
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A. 

 
 

B. 

 
 
Figure 3.5: Differentially oxidised genes identified by Genespring and Partek 

analyses 

Comparison of genes differentially oxidised at each age identified those differentially 

oxidised at a single age or at multiple ages. Both Partek (A) and Genespring (B) analysis 

was performed to determine which genes are differentially oxidised 
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Of the total number of genes identified at each age i.e. with no fold change or p-value 

exclusion (highlighted in table 3.2), only 88 genes were present on the arrays at all ages 

investigated and identified by both Partek and Genespring analyses (figure 3.6). 

Differentially oxidised genes at six, twelve, and eighteen months were then compared 

between the two analyses to determine the degree of overlap (figure 3.7). 

 

 

	
  
Figure 3.6: Genes identified as oxidised at six, twelve, and eighteen months using 

Genespring and Partek analysis 

From the total number of genes identified at each age (highlighted in table 3.2) only 314 

genes were expressed at all three ages using Genespring analysis and 371 genes using 

Partek analysis. A comparison of these two lists of genes found 88 genes in common 

were identified by both analyses and present at all the ages investigated. 
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A. 

 
B. 

 
C. 

 
Figure 3.7: Differentially expressed genes identified by Partek and Genespring 

analysis at each age 

Differentially oxidised genes identified at six months (A), twelve months (B), and 

eighteen months (C) by Genespring and Partek analysis were compared by Gene Venn to 

identify which genes were identified by both analyses. 
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3.2.2.1 Investigating differential RNA oxidation by Partek Genomics Suite 

analysis 

 

Further analysis of the differentially oxidised genes was carried out based on the data 

generated from Partek analysis only. Partek analysis applies a robust multi-array analysis 

(RMA), which consists of background correction, quantile normalisation, and 

summarisation (Bolstad, et al. 2003, Irizarry, et al. 2003). RMA expression measure is 

calculated for all GeneChips, and are based upon an average of log2(B(PM), where 

B(PM) are background corrected present match (PM) intensities. The background 

correction is non-linear, and performed for each individual chip. Quantile normalisation 

makes the distribution of probe intensities identical across a set of arrays, and 

normalisation is carried out for each individual probe before summarisation. 

Summarisation converts these probe-level values in to probe set intensity values, 

generating a single expression measure per gene per chip. This is presented as a box plot 

of the log expression signal for each array, in which the deviation of gene expression 

levels from the corresponding median expression level is generated across all arrays 

(figure 3.8); this is similar to that generated using microarray software MAS5.0. 

 

 

 

 
 

Figure 3.8: Representation of the log expression signal generated by Partek 

Genomics Suite 

This box plot was generated from the probe set signal values of each array that have 

subsequently been normalised and summarised. 
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The list of differentially oxidised genes for each age was compared, and genes 

differentially oxidised at more than one age identified. One of the aims was to identify 

whether transcripts are randomly oxidised or whether specific classes of genes are 

targeted for modification. We were also interested to discover whether oxidation was a 

function of age; for example, does the set of genes that are oxidised at six months, twelve 

months, and eighteen months differ.  

 

3.2.2.2 Investigating enrichment of gene classes present in an oxidised fraction of 

RNA during ageing 

 

The Database for Annotation, Visualisation and Integrated Discovery (DAVID) was used 

to identify any enrichment of gene classes at each age (table 3.4, 3.5, and 3.7) (Huang da, 

et al. 2009b, Huang da, et al. 2009a). Probeset IDs of differentially oxidised and non-

oxidised genes at six, twelve and eighteen months were investigated. DAVID condenses a 

large list of genes into biologically meaningful terms, enabling functional annotation 

clustering based on biological definition. The analysis identified a change in enrichment 

terms across the ages investigated. Enrichment of specific groups of genes that appear 

preferentially oxidised is greatest at six months, however genes involved in 

transcriptional regulation and RNA processing remain enriched in the oxidised fraction at 

twelve and eighteen months. The overall number of differentially oxidised genes at six 

months is 50% greater than at twelve and eighteen months, and the enrichment scores for 

the classes of genes oxidised at six months are greater, indicating that these genes are in a 

group of greater significance. Enrichment scores are based on the overall EASE score (p-

value) for each enriched annotation term (section 2.2.1.2.5).  
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Table 3.4: Processes enriched within the oxidised fraction at 6 months 
 

Biological Process Enrichment 

score 

Number of 

genes 

% p-value 

RNA Binding 5.04 38 9.31 1.93E-07 

RNA Processing 3.79 28 6.86 1.26E-06 

Intracellular non-membrane 

bound organelle 3.48 65 15.93 3.40E-05 

Nucleoplasm 3.21 25 6.13 0.001 

Cell projection 3.18 15 3.68 5.25E-04 

Regulation of transcription 2.75 68 16.67 0.003 

 

Table 3.5: Processes enriched within the oxidised fraction at 12 months 
 

Biological Process Enrichment 

score 

Number of 

genes 

% p-value 

Regulation of transcription 3.54 21 12.28 5.59E-04 

Cell projection 2.22 11 6.43 1.65E-02 

Glucose regulation 2.12 3 1.75 3.23E-03 

Cytoskeleton 1.82 8 4.68 1.45E-02 

RNA processing 1.73 10 5.85 6.26E-04 

 

Table 3.6: Processes enriched within the oxidised fraction at 18 months 
 

Biological Process Enrichment 

score 

Number of 

genes 

% p-value 

RNA Binding 4.96 23 11.06 7.33E-09 

Ribonucleoprotein complex 3.32 11 5.29 5.53E-05 

Regulation of transcription 2.68 22 10.58 7.31E-04 

GTPase regulation 1.83 12 5.77 1.52E-03 

Ribosome 1.63 8 3.85 1.08E-03 
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Of the 88 transcripts identified at all three ages by Partek and Genespring analyses (figure 

3.6), six differentially oxidised genes were selected for validation based on their function. 

These genes are interesting not only functionally but because they are in the small group 

of differentially oxidised genes present at six, twelve, and eighteen months. The list of 

probeset IDs for the 88 genes were entered into DAVID and functional categorisation of 

transcripts revealed an enrichment of processes involving RNA metabolism and 

regulation of gene expression. Because of the reduced number of genes for classification, 

further manual analysis of genes enriched within the specific groups was used to identify 

potentially interesting genes. Fold change information for the genes was gathered from 

the Partek analysis and genes were selected based on their molecular function ascertained 

from the gene ontology (GO) classification using DAVID and through literature searches. 

Genes for validation were selected based on the fold-change and functional information 

gathered (table 3.7).  
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Table 3.7: Genes selected for validation  

Fold change and p-values from Partek analysis  

 

Gene Title 

 

Gene 

Symbol 

Function  6 

Months 

12 

Months 

18 

Months 

Poly (A) 

polymerase alpha 

Papola Polyadenylation Fold-

change 

2.83 3.04 2.56 

p-value 0.009 0.006 0.04 

Sgt1, suppressor of 

G2 allele of SKP1 

(S. cerevisiae) 

Sugt1 Kinetochore 

function and 

required for the 

G1/S and G2/M 

transitions 

Fold-

change 

2.64 2.72 4.04 

p-value 0.003 0.027 0.03 

Apoptotic 

chromatin 

condensation 

inducer 1 

Acin1 Splicing 

complex, 

apoptotic 

chromatin 

condensation 

Fold-

change 

4.64 

 

5.22 4.36 

 

p-value 0.007 0.01 0.0008 

Alpha 

thalassemia/mental 

retardation 

syndrome X-linked 

homolog (human) 

Atrx Transcriptional 

regulator 

Fold-

change 

4.77 

 

4.41 

 

4.04 

p-value 0.006 0.006 0.008 

DEAD (Asp-Glu-

Ala-Asp) box 

polypeptide 6 

Ddx6 RNA helicase, 

translation 

suppression, 

mRNA 

degradation, 

Fold-

change 

3.71 

 

4.26 

 

3.94 

p-value 0.001 0.008 0.01 
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Figure 3.9: Fold change data for each gene selected for validation 

Genes selected for initial validation were differentially oxidised at all ages investigated 

and were identified in both Partek and Genespring analysis. They represent the few genes 

whose expression did not substantially change between six, twelve, and eighteen months. 

 

Although the majority of genes differentially oxidised were different across the ages, a 

few were found to be differentially oxidised at all three ages. These genes were selected 

for the initial validation, as the minority they are also interesting to study. The optimum 

primer concentration for each gene was determined (section 2.2.1.3.3) and the genes were 

validated by RT-qPCR. The Epc1 gene primers were optimised, however standard curve 

analysis to determine their efficiency revealed discrepancies between samples, with the 

slope efficiency exceeding 100%. Consequently, this gene was removed from the 

validation. For the remaining five genes, standard curve efficiency was consistently high 

with few outliers. The selected genes were validated using additional oxidised and non-

oxidised samples prepared from the ageing series (figure 3.10). The relative expression 

level of each gene in the oxidised and non-oxidised fraction at each age was calculated 

using the delta-delta Ct (ddCt) method. No significant differences between the oxidised 

and non-oxidised fraction were identified for each gene. Expression was greater in the 

oxidised fraction in comparison to the non-oxidised fraction in most cases, with the fold 

change generally showing the right direction, corresponding to the array findings.  
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Figure 3.10: Results of RT-qPCR validation for selected genes at six, twelve, and 

eighteen months 

The oxdised and non-oxidised fraction for the selected genes were normalised to house-

keeping gene Actin before the relative concentration was determined by comparing the 

ddCt of the oxidised fraction to the ddCt of the non-oxidised fraction. Data presented as 

mean with SD (n=3), statistical analysis by one-way ANOVA with Bonferroni post-test. 

 

3.2.2.3 Further enrichment and pathway analysis of genes in an oxidised fraction 

of RNA 

 

Following the initial validation, we aimed to further characterise the classes of genes 

selectively targeted for oxidation and use pathway analysis tools to investigate how 

specific pathways might be affected as a result of oxidative modification to RNA. The 

DAVID analysis described previously showed enrichment for genes involved in RNA 

processing and metabolism. Further analysis of the data was relatively subjective in that 

we targeted our investigation to focus on RNA processing genes, as these were enriched 

within the oxidised fraction at six, twelve, and eighteen months, and these mechanism 

have been associated with neurodegenerative disease. Identifying which genes are 

oxidised during ageing, and how expression changes for genes involved in these 

processes may change during ageing as result of oxidative modification to the transcript 

is of interest.  

 

The analysis of differentially expressed genes revealed differences not only in the number 

of genes differentially oxidised during ageing, but also differences in the functional 

categories these genes are classified into. This reveals a change in transcripts oxidatively 

modified with age, which could represent age-associated changes in the transcriptome, 

with genes selectively exhibiting oxidation due to their availability within the cell. In 

gene ontology terms, RNA processing is defined as any process involved in the 

modification of primary transcripts into mature RNA molecules, and RNA binding refers 

to interacting selectively with an RNA molecule or a protein thereof. Some genes were 

found to be over-lapped between the ontology terms relating to RNA 

processing/metabolism. Genes classified into the ontology terms in table 3.8 were 

grouped at each age as genes related to RNA processing. In order to identify whether 

genes were oxidised at more than one age, the transcripts from RNA gene ontology 

analysis were manually categorised at each age. This generated a single list of RNA 
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processing/metabolism genes that could be compared between the ages. Analysis 

demonstrated a change in the number of differentially expressed genes in the oxidised 

fraction enriched in RNA processing during ageing (figure 3.11). 

 

 

Table 3.8: The ontology terms grouped under RNA processing 

 

DAVID enrichment term Ontology Definition 

Ribonucleoprotein complex Cellular component A macromolecular complex containing 

both protein and RNA molecules 

Ribosome Cellular component Intracellular organelle, site of protein 

biosynthesis 

RNA processing Biological process Any process involved in the 

conversion of one or more primary 

RNA transcripts into one or more 

mature RNA molecules 

Regulation of transcription, 

DNA-dependent 

Biological process Any process that modulates the 

frequency, rate or extent of cellular 

DNA-dependent transcription 

RNA binding Molecular fun 

ction 

Interacting selectively and non-

covalently with an RNA molecule or a 

portion thereof 

Nucleoplasm Cellular component Part of the nuclear content other than 

the chromosomes or the nucleolus 

Histone modification Biological process The covalent alteration of one or more 

amino acid residues within a histone 

protein 
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Figure 3.11: Functional annotation of genes enriched in RNA processing 

mechanism 

Partek analysis identified a number of genes differentially oxidised at six, twelve, and 

eighteen months that have known roles in RNA processing. This venn diagram represents 

the number of genes involved in these processes at each age and how many were 

identified at multiple ages 

 

 

Further investigation of genes, involved analysis using the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analysis tool. This allows identification of 

pathways/processes in which the genes in the oxidised fraction of RNA are involved and 

the other genes they interact with, which is discussed below for a few select genes. This 

allows speculation on how disruption to these pathways may occur if genes within them 

are selectively oxidised, providing further routes for investigation into cellular decline. 

We were also interested in genes that were enriched within the cellular homeostasis 

ontology group, as disruption to these regulatory processes could have widespread effects 

on cellular function.  

 

 

 

 

6 MONTH 
164 genes 

18 
MONTH 
60 genes 

12!
MONTH 
55 genes  

17 
genes 

5 
genes 

1 
genes 

3 
genes 



125 
 

3.2.3 Differential oxidation of transcripts during ageing 

3.2.3.1 Transcriptional Regulation 

 

Gene ontology analysis revealed genes involved in RNA processing and transcriptional 

regulation were significantly enriched within the oxidised fraction of RNA at all ages 

(figure 3.11). Identifying transcription factors, transcription cofactors, and components of 

the transcriptional machinery that are differentially oxidised is of interest, as disruption to 

their activity would have major implications for cellular function. Epigenetic changes can 

modify the temporal and spatial pattern of gene expression without altering the DNA 

sequence. Age-related changes in gene expression are influenced by cumulative insults 

from endogenous and exogenous factors, which accompanied by pathological damage to 

a select group of transcripts, adds further complexity to studying the genetics of the 

ageing process. Previous work has shown that oxidative modification of mRNA leads to a 

reduction in functional protein and may consequently impact other metabolic processes 

downstream. The control of chromatin organisation and sequence specific interaction of 

transcription factors facilitates transcriptional regulation. Erroneous transcription due to 

disturbances in the regulatory steps could potentially cause widespread alterations to the 

transcriptome, affecting cellular function and susceptibility to degeneration. We 

identified multiple transcription factors, cofactors, and epigenetic modifiers to be 

differentially oxidised during our study, some of which are described below. Pathway 

analysis enabled identification of possible downstream consequences due to oxidative 

modification of these select genes. 
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Table 3.9: Differentially oxidised RNA processing genes  
 

Gene Name 

 

Function  6 Month 12 Month 18 Month 

CREB-binding 

protein (Crebbp) 

Transcriptional 

coactivator, 

histone 

acetyltransferase 

Fold-

change 

3.04 2.77 3.66 

p-value 0.05 0.01 0.01 

GATA zinc finger 

domain containing 

2 (Gata2) 

Transcription 

factor 

Fold-

change 

2.03 1.89 1.68 

p-value 0.003 0.008 0.0009 

SNW domain 

containing 1 

(Snw1) 

Transcriptional 

coactivator, 

splicing 

Fold-

change 

2.04 2.32 3.26 

p-value 0.02 0.02 0.04 

Myeloid/lymphoid 

or mixed-lineage 

leukemia (Mll) 

Transcriptional 

coactivator, 

histone 

methyltransferase 

Fold-

change 

1.6 1.5 Not 

expressed 

p-value 0.03 0.05  

Peroxisome 

proliferator-

activated receptor 

coactivator  

(Pgc-1α) 

Transcriptional 

coactivator 

Fold-

change 

2.26 2.22 Not 

expressed 

p-value 0.01 0.04  

Drosophila absent, 

small, or homeotic 

discs 1 (Ash-1) 

Histone 

methyltransferase 

Fold-

change 

1.56 -1.1 Not 

expressed 

p-value 0.0004 0.002  

Methyl CpG 

binding protein 2 

(Mecp2) 

Transcriptional 

regulation 

Fold-

change 

1.8 Not 

expressed 

Not 

expressed 

p-value 0.001   
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Further analysis of these genes was carried out to identify their molecular function and 

how disruption to their function due to oxidative modification may impact cellular 

processes.  

 

cAMP responsive binding element protein (CREB) is a transcription factor that binds to 

cAMP response elements in DNA to regulate transcription. CREB is differentially 

oxidised at six months, but not at twelve or eighteen months. However, CREB-binding 

protein (Crebbp), a transcriptional co-activator, is differentially oxidised at six, twelve, 

and eighteen months. CREB dependent gene expression is reliant upon the presence and 

enzymatic activity of Crebbp, establishing this protein as functionally important for the 

activation of metabolic processes. Selective oxidation of this transcript may lead to 

changes of the transcriptome as less Crebbp protein is available for transcriptional 

activation of target genes.  

 

Crebbp is a ubiquitously expressed, global transcriptional co-activator, which shares 

regions of very high sequence similarity with protein E1A binding protein p300, 

including in its bromodomain, cysteine-histidine-rich regions, and histone 

acetyltransferase domain. Crebbp acts a transcriptional co-activator through facilitating 

the recruitment of translational machinery and as a histone acetyltransferase (HAT) by 

modifying chromatin structure thereby making DNA more accessible to transcription 

factors and activators (Bannister and Kouzarides 1996, Goodman and Smolik 2000) 

(figure 3.12). One protein Crebbp has been shown to interact with is the GATA zinc 

finger domain containing 2 (Gata-2) transcription factor. Gata-2 is selectively expressed 

in endothelial cells (Minami, et al. 2004), and Gata-2 null mice were shown to have a 

profound reduction in hematopoietic stem cell differentiation and neurodevelopmental 

defects including axon path finding and fasciculation (El Wakil, et al. 2006, Tsai, et al. 

1994). Findings support a crucial role of Gata-2 for gene expression in vascular 

endothelial cells, however the molecular mechanism by which Gata-2 brings about 

differential expression remains largely unknown (Minami, et al. 2001, Minami, et al. 

2009, Wozniak, et al. 2007). Our study involved gene expression profiling of RNA 

extracted from the anterior spinal cord of normal mice, and although this was to enrich 

for a MN population, genes specifically expressed in other cell types would be 

present/identified. We discovered Gata-2 to be up-regulated in the oxidised fraction at 

six, twelve, and eighteen months. This gene is not constitutively expressed in all cell 

types, so it is interesting that it is selectively oxidised, most likely in endothelial cells. A 

reduction in transcriptional fidelity within these cells would also leads to changes at the 
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transcriptome, which may have a wider impact on the surrounding cells which may 

require their support.  

 

 

 

Figure 3.12: CREB-binding protein transcriptional control mechanisms. 

Crebbp can regulate transcription through the bridging of various transcription factors, 

nuclear receptors, and other basal transcription machinery. Crebbp can act as a 

scaffolding protein for the formation of multi-protein complexes including transcription 

factors and co-factor proteins. The modification of core histones and non-histone 

transcription factors by post-translational chromatin modifications can modulate the 

activity of genes. Crebbp facilitates this through modification by acetylation. 

Abbreviations: Crebbp, CREB binding protein; NR, nuclear receptors; TBF, TATA box 

binding protein; TF, transcription factor; TFIIB, transcription factor II B (Adapted from 

Karamouzis, et al. 2007) 

 

 

ATP-dependent helicase Atrx encodes an ATP-dependent chromatin-remodelling protein 

chromodomain and helicase-like domains subclass of SNF-2 like proteins. These proteins 

are involved in transcriptional regulation, replication, and DNA repair (Carlson and 

Laurent 1994, Matson, et al. 1994, Picketts, et al. 1996). Atrx was found differentially 

oxidised at six, twelve, and eighteen months (table 3.7).  
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SNW domain containing 1 (SNW1), also known as SKIP and NCoA62, is a 

transcriptional co-activator of nuclear receptors and functions as part of the splicosome, 

providing regulatory coupling between transcriptional activation and RNA processing. 

SNW1 has been reported to interact with a number of putative transcriptional co-

activators and co-repressors, including Crebbp, glutamate receptor interacting protein 1 

(Grip1), and steroid receptor co-activator 1 (Src1). The SNW1 homologs in 

Saccharomyces cerevisiae (Prp45) and Drosophila (BX42) are essential for cell viability, 

splicing (Ambrozkova, et al. 2001, Gahura, et al. 2009, Valinluck, et al. 2004), and 

nuclear export of spliced mRNAs (Farny 2008). SNW1 is differentially oxidised at six 

months, and is present in the oxidised fraction at twelve and eighteen months with a 

significant fold change but with a p-value of >0.01. SNW1 functions as part of the 

spicing machinery as another dimension of gene expression regulation (Zhang, et al. 

2003). SKIP has been demonstrated as a critical for the splicing and expression of p21, 

but not other investigated p53 target genes (Chen, et al. 2011) This study revealed SNW1 

and associated factors are critical for cell survival upon DNA damage, through specific 

regulation of p21 splicing. SNW1 was found to be dispensable for p21 transcription under 

stress conditions, but the absence of SKIP reduced splicing capability. Although this 

study was conducted in cancer cells, the results suggest a DNA damage response 

mechanism of SNW1, which can be modulated depending on the availability of the 

protein.  

 

Peroxisome proliferator-activated receptor coactivator (PGC-1α) is a transcriptional co-

activator with known roles in the regulation of cellular energy metabolism, 

gluconeogenesis, and mitochondrial biogenesis (Kressler, et al. 2002, Liang and Ward 

2006, Mootha, et al. 2003). The gene was identified as differentially oxidised at 6 months 

and 12 months, however it was not expressed at 18 months of age in our study. 

 

3.2.3.2 Epigenetic regulation of transcription 

 

Changes to the transcriptome during development and ageing may be regulated in part by 

epigenetic changes, which determine the phenotypic traits of cells and may support 

cellular function, particularly in differentiated neurons (Dulac 2010, Riccio 2010). We 

identified genes involved in epigenetic modification to be differentially oxidised in our 

study, some of which are highlighted and discussed below. Histone modifications can be 

covalently modified to influence the structure and function of chromatin, thus allowing or 
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preventing the access of transcriptional machinery to DNA (Turner 2007). A 

bromodomain is a conserved structural module that specifically recognises and binds 

acetylated lysine residues on histone tails, facilitating the binding of protein complexes to 

chromatin. The bromodomain is present in a large number of diverse proteins, including 

histone acetlytransferases, methyltransferases, helicases, transcriptional co-activators, 

chromatin-remodelling complex proteins, and nuclear scaffolding proteins (Sanchez and 

Zhou 2009). These proteins modulate chromatin structure and have important influence 

over transcriptional regulation.  

 

Epigenetic effects can alter the phenotype of a cell by selectively modifying which genes 

are expressed. We identified multiple bromodomain-containing genes to be differentially 

oxidised. The oxidative modification of these transcripts and potential subsequent 

reduction in protein availability may affect the transcriptional regulation and subsequent 

spatio-temporal expression of genes. This potentially has downstream effects in the 

activation/repression of certain genes for specific functions, processes, or signalling 

pathways. Bromodomain containing proteins are considered as functionally independent 

and non-redundant as shown by gene knockout studies (Basu, et al. 2008, Basu, et al. 

2009, Daniel, et al. 2010, Glaser, et al. 2009, Yu, et al. 1995), suggesting an array of 

cellular disruption due to modification of various transcripts. 

 

The histone methyltransferase (HMT) myeloid/lymphoid or mixed-lineage leukemia 

(MLL) protein family members contain a bromodomain and function as transcriptional 

co-activators. We identified the MLL3 gene, which encodes a nuclear protein involved in 

histone methylation, to be differentially oxidised six months and twelve months, but is 

not present at 18 months.  

 

The Droshophila absent, small, or homeotic discs 1 (Ash-1) is a trithorax group histone 

methyltransferase, and the mammalian homolog, Ash-1 like (Ash1L) was identified as 

differentially oxidised at 6 months and 12 months, but was not expressed at 18 months in 

our study. Ash1L has histone methyltansferase activity and been shown to associate with 

the transcribed regions of active gene. It appears to have a general role in transcription as 

demonstrated through its association with both housekeeping and tissue-specific genes 

(Gregory, et al. 2007). Immunofluorescence demonstrated Ash1L localisation to 

intranuclear speckles and tight junctions (Nakamura, et al. 2000), however the relevance 

of this to gene expression and chromatin remodelling remains unknown (Balda and 

Matter 2009). 
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Methyl-CpG-binding protein 2 (Mecp2) is a chromosomal protein that binds to 

methylated DNA, recruiting chromatin-remodelling proteins. Mecp2 was found to be 

differentially oxidised at 6 months, but was not expressed at 12 or 18 months in our 

study. Mecp2 mediates transcriptional repression through interaction with histone 

deacetylases, however studies also suggest a role of Mecp2 in transcriptional activation 

and splicing regulation (Bogdanovic and Veenstra 2009, Young, et al. 2005). Mecp2 

interacting proteins include Atrx, CREB, and Smarca2, which have also been identified in 

this study. Evidence has shown the presence of 8-hydroxydeoxyguanosine at a 

hemimethylated CpG dinucleotide reduces methyl binding protein association (Valinluck, 

et al. 2004), suggesting oxidative DNA damage also impacts transcriptional regulation.  

 

3.2.3.3 Cellular homeostasis  

 

Genes involved in maintaining cellular homeostasis and involved in normal cellular 

functions were identified in the oxidised fraction of RNA. Changes in cellular 

homeostasis and genes involved in regulatory functions have previously been shown to 

change expression during ageing (Brink, et al. 2009). Disruption to normal cellular 

metabolism has also been highlighted in ALS, with disturbances to mitochondrial 

function, neurotransmission, and protein homeostasis linked to the underlying pathology. 

Here we discuss some of the genes identified in the oxidised fraction, which are involved 

in important cellular processes. 

 

3.2.3.3.1 Glutamatergic system 
 

A number of genes implicated in glutamatergic neurotransmission were identified in this 

study. This highly regulated system maintains precise physiological concentration of 

glutamate in the CNS; dysregulated excitatory neurotransmission leading to increased 

levels of extracellular glutamate leads to cellular damage (reviewed in Niciu, et al. 2012).  

Some of the interesting genes identified here are listed in table 3.9, and although some of 

the fold changes are not significant, a slight change in neurotransmission regulation could 

lead to excitotoxicity.  
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Table 3.10: Differentially oxidised genes involved in glutamatergic 

neurotransmission 

 

Gene name 

 

Function  6 month 12 month 18 

month 

Glutamate receptor, 

ionotropic, AMPA4 

(alpha 4) (Gria4) 

Glutamatergic 

neurotransmission 

Fold-

change 

1.88 1.5 1.96 

p-value 0.0003 0.0003 0.013 

Solute carrier family 

1 Glial high affinity 

glutamate 

transporter, member 

3 (Slc1a3) 

Removal of 

glutamate from 

the synaptic cleft 

Fold-

change 

No 

expression 

No 

expression 

1.3 

p-value   0.04 

Solute carrier family 

1 (glial high affinity 

glutamate 

transporter), member 

2 (Slc1a2) 

Removal of 

glutamate from 

the synaptic cleft 

Fold-

change 

1.8 No 

expression 

-1.5 

p-value 0.002  0.02 

Glutamate receptor, 

metabotropic 5 

(Grm5) 

Glutamatergic 

neurotransmission 

Fold-

change 

1.59 1.63 1.32 

p-value 0.004 0.048 0.048 
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Figure 3.13: Glutamatergic neurotransmission 

The proteins whose transcripts were identified to be differentially expressed as result of 

oxidative modification to their RNA transcript are highlighted in red.  

 

 

3.2.3.4 Signal Transduction 

 

Multiple genes enriched within the gene ontology category of signal transduction were 

identified as differentially expressed in the oxidised fraction during ageing, a few of 

which are shown in table 3.11. Signal-transduction cascades mediate the sensing and 

processing of stimuli. The identification of differentially oxidised genes enriched in 

signal transduction suggests these transcripts may be targeted for oxidation as a 

mechanism of cellular regulation. However, if oxidative modification to the RNA is 

detrimental the lack of proteins available for these transduction cascades could lead to 

widespread cellular dysfunction.  
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Table 3.11: Genes involved in signal transduction 

 

Gene name 

  

Function  6 month 12 month 18 

month 

Guanine nucleotide 

binding protein, alpha 

stimulating complex 

locus (GNAS) 

Signal 

transduction 

Fold-

change 

 

1.94 

 

1.73 1.74 

P-value 0.05 0.02 0.02 

Guanine nucleotide 

binding protein, alpha 

inhibiting 1 (Gnai1) 

Signal 

transduction 

Fold-

change 

 

4.64 3.69 3.69 

P-value 0.02 0.02 0.02 

Glycogen Synthase 

Kinase 3-β (GSK3β) 

Signal 

transduction 

Fold-

change 

 

2.1 Not 

expressed 

1.4 

P-value 0.01  0.002 

 

 

3.2.4. Further validation from functional annotation analysis 

 

Further to the enrichment and pathway analysis, additional genes were selected for 

validation (table 3.12). These were selected based on their functional association with 

mechanisms identified as dysregulated in MND. The levels of transcript show a general 

up-regulation in the oxidised versus non-oxidised fraction, however they are significantly 

greater in the oxidised fraction for Sfrs and Gnai (figure 3.14). The fold change generally 

show a trend in the right direction for all, corresponding to the array findings, however 

the variability between samples meant this did not reach significance in some cases. 
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Table 3.12: Genes selected for further validation 

Fold change information from Partek analysis 

 

Gene Title Gene 

Symbol 

Function  6 

Months 

12 

Months 

18 

Months 

CREB-binding 

protein 

Crebbp Transcription Fold-

Change 

3.0 2.8 3.7 

P-value 0.008 0.01 0.01 

SWI/SNF related, 

matrix associated, 

actin dependent 

Smarca2 Transcription Fold-

Change 

4.8 4.4 6.2 

P-value 0.0009 0.003 0.02 

Glutamate receptor, 

ionotrophic, AMPA4 

Gria4 Glutamate 

signalling 

Fold-

Change 

1.9 1.5 2.0 

P-value 0.0003 0.0004 0.01 

Serine/arginine-rich 

splicing factor 18 

Sfrs18 Alternative 

splicing factor 

Fold-

Change 

2.6 2.5 3.5 

P-value 0.01 0.0005 0.01 

Guanine nucleotide 

binding protein, 

alpha inhibiting 

polypeptide 1 

Gnai Inhibition of 

adenylate 

cyclase 

Fold-

Change 

3.2 3.7 3.9 

P-value 0.007 0.02 0.01 
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Figure 3.14: Results of second RT-qPCR validation for selected genes at six, 

twelve, and eighteen months 

The oxdised and non-oxidised fraction for the selected genes were normalised to house-

keeping gene Actin before the relative concentration was determined by comparing the 

ddCt of the oxidised fraction to the ddCt of the non-oxidised fraction. Data presented as 

mean with SD (n=3), statistical analysis by one-way ANOVA with Bonferroni post-test 

	
  

3.2.5 Selective targeting of transcripts for oxidation 

 

Functional annotation and pathway analysis revealed specific classes of RNA transcripts 

that are targeted for oxidative modification, and identified how this could affect the 

pathways they are involved in. To determine whether specific properties of the 

differentially oxidised transcripts explain in part their increased susceptibility to oxidative 

modification, our lists of differentially oxidised genes at six, twelve, and eighteen months 

were compared to a list of 19,000 genes with known information on mRNA length, 

number of exons, mRNA half-life, and decay rate. This information was available for a 

select number of genes identified in our study; a total of 4214 genes at six months, 3024 

genes at twelve months, and 2727 genes at eighteen months.  

 

For analysis of transcript features genes with a fold change of ≥1.5 were classified as 

oxidised and those <1.5 (1-1.49) were classed as non-oxidised. mRNA length, number of 

exons, mRNA half-life, and decay rate were analysed, with the mean and standard error 

of the mean for each fraction plotted to determine a difference between them. Analysis 

revealed no significant difference in the mRNA half-life of oxidised and non-oxidised 

transcripts at six and eighteen months. However there is a significant increase in the 

mRNA half-life of non-oxidised transcripts at twelve months (figure 3.15). The mean 

half-life for the oxidised transcripts is 7.5 hours at six, twelve and eighteen months. The 

average mRNA length, measured in base pairs (bp), of transcripts in the oxidised fraction 

at six and twelve months was significantly greater in comparison to the non-oxidised 

transcripts. No significant differences in mRNA length were seen for transcripts at 

eighteen months (figure 3.16). The mean mRNA length of transcripts in the oxidised 

fraction was about 4400bp for those expressed at six and twelve months, and 3308bp for 

those expressed at eighteen months. The number of exons was significantly greater for 

the oxidised transcripts at six and twelve months in comparison to the non-oxidised 

transcripts, however no significant differences were seen at eighteen months (figure 

3.17).  
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C. 

	
    

Figure 3.15: Comparison of transcript half-life of genes differentially oxidised at 

six, twelve, and eighteen months 

Genes in the oxidised fraction have a FC>1.5, genes in the non-oxidised fraction have a 

FC<1.5. Data presented as mean and standard error, statistical analysis by two-tailed t-

test *=P≤0.05 
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A.	
  

 

B.	
  

 

C.	
  

 

Figure 3.16: Comparison of mRNA length of genes differentially oxidised at six, 

twelve, and eighteen months 

Genes in the oxidised fraction have a FC>1.5, genes in the non-oxidised fraction have a 

FC<1.5. Data presented as mean and standard error, statistical analysis by two-tailed t-

test *=P≤0.001 
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A. 

	
  	
    

B.  

 

C. 

 

Figure 3.17: Comparison of exon number of genes differentially oxidised at six, 

twelve, and eighteen months 

Genes in the oxidised fraction have a FC>1.5, genes in the non-oxidised fraction have a 

FC<1.5. Data presented as mean and standard error, statistical analysis by two-tailed t-

test *=P≤0.001 
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3.3 Discussion 
 
	
  
The development of microarray and RNA sequencing technology has enabled 

investigation of the transcriptome of cells and tissues under various physiological and 

pathological conditions (Malone and Oliver 2011, Schena, et al. 1998). Genome-wide 

patterns of transcriptional changes associated with ageing have been studied in both 

model organisms and various human tissues. In our study we used microarray technology 

to identify genes that are differentially oxidised in RNA extracted from the anterior 

thoracic spinal cord of normal mice aged six, twelve, and eighteen months. We revealed 

oxidative modification affects specific transcripts, and which transcripts are modified 

largely changes with age. Functional annotation and pathway analysis revealed the 

classes of RNA targeted for modification also changes during ageing. Age-related 

expression changes may either be due to gene expression changes, or changes in cell 

heterogeneity within a tissue (Zahn and Kim 2007). The genes differentially oxidised 

may be a result of the increased availability of these transcripts for modification. It is also 

plausible that some oxidised transcripts may not have been successfully precipitated and 

are either present in the non-oxidised fraction, or were lost during the 

immunoprecipitation process. As RNA technology improves the immunoprecipitation of 

RNA will hopefully be as efficient and sophisticated as that for proteins.  

 

This study was based around an investigation by Chang et al. 2008, which identified 

oxidation of specific transcripts in a murine model of ALS (Chang, et al. 2008). Our aim 

was to investigate whether specific classes of transcripts are targeted for oxidative 

modification during ageing, and whether this recapitulates what is seen in a 

neurodegenerative disorder. This study built on the work by Chang et al. through 

optimisation of the immunoprecipitation procedure (section 4.2.2.2) and improvements to 

the methodology. In the Chang et al. study, RNA pooled from two whole cords dissected 

from G93A mutant SOD1 transgenic mice was used for the immunoprecipitation and 

subsequent microarray analysis. We originally aimed to use laser capture microdissection 

(LCM) to isolate MNs from the spinal cord tissue of normal mice aged six, twelve, and 

eighteen months, to investigate selective oxidation of transcripts in an individual cell 

population. LCM uses a high-energy laser source to isolate individual cells from the rest 

of the tissue (Bonner, et al. 1997, Emmert-Buck, et al. 1996). LCM of astrocytes from 

post-mortem tissue with different Braak classification identified changes in the astrocyte 

transcriptome during ageing (Simpson, et al. 2011). The use of LCM in gene expression 

studies has identified different gene expression profiles within the grey and white matter 
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of the hippocampus during early AD, and shown an up-regulation of cell-death associated 

genes with a corresponding reduction in the expression of cytoskeleton and transcription 

related genes in post-mortem tissue from ALS patients (Blalock, et al. 2011, Jiang, et al. 

2005, Simpson, et al. 2011). It is also a useful tool for investigating changes in the 

transcriptome of select cell types during disease progression, through their isolation from 

disease models such as the familial-ALS mutant SOD1 mouse model (Ferraiuolo, et al. 

2007). In our study, the quantity of RNA obtained through this method was insufficient 

for use in downstream applications such as the isolation of the oxidised fraction of RNA. 

Therefore, we chose to use the anterior spinal cord, which is a MN enriched region of the 

spinal cord, and a method widely used in gene expression profiling due to the quantity 

and quality of RNA obtained from extraction (Ginsberg, et al. 2004). Whilst this is a clear 

improvement on the samples used in the Chang et al. study, the heterogeneous cell 

population within the samples must be considered during analysis. 

 

3.3.1 Identification of oxidised transcripts during ageing 

 

Genespring and Partek analysis software was used to identify genes selectively present in 

an oxidised fraction of RNA. Further functional annotation and pathway analysis revealed 

specific classes of genes to be oxidatively modified during ageing. Further to this, the 

individual transcripts identified to be modified largely changed during ageing. The 

Database for Annotation, Visualisation, and Integrated Discovery (DAVID) was used to 

identify any enrichment of gene classes at each age. The functional annotation algorithm 

measures relationships between the annotation terms based on the degree of their co-

association genes. DAVID is a good tool for initially categorising large list of genes into 

manageable data sets, and provides an overview of whether select classes of transcripts 

are enriched in the analysis. For greater in-depth analysis manual categorisation and 

further functional annotation using other bioinoformatic tools and manual methods is 

required. In our study, we identified chromatin-remodelling, transcriptional co-activators, 

histone modification, and DNA methylation genes to be enriched in the oxidised fraction, 

which are further discussed below. Some of the genes identified have also been linked to 

neurological disorders.  
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3.3.1.1 Oxidative modification of transcriptional regulators 

 

Maintaining gene expression patterns is essential for specific gene activation in specific 

cell types under certain conditions. A slight change in the expression or function of these 

proteins could have widespread effects on gene expression and genomic stability. The 

identification of an enrichment of genes involved in transcriptional regulation in the 

oxidised fraction at six, twelve, and eighteen months highlights these particular species 

may be more susceptible to oxidative modification. Some of the key genes identified in 

this study are discussed here. 

 

MeCP2, which specifically recognises and binds methylated DNA, andcan promote the 

activation or repression of gene transcription depending on the methylation state of the 

promoter region (Chahrour, et al. 2008, Cohen, et al. 2008), was enriched in the oxidised 

fraction at six months in our study. Significant changes in DNA methylation have been 

demonstrated in normal and pathological ageing, which was associated with changes in 

mRNA levels suggesting modification of the transcript has downstream effects of 

transcriptional regulation (Siegmund, et al. 2007). PGC-1α, a transcriptional activator, 

was identified as differentially oxidised at six and twelve months in our study. An 

increased expression of PGC-1α is found in tissues with abundant mitochondria, and 

PGC-1α promotes its effects through the expression and activation of various 

transcription factors. Its importance in metabolism has been demonstrated through in vivo 

studies, where knockout of PGC-1α led to reduced mitochondrial function and oxidative 

capacity (Leone, et al. 2005, Lin, et al. 2002). PGC-1α is a transcriptional co-activator 

that interacts with a broad range of transcription factors to regulate a variety of biological 

processes, including mitochondrial biogenesis, antioxidant defense, fatty acid metabolism 

and fibre type alteration in skeletal muscle. PGC-1α has a CREB response element in its 

promoter region, rendering CREB responsible for its activation (Herzig, et al. 2001). 

Other cellular signals known to control energy and nutrient homeostasis have also been 

shown to activate PCG-1α (Puigserver and Spiegelman 2003), and its antioxidant 

properties suggest a role in protecting neurons against ROS induced damage (St-Pierre, et 

al. 2006). This is accompanied by in vitro studies, which demonstrate an increase in 

mitochondrial dysfunction and oxidative stress following PGC-1α silencing. Reduced 

neuronal PGC-1α levels have also been associated with neurodegenerative disorders 

including HD, PD, and MS, which is thought to be due to reduced activation of its target 

genes and subsequent mitochondrial redox imbalance (Witte, et al. 2013). This evidence 

provides a link between mitochondrial and transcriptional regulation as mechanisms of 



144 
 

neurodegeneration at the molecular level. Under homeostatic conditions, PGC-1α may 

maintain a balance between metabolic requirements and protection from ROS. The 

evidence suggests the absence of PGC-1α, due to oxidative modification of the RNA 

transcript for example, may render cells vulnerable to oxidative stress related dysfunction 

and oxidative damage leading to neurodegneration. 

 

Crebbp is also a transcriptional co-activator through association with CREB, a 

transcription factor that has been implicated in neuroprotection (Chan and La Thangue 

2001, Lonze and Ginty 2002). Crebbp was differentially oxidised at six, twelve, and 

eighteen months, and a number of known Crebbp interaction partners were subsequently 

identified within this fraction. Crebbp acts as a transcriptional activator for multiple target 

genes. Its HAT activity enables fine-tuning of gene expression through coordinating with 

histone deacetylases (HDACs) to control transcriptional activation (Verdone, et al. 2005). 

Specific patterns of acetylation at specific lysines within the N-terminus of histones allow 

targeted transcriptional activation. Different activators induce different acetylation 

patterns in vivo, suggesting selectivity of HATs and co-activators (Deckert and Struhl 

2001). The epigenetic regulation creates another opportunity for disruption to 

transcription due to oxidation, by reducing the modification of chromatin and 

subsequently restricting transcriptional activation. Many other non-histone proteins, 

including transcription factors have been shown to be substrates for Crebbp, which 

expands the possible mechanisms of transcriptional activators in gene expression 

regulation (Glozak, et al. 2005, Yang and Seto 2008).  

 

The CREB signalling pathway is a prominent regulatory pathway, with roles in cell cycle, 

differentiation, and apoptosis, which may in part explain why this transcript was 

identified in the oxidised fraction at all the ages investigated. Oxidative modification of 

this transcript and the potentially subsequent erroneous proteins produced may reduce the 

activation of critical genes involved in normal cellular processes. Acetylation of the C-

terminal regulatory domain of p53 by Crebbp/p300 has been demonstrated to be critical 

for its regulation. p53 interacts directly with Crebbp/p300 and links Crebbp activity to 

cell cycle regulation and genome stability (Gu, et al. 1997, Lill, et al. 1997, Scolnick, et 

al. 1997).  

 

Crebbp has also been shown to interact with Nrf-2 and as part of the ARE-binding 

complex (Katoh, et al. 2001, Zhu and Fahl 2001) to enhance Nrf-2 dependent gene 

activity. Further to this Crebbp/p300 was found to directly acetylate Nrf-2 in vivo in 

response to arsenite-induced stress (Sun, et al. 2009). This establishes acetylation as 
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novel regulatory mechanism that functions together with Keap-1 in modulating Nrf-2 

antioxidant response, which is pivotal for cellular response and protection to insult. A 

reduction in antioxidant response during periods of oxidative stress due to a reduction in 

the availability of Crebbp for transcriptional activation would increase cellular 

vulnerability to damage. NF-κB is another transcription factor that depends on 

Crebbp/p300 as transcriptional co-activators (Hassa, et al. 2003, Zhong, et al. 1998). It 

also requires interaction of poly(ADP-ribose) polymerase-1 (PARP-1) which is acetylated 

by Crebbp (Perkins 1997). Acetylation of specific lysine residues is required for its 

interaction with NF-κB and subsequently for transcriptional activation. This provides two 

mechanisms whereby a loss of Crebbp could lead to a redundancy in the inflammatory 

response. Although none of these genes were identified as being differentially expressed 

due to oxidation, the removal of Crebbp upstream would reduce the activation of these 

targets.  

 

Atrx, a protein involved in transcriptional regulation, replication, and DNA repair 

(Carlson and Laurent 1994, Matson, et al. 1994, Picketts, et al. 1996) was identified as 

differentially oxidised in our study. Atrx has been reported to interact with the death 

domain-associated protein DAXX chaperone to regulate the incorporation of histone 

variant H3 at highly repetitive regions, supporting the role of Atrx in chromatin 

remodelling (Lewis, et al. 2010). Atrx has also been shown to interact with the murine 

homologue of Drosophilla HP-1 (Chromobox homologue 5, Cbx5), a structural adapter, 

which may facilitate its assembly into chromatin-remodelling complexes. Interesting 

Cbx5 was enriched in the oxidised fraction at six months in our study. Mutations in Atrx 

have been shown to cause aberrant methylation of repetitive DNA elements (Berube, et 

al. 2000, Gibbons, et al. 2000). Methylation of DNA is an epigenetic signalling 

mechanism used to silence genes.  

 

3.3.1.2 Oxidative modification of epigenetic factors 

 

Epigenetic changes can include chemical modifications at the level of the nucleotides, 

modifications at the histone level, and nucleosome remodelling. Post-translational histone 

modifications are capable of altering the condensation of the chromatin and, as a 

consequence, the accessibility of the DNA to the transcriptional machinery. Genes 

involved in epigenetic modification were identified as differentially oxidised at all three 

ages, some of which are identified in the results and discussed in further detail here.  
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MLL3, a member of the mixed-lineage leukemia family of proteins was identified as 

differentially oxidised in our study. The histone H3, lysine 4 (H3K4) methylation mark is 

broadly correlated with the presence of RNA polymerase II at sites of active gene 

expression (Guenther, et al. 2005). The MLL histone methyltransferases act to maintain 

these active chromatin domains (Patel, et al. 2007). MLL3 gene knockout studies in 

rodents indicate MLL3 is involved in regulating genes associated with metabolic 

homeostasis, and in turn revealing a specific role for these genes in cellular metabolism 

(Lee, et al. 2008). The gene knockout studies highlight the importance of the normal 

activity of genes, and determine the consequences of a loss of function, as a result for 

example of oxidative modification. MLL3 is also found in complexes with other 

transcriptional co-activators involved in nuclear receptor transactivation. In particular it is 

found in the activating signal cointegrator-2 complex (ASCOM), which colocalises in the 

nucleus with ATPase-dependent chromatin remodelling complex Swi/Snf for efficient 

binding to target genes (S. Lee, et al. 2009). Interestingly some Swi/Snf proteins were 

also differentially oxidised in our study.  

 

Wide changes in gene expression during ageing could be attributed to DNA damage. The 

redistribution of chromatin modifiers may be a protective response to DNA damage 

and/or occur during normal ageing, however this may lead to epigenetic changes 

affecting genomic integrity and gene expression (Oberdoerffer and Sinclair 2007). 

Yankner and colleagues demonstrated a link between global age-related gene repression 

and oxidative damage to the promoters of repressed genes (Lu, et al. 2004). Oxidative 

modification to RNA transcripts and subsequent reduction in functional protein 

complexes may also impact transcriptional activation/repression. 

 

3.3.1.3 Oxidative modification of genes involved in glutamatergic 

neurotransmission  

 

3.3.1.3.1 Glutamate Receptors 
 

The ionotropic glutamate receptor AMPA 4 (Gria4/GluR4) and the glutamate receptor, 

metabotropic 5 (Grm5/mGluR5) were present in the oxidised fraction at six, twelve, and 

eighteen months. A reduction in Gria4 or Grm5 protein due to oxidative modification of 

the RNA transcript may lead to an alteration in their signal transduction properties and 

excitatory synaptic transmission. Ionotropic receptors for ion channels depend on cation 

flux, whereas metabotropic receptors are linked to G-proteins and exert their effects 
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through downstream signal transduction cascades (Heath and Shaw 2002). GluR4 is an 

AMPA receptor; these undergo RNA editing which is fundamental for determining the 

calcium permeability of receptor complexes containing GluR2. GluR4 exhibits a more 

restricted spatial and temporal distribution in comparison to GluR1, GluR2, and GluR3 

(Monyer, et al. 1991).  

 

mGluR5 couple to the Gq family of G-proteins, leading to the activation of phospholipase 

C, the production of diacylglycerol and inositol 1,4,5-trisphosphate and release of 

intracellular calcium (Niswender and Conn 2010). Activation of these pathways 

modulates synaptic activity and plasticity. Stimulation of mGluR5 through agonist 

binding activates Gs proteins (stimulatory G-proteins), which activate adenylate cyclase 

(AC) leading to an increase in intracellular cAMP. An increase in cAMP activates protein 

kinase A (PKA), a serine/threonine kinase, which phosphorylates and in turn regulates 

other kinases and transcription factors. Interestingly we identified multiple G-proteins to 

be differentially oxidised in our study. A reduction in translational efficiency of mGluR5 

could lead to reduced expression of the receptor at the cell surface, or aberrant protein 

expression, affecting the structural and signalling properties of the receptor, with 

downstream functional consequences. This receptor is present in glial cells, and the 

activation of this receptor attenuates their activation. Reduced agonist interaction due to 

conformational changes may lead to widespread activation of glial cells. Studies have 

demonstrated mGluR5 involvement in learning, memory, and synaptic plasticity 

(Balschun and Wetzel 2002). mGluR5 modulators have been shown to have a wide range 

of often controversial effects in animal models of neurological disorders, making this a 

key area of active drug discovery (Bird and Lawrence 2009, Carroll 2008, Cook 2010, 

Gasparini, et al. 2008, Krystal, et al. 2010).  

 

3.3.1.3.2 Glutamate Transporters 
 

The solute carrier family includes high affinity glutamate transporters with distinct 

functional properties (Kanai and Hediger 2004). In our study, we identified the solute 

carrier family 1 (glial high affinity glutamate transporter), member 2 (Slc1a2) to be 

differentially oxidised at six months of age. Interestingly this gene was not expressed at 

twelve months, and was present in the non-oxidised fraction at eighteen months of age. 

This gene encodes a membrane-bound glutamate transporter, which acts to clear 

glutamate from the extracellular space to regulate neurotransmission and prevent 

neuronal damage from excessive activation of receptors. This protein has been 

demonstrated to be highly vulnerable to oxidative stress (Pedersen, et al. 1998), which 
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could account for its up-regulation in the oxidised fraction seen here at six months. 

Oxidative modification of the transcript may lead to the production of aberrant proteins, 

which are more likely to aggregate and be exposed to damage/sequestration. Reduced 

expression of Scl1a2 in the spinal cord and motor cortex of ALS patients  has been 

demonstrated, which is accompanied by studies showing a reduction in glutamate 

transport in human mutant SOD1 transgenic mice (Canton, et al. 1998, Guo, et al. 2000). 

The uptake of glutamate in to astrocytes is essential for its conversion to glutamine. A 

reduction in glutamate uptake due to reduced or aberrant protein expression as a 

consequence of oxidative modification to the transcript could lead to an energy deficit, 

with neurons requiring alternative routes to sustain glutamate production (Sala, et al. 

2005). The changes in Scl1a2 expression observed here may reflect the changes to the 

transcriptome with age. These proteins regulated by neuronal activation (Benediktsson, et 

al. 2012), and during development and adolescence, increased neuronal and synaptic 

activity and changes in metabolic conditions may result in increased expression of these 

transporters, making them susceptible to oxidative modification. Abnormal splicing of the 

Scl1a2 mRNAs have been reported in the affected areas of ALS patients, which correlates 

with reduced protein expression (Lin, et al. 1998). Oxidative modification to the 

transcript may affect its recognition by the spicing machinery, leading to abnormal splice 

variants which are unable to produce the proper protein.  

 

3.3.1.4 Oxidative modification of genes involved in signal transduction 

 

G-protein coupled receptors (GPCRs) transduce extracellular stimuli in to intracellular 

signals through interaction of their intracellular domains with heterotrimeric guanine 

nucleotide binding proteins (G-proteins). We identified the guanine nucleotide binding 

protein, alpha stimulating complex locus (GNAS) gene, which encodes the stimulatory 

G-protein-α subunit to be differentially expressed in the oxidised fraction at six months, 

twelve months, and eighteen months. Alternative splicing of this transcript results in 

different forms of the stimulatory G-protein-α subunit, which is essential for the 

activation of adenylate cyclase (AC). A reduction in AC activation could potentially lead 

to widespread metabolic defects impacting multiple processes, including reduced 

phosphorylation of CREB and subsequent disruption to transcriptional activation. 

Interestingly guanine nucleotide binding protein, alpha inhibiting 1 (Gnai1) was also 

identified to be differentially oxidised at six, twelve, and eighteen months. In contrast to 

the alpha stimulating G-protein, the alpha inhibiting G-protein inhibits AC preventing 
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activation of the cAMP dependent pathway. This adds complexity when investigating 

oxidative modification of transcripts as a detrimental process. 

 

In this study the serine/threonine protein kinase glycogen synthase kinase 3-β (GSK3β) 

was differentially oxidised at 6 months. GSK3β forms a scaffold complex with 

adenomatous polyposis coli (APC), AXIN1, and β-catenin as part of the Wnt signalling 

pathway. This APC-AXIN1-GSK3β complex can either direct β-catenin towards 

degradation through the phosphorylation by GSK3β (Aberle, et al. 1997), or allows its 

translocation to the nucleus where it associates with T-Cell Factor (TCF)/Lymphoid 

Enhancer Factor (LEF) transcription factors facilitating the transcriptional activation of 

Wnt-responsive genes (Eastman and Grosschedl 1999, Miller, et al. 1999).  

 

In the presence of Wnt signalling the N-terminal of GSK3β is phosphorylated, leading to 

an accumulation of unphosphorylated β-catenin which translocates to the nucleus. An 

increase in β-catenin levels promotes changes in the transcriptional machinery facilitating 

transcriptional activation.  An increase in oxidative modification to GSK3β, potentially 

leads to a reduction in GSK3β protein, meaning it cannot facilitate the activation of Wnt-

responsive genes or phosphorylate its targets, including β-catenin. GSK3β phosphorylates 

a number of other substrates such as glycogen synthase and other metabolic enzymes, 

transcription factors CBP (CREB Binding Protein), c-Myc and c-Jun, and the translation 

initiation factors eIF2 and eIF2B. In addition, GSK3β is negatively regulated by PI3K 

(Phosphatidylinositol 3-Kinase)-mediated activation of Akt/PKB (Protein Kinase-B). As 

part of the insulin signalling pathway, phosphorylation of glycogen synthase 1 (GSY) 

stimulates glycogenesis to maintain glucose homeostasis. A reduction in GSK3 

potentially leads to reduced activation of GSY, resulting subsequently in an energy 

deficit.  

 

3.3.2 Selective vulnerability to oxidative modification 

 

The number of genes identified at each age to be involved in a particular function, such as 

RNA processing, was small, suggesting changes in the transcriptome reflect cellular 

development and ageing. The cells that are present at eighteen months represent ones that 

have not already succumbed to degeneration or are a result of neuronal pruning during the 

ageing process. The transcripts that are expressed, and thus more likely to be targeted for 

oxidation, differ across the ages, and at eighteen months represent those that are 

maintaining homeostasis and cell survival. There is a consensus of programmed cell 
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death during development, accompanied by an increased efficiency in processing and 

function through elimination of unnecessary or inadequate cells. 

 

Synaptic plasticity mechanisms change in the aged brain, which correlates with memory 

deficits in aged animals (Bach, et al. 1999, Barnes 1979). These changes in gene 

expression could explain why some transcripts are vulnerable to oxidation at different 

ages. The distinction between genomic malleability and instability is complex and subtle. 

Certain modifications may be essential for adaptation and function; for example, the 

methylation or oxidation of cytosine contributes towards genetic variability by altering 

gene expression in response to endogenous or environmental changes (Nabel, et al. 

2012). The change in genes involved in epigenetic mechanisms identified in the oxidised 

faction with age may represent changes in epigenetic regulation with age.  

 

The cytoplasmic level of mRNA within a cell is determined by the ratio of its synthesis 

rate and its degradation rate. A study concluded that mRNA abundance correlated best 

with mRNA half-life, and labile transcripts were rare, while those that were more stable 

were more abundant, independent of transcription rate (Sharova, et al. 2009, Yang, et al. 

2003). This suggests transcripts with important physiological roles, which remain stably 

expressed within cells, may be vulnerable to oxidative modification. The comparison of 

our differentially expressed genes to a list of genes with known information on mRNA 

length, number of exons, mRNA half-life, and decay rate, revealed certain features of 

transcripts that may make them more vulnerable to oxidation. Interestingly in the genes 

identified, transcript half-life was not a factor influencing selective oxidation in our study. 

It may be hypothesised that transcripts with a longer half-life would be increasingly 

susceptible, due to the availability of the transcript for modification. Transcript length and 

number of exons however were significantly increased for those species identified in the 

oxidised fraction at six and twelve months, suggesting longer transcripts are more readily 

modified. For future work it would be interesting to compare the GC content of 

transcripts between the oxidised and non-oxidised transcripts, as it may be hypothesised 

an increase in GC content may increase the affinity of the transcript for oxidation. It is 

currently unknown whether guanine residues in specific sequences are more prone to 

oxidation; however as guanine is the most readily oxidised base there is reason to suspect 

this is a factor. 
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3.3.3 Relation to neurodegenerative disease 

	
  
It would be interesting to investigate whether genes selectively oxidised during ageing, 

are also selectively targeted for oxidation during motor neuron disease and other 

neurological disorders. A similar study was performed in human G93A mutant SOD1 

transgenic mice to investigate selective oxidation of RNA species in ALS (Chang, et al. 

2008). Few genes identified in the ALS study correlated with those identified in our 

study. However, H3 histone family 3A (H3f3a) was identified differentially oxidised in 

the ALS study and in our study at six and eighteen months, whereas Retinoblastoma 

binding protein 4 (Rbbp4) which was also identified as differentially oxidised in the ALS 

study was identified to be differentially non-oxidised at six and twelve months in our 

study. The lack of parallel findings could reflect the differences in study design. The ALS 

study used pooled RNA, extracted from whole cord from two mice aged 60 days 

(presymptomatic stage ALS) for the immunoprecipitation of the oxidised species, 

whereas we extracted RNA from the anterior spinal cord only and had three replicates per 

age. For a direct comparison, a similar study design would need to be applied, with three 

replicates per condition, with ideally the oxidised fraction analysed at different stages of 

disease progression and compared to a healthy control. 

 

Crebbp is a transcriptional coactivator identified as differentially oxidised in our study. 

Evidence implicates Crebbp dysfunction in neurodegenerative disease. Rubinstein-Taybi 

syndrome type 1 (RSTS1) is an autosomal dominant disorder caused by defects in 

Crebbp, which is characterised by craniofacial abnormalities, mental retardation and a 

propensity for development of malignancies (Murata, et al. 2001, Roelfsema, et al. 2005). 

The underlying mutation in polyglutamine (PolyQ) expansion diseases is an expansion of 

a CAG trinucleotide repeat. Huntington’s Disease (HD) is a PolyQ disorder, characterised 

by the expansion of a CAG repeat within the Huntingtin (htt) protein (Di Prospero and 

Fischbeck 2005, Gatchel and Zoghbi 2005) leading to motor dysfunction and cognitive 

decline. In a Drosophila model of polyglutamine disease, the binding of the 

polyglutamine-containing domain of the htt protein directly to the acetyltransferase 

domain of Crebbp led to disruption of its activity, thus blocking Crebbp-mediated 

transcription (Steffan, et al. 2000). That Crebbp can interact with htt, led to speculation 

that mutant huntingtin can cause cell toxicity by interfering with the function of Crebbp 

and disrupting gene expression (Nucifora, et al. 2001). Colocalisation of Crebbp with 

polyQ aggregates has also been observed in cells in culture, transgenic mice, and 

postmortem HD brain tissue (McCampbell, et al. 2000, Nucifora, et al. 2001). Crebbp 

dysfunction due to a reduction of Crebbp HAT activity is sufficient to cause hypo-
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acetylation, which may contribute towards cell death in the cases of HD. In cells 

transfected with mutant htt, cell toxicity was accompanied by a loss of Crebbp and 

subsequent hypo-acetylation. Interestingly over-expression of Crebbp in these cells 

rescued histone acetylation, resulting in reduced cellular toxicity, which suggests Crebbp 

dysfunction and altered gene transcription are major contributors to neurotoxicity induced 

by mutant htt (Jiang, et al. 2006). This mechanism of dysfunction could be present in 

other neurological disorders as RNA processing including transcriptional regulation is 

becoming increasingly recognised to be associated with other neurological disorders. 

 

A murine model of ALS over-expressing human G86R mutant SOD1 (Ripps, et al. 1995) 

showed specific depletion of Crebbp in MNs (Rouaux, et al. 2003). Crebbp and H3 

histone acetylation levels in G86R mutant mice in comparison to wild-type (WT) 

littermates were investigated at 3.5 months of age, which corresponds to the symptomatic 

stage of disease. Crebbp protein levels were reduced by >70%; reduced immunoreactivty 

confirmed this, along with a reduction in histone H3 acetylation reactivity in MN nuclei 

of G86R mutant mice (Rouaux, et al. 2003). Another study demonstrated a dose-

dependent reduction in cell viability of NSC34 cells exposed to oxidative stress, which 

was accompanied by a progressive reduction in Crebbp protein and histone H3 

acetylation levels. Combined these results raise the possibility that Crebbp/p300 loss of 

function could be a hallmark of neurodegeneration. Epigenetic modifications provide a 

link between the environment and gene expression changes that may lead to disease 

phenotypes. These modifications are readily responsive to pharmacological interventions 

and are potentially platforms for therapeutic approaches against neurological disorders. 

 
Mutations in MeCP2 are the cause of most cases of Rett syndrome, a progressive 

neurological disorder, highlighting the importance of this protein in modulating 

chromatin structure and gene expression (Amir, et al. 1999, Wan, et al. 1999). MeCP2 

binds methylated promoter sites and recruits a corepressor complex (Kriaucionis and Bird 

2003), suggesting the pathology associated with mutations in MeCP2 results from 

aberrant gene expression patterns. Dysregulation of brain-derived neurotrophic factor 

(BDNF), a MeCP2 target gene, could also account for some of the neuropathology as 

BDNF has crucial roles in neuronal survival, development, and plasticity (W. G. Chen, et 

al. 2003, Martinowich, et al. 2003). 

 
Mutations in Atrx cause X-linked mental retardation syndromes and α-thalassemia 

myelodysplasia syndrome (Gibbons, et al. 2000, Gibbons, et al. 2003, Steensma, et al. 

2004). The Atrx chromatin-remodelling complex contains the transcriptional co-factor 
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Daxx, which may target Atrx to specific promoters. Mutation of Atrx may cause aberrant 

methylation of repetitive DNA elements and the affect the accessibility of DNA, 

impacting gene expression regulation. 

 

PGC-1α plays a central role in mitochondrial metabolism, and alterations to PGC-1α 

expression and function have been reported in neurodegenerative diseases. In addition, 

the protective effects of PGC-1α have been demonstrated in in vivo models of ALS. PCG-

1α expression in human G93A mutant SOD1 transgenic mice prevented mitochondrial 

fragmentation and increased neuronal viability (Song, et al. 2013). Other studies have 

reported the induction of detoxifying enzymes is regulated by PGC-1α (St-Pierre, et al. 

2006, St-Pierre, et al. 2003, Valle, et al. 2005), which in turn is regulated by CREB 

(Handschin, et al. 2003). Impaired expression and/or function of PGC-1α has been 

reported in HD, with relation to mitochondrial dysfunction (Chaturvedi, et al. 2009, Cui, 

et al. 2006). Microarray data from human HD and PD post-mortem tissue revealed 

reduced expression of PGC-1α target genes (Weydt, et al. 2006, Zheng, et al. 2010), 

suggesting aberrant transcriptional regulation due to PGC-1α impairment. The role of 

PGC-1α in ageing is supported by evidence of its involvement in telomere control, which 

is critical for the maintenance of chromosome integrity (Maser and DePinho 2002). A 

study in multiple sclerosis (MS) patients revealed a significant reduction of PGC-1α in 

the myelinated cingulate gyrus and frontal cortex, which correlated with reduced 

expression of mitochondrial antioxidant enzymes (Witte, et al. 2013).  

 

Although some of the genes preferentially oxidised in this study have been identified to 

be associated with neurodegenerative disease, in some cases the modification of the 

transcript may have a protective role; for example, by regulating protein levels within a 

cell. Here we identified mGluR5 to be differentially oxidised at six, twelve, and eighteen 

months, however its over-expression has been reported in neurodegenerative pathologies. 

GSK-3, differentially oxidised in our study, has been linked with the pathogenesis and 

neuronal loss in neurodegenerative diseases, including PD, HD, and AD, in which 

elevated levels of GSK-3 have been reported. Regulation of levels during normal ageing 

through oxidative modification may mediate activation of signalling pathways. Increased 

cAMP levels promote survival of neuronal cells by inactivating GSK3 via a PKA–

dependent mechanism. Oxidative modification may provide a similar mechanism. 

Oxidation of the transcript has been shown to affect normal protein production, which 

was hypothesised to contribute towards the underlying pathogenesis of neurodegenerative 

disease. In normal ageing an accumulation of oxidative modification as age advances has 

been reported (Nunomura, et al. 2012), which correlates with an increase in oxidative 
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stress. This increase in stress and accumulation of damage may be detrimental to cellular 

processes in a similar way as in neurodegenerative diseases, but the genes/mechanisms 

that are affected by this might be different, due to the gene expression changes 

accompanying disease might increase particular transcripts susceptibility to damage. The 

increased accumulation of oxidative modifications of particular transcripts may be a 

result of the availability of the transcripts for damage. Oxidative modification during 

ageing may be used as a regulatory mechanism by cells, or may be maintained at a level, 

which is not detrimental to cellular processes. It is likely that oxidative damage to RNA is 

less lethal than that of DNA, and RNA may represent a removal mechanism for ROS to 

prevent deleterious damage to DNA.  

 

The processes that were identified as potentially being affected due to RNA oxidation in 

this study, are processes dysregulated in the pathogenesis of ALS, for example RNA 

processing. ALS is an age-related disorder, and the degradation of RNA processing and 

metabolism as a result of RNA oxidation during normal ageing may contribute towards 

the propensity of MNs to degenerate. The presence of RNA oxidation in MN has been 

demonstrated at presymptomatic stage of disease, suggesting it has an early involvement 

in pathogenesis (Chang, et al. 2008). It would be interesting to compare our data to the 

oxidised fraction of RNA extracted from the anterior horn of a transgenic model of ALS, 

to determine whether the selective modification of targets identified here during normal 

ageing is a feature of neurodegeneration.   

 

 

3.3.4 Relation to other gene expression profiling studies of ageing 

 
It is difficult to compare this study with previous ageing gene expression studies, as we 

were specifically interested in genes that were expressed in an oxidised fraction of RNA 

and whether these genes changed during ageing. We were not interested in transcriptome 

changes with age per se; however oxidative modification to the transcript may have an 

influence on those changes identified in other studies.  

	
  

The Atlas of Gene Expression in Mouse Aging Project (AGEMAP) is a database 

containing gene expression changes during ageing in mice. It is a comprehensive 

standardised study of expression changes in sixteen tissues (Zahn, et al. 2007). 

Comparison of the expression profiles from mouse and human ageing revealed a small 

number of genetic pathways that age similarly; however no overall correlation in age-
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related transcriptional changes were observed between mouse and human. Ageing has 

been associated with specific alterations at the mRNA level that may represent changes in 

gene expression, mRNA stability or turnover (Lee, et al. 2000). Oxidative modification of 

RNA may be one mechanism contributing towards these changes. To determine if what 

we see in our study matches the transcriptome changes identified previously the analysis 

needs to incorporate both the oxidised and non-oxidised fraction of each animal at each 

age and identify differential gene expression changes across the ages. In our study, the 

non-oxidised fraction was the control. 

	
  

Genes identified in expression profiling studies may represent downstream markers of 

ageing, for example the increased expression of stress response genes due to accumulated 

oxidative damage. Identifying these age-related genes could provide important insight 

into mechanisms that drive these transcriptional changes during ageing. The AGEMAP 

work was used for a further study to investigate gene expression profiles in five regions 

of the CNS (Xu, et al. 2007). The number of age-associated genes was identified to be 

greatest in the spinal cord. Following functional classification, genes encoding proteins 

involved in transcriptional regulation, protein synthesis and degradation, and signal 

transduction were the most responsive to ageing. If a prerequisite for selective 

modification is the presence/abundance of the transcript at a particular age, we might 

expect to see an increase in oxidative modification to genes that are present during 

ageing. However, enrichment analysis did not reveal antioxidant enzymes/oxidative stress 

response genes to be enriched within the oxidised fraction, suggesting other factors may 

govern the selective modification of classes of transcripts. 

 

3.3.5 Future work 

	
  

For this study, the anterior thoracic spinal cord from normal mice aged six, twelve, and 

eighteen months were used for investigation of oxidative modification to RNA during 

ageing. For future work, isolating individual cell types from the spinal cord would enable 

a comprehensive study on selective RNA oxidation within specific cell types, which 

could be compared to the data from this study. The initial aim was to use laser capture 

microdissection to investigate RNA oxidation specifically within a MN population, 

however the quantity of RNA obtained through this method was insufficient for use in 

downstream applications. This may be made possible as improvements in technology, 

specifically isolation of RNA species, are improved. It would also be interesting to 

include a younger and an older time point to have data over an extensive time scale to 
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compare. Performing RT-qPCR for cell type specific genes in the RNA samples used in 

this study would enable us to have a better understanding of the contribution of different 

cell types towards the analysis, and which cell types are enriched for in our fractions.  

	
  

In our study we were particularly interested in which genes are expressed at one time 

point only and ones that are expressed at multiple ages. Are these genes preferentially 

oxidised because they are involved in processes at these ages. Could the modification to 

these transcripts specifically affect cellular metabolism and processes, potentially 

predisposing the animal to age-related diseases? The fractions analysed at eighteen 

months were taken from animals that had survived to that age. Whether the animals that 

were used at six and twelve months would have lived as long, or developed an age-

associated disease remains unknown, and a problem that must be factored for when using 

models for study. A general decline in physiological functioning characterises ageing. 

This deterioration of homeostasis leads to an increased risk of disease, thus age-related 

biological systems degradation may explain an increased incidence of many complex 

diseases with age. One mechanism predisposing an organism to age-related diseases 

might be the selective modification of RNA transcripts, which impacts cellular 

functioning, influences gene expression changes and ultimately leads to cellular decline. 

It would be interesting to determine whether the changes identified are region specific i.e. 

selective to the anterior spinal cord, or whether this is a general feature of CNS ageing. 

 

Further work would involve investigation in to whether RNA oxidation affects the protein 

production for the modified transcripts. Initially this was attempted using in vitro 

translation to generate proteins from the transcripts within an oxidised and non-oxidised 

sample of RNA. Subsequent Western blot analysis was used to determine differences in 

protein concentration, however this was technically challenging. Further optimisation 

would hopefully eliminate this problem. Another approach would be to 

immunoprecipitate the proteins of transcripts selectively oxidised, from total protein 

lysate of the anterior spinal cord, to determine differences in concentration between 

samples. Downstream targets/processes of genes that were selectively oxidised could be 

investigated, to determine whether the modification of the transcripts affects cellular 

function.	
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Chapter 4 
Investigating RNA oxidation in ageing and 

neurodegenerative disease 

 

4.1 Nucleic acid oxidation in in vitro and in vivo models of 
ALS 
	
  

4.1.1 Oxidative damage and neurodegenerative disease 

 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated as 

result of normal cellular metabolic processes. ROS and RNS have roles in cellular 

signalling and redox homeostasis; however, detrimental effects of these free radicals can 

occur during periods of oxidative or nitrosative stress. Oxidative stress has been 

extensively studied in relation to the pathogenesis of neurodegenerative diseases and the 

neurobiology of ageing, however, whether it is the primary cause of toxicity or the result 

of numerous dysfunctional mechanisms remains to be understood (Jellinger 2009, 

Koudinov, et al. 2009, Radak and Boldogh 2010). The direct measurement of oxidative 

stress is challenging and is mainly determined by investigating the degree of oxidative 

damage to cellular macromolecules, measuring antioxidant levels, studying expression 

levels of genes involved in the stress response, and investigating the activation of damage 

repair enzymes (DNA repair reviewed in section 1.6).  

 

Pathological studies demonstrating increased levels of ROS and oxidative damage in 

affected brain regions of patients with neurodegenerative diseases including AD, PD, and 

ALS (Andersen 2004), accompanied by the use of in vitro and in vivo models of disease, 

have contributed much towards our understanding of oxidative stress in 

neurodegeneration. Oxidative stress appears to be an early and sustained event 

contributing towards cellular decline and selective MN degeneration in ALS (Bogdanov, 

et al. 1998, Liu, et al. 1999, Shaw and Eggett 2000). Investigation of post-mortem tissue 

from sporadic ALS (sALS) and familial ALS (fALS) patients has demonstrated an 

accumulation of oxidative damage to proteins, lipids, and DNA/RNA, providing support 

for the association of oxidative damage with underlying pathogenesis (Barber, et al. 

2006, Ferrante, et al. 1997a, Sayre, et al. 2008). This includes elevated protein carbonyl 



158 
 

levels, lipid peroxidation, and nucleic acid oxidation (Ferrante, et al. 1997b, Fitzmaurice, 

et al. 1996, Shaw 2005, Shibata 2001). More recently, an increase in RNA oxidation in 

the brain and spinal cord of sALS patients and the spinal cord of the G93A mutant SOD1 

mouse model of fALS in comparison to controls has been reported (Chang, et al. 2008). 

RNA may be more susceptible to oxidative modification because of its abundance and 

intracellular location close to sites of ROS production, its single-stranded nature, and the 

lack of protective proteins in comparison to DNA. Increased RNA damage has been 

demonstrated in studies simultaneously comparing levels of oxidative damage to DNA 

and RNA (Hofer, et al. 2008, Wamer, et al. 1997). RNA oxidation changes have since 

been reported in studies of neurological disorders, diabetes, atherosclerosis, and ageing 

(Broedbaek, et al. 2011, Hoffman, et al. 2011, Martinet, et al. 2004, Martinet, et al. 2005, 

Shan, et al. 2007, Simpson, et al. 2010, Zhang, et al. 1999). 

 

The degradation of damaged RNA was long thought to be the mechanism for its removal, 

rather than its repair, as this would be a more efficient process and RNA lacks a template 

strand for the correction of errors. However, the increasing importance of RNA with 

regards to the processing and metabolism of transcripts, the identification of multiple 

non-coding RNAs and their increasing functional roles, has led to the investigation of the 

consequences of RNA modification. The identification of at least one mechanism for 

RNA damage repair has led to speculation that other unidentified proteins and pathways 

might be involved in the RNA quality control process (Aas, et al. 2003, Barnes, et al. 

2009, Vascotto, et al. 2009a). 

 

Nucleic acid oxidation can reduce the fidelity of transcription, translation, and/or the 

processing of transcripts, affecting cellular processes downstream. Reduced levels of 

rRNA, tRNA, and protein synthesis have been identified due to RNA oxidation (Ding, et 

al. 2007, Ding, et al. 2005, Tanaka, et al. 2007), suggesting ribosome dysfunction as one 

consequence of increased modification to RNA. Although 8-hydroxyguanosine (8-OHG) 

is the oxidised base which will be focused on throughout the rest of the chapter, it must 

be noted that oxidative damage to other bases can occur, which may have equally 

damaging effects to cells. We have chosen to study this particular oxidative modification 

as guanine is the most frequently oxidised base, and previous studies support the 

investigation of this modification as a biomarker for oxidative damage. Studies revealing 

elevated RNA oxidation in neurodegenerative diseases have demonstrated the regional 

distribution of the damage to be consistent with selective neuronal vulnerability, and 

further investigation has addressed the consequences of oxidative RNA modifications, 

and how this may contribute to neurological decline (section 1.6).  
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The oxidative modification of macromolecules can alter their functions, resulting in 

downstream changes in cellular and metabolic mechanisms. For example, changes in 

redox-sensitive signalling accompany the structural damage when cells are exposed to 

oxidative stress. Understanding redox regulation and the cellular response to oxidative 

stress is essential for deciphering the impact of multiple factors that relate cellular 

dysfunction to disease pathology. This is being achieved partly through exploring cellular 

responses of in vitro models of disease to exogenous stresses, including investigation of 

the control of redox sensitive signalling cascades and induction of detoxifying enzymes 

(Gasch, et al. 2000, Xu, et al. 2011, Zheng, et al. 2001). Gene expression changes are 

also a major component of stress responses. Both general and stress specific adaptive 

responses function simultaneously, from post-translational effects providing immediate 

responses, to regulation of gene expression essential for slower long-term adaptation and 

recovery phases (de Nadal, et al. 2011). Gene expression profiling in the NSC34 cellular 

model for SOD1-associated fALS identified a reduction in the expression of detoxifying 

enzymes and antioxidant response proteins in cells carrying a human G93A mutant SOD1 

transgene in comparison to controls (Kirby, et al. 2005). A significant reduction in the 

expression of genes involved in antioxidant activity and stress response were also 

reported in the G93A mutant SOD1 mouse model of fALS (Ferraiuolo, et al. 2007), 

which suggest a transcriptional repression of oxidative response genes is induced by 

mutant SOD1.  

 

4.1.2 In vivo and in vitro models of ALS 

 

Several models of fALS based on identified genetic mutations have been generated to 

study the pathogenic mechanisms leading to ALS. The human G93A mutant SOD1 

mouse was the first in vivo transgenic murine model of human fALS (Gurney, et al. 

1994). Since then over ten different lines of transgenic mouse for select SOD1 mutations 

have been generated, accompanied by other transgenic worm, fly and rodent models 

(Bruijn, et al. 1997, Guo, et al. 2011, Kato 2008, Nagai, et al. 2001, Turner and Talbot 

2008, Wang, et al. 2003). Motor symptoms, cellular alterations, and loss of upper and 

lower MNs identified in these models makes them suitable for the study of ALS. In vitro 

models of ALS include cell lines, for example the neural hybrid cell line NSC34 used in 

this study, and primary neurons and glial cells isolated from the embryonic murine spinal 

cord (Avossa, et al. 2006, Cashman, et al. 1992, Gingras, et al. 2007). These have proved 

valuable in identifying causative factors for disease. For example, the role of astrocytes in 

MN degeneration in ALS was shown in co-culture studies, which identified increased cell 
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death of MNs cultured in the presence of mutant SOD1-expressing astrocytes (Marchetto, 

et al. 2008, Nagai, et al. 2007). However, despite these models, how mutant SOD1 

selectively impairs MN function leading to degeneration remains to be understood. 

 

The familial ALS-linked G93A mutant SOD1 murine model of ALS and NSC34 cells 

stably expressing the cDNA of human G93A mutant SOD1, human G37R mutant 

SOD1, human H48Q mutant SOD1, human wild-type SOD1 were used for 

investigation in this study, so attention will be focused on these mutations (table 4.1). 

Human Cu/Zn SOD1 is a 32kDa homodimeric enzyme, responsible for the 

conversion of superoxide radicals to molecular oxygen and water. Each monomer 

folds as an eight-stranded β-barrel, binds one atom of copper and one atom of zinc, 

and contains an oxidised disulfide bond between cysteine 57 and cysteine 146 (Hartz 

and Deutsch 1972, Tainer, et al. 1982). This post-translational modification renders 

the protein enzymatically active, adopting the correct quaternary structure, achieved 

by the bound copper and zinc ions respectively (Arnesano, et al. 2004). Histidines 46, 

48, 63, and 120 bind the copper ion, whilst the zinc ion is bound by Histidines 63, 71, 

80, and Asparagine 83.  

 

Table 4.1: Human SOD1 mutations expressed in the NSC34 cell line 

Numbers refer to clone number 

 

Cell line Transfection Information 

NSC34 transfected with 

pIRES-6 

Mammalian expression vector only control 

 

NSC34 transfected with 

WTSOD1-11 

Wild-type human SOD1 

NSC34 transfected with 

G93A-5 

Mutant human SOD1-single amino acid substitution of 

glycine to alanine at codon 93 

 

NSC34 transfected with 

G37R-2 

Mutant human SOD1-single amino acid substitution of 

glycine to arginine at codon 37 

 

NSC34 transfected with 

H48Q-9 

Mutant human SOD1-single amino acid substitution of 

histidine to glutamine at codon 48 
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The mutations in SOD1 associated with the development of ALS are scattered throughout 

the SOD1 gene. The G93A, G37R, and H48Q human SOD1 mutations were investigated 

in this study. Mutations in two of the four histidine residues that coordinate copper have 

been identified in fALS, histidine-46 to arginine (H46R) and histidine-48 to glutamine 

(H48Q). The proximity of the H48Q mutation to the copper-binding site reduces the 

protein affinity for copper, and the mutant protein is devoid of enzyme activity 

(Ratovitski, et al. 1999, J. Wang, et al. 2007). The G93A and G37R SOD1 mutations are 

confined to the β-strands, distant from the copper-binding site. In comparison to the 

H48Q mutation, G93A has exhibited fully active bound copper in a coordination 

environment similar to that of WTSOD1 (Hayward, et al. 2002).  

 

Although these models offer a system for the study of the pathogenic mechanisms of 

ALS, the severity of disease in fALS SOD1 mice can differ depending on expression of 

the transgene (Bruijn, et al. 2004). The transgene copy number can produce genetic and 

phenotypic differences in terms of the level of protein expression, and the onset and 

duration of disease, which must be considered when using these models to investigate 

disease. Studies have established a toxic gain property for SOD1 mutations as causative 

of ALS, as opposed to a loss of radical scavenging function. Differences exist between 

the mutations in terms of copper binding, aggregation, and redox state, and although the 

mutations are expressed ubiquitously the mechanisms by which they selectively damage 

MNs remains to be fully understood (Pardo, et al. 1995, Wong, et al. 1995). It has been 

suggested that aberrant copper redox chemistry and SOD1 misfolding are causally linked 

to mutant SOD1 toxicity in MNs (Milardi, et al. 2010).  

 

4.1.3 Investigating the consequences of oxidative damage in in vivo and in vitro 

models of familial-ALS 

 

Observations of an increase of oxidative base damage in the brains of AD and PD 

patients and in spinal cord tissue of ALS patients highlights the importance of 

determining the contribution of nucleic acid oxidation to the observed loss of neurons 

in various neurological disorders (Chang, et al. 2008, Shan, et al. 2003, Zhang, et al. 

1999). The aim of this part of the study was to determine how oxidative damage to 

nucleic acids changes during normal ageing and ALS progression using in vitro and 

in vivo models of ALS. Using immunohistochemical techniques, the presence and 

distribution of oxidative damage to nucleic acids and the presence of DNA damage 

repair within the spinal cord of transgenic mice expressing familial ALS-linked 
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G93A mutant SOD1 and age-matched controls was demonstrated. An antibody 

against 8-hydroxyguanosine (8-OHG) that recognises both DNA and RNA oxidative 

modification was used as a marker for oxidative damage. DNase/RNase pretreatment 

before 8-OHG staining was used to identify whether the cytoplasmic 8-OHG 

reactivity observed is predominantly RNA, or mtDNA damage. Markers of DNA 

damage repair investigated include, Ogg1, DNA-PK, and γ-H2AX. These markers 

were chosen for investigation due to their involvement in the DNA damage response 

(DDR), and their association with ageing and neurological disease. Ogg1 is a DNA 

glycosylase that initiates the base excision repair (BER) pathway for the removal of 

oxidative lesions, by catalysing the cleavage of an N-glycosidic bond between a 

deoxyribose sugar and the modified base (Robertson, et al. 2009). DNA-PK serves as 

both a sensor and transducer of DNA damage signals. It localises to double-stranded 

breaks in DNA that can be formed by ROS, and initiates repair. DNA-PK can also 

activate apoptotic pathways in response to severe DNA damage or critically 

shortened telomeres (reviewed in Burma and Chen 2004). DSB’s can induce DNA-

PK dependent phosphorylation of H2AX and evidence suggests phosphorylated 

H2AX (γ-H2AX, activated form) recruits repair/signaling proteins to foci of DNA 

damage to initiate repair. 

 

In addition, NSC34 cells stably expressing the cDNA of human G93A mutant SOD1, 

human G37R mutant SOD1, human H48Q mutant SOD1, human wild-type SOD1, or the 

pIRES mammalian expression vector only, were used to investigate whether the presence 

of different SOD1 mutations influences the amount of oxidative damage to RNA.  The 

effect of hydrogen peroxide (H2O2) on cellular viability and differences in levels of 

oxidative damage to nucleic acids following exposure to stress were also investigated. 

We hypothesised that cells carrying a human SOD1 mutation would be more susceptible 

to oxidative damage in terms of RNA oxidation, and the induction of stress would lead to 

a dose-dependent increase in oxidative damage and subsequent reduction in cell viability. 

 

Further to this, we sought to determine whether the expression of oxidative stress 

response genes was consistent between the investigated cell lines by RT-qPCR. The 

activation of stress responses in these cells was also investigated to determine whether the 

presence of a mutation affects the cells ability to respond to a sub-lethal exposure of 

oxidative stress. We hypothesised the activation of stress response genes would be 

reduced in cells carrying the mutant SOD1 transgene, as a result of them having impaired 

stress response capacity. 
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4.2 Results  
	
  
Having established differentially oxidised genes during ageing, we proceeded to 

investigate RNA oxidation in model systems of ALS. RNA oxidation has previously been 

reported at presymptomatic stage of disease in ALS and other neurological diseases. 

Intense cytoplasmic reactivity of 8-OHG was identified in the anterior horn MNs of 

G93A mutant SOD1 transgenic mice at presymptomatic stage disease in comparison to 

age-matched controls. Intense nuclear and cytoplasmic reactivity was also identified for 

Ogg1, whilst DNA-PK and H2AX had variable levels of nuclear reactivity in the MNs of 

both transgenic mice and controls. Further to this, we used a cellular model of ALS to 

investigate oxidative stress and RNA oxidation. Three human SOD1 mutations were 

transfected in to NSC34 cells to investigate whether different mutations confer 

differential susceptibility to oxidative stress and subsequent cellular damage. G93A 

mutant SOD1 transfected NSC34 cells demonstrated increased susceptibility to oxidative 

stress induced cellular decline, and increased levels of RNA oxidation in comparison to 

both the H48Q and G37R mutations, and the vector only and WTSOD1 controls. 

Following this the gene expression levels of various oxidative stress markers was 

examined by RT-qPCR, to identify whether these mutations affected the cells ability to 

respond to oxidative stress.	
  

	
  
	
  

4.2.1 Oxidative damage and DNA repair in the spinal cord of transgenic mice 

expressing familial ALS-linked G93A mutant SOD1 

4.2.1.1 Spinal cord morphology of G93A mutant SOD1 transgenic mice and age-

matched controls 

 

The histomorphology of the anterior horns of G93A mutant SOD1 transgenic mice and 

the age-matched controls was examined using haemotoxylin and eosin stained tissue 

sections (figure 4.1). Haematoxylin stains the basophilic structures blue, and eosin stains 

the eosinophilic structures pink. Cresyl violet staining was also used to visualise the 

morphology of the sections and to observe the distribution of the Nissl substance, which 

is stained purple (figure 4.2). The Nissl substance is composed of rough endoplasmic 

reticulum and ribosomes, and therefore contains an abundance of RNA. 
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Figure 4.1: Haematoxylin and Eosin reactivity in the anterior horn of human 

G93A mutant SOD1 transgenic mice 

(A) Presymptomatic stage disease (B) Symptomatic stage disease (C) End-stage disease. 

Age-matched controls are represented in the first column. These images are a 

representation (n=3). Scale bar = 100µm. 
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Figure 4.2:	
  Nissl staining in the anterior spinal cord of human G93A mutant 

SOD1 transgenic mice  

(A) Presymptomatic stage disease (B) Symptomatic stage disease (C) End-stage disease. 

Age-matched controls are represented in the first column. Nissl staining identifies tissue 

histomorphology. The MNs in the transgenic cord display a shrunken appearance (arrow) 

in comparison to age matched controls at presymptomatic stage of disease (A). Towards 

end-stage disease (C) MNs in the transgenic mice display a loss of morphology (arrow). 

These images are a representation (n=3). Scale bar represents 100µm. 
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4.2.1.2 8-OHG reactivity displays cytoplasmic predominance in MNs 

 

Nucleic acid oxidation within the spinal cord of transgenic mice expressing familial ALS-

linked G93A mutant SOD1 was investigated by immunohistochemical examination of 8-

OHG (figure 4.3). The purpose of this work was to examine the cellular localization of 

nucleic acid oxidative damage. The presence of 8-OHG reactivity in MNs and small cells 

(glia, small neurons, endothelial cells) in the spinal cord of both transgenic and non-

transgenic mice demonstrated the presence of nucleic acid oxidation during both normal 

ageing and neurodegenerative disease. MNs in the anterior horn of both G93A SOD1 

transgenic and non-transgenic spinal cord displayed granular cytoplasmic predominance 

of 8-OHG reactivity. At presymptomatic stages (60 days), the MNs in the transgenic cord 

displayed a shrunken appearance in comparison to the non-transgenic cord (figure 4.4, A, 

arrows). The staining pattern within the MNs appeared granular and clumpy which may 

represent the positive reactivity of the Nissl substance. At presymptomatic stages 8-OHG 

reactivity also extended in to neurites and was seen in the nucleus. In comparison, the 

nucleus of the MNs at symptomatic, end-stage disease, and in the age-matched controls 

displayed relatively little 8-OHG reactivity suggesting a lack of DNA oxidative damage 

in comparison to RNA at these stages of disease (figure 4.4, A, arrow). An intensely 

stained dot within the nucleus suggests perinucleolar staining, as these structures contain 

a plethora of ribonucleoproteins and nucleic acid.  

 

As disease progresses there appeared to be a change in the staining pattern and a 

reduction in the amount of 8-OHG within the cells in the transgenic cord with a 

progressive loss of morphology. However, this was only assessed qualitatively and was 

not quantifiable from the immunohistochemical preparations. At symptomatic stages (90 

days), reactivity appeared reduced in comparison to the presymptomatic cord, and there is 

prominent granular staining predominantly localised around the edge of the cell body 

(figure 4.4, B, arrow). The alteration in reactivity becomes particularly prominent 

towards end-stage (140 days) where perikaryon (cell body) staining was more diffuse 

(figure 4.4, C). The appearance of perinucleolar staining was lost, which was 

accompanied with a lack of distinguishable nuclear structures in some neurons. In the 

age-matched controls, the pattern of staining remains the same throughout with prominent 

perikaryon staining in the MNs.  
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A similar pattern and intensity of 8-OHG staining was observed in age-matched controls 

at each disease stage. The grainy distribution of cresyl violet reactivity supports the 

changes in morphology of the MNs during disease as seen with 8-OHG staining.  

	
  

4.2.1.3 Nucleic acid oxidation in small cells 

 

At presymptomatic stages, diffuse nuclear labelling with some cytoplasmic staining of 8-

OHG was observed within small cells. However, the staining intensity differed across 

each cell, which persists at symptomatic and end-stage disease. This was also observed in 

the non-transgenic mouse spinal cord tissue. The intensity of staining seen within the 

small cells appeared darker than that for the MNs at each of the stages, which could be 

due to their size or their increased susceptibility to oxidative damage. Quantification of 

positive nuclear staining within the small cells displayed no significant change in 

reactivity or cell number at each time point and with disease progression. In some of the 

transgenic sections, small cells were seen in close proximity or at the edge of the MN at 

end-stage. Endothelial cells are characterised by a flat elongated nucleus, and some of 

these cells displayed positive 8-OHG reactivity in both disease cases and controls (figure 

4.3F, open arrowheads).  
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Figure 4.3: 8-OHG reactivity in the anterior spinal cord of G93A mutant SOD1 

transgenic mice  

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls. Nuclear and cytoplasmic 8-OHG reactivity is 

prominent at presymptomatic stage of disease (A, arrows). The MNs also appear 

shrunken in morphology in comparison to the age-matched controls, which demonstrate a 
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lack of nuclear reactivity (A, arrow). Glial cells are intensely stained in both the mutant 

and controls (arrowhead). At end-stage disease (F), MNs appear shrunken with a loss of 

morphology (closed arrow). These are a representation of 8-OHG reactivity in the G93A 

SOD1 transgenic mouse model of ALS. Three separate cords for each age were analysed 

by IHC. Scale bar represents 100µm.
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Figure 4.4: 8-OHG reactivity in the anterior spinal cord of G93A mutant SOD1 

transgenic mice  

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls. Nuclear and cytoplasmic 8-OHG reactivity is 

prominent at presymptomatic stage of disease (A, arrow) morphology in comparison to 

the age-matched controls, which demonstrate a lack of nuclear reactivity (A, arrow). This 
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pattern continues at symptomatic stage disease (D). At end-stage disease (F), MNs appear 

shrunken with a loss of morphology (closed arrow), and glial cells cluster around 

degenerating neurons (F, arrowheads). These are a representation of 8-OHG reactivity in 

the G93A SOD1 transgenic mouse model of ALS, and high power images of figure 4.3. 

Three separate cords for each age were analysed by IHC. Scale bar represents 100µm.
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4.2.1.4 8-OHG immunoreactivity after DNase/RNase pre-treatment  

	
  

After DNase treatment a clear ring of reactivity remained in some of the small cells in the 

control sections at 60 days, suggesting RNA oxidation either within the cytoplasm or in 

perinucleolar regions, with the same pattern displayed in the sections from the transgenic 

animals. The MNs showed prominent granular cytoplasmic and perinucleolar staining in 

the transgenic cord, similar to what is seen without DNase treatment at presymptomatic 

stage of disease. Towards end-stage disease, the MNs displayed diffuse staining 

accompanied by a loss of morphology. Following RNase treatment, few MNs were 

distinguished as the predominant cytoplasmic staining was diminished. The identifiable 

MNs showed a diffuse pattern of cytoplasmic staining, which appeared reduced in 

intensity compared to the sections without RNase treatment (figure 4.5). Variable 

reactivity was seen again across the small cells with both DNase and RNase treatment, 

suggesting the presence of both DNA and RNA damage within these cells during ALS. 

	
  
	
  



173 
 

	
  
Figure 4.5: 8-OHG reactivity in the anterior spinal cord of human G93A mutant 

SOD1 transgenic mice following DNase/Rnase pre-treatment.  

Following DNase pretreatment cytoplasmic staining is still prominent in the MNs (arrow) 

in comparison to RNase pretreatment where it appers diminished (arrowheads). These are 

representative images (n=3). Scale bar represents 100µm. 
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4.2.1.5 Oxidative DNA damage repair response  

 

The DNA damage response is often used to identify oxidative stress, as repair enzymes 

are activated in response to DNA modifications. Activation of this response within the 

spinal cord of transgenic mice expressing familial ALS-linked G93A mutant SOD1 was 

investigated by immunohistochemical examination of Ogg1, DNA-PK, and γ-H2AX. At 

presymptomatic stage disease intense cytoplasmic and nuclear reactivity of the DNA 

glycosylase Ogg1 is observed within MNs (figure 4.7, B, arrow), in comparison to the 

controls which display a predominantly neuronal cytoplasmic pattern of staining that 

appeared reduced in intensity (figure 4.7, A, arrow). Ogg1 reactivity was clumpy within 

the cytoplasm with the presence of perinucleolar staining, which is comparable to the 

distribution of 8-OHG reactivity. At the symptomatic stage, there is condensed 

cytoplasmic reactivity for Ogg1 that is clumpy throughout the cell body, and the 

perinucleolar staining appeared less prominent. Towards end stage disease, cytoplasmic 

Ogg1 reactivity persisted with a similar staining pattern to that seen at symptomatic stage, 

but once again MNs appear shrunken with some showing a loss of morphology (figure 

4.7, F, arrow).  

 

At presymptomatic and symptomatic stage of disease small cells showed relatively little 

reactivity for Ogg1, however as disease progresses towards end-stage the number of 

Ogg1-positive small cells increased. Few small cells showed reactivity in the age-

matched controls at all time points investigated. The detectable reactivity was subtle 

nuclear dot-like staining, which, unlike the MNs, doesn’t parallel 8-OHG reactivity.  
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Figure 4.6: Ogg1 reactivity in the anterior horn of human G93A mutant SOD1 

transgenic mice  

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls. Prominent Ogg1 reactivity is demonstrated in the 
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nucleus and cytoplasm of MNs at presymptomatic stage disease (B, arrows) in 

comparison to age-matched controls (A, arrows). These are a representation of Ogg1 

reactivity in the G93A SOD1 transgenic mouse model of ALS. Three separate cords for 

each age were analysed by IHC. Scale bar represents 100µm. 
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Figure 4.7: Ogg1 reactivity in the anterior horn of human G93A mutant SOD1 

transgenic mice  

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls. (B) presymptomatic stage of disease, intense 

nuclear cytoplasmic staining in MNs (arrow) and glial cells (arrow head) in comparison 

to the MN in the age-matched control (A, highlighted by arrow). (D) Symptomatic stage 
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disease and age-matched control (C). (F) end-stage disease, some MNs show loss of 

morphology and Ogg1 reactivity (arrow), in comparison to age-matched controls which 

have negligible nuclear staining (E, arrow). These are a representation of Ogg1 reactivity 

in the G93A SOD1 transgenic mouse model of ALS. Three separate cords for each age 

were analysed by IHC. Scale bar represents 100µm. 

	
  

4.2.1.6 DNA-damage response markers vary in reactivity with disease progression 

 

At presymptomatic stages of disease, an up-regulation of reactivity in nuclear staining of 

DNA-PK within MNs and small cells of the anterior horn was seen with variability of 

staining across cell types (figure 4.8). Some MNs displayed an intensely stained nucleus 

whereas others have little to no staining. Staining within the nucleus of MNs appeared 

granular, with no nucleolar pattern of staining. No obvious differences were observed 

between the intensity and distribution of DNA-PK reactivity within disease cases and 

controls. In relation to 8-OHG staining in the age-matched controls, oxidative damage 

and DNA repair response may be maintained at a level that has no detrimental effect on 

the cells. Levels of endogenous cellular oxidative damage are high, so the observation of 

damage is expected. At the symptomatic stage, DNA-PK reactivity appeared reduced in 

comparison to the age-matched controls, however this is only observational and was not 

quantifiable from the immunohistochemical results. This also correlates with the intense 

clumpy nucleolus staining observed for 8-OHG in the transgenic sections. DNA-PK 

showed markedly reduced reactivity in the nucleus of MNs towards end-stage, in 

comparison to the controls that displayed prominent nuclear staining in the large MNs 

within the anterior horn. This is consistent with the pattern of staining and morphology of 

MNs seen with other markers.  

 

DNA-PK reactivity at the presymptomatic stage showed a variable intensity of staining 

between small cells. It is difficult to ascertain differences in the intensity of staining 

across these cells due to their size, however is clear that DNA repair mechanisms are 

activated within these cells. At end-stage disease there appeared to be more positive small 

cell nuclei within the field, however although this may be due to an up-regulation in DDR 

it may also be due to atrophy of anterior horns during disease, with synaptic loss 

producing an apparent increase in cell numbers.
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Figure 4.8: DNA-PK reactivity in the anterior horn of human G93A mutant 

SOD1 transgenic mice  

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls. At presymptomatic stage disease no differences in 
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DNA-PK reactivity are observed between disease (B) and age-matched controls (A). At 

symptomatic (D, arrow) and end-stage disease (F, arrowhead) DNA-PK reactivity with 

the MNs appears reduced in comparion to the controls (C, arrow). These are a 

representation of DNA-PK reactivity in the G93A SOD1 transgenic mouse model of 

ALS. Three separate cords for each age were analysed by IHC. Scale bar represents 

100µm. 
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Figure 4.9: DNA-PK reactivity in the anterior horn of human G93A mutant 

SOD1 transgenic mice  

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls.   At symptomatic (D, arrow) and end-stage disease 
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(F, arrowhead) DNA-PK reactivity with the MNs appears reduced in comparion to the 

controls (C, arrow). These are a representation of DNA-PK reactivity in the G93A SOD1 

transgenic mouse model of ALS. Three separate cords for each age were analysed by 

IHC. Scale bar represents 100µm. 
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4.2.1.7 DNA-damage markers are still activated at end-stage disease 

 

To further investigate DNA damage response markers to see if a similar pattern was 

observed during disease progression, the reactivity of γ-H2AX was studied. In the control 

spinal cord at presymptomatic stage intense nuclear reactivity of γ-H2AX within MNs 

was observed, specifically the nucleolus was defined and was more prominent in the 

transgenic cord (figure 4.10). MNs displayed intense staining at the presymptomatic stage 

in disease cases, however at symptomatic stage larger MNs displayed a reduction in 

reactivity, which persisted at end-stage disease. γ-H2AX reactivity is prominent in the 

MNs of the control cord at 90 and 140 days, displaying a similar staining pattern to that 

seen at presymptomatic stage in the transgenic cord. The intensity of staining within 

small cells differs across the section, similar to the observations with other markers. At 

end-stage disease nuclear staining appeared less prominent within the small cells 

compared to the control cases. 
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Figure 4.10: γ-H2AX reactivity in the anterior horn of human G93A mutant 

SOD1 transgenic mice  

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls. Some MNs display intense γ-H2AX reactivity in 
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MNs whereas others display little to no reactivity in both the G93A mutant SOD1 mouse 

spinal cord and age-matched controls (A&B, arrows). This persists from presymptomatic 

to end-stage disease. These are a representation of γ-H2AX reactivity in the G93A SOD1 

transgenic mouse model of ALS. Three separate cords for each age were analysed by 

IHC. Scale bar represents 100µm. 
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Figure 4.11: γ-H2AX reactivity in the anterior horn of human G93A mutant 

SOD1 transgenic mice (higher power) 

Presymptomatic, symptomatic, and end-stage disease (B, D, F respectively) in 

comparison to age-matched controls. Some MNs display intense γ-H2AX reactivity in 
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MNs whereas others display little to no reactivity in both the G93A mutant SOD1 mouse 

spinal cord and age-matched controls (C&D, arrows). These are a representation of γ-

H2AX reactivity in the G93A SOD1 transgenic mouse model of ALS. Three separate 

cords for each age were analysed by IHC. Scale bar represents 100µm. 

 

4.2.2 RNA Oxidation in an in vitro model of mutant SOD1 familial ALS 

4.2.2.1 Human mutant SOD1 transfection levels in NSC34 cells 

 

NSC34 cells stably expressing the cDNA of human G93A mutant SOD1, human G37R 

mutant SOD1, human H48Q mutant SOD1, human wild-type SOD1, or the pIRES 

mammalian expression vector only, were used to investigate oxidative stress associated 

dysfunction related to ALS pathology. Initially RT-qPCR and western blotting techniques 

were used to determine whether the level of transfection of each of the human SOD1 

mutations were comparable in the NSC34 cell lines. The human SOD1 levels in 

transfected NSC34 cells were compared to expression levels of endogenous mouse Sod1 

and the housekeeping gene GAPDH (figure 4.12). There were no significant differences 

in the expression level of human wild-type SOD1 (WTSOD1) and the human SOD1 

mutations in comparison to mouse Sod1 and GAPDH, demonstrating equivalent 

transfection levels for each of the mutations. Despite the variation across experiments, the 

levels of transfection within an experiment were comparable, as identified by the similar 

Ct values which are proportional to the amount of cDNA in the sample (table 4.2).  

 

Table 4.2: Investigating expression levels of human SOD1 in transfected NSC34 

cells 

#1 and #2 represent independent results 

 

Cell line Ct(SOD1) #1 
 

Ct(SOD1) #2 Ct(SOD1)-Ct(Sod1) Ct(SOD1)-Ct(GAPDH) 

#1 #2 #1 #2 

WTSOD1 18.725 18.695 
 

4.645 4.615 2.265 6.125 

G93A 19.18 19.445 
 

6.485 3.3 
 

3.1 4.785 

H48Q 19.58 16.705 
 

5.875 2.73 3.89 6.595 

G37R 18.76 19.89 
 

5.12 4.215 3.18 6.575 
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A. 

	
    

B. 

	
    

Figure 4.12: Comparing the expression of mouse and human SOD1 in NSC34 

cells 

Analysis of the levels of mouse and human SOD1 expression in the NSC34 cells 

transfected with different SOD1 mutations revealed no significant differences between 

WTSOD1 and mutant SOD1 expressing NSC34s. (A) The expression of human SOD1 

was related to the expression of endogenous mouse Sod1. (B) The expression of human 

SOD1 was related to the expression of housekeeping gene GAPDH. Data presented as 

mean with SD (n=3), statistical analysis by one-way ANOVA with Bonferroni post-test. 
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revealed equivalent protein expression of mouse SOD1 in each of the cell lines (figure 

4.13, C). However, there was a significant reduction in human SOD1 protein expression 

for the G93A and H48Q mutant SOD1 transfected NSC34 cells, in comparison to the 

WTSOD1, and G37R mutant SOD1 transfected cells (figure 4.13, D). The pIRES vector 

only and the non-transfected cells as expected had no presence of human SOD1 but 

showed equivalent expression levels as the transfected cells for mouse Sod. 
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A. 
	
  

	
  
 

B. 
 

 
 
 

C. 

 
 

D. 

 

	
  
Figure 4.13: Comparing protein expression of mouse and human SOD1 in 

NSC34 cells  

(A) Western blot of human and mouse SOD1. (B) Human and mouse SOD1 were 

normalised to Actin. (C) Densitometric analysis of the levels of mouse Sod1 protein 

present in the NSC34 cells transfected with different SOD1 mutations. (D) Densitometric 

analysis of the levels of human SOD1 protein present in the NSC34 cells transfected with 

different SOD1 mutations. Data presented as mean with SD (n=7), statistical analyses by 

one-way ANOVA with Bonferroni post-test ***=P≤0.001, **=P≤0.01. 
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4.2.2.2 Quantifying differences in RNA oxidation in NSC34 cells 

	
  
Investigating differences in RNA oxidation between cells carrying a human SOD1 

mutation in comparison to controls was initially examined by Northwestern blotting. This 

involved extracting total RNA and electrophoresing on a denaturing formaldehyde 

agarose gel at a low voltage. The RNA was transferred on to positively charged nylon 

membrane, and probed with an antibody against 8-OHG to determine differential levels 

of oxidative damage to RNA. Despite previous papers publishing data displaying 

differences between in RNA oxidation between models of neurodegenerative diseases 

and controls using similar methods, we failed to produce data using this method.  

	
  
As an alternative we attempted to investigate differences in levels of RNA oxidation 

between cells carrying a SOD1 mutation in comparison to controls by separating and 

subsequently quantifying the oxidised and non-oxidised fractions of RNA by RT-qPCR. 

Separation of the fractions was achieved by immunoprecipitation (IP) using an antibody 

against 8-OHG and protein L agarose beads (section 2.2.1.1.4), as previously described 

(Chang, et al. 2008). The optimum concentration of RNA used for IP was investigated by 

trialling a titration of RNA concentrations. RNA for optimisation was extracted from 

pIRES-vector only NSC34 cells, as these were to be used as controls in the subsequent 

experiments. The oxidised and non-oxidised fractions were transcribed to cDNA and RT-

qPCR compared levels of 18S rRNA and GAPDH. 18S rRNA was selected as this would 

provide a measure of all RNA species rather than individual genes. A standard curve was 

set up for each experiment using 18S rRNA primers and serial dilutions of total RNA 

extracted from pIRES-vector only NSC34 cells (figure 2.3). This allowed the relative 

concentration in each sample to be titrated back to a value on the standard curve. Further 

to this, the optimal type of bead used to immunoprecipitate the oxidised RNA was 

investigated. Protein L agarose beads were initially chosen due to their affinity for mouse 

antibodies with kappa light chains. Protein A Dynabeads (Invitrogen, UK), which are 

magnetic beads and have high affinity for mouse IgG2, were tested in comparison to the 

protein L agarose beads. RT-qPCR to compare the IP efficiency of the two types of bead 

revealed the protein L agarose beads yield a greater percentage of oxidised RNA in 

comparison to non-oxidised RNA, when the starting concentration is equal (figure 4.14).  
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A. 
 

	
  
B. 

	
  
 

Figure 4.14: Optimising immunoprecipitation efficiency  

To optimise the IP of oxidised RNA different protein beads and starting concentration of 

total RNA were trialled. The proportion of oxidised RNA immunoprecipitated was 

significantly greater using the protein L agarose beads so these were used for subsequent 

experiments (A). Other beads trialed were unsuccessful in capturing a proportion of RNA 

that could be quantified. The percentage of oxidised RNA immunoprecipitated from total 

RNA increased as the starting concentration of total RNA was increased (B). There were 

no significant differences between the percentages of oxidised RNA IP between samples. 

1µg of RNA was chosen as the optimum concentration for IP as this shows sufficient IP 

with little variation. A greater concentration of starting material was not used as this 

method was being optimised for the immunoprecipitation of RNA from the anterior horn 

of mouse spinal cord for the microarray experiment (chapter 3). Data presented as mean 

with SD (n=3), statistical analyses (A) two-tailed unpaired t-test (B) one-way ANOVA 

with Bonferroni post-test *=P≤0.05. 
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Using the standard curve the percentage of oxidised to non-oxidised RNA from each 

sample was calculated. A starting concentration of 1µg RNA was used for subsequent IP 

experiments as this was considered the most consistent in terms of the percentage of 

oxidised RNA that is immunoprecipitated. Our aim was to investigate whether 

differential levels of RNA oxidation exist between NSC34 cells carrying a SOD1 

mutation compared to controls. A standard curve for 18S rRNA was used to determine 

the relative levels of 18S rRNA in the oxidised and non-oxidised fraction from the Ct 

threshold of the respective fractions. The percentage of oxidised RNA relative to non-

oxidised was calculated, and the results show greater levels of oxidative damage to RNA 

in the cells carrying the G93A and H48Q SOD1 mutation in comparison to pIRES and 

human wild-type SOD1 NSC34 cells (figure 4.15). The G37R mutant SOD1 NSC34s 

were also investigated, however the IP was unsuccessful as amplification did not occur 

until after cycle 26 of the PCR. This generated a low Ct value, which is indicative of the 

amount of template present at the start of amplification, so this sample was excluded from 

the results. 

 

	
  	
  
	
  

	
  
	
  

 Figure 4.15: Investigating RNA oxidation in NSC34 cells 

Levels of RNA oxidation between cells carrying human SOD1 mutations were 

investigated in comparison to controls. A significant increase in oxidation is seen for the 

H48Q mutation in comparison to the pIRES vector control cells. An increase in RNA 

oxidation within the G93A mutant SOD1 cells was also seen, however this was not 

statistically significant. Data presented as mean with SD (n=3), statistical analyses by 

one-way ANOVA with Bonferroni post-test, *=P≤0.05. 
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The finding that G93A and H48Q mutant SOD1 NSC34s have a greater level of oxidative 

damage to RNA in comparison to controls correlates with the reduction in protein levels 

seen for these mutations. Transfection levels appear to be comparable across all cells 

types at the transcriptional level as determined by RT-qPCR. The increase in oxidative 

damage to these transcripts may consequently lead to a reduction in the level of 

functional protein due to the inability for the transcript to be accurately translated, which 

supports previous studies that have investigated the consequences of oxidative 

modification to nucleic acids (Ding, et al. 2005, Tanaka, et al. 2007). 

 

4.2.3 Investigating susceptibility of NSC34’s to oxidative stress 

	
  

4.2.3.1 Cell viability of control and mutant NSC34 cells after exposure to 

oxidative stress 

 

The effect of oxidative stress on cell viability in the control and mutant NSC34 cell lines 

was investigated by treating the cells with various concentrations of hydrogen peroxide 

(H2O2); their survival was determined by trypan blue exclusion. We were investigating 

the hypothesis that cells carrying a human mutant SOD1 transgene are more susceptible 

to oxidative stress mediated cell death. The treatment of control and mutant cells with 

moderate stress (50µM to 100µM) produced a slight reduction in cell viability over time, 

with the G93A and H48Q mutations beginning to show susceptibility (figure 4.16, figure 

4.18). After two hours of a 50µM and 100µM treatment, WTSOD displayed a 

significantly greater viability in comparison to the G93A mutant cells, however this 

significance does not persist with six and ten hour treatments at these concentrations 

(figure 4.17). The G37R mutant cells begin to show greater resistance to the exogenous 

stress at 100µM, with a significant increase in viability seen in comparison to the G93A 

mutant cells at six hours (figure 4.18). Vulnerability to oxidative stress for the G93A 

mutation persists with a 250µM treatment with significant differences in cell viability 

compared to the other mutations and controls seen at two, four and six hours (p≤0.01). 

The G37R mutant cells continue to show a greater viability in comparison to the other 

mutations. A ten-hour treatment results in comparable levels of viability across all cell 

types, with the G93A showing slightly reduced survival (figure 4.16).  

 

An exposure of 500µM to 1mM H2O2 produced an exponential reduction in viability with 

time, with certain mutations displaying rapid inductions in cell death (figure 4.16, figure 
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4.18). The G93A mutation displayed a significant reduction in cell viability with a 

500µM treatment in comparison to both controls and the other mutations (p≤0.05) and the 

H48Q mutation showed a significant reduction in viability in comparison to controls at 

six and ten hours (p≤0.01). The other mutations and controls may be activating a more 

successful stress response at two and four hours, as viability between them is comparable, 

maintaining approximately 80% viability up to six hours with a 500µM dose. The G37R 

mutation showed a steady decline over time with both a 500µM and 1mM dose, but 

displayed the greatest survival at ten hours, with viability significantly greater than the 

other mutations (p≤0.001) (figure 4.18). These differences may be indicative of the effect 

the different mutations have on the cells. The patterns in viability between the different 

cells is similar with both 500µM and 1mM treatments, with the G93A showing the 

greatest susceptibility and the G37R showing the greatest resistance to stress. In 

comparison, the H48Q mutation demonstrates rapid inductions of cell death at six hours 

with 500µM and 1mM doses.  

 

Prolonged treatment with H2O2 (>six hours) would be expected to significantly reduce 

viability across all cell types. The G93A mutant SOD1 NSC34 cells were the most 

severely affected with the H48Q mutant showing similar effects as time and H2O2 

concentration increases, in comparison to the G37R mutation that displayed a greater 

percentage viability across all concentrations at all the investigated time points (p≤0.05). 

The pIRES vector and WTSOD1 controls show reductions in viability but these did not 

become pronounced until persistent exposure to high concentrations of H2O2 (figure 4.16, 

figure 4.18). 
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B. 

 
C. 

 

D. 

 
                                           E. 

 

Figure 4.16: Cell viability after H2O2 treatment of cells transfected with vector 

only, normal human SOD1, or the G93A, H48Q, or G37R mutant form of human 

SOD1	
  

(A) 50µM H2O2 treatment (B) 100µM H2O2 treatment (C) At 250µM H2O2 treatment, the 

G93A mutation shows increased susceptibility to stress. A ten hour exposure results in 

substantial cell death across all cell lines. (D) At 500µM H2O2 treatment, a notable 

reduction in cell viability over time across all cell types investigated is seen. (E) A 1mM 

H2O2 treatment produced an exponential decline in cell viability over time with the most 

rapid induction taking place between two and six hours for all cell types. Data presented 

as mean with SD (n=5). Statistical analyses shown on the following graphs. 
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A.   

 

B. 

 
C. 

 

D. 

 
                                                  E. 

 
Figure 4.17: Cell viability after H2O2 treatment of cells transfected with vector 

only, normal human SOD1, or human G93A mutant SOD1 

Human G93A mutant SOD1 transfected NSC34 cells begin to show susceptibility to 

stress with 50µM and 100µM H2O2 treatment (A&B). At 250µM H2O2 treatment, the 

G93A mutation shows increased susceptibility to stress in comparison to the controls 

investigated (C). At 500µM H2O2 treatment, a notable reduction in cell viability for the 

G93A mutation is seen in comparison to controls (D). 1mM H2O2 treatment produced an 

exponential decline in cell viability over time. Data presented as mean with SD (n=5). 

Statistical analysis by two-way ANOVA with Bonferroni post test, *P=<0.01, 

**P=<0.001, ***P=<0.0001	
  

50µM H2O2

2 6 10
0

20

40

60

80

100
%

 V
iab

ili
ty

Time (Hrs)

pIRES
WTSOD1
G93A*

100µM H2O2

2 6 10
0

20

40

60

80

100

%
 V

iab
ili

ty

Time (Hrs)

pIRES
WTSOD1
G93A

*

250µM H2O2

Time (Hrs)

%
 V

iab
ili

ty

2 4 6 10
0

20

40

60

80

100

pIRES
WTSOD1
G93A

*** ***
**

500µM H2O2

Time (Hrs)

%
 V

iab
ili

ty

2 4 6 10
0

20

40

60

80

100

pIRES
WTSOD1
G93A*

*

***

***

***
***

***

***
***

1mM H2O2

Time (Hrs)

%
 V

iab
ili

ty

2 4 6 10
0

20

40

60

80

100 pIRES
WTSOD1
G93A

*
****

***

***

***

*** ***



198 
 

A. 

 

B. 

 
C. 
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                                               E. 

 
Figure 4.18: Cell viability after H2O2 treatment of cells transfected with human 

G93A, G37R, or H48Q mutant SOD1 

At 50µM and 100µM stress, the G37R begins to show resistance to stress-induced 

cellular death in comparison to the other two mutations (A&B). The G93A mutation 

continues to show susceptibility with a 250µM treatment, with cell viability significantly 

lower than the H48Q and G37R mutation at all time points (C). This persists with a 

500µM treatment (D). Following prolonged exposure to increased stress, all mutations 

have a substantial reduction in viability, with the G93A and H48Q mutations showing the 

greatest susceptibility (D&E). Data presented as mean with SD (n=5). Statistical analysis 

by two-way ANOVA with Bonferroni post test, *P=<0.01, **P=<0.001, ***P=<0.0001 
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To further investigate the effect of oxidative stress on cellular injury, Dr Scott Allen 

carried out lactate dehydrogenase (LDH) assays. The release of LDH from the cell was 

measured to quantitatively measure cell lysis in the presence of H2O2 (figure 4.19). No 

difference in LDH release was observed between mutants and controls following a two-

hour treatment with a 250µM, 500µM, or 1mM concentration of H2O2. A significant 

increase in LDH release was observed in the G93A mutant compared to the control and 

H48Q/G37R mutant cell lines (p≤0.01) following exposure of cells to 250µM, 500µM 

and 1mM H2O2 for four and six hours. The G37R mutant cells displayed similar LDH 

release to the controls at the time points and H2O2 tested, which is consistent with the 

trypan blue cell viability data (figure 4.16). The H48Q mutant cells in general showed 

greater LDH release than controls at 250µM H2O2.  
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Figure 4.19: LDH release in control and mutant NSC34 cells following exposure 

to H2O2 

Data presented as mean with SD (n=3). Statistical analyses by two-way ANOVA with 

Bonferroni post-test, *=P≤0.05, **=P≤0.01, ***=P≤0.001, ****=P≤0.0001 
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4.2.4 Antioxidant response of control and mutant NSC34 cells 

4.2.4.1 Activation of antioxidant response under basal conditions 

 

To investigate the effect oxidative stress has on the expression of stress response genes in 

mutant NSC34s, a selection of oxidative stress response genes were investigated by RT-

qPCR under basal and stressed conditions. We hypothesised the increased susceptibility 

to cell death of mutant SOD1 NSC34s following exposure to oxidative stress was in part 

due to their inability to up-regulate a defensive response through altering their 

transcriptome. This has been shown previously in gene expression profiling studies in 

both the in vitro and in vivo models of mutant SOD1-associated fALS (Kirby, et al. 2005, 

Vargas, et al. 2005). Genes whose expressions have previously been reported to change 

in response to oxidative stress conditions were chosen. The 100µM and 250µM H2O2 

treatment conditions were chosen, since 100µM H2O2 represents a dose at which the cells 

are exposed to an oxidative environment but display no overt cell death, suggesting they 

are mounting some form of response and 250µM H2O2 which leads to cellular 

susceptibility to death with increasing lengths of treatment, suggesting the protective 

mechanisms are lost or cannot compensate for the level of stress the cells are presented 

with. The genes investigated were mouse SOD1, Ogg1, Nrf2, Ho-1, and Nqo1. The 

expression level of stress response genes was initially compared to the relative expression 

levels of GAPDH. However, studies have shown GAPDH expression to be altered in 

response to stress (Ito, et al. 1996, Schmittgen and Zakrajsek 2000), and the samples were 

re-analysed in comparison to Actin expression levels. 

 

Under basal conditions, the G93A has significantly lower expression of Nrf2 in 

comparison to the pIRES control. This was also seen in the WTSOD1 transfected NSC34 

cells (figure 4.20 A). Expression levels of Ho-1 were similar for the WTSOD1 and 

human SOD1 mutations, however G37R showed a significant increase in expression in 

comparison to the pIRES control (figure 4.20, B). Nqo1 displayed a reduction in 

expression in the G93A mutant SOD1 NSC34s, however this did not reach significance, 

which could be due to the variability of the data (figure 4.20, C). The H48Q and G37R 

mutation also displayed slightly reduced expression levels of Nqo1, but this data was also 

variable.  
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A. 

	
     
B. 

	
  	
    
C. 

	
    

Figure 4.20: Expression of oxidative stress response genes in control and mutant 

NSC34 cells under basal conditions 

The expression levels of Nrf2, Ho-1, and Nqo1 were examined in the pIRES control, 

WTSOD1 and human mutant SOD1 carrying NSC34 cells under basal conditions. Nrf2 

was found to be significantly reduced in the WTSOD1 and human G93A mutant SOD1 

NSC34s in comparison to the pIRES control (A). The G37R mutant SOD1 NSC34s 

showed a significant increase in Ho-1 expression in comparison to the pIRES control (B). 

WTSOD1 showed reduced expression of Nqo1 in comparison to the pIRES control, along 

with G93A however this was highly variable (C). Data presented as mean with SD (n=4). 

Statistical analyses by one-way ANOVA with Bonferroni post-test*=P≤0.05, **=P≤0.01 
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4.2.4.2 Activation of oxidative stress response following exposure to H2O2 

	
  
The induction of antioxidant response genes was also investigated after exposure to 

oxidative stress; RNA was extracted following H2O2 treatment for the cell viability 

assays. The genes investigated under basal conditions were studied (Nrf2, Ho-1, and 

Nqo1). Levels of relative expression of these oxidative stress response genes were 

investigated after exposure to 250µM H2O2 for two, six, and ten hours. A slight reduction 

in expression is seen across all cell types in comparison to pIRES control cells for Nrf2, 

following exposure to 250µM H2O2 for six hours (figure 4.21, A). Following exposure to 

oxidative stress the induction of Ho-1 is reduced in G93A and G37R mutant SOD1 

transfected NSC34s in comparison to pIRES control cells and their basal expression 

levels, however this was not significant (figure 4.21, B). This may represent a reduction 

in the ability to up-regulate an antioxidant response following exposure to stress. The 

expression of Nqo1 is increased in G93A mutant SOD1 NSC34s in comparison to their 

basal expression levels, however this does not differ significantly from the controls 

(figure 4.21, C).  
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A. 

 

B. 

 

C. 

 

Figure 4.21: Expression of oxidative stress response genes in control and mutant 

NSC34 cells following exposure to H2O2 

Expression levels of Nrf2, Ho-1, and Nqo1 were investigated in control and mutant 

NSC34 cells following exposure to 250µM H2O2 for two, six, or ten hours. No significant 

differences were seen for the induction of stress response genes following exposure to 

oxidative stress for each of the cell lines investigated. Levels of expression were highly 

variable across and between control and mutant cells. Data presented as mean with SD 

(n=3), and statistical analysis by two-way ANOVA with Bonferroni post-test 
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4.2.5 Gene expression levels of DNA damage response in NSC34 cells 

4.2.5.1 DNA damage response under basal conditions 

 

We also investigated expression levels of Ogg1, to determine whether there is an increase 

in the activation of DNA damage response within cells carrying human SOD1 mutations. 

The G93A mutant SOD1 NSC34s showed a non-significant (p>0.05) increase in 

expression in comparison to the pIRES and WTSOD control cells, and a significant 

increase (p≤0.05) in comparison to the H48Q mutant SOD1 NSC34 cells (figure 4.22). 

 

 

 
 

Figure 4.22: Expression of DNA damage response gene Ogg1 in control and 

mutant NSC34 cells under basal conditions 

The expression levels of Ogg1 were investigated in the pIRES, WTSOD1, and human 

mutant NSC34 cells under basal conditions. The G93A mutation had the greatest level of 

expression in comparison to all cell types, and its expression was significantly increased 

in comparison to the H48Q mutation. Data presented as mean with SD (n=3). Statistical 

analysis by one-way ANOVA with Bonferroni post-test *=P≤0.05 
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mutations, despite showing a reduction in expression in comparison to WTSOD1, 

expression is slightly greater than what is seen in the pIRES control NSC34s. Following a 

ten hour exposure to oxidative stress, the H48Q mutant SOD1 NSC34s demonstrate the 

greatest expression level of Ogg1. Again, there are no significant differences between 

expression levels across the cell lines. 

 

 

 

Figure 4.23: Expression of DNA damage response gene Ogg1 in control and 

mutant NSC34 cells following cellular exposure to oxidative stress 

No significant differences in expression were seen in Ogg1 expression between the 

mutations at each time point. Increased expression was seen across all cell lines following 

a six and ten hour exposure to oxidative stress, with only H48Q mutant SOD1 showing a 

significance increase in expression over time. Data presented as mean with SD (n=3). 

Statistical analysis by two-way ANOVA with Bonferroni post-test *=P≤0.05, **=P≤0.01 
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4.3 Discussion 
	
  

4.3.1 Nucleic acid oxidation and DNA repair in the spinal cord of an in vivo 

model of ALS 

 
The oxidative modification of lipids, proteins and nucleic acids and/or the activation of 

damage response pathways are generally used as markers of oxidative stress. While 

oxidative modifications have been shown to increase, a reduction in DNA damage 

response (DDR) has been reported in the neuropathology of ageing and 

neurodegenerative disease (Borgesius, et al. 2011, Jackson and Bartek 2009, Weissman, 

et al. 2007b), and linked to increased cellular stress. Evidence suggests the accumulation 

of damaged macromolecules to be a causative factor of the progress of ageing and 

specific diseases (Esiri 2007). Here we demonstrate the presence and distribution of 

oxidative modification to nucleic acids within the large MNs and small cells in the spinal 

cord during disease progression in the G93A mutant SOD1 transgenic mouse model. 

Over 20 different types of oxidatively altered purine and pyrimidine bases have been 

identified in nucleic acids (Ishibashi, et al. 2005). Guanine has the lowest oxidation 

potential compared to cytosine, thymine/uracil, and adenine; it is the most readily 

oxidised and consequently 8-hydroxydeoxyguanosine/8-hydroxyguanosine are commonly 

used as biomarkers of oxidative damage to DNA and RNA respectively (section 1.6).  

 

Here we demonstrate the presence of 8-OHG reactivity at the presymptomatic stage of 

ALS progression, providing evidence of oxidative damage to nucleic acid prior to MN 

death and confirming this is not merely a consequence of dying cells. Nucleic acid 

oxidation was previously observed to be most prominent at the early presymptomatic 

stage and then to have subsided at later stages of disease progression in a transgenic 

murine model expressing human G93A mutant SOD1 (Chang, et al. 2008), which is 

similar to our observations. The antibody against 8-OHG identifies oxidatively modified 

DNA and RNA, however cytoplasmic predominance of oxidative damage, and the 

reduction in staining intensity following RNase treatment, suggests that during normal 

ageing and disease states ROS generated by the mitochondria inflict damage on 

surrounding RNA species. This is consistent with previous findings of RNA 

susceptibility to oxidative modification during ageing and neurodegenerative disease 

(Chang, et al. 2008, Nunomura, et al. 1999). The predominance of cytoplasmic staining 

may also be due to the lack of repair mechanisms for oxidatively damaged RNA. In both 

AD and PD 8-OHdG/8-OHG immunoreactivity was predominantly localised in the 
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cytoplasm with a significant increase identified in patients compared to age-matched 

controls (Nunomura, et al. 2001, Zhang, et al. 1999).  

 

Changes in MN morphology were identified during disease progression in the G93A 

mutant SOD1 transgenic mouse model. At the presymptomatic stage, the shrunken 

morphology may represent their imminent atrophy and the loss of structure at end-stage 

suggests MN degeneration. The reduction in 8-OHG reactivity within MNs at end-stage 

may represent the loss of ribonucleic acid as the cells degenerate. A previous study 

demonstrated that levels of RNA oxidation were significantly higher in control mice 

compared to the transgenic mice at 120 days of age, which may represent degeneration of 

those cells previously demonstrated to be vulnerable to oxidative damage (Chang, et al. 

2008). This evidence substantiates the view that an increase in oxidative damage to 

nucleic acid accompanies neuronal degeneration during ALS pathogenesis, which is then 

reduced as the neurons die, and also suggests a reduction in the capacity to repair 

oxidatively damaged DNA (Aguirre, et al. 2005). The extension of 8-OHG reactivity to 

neurites at presymptomatic stage of disease and during normal ageing suggests the 

oxidation of RNA molecules targeted for transportation, or damage to those confined 

within ribonucleoprotein complexes. The perinucleolar staining is also diminished with 

RNase treatment suggesting that the RNAs within this compartment are oxidatively 

damaged. Perinuclear dots of intense staining can also be seen, which may represent the 

aggregation of oxidised RNA or areas of increased susceptibility to damage. The granular 

staining pattern seen at presymptomatic and symptomatic stages suggest oxidative 

damage to ribosomal RNAs within the cytoplasm, and also may represent the oxidation of 

specific mRNA complexes.  

 

Following RNase pre-treatment, some cytoplasmic staining is still observed in the 

cytoplasm of MNs. This may be a result of inefficient removal of all RNA due to the 

concentration of RNase used, or may represent the oxidative modification to mtDNA, 

which has been demonstrated in previous studies (Yakes and Van Houten 1997). DNase 

pre-treatment also revealed a slight reduction in staining, which provides increasing 

evidence for mtDNA damage however pre-treatment with both DNase and RNase failed 

to diminish all staining suggesting the concentration of the nucleases need to be 

optimised. Isolation of the nuclear and cytoplasmic compartments, and further isolation 

of the mitochondria would allow investigation into how much reactivity is attributable to 

nuclear DNA, mitochondrial DNA, and RNA oxidative damage. Small cell reactivity is 

similar following pre-treatment with either DNase or RNase. Increased reactivity is 

observed in the small cells following DNase treatment at symptomatic and end-stage 
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disease, suggesting increased RNA oxidation in comparison to the MNs, however this is 

speculative as it is difficult to distinguish the cytosol from the nucleus in these cells.  

 

The intensity of small cell reactivity differs across the sections at all ages in both disease 

and control mice. Towards end-stage disease an increase in small cells infiltrate the field; 

this may not be due to an increase in cellular proliferation, but may be a consequence of 

dendritic regression and reduced synaptic densities (Resnick, et al. 2003, Terry 2000), 

allowing more cells to be distinguished within a given area. The prominent staining 

observed in small cells at end-stage demonstrates the selective vulnerability of MNs to 

disease, and suggests these cells are more resistant to oxidative stress induced damage.  

 

Cresyl violet staining is typically used to identify the neuronal structure in brain and 

spinal cord tissue. Here, the Nissl substance (rough endoplasmic reticulum) appears 

intensely stained due to the presence of ribosomal RNA, and is particularly prominent at 

presymptomatic stage of disease. The staining here matches the morphology of the MNs 

and the pattern of 8-OHG staining at each stage of disease, highlighting the loss of 

nucleic acid and cellular structure as the MNs degenerate. The staining in the transgenic 

sections at presymptomatic stages could appear intensified due to the reduced volume of 

the MNs, or could be due to the cells mounting compensatory mechanisms to the 

upstream pathogenic mechanisms. An increase in protein synthesis in addition to 

increased oxidative damage to nucleic acids may occur presymptomatically, and as the 

disease progresses and homeostasis cannot be maintained the cell shifts towards decline 

and degeneration. This is shown by a loss of morphological features of MNs towards end-

stage disease, with a general reduction in Nissl staining. 

 

Although nucleic acid oxidation is a feature of normal ageing, the survival and 

morphological maintenance of MNs suggests damage does not independently cause 

cellular decline and degeneration in neurological disorders. Since the persistence of 8-

OHG in RNA would cause a reduction in the fidelity of gene expression and processing 

of transcripts, organisms must have a mechanism for scavenging oxidised molecules or 

coping with the downstream effects of abnormal transcripts. In neurodegeneration, a 

reduction in cellular repair processes accompanied by increasing disruption to 

homeostatic mechanisms may cause cells to succumb to the disease. One hypothesis 

suggests proteins specifically bind to oxidatively damaged RNA to target them for 

removal (Hayakawa, et al. 2001, Hayakawa, et al. 2002). The selective elimination of 

mRNA containing 8-OHG may be essential to prevent the formation of erroneous 

proteins, and may maintain cellular viability during normal ageing. The Ogg1 DNA 
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glycosylase acts to eliminate oxidised guanine bases from DNA, so we aimed to 

determine the presence and distribution of Ogg1 in the G93A mutant SOD1 transgenic 

mice during disease progression. The small cells in comparison to the MNs showed 

relatively little staining across the section at presymptomatic and symptomatic stage of 

disease, however as disease progresses towards end-stage the number of Ogg1-positive 

small cells increased. Other studies have shown the presence of Ogg1 reactivity in 

astrocytes (Araneda, et al. 2001), and increased expression of Ogg1 was identified in pre-

clinical AD patients (Lovell, et al. 2011). This supports what is seen here with the 

increased reactivity in MNs at presymptomatic stage of disease suggesting cells are trying 

to compensate for the increase in oxidative damage at early stages of disease. 

 

The intense reactivity of Ogg1 within the nucleus and cytoplasm of MNs at 

presymptomatic stage suggests the cells are up-regulating mechanisms to counteract the 

inflicting damage, and may explain the reduced intensity of 8-OHG within the nucleus of 

the MNs. For further study, it would be interesting to investigate Ogg1 reactivity at an 

early time point in the G93A mutant SOD1 transgenic mouse model and age-matched 

controls, to determine whether the up-regulation of Ogg1 is an early feature of MND. 

Investigating differences in Ogg1 protein levels in the G93A mutant SOD1 transgenic 

mouse model in comparison to controls by western blot would also provide quantification 

of the differences identified here by immunohistochemistry. A single RT-qPCR 

experiment was carried out on the anterior horn from G93A mutant SOD1 transgenic 

mice at one to five months of age, to investigate Ogg1 expression levels in this model. A 

slight increase in Ogg1 expression was identified up to late-stage of disease (four 

months), however this was substantially reduced at end-stage disease (five months) (data 

not shown). Further work would expand the sample size to identify any significant 

differences.  

 

The distribution of Ogg1 reactivity at other stages of disease and in controls parallels 

what is seen for 8-OHG. Other DNA damage markers are also present at the early stages 

but seem to be less active as disease progresses, suggesting a decline in the functionality 

of these mechanisms. Although the majority of 8-OHG cytoplasmic staining was 

diminished with RNase treatment, some MNs still show some reactivity to 8-OHG 

suggesting damage to mtDNA. The cytoplasmic reactivity of Ogg1 suggests repair 

mechanisms are functioning for the removal of oxidative lesions from mtDNA, 

potentially maintaining damage at benign levels within MNs. In eukaryotes, two major 

isoforms of Ogg1 exist, termed α-Ogg1 and β-Ogg1, generated by alternative splicing of 

the transcript (Aburatani, et al. 1997, Takao, et al. 1998). The N-terminus of this gene 
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contains a mitochondrial localisation signal that is present in both isoforms, however a 

nuclear localisation signal is only present in α-Ogg1, suggesting the specific targeting of 

Ogg1 to the mitochondria in mice for repair of oxidative lesions in mtDNA (Jensen, et al. 

2003, Nishioka, et al. 1999, Rachek, et al. 2002), and an explanation for the distribution 

of cytoplasmic reactivity seen here.  

 

Investigation in an in vitro model of fALS revealed an increase in expression of Ogg1 in 

G93A mutant SOD1 transfected NSC34 cells compared to pIRES and human WTSOD1 

controls, and the G37R and H48Q mutations under basal conditions. The G37R and 

H48Q mutant cells show a slight reduction in Ogg1 expression in comparison to the 

controls, which may indicate an inability to up-regulate repair mechanisms within these 

cells. Following oxidative stress by H2O2 treatment, all mutant NSC34 cells demonstrated 

an up-regulation in Ogg1 expression following six and ten hour treatments with 250µM 

H2O2. Expression levels following exposure to exogenous stress may be more 

representative of what is happening in vivo, and the contribution of toxic species from 

cells surrounding the MNs. The lack of a significant increase in Ogg1 expression in 

mutant cells under basal conditions may be a consequence of cellular adaptation to 

culture conditions and therefore an elevated stress response is only seen following 

induction of stress.  

 

Neurons have complex mechanisms to defend their genome to ensure functionality and 

longevity. Diverse mechanisms incorporating many aspects of cellular metabolism, repair 

pathways and cell death are interlinked and act in combination in response to DNA 

damage (Bakkenist and Kastan 2004, Callegari and Kelly 2007, Shiloh 2003). 

Cumulative damage to DNA during the ageing process of CNS neurons and in various 

neurodegenerative diseases has been documented (Coppede and Migliore 2010, Fishel, et 

al. 2007, Weissman, et al. 2007b).  Considering this, we also investigated the activation 

of the DNA repair enzymes DNA-PK and γ-H2AX. DNA repair pathways are activated 

within MNs during normal ageing and disease progression, but the activation of these 

pathways may be diminished during neurodegenerative disease. Studies of DNA damage 

response in post-mortem tissue from AD patients revealed reduced DSB repair during 

NHEJ, which coincided with reduced DNA-PK activity (Shackelford 2006). Reduced 

uracil DNA glycosylase (UDG), Ogg1 and polymerase-β activities in both affected and 

unaffected brain regions of AD patients led to the suggestion that an impairment of BER 

is a general feature of AD brain (Weissman, et al. 2007b).  Overall, our study revealed no 

qualitative difference in reactivity for DNA-PK and γ-H2AX in disease cases compared 

to controls at presymptomatic and symptomatic stages of disease. Some MNs and small 
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cells displayed prominent intense nuclear reactivity for these enzymes and others 

demonstrated a lack of activation. In the age matched controls, reduced reactivity of the 

DNA damage markers may represent a low level of DNA DSBs, and the ability of the 

cells to activate repair mechanisms and manage the inflicting damage. The reduction of 

reactivity within the transgenic cord may represent a lack of activation/DNA damage 

response as disease progresses. In ALS patients it has been shown that the level of the 

apurinic/apyrimidinic endonuclease (APE) protein, which is involved in DNA BER, was 

reduced in the motor cortex, and PARP1 activity, which is activated in response to DNA 

breaks was reduced in MNs of the spinal cord, but was elevated in the motor cortex, 

parietal cortex and cerebellum (Kim, et al. 2004). This may represent regional differences 

in the activities of these enzymes, or the types and levels of damage different neurons are 

encountering. The elevation of Ogg1 and the reduction in APE1 and DNA polymerase-γ 

expression in the spinal cord MNs in SOD1 transgenic mice further supports in vivo data 

establishing a reduction in DNA repair processes in neurodegenerative disease (Manabe, 

et al. 2001, Murakami, et al. 2007).  

 

The reactivity for DNA-PK observed at end-stage disease appears reduced in MNs and 

small cells, which may represent a loss of DNA damage response mechanism as disease 

progresses, or indicate a degradation of mitochondrial and nuclear DNA available for 

repair. MNs also display changes to their morphology, as was previously seen with the 

other markers. However, the activation of H2AX at end-stage disease suggests other 

factors regulating its activation, or a redundancy among the DNA repair enzymes. This 

redundancy among the DNA glycosylases for example, is supported by the absence of a 

significant phenotype in a single glycosylase knockout model, which reflects the 

important cellular roles for these enzymes (Hazra, et al. 2002, Parsons and Elder 2003). It 

may be that DNA repair proteins can be recruited to sites of DNA DSBs but they are 

unable to propagate the signal downstream to initiate the recruitment of further repair 

factors. Even though activation of DNA damage response proteins occurs at end-stages of 

disease, the consequences of increased oxidative stress and the impact of other disease 

associated factors may have more of a detrimental effect causing cellular decline and 

degeneration. If the ageing series were extended you would expect to see a similar pattern 

in staining as is seen in the transgenic cords, with reactivity declining with age due to a 

reduction or inability to activate the damage response.  

 

 During the symptomatic stages of ALS, nucleic acid oxidation may persist but with a 

greater impact on the production of functional proteins, and the damage may already be 

irreversible. The majority of remaining MNs towards end-stage disease no longer exhibit 
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a clearly defined soma and in some cases there appears to be loss of the nucleus, which is 

supported by cresyl violet and haematoxylin staining. In some of the disease cases glia 

can be seen in close proximity or at the edge of the MN at end-stage. This could be an 

indication of neurophagia, the phagocytic destruction of nerve cells, where inflammatory 

cells cluster around degenerating or dead neurons and actively remove them. 

 

Different cell types in the CNS might have an increased resistance to stress, different 

stress capacities, and different active repair mechanisms, which may explain some of the 

differences in reactivity for the markers investigated between MNs and small cells. 

Different types of MNs may also differ in their stress/damage response. The prominent 

reactivity in small cells suggests the damage may impact their functionality, which in turn 

would affect their ability to maintain a homeostatic environment and support for the 

MNs. Our results display a lack of Ogg1 reactivity within glial cells, suggesting other 

repair enzymes/pathways may function in these cells, the removal of free oxidised bases 

may be more efficient, or these cells are less susceptible to DNA oxidation.  

 

 

4.3.2 Oxidative stress related cellular decline in an in vitro model of ALS 

 
The NSC34 cell line is a well-established model of MNs (Cashman, et al. 1992). 

Introducing human mutations into these cells makes them a suitable in vitro model for 

investigating mechanisms of disease. Here we initially investigated the level of 

transfection for the human SOD1 transgenes in the NSC34 cells at both the RNA and 

protein level. The expression of human mutant SOD1 within the cells is consistent at the 

mRNA level, demonstrating equivalent levels of transfection for the different SOD1 

transgenes. This was determined by comparing the Ct value generated for the human 

SOD1 to the Ct value for the endogenous mouse Sod1 (Pan, et al. 2012). Despite 

equivalent transgene expression, significant differences between the mutations are 

observed at the protein level. In particular, the G93A and H48Q mutations display 

significantly reduced protein expression in comparison to WTSOD1 and G37R mutant 

SOD1. This may represent a reduction in the ability of the cell to produce the full-length 

protein, which consequently may lead to the production of abnormal or short 

polypeptides, which have a greater tendency to aggregate. These aggregations may lead 

to increased cellular toxicity, and have been demonstrated in models of familial-linked 

ALS (Bruijn, et al. 1997, Bruijn, et al. 1998). Previous studies have highlighted an 

inconsistency between protein and mRNA levels in wild-type and mutant human SOD1 
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transgenic murine models, which may be due to differences in protein stability (Jonsson, 

et al. 2006, Rumfeldt, et al. 2006, Stathopulos, et al. 2003). siRNA silencing of mutant 

SOD1 in a familial-linked ALS model, led to reduced protein levels which coincided with 

increased motor performance and delayed symptom onset (Ralph, et al. 2005). The 

reduction in protein levels seen here in the G93A and H48Q mutant SOD1 NSC34 cells 

could lead to a reduced disease phenotype in these cells, which may account for some of 

the differences seen in oxidative stress response in comparison to other studies using this 

model (Kirby, et al. 2005). Oxidative modification of the SOD1 transcript may affect its 

ability to be translated and processed. The increased levels of oxidised RNA identified in 

the G93A and H48Q mutant SOD1 NSC34 cells in comparison to controls may result in 

the reduced human SOD1 protein levels seen in these cells in comparison to controls. 

Oxidative modification to the RNA transcript has been demonstrated to reduce the 

fidelity of translation, leading to premature termination or the production of abnormal 

proteins and short polypeptides (Ding, et al. 2005, Tanaka, et al. 2007).  

 

Previous studies revealed a reticular cytoplasmic distribution of mutant SOD1 in NSC34 

cells by immunocytochemistry and a reduction in G93A SOD1 protein levels in 

comparison to wild-type SOD1, as shown here (Sau, et al. 2007). Reduced protein levels 

and specific activity for human G93A mutant SOD1 in comparison to human WTSOD1 

has also been demonstrated in fALS patients; however, the proteins displayed equivalent 

turnover rates, suggesting differences in stability between the mutant and wild-type 

proteins accounts for the differences in cellular concentration of the respective proteins 

(Bowling, et al. 1995). Although reduced protein expression was seen for the G93A and 

H48Q mutant SOD1, these cells were still the most susceptible to cell death following 

exposure to oxidative stress (figure 4.13). Disrupted folding of mutant proteins has been 

shown to enhance cellular sensitivity to stress (Zhang and Zhu 2006). The degradation of 

misfolded or shortened mutant SOD1 proteins would lead to a reduction in the total levels 

of protein, increase the chance of toxic aggregate formation, and in turn increase cellular 

vulnerability to oxidative stress.  

 

Previous studies have revealed an accumulation of SOD1 immunoreactive bands in the 

insoluble protein fraction, when the soluble and insoluble fractions from WTSOD1 and 

mutant SOD1 transfected NSC34s are investigated (Cozzolino, et al. 2008). These bands 

corresponded to a proportional reduction in the amount of SOD1 migrating in the 

monomeric form; however, under denaturing conditions the high molecular weight bands 

were not present. This demonstrated the stability of these oligomers is attributable to 

intermolecular disulfide bonds. It would be interesting to investigate this in our fALS 
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model, to determine SOD1 oligomer formation in transfected NSC34 cells and investigate 

whether exposure to oxidative stress alters SOD1 oligomer formation. An explanation for 

the reduction in protein seen for the human G93A and H4Q8 mutant SOD1 in the 

NSC34s could be due to an increase in the proportion of insoluble SOD1, which may 

increase their tendency to aggregate (Basso, et al. 2006, Basso, et al. 2009, Karch, et al. 

2009), as has been demonstrated in models of ALS and familial SOD1 associated ALS 

patients (Hart 2006, Prudencio, et al. 2009, Shibata, et al. 1996, Watanabe, et al. 2001). 

 

The G93A and H48Q mutations, in addition to showing increased levels of RNA 

oxidation, and reduced mutant SOD1 protein expression, were also increasingly 

susceptible to cell death under oxidative stress conditions, as demonstrated by trypan blue 

exclusion and LDH assay. Treatment of cells with various H2O2 concentrations was used 

to investigate differences in vulnerability to stress between the cell lines. Concentrations 

of 50µM to 1mM H2O2 were chosen for cell treatments as these have generally been cited 

as used for similar work in the literature; accompanied by a study demonstating no effect 

on the cellular viability of mouse cells treated with up to 200 µM H2O2. The H2O2 gradient 

that exists across cell membranes means for the same extracellular concentration of H2O2 

there is a lower H2O2 concentration intracellularly. Our study demonstrated an exposure 

to a dose of 50µM H2O2 had a minor impact on cell viability across cell types, with 

mutant SOD1 G93A and mutant SOD1 H48Q beginning to show susceptibility to the 

stress (p≤0.05) after two hours. A 250µM H2O2 treatment had an effect on cell survival 

over time, but this was moderate in comparison to the changes seen with higher doses. 

The G93A and H48Q mutant cells showed increasing cell death following periods of 

prolonged exposure to stress. The increased RNA oxidation observed in these cell lines in 

comparison to controls may contribute towards their susceptibility to cell death, by 

reducing the fidelity of translation and thus affecting protein levels and subsequently 

cellular metabolism. The G37R mutant cells, in contrast, showed an exponential 

reduction in cell viability over time with increasing doses of hydrogen peroxide, but 

maintained cell viability at a level equal or in some cases above that of the controls.  

 

There is evidence from both cellular and animal models of ALS suggesting that SOD1 

mutation leads to varying levels of cellular toxicity depending on the mutation in 

question. ALS-associated SOD1 mutations show the propensity to aggregate both with 

self and other proteins, which may be a result of disruption to the native protein folding 

(Prudencio, et al. 2009). A study investigating the correlation between the propensity for 

aggregation and conformational stability of SOD1 showed G93A to have the highest 

conformational instability, and was therefore more prone to aggregation, in comparison to 
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other SOD1 mutations, including G37R (Stathopulos, et al. 2003). Another study also 

highlighted the differences between the mutations in transgenic mouse models of ALS. 

The G93A mice exhibited the fastest disease onset and had the shortest lifespan in 

comparison to the G37R and H46R/H48Q mutations (Karch, et al. 2009). The G37R 

mutation was also shown to be less prone to forming insoluble aggregates. This may be 

part of the reason why the G93A mutation appeared more toxic in our study.  

 

These experimental findings may reflect differences observed clinically between SOD1 

mutation-types in ALS patients.  In human ALS patients the G37R mutation displays an 

earlier onset of disease but has a longer disease progression in comparison to the G93A 

mutation (Cudkowicz, et al. 1997). Here we observed that the G37R mutant cells are not 

greatly affected in terms of viability in response to oxidative stress, suggesting the mutant 

transgene confers greater resistance to this insult in comparison to the other mutations. 

The H48Q mutation displays a later disease onset in ALS patients but the clinical course 

is rapidly progressive with a much shorter duration of disease compared to the other two 

mutations investigated here (Orrell, et al. 1997, Orrell, et al. 1999). In terms of cell 

viability the H48Q mutant NSC34 cells were gradually more susceptible to oxidative 

stress until a certain level of insult when a rapid induction in cell death was observed. 

Progression of disease in patients harboring the G93A mutation is relatively rapid with 

typical survival of two to five years (Radunovic and Leigh 1996). Variations between the 

individual mutations likely underlie the differences seen in susceptibility to oxidative 

stress in these experiments.  This phenotypic heterogeneity is not unusual between 

patients with different SOD1 mutations (Battistini, et al. 2005), adding further complexity 

to studying the pathology of the disease. The rapid induction of cell death following 

exposure to 500µM and 1mM concentrations of H2O2 may indicate a sudden loss of, as 

yet undefined, compensatory mechanisms and an inability of the cells to recover from the 

insult. The cells may be able to compensate at lower concentrations, and hence only show 

minor reduction in viability. The redox system is part of a complex signaling network. 

Previous studies have shown that low concentrations of ROS can influence the regulation 

of intracellular signaling such as the phosphoinositide 3-kinase (PI3K) pathway and the 

mitogen activated protein kinase (MAPK) cascade (Seo, et al. 2005, Son, et al. 2011) and 

which potentially explain the maintained viability observed with moderate H2O2 

treatment. From these data we can identify where the major changes in viability occur, 

allowing a focus on mechanisms operating prior to cell death, potentially in compensated 

and decompensated phases.   
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This work supports previous studies that have shown oxidative stress by serum 

withdrawal causes an increase in cell death of NSCS4 cells transfected with human G93A 

mutant SOD1 in comparison to cells transfected with human wild-type SOD1. The 

mutation also rendered cells more sensitive to toxicity induced by exogenous nitric oxide 

(Cookson, et al. 2002). H2O2 diffuses readily across cell membranes and cellular 

compartments and consequently is commonly used for studies of oxidative stress and 

redox-regulated processes (Chance, et al. 1979). However, considerable variation exists 

between cells in the concentration of exogenous hydrogen peroxide required to initiate a 

particular biological response. Exogenous hydrogen peroxide has been shown to be less 

effective at eliciting a signaling response than endogenously produced hydrogen peroxide 

(Chen, et al. 2005, Sablina, et al. 2005). This must be taken into account when 

investigating antioxidant responses in in vitro models and relating them to human disease 

and may account for the absence in major differences in activation of antioxidant 

responses in the cell lines investigated here. Although H2O2 elicited a cell death response 

after increased exposure, it would have been interesting to treat cells with a low dose of 

H2O2 and measure their response in time intervals following removal of the stress. Co-

culture systems would also give an enhanced insight as in vivo mutant MNs are 

influenced by their surrounding cells. Mutant NSC34s have also demonstrated a dose and 

time dependent increase in apoptotic cell death following treatment with cobalt chloride 

(Xu, et al. 2011), indicating the use of multiple stressors to determine effect on cellular 

function. Perhaps a more relevant form of cellular stress to impose would be proteasome 

inhibition, as the accumulation of abnormal and misfolded proteins is described as a 

pathological hallmark of many neurodegenerative diseases (Karch, et al. 2009, Watanabe, 

et al. 2001). Other studies, including this one, show that mutant SOD1 generates 

oxidative toxicity within MNs and this might intensify other perturbed mechanisms 

produced due to the mutation. However exactly how this leads to pathogenesis remains 

unknown. What is emerging is the increasing complexity and differences between 

mutations, which may confer resistance and susceptibility in the human form of disease. 

 
Measurement of indirect markers such as an increase in oxidative stress related gene 

expression or antioxidant defense is often used to investigate oxidative stress (Floyd and 

Hensley 2002). Differences in antioxidant response gene expression in cells carrying 

human SOD1 mutations were investigated under basal conditions and following exposure 

to oxidative stress. Here we investigated whether the presence of these mutations affect 

the ability of cells to protect themselves from stress, and whether this may account for 

some of the differences seen in terms of cellular vulnerability to oxidative stress in 

NSC34s carrying different human SOD1 mutations. GAPDH is a well-established 
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housekeeping gene used for calculating the relative expression levels of genes of interest 

by RT-qPCR. GAPDH mRNA levels have been shown to increase during periods of 

increased oxidative stress (Ito, et al. 1996). This may be due to the role of GAPDH in cell 

death signalling following oxidative stress (Hara, et al. 2005). Due to this, our samples 

were re-analysed in comparison to Actin expression levels. Further research has shown 

both Actin and GAPDH expression levels differ depending on experimental conditions, 

and ribosomal proteins are often considered the most reliable sample to compare the 

expression of the gene of interest against (Dheda, et al. 2004, Schmittgen and Zakrajsek 

2000). In light of this, future work would involve validating the internal references under 

the desired experimental conditions to avoid misinterpretation of results. Support for this 

comes from conflicting results demonstrating no changes in GAPDH expression levels 

following oxidative stress (Zainuddin, et al. 2010).  

 

Antioxidant response element (ARE) containing genes encode detoxifying enzymes and 

cytoprotective antioxidant proteins, and are regulated by the transcription factor Nrf-2. In 

response to oxidative stress Nrf2 is released from Kelch-like ECH associated protein 1 

(Keap1), an actin binding protein localised to the cytoplasm, and translocated to the 

nucleus where it activates the expression of genes with antioxidant activity, including 

haem oxygenase 1 (Ho-1) and NAD(P)H:quinone oxidoreductase 1 (Nqo1) (Zhang and 

Gordon 2004). Reduced Nrf2 expression in an in vitro model of familial linked ALS and 

MNs from ALS patients was associated with a reduction in expression of phase II 

detoxifying enzymes and antioxidants (Kirby, et al. 2005, Petri, et al. 2012). Several of 

the genes that are regulated by Nrf2 have been implicated in protection from 

neurodegenerative disease, and targeting Nrf2 activity is becoming regarded as a 

candidate for neurodegenerative therapy (Muller, et al. 2007). Ho-1 catalyses the 

oxidative degradation of haem to biliverdin in the brain and other tissues protecting cells 

against programmed cell death (Ewing and Maines 1991, Gozzelino, et al. 2010), and 

Nqo1 is a quinone reductase involved in detoxification pathways. Both genes are 

inducible in response to oxidative stress, which may act to protect cells from degeneration 

(Dore, et al. 1999). The Ho-1 promoter exerts its protective effects through an antioxidant 

response element located in its promoter, which has a consensus sequence similar to that 

of other antioxidant enzymes (Balogun, et al. 2003, Poon, et al. 2004), and gene knockout 

studies have revealed its biological significance as an antioxidant (Poss and Tonegawa 

1997). Histological analysis has shown Ho-1 activity to be increased in the grey and 

white matter of both sALS and fALS patients, with prominent reactivity in large MNs 

(Ferrante, et al. 1997a).  
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Gene expression of Nrf2 and its downstream targets Ho-1 and Nqo1 were investigated in 

all cell lines, initially under basal conditions. WTSOD1 and human mutant SOD1 

transfected cells all show a reduction in Nrf2 under normal culture conditions. Expression 

is increased following two hours H2O2 treatment but is reduced after six hours exposure 

across all cell types. Ho-1 expression however is different, with basal levels increased 

above pIRES across all cell types and this being reduced following two hours H2O2 

exposure. This may represent the inability of Nrf2 to activate its downstream targets in 

response to exogenous stress, or indicate it is acting through different pathways to 

maintain cellular viability. A two-hour 250µM exposure only produced a significant 

reduction in cell viability for G93A mutant SOD1 cells, with the other cell lines showing 

slightly greater viability in comparison to the pIRES control cells. Nqo1 expression is 

reduced under basal condition for G93A mutant SOD1 NSC34 cells only. There is about 

a 50% increase in expression for this cell line following two hours H2O2 exposure, 

however this is not significant and expression is highly variable across all cell lines. A 

reduction in the expression of antioxidant response genes following exposure to stress 

could represent an inability of the cell to respond to this due to a mutation, which may be 

an explanation for the differences seen across the SOD1 mutations in cell viability after 

exposure to oxidative stress. It may also be the result of other compensatory mechanisms 

activated to maintain viability. Investigation of a broader range of antioxidant response 

genes, combined with apoptotic and cell signalling pathway markers would overall give a 

reasonable insight into what is happening at the transcriptome level in response to stress. 

A microarray study of MNs isolated from the spinal cord of the G93A mutant SOD1 

transgenic mouse model also failed to identify differential expression of Nrf-2, or Nrf-2 

regulated genes in comparison to controls (Ferraiuolo, et al. 2007). Antioxidant potential 

in astrocytes has been shown to be greater in astrocytes in comparison to neurons (Shih, 

et al. 2003), which may represent a reliance on glial cells for activation of oxidative stress 

response in vivo (Pehar, et al. 2005). A single RT-qPCR experiment for Nrf2 was also 

carried out on the anterior horn from G93A mutant SOD1 transgenic mice at one to five 

months of age. This identified an increase in Nrf2 expression at presymptomatic stage of 

disease, which then was reduced during disease progression (data not shown). As with 

Ogg1 further work investigating these differences is needed to identify any significant 

changes. 

 

 

Model systems are often used to understand how oxidative stress can produce neurotoxic 

effects leading to cellular degeneration. However, in vitro models can often be quite 

difficult to interpret in terms of what is happening in response to exogenous compounds, 



220 
 

especially stressors, as cells in culture are likely to already be in a state of oxidative 

stress, or have adapted to their culture conditions. This may result in only small changes 

seen in the redox state of the cell following exposure to stress. NSC34s are an 

immortalised cell line, are robust and grow easily in culture. H2O2 is widely used to exert 

oxidative stress on cell culture systems, has been shown to mediate growth-promoting or 

metabolic effects of growth factors and cytokines at various concentrations, and ROS are 

now known for their importance in redox sensitive signalling in vivo. Here we see 

increased variability of Nrf2, Ho-1, and Nqo1 expression under basal conditions and 

following exposure to H2O2, both across cell lines and between samples from the same 

cell line. This could be due to a number of factors related to the culture conditions. 

Although confluency is maintained between 70-80% for harvesting, differences in cell 

number must be taken into account. All the experiments were carried out at a passage 

number of between 15-20. 

 

Previous studies investigating oxidative stress and its impact on gene expression changes 

have documented the importance of these antioxidant genes in stress response. For 

example, gene expression profiling demonstrated transcriptional repression in NSC34 

cells stably expressing human mutant SOD1 G93A (Kirby, et al. 2005). Looking at 

relative expression levels by RT-qPCR is not as robust as gene expression profiling, so 

taking this approach and comparing expression levels following exposure to stress may 

give a comprehensive insight into how the cells respond and adapt to oxidative stress. 

Using an in vivo model would also be a more robust approach, from which the analysis of 

pathway changes could be further investigated in vitro. 

 

4.4 Conclusion 
 

During ageing, an increase in oxidative stress and a reduction in the activity of 

repair/defense mechanisms may lead to an accumulation of oxidative damage, which is 

maintained under threshold levels for initiating cell death mechanisms, as cell loss is not 

a major feature of non-pathological ageing. Breaching this ‘threshold’ for damage in 

subsets of disease vulnerable post-mitotic neurons during ageing may lead to neurological 

disorders.  

 

Oxidised nucleotides within cells may not only serve as substrates for nucleic acid 

biosynthesis but also participate in energy metabolism and signal transduction. Some 

particular biological effects, for example the activation of apoptotic pathways, are caused 
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by the accumulation of oxidised nucleotides within cells (Nakabeppu, et al. 2010). The 

chemically modified nucleotides may serve functionally as a sensing mechanism for ROS 

and RNS to induce cellular adaptive responses to oxidative stress, or as a way of 

sequestering the toxic species, which can subsequently be removed by surveillance 

mechanisms (Ihara, et al. 2011). The increase in RNA oxidation in comparison to DNA 

oxidation may represent a protective mechanism for cells to sequester toxic species to 

prevent modifications to genomic DNA. Sub-lethal insults to RNA are likely to be less 

damaging than modifications to DNA, which may produce alterations in its coding 

properties and normal function in transcription or replication. An increase in RNA 

oxidation alternatively may be the result of inefficient repair and removal mechanisms for 

these modifications in comparison to DNA. The true quantification of nucleic acid 

damage is difficult as here we only refer to one modified base, when guanine, adenine, 

thymine/uracil, and cytosine can all be oxidatively modified with numerous oxidation 

products subsequently generated (Henderson, et al. 2005, Niles, et al. 2004). Mass 

spectrophotometry is one method being used to get a more accurate interpretation of 

oxidative damage to nucleic acids. Hydroxyl radicals provide high-resolution probes 

which enable the structural and conformational changes of DNA and RNA to be detected 

and quantified (Brenowitz, et al. 2002, Erb, et al. 2012, Taghizadeh, et al. 2008).  

 

In neurodegenerative disorders components of the DDR machinery have also been 

reported to be defective within cells (Barzilai, et al. 2008) and studies have revealed 

reduced activity of DNA repair enzymes within the brains of AD, PD, and ALS patients. 

Quantification of DNA damage response proteins within a murine model of ALS would 

enable us to identify differences in the activation of these pathways during disease 

progression. Here we show the presence of DDR in the spinal cord of transgenic mice 

expressing familial ALS-linked G93A mutant SOD1 and in littermate controls 

immunohistochemically, however limitations of this technique mean it only provides 

qualitative information. Double labelling immunohistochemistry would also enable us to 

distinguish which small cells are showing 8-OHG reactivity.  

 

We aimed to compare the differences in RNA oxidation in an in vitro model of familial 

linked ALS, to determine whether the presence of different SOD1 mutations affects the 

quantity of RNA that is oxidised. A limitation of the IP technique is the antibody binding 

capacity may be saturated, or the optimum volume of beads to use is unknown. The 

majority of IP kits are for protein so we had to optimise the method to obtain sufficient 

RNA for downstream analysis. In comparison to previous studies, we were using a low 

concentration of starting RNA. Increasing the starting concentration of RNA would mean 
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increasing the concentration of antibody to maximise the IP and may increase chances of 

non-specific binding. We had difficulty in quantifying the proportion of RNA in the 

oxidised fraction, as the concentration was too low to be accurately quantified using the 

Nanodrop Spectrophotometer. Using RT-qPCR the expression level of 18S rRNA in the 

oxidised fraction was related back to a standard curve of known RNA concentrations and 

compared to the amount of non-oxidised RNA. It is also important to consider is a 

proportion of the non-oxidised fraction may be lost during the IP, or only a percentage of 

the oxidised fraction is captured, and a more specific and direct quantification would be 

beneficial.  

 
Further work using the NSC34 cell model of familial linked ALS could be used to 

investigate levels of DNA oxidation between the cells carrying different human mutant 

SOD1 transgenes. Alternative RT-qPCR methods to the one used here have also been 

described as a method of measuring RNA oxidation (Rhee, et al. 1995). A more robust 

model would be to use primary cells from transgenic murine models of ALS to 

investigate differences in levels of nucleic acid oxidation and oxidative stress responses. 

This would also provide a model in which differences in nucleic acid damage and repair 

could be quantified, and comparisons could be made between different cell types in the 

CNS. This is difficult as only a limited number of cells are available from each animal 

used. The use and combination of genomic and proteomic research tools enable 

identification of alterations at the mRNA and protein levels and determine how these 

differ in disease. Microarray analysis has identified differentially expressed genes in this 

NSC34 cell model of familial linked ALS, and proteomic work provides further evidence 

for alteration of corresponding proteins (Allen, et al. 2003, Kirby, et al. 2005). To 

determine how RNA and protein expression levels differ in response to oxidative stress 

and in a co-culture environment (which may be more physiologically relevant) would be 

interesting approaches to take. 
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Chapter 5 
Investigating mitochondrial bioenergetics 

in an in vitro model of ALS 

 

5.1 Introduction 

5.1.1 Mitochondrial energy metabolism 

 
The integrity and functionality of mitochondria are key determinants of neuronal function 

and survival. Mitochondria form highly dynamic networks and are the primary site of 

ATP synthesis through two main metabolic pathways, oxidative phosphorylation and 

glycolysis (Otera and Mihara 2011, Shi, et al. 2010). During cellular metabolism, 

pyruvate, fatty acids, and amino acids are generated, which can be further broken down 

by mitochondria to nicotinamide adenine dinucleotide dehydrogenase (NADH) and/or 

flavin adenine dinucleotide (FADH2). These reduced equivalents are used by oxidative 

phosphorylation for energy production by the electron transport chain (ETC). The ETC 

located in the mitochondrial inner membrane is composed of four multi-subunit enzyme 

complexes (complex I-IV), which are involved in a series of oxidation-reduction 

reactions between redox pairs, and two electron carriers (coenzyme Q and cytochrome c). 

 
NADH and the hydroquinone form of FADH2 are the electron donors and generate the 

redox potential gradient driving electron transport and ATP synthesis. The oxidation of 

NADH and/or FADH2 facilitates the transfer of electrons through the complexes. 

Complexes I, III, and IV, of the electron transport chain comprise the energy-conserving 

core, the transfer of electrons facilitates the pumping of protons across the inner 

mitochondrial membrane. This generates a reduction in redox potential as the electrons 

pass through the complexes, establishing an electrochemical gradient (proton-motive 

force) (figure 5.1). This force is used to drive proton re-entry, and during ATP synthesis 

this predominantly occurs through ATP synthase, catalysing the phosphorylation of ADP 

to ATP. Ion channels and transporters in the inner membrane regulate proton and ion 

flux. The proton circuit set up across the inner membrane is central to mitochondrial 

bioenergetics. In summary, oxidisable substrates are used by mitochondria to set up a 

membrane potential in the form of a proton gradient, which operates across the inner 

mitochondrial membrane to facilitate energy production. 
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In addition to the production of ATP, mitochondria are also central to the intrinsic 

apoptotic cascade, calcium signalling, and calcium homeostasis. The dysfunction of 

mitochondrial function can therefore be linked to multiple phenotypic changes of cells.  

 

 

  

 
 
Figure 5.1: Electron Transport in Mitochondria 

NADH is oxidised by complex I, which donates electrons to coenzyme Q. Complex III 

oxidises reduced coenzyme Q, which in turn reduces the mobile electron carrier protein 

cytochrome C. Electrons are transferred from cytochrome C to complex IV, for the 

reduction of molecular oxygen. Complex II (succinate-Q oxidoreductase) forms a 

separate entry point in to the ETC. Succinate is oxidised to fumarate, and a hydride is 

transferred to FAD to form FADH2.  FADH2 transfers its electrons reducing coenzyme Q. 

ATP synthase catalyses the synthesis of ATP, which is coupled to transmembrane proton 

transfer. The proton motive force (pmf) generated during electron transport drives the 

exchange of ADP and Pi for ATP.  

 

 



225 
 

5.1.2 Mitochondrial dynamics  

 
Mitochondria are dynamic organelles, continuously remodelling to meet the changing 

cellular energy demand. Mitochondrial dynamics of fusion and fission allow the organelle 

to form branched interconnecting networks. In mammals, the mitofusins MFN1 and 

MFN2, and OPA1 are involved in mitochondrial outer membrane and inner membrane 

fusion respectively (H. Chen, et al. 2003, Santel and Fuller 2001). Proteins involved in 

fission include FIS1 and DRP1 (Cipolat, et al. 2004, Mozdy, et al. 2000). Mitochondrial 

division, turnover, and network formation create an efficient system for mitochondria to 

deliver ATP to subcellular compartments, and maintaining their critical functions through 

communication with the cytosol and quality control (Koopman, et al. 2005, Rube and van 

der Bliek 2004). The quality of a mitochondrial population is maintained by mitophagy, a 

selective removal process for damaged mitochondria by autophagosomes and their 

subsequent catabolism by lysosomes (reviewed in Ashrafi and Schwarz 2013). Although 

reactive oxygen species (ROS) are generally known for their detrimental effects on cells, 

they act as signalling molecules during the early induction events of autophagy 

(Mammucari and Rizzuto 2010). However, if the pro-survival attempt is unsuccessful, 

ROS can induce cell death. The cellular context and the modulators of ROS activity 

determine whether cell death is initiated through the autophagic or apoptotic pathway. 

  

Another aspect of mitochondrial dynamics is motility, the transport of mitochondria to 

distinct subcellular locations. Mitochondria have been shown to accumulate in regions 

with high energy demands, such as synapses and areas of increased protein synthesis 

(Chang, et al. 2006, Morris and Hollenbeck 1993). Mitochondrial transport depends on 

the actin cytoskeleton and microtubules composed of tubulin (Hollenbeck and Saxton 

2005, Ligon and Steward 2000, Morris and Hollenbeck 1995). The molecular motor 

proteins kinesin and cytoplasmic dynein also mediate axonal transport of mitochondria, to 

facilitate their distribution.  

 

5.1.3 Mitochondrial dysfunction and neurodegenerative disease 

 
Mitochondrial dysfunction is documented in many age-associated diseases including 

ALS. Because of the essential functions carried out by mitochondria, a disturbance to 

their properties may confer an intrinsic susceptibility to stress and MN decline in 

neurological disorders. Studies from both ALS patients and models of disease have 

demonstrated changes in mitochondrial function including a reduction in the activity of 



226 
 

respiratory chain complexes and decline of mitochondrial bioenergetic capacity, 

suggesting dysregulated energy metabolism is one mechanism contributing to MN 

degeneration in ALS (Arciello, et al. 2010, Duffy, et al. 2011, Jung, et al. 2002).  

 

Studies of mitochondrial morphology and function in spinal cord MNs from ALS patients 

have revealed swollen and vacuolated mitochondria. These morphological changes were 

accompanied with the presence of mitochondrial aggregates, defective respiratory chain 

function, and oxidative damage to mitochondrial proteins and lipids (Sasaki and Iwata 

1996, Sasaki and Iwata 2007, Siklos, et al. 1996, Wiedemann, et al. 2002). In vitro 

studies have demonstrated human mutant SOD1 variants cause a shift in redox potential, 

have increased mitochondrial superoxide dismutase levels, show increased toxicity, and a 

demonstrate reduction in respiratory chain complex activity (Cozzolino, et al. 2009, 

Estevez, et al. 1999, Ferri, et al. 2006). In vivo murine studies have demonstrated 

impairment in mitochondrial axonal transport within mutant SOD1 MNs, and observed 

membrane vacuoles derived from degenerating mitochondria (Dal Canto and Gurney 

1995, De Vos, et al. 2007, Wong, et al. 1995). At the time of disease onset, the G93A 

mutant SOD1 transgenic mice also exhibit reduced mitochondrial respiration and energy 

production (Jung, et al. 2002, Kirkinezos, et al. 2005, Mattiazzi, et al. 2002). 

 

A functional compromise to energy production results in a loss of mitochondrial 

membrane potential, in addition to impaired electron chain transport activity and a 

reduction in ATP production, with an accompanying increase in ROS production 

(Arciello, et al. 2010, Browne, et al. 2006, Menzies, et al. 2002). The vulnerability of 

mitochondria to damage may be increased in ALS, accompanied with reduced ability of 

the MNs to compensate for the damage/energy deficit. Mitochondrial defects including 

impairment in the axonal transport of these organelles will impair mitochondrial 

localisation at critical sites with high energy demands, thus contributing to the 

denervation process (De Vos, et al. 2008). Although mitochondrial impairment and 

increased oxidative stress have been extensively documented in models of ALS, the 

causal relationship between impaired bioenergetics, physiological malfunction, and 

oxidative damage needs to be further established in relation to the underlying 

pathogenesis of the disease.  

 

Nucleic acid oxidation during ageing and ALS may link to mitochondrial dysfunction 

through direct modification of mtDNA or indirectly as a consequence of nuclear DNA 

and RNA oxidation. The oxidative modification to DNA may affect the fidelity of 

transcription, reducing transcription rates and potentially altering the transcriptome. The 
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ETC relies on the concerted function of both the mitochondrial and nuclear genomes to 

express functional components of the respiratory chain complexes. The integration of 

transcriptional regulatory pathways controlling the expression of nuclear and 

mitochondrial genes determines respiratory complex formation. The reliance of mtDNA 

upon nuclear encoded proteins for its maintenance and transcription will impact energy 

production during periods of oxidative stress, which in turn will lead to mitochondrial 

dysfunction and increased ROS production; the vicious cycle (figure 5.2). mtDNA is also 

vulnerable to ROS attack which may also impact upon their function. Further disruption 

to mitochondrial maintenance and protein quality control during and ageing and 

neurodegenerative disease may result in the accumulation of dysfunctional mitochondria, 

which are unable to maintain sufficient energy generation (Karbowski and Neutzner 

2012).  

 

 

 

 
 
Figure 5.2: Nucleic acid oxidation and disruption to mitochondrial function 

during ageing and neurodegenerative disease (Adapted from Yankner, et al. 2008) 
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5.1.4 Investigating mitochondrial morphology and bioenergetics in an in vitro 

model of familial-ALS  

 

The physiological state of cells and differences in metabolic state between cell types can 

be assessed through measuring the rate of oxygen consumed by the cells. The Seahorse 

extracellular flux analyser simultaneously measures the two major energy-yielding 

pathways in cells, aerobic respiration and glycolysis, by measuring oxygen consumption 

rate (OCR) and extracellular acidification rate (ECAR) in intact cells with an undisturbed 

cellular environment (figure 5.3). OCR provides an indication of mitochondrial 

respiration, and ECAR measures glycolysis, the breakdown of glucose to lactate, which is 

the primary source of protons. When investigating cultured cells the measurement of the 

acidification of the extracellular media (change in pH, caused via the release of protons) 

provides an indication of the ECAR. OCR and ECAR for a cell is related to the flux 

through catabolic pathways used to generate ATP. During steady state, the ATP synthesis 

rate is counterbalanced against ATP consumption and thus, the OCR and ECAR are 

mainly related to ATP turnover. Although quantitative estimates of ATP turnover are 

technically challenging, it can be shown that the changes in extracellular fluxes show a 

concordance with changes in ATP turnover rates.  

 
Mitochondrial metabolism can be investigated by shifting the bioenergetic profile of cells 

through addition of mitochondrial inhibitors such as oligomycin, carbonylcyanide-p-

trifluoromethoxyphenylhydrazone (FCCP), and rotenone (figure 5.3). Oligomycin is an 

ATP synthase inhibitor and prevents ATP synthesis (inhibits oxidative phosphorylation) 

in the coupling experiment by blocking the proton conductance (Fo subunit) necessary for 

oxidative phosphorylation. It is used to prevent state 3 (phosphorylating) respiration but 

does not affect electron flow among the complexes. FCCP is a protonophoric uncoupler 

of oxidative phosphorylation (uncoupling of ATP synthesis from electron transport) by 

transporting hydrogen ions across the mitochondrial membrane instead of the proton 

channel of ATP synthase and thus causing loss of the mitochondrial membrane potential. 

Rotenone is an electron transport inhibitor, and inhibits mitochondrial complex I activity 

by interfering with electron transport chain activity. It inhibits the transfer of electrons 

from iron-sulfur centres in complex I to ubiquinone, and therefore blocks NADH 

dehydrogenase during the creation of ATP. Altering the normal physiological state of 

cells allows the investigation of differences in cellular metabolism within different cell 

lines, and may highlight mitochondrial dysfunctions for example in the presence of 

various mutations. 
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A. 

 

B. 

 
 
Figure 5.3: Representative OCR (A) and ECAR (B) bioenergetic profile of 

NSC34 cells. 

Blue represents pIRES, pink represents WTSOD1, green represents G93A SOD1 NSC34 

cells. In (A) A, B, and C correspond to the addition of oligomycin, FCCP, and rotenone 

respectively. Both OCR and ECR are measured three times for each condition.  
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In this study we utilised the murine neuroblastoma spinal cord (NSC34) hybrid cell line 

(Cashman, et al. 1992), stably transfected with various human mutant SOD1 transgenes. 

SOD1 mutations in these cell lines have previously been shown to increase oxidative 

stress and mitochondrial dysfunction, with key genes down regulated in their metabolic 

pathways (Kirby, et al. 2005, Menzies, et al. 2002). We expressed wild-type human 

SOD1 (WTSOD1), G93A mutant human SOD1, H48Q mutant human SOD1, G37R 

mutant human SOD1, and pIRES vector control in the NSC34 cell line and determined 

mitochondrial and metabolic function under basal and oxidative stress conditions. We 

show that significant differences in mitochondrial bioenergetics are identified in the 

G93A mutant SOD1 cells compared with the controls and other mutations investigated, 

both under basal conditions and after exposure to oxidative stress. Morphological 

examination of the mitochondria by live cell imaging was used to determine whether the 

functional deficit correlated with differences in mitochondrial morphology between the 

cell lines investigated.  

 

 

5.2 Results  
	
  
Having established differential susceptibility to oxidative stress related cellular decline in 

NSC34 cells transfected with different SOD1 mutations we sought to identify whether 

this was associated with mitochondrial dysfunction. Mitochondrial bioenergetics were 

measured for intact transfected NSC34 cells prior to and preceding a sublethal oxidative 

insult. We show significant differences in mitochondrial bioenergetics in the G93A 

mutant SOD1 cells compared with the controls and other mutations investigated, both 

under basal conditions and after exposure to oxidative stress. This functional deficit 

correlated with a morphological change of mitochondria within these cells, but was not 

seen in the cells carrying the G37R and H48Q mutations. The G37R mutation, which 

demonstrated increased resistance to oxidative insult in the previous chapter, showed 

comparative oxygen consumption and glycolytic flux prior to and post oxidative insult, 

which indicates the increased susceptibility to stress seen in the other mutations may be 

correlated with reduced mitochondrial function.  
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5.2.1 Mitochondrial bioenergetics in an in vitro model of familial-ALS  

5.2.1.1 Mitochondrial bioenergetics under basal conditions 

 
To create a bioenergetic profile of the neuronal cell model control and transfected NSC34 

cells were analysed using an XF24 Seahorse Bioanalyser. Basal conditions were 

compared with addition of the ATP synthase inhibitor oligomycin, the mitochondrial 

membrane uncoupler FCCP, and the mitochondrial complex I inhibitor Rotenone to 

assess mitochondrial function.  

 
Basal cellular oxygen consumption (OCR) is an indicator of both mitochondrial and non-

mitochondrial respiration and is controlled strongly by ATP turnover and partly by 

substrate oxidation and proton leak (Ainscow and Brand 1999, Brown, et al. 1990). Basal 

OCR was significantly lower in the G93A mutant cells in comparison to the G37R 

mutant cells (p≤0.01) (figure 5.4, A), indicating the different effects of SOD1 mutations 

on mitochondrial function. A non-significant (p>0.05) reduction in basal OCR was seen 

between the G93A mutant and control cells. G37R mutant cells showed significantly 

higher basal OCR than WTSOD1, indicating that the presence of this mutation has a 

significant difference in coupled respiration under basal conditions. The application of 

Rotenone was used to determine the fraction of cellular oxygen consumption linked to 

mitochondria. The G37R mutant cells showed significantly higher (p≤0.01) 

mitochondrial respiration compared with WTSOD1 and G93A SOD1 cells (figure 4.3, B) 

following the addition of Rotenone.  

 
The application of FCCP dissipates the proton gradient across the mitochondrial inner 

membrane and allows investigation of maximal mitochondrial respiration. The spare 

respiratory capacity of cells can be calculated following application of FCCP and the 

induction of maximal respiration. Spare respiratory capacity represents the amount of 

additional ATP that can be produced when the cell experiences a sudden increase in 

energy demand.  It is the difference between ATP production by oxidative 

phosphorylation at basal and maximum respiratory capacity. The mean spare respiratory 

capacity was variable for all cell types investigated. The G93A and G37R mutant cells 

displayed reduced spare respiratory capacity compared to controls and the H48Q SOD1 

mutation, however the reduction did not reach significance (p>0.05) (figure 5.4, C).  
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A. 

 
B. 

 
C. 

 
 

Figure 5.4: The effect of SOD1 mutations on oxygen consumption 

Basal OCR was measured (A) and mitochondrial respiration calculated by subtracting 

OCR in the presence of Rotenone from basal OCR (B). The spare respiratory capacity 

calculated by subtracting basal OCR from respiratory capacity after addition of FFCP 

(C). Data presented as mean with SD (n=4), statistical analyses by one-way ANOVA 

with Bonferroni post-test  *=P≤0.05, **=P≤0.01 
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The rate of mitochondrial ATP synthesis was investigated by the application of an ATP 

synthase inhibitor (oligomycin). The addition of oligomycin shifts the entire cellular ATP 

synthesis towards glycolysis so that subtraction of the post-treatment OCR from basal 

OCR indicates oligomycin sensitive respiration. The G93A mutant cells showed 

significantly lower ATP turnover (p≤0.01) in comparison to the G37R mutants and the 

pIRES vector control (figure 5.5, A); however only minor differences in turnover were 

seen for the mutations in comparison to the controls. Mitochondrial coupling efficiency is 

the fraction of mitochondrial oxygen consumption used for ATP synthesis. The coupling 

efficiency can be determined from the change in basal respiration rate following 

application of oligomycin, and can detect whether the mitochondria are dysfunctional. 

The G93A mutant SOD1 cells displayed a significant reduction in coupling efficiency in 

comparison to WTSOD1 and the G37R and H48Q mutant cells (figure 5.5, B).  

 
During ATP production, a percentage of protons leak across the inner mitochondrial 

membrane. These protons are able to pass back into the mitochondria, and in the absence 

of ATP synthesis the proton circuit is largely completed by proton leak. Proton leak can 

be determined by the subtracting the respiration rate after the application of Rotenone 

from the oligomycin sensitive respiration rate. The G37R mutant cells showed a 

significantly greater (p≤0.05) proton leak in comparison to the WTSOD1 cells (figure 

5.5, C). Dysfunctional mitochondria are expected to show an increase in proton leak as 

much of their energy generation is linked to uncoupled respiration.   
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A. 

 
B. 

 
C. 

 
 

Figure 5.5: Mitochondrial function following complex inhibition 

(A) The rate of ATP turnover (coupled respiration) in a basal state can be determined 

from the decrease in OCR on inhibiting ATP synthase with oligomycin, displayed here as 

oligomycin sensitive respiration. (B) Coupling efficiency determined from the change in 

basal OCR after addition of oligomycin. (C) OCR in the presence of rotenone subtracted 

from OCR in the presence of oligomycin determines proton leak. Data presented as mean 

with SD (n=4), statistical analyses by one-way ANOVA with Bonferroni post-test 

***=P≤0.001, *=P≤0.05 
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Together with measurements of aerobic respiration, the XF24 Seahorse bioanalyser also 

enables investigation of the extracellular acidification rate (ECAR), a direct measure of 

lactate produced by glycolytic flux. Lactate is the primary source of protons, and ECAR 

is measured indirectly from the change in pH as protons are released in to the surrounding 

media (Nicholls 2010). No significant differences were observed for basal ECAR 

between the controls and the mutations (figure 5.6, A). The response of the glycolytic 

flux to mitochondrial inhibition to restore the energy deficit can be measured. When ATP 

synthase is inhibited, the cell responds by up-regulating glycolysis to recover the energy 

deficit, this increase above basal levels is termed the glycolytic capacity. A reduction in 

OCR after the application of complex I inhibitor Rotenone, would normally be 

accompanied by a concomitant increase in ECAR to maintain energy production. A 

collapse in the mitochondrial membrane potential after the addition of uncoupling agent 

FCCP also results in an increase in ECAR, as cells attempt to maintain their energy 

balance through glycolysis. The induction of ECAR in the presence of the mitochondrial 

inhibitors oligomycin, FCCP, and Rotenone was measured, however no significant 

differences in induction were seen between controls and mutant cells lines (p>0.05) 

(figure 5.6, B). 
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A. 

 
B. 

 
 
Figure 5.6: Glycolytic flux under basal conditions and following the application 

of mitochondrial inhibitors 

(A) No significant differences were observed for ECAR when measured under basal 

conditions. (B) ECAR induction did not vary significantly between the controls and 

mutations investigated following the application of oligomycin (Oligo), FCCP, and 

rotenone (Rot) 

 

5.2.1.2 Mitochondrial bioenergetics under stress conditions 

 

Following the measurement of mitochondrial function under basal conditions, the cell 

lines were subjected to three sub-lethal doses of H2O2 (up to 200µM for one hour) as 

determined from cell viability assays (section 4.3.1). OCR and ECAR were measured 

after exposure to oxidative stress to determine whether these conditions introduced 

significant metabolic defects.  
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Basal ECAR was unaffected in the control cells at 50µM and 100µM. However, the 

G93A mutant cells showed a significant reduction in ECAR at 100µM (p≤0.01) in 

comparison to both the pIRES and WTSOD1 controls (figure 5.7, A), which may indicate 

a susceptibility of this particular mutation to oxidative stress. It was also significantly 

reduced (p≤0.05) compared to the H48Q mutation. A reduction in ECAR was seen for 

both controls and mutants at 200µM. A significant reduction in basal OCR was seen for 

the G93A mutant cells in comparison to the WTSOD1 (p≤0.01) and the G37R mutant 

cells (p≤0.05) following treatment with 100µM H2O2 (figure 5.7, B).  
 
 
A. 

 
B.  

 

 
 
Figure 5.7: The effect of oxidative stress on mitochondrial metabolic function 

(A) After H2O2 treatment the G93A mutation displayed a significant reduction in 

ECAR at 100µM in comparison to both the vector and human SOD1 controls and the 
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H48Q mutation. 200µM H2O2 treatment showed reduced ECAR in all cell types. (B) 

OCR was measured following H2O2 stress. The G93A mutation had significantly 

reduced oxygen consumption in comparison to normal and G37R mutant human SOD1 

after 100µM stress. At 200µM all cells displayed diminished basal OCR. Data 

presented as mean with SD (n=3), statistical analyses by two-way ANOVA with 

Bonferroni post-test **=P≤0.01, *=P≤0.05 

 

5.2.2 Mitochondrial morphology in an in vitro model of familial-ALS  

 

Mitochondrial morphology was investigated in the control and mutant NSC34 cells 

using rhodamine 123 under basal conditions, and following exposure to 100µM H2O2 

for one hour. The G93A mutation showed significantly reduced basal oxygen 

consumption rate when exposed to this oxidative insult. The aim was to determine 

whether the dysfunction of mitochondria seen following exposure to an exogenous 

stress correlates with a change in their morphology. Qualitative assessment revealed 

increased network formation in the G93A mutant cells under basal conditions, in 

comparison to the controls and other mutations investigated. Initial analysis carried out 

on the three dimensional z-stack projections (Mortiboys, et al. 2010) failed to produce 

reliable measurements. Mitochondria that qualitatively were forming networks or close 

in proximity were frequently identified by the macro as a single organelle. Subsequent 

to this analysis was repeated using the same macro (Dagda, et al. 2009), however only 

the middle image from each stack was analysed. . This revealed an increase in the 

area/perimeter percentage of the G93A mutation under basal conditions, which was 

significant compared to both the controls, and the G37R, and H48Q mutations (figure 

5.8, A). Mitochondrial elongation was greatest in the pIRES cells under basal 

conditions, but the increase was not significant in comparison to the other cell lines 

investigated (figure 5.8, B). The area/perimeter is a measure of the interconnectivity of 

mitochondria within a cell. Following exposure to oxidative stress the G93A mutation 

displayed a reduction in area/perimeter in comparison to all the other cell lines 

investigated, and this was significant in comparison to the pIRES control (Figure 5.9, 

A), and in comparison to itself under basal conditions (figure 5.10). Mitochondrial 

elongation following exposure to oxidative stress displayed no significant differences 

between the cell lines investigated (figure 5.9, B).   
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A. 

 

B. 

 

Figure 5.8: Mitochondrial interconnectivity (A) and elongation (B) in control 

and mutant NSC34 cells under basal conditions.  

Data presented as mean with SD (n=3), statistical analyses by one-way ANOVA with 

Bonferroni post-test *=P≤0.01 

A. 

 

B. 

 

Figure 5.9: Mitochondrial interconnectivity (A) and elongation (B) in control 

and mutant NSC34 cells following exposure to 100µM H2O2 for one hour  

Data presented as mean with SD (n=3), statistical analyses by one-way ANOVA with 

Bonferroni post-test *=P≤0.01 

Mitochondrial Interconnectivity

pIR
ES

WTSOD1
G93A

H48Q
G37R

0.0

0.5

1.0

1.5

2.0

2.5

M
ito

 In
ter

co
nn

ec
tiv

ity

Cell Type

*
*

*
*

Mitochondrial Elongation

pIR
ES

W
TSOD1

G93
A

H48
Q

G37
R

0.0

0.2

0.4

0.6

M
ito

 E
lo

ng
ati

on

Cell Type

Mitochondrial Interconnectivity

Cell Type

M
ito

 In
te

rc
on

ne
ct

iv
ity

pIR
ES

W
TS
OD
1

G9
3A

H4
8Q

G3
7R

0.0

0.5

1.0

1.5

2.0 *

Mitochondrial Elongation

pIR
ES

W
TSOD1

G93
A

H48
Q

G37
R

0.0

0.2

0.4

0.6

M
ito

 E
lo

ng
ati

on

Cell Type



240 
 

A. 

 

B. 

 

C. 

 

 

Figure 5.10: Mitochondrial interconnectivity in cells carrying the G93A 

mutation under basal and stress conditions  

(A) Mitochondrial interconnectivity in G93A mutant SOD1 NSC34 cells under basal 

and stress conditions. Mitochondrial morphology is represented under basal conditions 

and following exposure to oxidative stress in (B) and (C) respectively. Data presented 

as mean with SD (n=3), statistical analyses by two-tailed unpaired t-test *=P≤0.01. 

Images are of the z-stack projection created using Image J. 
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5.3 Discussion 
	
  

5.3.1 Mitochondrial bioenergetics in an in vitro model of ALS 

 
To determine whether the presence of different disease-causing mutations have 

differential effects on mitochondrial function, that could be linked to susceptibility to cell 

death under oxidative conditions, we investigated the bioenergetic capacity of different 

human mutant SOD1 transfected cells. The XF24 Seahorse Bioanalyser simultaneously 

measures aerobic respiration and glycolysis within intact cells, and has previously been 

used to investigate mitochondrial bioenergetics in Alzheimer’s and Parkinson’s disease 

(Choi, et al. 2011, Varghese, et al. 2011, Yao, et al. 2009). Cellular respiration was 

assessed under basal conditions (basal respiration) and with the ATP synthase inhibitor 

oligomycin (to investigate coupled respiration), the mitochondrial membrane uncoupler 

FCCP (to measure spare respiratory capacity) and the mitochondrial complex I inhibitor 

rotenone (to assess mitochondrial specific respiration) (figure 5.3). The sequential 

addition of these compounds shifts the bioenergetic profile of cells allowing differences 

in mitochondrial function to be compared between cell lines.  

 

Basal oxygen consumption (OCR) is a measurement of mitochondrial respiration that 

indicates differences in the efficiency of oxidative phosphorylation between cell lines. 

Oxygen is consumed at complex IV of the respiratory chain, and this is measured as the 

OCR. The G93A mutation shows a significant reduction in basal OCR in comparison to 

the G37R mutation, suggesting reduced mitochondrial efficiency, which could explain in 

part why the G93A mutant cells show an increased susceptibility to oxidative stress in 

comparison to the G37R mutants. WTSOD1 also demonstrated reduced oxygen 

consumption in comparison to the G37R mutation, suggesting the presence of WTSOD1 

has an effect on the bioenergetics capacity of cells. Individual transfectants did not show 

significant differences in comparison the pIRES and WTSOD1 in terms of spare 

respiratory capacity. Although spare respiratory capacity for the G93A and G37R 

mutations was reduced in comparison to controls, this didn’t reach significance, likely 

due to the variability in the data. The bioenergetic capacity of mitochondria influences the 

ability of cells to respond to increased energy demands, which may be critical for 

survival.  

 

Treatment with oligomycin prevents the cells synthesising ATP by oxidative 

phosphorylation and consequently they revert to glycolysis. This inhibition leads to slight 
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mitochondrial hyperpolarisation, which may over-estimate the proton leak and under-

estimate ATP turnover; however in most cell types the error is relatively small (Affourtit 

and Brand 2009). Addition of oligomycin allows investigation of the cellular oxygen 

consumption devoted to ATP synthesis (Nicholls, et al. 2010). When proton flux through 

ATP synthase is inhibited, phosphorylating respiration stops, and proton leak accounts for 

the residual oxygen consumption. The G93A mutation showed significantly reduced 

coupled respiration in comparison to the pIRES and G37R mutant cells. Coupled 

respiration drives oxidative phosphorylation of ADP to ATP mediated by proton pumps 

across the inner mitochondrial membrane. A reduction in coupled respiration suggests 

defective ADP/ATP exchange within human G93A mutant SOD1 transfected NSC34 

cells. A decline in the energy generation capacity of cells will lead to changes at the 

transcriptional level and subsequently protein activities, which could cause normal 

cellular activities to be compromised. Understanding how mutations disrupt oxidative 

phosphorylation and the cellular changes this produces, may provide an insight in to how 

neurons enter a state of degeneration.  

 

Reduced coupled respiration indicates the mitochondria are less efficient, reduced 

coupling between electron transport and proton extrusion subsequently impacts 

mitochondrial oxygen utilisation. When oxygen is consumed at complex IV, some of it is 

incompletely reduced forming the superoxide anion (O2
-) during normal respiration. A 

reduction in the efficiency of the ETC and subsequent reduction in coupling efficiency 

can lead to increased unpaired electrons escaping the respiratory complexes. Redox 

reactions can lead to increased free radical production, elevating oxidative stress and 

subsequent molecular damage (Sas, et al. 2007). During neurodegenerative disease, 

impairment in neural energy metabolism accompanied by increased oxidative stress can 

have several consequences that potentially contribute towards cellular degeneration. 

Glutamate-mediated disturbances in ion concentrations, excitotoxicity, increased 

macromolecular damage, and elevated intracellular calcium, would disrupt multiple 

cellular mechanisms leading to functional decline. 

 

Intracellular and extracellular conditions impact glycolytic flux. A reduction in glycolytic 

flux as seen here for the G93A mutant cells suggests that enzymatic determinants of 

glycolytic metabolism or pathway intermediates of glycolysis are affected in cells 

carrying this mutation, implicating value in investigating changes in specific intermediary 

metabolites. An increase in glycolytic flux is necessary to meet energy demands and 

protect cells from oxidative stress induced death during periods of mitochondrial 

dysfunction. Our previous microarray study revealed that G93A mutant SOD1 transgenic 
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mice have an up-regulation in the expression of genes involved in respiratory chain 

function at presymptomatic stages of disease (Ferraiuolo, et al. 2007). This supports the 

concept that cells carrying the mutation try to compensate for the increase in oxidative 

stress and reduction in respiratory chain efficiency, by altering their transcriptome. The 

ability of cells to meet their energy demand by increasing glycolytic flux may be crucial 

to their survival under compromising conditions, and may explain the resistance of G37R 

mutant cells to cell death when exposed to oxidative stress. We have also shown in a 

previous study the detrimental effect on cell viability of inhibiting glycolysis in the G93A 

mutant NSC34 cells (Menzies, et al. 2002). Cells, which are able to meet their energy 

demands through glycolysis, persist in a state of oxidative stress, which is likely to result 

in changes in their transcriptome (Bolanos, et al. 2010).  

 

The effect of oxidative stress on the bioenergetic profile of the cells was investigated and 

significant differences in measurements of ECAR and OCR were observed between the 

mutant-transfected cell lines, again reflecting differences between mutations. These 

assays were performed under sub-lethal stress conditions (50µM to 200µM H2O2 for one 

hour). Treatment with similar or lower doses for longer periods (although not severe 

enough to induce cell death) may show different responses of the mutants over time. 

Overall the data suggest that overexpression of the SOD1 G93A mutation renders the 

neuronal cells not only more susceptible than controls to oxidative stress in terms of cell 

survival (see previous chapter), but in terms of increased susceptibility to perturbations of 

mitochondrial respiration and glycolytic metabolism, since this was the only mutation to 

show significant reductions in ECAR and OCR after H2O2 treatment.  

 

Previous work using the NSC34 cell model identified significant reduction in the activity 

of complex II and IV of the mitochondrial respiratory chain in cells transfected with 

G93A or G37R mutant SOD1, in comparison to control vector-only cells (Menzies, et al. 

2002). No significant differences were seen for complex I and III activity. Defects in the 

mitochondrial membrane potential in G93A SOD1 transfected SH-SY5Y cells have also 

been observed (Carri, et al. 1997). However, another study found the activities of 

mitochondrial ATP synthesis, cytochrome c oxidase, and citrate synthase were unchanged 

in cells expressing G93A or G85R mutant SOD1 in comparison to control cells (Magrane, 

et al. 2009), indicating not only the variability of using cell models to study disease but 

also the complex multi-factorial nature of the disease and how multiple factors are likely 

to influence functional capacity. The lack of significant reduction in total mitochondrial 

respiration observed in this study may be due to the fact that we assessed mitochondrial 

function in real time using intact cells, which gives greater physiological relevance. 
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Assessing isolated mitochondrial complexes lacks cellular context, our approach gives a 

more accurate reflection of mitochondrial dysfunction within the cellular environment. 

Our results agree with both in vitro and in vivo studies showing that wild-type human 

SOD1 reduces mitochondrial activity under basal conditions, suggesting over-expression 

of normal human SOD1 may lead to alterations in mitochondrial function (Jaarsma, et al. 

2000, Menzies, et al. 2002).  

 

Studies have shown an accumulation of oxidative damage to mtDNA during normal 

ageing and neurodegenerative disease including ALS (Ma, et al. 2009). Changes to 

mitochondrial gene expression cause with transcription and the electron transport chain 

leading to subsequent increases in oxidative stress and physiological decline (Dranka, et 

al. 2011). Reduced mitochondrial metabolism has been demonstrated in the brain and 

spinal cord of transgenic mice expressing familial ALS-linked G93A mutant SOD1 at the 

onset of disease, supporting the contribution of mitochondrial abnormalities to ALS 

pathogenesis (Kong and Xu 1998, Mattiazzi, et al. 2002). The coordinated expression of 

mitochondrial and nuclear genomes for respiratory complex biogenesis introduces 

another point of damage that could potentially affect respiratory efficiency (Lane 2011). 

Respiratory rate is modulated by transcriptional control, translational regulation, protein 

stability and phosphorylation, and disruption to any of these processes may affect 

mitochondrial function due to reduced biogenesis. Although ALS is not primarily a 

mitochondrial disease, investigating its function in disease models is important, as 

defects/mutations affecting this organelle are likely to impact other cellular processes 

underlying pathogenesis (Mammucari and Rizzuto 2010). 

 

NSC34 cells are generated through somatic fusion of murine neuroblastoma and motor 

neuron-enriched (embryonic day 12–14) spinal cord cells (Cashman, et al. 1992). These 

transformed cells are likely to have different characteristics from the parental cells, 

including signaling and metabolic differences. Neuroblastoma cells reprogram their 

metabolism to support rapid metastatic growth, which must be considered when using 

these lines to study disease mechanisms. Although mutant SOD1 transfected NSC34 cells 

are not the perfect model for ALS, they enable study into the potential mechanisms that 

underlie disease pathogenesis and how neurons carrying these mutations become 

susceptible to degeneration, insights post-mortem tissue can not provide. These cells are 

economical compared to rodent models of disease and are a resource for testing potential 

therapeutics.  
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For further work investigating mitochondrial bioenergetics in ALS, isolating primary 

viable cells or mitochondria from transgenic murine models of disease would allow 

investigation of mitochondrial function during disease progression. Mitochondrial 

function may be increased transiently at presymptomatic stage of disease as a 

compensatory mechanism (Ferraiuolo, et al. 2007). Serum withdrawal has been shown to 

cause oxidative stress in NSC34 cells (Cookson, et al. 1998). Investigating mitochondrial 

function after serum withdrawal would determine whether the addition of serum affects 

mitochondrial function, and whether there are differences between the mutations. In the 

experiments here, cells are subject to an hour of serum withdrawal after being subject to 

oxidative stress and before being read by the Seahorse Bioanalyser. This gives a period 

when cells may start to recover from the stress, potentially explaining why fewer 

significant differences are seen in OCR and ECAR after oxidative stress exposure. H2O2 

treatment of cells whilst they are in the bioanalyser would allow the immediate effects of 

stress on mitochondrial dysfunction to be assessed over a range of time and 

concentrations simultaneously. Another approach might be to assess mitochondrial 

function in cells exposed to oxidative stress after a predetermined recovery period. This 

approach allows for longer treatment time periods that can be associated with additional 

experimental endpoints such as cell death. The cells would be treated in their normal 

culture medium and incubated under normal conditions, avoiding potential artifacts due 

to altered cell culture conditions. Investigating differences in mitochondrial gene 

expression or protein levels, by RT-qPCR and Western blotting respectively, may give an 

insight into what is happening at the molecular level and enable further investigation into 

the mechanisms underlying selective vulnerability to oxidative stress and mitochondrial 

dysfunction. 

 

 

5.3.2 Mitochondrial morphology in an in vitro model of ALS 

 

Mitochondria are dynamic organelles, forming interconnected networks to facilitate 

cellular energy demand. Neuronal survival critically depends on the integrity and 

functionality of mitochondria. Mitochondrial morphology and function is maintained 

through fission and fusion, and disrupting the balance of the processes can result in 

mitochondrial fragmentation, elongation, or aggregation (Chan 2006). Studies in in vitro 

and in vivo models of ALS have revealed abnormal mitochondrial clustering in the axons 

of human mutant SOD1 transgenic mice, and extensive fragmentation of mitochondria in 
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cultured NSC34 cells expressing human mutant SOD1 (Menzies, et al. 2002, Raimondi, 

et al. 2006, Sotelo-Silveira, et al. 2009).  

 

Mitochondrial morphology was assessed using rhodamine 123, which is a specific probe 

frequently used for the localisation of mitochondria within live intact cells (Johnson 

1980). The Mito-Morphology macro (Dagda 2009) was used for the analysis, and 

provides measurements of mitochondrial number, area, perimeter, average circularity, 

and average area/perimeter ratios. In this study, we identified increased interconnectivity 

under basal conditions within NSC34 cells transfected with human G93A mutant SOD1 

in comparison to the controls and other mutations investigated. Networking of the 

mitochondria has been shown to potentially represent an adaptive mechanism, allowing 

them to function more efficiently to deal with cellular stress (Koopman, et al. 2005, 

Mortiboys, et al. 2008). The G93A mutation was also previously reported to be the most 

susceptible to oxidative stress related cellular decline as identified by cell viability and 

LDH assays (chapter 4). The results from this study suggest the G93A mutation may 

increase its mitochondrial interconnectivity to compensate for an energy deficit. Although 

the basal oxygen consumption rate was only significantly reduced in comparison to the 

G37R mutation and the reduction in spare respiratory capacity did not reach significance, 

a significant reduction was seen in the coupling efficiency for the G93A mutation cells, 

suggesting the mitochondria are dysfunctional under basal conditions. The analysis 

indicates the mutation predominantly affects mitochondrial morphology under basal 

conditions. The change in morphology may allow the cells to compensate, and therefore 

the differences seen in terms of mitochondrial bioenergetics were only slightly reduced in 

comparison to the controls and the other mutations investigated. Previous studies have 

demonstrated mitochondrial fragmentation facilitates the release of cytochrome c and 

therefore promotes activation of the apoptotic pathway. When cells are subject to modest 

levels of stress, the mitochondria fuse to form a closed network, which is referred to as 

stress-induced mitochondrial hyperfusion (SIMH) (van der Bliek 2009). This potentially 

allows cells to counter the stress by optimising their ATP production, providing transient 

protection against apoptosis and mitophagy (Gomes and Scorrano 2011, Rambold, et al. 

2011, Tondera, et al. 2009), which potentially is what is happening in the cells carrying 

the G93A mutation. However, the mechanisms mediating this response remain poorly 

understood.   

 

Following exposure to oxidative stress, the G93A mutation showed significantly reduced 

mitochondrial interconnectivity in comparison to the pIRES control and itself under basal 

conditions. This correlated with a significant reduction in basal oxygen consumption and 
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extracellular acidification rate following exposure to the same stress. Cell viability assays 

revealed this level of stress to be sublethal, further indicating the effect this mutation has 

on the cells in terms of vulnerability to oxidative stress related dysfunction. A loss of 

mitochondrial connectivity, accompanied by the formation of punctate mitochondria has 

been demonstrated under conditions of mitochondrial dysfunction (De Vos, et al. 2005, 

Karbowski and Youle 2003). This study supports previous work demonstrating stress 

conditions and changes in energy source can induce significant mitochondrial 

morphological changes (Tondera, et al. 2009). The change in morphology following 

exposure to stress suggests the G93A mutant cells are no longer able to compensate for 

the energy deficit and therefore induce fragmentation. Changes in mitochondrial cristae 

and mitochondrial fragmentation, are known to have a vital role in apoptosis (Youle and 

Karbowski 2005).  

 

Here we have applied a novel technique to investigate mitochondrial function within 

intact motor neuronal NSC34 cells under basal and oxidative stress conditions. 

Differences in cellular metabolic and bioenergetics function between the mutations are 

consistent with the differences observed in viability. The G93A mutation was the most 

susceptible to oxidative stress in terms of cell survival and showed significantly lower 

OCR, spare respiratory capacity and mitochondrial respiration in comparison to the G37R 

mutation, which consequently was the least susceptible to oxidative stress under the 

conditions investigated. Additionally the G93A mutation was the only cell type to show 

significant changes in OCR under stress conditions. The H48Q mutation lay between the 

G93A and G37R mutations in relation to mitochondrial bioenergetic capacity and 

susceptibility to oxidative stress. The susceptibility of the G93A mutation to oxidative 

stress induced cell death and mitochondrial dysfunction may be a result of the increased 

toxicity of this mutation (Section 4.6.2). In addition to this, G93A mutant SOD1 have 

been shown to bind mitochondria within the spinal cord of transgenic mouse models of 

disease, forming high molecular weight aggregates, which are subsequently bound by 

apoptotic regulator Bcl-2 (Pasinelli, et al. 2004). The sequestration of Bcl-2 by mutant 

SOD1 aggregates will render the protein non-functional, and inhibition of Bcl-2 binding 

to pro-apoptotic proteins may reduce cellular viability. Bcl-2 is also important for 

maintaining the mitochondrial membrane potential (Danial and Korsmeyer 2004), 

therefore its sequestration in to SOD1 aggregates may lead to disruption of the 

mitochondrial membrane potential. G37R SOD1 were also shown to bind Bcl-2, but to a 

much lesser degree (Pasinelli, et al. 2004).  
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This work contributes to the growing field of mitochondrial bioenergetic dysfunction in 

motor neuron disease and further work should focus on the underlying mechanisms by 

which these changes occur. 
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Chapter 6 
Discussion 

 

ALS involves a progressive neuronopathy, which characteristically results in respiratory 

failure as the cause of death for most patients. Many of the processes implicated in ALS 

are mechanisms common to a range of age-associated neurological disorders. However, 

despite extensive research into these pathways, significant hurdles remain in the 

discovery of therapeutics, due to the multi-factorial nature of disease aetiology and its 

clinical heterogeneity. Up to 20% of familial cases of ALS have been linked to mutations 

in the Cu/Zn superoxide dismutase-1 (SOD1) gene, and in vitro and in vivo models 

harbouring a human SOD1 mutation have been widely used to study the pathogenic 

mechanisms. More recently a substantial proportion of fALS cases have been linked to an 

expansion of the intronic hexanucleotide repeat sequence in C9ORF72. The identification 

of this in sALS patients, potentially allows for greater understanding of common 

mechanisms underlying pathogenesis in sALS and fALS patients, and providing new 

models for disease study. An important feature of this mutation is that it seems to 

reinforce the role of RNA processing in the ALS disease process. 

 

6.1 Gene expression profiling of an oxidised fraction of RNA during ageing 
 

A priority in neurodegenerative research is to understand the interactions of neuronal cell 

types, and how this interaction and their cellular function changes during normal ageing 

and disease. Oxidative stress is one common mechanism long associated with ageing and 

age-associated neurodegenerative disorders. Investigation has focused on the interplay of 

oxidative stress and other cellular mechanisms proposed to underlie neurodegeneration, 

including how oxidative modification to proteins, lipids, and nucleic acids may contribute 

towards the pathology of neurodegenerative disease. A recent study of the human G93A 

mutant SOD1 transgenic mouse model of fALS revealed prominent oxidative 

modification to RNA within the cytoplasm of MNs at presymptomatic stage disease. 

Further to this select classes of RNA were shown selectively targeted for modification 

(Chang, et al. 2008). Although progressive neuronal loss is a hallmark of 

neurodegenerative disorders, the pathways and dysfunction identified in disease may 

reflect an acceleration of the functional impairments identified in ageing. The first aim of 

our study was to determine whether selective oxidative modification of RNA was a 
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feature of normal ageing, and for this we analysed the expression profile of an oxidised 

fraction of RNA from the anterior horn of mice aged six, twelve, and eighteen months. 

The progression of ageing and neurodegenerative disease can be investigated using model 

organisms, which makes them extremely valuable for genetic research. Mouse models are 

commonly used because of their genetic and physiological similarities to humans. 

Another advantage of using mouse models is the ability to specifically manipulate the 

mouse genome to create specific genetic changes that are of interest to study. 

 

We identified a change in the number of genes and the enrichment classes of genes 

differentially expressed in the oxidised RNA fraction during ageing. This may represent 

the gene expression changes during normal development of the anterior horn, reflecting 

changes in the requirements of the cell as an organism ages. The increased oxidation of 

certain transcripts may be due to their availability for modification, or it may be that 

certain transcript features predispose to selective modification. A significant increase in 

the length of the transcript and number of exons of genes in the oxidised fraction in 

comparison to those in the non-oxidised fraction at six and twelve months of age were 

identified, suggesting these features may influence modification frequency. mRNA 

abundance has been found to correlate with transcript half-life, however comparison of 

the half-life for genes identified in the oxidised and non-oxidised fractions in our study 

revealed no significant differences in terms of mRNA half-life and susceptibility to 

oxidation. This suggests that while the abundance and presence of a transcript in a cell 

may affect the opportunity for it to be oxidatively modified, other factors also govern the 

selective targeting for RNA oxidation.   

 

RNA oxidation has been identified in a wide range of diseases, and evidence suggests the 

modification and the consequent loss of integrity of RNA is a mechanism of 

neurodegenerative pathology. In addition, disturbances to RNA processing and 

metabolism is becoming increasingly evident in ALS, and other neurodegenerative 

diseases. The expansion of understanding for these mechanisms, along with the 

identification of numerous regulatory ncRNAs has established a multitude of targets that 

could lead to cellular decline if their function is dysregulated. We are interested in 

disturbances to RNA processing and metabolism because of the association with ALS 

pathogenesis, and interestingly genes identified to be specifically targeted for oxidative 

modification to their transcript in our study have been associated with mechanisms that 

have been reported to be dysregulated in ALS. The enrichment of specific groups of 

genes involved in transcriptional regulation, including transcriptional coactivators and 

chromatin modifiers, and RNA processing in the oxidised fraction were identified at six, 
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twelve, and eighteen months. The analysis was subjective in that our focus centred on 

genes in the oxidised fraction involved in these processes at each age, but other 

enrichment classes were also identified. Age-related changes in gene expression are 

associated with insults from endogenous and exogenous factors, and reduced synthesis of 

transcription factors has been demonstrated (Roy 1997), which may explain the 

differences in the transcripts targeted for oxidation at each age. Oxidative modification to 

the RNA transcript may impact on the downstream function of the protein if translational 

fidelity is affected by the damage. Aberrant alternative splicing or mRNA processing may 

result from the presence of a modified base. A reduction in transcription factor/co-factor 

availability would lead to reduced activation/repression of target genes and subsequent 

downstream changes in expression, potentially causing extensive disruption to normal 

cellular functioning.  

 

Whether RNA modification and dysfunction is a primary mechanism underlying disease 

pathogenesis or is a consequence of increased oxidative stress and other disruptions to 

cellular functioning remains unknown. Prominent neuronal RNA oxidation was identified 

at presymptomatic stage in an in vivo model of ALS, suggesting an early involvement in 

pathogenesis (Chang, et al. 2008). Investigating RNA oxidation in ageing found it to be 

prevalent during later life, suggesting an accumulation of damage during normal ageing 

without pathogenic consequences (Nunomura, et al. 2012). In this study we identify 

selective oxidative modification of RNA during normal ageing, with notable transcripts 

modified at a young age (six months). Although this could be a cellular regulatory 

mechanism related to a cellular pruning process or a consequence of the availability of 

the transcript for modification, further work to identify whether targeting of select 

transcripts for modification may predispose an individual to a neurodegenerative disease. 

An important area for research is translating whether what happens in pathology is 

recapitulated in ageing, and the factors determining the transition from normal ageing to 

neurodegeneration. 

 

Many processes act to regulate RNA stability to coordinate gene expression. RNA 

oxidation may be another mechanism acting to control mRNA abundance within a cell. 

Oxidants are known as important regulators of signalling, including the 

activation/inactivation of various transcription factors. Like ROS, at low levels, oxidised 

guanine derivatives and the modification of transcipts could have signalling/regulatory 

properties, but be detrimental after reaching a certain threshold, for example in 

neurodegenerative disease when oxidative stress is increased and the frequency of 

modification is likely to increase. This supports the differences seen between our ageing 
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study, and the study investigating RNA oxidation in ALS (Chang, et al. 2008). The 

targeting of transcripts for modification may be more selective during ageing, with 

widespread damage occurring during disease.  

 

Although gene expression profiling studies have sought to identify common genes and 

pathway changes that occur in ageing and specific neurodegenerative disease, the 

perturbations that lead to pathology remains largely unknown. The changes in gene 

expression during ageing and disease may be the result of numerous changes including, 

transcriptional control, RNA processing, protein turnover, making it difficult to identify 

the causative factor due to the multi-factorial nature of normal ageing and 

neurodegenerative disease. The changes in nuclear architecture during ageing and disease 

are likely to impact transcriptional fidelity, which may result from oxidative modification 

to the RNA transcript as identified here for multiple genes involved in transcriptional 

regulation. To determine whether this damage does impact transcriptional fidelity, 

investigation of downstream genes and proteins is needed. It would be interesting to see 

whether the oxidation of RNA during ageing significantly alters the protein expression 

for the specific gene, as previously described for in vitro models. Interesting questions 

also remain surrounding the oxidative modification of ncRNAs, and whether selective 

modification of these alters their function and potentially promotes neurodegeneration. 

 

6.2 The impact of SOD1 mutations on cellular function 
 

Oxidative stress has been extensively studied with relation to ALS pathogenesis since the 

identification of a mutation in the antioxidant enzyme SOD1. Over 150 mutations in 

SOD1 have been identified, which are heterogeneous and specific mutations may have 

different cellular effects. In our study we wanted to further our investigation to determine 

whether SOD1 mutations influence the level of RNA oxidation, and whether differences 

are seen in terms of oxidative stress related cellular decline. For this we used an in vitro 

model of familial ALS.  

 

Model systems are used to investigate oxidative stress related defects and understand how 

these neurotoxic effects lead to cellular decline and degeneration. In our study we 

investigated NSC34 cells stably transfected with the G93A, G37R, and H48Q human 

SOD1 mutations. The H48Q and G93A mutations demonstrated increased vulnerability to 

oxidative stress related mitochondrial dysfunction and cell death. This was pronounced in 

the G93A mutant cells, which were susceptible to lower doses of stress. These 



253 
 

experimental findings may reflect differences observed clinically between SOD1 

mutation-types in ALS patients.  In human ALS patients, the G37R mutation displays an 

earlier onset of disease but has a longer disease progression in comparison to the G93A 

mutation (Cudkowicz, et al. 1997). Here we observed that the G37R mutant cells are not 

greatly affected in terms of viability in response to oxidative stress, suggesting the mutant 

transgene confers greater resistance to this insult in comparison to the other mutations. 

The H48Q mutation displays a later disease onset in ALS patients but the clinical course 

is rapidly progressive with a much shorter duration of disease compared to the other two 

mutations investigated here (Orrell, et al. 1997, Orrell, et al. 1999). In terms of cell 

viability the H48Q mutant NSC34 cells were gradually more susceptible to oxidative 

stress until a certain level of insult when a rapid induction in cell death was observed. 

Progression of disease in patients harboring the G93A mutation is relatively rapid with 

typical survival of two to five years (Radunovic and Leigh 1996). Variations between the 

individual mutations likely underlie the differences seen in susceptibility to oxidative 

stress in these experiments.  This phenotypic heterogeneity is not unusual between 

patients with different SOD1 mutations (Battistini, et al. 2005), adding further complexity 

to studying the pathology of the disease.  

 

The investigation of mitochondrial morphology and function within these cells was 

performed under basal conditions and following exposure to sub-lethal oxidative stress, 

as determined by cell viability assays. The G93A mutation, although showing no cell 

death at this dose, had reduced mitochondrial oxygen consumption and displayed 

significant changes in mitochondrial morphology in comparison to the WTSOD1 control 

and other mutations investigated. The G93A mutation had increased mitochondrial 

interconnectivity under basal conditions, suggesting the formation of mitochondrial 

networks as a compensatory mechanism to counteract an energy deficit within these cells. 

The loss of this interconnectivity following exposure to stress suggests the cells can no 

longer compensate, and the mitochondria become more fragmented. The H48Q and 

G37R mutation displayed no significant changes in mitochondrial morphology and 

function following exposure to oxidative stress. Interestingly, the G37R mutation showed 

the greatest resistance to cellular stress in terms of cellular viability and mitochondrial 

function, demonstrating the different effects these mutations have on cells. This correlates 

with the previous results; the G93A mutation is more susceptible to oxidative stress 

induced cellular stress in comparison to the other mutations investigated, which is 

reflected in its reduced mitochondrial bioenergetics under both basal and stress 

conditions. This was in comparison to the G37R mutation, which appeared the least 

susceptible, and demonstrated significantly greater oligomycin sensitive respiration, 
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coupling efficiency, and mitochondrial respiration. The differences identified between 

mutations also correlates with what is presented in patients carrying different SOD1 

mutations. 

 

A study investigating the correlation between the propensity for aggregation and 

conformational stability of SOD1 showed G93A to have the highest conformational 

instability, and was therefore more prone to aggregation, in comparison to other SOD1 

mutations, including G37R (Stathopulos, et al. 2003). The G37R mutation was also 

shown to be less prone to forming insoluble aggregates. This may be part of the reason 

why the G93A mutation appeared more toxic in our study.  

 

Although the level of expression of the mutant SOD1 transgenes was equivalent at the 

transcription level, reduced protein expression for the G93A and H48Q mutation was 

observed in these cells, suggesting defects at the translational level. These results confirm 

the cellular vulnerability to oxidative stress observed is not simply a consequence of 

over-expression of the mutant protein. The G93A and H48Q mutant cells had 

significantly increased levels of RNA oxidation in comparison to the controls. This 

suggests the reduction in human SOD1 protein from these cells could be a consequence 

of increased RNA damage and a subsequent reduction in translation.  

 

To determine whether the presence of a SOD1 mutation affects the ability of a cell to 

activate oxidative stress response mechanisms, levels of antioxidant response genes were 

measured under basal conditions and following exposure to H2O2. Expression levels of 

Nrf2 were reduced in all mutant cells under basal conditions, and a significant reduction 

was seen for the G93A mutation. The reduction seen for the cells carrying WTSOD1 

suggests the presence of human SOD1 also impacts cellular functions. Since no 

significant differences were seen for the levels of the antioxidant response genes 

investigated here between the SOD1 mutations, other mechanisms must be contributing 

towards the selective vulnerability of the G93A mutation to stress-related cell death and 

mitochondrial function. Expression of the DNA repair enzyme Ogg1 was significantly 

increased in the G93A mutant cells in comparison to the H48Q mutant cells. Both these 

mutations demonstrated increased susceptibility to stress and RNA oxidation, which 

would suggest an inability of these cells to up-regulate defence mechanisms. However the 

H48Q mutation demonstrated the greatest increase in Ogg1 expression following 

exposure to oxidative stress, which may explain why the G93A mutant cells are 

susceptible at the lower doses in comparison.  
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Model systems are used to investigate oxidative stress related defects and understand how 

these neurotoxic effects lead to cellular decline and degeneration. The differences 

identified between the mutations in terms of their susceptibility to stress and 

mitochondrial dysfunction in our study highlights the importance of using multiple 

models of disease for study. The short lifespan of free radicals and the difficulty in their 

detection requires indirect markers, such as macromolecular damage and antioxidant 

response are used for oxidative stress detection (Floyd and Hensley 2002). For future 

work it would be interesting to determine whether the effects seen here are exacerbated or 

reduced when the cells are grown in co-culture with normal or human mutant SOD1 

astrocytes, and whether they differ to what is seen in isolated primary MNs from in vivo 

models of disease. Co-culture systems are often used to try and recapitulate the 

environment of neurons in vivo. The lack of significant differences observed in the 

investigations here could be due to the increased variability between different cultures, or 

because of a cell culture effect where cells have adapted their survival to the culture 

conditions. Despite this cell culture studies have enabled significant enhancement of our 

knowledge regarding the mechanisms underlying neurodegenerative disease. Whilst the 

factors pre-disposing to a neurodegenerative disease remain unknown, these remain 

important tools for investigating the events culminating in MN cell death and 

investigating potential therapeutic mechanisms.  

 

The hypothesis that increased oxidative stress and nucleic acid oxidation contributes 

towards cellular decline and degeneration in ageing and ALS was investigated, 

demonstrating specific classes of RNA are targeted for oxidative modification during 

ageing. The differentially oxidised genes were found enriched in pathways previously 

implicated in neurodegeneration. Investigating whether the presence of different SOD1 

mutations influences the amount of oxidative damage to RNA identified an increase in 

RNA oxidation in cells carrying SOD1 mutations in comparison to controls. Differences 

in the effects of the SOD1 mutations on cellular function was identified with the G93A 

mutation demonstrating increased susceptibility to oxidative stress related mitochondrial 

dysfunction and cellular viability.  
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