Node-oriented dynamic memory management for
real-time systems on ccNUMA architecture
systems

Seyeon Kim

Doctor of Philosophy

University of York

Department of Computer Science

April 2013

Abstract

Since the 1960s, most operating systems and programming languages have been able
to use dynamic memory allocation and deallocation. Although memory allocation
has always required explicit interaction with an allocator, deallocation can be either
explicit or implicit. Surprisingly, even though memory allocation/deallocation algo-
rithms have been studied extensively over the last five decades, limited attention has
been focused on the real-time properties. Most algorithms are general-purpose and
do not satisfy the requirements of real-time systems. Furthermore, the few allocators
supporting real-time systems do not scale well on multiprocessors. The increasing
demand for high-performance computational processing has resulted in the trend of
having many cores. ccNUMA architecture systems are part of this trend and provide
a systematic scalable design. This thesis contends that current memory allocators
for Operating Systems that support cc-NUMA architecture are not appropriate for
real-time applications. We further contend that those real-time allocators that have
been proposed in the literature are not cc-NUMA aware. The thesis proposes and
implements (a prototype of) a new NUMA-aware dynamic memory allocation algo-
rithm for use in soft real-time systems. We study the behaviour of our new allocation

algorithm in comparison with related allocators both theoretically and practically.

iii

Contents

Abstract iii
List of figures vi
List of tables viii
Acknowledgements xiii
Declaration XV
1 Introduction 1
1.1 Motivation 2
1.2 Hypothesis 4
1.3 Thesis Objectives 4
1.4 Organisation of the Thesis 6
2 Dynamic Memory Managements 9
2.1 Introduction 9
2.2 Fundamental Issues oo 16
2.3 Memory Management Algorithms 24
2.4 Summaryo 44

3 nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm 45

3.1 Design Principles o 46
3.2 An Overview of nMART 51
3.3 Kernel-level Node-based Memory Management 52

3.4 User-Level Memory Management Algorithms and their Implementation 64

v

Contents

3.5 Summary ...

4 Evaluation
4.1 Experimental Environmento 00000 L
4.2 Workload Modelso
4.3 Temporal Behaviour Analysis

4.4 Summary

5 Conclusions And Future Work
5.1 Contributions
5.2 The Hypothesis Revisited
5.3 Future Worko

Appendices

95
95
97
111
160

163
165
166
167

169

A Additional Evaluation of Spatial and Cache Behaviour of memory

Allocators
A.1 Spatial Behaviour Analysis
A.2 Cache Behaviour Analysis,

B Additional Evaluation of the Revised Node Distance Tables
B.1 Implementation of Node Distance tables in Linux

B.2 Measuring Node Distances
B.3 Evaluation On The Real Node Distance

C Further Evaluation of the Synthetic Models

D Supporting Implementations
D.1 Supplemental Applications
D.2 Examples Of Conventional Allocators

Abbreviations

References

vi

169

189
189
192
198

205

219
219
231

235

237

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2

Overview of Sequential Fit algorithms 25
Logical view of Buddy system 32
Structure of DLmalloc 36
Structure of Half-fit 37
Structure of TLSFo 39
Structure of temalloco o 41
Structure of Hoard 43
The wasted memory of TLSF in small sizes of blocks 48
The structure of nMART 51
The relationship between nodes, zones and pages on x64 architecture

system o7
The default zones lists for our experimental hardware 61
The sorted zone lists for our experimental hardware 62
The thread-based private heap on the first layer 67
The node-based free arena management on the second layer 69
The structure of an nMART control block 71
The header of an arena list 71
The structure of a thread control block 72
The header of anarena L. 73
The header of normal blocks 74
A block of small blocks oo 74
A four node-based ccNUMA architecture system 96
A more complex architecture system 97

vil

List of Figures

B.1 The ratio of performance improvements

viil

List of Tables

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

Worst-case time complexity of algorithms 44
SLIT of the experimental machine 55
Real workload characteristics of test set 1. 102
Real workload characteristics of test set 2. 102
Real workload characteristics of test set 3. 103
Real workload characteristics of test set 4. 103
The number of malloc() and free() calls by cfrac 104
The number of malloc() and free() calls by espresso 105
The number of malloc() and free() calls by gawk 105
The number of malloc() and free() calls by p2¢ 106
The MEAN of Bg, Byt and Byt generated 110
The CDF model of Bg, Byt and Byt generated 111
The average malloc()/free() time of Set 1 of ¢frac 115
The average malloc()/free() time of Set 2 of ¢frac 116
The average malloc()/free() time of Set 3 of c¢frac 116
The average malloc()/free() time of Set 1 of espresso 119
The average malloc()/free() time of Set 2 of espresso 120
The average malloc()/free() time of Set 3 of espresso 120
The average malloc()/free() time of Set 1 of gawk 123
The average malloc()/free() time of Set 2 of gawk 124
The average malloc()/free() time of Set 3 of gawk 124
The average malloc()/free() time of Set 1 of p2¢ 127

The average malloc()/free() time of Set 2 of p2¢ 127

1X

List of Tables

4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46

Al
A2
A3
A4
A5
A6

The average malloc()/free() time of Set 3 of p2¢
The average of total malloc()/free() time for cfrac test set 1
The average of total malloc()/free() time for cfrac test set 2
The average of total malloc()/free() time for cfrac test set 3
The average of total malloc()/free() time for espresso test set 1
The average of total malloc()/free() time for espresso test set 2
The average of total malloc()/free() time for espresso test set 3
The average of total malloc()/free() time for gawk test set 1
The average of total malloc()/free() time for gawk test set 2
The average of total malloc()/free() time for gawk test set 3
The average of total malloc()/free() time for p2c test set 1
The average of total malloc()/free() time for p2c test set 2
The average of total malloc()/free() time for p2c test set 3
The execution time of MEAN-Value model with two threads
The execution time of MEAN-Value model with four threads
The execution time of MEAN-Value model with eight threads

The execution time of MEAN-Value model with sixteen threads
The execution time of MEAN-Value model with thirty-two threads
The execution time of MEAN-Value model with sixty-four threads . .
The execution time of CDF model with two threads
The execution time of CDF model with four threads.
The execution time of CDF model with eight threads
The execution time of CDF model with sixteen threads
The execution time of CDF model with thirty-two threads

The execution time of CDF model with sixty-four threads

The total block sizes requested /provided by cfrac
The total block sizes requested /provided by espresso
The total block sizes requested /provided by gawk
The total block sizes requested /provided by p2c
The size of virtual memory provided for test set 1

The size of virtual memory provided for test set 2

X

List of Tables

A.7 The size of virtual memory provided for test set 3 179
A.8 The size of virtual memory provided for test set 4 181
A.9 The states of event counters for cache-scratch in test set 4 183
A.10 The states of event counters for cache-thrash in test set 4 184
A.11 The states of event counters for larson in test set 4 186
A.12 The states of event counters for shbench in test set 4 187
B.1 Measured Node Distances 194
B.2 The SLIT of more complex architecture system 194
B.3 The measured results for more complex system 197
B.4 The new node distance of more complex architecture system 198

B.5 The measured actual time taken on a four nodes-based ccNUMA system 199

B.6 Allocation timing statistics based on node 0 200
B.7 Allocation timing statistics based on node 1 200
B.8 Allocation timing statistics based onnode 2 201
B.9 Allocation timing statistics based onnode 3 202
C.1 The mean of all test sets of applications 206
C.2 The cumulative percentage and frequency of cfrac test set 1 207
C.3 The cumulative percentage and frequency of of cfrac test set 2 208
C.4 The cumulative percentage and frequency of cfrac test set 3 209
C.5 The cumulative percentage and frequency of espresso test set 1. . . . 210
C.6 The cumulative percentage and frequency of espresso test set 2. . . . 211
C.7 The cumulative percentage and frequency of espresso test set 3. . . . 212
C.8 The cumulative percentage and frequency of gawk test set 1 213
C.9 The cumulative percentage and frequency of gawk test set 2 214
C.10 The cumulative percentage and frequency of gawk test set 3 215
C.11 The cumulative percentage and frequency of p2c test set 1 216
C.12 The cumulative percentage and frequency of p2c test set 2 217
C.13 The cumulative percentage and frequency of p2c test set 3 218

X1

Acknowledgements

Firstly and very respectfully, I would like to appreciate my supervisor, Professor
Andy Wellings. This thesis would not have been possible without his great mind,
guidance and support. His endless support, understanding, and patience shaped my
coarse-grained idea into this final thesis.

I would also like to thank my assessor, Professor Alan Burns, for his great support
and invaluable advice regarding my work. An encouraging, cooperative and truly
interested advisor is something that every Ph.D. student wants, whereof I am one
of the privileged. Especially, I would like to thank all my friends, Abdul Haseeb
Malik, Usman Khan, and Shiyao Lin for giving me strength, self-belief and all the
enjoyable moments. My sincere appreciation goes to my best friends, Sungki Kang,
Youngbo Kim, and Dinesh Manadhar; without their love and support, it would not
have been possible to complete this course.

My family has been supportive of me throughout my Ph.D. I would like to thank
my wife, Jumi Kim, and my little angels, Noori and Arie Kim, for their patience,
sacrifices and support. I also thank my younger brother with his wife, Jaeyeon Kim
and Youngeun Song, for encouraging me throughout my work. Last but not least,
my sincere appreciation goes to my father for guiding and supporting me in every

possible way.

xiil

Declaration

I declare that the research described in this thesis is original work, which I undertook
at the University of York during 2008 - 2013. Except where referenced, all of the

work contained within this thesis represents the original contribution of the author.

XV

Chapter 1

Introduction

Recent years have seen an explosion in the development and use of modern com-
puting technologies from small embedded devices like smart phones and tablets
to large industrial machineries such as auto-mobiles and aircraft. For example, a
huge number of people use the Internet to perform searches and for the provision
of services. This is possible because innumerable machines run these searches and
services behind the Internet. The key force providing the diversity of services is
high-performance computing technologies such as parallel and distributed comput-
ing. Single processor systems are not able to meet the required demand.

Many high performance services are supported by computers that have ccNUMA
architectures. ccNUMA architecture systems are multiprocessor systems that have
distributed shared memory. They are more scalable and flexible compared to other
multiprocessor architecture such as SMP (symmetric multiprocessor systems). cc-
NUMA systems provide a single address space, and are globally cache-coherent in
hardware. In order to execute on ccNUMA systems, an application that executes
on SMP systems does not require any changes. This is an important consideration
when existing applications are to be migrated to the new architectures. However,
the ccNUMA memory hierarchy does affect the application performance. In such
systems, there are considerable benefits to be had by allocating related threads and

data close to each other.

Real-time systems have also been increasing in size and complexity and their

processing demands can no longer be met by single processor systems, and they are
1

Chapter 1: Introduction

likely soon to outpace the computation power of SMPs. Furthermore, it is extremely
likely that a real-time application can be sharing the system’s resources with other
real-time applications concurrently. This exacerbates the problem of meeting the
computational demands of the applications. Hence, in the near future, real-time
systems will require processors that have ccNUMA architectures as these offer more
extensible computing platforms. However, it is difficult to do the global timing
analysis of large systems. Accordingly, architectural complexity and tight timing
constraints make the development of real-time systems on multiprocessor ccNUMA
architectures extremely difficult [Wellings et al., 2010).

In general, a real-time system can be defined in many ways; a real-time system
often refers to one that has the ability to perform many computations extremely
fast. The powerful computation ability can minimize average response times, but it
does not guarantee predictability, as is required in the real-time domain. The faster
computation is a necessary condition, but it is not sufficient in the domain.

Burns and Wellings [Burns and Wellings, 2001] give the following definition of
a real-time system: “The correctness of a real-time system depends not only on
the logical result of the computation, but also on the time at which the results are
produced.” Real-time systems are often classified as hard or soft. Hard real-time
systems are those that must provide absolute guarantees that tasks will meet their
deadlines. In soft real-time systems, deadlines are important but there is no strict
guarantee requirement. Tasks which complete late, still can provide value to the
system. This thesis is concerned with the implementation of soft real-time systems

on ccNUMA architectures.

1.1 Motivation

Memory is one of the significant concerns when developing real-time applications as
its management costs are expensive. Consequently, worst-case latencies and memory
utilization are the primary concerns of real-time developers; a cost-effective real-time
system must also exhibit good average-case performance [Nilsen and Gao, 1995]. As

a result of the unpredictable allocation and de-allocation of memory blocks, many

2

1.1 Motivation

real-time systems use static memory allocation; this refers to the process of allocat-
ing memory at compile-time and during program initialization before the application
enters into it main real-time phase of execution. They do not use dynamic memory
allocation and all physical memory is available as one contiguous block that can
be used as and when required. As there is no automatic memory management, a
problem arises concerning unnecessary memory space consumption. Memory that
is required for the storing of temporary objects cannot easily be reused. Program-
mers have to implement and manage their own memory pools to reduce unnecessary
memory space consumption and reuse space. As has been noted earlier, real-time
systems have been increasing in size and complexity with the explosion of multipro-
cessor and multi-core architecture systems. This requires, among other things, more
flexible use of the available resources including memory. The burden of static mem-
ory and memory pool management becomes unacceptable. From the developer’s
view, in the future, the development of real-time applications will increasingly use
dynamic memory management! to achieve the expected flexibility and performance.

Dynamic storage allocation (DSA) has been one of the most important funda-
mental part in the general-purpose software domain due to being more efficient and
flexible than static memory allocation. With its importance and popularity, the
research area of DSA algorithms has been studied for over fifty years. In the past,
much scholarly work has been done on the topic of good average response time of
DSA algorithms, with respect to how fast and efficiently they allocate or de-allocate
memory blocks, and how to reduce memory fragmentation. Although large numbers
of faster and more efficient DSA algorithms exist in general-purpose domains, such as
DLmalloc [Lea, 1996], TCmalloc [Sanjay Ghemawat, 2010] and Hoard [Berger et al.,
2000], and are used widely, surprisingly, the worst-case execution time (WCET) of
DSA algorithms, which can be high, has has not been studied in detail. There
have been only a few general studies on the dynamic storage allocator in real-time
system’s domain. Due to the lack of studies, most application developers of real-

time systems generally avoid using dynamic storage allocation algorithms. This is

!'Dynamic memory management is also called dynamic storage allocation, memory management,

heap memory, heap space, or just heap for historical reasons [Hasan et al., 2010].

3

Chapter 1: Introduction

because they are concerned that the worst-case execution time of DSA routines is
not bounded or is bounded with an excessive bound [Puaut, 2002]. As well as the
WCET of the DSA algorithm, space efficiency should be considered, as the lifetime
of a real-time application is usually longer than a general-purpose application’s one.
During a long lifetime, dynamic memory allocation can leave holes in memory, which
cannot be reused due to their small size, and these holes lead to slow unacceptable
response time or to miss deadlines. This is known as memory fragmentation.

In addition to the above concerns, ccNUMA architectures introduce another
problem for DSAs. To maximize performance, memory allocated to the application

must be local to the hardware node that is performing the memory access.

1.2 Hypothesis

The current existing dynamic storage allocation algorithms for real-time systems
do not have any appropriate functionality to support multi-processors, multiple
threads, and ccNUMA architecture systems. This thesis is concerned with how
a dynamic storage allocation algorithm, supporting ccNUMA architecture systems,
can be bounded with a small bound to satisfy the timing constraints of soft real-time

systems. The hypothesis of this thesis is defined by the following statement:

The ability of a dynamic storage allocation algorithm can be enhanced
to meet the requirements of soft real-time systems with a small bounded

execution-time on ccNUMA architecture systems.

In order to avoid ambiguity, the term wasted memory in this thesis refers to
those parts of memory which are free but cannot be allocated to the application. It
is also called memory fragmentation, which can be divided into two parts: internal

and ezternal.

1.3 Thesis Objectives

This thesis is mainly concerned with dynamic storage allocation algorithms on a

ccNUMA architecture system and its efficient implementation on Linux. The major

4

1.3 Thesis Objectives

aim of the research is to enhance memory allocation algorithms to support ccNUMA
architecture systems, enabling programmers to maximize exploitation of the sys-
tem’s characteristics without significant effort, and to offers better efficiency with
bounded execution times for the allocation/de-allocation of memory.

In order to prove the hypothesis, this thesis provides six objectives. These are:

1. A detailed investigation into the limitation of why the existing dynamic storage
allocation algorithms to allocate/de-allocate memory on ccNUMA architecture

systems introduce unexpected large space and time overheads.

2. An approach for automatically re-sorting the node order, which minimizes
accessing the farthest node on the system and automatically maximize ac-
cessing the closer node for memory allocation requests. As one of the main
parts of the thesis hypothesis, this approach gives better performance. Also
it releases real-time application developers from the responsibility of memory

management.

3. Temporal and spatial guarantees to real-time applications to ensure they meet
their timing and space requirements in order to eliminate the non-determinism

caused by the memory distribution in ccNUMA architecture systems.

4. To support transparency of the underlying architectures to applications. Mem-
ory requests are satisfied under this algorithm independently of the underlying

architectures.

5. A synthetic model to analyze dynamic storage algorithms on ccNUMA archi-

tecture systems to check for improvements in the performance and predictabil-
ity.

6. An overview of the implementation of: (a) the physical memory management
on a modified Linux kernel, and (b) the proposed dynamic allocation algo-

rithm.

Meeting these objectives forms the main contributions of this thesis. Achieving

these goals will facilitate the development of efficient and configurable applications

5

Chapter 1: Introduction

under an enhanced Linux kernel on ccNUMA architecture systems. In summary,
the thesis aims to define a more efficient dynamic storage allocation algorithm and
enhance the current Linux kernel to enable applications to be more deterministic

and portable in their use of memory allocation and deallocation.

1.4 Organisation of the Thesis

The remaining chapters of this thesis are organized with five chapters in accordance
with the motivations and objectives of the research. Briefly, the descriptions of the

remaining chapters are given below:

Chapter 2. Dynamic Memory Managements: This chapter explores the
dynamic storage algorithm models provided by general-purpose and real-time
systems, including their policies and mechanisms. Furthermore, conventional
memory management algorithms are investigated, with particular emphasis
on managing memory blocks. This chapter also highlights hybrid memory
management algorithms, which perform better on multiprocessor architecture

systems compared to conventional DSA algorithms.

Chapter 3. nMART: A ccNUMA-aware Dynamic Storage Allocation Al-
gorithm: This chapter concentrates on providing and implementing a more
efficient and predictable memory management algorithm that is especially de-
signed for use in real-time systems. This is to achieve the primary inten-
tion of an algorithm which is bounded with small bounds. It is designed
to allocate/de-allocate memory blocks with the “closest node-orientated al-
location” policy. Also, the chapter discusses the current methods of modern
operating systems for the management of the physical memory in ccNUMA
architecture systems, particularly Linux, and how our model performed better

in terms of the physical memory management.

Chapter 4. Evaluation: This chapter suggests an evaluation method, particu-
larly in terms of remote memory access, for the performance of DSA algorithms

on the target architecture systems. Also, a set of experiments is performed to

6

1.4 Organisation of the Thesis

evaluate the performance of DSA algorithms. This chapter also compares the
results with other schemes such as First-Fit, Best-Fit, Half-Fit, Hoard, tcmal-
loc, and TLSF. Note that spatial and cache behaviour analysis of algorithms

are discussed in Appendix A.

Chapter 5. Conclusions And Future Work: The final conclusions from the
research results are given in this chapter. Additionally, some directions for

further research are also presented.

Chapter 2

Dynamic Memory Managements

2.1 Introduction

Dynamic memory management is one of the most important techniques in modern
software engineering to manage objects created at runtime using high-level languages
like € C++ and Java. It manages free or in-use memory blocks which have shorter
lifetimes than their owner tasks or processes. In general, it is extremely difficult
to satisfy the timing constraint of real-time applications with dynamic memory
management. This is because it is necessary to predict the worst-case execution
time of dynamic memory management offline. In addition, finding the optimal place
to allocate a block of memory is NP-hard when some blocks are already allocated
[Robson, 1980]; also, fragmentation can occur where it is not possible to satisfy a
request, even if the total size of available memory exceeds the requested memory
size.

When using dynamic memory management on multiprocessor environments, new
problems, such as false sharing, unbounded growing heaps, and synchronization
between threads are introduced. This is because the requirements of applications
running on multiprocessors differ from those of applications running in uniprocessor
environments.

In this chapter, we will discuss the issue described above, in particular, we will
review memory management details related to this thesis. In the first section, the

objectives of memory management and some of the terminology of memory man-

9

Chapter 2: Dynamic Memory Managements

agements are discussed. Section 2.2 introduces some fundamental issues of memory
management. In Section 2.3, a diversity of conventional memory management algo-

rithms and hybrid algorithms are discussed. Lastly, a summary will be drawn.

2.1.1 Objectives of Memory Management

The research in dynamic memory management for real-time systems is one of the still
unconquered areas primarily because real-time applications impose different require-
ments on memory allocators from general-purpose applications. For instance, one
of the most important main requirements in real-time systems is that schedulability
analysis should be performed to determine whether application response times can
be bounded to satisfy the run-time timing constraints. The analysis should consider
the impact of multiprocessor environments such as the high levels of concurrency,
lock contention, heap contention, cache misses, and traffic on the bus. Considering
all these issues with our target ccNUMA architecture systems, the requirements of
real-time applications related to dynamic memory management can be summarised

as follows:

Minimize memory fragmentation: The lifetime of real-time applications is
generally longer than those of general-purpose applications, and can be as
long as a day, a month or even years. In a long lifetime, the application
may free memory blocks of any size arbitrarily. This can lead to the creation
of holes in the memory, which cannot be reused because they are too small.
Consequently, minimizing memory fragmentation needs to be considered as an

important key requirement.

Minimize false sharing: False sharing introduces much of the unnecessary traffic
on the bus in order to maintain cache coherency. It occurs when multiple
processors attempt to read/write different data objects within the same cache
line or page. Even if the processors do not actually share data, there are
overheads due to coherency operations manipulating cache lines [Bolosky and
Scott, 1993] [Jeremiassen and Eggers, 1995]. Consequently, false sharing can

be a critical cause in degrading applications’ performance on shared memory

10

2.1 Introduction

multiprocessor environments.

Maximize node-oriented data locality: As ccNUMA architecture systems are
one of the distributed shared memory systems, their processors are able to
access remote memory but with higher latencies than with local memory ac-
cesses. Remote memory accesses, therefore, lead to degrading the system
performance. Consequently, node-based data locality, which encourages ac-
cessing its local memory, is considered as an important key requirement for
improving the performance of the system. Also, allocating memory blocks,
which are usually used together and near each other, lead to minimizing page

and cache misses at runtime.

Minimize memory access to the farther nodes: Application developers need
to consider remote memory access latencies and fully understand the spec-
ification of the underlying hardware. However, nobody can ensure that all
developers fully understand the characteristics. For this reason, DSAs need
to provide transparency to developers so that latencies can be reduced thus

minimizing the memory accesses to the farthest away nodes.

Bounded execution time: As has been discussed, applications on real-time sys-
tems should satisfy their timing constraints. In order to satisfy their deadlines,
the dynamic memory management operations should be bounded with a small

bound at run time.

Minimize lock contentions: Applications running in ccNUMA and multi-threaded
environments must be concerned with high-level concurrency and scalability
issues. In particular, lock contentions lead to limiting systems’ scalability and
add complexity, thereby, degrading system performance. As a result, minimiz-

ing lock contentions in the memory management software is also needed.

Minimize consumed space: Dynamic memory management attempts to con-
sume space conservatively. It needs to use as little memory as possible to keep
track of the maintenance information needed during of the memory manage-

ment of the system.

11

Chapter 2: Dynamic Memory Managements

2.1.2 Terminology

Despite over thirty years of research in dynamic memory management, a precise
definition and quantification of the terms had proven to be elusive before Wilson’s
paper [Wilson et al., 1995b]. In this paper, Wilson provides some of the terminol-
ogy which is now frequently used in the memory allocation area. For clarity, this

terminology will be used in this thesis. The main terms are defined below.

Strategy: A strategy is the basic approach used to design a memory allocator.
It takes into account patterns in program behaviour, and determines a range
of acceptable policies for placing dynamically allocated memory blocks. The
objectives of an allocator may be considered as being equivalent in meaning
to the allocator’s strategy, for example, “minimizing lock contentions for each
allocation” or “maximizing data locality to encourage accessing local nodes”.

These strategies are achieved by policies.

Policy: A policy is an implementable decision procedure for placing memory blocks
dynamically. It determines exactly where an allocating block will be extracted
from the memory or where a freed block will be inserted into the memory. For
instance, a given policy says: “always attempt to find the smallest block that
is large enough to satisfy the request”. These chosen policies are implemented
by a collection of mechanisms. Policies can be separated into the following:
Ezact-Fit, Best-Fit, Good-Fit, First-Fit, Next-Fit and Worst-Fit. Some of the

most important policies will be discussed in Section 2.3.

Mechanism: A mechanism is a collection of algorithms and data structures that
implement a policy. It may be simply equivalent in meaning to an algorithm.
An example of a mechanism is to “use a doubly linked list, and search for the
position of the free block list from where the last search was satisfied; freed
blocks are inserted at the front of the list”. Typically, the mechanism can
be divided into the following: Sequential Fit, Segregated Fit, Buddy Systems,
Indezed Fit and Bitmapped Fit. Some of the most important mechanisms will

be discussed in Section 2.3.

12

2.1 Introduction

The above set of definitions is important for understanding and designing a
dynamic memory management system in detail. For example, given a strategy,
different policies may lead to different secondary effects. If some policies introduce
good locality with high fragmentation, an application developer may need to choose
another policy under the same strategy, which produces low fragmentation. A policy
can be implemented by a diversity of mechanisms. If a given policy performs well,
but its implementation is not efficient, developers can implement the policy by
choosing a different mechanism.

Theoretically, keeping fragmentation under control is one of the major function-
alities of dynamic memory management achieved by the placement policy. The
placement policy is the choice of where to put a requested memory block in free

memory. It is achieved by two techniques: splitting and coalescing.

Splitting: This splits large blocks into smaller blocks, and uses large divided
blocks to satisfy a given request. Typically, the remainding blocks are tracked

as smaller free blocks, and used to satisfy future requests.

Coalescing: Coalescing occurs when applications free up used memory blocks. In
general, when applications free blocks of memory, the memory manager checks
to see whether the neighbouring blocks are free or not, merging them into a
single larger block if they are freed. This is more desirable because a larger

block is more likely to be useful than two smaller blocks.

Coalescing can be separated into two different categories. Firstly, immediate
coalescing attempts to merge freed blocks immediately whenever a block is freed.
This will typically be expensive because freed blocks will be coalesced together
by repeatedly and frequently combining adjacent free blocks. In contrast, deferred
coalescing simply marks a freed block as “unused” or “freed” without merging. This
is because many applications repeatedly create short-lived objects of the same size.
Such allocators keep blocks of a given size on a simple free or unused list, reusing
them without coalescing and splitting so that if an application requests the same-

size memory block soon after one is released, the request can be satisfied by simple

13

Chapter 2: Dynamic Memory Managements

operations in a constant time. This may optimize if some sizes are very commonly
allocated and de-allocated.

However, [Johnstone and Wilson, 1998| provided an analysis of deferred coalesc-
ing, reporting that memory fragmentation problems come into effect for the most
common applications, and that deferred coalescing leads to unbounded execution
time. For this reason, allocators in real-time systems have used immediate coalesc-

ing.

2.1.3 Analysis Methodology

There have been many analysis methodologies used to evaluate dynamic memory
management. In many methodologies, two different approaches are generally used.
To evaluate fragmentation and worst-case execution time, scenarios are constructed
using synthetic workloads; while to compare average execution time, real workloads

are used.

e Synthetic trace analysis: In the past, this has been one of the most widely
used approaches. It consists of a few traces with artificial workloads of allo-
cations and de-allocations. Of course the initial condition is needed as well;
the methodology can offer highly precise simulations of what allocators will
do because allocators usually provide responses in the order of given requests.
The specific workloads can change the size of requested memory blocks distri-
bution and the lifetime distribution of memory blocks to evaluate the affect

on fragmentation.

For example, a simple function (e.g. sizes increased by a power of two) can be
used to change the size, or select the size and lifetime according to the values
from the function, or to use statistics of the size and lifetime collected from

real applications.

e Real trace analysis: Another approach is to trace memory operations from
real applications, rather than randomly generated requests of the size and the
lifetime. This uses a number of memory-oriented applications which consume

a large amount of memory and time processing memory operations, most of
14

2.1 Introduction

which were described by [Grunwald et al., 1993], such as espresso, gs, gawk
and make. The real trace evaluates the memory allocator performance in both

space and time using these real applications.

In [Wilson et al., 1995a], Wilson found that the synthetic trace discards almost all
major information relevant to estimating real fragmentation. Furthermore, in [Zorn
and Grunwald, 1994], Zorn concluded that synthetic trace analyses are not sufficient
to reflect an allocator’s performance accurately. In addition, the paper shows that
the likelihood between the fragmentation of the real trace and the fragmentation
of the synthetic trace is only 0.5, thus meaning that most of the fragmentation
corresponding with the original trace cannot be reflected by the synthetic trace.
They concluded that both size and lifetime of synthetic traces are insufficient to
fully predict allocator performance for real workloads. After these papers, most
research used a combination of both real and synthetic trace analysis.

There is a correlation between the amount of memory fragmentation and the be-
haviours of real applications. [Wilson et al., 1995b] defined three patterns of memory

usage over time, which have been observed in a variety of applications, as follows:

e Ramp: A variety of applications build up specific-purpose data steadily over

time, such as stacking event logs. This pattern is called the ramp pattern.

e Peak: the Peak pattern is similar to the ramp pattern but it is over a short
period of time. Some of the applications use lots of memory intensely in a short
time to build up large data structures. In general, after using data structures,

most of the data will be freed.

e Plateau: Some applications gather data structures rapidly and use them for
long periods, even the whole duration of the application. This situation is

called the plateau pattern.

In the paper, they concluded that the fragmentation at the peak is more impor-
tant than the average fragmentation. This is because the most important periods
are those when the most memory is used. Scattered holes in the memory may not

be a problem in the earlier phase if the holes are filled in the later phase but most
15

Chapter 2: Dynamic Memory Managements

applications never reach a truly steady state as applications usually show memory

usage patterns with ramps and/or peaks patterns.

2.2 Fundamental Issues

In general, designing a memory allocator is a trade-off between time efficiency and
space efficiency. Without making a compromise between them, it is rarely possible
to design a memory allocator that is extremely fast with minimum fragmentation
for most applications. For instance, Kingsley’s memory allocator [Kingsley, 1982] is
an example of simple segregated storage algorithms, which is used in 4.2 BSD Unix
distribution. The memory allocator rounds memory block request sizes up to powers
of two minus a constant. The principle of allocation and deallocation is very simple
inasmuch as popping off from and pushing onto an array of segregated lists in size
classes. The performance of its implementation is very fast because its algorithm is
so simple, e.g. no attempt is made to coalesce memory blocks. Contrary to the time
efficiency, it wastes a significant amount of space, potentially an average of 50% of
the memory can be wasted due to internal fragmentation. Therefore, the balancing
between the time efficiency and the space efficiency is one of the most important
aspects of designing a memory allocator.

A number of memory allocators employ either a single heap or several private
heaps for uniprocessor environments; however, most of the modern memory alloca-
tors have started to consider more complex environments for the emerging multi-core
multiprocessor architecture systems. A more complex architecture system brings
new and different problems, such as heap contentions, false sharing, unbounded
growing heap problems as well as the traditional fragmentation problem. The sub-

sections below will discuss these fundamental problems.

2.2.1 Fragmentation

One of the significant problems of a memory allocator is memory fragmentation.
In [Randell, 1969], Randell classified fragmentation as Ezternal and Internal, both

of which are caused by splitting and coalescing free blocks.

16

2.2 Fundamental Issues

External fragmentation arises when a requested memory block cannot be satis-
fied, even if the total amount of free memory is larger than the size of the request.
During allocation and deallocation processing, this fragmentation is generally caused
when a small number of free blocks are created called ‘holes’. The small number of
free blocks are not adjacent so cannot be merged, and are too small to satisfy any

request.

Unlike external fragmentation, internal fragmentation arises when an allocator
returns a larger free block to satisfy the request, rather than the actual requested
size with the remainder being simply wasted. This is the reason why this situ-
ation is called internal fragmentation. Formally, the remainder is just inside an
allocated block. Arguably, internal fragmentation is only caused by poor implemen-
tation of the allocator policy [Johnstone and Wilson, 1998] [Masmano et al., 2008a].
However, in some allocators, internal fragmentation is often accepted for increased
performance or simplicity. For instance, many of the segregated fit allocators allo-
cate larger free blocks to avoid creating memory blocks that are non-aligned or too
small a size. In binary buddy systems (discussed in Section 2.3.3) and Half-fit cases
(discussed in Section 2.3.5.2), the sizes of allocated blocks are always rounded to
powers of two by the policy because those allocators cannot divide blocks into differ-
ent sizes from those preset by the policy; the algorithm pre-defines a set of discrete
sizes of the data structure. Unlike external fragmentation, internal fragmentation
is unique to each implementation of an algorithm and it must be studied case by
case. This is why it is hard to find a general study of internal fragmentation in the

literature.

Numerous publications address numerous experimental approaches for control-
ling fragmentations. Usually, the results depend on three variables: M is the max-
imum amount of heap memory that the allocator can use, n is the maximum of
the block size that the application can request, and C is a constant. In [Rob-
son, 1971], Robson showed that the amount of memory needed by any strategy is
bounded below by a function, M log, n-C, which rises logarithmically with the size
of blocks used. Robson addressed upper and lower bounds on the worst-case frag-

mentation of the optimal allocation algorithm. The paper showed that the upper
17

Chapter 2: Dynamic Memory Managements

bound of a worst-case optimal strategy would be between 0.5M log,n and about
0.84M log, n. Another of Robson’s papers [Robson, 1977] showed that the upper
bounds of address-ordered first-fit policy are about M log, n, whereas the best-fit
policy needs a store of at least (M —4n+11)(n —2), and the pessimistic asymptotic
bound is around M-n. In [Knuth, 1997](first edition 1973), Knuth proved that the
upper bound of fragmentation in a binary buddy systems could be calculated as
2-M-log,(n). Confessore [Confessore et al., 2001] addressed a periodic allocation
problem in which allocation and deallocation time of each item are periodically re-
peated and is equivalent to the interval colouring problem on circular arc graphs.
They provided a 2-approximation algorithm, and also showed that the solution value

is equivalent to the length of the longest weighed path of the oriented graph.

The dynamic memory allocation problem, storing all objects in the minimum-
size memory block, is known to be NP-hard in the strong common sense [Garey and
Johnson, 1979]. In [Gergov, 1996], Gergov achieved an approximation result for this
problem with a performance ratio of 5. In another paper [Gergov, 1999], Gergov
had achieved a 3-approximation algorithm for memory allocation. Luby [Luby et al.,
1994] introduced a new parameter called k, which denotes the maximum number
of occupied memory blocks, for analyzing algorithms, and improved on Robson’s
previous research [Robson, 1977]. This proved that the first-fit policy needs a store
of at least O (M min{logn,logk}) words.

Given the above theoretical analysis, the situation seems rather pessimistic. For
instance, assuming that an allocator uses a single heap of M = 1M bytes with a
first-fit algorithm, with the maximum block size being n = 4K bytes, the allocator
needs at least 2%2°-(1 + log,(2'?)) bytes; a total of 13M bytes is needed to ensure
that the allocator never fails because of external fragmentation. In the case of the
best-fit policy, it is even larger. With the same condition above, it needs at least
220.212 — 4@ bytes to ensure the best-fit policy always satisfies all requests. In

contrast, experimental results are much more encouraging.

Hirschberg [Hirschberg, 1973] compared a binary buddy system with a Fibonacci
buddy system. The paper showed that the fragmentation of Fibonacci buddy can

increase memory usage by about 25% in contrast to binary buddy’s 38%. In [Shen
18

2.2 Fundamental Issues

and Peterson, 1974], Shen showed that a weight-buddy system using FIFO-order
with a uniform size distribution wastes more memory than a binary buddy system
- around 7% - due to fragmentation. With an exponential distribution, the weight
buddy system using FIFO-order gives an improvement of around 7% over binary
buddy. In contrast to FIFO-order, memory usage had been worse - around 3% -
with LIFO-order. Shore [Shore, 1975] compared best-fit, address-ordered first-fit,
worst-fit, and combined best-fit and first-fit as a hybrid policy. The results showed
that best-fit and first-fit policies roughly outperformed the others in fragmentation,

and the maximum difference between them was less than 3%.

Bohra [Bohra and Gabber, 2001] found that the behaviour of a long-running
application with a memory allocator is fairly different from the typical patterns
for which memory allocators are optimized. In their experiment, the best opti-
mized algorithm caused 30.5% fragmentation with a long-running application called
Hummingbird, and another called GNU Emacs caused 2.69%, but the worst case
had predicted 101.5% fragmentation. Real applications are designed to solve ac-
tual problems, which affect their pattern of memory usage, so that applications do
not behave randomly by the chosen methods used to solve the original problems.
Unfortunately, application behaviours have a wide variety of implications for frag-
mentation so that in order to understand fragmentation, it is necessary to discuss
application behaviours as seen in [Bohra and Gabber, 2001]. For instance, the size
distributions of requested memory blocks determine memory fragmentation. The
lifetimes distribution of memory blocks determines which memory blocks are occu-

pied or free over time.

In [Johnstone and Wilson, 1998], Johnstone investigated the fragmentation pro-
duced by a group of policies including first-fit, best-fit, next-fit, address-ordered first-
fit, address-ordered best-fit, address-ordered next-fit, DLmalloc, etc. with a set of
real traces. They concluded that the fragmentation problem is produced by a poor
allocator implementation, and well-known polices did not suffered from almost any

genuine fragmentation.

Barret [Barrett and Zorn, 1993] introduced an interesting approach to avoiding

fragmentation by predicting the lifetimes of short-lived objects when they are allo-

19

Chapter 2: Dynamic Memory Managements

cated. They showed that their scheme would predict that a large fraction (18% to
99%) of all allocated bytes are short-lived.

Consequently, it can be concluded that some dynamic storage allocation algo-
rithms have pessimistic fragmentation; however, in many studies, many allocator

algorithms show low fragmentation in memory usage with well-designed policies.

The Measure of Fragmentation

To compare allocators, a metric is needed. In general, the time cost and the
space cost are the most commonly used measurements; in particular, the time cost
denotes speed, and the space cost indicates fragmentation.

Memory fragmentations can be defined in many different ways. For instance,
assume that there are 10 free blocks of size 4K bytes and 50 free blocks of size 1K
bytes in memory at some point in time, and an application will request 5 free blocks
of size 4K and 40 free blocks of size 1K in the near future. In this case, was cannot
say there is high fragmentation because the requests can be satisfied. With the same
condition above, if the allocation will request 10 free blocks of size 8K, there will be a
problem and we can say that this is due to high fragmentation. Johnstone [Johnstone
and Wilson, 1998] suggested four metrics to describe the amount of fragmentation,

which are now widely used. They used both metric 3 and 4 in the paper.

Metric 1: The measured fragmentation is the amount of memory used by the mem-
ory manager, which is normally called the heap, over the amount of memory
requested by the application, averaged at all points through time. This met-
ric of fragmentation measure is simple, but a problem with this approach is
that it hides the spikes in memory utilization, with these spikes being where

fragmentation can become a problem.

Metric 2: The fragmentation is the amount of memory used by the memory man-
ager over the maximum amount of memory required by the application at the
point of maximum memory utilization. The problem of this metric is that
the point of maximum memory utilization cannot normally be considered the

most important point of the application at runtime.

20

2.2 Fundamental Issues

Metric 3: The fragmentation is equal to the maximum amount of memory used by
the memory manager over the amount of memory required by the application
at the point of maximum memory usage by the memory manager. The draw-
back corresponding with this measure of fragmentation is that it will lead to
high fragmentation, even if the applications uses slightly more memory than

the size of needed memory.

Metric 4: The fragmentation is the maximum amount of memory used by the
memory manager over the maximum amount of memory used by the applica-
tion. The disadvantage of this measure is that it can report low fragmentation
when the point of maximum memory usage is a point where a small amount

of memory is used by the application.

All the metrics described above are available to measure the fragmentation
caused by application behaviours; however, a problem with these metrics is that
they do not distinguish between unused memory and memory used by the memory
allocator for its own data for management, such as keeping free blocks. In our exper-
iment, we will consider the actual amount of internal and external fragmentation,
with space consumed by data structures being maintained. Therefore, we will use

the following equation to calculate the amount of fragmentation (f):

h—a
h

In this equation, h denotes the actual amount of memory provided by the alloca-

f= (2.1)

tor, and a points out the amount of allocated memory requested by the application.

2.2.2 False Sharing

Writing multi-threaded applications is a challenge for many well-known reasons,
such as debugging, avoiding race conditions, a variety of contentions, and deadlocks.
With the emergence of multiprocessor architecture systems, memory allocators need
be more concerned with the potential pitfalls resulted from parallel executions of
threads requesting memory. In the remaining sub-sections, we will discuss some

issues arising in multiprocessor environments.
21

Chapter 2: Dynamic Memory Managements

Most multi-threaded applications share system resources between threads. In
this case, contention arises when threads try to read or write a shared resource.
However, the contention can sometimes happen when multiple threads access differ-
ent objects. This is because multiple objects happen to be close enough in memory,
wherein they reside on the same cache line.

For instance, a thread updates object objl, whereas another thread updates
another object 0bj2. Assume that both objects reside on the same cache line and
both threads are running on different processors, the cache-coherency protocol will
make the entire cache line an invalidated state when one of them is modified. The
cache line will “Ping-Pong” between the processor caches. Therefore, it leads to
degrading the application performance [Hyde and Fleisch, 1996].

This situation is called false sharing. Recently, with the popularity of using
multi-core architecture systems, the trend towards increasing cache line sizes makes
false sharing increasingly common [Liu and Berger, 2011]. It is rarely possible to
eliminate false sharing automatically. One representative approach is that either ap-
plication developers deal with this problem by adjusting the data structure layouts,
i.e. alignment and padding, or compilers schedule a parallel loop [Jeremiassen and
Eggers, 1995]. These approaches can reduce the correlation between false sharing
and data objects; however, these strategies cannot avoid it completely because of
the effects on array-based data structures. Nevertheless, a well-designed strategy
can reduce and eliminate the possibility of false sharing in practice [Berger et al.,

2000].

2.2.3 Single and Multiple Heaps

Despite the increasing popularity of concurrent application on both multi-core and
multiprocessor architecture systems, there have been few studies on concurrent
memory managers. The most representative paper on the dynamic storage alloca-
tion [Wilson et al., 1995b] was surprisingly limited to investigating non-concurrent
memory managers. Typically, in the uniprocessor environments, two approaches can
be used by a memory manager to deal with multiple threaded applications: a serial

single heap and a concurrent single heap.

22

2.2 Fundamental Issues

However, those heaps naturally suffer contention when multiple threads access
the same heap. The problem with the single heap is that the greater number of
threads accessing the heap, the more heap contention is likely to arises. As a result,
a variety of concurrent memory managers started to use multiple heaps. There
are many mechanisms to assign threads to heaps, such as the allocators mapping
threads onto heaps by assigning one heap to every thread, by using an unused heap
from a group of heaps, by assigning heaps in a round-robin fashion, or by using a
mapping function to assign threads to a group of heaps [Berger et al., 2000]. Berger

has classified these heap usage approaches as follows:

e A serial single heap: The allocator which uses a serial single heap is normally
fast and can likely keep low fragmentation in practice. However, the heap is
protected by a global lock, and naturally it introduces the serialization of

memory accesses and significant lock contention.

e A concurrent single heap: This heap is helpful to reduce the serialization
and the heap contention. It is normally implemented using a concurrent data
structure, like a B-tree or a free list with locks. However, its cost of memory
access is relatively high, since it usually employs many fine-grained locks or
atomic operations on each free block. Furthermore, false sharing still remains

likely.

e Pure private heaps: A pure private heap indicates that a separate heap is
allocated to each thread and these are completely isolated from other threads
so that each thread cannot access any other private heap for any memory
operation except its own heap. As a result, an allocator with multiple heaps
can reduce most of the lock contentions on the private heap, and expect to
be scalable. Unfortunately, it is likely to cause a private heap to grow with-
out bounds. For instance, assume that threads are in a producer-consumer
relationship, if a producer thread 71 allocates memory M1 and a consumer

thread T2 releases M1, the memory M1 will be added into 7'2’s heap.

e Private heaps with ownership: Unlike the allocators using pure private

heaps, the allocators with ownership return free blocks to the heap where the

23

Chapter 2: Dynamic Memory Managements

target block came from. However, in a producer-consumer model applications,
which exhibit round-robin behaviour, the allocators can eliminate allocator-

induced false sharing but it still induces unbounded memory consumption.

e Private heaps with thresholds: The allocator employs a hierarchy of heaps,
and some heaps can be shared by multiple threads, except the private heaps.
The shared heap can exhibit some heap contentions, but rarely is there con-
tention on the private heaps. Therefore, the allocators can be efficient and
scalable. When the number of private heaps exceeds the threshold, a portion
of free memory will be moved to the shared heap, with fully empty heaps be-
ing returned to the underlying OS in bounded heap increments. However, the
memory management cost, particularly the time cost, can be high because it

needs multiple memory operations.

Since using multiple heaps, many memory managers have suffered from un-
bounded heap increments, wherein memory consumption cannot be unbounded by
a policy even if the required memory is fixed. Berger [Berger et al., 2000] called this
phenomenon blowup. Some follow-on studies have used the terminology, so we will
use it as well even though it is not common. The blowup phenomenon results from
two types of memory consumption patterns. The first type is from the use of pure
private heaps in the allocators used in the C++ Standard Template Library [SGI,
2004]. The second is based on the private heaps with ownership used in Ptmal-
loc [Gloger, 2001] and LKmalloc [Larson and Krishnan, 1998], where the pattern
of memory consumption linearly increases with the number of processors. Some
allocators, Hoard [Berger et al., 2000] and Vee and Hsu [Vee and Hsu, 1999, exhibit

bounded memory consumption as they support the private heaps with thresholds

policy.

2.3 Memory Management Algorithms

It is appropriate to review the most well-known policies of memory allocation, even

if they are derived from the 1960s, because most modern memory allocators are

24

2.3 Memory Management Algorithms

variants of these allocation algorithms. Also, the original allocation algorithms are
simple and easy to use in small devices. There are two approaches to analyze the
WCET of memory management algorithms: static WCET analysis, or worst-case
complexity analysis. However, it is impossible to use the static WCET analysis with-
out knowledge of the history of the allocation/deallocation requests in the lifetime of
application using the allocation algorithms [Puaut, 2002]. Consequently, worst-case
complexity analysis will be used to obtain the worst-case allocation/de-allocation
time in this thesis.

In this section, we will discuss sequential fit, segregated fit, buddy systems,

indexed fit, and modern hybrid memory allocation algorithms in this order.

2.3.1 Sequential Fit

Typically, sequential fit algorithms can be classified into four types: Best-Fit, First-
Fit, Next-Fit and Worst-Fit. Figure 2.1 illustrates the differences between sequential
fit algorithms. In particular, it contains five free blocks of diff