
Node-oriented dynamic memory management for

real-time systems on ccNUMA architecture

systems

Seyeon Kim

Doctor of Philosophy

University of York

Department of Computer Science

April 2013

Abstract

Since the 1960s, most operating systems and programming languages have been able

to use dynamic memory allocation and deallocation. Although memory allocation

has always required explicit interaction with an allocator, deallocation can be either

explicit or implicit. Surprisingly, even though memory allocation/deallocation algo-

rithms have been studied extensively over the last five decades, limited attention has

been focused on the real-time properties. Most algorithms are general-purpose and

do not satisfy the requirements of real-time systems. Furthermore, the few allocators

supporting real-time systems do not scale well on multiprocessors. The increasing

demand for high-performance computational processing has resulted in the trend of

having many cores. ccNUMA architecture systems are part of this trend and provide

a systematic scalable design. This thesis contends that current memory allocators

for Operating Systems that support cc-NUMA architecture are not appropriate for

real-time applications. We further contend that those real-time allocators that have

been proposed in the literature are not cc-NUMA aware. The thesis proposes and

implements (a prototype of) a new NUMA-aware dynamic memory allocation algo-

rithm for use in soft real-time systems. We study the behaviour of our new allocation

algorithm in comparison with related allocators both theoretically and practically.

iii

Contents

Abstract iii

List of figures vi

List of tables viii

Acknowledgements xiii

Declaration xv

1 Introduction 1

1.1 Motivation . 2

1.2 Hypothesis . 4

1.3 Thesis Objectives . 4

1.4 Organisation of the Thesis . 6

2 Dynamic Memory Managements 9

2.1 Introduction . 9

2.2 Fundamental Issues . 16

2.3 Memory Management Algorithms . 24

2.4 Summary . 44

3 nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm 45

3.1 Design Principles . 46

3.2 An Overview of nMART . 51

3.3 Kernel-level Node-based Memory Management 52

3.4 User-Level Memory Management Algorithms and their Implementation 64

v

Contents

3.5 Summary . 93

4 Evaluation 95

4.1 Experimental Environment . 95

4.2 Workload Models . 97

4.3 Temporal Behaviour Analysis . 111

4.4 Summary . 160

5 Conclusions And Future Work 163

5.1 Contributions . 165

5.2 The Hypothesis Revisited . 166

5.3 Future Work . 167

Appendices 169

A Additional Evaluation of Spatial and Cache Behaviour of memory

Allocators 169

A.1 Spatial Behaviour Analysis . 169

A.2 Cache Behaviour Analysis . 181

B Additional Evaluation of the Revised Node Distance Tables 189

B.1 Implementation of Node Distance tables in Linux 189

B.2 Measuring Node Distances . 192

B.3 Evaluation On The Real Node Distance 198

C Further Evaluation of the Synthetic Models 205

D Supporting Implementations 219

D.1 Supplemental Applications . 219

D.2 Examples Of Conventional Allocators 231

Abbreviations 235

References 237

vi

List of Figures

2.1 Overview of Sequential Fit algorithms 25

2.2 Logical view of Buddy system . 32

2.3 Structure of DLmalloc . 36

2.4 Structure of Half-fit . 37

2.5 Structure of TLSF . 39

2.6 Structure of tcmalloc . 41

2.7 Structure of Hoard . 43

3.1 The wasted memory of TLSF in small sizes of blocks 48

3.2 The structure of nMART . 51

3.3 The relationship between nodes, zones and pages on x64 architecture

system . 57

3.4 The default zones lists for our experimental hardware 61

3.5 The sorted zone lists for our experimental hardware 62

3.6 The thread-based private heap on the first layer 67

3.7 The node-based free arena management on the second layer 69

3.8 The structure of an nMART control block 71

3.9 The header of an arena list . 71

3.10 The structure of a thread control block 72

3.11 The header of an arena . 73

3.12 The header of normal blocks . 74

3.13 A block of small blocks . 74

4.1 A four node-based ccNUMA architecture system 96

4.2 A more complex architecture system 97

vii

List of Figures

B.1 The ratio of performance improvements 202

viii

List of Tables

2.1 Worst-case time complexity of algorithms 44

3.1 SLIT of the experimental machine . 55

4.1 Real workload characteristics of test set 1 102

4.2 Real workload characteristics of test set 2 102

4.3 Real workload characteristics of test set 3 103

4.4 Real workload characteristics of test set 4 103

4.5 The number of malloc() and free() calls by cfrac 104

4.6 The number of malloc() and free() calls by espresso 105

4.7 The number of malloc() and free() calls by gawk 105

4.8 The number of malloc() and free() calls by p2c 106

4.9 The MEAN of BS, BIT and BHT generated 110

4.10 The CDF model of BS, BIT and BHT generated 111

4.11 The average malloc()/free() time of Set 1 of cfrac 115

4.12 The average malloc()/free() time of Set 2 of cfrac 116

4.13 The average malloc()/free() time of Set 3 of cfrac 116

4.14 The average malloc()/free() time of Set 1 of espresso 119

4.15 The average malloc()/free() time of Set 2 of espresso 120

4.16 The average malloc()/free() time of Set 3 of espresso 120

4.17 The average malloc()/free() time of Set 1 of gawk 123

4.18 The average malloc()/free() time of Set 2 of gawk 124

4.19 The average malloc()/free() time of Set 3 of gawk 124

4.20 The average malloc()/free() time of Set 1 of p2c 127

4.21 The average malloc()/free() time of Set 2 of p2c 127

ix

List of Tables

4.22 The average malloc()/free() time of Set 3 of p2c 128

4.23 The average of total malloc()/free() time for cfrac test set 1 132

4.24 The average of total malloc()/free() time for cfrac test set 2 132

4.25 The average of total malloc()/free() time for cfrac test set 3 133

4.26 The average of total malloc()/free() time for espresso test set 1 . . . 136

4.27 The average of total malloc()/free() time for espresso test set 2 . . . 136

4.28 The average of total malloc()/free() time for espresso test set 3 . . . 137

4.29 The average of total malloc()/free() time for gawk test set 1 140

4.30 The average of total malloc()/free() time for gawk test set 2 140

4.31 The average of total malloc()/free() time for gawk test set 3 141

4.32 The average of total malloc()/free() time for p2c test set 1 144

4.33 The average of total malloc()/free() time for p2c test set 2 144

4.34 The average of total malloc()/free() time for p2c test set 3 145

4.35 The execution time of MEAN-Value model with two threads 147

4.36 The execution time of MEAN-Value model with four threads 148

4.37 The execution time of MEAN-Value model with eight threads 149

4.38 The execution time of MEAN-Value model with sixteen threads . . . 150

4.39 The execution time of MEAN-Value model with thirty-two threads . 151

4.40 The execution time of MEAN-Value model with sixty-four threads . . 152

4.41 The execution time of CDF model with two threads 155

4.42 The execution time of CDF model with four threads 156

4.43 The execution time of CDF model with eight threads 157

4.44 The execution time of CDF model with sixteen threads 158

4.45 The execution time of CDF model with thirty-two threads 159

4.46 The execution time of CDF model with sixty-four threads 160

A.1 The total block sizes requested/provided by cfrac 171

A.2 The total block sizes requested/provided by espresso 171

A.3 The total block sizes requested/provided by gawk 172

A.4 The total block sizes requested/provided by p2c 174

A.5 The size of virtual memory provided for test set 1 176

A.6 The size of virtual memory provided for test set 2 178

x

List of Tables

A.7 The size of virtual memory provided for test set 3 179

A.8 The size of virtual memory provided for test set 4 181

A.9 The states of event counters for cache-scratch in test set 4 183

A.10 The states of event counters for cache-thrash in test set 4 184

A.11 The states of event counters for larson in test set 4 186

A.12 The states of event counters for shbench in test set 4 187

B.1 Measured Node Distances . 194

B.2 The SLIT of more complex architecture system 194

B.3 The measured results for more complex system 197

B.4 The new node distance of more complex architecture system 198

B.5 The measured actual time taken on a four nodes-based ccNUMA system199

B.6 Allocation timing statistics based on node 0 200

B.7 Allocation timing statistics based on node 1 200

B.8 Allocation timing statistics based on node 2 201

B.9 Allocation timing statistics based on node 3 202

C.1 The mean of all test sets of applications 206

C.2 The cumulative percentage and frequency of cfrac test set 1 207

C.3 The cumulative percentage and frequency of of cfrac test set 2 208

C.4 The cumulative percentage and frequency of cfrac test set 3 209

C.5 The cumulative percentage and frequency of espresso test set 1 210

C.6 The cumulative percentage and frequency of espresso test set 2 211

C.7 The cumulative percentage and frequency of espresso test set 3 212

C.8 The cumulative percentage and frequency of gawk test set 1 213

C.9 The cumulative percentage and frequency of gawk test set 2 214

C.10 The cumulative percentage and frequency of gawk test set 3 215

C.11 The cumulative percentage and frequency of p2c test set 1 216

C.12 The cumulative percentage and frequency of p2c test set 2 217

C.13 The cumulative percentage and frequency of p2c test set 3 218

xi

Acknowledgements

Firstly and very respectfully, I would like to appreciate my supervisor, Professor

Andy Wellings. This thesis would not have been possible without his great mind,

guidance and support. His endless support, understanding, and patience shaped my

coarse-grained idea into this final thesis.

I would also like to thank my assessor, Professor Alan Burns, for his great support

and invaluable advice regarding my work. An encouraging, cooperative and truly

interested advisor is something that every Ph.D. student wants, whereof I am one

of the privileged. Especially, I would like to thank all my friends, Abdul Haseeb

Malik, Usman Khan, and Shiyao Lin for giving me strength, self-belief and all the

enjoyable moments. My sincere appreciation goes to my best friends, Sungki Kang,

Youngbo Kim, and Dinesh Manadhar; without their love and support, it would not

have been possible to complete this course.

My family has been supportive of me throughout my Ph.D. I would like to thank

my wife, Jumi Kim, and my little angels, Noori and Arie Kim, for their patience,

sacrifices and support. I also thank my younger brother with his wife, Jaeyeon Kim

and Youngeun Song, for encouraging me throughout my work. Last but not least,

my sincere appreciation goes to my father for guiding and supporting me in every

possible way.

xiii

Declaration

I declare that the research described in this thesis is original work, which I undertook

at the University of York during 2008 - 2013. Except where referenced, all of the

work contained within this thesis represents the original contribution of the author.

xv

Chapter 1

Introduction

Recent years have seen an explosion in the development and use of modern com-

puting technologies from small embedded devices like smart phones and tablets

to large industrial machineries such as auto-mobiles and aircraft. For example, a

huge number of people use the Internet to perform searches and for the provision

of services. This is possible because innumerable machines run these searches and

services behind the Internet. The key force providing the diversity of services is

high-performance computing technologies such as parallel and distributed comput-

ing. Single processor systems are not able to meet the required demand.

Many high performance services are supported by computers that have ccNUMA

architectures. ccNUMA architecture systems are multiprocessor systems that have

distributed shared memory. They are more scalable and flexible compared to other

multiprocessor architecture such as SMP (symmetric multiprocessor systems). cc-

NUMA systems provide a single address space, and are globally cache-coherent in

hardware. In order to execute on ccNUMA systems, an application that executes

on SMP systems does not require any changes. This is an important consideration

when existing applications are to be migrated to the new architectures. However,

the ccNUMA memory hierarchy does affect the application performance. In such

systems, there are considerable benefits to be had by allocating related threads and

data close to each other.

Real-time systems have also been increasing in size and complexity and their

processing demands can no longer be met by single processor systems, and they are

1

Chapter 1: Introduction

likely soon to outpace the computation power of SMPs. Furthermore, it is extremely

likely that a real-time application can be sharing the system’s resources with other

real-time applications concurrently. This exacerbates the problem of meeting the

computational demands of the applications. Hence, in the near future, real-time

systems will require processors that have ccNUMA architectures as these offer more

extensible computing platforms. However, it is difficult to do the global timing

analysis of large systems. Accordingly, architectural complexity and tight timing

constraints make the development of real-time systems on multiprocessor ccNUMA

architectures extremely difficult [Wellings et al., 2010].

In general, a real-time system can be defined in many ways; a real-time system

often refers to one that has the ability to perform many computations extremely

fast. The powerful computation ability can minimize average response times, but it

does not guarantee predictability, as is required in the real-time domain. The faster

computation is a necessary condition, but it is not sufficient in the domain.

Burns and Wellings [Burns and Wellings, 2001] give the following definition of

a real-time system: “The correctness of a real-time system depends not only on

the logical result of the computation, but also on the time at which the results are

produced.” Real-time systems are often classified as hard or soft. Hard real-time

systems are those that must provide absolute guarantees that tasks will meet their

deadlines. In soft real-time systems, deadlines are important but there is no strict

guarantee requirement. Tasks which complete late, still can provide value to the

system. This thesis is concerned with the implementation of soft real-time systems

on ccNUMA architectures.

1.1 Motivation

Memory is one of the significant concerns when developing real-time applications as

its management costs are expensive. Consequently, worst-case latencies and memory

utilization are the primary concerns of real-time developers; a cost-effective real-time

system must also exhibit good average-case performance [Nilsen and Gao, 1995]. As

a result of the unpredictable allocation and de-allocation of memory blocks, many

2

1.1 Motivation

real-time systems use static memory allocation; this refers to the process of allocat-

ing memory at compile-time and during program initialization before the application

enters into it main real-time phase of execution. They do not use dynamic memory

allocation and all physical memory is available as one contiguous block that can

be used as and when required. As there is no automatic memory management, a

problem arises concerning unnecessary memory space consumption. Memory that

is required for the storing of temporary objects cannot easily be reused. Program-

mers have to implement and manage their own memory pools to reduce unnecessary

memory space consumption and reuse space. As has been noted earlier, real-time

systems have been increasing in size and complexity with the explosion of multipro-

cessor and multi-core architecture systems. This requires, among other things, more

flexible use of the available resources including memory. The burden of static mem-

ory and memory pool management becomes unacceptable. From the developer’s

view, in the future, the development of real-time applications will increasingly use

dynamic memory management1 to achieve the expected flexibility and performance.

Dynamic storage allocation (DSA) has been one of the most important funda-

mental part in the general-purpose software domain due to being more efficient and

flexible than static memory allocation. With its importance and popularity, the

research area of DSA algorithms has been studied for over fifty years. In the past,

much scholarly work has been done on the topic of good average response time of

DSA algorithms, with respect to how fast and efficiently they allocate or de-allocate

memory blocks, and how to reduce memory fragmentation. Although large numbers

of faster and more efficient DSA algorithms exist in general-purpose domains, such as

DLmalloc [Lea, 1996], TCmalloc [Sanjay Ghemawat, 2010] and Hoard [Berger et al.,

2000], and are used widely, surprisingly, the worst-case execution time (WCET) of

DSA algorithms, which can be high, has has not been studied in detail. There

have been only a few general studies on the dynamic storage allocator in real-time

system’s domain. Due to the lack of studies, most application developers of real-

time systems generally avoid using dynamic storage allocation algorithms. This is

1Dynamic memory management is also called dynamic storage allocation, memory management,

heap memory, heap space, or just heap for historical reasons [Hasan et al., 2010].

3

Chapter 1: Introduction

because they are concerned that the worst-case execution time of DSA routines is

not bounded or is bounded with an excessive bound [Puaut, 2002]. As well as the

WCET of the DSA algorithm, space efficiency should be considered, as the lifetime

of a real-time application is usually longer than a general-purpose application’s one.

During a long lifetime, dynamic memory allocation can leave holes in memory, which

cannot be reused due to their small size, and these holes lead to slow unacceptable

response time or to miss deadlines. This is known as memory fragmentation.

In addition to the above concerns, ccNUMA architectures introduce another

problem for DSAs. To maximize performance, memory allocated to the application

must be local to the hardware node that is performing the memory access.

1.2 Hypothesis

The current existing dynamic storage allocation algorithms for real-time systems

do not have any appropriate functionality to support multi-processors, multiple

threads, and ccNUMA architecture systems. This thesis is concerned with how

a dynamic storage allocation algorithm, supporting ccNUMA architecture systems,

can be bounded with a small bound to satisfy the timing constraints of soft real-time

systems. The hypothesis of this thesis is defined by the following statement:

The ability of a dynamic storage allocation algorithm can be enhanced

to meet the requirements of soft real-time systems with a small bounded

execution-time on ccNUMA architecture systems.

In order to avoid ambiguity, the term wasted memory in this thesis refers to

those parts of memory which are free but cannot be allocated to the application. It

is also called memory fragmentation, which can be divided into two parts: internal

and external.

1.3 Thesis Objectives

This thesis is mainly concerned with dynamic storage allocation algorithms on a

ccNUMA architecture system and its efficient implementation on Linux. The major

4

1.3 Thesis Objectives

aim of the research is to enhance memory allocation algorithms to support ccNUMA

architecture systems, enabling programmers to maximize exploitation of the sys-

tem’s characteristics without significant effort, and to offers better efficiency with

bounded execution times for the allocation/de-allocation of memory.

In order to prove the hypothesis, this thesis provides six objectives. These are:

1. A detailed investigation into the limitation of why the existing dynamic storage

allocation algorithms to allocate/de-allocate memory on ccNUMA architecture

systems introduce unexpected large space and time overheads.

2. An approach for automatically re-sorting the node order, which minimizes

accessing the farthest node on the system and automatically maximize ac-

cessing the closer node for memory allocation requests. As one of the main

parts of the thesis hypothesis, this approach gives better performance. Also

it releases real-time application developers from the responsibility of memory

management.

3. Temporal and spatial guarantees to real-time applications to ensure they meet

their timing and space requirements in order to eliminate the non-determinism

caused by the memory distribution in ccNUMA architecture systems.

4. To support transparency of the underlying architectures to applications. Mem-

ory requests are satisfied under this algorithm independently of the underlying

architectures.

5. A synthetic model to analyze dynamic storage algorithms on ccNUMA archi-

tecture systems to check for improvements in the performance and predictabil-

ity.

6. An overview of the implementation of: (a) the physical memory management

on a modified Linux kernel, and (b) the proposed dynamic allocation algo-

rithm.

Meeting these objectives forms the main contributions of this thesis. Achieving

these goals will facilitate the development of efficient and configurable applications

5

Chapter 1: Introduction

under an enhanced Linux kernel on ccNUMA architecture systems. In summary,

the thesis aims to define a more efficient dynamic storage allocation algorithm and

enhance the current Linux kernel to enable applications to be more deterministic

and portable in their use of memory allocation and deallocation.

1.4 Organisation of the Thesis

The remaining chapters of this thesis are organized with five chapters in accordance

with the motivations and objectives of the research. Briefly, the descriptions of the

remaining chapters are given below:

Chapter 2. Dynamic Memory Managements: This chapter explores the

dynamic storage algorithm models provided by general-purpose and real-time

systems, including their policies and mechanisms. Furthermore, conventional

memory management algorithms are investigated, with particular emphasis

on managing memory blocks. This chapter also highlights hybrid memory

management algorithms, which perform better on multiprocessor architecture

systems compared to conventional DSA algorithms.

Chapter 3. nMART: A ccNUMA-aware Dynamic Storage Allocation Al-

gorithm: This chapter concentrates on providing and implementing a more

efficient and predictable memory management algorithm that is especially de-

signed for use in real-time systems. This is to achieve the primary inten-

tion of an algorithm which is bounded with small bounds. It is designed

to allocate/de-allocate memory blocks with the “closest node-orientated al-

location” policy. Also, the chapter discusses the current methods of modern

operating systems for the management of the physical memory in ccNUMA

architecture systems, particularly Linux, and how our model performed better

in terms of the physical memory management.

Chapter 4. Evaluation: This chapter suggests an evaluation method, particu-

larly in terms of remote memory access, for the performance of DSA algorithms

on the target architecture systems. Also, a set of experiments is performed to

6

1.4 Organisation of the Thesis

evaluate the performance of DSA algorithms. This chapter also compares the

results with other schemes such as First-Fit, Best-Fit, Half-Fit, Hoard, tcmal-

loc, and TLSF. Note that spatial and cache behaviour analysis of algorithms

are discussed in Appendix A.

Chapter 5. Conclusions And Future Work: The final conclusions from the

research results are given in this chapter. Additionally, some directions for

further research are also presented.

7

Chapter 2

Dynamic Memory Managements

2.1 Introduction

Dynamic memory management is one of the most important techniques in modern

software engineering to manage objects created at runtime using high-level languages

like C, C++ and Java. It manages free or in-use memory blocks which have shorter

lifetimes than their owner tasks or processes. In general, it is extremely difficult

to satisfy the timing constraint of real-time applications with dynamic memory

management. This is because it is necessary to predict the worst-case execution

time of dynamic memory management offline. In addition, finding the optimal place

to allocate a block of memory is NP-hard when some blocks are already allocated

[Robson, 1980]; also, fragmentation can occur where it is not possible to satisfy a

request, even if the total size of available memory exceeds the requested memory

size.

When using dynamic memory management on multiprocessor environments, new

problems, such as false sharing, unbounded growing heaps, and synchronization

between threads are introduced. This is because the requirements of applications

running on multiprocessors differ from those of applications running in uniprocessor

environments.

In this chapter, we will discuss the issue described above, in particular, we will

review memory management details related to this thesis. In the first section, the

objectives of memory management and some of the terminology of memory man-

9

Chapter 2: Dynamic Memory Managements

agements are discussed. Section 2.2 introduces some fundamental issues of memory

management. In Section 2.3, a diversity of conventional memory management algo-

rithms and hybrid algorithms are discussed. Lastly, a summary will be drawn.

2.1.1 Objectives of Memory Management

The research in dynamic memory management for real-time systems is one of the still

unconquered areas primarily because real-time applications impose different require-

ments on memory allocators from general-purpose applications. For instance, one

of the most important main requirements in real-time systems is that schedulability

analysis should be performed to determine whether application response times can

be bounded to satisfy the run-time timing constraints. The analysis should consider

the impact of multiprocessor environments such as the high levels of concurrency,

lock contention, heap contention, cache misses, and traffic on the bus. Considering

all these issues with our target ccNUMA architecture systems, the requirements of

real-time applications related to dynamic memory management can be summarised

as follows:

Minimize memory fragmentation: The lifetime of real-time applications is

generally longer than those of general-purpose applications, and can be as

long as a day, a month or even years. In a long lifetime, the application

may free memory blocks of any size arbitrarily. This can lead to the creation

of holes in the memory, which cannot be reused because they are too small.

Consequently, minimizing memory fragmentation needs to be considered as an

important key requirement.

Minimize false sharing: False sharing introduces much of the unnecessary traffic

on the bus in order to maintain cache coherency. It occurs when multiple

processors attempt to read/write different data objects within the same cache

line or page. Even if the processors do not actually share data, there are

overheads due to coherency operations manipulating cache lines [Bolosky and

Scott, 1993] [Jeremiassen and Eggers, 1995]. Consequently, false sharing can

be a critical cause in degrading applications’ performance on shared memory

10

2.1 Introduction

multiprocessor environments.

Maximize node-oriented data locality: As ccNUMA architecture systems are

one of the distributed shared memory systems, their processors are able to

access remote memory but with higher latencies than with local memory ac-

cesses. Remote memory accesses, therefore, lead to degrading the system

performance. Consequently, node-based data locality, which encourages ac-

cessing its local memory, is considered as an important key requirement for

improving the performance of the system. Also, allocating memory blocks,

which are usually used together and near each other, lead to minimizing page

and cache misses at runtime.

Minimize memory access to the farther nodes: Application developers need

to consider remote memory access latencies and fully understand the spec-

ification of the underlying hardware. However, nobody can ensure that all

developers fully understand the characteristics. For this reason, DSAs need

to provide transparency to developers so that latencies can be reduced thus

minimizing the memory accesses to the farthest away nodes.

Bounded execution time: As has been discussed, applications on real-time sys-

tems should satisfy their timing constraints. In order to satisfy their deadlines,

the dynamic memory management operations should be bounded with a small

bound at run time.

Minimize lock contentions: Applications running in ccNUMA and multi-threaded

environments must be concerned with high-level concurrency and scalability

issues. In particular, lock contentions lead to limiting systems’ scalability and

add complexity, thereby, degrading system performance. As a result, minimiz-

ing lock contentions in the memory management software is also needed.

Minimize consumed space: Dynamic memory management attempts to con-

sume space conservatively. It needs to use as little memory as possible to keep

track of the maintenance information needed during of the memory manage-

ment of the system.

11

Chapter 2: Dynamic Memory Managements

2.1.2 Terminology

Despite over thirty years of research in dynamic memory management, a precise

definition and quantification of the terms had proven to be elusive before Wilson’s

paper [Wilson et al., 1995b]. In this paper, Wilson provides some of the terminol-

ogy which is now frequently used in the memory allocation area. For clarity, this

terminology will be used in this thesis. The main terms are defined below.

Strategy: A strategy is the basic approach used to design a memory allocator.

It takes into account patterns in program behaviour, and determines a range

of acceptable policies for placing dynamically allocated memory blocks. The

objectives of an allocator may be considered as being equivalent in meaning

to the allocator’s strategy, for example, “minimizing lock contentions for each

allocation” or “maximizing data locality to encourage accessing local nodes”.

These strategies are achieved by policies.

Policy: A policy is an implementable decision procedure for placing memory blocks

dynamically. It determines exactly where an allocating block will be extracted

from the memory or where a freed block will be inserted into the memory. For

instance, a given policy says: “always attempt to find the smallest block that

is large enough to satisfy the request”. These chosen policies are implemented

by a collection of mechanisms. Policies can be separated into the following:

Exact-Fit, Best-Fit, Good-Fit, First-Fit, Next-Fit and Worst-Fit. Some of the

most important policies will be discussed in Section 2.3.

Mechanism: A mechanism is a collection of algorithms and data structures that

implement a policy. It may be simply equivalent in meaning to an algorithm.

An example of a mechanism is to “use a doubly linked list, and search for the

position of the free block list from where the last search was satisfied; freed

blocks are inserted at the front of the list”. Typically, the mechanism can

be divided into the following: Sequential Fit, Segregated Fit, Buddy Systems,

Indexed Fit and Bitmapped Fit. Some of the most important mechanisms will

be discussed in Section 2.3.

12

2.1 Introduction

The above set of definitions is important for understanding and designing a

dynamic memory management system in detail. For example, given a strategy,

different policies may lead to different secondary effects. If some policies introduce

good locality with high fragmentation, an application developer may need to choose

another policy under the same strategy, which produces low fragmentation. A policy

can be implemented by a diversity of mechanisms. If a given policy performs well,

but its implementation is not efficient, developers can implement the policy by

choosing a different mechanism.

Theoretically, keeping fragmentation under control is one of the major function-

alities of dynamic memory management achieved by the placement policy. The

placement policy is the choice of where to put a requested memory block in free

memory. It is achieved by two techniques: splitting and coalescing.

Splitting: This splits large blocks into smaller blocks, and uses large divided

blocks to satisfy a given request. Typically, the remainding blocks are tracked

as smaller free blocks, and used to satisfy future requests.

Coalescing: Coalescing occurs when applications free up used memory blocks. In

general, when applications free blocks of memory, the memory manager checks

to see whether the neighbouring blocks are free or not, merging them into a

single larger block if they are freed. This is more desirable because a larger

block is more likely to be useful than two smaller blocks.

Coalescing can be separated into two different categories. Firstly, immediate

coalescing attempts to merge freed blocks immediately whenever a block is freed.

This will typically be expensive because freed blocks will be coalesced together

by repeatedly and frequently combining adjacent free blocks. In contrast, deferred

coalescing simply marks a freed block as “unused” or “freed” without merging. This

is because many applications repeatedly create short-lived objects of the same size.

Such allocators keep blocks of a given size on a simple free or unused list, reusing

them without coalescing and splitting so that if an application requests the same-

size memory block soon after one is released, the request can be satisfied by simple

13

Chapter 2: Dynamic Memory Managements

operations in a constant time. This may optimize if some sizes are very commonly

allocated and de-allocated.

However, [Johnstone and Wilson, 1998] provided an analysis of deferred coalesc-

ing, reporting that memory fragmentation problems come into effect for the most

common applications, and that deferred coalescing leads to unbounded execution

time. For this reason, allocators in real-time systems have used immediate coalesc-

ing.

2.1.3 Analysis Methodology

There have been many analysis methodologies used to evaluate dynamic memory

management. In many methodologies, two different approaches are generally used.

To evaluate fragmentation and worst-case execution time, scenarios are constructed

using synthetic workloads; while to compare average execution time, real workloads

are used.

• Synthetic trace analysis: In the past, this has been one of the most widely

used approaches. It consists of a few traces with artificial workloads of allo-

cations and de-allocations. Of course the initial condition is needed as well;

the methodology can offer highly precise simulations of what allocators will

do because allocators usually provide responses in the order of given requests.

The specific workloads can change the size of requested memory blocks distri-

bution and the lifetime distribution of memory blocks to evaluate the affect

on fragmentation.

For example, a simple function (e.g. sizes increased by a power of two) can be

used to change the size, or select the size and lifetime according to the values

from the function, or to use statistics of the size and lifetime collected from

real applications.

• Real trace analysis: Another approach is to trace memory operations from

real applications, rather than randomly generated requests of the size and the

lifetime. This uses a number of memory-oriented applications which consume

a large amount of memory and time processing memory operations, most of

14

2.1 Introduction

which were described by [Grunwald et al., 1993], such as espresso, gs, gawk

and make. The real trace evaluates the memory allocator performance in both

space and time using these real applications.

In [Wilson et al., 1995a], Wilson found that the synthetic trace discards almost all

major information relevant to estimating real fragmentation. Furthermore, in [Zorn

and Grunwald, 1994], Zorn concluded that synthetic trace analyses are not sufficient

to reflect an allocator’s performance accurately. In addition, the paper shows that

the likelihood between the fragmentation of the real trace and the fragmentation

of the synthetic trace is only 0.5, thus meaning that most of the fragmentation

corresponding with the original trace cannot be reflected by the synthetic trace.

They concluded that both size and lifetime of synthetic traces are insufficient to

fully predict allocator performance for real workloads. After these papers, most

research used a combination of both real and synthetic trace analysis.

There is a correlation between the amount of memory fragmentation and the be-

haviours of real applications. [Wilson et al., 1995b] defined three patterns of memory

usage over time, which have been observed in a variety of applications, as follows:

• Ramp: A variety of applications build up specific-purpose data steadily over

time, such as stacking event logs. This pattern is called the ramp pattern.

• Peak: the Peak pattern is similar to the ramp pattern but it is over a short

period of time. Some of the applications use lots of memory intensely in a short

time to build up large data structures. In general, after using data structures,

most of the data will be freed.

• Plateau: Some applications gather data structures rapidly and use them for

long periods, even the whole duration of the application. This situation is

called the plateau pattern.

In the paper, they concluded that the fragmentation at the peak is more impor-

tant than the average fragmentation. This is because the most important periods

are those when the most memory is used. Scattered holes in the memory may not

be a problem in the earlier phase if the holes are filled in the later phase but most

15

Chapter 2: Dynamic Memory Managements

applications never reach a truly steady state as applications usually show memory

usage patterns with ramps and/or peaks patterns.

2.2 Fundamental Issues

In general, designing a memory allocator is a trade-off between time efficiency and

space efficiency. Without making a compromise between them, it is rarely possible

to design a memory allocator that is extremely fast with minimum fragmentation

for most applications. For instance, Kingsley’s memory allocator [Kingsley, 1982] is

an example of simple segregated storage algorithms, which is used in 4.2 BSD Unix

distribution. The memory allocator rounds memory block request sizes up to powers

of two minus a constant. The principle of allocation and deallocation is very simple

inasmuch as popping off from and pushing onto an array of segregated lists in size

classes. The performance of its implementation is very fast because its algorithm is

so simple, e.g. no attempt is made to coalesce memory blocks. Contrary to the time

efficiency, it wastes a significant amount of space, potentially an average of 50% of

the memory can be wasted due to internal fragmentation. Therefore, the balancing

between the time efficiency and the space efficiency is one of the most important

aspects of designing a memory allocator.

A number of memory allocators employ either a single heap or several private

heaps for uniprocessor environments; however, most of the modern memory alloca-

tors have started to consider more complex environments for the emerging multi-core

multiprocessor architecture systems. A more complex architecture system brings

new and different problems, such as heap contentions, false sharing, unbounded

growing heap problems as well as the traditional fragmentation problem. The sub-

sections below will discuss these fundamental problems.

2.2.1 Fragmentation

One of the significant problems of a memory allocator is memory fragmentation.

In [Randell, 1969], Randell classified fragmentation as External and Internal, both

of which are caused by splitting and coalescing free blocks.

16

2.2 Fundamental Issues

External fragmentation arises when a requested memory block cannot be satis-

fied, even if the total amount of free memory is larger than the size of the request.

During allocation and deallocation processing, this fragmentation is generally caused

when a small number of free blocks are created called ‘holes ’. The small number of

free blocks are not adjacent so cannot be merged, and are too small to satisfy any

request.

Unlike external fragmentation, internal fragmentation arises when an allocator

returns a larger free block to satisfy the request, rather than the actual requested

size with the remainder being simply wasted. This is the reason why this situ-

ation is called internal fragmentation. Formally, the remainder is just inside an

allocated block. Arguably, internal fragmentation is only caused by poor implemen-

tation of the allocator policy [Johnstone and Wilson, 1998] [Masmano et al., 2008a].

However, in some allocators, internal fragmentation is often accepted for increased

performance or simplicity. For instance, many of the segregated fit allocators allo-

cate larger free blocks to avoid creating memory blocks that are non-aligned or too

small a size. In binary buddy systems (discussed in Section 2.3.3) and Half-fit cases

(discussed in Section 2.3.5.2), the sizes of allocated blocks are always rounded to

powers of two by the policy because those allocators cannot divide blocks into differ-

ent sizes from those preset by the policy; the algorithm pre-defines a set of discrete

sizes of the data structure. Unlike external fragmentation, internal fragmentation

is unique to each implementation of an algorithm and it must be studied case by

case. This is why it is hard to find a general study of internal fragmentation in the

literature.

Numerous publications address numerous experimental approaches for control-

ling fragmentations. Usually, the results depend on three variables: M is the max-

imum amount of heap memory that the allocator can use, n is the maximum of

the block size that the application can request, and C is a constant. In [Rob-

son, 1971], Robson showed that the amount of memory needed by any strategy is

bounded below by a function, M log2 n·C, which rises logarithmically with the size

of blocks used. Robson addressed upper and lower bounds on the worst-case frag-

mentation of the optimal allocation algorithm. The paper showed that the upper

17

Chapter 2: Dynamic Memory Managements

bound of a worst-case optimal strategy would be between 0.5M log2 n and about

0.84M log2 n. Another of Robson’s papers [Robson, 1977] showed that the upper

bounds of address-ordered first-fit policy are about M log2 n, whereas the best-fit

policy needs a store of at least (M −4n+11)(n−2), and the pessimistic asymptotic

bound is around M ·n. In [Knuth, 1997](first edition 1973), Knuth proved that the

upper bound of fragmentation in a binary buddy systems could be calculated as

2·M ·log2(n). Confessore [Confessore et al., 2001] addressed a periodic allocation

problem in which allocation and deallocation time of each item are periodically re-

peated and is equivalent to the interval colouring problem on circular arc graphs.

They provided a 2-approximation algorithm, and also showed that the solution value

is equivalent to the length of the longest weighed path of the oriented graph.

The dynamic memory allocation problem, storing all objects in the minimum-

size memory block, is known to be NP-hard in the strong common sense [Garey and

Johnson, 1979]. In [Gergov, 1996], Gergov achieved an approximation result for this

problem with a performance ratio of 5. In another paper [Gergov, 1999], Gergov

had achieved a 3-approximation algorithm for memory allocation. Luby [Luby et al.,

1994] introduced a new parameter called k, which denotes the maximum number

of occupied memory blocks, for analyzing algorithms, and improved on Robson’s

previous research [Robson, 1977]. This proved that the first-fit policy needs a store

of at least O (M min{log n, log k}) words.

Given the above theoretical analysis, the situation seems rather pessimistic. For

instance, assuming that an allocator uses a single heap of M = 1M bytes with a

first-fit algorithm, with the maximum block size being n = 4K bytes, the allocator

needs at least 220·(1 + log2(2
12)) bytes; a total of 13M bytes is needed to ensure

that the allocator never fails because of external fragmentation. In the case of the

best-fit policy, it is even larger. With the same condition above, it needs at least

220·212 = 4G bytes to ensure the best-fit policy always satisfies all requests. In

contrast, experimental results are much more encouraging.

Hirschberg [Hirschberg, 1973] compared a binary buddy system with a Fibonacci

buddy system. The paper showed that the fragmentation of Fibonacci buddy can

increase memory usage by about 25% in contrast to binary buddy’s 38%. In [Shen

18

2.2 Fundamental Issues

and Peterson, 1974], Shen showed that a weight-buddy system using FIFO-order

with a uniform size distribution wastes more memory than a binary buddy system

- around 7% - due to fragmentation. With an exponential distribution, the weight

buddy system using FIFO-order gives an improvement of around 7% over binary

buddy. In contrast to FIFO-order, memory usage had been worse - around 3% -

with LIFO-order. Shore [Shore, 1975] compared best-fit, address-ordered first-fit,

worst-fit, and combined best-fit and first-fit as a hybrid policy. The results showed

that best-fit and first-fit policies roughly outperformed the others in fragmentation,

and the maximum difference between them was less than 3%.

Bohra [Bohra and Gabber, 2001] found that the behaviour of a long-running

application with a memory allocator is fairly different from the typical patterns

for which memory allocators are optimized. In their experiment, the best opti-

mized algorithm caused 30.5% fragmentation with a long-running application called

Hummingbird, and another called GNU Emacs caused 2.69%, but the worst case

had predicted 101.5% fragmentation. Real applications are designed to solve ac-

tual problems, which affect their pattern of memory usage, so that applications do

not behave randomly by the chosen methods used to solve the original problems.

Unfortunately, application behaviours have a wide variety of implications for frag-

mentation so that in order to understand fragmentation, it is necessary to discuss

application behaviours as seen in [Bohra and Gabber, 2001]. For instance, the size

distributions of requested memory blocks determine memory fragmentation. The

lifetimes distribution of memory blocks determines which memory blocks are occu-

pied or free over time.

In [Johnstone and Wilson, 1998], Johnstone investigated the fragmentation pro-

duced by a group of policies including first-fit, best-fit, next-fit, address-ordered first-

fit, address-ordered best-fit, address-ordered next-fit, DLmalloc, etc. with a set of

real traces. They concluded that the fragmentation problem is produced by a poor

allocator implementation, and well-known polices did not suffered from almost any

genuine fragmentation.

Barret [Barrett and Zorn, 1993] introduced an interesting approach to avoiding

fragmentation by predicting the lifetimes of short-lived objects when they are allo-

19

Chapter 2: Dynamic Memory Managements

cated. They showed that their scheme would predict that a large fraction (18% to

99%) of all allocated bytes are short-lived.

Consequently, it can be concluded that some dynamic storage allocation algo-

rithms have pessimistic fragmentation; however, in many studies, many allocator

algorithms show low fragmentation in memory usage with well-designed policies.

The Measure of Fragmentation

To compare allocators, a metric is needed. In general, the time cost and the

space cost are the most commonly used measurements; in particular, the time cost

denotes speed, and the space cost indicates fragmentation.

Memory fragmentations can be defined in many different ways. For instance,

assume that there are 10 free blocks of size 4K bytes and 50 free blocks of size 1K

bytes in memory at some point in time, and an application will request 5 free blocks

of size 4K and 40 free blocks of size 1K in the near future. In this case, was cannot

say there is high fragmentation because the requests can be satisfied. With the same

condition above, if the allocation will request 10 free blocks of size 8K, there will be a

problem and we can say that this is due to high fragmentation. Johnstone [Johnstone

and Wilson, 1998] suggested four metrics to describe the amount of fragmentation,

which are now widely used. They used both metric 3 and 4 in the paper.

Metric 1: The measured fragmentation is the amount of memory used by the mem-

ory manager, which is normally called the heap, over the amount of memory

requested by the application, averaged at all points through time. This met-

ric of fragmentation measure is simple, but a problem with this approach is

that it hides the spikes in memory utilization, with these spikes being where

fragmentation can become a problem.

Metric 2: The fragmentation is the amount of memory used by the memory man-

ager over the maximum amount of memory required by the application at the

point of maximum memory utilization. The problem of this metric is that

the point of maximum memory utilization cannot normally be considered the

most important point of the application at runtime.

20

2.2 Fundamental Issues

Metric 3: The fragmentation is equal to the maximum amount of memory used by

the memory manager over the amount of memory required by the application

at the point of maximum memory usage by the memory manager. The draw-

back corresponding with this measure of fragmentation is that it will lead to

high fragmentation, even if the applications uses slightly more memory than

the size of needed memory.

Metric 4: The fragmentation is the maximum amount of memory used by the

memory manager over the maximum amount of memory used by the applica-

tion. The disadvantage of this measure is that it can report low fragmentation

when the point of maximum memory usage is a point where a small amount

of memory is used by the application.

All the metrics described above are available to measure the fragmentation

caused by application behaviours; however, a problem with these metrics is that

they do not distinguish between unused memory and memory used by the memory

allocator for its own data for management, such as keeping free blocks. In our exper-

iment, we will consider the actual amount of internal and external fragmentation,

with space consumed by data structures being maintained. Therefore, we will use

the following equation to calculate the amount of fragmentation (f):

f =
h− a

h
(2.1)

In this equation, h denotes the actual amount of memory provided by the alloca-

tor, and a points out the amount of allocated memory requested by the application.

2.2.2 False Sharing

Writing multi-threaded applications is a challenge for many well-known reasons,

such as debugging, avoiding race conditions, a variety of contentions, and deadlocks.

With the emergence of multiprocessor architecture systems, memory allocators need

be more concerned with the potential pitfalls resulted from parallel executions of

threads requesting memory. In the remaining sub-sections, we will discuss some

issues arising in multiprocessor environments.

21

Chapter 2: Dynamic Memory Managements

Most multi-threaded applications share system resources between threads. In

this case, contention arises when threads try to read or write a shared resource.

However, the contention can sometimes happen when multiple threads access differ-

ent objects. This is because multiple objects happen to be close enough in memory,

wherein they reside on the same cache line.

For instance, a thread updates object obj1, whereas another thread updates

another object obj2. Assume that both objects reside on the same cache line and

both threads are running on different processors, the cache-coherency protocol will

make the entire cache line an invalidated state when one of them is modified. The

cache line will “Ping-Pong” between the processor caches. Therefore, it leads to

degrading the application performance [Hyde and Fleisch, 1996].

This situation is called false sharing. Recently, with the popularity of using

multi-core architecture systems, the trend towards increasing cache line sizes makes

false sharing increasingly common [Liu and Berger, 2011]. It is rarely possible to

eliminate false sharing automatically. One representative approach is that either ap-

plication developers deal with this problem by adjusting the data structure layouts,

i.e. alignment and padding, or compilers schedule a parallel loop [Jeremiassen and

Eggers, 1995]. These approaches can reduce the correlation between false sharing

and data objects; however, these strategies cannot avoid it completely because of

the effects on array-based data structures. Nevertheless, a well-designed strategy

can reduce and eliminate the possibility of false sharing in practice [Berger et al.,

2000].

2.2.3 Single and Multiple Heaps

Despite the increasing popularity of concurrent application on both multi-core and

multiprocessor architecture systems, there have been few studies on concurrent

memory managers. The most representative paper on the dynamic storage alloca-

tion [Wilson et al., 1995b] was surprisingly limited to investigating non-concurrent

memory managers. Typically, in the uniprocessor environments, two approaches can

be used by a memory manager to deal with multiple threaded applications: a serial

single heap and a concurrent single heap.

22

2.2 Fundamental Issues

However, those heaps naturally suffer contention when multiple threads access

the same heap. The problem with the single heap is that the greater number of

threads accessing the heap, the more heap contention is likely to arises. As a result,

a variety of concurrent memory managers started to use multiple heaps. There

are many mechanisms to assign threads to heaps, such as the allocators mapping

threads onto heaps by assigning one heap to every thread, by using an unused heap

from a group of heaps, by assigning heaps in a round-robin fashion, or by using a

mapping function to assign threads to a group of heaps [Berger et al., 2000]. Berger

has classified these heap usage approaches as follows:

• A serial single heap: The allocator which uses a serial single heap is normally

fast and can likely keep low fragmentation in practice. However, the heap is

protected by a global lock, and naturally it introduces the serialization of

memory accesses and significant lock contention.

• A concurrent single heap: This heap is helpful to reduce the serialization

and the heap contention. It is normally implemented using a concurrent data

structure, like a B-tree or a free list with locks. However, its cost of memory

access is relatively high, since it usually employs many fine-grained locks or

atomic operations on each free block. Furthermore, false sharing still remains

likely.

• Pure private heaps: A pure private heap indicates that a separate heap is

allocated to each thread and these are completely isolated from other threads

so that each thread cannot access any other private heap for any memory

operation except its own heap. As a result, an allocator with multiple heaps

can reduce most of the lock contentions on the private heap, and expect to

be scalable. Unfortunately, it is likely to cause a private heap to grow with-

out bounds. For instance, assume that threads are in a producer-consumer

relationship, if a producer thread T1 allocates memory M1 and a consumer

thread T2 releases M1, the memory M1 will be added into T2 ’s heap.

• Private heaps with ownership: Unlike the allocators using pure private

heaps, the allocators with ownership return free blocks to the heap where the

23

Chapter 2: Dynamic Memory Managements

target block came from. However, in a producer-consumer model applications,

which exhibit round-robin behaviour, the allocators can eliminate allocator-

induced false sharing but it still induces unbounded memory consumption.

• Private heaps with thresholds: The allocator employs a hierarchy of heaps,

and some heaps can be shared by multiple threads, except the private heaps.

The shared heap can exhibit some heap contentions, but rarely is there con-

tention on the private heaps. Therefore, the allocators can be efficient and

scalable. When the number of private heaps exceeds the threshold, a portion

of free memory will be moved to the shared heap, with fully empty heaps be-

ing returned to the underlying OS in bounded heap increments. However, the

memory management cost, particularly the time cost, can be high because it

needs multiple memory operations.

Since using multiple heaps, many memory managers have suffered from un-

bounded heap increments, wherein memory consumption cannot be unbounded by

a policy even if the required memory is fixed. Berger [Berger et al., 2000] called this

phenomenon blowup. Some follow-on studies have used the terminology, so we will

use it as well even though it is not common. The blowup phenomenon results from

two types of memory consumption patterns. The first type is from the use of pure

private heaps in the allocators used in the C++ Standard Template Library [SGI,

2004]. The second is based on the private heaps with ownership used in Ptmal-

loc [Gloger, 2001] and LKmalloc [Larson and Krishnan, 1998], where the pattern

of memory consumption linearly increases with the number of processors. Some

allocators, Hoard [Berger et al., 2000] and Vee and Hsu [Vee and Hsu, 1999], exhibit

bounded memory consumption as they support the private heaps with thresholds

policy.

2.3 Memory Management Algorithms

It is appropriate to review the most well-known policies of memory allocation, even

if they are derived from the 1960s, because most modern memory allocators are

24

2.3 Memory Management Algorithms

variants of these allocation algorithms. Also, the original allocation algorithms are

simple and easy to use in small devices. There are two approaches to analyze the

WCET of memory management algorithms: static WCET analysis, or worst-case

complexity analysis. However, it is impossible to use the static WCET analysis with-

out knowledge of the history of the allocation/deallocation requests in the lifetime of

application using the allocation algorithms [Puaut, 2002]. Consequently, worst-case

complexity analysis will be used to obtain the worst-case allocation/de-allocation

time in this thesis.

In this section, we will discuss sequential fit, segregated fit, buddy systems,

indexed fit, and modern hybrid memory allocation algorithms in this order.

2.3.1 Sequential Fit

Typically, sequential fit algorithms can be classified into four types: Best-Fit, First-

Fit, Next-Fit andWorst-Fit. Figure 2.1 illustrates the differences between sequential

fit algorithms. In particular, it contains five free blocks of different sizes as well as

six used blocks. The block sizes are given in the header of each block, which contains

pointers comprising doubly links.

Figure 2.1: Overview of Sequential Fit algorithms

Assume that the application requests 2K bytes of free memory, Best-fit will

25

Chapter 2: Dynamic Memory Managements

return the 2K bytes free block, and First-fit, Next-fit and Worst-fit will return the

3K bytes, the 3K bytes, and the 5K bytes in that order, as seen in the figure.

• Best-fit

The Best-fit allocation algorithm is one of the most well-known and simplest

algorithms. As indicated by its name, the algorithms always attempts to find the

smallest free block that is large enough to satisfy the application’s request. The

policy tends to minimize the wasted space to ensure fragmentation that is as small as

possible; however, the algorithm performs an exhaustive search of the data structure

in order to find the best-fitting block similar to the requested size. In the worst case,

Best-fit can be achieved in a time complexity of O (n) for finding the first block using

a doubly linked list array.

The algorithm is typically implemented using either a doubly linked list or cir-

cularly linked list, but its data structure may not only be a single linear list of all

free blocks of memory, but also more complex, such as arrays of multiple size classes

like the segregated fit mechanism or a self-balancing binary tree to implement the

same policy with a better time response.

Typically, the Best-fit policy can be implemented by the address-order, FIFO

and LIFO mechanism. Although those algorithms are based on exhaustive searching

algorithms, they shows fairly good memory usage in practice with either real or

synthetic workloads; however, they tend to accumulate small fragmentation [Knuth,

1997], but this does not seem to be a significant problem. This is because it does

not appear to happen in practice with either real or synthetic workloads [Bays,

1977] [Wilson et al., 1995b].

The Best-fit algorithms can be summarised as follows: firstly, the allocators

search for a free block that is large enough to satisfy the request iteratively from the

head of the free block list until it encounters a suitable block. If the allocators find a

block, searching will be terminated and they will return the block. If the allocators

find multiple suitable blocks, the choice of the block depends on the implementation

of the algorithm. If the size of the found block is larger than the requested size, the

block will be split and the remaining one will be inserted into the list. Otherwise the

26

2.3 Memory Management Algorithms

allocators have failed and will return with a failure. In terms of the deallocation, free

blocks are merged with adjacent blocks if they are freed already. They are extracted

from the list and merged with the newly freed block to create a larger-size block.

• First-fit

First-fit allocation algorithms [Brent, 1989] [Knuth, 1997] are also one of the

most common sequential fit mechanisms. They attempt to find the first free block

that is large enough to satisfy the memory allocation request. The algorithms can

be implemented with a address-ordered, LIFO or FIFO mechanisms. In the worst

case, First-fit allocation can be achieved with a time complexity of O (n) for finding

the first block with a doubly linked list array.

The First-fit algorithms can be summarised as follows: firstly, the algorithms

search for a free block from the head of free lists iteratively until finding the target.

If there is no acceptable block, they will return with a failure. If the found block

is larger than the requested size, it will be split and the remaining block will be

inserted into the list. Corresponding with the deallocation case, the free block will

be merged with the adjacent blocks if they are free. If they are free, they will first

be extracted from the list, and merged with the free block to create a larger-size

block. The new larger block will be inserted into the free list.

In general, a problem with First-fit is that frequent splitting occurs near the

head of the free list which results in the accumulation of lots of small blocks near

the head of the list. Those small blocks increase searching time because searching

needs to pass through them each time, and it causes high fragmentation. Conse-

quently, the conventional First-fit is not suitable for an application that allocates

and deallocates many different sizes of blocks frequently. However, as with Best-fit,

it can be more applicable if implemented using more sophisticated data structures.

In practice, First-fit algorithms using either address-ordered or FIFO exhibit lower

fragmentation than First-fit based on LIFO [Wilson et al., 1995a].

• Next-fit

Next-fit allocation algorithms are one of the variants on First-fit algorithm that

employ a roving pointer for allocation [Knuth, 1997]. The algorithms keep track of

27

Chapter 2: Dynamic Memory Managements

the pointer, which records the position of where the last search was satisfied, and

they will be used as the beginning point for the next search. The algorithms can

also be implemented with: address-ordered, FIFO and LIFO mechanisms, like the

other convenient mechanisms.

Theoretically, Next-fit reduces the average search time under a single linear list;

however, it tends to get worse locality because it always searches each free block

before examining the same block again due to the roving pointer.

Furthermore, the roving pointer cycles through the free block lists regularly, and

is likely to accumulate objects in memory with different sizes and lifetimes from

different phases of the application’s execution. Consequently, it has been shown to

cause more fragmentation than other sequential fit allocation algorithms. In partic-

ular, Next-fit with LIFO mechanism allocators has significantly worse fragmentation

than address-ordered Next-fit algorithms [Wilson et al., 1995a]. However, Next-fit

is the best solution to minimizing the mean response time in a shared memory sym-

metric multiprocessor for hard real-time system applications [Banús et al., 2002].

In terms of allocation and deallocation procedures, Next-fit allocation algorithm

originals are almost equivalent to First-fit algorithms, except for the starting point

of search.

In summary, sequential fit algorithms are implemented using a single linear list,

which consists of doubly-linked or circularly-linked lists with very different policies

in practice, such as address-ordered, FIFO or LIFO policies. First-fit and Best-fit

are based on either an address-ordered or FIFO policy and they seems to work

well. However, a problem with sequential fit algorithms is that they are not scalable

because as the number of free blocks grows the search cost linearly increases.

Sequential fit algorithms can be combined with other mechanisms, such as optimal-

fit, half-fit or worst-fit. In particular, worst-fit mechanisms search for the largest free

block that is large enough to satisfy the request of memory allocation because it at-

tempts to make the free block as large as possible in order not to accumulate small

fragmentations; however, in practice, this algorithm seems to work badly.

Overall, the algorithms allocate memory blocks in O (n) in the worst-case, where

n is the size of heap. The algorithms are not predictable and not acceptable for

28

2.3 Memory Management Algorithms

real-time systems even though the sequential fit mechanisms are implemented using

various types of data structures rather than linear lists in order to improve scalability.

2.3.2 Segregated Free Lists

Most of the modern memory allocation algorithms, such as DLmalloc, tcmalloc,

TLSF, Hoard, employ segregated free list mechanisms which use an array of free

block lists. This is because their use reduces search time, although it does cause

small internal fragmentations. The algorithm generally uses sizes that are to the

power of two apart so that each size class holds free blocks of a particular size.

Typically, the algorithms rounds the requested size up to the closer size class

or nearest size class if that is empty. After that, the memory algorithms search for

a free block of the requested size that is large enough to satisfy the request in a

certain size class or for any slightly smaller size that is still larger than any smaller

size class.

In terms of the deallocation, the allocators insert a free block into the free list

for the given size when the used block is freed.

Wilson [Wilson et al., 1995b] indicates that algorithms that employ segregated

free lists can be divided into two categories: simple segregated storage and segregated

fit.

• Simple Segregated Storage

Simple segregated storage is one of the simplest allocators that uses an array of

free lists. No splitting and no coalescing of free blocks are required. These char-

acteristics distinguish simple segregated storage mechanisms from buddy systems.

An advantage of this approach is that no headers are required. This can decrease

memory consumption as the headers introduce overheads – the headers usually in-

crease memory consumption by 10% to 20% [Zorn and Grunwald, 1992] – which is

particularly important when the average requested size is very small.

As there is no required splitting or coalescing of blocks and maintaining of head-

ers, the algorithms are usually fairly fast; especially when the blocks of a given size

29

Chapter 2: Dynamic Memory Managements

are requested in a short time repeatedly. As a simple policy, it achieves a time

complexity of O (1).

However, a problem with the algorithm is that it induces large external frag-

mentation, which is proportional to the maximum amount of memory used by the

allocator times the maximum of the block size requested by the application. It also

suffer from internal fragmentation.

• Segregated Fit

Segregated fit algorithms use arrays of free lists. Each array holds free blocks

within a certain size class. The allocator is faster than a single free list for most

cases, as it searches the free list for the appropriate size class when the application

requests memory. After choosing a certain array within a size class, it searches for

a free block in the array by a sequential fit search. If there is no free block, the

algorithms attempt to search for a larger block in the closest array repeatedly until

finding a larger block, with the larger block then being split and the remainder being

inserted into a particular array. Such algorithms can be categorised as follows: Exact

Lists, Strict Size Classes with Rounding and Size Classes with Range Lists.

Exact Lists In order to support this algorithm, the allocator needs to have a huge

number of free lists to have each possible block size. In practice the allocators

only use the exact lists within small size classes to reduce a very large number

of free lists.

Strict Size Classes with Rounding This mechanism rounds the request size up

to the closer sizes in the size class sets, even though it wastes some space as

internal fragmentation. One advantage of this algorithm is that it can maintain

all blocks on a size list that are of the same size exactly.

Size Classes with Range Lists This is one of the most widely used mechanisms,

which allows free lists to hold blocks of slightly different sizes.

In summary, segregated free lists are used with other mechanisms such as First-

fit or Best-fit to search for a certain free list. If the allocator finds a particular size

30

2.3 Memory Management Algorithms

list, it searches for a freed block in the list based on those mechanisms. Regarding

the optimization, the algorithms employs boundary tags [Knuth, 1997] [Standish,

1980] to support faster splitting and coalescing of free blocks.

Consequently, the algorithms can be achieved a time complexity of O (1) in the

worst-case. However, these algorithms are not suitable for real-time system due to

large external fragmentation.

2.3.3 Buddy Systems

Buddy systems are particular variants of segregated lists using size classes with

rounding. In the system, the whole heap area is theoretically divided into two areas,

with these areas being further divided into two smaller areas, and so on in a simple

buddy case. The standard algorithm of (binary) buddy system can be achieved in

a time complexity of O (log2 n) in the worst case, where n is the maximum size of

the heap.

One advantage of this algorithm is that it contains all blocks on a size list that

are of exactly the same size. For instance, if a size of a free list is 4K bytes, all

blocks contained in the list are a size of 4K bytes. The only difference between this

algorithm and other segregated lists algorithms is the support of limited splitting

and coalescing of free blocks using a certain function, e.g. a power of two function,

as followa:

i = ⌊log2(r)⌋ (2.2)

In this case, r is used to calculate a certain index which represents a particular

free list within the size class to be used for either inserting a free block or searching

for a free block.

In terms of allocation in a simple buddy, it searches for a free block within a

particular array obtained by function 2.2. If there is no free block, the algorithms

try to find a larger block in the closest array iteratively until finding a larger block.

If a block has been found in some higher array, the block will be extracted from the

list and recursively split into the size power of two logarithmically to be smaller,

but the size of the block is still large enough to satisfy the request. The remaining

31

Chapter 2: Dynamic Memory Managements

blocks generated in the process of splitting are inserted into the corresponding free

lists.

Figure 2.2: Logical view of Buddy system

When the application frees a used block, it uses the function 2.2 to find the certain

array within size classes. The array obtained by the function 2.2 is examined to see

if it holds adjacent blocks that are already free. If this is the case, the algorithm

merges the freed block with the adjacent blocks to create a new block of double the

size. After that, this operation iteratively repeats until there is no free block that

meets the condition described above. Such a simple algorithm is called a binary

buddy system. Wilson [Wilson et al., 1995b] addressed how buddy systems can be

typically divided into four categories, as follows: Binary Buddy, Fibonacci Buddy,

Weighted Buddy and Double Buddy.

• Binary buddy: As seen above, binary buddies are one of the simplest variants

of buddy systems. In terms of these algorithms, the sizes of all blocks are a

power of two, with each size being split into two equal parts and merged into

one double size. These characteristics make pointer computations simple. For

this reason, it has generally been considered as a real-time allocator. This

32

2.3 Memory Management Algorithms

algorithm achieves in a time complexity of O
(
log2

m
n

)
in the worst case, where

m is the maximum size of the heap, and n is the maximum size of used memory

by the application. However, a problem with this algorithms is that internal

fragmentation is relatively high around 28% [Knuth, 1997].

• Fibonacci Buddy: Knuth [Knuth, 1997] proposed using Fibonacci numbers

as buddy block sizes instead of a power of two, resulting in reducing internal

fragmentation compared with binary buddies [Hirschberg, 1973]. Due to the

sizes of all blocks being the sum of the two previous numbers, a block can only

be split where sizes are in the numbers as well. A problem with this algorithm

is that the remaining block is likely to be useless if the application allocates

many blocks of the same size [Wilson et al., 1995b].

• Weighted Buddy: These algorithms [Shen and Peterson, 1974] [Page and

Hagins, 1986] allow dealing with size classes in two ways. The size of all blocks

is 2n and 3 · 2n for all n so that the size classes contain the powers of two,

and there is a size that is three times a power of two in between each pair of

consecutive sizes, i.e. 2, 3, 4, 6, 8, 12, 16... An advantage with weighted buddy

is that average internal fragmentation is less than the other buddy systems.

However, a problem with them is that external fragmentation is larger than

other buddy systems [Chowdhury and Srimani, 1987].

• Double Buddy: [Page and Hagins, 1986] proposed double buddy systems,

which are one of the variants of weighted buddies. Double buddy algorithms

reduce the amount of fragmentation compared to weighted buddies. The main

difference with weighted buddy is the splitting rule. All blocks can only be

split in half exactly, so it results in the size of all blocks being a power of two,

as in the binary buddies.

All the above algorithms can be achieved in a time complexity of O (log2 n) in

the worst-case. However, these algorithms are not suitable for real-time system due

to large internal fragmentation.

33

Chapter 2: Dynamic Memory Managements

2.3.4 Indexed Fit and Bitmapped Fit

In the case of sequential fit, a linear search is required to find a free block. Segregated

fit also needs a linear search to traverse an array within a certain size class. An

indexed fit mechanism is one of the secondary mechanisms used to accelerate search

efficiencies of allocator algorithms; it is used in combination with other mechanisms

with a variety of data structures. Typically, these mechanisms use more fine-grained

indexing data structures to keep track of free blocks within size-based policies. At a

high-level abstraction, all of the memory allocator algorithms seem to be one of the

variants of indexed fit because all of them keep track of which parts of the memory

area are in use or which are not.

For instance, Bitmapped fit is derived from the indexed fit mechanism. This

algorithm keeps track of which parts of arrays are in use and which parts are not.

In particular, each bit corresponds to a free block, array or other data structure

based on their mechanisms. However, a bitmapped fit scheme has rarely been used

because historically its searching time is normally slow; but now modern processors

support bit search instructions and searching now only takes few clocks cycles of the

processor.

An advantage of a bitmap structure is that it can be implemented by an ex-

tremely small amount memory, for example having one or two words in some cases.

If the implementation of an algorithm requires a large amount of memory then the

data structures have a greater probability of being interleaved across more than one

node in a ccNUMA architecture. Having a bit map per node is also able to improve

the locality of searching itself.

Half-fit [Ogasawara, 1995] and TLSF [Masmano et al., 2003] are examples of an

indexed fit with bitmapped fit schemes. They use bitmaps to record which areas are

free, and exploit bit search instructions. Another example of an indexed fit scheme

is Fast fit [Stephenson, 1983], which employs a Cartesian tree to sort on both size

and address.

34

2.3 Memory Management Algorithms

2.3.5 Hybrid Policies

As seen above, a single allocation algorithm seems to have several disadvantages,

so most modern memory allocation algorithms have combined several algorithms to

accelerate searching and insertion speed. Most representative algorithms used by

modern allocators are based on segregated fit, buddy systems, and sequential fit

algorithms. In the subsection, we will discuss some of the most widely used hybrid

allocation algorithms in general-purpose systems and real-time systems.

2.3.5.1 Doug Lea(DLmalloc)

The DLmalloc allocator, which was been designed and implemented by Doug Lea

[Lea, 1996], is the most popular allocators, and has been incorporated into many

memory management algorithms; [Gloger, 2006] [Douglas, 2011] [FSF, 2012a] [FSF,

2012b] are all variants of DLmalloc. In the later version of the allocator, the major

strategy and policy remain unchanged, despite it having changed the mechanism,

e.g. it employed bitmaps to search for available blocks instead of the iterative

searching used in the previous version. Currently, it employs a combination of

several mechanisms, depending on the requested size. It also implements the good-

fit policy with the segregated size-classes mechanism. DLmalloc is designed to use

two types of data structure, depending on the size of the memory blocks. Figure 2.3

(below) shows the DLmalloc structure.

For small-size block allocation, the allocator uses a large number of fixed-width

arrays called smallbins, which hold free blocks with sizes less than 256 bytes. Each

bin contains free blocks of all the same size, spaced 8 bytes apart. Assuming that the

given requested size of memory blocks is less than 256 bytes, the allocator searches

for available blocks in the bins using smallest-first, best-fit order.

If the given requested size of a memory block is greater than 256 bytes and

smaller than a threshold, which is usually 256K bytes, the allocator attempts to

find available blocks in an array called treebin, which consists of a trie [Fredkin,

1960], a particular data structure. Unlike smallbins, treebins store a range of bin

sizes with two bins per power of 2. As seen in figure 2.3, nodes are in the trie data

structure, with each node being a smallbin, containing all the blocks of that exact

35

Chapter 2: Dynamic Memory Managements

Figure 2.3: Structure of DLmalloc

size. For requests above the threshold, the allocator forwards the requests to the

underlying OS through the mmap() system call.

As discussed, the allocator can achieve a time complexity of O (1) for searching

for a small block with a size less than 256 bytes, but in treebins, it can be O (m), in

which m is the depth of the trie, in the worst-case.

2.3.5.2 Half-Fit

Half-fit has been proposed by [Ogasawara, 1995], which is known as the first allocator

to perform in constant execution time using the bitmapped fit mechanism for the

management of free blocks, although bitmapped fit has not been used for allocators

due to being too slow generally [Wilson et al., 1995b]. In Half-fit, bitmaps are used

to keep track of empty lists, and bitmap search instructions are used to find set bits

in the bitmaps. It can achieved a the time complexity of O (1) on most modern

processors.

Half-fit employs a single level of segregated lists in which free blocks of variable

size are linked. It takes free blocks of a given size from a free list in which blocks

always satisfy the request. Figure 2.4 (below) shows an example of the structure of

Half-fit. There are three blocks of sizes 156, 250, and 200 bytes in the order where

blocks belong to the range [25,26).

36

2.3 Memory Management Algorithms

Figure 2.4: Structure of Half-fit

It employs a particular allocation technique in order to avoid searching using

bitmaps because of its linear search time. Assume that the given size of a memory

request is r, and index i can be calculated by the following equation:

i =

 0 if r is 0

⌊log2(r − 1)⌋+ 1 otherwise
(2.3)

The index i indicates the free block lists whose sizes range from 2i to 2i+1 − 1.

The given sizes of allocation requests to the free lists i are always between 2i−1 + 1

and 2i; thus, the given allocation requests can be satisfied by any block on the list.

After calculating index i, a free block is taken from the free list indexed by i. If the

free list is empty, the next free list whose index is closest to i will be examined.

If the size of an allocated block is larger than the requested allocation size, a

free block in the free list of the size class is split into two blocks of sizes r and r′

before providing for allocation. After that, the remaining block r′ is inserted into

the corresponding free list.

For deallocation, freed blocks are immediately coalesced with adjacent blocks if

those blocks are also free. After a free block is merged, and the size of the block is

37

Chapter 2: Dynamic Memory Managements

r, the new block will be inserted into the head of the free list indexed by i. For the

computation of i. Half-fit uses the following equation:

i = ⌊log2 r⌋ (2.4)

Coalescing with adjacent free blocks can be achieved with a time complexity of

O (1) because adjacent memory blocks are doubly linked with each other.

Half-fit is acceptable for use in real-time systems considering just its time com-

plexity. In addition, it shows better performance than binary buddy algorithms,

which result in data cache misses and TLB entry misses as buddies are distanced

from each other when free blocks are large. Unlike the binary buddy algorithm, it

always merges adjacent free blocks.

As discussed above, Half-fit provides a very good worst-case response time, O (1),

but the algorithm is not ideal for real-time systems as it suffered from a considerable

theoretical internal fragmentation by incomplete memory use based on the splitting

policy [Ogasawara, 1995], as many requests of allocations are performed that are

not close to the power of two [Crespo et al., 2006].

2.3.5.3 TLSF

The Two-Level Segregated Fit (TLSF) allocator [Masmano et al., 2003] is an im-

provement over Half-fit [Ogasawara, 1995]. Employing two levels of segregated lists

distinguishes TLSF from Half-fit. TLSF is also an allocator designed for real-time

system. In TLSF, two levels of a segregated array of free lists are used, with each list

keeping free blocks within a size class so that it can reduce internal fragmentation

theoretically.

The first-level of array (FLI) divides free blocks in classes that are a power of

two apart, such as 2, 4, 8, 16, 32, and so on. The subsidiary second-level arrays

divides each first-level class linearly by a user configurable variable called SLI. TLSF

structures are shown in Figure 2.5.

The main objective of TLSF is to provide bounded response time in memory al-

location and deallocation, whatever the memory size is. In allocation, TLSF exploits

equations 2.5 [Masmano et al., 2008b], wherein the given size of a block calculates

38

2.3 Memory Management Algorithms

Figure 2.5: Structure of TLSF

the indexes of the two arrays that point to the corresponding segregated list.

i(f, s) =


f = ⌊log2 (r + 2⌊log2(r)⌋−SLI − 1)⌋

s = ⌊(r + 2⌊log2(r)⌋−SLI − 1− 2i)

(2f−SLI)
⌋

(2.5)

The first-level index (FLI) f can be calculated as the position of the last bit

set of the size, in which the bit sets to one. This index indicates memory blocks

corresponding to their size. Each FLI position points to a certain size class. For

instance, FLI7 points to size classes ranging from 128 bytes to 255 bytes; FLI8

indicates size classes ranging from 256 bytes to 511 bytes. The second-level index s

can be computed by the above equation. However, those equations can be efficiently

implemented using shift and bitmap search instructions, which are available on most

modern processors. Each position indicates a memory block within similar sizes.

Assume that the given size of a memory request is r, the index i(f, s), which is

used to take the head of the free list holding the closest class list, will be calculated

by the above equation 2.5. If the block is found at the free list indexed by i, only

39

Chapter 2: Dynamic Memory Managements

that block will be removed from the head of the free list and returned. If searching

the free block at i fails, the next free list whose index is closest to i will be examined.

After that, a free block in the closest free list of larger sizes will be split into two

blocks of sizes r and r′. The remaining block r′ is inserted into the corresponding

free list.

Corresponding with the deallocation case, freed blocks are immediately coalesced

with adjacent free blocks. If the adjacent blocks are free, the adjacent blocks will

be removed from the segregated list and merged with the current block. Finally,

the new block will be inserted into the head of the free list indexed by i. For the

computation of i, TLSF uses the following equations 2.6 [Masmano et al., 2008b]:

i(f, s) =


f = ⌊log2 r⌋

s = ⌊(r − 2f)

(2i−SLI)
⌋

(2.6)

As discussed above, TLSF uses the request size of the memory block to calculate

the appropriate position indexed by the FLI and SLI based on equations 2.5 and

2.6. As the result, operations can be achieved with a time complexity of O (1).

However, TLSF uses a single heap shared by all threads in a process, meaning

that it suffers from heap contention on multi-threaded environments and it is not

scalable. It originally only supported a fixed size of the memory pool, whose size

cannot be grown, in the initial implementation of TLSF.

The latest implementation of TLSF no longer has a constant execution time

allocator, despite the fact that its policy can still be achieved in the constant time.

This is because it has changed its algorithm. The latest version of TLSF [Masmano,

2012] can have multiple memory pools, and an additional memory pool will be

created when existing memory pools are full by automatics system calls of brk() or

mmap() in UNIX.

The problem occurs when the last used block at each memory pool needs to

be released and the allocator has used multiple memory pools. After freeing the

last used block, the memory pool which contains the last used block will be in a

completely unused/freed state, with TLSF attempting to merge adjacent memory

pools like deallocation of the memory block scheme. Under this policy, the time of

40

2.3 Memory Management Algorithms

the merging process is able to increase linearly, so if there are a number of freed

memory pools (as many as N), it loops N times to merge each other iteratively.

Therefore, the policy results in TLSF having a time complexity of O (n) [Masmano,

2012].

2.3.5.4 tcmalloc

tcmalloc [Sanjay Ghemawat, 2010] is one of the highly scalable allocators that com-

bines a global heap and per-thread heaps within a similar discipline that is used in

some modern allocators for multiprocessors. For small-size allocations ranging from

8 bytes to 32 kilobytes, tcmalloc assigns each thread a thread-local heap used by

the owner at allocation time, so memory allocations for small blocks do not require

thread synchronization. Sometimes, memory blocks are moved from a global heap

into the per-thread heap if this is needed, and periodic garbage collections are used

to migrate memory back from a per-thread heap into the global heap.

tcmalloc also employs a global heap that is shared by all threads for allocating

large memory blocks from over 32K bytes up to 1M bytes. The thread synchro-

nization, a spin-lock, is used to provide mutual exclusion. If applications request

allocation of a large block of memory over 1M bytes, tcmalloc passes the request to

the underlying OS using OS APIs. Figure 2.5 shows the tcmalloc structure.

Figure 2.6: Structure of tcmalloc

41

Chapter 2: Dynamic Memory Managements

Assume that the given request size of a memory block is smaller than 32K bytes,

the allocator just checks to see if it can satisfy the request from the per-thread heap.

If this fails, tcmalloc checks the global heap using a lock for synchronization. If the

free list is empty, the next free list will be examined, and so forth. If the global heap

has a free memory block of a sufficiently large size, it will be divided into smaller

blocks and one is served, with the remaining free memory block being inserted into

one of the free lists in the global heap.

In terms of the deallocation, a thread frees a small block, with the memory block

being inserted into the list in the per-thread heap within the corresponding size. If

the size of a free list exceeds a particular threshold (2MB by default), the allocator

transfers some of the free block back to the global heap.

In terms of the time complexity, each size of a small memory block in the per-

thread heap maps to one of 170 properly allocable size-classes, which are divided by

8 bytes, larger sizes by 16, even larger size by 32 bytes, and so on. Thus, all of the

request sizes are rounded up to the closest larger size. Each position in the global

heap corresponds with the number of pages of the memory block, which is rounded

up to an aligned size of 4K bytes. In figure 2.5, the index i from 0 to 254 is a free

list that consists of i pages. Note, tcmalloc uses the request size to calculate the

appropriate index in the per-thread heap or global heap, and this can be achieved

with the time complexity of O (1).

However, tcmalloc does not address false sharing, since two small objects assigned

to different threads can have close memory addresses [Ferreira et al., 2011], and

tcmalloc does not release the memory pool despite avoiding blow-up, which is one

of the most important issues with parallel allocators [Kaminski, 2009]; thus, it can

lead to unbounded memory consumption.

2.3.5.5 Hoard

The Hoard allocator [Berger et al., 2000] is designed to be fast and scalable in

multi-threaded applications running on multiprocessor environments. It is one of

the segregated size-class allocators, like other modern allocators: TLSF, tcmalloc

and DLmalloc. Hoard employs per-processor heaps and one global heap to avoid

42

2.3 Memory Management Algorithms

heap contention. Each thread has a private heap to keep memory blocks smaller

than 256 bytes, and can also access both its per-processor heap and the global heap.

Each per-processor heap can be shared by a group of threads. Figure 2.7 shows the

structure of Hoard.

Figure 2.7: Structure of Hoard

Assume that the given request size of a memory block is smaller than 256 bytes,

the allocator searches available blocks in its private heap per thread. Next, it will

search for available blocks in the per-processor heap. In a per-processor heap, the

allocator takes memory blocks from the system in chunks called superblocks, which is

an array of some groups of blocks that contains a free list. If the per-processor heap

is fully used, the allocator just uses the global heap, which is shared by all threads.

In this case, the thread locks the per-processor heap, and it will be released when

the allocator transfers a new superblock from the global heap to the per-processor

heap.

Hoard achieved an allocation with time complexity of O (n), where n is the

number of superblocks, because it needs to search sequentially for the superblock of

the thread. As discussed, there is the heap contention between threads on the shared

per-processor heap, even though Hoard employs two times as many per-processor

heaps as the number of processors in the system, and on the global heap as well.

Hoard also exploits a particular mapping function between threads and processors,

with thread being reassigned to other processors. It finally leads to more cache

misses and TLB misses occurring due to the disorder of node-based data locality.

43

Chapter 2: Dynamic Memory Managements

2.4 Summary

Dynamic storage allocation algorithms are essential for modern application. They

allow memory resources to be used more efficiently. Most modern general-purpose

operating systems provide the functionality of dynamic memory allocation, but these

features are not optimized, so they can introduce significant problems such as frag-

mentation or expensive cost of searching.

Many memory allocation algorithms have been proposed over the past fifty years.

Each algorithm is able to satisfy its defined objectives such as reducing fragmenta-

tions or providing a very low response time.

Allocation Deallocation Wasted memory ccNUMA support

Sequential Fit O (n) O (1) Acceptable No

Segregated Fit O (1) O (1) Unacceptable No

Buddy systems O (log2 n) O (k) Unacceptable No

DLmalloc O (m) O (1) acceptable No

tcmalloc O (1) O (1) Unacceptable Yes

Hoard O (n) O (1) acceptable No

Half-fit O (1) O (1) Unacceptable No

TLSF O (1) O (n) acceptable No

Table 2.1: Worst-case time complexity of algorithms

Table 2.1 shows the time complexity of the allocation and deallocation in the

worst-case of some the the main algorithms. In the Table, n is the size of the heap,

m is the depth of trie, and k is the depth of the buddies. In terms of real-time

systems, Segregated Fit, tcmalloc, and Half-fit are the only acceptable algorithms

that offer a constant execution time for both (allocation/deallocation) operations.

Also, buddy systems showing O (log2 n) are possibly usable for real-time systems ex-

cept they exhibit large fragmentation, while others are not acceptable for real-time

systems due to unbounded execution time. Also, all algorithms except tcmalloc do

not support ccNUMA architecture systems. Consequently, existing memory man-

agement algorithms mentioned above have not been considered acceptable for the

target systems of this thesis.

44

Chapter 3

nMART: A ccNUMA-aware

Dynamic Storage Allocation

Algorithm

In this chapter, we introduce a new ccNUMA-aware dynamic storage allocation al-

gorithm called nMART, which has been designed to support real-time systems on

ccNUMA architecture systems. Its overall objectives are to be predictable, have low

fragmentation, to have bounded response time with a node-based memory manage-

ment policy.

The chapter discusses how the algorithm can achieve these objectives. We start

by presenting the design principles on which nMART is based. Then, in Section 3.2,

we give a top-level view of our approach. A key observation of this thesis is that

current operating systems do not provide an accurate metric to measure distances

between nodes in a ccNUMA architecture. This can have a crucial impact on perfor-

mance. Consequently, in Section 3.3.3, we propose a new model and consider how

it can be supported inside an operating system kernel. This is followed, in Section

3.4, by detailed consideration of the user-level nMART management algorithms.

45

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

3.1 Design Principles

Our target architecture systems are high-performance real-time systems comprised

of multiprocessors and multicores. The requirements of real-time applications are

different from general-purpose applications. Real-time applications require deter-

ministic response time, while a low average response time is more important for

general-purpose applications. For this reason, make explicit a set of design criteria

for our algorithm. These are given below.

A more accurate measure of node distance Remote memory access through

an interconnect takes longer than the time of local memory access. For ex-

ample, the latencies of remote memory access appear to be two times larger

than latencies of local memory access in current implementations of ccNUMA

architecture systems [Majo and Gross, 2011]. Many researchers have pro-

posed various techniques to improve the application performance running on

ccNUMA architecture systems by increasing data locality with their own ap-

proaches [McCurdy and Vetter, 2010] [Marathe and Mueller, 2006] [Ogasawara,

2009] [Tikir and Hollingsworth, 2008]. Their papers require discovering the

underlying architecture design. Without such discovery, it is impossible to

improve the performance of many applications, including memory allocators.

Current operating systems generally measure ccNUMA node distance using

a very simple metric, which is insufficient to reflect accurately the resource

hierarchy. This degrades the performance of the current memory allocation

algorithms. Therefore, we propose a new model to measure real ccNUMA node

distances. Under the model, we evaluate all of the node distances between

nodes, re-establishing the node order of each node from the closest node to

the farthest node. This information can then be used at allocation time to

improve the performance. We will discuss these details in Section 3.3.1.

Multiple heaps Using a single global heap results in increasing lock contentions

on the heap, as threads sharing the heap must synchronize their access to

avoid heap corruption. Usually, a single global heap is protected by a single

global lock. The problem with a single global lock is that applications using

46

3.1 Design Principles

the lock have poor scalability and significantly higher access time waiting to

acquire the lock.

nMART employs private heaps with an ownership strategy to reduce heap

contentions. These private heaps are isolated from non-owner tasks for al-

locations, however, the algorithm allows threads to release a memory block

allocated from other threads’ private heaps. In this case, nMART employs

a deferred release policy. If a thread releases its own blocks, the given block

will be released and merged with its adjacent blocks immediately. Multiple

coalescing strategies, will be discussed in Section 3.4.4.

Multiple strategies for different sizes of blocks Many modern allocation al-

gorithms use different strategies for allocating blocks of different sizes, in or-

der to reduce fragmentation and improve space efficiency for small blocks. In

contrast, Half-fit and TLSF exploit only a single strategy for all block sizes.

The same strategy for all block sizes is easy to use and implement, with their

worst-case execution time also being easy to analyze. However, a single size

tends to cause significant wasted memory in small-size blocks of less than 512

bytes because they round the requested size up to the closest size in the segre-

gated size classes. This is illustrated in Figure 3.1. If an application requests

allocating 68 bytes of a memory block, TLSF rounds the requested size up to

80 bytes. Even if the application only uses 68 bytes, the allocator provides

80 bytes so that it has caused internal fragmentation of as much as 12 bytes.

The figure shows the percentage of internal fragmentation calculated using

equation 2.1.

For the above reason, nMART employs three different allocation strategies,

depending on the size of the request. In particular, the exact fits strategy is

used for a size of request less than 512 bytes, with two level segregated lists

being employed for normal sizes of blocks less than a threshold (2M bytes by

default), and for request exceeding the threshold, nMART passes the request

to the underlying operating system via the mmap() system call.

Tracking memory block profile Most modern operating systems employ virtual

47

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

Figure 3.1: The wasted memory of TLSF in small sizes of blocks

memory management which maps virtual to physical memory. The OS pro-

vides virtual memory regions when applications request memory, but this vir-

tual memory is not mapped to the physical memory immediately for perfor-

mance reason. When the application first accesses the memory, the OS maps

virtual memory regions to the physical memory regions through the policy

called first touch. With this policy, the memory allocation is able to allocate

the physical memory from the local ccNUMA node.

However, this is still insufficient to ensure minimizing remote memory accesses.

For instance, assume that thread T1 executing on node N1 has allocated some

memory M1 and later releases M1, and then thread T2 executing on node N2

requests some memory. In this case, general memory allocators typically reuse

M1 to speed up allocation. Unfortunately, M1 has already been mapped to

the physical memory of N1. Now the reused M1 is physically remote memory

to T2.

To maximize node data locality, nMART keeps track of which ccNUMA node

each memory block belongs, with this information being stored in the header of

the memory block. Based on this information, the allocator is able to allocate

memory blocks from the local node as often as possible.

48

3.1 Design Principles

Search strategies As mentioned above, we employ multiple strategies for different

sizes of blocks. nMART attempts to allocate as small a block as possible,

which is still large enough to satisfy the request. In terms of small block

allocations, the strategies are based on the best-fit policy implemented by

exact-fit mechanisms. This approach tends to reduce the fragmentation in

small sizes of blocks caused by rounding up the request size [Johnstone and

Wilson, 1998].

For larger blocks, nMART employs the good-fit policy implemented by seg-

regated lists, which use an array of free lists. Each array holds unsorted free

blocks within a size class. In this case, the good-fit mechanism is used to de-

termine a particular free list, the allocator attempts to find a free block of the

given size in the determined list, and then extracts the first free block by the

first-fit mechanisms (if it is available).

Coalescing strategies nMART attempts to coalesce adjacent free blocks to cre-

ate a larger free block immediately when a target block is freed, even though

general-purpose memory allocators tend to use the deferred coalescing tech-

niques, or even not coalesce at all, in order to improve the overall perfor-

mance. As discussed in Section 2.1.2, deferred coalescing is a useful strategy

for systems where applications reuse short-lived memory blocks of the same

size repeatedly because it is able to reduce overheads of repeatedly splitting

and coalescing the same block. However, it tends to make it difficult to fully

analyse the worst-case execution time of the memory allocation algorithms.

Use of the virtual memory Most modern operating systems support virtual mem-

ory managements. These techniques are able to use the physical memory more

efficiently, and allow applications to execute, which are larger than the size of

physical memory. Moreover, these management techniques have achieved high

access rates and low cost, thereby supporting a memory hierarchy. However,

it is extremely difficult to analyse the worst-case execution time of memory

allocation algorithms going through virtual memory management due to the

non-deterministic execution time of demand paging, so the use of virtual mem-

49

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

ory management in real-time systems is usually avoided. However, the trend

towards high-end embedded systems offers virtual memory management due

to their significant advantages.

With the trends, some researchers attempt to achieve predictable virtual mem-

ory management for real-time systems. [Zhou and Petrov, 2011] have proposed

a new page table organisation for real-time systems, which requires less mem-

ory, and has a fast deterministic page table traversal based on hardware. [Puaut

and Hardy, 2007] have also proposed a predictable paging mechanism achieved

at compile-time.

However, these approaches are limited and cannot be applied in ccNUMA

architecture systems because they are only appropriate for small embedded

systems or a single task. To the best of our knowledge, there is no acceptable

real-time virtual memory management for ccNUMA systems.

nMART cannot be directly involved in virtual memory management, as it is

a user-level memory allocator. For this reason, we will not discuss virtual

memory management techniques further in this thesis. This is an area for

future work. In order to minimize the effect of virtual memory management,

we disable swapping, thereby, locking memory in core. Furthermore, we have

assumed that the target systems have a huge amount of available physical

memory, and the virtual memory is also supported by the memory manage-

ment unit (MMU). Therefore, the allocator is able to call sbrk() / brk() /

mmap() system calls to make a request for additional memory when the ini-

tial memory pool is exhausted.

In summary, nMART is designed to meet the requirements of real-time appli-

cations. It employs a segregated list policy with three bitmaps based on a best-fit

policy for small memory blocks as well as good-fit and first-fit policies for normal

blocks, which can achieve a constant execution time. It can reduce the wasted mem-

ory and avoids exhaustive search in the lists with these policies. Also, establishing

accurate node distances can make it access either the closest node or the closer nodes

as often as possible.

50

3.2 An Overview of nMART

3.2 An Overview of nMART

In order to achieve the objectives discussed above, nMART is comprised of three

levels as shown in figure 3.2. Each layer is designed to accomplish the specific ob-

jectives we have discussed in Section 3.1. The figure shows the three layers stacked,

with the upper two layers executed in the user-level space, and the bottom one in

the kernel space.

Figure 3.2: The structure of nMART

We have already mentioned that a key observation of this thesis is that current

operating systems do not provide an accurate metric to measure distances between

nodes in a ccNUMA architecture. Although nMART is primarily a user-level mem-

ory management algorithm, it is necessary to make requirements on the underlying

operating system. Hence, the bottom layer considers this aspect. We discuss this

layer in section 3.3. Following this we focus on the main user-level algorithms of

nMART.

51

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

3.3 Kernel-level Node-based Memory Management

In this section we discuss the importance of discovering the underlying architecture

and its impact on kernel-level memory management.

3.3.1 Discovery of the Underlying System Architecture

ccNUMA architecture systems have been designed to not be limited by a single

shared system’s resource such as the traditional system bus or centralized shared

memory. These systems are comprised of multiple processors and a huge amount

of memory. They are able to make application programming easier than other

scalable multiprocessors because they support a global shared address space, and

are globally cache-coherent. Moreover, the applications for SMP systems are able

to be executed on such systems without any changes. However, such advantages do

not come without cost. Due to distributed nature of the system, resource accesses

are routed through the interconnection. The performance of memory operations

depends on the memory location requested and its relationship with the requesting

processor. Hence, the interconnect can become a new performance bottleneck; thus,

recognizing and discovering the characteristics of the system resources as well as their

hierarchy are two of the most important factors to optimize the system performance.

Rearrange system resources

Many well-known modern operating systems have supported ccNUMA architec-

tures. These ccNUMA-aware operating systems have attempted to find an opti-

mal node to allocate memory in order to reduce memory access latency and the

bandwidth consumption of the interconnection. Usually, OSs have divided system

resources, such as processors, and physical memory into a few logical abstractions

based on nodes. This is because a set of processors comprising a ccNUMA sys-

tem can consist of a node without their own local memory (called a ‘hole’), and

many hardware vendors also tend to partition the physical address space in order

to simplify their hardware designs, and for specific purposes (such as video display

buffers where, for instance, the physical address space on x86 architecture systems

52

3.3 Kernel-level Node-based Memory Management

from 0x000A’0000 through 0x000F’FFFF is reserved by the hardware). This means

that the physical addresses exist on the system, but the associated page frames can

never be assigned dynamically by the operating system [Daniel P. Bovet, 2005]. This

would cause much memory to be wasted if the physical address space were to be

represented as a linear array. This is the reason why operating systems re-arrange

their system resources. For example, any processor in a node without its own mem-

ory will be re-assigned to another node which has its own memory; thus, it cannot

guarantee that it will show equal access time to local memory for all processors in

the associated node. This is an important factor that degrades the system perfor-

mance; however, this thesis contends that most operating systems do not measure

this real node distance.

Abstraction of system resources

Modern operating systems attempt to hide the complex hardware designs of

the underlying architecture, and provide the appropriate abstract information to

applications. A problem with the abstraction layers is that they do not provide

enough information to develop predictable systems. Furthermore, processor makers

have been separated from the mainboard makers in the market, so many mainboard

makers cannot specify which type of processor is used in their boards for users’

systems, except for a few huge vendors such as IBM, HP and SUN microsystems.

Both the design of a processor and the design of a mainboard are the most important

factors affecting the configuration of the topology of ccNUMA architectures; but the

separation does not allow the appropriate information on how the underlying system

has been designed to be determined.

Methods to recognise the system topology

In order to provide some interfaces to discover the underlying systems’ archi-

tecture, Hewlett-Packard, Intel, Microsoft, Phoenix and Toshiba developed an open

industry specification called ACPI (Advanced Configuration and Power Interface)

1.0 in 1996 (currently 5.0, since 2011), which establishes industry-common inter-

faces. The ACPI specification is to enable robust operating system-directed moth-

53

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

erboard device configuration and power management of both devices and entire

systems [Hewlett-Packard Corporation et al., 2011].

The ACPI specification defines optional tables, which are a collection of interfaces

that allow the platform to recognise associated processors and memory ranges with

system localities and proximity domains. On ccNUMA platforms, the OS configure

the information of the underlying systems using a System Resource Affinity Table

(SRAT) during the OS initialization.

The processor’s local APIC/SAPIC affinity structure in the SRAT provides the

association between a processor and the proximity domain to which the processor

belongs. And the memory affinity structure in the SRAT provides topology informa-

tion such as the association between a range of memory and the proximity domain

to which it belongs.

Going through such tables, OSs are able to configure their system to associate a

processor and a range of memory to which it belongs using an unique integer value

given to each proximity domain. After acquiring this information, the OS parses

another table called the System Locality Distance Information Table (SLIT). The

SLIT provides the relative distance information between all proximity domains. In

particular, each value of element (i, j) in the table indicates the distance from a

certain ccNUMA node (i) to every other node (j) in the underlying system so that

the distance exists as much as i ∗N + j is identical to equation 3.3, where N is the

number of ccNUMA nodes. As each element value is normalized to be relative to 10,

every element must have at least 10 or more because the distance values of 0 to 9

have no meaning as well as being reserved. Each diagonal element of the array has a

value of 10, which means the relative distances from a node to itself. For many cases

the SLIT is automatically set by the distance value of the local node as 10, and the

value of remote nodes as 20. Table 3.1 shows the default SLIT information of our

experimental machine describing figure 4.1, where the cost is 10 to local nodes or,

otherwise, 20 to remote nodes.

This approach simplifies the underlying systems’ architecture, and is able to

provide the hardware abstraction, particularly, the type of processors, the number

of processors and cores, and the number of nodes. Unfortunately, the approach can

54

3.3 Kernel-level Node-based Memory Management

degrade the systems’ performance since it never specifies the cost of remote memory

accesses accurately, even if they require a different number of hops, which indicates

access distances on ccNUMA systems. Assuming that a thread accesses memory

belonging to the same node as that on which it is running, it is a 0 -hop access or

local access. Otherwise, it is represented as n-hops based on the number of access

distances.

node 0 node 1 node 2 node 3

node 0 10 20 20 20

node 1 20 10 20 20

node 2 20 20 10 20

node 3 20 20 20 10

Table 3.1: SLIT of the experimental machine

Our main experimental machine, as seen in figure 4.1, is comprised of four nodes.

Node 0 has been connected to nodes 1 and 2, and node 3 has been connected to

nodes 1 and 2. For economical reasons, node 0 and node 3 have not been connected

to each other directly, which means that the two directions from node 0 to node 3

require going through another node: node 1 or node 2. As well as node 0 and node 3,

the relationship between node 1 and node 2 requires going through other nodes. In

these cases the values of two directions should be greater than the other directions

which do not require going through another node, but table 3.1 just shows the value

of 20 without considering the number of hops. This is done because these table

are only able to provide limited information to discover the underlying architecture

design due to the separation between processor and mainboard makers.

The use of application-level frameworks or file systems supported by the OS are

alternative approaches to describing the system resources. The framework called

hwloc [Broquedis et al., 2010] is able to obtain detailed knowledge of the system

topology, including the number of processors, cores, shared caches, sockets, ccNUMA

nodes, a range of memory, etc. The filesystem sysfs [Mochel, 2005] can also be

another candidate to allow users to obtain the system topology. The virtual file

system consists of a directory-based hierarchy, and its structure is based on the

55

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

kernel data structures. The files in the directories include the information exported

by the kernel, so it is easy to access and is accurate. Another application-level library

called libnuma [Kleen, 2005] allows ccNUMA memory policies to be added into user

applications, and the numactl command allows users to control a program, where it

can run on specific cores and memory nodes. Other current operating systems (e.g.

Windows, Solaris and AIX) support similar APIs.

Unfortunately, these approaches are not efficient enough to recognise the real

node distance. This is because such libraries and the filesystem rely on the informa-

tion exported by the kernel. However, the Linux kernel obtains the system topology

on boot-up by parsing ACPI tables. hwloc is only based on the file system on Linux,

with the file system depending on the ACPI information. Since the information has

been built from the ACPI tables, a modern operating system cannot fully optimize

their support. Even if the speed is not the most important factor for the real-time

system, the performance of their current implementation can be very slow. This

is because these have required reading and parsing text files in the sysfs filesystem

(/sys/devices/...).

3.3.2 Memory management and the ACPI Tables

It is instructive to discuss how the current Linux kernel builds and uses the node dis-

tance table in order to understand how Linux exploits the information from ACPI ta-

bles and how our approach will be approximated in Linux. In general, the Linux ker-

nel divides physical memory into four memory regions, which are managed indepen-

dently. These regions are called ZONE DMA, ZONE DMA32, ZONE NORMAL,

and ZONE HIGHMEM. This is done to facilitate efficient physical memory man-

agement, as it can treat a “hole” in the address space of the physical memory in the

system.

Some old devices should use under 16M bytes of physical memory for data trans-

fer. On x64, in order to maintain these ranges, the kernel defines the physical ad-

dress space up to 16M bytes as ZONE DMA. Similarly, ZONE DMA32 ranges from

16M bytes through 4G bytes in physical address space, and ZONE NORMAL is

for ranges of over 4G bytes. Using this approach, each individual node is able to

56

3.3 Kernel-level Node-based Memory Management

consist of four zones in its physical address space, but the ZONE HIGHMEM 1

zone of x64 architectures is usually always empty, with the available linear address

space always being much larger than the amount of physical memory. Figure 3.3

diagrammatically illustrates this memory structure.

Figure 3.3: The relationship between nodes, zones and pages on x64 architecture

system

As illustrated in figure 3.3, the Linux kernel separates the physical memory of

a ccNUMA architecture into various address ranges of physical memory according

to which each individual node belongs. For this, it uses a data structure called pg-

dat list. There exists one pgdat list for each node in the system. This data structure

stores the information associated with each individual node. Each individual pg-

dat list points at node zonelist arrays that store entries available for every possible

zone type which can be chosen for allocation later. The entry specifies the zones

to visit when a given zone cannot satisfy the allocation request because it does not

have sufficient free memory.

In this situation, the kernel attempts to allocate memory from the next node

in the entry list, which has been established based on the node distance table.

Unfortunately, since the table has not considered the real node distance, the process

of finding the next node in the entry list can cause a performance degradation of

memory allocation operations.

1On x86, this zone contains high memory, which is not permanently mapped into the kernel

address space. This zone is all memory above the physical 896M bytes.

57

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

Furthermore, the Linux kernel attempts to balance presented zones in the sys-

tem when an application requests allocating memory, meaning that the kernel tries

to avoid making a hot-spot by zone-balancing. Therefore, the kernel theoretically

can simultaneously take page frames from different memory regions. Although the

approach is a good solution to balance use of the zones, it may lead to accessing

more remote node memory. For instance, after the running application on node

1 consumes all of the local memory, the next entry node is node 2, from which

page frames come. However, if the relationship between node 1 and node 2 shows a

worst-case node distance, this significantly degrades the system performance. This

is illustrated in Appendix B.2. Also, we discuss how the Linux kernel initializes the

zone list and the node distance table at boot time in Appendix B.

3.3.3 A More Accurate Model of Node Distance

As discussed above, when an operating system boots up, it invokes some functions to

obtain the information of all node distances. Firstly, it builds a node distance table

by collecting information from the ACPI tables in the system BIOS. After that,

the OS can choose to optimize its behaviour based on such tables, which means

that it can decide to execute some threads on a specific processor in a node, and

allocate memory for such threads from the memory inside the node. In practice,

many operating systems use demand paging where pages should only be brought

into physical memory when they are accessed. In demand paging, a ccNUMA-aware

operating systems should consider the node distance, processor affinity, and memory

affinity when mapping virtual memory into physical memory. Unfortunately, there

is no accurate model to use to evaluate node distances.

We have seen in section 3.3.1 that node distance is a key factor that affects where

an operating system places allocated memory, and that the metric used is rather

simple. Here we analyze in more detail the factors that affect the cost of remote

memory access in order to derive a new metric for the distance between the nodes.

The time taken to access a remote node’s memory is affected by the following

factors:

The number of hops : The number of hops between the requesting node and the

58

3.3 Kernel-level Node-based Memory Management

target node is one of the important aspects affecting the system performance

and is one that has been discussed in Section 3.3.1.

The traffic on the interconnection : The traffic on the interconnection is also

a crucial factor affecting the performance of the system. It depends on the

number of nodes, as well as the number of processors or cores belonging to

a node. Moreover, the higher the system’s load, the greater the amount of

traffic required to maintain the cache coherence between the nodes. For ex-

ample, in [Hewlett-Packard Corporation, 2012], in an 8-socket system, the

snoop protocol consumed 50 to 65% of the interconnection bandwidth based

on an internal experiment.

The speed of the interconnection : Many hardware vendors have attempted

to reduce the NUMA ratio by increasing the interconnection speed. This is

because if the system uses a faster link, it can process much more data. This

has the effect of reducing the amount of traffic on the link indirectly.

The congestion on the interconnection : The congestion on the link depends

on the system load, the number of nodes, and the link speed. A high system

load, many nodes, and a slow link will increase the potential for congestion.

A more accurate model of the current distance between two nodes can be de-

scribed by graph theory. The notation Pk(V) stands for the set of all k -element

subsets of the set V . A node distance D is a pair D = (V ,E) where :

• V is a finite set called vertices of D

• E is a subset of P2 (V) called the edges of D

In our example of Figure 4.1, a node distance from node 0 (N0) to node 3

(N3) is represented clearly by DN0,N3. The set of V is represented as VN0,N3 =

{N0, N1, N2, N3}, which are incident nodes between the start node (N0) and the

destination node (N3). The set EN0,N3 is also represented, which are paths between

the start node and the destination node, as follows:

59

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

EN0,N3 =
{{

(N0, N1), (N1, N3)
}
|
{
(N0, N2), (N2, N3)

}}
As E is a subset of P2 (V), each element of the set of E can be given a subset

recursively. For instance, the first element {(N0, N1)} can be given as EN0,N1.

Given the above factors, an adjacent node distance, e.g. EN0,N1, can be given by

the following equation:

adjacent node distance (Di ,j) =
Ti,j + Ci,j

Si,j

In this equation a node distance is represented by D , i represents the start node,

and j means the destination node. They should be adjacent nodes. T represents

the traffic on the interconnection, S means the speed of the interconnection, and

C represents the congestion on the interconnection. Therefore, the node distance

DN0,N3 can be calculated as follows:

DN0 ,N3 =
{{

DN0 ,N1 + DN1 ,N3

}
|
{
DN0 ,N2 + DN2 ,N3

}}
This means that the more the speed of the interconnection increases, the more

the value of the node distance decreases; and the more the amount of traffic on

the link or congestion increases, the more the value of the node distance increases.

In this case, the traffic or congestion is able to be changed dynamically based on

the system circumstance. Moreover, it is impossible to measure or change these

values for an application without any support by some APIs or instructions from

the underlying OS and processors. The interconnection speed is the only changeable

value that we can modify statically through the BIOS setting.

Currently, most operating systems that consider themselves to be NUMA-aware

do not consider all the significant factors mentioned above. Indeed, dynamically

monitoring the state of the interconnections would impose an intolerable overhead.

However, we will show that the current simplistic measure is also not satisfactory

and that a compromise needs to be found.

In order to apply our model to the kernel directly, we can choose one approach

among three options as follows. First, is to measures the cost, which is the elapsed

time to complete some operations (read and write) instantly for each time, and builds

60

3.3 Kernel-level Node-based Memory Management

a node distance table inside the kernel to be accessed each time it is needed. It has

a big advantage of instantly and dynamically applying the system circumstance to

choose the optimal node to allocate; however, complexity arises, and it suffers from

a big overhead.

The second approach is at system boot time, the kernel computes the node

distance information and the cost using the same method of the first approach, and

builds the table dynamically. It has less of an overhead than the first approach, but

it is difficult to implement because building the information arises in the initial step

of the kernel boot, so we cannot use the essential functions to compute the distance,

such as kmalloc(). In addition, if we re-order the zonelist after boot, we should use

the global lock, but we cannot guarantee the lack of any side effects.

The last approach is before the kernel compiles; it builds the table using in-

formation obtained using the same method of the first approach, and applies the

table at the kernel compile time statically. A disadvantage of this approach is that

cannot apply the system circumstance instantly to system runtime, but it is easy to

implement and apply, and is able to provide system performance improvement as

well. Eventually, we have chosen a third approach to reduce the system overhead

and maximize the impact of our model. In our approach the information will be

sorted in an order based on the table after invoking the build zonelists() function.

Figure 3.4: The default zones lists for our experimental hardware

As a result, this algorithm, which avoids choosing the worst case node for memory

allocation, sorts the memory regions under the model. The default ordering in Figure

61

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

3.4 is changed to the new ordering in Figure 3.5.

For instance, if an application running on node 2 requests allocating memory,

after it consumes all of the local memory with the original node order, it consumes

physical memory from node 3. While under the new model, it consumes node 0’s

memory instead of node 3’s memory by default.

Figure 3.5: The sorted zone lists for our experimental hardware

3.3.4 Required Kernel Modification

Inevitably the modification required to the underlying operating system will be

kernel and architecture specific. We summarise how this can be achieved for the

Linux kernel and our example architecture and give further information in Appendix

D.

Generating the node distance table

We will consider how our model can be approximated in the implementation of

Linux. In order to implement the model, we proceed in three steps. Firstly, we

have created the new node distance table based on measured node access times, as

discussed in Appendix B.2, and then created a header file which stores the node

distance. This will be used at compile time of the kernel. Next, we patch the

Linux kernel to use the new node distance table, and re-compile the kernel source.

62

3.3 Kernel-level Node-based Memory Management

Lastly, we evaluate our modified kernel based on our model using an application in

Appendix B.3.

The previous application in Appendix B.2 to measure the real node distance in

the system independently generates a sequence of 100 results measured per node,

which are formatted with the following: current time, processor ID, and the time

spent by the system executing the task.

In a header generating application, it has attempted to read the output files,

compute the average execution time, normalize the average execution time to be

relative to the average execution time of the local access, and then save the normal-

ized values for all nodes to a header file to be used at compile time of the kernel.

Details of the implementation of the application have been provided in Appendix

D.1.2

The output header file named numa distance table.h is formatted by a single

two-dimensional array as the following header file represents the real node distance

of our main experimental machine described in figure 4.1.

Source 1 numa distance table.h
1 #ifndef __X86_MM_NUMA_DISTANCE_TABLE_H

2 #define __X86_MM_NUMA_DISTANCE_TABLE_H

3

4 #define __NUMA_DISTANCE_TABLE_ROWS__ 4

5 #define __NUMA_DISTANCE_TABLE_COLS__ 4

6

7 u16 __numa_distance_table[4][4]={

8 {10,13,12,14},

9 {13,10,14,12},

10 {12,14,10,13},

11 {14,12,13,10}

12 };

13 #endif //__X86_MM_NUMA_DISTANCE_TABLE_H

Modifying the kernel source

As is discussed in Appendix B, the numa distance array is the most important factor

to represent the real node distance, which means that we are able to achieve the

objective of the third layer, wherein the page frames are placed from the closest

node or the next closest node, by modifying the array simply.

The acpi numa slit init() function attempts to build the table on system boot-

up, but the actual work is delegated to the numa set distance() function. We

63

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

have modified the kernel to replace the original values from the ACPI tables to

the generated values in the output header file. Moreover, at lines 459-462, the

node distance() function originally accesses the node distance array, but we have

removed its original codes completely and added line 461 to access the generated

table directly instead of the original table. Details of the implementation of the

numa set distance() function have been provided in the below source code.

Source 2 arch/x86/mm/numa.c

22 #include "numa_distance_table.h"

37 EXPORT_SYMBOL(numa_distance_cnt);

38 EXPORT_SYMBOL(numa_distance);

437 void __init numa_set_distance(int from, int to, int distance)

438 {

439 ...

455 numa_distance[from * numa_distance_cnt + to] =

456 __numa_distance_table[from * numa_distance_cnt + to];

457 }

458

459 int __node_distance(int from, int to)

460 {

461 return __numa_distance_table[from][to];

462 }

At lines 37-38, in order to verify the re-ordering fallback lists in terms of a

kernel module, we have exported kernel symbols to be accessed by the module

dynamically. At line 455, element values in the numa distance array have been

set by the generated values in the numa distance table array. In the process the

original value of SLIT, the function parameter distance, is unused.

After all modification of the kernel, we have re-compiled the kernel. Before

compiling, the output header file numa distance table.h is placed in the directory

arch/x86/mm.

3.4 User-Level Memory Management Algorithms

and their Implementation

nMART combines the segregated fit with bitmap allocation strategies. It uses node

locality to accelerate its memory operations. In searching for free blocks in the

64

3.4 User-Level Memory Management Algorithms and their Implementation

list, it employs the good-fit and first-fit policies to avoid performing an exhaustive

search. Also, these policies are able to achieve a constant execution time for memory

operations (allocation/deallocation). In this section, we will describe the algorithms

and their implementation in detail. Figure 3.2 illustrated the basic structure of the

user-level algorithms.

3.4.1 Overview of Levels 1 and 2

nMART employs the exact-fit mechanism to improve efficiency of small block allo-

cations and to reduce internal fragmentation. It also uses the segregated-fit mecha-

nisms to implement a good-fit and a first-fit policy to find the closest segregated size

class, thereby avoiding the need to perform an exhaustive search. The implemen-

tation uses two types of bitmaps to maintain free blocks. Also, the segregated list

with bitmap policies makes the algorithm predictable as they can be implemented

in a bounded execution time.

One of the bitmaps is used for the maintenance of small blocks, and is imple-

mented as a two-dimensional array to hold free blocks corresponding with their sizes.

For efficient management, the block size is spaced 4 bytes apart to 512 bytes. To

indicate whether a corresponding size of a block is free, 64-bits in two bitmaps and

a pointer array holding free blocks have been employed, as shown in figure 3.6.

The second type of bitmap consists of a two-dimensional bitmap array pointing

to free blocks. The first-level bitmap, indexed by i, indicates free blocks of sizes in

ranges from 2i to 2i+1 − 1, and the second-level bitmap, indexed by j, divides the

size range of each first-level in a number of ranges of an equal width linearly. For

convenience the number of ranges in the second level is represented as the exponent

of two: 2r (r is 6 by default). The parameter r divides the first-level ranges in a

number of ranges linearly. For instance, if r is 6, there are 64 segregated lists within

the given size ranges indexed by i ; and if r is 1, the algorithm manages free blocks

as efficiently as the binary buddy algorithm.

Defining r is important to specify the behaviour of the allocator. This is because

there is a trade-off for deciding the minimum block size. If r is larger, it leads to

consuming more memory space for the information of bookkeeping such as additional

65

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

bits, and pointers. However, a too small a value for size incurs increasing the amount

of internal fragmentation significantly.

Consequently, index i refers to the available maximum size of a block: 2i+1 − 1,

and the number of ranges (2r) sets the total number of segregated lists within the

given sizes. Moreover, a particular segregated list can be indexed by index I(i, j),

and the value of index I indicates whether the list (i, j) contains any free blocks or

not. Thus, all bitmaps do not contain free blocks, but they indicate the potential

existence of a certain size of block. All pointers to free blocks are stored in a two-

dimensional pointer array called MATRIX.

As we set the value of r to 6 by default, each element of the array refers to a list

containing free blocks of sizes in a range from 2i+2(i−6)×j to 2i + 2(i−6)×(j+1)−1.

In terms of implementation, the algorithm uses two-dimensional bitmap arrays,

which requires a 64-bit variable for the first-level bitmap and 64 x 64 bit variables

for the second-level bitmaps, so it requires a total of 66 variables of 64-bit to indicate

the free block lists.

First Layer

The first layer is designed to achieve a constant execution time for both allocation

and deallocation memory operations. Each segregated lists holds certain size of free

memory blocks, and the algorithm can take a freed block using an index calculated

by equation 3.2. The layer is implemented using bitmaps and single linked lists for

small sizes of blocks, and also it is implemented using a bitmap, arrays of pointers to

free blocks and doubly linked lists for ordinary sizes of blocks. Sharing a single global

heap among multiple threads tends to increase the probability of lock contentions.

In order to reduce this, each thread of the application creates a per-thread heap.

The first layer describes the private heap per thread. The private heap is only used

by the owner thread at allocation time so that the owner thread is able to access it

without any lock contentions. While at de-allocation time, all threads can request

releasing memory blocks in use from the other threads’ heaps.

When a thread is created by calling the pthread create() function in the POSIX

library, an amount of memory space will be assigned as an initial private heap to

66

3.4 User-Level Memory Management Algorithms and their Implementation

Figure 3.6: The thread-based private heap on the first layer

67

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

the creating thread, with a part of that space being reserved for the purpose of

book keeping. In order to implement this, we have overloaded the pthread create()

function using a direct mechanism for loading C libraries at runtime called dl func-

tions, such as dlopen(), dlsym(), dlerror() and dlclose(). In the overloaded function,

a thread-specific data key, visible to all threads in the process, is created. This

key will be used for mapping per-thread data structures, named thread control block

(TCB; different from the operating systems’ one) and defined as tcb t, which stores

the two-level bitmaps with pointers to free block lists, a pointer to an arena (a

memory pool) and the owner thread ID.

Second Layer

The second layer aims to achieve real-time predictable performance. It allows

the allocator to get free arenas from the layer instead of making system calls such

as mmap(). It provides free arenas to the first layer based on node locality. Free

arenas can be taken by index using the same approach of the first layer (segregated

lists with bitmaps). The layer is implemented using a bitmap, an array of pointers

and single linked lists.

In contrast to the first layer, there are multiple separated free arena lists for each

ccNUMA node, as illustrated in Figure 3.7. nMART employs as many free lists as

the number of ccNUMA nodes in the system. At start-up time of the application,

this layer is completely empty, and then will be filled gradually. When the private

heap in the first layer has insufficient space to satisfy an application request, the

thread requests some arenas to be added to its per-thread heap so that the heap

can be comprised of multiple arenas. If an arena is completely empty (no memory

block is in use in the arena), it will be moved into the second layer from the first

layer. Extending the private heap can be processed efficiently because moving an

arena is achieved by pointer operations.

Each free arena list is associated with an individual ccNUMA node and is able

to be shared by a group of threads running on that node.

68

3.4 User-Level Memory Management Algorithms and their Implementation

Figure 3.7: The node-based free arena management on the second layer

Third Layer

Going through the first and second layer, nMART is able to reduce lock con-

tentions and consider node locality. In order to maximize node locality, the third

layer considers the actual node distance (as described in Section 3.3).

3.4.2 Configuration parameters

The behaviour and structure of the nMART algorithm depend on some user-config-

urable parameters, as follows. These parameters can be modified in the source code

of nMART.

Minimum block size The minimum block size can lead to significant internal frag-

mentation when applications request many memory blocks that are smaller

than the minimum size. Assume that the minimum block size is 32 bytes and

an application requests a 16 byte memory block. Then this can result in as

much as 16 wasted bytes per memory allocation.

On the other hand, too small a minimum block size will consume more space

for the headers. For instance, if the header size is 32 bytes, and the size of

block data is 16 bytes, the bookkeeping information is then bigger than real

data of a block. For this reason, we have defined the minimum block size as

69

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

4 bytes, with it being spaced 4 bytes apart to 512 bytes by the small block

management policy.

Maximum block size Most modern processors belonging to ccNUMA architec-

ture systems have 64 bits addressing. For efficiency reason, the size of bitmap

used indicating free block existence is one word. Meaning that the size of the

bitmap is 64 bits because one word size on the underlying machines is 64 bits.

In practice, the C language header file <bits/wordsize.h> in Linux with glibc

defines one word size (WORDSIZE) 64.

Moreover, the first level, index i, defines the number of rows in the MATRIX

array so that the allocator is theoretically able to provide a free block of 264

bytes. However, applications are very unlikely to request such large blocks in

practice. For this reason, we have limited the manageable maximum size of

free blocks to 231 − 1 bytes so that the value of index i can be up to 31.

3.4.3 Data structures

The data structures used by nMART are described in this section. Typically, the

headers contain the essential information needed to manage the block. The headers

can be mainly categorised into three distinctive types, as follows: one is used for

the private heap, called arena, and others are used for normal memory blocks. Note

that all free blocks, satisfying an allocation request, are served in a LIFO (last in,

first out) policy.

nMART control block

Some of the information regarding the underlying system is essential in order

to execute the memory allocator. As seen in figure 3.8, the nMART control block

contains the following information: the total heap size allocated by nMART, the

number of processors, the number of ccNUMA nodes, the processor masks, and the

pointer of the arena lists.

The processor masks store the information of the node IDs to which the pro-

cessors belong. The ArenaList is shown in figure 3.9. This data structure contains

70

3.4 User-Level Memory Management Algorithms and their Implementation

Figure 3.8: The structure of an nMART control block

the head pointer of the arena list and a counter variable. There is an arena list

for each ccNUMA node in the underlying system, and the data structure resides in

the second layer of the allocator. As we mentioned above, the second-level layer

in the allocator manages the number of free arena lists. These free arena lists are

separately maintained by each node in order to reduce lock contentions.

Figure 3.9: The header of an arena list

The thread control block

A thread control block (TCB) is assigned to each thread automatically when

the thread is created. As seen in figure 3.10, the following information is stored in

the TCB: the first-level bitmap, the second-level bitmap array, a two-dimensional

pointer array called MATRIX, a pointer to the arenas, a pointer to the free blocks

list, and thread ID.

71

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

Figure 3.10: The structure of a thread control block

Of particular note is the freeBlock pointer, with its role being as follows. Consider

an application in which a producer thread requests allocating a memory block and

passes its reference to a consumer thread, which requests freeing it. In this case, it

should lock the heap area to avoid data corruption. In order to release a memory

block efficiently, we have used a pointer field (freeBlock).

The pointer of the free block is used for a particular condition, wherein a non-

owner thread, like the consumer thread in the above example, frees an unowned

memory block. We have called this phenomenon remote free or remote release.

When it happens, the non-owner thread sets the free bit as 1 in the header of the

block, adding it to the field. The field points to a single linked lists, consisting of free

blocks. All of the free blocks will be released when the owner thread next requests

allocating or releasing a memory block. For this reason, it can prevent unbounded

heap growing in the procedure-consumer model.

This approach may increase memory consumption because this policy does not

release the memory block immediately. However, this does not often happen in

practice. In [Larson and Krishnan, 1998], Larson has observed that remote releases

(which they called bleeding) occurs in the 2% to 3% range of deallocations on large

and long-running applications.

The arena header

Each arena has a header that contains the following information: a pointer to

the last block in the arena, the ccNUMA node ID, the arena size, and two pointers

72

3.4 User-Level Memory Management Algorithms and their Implementation

to the previous and next arena. The ccNUMA node ID indicates where the arena

was created. It is used by the second layer when the arena is released.

Figure 3.11: The header of an arena

The size of an arena should be a multiple of page sizes of the underlying OS,

and the minimum size of the arena depends on the underlying OS. For instance, it

is 4K bytes on Linux by default, meaning that we do not need to use all the bits

in the size field. For space optimization, we have used some of the spare bits for

representing node ID and some states, as seen in figure 3.11.

The block headers

The headers of memory blocks can be separated into two types corresponding

with the block size. For efficiency reasons, blocks in use are not linked in any seg-

regated list, and are not managed by the allocator because splitting and coalescing

always occur on freeing blocks. As with Knuth’s boundary tags technique, the

header size of the freed blocks is bigger than the header size of blocks in use.

As shown in figure 3.12, the header of free blocks includes the following infor-

mation: a pointer to a previous block header physically, a pointer to the owner,

the block size, the value of the first and second level, and the boundary tag, which

contains pointers to the header of the previous and next block logically. If the block

is in use, it does not contain the boundary tag.

The size field for normal blocks is large enough to contain the allocable block

sizes because the sizes of manageable blocks range from 512 bytes to 231 − 1 bytes,

with the normal block sizes always being a multiple of four. Consequently, a few

unused bits (at least 11 bits) can be used for other purposes, such as indicating some

73

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

Figure 3.12: The header of normal blocks

Figure 3.13: A block of small blocks

74

3.4 User-Level Memory Management Algorithms and their Implementation

states; so we have used the three least significant bits in the size fields to indicate

whether a block is free or not, whether the block is a normal size or not, and whether

the block is managed by the allocator or not.

3.4.4 Function details

The best approach to analysing memory allocation algorithms is to examine the

source codes or pseudo codes in detail; so we will discuss some significant function

codes of the nMART algorithm in this section. We classify them into four types:

essential management functions, bitmap functions, arena management functions,

and block management functions.

The essential management functions

The essential management functions are the functions used by the allocator when

the application requests memory allocation and de-allocation.

• malloc()

The malloc() function is responsible for allocating memory on the heap. The

application accesses the memory block via a pointer that the function returns. Typ-

ically, the function takes a parameter with the size of the application requests, and

returns a pointer as the result if the allocator can satisfy the request. Otherwise,

the allocator returns a null pointer.

Source 3 malloc()

1 void* malloc(size_t _rSize)

2 {

3 pthread_once(&InitOnce, InitnMART);

4

5 if (_tcb == NULL)

6 InitTCB(_tcb);

7

8 AllocateBlock(_rSize);

9

10 return (void*)retBlock;

11 }

The malloc function is relatively simple. It just invokes two initializing functions

when the application requests allocating a memory block for the first time, and calls

75

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

the real allocation function with the requested size. The actual work is performed

in the AllocateBlock() function. This function is the most fundamental function of

the allocation.

At the first time of allocation, the data structures used by the allocator need to

be initialized with some values corresponding to the underlying system. In Initn-

MART(), the function initializes the nMART control block discussed in 3.4.3, setting

values to variables such as the number of processors and the number of ccNUMA

nodes, and then increases the heap. The pthread once() ensures that an initialization

code (defined in InitnMART()) is executed at most once.

InitTCB() initializes the header of the TCB used by each thread. Sometimes,

the application can be executed as a single process without threads. For this case,

the allocator creates an instance of the TCB data structure, setting values to the

data structure.

• free()

The free() is invoked with a pointer to the space to be released when the memory

block is no longer needed. After that, the released memory block will be inserted

into the corresponding segregated list.

Source 4 free()

1 void _free(void *_ptr)

2 {

3 CheckRemoteFreeBlock();

4

5 if (GET_BLOCK_OWNER(_block) == _tcb)

6 LocalFree(_tcb, _block);

7 else

8 RemoteFree(GET_BLOCK_OWNER(_block), _block);

9 }

Like malloc(), free() does not perform real functionality. The actual work is

delegated to LocalFree() or RemoteFree(). At line 3 the CheckRemoteFreeBlock()

function checks whether memory blocks exist that have been released by non-owner

threads as remote-free operations. If some exist, the function releases all blocks

immediately.

76

3.4 User-Level Memory Management Algorithms and their Implementation

The requesting thread then invokes either LocalFree() or RemoteFree(). If the

thread requests releasing a local memory block, it invokes LocalFree() or, otherwise,

RemoteFree().

• AllocateBlock()

AllocateBlock() is responsible for providing a memory block exceeding a threshold

(4 bytes). The given size requested is rounded up to the closest size class at line 3.

At line 5, it checks whether memory blocks have been released by remote free. If a

suitable block exists, the allocator will serve it to satisfy the request. However, at

lines 6-10, it searches for a free block in the corresponding segregated list.

Source 5 AllocateBlock()

1 void* AllocateBlock(size_t _rSize)

2 {

3 _rSize = ROUND_UP(_rSize);

4

5 block_t* retBlock = CheckRemoteFreeBlock(rSize);

6 if (!retBlock)

7 {

8 GetIndex4Search(&rSize, &fl, &sl);

9 retBlock = FindFreeBlock(*_tcb, &fl, &sl);

10 }

11

12 if (!retBlock)

13 {

14 SET_USED_BLOCK(retBlock);

15 ExtractBlockFromList(*_tcb, retBlock, fl, sl);

16 if (GET_SIZE(retBlock) > SPLIT_THRESHOLD)

17 SplitBlock(retBlock, _rSize);

18

19 return (void*)(GET_BLOCK_BUF(retBlock));

20 }

21 else

22 return NULL;

23 }

When an acceptable block is found that is large enough to satisfy the request,

it will be extracted from the segregated list and split at lines 12-20 if necessary.

Otherwise, the allocator returns NULL as an error, indicating that the system does

not have enough memory space.

77

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

• CheckRemoteFreeBlock()

CheckRemoteFreeBlock() is a special function with the responsibility of releasing

unused blocks that are freed by remote free. It just checks the existence of unused

blocks linked to the freeBlock in the TCB. It is invoked when the owner thread

attempts to allocate or release a memory block.

Source 6 CheckRemoteFreeBlock()

1 void CheckRemoteFreeBlock()

2 {

3 AcquireLock();

4 block_t* block = _tcb->freeBlock;

5

6 while (NULL != block) /*pop blocks from a stack*/

7 {

8 block_t* next = GET_NEXT_BLOCK(block);

9 LocalFree(_tcb, block);

10 _tcb->freeBlock = next;

11 GET_PREV_BLOCK(next) = NULL;

12

13 block = next;

14 }

15 ReleaseLock();

16 }

In the function, it pops unused blocks from a stack and releases the blocks iter-

atively. This could make the algorithm unpredictable but it is only executed in an

extremely rare condition. It depends on the design of the multi-threaded applica-

tions. If the application does not cause a remote free operation or the program is

just a single-threaded application, the function is never executed. Also, the remote

free is observed in 2% to 3% range on large and long-running applications [Larson

and Krishnan, 1998]. It is for this reason that nMART cannot be used in hard

real-time systems.

• LocalFree()

LocalFree() is a core function with the responsibility of releasing a memory block

that is no longer needed. It is invoked when the owner thread attempts to allocate

or release a memory block.

78

3.4 User-Level Memory Management Algorithms and their Implementation

Source 7 LocalFree()

1 void LocalFree(tcb_t* _tcb, block_t* _block)

2 {

3 SetFreeBlockStatus(_block);

4 ResetLinkInfo(_block);

5

6 MergeFreeBlock(&_block);

7 if (!FreeArena(_tcb, _block))

8 {

9 SetBlockIndex(_block);

10 InsertFreeBlock(_block);

11 }

12 }

In the function, it sets the free bit to 1 to indicate its free state, and resets all

link information (lines 3-4). After that, at line 6, it checks whether adjacent blocks

have been already freed. If so, it merges to create a larger block.

If the block is the last one in use of the containing arena, the arena will be

completely freed by FreeArena(). The arena will be inserted into the LIFO data

structure of the TCB if it is free, or it will be passed to the second layer if the total

size of the arena linked to the TCB exceeds the threshold. Otherwise, at lines 9-10,

the block will be inserted into the corresponding list.

• RemoteFree()

The remote freeing of a block is accomplished by RemoteFree(). The function

simply invokes AddFreeBlockToRemote(). The actual work is delegated to the Push-

Stack() function. PushStack() inserts a memory block into the LIFO stack.

Source 8 RemoteFree()

1 void RemoteFree(tcb_t* _rtcb, block_t* _block)

2 {

3 AddFreeBlockToRemote(_rtcb, _block);

4 }

5

6 void AddFreeBlockToRemote(tcb_t* _rtcb, block_t* _block)

7 {

8 PushStack(_rtcb, _block);

9 }

10

11 void PushStack(tcb_t* _tcb, block_t* _block)

12 {

13 AcquireLock();

79

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

14

15 GET_NEXT_BLOCK(_block) = _tcb->freeBlock;

16 GET_PREV_BLOCK(_block) = NULL;

17

18 __sync_bool_compare_and_swap(

19 &_tcb->freeBlock, GET_NEXT_BLOCK(_block), _block))

20 ReleaseLock();

21 }

PushStack() uses sync bool compare and swap() (one of the built-in functions

for atomic memory access provided by gcc) and compares the value of the second

parameter with the value of the variable to which the first parameter points. If they

are equal, the value of the third parameter will be stored in the address referred

by the first parameter. Otherwise, no action is performed. This function performs

an atomic compare and swap, with a full memory barrier being created when it is

invoked.

The bitmap functions

The allocator uses bitmaps to accelerate the search for a free block within a

segregated size class. All bits of the first-level bitmap have an associated second-

level bitmap indicating whether the state of a particular element in the MATRIX

is empty or not.

In practice, the functions can be implemented using many different approaches,

such as using bit operators in languages or some instructions supported by the

underlying processor. As these functions are just utilities, which do not affect the

core algorithm for the allocation/deallocation, we simply derive them from built-in

functions provided by gcc or the source code of the Linux kernel.

• ls bit() and ms bit()

ls bit() searches for the least significant set bit (LSB) in a variable. This function

can be implemented using bsf instruction supported by modern processors, or gcc’s

built-in functions - builtin ffs(), builtin ffsl() or builtin ffsll() - are also able to

find the least significant set bit. Using the function, it is possible to find a smaller

list containing blocks equal to or larger than the requested size.

80

3.4 User-Level Memory Management Algorithms and their Implementation

ms bit() searches for the most significant set bit (MSB) in a variable. This,

therefore, computes the ⌊log2(r)⌋ function. Like ls bit(), it can be implemented

using machine instructions such as bsr or bsrl. However, gcc does not provide built-

in functions for the MSB searching.

• set bit(), clear bit() and isset bit()

These functions manipulate a bit in a bitmap. set bit() sets a bit to 1 in the

indicated bitmap, clear bit() sets a bit to 0, and isset bit() returns the value of a

given bit. set bit64(), clear bit64(), and isset bit64() functions are extended versions

of these functions to support the manipulation of 64-bit bitmaps.

• GetIndex4Insert()

An inserting function that implements the following equation to compute the

index I (i, j) in the MATRIX. The index I indicates a segregated list containing

free blocks of sizes in a certain range. s denotes the request size of a free block, and

m is the constant 3, which is used as a bit mask.

I =
(s+m) ∧ (¬m)

4
if 1 ≤ s ≤ 512

I(i, j) =

 i = ⌊log2 s⌋

j = ⌊(s− 2i)

2i−6
⌋

otherwise
(3.1)

GetIndex4Insert() is for normal size blocks, with the function being explicitly

invoked when a memory block needs to be inserted into a certain segregated list. A

block should be inserted into the list at a position indicated by I. s

Source 9 GetIndex4Insert()

1 void GetIndex4Insert(size_t _s, int *_i, int* _j) {

2 if (_s > MAX_SIZE_IN_SMALL_BLOCK) {

3 *_i = ms_bit(_s);

4 *_j = (_s >> (*_i - MAX_LOG2_SLI)) - MAX_SLI;

5 *_i -= FLI_OFFSET;

6 }

7 else {

8 *_i = ((_s + 3) & (~3))/4;

9 }

10 }

As seen in the above source, the function is able to compute equation 3.1 effi-

ciently with basic arithmetic and bits shifting. MAX LOG2 SLI and MAX SLI are
81

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

constants depending on r, which is an exponent of the power of two discussed in

Section 3.4.2.

• GetIndex4Search()

The allocator employs the following equation to find a suitable free memory

block to satisfy a request, instead of equation 3.1. Consider an application in which

a thread requests 8204 bytes of a memory. The index I(i, j) will be I(13, 0) by

equation 3.1. The list indexed by the I holds free memory blocks whose sizes range

from 8177 bytes to 8304 bytes.

I =
(s+m) ∧ (¬m)

4
if s ≤ 512

I(i, j) =


i = ⌊log2 (s+ 2⌊log2(s)⌋−6 − 1)⌋

j = ⌊(s+ 2⌊log2(s)⌋−6 − 1− 2i)

(2i−6)
⌋

otherwise
(3.2)

It is possible to ensure that the function always finds a bigger free memory block,

even if it tends to cause a small bounded internal fragmentation. The worst-case

internal fragmentation occurs when an application requests the free block whose

size is one byte larger than an existing segregated list (the algorithm has to find a

free block in the next segregated list) and the next list holds the largest size block

of its segregated list. The size will be rounded-up to the next list by the equation

3.2. [Masmano et al., 2008a] provided a function, that can be used with algorithms

exploiting the two-level segregated list, to calculate the internal fragmentation theo-

retically. The function2 gives a fragmentation of ≃ 3%. Interestingly, the evaluation

in Appendix A.1 shows very large difference between the observed fragmentation in

practice and the theoretical fragmentation.

Source 10 GetIndex4Search()

1 void GetIndex4Search(size_t* _s, int *_i, int* _j)

2 {

3 int _t;

4

5 if (_s > MAX_SIZE_IN_SMALL_BLOCK)

6 {

2(2i+1/32)− (2i + 1) ≃ 2i/32, where the second level holds 32 segregated lists.

82

3.4 User-Level Memory Management Algorithms and their Implementation

7 _t = (1 << (ms_bit(*_s) - MAX_LOG2_SLI)) - 1;

8 *_s = *size + _t;

9 *_i = ms_bit(*_s);

10 *_j = (*_s >> (*_i - MAX_LOG2_SLI)) - MAX_SLI;

11 *_i -= FLI_OFFSET;

12

13 *_s &= ~_t;

14 }

15 else

16 {

17 *_i = ((_s + 3) & (~3))/4;

18 *_s = *_i * 4;

19 }

20 }

The GetIndex4Search() function implements equation 3.2, which obtains a start-

ing point to find a free block, and is only invoked when applications request allocating

memory. As with GetIndex4Insert(), MAX LOG2 SLI and MAX SLI are constants

depending on r. Using the function, requesting an 8204 byte size of the free block

(like in the above example), the index I(i, j) will be I(13, 1) instead of I(13, 0).

The arena management functions

An arena is a group of memory pools which contains memory blocks that are

both released and in use. Each thread is able to have multiple arenas to satisfy its

allocation/deallocation requests.

• InitArena()

InitArena() initializes the data structure for an arena. It is invoked when the

allocator creates a new arena. In particular, it is called to get an additional arena

from the second layer, or when a thread or process is created.

Source 11 InitArena()

1 void InitArena(arena_t* _NewArena, u32 _rSize, int _node)

2 {

3 u32 RemainSize = _rSize - SIZE_ARENA_HDR;

4 SET_ARENA_SIZE(_NewArena, RemainSize);

5 SET_FREE_ARENA(_NewArena);

6 SET_MOVABLE_ARENA(_NewArena);

7 SET_ARENA_NODEID(_NewArena, _node);

8

9 block_t* NewBlock = (block_t*)GET_FIRST_BLOCK_IN_ARENA(_NewArena);

10 SET_BLOCK_SIZE(RemainSize);

83

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

11 InitBlock(NewBlock, RemainSize);

12 SetBlockIndex(NewBlock);

13 InsertFreeBlock(NewBlock);

14 }

The function sets its size, its ccNUMA node ID, and some states which indicate

whether it is a free arena or not, and whether it is a moveable arena or not (at lines

3-7). After that, it creates the first free memory block whose size is identical to the

size of the arena, and initializes it (at lines 9-12), with the block being inserted into

a certain segregated list (at line 13).

• GetNewArena() and AddNewArena()

GetNewArena() is invoked when the allocator cannot satisfy the allocation re-

quest due to not having enough heap space. In order to increase the available

memory of the application, it invokes the mmap() or brk() system call.

Source 12 GetNewArena()

1 static inline void* GetNewArena(size_t* _rSize)

2 {

3 *_rSize = PAGE_CELLING(*_rSize + SIZE_ARENA_HDR + SIZE_BLOCK_OVERHEAD*2);

4 void *newArena;

5 if ((newArena = mmap(0, *_rSize, ...) == MAP_FAILED)

6 ERR("NOT ENOUGH MEMORY\n");

7

8 return newArena;

9 }

AddNewArena() is invoked when an arena is created by the system call or when

a thread or process is created. It establishes double links between the previous and

next arena, storing the information in the TCB. In particular, the new arena will

be inserted into the top of the stack in the TCB (at lines 5-11).

Source 13 AddNewArena()

1 void AddNewArena(tcb_t* _tcb, arena_t* _newArena)

2 {

3 arena_t* prevArena = _tcb->arena;

4

5 GET_PREV_ARENA(_newArena) = NULL;

6 GET_NEXT_ARENA(_newArena) = prevArena;

7

8 if (prevArena != NULL)

9 GET_PREV_ARENA(prevArena) = _newArena;

84

3.4 User-Level Memory Management Algorithms and their Implementation

10

11 (_tcb->arena) = _newArena;

12 }

• AddFreeArena()

AddFreeArena() is just a wrapper function to insert a free arena into the list. It is

used to manage free arena lists in each ccNUMA node. The actual work is delegated

to the PushStack4Arena() function. As mentioned before, this is more flexible imple-

mentation, rather than calling the function of the LIFO stack management directly,

because it is easy to remove or modify them when the stack management algorithm

is changed. When AddFreeArena() is invoked, it just calls PushStack4Arena().

Source 14 AddFreeArena()

1 void AddFreeArena(arena_list_t* _ArenaList, arena_t* _Arena)

2 {

3 PushStack4Arena(_ArenaList, _Arena);

4 }

• GetFreeArena()

When the allocator needs to reuse a free arena stored in a certain free arena

list, GetFreeArena() is invoked. At line 6, the allocator attempts to find a suit-

able free arena list to pop. Then it invokes PopStack4Arena() (at line 8) if the

GET NODEARENA() returns a certain free arena list. The PopStack4Arena()

function extracts a free arena indicated by ArenaList returned at line 6.

Source 15 GetFreeArena()

1 arena_t* GetFreeArena(nMART_t* _nMART, size_t _rSize)

2 {

3 arena_t* arena;

4 int nodeID = GET_NODEID(_nMART, GET_CPUID());

5 _rSize = PAGE_CELLING(_rSize + SIZE_ARENA_HDR + SIZE_BLOCK_OVERHEAD*2);

6 arena_list_t* _ArenaList = GET_NODEARENA(_nMART, nodeID);

7

8 arena=PopStack4Arena(_ArenaList);

9

10 if (NULL == arena)

11 {

12 arena = GetNewArena(&_rSize);

13 InitArena(arena, _rSize, GET_NODEID(__nMART, GET_CPUID()));

14 }

15

16 return arena;

17 }

85

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

At line 12 the allocator will invoke GetNewArena() to increase the heap space

available if the allocator failed to find a free arena.

• FreeArena()

FreeArena() releases a given arena which does not contain any blocks in use; it

moves the released arena into the second layer. This function is invoked when the

application request releasing the last block in use in the target arena.

Source 16 FreeArena()

1 int FreeArena(tcb_t* _tcb, block_t* _block)

2 {

3 ...

4

5 arena_t* curArena = (arena_t*)GET_ARENA_WITH_BLOCK(_block);

6

7 if (GET_ARENA_REAL_SIZE(curArena) >= MAX_HOLD_ARENA_SIZE)

8 {

9 GET_ARENA_REAL_SIZE(curArena));

10 munmap(curArena, GET_ARENA_REAL_SIZE(curArena));

11 return TRUE;

12 }

13

14 arena_t* prevArena = GET_PREV_ARENA(curArena);

15 if (prevArena != NULL)

16 GET_NEXT_ARENA(prevArena) = GET_NEXT_ARENA(curArena);

17 else

18 _tcb->arena = GET_NEXT_ARENA(curArena);

19

20 arena_t* nextArena = GET_NEXT_ARENA(curArena);

21 if(nextArena != NULL)

22 GET_PREV_ARENA(nextArena) = GET_PREV_ARENA(curArena);

23

24 size_t real=GET_ARENA_REAL_SIZE_WITH_HD(curArena);

25 size_t idxx = GET_NODEARENA_IDX(GET_ARENA_REAL_SIZE_WITH_HD(curArena));

26 size_t idxArr = GET_INDEX_ARRAY(curArena);

27

28 arena_list_t* _ArenaList = GET_ARENALIST(curArena, real, idxx, idxArr);

29 AddFreeArena(_ArenaList, curArena);

30

31 return TRUE;

32 }

At line 5, the pointer address of the current arena has been acquired to which the

last free block belongs. If the arena size exceeds the maximum manageable size of

the arena, it will be returned to the underlying OS immediately using the munmap()

system call (at lines 7-12).

86

3.4 User-Level Memory Management Algorithms and their Implementation

To insert the arena into the head of the free arena list, at lines 14-22, the allocator

attempts to extract the arena from the TCB by adjusting the previous and next

pointer in the TCB header if they exist.

Finally, in order to pass it to the second layer, the allocator gets some useful

information to compute the index in the list containing free arenas (at lines 24-26).

Then (at lines 28-29), it invokes AddFreeArena() to insert the free arena into a

certain segregated list in the second layer of the allocator.

The block management functions

• InitBlock()

InitBlock() initializes the data structure for a new block. It is invoked when a

block is created, and sets the block size, owner ID, and some link information.

Source 17 InitBlock()

1 void InitBlock(block_t* _NewBlock, u32 _size)

2 {

3 SET_BLOCK_OWNER(_NewBlock, _tcb);

4 SET_BLOCK_SIZE(_NewBlock, _size);

5 SET_FREE_BLOCK(_NewBlock);

6 SET_PPREV_BLOCK(_NewBlock, NULL);

7 GET_PREV_BLOCK(_NewBlock) = NULL;

8 GET_NEXT_BLOCK(_NewBlock) = NULL;

9 }

• InsertFreeBlock()

InsertFreeBlock() inserts a free block to the MATRIX to be reused later when it is

no longer needed.

Source 18 InsertFreeBlock()

1 void InsertFreeBlock(block_t* _NewBlock)

2 {

3 int fl, sl, idx;

4 fl = GET_BLOCK_INDEX_FL(_NewBlock);

5 sl = GET_BLOCK_INDEX_SL(_NewBlock);

6 idx = GET_MATRIX_IDX(fl, sl);

7

8 GET_PREV_BLOCK(_NewBlock) = NULL;

9 GET_NEXT_BLOCK(_NewBlock) = MATRIX(_tcb, idx);

10

11 if (MATRIX(_tcb, idx) != NULL)

87

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

12 {

13 GET_PREV_BLOCK(MATRIX(_tcb, idx)) = _NewBlock;

14 MATRIX(_tcb, idx) = _NewBlock;

15 }

16 else

17 {

18 MATRIX(_tcb, idx) = _NewBlock;

19 set_bit (sl, &(GET_SL(_tcb, fl)));

20 set_bit (fl, &(GET_FL(_tcb)));

21 }

22 }

The function gets the index I(i, j) from the block header (at lines 4-6). The

MATRIX is logically a two-dimensional array, but it is just implemented using a

one-dimensional array so that the index can be represented by only a single variable

(at line 6). This makes it easier to implement the allocator, and the index can be

easily computed as the following equation:

idx = (fl ∗ c) + sl (3.3)

c (a constant) is the maximum usable bit position in the bitmap representing

the first level. For instance, the index I(1, 3) can be represented as 26 (1*23+3).

At lines 11-21 the block is inserted into the MATRIX according to the existence

of the previous block in the certain list indexed by idx. The allocator sets bits to

indicate the list holding a free block if the list is explicitly empty (at lines 19-20).

• SetBlockIndex()

SetBlockIndex() is invoked when a new block is created or when a block in use

is merged. It sets the index value of the first- and second-level bitmaps, and stores

them in the block header. Storing index values in the header allows less computation

when it is needed later because the block size should not be changed until the block

is merged.

Source 19 SetBlockIndex()

1 void SetBlockIndex(block_t* _block)

2 {

3 int fl, sl;

4 GetIndex4Insert(GET_BLOCK_REAL_SIZE(_block), &fl, &sl);

5

88

3.4 User-Level Memory Management Algorithms and their Implementation

6 GET_BLOCK_INDEX_FL(_block) = fl;

7 GET_BLOCK_INDEX_SL(_block) = sl;

8 }

• FindFreeBlock()

FindFreeBlock() is the core function for searching for bits set in the first- and

second-level bitmaps, and returning the equal size or larger size of a block to satisfy

the request.

Source 20 FindFreeBlock()

1 block_t* FindFreeBlock(tcb_t *_tcb, int *_fl, int *_sl)

2 {

3 u32 _tmp = _tcb->sl[*_fl] & (~0 << *_sl);

4 block_t *_b = NULL;

5

6 if (_tmp)

7 {

8 *_sl = ls_bit(_tmp);

9 _b = MATRIX(_tcb, GET_MATRIX_IDX(*_fl,*_sl));

10 }

11 else

12 {

13 *_fl = ls_bit(_tcb->fl & (~0 << (*_fl + 1)));

14 if (*_fl > 0)

15 {

16 *_sl = ls_bit(_tcb->sl[*_fl]);

17 _b = MATRIX(_tcb, GET_MATRIX_IDX(*_fl,*_sl));

18 }

19 }

20 return _b;

21 }

Two bitmaps (fl, sl) refer to all sizes of blocks that are manageable, but the

allocator does not need to search for bits indicating smaller sizes of blocks than the

requested size so that lower positions of bits are ignored at line 3.

At lines 6-10 the allocator attempts to find the LSB in tmp to get the index

of the column of MATRIX, if the segregated lists indicated by tmp are not empty.

Otherwise, at lines 11-19 the allocator attempts to find a larger-size block in the

upper bits in the first-level bitmap.

89

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

• Extract4Free()

Extract4Free() extracts a free block from a particular segregated list. This func-

tion is invoked when two or more adjacent blocks are merged.

Source 21 Extract4Free()

1 void Extract4Free(tcb_t* _tcb, block_t* _block)

2 {

3 int _fl, _sl;

4

5 _fl = GET_BLOCK_INDEX_FL(_block);

6 _sl = GET_BLOCK_INDEX_SL(_block);

7

8 block_t* prev = GET_PREV_BLOCK(_block);

9 block_t* next = GET_NEXT_BLOCK(_block);

10 if (next != NULL)

11 GET_PREV_BLOCK(next) = prev;

12 if (prev != NULL)

13 GET_NEXT_BLOCK(prev) = next;

14

15 if (MATRIX(_tcb, GET_MATRIX_IDX(_fl,_sl)) == _block)

16 {

17 MATRIX(_tcb, GET_MATRIX_IDX(_fl,_sl)) = GET_NEXT_BLOCK(_block);

18 if (NULL == MATRIX(_tcb, GET_MATRIX_IDX(_fl,_sl)))

19 {

20 clear_bit (_sl, &(_tcb->sl[_fl]));

21 if (!_tcb -> sl[_fl])

22 clear_bit (_fl, &(_tcb->fl));

23 }

24 }

25 GET_PREV_BLOCK(_block)=NULL;

26 GET_NEXT_BLOCK(_block)=NULL;

27 }

At lines 5-6 the allocator gets the values of rows and columns of the MATRIX

from the block header. After that, in order to extract the target block from the

segregated list, it adjusts the associated pointers of the previous and next blocks (at

lines 8-13). The allocator clears a particular bit to 0 if the block is the last one,

which belongs to the list indicated by fl and sl (at line 15-24).

After this function the target block block will be completely disconnected from

all blocks and the MATRIX, and will be ready to be merged with adjacent blocks

which have been freed already.

90

3.4 User-Level Memory Management Algorithms and their Implementation

• Extract4Alloc()

Extract4Alloc() is similar to the Extract4Free() function. It is invoked when

the application requests a memory block. It extracts a free block from a certain

segregated list.

Source 22 Extract4Alloc()

1 void Extract4Alloc(tcb_t* _tcb, block_t* _block, int _fl, int _sl)

2 {

3 MATRIX(_tcb, GET_MATRIX_IDX(_fl,_sl)) = GET_NEXT_BLOCK(_block);

4 if (NULL == GET_NEXT_BLOCK(_block))

5 {

6 clear_bit (_sl, &(_tcb->sl[_fl]));

7 if (!_tcb -> sl[_fl])

8 clear_bit (_fl, &(_tcb->fl));

9 }

10 GET_PREV_BLOCK(_block)=NULL;

11 GET_NEXT_BLOCK(_block)=NULL;

12 }

At line 3 the allocator re-establishes the pointer of MATRIX to the header of

the next block. If the target block is the last block in the list, the allocator sets a

particular bit of the first- and second-level bitmap to 0 (at lines 4-9).

• MergeFreeBlock()

MergeFreeBlock() merges two adjacent free blocks. This function is invoked when

the application requests releasing a block. Merging two adjacent blocks is extremely

simple. It just needs to remove one of the headers, setting a new size to total the

sum of their sizes. For instance, if a block A whose size is 1500 bytes and, physically,

the next block B whose size is 1000 bytes need to be merged, the header of B is

eliminated and the size of A will be changed to 2500 bytes.

Source 23 MergeFreeBlock()

1 void MergeFreeBlock(block_t** _block)

2 {

3 block_t* tmpBlock = GET_PNEXT_BLOCK(*_block);

4 if ((FREE == GET_BLOCK_STATUS(tmpBlock)))

5 {

6 Extract4Free(_tcb, tmpBlock);

7 SET_BLOCK_SIZE(*_block, COMPUTE_BLOCK_SIZE(....));

8 }

9

91

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

10 if ((GET_PPREV_BLOCK(*_block) != NULL) &&

11 (FREE == GET_BLOCK_STATUS(GET_PPREV_BLOCK(*_block))))

12 {

13 tmpBlock = GET_PPREV_BLOCK(*_block);

14 Extract4Free(_tcb, tmpBlock);

15 SET_BLOCK_SIZE(tmpBlock, COMPUTE_BLOCK_SIZE(....));

16

17 *_block = tmpBlock;

18 }

19 tmpBlock = GET_PNEXT_BLOCK(*_block);

20 GET_PPREV_BLOCK(tmpBlock) = *_block;

21 }

Firstly, the allocator gets a pointer to the next block physically (at line 3), with

the next block being examined to see whether it is free or not. The next block will

be extracted from the list if it is free (at lines 4-8).

Next, if the physically previous block is free, it will be extracted from the list to

be merged (at lines 10-18). In order to merge two adjacent blocks, it is necessary to

only adjust its size, as seen at lines 7 and 15.

At lines 19-20 the allocator sets two pointers to the previous and next blocks

physically.

• SplitBlock()

The SplitBlock() function is invoked when a larger block than the request size is

provided to satisfy the request of the memory allocation. The larger block will be

split if the size of the larger block exceeds the split threshold. The split threshold

is the sum of the request size, the minimum block size that the allocator is able to

allocate, and the overhead of the header.

Source 24 SplitBlock()

1 void SplitBlock(block_t* _block, size_t _rSize)

2 {

3 block_t* remainBlock = (block_t*)((char*)&(_block->ptr.buf) + _rSize);

4

5 u32 RemainSize = GET_BLOCK_REAL_SIZE(_block) - _rSize - SIZE_BLOCK_OVERHEAD;

6 InitBlock(remainBlock, RemainSize);

7 SetBlockIndex(remainBlock);

8 SET_PPREV_BLOCK(remainBlock, _block);

9 InsertFreeBlock(remainBlock);

10

11 SET_BLOCK_SIZE(_block, _rSize);

12 }

92

3.5 Summary

To split the larger block, it is necessary to append a new header for the split

block at the end of the data of the original block. In order to set the header position

for a new split block, the allocator computes the position (at line 3). After that,

it computes its size, initializes the new block, and establishes some pointers to the

adjacent block. At line 9 the new split block will be inserted into the MATRIX.

3.5 Summary

nMART is a new ccNUMA-aware dynamic memory management supporting real-

time systems on ccNUMA architectures. Most application developers in the real-

time domain avoid using dynamic storage allocation algorithms due to unbounded

response time and fragmentation. However, nMART does provide bounded response

time and low fragmentation, and consequently facilitates dynamic storage allocation.

As discussed above, all our design principles focus on achieving the objectives:

improving the performance of allocation/de-allocation memory operations and re-

ducing fragmentations. In order to improve the performance, nMART exploits a

more accurate measurement of node distance, multiple heaps, which provides the

per-thread-based private heap to reduce lock contentions between threads executing

on the same node sharing the node-based page lists, tracks all arenas from where

they have been taken, and manages all pages based on each ccNUMA node. In

terms of reducing fragmentations, nMART adopts multiple maintenance strategies

for different size of blocks.

nMART is based on a combination of policies, which are best-fit, good-fit, and

first-fit. These policies are able to avoid an exhaustive search to find the most

appropriate block in its data structure. Exploiting three bitmaps allows us to ensure

bounded response time and low fragmentation. The allocator is able to achieve a

constant search time based on each segregated list which indexes a range of block

sizes. The mapping functions are based on using bit shifts, which are very efficient.

Moreover, all of the functions discussed in this chapter are designed to perform their

functionalities without a single loop, except for the CheckRemoteFreeBlock(). The

93

Chapter 3: nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm

number of iterations in that loop depends on the number of free blocks, which are

released by the remote-free technique. The only function containing a single loop

is a trade-off between the predictability and the performance/space efficiency. It is

able to improve the performance of allocation/deallocation operations, but it may

consume more memory space due to deferred coalescing. However, as mentioned

earlier, Larson [Larson and Krishnan, 1998] has observed that remote releases are in

the 2% to 3% range on large and long-running applications. As a reason, the time

complexity of the nMART can be amortized O (1).

We have discussed how to achieve the third layer’s objective of supporting the

characteristics of ccNUMA architecture systems for nMART. All modern operating

systems have encapsulated the underlying architecture design to developers as well

as end-users. Unfortunately, the hardware abstraction provided by the underlying

OS is not appropriate to discover the system resources accurately, thereby making

it difficult to develop predictable applications on these systems. The ACPI has

been introduced to provide some transparency by hardware vendors, but it does not

provide enough information to describe the underlying system exactly, especially the

node distances. For this reason, we have proposed a more accurate model to measure

the node distances, which is obtained via static node distance analysis. This chapter

has described our new model, and shown how the model can be approximated in

the Linux kernel. Experiments, discussed in Appendix B.3, have shown that our

model increases the performance of the underlying system. It is also able to access

the closest or closer remote nodes wherever this is possible. In the results, the

performance improvement of average execution time for allocation operations varied

from 5.1% to 17.4% approximately according to processor and memory affinities.

The results show our model is a reasonable model to estimate the node distances,

providing a closer node if it is available.

In combination, all these features make the algorithm acceptable for real-time

systems, whose most important requirement is a predictable time response.

94

Chapter 4

Evaluation

All algorithms described in this thesis have been evaluated empirically using ex-

periments on actual hardware. The majority of experiments are designed to show

whether our objectives have been met. The chapter gives an experimental study

in comparison with a representative set of dynamic memory allocators: Best-fit,

First-fit, Half-fit, Hoard, tcmalloc, TLSF, and nMART. In order to give fair com-

parisons and results, we describe the experimental environment in Section 4.1 and

workload models in Section 4.2. Temporal behaviour analysis in Section 4.3 gives

the performance of the memory allocators. In order to compare the support for

ccNUMA architecture systems, the analysis of local and remote access latencies are

drawn in Section 4.3.3. Also, other evaluations are shown in the Appendices. Spatial

behaviour analysis in Appendix A.1 shows the space efficiency of each algorithm.

Cache behaviour analysis is shown in Appendix A.2 to illustrate the cache effect of

each allocator on the experimental system.

4.1 Experimental Environment

The experimental hardware consists of two ccNUMA architecture systems. One is

a four node-based system and another is an eight node-based system.

A four nodes-based ccNUMA architecture system

Figure 4.1 [Weber, 2001] (where SRI means a system request interface, XBAR in-

dicates a crossbar, MCT denotes a local memory controller, and HTmeans HyperTra-

95

Chapter 4: Evaluation

nsportTM technology) shows the hardware platform, which is a Supermicro H8QME-

2 serverboard consisting of nVidia MCP55Pro and AMD 8132 chipset. Our system

contains SDRAM of 16G bytes, and four AMD Opteron processors. Each proces-

sor comprises four cores with all processors being connected to other processors via

a HyperTransport (cHT). Each core has a 64K bytes non-shared L1 cache, 512K

bytes non-shared L2 cache, and there is 2M bytes L3 shared cache memory among

all cores. An individual processor comprises a ccNUMA node with up to 4G bytes

of memory, so in total the system has 16G bytes main memory. The interconnection

is configured with a clock frequency of 1GHz as the maximum speed supported by

the system. The machine runs the Ubuntu distribution of the Linux kernel version

3.0.4. In practice, the Linux kernel treats a core as a processor so that the system

has in total sixteen processors.

Figure 4.1: A four node-based ccNUMA architecture system

An eight nodes-based ccNUMA architecture system

In order to ensure showing the inaccurate values of the original node distance

table used by all operating systems, we also show the result of an experiment to

96

4.2 Workload Models

measure the actual time taken to access remote nodes in an eight node-based cc-

NUMA architecture system. We have experimentally measuring the cost of memory

accesses using the same method.

The more complex architecture system contains four physical processors with

128G bytes main memory entirely. Each processor comprises eight cores, with all

processors being connected to each other via HyperTransport. Each core has a

128K bytes non-shared L1 cache, 512K bytes non-shared L2 cache, and 12M bytes

L3 cache memory is shared by all cores. This system is comprised of eight ccNUMA

nodes instead of four nodes. This is because each four cores on the same processor

have been grouped as one node, so a processor consists of two ccNUMA nodes. We

have called the relationship between two nodes belonging to the same processor

sibling relationship or sibling nodes. Each individual processor has 32G bytes main

memory.

Figure 4.2: A more complex architecture system

4.2 Workload Models

In general, two different workloads are used to evaluate DSAs. Evaluating frag-

mentation and worst-case scenarios is performed using synthetic workloads, while

97

Chapter 4: Evaluation

comparing average execution time is performed using real workloads. In this sec-

tion, we discuss both workload models, which are used to evaluate several memory

allocation algorithms as well as our prototype on nMART.

4.2.1 Real Workloads

Real workloads are more accurate than using synthetic workloads for evaluating

DSAs, since synthetic workloads are generated by means of simplifying assump-

tions. However, it is hard to find acceptable real-time applications, which are able

to evaluate the behaviour of DSAs on real-time systems. Moreover, the disparity

between average cases and worst-case scenarios is very wide, as the worst case rarely

occurs [Robson, 1977]. For this reason, we have chosen four applications with three

test sets, which are allocation-intensive and have varying memory usage patterns;

they have been used in many previous studies on DSAs [Berger et al., 2000] [Puaut,

2002] [Hasan and Chang, 2005].

cfrac cfrac is an application to factorize large integers by means of the continued

fraction method. We have used examples distributed with its source codes.

• Test set 1 The input number, 327905606740421458831903, was the 24-

digit number;

• Test set 2 The input number, 4175764634412486014593803028771, was

the 31-digit number.

• Test set 3 The input number, 41757646344123832613190542166099121,

was the 35-digit number.

espresso espresso, version 2.3, is an application which optimizes logic circuits. The

input files were three of the circuit examples distributed with its source codes.

• Test set 1 The input logic circuit consisted of 7 inputs and 10 outputs

(Z5xp1.espresso).

• Test set 2 The input logic circuit consisted of 8 inputs and 8 outputs

(mlp4.espresso).

98

4.2 Workload Models

• Test set 3 The input logic circuit consisted of 16 inputs and 40 outputs

(largest.espresso).

gawk Gnu awk is a free software implementation of the AWK interpreted program-

ming language for data extraction and reporting. We have used the default

gawk provided by Ubuntu distribution. Also, we have used the wordfreq.awk

example, which collects statistics on how often different words appear.

• Test set 1 The input file consisted of 7,500 words and 629 lines (prog-

small-data.awk).

• Test set 2 The input file consisted of 25,144 words and 25,144 lines (words-

small.awk).

• Test set 3 The input file consisted of 69,965 words and 69,964 lines (words-

large.awk).

p2c p2c, version 1.21alpha-07, is a tool for translating Pascal programs into C.

Usually, the input file consists of a set of Pascal source files, and the output

is a set of .c and .h files. We have used the Pascal source codes that are

distributed with the p2c distribution..

• Test set 1 This input file consisted of 299 characters and 22 lines of pascal

statements (fact.p).

• Test set 2 This input file consisted of 11,280 characters and 359 lines of

pascal statements (cref.p).

• Test set 3 This input file consisted of 66,611 characters and 2,214 lines of

pascal statements (basic.p).

There is no standard evaluation tool for multi-threaded allocators. In addition,

no tools exist to stress multi-threaded performance of relatively long-running ap-

plications like real-time applications. For this reason, we have chosen four other

applications used in previous studies for multi-threaded allocators [Berger et al.,

2000] [Larson and Krishnan, 1998].

99

Chapter 4: Evaluation

larson larson was introduced by Paul Larson at Microsoft Research [Larson and

Krishnan, 1998]. It simulates a server to provide the remote freeing of memory.

Each thread allocates and releases memory blocks, with some randomly chosen

blocks being passed to other threads to be released. We have used the following

parameters. Respectively, parameters give sleep() time, the minimum size

of blocks, maximum size of blocks, number of blocks per thread, number of

iterations, random seed, and number of threads.

• Test set 4: 1 32 32768 1000 1000 927 16

cache-scratch cache-scratch [Berger et al., 2000] simulates a passive false-sharing

situation, and tests resilience against passive false sharing. The following pa-

rameters give the number of threads, number of iterations, requested memory

size, and number of inner iterations for write operations.

• Test set 4: 32 100 8 1000000

cache-thrash cache-thrash [Berger et al., 2000] simulates an active false-sharing

situation, and tests resilience against passive false sharing. We have used the

same parameters as cache-scratch.

• Test set 4: 32 100 8 1000000

shbench shbench is a memory allocator stress test tool from MicroQuill [Micro-

Quill, 2012]. Each thread allocates and randomly releases a number of ran-

domly sized blocks in a random order. We have used the following parameters.

Parameters give the number of memory blocks and number of threads.

• Test set 4: 10000000 4

The execution of real workloads is more complex than the execution of synthetic

scenarios. Sometimes, such applications require services provided by the underly-

ing operating system. These kinds of services, such as disk I/O, incur delay when

measuring performance. To minimize the impact of these services, we have turned

100

4.2 Workload Models

off process swapping to avoid pages swapped out into disks, and all service dae-

mons, such as the X server, web server, and database server, which do not have any

relationship with our experiments.

In order to ensure results are accurate, we have also used the response time ob-

tained by measuring the processor cycles with the number of instructions executed,

rather then system calls like gettimeofday(). Measuring processor cycles is based on

a time stamp counter called tsc. On x86/64 architecture systems, it can be accessed

using rdtsc instruction. This counter is usable for a variety of tasks, as it has excel-

lent high-resolution with a low overhead, but it requires scaling of processor cycles.

For instance, Enhanced Intel SpeedStepr (EIST) or AMD Cool‘n’Quietr technology

may cause the processor cycle to be dynamic scaled at runtime. The impact of the

technology causes the counter to be less accurate, as the length of the processor

cycle may change frequently. For this reason, we have had this feature turned off

in the system BIOS and disabled. Moreover, to keep the result of tsc accurate, the

processor pipeline must be flushed before calling rdtsc. This is the reason why we

have called the cpuid instruction before rdtsc. All results of experiments have been

produced in this experimental environment.

As well as the time stamp counter, in general, modern processors are equipped

with particular hardware performance counters that allow tracking system events,

such as cache misses and executed instructions. In order to measure these perfor-

mance counters, especially cache loads and misses and the number of instructions

executed, we have employed perf (Performance Counters for Linux), which is a per-

formance analyzing tool that produces much more reasonable analysis [Nethercote

and Mycroft, 2002]; it is available since Linux kernel 2.6.31, for profiling application,

memory, and cache behaviours [Molnar, 2009] [Edge, 2009]. In Linux, performance

counters are kernel-based subsystems providing a framework for performance analy-

sis, including hardware-level and software-level. Unlike valgrind [Weidendorfer et al.,

2004] [McCamant and Ernst, 2007] [Tao et al., 2008], they are capable of statistical

profiling of a single processor, several threads or an entire system in both kernel and

user space.

101

Chapter 4: Evaluation

A summary of the real workload characteristics is given in tables 4.1, 4.2, 4.3,

and 4.4. The last two rows of the tables are produced when using the default glibc

allocator. Each table represents an amount of work from light to heavy in the order

that is assigned to each allocator, and will be compared. In particular, table 4.4 is

prepared for comparing varying allocators in a multi-threaded environment.

Except for the last two rows, processor cycles and instructions, all results in tables

4.1, 4.2 and 4.3 have been obtained using the dynamic linking loader, dlsym().

Test set 1 cfrac espresso gawk p2c

number of malloc() 1528 24225 4534 2675

number of free() 1230 24224 3763 611

total allocation size 29604 1693502 373559 166034

largest allocation size 284 4632 16384 1024

average allocation size 19 70 82 62

processor cycles 104699403 1407165 2155146 963251

instructions 122593809 27560262 28503704 22849408

Table 4.1: Real workload characteristics of test set 1

Test set 2 cfrac espresso gawk p2c

number of malloc() 5277 59827 126794 6102

number of free() 4952 59826 126373 3372

total allocation size 108899 5285233 6245812 298792

largest allocation size 688 5448 131048 1024

average allocation size 21 88 49 49

processor cycles 1236777271 78801871 233334208 10888057

instructions 1206790730 116022605 201536776 22808989

Table 4.2: Real workload characteristics of test set 2

To the best of our knowledge, unfortunately, there is no implementation of Best-

fit, First-fit, and Half-fit memory allocators on the Internet, which are able to replace

default memory allocators provided by the underlying operating system. There

are only few allocators, which cannot satisfy our standard because they are based

102

4.2 Workload Models

Test set 3 cfrac espresso gawk p2c

number of malloc() 8858 1652970 351431 43936

number of free() 8518 1652969 350474 39176

total allocation size 191703 182929348 17319441 1496159

largest allocation size 1040 38496 261992 1024

average allocation size 22 111 49 34

processor cycles 4470015910 2047549487 546009716 221177907

instructions 3847942214 3334543200 545757202 168842098

Table 4.3: Real workload characteristics of test set 3

Test set 4 larson cache-scratch cache-thrash shbench

number of malloc() 628256 3266 3233 2502057

number of free() 612256 3266 3233 2500017

largest allocation size 32767 2048 2048 20000

average allocation size 16293 9 9 130

processor cycles 270864287562 34543354638 33319278375 114353243368

instructions 220833518162 15610920669 15569018061 78609628514

Table 4.4: Real workload characteristics of test set 4

103

Chapter 4: Evaluation

on an array. For this reason, we have implemented Best-fit, First-fit and Half-fit

allocators as well as a prototype of our memory manager. The implementation of

these algorithms is given in Appendix D.2.

Tables 4.5, 4.6, 4.7 and 4.8 show, for the three test sets of workloads, the results

of the number of malloc() and free() calls by each of the applications. These tables

show different function call counts even when these numbers are collected using the

same application. For instance, in table 4.5 the number of malloc() calls of SET 1

varies from 1,528 to 1,530. This is because the number of function calls depends on

the allocator implementation. In other words, if some functions, such as realloc() or

calloc(), are implemented to invoke malloc() or free(), the call numbers may slightly

increase.

cfrac

SET 1 SET 2 SET 3

of malloc # of free # of malloc # of free # of malloc # of free

Best 1,528 1,230 5,277 4,952 8,858 8,518

First 1,528 1,230 5,277 4,952 8,858 8,518

Half 1,528 1,230 5,277 4,952 8,858 8,518

Hoard 1,528 1,232 5,277 4,954 8,858 8,520

nMART 1,528 1,230 5,277 4,952 8,858 8,518

tcmalloc 1,539 1,237 5,288 4,959 8,869 8,525

TLSF 1,528 1,232 5,277 4,954 8,858 8,520

Table 4.5: The number of malloc() and free() calls by cfrac

In table 4.5 the tcmalloc allocator shows the highest calls recorded throughout

all test sets for the allocation and de-allocation.

In table 4.6 the Hoard allocator shows the highest calls recorded throughout all

test sets for the allocation and de-allocation.

In table 4.7 the Hoard allocator shows the highest calls recorded throughout

test set 1 and test set 2 for the allocation and de-allocation, and TLSF gives the

highest calls for test set 3. Regarding de-allocation, Hoard, tcmalloc and TLSF show

higher free() calls than others. In TLSF ’s cases, the number of free() calls exceeds

104

4.2 Workload Models

espresso

SET 1 SET 2 SET 3

of malloc # of free # of malloc # of free # of malloc # of free

Best 24,658 24,657 61,337 61,336 1,668,384 1,668,383

First 24,658 24,657 61,337 61,336 1,668,384 1,668,383

Half 24,658 24,657 61,337 61,336 1,668,384 1,668,383

Hoard 24,761 25,750 61,438 62,572 1,675,528 1,708,176

nMART 24,658 24,657 61,337 61,336 1,668,384 1,668,383

tcmalloc 24,730 25,292 61,405 61,019 1,675,429 1,692,061

TLSF 24,290 25,287 59,872 61,014 1,659,400 1,692,056

Table 4.6: The number of malloc() and free() calls by espresso

gawk

SET 1 SET 2 SET 3

of malloc # of free # of malloc # of free # of malloc # of free

Best 4,597 3,060 126,919 101,229 246,139 196,405

First 4,597 3,060 126,919 101,229 246,139 196,405

Half 4,597 3,060 126,919 101,229 246,139 196,405

Hoard 4,598 3,829 126,920 126,501 246,140 245,483

nMART 4,597 3,060 126,919 101,229 246,139 196,405

tcmalloc 4,564 3,770 126,850 126,380 246,099 245,411

TLSF 3,764 3,765 101,521 126,375 281,338 350,476

Table 4.7: The number of malloc() and free() calls by gawk

105

Chapter 4: Evaluation

the number of malloc() calls because gawk invokes realloc() and calloc() functions

repeatedly.

p2c

SET 1 SET 2 SET 3

of malloc # of free # of malloc # of free # of malloc # of free

Best 2,679 615 6,107 3,377 43,942 39,182

First 2,679 615 6,107 3,377 43,942 39,182

Half 2,679 615 6,107 3,377 43,942 39,182

Hoard 2,679 1,681 6,107 4,957 43,942 43,418

nMART 2,679 615 6,107 3,377 43,942 39,182

tcmalloc 2,690 1,682 6,118 4,957 43,953 43,417

TLSF 2,675 1,677 6,102 4,962 43,936 43,412

Table 4.8: The number of malloc() and free() calls by p2c

In table 4.8 the tcmalloc allocator shows the highest call number recorded for

test set 1 in the allocation and de-allocation. In test set 2, tcmalloc for allocation

and TLSF for de-allocation show the highest function calls. tcmalloc for allocation

and Hoard for de-allocation show the highest function calls.

4.2.2 Synthetic Workloads

Since the paper by [Zorn and Grunwald, 1994], it usual to avoid using synthetic

workloads to predict the behaviour of dynamic storage allocation algorithms be-

cause none of the models show good predication of the maximum blocks or the size

of blocks allocated by all the applications. However, given the non-existence of real-

time applications which exploit the characteristics of ccNUMA architectures with

dynamic storage allocation algorithms, we have no choice but to use synthetic work-

loads. In order to perform an evaluation of the allocators under synthetic workloads,

a load model has been designed under the combined models proposed by [Zorn and

Grunwald, 1994] and [Marchand et al., 2007]. We have chosen two models which

have been obtained from actual application behaviours; of the five models in the

paper, the authors concluded that these two models are more accurate than others.

106

4.2 Workload Models

The main objective of the models is to abstract the behaviour of the real application

in three parameters: block size (BS), which indicates the average block size required;

block holding time (BHT), which indicates the time elapsed between blocks assigned

to the application and being released; and block interarrival time (BIT), which is

the time elapsed between an allocation request and the next allocation request.

The Mean-Value Model (MEAN) The MEAN model abstracts the behaviour

of an actual application using three parameters: the mean of BS, BHT and

BIT. These parameters are used to generate random values from zero to twice

the mean with a uniform distribution. A variant of the model tracks the

mean and variance of each parameter to generate samples from three normal

distributions from tracked values [Zorn and Grunwald, 1994] [Puaut, 2002].

Cumulative Distribution Functions (CDF) This model constructs the actual

CDF using the BS, BHT and BIT values, which observed data. These functions

with a uniform distribution in [0, 1[are used to abstract the behaviour of

applications. The following is an example of CDF, which indicates that there

is an equal distribution of size blocks between a range from 128 to 512 and a

range from 512 to 4k bytes:

CDF (s) =



0.0 if s < 128

0.33 if 128 ≤ s < 512

0.66 if 512 ≤ s < 4096

1.0 if s ≥ 4096

The experimental results are presented in Appendix C. In particular, the results

in tables C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10, C.11, C.12 and C.13 are

collected during each application execution. In order to collect statistics accurately,

we modified and used our implementation of the First-fit allocator.

As seen in table C.1, the result shows that cfrac requests small-size memory

blocks throughout all test sets, with its standard deviations being also small. Except

for test set 1, the holding time exceeded the interarrival time. It shows that the

amount of memory usage is increasing linearly because of releasing memory blocks

rarely.

107

Chapter 4: Evaluation

In tables 4.1, 4.2 and 4.3, espresso is a memory-intensive application, With the

cfrac model, it requests and releases lots of memory blocks. None of the holding

time exceeds the interarrival time throughout all test sets. In particular, the holding

time of test sets 1 and 2 is also small compared to other application sets.

Unlike other applications, gawk sometimes requires larger-size memory blocks up

to 256k bytes. Except for test set 1, it also requires lots of memory during application

execution, with its holding time exceeding the interarrival time. In our observation,

the application does not release memory completely during its execution, and expects

that the underlying operating system will release memory blocks when the program

terminates.

In tables 4.1, 4.2 and 4.3, p2c also does not release memory blocks completely,

even though its interarrival time is higher than the holding time. The responsibility

of releasing remains with the operating system. It requests small-sizes memory

blocks up to 1k bytes compared to the memory-intensive applications: espresso and

gawk.

4.2.2.1 MEAN-Value Model

The model proposed by [Zorn and Grunwald, 1994] characterizes the behaviour of an

actual application, as seen in table C.1, which gives the mean values (and standard

deviations) of three parameters, which were obtained during the execution of each

application.

In the table, it shows the mean of block sizes requested, the mean of interarrival

time elapsed, and the mean of block holding time elapsed on each application. Note

that BS indicates the mean of block sizes requested, BIT denotes the mean of in-

terarrival time elapsed, and BHT indicates the mean of block holding time elapsed.

Columns starting “Std.” beside each metric denote the standard deviation of each

metric.

Using Table C.1, we have generated a workload under the [Zorn and Grunwald,

1994] approach. However, modern processors are faster than at the time the paper

was published, so that the interarrival time and holding time are mostly too small

and the maximum of alive memory blocks is only 37 blocks in all execution times.

108

4.2 Workload Models

Moreover, we need to consider the characteristics of real-time applications, in that

the lifetime is typically longer than general-purpose applications’ lifetime possibly

as much as days, months or even years. Also, ccNUMA architecture systems are

more complex and powerful than uniprocessor or SMP systems so that they are

running as servers, such as a database and web servers. Characteristics of such

servers tend towards applications requesting larger-size memory blocks and keeping

them during their lifetimes. Generally, many servers allocate a huge amount of

memory at their start-up time to provide a memory pool internally. The main

objective of the memory pool is to keep track of all memory allocations and to

release all allocated blocks automatically. In one case, Oracle allocated over 350M

bytes of memory at start-up time to be shared globally. This is the most common

usage, called plateau (discussed in 2.1.3), for many service servers [Oracle Inc.,

2013] [Sybase Inc., 2013] [Apache Software Foundation, 2013]. For these reasons, we

have designed a new workload model based on the original MEAN and CDF models

to reflect modern architectures and to target applications. The proposed synthetic

workload model generates random numbers under the following premises:

• The size of memory block (BS) for allocation is randomly generated from a

uniform distribution in a specified range from 1 to twice the size of the mean

of block sizes in Table C.1. In the original approach, the size of the memory

block starts from 0, but there is no meaning of zero size of allocation, so we

have adjusted the value from zero to 1 for allocation.

• The size of a large amount of memory is randomly generated in a range from

256M bytes to 512M bytes, will be allocated once at start-up time, and be

alive until termination of the application.

• The interarrival time (BIT) is determined using a uniform distribution in a

specified range from 0 to twice the value of the mean of the interarrival time

in the table.

• The holding time (BHT) is determined using a uniform distribution in a specific

range from 0 to twice the value of the mean of the holding time in the table.

109

Chapter 4: Evaluation

• The number of memory requests is fixed at allocations of 100,000 times, to

better reflect block size distribution.

• To measure remote memory access latencies, we have read and written mean-

ingless data many times, iteratively ranging from 30 to 50, onto the large

amount of memory, which was allocated at the application’s start-up time.

The following table 4.9 has been generated using the above premises.

Mean Min Max

BS 55 1 110

BIT 80,338 0 160,675

BHT 146,824 0 293,648

Table 4.9: The MEAN of BS, BIT and BHT generated

4.2.2.2 The CDF Model

Similar to the MEAN model, we have designed the workload model of CDF, as

follows. The cumulative percentage and frequency of BS, BIT and BHT of all appli-

cations are shown in tables C.2, C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10, C.11, C.12

and C.13.

• The size of memory block (BS) for allocation is randomly generated from a

uniform distribution in each distinct range, as seen in Table 4.10.

• The size of a large amount of memory blocks has randomly generated in a

range from 256M bytes to 512M bytes, will be allocated once at start-up time,

and be alive until termination of its application.

• The interarrival time (BIT) is determined using a uniform distribution in each

specified range, as seen in the table.

• The holding time (BHT) is determined using a uniform distribution in each

distinct range, as seen in the table.

• The number of memory requests is fixed as allocations of 100,000 times to

better reflect block size distribution.

110

4.3 Temporal Behaviour Analysis

• To measure remote memory access latencies, we have read and written mean-

ingless data many times, iteratively ranging from 30 to 50, onto the large

amount of memory block which was allocated at application’s start-up time.

Based on these premises, we have generated table 4.10, which gives the number

of occurrences of each distinct size, holding time and interarrival time.

BS(x) =



0.00 x < 8

0.08 x < 16

0.37 x < 32

0.44 x < 64

0.89 x < 128

0.94 x < 256

0.97 x < 512

0.99 x < 1k

1.0 x ≥ 2k

BIT(x) =



0.00 x < 256

0.05 x < 512

0.64 x < 1k

0.75 x < 2k

0.91 x < 4k

0.95 x < 8k

0.98 x < 16k

0.99 x < 32k

1.00 x ≥ 64k

BHT(s) =



0.00 x < 8

0.42 x < 16

0.49 x < 32

0.55 x < 64

0.61 x < 128

0.67 x < 256

0.72 x < 512

0.77 x < 1k

0.81 x < 2k

0.83 x < 4k

0.87 x < 8k

0.90 x < 16k

0.93 x < 32k

0.95 x < 64k

0.96 x < 128k

0.97 x < 256k

0.98 x < 512k

0.99 x < 1m

1.00 x ≥ 2m

Table 4.10: The CDF model of BS, BIT and BHT generated

In summary, we have evaluated all algorithms empirically using real workloads

(four test sets) and synthetic workloads (MEAN-value and CDF model) on actual

hardware, the four node-based ccNUMA architecture system.

4.3 Temporal Behaviour Analysis

In this section, we will discuss the temporal behaviour of the memory allocator

algorithms by comparing the longest execution time and the total execution time

elapsed for allocation and de-allocation of each allocator. Also, local and remote

111

Chapter 4: Evaluation

access latencies for each allocators are evaluated. As previously discussed, bench-

marks for allocators on ccNUMA architecture systems lag behind the introduction

of new hardware. In our case, the situation is exacerbated because there is no model

to evaluate memory management algorithms for real-time applications supporting

ccNUMA architectures. For these reason, we have used synthetic workloads to evalu-

ate local and remote access latencies of each algorithms. The longest execution time

depends on the worst case execution time in practice and the total execution time

indicates the performance of memory management algorithms. Local and remote

access latencies depend on the support efficiency of ccNUMA architecture systems.

4.3.1 The Longest Execution Time

During allocation, memory allocators search for an unused memory block to satisfy

the request. In the worst case, it fails and the allocator must request an increase

in heap space from the underlying operating system, splitting the return space.

However, in normal cases, allocators just provide a free block without any addi-

tional operations. In de-allocation cases, coalescing will occur if the memory block

is the only block used in a memory pool. Sometimes, coalescing occurs between

free memory pools, while in normal cases a memory block will just be released via

setting a bit that indicates its state. Of course, additional operations spend more

time. Practically, the worst case allocation and de-allocation scenarios spend more

time allocating or de-allocating memory blocks, so we can determine the worst case

execution time as well as measure the longest execution time for allocation and

de-allocation.

This experiment is executed using different real applications with test sets 1 to

3. Each application was executed 1,000 times with the same allocator repeatedly;

therefore, each application was executed 7,000 times with seven different allocators

totally. In the individual execution, we measure the longest execution time of al-

location and de-allocation in each application execution. For instance, in test set

1 of cfrac in Table 4.5, the application invokes the malloc() function 1,528 times.

During 1,528 function calls, we collect the longest execution time, accumulating it

as the application is executed 1,000 times. After that, we collect statistics of the

112

4.3 Temporal Behaviour Analysis

average of the thousand longest execution times, as well as the minimum and the

maximum longest execution time in the thousand longest execution times.

cfrac Results Table 4.11, Table 4.12 and Table 4.13 show execution times ob-

tained for allocation and de-allocation on cfrac with each allocator. The execution

times of test set 1 analysis is given in Table 4.11. The execution times of test set 2

is given in Table 4.12. The execution times of test set 3 is given in Table 4.13.

Results Analysis The following shows the impact of allocation and de-allocation

on time; note that Stdev.s() in tables represents the standard deviation. As we men-

tioned in Section 4.2, we use processor cycles to measure execution time. Therefore,

the unit of execution time is the number of processor cycles, but it can be converted

to a time value by dividing 2010 (processor clock (MHz)). For example, the average

time of tcmalloc for allocation in test set 1 (8,333,072.35) in table 4.11 is equal to

4.15 msec:

• Average time: The average longest execution time for allocation and de-

allocation is shown in Table 4.11, Table 4.12 and Table 4.13, respectively, for

all test sets. The average time of tcmalloc for allocation throughout all tests is

longer than the values for other allocators. The average time of tcmalloc for al-

location in test set 1 is 8,333,072.35 compared to 212,368.34 of First-fit, which

shows the shortest344 average of the longest execution time. The average time

of tcmalloc for allocation in test set 2 is 8,318,732.25 compared to 372,394.14

of First-fit, which shows the shortest average of the longest execution time.

The average time of tcmalloc for allocation in test set 3 is 8,307,108.05 com-

pared to 456,267.67 of Best-fit, which shows the shortest average of the longest

execution time.

In the de-allocation case, the average longest execution time of Hoard for

de-allocation in test set 1 is longer than the values for other allocators. The

average time of nMART for de-allocation in test sets 2 and 3 is longer than the

values for other allocators. The average time of Hoard for de-allocation in test

set 1 is 34,112.69 compared to 18,129.51 of Best-fit, which shows the shortest

113

Chapter 4: Evaluation

average of the longest execution time. The average time of nMART for de-

allocation in test set 2 is 133,066.01 compared to 48,122.62 of First-fit, which

shows the shortest average of the longest execution time. The average time of

nMART for de-allocation in test set 3 is 198,831.43 compared to 79,151.61 of

tcmalloc, which shows the shortest average of the longest execution time.

• Min: The minimum longest execution time for allocation and de-allocation is

shown in Table 4.11, Table 4.12 and Table 4.13, respectively, for all test sets.

The minimum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators. The minimum time of

tcmalloc for allocation in test set 1 is 7,704,663 compared to 59,456 of Half-fit,

which shows the shortest execution time. The minimum time of tcmalloc for

allocation in test set 2 is 7,722,250 compared to 65,618 of First-fit, which shows

the shortest execution time. The minimum time of tcmalloc for allocation in

test set 3 is 7,719,497 compared to 109,404 of First-fit, which shows the shortest

execution time.

In the de-allocation case, the minimum longest execution time of Hoard for

de-allocation in test sets 1 and 2 is longer than the values for other allocators.

The minimum longest execution time of tcmalloc for de-allocation in test set 3

is longer than the values for other allocators. The minimum time of Hoard for

de-allocation in test set 1 is 7,502 compared to 590 of Half-fit, which shows the

shortest execution time. The minimum time of Hoard for de-allocation in test

set 2 is 7,407 compared to 743 of Half-fit, which shows the shortest execution

time. The minimum time of tcmalloc for de-allocation in test set 3 is 21,837

compared to 1,068 of First-fit, which shows the shortest execution time.

• Max: The maximum longest execution time for allocation and de-allocation is

shown in Table 4.11, Table 4.12 and Table 4.13, respectively, for all test sets.

The maximum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators. The maximum time of

tcmalloc for allocation in test set 1 is 9,778,916 compared to 768,668 of First-

fit, which shows the shortest execution time. The maximum time of tcmalloc

114

4.3 Temporal Behaviour Analysis

for allocation in test set 2 is 9,123,311 compared to 1,030,918 of nMART,

which shows the shortest execution time. The maximum time of tcmalloc for

allocation in test set 3 is 9,423,513 compared to 1,199,017 of nMART, which

shows the shortest execution time.

In the de-allocation case, the maximum longest execution time of First-fit for

de-allocation in test set 1 is longer than the values for other allocators. The

maximum longest execution time of Best-fit for de-allocation in test set 2 is

longer than the values for other allocators. The maximum longest execution

time of Half-fit for de-allocation in test set 3 is longer than the values for

other allocators. The maximum time of First-fit for de-allocation in test set 1

is 873,224 compared to 385,717 of nMART, which shows the shortest execution

time. The maximum time of Best-fit for de-allocation in test set 2 is 1,081,580

compared to 525,676 of Hoard, which shows the shortest execution time. The

maximum time of Half-fit for de-allocation in test set 3 is 1,203,819 compared

to 583,552 of nMART, which shows the shortest execution time.

cfrac: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 214,628.21 62,189 5,120,950 215,825.32

free 18,129.51 791 492,877 68,650.87

First
malloc 212,368.34 61,479 768,668 155,153.45

free 20,403.42 747 873,224 78,840.46

Half
malloc 220,548.67 59,456 974,629 164,180.54

free 30,197.94 590 659,880 72,069.75

Hoard
malloc 3,340,860.87 2,807,576 4,426,567 467,996.55

free 34,112.69 7,502 603,470 63,650.84

nMART
malloc 328,468.70 106,314 932,996 173,098.01

free 32,936.93 816 385,717 89,598.65

tcmalloc
malloc 8,333,072.35 7,704,663 9,778,916 396,598.48

free 29,139.50 6,637 571,560 54,936.97

TLSF
malloc 284,857.75 106,894 1,189,523 195,152.25

free 29,634.66 625 653,955 79,929.18

Table 4.11: The average malloc()/free() time of Set 1 of cfrac

115

Chapter 4: Evaluation

cfrac: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 375,499.07 66,987 1,213,794 175,446.25

free 51,937.21 942 1,081,580 113,614.27

First
malloc 372,394.14 65,618 1,127,776 176,117.26

free 48,122.62 930 561,142 106,420.45

Half
malloc 399,144.46 73,996 4,969,239 226,092.57

free 87,924.02 743 792,488 129,416.55

Hoard
malloc 3,410,029.91 2,817,640 4,181,108 480,268.48

free 59,236.17 7,407 525,676 98,130.32

nMART
malloc 565,514.03 271,949 1,030,918 214,086.68

free 133,066.10 1,044 625,891 182,361.49

tcmalloc
malloc 8,318,732.25 7,722,250 9,123,311 397,159.83

free 56,876.74 6,777 1,031,921 103,091.05

TLSF
malloc 448,946.68 112,614 1,346,470 240,276.95

free 50,886.25 1,278 907,798 105,336.00

Table 4.12: The average malloc()/free() time of Set 2 of cfrac

cfrac: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 456,267.67 136,423 1,201,060 163,813.70

free 110,602.86 1,128 1,167,753 151,492.62

First
malloc 470,091.62 109,404 5,185,056 224,624.07

free 99,639.90 1,068 1,090,271 141,349.51

Half
malloc 473,908.76 136,420 1,263,521 170,373.70

free 135,897.87 19,987 1,203,819 165,655.78

Hoard
malloc 3,365,642.86 2,779,007 4,523,809 473,715.43

free 86,592.17 7,728 1,143,234 132,026.54

nMART
malloc 633,478.87 367,286 1,199,017 178,467.04

free 198,831.43 19,857 583,552 216,111.72

tcmalloc
malloc 8,307,108.05 7,719,497 9,423,513 402,948.43

free 79,151.61 21,837 603,932 100,009.80

TLSF
malloc 570,979.39 139,536 1,683,677 240,433.16

free 85,303.66 1,225 639,988 139,356.43

Table 4.13: The average malloc()/free() time of Set 3 of cfrac

116

4.3 Temporal Behaviour Analysis

espresso Results Table 4.14, Table 4.15 and Table 4.16 show execution times

obtained for allocation and de-allocation on espresso with each allocator. The exe-

cution times of test set 1 analysis is given in Table 4.14. The execution times of test

set 2 is given in Table 4.15. The execution times of test set 3 is given in Table 4.16.

Results Analysis The following shows the effect of allocation and de-allocation

on time. The unit is the number of processor cycles:

• Average time: The average longest time for allocation and de-allocation is

shown in Table 4.14, Table 4.15 and Table 4.16, respectively, for all test sets.

The average time of tcmalloc for allocation throughout all tests is longer than

the values for other allocators. The average time of tcmalloc for allocation in

test set 1 is 8,502,336.53 compared to 287,067.58 of First-fit, which shows the

shortest average of the longest execution time. The average time of tcmalloc for

allocation in test set 2 is 8,353,023.89 compared to 376,699.75 of First-fit, which

shows the shortest average of the longest execution time. The average time of

tcmalloc for allocation in test set 3 is 8,357,972.13 compared to 708,740.49 of

First-fit, which shows the shortest average of the longest execution time.

In the de-allocation case, the average longest execution time of Half-fit for de-

allocation throughout all tests is longer than the values for other allocators,

while the average longest execution time of tcmalloc for de-allocation through-

out all tests is shorter than the values for other allocators. The average time of

Hoard for de-allocation in test set 1 is 281,605.67 compared to 202,217.10 of tc-

malloc, which shows the minimum average of the longest execution time. The

average time of Half-fit for de-allocation in test set 2 is 398,143.54 compared

to 324,335.71 of tcmalloc, which shows the minimum average of the longest

execution time. The average time of Half-fit for de-allocation in test set 3

is 775,582.14 compared to 654.561.72 of tcmalloc, which shows the minimum

average of the longest execution time.

• Min: The minimum longest execution time for allocation and de-allocation is

shown in Table 4.14, Table 4.15 and Table 4.16, respectively, for all test sets.

117

Chapter 4: Evaluation

The minimum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators, while First-fit shows

the shortest of the longest execution time for de-allocation throughout all test

sets. The minimum time of tcmalloc for allocation in test set 1 is 7,733,015

compared to 49,839 of First-fit, which shows the shortest execution time. The

minimum time of tcmalloc for allocation in test set 2 is 7,715,054 compared

to 51,002 of First-fit, which shows the shortest execution time. The minimum

time of tcmalloc for allocation in test set 3 is 7,762,354 compared to 432,900

of First-fit, which shows the shortest execution time.

In the de-allocation case, the minimum longest execution time of tcmalloc for

de-allocation in test sets 1 and 2 is longer than the values for other allocators.

The minimum longest execution time of Half-fit for de-allocation in test set 3

is longer than the values for other allocators. The minimum time of tcmalloc

for de-allocation in test set 1 is 17,688 compared to 926 of Best-fit, which shows

the shortest execution time. The minimum time of tcmalloc for de-allocation

in test set 2 is 19,772 compared to 2,500 of First-fit, which shows the shortest

execution time. The minimum time of Half-fit for de-allocation in test set 3 is

447,165 compared to 379,366 of tcmalloc, which shows the shortest execution

time.

• Max: The maximum longest execution time for allocation and de-allocation is

shown in Table 4.14, Table 4.15 and Table 4.16, respectively, for all test sets.

The maximum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators. The maximum time

of tcmalloc for allocation in test set 1 is 9,658,963 compared to 641,681 of

nMART, which shows the shortest execution time. The maximum time of tc-

malloc for allocation in test set 2 is 9,564,810 compared to 780,534 of nMART,

which shows the shortest execution time. The maximum time of tcmalloc for

allocation in test set 3 is 14,656,388 compared to 4,973,663 of nMART, which

shows the shortest execution time.

In the de-allocation case, the maximum longest execution time of First-fit for

118

4.3 Temporal Behaviour Analysis

de-allocation in test set 1 is longer than the values for other allocators. The

maximum longest execution time of TLSF for de-allocation in test set 2 is

longer than the values for other allocators. The maximum longest execution

time of tcmalloc for de-allocation in test set 3 is longer than the values for

other allocators. The maximum time of First-fit for de-allocation in test set 1 is

4,987,469 compared to 554,217 of nMART, which shows the shortest execution

time. The maximum time of TLSF for de-allocation in test set 2 is 4,944,250

compared to 617,614 of nMART, which shows the shortest execution time. The

maximum time of tcmalloc for de-allocation in test set 3 is 5,327,664 compared

to 1,284,990 of nMART, which shows the shortest execution time.

espresso: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 316,893.83 52,417 1,357,885 177,761.96

free 237,349.59 926 1,346,874 208,581.09

First
malloc 287,069.58 49,839 1,313,421 185,084.73

free 226,211.48 1,345 4,987,469 254,061.81

Half
malloc 342,056.87 51,578 1,186,206 170,846.11

free 281,605.67 1,973 1,129,344 190,141.45

Hoard
malloc 3,354,796.59 2,805,003 4,270,118 475,756.75

free 220,609.53 5,222 1,105,986 211,036.72

nMART
malloc 279,446.70 90,360 641,681 168,623.42

free 253,164.17 2,104 554,217 204,669.98

tcmalloc
malloc 8,502,336.53 7,733,015 9,658,963 322,049.44

free 202,217.10 17,688 1,099,139 228,887.61

TLSF
malloc 306,888.86 73,707 1,318,821 211,380.87

free 213,621.84 7,055 1,050,580 211,705.12

Table 4.14: The average malloc()/free() time of Set 1 of espresso

gawk Results Table 4.17, Table 4.18 and Table 4.19 show execution times ob-

tained for allocation and de-allocation on gawk with each allocator. The execution

time of test set 1 analysis is given in Table 4.17. The execution times of test set 2

is given in Table 4.18. The execution times of test set 3 is given in Table 4.19.

119

Chapter 4: Evaluation

espresso: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 425,596.04 55,163 1,189,763 140,490.61

free 349,901.25 2,681 1,121,580 160,051.01

First
malloc 376,699.75 51,002 1,080,488 156,193.87

free 353,697.72 2,500 1,688,041 180,930.93

Half
malloc 434,869.05 53,786 1,277,975 139,581.64

free 398,143.54 3,682 1,209,649 149,553.36

Hoard
malloc 3,567,896.06 2,790,053 5,281,388 468,266.79

free 348,448.14 5,372 1,501,541 188,430.56

nMART
malloc 383,483.43 95,733 780,534 132,510.72

free 333,060.00 3,277 617,614 195,047.00

tcmalloc
malloc 8,353,023.89 7,715,054 9,564,810 396,285.24

free 324,335.71 19,772 1,400,689 220,596.95

TLSF
malloc 390,315.28 82,438 1,274,815 165,170.34

free 355,818.81 7,890 4,944,250 232,909.88

Table 4.15: The average malloc()/free() time of Set 2 of espresso

espresso: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 866,891.28 466,864 5,160,904 502,923.82

free 702,400.54 429,080 4,926,442 279,784.84

First
malloc 708,740.49 432,900 5,079,030 313,798.56

free 695,962.75 399,317 5,293,355 312,095.34

Half
malloc 851,022.24 471,749 5,073,612 427,797.40

free 775,582.14 447,165 5,124,217 391,869.31

Hoard
malloc 3,253,162.83 2,763,749 5,024,183 471,538.76

free 731,693.56 425,342 5,218,295 378,408.28

nMART
malloc 861,857.73 495,565 4,973,663 808,102.26

free 744,368.17 451,469 1,284,990 254,618.95

tcmalloc
malloc 8,357,972.13 7,762,354 14,656,388 435,706.87

free 654,561.72 379,366 5,327,664 335,666.84

TLSF
malloc 781,175.95 455,932 5,046,530 399,757.62

free 730,979.13 426,102 5,093,244 447,688.98

Table 4.16: The average malloc()/free() time of Set 3 of espresso

120

4.3 Temporal Behaviour Analysis

Results Analysis The following shows the effect of allocation and de-allocation

on time. The unit is the number of processor cycles:

• Average time: The average longest time for allocation and de-allocation is

shown in Table 4.17, Table 4.18 and Table 4.19, respectively, for all test sets.

The average time of tcmalloc for allocation throughout all tests is longer than

the values for other allocators. The average time of tcmalloc for allocation in

test set 1 is 8,578,420.04 compared to 299,584.07 of First-fit, which shows the

minimum average of the longest execution time. The average time of tcmalloc

for allocation in test set 2 is 11,741,468.32 compared to 676,179.63 of Half-

fit, which shows the minimum average of the longest execution time. The

average time of tcmalloc for allocation in test set 3 is 11,939,380.85 compared

to 760,253.67 of First-fit, which shows the minimum average of the longest

execution time.

In the de-allocation case, the average time of Hoard for de-allocation through-

out test sets 1 and 2 is longer than the values for other allocators. The average

time of TLSF for de-allocation throughout test set 3 is longer than the values

for other allocators. The average time of Hoard for de-allocation in test set 1 is

91,364.24 compared to 38,383.73 of tcmalloc, which shows the minimum aver-

age of the longest execution time. The average time of Hoard for de-allocation

in test set 2 is 542,598.87 compared to 441,309.22 of First-fit, which shows the

minimum average of the longest execution time. The average time of TLSF

for de-allocation in test set 3 is 643,570.56 compared to 528,380.67 of Best-fit,

which shows the minimum average of the longest execution time.

• Min: The minimum longest execution time for allocation and de-allocation is

shown in Table 4.17, Table 4.18 and Table 4.19, respectively, for all test sets.

The minimum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators. The minimum time of

tcmalloc for allocation in test set 1 is 7,760,483 compared to 61,677 of Best-fit,

which shows the shortest execution time. The minimum time of tcmalloc for

allocation in test set 2 is 10,786,211 compared to 356,474 of Half-fit, which

121

Chapter 4: Evaluation

shows the shortest execution time. The minimum time of tcmalloc for alloca-

tion in test set 3 is 10,792,026 compared to 494,305 of First-fit, which shows

the shortest execution time.

In the de-allocation case, the minimum longest execution time of Hoard for

de-allocation in test sets 1 and 2 is longer than the values for other allocators.

The minimum longest execution time of nMART for de-allocation in test set

3 is longer than the values for other allocators. The minimum time of Hoard

for de-allocation in test set 1 is 34,110 compared to 559 of TLSF, which shows

the shortest execution time. The minimum time of Hoard for de-allocation

in test set 2 is 235,306 compared to 2,715 of TLSF, which shows the shortest

execution time. The minimum time of nMART for de-allocation in test set 3

is 383,311 compared to 19,738 of Best-fit, which shows the shortest execution

time.

• Max: The maximum longest execution time for allocation and de-allocation is

shown in Table 4.17, Table 4.18 and Table 4.19, respectively, for all test sets.

The maximum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators. The maximum time

of tcmalloc for allocation in test set 1 is 9,612,900 compared to 1,062,006 of

nMART, which shows the shortest execution time. The maximum time of

tcmalloc for allocation in test set 2 is 31,532,613 compared to 1,530,469 of

nMART, which shows the shortest execution time. The maximum time of

tcmalloc for allocation in test set 3 is 37,213,136 compared to 2,192,928 of

nMART, which shows the shortest execution time.

In the de-allocation case, the maximum longest execution time of Best-fit for

de-allocation in test set 1 is longer than the values for other allocators. The

maximum longest execution time of Hoard for de-allocation in test set 2 is

longer than the values for other allocators. The maximum longest execution

time of Half-fit for de-allocation in test set 3 is longer than the values for

other allocators. The maximum time of Best-fit for de-allocation in test set 1 is

1,136,916 compared to 561,612 of nMART, which shows the shortest execution

122

4.3 Temporal Behaviour Analysis

time. The maximum time of Hoard for de-allocation in test set 2 is 5,162,480

compared to 630,654 of nMART, which shows the shortest execution time. The

maximum time of Half-fit for de-allocation in test set 3 is 5,202,690 compared

to 1,042,077 of nMART, which shows the shortest execution time.

gawk: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 306,953.30 61,677 1,163,320 169,140.66

free 53,577.29 3,569 1,136,916 115,949.07

First
malloc 299,584.07 69,820 1,141,155 168,365.80

free 50,509.65 3,576 660,294 106,255.84

Half
malloc 319,088.10 67,220 5,001,510 226,514.10

free 66,156.24 3,118 1,123,960 142,402.00

Hoard
malloc 3,398,034.02 2,786,993 4,324,692 475,182.68

free 91,364.24 34,110 1,012,183 120,372.42

nMART
malloc 478,174.90 198,038 1,062,006 213,122.78

free 38,852.23 607 561,612 120,575.34

tcmalloc
malloc 8,578,420.04 7,760,483 9,612,900 273,143.78

free 38,383.73 6,208 733,301 103,279.23

TLSF
malloc 413,712.61 126,014 1,294,939 224,968.66

free 41,143.60 559 750,538 127,552.98

Table 4.17: The average malloc()/free() time of Set 1 of gawk

p2c Results Table 4.20, Table 4.21 and Table 4.22 show execution times ob-

tained for allocation and de-allocation on p2c with each allocator. The execution

time of test set 1 analysis is given in Table 4.20. The execution times of test set 2

is given in Table 4.21. The execution times of test set 3 is given in Table 4.22.

Results Analysis The following shows the effect of allocation and de-allocation

on time. The unit is the number of processor cycles:

• Average time: The average longest times for allocation and de-allocation is

shown in Table 4.20, Table 4.21 and Table 4.22, respectively, for all test sets.

The average time of tcmalloc for allocation throughout all tests is longer than

the values for other allocators. The average time of tcmalloc for allocation

123

Chapter 4: Evaluation

gawk: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 680,430.67 359,788 5,221,906 200,719.17

free 446,963.64 4,333 5,070,667 204,261.50

First
malloc 691,628.79 392,423 5,216,926 237,014.75

free 441,309.22 19,793 1,243,975 155,979.47

Half
malloc 676,179.63 356,474 5,284,900 200,245.38

free 475,240.41 3,885 4,932,226 185,967.19

Hoard
malloc 3,363,651.74 2,803,385 4,339,793 461,334.05

free 542,598.87 235,306 5,162,480 268,426.83

nMART
malloc 934,034.77 594,950 1,530,469 194,351.11

free 465,438.33 241,495 630,654 83,076.73

tcmalloc
malloc 11,731,468.32 10,786,211 31,532,613 920,187.02

free 483,435.10 22,949 5,100,050 219,520.47

TLSF
malloc 929,580.24 463,123 1,924,966 211,810.62

free 517,904.13 2,715 1,174,107 136,193.51

Table 4.18: The average malloc()/free() time of Set 2 of gawk

gawk: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 785,513.37 503,558 5,234,231 259,795.24

free 528,380.67 19,738 1,267,111 136,384.23

First
malloc 760,253.67 494,305 5,242,546 277,609.92

free 536,186.47 19,873 5,095,696 191,572.73

Half
malloc 767,245.01 496,771 5,073,434 212,932.14

free 569,403.67 250,628 5,202,690 249,462.83

Hoard
malloc 3,354,691.81 2,784,054 4,972,763 474,551.79

free 623,393.88 269,168 1,381,371 182,584.12

nMART
malloc 1,261,376.33 931,757 2,192,928 278,863.45

free 607,860.87 383,311 1,042,077 164,418.96

tcmalloc
malloc 11,939,380.85 10,792,026 37,213,136 1,602,598.31

free 601,423.14 29,149 1,627,890 159,608.13

TLSF
malloc 1,349,688.49 847,136 5,175,018 385,390.41

free 643,570.56 371,705 5,120,053 199,556.89

Table 4.19: The average malloc()/free() time of Set 3 of gawk

124

4.3 Temporal Behaviour Analysis

in test set 1 is 8,348,306.46 compared to 296,586.89 of Best-fit, which shows

the minimum average of the longest execution time. The average time of

tcmalloc for allocation in test set 2 is 8,367,276.31 compared to 404,693.67 of

TLSF, which shows the minimum average of the longest execution time. The

average time of tcmalloc for allocation in test set 3 is 8,375,375.20 compared

to 632,419.60 of First-fit, which shows the minimum average of the longest

execution time.

In the de-allocation case, the average longest execution time of Hoard for de-

allocation throughout test set 1 is longer than the values for other allocators.

The average longest execution time of Half-fit for de-allocation throughout test

sets 2 and 3 is longer than the values for other allocators. The average time

of Hoard for de-allocation in test set 1 is 36,704.45 compared to 14,255.77 of

nMART, which shows the minimum average of the longest execution time. The

average time of Half-fit for de-allocation in test set 2 is 117,247.01 compared

to 34,729.50 of nMART, which shows the minimum average of the longest

execution time. The average time of Half-fit for de-allocation in test set 3

is 371,065.01 compared to 276,477.62 of tcmalloc, which shows the minimum

average of the longest execution time.

• Min: The minimum longest execution time for allocation and de-allocation is

shown in Table 4.20, Table 4.21 and Table 4.22, respectively, for all test sets.

The minimum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators. The minimum time of

tcmalloc for allocation in test set 1 is 7,676,006 compared to 47,640 of First-fit,

which shows the shortest execution time. The minimum time of tcmalloc for

allocation in test set 2 is 7,749,307 compared to 49,848 of First-fit, which shows

the shortest execution time. The minimum time of tcmalloc for allocation in

test set 3 is 7,723,173 compared to 103,537 of TLSF, which shows the shortest

execution time.

In the de-allocation case, the minimum longest execution time of Hoard for

de-allocation in test sets 1 and 2 is longer than the values for other allocators.

125

Chapter 4: Evaluation

The minimum longest execution time of tcmalloc for de-allocation in test set 3

is longer than the values for other allocators. The minimum time of Hoard for

de-allocation in test set 1 is 11,481 compared to 921 of TLSF, which shows the

shortest execution time. The minimum time of Hoard for de-allocation in test

set 2 is 11,732 compared to 922 of TLSF, which shows the shortest execution

time. The minimum time of tcmalloc for de-allocation in test set 3 is 27,142

compared to 12,084 of Hoard, which shows the shortest execution time.

• Max: The maximum longest execution time for allocation and de-allocation is

shown in Table 4.20, Table 4.21 and Table 4.22, respectively, for all test sets.

The maximum longest execution time of tcmalloc for allocation throughout

all tests is longer than the values for other allocators. The maximum time

of tcmalloc for allocation in test set 1 is 9,674,195 compared to 1,057,949

of First-fit, which shows the shortest execution time. The maximum time

of tcmalloc for allocation in test set 2 is 9,345,380 compared to 914,276 of

nMART, which shows the shortest execution time. The maximum time of

tcmalloc for allocation in test set 3 is 10,233,936 compared to 1,107,103 of

nMART, which shows the shortest execution time.

In the de-allocation case, the maximum longest execution time of TLSF for

de-allocation in test sets 1 and 3 is longer than the values for other allocators.

The maximum longest execution time of Half-fit for de-allocation in test set

2 is longer than the values for other allocators. The maximum time of TLSF

for de-allocation in test set 1 is 1,060,541 compared to 361,204 of nMART,

which shows the shortest execution time. The maximum time of Half-fit

for de-allocation in test set 2 is 5,114,481 compared to 502,192 of nMART,

which shows the shortest execution time. The maximum time of TLSF for

de-allocation in test set 3 is 5,205,056 compared to 703,563 of nMART, which

shows the shortest execution time.

In summary, a type of memory allocator, which uses a per-thread heap with

multiple size classes of small sizes of free blocks, usually shows worse performance

in the worst case scenarios than a type of memory allocator using a global heap

126

4.3 Temporal Behaviour Analysis

p2c: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 296,586.89 48,093 1,143,657 232,264.09

free 18,908.12 2,332 656,752 85,218.86

First
malloc 323,072.56 47,640 1,057,949 229,765.80

free 17,987.45 2,319 675,839 82,684.92

Half
malloc 353,847.11 49,727 1,273,113 229,273.95

free 22,448.45 1,007 683,932 56,582.74

Hoard
malloc 3,330,697.84 2,752,022 4,705,648 469,676.24

free 36,704.45 11,481 732,691 94,437.62

nMART
malloc 400,715.37 95,749 1,069,550 278,448.26

free 14,255.77 1,289 361,204 65,615.55

tcmalloc
malloc 8,348,306.46 7,676,006 9,674,195 392,031.99

free 31,716.12 6,620 693,072 99,092.67

TLSF
malloc 309,124.02 86,378 1,255,863 243,522.17

free 28,895.32 921 1,060,541 122,478.76

Table 4.20: The average malloc()/free() time of Set 1 of p2c

p2c: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 429,851.42 53,694 1,248,437 219,375.56

free 61,592.67 2,278 783,132 149,519.53

First
malloc 434,348.29 49,848 1,168,484 232,081.91

free 59,414.01 2,383 1,067,850 152,547.75

Half
malloc 485,641.41 53,530 1,268,345 208,298.36

free 117,247.01 1,307 5,114,481 258,111.10

Hoard
malloc 3,304,142.17 2,769,887 4,324,017 458,917.05

free 74,201.62 11,732 1,128,328 158,403.59

nMART
malloc 529,538.10 151,604 914,276 233,210.28

free 34,729.50 1,267 502,192 88,432.83

tcmalloc
malloc 8,367,276.31 7,749,307 9,345,380 379,348.60

free 67,964.26 6,767 998,013 158,403.55

TLSF
malloc 404,693.67 92,683 1,210,880 252,325.06

free 67,885.66 922 875,079 172,547.88

Table 4.21: The average malloc()/free() time of Set 2 of p2c

127

Chapter 4: Evaluation

p2c: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 680,409.91 388,870 5,000,315 211,483.50

free 321,406.10 19,808 4,970,134 263,644.65

First
malloc 632,419.60 144,270 1,259,328 148,124.80

free 307,941.78 19,831 1,193,373 212,794.77

Half
malloc 652,864.04 159,291 1,222,243 145,474.44

free 371,065.10 19,983 1,179,346 195,712.12

Hoard
malloc 3,295,687.61 2,766,864 4,285,355 447,843.58

free 303,209.61 12,084 1,221,773 229,451.99

nMART
malloc 749,627.47 374,411 1,107,103 172,329.75

free 340,936.80 20,321 703,563 194,154.58

tcmalloc
malloc 8,375,375.20 7,723,173 10,233,936 388,132.71

free 276,477.62 27,142 1,192,790 223,185.43

TLSF
malloc 664,806.50 103,537 5,067,908 265,226.95

free 368,255.21 19,726 5,205,056 296,480.66

Table 4.22: The average malloc()/free() time of Set 3 of p2c

because they perform more operations to maintain multiple heaps and the various

small size classes. They also prepare some space for pre-defined size of classes at

the first execution of the algorithms. For these reasons, overall, tcmalloc and Hoard

show worse performance throughout all test sets. nMART avoids the overheads by

allocating a 4k block (as a per-thread heap) and splitting any allocation requests to

small sizes when required.

4.3.2 Total Execution Time

As with the above experiments, this experiment is executed using different real ap-

plications with test sets 1 to 3. Each application was executed 1,000 times with

the same allocator repeatedly; therefore, each application was executed 7,000 times

with seven different allocators in total. In the individual execution, we measure the

total execution time of allocation and de-allocation in each application execution.

For instance, in test set 1 of cfrac in Table 4.5, the application invokes the malloc()

function 1,528 times. During 1,528 function calls, we collect each execution time for

128

4.3 Temporal Behaviour Analysis

allocation and de-allocation practically, accumulating it for the whole application

lifetime. After that, we collect statistics of the average of a thousand execution

times spent, as well as the minimum and the maximum total execution time in a

thousand total execution times as the application is executed 1,000 times.

cfrac Results Table 4.23, Table 4.24 and Table 4.25 show measured execution

times for allocation and de-allocation on cfrac with each allocator. The execution

times of test set 1 analysis is given in Table 4.23. The execution time of test set 2

is given in Table 4.24. The execution times of test set 3 is given in Table 4.25.

Results Analysis The following shows the effect of allocation and de-allocation

on time. The unit is the number of processor cycles:

• Average time: The average total execution time for allocation and de-allocation

is shown in Table 4.23, Table 4.24 and Table 4.25, respectively, for all test

sets. The average time of tcmalloc for allocation throughout test sets 1 and

2 is longer than the values for other allocators. The average time of Half-fit

for allocation in test set 3 is longer than the values for other allocators. The

average time of tcmalloc for allocation in test set 1 is 9,068,004.11 compared to

1,362,989.48 of TLSF, which shows the minimum average of the total execution

time. The average time of tcmalloc for allocation in test set 2 is 11,056,006.17

compared to 4,235,375.31 of TLSF, which shows the minimum average of the

total execution time. The average time of Half-fit for allocation in test set 3 is

23,641,909.73 compared to 6,355,733.38 of Hoard, which shows the minimum

average of the total execution time.

In the de-allocation case, the average total execution time of Half-fit for de-

allocation throughout all test sets is longer than the values for other allocators,

while the average total execution time of tcmalloc for de-allocation throughout

all test sets is shorter than the values for other allocators. The average time

of Half-fit for de-allocation in test set 1 is 465,183.38 compared to 278,470.79

of tcmalloc, which shows the minimum average of the total execution time.

The average time of Half-fit for de-allocation in test set 2 is 1,891,632.57

129

Chapter 4: Evaluation

compared to 883,677.97 of tcmalloc, which shows the minimum average of the

total execution time. The average time of Half-fit for de-allocation in test

set 3 is 3,318,209.85 compared to 1,422,679.27 of tcmalloc, which shows the

minimum average of the total execution time.

• Min: The minimum total execution time for allocation and de-allocation is

shown in Table 4.23, Table 4.24 and Table 4.25, respectively, for all test sets.

The minimum total execution time of tcmalloc for allocation throughout test

sets 1 and 2 is longer than the values for other allocators. The minimum total

execution time of Half-fit for allocation throughout test set 3 is longer than

the values for other allocators. The minimum time of tcmalloc for allocation in

test set 1 is 8,313,746 compared to 981,488 of TLSF, which shows the shortest

execution time. The minimum time of tcmalloc for allocation in test set 2 is

9,951,086 compared to 3,178,937 of TLSF, which shows the shortest execution

time. The minimum time of Half-fit for allocation in test set 3 is 21,672,745

compared to 5,602,864 of Hoard, which shows the shortest execution time.

In the de-allocation case, the minimum total execution time of Half-fit for de-

allocation throughout all test sets is longer than the values for other allocators,

while the average total execution time of tcmalloc for de-allocation throughout

all test sets is shorter than the values for other allocators. The minimum time

of Half-fit for de-allocation in test set 1 is 422,931 compared to 226,191 of

tcmalloc, which shows the shortest execution time. The minimum time of

Half-fit for de-allocation in test set 2 is 1,745,561 compared to 786,504 of

tcmalloc, which shows the shortest execution time. The minimum time of

Half-fit for de-allocation in test set 3 is 3,056,451 compared to 1,338,329 of

tcmalloc, which shows the shortest execution time.

• Max: The maximum total execution time for allocation and de-allocation is

shown in Table 4.23, Table 4.24 and Table 4.25, respectively, for all test sets.

The maximum total execution time of tcmalloc for allocation throughout test

set 1 is longer than the values for other allocators. The maximum total exe-

cution time of Best-fit for allocation throughout test set 2 is longer than the

130

4.3 Temporal Behaviour Analysis

values for other allocators. The maximum total execution time of Half-fit for

allocation throughout test set 3 is longer than the values for other allocators.

The maximum time of tcmalloc for allocation in test set 1 is 10,601,363 com-

pared to 2,863,908 of TLSF, which shows the shortest execution time. The

maximum time of Best-fit for allocation in test set 2 is 18,812,924 compared to

6,496,255 of Hoard, which shows the shortest execution time. The maximum

time of Half-fit for allocation in test set 3 is 29,816,957 compared to 8,334,062

of Hoard, which shows the shortest execution time.

In the de-allocation case, the maximum total execution time of First-fit for

de-allocation in test set 1 is longer than the values for other allocators. The

maximum total execution time of Half-fit for de-allocation in test sets 2 and 3

is longer than the values for other allocators. The maximum time of First-fit

for de-allocation in test set 1 is 1,216,252 compared to 723,791 of nMART,

which shows the shortest execution time. The maximum time of Half-fit for

de-allocation in test set 2 is 2,634,833 compared to 1,850,802 of Hoard, which

shows the shortest execution time. The maximum time of Half-fit for de-

allocation in test set 3 is 4,581,187 compared to 1,948,382 of tcmalloc, which

shows the shortest execution time.

espresso Results Table 4.26, Table 4.27 and Table 4.28 show measured exe-

cution times for allocation and de-allocation on espresso with each allocator. The

execution time of test set 1 analysis is given in Table 4.26. The execution times of

test set 2 is given in Table 4.27. The execution times of test set 3 is given in Table

4.28.

Results Analysis The following shows the effect of allocation and de-allocation

on time. The unit is the number of processor cycles:

• Average time: The average total execution time for allocation and de-allocation

is shown in Table 4.26, Table 4.27 and Table 4.28, respectively, for all test sets.

The average time of tcmalloc for allocation throughout test set 1 is longer than

the values for other allocators. The average time of Half-fit for allocation in

131

Chapter 4: Evaluation

cfrac: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 2,219,635.33 1,824,604 8,168,481 452,869.46

free 336,111.18 312,963 825,239 70,182.49

First
malloc 2,193,971.88 1,773,319 8,735,528 434,222.92

free 338,530.64 313,589 1,216,252 80,779.73

Half
malloc 2,354,737.36 1,940,285 8,915,013 415,209.69

free 465,183.38 422,931 1,093,790 77,064.64

Hoard
malloc 3,921,714.99 3,340,193 5,010,571 460,134.45

free 343,168.98 260,694 963,845 76,565.61

nMART
malloc 2,282,401.37 1,793,824 3,110,846 371,477.45

free 356,567.87 315,572 723,791 97,805.53

tcmalloc
malloc 9,068,004.11 8,313,746 10,601,363 446,531.90

free 278,470.79 226,191 820,776 58,585.40

TLSF
malloc 1,362,989.48 981,488 2,863,908 326,534.16

free 304,354.39 265,916 945,942 83,957.60

Table 4.23: The average of total malloc()/free() time for cfrac test set 1

cfrac: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 10,112,049.11 8,946,018 18,812,924 851,785.41

free 1,337,827.13 1,264,884 2,354,727 121,555.36

First
malloc 10,005,855.94 8,836,405 18,081,181 864,049.31

free 1,332,742.83 1,265,523 1,900,858 115,795.34

Half
malloc 10,640,629.54 9,491,472 18,337,499 852,773.19

free 1,891,632.57 1,745,561 2,634,833 140,133.28

Hoard
malloc 5,222,969.72 4,532,544 6,496,255 470,055.34

free 1,240,848.76 1,020,360 1,850,802 166,613.59

nMART
malloc 5,719,923.60 5,448,601 7,008,062 564,250.27

free 1,615,873.70 1,309,851 2,120,325 232,490.95

tcmalloc
malloc 11,056,006.17 9,951,086 13,301,670 607,346.38

free 883,677.97 786,504 1,853,460 108,585.57

TLSF
malloc 4,235,375.31 3,178,937 7,217,319 565,490.01

free 1,096,864.76 1,029,125 1,970,071 115,199.39

Table 4.24: The average of total malloc()/free() time for cfrac test set 2

132

4.3 Temporal Behaviour Analysis

cfrac: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 22,537,314.81 20,812,953 28,194,513 1,044,212.73

free 2,386,671.52 2,215,621 3,455,138 170,016.09

First
malloc 22,432,607.76 20,483,759 28,408,566 1,083,020.43

free 2,365,372.65 2,212,800 3,396,221 160,552.25

Half
malloc 23,651,909.73 21,672,745 29,816,957 1,058,659.01

free 3,318,209.85 3,056,451 4,581,187 196,463.43

Hoard
malloc 6,355,733.38 5,602,864 8,334,062 519,346.51

free 1,938,006.30 1,747,350 3,280,756 212,613.66

nMART
malloc 8,938,137.73 6,632,436 13,391,493 763,575.67

free 3,187,592.87 2,703,907 3,985,800 297,058.23

tcmalloc
malloc 12,844,142.80 11,490,354 15,389,955 704,011.56

free 1,422,679.27 1,338,329 1,948,382 113,484.78

TLSF
malloc 7,227,047.45 5,683,482 12,468,744 798,793.16

free 1,929,864.22 1,785,515 3,000,045 170,032.99

Table 4.25: The average of total malloc()/free() time for cfrac test set 3

test sets 2 and 3 is longer than the values for other allocators. The aver-

age time of tcmalloc for allocation in test set 1 is 14,670,130.96 compared to

6,549,822.43 of TLSF, which shows the minimum average of the total execution

time. The average time of Half-fit for allocation in test set 2 is 30,834,373.92

compared to 15,156,754.04 of TLSF, which shows the minimum average of the

total execution time. The average time of Half-fit for allocation in test set

3 is 862,967,947.65 compared to 302,131,117.47 of tcmalloc, which shows the

minimum average of the total execution time.

In the de-allocation case, the average total execution time of Half-fit for de-

allocation throughout all test sets is longer than the values for other allocators,

while the average total execution time of tcmalloc for de-allocation throughout

all test sets is shorter than the values for other allocators. The average time of

Half-fit for de-allocation in test set 1 is 9,015,318.13 compared to 4,182,505.25

of tcmalloc, which shows the minimum average of the total execution time.

The average time of Half-fit for de-allocation in test set 2 is 22,783,161.78

133

Chapter 4: Evaluation

compared to 9,886,048.68 of tcmalloc, which shows the minimum average of

the total execution time. The average time of Half-fit for de-allocation in test

set 3 is 410,607,470.70 compared to 267,100,185.80 of tcmalloc, which shows

the minimum average of the total execution time.

• Min: The minimum total execution time for allocation and de-allocation is

shown in Table 4.26, Table 4.27 and Table 4.28, respectively, for all test sets.

The minimum total execution time of tcmalloc for allocation throughout test

set 1 is longer than the values for other allocators. The minimum total execu-

tion time of Half-fit for allocation throughout test sets 2 and 3 is longer than

the values for other allocators. The minimum time of tcmalloc for allocation

in test set 1 is 13,172,530 compared to 5,991,619 of TLSF, which shows the

shortest execution time. The minimum time of Half-fit for allocation in test

set 2 is 29,339,010 compared to 14,201,387 of TLSF, which shows the shortest

execution time. The minimum time of Half-fit for allocation in test set 3 is

839,115,005 compared to 293,516,411 of tcmalloc, which shows the shortest

execution time.

In the de-allocation case, the minimum total execution time of Half-fit for de-

allocation throughout all test sets is longer than the values for other allocators,

while the average total execution time of tcmalloc for de-allocation throughout

all test sets is shorter than the values for other allocators. The minimum time

of Half-fit for de-allocation in test set 1 is 8,509,403 compared to 3,907,238

of tcmalloc, which shows the shortest execution time. The minimum time

of Half-fit for de-allocation in test set 2 is 21,737,415 compared to 9,286,535

of tcmalloc, which shows the shortest execution time. The minimum time of

Half-fit for de-allocation in test set 3 is 602,756,763 compared to 260,335,795

of tcmalloc, which shows the shortest execution time.

• Max: The maximum total execution time for allocation and de-allocation is

shown in Table 4.26, Table 4.27 and Table 4.28, respectively, for all test sets.

The maximum total execution time of tcmalloc for allocation throughout test

set 1 is longer than the values for other allocators. The maximum total execu-

134

4.3 Temporal Behaviour Analysis

tion time of Half-fit for allocation throughout test sets 2 and 3 is longer than

the values for other allocators. The maximum time of tcmalloc for allocation

in test set 1 is 17,586,676 compared to 8,281,692 of nMART, which shows the

shortest execution time. The maximum time of Half-fit for allocation in test

set 2 is 33,140,180 compared to 16,870,230 of TLSF, which shows the shortest

execution time. The maximum time of Half-fit for allocation in test set 3 is

955,106,435 compared to 311,128,073 of tcmalloc, which shows the shortest

execution time.

In the de-allocation case, the maximum total execution time of First-fit for

de-allocation in test set 1 is longer than the values for other allocators. The

maximum total execution time of Half-fit for de-allocation in test sets 2 and 3

is longer than the values for other allocators, while the average total execution

time of tcmalloc for de-allocation throughout all test sets is shorter than the

values for other allocators. The maximum time of First-fit for de-allocation

in test set 1 is 11,292,341 compared to 5,941,112 of tcmalloc, which shows the

shortest execution time. The maximum time of Half-fit for de-allocation in

test set 2 is 24,919,366 compared to 11,810,741 of tcmalloc, which shows the

shortest execution time. The maximum time of Half-fit for de-allocation in

test set 3 is 631,444,518 compared to 277,782,572 of tcmalloc, which shows the

shortest execution time.

gawk Results Table 4.29, Table 4.30 and Table 4.31 show measured execution

times for allocation and de-allocation on gawk with each allocator. The execution

time of test set 1 analysis is given in Table 4.29. The execution times of test set 2

is given in Table 4.30. The execution times of test set 3 is given in Table 4.31.

Results Analysis The following shows the effect of allocation and de-allocation

on time. The unit is the number of processor cycles:

• Average time: The average total execution time for allocation and de-allocation

is shown in Table 4.29, Table 4.30 and Table 4.31, respectively, for all test sets.

The average time of tcmalloc for allocation throughout test set 1 is longer than

135

Chapter 4: Evaluation

espresso: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 10,328,312.53 9,644,153 12,938,000 442,094.10

free 6,537,953.84 6,159,023 7,859,629 325,639.11

First
malloc 7,550,581.13 7,046,240 9,951,857 391,775.81

free 6,586,638.37 6,237,763 11,292,341 356,683.61

Half
malloc 12,640,430.64 11,832,613 14,711,244 450,860.45

free 9,015,318.13 8,509,403 10,561,103 367,310.15

Hoard
malloc 9,661,677.64 8,647,227 11,854,106 583,821.88

free 5,764,900.01 5,373,793 7,156,634 328,415.41

nMART
malloc 7,441,275.90 6,970,673 8,281,692 407,161.98

free 6,017,620.63 5,595,553 7,274,812 424,721.58

tcmalloc
malloc 14,670,130.96 13,172,530 17,586,676 629,824.20

free 4,182,505.25 3,907,238 5,941,112 299,195.90

TLSF
malloc 6,549,822.43 5,991,619 8,630,935 414,204.54

free 5,628,939.71 5,300,274 6,989,488 305,383.76

Table 4.26: The average of total malloc()/free() time for espresso test set 1

espresso: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 26,379,216.30 24,796,207 29,205,872 730,736.19

free 16,038,254.18 15,228,243 18,188,727 453,431.82

First
malloc 17,584,439.04 16,660,367 20,295,355 528,887.86

free 16,314,920.34 15,502,503 17,999,487 486,695.20

Half
malloc 30,834,373.92 29,339,010 33,140,180 691,691.49

free 22,783,161.78 21,737,415 24,919,366 556,367.15

Hoard
malloc 16,936,101.18 15,407,714 19,277,000 595,232.68

free 13,759,930.21 12,901,015 16,110,194 494,866.33

nMART
malloc 16,765,343.77 15,947,878 17,625,455 464,955.15

free 14,440,379.77 13,783,375 15,349,685 450,898.30

tcmalloc
malloc 20,737,105.33 19,371,462 23,924,919 604,706.05

free 9,886,048.68 9,286,535 11,810,741 426,149.73

TLSF
malloc 15,156,754.04 14,201,387 16,879,230 505,696.63

free 13,673,867.85 12,884,928 18,494,313 484,922.80

Table 4.27: The average of total malloc()/free() time for espresso test set 2

136

4.3 Temporal Behaviour Analysis

espresso: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 843,847,646.09 824,496,036 885,794,752 9,927,614.48

free 434,108,268.84 425,839,310 444,569,488 2,856,866.65

First
malloc 466,844,500.37 456,103,209 483,537,298 3,285,092.48

free 435,319,612.56 426,407,147 453,382,335 3,051,587.22

Half
malloc 862,967,947.65 839,115,005 955,106,435 10,279,981.45

free 612,756,957.28 602,756,763 631,444,518 3,845,383.12

Hoard
malloc 367,371,952.02 356,880,799 384,458,752 4,446,923.37

free 410,607,470.70 401,136,569 433,555,377 5,391,360.14

nMART
malloc 462,057,571.57 455,916,470 475,354,206 4,047,006.58

free 410,712,786.90 405,434,101 417,533,722 2,710,206.44

tcmalloc
malloc 302,131,117.47 293,516,411 311,128,073 2,447,882.64

free 267,100,185.80 260,335,795 277,782,572 2,151,746.14

TLSF
malloc 414,795,447.03 405,313,569 437,529,858 3,370,184.19

free 374,455,818.16 366,084,603 392,430,367 3,293,050.02

Table 4.28: The average of total malloc()/free() time for espresso test set 3

the values for other allocators. The average time of Half-fit for allocation in

test sets 2 and 3 is longer than the values for other allocators. The aver-

age time of tcmalloc for allocation in test set 1 is 11,265,358.83 compared to

3,219,690.93 of TLSF, which shows the minimum average of the total execution

time. The average time of Half-fit for allocation in test set 2 is 93,536,655.11

compared to 33,022,243.59 of Hoard, which shows the minimum average of

the total execution time. The average time of Half-fit for allocation in test

set 3 is 178,801,586.82 compared to 59,322,385.67 of Hoard, which shows the

minimum average of the total execution time.

In the de-allocation case, the average total execution time of Half-fit for de-

allocation throughout test sets 1 and 2 is longer than the values for other allo-

cators. The average total execution time of TLSF for de-allocation through-

out test set 3 is longer than the values for other allocators, while the average

total execution time of tcmalloc for de-allocation throughout all test sets is

shorter than the values for other allocators. The average time of Half-fit for

137

Chapter 4: Evaluation

de-allocation in test set 1 is 1,133,643.32 compared to 619,214.35 of tcmalloc,

which shows the minimum average of the total execution time. The aver-

age time of Half-fit for de-allocation in test set 2 is 33,975,761.58 compared

to 20,018,277.09 of tcmalloc, which shows the minimum average of the total

execution time. The average time of TLSF for de-allocation in test set 3 is

72,968,984.60 compared to 39,058,631.20 of tcmalloc, which shows the mini-

mum average of the total execution time.

• Min: The minimum total execution time for allocation and de-allocation is

shown in Table 4.29, Table 4.30 and Table 4.31, respectively, for all test sets.

The minimum total execution time of tcmalloc for allocation throughout test

set 1 is longer than the values for other allocators. The minimum of total

execution time of Half-fit for allocation throughout test sets 2 and 3 is longer

than the values for other allocators. The minimum time of tcmalloc for allo-

cation in test set 1 is 9,877,625 compared to 2,567,746 of TLSF, which shows

the shortest execution time. The minimum time of Half-fit for allocation in

test set 2 is 88,465,725 compared to 30,342,070 of Hoard, which shows the

shortest execution time. The minimum time of Half-fit for allocation in test

set 3 is 169,767,938 compared to 55,160,997 of Hoard, which shows the shortest

execution time.

In the de-allocation case, the minimum total execution time of Half-fit for de-

allocation throughout test sets 1 and 2 is longer than the values for other allo-

cators. The minimum total execution time of TLSF for de-allocation through-

out test set 3 is longer than the values for other allocators, while the average

total execution time of tcmalloc for de-allocation throughout all test sets is

shorter than the values for other allocators. The minimum time of Half-fit

for de-allocation in test set 1 is 1,034,898 compared to 575,811 of tcmalloc,

which shows the shortest execution time. The minimum time of Half-fit for

de-allocation in test set 2 is 32,049,395 compared to 18,679,242 of tcmalloc,

which shows the shortest execution time. The minimum time of TLSF for

de-allocation in test set 3 is 67,495,459 compared to 36,333,583 of tcmalloc,

which shows the shortest execution time.

138

4.3 Temporal Behaviour Analysis

• Max: The maximum total execution time for allocation and de-allocation is

shown in Table 4.29, Table 4.30 and Table 4.31, respectively, for all test sets.

The maximum total execution time of tcmalloc for allocation throughout test

set 1 is longer than the values for other allocators. The maximum total execu-

tion time of Half-fit for allocation throughout test sets 2 and 3 is longer than

the values for other allocators. The maximum time of tcmalloc for allocation

in test set 1 is 13,714,334 compared to 5,181,362 of nMART, which shows the

shortest execution time. The maximum time of Half-fit for allocation in test

set 2 is 111,6135,733 compared to 37,357,520 of Hoard, which shows the short-

est execution time. The maximum time of Half-fit for allocation in test set

3 is 203,002,792 compared to 66,089,745 of Hoard, which shows the shortest

execution time.

In the de-allocation case, the maximum total execution time of Half-fit for

de-allocation in test sets 1 and 2 is longer than the values for other allocators.

The maximum total execution time of TLSF for de-allocation in test set 3 is

longer than the values for other allocators, while the average total execution

time of tcmalloc for de-allocation throughout all test sets is shorter than the

values for other allocators. The maximum time of Half-fit for de-allocation

in test set 1 is 2,182,718 compared to 1,220,199 of nMART, which shows the

shortest execution time. The maximum time of Half-fit for de-allocation in

test set 2 is 39,902,071 compared to 25,450,369 of tcmalloc, which shows the

shortest execution time. The maximum time of TLSF for de-allocation in

test set 3 is 84,677,618 compared to 43,690,615 of tcmalloc, which shows the

shortest execution time.

p2c Results Table 4.32, Table 4.33 and Table 4.34 show measured execution

times for allocation and de-allocation on p2c with each allocator. The execution

time of test set 1 analysis is given in Table 4.32. The execution times of test set 2

is given in Table 4.33. The execution times of test set 3 is given in Table 4.34.

Results Analysis The following shows the effect of allocation and de-allocation

on time. The unit is the number of processor cycles:

139

Chapter 4: Evaluation

gawk: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 4,004,168.65 3,326,082 5,581,117 319,674.13

free 784,970.30 712,115 1,874,873 127,229.80

First
malloc 3,875,239.83 3,266,832 6,052,402 320,310.49

free 798,982.80 722,974 1,431,708 113,666.49

Half
malloc 4,597,032.68 3,956,949 9,619,640 375,456.03

free 1,133,643.32 1,034,898 2,182,718 158,332.48

Hoard
malloc 5,633,024.10 4,774,550 7,534,736 529,870.93

free 1,026,283.37 930,000 2,014,151 143,145.47

nMART
malloc 4,350,778.03 3,625,369 5,181,362 424,619.84

free 723,030.60 657,718 1,220,199 130,595.64

tcmalloc
malloc 11,265,358.83 9,877,625 13,714,334 577,914.92

free 619,214.35 575,811 1,336,600 106,386.76

TLSF
malloc 3,219,690.93 2,567,746 6,899,505 431,800.94

free 788,654.38 721,705 1,672,622 133,518.00

Table 4.29: The average of total malloc()/free() time for gawk test set 1

gawk: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 77,652,202.14 72,090,100 92,744,466 2,520,010.46

free 23,874,023.79 22,408,569 28,630,504 715,956.77

First
malloc 91,630,822.58 85,161,733 103,113,256 2,435,126.61

free 24,688,437.70 23,266,066 27,449,853 701,456.81

Half
malloc 93,536,655.11 88,465,725 116,135,733 2,462,966.22

free 33,975,761.58 32,049,395 39,902,071 856,844.32

Hoard
malloc 33,022,243.59 30,342,070 37,357,520 1,095,715.25

free 30,583,551.06 28,345,035 38,402,113 1,078,810.53

nMART
malloc 65,622,199.33 61,257,440 81,409,187 2,710,888.32

free 23,528,674.20 21,858,185 27,575,051 1,420,528.59

tcmalloc
malloc 63,961,514.05 58,154,229 104,167,706 2,738,466.07

free 20,018,277.09 18,679,242 25,450,369 710,908.08

TLSF
malloc 59,626,468.82 53,367,232 75,364,016 2,565,426.78

free 26,278,313.25 23,877,076 29,828,019 1,079,320.69

Table 4.30: The average of total malloc()/free() time for gawk test set 2

140

4.3 Temporal Behaviour Analysis

gawk: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 146,307,777.65 138,162,948 164,115,947 3,757,203.22

free 46,289,994.15 43,311,540 50,282,595 1,074,525.93

First
malloc 152,033,034.24 143,053,557 167,062,603 3,993,567.21

free 47,813,010.74 45,367,890 52,591,632 1,046,272.40

Half
malloc 178,801,586.82 169,767,938 203,002,792 4,236,118.20

free 66,094,928.58 62,662,780 72,664,234 1,335,986.67

Hoard
malloc 59,322,385.67 55,160,997 66,089,745 1,651,487.67

free 59,063,328.81 54,682,072 65,231,703 1,680,567.01

nMART
malloc 171,283,594.57 158,802,351 202,901,719 5,179,193.61

free 65,091,000.33 60,527,727 78,087,514 4,207,347.75

tcmalloc
malloc 100,261,536.18 92,410,314 160,213,948 4,524,142.97

free 39,058,631.20 36,333,583 43,690,615 1,103,773.99

TLSF
malloc 157,745,105.13 142,956,387 192,059,833 5,972,851.08

free 72,968,984.60 67,495,459 84,677,618 2,488,447.24

Table 4.31: The average of total malloc()/free() time for gawk test set 3

• Average time: The average total execution time for allocation and de-allocation

is shown in Table 4.32, Table 4.33 and Table 4.34, respectively, for all test

sets. The average time of tcmalloc for allocation throughout test sets 1 and

2 is longer than the values for other allocators. The average time of Best-

fit for allocation in test set 3 is longer than the values for other allocators.

The average time of tcmalloc for allocation in test set 1 is 10,259,259.52 com-

pared to 2,271,061.37 of TLSF, which shows the minimum average of the total

execution time. The average time of tcmalloc for allocation in test set 2 is

11,645,160.86 compared to 4,042,385.27 of TLSF, which shows the minimum

average of the total execution time. The average time of Best-fit for alloca-

tion in test set 3 is 105,703,752.07 compared to 14,042,696.28 of Hoard, which

shows the minimum average of the total execution time.

In the de-allocation case, the average total execution time of Hoard for de-

allocation throughout test set 1 is longer than the values for other allocators.

The average total execution time of Half-fit for de-allocation throughout test

141

Chapter 4: Evaluation

sets 2 and 3 is longer than the values for other allocators. The average time

of Hoard for de-allocation in test set 1 is 350,507.46 compared to 169,927.37

of First-fit, which shows the minimum average of the total execution time.

The average time of Half-fit for de-allocation in test set 2 is 1,333,855.13

compared to 874,377.20 of tcmalloc, which shows the minimum average of the

total execution time. The average time of Half-fit for de-allocation in test

set 3 is 13,434,286.86 compared to 7,216,987.22 of tcmalloc, which shows the

minimum average of the total execution time.

• Min: The minimum total execution time for allocation and de-allocation is

shown in Table 4.32, Table 4.33 and Table 4.34, respectively, for all test sets.

The minimum total execution time of tcmalloc for allocation throughout test

sets 1 and 2 is longer than the values for other allocators. The minimum total

execution time of Best-fit for allocation throughout test set 3 is longer than

the values for other allocators. The minimum time of tcmalloc for allocation

in test set 1 is 9,400,304 compared to 1,875,452 of TLSF, which shows the

shortest execution time. The minimum time of Half-fit for allocation in test

set 2 is 10,544,113 compared to 3,376,732 of TLSF, which shows the shortest

execution time. The minimum time of Best-fit for allocation in test set 3

is 101,096,233 compared to 12,791,094 of Hoard, which shows the shortest

execution time.

In the de-allocation case, the minimum total execution time of Hoard for de-

allocation throughout test set 1 is longer than the values for other allocators.

The minimum total execution time of Half-fit for de-allocation throughout test

sets 2 and 3 is longer than the values for other allocators. The minimum time

of Hoard for de-allocation in test set 1 is 304,415 compared to 150,019 of Best-

fit, which shows the shortest execution time. The minimum time of Half-fit

for de-allocation in test set 2 is 1,181,016 compared to 789,064 of tcmalloc,

which shows the shortest execution time. The minimum time of Half-fit for

de-allocation in test set 3 is 12,542,273 compared to 6,702,335 of tcmalloc,

which shows the shortest execution time.

142

4.3 Temporal Behaviour Analysis

• Max: The maximum total execution time for allocation and de-allocation is

shown in Table 4.32, Table 4.33 and Table 4.34, respectively, for all test sets.

The maximum total execution time of tcmalloc for allocation throughout test

sets 1 and 2 is longer than the values for other allocators. The maximum total

execution time of Best-fit for allocation throughout test set 3 is longer than

the values for other allocators. The maximum time of tcmalloc for allocation

in test set 1 is 12,397,525 compared to 4,221,169 of TLSF, which shows the

shortest execution time. The maximum time of tcmalloc for allocation in test

set 2 is 13,421,021 compared to 6,268,721 of TLSF, which shows the shortest

execution time. The maximum time of Best-fit for allocation in test set 3

is 117,884,428 compared to 16,393,020 of Hoard, which shows the shortest

execution time.

In the de-allocation case, the maximum total execution time of TLSF for de-

allocation in test set 1 is longer than the values for other allocators. The

maximum total execution time of Half-fit for de-allocation in test sets 2 and 3

is longer than the values for other allocators. The maximum time of TLSF for

de-allocation in test set 1 is 1,383,458 compared to 516,279 of nMART, which

shows the shortest execution time. The maximum time of Half-fit for de-

allocation in test set 2 is 6,330,245 compared to 1,482,982 of nMART, which

shows the shortest execution time. The maximum time of Half-fit for de-

allocation in test set 3 is 15,711,530 compared to 9,218,633 of tcmalloc, which

shows the shortest execution time.

In summary, it is hard to specify which allocation algorithm shows the best per-

formance for all cases. As we see in the results, nothing is the best in both the

allocation and de-allocation cases. Also, different results are obtained between less

memory-intensive test and memory-intensive tests. Conventional algorithms show

good performance for less memory-intensive test (Test set 1), while more complex

algorithms, tcmalloc and Hoard, show better performance for memory-intensive test

(Test set 3). tcmalloc shows the best performance in all de-allocation cases. Overall,

Best-fit and Half-fit show worse performance in memory-intensive test sets. nMART

shows better performance for memory-intensive tests compared to conventional al-

143

Chapter 4: Evaluation

p2c: Test Set 1

Average time Min Max Stdev.s()

Best
malloc 3,536,707.14 2,940,174 5,164,199 401,214.49

free 170,251.83 150,019 1,180,812 90,282.79

First
malloc 3,535,246.34 2,924,904 5,044,031 391,932.90

free 169,927.37 150,808 829,227 83,369.14

Half
malloc 4,592,039.95 3,965,106 6,640,588 393,094.02

free 225,270.20 197,772 883,503 59,014.28

Hoard
malloc 4,988,660.57 4,275,551 6,658,776 474,745.61

free 350,507.46 304,415 1,078,272 98,245.17

nMART
malloc 3,348,603.30 2,802,990 4,664,745 403,704.74

free 171,917.43 152,574 516,279 65,593.32

tcmalloc
malloc 10,259,259.52 9,400,304 12,397,525 470,488.62

free 306,990.85 273,705 990,499 101,966.95

TLSF
malloc 2,271,061.37 1,875,452 4,221,169 333,791.27

free 330,286.36 290,193 1,383,458 124,011.26

Table 4.32: The average of total malloc()/free() time for p2c test set 1

p2c: Test Set 2

Average time Min Max Stdev.s()

Best
malloc 6,551,038.67 5,713,344 8,960,900 465,389.62

free 927,219.61 851,201 1,855,954 159,373.98

First
malloc 6,378,660.84 5,454,360 8,549,224 477,481.88

free 932,289.52 859,685 1,935,571 161,270.39

Half
malloc 8,253,528.02 7,184,759 10,606,201 520,793.58

free 1,333,855.13 1,181,016 6,330,245 274,887.27

Hoard
malloc 5,909,893.87 5,180,354 7,649,035 483,369.98

free 1,012,280.91 909,421 2,087,321 174,517.94

nMART
malloc 6,065,802.73 5,344,974 7,053,384 432,010.73

free 954,985.07 857,972 1,482,982 110,828.26

tcmalloc
malloc 11,645,160.86 10,544,113 13,421,021 540,093.17

free 874,377.20 789,064 2,325,030 176,367.93

TLSF
malloc 4,042,385.27 3,376,732 6,268,721 454,395.55

free 1,072,134.79 980,492 2,190,368 179,519.62

Table 4.33: The average of total malloc()/free() time for p2c test set 2

144

4.3 Temporal Behaviour Analysis

p2c: Test Set 3

Average time Min Max Stdev.s()

Best
malloc 105,703,752.07 101,096,233 117,884,428 1,611,412.11

free 9,634,891.93 8,892,125 14,960,253 505,587.35

First
malloc 25,478,882.70 22,635,424 28,974,644 992,066.61

free 10,735,226.45 9,961,231 13,419,804 479,526.87

Half
malloc 34,599,243.03 31,233,053 40,697,240 1,366,546.33

free 13,434,286.86 12,542,273 15,711,530 513,908.55

Hoard
malloc 14,042,696.28 12,791,094 16,393,020 678,372.73

free 8,656,893.30 8,059,247 10,531,219 419,070.60

nMART
malloc 18,349,030.63 16,809,797 20,504,014 793,589.33

free 10,575,562.93 9,797,885 11,483,243 461,995.54

tcmalloc
malloc 22,053,727.28 20,269,696 25,431,394 751,976.81

free 7,216,987.22 6,702,335 9,218,633 422,493.03

TLSF
malloc 16,994,133.75 14,713,285 22,510,016 956,598.68

free 8,836,206.46 8,040,846 13,917,636 542,513.04

Table 4.34: The average of total malloc()/free() time for p2c test set 3

location algorithms.

4.3.3 Remote Access Latencies Analysis

As we discussed in Section 4.2.2, no model exists to evaluate remote access latencies

on ccNUMA architecture systems regarding memory allocation algorithms. For this

reason, we have used the synthetic workloads model generated in tables C.1 and

4.10.

4.3.3.1 The Results of MEAN-Value Model

This experiment was executed using the data generated with each allocation algo-

rithm. An application was executed 100 times with each allocator repeatedly so that

the application was executed 700 times with seven different allocators totally. In

this experiment, we measure the execution time of an application request to allocate

memory under the interarrival time and to hold memory blocks based on Table 4.9.

It created a varying number of threads ranging from two to sixty-four. In the local

145

Chapter 4: Evaluation

case, the application was executed on node 1; it requested allocating a varying size

of memory blocks from the local node only and writing data onto the memory block

to ensure pages in. However, in the remote case, the application created the same

number of threads to the local cases and was executed on node 1 (the same as the

local case), but it allocated a varying size of memory blocks from only the remote

node, which was chosen automatically by the underlying operating system. In order

to ensure pages in, it writes meaningless data onto the memory block.

Table 4.35, 4.36, 4.37, 4.38, 4.39 and 4.40 show the results of execution time with

each allocation algorithm in both cases.

Two Threads Case Table 4.35 gives the average of execution times (unit is

second) elapsed in local and remote access cases as well as the standard deviation

with each allocator. The application created two threads at start-up time. Each

thread allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed for local accesses

with each allocator is shown in Table 4.35 for the MEAN model. The average

execution times of TLSF is lower than the values for other allocators, while the

First-fit shows higher execution time relatively. The average execution time of

TLSF in the MEAN model is 4.08 seconds compared to 6.91 seconds of First-

fit. This is due to the differences in the implementations. As seen in Appendix

A.1.2, TLSF invokes a library wrapper function less often to require more

space, and Hoard and tcmalloc use the mmap() system call for larger memory

blocks to bypass the request of memory allocation to the underlying operating

system, but TLSF uses the sbrk() function to have more memory space without

any size class distinction. Also, our implementations of Best-fit, First-fit and

Half-fit invoke the sbrk() function call more, so their management efficiency is

worse. In detail, TLSF obtains 10k bytes as a minimum-size memory block,

with unused memory space being reserved when it invokes sbrk(), while our

implementation just obtains the exact-size memory block requested. However,

TLSF and Half-fit show an uneven performance relatively, as seen in the

146

4.3 Temporal Behaviour Analysis

standard deviation.

Local Remote

Average Stdev Average Stdev

Best 6.6389 0.1057 7.3977 0.0640

First 6.9135 0.1413 7.4281 0.5119

Half 6.8153 0.3509 7.3425 0.2742

Hoard 6.5890 0.2208 7.3829 0.3091

nMART 5.1158 0.2830 5.9431 0.4850

tcmalloc 6.3901 0.2026 7.3935 0.3966

TLSF 4.0811 0.3798 7.0840 0.4805

Table 4.35: The execution time of MEAN-Value model with two threads

• Average of remote case: The average execution times elapsed for remote ac-

cesses with each allocator is shown in Table 4.35 respectively for the MEAN

model. The average time of nMART is lower than the values for other alloca-

tors, while the First-fit shows higher execution time relatively. The average of

the execution time of nMART in the MEANmodel is 5.94 seconds compared to

7.43 seconds of First-fit. The average execution time of remote access ofTLSF

increases significantly compared to its local case. Also, its performance and

First-fit performance are relatively uneven.

Four Threads Case Table 4.36 gives the average execution time (unit is sec-

ond) elapsed in local and remote access cases as well as the standard deviation with

each allocator. The application created four threads at start-up time. Each thread

allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.36 respectively for the MEAN model.

The average execution time of TLSF is lower than the values for other allo-

cators, while the Hoard shows higher execution time relatively. The average

147

Chapter 4: Evaluation

Local Remote

Average Stdev Average Stdev

Best 6.3045 0.1683 6.8881 0.1516

First 5.9749 0.3419 6.8068 0.2668

Half 6.4812 0.5264 7.4000 0.5649

Hoard 6.6679 0.5615 7.3885 0.4822

nMART 4.5191 0.5491 5.3346 0.7689

tcmalloc 6.1237 0.1159 6.8478 0.1526

TLSF 3.2924 0.5914 6.2848 1.0704

Table 4.36: The execution time of MEAN-Value model with four threads

of the execution time of TLSF in the MEAN model is 3.29 seconds compared

to 6.67 seconds of Hoard. Half-fit, Hoard and TLSF show a relatively uneven

performance, as seen in the standard deviation.

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.36 respectively for the MEAN

model. The average time of nMART is lower than the values for other alloca-

tors, while the Half-fit shows higher execution time relatively. The average of

the execution time of nMART in the MEAN model is 5.33 seconds compared

to 7.40 seconds of Half-fit. However, the average execution time of remote

access ofTLSF increases significantly compared to its local case. Also, its

performance is relatively uneven.

Eight Threads Case Table 4.37 gives the average execution time (unit is sec-

ond) elapsed in local and remote access cases as well as the standard deviation with

each allocator. The application created eight threads at start-up time. Each thread

allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.37 respectively for the MEAN model.

The average execution time of TLSF is lower than the values for other allo-

148

4.3 Temporal Behaviour Analysis

cators, while the Hoard shows higher execution time relatively. The average

of the execution time of TLSF in the MEAN model is 3.76 seconds compared

to 6.36 seconds of Hoard. Half-fit shows an uneven performance relatively, as

seen in the standard deviation.

Local Remote

Average Stdev Average Stdev

Best 5.8451 0.3080 6.6151 0.3288

First 6.1348 0.3719 6.6689 0.2177

Half 6.1928 0.6568 6.4728 0.3166

Hoard 6.3591 0.3658 6.6722 0.1728

nMART 5.1682 0.3220 5.6198 0.5585

tcmalloc 6.0175 0.1753 6.5425 0.2530

TLSF 3.7646 0.2166 6.7519 0.6057

Table 4.37: The execution time of MEAN-Value model with eight threads

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.37 respectively for the MEAN

model. The average time of nMART is lower than the values for other allo-

cators, while the TLSF shows higher execution time relatively. The average

of the execution time of nMART in the MEAN model is 5.62 seconds com-

pared to 6.75 seconds of TLSF. Also, the average execution time of remote

access ofTLSF increases significantly compared to its local case and others,

and shows an uneven performance relatively.

Sixteen Threads Case Table 4.38 gives the average execution times elapsed

(unit is second) in local and remote access cases as well as the standard deviation

with each allocator. The application created sixteen threads at start-up time. Each

thread allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.38 respectively for the MEAN model.

149

Chapter 4: Evaluation

The average execution time of TLSF is lower than the values for other allo-

cators, while the First-fit shows higher execution time relatively. The average

of the execution time of TLSF in the MEAN model is 3.88 seconds compared

to 6.17 seconds of First-fit. All allocators except TLSF show an uneven per-

formance relatively, as seen in the standard deviation.

Local Remote

Average Stdev Average Stdev

Best 6.1565 0.5857 6.8781 0.3270

First 6.1699 0.5013 6.7909 0.2925

Half 6.0922 0.5886 6.5189 0.2452

Hoard 6.1151 0.5544 6.5744 0.4342

nMART 4.8258 0.2020 5.9348 0.2203

tcmalloc 5.6457 0.6970 6.6678 0.2603

TLSF 3.8823 0.2462 7.2862 0.4319

Table 4.38: The execution time of MEAN-Value model with sixteen threads

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.38 respectively for the MEAN

model. The average time of nMART is lower than the values for other alloca-

tors, while the TLSF shows higher execution time relatively. The average of

the execution time of nMART in the MEAN model is 5.93 seconds compared

to 7.29 seconds of TLSF. Also, the average execution time of remote access

ofTLSF increases significantly compared to its local case and others. Hoard

and TLSF show an uneven performance relatively.

Thirty-two Threads Case Table 4.39 gives the average execution times elapsed

(unit is second) in local and remote access cases as well as the standard deviation

with each allocator. The application created thirty-two threads at start-up time.

Each thread allocates and holds memory blocks and writes meaningless data.

150

4.3 Temporal Behaviour Analysis

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.39 respectively for the MEAN model.

The average execution time of TLSF is lower than the values for other alloca-

tors, while the Best-fit shows higher execution time relatively. The average of

the execution time of TLSF in the MEAN model is 3.76 seconds compared to

5.85 seconds of Best-fit. Best-fit, First-fit, Half-fit and Hoard show an uneven

performance relatively, as seen in the standard deviation.

Local Remote

Average Stdev Average Stdev

Best 5.8541 1.0396 6.6619 0.7130

First 5.7748 0.6880 6.6971 0.5723

Half 5.6066 0.8405 6.7986 0.9280

Hoard 5.6891 0.6380 6.7006 0.3901

nMART 4.4028 0.0651 5.1337 0.0905

tcmalloc 5.8395 0.2146 6.8555 0.3132

TLSF 3.7640 0.2259 7.6787 0.3679

Table 4.39: The execution time of MEAN-Value model with thirty-two threads

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.39 respectively for the MEAN

model. The average time of nMART is lower than the values for other alloca-

tors, while the TLSF shows higher execution time relatively. The average of

the execution time of nMART in the MEAN model is 5.13 seconds compared

to 7.68 seconds of TLSF. Also, the average execution time of remote access

ofTLSF increases significantly compared to its local case and others. Best-fit,

First-fit and Half-fit show an uneven performance relatively.

Sixty-four Threads Case Table 4.40 gives the average execution times elapsed

(unit is second) in local and remote access cases as well as the standard deviation

with each allocator. The application created sixty-four threads at start-up time.

Each thread allocates and holds memory blocks and writes meaningless data.

151

Chapter 4: Evaluation

• Average of local case: The average execution time elapsed of local accesses with

each allocator is shown in Table 4.40 respectively for the MEAN model. The

average execution time of TLSF is lower than the values for other allocators,

while the Best-fit shows higher execution time relatively. The average of the

execution time of TLSF in the MEAN model is 4.63 seconds compared to

5.79 seconds of Best-fit. Best-fit, First-fit, Half-fit and Hoard show an uneven

performance relatively, as seen in the standard deviation.

Local Remote

Average Stdev Average Stdev

Best 5.7895 0.8419 6.2835 1.0447

First 5.7215 0.8983 6.4076 1.2089

Half 5.2989 1.4567 6.4857 1.1155

Hoard 5.6645 0.7300 6.5553 0.8613

nMART 4.3491 0.4385 5.0684 0.0573

tcmalloc 5.4834 0.2084 6.6359 0.3388

TLSF 4.6261 0.3296 6.5536 0.2329

Table 4.40: The execution time of MEAN-Value model with sixty-four threads

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.40 respectively for the MEAN

model. The average time of nMART is lower than the values for other alloca-

tors, while the tcmalloc shows higher execution time relatively. The average of

the execution time of nMART in the MEAN model is 6.28 seconds compared

to 5.07 seconds of tcmalloc. The average execution time of remote access of

TLSF increases significantly compared to its local case and others. Best-fit,

First-fit, Half-fit and Hoard show an uneven performance relatively.

In summary, for local memory access cases, TLSF shows better performance,

with all numbers of threads ranging from two to sixty-four; otherwise, First-fit

and Best-fit show the worst performance when the application uses a large number

of threads. For remote memory access cases, First-fit and Best-fit show better

152

4.3 Temporal Behaviour Analysis

performance than TLSF, which shows the worst performance using large number

of threads ranging from eight to thirty-two. Especially, nMART shows the best

performance for remote memory access, with all number of threads ranging from two

to sixty-four. For local memory access, it also shows better performance compared

to others except TLSF.

In summary, for local memory access cases, TLSF shows better performance,

with all numbers of threads ranging from two to sixty-four, and nMART shows bet-

ter performance compared to others except TLSF ; otherwise, First-fit and Best-fit

show the worst performance when the application uses a large number of threads. In

the remote memory access cases, First-fit and Best-fit show better performance than

TLSF, which shows the worst performance using a large number of threads ranging

from eight to thirty-two. nMART shows the best performance for remote memory

access, with all number of threads ranging from two to sixty-four. It shows that our

algorithm, specially the third layer functionalities, is able to improve performance

of remote memory access.

4.3.3.2 The Results of CDF Model

This experiment was executed using the data generated with each allocation algo-

rithm. An application was executed 100 times with each allocator repeatedly so that

the application was executed 700 times with seven different allocators totally. In

this experiment, we measure the execution time of an application request to allocate

memory under the interarrival time and to hold memory blocks based on Table 4.10.

It created a varying number of threads ranging from two to sixty-four. In the local

case, the application was executed on node 3; it requested allocating a varying size

of memory blocks from the local node only and writing data onto the memory block

to ensure pages in. However, in the remote case, the application created the same

number of threads to the local cases, with it being executed on node 3 (the same

as the local case), but it allocated a varying size of memory blocks from only the

remote node, which was chosen automatically by the underlying operating system.

In order to ensure pages in, it writes meaningless data onto the memory block.

Tables 4.41, 4.42, 4.43, 4.44, 4.45 and 4.46 show the results of execution times

153

Chapter 4: Evaluation

with each allocation algorithm in both cases.

Two Threads Case Table 4.41 gives the average execution times elapsed (unit

is second) in local and remote access cases as well as the standard deviation with

each allocator. The application created two threads at start-up time. Each thread

allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.41 respectively for the CDF model.

The average execution time of TLSF is lower than the values for other alloca-

tors, while the tcmalloc shows higher execution time relatively. TLSF shows

improved performance compared to others around 57%. The average of the

execution time of TLSF in the CDF model is 3.84 seconds compared to 6.64

seconds of tcmalloc. It was caused by the implementation difference. As seen

in Appendix A.1.2, TLSF invokes a library wrapper function less to have more

space, and Hoard and tcmalloc use the mmap() system call for larger memory

blocks to bypass the request of memory allocation to the underlying operating

system, but TLSF uses the sbrk() function to have more memory space without

any size class distinction. Also, our implementations of Best-fit, First-fit and

Half-fit invoke the sbrk() function call more, as their management efficiency is

worse. In detail, TLSF obtains 10k bytes as a minimum-size memory block,

with unused memory space being reserved when it invokes sbrk(), while our

implementation just obtains the exact-size memory block requested. Hoard

shows an uneven performance relatively, as seen in the standard deviation.

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.41 respectively for the CDF

model. The average time of nMART is lower than the values for other alloca-

tors, while the Half-fit shows higher execution time relatively. The average of

the execution time of nMART in the CDF model is 6.04 seconds compared to

8.71 seconds of Half-fit. The average execution time of remote access ofTLSF

154

4.3 Temporal Behaviour Analysis

increases significantly compared to its local case and others. Also, its perfor-

mance is uneven relatively.

Local access time Remote access time

Average Stdev Average Stdev

Best 5.9057 0.0302 6.7465 0.4893

First 6.3614 0.2851 7.6078 0.5846

Half 6.4654 0.2241 8.7072 0.0414

Hoard 6.1715 1.0505 7.5149 0.4544

nMART 5.5737 0.6063 6.0446 0.4803

tcmalloc 6.6380 0.1576 8.0231 0.4389

TLSF 3.8354 0.4308 6.9286 0.8189

Table 4.41: The execution time of CDF model with two threads

Four Threads Case Table 4.42 gives the average executions time elapsed (unit

is second) in local and remote access cases as well as the standard deviation with

each allocator. The application created four threads at start-up time. Each thread

allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.42 respectively for the CDF model. The

average execution time of TLSF is lower than the values for other allocators,

while the Half-fit shows higher execution time relatively. The average of the

execution time of TLSF in the CDF model is 3.30 seconds compared to 6.42

seconds of Half-fit. Hoard shows an uneven performance relatively, as seen in

the standard deviation.

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.42 respectively for the CDF

model. The average time of nMART is lower than the values for other alloca-

tors, while the Half-fit shows higher execution time relatively. The average of

the execution time of nMART in the CDF model is 5.64 seconds compared to

155

Chapter 4: Evaluation

8.21 seconds of Half-fit. However, the average execution time of remote access

ofTLSF increases significantly compared to its local case and others. Also, its

performance is uneven relatively.

Local access time Remote access time

Average Stdev Average Stdev

Best 6.2488 0.1175 7.4000 0.1951

First 6.4106 0.2021 7.7403 0.5730

Half 6.4180 0.1435 8.2129 0.4779

Hoard 5.7518 1.1971 7.9046 0.7157

nMART 5.0215 0.6239 5.6373 0.7667

tcmalloc 6.1712 0.1223 7.5282 0.1899

TLSF 3.3036 0.6212 6.1508 0.8814

Table 4.42: The execution time of CDF model with four threads

Eight Threads Case Table 4.43 gives the average execution time elapsed (unit

is second) in local and remote access cases as well as the standard deviation with

each allocator. The application created eight threads at start-up time. Each thread

allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.43 respectively for the CDF model. The

average execution time of TLSF is lower than the values for other allocators,

while the First-fit shows higher execution time relatively. The average of the

execution time of TLSF in the CDF model is 3.73 seconds compared to 6.86

seconds of First-fit. Half-fit shows an uneven performance relatively, as seen

in the standard deviation.

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.43 respectively for the CDF

model. The average time of nMART is lower than the values for other alloca-

tors, while the Half-fit shows higher execution time relatively. The average of

156

4.3 Temporal Behaviour Analysis

the execution time of nMART in the CDF model is 5.68 seconds compared to

7.98 seconds of Half-fit. However, the average execution time of remote access

ofTLSF increases significantly compared to its local case and others. Hoard

shows an uneven performance relatively.

Local access time Remote access time

Average Stdev Average Stdev

Best 5.8954 0.3234 7.2477 0.3181

First 6.8640 0.6344 7.5226 0.4851

Half 6.7173 1.0284 7.9788 0.4252

Hoard 5.9764 0.8866 7.2421 0.6281

nMART 4.8253 0.3649 5.6759 0.6011

tcmalloc 5.7272 0.3054 7.2314 0.3112

TLSF 3.7300 0.2774 6.9798 0.3953

Table 4.43: The execution time of CDF model with eight threads

Sixteen Threads Case Table 4.44 gives the average execution times elapsed

(unit is second) in local and remote access cases as well as the standard deviation

with each allocator. The application created sixteen threads at start-up time. Each

thread allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution time elapsed of local accesses

with each allocator is shown in Table 4.44 respectively for the CDF model.

The average execution time of TLSF is lower than the values for other allo-

cators, while the Half-fit shows higher execution time relatively. The average

of the execution time of TLSF in the CDF model is 3.74 seconds compared

to 5.82 seconds of Half-fit. Half-fit and First-fit show an uneven performance

relatively, as seen in the standard deviation.

• Average of remote case: The average execution time elapsed of remote accesses

with each allocator is shown in Table 4.44 respectively for the CDF model. The

average time of nMART is lower than the values for other allocators, while the

157

Chapter 4: Evaluation

First-fit shows higher execution time relatively. The average of the execution

time of nMART in the CDF model is 5.93 seconds compared to 7.80 seconds

of First-fit. However, the average execution time of remote access ofTLSF

increases significantly compared to its local case and others. Best-fit, First-fit

and Hoard show an uneven performance relatively.

Local access time Remote access time

Average Stdev Average Stdev

Best 5.7641 0.3679 7.4050 0.6060

First 5.8179 0.6913 7.7964 0.7187

Half 5.8192 0.6645 7.5818 0.5230

Hoard 5.6188 0.4695 7.4572 0.6212

nMART 4.4986 0.2674 5.9343 0.2520

tcmalloc 5.5445 0.3397 7.0841 0.4480

TLSF 3.7425 0.3693 7.4842 0.3074

Table 4.44: The execution time of CDF model with sixteen threads

Thirty-two Threads Case Table 4.45 gives the average execution times elapsed

(unit is second) in local and remote access cases as well as the standard deviation

with each allocator. The application created thirty-two threads at start-up time.

Each thread allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.45 respectively for the CDF model. The

average execution time of TLSF is lower than the values for other allocators,

while the First-fit shows higher execution time relatively. The average of the

execution time of TLSF in the CDF model is 3.66 seconds compared to 5.98

seconds of First-fit. Best-fit, First-fit and Half-fit show an uneven performance

relatively, as seen in the standard deviation.

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.45 respectively for the CDF

158

4.3 Temporal Behaviour Analysis

model. The average time of nMART is lower than the values for other alloca-

tors, while the TLSF shows higher execution time relatively. The average of

the execution time of nMART in the CDF model is 7.58 seconds compared to

5.12 seconds of TLSF. The average execution time of remote access ofTLSF

increases significantly compared to its local case and others. Best-fit, First-fit,

Half-fit and Hoard show an uneven performance relatively.

Local access time Remote access time

Average Stdev Average Stdev

Best 5.9188 0.6715 7.5774 0.7946

First 5.9845 0.6335 7.3445 0.8834

Half 5.7718 0.7998 7.4435 0.7959

Hoard 5.7381 0.5245 7.3596 0.7406

nMART 4.4497 0.1619 5.1217 0.0998

tcmalloc 5.8253 0.2567 7.4613 0.3817

TLSF 3.6567 0.3670 7.8142 0.2646

Table 4.45: The execution time of CDF model with thirty-two threads

Sixty-four Threads Case Table 4.46 gives the average execution times elapsed

(unit is second) in local and remote access cases as well as the standard deviation

with each allocator. The application created sixty-four threads at start-up time.

Each thread allocates and holds memory blocks and writes meaningless data.

• Average of local case: The average execution times elapsed of local accesses

with each allocator is shown in Table 4.46 respectively for the CDF model.

The average execution time of TLSF is lower than the values for other alloca-

tors, while the Hoard shows higher execution time relatively. The average of

the execution time of TLSF in the CDF model is 4.76 seconds compared to

6.32 seconds of Hoard. Best-fit, First-fit, Half-fit and Hoard show an uneven

performance relatively, as seen in the standard deviation.

• Average of remote case: The average execution times elapsed of remote ac-

cesses with each allocator is shown in Table 4.46 respectively for the CDF

159

Chapter 4: Evaluation

model. The average time of nMART is lower than the values for other allo-

cators, while the First-fit shows higher execution time relatively. The average

of the execution time of nMART in the CDF model is 6.06 seconds compared

to 7.54 seconds of First-fit. However, the average execution time of remote

access of TLSF increases significantly compared to its local case and others.

Best-fit, First-fit, Half-fit and Hoard show an uneven performance relatively.

Local access time Remote access time

Average Stdev Average Stdev

Best 5.6636 1.1111 7.1593 0.9167

First 5.3398 1.2511 7.5382 1.3146

Half 5.2340 0.9361 7.1182 0.9562

Hoard 6.3177 1.1185 7.2804 0.9164

nMART 5.6742 0.0472 6.0579 0.0524

tcmalloc 5.4136 0.2975 7.2075 0.4350

TLSF 4.7615 0.3585 6.8852 0.0455

Table 4.46: The execution time of CDF model with sixty-four threads

In summary, for local memory access cases, TLSF shows better performance,

with all number of threads ranging from two to sixty-four; otherwise, First-fit, Half-

fit and even Hoard show the worst performance when the application uses a large

number of threads. For remote memory access cases, all allocator algorithms, except

for Best-fit and Half-fit, show better performance. Half-fit shows the worst perfor-

mance in a small number of thread cases ranging from two to eight, and First-fit and

TLSF show the worst performance in a large number of thread cases. Regarding the

performance of nMART, it shows the best performance for remote memory access,

with all number of threads ranging from two to sixty-four. For local memory access,

it also shows better performance compared to others except TLSF.

4.4 Summary

Developing a memory allocation algorithm is a trade-off between time efficiency

and space efficiency. Many allocation algorithms supporting multi-threaded envi-

160

4.4 Summary

ronments use more memory space due to using multiple heaps, but they show better

performance. Otherwise, memory allocators, which do not consider multi-threaded

environments, waste less memory space, but they show worse performance.

The primary objectives of the thesis were to develop a new memory allocation

algorithm that combines real-time and distributed shared memory architecture sys-

tems, specially, ccNUMA systems. It requires providing bounded response time

with maximizing node-locality in support of the target systems. In order to pro-

vide evidences in support of the thesis hypothesis, this chapter has empirically con-

ducted temporal behaviour analysis of memory allocation algorithms. It evaluates

the longest execution time and the total execution time obtained in allocation and

de-allocation operations to analyze the worst-case execution time and the average

performance of algorithms in practice. The local and remote access latencies anal-

yses were also provided to compare the efficiency of ccNUMA architecture support.

Also, additional evaluation in terms of spatial behaviour and cache behaviour anal-

ysis are provided in Appendix A.

Overall, our prototype shows acceptable performance in experiments compared

to all algorithms in support of single-threaded applications. Also, it showed better

performance in terms of multi-threaded circumstances, especially on remote memory

accesses, and shows consistent and stable performance; however it can degrade its

performance if the remote free occurs frequently. Its overheads are not noticeable

because a complete trigger condition depends on the design of application and it

is only observed less than 3% in long-running applications [Larson and Krishnan,

1998].

161

Chapter 5

Conclusions And Future Work

Despite memory allocation algorithms being studied extensively over the last five

decades, limited attention has been focused on their use in real-time systems. Many

high-performance algorithms do not satisfy the requirements of real-time systems,

and the few allocators supporting real-time systems do not scale well on multi-

processor systems. ccNUMA architecture systems are a result of the demand of

high-performance system, and they provide a systematic, scalable design. Real-time

systems have also been increasing in size and complexity, with the consequence that

they need computing platforms that consist of multiprocessors with many cores.

For non-real-time applications, ccNUMA architecture systems do not introduce

any new problems beyond those architectures that have multiple processors. Cache

coherence protocols allow application developers not to consider the characteris-

tics of the platform. Also, the underlying operating systems provide hardware ab-

straction to allow developers not to be concerned with the locations where appli-

cations execute. However, application developers, who require predictability and

high-performance fully need to understand the characteristics of the system and the

abstractions. With storage allocation, an architecture-aware algorithm can avoid

suffering from unexpected memory access latencies and exploit local node or closer

nodes as often as possible without hardware-specific knowledge.

In this thesis, we have shown that many operating systems do not use an accurate

measurement for the distances between nodes in a ccNUMA architecture. We have

introduced a more accurate measure for node distances and established a new node

163

Chapter 5: Conclusions And Future Work

distance table with values obtained after evaluating the real node distance; this

guarantees that where remote accesses are required, the access will be to the closest

node possible. This provides better temporal performance. Also, it provides more

transparency to real-time applications to make them aware of the hardware resources

available. Application developers do not need to consider the hardware specific

design to access the closest node.

In terms of the memory allocation algorithms. Multiple heaps are able to reduce

lock contentions between threads and provide better temporal performance in a

multi-threaded environment. A single heap with a global lock mechanism to ensure

data consistency is one of the major reasons for performance degradation due to the

contention for the lock. A global lock also results in poor scalability. Multiple heap

scales much better than a global heap.

Search strategies, exact-fit mechanisms for small sizes of blocks, good-fit and

first-fit mechanisms for ordinary sizes of blocks, used in the algorithm are able to

provide temporal guarantees. These mechanisms with bitmapped-fit are able to avoid

exhaustive search in the list when looking for a free block. Also, these mechanisms

can be implemented in a constant execution time.

In terms of spatial behaviour, using multiple strategies for different sizes of blocks

consumes less space when compared to the use of a single strategy. Splitting size

ranges into fine-grains reduces internal fragmentation. Also, tracking the memory

block profile prevents the blowup phenomenon, which resulted in unbounded space

consumption. Tracking is also able to maximize node data locality on the target

platform caused by the first touch policy of modern operating systems.

A prototype implementing our design principles has been evaluated empirically

using experiments on actual hardware. Results show that the algorithm can be used

by real-time applications on soft real-time systems to improve their performance.

Particularly, the algorithm shows the best performance for remote access memory

cases between other algorithms. Regarding spatial behaviour, Appendix A shows

good memory consumption. It shows less memory consumption compared to other

algorithms for multi-threaded applications such as tcmalloc and Hoard.

Overall, we have developed a ccNUMA-aware memory management algorithm

164

5.1 Contributions

that provides good performance (amortized O (1)) for soft real-time systems on

ccNUMA architecture systems in practice. The potentially unbounded remote free

operations means that the algorithm cannot be used in hard real-time systems.

5.1 Contributions

In this thesis, the major motivation is based on the argument that many memory

allocation algorithms widely used in the development of both general-purpose and

real-time systems on ccNUMA architecture systems will increasingly prove ineffi-

cient, as such systems become larger and more complex. In order to provide stable,

high-performance, and scalability on such systems, it is necessary to recognise and

fully discover the underlying hardware design; current dynamic allocation algorithms

cannot achieve this and result in unexpected memory access latencies.

The key contributions of this thesis come from the development of a new ccNUMA-

aware memory allocation algorithm that can be used in the implementation of high-

performance real-time applications. In detail, the first of these contributions is that

we present a new model that allows measuring real node distances to reflect the

underlying hardware design more accurately than in previous systems. The prob-

lem of the encapsulation of the underlying architecture design, which is provided

by modern operating systems, inhibits the discovery of the system resources ac-

curately, thereby leading to making it difficult to develop predictable applications

on real-time systems. The new model enables discovering and recognizing exactly

how the underlying hardware is organised in order to minimize unexpected memory

access latencies.

The second contributions is that we show a new ccNUMA-aware memory al-

location algorithm, which ensures maximum node-locality and provides bounded

response time as well as small fragmentation. Through it, we show that we can still

design much better memory allocation algorithms supporting ccNUMA systems, de-

spite there being many high-performance allocation algorithms already in existence.

Also, the algorithm provides transparencies of the underlying architecture design for

real-time application developers, maximizes ccNUMA node-locality to applications,

165

Chapter 5: Conclusions And Future Work

and minimizes the probability of the worst-case access to remote nodes.

Finally, existing memory allocation algorithms, which can be used to support cc-

NUMA systems, are analysed and shown that they do not facilitate efficient memory

allocation and deallocation; however, a prototype implementation of nMART has

shown much better performance regarding remote memory access. As there are no

standard evaluation methods or tools for memory allocation algorithms, we have de-

sign evaluation methods for our experiments along with measuring the performance

of remote memory access. An empirical analysis evaluates the performance of mem-

ory allocation algorithms using both real workloads and synthetic workloads. Our

experimental results show that the prototype achieves its objectives of maximizing

node-locality, scalability, bounded response time as well as low fragmentation.

5.2 The Hypothesis Revisited

In Chapter 1, we presented the following thesis hypothesis.

The ability of a dynamic storage allocation algorithm can be enhanced

to meet the requirements of soft real-time systems with a small bounded

execution-time on ccNUMA architecture systems.

The main objective of dynamic storage allocation algorithms is to satisfy allo-

cation/deallocation requests from applications. With supporting cache coherence

protocols, ccNUMA architecture systems do not introduce any new problems for

non-real-time dynamic storage allocation algorithms. However, for real-time appli-

cations, the algorithms require a complete understanding of the characteristics of

the underlying architecture to meet their timing constraints. It is, therefore, an

essential requirement to recognize and discover the underlying architecture design.

Our approach exploits a new node distance table and measuring model, and a “clos-

est node-oriented allocation” policy to reduce the latency of remote memory access.

These are incorporated into the nMART dynamic storage allocation algorithm to

improve performance and predictability on the target systems.

Our experiments have been empirically conducted using synthetic and real work-

loads on actual hardware. The longest execution time and the total execution time

166

5.3 Future Work

have been measured to allow comparisons with the worst-case execution time and

the average performance of nMART with other competing algorithms described in

this thesis. In particular, the access latencies of local and remote are evaluated to

compare the ccNUMA support of the target systems.

Reducing the latency of remote memory access is the most important factor

to achieve better performance. Our algorithm shows good performance in experi-

ments in support of single-threaded and multi-threaded applications. In terms of

the remote latency, our approach shows consistent and stable performance among

all algorithms. Overall, our algorithm is able to improve performance on the target

architecture systems.

5.3 Future Work

The study presented in this thesis points to several areas for future work. Firstly, our

implementation is a user-level memory allocation allocator; although we modified

the Linux kernel to maximize accessing the local node and to minimize the distance

when remote access is required. Our approach is based on a static node distance

table, which re-measures real node distances and is used at kernel compile-time.

However, we believe that these limitations can be improved by adopting a technique

used in the “load average” of the top command in the Unix environment. This

measures the processor utilization, as an instantaneous snapshot, with all demand

for the processors and compiles the statistics. After that, it provides every 1, 5

and 15 minutes load-average values. Using the same approach, the new model can

measure the values of real node distance between nodes every a few minutes and

re-establishes a new node distance table at system run-time.

Synchronization for resource sharing is an important consideration in the design

of a memory allocation algorithm supporting concurrency and scalability. Regarding

synchronization techniques, many well-known solutions have been introduced, such

as wait-free and lock-free algorithms; however, for real-time systems, it is necessary

to consider schedulability along with synchronization. Unfortunately, most imple-

mentations of these techniques are based on CAS-primitives, which suffered from

167

Chapter 5: Conclusions And Future Work

a (potentially unbounded) number of retries. However, we believe a detailed and

more thorough research of synchronization along with schedulability in the context

of memory allocators is needed. The use of wait-free and lock-free algorithms would

remove the necessity of the remote freeing of blocks mentioned in Section 3.4.4 which

causes the potential for unbounded execution times.

Typically, it is impossible to specify the sequence of allocation and de-allocation

requests of all individual applications. This makes it difficult to predict the amount

of power consumed by memory operations; however, nowadays, low power con-

sumption is also one of the important issues in real-time systems. Currently, most

researches concentrate on hardware optimizations to reduce power dissipation; there

are few studies on alternative approaches involving optimizations at the compiler-

level, instruction-level, and source code-level [Ortiz and Santiago, 2008] [Mehta et al.,

1997]. The use of these techniques can have an impact on the optimization and pre-

dictability of memory allocation. This is another area for future study.

Applications of real-time systems can be considered mission-critical. Only au-

thorized and fully analysed applications can be executed on these systems to satisfy

their constraints; however, this is a slightly different environment to embedded sys-

tems, such as smart phones. Many attack techniques have been introduced, along

with their corresponding detection and prevention techniques [Polishchuk et al.,

2007] [Robertson et al., 2003] [Chen et al., 2005] [Cowan et al., 2000], which suf-

fer from additional overheads on memory operations and are difficult to analyse.

We believe more thorough research on the detection and prevention techniques is

needed.

Finally, many modern high-level programming languages (e.g., Java, C# and

C++11) support garbage collection, which is responsible for automatic recycling of

unreferenced regions of memory. Using a garbage collector is still a challenge in the

real-time domain due to its unpredictable delays. However, there are now real-time

garbage collectors that have adequate soft real-time performance. The integration

of these with our memory allocation approach is another area of future work.

168

Appendix A

Additional Evaluation of Spatial

and Cache Behaviour of memory

Allocators

In this appendix we show the result of our experiments to determine the spatial and

cache behaviour of a variety of memory allocation algorithms, including nMART.

A.1 Spatial Behaviour Analysis

In this section, we will discuss the spatial behaviour of memory allocator algorithms

by comparing the total size of blocks allocated by each allocator and the total amount

of virtual memory used by each allocators.

A.1.1 Total Size of Memory Blocks

The total size of memory blocks requested and provided are related to the inter-

nal fragmentation. In Section 2.2.1, we discussed how to calculate this internal

fragmentation.

This experiment is executed using different real applications with test sets 1 to

3. Each application was executed 1,000 times with the same allocator repeatedly

so that each application was executed 7,000 times with seven different allocators

totally. In the individual executions, we measure the total size of blocks requested

169

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

and the actual total size of blocks provided to each application’s execution. For

instance, in test set 1 of cfrac in Table 4.5, the application invokes the malloc()

function 1,528 times. During 1,528 function calls, we collect the size of blocks re-

quested and provided, accumulating it as the application is executed 1,000 times.

After that, we collect statistics of the average of a thousand total sizes of blocks

requested and provided, calculating the internal fragmentation using equation 2.1.

cfrac Results Table A.1 shows the total size of blocks obtained for allocation

on cfrac with each allocator. The block sizes of the analysis of test sets 1, 2 and 3

are given in Table A.1.

Results Analysis The following shows the effect of allocation on the internal

fragmentation. Note that Req in tables represents the total size of blocks requested,

Prov means the total size of blocks provided, and Frag denotes the internal frag-

mentation obtained using equation 2.1.

The total sizes of blocks for allocation are shown in Table A.1 respectively for

all test sets. The internal fragmentation of Hoard throughout all test sets is lower

than the values for other allocators, while the Half-fit shows the highest internal

fragmentation throughout all test sets. The internal fragmentation of Hoard in test

set 1 is 21.0% compared to 53.53% of Half-fit. The internal fragmentation of Hoard

in test set 2 is 12.72% compared to 55.99% of Half-fit. The internal fragmentation

of Hoard in test set 3 is 7.6% compared to 53.37% of Half-fit.

espresso Results Table A.2 shows the total size of blocks obtained for alloca-

tion on espresso with each allocator. The block sizes of the analysis of test sets 1,

2 and 3 are given in Table A.2.

Results Analysis The following shows the effect of allocation on the internal

fragmentation:

The total sizes of blocks for allocation are shown in Table A.2 respectively for all

test sets. The internal fragmentation of tcmalloc throughout test set 1 is lower than

the values for other allocators. The internal fragmentation of TLSF throughout test

170

A.1 Spatial Behaviour Analysis

cfrac

SET 1 SET 2 SET 3

Req/Prov Frag Req/Prov Frag Req/Prov Frag

Best 29,604 / 57,500 48.51% 108,899 / 199,524 45.42% 191,703 / 333,408 42.50%

First 29,604 / 57,500 48.51% 108,899 / 199,556 45.43% 191,703 / 333,440 42.51%

Half 29,604 / 63,712 53.53% 108,899 / 247,424 55.99% 191,703 / 411,136 53.37%

Hoard 29,604 / 37,472 21.00% 108,899 / 124,776 12.72% 191,703 / 207,472 7.60%

nMART 29,604 / 43,528 31.99% 108,899 / 142,712 23.69% 191,703 / 232,896 17.69%

tcmalloc 29,606 / 40,464 26.83% 108,901 / 142,840 23.76% 191,705 / 237,192 19.18%

TLSF 29,604 / 42,688 30.65% 108,899 / 142,464 23.56% 191,703 / 236,800 19.04%

Table A.1: The total block sizes requested/provided by cfrac

sets 2 and 3 is lower than the values for other allocators, while the Half-fit shows the

highest internal fragmentation throughout all test sets. The internal fragmentation

of tcmalloc in test set 1 is 8.27% compared to 45.21% of Half-fit. The internal

fragmentation of TLSF in test set 2 is 6.96% compared to 44.44% of Half-fit. The

internal fragmentation of TLSF in test set 3 is 3.09% compared to 38.59% of Half-fit.

espresso

SET 1 SET 2 SET 3

Req/Prov Frag Req/Prov Frag Req/Prov Frag

Best 1,755,782 / 2,218,544 20.86% 5,490,249 / 6,507,076 15.63% 186,382,660 / 207,689,252 10.26%

First 1,755,782 / 2,144,128 18.11% 5,490,249 / 6,320,100 13.13% 186,382,660 / 203,939,380 8.61%

Half 1,755,782 / 3,204,352 45.21% 5,490,249 / 9,881,728 44.44% 186,382,660 / 303,505,312 38.59%

Hoard 1,693,198 / 1,916,640 11.66% 5,284,473 / 6,025,288 12.30% 182,915,092 / 199,398,696 8.27%

nMART 1,693,198 / 1,847,186 8.34% 5,284,473 / 5,724,624 7.69% 182,915,092 / 189,395,918 3.42%

tcmalloc 1,693,200 / 1,845,816 8.27% 5,284,475 / 5,828,584 9.34% 182,915,094 / 199,631,608 8.37%

TLSF 1,693,198 / 1,848,368 8.39% 5,284,473 / 5,679,488 6.96% 182,915,092 / 188,751,200 3.09%

Table A.2: The total block sizes requested/provided by espresso

gawk Results Table A.3 shows the total size of blocks obtained for allocation

on gawk with each allocator. The block sizes of the analysis of test sets 1, 2 and 3

are given in Table A.3.

Results Analysis The following shows the effect of allocation on the internal

fragmentation:

The total sizes of blocks for allocation are shown in Table A.3 respectively for all

171

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

test sets. The internal fragmentation of TLSF throughout test set 1 is lower than

the values for other allocators. The internal fragmentation of Hoard throughout test

sets 2 and 3 is lower than the values for other allocators, while the Half-fit, again,

shows the highest internal fragmentation throughout all test sets. The internal

fragmentation of TLSF in test set 1 is 9.84% compared to 41.65% of Half-fit. The

internal fragmentation of Hoard in test set 2 is 11.61% compared to 45.53% of Half-

fit. The internal fragmentation of Hoard in test set 3 is 11.16% compared to 45.94%

of Half-fit.

gawk

SET 1 SET 2 SET 3

Req/Prov Frag Req/Prov Frag Req/Prov Frag

Best 385,298 / 490,272 21.41% 6,255,070 / 9,495,428 34.13% 12,034,858 / 18,274,412 34.14%

First 385,298 / 491,008 21.53% 6,255,070 / 9,431,028 33.68% 12,034,858 / 18,716,396 35.70%

Half 385,298 / 660,320 41.65% 6,255,070 / 11,482,944 45.53% 12,034,858 / 22,260,736 45.94%

Hoard 373,559 / 442,064 15.50% 6,245,812 / 7,065,832 11.61% 12,025,925 / 13,536,112 11.16%

nMART 350,243 / 397,800 11.96% 5,651,828 / 6,669,459 15.26% 15,654,509 / 18,348,213 14.68%

tcmalloc 350,245 / 414,352 15.47% 5,651,830 / 6,974,440 18.96% 10,858,671 / 13,516,672 19.66%

TLSF 350,243 / 388,464 9.84% 5,651,828 / 6,607,712 14.47% 15,654,509 / 18,316,288 14.53%

Table A.3: The total block sizes requested/provided by gawk

p2c Results Table A.4 shows the total size of blocks obtained for allocation on

p2c with each allocator. The block sizes of the analysis of test sets 1, 2 and 3 are

given in Table A.4.

Results Analysis The following shows the effect of allocation on the internal

fragmentation. Note that all test sets produced the same values of the total size

of blocks as well as the internal fragmentation, but test set 3 of p2c produced

different values during the experiment. R STD in the table for test set 3 means

the standard deviation of the total size of block requests, and P STD denotes the

standard deviation of the total size of blocks provided:

The total sizes of blocks for allocation are shown in Table A.4 respectively for

all test sets. The internal fragmentation of Hoard throughout all test sets is lower

than the values for other allocators, while the Half-fit shows the highest internal

fragmentation throughout all test sets. The internal fragmentation of Hoard in test

172

A.1 Spatial Behaviour Analysis

set 1 is 6.42% compared to 47.13% of Half-fit. The internal fragmentation of Hoard

in test set 2 is 5.86% compared to 46.45% of Half-fit. The internal fragmentation of

Hoard in test set 3 is 3.02% compared to 52.26% of Half-fit.

In summary, Hoard shows the best efficiency on the internal fragmentation

throughout cfrag, gawk and p2c application, whereas TLSF shows less internal

fragmentation for espresso. On the whole, nMART shows better efficiency on the

internal fragmentation throughout all applications compared to conventional algo-

rithms. Also, it shows better efficiency on the fragmentation throughout esspresso

and gawk application compared to Hoard and tcmalloc.

A.1.2 Total Amount of Virtual Memory Usage

In general, memory allocators request more memory space from the underlying op-

erating system when remaining memory space is not enough to satisfy applications’

requests, even if the total amount of memory unused is larger than the requested size

because of external fragmentation. The external fragmentation affects the actual to-

tal amount of memory used. The total amount of memory used can be determined

indirectly via monitoring the virtual memory usage.

Typically, it is harder to find out the external fragmentation in practice than

finding the internal fragmentation because it is necessary to analyze virtual mem-

ory usage. In Linux, there are two approaches to determine how much memory

is used by a process. We have decided to use the proc special file system, which

provides information about all running processes, rather than using some APIs such

as getrusage() provided by the OS; this is because using APIs incurs an overhead

for the application and it may miss some of the memory allocated if the application

allocats memory through the mmap() system call. Through /proc/pid/status (pid

is the process ID) we can collect information regarding memory, especially peak

virtual memory and data area usage, and current virtual memory usage, and so on.

In order to obtain the peak virtual memory usage and data area usage, we have

executed test sets 1 to 4 with the application provided in appendix D.1.3. The

application iteratively read the /proc/pid/status file every 0.1 msec and prints the

collected and parsed results. We accumulate the results in another log file using a

173

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

p
2
c

S
E
T

1
S
E
T

2
S
E
T

3

R
eq
/P

rov
fragm

en
t

R
eq
/P

rov
fragm

en
t

R
eq
/P

rov
fragm

en
t

R
S
T
D
/P

S
T
D

B
est

166,334
/
211,032

21.18%
299,441

/
382,420

21.70%
1,497,258.32

/
2302056.00

34.96%
1.09

/
0.00

F
irst

166,334
/
211,064

21.19%
299,441

/
383,524

21.92%
1,497,258.22

/
2019864.00

25.87%
0.92

/
0.00

H
alf

166,334
/
314,592

47.13%
299,441

/
559,232

46.45%
1,497,258.22

/
3136576.00

52.26%
0.91

/
0.00

H
oard

166,034
/
177,432

6.42%
298,792

/
317,400

5.86%
1,496,159.22

/
1542800.45

3.02%
0.92

/
1.84

n
M
A
R
T

166,034
/
181,474

8.51%
298,792

/
323,765

7.71%
1,496,159.27

/
1763320.30

15.15%
0.92

/
4.78

tcm
allo

c
166,036

/
179,464

7.48%
298,794

/
323,648

7.68%
1,496,161.21

/
1750744.85

14.54%
0.90

/
3.59

T
L
S
F

166,034
/
184,208

9.87%
298,792

/
333,728

10.47%
1,496,159.22

/
1776850.69

15.80%
0.92

/
11.04

T
ab

le
A
.4:

T
h
e
total

b
lo
ck

sizes
req

u
ested

/p
rov

id
ed

b
y
p2c

174

A.1 Spatial Behaviour Analysis

redirection of standard output. For the experiment, we need to modify some of the

application’s source code because some test sets finish their functionalities before

reading the status file in proc often enough. In order to wait enough time for the

results to be collected, we have just added the sleep() function to wait three seconds

at the end of the main() function of each application of the test sets.

The experiment is executed using different real applications with test sets 1 to

4. Each application was executed 100 times with the same allocator repeatedly so

that each application was executed 700 times with seven different allocators totally.

In the individual execution, we read the /proc/pid/status file every 0.1 msec to de-

termine the peak virtual memory usage in each application execution practically.

Test Set 1 Results Table A.5 shows the virtual memory usage obtained for

test set 1 with each allocator. The memory usage of the cfrac, espresso, gawk and

p2c analysis is given in Table A.5.

Results Analysis The following shows the behaviour of allocation on the total

amount of virtual memory usage. Note that Peak indicates the peak virtual memory

usage, which is the peak of the aggregate amount of virtual memory usage of data,

stack and code segments. Data means the size of the data segment of application.

The unit of the table is Kilobyte (kB):

• cfrac: The peak and data of virtual memory usage of cfrac with each allocator

are shown in Table A.5. The amount of virtual memory of First-fit and Best-fit

in the set is lower than the values of other allocators. In the peak usage case,

the amount of memory of Best-fit and First-fit in the set is 8,904 kB compared

to 18,832 kB of tcmalloc, which has the highest amount of peak virtual memory

usage. In the data usage case, the amount of memory of Best-fit and First-fit

is 136 kB compared to 2,528 kB of tcmalloc.

• espresso: The peak and data of virtual memory usage of espresso with each

allocator are shown in Table A.5. The amount of virtual memory of First-fit

and Best-fit in the set is lower than the values for other allocators. In the

175

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

peak usage case, the amount of Best-fit and First-fit in test set 1 is 6,480 kB

compared to 19,000 kB of tcmalloc, which has the highest amount of peak

virtual memory usage. In the data usage case, the amount of memory of

Best-fit and First-fit is 128 kB compared to 2,588 kB of Hoard.

• gawk : The peak and data of virtual memory usage of gawk with each allocator

are shown in Table A.5. The amount of virtual memory of First-fit and Best-

fit in the set is lower than the values for other allocators. In the peak usage

case, the amount of Best-fit and First-fit in the set is 13,140 kB compared to

22,844 kB of tcmalloc, which has the highest amount of virtual memory. In

the data usage case, the amount of memory of Best-fit, First-fit, and TLSF is

392 kB compared to 3,056 kB of Hoard.

• p2c: The peak and data of virtual memory usage of p2c with each allocator

are shown in Table A.5. The amount of virtual memory of First-fit and Best-

fit in the set is lower than the values for other allocators. In the peak usage

case, the amount of Best-fit and First-fit in test set 1 is 7,040 kB compared

to 19,416 kB of tcmalloc, which has the highest amount of virtual memory. In

the data usage case, the amount of memory of Best-fit and First-fit is 300 kB

compared to 2,564 kB of tcmalloc.

SET 1

cfrac espresso gawk p2c

Peak Data Peak Data Peak Data Peak Data

Best 8,904 136 6,480 128 13,140 392 7,040 300

First 8,904 136 6,480 128 13,140 392 7,040 300

Half 8,912 140 6,500 144 13,216 464 7,124 380

Hoard 17,528 1,432 18,848 2,588 21,068 3,056 18,748 2,104

nMART 9,048 276 6,532 176 13,284 532 7,180 436

tcmalloc 18,832 2,528 19,000 2,532 22,844 2,560 19,416 2,564

TLSF 8,928 156 6,492 136 13,144 392 7,048 304

Table A.5: The size of virtual memory provided for test set 1

176

A.1 Spatial Behaviour Analysis

Test Set 2 Results Table A.6 shows the virtual memory usage obtained for

test set 2 with each allocator. The memory usage of the cfrac, espresso, gawk and

p2c analysis is given in Table A.6.

Results Analysis The following shows the behaviour of allocation on the total

amount of virtual memory usage. The unit of the table is Kilobyte (kB):

• cfrac: The peak and data of virtual memory usage of cfrac with each allocator

are shown in Table A.6. The amount of virtual memory of First-fit and Best-fit

in the set is lower than the values of other allocators. In the peak usage case,

the amount of memory of Best-fit and First-fit in the set is 9,064 kB compared

to 18,832 kB of tcmalloc, which has the highest amount of peak virtual memory

usage. In the data usage case, the amount of memory of Best-fit and First-fit

is 296 kB compared to 2,528 kB of tcmalloc.

• espresso: The peak and data of virtual memory usage of espresso with each

allocator are shown in Table A.6. The amount of virtual memory of First-fit

and Best-fit in the set is lower than the values for other allocators. In the

peak usage case, the amount of Best-fit and First-fit in test set 2 is 6,472 kB

compared to 19,000 kB of tcmalloc, which has the highest amount of peak

virtual memory usage. In the data usage case, the amount of memory of

Best-fit and First-fit is 120 kB compared to 2,844 kB of Hoard.

• gawk : The peak and data of virtual memory usage of gawk with each allocator

are shown in Table A.6. The amount of virtual memory of TLSF in the set is

lower than the values for other allocators. In the peak usage case, the amount

of TLSF is 16,976 kB compared to 26,944 kB of tcmalloc, which has the highest

amount of virtual memory. In the data usage case, the amount of memory of

TLSF is 4,224 kB compared to 6,772 kB of Hoard.

• p2c: The peak and data of virtual memory usage of p2c with each allocator

are shown in Table A.6. The amount of virtual memory of Best-fit in the

set is lower than the values for other allocators. In the peak usage case, the

177

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

amount of Best-fit is 7,140 kB compared to 19,416 kB of tcmalloc, which has

the highest amount of virtual memory. In the data usage case, the amount of

memory of Best-fit is 400 kB compared to 2,564 kB of tcmalloc.

SET 2

cfrac espresso gawk p2c

Peak Data Peak Data Peak Data Peak Data

Best 9,064 296 6,472 120 17,152 4,404 7,140 400

First 9,064 296 6,472 120 17,140 4,392 7,144 404

Half 9,088 316 6,488 132 17,892 5,140 7,244 500

Hoard 17,720 1,624 19,100 2,844 24,852 6,772 18,812 2,168

nMART 9,520 748 6,512 156 18,356 5,604 7,400 656

tcmalloc 18,832 2,528 19,000 2,532 26,944 6,656 19,416 2,564

TLSF 9,080 308 6,484 128 16,976 4,224 7,148 404

Table A.6: The size of virtual memory provided for test set 2

Test Set 3 Results Table A.7 shows the virtual memory usage obtained for

test set 3 with each allocator. The memory usage of the cfrac, espresso, gawk and

p2c analysis is given in Table A.7.

Results Analysis The following shows the behaviour of allocation on the total

amount of virtual memory usage. The unit of the table is Kilobyte (kB):

• cfrac: The peak and data of virtual memory usage of cfrac with each allocator

are shown in Table A.7. The amount of virtual memory of First-fit and Best-fit

in the set is lower than the values of other allocators. In the peak usage case,

the amount of memory of Best-fit and First-fit in the set is 9,212 kB compared

to 18,832 kB of tcmalloc, which has the highest amount of peak virtual memory

usage. In the data usage case, the amount of memory of Best-fit and First-fit

is 444 kB compared to 2,528 kB of tcmalloc.

• espresso: The peak and data of virtual memory usage of espresso with each

allocator are shown in Table A.7. The amount of virtual memory of First-fit

178

A.1 Spatial Behaviour Analysis

and Best-fit in the set is lower than the values for other allocators. In the

peak usage case, the amount of Best-fit and First-fit in test set 3 is 6,844 kB

compared to 20,436 kB of Hoard, which has the highest amount of peak virtual

memory usage. In the data usage case, the amount of memory of Best-fit and

First-fit is 492 kB compared to 4,140 kB of Hoard.

• gawk : The peak and data of virtual memory usage of gawk with each allocator

are shown in Table A.7. The amount of virtual memory of TLSF in the set is

lower than the values for other allocators. In the peak usage case, the amount

of TLSF is 24,080 kB compared to 33,100 kB of tcmalloc, which has the highest

amount of virtual memory. In the data usage case, the amount of memory of

TLSF is 11,328 kB compared to 13,872 kB of Hoard.

• p2c: The peak and data of virtual memory usage of p2c with each allocator

are shown in Table A.7. The amount of virtual memory of Best-fit and First-

fit in the set is lower than the values for other allocators. In the peak usage

case, the amount of Best-fit and First-fit is 7,592 kB compared to 19,416 kB of

tcmalloc, which has the highest amount of virtual memory. In the data usage

case, the amount of memory of Best-fit and First-fit is 852 kB compared to

2,564 kB of tcmalloc.

SET 3

cfrac espresso gawk p2c

Peak Data Peak Data Peak Data Peak Data

Best 9,212 444 6,844 492 24,588 11,840 7,592 852

First 9,212 444 6,844 492 24,568 11,820 7,592 852

Half 9,244 472 6,968 612 26,500 13,748 7,780 1,036

Hoard 17,848 1,752 20,436 4,140 31,884 13,872 19,196 2,552

nMART 9,968 1,196 7,120 764 27,664 12,912 8,280 1,236

tcmalloc 18,832 2,528 20,024 3,556 33,100 12,816 19,416 2,564

TLSF 9,228 456 6,860 504 24,080 11,328 7,600 856

Table A.7: The size of virtual memory provided for test set 3

179

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

Test Set 4 Results Table A.8 shows the virtual memory usage obtained for

test set 4 with each allocator. The memory usage of the cache-scratch, cache-thrash,

larson and shbench analysis is given in Table A.8.

Results Analysis The following shows the behaviour of allocation on the total

amount of virtual memory usage. The unit of the table is Kilobyte (kB):

• cache-scratch: The peak and data of virtual memory usage of cache-scratch

with each allocator are shown in Table A.8. The amount of virtual memory of

First-fit and Best-fit in the set is lower than the values of other allocators. In

the peak usage case, the amount of memory of Best-fit and First-fit in the set

is 268,516 kB compared to 283,604 kB of Hoard, which has the highest amount

of peak virtual memory usage. In the data usage case, the amount of memory

of Best-fit and First-fit is 262,356 kB compared to 266,068 kB of Hoard.

• cache-thrash: The peak and data of virtual memory usage of cache-thrash

with each allocator are shown in Table A.8. The amount of virtual memory

of First-fit and Best-fit in the set is lower than the values for other allocators.

In the peak usage case, the amount of Best-fit and First-fit in test set 4 is

268,516 kB compared to 283,604 kB of Hoard, which has the highest amount

of peak virtual memory usage. In the data usage case, the amount of memory

of Best-fit and First-fit is 262,356 kB compared to 267,476 kB of Hoard.

• larson: The peak and data of virtual memory usage of larson with each allo-

cator are shown in Table A.8. The amount of virtual memory of Best-fit in the

set is lower than the values for other allocators. In the peak usage case, the

amount of Best-fit is 414,420 kB compared to 541,200 kB of Hoard, which has

the highest amount of virtual memory. In the data usage case, the amount of

memory of Best-fit is 406,084 kB compared to 525,324 kB of Hoard.

• shbench: The peak and data of virtual memory usage of shbench with each

allocator are shown in Table A.8. The amount of virtual memory of Best-fit

and First-fit in the set is lower than the values for other allocators. In the

180

A.2 Cache Behaviour Analysis

peak usage case, the amount of Best-fit and First-fit is 39,320 kB compared

to 54,436 kB of Hoard, which has the highest amount of virtual memory. In

the data usage case, the amount of memory of Best-fit and First-fit is 33,160

kB compared to 38,308 kB of Hoard.

cache-scratch cache-thrash larson shbench

Peak Data Peak Data Peak Data Peak Data

Best 268,516 262,356 268,516 262,356 414,420 406,084 39,320 33,160

First 268,516 262,356 268,516 262,356 507,624 499,308 39,320 33,160

Half 268,532 262,368 268,528 262,364 498,856 490,512 39,472 33,308

Hoard 283,604 266,068 283,604 267,476 541,200 525,324 54,436 38,308

nMART 268,536 262,372 268,536 262,372 418,604 409,576 39,428 33,264

tcmalloc 281,068 264,796 281,068 264,796 511,704 502,600 51,580 35,308

TLSF 268,536 262,372 268,524 262,360 417,752 409,800 39,348 33,184

Table A.8: The size of virtual memory provided for test set 4

In summary, a type of memory allocator, which exploits multiple heaps with

segregated size class, used more memory space, while memory allocators using a

global heap consumed less memory space. In the Hoard case, it has the highest

usage of memory space under very memory-intensive applications. Overall, nMART

used less memory space throughout all applications compared to tcmalloc and Hoard,

which exploits multiple heaps with segregated size classes. But, it consumed more

memory space compared to others, which exploit a global heap.

A.2 Cache Behaviour Analysis

In this section, we will analyze cache behaviour of applications with each allocator.

In particular, active false-sharing analysis has been conducted using cache-thrash

and passive false-sharing analysis has been conducted using cache-scratch. Such

applications, provided by [Berger et al., 2000], produced contention caused by the

cache-coherent protocol.

Unlike the above experiments, the experiment for test set 4 has been conducted

181

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

using perf to analyze cache behaviour, processor cycles, and instructions executed.

We have employed an option provided to execute each application repeatedly and to

produce average and the standard deviation of events for results. Each application

was executed 400 times with the same allocator repeatedly under the option so that

each application was executed 2,800 times with seven different allocators totally. As

the result, we collected the average processor cycles and instructions executed, L1

cache misses and L3 cache misses, and time elapsed produced by perf.

cache-scratch Results Table A.9 gives analysis of the average number of pro-

cessor cycles obtained and the average number of instructions executed, L1 cache

misses and L3 cache misses, and the average time elapsed on cache-scratch with

each allocator.

Results Analysis The following shows the behaviour of cache-scratch on the

performance events; note that L1/L3 misses in tables represent the L1 cache misses

ratio and L3 cache misses ratio. The time elapsed means the time spent executing

the application. The values in parenthesis denote the standard deviation for each

element:

• Processor cycles: The average number of processor cycles for each application

execution is shown in Table A.9 for test set 4. The number of processor cycles

of nMART is lower than the values for other allocators, while tcmalloc con-

sumed the highest processor cycles. The number of processor cycles of nMART

in test set 4 is 19,189,732,268 compared to 155,372,798,443 of tcmalloc.

• Instructions: The average values of the number of instructions executed were

uniformly distributed compared to the number of processor cycles. The num-

ber of executed instructions of nMART is lower than the values of other al-

locators, while tcmalloc executed the highest instructions. The number of ex-

ecuted instructions of nMART is 15,422,955,446 compared to 15,774,177,620

of tcmalloc.

• L1/L3 misses: The L1 cache misses ratio of Hoard and nMART is lower than

182

A.2 Cache Behaviour Analysis

the values of other allocators, while the ratio of tcmalloc is higher than others

as well as the L3 cache misses ratio. The L1 cache misses ratio of Hoard and

nMART is 0.03% compared to 0.87% of tcmalloc and the L3 cache misses ratio

of nMART is 3.25% compared to 23.40% of tcmalloc.

• Time elapsed: The average time elapsed of nMART, showing the best cache

efficiency, is lower than the values of other allocators, while the average time

elapsed of tcmalloc is higher than others. The average time elapsed of nMART

is 1.21s compared to 6.53s of tcmalloc.

cache-scratch

Processor cycles Instructions L1/L3 misses time elapsed

Best 30,482,111,629 (±0.30%) 15,713,624,520 (±0.06%) 0.20% / 16.73% 1.69 (±0.23%)

First 35,927,307,175 (±0.33%) 15,747,837,791 (±0.06%) 0.28% / 20.51% 1.98 (±0.30%)

Half 35,193,500,238 (±0.33%) 15,681,244,019 (±0.07%) 0.29% / 21.24% 2.08 (±0.34%)

Hoard 20,517,658,433 (±0.05%) 15,429,706,988 (±0.03%) 0.03% / 3.39% 1.25 (±0.07%)

nMART 19,189,732,268 (±0.05%) 15,422,955,446 (±0.03%) 0.03% / 3.25% 1.21 (±0.06%)

tcmalloc 155,372,798,443 (±0.18%) 15,774,177,620 (±0.03%) 0.87% / 23.40% 6.53 (±0.23%)

TLSF 33,933,050,107 (±0.27%) 15,666,639,647 (±0.05%) 0.25% / 17.91% 1.85 (±0.22%)

Table A.9: The states of event counters for cache-scratch in test set 4

cache-thrash Results Table A.10 gives analysis of the average number of pro-

cessor cycles obtained and the average number of instructions executed, L1 cache

misses and L3 cache misses, and the average time elapsed on cache-thrash with each

allocator.

Results Analysis The following shows the behaviour of cache-thrash on the

performance events:

• Processor cycles: The average of the number of processor cycles for each appli-

cation execution is shown in Table A.10 for test set 4. The number of processor

cycles of nMART is lower than the values for other allocators, while tcmalloc

consumed the highest processor cycles relatively. The number of processor

cycles of nMART in test set 4 is 19,213,068,983 compared to 156,506,009,375

of tcmalloc.

183

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

• Instructions: The average values of the number of instructions executed were

uniformly distributed compared to the number of processor cycles relatively.

The number of executed instructions of Hoard is lower than the values of

other allocators, while Half-fit executed the highest instructions. The number

of executed instructions of Hoard is 15,431,756,220 compared to 15,808,405,681

of Half-fit.

• L1/L3 misses: The L1 cache misses ratio of nMART is lower than the values

of other allocators, while the ratio of tcmalloc is higher than others as well

as the L3 cache misses ratio. The L1 cache misses ratio of nMART is 0.03%

compared to 0.86% of tcmalloc and the L3 cache misses ratio of nMART is

3.27% compared to 23.18% of tcmalloc.

• Time elapsed: The average time elapsed of nMART, showing the best cache

efficiency, is lower than the values of other allocators, while the average time

elapsed of tcmalloc is higher than others. The average time elapsed of nMART

is 1.20s compared to 6.60s of tcmalloc.

cache-thrash

Processor cycles Instructions L1/L3 misses time elapsed

Best 34,644,781,603 (±0.35%) 15,651,870,681 (±0.07%) 0.25% / 19.87% 2.07(±0.38%)

First 36,393,746,791 (±0.32%) 15,656,292,856 (±0.08%) 0.28% / 22.25% 2.00 (±0.32%)

Half 39,006,174,358 (±0.36%) 15,808,405,681 (±0.08%) 0.32% / 20.13% 2.12 (±0.36%)

Hoard 20,458,064,897 (±0.13%) 15,431,756,220 (±0.03%) 0.05% / 5.04% 1.47 (±0.40%)

nMART 19,213,068,983 (±0.13%) 15,435,817,243 (±0.03%) 0.03% / 3.27% 1.20 (±0.38%)

tcmalloc 156,506,009,375 (±0.20%) 15,781,686,255 (±0.03%) 0.86% / 23.18% 6.60 (±0.25%)

TLSF 31,333,536,707 (±0.34%) 15,555,412,372 (±0.05%) 0.22% / 18.64% 1.97 (±0.42%)

Table A.10: The states of event counters for cache-thrash in test set 4

larson Results Table A.11 gives analysis of the average number of processor

cycles obtained and the average number of instructions executed, L1 cache misses

and L3 cache misses, and the average time elapsed on larson with each allocator.

Results Analysis The following shows the behaviour of larson on the perfor-

mance events:

184

A.2 Cache Behaviour Analysis

• Processor cycles: The average number of processor cycles for each application

execution is shown in Table A.11 for test set 4. The number of processor

cycles of tcmalloc is lower than the values for other allocators, while Best-fit

consumed the highest processor cycles. The number of processor cycles of

tcmalloc in test set 4 is 28,414,722,204 compared to 81,165,969,173 of Best-fit.

• Instructions: The average values of the number of instructions executed were

uniformly distributed compared to the number of processor cycles relatively.

The number of executed instructions of Hoard is lower than the values of

other allocators, while Best-fit executed the highest instructions. The number

of executed instructions of Hoard is 915,019,352 compared to 33,908,239,390

of Best-fit.

• L1/L3 misses: The L1 cache misses ratio of First-fit is lower than the values of

other allocators, while the ratio of Hoard is higher than others. The L3 cache

misses ratio of Hoard is lower than the values of other allocators, while the

ratio of Best-fit is higher than others. The L1 cache misses ratio of First-fit is

1.00% compared to 8.99% of Hoard and the L3 cache misses ratio of Hoard is

3.17% compared to 38.52% of Best-fit.

• Time elapsed: The average time elapsed of Half-fit is lower than the values

of other allocators, while the average time elapsed of Best-fit is higher than

others. The average time elapsed of Half-fit is 6.36s compared to 29.58s of

Best-fit.

shbench Results Table A.12 gives analysis of the average number of processor

cycles obtained and the average number of instructions executed, L1 cache misses

and L3 cache misses, and the average time elapsed on shbench with each allocator.

Results Analysis The following shows the behaviour of shbench on the perfor-

mance events:

• Processor cycles: The average of the number of processor cycles for each appli-

cation execution is shown in Table A.12 for test set 4. The number of processor

185

Appendix A: Additional Evaluation of Spatial and Cache Behaviour of memory
Allocators

larson

Processor cycles Instructions L1/L3 misses time elapsed

Best 81,165,969,173 (±2.16%) 33,908,239,390 (±4.39%) 4.19% / 38.52% 29.58 (±0.23%)

First 34,028,174,151 (±0.04%) 17,162,890,262 (±0.16%) 1.00% / 16.10% 8.20 (±0.02%)

Half 30,346,204,027 (±0.03%) 4,180,181,485 (±0.27%) 1.20% / 6.94% 6.36 (±0.01%)

Hoard 28,574,320,199 (±0.28%) 915,019,352 (±0.31%) 8.99% / 3.17% 6.47 (±0.05%)

nMART 30,393,247,975 (±0.08%) 19,689,032,680 (±0.15%) 1.01% / 11.97% 7.07 (±0.02%)

tcmalloc 28,414,722,204 (±0.03%) 6,871,857,910 (±0.29%) 2.96% / 12.81% 6.55 (±0.01%)

TLSF 30,153,147,298 (±0.11%) 19,489,664,548 (±0.13%) 1.02% / 12.01% 7.10 (±0.05%)

Table A.11: The states of event counters for larson in test set 4

cycles of tcmalloc is lower than the values for other allocators, while Half-fit

consumed the highest processor cycles relatively. The number of processor

cycles of tcmalloc in test set 4 is 501,271,115 compared to 25,105,925,676 of

Half-fit.

• Instructions: The average values of the number of instructions executed were

uniformly distributed compared to the number of processor cycles relatively.

The number of executed instructions of tcmalloc is lower than the values of

other allocators, while TLSF executed the highest instructions. The number

of executed instructions of tcmalloc is 792,931,505 compared to 6,295,724,312

of TLSF.

• L1/L3 misses: The L1 cache misses ratio of nMART is lower than the values of

other allocators, while the ratio of TLSF is higher than others. The L3 cache

misses ratio of Hoard is lower than the values of other allocators, while the

ratio of Half-fit is higher than others. The L1 cache misses ratio of nMART

is 0.02% compared to 3.07% of TLSF and the L3 cache misses ratio of Hoard

is 2.62% compared to 27.62% of Half-fit.

• Time elapsed: The average time elapsed of tcmalloc is lower than the values

of other allocators, while the average time elapsed of Half-fit is higher than

others. The average time elapsed of tcmalloc is 0.35s compared to 3.96s of

Half-fit.

186

A.2 Cache Behaviour Analysis

shbench

Processor cycles Instructions L1/L3 misses time elapsed

Best 20,373,588,162 (±0.18%) 4,969,045,856 (±0.26%) 0.74% / 25.92% 3.25 (±0.10%)

First 19,972,972,141 (±0.23%) 4,806,444,040 (±0.29%) 0.77% / 25.94% 3.20 (±0.13%)

Half 25,105,925,676 (±0.57%) 5,551,456,633 (±0.51%) 0.73% / 27.62% 3.96 (±0.35%)

Hoard 1,675,713,167 (±0.35%) 1,458,146,485 (±0.17%) 1.39% / 2.62% 0.51 (±0.28%)

nMART 960,454,183 (±0.21%) 1,522,897,178 (±0.2%) 0.02% / 3.93% 0.40 (±0.25%)

tcmalloc 501,271,115 (±0.17%) 792,931,505 (±0.07%) 0.07% / 3.99% 0.35 (±0.07%)

TLSF 15,817,495,323 (±0.22%) 6,295,724,312 (±0.30%) 3.07% / 21.00% 2.70 (±0.22%)

Table A.12: The states of event counters for shbench in test set 4

In summary, nMART shows the best performance throughout cache behaviour

benchmarks regarding the false sharing problem. Also, Hoard avoids inducing false

sharing so its cache miss rate is lower than others, but it consumes more memory

space (as seen in Appendix A.1.2). Others induced some false sharing both actively

and passively. In the shbench case, nMART, Hoard and tcmalloc show a lower rate

of cache misses, except in the L1 case of Hoard. In larson, Hoard shows the worst

cache misses for the L1 cache, while it shows a lower cache miss rate than others for

the L3 cache.

187

Appendix B

Additional Evaluation of the

Revised Node Distance Tables

B.1 Implementation of Node Distance tables in

Linux

This appendix evaluates the implementation of the new metric for discovering node

distances, discussed in Chapter 3.3.1, and discusses how much the new metric on

a modified Linux kernel can improve the performance compared with the original

kernel.

In the source of the 3.0.4 version of Linux [Linus Torvalds, 2011], the initialization

of the node distance table (called the numa distance array in the kernel) occurs at

boot time by numa alloc distance() and numa set distance(). The node distance()

macro returns one of the element’s values, the cost between the start node and the

end node, which is received as its parameters, to the table. The actual work is

delegated to the node distance() function.

Reading the node distance table

node distance() is invoked by find next best node(), find near online node() and

node read distance(). These caller functions pick up the next closest node or value

of the cost when the kernel initialize an array of zonelist elements in pg data t.

189

Appendix B: Additional Evaluation of the Revised Node Distance Tables

Source 25 arch/x86/mm/numa.c

458 int __node_distance(int from, int to)

459 {

460 if (from >= numa_distance_cnt || to >= numa_distance_cnt)

461 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;

462 return numa_distance[from * numa_distance_cnt + to];

463 }

Building fallback lists

In the build zonelists() function (shown below), there is a large external loop from

line 3025 to line 3049 which works through all node zones. In the process, it attempts

to find the next closest node in terms of the information from the numa distance

array, appending to the zonelist as a fallback list.

Source 26 linux/mm/page alloc.c

3000 static void build_zonelists(pg_data_t *pgdat)

3001 {

3025 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {

3026 int distance = node_distance(local_node, node);

3045 if (order == ZONELIST_ORDER_NODE)

3046 build_zonelists_in_node_order(pgdat, node);

3047 else

3048 node_order[j++] = node; /* remember order */

3049 }

3050

3057 }

The fallback list is used to choose an alternative memory region when it cannot

find a free area within any of the three local zones: ZONE HIGHMEM, ZONE DMA32,

and ZONE DMA. The fallback list entries are ordered by means of the type of

memory region. The actual work is delegated to the build zonelists node() function

invoked by build zonelists in node order(), as shown in the following code. It builds

allocation fallback zone lists, adding all populated zones of a node to the zonelist,

finally.

Source 27 linux/mm/page alloc.c

190

B.1 Implementation of Node Distance tables in Linux

2673 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,

2674 int nr_zones, enum zone_type zone_type)

2675 {

2676 struct zone *zone;

2677

2678 BUG_ON(zone_type >= MAX_NR_ZONES);

2679 zone_type++;

2680

2681 do {

2682 zone_type--;

2683 zone = pgdat->node_zones + zone_type;

2684 if (populated_zone(zone)) {

2685 zoneref_set_zone(zone,

2686 &zonelist->_zonerefs[nr_zones++]);

2687 check_highest_zone(zone_type);

2688 }

2689

2690 } while (zone_type);

2691 return nr_zones;

2692 }

Allocation page frames

Each memory zone contains the information of page frames that are held in a

centralized array managed by the Buddy algorithm, which allocates memory only

in the size of powers of 2. These page frames will be picked up by the kernel

page frame allocator called zone allocator. A set of page frames is handled by the

alloc pages() macro, which invokes alloc pages current(). The alloc pages current()

function allocates a page from the kernel page pool. The actual work is delegated to

alloc pages nodemask(), which is the main function of the buddy system because

it deals with the core features of allocation.

Source 28 linux/mm/page alloc.c

2234 struct page *

2235 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,

2236 struct zonelist *zonelist, nodemask_t *nodemask)

2237 {

2251 /*

2252 * Check the zones suitable for the gfp_mask contain at least one

2253 * valid zone. It’s possible to have an empty zonelist as a result

2254 * of GFP_THISNODE and a memoryless node

2255 */

2256 if (unlikely(!zonelist->_zonerefs->zone))

2257 return NULL;

191

Appendix B: Additional Evaluation of the Revised Node Distance Tables

2269 /* First allocation attempt */

2270 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,

2271 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,

2272 preferred_zone, migratetype);

2273 if (unlikely(!page))

2274 page = __alloc_pages_slowpath(gfp_mask, order,

2275 zonelist, high_zoneidx, nodemask,

2276 preferred_zone, migratetype);

2280 return page;

2281 }

Simply put, the get page from freelist() function returns the number of pages

to satisfy the allocation request of the fresh memory area by going through the

zonelist. It is looking for a zone with enough free memory space. However, if too

little memory is available, the kernel loops over all zones in the fallback list and wakes

up the swapping daemon called kswapd in the alloc pages slowpath() function.

These values are firstly collected at the system boot by build all zonelists(), which

splits up the memory according to the zone types: ZONE DMA, ZONE NORMAL,

and ZONE HIGHMEM. The build all zonelists() function invokes build all zonelist(),

which fulfils data into the zonelists data structure, and the build zonelists() function

is called the build all zonelist() function inside. build zonelists() ensures linking

all memory regions, which will be taken for memory allocation in order.

As seen from the source code of the kernel, the numa distance array stores the

values of the node distance from the SLIT, being used when page frames are served.

Therefore, we are simply able to achieve our objectives by modifying the array.

B.2 Measuring Node Distances

We have reported on two experiments to measure the actual time taken to access

measures from various nodes in two distinguishing ccNUMA platforms described in

Chapter 4.1, and established new node distance tables based on the experiments.

A four nodes-based ccNUMA architecture system

To measure real node distance, we have created an application to measure the

node distance as many as 100 times under the same condition. The application

192

B.2 Measuring Node Distances

has performed some memory allocation operations and memcpy() on all processors

in order, and computed the time takes for these operations to complete. At start-

up, the program sets memory affinity to allow a certain range of virtual memory

addresses to be mapped to the physical memory in a particular ccNUMA node, and

then it runs on the processor 0 to the last processor in order. After all operations

have finished, the program sets its memory affinity from the current node to the next

node, and performs the same operations repeatedly until it traverses all nodes. In the

experiment, the program measures and records the time to complete all operations.

For instance, as seen in Appendix D.1.1, the application sets allowing the memory

allocation from the physical memory belonging to node 0, and requests allocating the

given size of 256M bytes memory and memory copy operations, which writes some

meaningless data into the memory served to ensure mapping the virtual memory

onto the physical memory, on processor 0 until finishing the operations. After this,

it will change processor affinity from processor 0 to processor 1 to run on another

processor in order. After traversal of all of the processors with node 0 memory

affinity, it will change memory affinity from node 0 to node 1, and run itself on from

processor 0 to processor 15 repeatedly.

The average value for both the local and remote accesses are shown in table

B.5. As expected, the average execution time in the remote accesses is longer than

the values of local accesses. For instance, at the first line, the average execution

time in the local access, the application running on node 0 with memory affinity on

node 0, is 2.321s compared to 3.33s for the remote accesses at line 4. For all cases

of minimum and maximum execution times, the values for the remote accesses are

even longer than the local accesses.

The experiment results enable us to establish a new node distance table shown in

B.1. In this table the measured value for the access of the local node is normalized

to 10, and the remote values can be defined as the measured value of the remote

node multiplied by 10 over that for the measured value of the local node. As can

be seen from the results, the measured distances are different from those given by

the SLIT in the BIOS (and shown in Table 3.1). Note that the numbers in brackets

represent the original values of the node distance table.

193

Appendix B: Additional Evaluation of the Revised Node Distance Tables

node 0 node 1 node 2 node 3

node 0 10 (10) 13 (20) 12 (20) 14 (20)

node 1 13 (20) 10 (10) 14 (20) 12 (20)

node 2 12 (20) 14 (20) 10 (10) 13 (20)

node 3 14 (20) 12 (20) 13 (20) 10 (10)

Table B.1: Measured Node Distances

In the results, the measured consumption time of 2-hop remote access is longer

than 1-hop remote access or 0-hop local access, which means that the 2-hop remote

access should be avoided as much as possible to improve the performance of memory

operations. For this reason, we have changed the values of the node distance table

in the OS to use the new measured values.

An eight nodes-based ccNUMA architecture system

Table B.2 shows the original SLIT of the system. As seen in the table, it contains

slightly different values compared to table 3.1. This is because the processor consists

of sibling nodes, so it needs to represent them in terms of different values. The value

of 16 means 1-hop remote access including sibling nodes, and the value of 22 means

that it needs 2-hop access to remote memory.

node 0 node 1 node 2 node 3 node 4 node 5 node 6 node 7

node 0 10 16 16 22 16 22 16 22

node 1 16 10 22 16 22 16 22 16

node 2 16 22 10 16 16 22 16 22

node 3 22 16 16 10 22 16 22 16

node 4 16 22 16 22 10 16 16 22

node 5 22 16 22 16 16 10 22 16

node 6 16 22 16 22 16 22 10 16

node 7 22 16 22 16 22 16 16 10

Table B.2: The SLIT of more complex architecture system

As we have described, the system comprises four processors physically as well as

eight nodes logically, as seen in figure 4.2. In particular, nodes 0-1, 2-3, 4-5 and 6-7

194

B.2 Measuring Node Distances

belong to each processor, respectively; they are in a sibling relationship with each

other, so their relationship should be closer than other nodes. For instance, node 0

and node 1 (cores 0 to 7) belong to the same processor physically, so the value of

0-hop is 10, and the value of 1-hop between node 0 and node 1 is 16 in the table.

However, the table does not represent the systems’ architecture very accurately.

In the table, the values of node distances from node 0 to nodes 1, 2, 4 or 6 are even

just 16, although their relationships are not entirely sibling nodes. According to the

architecture design, the value of node distance from node 0 to node 1 should be less

than others. Other similar cases can be found in the table.

In order to describe the systems’ topology accurately, the experiment to evaluate

the node distance is executed using the same application, which requests allocating

the given size of memory and memory copy operations, which writes some mean-

ingless data. Table B.3 shows the different effects of local and remote accesses on

performance.

Line
Processor Affinity

Memory Affinity Average STD
Node ID Core ID

1 0 00-03 node 0 0.185 0.007

2 1 04-07 node 0 0.279 0.008

3 2 08-11 node 0 0.468 0.013

4 3 12-15 node 0 0.506 0.016

5 4 16-19 node 0 0.395 0.023

6 5 20-23 node 0 0.44 0.022

7 6 24-27 node 0 0.483 0.013

8 7 28-31 node 0 0.5 0.013

9 0 00-03 node 1 0.268 0.007

10 1 04-07 node 1 0.18 0.007

11 2 08-11 node 1 0.483 0.013

12 3 12-15 node 1 0.443 0.012

13 4 16-19 node 1 0.362 0.01

14 5 20-23 node 1 0.299 0.009

15 6 24-27 node 1 0.494 0.013

16 7 28-31 node 1 0.464 0.013

17 0 00-03 node 2 0.381 0.014

195

Appendix B: Additional Evaluation of the Revised Node Distance Tables

18 1 04-07 node 2 0.467 0.013

19 2 08-11 node 2 0.174 0.008

20 3 12-15 node 2 0.26 0.007

21 4 16-19 node 2 0.431 0.01

22 5 20-23 node 2 0.457 0.01

23 6 24-27 node 2 0.433 0.01

24 7 28-31 node 2 0.407 0.012

25 0 00-03 node 3 0.426 0.017

26 1 04-07 node 3 0.437 0.012

27 2 08-11 node 3 0.264 0.007

28 3 12-15 node 3 0.179 0.008

29 4 16-19 node 3 0.469 0.012

30 5 20-23 node 3 0.434 0.011

31 6 24-27 node 3 0.471 0.012

32 7 28-31 node 3 0.384 0.014

33 0 00-03 node 4 0.43 0.011

34 1 04-07 node 4 0.356 0.008

35 2 08-11 node 4 0.362 0.009

36 3 12-15 node 4 0.462 0.01

37 4 16-19 node 4 0.176 0.004

38 5 20-23 node 4 0.261 0.005

39 6 24-27 node 4 0.429 0.01

40 7 28-31 node 4 0.462 0.011

41 0 00-03 node 5 0.473 0.012

42 1 04-07 node 5 0.295 0.007

43 2 08-11 node 5 0.407 0.012

44 3 12-15 node 5 0.428 0.01

45 4 16-19 node 5 0.264 0.005

46 5 20-23 node 5 0.178 0.005

47 6 24-27 node 5 0.467 0.011

48 7 28-31 node 5 0.431 0.009

49 0 00-03 node 6 0.391 0.016

50 1 04-07 node 6 0.469 0.015

51 2 08-11 node 6 0.425 0.013

52 3 12-15 node 6 0.464 0.016

196

B.2 Measuring Node Distances

53 4 16-19 node 6 0.431 0.014

54 5 20-23 node 6 0.406 0.016

55 6 24-27 node 6 0.169 0.009

56 7 28-31 node 6 0.255 0.009

57 0 00-03 node 7 0.416 0.013

58 1 04-07 node 7 0.452 0.012

59 2 08-11 node 7 0.461 0.011

60 3 12-15 node 7 0.443 0.011

61 4 16-19 node 7 0.471 0.013

62 5 20-23 node 7 0.368 0.01

63 6 24-27 node 7 0.264 0.005

64 7 28-31 node 7 0.178 0.005

Table B.3: The measured results for more complex system

The average value for both the local and remote accesses is shown in table B.3. The average

execution time in the remote accesses is longer than the values of local accesses. Furthermore, the

values of sibling node access at line 2 are less than the other explicit remote accesses. At the first

line, the average execution time in the local access, the application running on node 0 with memory

affinity on node 0, is 0.185s compared to 0.506s for the remote accesses at line 4. At line 2, since

the sibling relationship with cores 0-3, the value of average execution time is significantly shorter,

by almost half, than other remote accesses. For all cases of minimum and maximum execution

times, the values for the remote accesses are even longer than the local accesses.

After evaluating the real node distance with the application, we are able to describe the

architecture design, especially the sibling relationship, and establish the new node distance in

table B.4 based on table B.3. The values in the table are significantly different compared to the

original node distance in table B.2. The main reason why they are different is that the original

model depends on the simple metric to obtain information to describe the system architecture

design.

The new table is able to describe the system architecture more accurately compared to the

original table. Only the sibling nodes are able to be represented by the value of 15, and other

values of remote accesses are longer than them.

This experiment to measure the real node distances highlights the importance of describing the

ccNUMA architecture design, showing that the new node distance table is better than the original

table in representing the underlying architecture. The result will be used to sort the node order,

which indicates how the physical memory will be placed as closely as possible to a specified node.

197

Appendix B: Additional Evaluation of the Revised Node Distance Tables

node 0 node 1 node 2 node 3 node 4 node 5 node 6 node 7

node 0 10 (10) 15 (16) 25 (16) 27 (22) 21 (16) 24 (22) 26 (16) 27 (22)

node 1 15 (16) 10 (10) 27 (22) 25 (16) 20 (22) 17 (16) 27 (22) 26 (16)

node 2 22 (16) 27 (22) 10 (10) 15 (16) 25 (16) 26 (22) 25 (16) 23 (22)

node 3 24 (22) 24 (16) 15 (16) 10 (10) 26 (22) 24 (16) 26 (22) 21 (16)

node 4 24 (16) 20 (22) 21 (16) 26 (22) 10 (10) 15 (16) 24 (16) 26 (22)

node 5 27 (22) 17 (16) 23 (22) 24 (16) 15 (16) 10 (10) 26 (22) 24 (16)

node 6 23 (16) 28 (22) 25 (16) 27 (22) 26 (16) 24 (22) 10 (10) 15 (16)

node 7 23 (22) 25 (16) 26 (22) 25 (16) 27 (22) 21 (16) 15 (16) 10 (10)

Table B.4: The new node distance of more complex architecture system

B.3 Evaluation On The Real Node Distance

This section describes the benefits from discovering real node distance on the underlying system.

The evaluation measures the allocation time for some given sizes of memory blocks in the remote

memory area on the experimental machine described in figure 4.1. For the allocation of local

memory, it is not appropriate to compare the average execution time between the original approach

and our approach. This is because our model has attempted to reduce the average execution time

of the remote memory accesses, and the average time of local accesses on both models should be

approximately equal. The results are presented and analysed below. In order to represent memory

affinity and processor affinity simply, we have used the following representation method.

We have used bits to represent four nodes in the system. Each individual bit indicates a specific

node according to its position. A bit set by 1 means that the application runs on the specific node

where the bit indicates. Assuming that an application runs on node 0 only, it represents 0001;

otherwise, it represents 1000 if an application runs on node 3. Similarly, it can be used to represent

the memory affinity. An application requests allocating memory to node 0 only is represented by

0001, and by 1000 if only node 3 is used. Therefore, the pair 0001 1110 (processor affinity, memory

affinity) indicates that a task runs on node 0 in which it allocates page frames from nodes 1 to 3.

The application iterates requesting memory allocations as many as 100 times per core so, in

its entirety, it executes 400 times per node. It allocates sizes of blocks that are a power of two

apart from 32M bytes to 512M bytes. After that, it writes some meaningless data into the memory

served to ensure mapping the virtual memory into the physical memory. In the process, in order to

exclude local memory for the allocation, we have exploited a collection of application-level functions

supported by the NUMA library called libnuma, with the application measing the time to request

memory and to complete write operations.

198

B.3 Evaluation On The Real Node Distance

Allocation time test based on node 0

The execution time is measured for the allocation of memory blocks which are of the sizes

32M, 64M, 128M, 256M and 512M bytes with the 0001 1110 processor and memory affinity. The

measured execution time is noted for both the original model and the new model. Table B.6 shows

the statistics analysis of the timing.

The following Table B.5 shows average values for both the local and remote accesses on our

experimental machine, an four nodes-based ccNUMA architecture system.

Line
Processor Affinity

Memory Affinity Average STD
Node ID Core ID

1 0 00-03 node 0 2.321 0.052

2 1 04-07 node 0 3.065 0.016

3 2 08-11 node 0 2.915 0.031

4 3 12-15 node 0 3.33 0.026

1 0 00-03 node 1 3.044 0.011

2 1 04-07 node 1 2.268 0.032

3 2 08-11 node 1 3.28 0.017

4 3 12-15 node 1 2.847 0.02

1 0 00-03 node 2 2.877 0.022

2 1 04-07 node 2 3.275 0.019

3 2 08-11 node 2 2.266 0.036

4 3 12-15 node 2 3.07 0.011

1 0 00-03 node 3 3.287 0.027

2 1 04-07 node 3 2.845 0.033

3 2 08-11 node 3 3.083 0.015

4 3 12-15 node 3 2.271 0.053

Table B.5: The measured actual time taken on a four nodes-based ccNUMA system

The values of average execution time prove that the allocation time with our new approach is

less than the original approach. For the allocation memory on node 0, the difference is little but the

new approach is quicker to allocate memory. As seen in figure B.1, the performance improvement

varies from 5.1% to 7.1% approximately.

Allocation time test based on node 1

199

Appendix B: Additional Evaluation of the Revised Node Distance Tables

Model Size Affinity Average STD

Original 32MB 0001 1110 0.377 0.002

Original 64MB 0001 1110 0.752 0.004

Original 128MB 0001 1110 1.513 0.011

Original 256MB 0001 1110 3.043 0.036

Original 512MB 0001 1110 6.253 0.071

New 32MB 0001 1110 0.352 0.002

New 64MB 0001 1110 0.715 0.006

New 128MB 0001 1110 1.426 0.01

New 256MB 0001 1110 2.894 0.057

New 512MB 0001 1110 5.881 0.134

Table B.6: Allocation timing statistics based on node 0

The execution time is measured for the allocation of memory blocks that are of the sizes

32M, 64M, 128M, 256M and 512M bytes with the 0010 1101 processor and memory affinity. The

measured execution time is noted for both the original model and the new model. Table B.7 shows

the statistics analysis of the timing.

The values of average execution time prove that the allocation time with our new approach is

less time the original approach. For the allocation memory on node 1, the difference is relatively

big compared to the results of node 0. As seen in figure B.1, the performance improvement varies

from 13.8% to 16% approximately.

Model Size Affinity Average STD

Original 32MB 0010 1101 0.404 0.004

Original 64MB 0010 1101 0.809 0.004

Original 128MB 0010 1101 1.627 0.008

Original 256MB 0010 1101 3.251 0.007

Original 512MB 0010 1101 6.615 0.104

New 32MB 0010 1101 0.348 0.001

New 64MB 0010 1101 0.703 0.005

New 128MB 0010 1101 1.413 0.009

New 256MB 0010 1101 2.853 0.054

New 512MB 0010 1101 5.811 0.149

Table B.7: Allocation timing statistics based on node 1

200

B.3 Evaluation On The Real Node Distance

Allocation time test based on node 2

The execution time is measured for the allocation of memory blocks that are of the sizes

32M, 64M, 128M, 256M and 512M bytes with the 0100 1011 processor and memory affinity. The

measured execution time has been noted for both the original model and the new model. Table

B.7 shows the statistics analysis of the timing.

The values of average execution time prove that the allocation time with our new approach is

less than the original approach. For the allocation memory on node 2, the difference is relatively

little compared to the results of node 1. As seen in figure B.1, the performance improvement varies

from 5.7% to 7.54% approximately.

Model Size Affinity Average STD

Original 32MB 0100 1011 0.379 0.001

Original 64MB 0100 1011 0.765 0.002

Original 128MB 0100 1011 1.531 0.003

Original 256MB 0100 1011 3.097 0.035

Original 512MB 0100 1011 6.211 0.075

New 32MB 0100 1011 0.355 0.002

New 64MB 0100 1011 0.716 0.002

New 128MB 0100 1011 1.448 0.018

New 256MB 0100 1011 2.92 0.045

New 512MB 0100 1011 5.775 0.055

Table B.8: Allocation timing statistics based on node 2

Allocation time test based on node 3

The execution time is measured for the allocation of memory blocks that are of the sizes

32M, 64M, 128M, 256M and 512M bytes with the 1000 0111 processor and memory affinity. The

measured execution time has been noted for both the original model and the new model. Table

B.7 shows the statistics analysis of the timing.

The values of average execution time prove that the allocation time with our new approach is

less than the original approach. For the allocation memory on node 3, the difference is relatively

big compared to the results of node 0. As seen in figure B.1, the performance improvement varies

from 15.7% to 17.4% approximately.

Overall, as we can see in figure B.1, our model shows significantly improved performance

compared to the original model. For instance, when allocating memory of size 512M bytes on 1000

0111 affinity, the average execution time is 5.8 seconds with our model; withe the original model it

201

Appendix B: Additional Evaluation of the Revised Node Distance Tables

Model Size Affinity Average STD

Original 32MB 1000 0111 0.41 0.004

Original 64MB 1000 0111 0.823 0.005

Original 128MB 1000 0111 1.651 0.009

Original 256MB 1000 0111 3.341 0.044

Original 512MB 1000 0111 6.755 0.126

New 32MB 1000 0111 0.349 0.002

New 64MB 1000 0111 0.711 0.008

New 128MB 1000 0111 1.425 0.023

New 256MB 1000 0111 2.88 0.066

New 512MB 1000 0111 5.799 0.146

Table B.9: Allocation timing statistics based on node 3

Figure B.1: The ratio of performance improvements

202

B.3 Evaluation On The Real Node Distance

is 6.7 seconds. In this case, the performance of average execution time improves by approximately

16.4%.

203

Appendix C

Further Evaluation of the

Synthetic Models

In this appendix we present the statistics that that were collected during the evaluation using

synthetic models reported in Chapter 4.

The following tables represent statistics that were collected during each application execution.

cfrac

BS Std.BS BIT Std.BIT BHT Std.BHT

Test Set 1 19.37 22.28 90492 287654 33277 19264.10

Test Set 2 20.64 23.54 257119 1596396 345504 189851.00

Test Set 3 21.64 26.27 542505 3155992 1196417 680984.17

espresso

BS Std.BS BIT Std.BIT BHT Std.BHT

Test Set 1 71.21 159.06 2882 24836 141 1759.00

Test Set 2 89.51 230.65 2829 19962 142 2976.15

Test Set 3 111.71 754.18 5443 246331 1760 34169.08

gawk

BS Std.BS BIT Std.BIT BHT Std.BHT

Test Set 1 83.82 649.21 6843 37772 2287 3961.06

205

Appendix C: Further Evaluation of the Synthetic Models

Test Set 2 49.28 579.32 2666 37817 17782 40998.00

Test Set 3 49.29 647.36 2631 48901 48037 112528.41

p2c

BS Std.BS BIT Std.BIT BHT Std.BHT

Test Set 1 62.09 80.10 10247 132056 2504 1902.56

Test Set 2 49.03 57.62 9429 175924 8618 7819.48

Test Set 3 34.07 28.70 30969 1070255 105422 218719.33

Table C.1: The mean of all test sets of applications

206

Test Set 1

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 319 20.88% 0 0.00% 2 0.13%

16 524 55.17% 0 0.00% 0 0.13%

32 354 78.34% 0 0.00% 0 0.13%

64 322 99.41% 0 0.00% 1 0.20%

128 0 99.41% 0 0.00% 0 0.20%

256 1 99.48% 0 0.00% 0 0.20%

512 8 100.00% 0 0.00% 7 0.65%

1k 0 100.00% 124 8.12% 7 1.11%

2k 0 100.00% 282 26.59% 12 1.90%

4k 0 100.00% 61 30.58% 12 2.68%

8k 0 100.00% 192 43.16% 102 9.36%

16k 0 100.00% 124 51.28% 217 23.56%

32k 0 100.00% 291 70.33% 451 53.08%

64k 0 100.00% 87 76.03% 632 94.44%

128k 0 100.00% 113 83.43% 85 100.00%

256k 0 100.00% 99 89.91% 0 100.00%

512k 0 100.00% 89 95.74% 0 100.00%

1m 0 100.00% 57 99.48% 0 100.00%

2m 0 100.00% 6 99.87% 0 100.00%

4m 0 100.00% 1 99.93% 0 100.00%

8m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.2: The cumulative percentage and frequency of cfrac test set 1

207

Appendix C: Further Evaluation of the Synthetic Models

Test Set 2

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 0 0.00% 0 0.00% 2 0.04%

16 3013 57.10% 0 0.00% 0 0.04%

32 1160 79.08% 0 0.00% 0 0.04%

64 1094 99.81% 0 0.00% 0 0.04%

128 1 99.83% 0 0.00% 1 0.06%

256 0 99.83% 0 0.00% 0 0.06%

512 4 99.91% 0 0.00% 0 0.06%

1k 5 100.00% 763 14.46% 2 0.09%

2k 0 100.00% 1034 34.06% 4 0.17%

4k 0 100.00% 437 42.34% 14 0.44%

8k 0 100.00% 390 49.73% 8 0.59%

16k 0 100.00% 410 57.51% 33 1.21%

32k 0 100.00% 881 74.20% 63 2.41%

64k 0 100.00% 126 76.59% 208 6.35%

128k 0 100.00% 108 78.64% 567 17.09%

256k 0 100.00% 173 81.92% 1083 37.62%

512k 0 100.00% 245 86.56% 2046 76.39%

1m 0 100.00% 300 92.25% 1246 100.00%

2m 0 100.00% 266 97.29% 0 100.00%

4m 0 100.00% 118 99.53% 0 100.00%

8m 0 100.00% 24 99.98% 0 100.00%

16m 0 100.00% 0 99.98% 0 100.00%

32m 0 100.00% 0 99.98% 0 100.00%

64m 0 100.00% 0 99.98% 0 100.00%

128m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.3: The cumulative percentage and frequency of of cfrac test set 2

208

Test Set 3

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 0 0.00% 0 0.00% 2 0.02%

16 5127 57.88% 0 0.00% 0 0.02%

32 1905 79.39% 0 0.00% 0 0.02%

64 1816 99.89% 0 0.00% 0 0.02%

128 1 99.90% 0 0.00% 1 0.03%

256 0 99.90% 0 0.00% 0 0.03%

512 4 99.94% 0 0.00% 0 0.03%

1k 4 99.99% 1433 16.18% 0 0.03%

2k 1 100.00% 1210 29.84% 4 0.08%

4k 0 100.00% 1379 45.41% 2 0.10%

8k 0 100.00% 140 46.99% 7 0.18%

16k 0 100.00% 450 52.07% 20 0.41%

32k 0 100.00% 1169 65.27% 37 0.82%

64k 0 100.00% 154 67.01% 84 1.77%

128k 0 100.00% 184 69.09% 160 3.58%

256k 0 100.00% 271 72.15% 570 10.01%

512k 0 100.00% 460 77.34% 1010 21.42%

1m 0 100.00% 662 84.81% 1940 43.32%

2m 0 100.00% 674 92.42% 3907 87.42%

4m 0 100.00% 456 97.57% 1114 100.00%

8m 0 100.00% 182 99.63% 0 100.00%

16m 0 100.00% 30 99.97% 0 100.00%

32m 0 100.00% 2 99.99% 0 100.00%

64m 0 100.00% 0 99.99% 0 100.00%

128m 0 100.00% 0 99.99% 0 100.00%

256m 0 100.00% 0 99.99% 0 100.00%

512m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

209

Appendix C: Further Evaluation of the Synthetic Models

Table C.4: The cumulative percentage and frequency of cfrac test set 3

Test Set 1

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 9435 38.26% 0 0.00% 13898 56.36%

16 835 41.65% 0 0.00% 2888 68.08%

32 648 44.28% 0 0.00% 2014 76.24%

64 9460 82.64% 0 0.00% 1823 83.64%

128 2062 91.00% 0 0.00% 1283 88.84%

256 961 94.90% 0 0.00% 1447 94.71%

512 179 95.63% 2776 11.26% 418 96.40%

1k 933 99.41% 13765 67.08% 778 99.56%

2k 137 99.97% 3808 82.53% 31 99.68%

4k 0 99.97% 2290 91.82% 13 99.74%

8k 8 100.00% 1197 96.67% 7 99.76%

16k 0 100.00% 297 97.87% 3 99.78%

32k 0 100.00% 337 99.24% 4 99.79%

64k 0 100.00% 72 99.53% 51 100.00%

128k 0 100.00% 53 99.75% 0 100.00%

256k 0 100.00% 35 99.89% 0 100.00%

512k 0 100.00% 16 99.96% 0 100.00%

1m 0 100.00% 7 99.98% 0 100.00%

2m 0 100.00% 4 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.5: The cumulative percentage and frequency of espresso test set 1

210

Test Set 2

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 17505 28.54% 0 0.00% 28813 46.97%

16 1635 31.20% 0 0.00% 6981 58.36%

32 908 32.69% 0 0.00% 6213 68.49%

64 31987 84.83% 0 0.00% 8934 83.05%

128 4576 92.30% 0 0.00% 4001 89.57%

256 1588 94.88% 0 0.00% 4185 96.40%

512 916 96.38% 7262 11.84% 1375 98.64%

1k 129 96.59% 37688 73.28% 691 99.77%

2k 1976 99.81% 7097 84.86% 34 99.82%

4k 109 99.99% 4212 91.72% 13 99.84%

8k 8 100.00% 3058 96.71% 29 99.89%

16k 0 100.00% 536 97.58% 3 99.89%

32k 0 100.00% 762 98.82% 6 99.90%

64k 0 100.00% 449 99.56% 2 99.91%

128k 0 100.00% 111 99.74% 57 100.00%

256k 0 100.00% 88 99.88% 0 100.00%

512k 0 100.00% 51 99.96% 0 100.00%

1m 0 100.00% 19 100.00% 0 100.00%

2m 0 100.00% 3 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.6: The cumulative percentage and frequency of espresso test set 2

211

Appendix C: Further Evaluation of the Synthetic Models

Test Set 3

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 16336 0.98% 0 0.00% 524782 31.45%

16 533275 32.94% 0 0.00% 138481 39.75%

32 10730 33.59% 0 0.00% 138746 48.07%

64 875171 86.04% 0 0.00% 129981 55.86%

128 116984 93.05% 0 0.00% 119147 63.00%

256 51834 96.16% 0 0.00% 108343 69.50%

512 35544 98.29% 97750 5.86% 103608 75.71%

1k 10500 98.92% 1171033 76.05% 91362 81.18%

2k 4688 99.20% 119037 83.18% 64993 85.08%

4k 4918 99.50% 142397 91.72% 78281 89.77%

8k 6160 99.87% 63465 95.52% 75479 94.30%

16k 198 99.88% 35123 97.63% 51100 97.36%

32k 2041 100.00% 26194 99.20% 39655 99.73%

64k 5 100.00% 5870 99.55% 4288 99.99%

128k 0 100.00% 4124 99.80% 16 99.99%

256k 0 100.00% 1568 99.89% 16 99.99%

512k 0 100.00% 840 99.94% 20 99.99%

1m 0 100.00% 403 99.97% 6 100.00%

2m 0 100.00% 173 99.98% 7 100.00%

4m 0 100.00% 98 99.98% 3 100.00%

8m 0 100.00% 142 99.99% 70 100.00%

16m 0 100.00% 94 100.00% 0 100.00%

32m 0 100.00% 45 100.00% 0 100.00%

64m 0 100.00% 26 100.00% 0 100.00%

128m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.7: The cumulative percentage and frequency of espresso test set 3

212

Test Set 1

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 2050 44.59% 0 0.00% 2457 53.45%

16 198 48.90% 0 0.00% 276 59.45%

32 987 70.37% 0 0.00% 271 65.35%

64 1064 93.52% 0 0.00% 44 66.30%

128 193 97.72% 0 0.00% 17 66.67%

256 56 98.93% 0 0.00% 37 67.48%

512 7 99.09% 8 0.17% 26 68.04%

1k 4 99.17% 880 19.32% 81 69.81%

2k 2 99.22% 786 36.42% 99 71.96%

4k 0 99.22% 1259 63.82% 203 76.38%

8k 32 99.91% 753 80.20% 466 86.51%

16k 4 100.00% 599 93.23% 620 100.00%

32k 0 100.00% 266 99.02% 0 100.00%

64k 0 100.00% 25 99.56% 0 100.00%

128k 0 100.00% 7 99.72% 0 100.00%

256k 0 100.00% 4 99.80% 0 100.00%

512k 0 100.00% 4 99.89% 0 100.00%

1m 0 100.00% 4 99.98% 0 100.00%

2m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.8: The cumulative percentage and frequency of gawk test set 1

213

Appendix C: Further Evaluation of the Synthetic Models

Test Set 2

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 35709 28.14% 0 0.00% 99306 78.24%

16 36871 57.19% 0 0.00% 1005 79.04%

32 28675 79.78% 0 0.00% 713 79.60%

64 25107 99.56% 0 0.00% 82 79.66%

128 18 99.58% 0 0.00% 53 79.70%

256 15 99.59% 0 0.00% 86 79.77%

512 7 99.59% 8 0.01% 62 79.82%

1k 4 99.60% 32363 25.51% 91 79.89%

2k 2 99.60% 34683 52.83% 213 80.06%

4k 0 99.60% 52327 94.06% 135 80.17%

8k 505 100.00% 5721 98.57% 1 80.17%

16k 4 100.00% 677 99.10% 1046 80.99%

32k 0 100.00% 924 99.83% 2449 82.92%

64k 1 100.00% 106 99.91% 5117 86.95%

128k 1 100.00% 42 99.95% 10644 95.34%

256k 0 100.00% 22 99.96% 5916 100.00%

512k 0 100.00% 33 99.99% 0 100.00%

1m 0 100.00% 9 100.00% 0 100.00%

2m 0 100.00% 1 100.00% 0 100.00%

4m 0 100.00% 1 100.00% 0 100.00%

8m 0 100.00% 0 100.00% 0 100.00%

16m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.9: The cumulative percentage and frequency of gawk test set 2

214

Test Set 3

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 88342 25.13% 0 0.00% 274761 78.16%

16 101810 54.09% 0 0.00% 3464 79.14%

32 90035 79.70% 0 0.00% 1787 79.65%

64 69922 99.59% 0 0.00% 174 79.70%

128 18 99.59% 0 0.00% 104 79.73%

256 15 99.60% 0 0.00% 191 79.78%

512 7 99.60% 11 0.00% 99 79.81%

1k 4 99.60% 102285 29.10% 86 79.84%

2k 2 99.60% 66203 47.93% 174 79.88%

4k 0 99.60% 159412 93.27% 281 79.96%

8k 1395 100.00% 18692 98.59% 618 80.14%

16k 4 100.00% 1882 99.13% 1238 80.49%

32k 0 100.00% 2618 99.87% 2182 81.11%

64k 1 100.00% 177 99.92% 4671 82.44%

128k 1 100.00% 113 99.95% 10305 85.37%

256k 1 100.00% 43 99.97% 19100 90.81%

512k 0 100.00% 87 99.99% 32322 100.00%

1m 0 100.00% 29 100.00% 0 100.00%

2m 0 100.00% 1 100.00% 0 100.00%

4m 0 100.00% 0 100.00% 0 100.00%

8m 0 100.00% 1 100.00% 0 100.00%

16m 0 100.00% 1 100.00% 0 100.00%

32m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.10: The cumulative percentage and frequency of gawk test set 3

215

Appendix C: Further Evaluation of the Synthetic Models

Test Set 1

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 620 23.14% 0 0.00% 285 10.64%

16 136 28.22% 0 0.00% 72 13.33%

32 350 41.28% 0 0.00% 55 15.38%

64 813 71.63% 0 0.00% 37 16.76%

128 286 82.31% 0 0.00% 28 17.81%

256 457 99.37% 0 0.00% 48 19.60%

512 0 99.37% 7 0.26% 4 19.75%

1k 17 100.00% 631 23.82% 70 22.36%

2k 0 100.00% 1088 64.45% 599 44.72%

4k 0 100.00% 578 86.03% 768 73.39%

8k 0 100.00% 159 91.97% 675 98.58%

16k 0 100.00% 93 95.44% 38 100.00%

32k 0 100.00% 85 98.62% 0 100.00%

64k 0 100.00% 14 99.14% 0 100.00%

128k 0 100.00% 5 99.33% 0 100.00%

256k 0 100.00% 3 99.44% 0 100.00%

512k 0 100.00% 7 99.70% 0 100.00%

1m 0 100.00% 4 99.85% 0 100.00%

2m 0 100.00% 1 99.89% 0 100.00%

4m 0 100.00% 2 99.96% 0 100.00%

8m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.11: The cumulative percentage and frequency of p2c test set 1

216

Test Set 2

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 1007 16.49% 0 0.00% 1243 20.35%

16 167 19.22% 0 0.00% 272 24.81%

32 1994 51.87% 0 0.00% 218 28.38%

64 1828 81.81% 0 0.00% 89 29.83%

128 574 91.21% 0 0.00% 26 30.26%

256 519 99.71% 0 0.00% 33 30.80%

512 1 99.72% 75 1.23% 116 32.70%

1k 17 100.00% 1496 25.73% 201 35.99%

2k 0 100.00% 2331 63.90% 128 38.09%

4k 0 100.00% 1098 81.89% 42 38.78%

8k 0 100.00% 571 91.24% 779 51.53%

16k 0 100.00% 258 95.46% 1290 72.65%

32k 0 100.00% 183 98.46% 1670 100.00%

64k 0 100.00% 42 99.15% 0 100.00%

128k 0 100.00% 17 99.43% 0 100.00%

256k 0 100.00% 12 99.62% 0 100.00%

512k 0 100.00% 11 99.80% 0 100.00%

1m 0 100.00% 5 99.89% 0 100.00%

2m 0 100.00% 3 99.93% 0 100.00%

4m 0 100.00% 2 99.97% 0 100.00%

8m 0 100.00% 1 99.98% 0 100.00%

16m 0 100.00% 1 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.12: The cumulative percentage and frequency of p2c test set 2

217

Appendix C: Further Evaluation of the Synthetic Models

Test Set 3

BS BIT BHT

Bin Freq Cumulative % Freq Cumulative % Freq Cumulative %

8 2382 5.42% 0 0.00% 21895 49.83%

16 306 6.12% 0 0.00% 3138 56.97%

32 30334 75.15% 0 0.00% 1622 60.66%

64 7859 93.03% 0 0.00% 1226 63.45%

128 2107 97.83% 0 0.00% 817 65.31%

256 935 99.96% 0 0.00% 512 66.47%

512 2 99.96% 515 1.17% 505 67.62%

1k 17 100.00% 6662 16.33% 458 68.67%

2k 0 100.00% 9852 38.75% 230 69.19%

4k 0 100.00% 6931 54.53% 397 70.09%

8k 0 100.00% 10188 77.71% 830 71.98%

16k 0 100.00% 7521 94.83% 909 74.05%

32k 0 100.00% 1682 98.66% 1611 77.72%

64k 0 100.00% 258 99.24% 1068 80.15%

128k 0 100.00% 131 99.54% 14 80.18%

256k 0 100.00% 47 99.65% 1044 82.55%

512k 0 100.00% 65 99.80% 2341 87.88%

1m 0 100.00% 31 99.87% 5325 100.00%

2m 0 100.00% 11 99.89% 0 100.00%

4m 0 100.00% 10 99.92% 0 100.00%

8m 0 100.00% 8 99.93% 0 100.00%

16m 0 100.00% 6 99.95% 0 100.00%

32m 0 100.00% 13 99.98% 0 100.00%

64m 0 100.00% 8 100.00% 0 100.00%

128m 0 100.00% 2 100.00% 0 100.00%

More 0 100.00% 0 100.00% 0 100.00%

Table C.13: The cumulative percentage and frequency of p2c test set 3

218

Appendix D

Supporting Implementations

In this appendix we provide details of the various algorithms that have been written in support of

the research.

D.1 Supplemental Applications

D.1.1 Memory Access Latencies on ccNUMA architecture

systems

This application is derived from the TAU benchmark1, which measures the time elapsed by mem-

cpy() on the underlying ccNUMA architecture system. The original code has been changed to use

APIs provided by the Linux instead of the TAU library.

Source 29

1 #define _GNU_SOURCE

2 #include <sched.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <sys/time.h>

6 #include <string.h>

7 #include <numaif.h>

8 #include <numa.h>

9

10 #define MEM_MB 5

11 #define MEM_SIZE MEM_MB*1024L*1024L

12 #define ITER 40

13

14 double getTime() {

15 struct timeval tp;

16 static double last_timestamp = 0.0;

1http://www.nic.uoregon.edu/tau-wiki/Guide:Opteron NUMA Analysis

219

Appendix D: Supporting Implementations

17 double timestamp;

18 gettimeofday (&tp, 0);

19 timestamp = (double) tp.tv_sec * 1e6 + tp.tv_usec;

20 return timestamp;

21 }

22

23 int getNumCPU() {

24 cpu_set_t mask;

25 if (sched_getaffinity(0,sizeof(cpu_set_t),&mask)) {

26 fprintf (stderr, "Unable to retrieve affinity\n");

27 exit(1);

28 }

29 int nproc = 0;

30 for(int i=0; i<CPU_SETSIZE; i++) {

31 if(CPU_ISSET(i,&mask)) {

32 nproc++;

33 }

34 }

35 return nproc;

36 }

37

38 void memtest(char *ptr) {

39 for (int i=0; i<ITER; i++) {

40 memcpy(ptr, ptr+(MEM_SIZE/2),MEM_SIZE/2);

41 }

42 }

43

44 void setCPU(int cpu) {

45 cpu_set_t mask;

46 CPU_ZERO(&mask);

47 CPU_SET(cpu, &mask);

48 sched_setaffinity(0, sizeof(cpu_set_t), &mask);

49 }

50

51 void test(int cpu, int nproc) {

52 setCPU(cpu);

53 char *ptr = (char*) malloc (MEM_SIZE);

54 if (!ptr) {

55 fprintf (stderr, "failed to malloc\n");

56 exit(1);

57 }

58 // make sure it all gets paged in

59 for (long j=0; j<MEM_SIZE; j++) {

60 ptr[j] = j;

61 }

62 for (int i = 0; i < nproc; i++) {

63 setCPU(i);

64 double start = getTime();

65 memtest(ptr);

66 double end = getTime();

67 printf ("%d: time = %G seconds\n", i, (end - start) / (1000*1000));

68 }

69 free (ptr);

70 }

71

72 int main (int argc, char **argv) {

220

D.1 Supplemental Applications

73 int nproc = getNumCPU();

74 for (int i = 0; i < nproc; i++) {

75 test(i,nproc);

76 }

77 return 0;

78 }

D.1.2 Header Generator

The application reads a number of raw data files generated by the application D.1.1, and generates

a header file, which is used at compile-time of the Linux kernel. The header file contains the

information of real node distances.

Source 30

1 #include <stdio.h>

2 #include <time.h>

3 #include <stdlib.h>

4 #include <sys/types.h>

5 #include <dirent.h>

6 #include <unistd.h>

7 #include <numa.h>

8

9 #define MAX_DATAFILE 4

10 #define BIT_IN_BYTE 8

11 #define DEFAULT_FILE "numa_distance_table.h"

12 int CntCPU=0;

13 int CntNode=0;

14

15 double *TotalTimePerCPU;

16 double *TotalTimePerNode;

17 int *TotalDataCntPerCPU;

18 int *TotalCPUPerNode;

19 int *distanceTable;

20

21 void getTotalCPUPerNode()

22 {

23 struct bitmask *cpuMask;

24 cpuMask = (struct bitmask*)numa_allocate_cpumask();

25 if (!cpuMask)

26 {

27 fprintf(stderr, "fail to numa_bitmask_alloc() for cpu\n");

28 exit(1);

29 }

30

31 int cntNode = numa_max_node()+1;

32 int i=0;

33

34 //scan all node

35 for(i=0; i<cntNode; i++)

36 {

37 numa_bitmask_clearall(cpuMask);

38

39 if (numa_node_to_cpus(i, cpuMask) != 0)

40 {

221

Appendix D: Supporting Implementations

41 fprintf(stderr, "fail to numa_node_to_cpus()\n");

42 exit(1);

43 }

44

45 TotalCPUPerNode[i] = getCntCPUsonNode(cpuMask);

46 }

47 numa_free_cpumask(cpuMask);

48 }

49

50 int getNodeID(int cpuID)

51 {

52 struct bitmask *cpuMask;

53 cpuMask = (struct bitmask*)numa_allocate_cpumask();

54 if (!cpuMask)

55 {

56 fprintf(stderr, "fail to numa_bitmask_alloc() for cpu\n");

57 exit(1);

58 }

59

60 int cntNode = numa_max_node()+1;

61 int i=0;

62

63 //scan all node

64 for(i=0; i<cntNode; i++)

65 {

66 numa_bitmask_clearall(cpuMask);

67

68 if (numa_node_to_cpus(i, cpuMask) != 0)

69 {

70 fprintf(stderr, "fail to numa_node_to_cpus()\n");

71 exit(1);

72 }

73

74 int cntCPUonNode = getCntCPUsonNode(cpuMask);

75 int idx=0,j=0;

76 int resID=0;

77 for (j=0, idx=0; j<cntCPUonNode; j++)

78 {

79 if ((resID = getCPUID(&idx, cpuMask)) != -1)

80 {

81 if (resID == cpuID)

82 {

83 numa_free_cpumask(cpuMask);

84 return i;

85 }

86 }

87 }

88

89 }

90 numa_free_cpumask(cpuMask);

91 return -1;

92 }

93

94 int getConfiguredCPUs()

95 {

96 int filecount=0;

222

D.1 Supplemental Applications

97 char *dirnamep = "/sys/devices/system/cpu";

98 struct dirent *dirent;

99 DIR *dir;

100 int max, n;

101 dir = opendir(dirnamep);

102

103 if (dir == NULL)

104 {

105 /* fall back to using the online cpu count */

106 return sysconf(_SC_NPROCESSORS_CONF) - 1;

107 }

108 while ((dirent = readdir(dir)) != 0)

109 {

110 if (sscanf(dirent->d_name, "cpu%d", &n) == 1 && n > max)

111 {

112 max = n;

113 }

114 }

115

116 closedir(dir);

117 return max+1;

118 }

119

120 int getMin(double *val, int total)

121 {

122 int i=0, idx=0;

123 double min=val[0];

124 for(i=0,idx=0; i<total; i++)

125 {

126 if (min > val[i])

127 {

128 min = (val[i]);

129 idx = i;

130 }

131 }

132 return idx;

133 }

134 int getMax(double *val, int total)

135 {

136 int i=0, idx=0;

137 double max=val[0];

138 for(i=0; i<total; i++)

139 {

140 if (max < val[i])

141 {

142 max = (val[i]);

143 idx=i;

144 }

145 }

146 return idx;

147 }

148

149 int getCPUID(int* idx, struct bitmask* mask)

150 {

151 int len = sizeof(*(mask->maskp)) * BIT_IN_BYTE;

152 int i=0, cnt=0, bit=0;

223

Appendix D: Supporting Implementations

153

154 for (i=*idx; i<len; i++)

155 {

156 (*idx)++;

157 bit = ((*(mask->maskp)>>i) & 0x01) * (i+1);

158 if (bit > 0)

159 return (bit-1);

160 }

161 return -1;

162 }

163

164 int getCntCPUsonNode(struct bitmask* mask)

165 {

166 int len = sizeof(*(mask->maskp)) * BIT_IN_BYTE;

167 int i=0, cnt=0;

168

169 for (i=0; i<len; i++)

170 {

171 if (((*(mask->maskp) >> i) & 0x01) == 1)

172 cnt++;

173 }

174 return cnt;

175 }

176

177 static void saveDistanceTable()

178 {

179 FILE *fp;

180

181 if (NULL == (fp = fopen(DEFAULT_FILE, "w")))

182 {

183 fprintf(stderr, "fail to fopen(%s)\n", DEFAULT_FILE);

184 exit(1);

185 }

186

187 fprintf(fp, "#ifndef __X86_MM_NUMA_DISTANCE_TABLE_H\n");

188 fprintf(fp, "#define __X86_MM_NUMA_DISTANCE_TABLE_H\n\n");

189 fprintf(fp, "#define __NUMA_DISTANCE_TABLE_ROWS__\t%d\n", CntNode);

190 fprintf(fp, "#define __NUMA_DISTANCE_TABLE_COLS__\t%d\n\n", CntNode);

191 fprintf(fp, "u16 __numa_distance_table[%d][%d]={\n", CntNode, CntNode);

192 int i=0;

193 for(i=0; i<CntNode; i++)

194 {

195 fprintf(fp, "\t{");

196 int j=0;

197 for(j=0; j<CntNode; j++)

198 {

199 fprintf(fp, "%d", distanceTable[i*CntNode+j]);

200 if (j != CntNode-1)

201 fprintf(fp, ",");

202 }

203 if (i != CntNode-1)

204 fprintf(fp, "},\n");

205 else

206 fprintf(fp, "}\n");

207

208 }

224

D.1 Supplemental Applications

209 fprintf(fp, "};\n");

210 fprintf(fp, "#endif //__X86_MM_NUMA_DISTANCE_TABLE_H\n");

211

212 fclose(fp);

213 }

214

215 static void generate(char** filename)

216 {

217 int nodeID=0, cnt=0;

218 time_t time;

219 int cpuID;

220 double diff;

221

222 //loop for all data files

223 for(nodeID=0; nodeID<MAX_DATAFILE; nodeID++)

224 {

225 #ifdef __DEBUG__

226 printf("data filename[%d] = %s\n", nodeID, filename[nodeID]);

227 #endif

228 FILE *fp;

229

230 if (NULL == (fp = fopen(filename[nodeID], "r")))

231 {

232 fprintf(stderr, "fail to fopen(%s)\n", filename[nodeID]);

233 exit(1);

234 }

235

236 //read file

237 cnt=0;

238 while(fscanf(fp, "%lu\t%d\t%lf\n", &time, &cpuID, &diff) > 0)

239 {

240 if (cpuID > CntCPU)

241 {

242 fprintf(stderr, "check datafile & the number of "

243 "CPU[%d:%d] in the system\n", cpuID, CntCPU);

244 exit(1);

245 }

246

247 (TotalTimePerCPU[nodeID*CntCPU + cpuID]) += diff;

248 (TotalDataCntPerCPU[nodeID*CntCPU + cpuID])++;

249 cnt++;

250 }

251 fclose(fp);

252 #ifdef __DEBUG__

253 printf("total cnt =%d\n", cnt);

254 #endif

255 }

256

257 int j=0;

258 #ifdef __DEBUG__

259 for(nodeID=0; nodeID<CntNode; nodeID++)

260 {

261 for(j=0; j<CntCPU-1; j++)

262 {

263 printf("Node[%d:CPU%02d]: cnt=%d\t total=%lf\t"

264 " avg=%lf\n", nodeID, j,

225

Appendix D: Supporting Implementations

265 (TotalDataCntPerCPU[nodeID*CntCPU + j]),

266 (TotalTimePerCPU[nodeID*CntCPU + j]),

267 (double)((TotalTimePerCPU[nodeID*CntCPU +j]) /

268 ((TotalDataCntPerCPU[nodeID*CntCPU+j])*1.0f)));

269 }

270 }

271 #endif

272

273 int idx_node=0;

274 for(nodeID=0, idx_node=0; nodeID<CntNode; nodeID++)

275 {

276 for(j=0; j<CntCPU-1; j++)

277 {

278 //get nodeID to which the cpu belongs

279 idx_node = getNodeID(j);

280 #ifdef __DEBUG__

281 printf("CPU %d on Node %d\n", j, idx_node);

282 #endif

283 if (idx_node !=-1)

284 {

285 TotalTimePerNode[nodeID*CntNode+idx_node] +=

286 TotalTimePerCPU[nodeID*CntCPU + j] /

287 ((TotalDataCntPerCPU[nodeID*CntCPU+j])*1.0f);

288 }

289 }

290 } // for(nodeID=0; nodeID<CntNode; nodeID++)

291

292 for(nodeID=0, idx_node=0; nodeID<CntNode; nodeID++)

293 {

294 for(idx_node=0; idx_node<CntNode; idx_node++)

295 {

296 TotalTimePerNode[nodeID*CntNode+idx_node] /=

297 (TotalCPUPerNode[idx_node]*1.0f);

298 #ifdef __DEBUG__

299 printf("TotalTimePerNode[%d][%d] = %lf\n", nodeID, idx_node,

300 TotalTimePerNode[nodeID*CntNode+idx_node]);

301 #endif

302 }

303 }

304

305 int i=0;

306 for(i=0; i<CntNode; i++)

307 {

308 int idx_min=0, idx_max=0;

309 idx_min = getMin(&TotalTimePerNode[i*CntNode], CntNode);

310 idx_max = getMax(&TotalTimePerNode[i*CntNode], CntNode);

311

312 double min=.0f, max=.0f;

313 for(j=0; j<CntNode; j++)

314 {

315 distanceTable[i*CntNode+j] =

316 (int)((TotalTimePerNode[i*CntNode+j]*10.0f/

317 TotalTimePerNode[i*CntNode+idx_min]) + 0.5f);

318 #ifdef __DEBUG__

319 printf("TotalTimePerNode[%d][%d] = %lf, adjusted val=%lf,

320 distance=%u\n", i, j, TotalTimePerNode[i*CntNode+j],

226

D.1 Supplemental Applications

321 (TotalTimePerNode[i*CntNode+j]*10.0f/

322 TotalTimePerNode[i*CntNode+idx_min]),

323 (int)(distanceTable[i*CntNode+j]));

324 #endif

325 }

326 }

327 }

328

329 int main(int argc, char** argv)

330 {

331 char* filename[MAX_DATAFILE];

332

333 if (argc != MAX_DATAFILE+1)

334 {

335 fprintf(stderr, "./generateHeader datafile_0 datafile_1 "

336 "datafile_2 datafile_3\n");

337 exit(1);

338 }

339

340 CntCPU = getConfiguredCPUs()+1;

341 CntNode = numa_max_node()+1;

342

343 TotalTimePerCPU = (double*)malloc(sizeof(double) * CntCPU * CntNode);

344 TotalDataCntPerCPU = (int*)malloc(sizeof(int) * CntCPU * CntNode);

345 TotalCPUPerNode = (int*)malloc(sizeof(int)*CntNode);

346

347 TotalTimePerNode = (double*)malloc(sizeof(double) * CntNode * CntNode);

348 distanceTable = (int*)malloc(sizeof(int)*CntNode*CntNode);

349

350 if (NULL == TotalTimePerCPU || NULL == TotalTimePerNode ||

351 NULL == TotalDataCntPerCPU)

352 {

353 fprintf(stderr, "fail to malloc\n");

354 exit(1);

355 }

356 memset(TotalTimePerCPU, ’\0’, sizeof(double) * CntCPU * CntNode);

357 memset(TotalDataCntPerCPU, ’\0’, sizeof(unsigned int) * CntCPU * CntNode);

358 memset(TotalCPUPerNode, ’\0’, sizeof(int)*CntNode);

359

360 memset(TotalTimePerNode, ’\0’, sizeof(double) * CntNode * CntNode);

361 memset(distanceTable, ’\0’, sizeof(int) * CntNode * CntNode);

362

363 int i=0;

364 for(i=0; i<MAX_DATAFILE; i++)

365 {

366 filename[i] = argv[i+1];

367 }

368 getTotalCPUPerNode();

369

370 generate(filename);

371

372 saveDistanceTable();

373

374 printf("done\n");

375 return 0;

376 }

227

Appendix D: Supporting Implementations

377

D.1.3 Determining the total virtual memory usage

This application is derived from source code2 on the Internet. It has been changed to use a number

of static arrays instead of calling the malloc() function. Using /proc/pid/status (pid is the process

ID), we can collect information regarding memory, especially peak virtual memory and data area

usage, and current virtual memory usage, and so on.

Source 31

1 #define _GNU_SOURCE

2 #include <sys/types.h>

3 #include <sys/wait.h>

4 #include <signal.h>

5 #include <stdio.h>

6 #include <unistd.h>

7 #include <stdlib.h>

8 #include <string.h>

9

10 #define PATH_MAX 2048

11

12 int child_pid;

13

14 static int main_loop(char *pidstatus)

15 {

16 char linetemp[128];

17 char *line = linetemp;

18 char vmsize[128];

19 char vmpeak[128];

20 char vmrss[128];

21 char vmhwm[128];

22 char vmdata[128];

23 char cpuallowed[128];

24 char memallowed[128];

25

26 size_t len;

27

28 FILE *f;

29

30 memset(linetemp, ’\0’, 128);

31 memset(vmsize, ’\0’, 128);

32 memset(vmpeak, ’\0’, 128);

33 memset(vmrss, ’\0’, 128);

34 memset(vmhwm, ’\0’, 128);

35 memset(vmdata, ’\0’, 128);

36 memset(cpuallowed, ’\0’, 128);

37 memset(memallowed, ’\0’, 128);

38 len = 128;

39

40 f = fopen(pidstatus, "r");

2http://locklessinc.com/articles/memory usage/

228

D.1 Supplemental Applications

41 if (!f) return 1;

42 int idx=0;

43

44 /* Read memory size data from /proc/pid/status */

45 while (idx<7)

46 {

47 if (getline(&line, &len, f) == -1)

48 {

49 /* Some of the information isn’t there, die */

50 return 1;

51 }

52

53 /* Find VmPeak */

54 if (!strncmp(line, "VmPeak:", 7))

55 {

56 strncpy(vmpeak, &line[7], strlen(&line[7]));

57 idx++;

58 }

59

60 /* Find VmSize */

61 else if (!strncmp(line, "VmSize:", 7))

62 {

63 strncpy(vmsize, &line[7], strlen(&line[7]));

64 idx++;

65 }

66

67 /* Find VmRSS */

68 else if (!strncmp(line, "VmRSS:", 6))

69 {

70 strncpy(vmrss, &line[6], strlen(&line[6]));

71 idx++;

72 }

73

74 /* Find VmHWM */

75 else if (!strncmp(line, "VmHWM:", 6))

76 {

77 strncpy(vmhwm, &line[6], strlen(&line[6]));

78 idx++;

79 }

80 /* Find VmData */

81 else if (!strncmp(line, "VmData:", 7))

82 {

83 strncpy(vmdata, &line[7], strlen(&line[7]));

84 idx++;

85 }

86 else if (!strncmp(line, "Cpus_allowed_list:", 18))

87 {

88 strncpy(cpuallowed, &line[18], strlen(&line[18]));

89 idx++;

90 }

91 else if (!strncmp(line, "Mems_allowed_list:", 18))

92 {

93 strncpy(memallowed, &line[strlen("Mems_allowed_list:")],

94 strlen(&line[18]));

95 idx++;

96 }

229

Appendix D: Supporting Implementations

97 }

98 fclose(f);

99

100 /* Get rid of " kB\n"*/

101 len = strlen(vmsize);

102 vmsize[len - 4] = 0;

103 len = strlen(vmpeak);

104 vmpeak[len - 4] = 0;

105 len = strlen(vmrss);

106 vmrss[len - 4] = 0;

107 len = strlen(vmhwm);

108 vmhwm[len - 4] = 0;

109 len = strlen(vmdata);

110 vmdata[len - 4] = 0;

111

112 len = strlen(cpuallowed);

113 cpuallowed[len - 1] = 0;

114 len = strlen(memallowed);

115 memallowed[len - 1] = 0;

116

117 /* Output results to stderr */

118 fprintf(stderr, "%s\t%s\t%s\t%s\t%s\n",

119 vmsize, vmpeak, vmrss, vmhwm, vmdata/*, cpuallowed, memallowed*/);

120

121 /* Success */

122 return 0;

123 }

124

125

126 int main(int argc, char **argv)

127 {

128 char buf[1024];

129 child_pid = fork();

130

131 if (0 == child_pid)

132 execvp(argv[1], &argv[1]);

133 else

134 {

135 snprintf(buf, PATH_MAX, "/proc/%d/status", child_pid);

136

137 /* Continual scan of proc */

138 while (waitpid(child_pid, NULL, WNOHANG) == 0)

139 {

140 if (main_loop(buf)) break;

141 usleep(100000);

142 }

143 }

144

145 return 0;

146 }

230

D.2 Examples Of Conventional Allocators

D.2 Examples Of Conventional Allocators

We needed to implement some conventional memory allocation algorithms because it is hard to

find the source codes of these algorithms, that can be used on our target machine and operating

system. Here we provide a core function of these allocators.

D.2.1 Best-fit

The source code below is the core function of the implementation of Best-fit.

Source 32 BestFit()

1 void* BestFit(size_t _size)

2 {

3 chunk_t* chunk = FreeList;

4 size_t smallest = ~(unsigned long long)0;

5 chunk_t* BestOne = NULL;

6

7 while(chunk != NULL)

8 {

9 if (chunk->size >= _size && smallest > chunk->size)

10 {

11 smallest = chunk->size;

12 BestOne = chunk;

13 }

14 chunk = GET_NEXT(chunk);

15 }

16

17 if (NULL != BestOne)

18 chunk = BestOne;

19 else

20 return IncreaseHeap(_size);

21

22 //Split

23 if (chunk->size >=

24 (_size + (2*HEADER_OVERHEAD) + MINIMUM_CHUNK_SIZE))

25 {

26 chunk->size -= _size;

27 SET_TAILER(chunk, chunk->size);

28

29 chunk_t* ret = (chunk_t*)GET_P_NEXT(chunk);

30 InitChunk(ret, _size);

31

32 chunk = ret;

33 }

34 else

35 {

36 SET_USE_CHUNK(chunk);

37 ExtractChunk(chunk);

38 }

39 return chunk;

40 }

231

Appendix D: Supporting Implementations

D.2.2 First-fiT

The source code below is a core function of the implementation of First-fit.

Source 33 FirstFit()

1 void* FirstFit(size_t _size)

2 {

3 chunk_t* chunk = FreeList;

4

5 while(chunk != NULL && chunk->size < _size)

6 chunk = GET_NEXT(chunk);

7

8 if (NULL == chunk) return IncreaseHeap(_size);

9

10 //Split

11 if (chunk->size >=

12 (_size + (2*HEADER_OVERHEAD) + MINIMUM_CHUNK_SIZE))

13 {

14 chunk->size -= _size;

15 SET_TAILER(chunk, chunk->size);

16

17 chunk_t* ret = (chunk_t*)GET_P_NEXT(chunk);

18 InitChunk(ret, _size);

19

20 chunk = ret;

21 }

22 else

23 {

24 SET_USE_CHUNK(chunk);

25 ExtractChunk(chunk);

26 }

27 return chunk;

28 }

D.2.3 Half-fit

The source code below is a core function of the implementation of Half-fit.

Source 34 HalfFit()

1 static __inline__ void* HalfFit(size_t _size)

2 {

3 chunk_t* chunk = NULL;

4 int fl=0;

5

6 chunk = FindSuitableBlock(_size, &fl);

7 if (NULL == chunk) return IncreaseHeap(_size);

8

9 //Split

10 if (chunk->size - _size >= MINIMUM_CHUNK_SIZE)

11 {

12 chunk->size -= _size;

13 SET_TAILER(chunk, chunk->size);

14

15 chunk_t* ret = (chunk_t*)GET_P_NEXT(chunk);

232

D.2 Examples Of Conventional Allocators

16 InitChunk(ret, _size);

17

18 ExtractChunk(chunk, fl);

19 FindIndex(chunk->size, &fl);

20 InsertChunk(chunk, fl);

21

22 chunk = ret;

23 }

24 else

25 {

26 SET_USE_CHUNK(chunk);

27 ExtractChunk(chunk, fl);

28 }

29 return chunk;

30 }

233

Abbreviations

API Application Programming Interface

CAS Compare and Swap

ccNUMA Cache Coherent Non-Uniform Memory Access

DSA Dynamic storage allocation

EDF Earliest deadline first

FP Fixed-task priority

MMU Memory Management Unit

NASA ccNUMA-Aware dynamic Storage Allocation algorithm

nMART Node-oriented dynamic Memory Allocation algorithm for Real-Time systems on

ccNUMA architectures

NUMA Non-Uniform Memory Access

RTS Real-Time System

SLIT System Locality Information Table

SRAT System Resource Affinity Table

UMA Uniform Memory Access

WCET Worst-Case Execution Time

235

References

[Apache Software Foundation, 2013] Apache Software Foundation (2013). Memory management

with pools. ”http://www.fmc-modeling.org/category/projects/apache/amp/3 3Extending

Apache.html”.

[Banús et al., 2002] Banús, J. M., Arenas, A., and Labarta, J. (2002). An efficient scheme to

allocate soft-aperiodic tasks in multiprocessor hard real-time systems. In Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and Applications -

Volume 2, PDPTA ’02, pages 809–815. CSREA Press.

[Barrett and Zorn, 1993] Barrett, D. A. and Zorn, B. G. (1993). Using lifetime predictors to

improve memory allocation performance. SIGPLAN Not., 28(6):187–196.

[Bays, 1977] Bays, C. (1977). A comparison of next-fit, first-fit, and best-fit. Commun. ACM,

20(3):191–192.

[Berger et al., 2000] Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R. (2000).

Hoard: a scalable memory allocator for multithreaded applications. SIGPLAN Not., 35(11):117–

128.

[Bohra and Gabber, 2001] Bohra, A. and Gabber, E. (2001). Are mallocs free of fragmentation?

In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference, pages

105–117, Berkeley, CA, USA. USENIX Association.

[Bolosky and Scott, 1993] Bolosky, W. J. and Scott, M. L. (1993). False sharing and its effect on

shared memory performance. In In Proceedings of the USENIX Symposium on Experiences with

Distributed and Multiprocessor Systems (SEDMS IV), pages 57–71.

[Brent, 1989] Brent, R. P. (1989). Efficient implementation of the first-fit strategy for dynamic

storage allocation. ACM Trans. Program. Lang. Syst., 11(3):388–403.

[Broquedis et al., 2010] Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B.,

Mercier, G., Thibault, S., and Namyst, R. (2010). hwloc: A generic framework for managing

hardware affinities in hpc applications. In Parallel, Distributed and Network-Based Processing

(PDP), 2010 18th Euromicro International Conference on, pages 180 –186.

237

"http://www.fmc-modeling.org/category/projects/apache/amp/3_3Extending_Apache.html"
"http://www.fmc-modeling.org/category/projects/apache/amp/3_3Extending_Apache.html"

References

[Burns and Wellings, 2001] Burns, A. and Wellings, A. J. (2001). Real-Time Systems and Pro-

gramming Languages. Addison Wesley, 3rd edition.

[Chen et al., 2005] Chen, S., Xu, J., Nakka, N., Kalbarczyk, Z., and Iyer, R. (2005). Defeating

memory corruption attacks via pointer taintedness detection. In Proceedings of the 2005 Interna-

tional Conference on Dependable Systems and Networks, DSN ’05, pages 378 – 387, Washington,

DC, USA. IEEE Computer Society.

[Chowdhury and Srimani, 1987] Chowdhury, S. K. and Srimani, P. K. (1987). Worst case perfor-

mance of weighted buddy systems. Acta Informatica, 24:555–564. 10.1007/BF00263294.

[Confessore et al., 2001] Confessore, G., Dell’Olmo, P., and Giordani, S. (2001). An approximation

result for a periodic allocation problem. Discrete Applied Mathematics, 112(1–3):53–72.

[Cowan et al., 2000] Cowan, C., Wagle, F., Pu, C., Beattie, S., and Walpole, J. (2000). Buffer

overflows: attacks and defenses for the vulnerability of the decade. In DARPA Information

Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings, volume 2, pages 119–

129.

[Crespo et al., 2006] Crespo, A., Ripoll, I., and Masmano, M. (2006). Dynamic memory manage-

ment for embedded real-time systems. 225:195–204.

[Daniel P. Bovet, 2005] Daniel P. Bovet, M. C. (2005). Understanding the Linux Kernel, chapter

Chapter 2. O’Reilly, 3rd edition.

[Douglas, 2011] Douglas, N. (2011). nedmalloc. http://www.nedprod.com/programs/portable/nedmalloc.

[Edge, 2009] Edge, J. (2009). Perfcounters added to the mainline.

http://lwn.net/Articles/336542/.

[Ferreira et al., 2011] Ferreira, T., Matias, R., Macedo, A., and Araujo, L. (2011). An experi-

mental study on memory allocators in multicore and multithreaded applications. In Parallel

and Distributed Computing, Applications and Technologies (PDCAT), 2011 12th International

Conference on, pages 92 –98.

[Fredkin, 1960] Fredkin, E. (1960). Trie memory. Commun. ACM, 3(9):490–499.

[FSF, 2012a] FSF, F. s. f. (2012a). Glibc, the gnu c library. ”http://www.gnu.org/software/libc/

libc.html”.

[FSF, 2012b] FSF, F. s. f. (2012b). The gnu c++ library manual. ”http://gcc.gnu.org/onlinedocs/

libstdc++”.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., San Francisco, CA.

[Gergov, 1996] Gergov, J. (1996). Approximation algorithms for dynamic storage allocation. In

Algorithms — ESA ’96, volume 1136, pages 52–61. Springer Berlin / Heidelberg.

238

"http://www.gnu.org/software/libc/libc.html"
"http://www.gnu.org/software/libc/libc.html"
"http://gcc.gnu.org/onlinedocs/libstdc++"
"http://gcc.gnu.org/onlinedocs/libstdc++"

References

[Gergov, 1999] Gergov, J. (1999). Algorithms for compile-time memory optimization. In Pro-

ceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’99, pages

907–908, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

[Gloger, 2001] Gloger, W. (2001). Dynamic memory allocator implementations in linux system

libraries. ”http://www.dent.med.uni-muenchen.de/∼wmglo/malloc\discretionary{-}{}{}slides.

html”.

[Gloger, 2006] Gloger, W. (2006). ptmalloc2. ”http://www.malloc.de/en/”.

[Grunwald et al., 1993] Grunwald, D., Zorn, B., and Henderson, R. (1993). Improving the cache

locality of memory allocation. SIGPLAN Not., 28(6):177–186.

[Hasan and Chang, 2005] Hasan, Y. and Chang, M. (2005). A study of best-fit memory allocators.

Computer Languages, Systems & Structures, 31(1):35 – 48.

[Hasan et al., 2010] Hasan, Y., Chen, W.-M., Chang, J. M., and Gharaibeh, B. M. (2010). Upper

bounds for dynamic memory allocation. IEEE Trans. Comput., 59(4):468–477.

[Hewlett-Packard Corporation, 2012] Hewlett-Packard Corporation (2012). HP Pro-

Liant DL980 G7 server with HP PREMA Architecture PREMA Architecture.

http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA3-0643ENW.pdf. Technical Whitepa-

per.

[Hewlett-Packard Corporation et al., 2011] Hewlett-Packard Corporation, Intel Corporation, Mi-

crosoft Corporation, Phoenix Technologies Ltd., and Toshiba Corporation (2011). Advanced con-

figuration and power interface specification. http://acpi.info/DOWNLOADS/ACPIspec40a.pdf.

[Hirschberg, 1973] Hirschberg, D. S. (1973). A class of dynamic memory allocation algorithms.

Commun. ACM, 16(10):615–618.

[Hyde and Fleisch, 1996] Hyde, R. L. and Fleisch, B. D. (1996). An analysis of degenerate sharing

and false coherence. J. Parallel Distrib. Comput., 34(2):183–195.

[Jeremiassen and Eggers, 1995] Jeremiassen, T. E. and Eggers, S. J. (1995). Reducing false sharing

on shared memory multiprocessors through compile time data transformations. SIGPLAN Not.,

30(8):179–188.

[Johnstone and Wilson, 1998] Johnstone, M. S. and Wilson, P. R. (1998). The memory fragmen-

tation problem: solved? SIGPLAN Not., 34(3):26–36.

[Kaminski, 2009] Kaminski, P. (2009). Numa aware heap memory manager. ”http://

amddevcentral.com/Assets/NUMA aware heap memory manager article final.pdf”.

[Kingsley, 1982] Kingsley, C. (1982). Description of a very fast storage allocator.

[Kleen, 2005] Kleen, A. (2005). A NUMA API for Linux. Novel Inc. accessed on September 2011.

239

"http://www.dent.med.uni-muenchen.de/~wmglo/malloc\discretionary {-}{}{}slides.html"
"http://www.dent.med.uni-muenchen.de/~wmglo/malloc\discretionary {-}{}{}slides.html"
"http://www.malloc.de/en/"
"http://amddevcentral.com/Assets/NUMA_aware_heap_memory_manager_article_final.pdf"
"http://amddevcentral.com/Assets/NUMA_aware_heap_memory_manager_article_final.pdf"

References

[Knuth, 1997] Knuth, D. (1997). The art of computer programming: Fundamental Algorithms,

volume 1. addison-Wesley, 2 edition.

[Larson and Krishnan, 1998] Larson, P.-k. and Krishnan, M. (1998). Memory allocation for long-

running server applications. SIGPLAN Not., 34(3):176–185.

[Lea, 1996] Lea, D. (1996). A memory allocator. ”http://g.oswego.edu/dl/html/malloc.html”.

Unix/Mail December, 1996.

[Linus Torvalds, 2011] Linus Torvalds, e. (2011). Source codes of linux kernel v3.0.4. ”http://lxr.

linux.no/linux+v3.0.4/”.

[Liu and Berger, 2011] Liu, T. and Berger, E. D. (2011). Sheriff: precise detection and automatic

mitigation of false sharing. SIGPLAN Not., 46(10):3–18.

[Luby et al., 1994] Luby, M. G., Naor, J. S., and Orda, A. (1994). Tight bounds for dynamic

storage allocation. In Proceedings of the fifth annual ACM-SIAM symposium on Discrete algo-

rithms, SODA ’94, pages 724–732, Philadelphia, PA, USA. Society for Industrial and Applied

Mathematics.

[Majo and Gross, 2011] Majo, Z. and Gross, T. R. (2011). Memory system performance in a numa

multicore multiprocessor. In Proceedings of the 4th Annual International Conference on Systems

and Storage, SYSTOR ’11, pages 1–10, New York, NY, USA. ACM.

[Marathe and Mueller, 2006] Marathe, J. and Mueller, F. (2006). Hardware profile-guided au-

tomatic page placement for ccnuma systems. In Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming, PPoPP ’06, pages 90–99, New

York, NY, USA. ACM.

[Marchand et al., 2007] Marchand, A., Balbastre, P., Ripoll, I., Masmano, M., and Crespo, A.

(2007). Memory resource management for real-time systems. In Real-Time Systems, 2007.

ECRTS ’07. 19th Euromicro Conference on, pages 201 –210.

[Masmano, 2012] Masmano (2012). The lastest version of TLSF source. http://wks.gii.upv.es/

tlsf/files/src/TLSF-2.4.6.tbz2.

[Masmano et al., 2008a] Masmano, M., Ripoll, I., Balbastre, P., and Crespo, A. (2008a). A

constant-time dynamic storage allocator for real-time systems. Real-Time Systems, 40(2):149–

179.

[Masmano et al., 2003] Masmano, M., Ripoll, I., and Crespo, A. (2003). Dynamic storage alloca-

tion for real-time embedded systems. Proc. of Real-Time System Simposium WIP.

[Masmano et al., 2008b] Masmano, M., Ripoll, I., Real, J., Crespo, A., and Wellings, A. (2008b).

Implementation of a constant-time dynamic storage allocator. Software: Practice and Experi-

ence, 38(10):995–1026.

240

"http://g.oswego.edu/dl/html/malloc.html"
"http://lxr.linux.no/linux+v3.0.4/"
"http://lxr.linux.no/linux+v3.0.4/"
http://wks.gii.upv.es/tlsf/files/src/TLSF-2.4.6.tbz2
http://wks.gii.upv.es/tlsf/files/src/TLSF-2.4.6.tbz2

References

[McCamant and Ernst, 2007] McCamant, S. and Ernst, M. D. (2007). A simulation-based proof

technique for dynamic information flow. In Proceedings of the 2007 workshop on Programming

languages and analysis for security, PLAS ’07, pages 41–46, New York, NY, USA. ACM.

[McCurdy and Vetter, 2010] McCurdy, C. and Vetter, J. (2010). Memphis: Finding and fixing

numa-related performance problems on multi-core platforms. In Performance Analysis of Sys-

tems Software (ISPASS), 2010 IEEE International Symposium on, pages 87–96.

[Mehta et al., 1997] Mehta, H., Owens, R., Irwin, M., Chen, R., and Ghosh, D. (1997). Tech-

niques for low energy software. In Low Power Electronics and Design, 1997. Proceedings., 1997

International Symposium on, pages 72–75.

[MicroQuill, 2012] MicroQuill (2012). shbench benchmark tool. http://www.microquill.com.

[Mochel, 2005] Mochel, P. (2005). The sysfs filesystem. In Linux Symposium, pages 313–326,

Ottawa, Ontario, Canada.

[Molnar, 2009] Molnar, I. (2009). Performance counters for linux, v8.

http://lwn.net/Articles/336542/.

[Nethercote and Mycroft, 2002] Nethercote, N. and Mycroft, A. (2002). The cache behaviour of

large lazy functional programs on stock hardware. SIGPLAN Not., 38(2 supplement):44–55.

[Nilsen and Gao, 1995] Nilsen, K. and Gao, H. (1995). The real-time behavior of dynamic memory

management in c++. In Real-Time Technology and Applications Symposium, 1995. Proceedings,

pages 142–153.

[Ogasawara, 1995] Ogasawara, T. (1995). An algorithm with constant execution time for dynamic

storage allocation. In RTCSA ’95: Proceedings of the 2nd International Workshop on Real-Time

Computing Systems and Applications, pages 21–25, Washington, DC, USA. IEEE Computer

Society.

[Ogasawara, 2009] Ogasawara, T. (2009). Numa-aware memory manager with dominant-thread-

based copying gc. SIGPLAN Not., 44(10):377–390.

[Oracle Inc., 2013] Oracle Inc. (2013). Memory architecture. ”http://docs.oracle.com/cd/E14072

01/server.112/e10713/memory.htm”.

[Ortiz and Santiago, 2008] Ortiz, D. and Santiago, N. (2008). Impact of source code optimizations

on power consumption of embedded systems. In Circuits and Systems and TAISA Conference,

2008. NEWCAS-TAISA 2008. 2008 Joint 6th International IEEE Northeast Workshop on, pages

133–136.

[Page and Hagins, 1986] Page, I. and Hagins, J. (1986). Improving the performance of buddy

systems. Computers, IEEE Transactions on, C-35(5):441 –447.

241

http://www.microquill.com
"http://docs.oracle.com/cd/E14072_01/server.112/e10713/memory.htm"
"http://docs.oracle.com/cd/E14072_01/server.112/e10713/memory.htm"

References

[Polishchuk et al., 2007] Polishchuk, M., Liblit, B., and Schulze, C. W. (2007). Dynamic heap

type inference for program understanding and debugging. SIGPLAN Not., 42(1):39–46.

[Puaut, 2002] Puaut, I. (2002). Real-Time Performance of Dynamic Memory Allocation Algo-

rithms. In ECRTS ’02: Proceedings of the 14th Euromicro Conference on Real-Time Systems,

pages 41–49, Washington, DC, USA. IEEE Computer Society.

[Puaut and Hardy, 2007] Puaut, I. and Hardy, D. (2007). Predictable paging in real-time systems:

A compiler approach. In Real-Time Systems, 2007. ECRTS ’07. 19th Euromicro Conference on,

pages 169 –178.

[Randell, 1969] Randell, B. (1969). A note on storage fragmentation and program segmentation.

Commun. ACM, 12(7):365–ff.

[Robertson et al., 2003] Robertson, W., Kruegel, C., Mutz, D., and Valeur, F. (2003). Run-time

detection of heap-based overflows. In Proceedings of the 17th USENIX conference on System

administration, LISA ’03, pages 51–60, Berkeley, CA, USA. USENIX Association.

[Robson, 1980] Robson, J. (1980). Storage allocation is np-hard. Information Processing Letters,

11(3):119–125.

[Robson, 1971] Robson, J. M. (1971). An estimate of the store size necessary for dynamic storage

allocation. J. ACM, 18(3):416–423.

[Robson, 1977] Robson, J. M. (1977). Worst case fragmentation of first fit and best fit storage

allocation strategies. The Computer Journal, 20(3):242–244.

[Sanjay Ghemawat, 2010] Sanjay Ghemawat, P. M. (2010). Tcmalloc: Thread-caching malloc.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[SGI, 2004] SGI (2004). Standard template library programmer’s guide: Allocators. ”http://www.

sgi.com/tech/stl/Allocators.html”.

[Shen and Peterson, 1974] Shen, K. K. and Peterson, J. L. (1974). A weighted buddy method for

dynamic storage allocation. Commun. ACM, 17(10):558–562.

[Shore, 1975] Shore, J. E. (1975). On the external storage fragmentation produced by first-fit and

best-fit allocation strategies. Commun. ACM, 18(8):433–440.

[Standish, 1980] Standish, T. A. (1980). Data Structure Techniques. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[Stephenson, 1983] Stephenson, C. J. (1983). New methods for dynamic storage allocation (fast

fits). SIGOPS Oper. Syst. Rev., 17(5):30–32.

[Sybase Inc., 2013] Sybase Inc. (2013). Configuration parameters that affect memory allo-

cation. ”http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase 15.0.sag2/

html/sag2/sag274.htm”.

242

"http://www.sgi.com/tech/stl/Allocators.html"
"http://www.sgi.com/tech/stl/Allocators.html"
"http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.sag2/html/sag2/sag274.htm"
"http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.sag2/html/sag2/sag274.htm"

References

[Tao et al., 2008] Tao, J., Kunze, M., and Karl, W. (2008). Evaluating the cache architecture of

multicore processors. In Parallel, Distributed and Network-Based Processing, 2008. PDP 2008.

16th Euromicro Conference on, pages 12 –19.

[Tikir and Hollingsworth, 2008] Tikir, M. and Hollingsworth, J. (2008). Hardware monitors for

dynamic page migration. Journal of Parallel and Distributed Computing, 68(9):1186–1200.

[Vee and Hsu, 1999] Vee, V.-Y. and Hsu, W.-J. (1999). A scalable and efficient storage allocator on

shared memory multiprocessors. In Proceedings of the 1999 International Symposium on Parallel

Architectures, Algorithms and Networks, ISPAN ’99, pages 230–, Washington, DC, USA. IEEE

Computer Society.

[Weber, 2001] Weber, F. (2001). Amd’s next generation microprocessor architecture. Presented

in Microprocessor Forum at San Jose, California.

[Weidendorfer et al., 2004] Weidendorfer, J., Kowarschik, M., and Trinitis, C. (2004). A tool suite

for simulation based analysis of memory access behavior. In In Proceedings of International

Conference on Computational Science, pages 440–447. Springer.

[Wellings et al., 2010] Wellings, A. J., Malik, A. H., Audsley, N. C., and Burns, A. (2010). Ada

and cc-numa architectures what can be achieved with ada 2005? Ada Lett., 30(1):125–134.

[Wilson et al., 1995a] Wilson, P., Johnstone, M., Neely, M., and Boles, D. (1995a). Memory

allocation policies reconsidered. Technical report, Technical report, University of Texas at Austin

Department of Computer Sciences.

[Wilson et al., 1995b] Wilson, P. R., Johnstone, M. S., Neely, M., and Boles, D. (1995b). Dy-

namic Storage Allocation: A Survey and Critical Review. In IWMM ’95: Proceedings of the

International Workshop on Memory Management, pages 1–116, London, UK. Springer-Verlag.

[Zhou and Petrov, 2011] Zhou, X. and Petrov, P. (2011). Towards virtual memory support in

real-time and memory-constrained embedded applications: the interval page table. Computers

Digital Techniques, IET, 5(4):287 –295.

[Zorn and Grunwald, 1992] Zorn, B. and Grunwald, D. (1992). Empirical measurements of six

allocation-intensive c programs. SIGPLAN Not., 27(12):71–80.

[Zorn and Grunwald, 1994] Zorn, B. and Grunwald, D. (1994). Evaluating models of memory

allocation. ACM Trans. Model. Comput. Simul., 4(1):107–131.

243

	 Abstract
	 List of figures
	 List of tables
	 Acknowledgements
	 Declaration
	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Thesis Objectives
	1.4 Organisation of the Thesis

	2 Dynamic Memory Managements
	2.1 Introduction
	2.2 Fundamental Issues
	2.3 Memory Management Algorithms
	2.4 Summary

	3 nMART: A ccNUMA-aware Dynamic Storage Allocation Algorithm
	3.1 Design Principles
	3.2 An Overview of nMART
	3.3 Kernel-level Node-based Memory Management
	3.4 User-Level Memory Management Algorithms and their Implementation
	3.5 Summary

	4 Evaluation
	4.1 Experimental Environment
	4.2 Workload Models
	4.3 Temporal Behaviour Analysis
	4.4 Summary

	5 Conclusions And Future Work
	5.1 Contributions
	5.2 The Hypothesis Revisited
	5.3 Future Work

	 Appendices
	A Additional Evaluation of Spatial and Cache Behaviour of memory Allocators
	A.1 Spatial Behaviour Analysis
	A.2 Cache Behaviour Analysis

	B Additional Evaluation of the Revised Node Distance Tables
	B.1 Implementation of Node Distance tables in Linux
	B.2 Measuring Node Distances
	B.3 Evaluation On The Real Node Distance

	C Further Evaluation of the Synthetic Models
	D Supporting Implementations
	D.1 Supplemental Applications
	D.2 Examples Of Conventional Allocators

	 Abbreviations
	 References

