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Abstract

This thesis is about portfolio choice under ambiguity and risk. At its core

is an experiment and a simulation, both concerning portfolio choice. The

experiment is under ambiguity, in which the the probabilities of the states are

not known to the subjects. We tested two multiple prior preference theories

(MEU and α-MEU), both of which are fit significantly better than Expected

Utility (EU) for around one third of the subjects, and better than Mean-

Variance (MV) for the majority of the subjects. We also find that subjects

have heterogenous beliefs about ambiguity, but on average they do a good

job in guessing the true probabilities. The simulation is in the context of risk.

Our interest here is in the specification of the stochastic process underlying

our observations. The simulation led to a surprising result - the maximum

likelihood estimation may suggest the wrong specification.
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Chapter 1

Portfolio Choice under

Ambiguity - Theory

1.1 Introduction

This chapter begins by presenting the classic individual portfolio choice prob-

lem in the context of risk. The environment is that there is one risk free asset,

for which the end of period price is fixed, and several risky assets, for which

the end of period prices are contingent on the possible states. The proba-

bilities of each state are known to the individuals. The starting prices of all

the assets are predetermined and individuals can buy or sell the assets using

a cash endowment. Section 1.2 studies the scenario in which individuals can

buy and sell any quantity of assets. Section 1.3 studies the scenario with a

No-short-selling constraint, which means that individuals can only use their

cash endowment to buy the assets and they can not borrow cash.

Clearly the optimal decision depends upon the preferences of the decision-

maker. In this chapter, Expected Utility (EU) and Mean-Variance (MV) pref-

erences are applied in this scenario. EU theory is widely used by economists

to explain decision making under risk. It claims that individuals’ decision

rules can be described as maximising the sum of probability weighted von

1
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Neumann-Morgenstern utility of every possible outcome (the EU theory as-

sumes that the individuals obey certain axioms.) 1 While EU theory is widely

favoured by economists, it is not the most preferred preference functional

used in the financial professions. There people work directly with the ex-

pected return and variance of a gamble, and assume that decision-makers

trade off the mean against the variance. In general, but not always, EU

preferences are inconsistent with MV preferences and vice versa. However

assuming MV preferences has advantages in that interesting analytical results

can be obtained, which is often not possible when assuming EU preferences.

MV preferences are also easier to handle when doing empirical work. For ex-

ample, in the empirical study of the Capital Asset Pricing Model, the return

on the asset is usually assumed to be normally distributed, and the corre-

sponding return and variance can be derived from historical data. Though

MV preferences may imply violation of statewise dominance (hence one might

think it is not a rational preference), it is the building block for Modern Port-

folio Theory (MPT). MPT was introduced by Markowitz (1952), who won a

Nobel Prize for this research, and it has been widely used in practice.

The chapter then studies, in Section 1.4, the portfolio choice problem in the

context of ambiguity. Ambiguity is distinguished from risk in the sense that

the probabilities of each state happening are not known by the individuals. In

both EU and MV, either a unique prior or a unique distribution is assumed.

There are various characterisations of ambiguity and behaviour under ambi-

guity, and we will study one such characterisation: that with multiple priors

- that is various sets of possible probabilities (in the case of risk, there is a

unique member of this set). To be specific we will apply two multiple-prior

models: the MaxMin Expected Utility (MEU) (Gilboa and Schmeidler 1989)

model and the α-MaxMin Expected Utility (α-MEU) (Ghirardato et al. 2004)

1Usually the axioms are described as the following (where P denotes a risky gamble)

• Axiom 1 Completeness Either P1 � P2 or P1 ≺ P2 or P1 = P2

• Axiom 2 Transitivity If P1 � P2 and P2 � P3 then P1 � P3

• Axiom 3 Continuity If P1 � P2 � P3 then there exists a value π ∈ [0, 1] that
P1π + P3(1− π) = P2

• Axiom 4 Independence If P1 � P2 then for any π ∈ [0, 1]



3

model in a portfolio choice problem. α-MEU is a generalisation of MEU, and

both of these two preferences are built ’on top of’ EU theory. The study

of ambiguity in portfolio choice may help us to understand puzzles which

cannot be explained by classical finance theory, such as the equity premium

puzzle. This latter refers to the phenomenon that the returns for stocks in

excess of government bonds are too great to be rationalised.

1.2 Unconstrained Portfolio Choice in the con-

text of risk

1.2.1 Introduction

The general environment is as follows. There are several assets with starting

prices predetermined, and with end-of-period prices depending on which state

occurs out of all the possible states. There is one risk free asset, for which

the end of period price is the same for all possible states, as a fixed interest

rate is assumed. The others are risky assets, for which end-of-period prices

are contingent on the state which occurs. For any one state that occurs, all

the end-of-period prices of the risky assets are determined.The risky assets

may be correlated in terms of their end-of-period prices. The end-of-period

price could also be considered as the end-of-period price plus a dividend as

sometimes dividend are paid on some stocks. But these two interpretations

do not make a real difference to the theoretical analysis. Individuals are given

a certain amount of cash endowment at the start, and then they can buy or

sell the assets. In this thesis, we exclusively study the case in which there

are 2 risky assets and 1 risk free asset. This is for the following reasons.

The study of portfolio choice are mainly focused on two aspects. One is how

individuals allocate cash to the risk free asset and the risky assets, and the

other is how they diversify in risky assets. Diversification means hedging risk

by constructing a portfolio containing several risky assets, as risky assets may

be correlated. For example, the famous CAPM model (which assumes that

individuals have mean variance preferences) claims that every individual wants
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to choose a portfolio with the same weights in risky assets, that is market

portfolio; the heterogeneity in risk aversion only influences the proportion in

the risk free asset and in market portfolio;. So a risk free asset and also at

least two risky assets should be involved in this study. As the analysis in

the case of two risky assets already captures the essence of portfolio choice

theory, no more should be added, since this would make the problem more

complicated in a unnecessary way. Also, I want to test the theoretical results

in the experiment. As to the number of possible states, we chose to study

the case where there are 3 possible states. First, at least two states should

be involved as otherwise the risky assets are not risky anymore when only

one state can occur. But two states are not informative enough in terms

of revealing individuals’ preferences (as we shall show later). Second, the

problem should be as simple as possible for the subjects. Then it seems

natural to choose 3 states. Although it is more explicit if we model the

payoffs for the assets in different states by prices, relative returns are used

instead in this chapter. This leads to a much conciser theoretical analysis

and does not alter the basic problem. For example2, if the opening prices for

risky asset 1 and risky asset 2 and risk free asset are 4, 2 and 1 units of cash

respectively, individuals should have exactly the same preferences when told

that the end of period prices to be 8, 3 and 1 units of cash respectively or

the relative returns are 1, 0.5 and 0 respectively. We also introduce another

simplification by assuming that the opening prices for all the assets are 1 unit

in cash since the opening price does not really matter as long as the relative

return is given. Furthermore the relative return for the risk free asset is

nomalised to 0. Note in this case the risk free asset and cash are equivalent.

So in future the risk free asset is just called cash.

1.2.2 The Basic Scenario

Assume that there are two risky assets i ∈ (1, 2), both priced at 1 unit

of cash. The relative return for risky assets are contingent on the state

j ∈ (1, 2, 3). Individuals are endowed with a certain amount of cash e to buy

2In this example only one state is assumed, as it is only for illustrating the idea.
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the risky assets. They can spend all their cash or they can keep as much as

they want. In this basic scenario short selling in any asset or cash is allowed.

Denoting by C =
[
c1 c2

]
the portfolio choice 3 for and the cash holding as

c0 as the remaining cash.

c0 = e− c1 − c2 (1.1)

The interest rate is 0, so the cash holding is the same at the end of period.

Denoting by dij the return for risky asset i if state j occurs, the return table

for the risky assets can be written as

state1 state2 state3

asset1 d11 d12 d13

asset2 d21 d22 d23

and it can be written in a concise matrix form

D =

[
d11 d12 d13

d21 d22 d23

]
(1.2)

Then the portfolio payoff for each state j is

wj = c1d1j1 + c2d2j1 + e

=
∑
i∈(1,2)

cidij
(1.3)

The probabilities of the possible states are denoted by the vector

P =
[
p1 p2 p3

]′
(1.4)

where ′ means a transpose operator for a vector/matrix. This notation is

used throughout the thesis.

3In this thesis, in order to simplify the notation, the expression ’portfolio choice’ always
refers to the allocations to the risky/ambiguous assets, as the allocation to cash is implicitly
decided by the budget constraint (1.1)
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1.2.3 Mean Variance (MV) Preferences

Mean Variance preferences assumes that individuals trade-off the mean

against the variance of a portfolio. Given the return table (1.2) and proba-

bility vector (1.4), the mean return of asset i is

µi = di1p1 + di2p2 + di3p3 (1.5)

the variance of the return for asset i is

σ2
i = (di1 − µi)2p1 + (di2 − µi)2p2 + (di3 − µi)2p3 (1.6)

and the covariance for returns of the two assets is

σ12 = (d11−µ1)(d21−µ2)p1 +(d11−µ1)(d21−µ2)p2 +(d11−µ1)(d21−µ2)p3

(1.7)

For conciser writing, denote the return vector by

µ =

[
µ1

µ2

]
(1.8)

and the covariance matrix by

Ω =

[
σ2

1 σ12

σ12 σ2
2

]
(1.9)

For any allocation C =
[
c1 c2

]
the mean of portfolio (relative) payoff is

Cµ and the variance of portfolio (relative) payoff is CΩC
′
. Mean-Variance

preferences assumes that individuals maximise the following function

U = e+ Cµ− 1

2
rCΩC

′
(1.10)

= e+ (c1µ1 + c2µ2)− 1

2
r(c2

1σ
2
1 + 2c1c2σ12 + c2

2σ22) (1.11)
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which is a linear combination of the mean and the variance of the portfolio

payoff 4. Notice that r ≥ 0 is the risk aversion parameter and represents the

degree an individual would penalize a portfolio for its risk. The first order

conditions for the maximisation of the function (1.10) are

dU

dc1

= µ1 − r(c1σ
2
1 + c2σ12)

dU

dc2

= µ2 − r(c2σ
2
2 + c1σ12)

hence the optimal allocation is given by

C∗ =
1

r
(Ω−1µ)

′
. (1.12)

Conditions for the existence of an optimal allocation The optimal

solution (1.12) is an expression involving the inverse of the covariance matrix

Ω, so its determinant should not be equal to 0; that is

σ2
12 − σ2

1σ
2
2 6= 0 (1.13)

The intuition behind this condition is that it eliminates the opportunity for

individuals to earn a risk free profit without any cost, which is called an

Arbitrage Opportunity. In another words, there is not an optimal solution as

an individual would want to invest an unlimited amount in the risky assets if

such an opportunity exists. For example, if

µ =

[
0.1

0.3

]

and

Ω =

[
0.2 0.4

0.4 0.8

]
then the mean of the portfolio payoff is 0.1c1 + 0.3c2 and the variance of the

payoff is 0.2c2
1 + 0.8c1c2 + 0.8c2

2. If an individual constructs the portfolio so

that c1 = −2c2 then the portfolio variance is 0. And the utility function for

4It is frequent mistake that people think quadratic utility functions leads to mean
variance preferences. See Robert and Edward (1991).
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a mean variance preference individual is

U = 0.1c2

which is monotonically increasing in c2. As the risk parameter does not

appear in this equation, an individual with any level of risk aversion would

be willing to buy an unlimited amount of asset 2 and sell half that amount

in asset 1. If

µ =

[
0.1

0.15

]
hence the utility function is

U = −0.05c2.

then an individual would be willing to sell an unlimited amount of asset 2

and buy twice that amount of asset 1 to earn an unlimited amount of money.

Notice here this opportunity can only exist when there are no constraints on

the individual’s freedom to trade.

1.2.4 Expected Utility (EU) Preferences

According to Expected Utility theory, individuals choose the portfolio that

maximises the sum of the von Neumann-Morgenstern utility function u of

portfolio payoff wj weighted by the probability of the corresponding state pj,

that is

U =
∑
j

u(wj)pj (1.14)

I assume that individuals are never satiated by money which means that the

first derivative of the utility function is positive u
′
> 0. One can measure

individuals’ attitudes to risk by two measures5:

5Generally the measure for a function’s concavity is the second derivative u
′′

, but
they are adjusted by u

′
because an EU utility function is unique only up to a linear

transformation.



9

Absolute Risk Aversion Measure (ARA)

ARA(w) = −u(w)
′′

u(w)′
(1.15)

Relative Risk Aversion Measure (RRA)

RRA(w) = −wu(w)
′′

u(w)′
(1.16)

By assuming absolute risk aversion (1.15) and relative risk aversion (1.15) are

constant respectively, we can derive two special, and often used, functions -

belonging to the exponential utility family (Constant Absolute Risk Aversion

(CARA)) and to the power utility family (Constant Relative Risk Aversion

(CRRA)). I am going to assume these two kinds of functions in this portfolio

choice problem, and later will use the experimental data to test which one

is a better explanation of behaviour. Now I first present the problem using

the general Expected Utility model, and then derive the optimal allocation

for both the CARA and the CRRA utility functions.

Individuals who have Expected Utility preferences maximise the following

function

U =
∑

j∈{1,2,3}

pj × u(wj)

=
∑

j∈{1,2,3}

pj × u(c1 × d1j + c2 × d2j + e) (1.17)

The first order conditions are
dEU

dc1

=
∑

j∈{1,2,3}
pjd1ju

′(wj) = 0

dEU

dc2

=
∑

j∈{1,2,3}
pjd2ju

′(wj) = 0
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Here we assume pj 6= 0, dij 6= 0, i ∈ {1, 2}, j ∈ {1, 2, 3}. Dividing the two

equations by the first element we get
1 +

p2d12

p1d11

u′(w2)

u′(w1)
+
p3d13

p1d11

u′(w3)

u′(w1)
= 0

1 +
p2d22

p1d21

u′(w2)

u′(w1)
+
p3d23

p1d21

u′(w3)

u′(w1)
= 0

Denote x and y as follows: 
x =

u′(w2)

u′(w1)

y =
u′(w3)

u′(w1)

(1.18)

Then we get 
1 +

p2d12

p1d11

x+
p3d13

p1d11

y = 0

1 +
p2d22

p1d21

x+
p3d23

p1d21

y = 0

or written in matrix form:
p2d12

p1d11

p3d13

p1d11
p2d22

p1d21

p3d23

p1d21

[x
y

]
=

[
−1

−1

]

The the first order condition for Expected Utility preferences becomes

[
x

y

]
=


p2d12

p1d11

p3d13

p1d11
p2d22

p1d21

p3d23

p1d21


−1 [
−1

−1

]
(1.19)

Condition for the Existence of an Optimal allocation with general

EU preferences First, from the first order condition (1.19), we know that

the matrix 
p2d12

p1d11

p3d13

p1d11
p2d22

p1d21

p3d23

p1d21


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should not be singular which means that

(
p2

p1

d12

d11

)(
p3

p1

d23

d21

)− (
p3

p1

d13

d11

)(
p2

p1

d22

d21

) 6= 0.

Assume for ∀j ∈ {1, 2, 3} that pj 6= 0 and d11, d21 6= 0 , we get

d12d23 − d13d22 6= 0 (1.20)

If this condition does not hold, individuals would have an opportunity to

increase their utility unboundedly. The proof follows.

Proof If the condition is not satisfied then it implies

d12d23 − d13d22 = 0

which can be written as
d12

d22

=
d13

d23

= δ

Individuals could construct a portfolio in which c2 = −δc1 for which
w1 = d11c1 − δc1d21 + e = (d11 − δd21)c1 + e

w2 = d12c1 − δc1d22 + e = (d12 − δd22)c1 + e = e

w3 = d13c1 − δc1d23 + e = (d13 − δd23)c1 + e = e

Then the Expected Utility (1.17) becomes

U = p1u(w2) + p2u(w2) + p3u(w3)

= p1u((d11 − δc1d21)c1 + e) + p2u(e) + p3u(e)

Taking the first derivative of the utility function with respect to c1 we get

dU

dc1

= p1(d11 − δd21)u
′
(w1)

Then the Expected Utility is monotonically increasing/decreasing with re-

spect to c1. It is easy to understand since the portfolio payoffs for both state

2 and state 3 become constant by constructing such a portfolio. In this case:
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• d11 − δd21 > 0 then
dU

dc1

> 0 and individuals would like to buy infinite

amount of asset 1 and sell δc1 of asset 2 to increase utility;

• d11 − δd21 < 0 then
dU

dc1

< 0 and individuals would like to sell infinite

amount of asset 1 and buy δc1 of asset 2 to increase utility;

• d11 − δd21 = 0 then
dU

dc1

= 0 and individuals are indifferent to any

allocation as long as c2 = −δc1

An example may help to illustrate this problem. Suppose that the return

table is

D =

[
0.1 −0.2 0.3

0.3 0.4 −0.6

]
We can calculate that δ = −0.2

0.4
= 0.3
−0.6

= 0.5. Denoting by c2 = −δc1 =

0.5c1 and assuming that e = 100 then the Expected Utility becomes

U = p1u(w2) + p2u(w2) + p3u(w3)

= p1u(0.25c1 + 100) + p2u(100) + p3u(100)

The first derivative

dU

dc1

= 0.25p1u
′
(0.25c1 + 100) > 0

and so utility increases as c1 increases.

CARA utility function

Assume an individual who has constant absolute risk aversion and also assume

the following particular functional form6:

u(w) = −1

r
e−rw. (1.21)

6This function belongs to the exponential family. It assumes ARA is constant as

ARA(w) = −−wre
−rw−1

e−rw
= r

r > 0 represents risk-aversion and r < 0 represents risk-loving and r = 0 represents
risk-neutrality. The degree of risk aversion increases as r increases.



13

Equation (1.18) becomes x = e−r×(w2−w1)

y = e−r×(w3−w1).

Taking the logarithm of each side of the equation we getw2 − w1 = − lnx
r

w3 − w1 = − ln y
r

Inserting these into equation (1.3) we getc1(d12 − d11) + c2 (d22 − d21) = − lnx
r

c1(d13 − d11) + c2 (d23 − d21) = − ln y
r

and the matrix form is[
d12 − d11 d22 − d21

d13 − d11 d23 − d21

][
c1

c2

]
= −1

r

[
lnx

ln y

]

Then we get that the optimal allocation is[
c1

c2

]
= −1

r

[
d12 − d11 d22 − d21

d13 − d11 d23 − d21

]−1

ln

[
x

y

]
(1.22)

here x and y are calculated by the first order condition (1.19).

Conditions for the existence of an Optimal Allocation with a CARA

utility function First, as the logarithm is taken for x and y in equation

(1.22), both of them should be positive. By expanding the matrix form x

and y as defined in equation (1.19), we get

[
x

y

]
=


p1

p2

d13d21 − d23d11

d12d23 − d13d22
p1

p3

d11d22 − d12d21

d12d23 − d13d22


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As we assume that for ∀j ∈ {1, 2, 3} that pj 6= 0, the first conditions are

the following: 
d13d21 − d23d11

d12d23 − d13d22

> 0

d11d22 − d12d21

d12d23 − d13d22

> 0
(1.23)

Second, as the inverse of the matrix[
d12 − d11 d22 − d21

d13 − d11 d23 − d21

]

needs to be taken, it cannot be singular. So we get a further condition:

(d12 − d11)(d23 − d21)− (d13 − d11)(d22 − d21) 6= 0 (1.24)

CRRA utility function

Assume an individual who has constant relative risk aversion and also assume

the following particular functional form7:

u(w) =

w1−r

1−r , r 6= 1

ln(w) r = 1
(1.25)

Then equation (1.18) becomesx = (w2

w1
)−r

y = (w3

w1
)−r

7The function belongs to the power family. It assumes RRA is constant as

RRA(w) = −−wrw
−r−1

w−r
= r

r > 0 represents risk aversion, r < 0 represents risk loving and r = 0 represents risk
neutrality. The degree of risk aversion increases as r increases.
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from which it follows that 
w2

w1

= x−
1
r

w3

w1

= y−
1
r

Inserting these into equation (1.3) we get
c1d12 + c2d22 + e

c1d11 + c2d21 + e
= x−

1
r

c1d13 + c2d23 + e

c1d11 + c2d21 + e
= y−

1
r

which also can be written as(d12 − x−
1
r d11)c1 + (d22 − x−

1
r d21)c2 + (1− x− 1

r )e = 0

(d13 − y−
1
r d11)c1 + (d23 − y−

1
r d21)c2 + (1− y− 1

r )e = 0

and the matrix form is[
d12 − x−

1
r d11 d22 − x−

1
r d21

d13 − y−
1
r d11 d23 − y−

1
r d21

][
c1

c2

]
= e

[
x−

1
r − 1

y−
1
r − 1

]

Then we get the optimal allocation as[
c1

c2

]
= e

[
d12 − x−

1
r d11 d22 − x−

1
r d21

d13 − y−
1
r d11 d23 − y−

1
r d21

]−1 [
x−

1
r − 1

y−
1
r − 1

]
(1.26)

here x and y are derived through the first order conditions (1.19).

Conditions for the existence of an Optimal Allocation using the

CRRA utility function In equation (1.26), we have assumed the exis-

tence of the inverse of the matrix on the right hand side. Denoting by ||..||
the determinant of a matrix we get∥∥∥∥∥d12 − x−

1
r d11 d22 − x−

1
r d21

d13 − y−
1
r d11 d23 − y−

1
r d21

∥∥∥∥∥ 6= 0
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which leads us to the condition

[
d21d13 − d11d23 d11d22 − d21d12

] [x− 1
r

y−
1
r

]
6= d13d22 − d12d23 (1.27)

By the definition of x, y in equation (1.18), they are related to the probabil-

ities. Unlike the case in CARA utility function, the condition (1.27) is also

related to probabilities since x, y are related to the probabilities as they are

calculated by the first order conditions (1.19).

1.2.5 Conclusion

In this section, we have derived the explicit solution to the optimal portfolio

choice problem in an unconstrained setting for EU preferences ( specifically

for the CARA utility function, which is in equation (1.22), and the CRRA

utility function, which is in equation (1.26) and for Mean-Variance prefer-

ences, which is in equation (1.12). We also have discussed the conditions for

the existence of the corresponding solutions.
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1.3 Constrained Portfolio Choice problem in

the context of risk

1.3.1 Introduction

In the preceding section we studied the portfolio choice problem when in-

dividuals are free to buy or sell the assets without constraints. However in

the real world, individuals are always subject to different levels of constraints

as the supplies of the assets are not unlimited and also the trading volumes

are usually restricted for regulation reasons. Also in the experiment, it is

difficult to implement an environment in which subjects are free to buy/sell

any amount. If they were free to do so, then it is possible that they would

end up with negative cash. But we can not actually ask the subjects to pay

the experimenter money. So there has to be some constraints about trading.

In this section, we are going to study the portfolio choice problem with

constraints. Specifically, the constraint is set as 0 because the technical

details are the same for any other values. It means that individuals cannot

sell a particular amount of one asset when they actually do not hold enough

of that asset. Moreover as individuals are endowed only with cash at the start

of a problem, the constraints mean that they can not borrow money and also

they can not sell any risky assets. Then the No-short-selling constraints for

the allocation C = [c1 c2] can be written as
c1 ≥ 0

c2 ≥ 0

c1 + c2 ≤ e.

(1.28)

Here we define C as the complete set of C that satisfy equation (1.28). We

also call the area which all allocations satisfy the No-short-selling constraints

as the Allocation Triangle. In the preceding section we derived the analytical

solution for the unconstrained optimal allocation C∗, so we can now use that
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in what follows. When 
c∗1 ≥ 0

c∗2 ≥ 0

c∗1 + c∗2 ≤ e.

we have C∗ ∈ C so C∗ is also the constrained optimal allocation, which

denote by C∗∗. When c∗1 ≥ 0

c∗2 < 0

and c∗2 ≥ 0

c∗1 < 0

and 
c∗1 ≥ 0

c∗2 ≥ 0

c∗1 + c∗2 > e

and c∗1 < 0

c∗2 < 0

we have C∗ /∈ C so C∗ is not the constrained optimal allocation. Denoting

by C∗∗ the constrained optimal allocation, I show now how to find the C∗∗

corresponding to these 5 scenarios. In each area, there are various ways of

finding C∗∗. Figure 1.1 to Figure 1.13 on Pages 22- 28 are illustration of the

various cases for each area. In these figures, the horizontal axis represents

c1 and the vertical axis represents c2. The contours are the indifference

curves of utility, which are plotted, for illustration, using the utility function

of Mean-Variance Preferences 8. Notice that the area within (including the

margins) the triangle represents all the allocations satisfying the No-short-

selling constraints (1.28). There are 3 special allocations involved in this

8These figures also could represent the case for the Expected Utility Preferences as the
utility functions for these are concave too.
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analysis. Let me define them first. Denote by

1C∗ = [1c∗1 0]

as the unconstrained optimal allocation with the constraint that c2 = 0.

Denote by
2C∗ = [0 2c∗2]

as the unconstrained optimal allocation with the constraint that c1 = 0.

Denote by
0C∗ = [0c∗1

0c∗2]

as the unconstrained optimal allocation with the constraint that c1 + c2 = e.

• Area 0 (A0): c∗1 ≥ 0 and c∗2 ≥ 0 and c∗1 + c∗2 ≤ e

As shown in Figure 1.1 on Page 22, C∗ lies in the constrained area A0.

So the unconstrained optimal allocation is also the constrained optimal

allocation, we have C∗∗ = C∗.

• Area 1 (A1): c∗1 ≥ 0 and c∗2 < 0

As c∗2 < 0, C∗ is not within A0. Then a reasonable guess is C∗∗ =1 C∗

as the latter is the tangency point of the indifference curves to the axis

c2 = 0. But we need to look through the following 3 cases.

– Case 1: As shown in Figure 1.2 on Page 22, 0 <1 c∗1 < e. So
1C∗ is a valid allocation. We have C∗∗ = C∗1

– Case 2: As shown in Figure 1.3 on Page 23, 1c∗1 > e. So 1C∗ is

not a valid allocation. Then the optimal allocation is the point

[e 0], where is the nearest indifference touches A0. So we have

C∗∗ = [e 0]

– Case 3: As shown in Figure 1.4 on Page 23, 1c∗1 < 0. Again 1C∗

is not a valid allocation. Then the optimal allocation is the point

[0 0], where is the nearest indifference touches A0. So we have

C∗∗ = [0 0]

• Area 2 (A2): c∗2 ≥ 0 and c∗1 < 0



20

C∗ is not a valid allocation. Being similar with the scenarios when it

is in A1, there are also 3 cases as follows:

– Case 1: As shown in Figure 1.5 on Page 24, 2C∗ is a valid allo-

cation. So we have C∗∗ =2 C∗

– Case 2: As shown in Figure 1.6 on Page 24, we have C∗∗ = [e 0]

– Case 3: As showing in Figure 1.7 on Page 25, we have C∗∗ =

[0 0]

• Area 3 (A3): c∗1 ≥ 0 and c∗2 ≥ 0 and c∗1 + c∗2 > e

C∗ is not a valid allocation as c∗1 + c∗2 > e. The position of C∗∗

depends on 3 different locations of 0C∗, where the indifference curves

are tangential to the line c1 + c2 = e.

– Case 1: As shown in Figure 1.8 on Page 25, 0C∗ is a valid alloca-

tion because that 0c∗1 ≥ 0 and 0c∗2 ≥ 0. So we have C∗∗ =0 C∗.

– Case 2: As shown in Figure 1.9 on Page 26, 0c∗2 < 0. 0C∗ is not

a valid allocation, so we have C∗∗ = [e 0]

– Case 3: As shown in Figure 1.10 on Page 26, 0c∗1 < 0. 0C∗ is not

a valid allocation, so we have C∗∗ = [0 e] Notice that we do not

need to consider the case when both 0c∗1 < e and 0c∗2 < e since

it is implicitly excluded by the condition 0c∗1 +0 c∗2 = e

• Area 4 (A4): c∗1 < and c∗2 < 0 This is a rather interesting scenario.

We expected C∗∗ = [0 0] but it turns out that it is not always correct.

Here still are 3 cases for C∗∗.

– Case 1: As shown in Figure 1.11 on Page 27, neither 0C∗1 or 0C∗2

is valid allocation. We have C∗∗ = [0 0] as expected.

– Case 2: As shown in Figure 1.12 on Page 27, 1c∗1 > 0 and 2c∗2 < 0.

So we have C∗∗ = [1c∗1 0].
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– Case 3: As shown in Figure 1.13 on Page 28, 1c∗1 < 0 and 2c∗2 > 0.

So we have C∗∗ = [0 2c∗2].9

We have not considered the case in which both 1c∗1 > 0 and 2c∗2 >

0 because it is not possible. The proof is following. Assume that
1c∗1 > 0 and 1c∗2 > 0 and U(1c∗1, 0) ≤ U(0,2 c∗2) . As C∗ = [c∗1 c∗2]

is the unconstrained optimal allocation, we have

U([1c∗1 0]) ≤ U([0 2c∗2] < U([c∗1 c∗2])

By the concavity of utility function, there exists a variable λ ∈
[0 1] that makes

[0 0c∗2] = λ[1c∗1 0] + (1− λ)[c∗1 c∗2]

which implies that

2c∗2 = (1− λ) c∗2 ≤ 0

This is a contradiction with 2c∗2 > 0.

9If 1c∗1 < 0, we let C∗∗ = [0 0] and if 1c∗1 > e, we let C∗∗ = [e 0]. Similar technique
is applied to 2c∗2. Note the constrained optima is relatively simple in the case that there
is only dimension. That is there is only one variable. Denote by c the one variable and by
c∗ the unconstrained optima. Then the constrained optimal

c∗∗ =


0 c∗ < 0

c∗ 0 ≤ c∗ ≤ e
e c∗ > e.
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C∗/C∗∗

c1

c2

(0,0) (e, 0)

(0,e)

A0

A1

A2 A3

A3

Figure 1.1: A0

[c]

C∗

1C∗/C∗∗

c1

c2

(0,0) (e,0)

(0,e)

A0

A1

Figure 1.2: A1( Case 1)
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C∗

C∗∗ 1C∗

c1

c2

(0,0) (e,0)

(0,e)

A0

A1

Figure 1.3: A1( Case 2)

C∗

C∗∗
1C∗

c1
(0,0) (e,0)

(0,e)

A0

A1

Figure 1.4: A1( Case 3)
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C∗

2C∗/C∗∗

c1

c2

(0,0) (e,0)

(0,e)

A0

A2

Figure 1.5: A2( Case 1)

C∗

← C∗∗

←
2 C∗

c1

c2

(0,0) (e,0)

(0,e)

A0

A2

Figure 1.6: A2( Case 2)
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C∗

C∗∗

←
2 C∗ c1

c2

(0,0) (e,0)

(0,e)

A0

A2

Figure 1.7: A2( Case 3)

C∗

0C∗/C∗∗

c1

c2

(0,0) (e,0)

(0,e)

A0

A3

Figure 1.8: A3( Case 1)
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C∗

C∗∗

0C∗

c1

c2

(0,0) (e,0)

(0,e)

A0

A3

Figure 1.9: A3( Case 2)

C∗

C∗∗

0C∗

c1

c2

(0,0) (e,0)

(0,e)

A0

A3

Figure 1.10: A3( Case 3)
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C∗

C∗∗

1C∗

2C∗

c1

c2

(0,0) (e, 0)

(0,e)

A0

A4

Figure 1.11: A4( Case 1)

C∗

1C∗/C∗∗

2C∗

c1

c2

(0,0)

A0

A4

Figure 1.12: A4( Case 2)
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C∗

2C∗/C∗∗

1C∗
c1

c2

(0,0)

A0

A4

Figure 1.13: A4( Case 3)
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1.3.2 Algorithm for the Constrained Optimal allocation

We have already described the various cases for the position of C∗∗ in all

the 5 areas. What we can do is to calculate C∗ first and then check which

area it is in. And then go through all the cases in that area. This method is

straightforward but tedious and time-consuming. So we are going to adopt

an alternative algorithm which is as follows. As analysed before, no matter

which area C∗∗ is in, there are only 7 different values that C∗∗ can be

assigned. They are C∗, 1C∗, 2C∗, 0C∗, [0 e], [e 0] and [0 0] and

are denoted as C0, C1, C2, C3, C4, C5 and C6 respectively. These 7

allocations cover all possible values that C∗∗ could take. So we can calculate

all of them and also the corresponding maximised utilities first. Then we

can compare these maximised utilities and find the maximum one. The

maximum utility of all maximised utilities is the constrained maximised utility

and the corresponding optimal allocation is C∗∗, the constrained optimal

allocation. Notice that for Ck k ∈ {1, 2, 3}, they could be invalid if they

do not satisfy the No-short-selling constraints (1.28). In such scenarios,

we specify the corresponding maximised utility to −Inf to make sure they

are not chosen. The details of the algorithm are in Algorithm 1 on Page

30. Algorithm 1 is a general approach for finding the constrained optimal

allocation for different preferences. It needs us to provide the expression of

Ck k ∈ {0, 1, 2, 3, 4, 5, 6}, which are relevant to the objective functions.

Next I provide these solutions and explain how to apply Algorithm 1 to MV

preferences and EU preferences.

1.3.3 Constrained Optimal Allocation for MV Prefer-

ences

The objective function for Mean-Variance Preferences is function (1.10

U = e+ Cµ− 1

2
rCΩC

′
. (1.29)

here µ and Ω are defined in equation (1.5) and (1.7) respectively.
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Algorithm 1: Constrained Optimal allocation

Input : r, p1, p2, p3, e
Output: C∗

Calculate C∗ using explicit solution ;
if C∗ ∈ C then

C∗∗=C0; U∗∗=U(C0);
else

Ũ0 = −Inf ;
end
for k = 1 to 6 do

Calculate Ck;
if Ck ∈ C then

Uk=U(Ck);
else

Ũk = −Inf ;
end

end
Then we have

C∗∗ =

{
C0 if C0 is valid

Ck if for k there is Uk = max{U1, U2, U3, U4, U5, U6}

Step 1 As derived in equation (1.12), the unconstrained optimal allocation

is

C∗ =
1

r
(Ω−1µ)

′
. (1.30)

We then check that whether C∗ ∈ C, that is, if it satisfes equation (1.28).

If not we then proceed to step 2.

Step 2

• For calculating 1C∗, let c2 = 0 so the objective function becomes

U = e+ Cµ− 1

2
rCΩC

′

= e+ c1µ1 −
1

2
rc2

1σ
2
1
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Using the first order condition, the optimal allocation is

c∗1 =
µ1

σ2
1r
.

The corresponding maximised utility is

U([c∗1, 0]) = e+
1

2

µ2
1

σ2
1r
.

Then we have

C1 =

[
µ1

σ2
1r

0
]

and

U1 =

e+ 1
2

µ2
1

σ2
1r

if 0 ≤ µ1

σ2
1r
≤ e

−Inf if µ1

σ2
1r
< 0 or > e

• By the symmetry of c1 and c2 we have

C2 =
[
µ2

σ2
2r

0
]

and

U2 =


e+

1

2

µ2
2

σ2
2r

if 0 ≤ µ2

σ2
2r
≤ e

−Inf if
µ2

σ2
2r

< 0 or > e

• For calculating 0C∗ we impose the constraint that c1 + c2 = e to

maximise the function ((1.10)). It becomes an equality constrained

optimisation problem and we can write the Lagrangian function as

L = U − λ(c1 + c2 − e)

= e+ (c1µ1 + c2µ2)− 1

2
r(c2

1σ
2
1 + c2

2σ
2
2 + c1c2σ12)− λ(c1 + c2 − e)

and the first order condition is
Lc1 = µ1 − r(c1σ

2
1 + c2σ12)− λ

Lc1 = µ2 − r(c2σ
2
2 + c1σ12)− λ

Lλ = c1 + c2 − e = 0.
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Then we have that µ1 − r(c1σ
2
1 + c2σ12) = µ2 − r(c2σ

2
2 + c1σ12) and

also c1 +c2−e = 0. By solving these two equations we get the solution

as

C3 =
[
c∗1 c∗2

]
here we have that

c∗1 =
µ1 − µ2 − r(σ12e+ erσ2

2

rσ1
2 − 2σ12 + σ2

2)

c∗2 =
−µ1 + rσ1

2e+ µ2 − rσ12e

r(σ1
2 − 2σ12 + σ2

2)
.

The corresponding maximum is

U3 = e+ C3µ−
1

2
rC3ΩC

′

3.

Step 3 This step does not involve a check as to whether any result satisfies

the constraints, so we can directly get:

• C4 = [e 0] and U4 = U([100 0]) = e+ eµ1 − 1
2
re2σ2

1

• C5 = [0 e] and U5 = U([0 100]) = e+ eµ2 − 1
2
re2σ2

1

• C6 = [0 0] and U6 = U([0 0]) = e

1.3.4 Constrained Optimal Allocation for EU Prefer-

ences

CARA utility function

For an individual who has Expected Utility Preferences and has a CARA

utility function, the objective function is

EU = −
∑

j∈[1,2,3]

pj
1

r
e−r(c1d1j+c2d2j+e).
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Step 1: Calculating C0 The unconstrained optimal allocation C∗ is stated

in equation (1.22). We then check that if C∗ satisfies the equation (1.28).

If not we then proceed to the step 2.

Step 2: Calculating C1,C2,C3

• C1 In this case, c2 = 0 so the objective function

EU = −
∑

j∈[1,2,3]

pj
1

r
e−r(c1d1j+e).

The first order condition is

dEU

c1

= p1d11e
−rc1d11 + p2d12e

−rc1d12 + p3d13e
−rc1d13 = 0. (1.31)

There is not an explicit solution for this equation but the optimum can

be found numerically. 10.Denoting by 1c∗1 the answer then

C1 = [1c∗1 0]

and the corresponding maximum is

U1 =

−
∑

j pj
1
r
e−r(

1c∗1d1j+e) if 0 ≤1 c∗1 ≤ e

−Inf if 1c∗1 < 0 or > e

• C2 By symmetry we have

C2 = [1c∗2 0]

here 1c∗2 is the numerical solution to the equation

dEU

c2

= p1d21e
−rc2d11 + p2d22e

−rc2d12 + p3d23e
−rc1d23 = 0. (1.32)

10Most mathematical software can solve an equation of this form. In matlab, fzero can
calculate the solution for an equation in a defined area.
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The corresponding maximised utility is

U2 =

−
∑j 1

r
e−r(

2c∗2d1j+e) if 0 ≤2 c∗2 ≤ e

−Inf if 2c∗2 < 0 or > e

• C3 This is an equality constrained optimisation problem which could

be resolved by the Lagrangian method. But since there are only two

variables here it might be easier just replace c2 = e−c2 in the objective

function; then it becomes

EU = −
j∑

j∈[1,2,3]

pj
1

r
e−r(c1(d1j−d2j)+ed2j+e).

The first order condition is

dEU

c1

=

j∑
pj(d1j − d2j)e

−r(c1(d1j−d2j) = 0.

There is also no explicit solution for this equation but the optimum

can be found numerically. Denoting by 0c∗1 the answer then

C3 = [0c∗1 e−0 c∗1]

and the corresponding maximum is

U3 =

−
∑j pj

1
r
e−r(

0c∗1(d1j−d2j)+ed2j+e) if e ≥0 c∗1 ≥ 0

−Inf if 2c∗2 < 0 or > e

Step 3 This step does not involve a check as to whether any result satisfies

the constraints, so we can directly get:

• C4 = [e 0] and U4 = U([100 0]) = −
∑

j pj
1
r
e−r(ed1j+e)

• C5 = [0 e] and U5 = U([0 100]) = −
∑

j pj
1
r
e−r(ed2j+e)

• C6 = [0 0] and U6 = U([0 0]) = −
∑

j pj
1
r
e−re
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CRRA utility function

For an individual who has Expected Utility Preferences and also has a CRRA

utility function, the objective function is

EU =

j∑
j∈[1,2,3]

(c1d1j + c2d2j + e)r

Step 1: Calculating C0 The expression for the unconstrained optimal

allocation C is equation (1.26). We then check that if C∗ ∈ C. If not we

then proceed to the step 2.

Step 2: Calculating C1, C2, C3

• C1 In this case, c2 = 0 so the objective function becomes

EU =
∑

j∈[1,2,3]

pj(c1d1j + e)r

The first order condition is

dEU

c1

= p1d11(c1d11+e)r−1+p2d12(c1d12+e)r−1+p3d13)(c1d13+e)r−1 = 0.

There is no explicit solution for this equation but the optimum can be

found numerically.Denoting by 1c∗1 the answer then

C1 = [1c∗1 0]

and the corresponding maximum is

U1 =


∑

j pj(
1c∗1d1j + e)r if e ≥1 c∗1 ≥ 0

−Inf if 1c∗1 < 0 or > e

• C2 By symmetry we have

C2 = [0 1c∗2]
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here 2c∗2 is the numerical solution to the equation

dEU

c2

= p1d21(c1d21+e)r−1+p2d22(c1d22+e)r−1+p3d23)(c1d23+e)r−1 = 0.

(1.33)

The corresponding maximised utility is

U2 =


∑j pj(

2c∗2d2j + e)r if 0 ≤2 c∗2 ≤ e

−Inf if 2c∗2 < 0 or > e

• C3 This is an equality constrained optimisation problem which could

be resolved by the Lagrangian method. But since there are only two

variables here it might be easier just to replace c2 = e − c2 in the

objective function; then it becomes

EU = −
j∑

j∈[1,2,3]

pj(c1(d1j − d2j) + ed2j + e)r

The first order condition is

dEU

c1

=

j∑
pj(d1j − d2j)(c1(d1j − d2j) + ed2j + e)r−1 = 0.

There is also no explicit solution for this equation but the optimum can

be found numerically. Denote 0c∗1 as the calculated optimal allocation.

C3 = [0c∗1 e−0 c∗1]

and the corresponding maximum is

U3 =

−
∑j

j∈[1,2,3] pj(
0c∗1(d1j − d2j) + ed2j + e)r if e ≥0 c∗1 ≥ 0

−Inf if 0c∗1 < 0 or > e

Step 3 This step does not involve a check as to whether any result satisfies

the constraints, so we can directly get:

• C4 = [e 0] and U4 = U([100 0]) = −
∑j pj(ed1j + e)r
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• C5 = [0 e] and U5 = U([0 100]) = −
∑j pj(ed2j + e)r

• C6 = [0 0] and U6 = U([0 0]) = er
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1.4 Portfolio Choices in the context of ambi-

guity

1.4.1 Introduction

I begin by applying the Maxmin Expected Utility (MEU) model to our port-

folio choice problem. I provide two algorithms to find the MEU optimal

allocation with the No-short-selling constraints. The first algorithm is purely

numerical, but it takes a lot of time, and does not provide reliable solutions.

The second algorithm is much more efficient but there is a lot of analy-

sis to prove the validity of the algorithm. We are going to use the second

algorithm for estimation when we fit this model to the experimental data.

Then I introduce α-Maxmin Expected Utility (α-MEU) preferences, which is

a generalisation of MEU. I also provide an algorithm to calculate the optimal

allocation based on the previous analysis for MEU. The reader should be

warned that there is a lot of technical detail in this section - concerning the

derivation and application of algorithms to find the optimal portfolio alloca-

tions in the context of ambiguity. As is always the case, there is a trade-off

between elegance and efficiency. While it would be nice to be able to find

explicit analytical solutions to the determination of the optimal allocation,

often, particularly when there are constraints on the allocation, explicit so-

lutions cannot be obtained. In these cases we need to develop algorithms

to find the solutions. Once again there is a trade-off between elegance and

efficiency: it is not always the case that the most elegant algorithms are the

computationally most efficient. One problem is that it is natural to explore

the explicit route as far as possible before moving to computationally more ef-

ficient ones, though the latter in turn are driven by analytical considerations.

The reader should try and keep this in mind throughout this section.

1.4.2 Maxmin Expected Utility (MEU) Preferences

Expected Utility theory assumes that individuals act as if they are maximis-

ing the probability weighted utilities over all the states. It assumes there is
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only one prior, that is individuals believe that the probability of each state

is fixed. While in the MEU theory, it is assumed that there are multiple

priors. Individuals are unware about the actual probabilities but believe that

they lie in a set of possible probabilities. For each possible allocation, in-

dividuals work out the expected utility using the set of priors and consider

the minimum expected utility as the utility of this allocation. By applying

the same procedure to all the possible allocations, individuals then choose

the allocation which produces the maximised utility. Notice that the major

difference here is, whereas in the EU preference, the utility obtained from an

allocation is just the expected utility, but in the MEU preferences, the utility

over an allocation is the minimum expected utility among all the priors.

Denoting by P the set of all possible priors, and C as the set of all possible

allocations, then the objective function of MEU model can be written as

U = max
C∈C

min
P∈P
{pj

∑
j∈(1,2,3)

u(wj)} (1.34)

here wj is the payoff from allocation. In Figure 1.14, the horizontal axis

p1

p3

p
3

p
1

p
2

P1P2

P3

0 1

1

Figure 1.14: Marschk-Machina Triangle

represents p1 and the vertical axis represents p3 and we must have 0 ≤
p1, p3 ≤ 1 as the sum of probabilities is equal to 1. This constraint makes



40

a triangle area called the Marschak-Machina Triangle (MMT) and any point

inside the triangle represents a probability vector for a three states gamble.

The MEU preferences model does not tell us how the individuals specify P,

which is the set of possible priors. We are going to characterise this set in

the following way. We are going to assume that for all individuals believe

there is a probability lower bound pj for each state j:

pj ≥ p
j

forj = 1, 2, 3

There is p
1

+ p
2

+ p
3
≤ 1. The small triangle 11 inside the MMT then

represents the set P.

Basically when we are finding the MEU optimal allocation, there are two

steps involved. The first step is to calculate the minimum expected utility

in terms of all the elements P ∈ P for each allocation C ∈ C. We call this

step Min-EU. The second step is to repeat the first step for all the C ∈ C
to find C∗ which produces the maximized minimum expected utility. We call

this step Max-Min-EU. With the No-short-selling constraints (1.28), C is the

Allocation Triangle. Assume K and H as the size (the number of elements)

of C and P respectively. 12

Take a very simple example by assuming that individuals have an endowment

of 3 units of cash and can only allocate integer amounts. Then K = 10 as

all the possible allocations are [0 0], [0 1], [0 2], [0 3], [1 0], [1 1], [1 2], [2 0],

[2 1], [3 0]. Algorithm 2 on Page 41 provides a straightforward way to find

the optimal allocation for MEU utility preferences (1.34).

11Another possible way to specify P is assuming it is a circle area inside MMT. The
center of the circle is a subjective prior and the radius is also a subjective parameter. But
it assumes symmetry for the three states. We think it is more flexible to use the lower
bound assumption.

12Theoretically the numbers of elements of C and P infinity. But if we let computer to
this computation continuously, it usually calculates using a small precision, so K and H
can be very large.
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Algorithm 2: Pure numerical method to find MEU optimal allocation

Input : r, p1, p2, p3, e
Output: C∗

// The loop below is for step Max-Min-EU. We repeat K times

to find the Maxmin EU in C, which is the set of all

allocations

for k = 1 to K do
// The loop below is for step Min-EU. For each Ck we

repeat H times to find the minimum EU in P, which is

the set of all priors

for h = 1 to H do
EUh = U(Ck, Ph) ; // calculate eu

end

EUH = {EUh|h ∈ [1, H]};
EUk = min{EU}; // find the Min eu

end

EUK = {EUk|k ∈ [1, K]};
C∗ = {Ck|EUK = max{EUK}; // find the Max-Min eu

1.4.3 Algorithm with analytic results to find the optimal

allocation with MEU preferences

Notice that in Algorithm 2, we need to calculate the utility H∗K times. This

takes an a lot of time, especially when H and K are big. And the results are

not reliable when using most in-built optimisation functions in mathematical

software; since those optimisation functions are built on first and second order

conditions. It requires the function to be smooth in the specified optimisation

area. But our objective function (1.34) is a kinked function. If the optimal

allocation happens to be at the kink, those optimisation routines may not be

able to find it. That is why we have developed the following algorithm. We

have tested it against the purely numerical algorithm and the former always

returns the optimal allocation while the later fails (usually when the optimal

allocation is at the kink).
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A Complicated but Reliable and Efficient Algorithm

First, for any arbitrary allocation C and a given return table D there is a

corresponding portfolio payoff vector W = [w1 w2 w3]
′
, where W = CD

is the product of the two matrices13. The j-th element of W represents the

portfolio payoff in state j, j = 1, 2, 3. If Minimum Portfolio Payoff (MinPP)

wj = min{W}, then u(wj) = min{u(w1), u(w2), u(w3)} since utility func-

tion u is assumed to be monotonically increasing with respect to the out-

come w. By assigning the maximum probability (1 minus the probabilities

lower bounds of the other two states) to MinPP state j and the minimum

probabilities (the probability lower bounds) to the other two states, we get

the minimum expected utility. The corresponding probability vectors for the

portfolio payoff to be then MinPP at state 1,2 and 3 are P1, P3 and P3

respectively. They are defined by equation (1.35) and also illustrated in Fig-

ure 1.14 on Page 39. As they are the 3 corners of the MMT, we call them

corner probabilities.


P1 = [1− p

2
− p

3
, p

2
, p

3
]
′
;

P2 = [p
1
, 1− p

1
− p

3
, p

3
]
′
;

P3 = [p
1
, p

2
, 1− p

1
− p

2
]
′
;

(1.35)

Given any allocation C,

wj = min{W}14

is both necessary and sufficient for the follow equation to be true.

min
P∈P

 ∑
j∈(1,2,3)

pju(wj)

 = U(Pj,W) (1.36)

because the utility function u is monotonically increasing. Here u takes the

form of a von Neumann-Morgenstern utility function and U(Pj,W) refers

to the expected utility given the probability vector Pj and the payoff vector

13C is a 1*2 matrix and D is a 2*3 matrix so we have W is a 1*3 vector.
14Notice here we define the term minimum as strictly minimum. For example, w1 =

min{W} means w1 < w2 and w1 < w3.
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Possibility subset MinPP state
1 C0 w1 = w2 = w3

2 L1 w2 = w3, w2 < w1, w3 < w1

3 L2 w3 = w1, w3 < w2, w1 < w2

4 L3 w1 = w2, w1 < w3, w2 < w3

5 A1 w1 < w2, w1 < w3

6 A2 w2 < w1, w2 < w3

7 A3 w3 < w1, w3 < w2

Table 1.1: The seven possibilities for MinPP

W. For example,

U(P1,W) = (1− p
2
− p

3
)u(w1) + p

2
u(w2) + p

3
u(w3).

The formal proof for equation (1.36) is as follows We let Û = (P̂,W) with

P̂ = [p̂1, p̂2, p̂3] to be any point in P − P1. Next we use U1 to refer to

U(P1,W).Then we have

Û − U1 = [p̂1u(w1) + p̂2u(w2) + p̂3u(w3)]

− [(1− p
2
− p

3
)u(w1) + p

2
u(w2) + p

3
u(w3)]

= [(1− p̂2 − p̂3)u(w1) + p̂2u(w2) + p̂3u(w3)]

− [(1− p
2
− p

3
)u(w1) + p

2
u(w2) + p

3
u(w3)]

= (p̂2 − p2
)[u(w2)− u(w1)] + (p̂3 − p3

)[u(w3)− u(w1)] > 0.

The last inequality follows from u(w2)−u(w1) > 0, u(w3)−u(w1) > 0 and

p̂2 − p2
> 0, p̂3 − p3

> 0. As we have proved that equation (1.36) is valid,

the MEU objective function (1.34) can be written as

U = max
C∈C

U(Pj,W) s.t. wj = min{W}, j ∈ {1, 2, 3} (1.37)

Notice there are 7 possibilities for wj = min{W}, j ∈ {1, 2, 3}. Table 1.1

lists all the 7 possibilities. As wj is calculated from the allocations, the 7

possibilities of MinPP actually imply 7 constraints on the allocations. Hence

we divide the Allocation Triangle C into 7 corresponding subsets according
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to the constraints as shown in Table 1.1. Next I demonstrate how to define

the subsets by imposing the constraints on the allocations. Figure 1.16 on

Page 57 demonstrates the 7 subsets visually as the different areas in the

Allocation Triangle. Notice that it is plotted with a particular return table so

it does not cover the generality of various possible positions for these subsets.

But at least it helps us to understand how do we divide these subsets. Next

we first point out their positions in the figure, then derive the mathematical

implications from the constraints.

Subset C0 This refers to the origin in Figure 1.16. For w1 = w2 = w3 we

have 
d12c1 + d22c2 + e = d13c1 + d23c2 + e when w2 = w3

d11c1 + d21c2 + e = d13c1 + d23c2 + e when w3 = w1

d11c1 + d21c2 + e = d12c1 + d22c2 + e when w1 = w2

Rearranging the equation system we get
c2 = s1c1 when w2 = w3

c2 = s2c1 when w3 = w1

c2 = s3c1 when w1 = w2

(1.38)

where s1, s2 and s3 are given by equation (1.39).
s1 = −d12 − d13

d22 − d23

s2 = −d11 − d13

d21 − d23

s3 = −d11 − d12

d21 − d22

(1.39)

As equation (1.38) implies s1c1 = s2c1 = s3c1 and we do not have s1 = s2 =

s3
15 then the solution for equation (1.38) is c1 = c2 = 0. So the subset

C0 = [0 0] refers to the origin in Figure ??.

15Please refer to equation (1.24)
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Subset Li, i ∈ {1, 2, 3} These refer to the three boundary lines inside

the triangle in Figure 1.16. Notice that one of them is a dashed line. We

will give the reason for that shortly. Without loss of generality, we adopt the

convention as shown in equation (1.40)
if i = 1 then j = 2 and k = 3

if i = 2 then j = 3 and k = 1

if i = 3 then j = 1 and k = 2

(1.40)

For Li, the equality constraint is wj = wk and the inequality constraints are

wj < wi and wk < wi. For wj = wk, the corresponding constraint is

c2 = sic1 (1.41)

where si is its slope and is defined in equation (1.42)

si = −d1j − d1k

d2j − d2k

i ∈ {1, 2, 3} (1.42)

For wj < wi, we have

d1jc1 + d2jc2 < d1ic1 + d2ic2

(d1j − d1i)c1 < −(d2j − d2i)c2

The solution is c2 > skc1 if d2i > d2j

c2 < skc1 if d2i < d2j

(1.43)

Similarly the solution constraint is for wk < wi, we havec2 > sjc1 if d2i > d2k

c2 < sjc1 if d2i < d2k

(1.44)

As shown in the derivation, the different relations between d2i, d2j make the

definition of the subsets Li and Ai complicated while giving us very little

insight. So we re-order the return table such that d21 < d22 < d23 which can

always be done without loss of generality. For example, consider a return
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table

D =

[
−0.4 −0.1 0.7

2.1 −0.9 −1

]
(1.45)

Since the order of the states does not influence the decisions we can write

D as

D =

[
0.7 −0.1 −0.4

−1 −0.9 2.1

]
(1.46)

With the convention (1.40), the inequality constraints wj < wi and wk < wi

for Li become 
c2 < s3c1, c2 < s2c1 if i = 1

c2 < s1c1, c2 > s3c1 if i = 2

c2 > s2c1, c2 > s1c1 if i = 3

So in conclusion we have
L1 = {C ∈ C |c2 = s1c1, c2 < min{s2, s3}c1}

L2 = {C ∈ C |c2 = s2c1, s3c1 < c2 < s1c1}

L3 = {C ∈ C |c2 = s3c1, c2 > max{s1, s2}c1}

(1.47)

We can further explore equation (1.47) by listing all possible orderings for

s1, s2 and s3. Denote the ordering as follows

I : s1 < s2 < s3

II : s1 < s3 < s2

III : s2 < s1 < s3

IV : s2 < s3 < s1

V : s3 < s1 < s2

V I : s3 < s2 < s1

Notice that the Allocation Triangle is in the positive quadrant. So it means

that if the slope si is negative then there is no intersection of the line c2 =

s1c1 with the Allocation Triangle. In this case, we have Li = ∅ for sure. For

the time being we assume that all si > 0. Take order I for example. First

consider L1. As s2 < s3 implies min{s2, s3} = s2 we have L1 = {C ∈
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C |c2 = s1c1, c2 < s2c1}. As s1 < s2, the line c2 = s1c1 is inside the area

c2 < s2c1, we then have L1 = {C ∈ C |c2 = s1c1}. There is part of the line

c2 = s1c1 inside the Allocation Triangle. Denote I as the intersection point

of it with the line c1 + c2 = e. By solving the equations systemc1 + c2 = e

c2 = s1c1

we have

I = [
e

1 + s1

,
es1

1 + s1

]

So we have

L1 = {c2 = s1c1, 0 ≤ c1 ≤
e

1 + s1

}

Now consider L2. As s3 > s1 it implies that s3c1 < c2 < s1c1 = ∅ so we

have L2 = ∅. The analysis for L3 is quite similar for L1, we get

L3 = {c2 = s3c1, 0 ≤ c1 ≤
e

1 + s3

}

Mutatis mutandis, we can define Li in Table 1.2 for all 6 orderings.

∀i ∈ {1, 2, 3}, Li = ∅ if si < 0
Ordering L1 L2 L3

I
c2 = s1c1

0 ≤ c1 ≤ e
1+s1

∅ c2 = s3c1

0 ≤ c1 ≤ e
1+s3

II
c2 = s1c1

0 ≤ c1 ≤ e
1+s1

∅ ∅

III ∅ ∅ c2 = s3c1

0 ≤ c1 ≤ e
1+s3

IV ∅ ∅ ∅
V ∅ ∅ ∅

V I ∅ c2 = s2c1

0 ≤ c1 ≤ e
1+s2

∅

Table 1.2: Definition of Li, i ∈ {1, 2, 3}

Figure 1.15 demonstrates the 3 possible positions for each Li in the Allocation

Triangle.
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1©
3©

2©

I

c1

c2

(0,0) (e, 0)

(0,e)

Figure 1.15: Boundary Lines

1. Position 1©

For this position, on the line c2 = sic1 there is wj = wk, which makes

is the equality constraint. And si > 0 so the line crosses C. The

inequality constraints wj < wi and wk < wi are also satisfied on it. So

Li is OI as shown in the figure. Here O is the original point of C.

2. Position 2©

For this position, it is similar to position 1 except that the inequality

constraints wj < wi and wk < wi are not satisfied so Li = ∅.

3. Position 3©

Here we have si < 0 the line does not cross C so Li = ∅.

Subset Ai, i ∈ {1, 2, 3} They refer to the triangle areas separated by Li
Figure 1.16. For Ai we have two inequality constraints wi < wj and wi < wk
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as wi = min{wi, wj, wk}. We have for Ai

c2 > skc1, c2 > sjc1 if d2i < d2j and d2i < d2k

c2 < skc1, c2 > sjc1 if d2i > d2j and d2i < d2k

c2 > skc1, c2 < sjc1 if d2i < d2j and d2i > d2k

c2 < skc1, c2 < sjc1 if d2i > d2j and d2i > d2k

(1.48)

By re-ordering the return table such that d21 < d22 < d23 we have the

constraints to define the A1,A2 and A3 as

A1 = {C ∈ C | c2 > s3c1}

A2 =

{C ∈ C | s1c1 < c2 < s3c1} if s1 < s3

∅ if s1 > s3

A3 = {C ∈ C|c2 < s1c1}

(1.49)

At this point we stop further discussion of the relation between s1 and s3

because it is unnecessary for developing the Algorithm to find the MEU

optimal allocation. As we will see next, we adopt a different strategy which

can be used to find the boundary lines and determine the area of the local

optimal allocations. Now I will discuss how to calculate the optimal allocation

for each subset in detail.

• Origin C0

For C0 = [0 0] the MEU objective function (1.37) becomes

Ũ0 = max
C∈{[0, 0]}

min{U(P1), U(P2), U(P3)}

= min{u(e), u(e), u(e)}

= u(e) (1.50)

• Areas A1, A2 and A3

From equation (1.49) we know that A2 = ∅ when s1 > s3. So we can

always check this first, if s1 > s3 then we do not need to calculate

the local optimal allocation for A2. We can just let Ũ∗2 = −Inf
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to let exclude this case. If s1 < s3, then we adopt the following

strategy. Ignoring the constraints for area Ai, i ∈ [1, 2, 3], the MEU

objective function becomes a normal Expected Utility function. So

we can get the optimal allocation C∗Ai and the corresponding local

maximised expected utility U∗Ai for the function U(Pi} by Algorithm 1.

Though Algorithm 1 guarantees that the local optimal allocations are

inside C, it does not guarantee that they satisfy their corresponding

constraints of their areas. If C∗Ai is outside the area of Ci, it means

it is not a valid local optimal allocation. Then the valid local optimal

allocation must lie on the boundary lines of area Ai, so will be captured

when calculating the local optimal allocation for the boundary lines.

Hence we can let Ũ∗i = −Inf to exclude the possibility that the local

optimal allocation is the global optimal allocation in this case. In

conclusion we have

Ũ∗Ai∈{1,2,3} =

UC∗Ai
if C∗Ai ∈ Ai

−Inf if C∗Ai /∈ Ai

• Boundary Lines L1, L2 and L3

In the Allocation Triangle, these subsets are actually the boundary lines

of the areas Ai, where there is a strictly minimum portfolio payoff.

According to Table (1.2), there are various cases for which Li = ∅.
We can calculate s1, s2, s3 first and then check if any such cases exist.

If so, then we let ŨLi = −Inf . When Li 6= ∅, the following procedure

is adopted. As we have wj = wk = min{w1, w2, w3}, the MEU

objective function for Li is

ŨLi = max
C∈Lj

U(Pj} = max
C∈Lk

U(Pk} (1.51)

But we cannot find the local optimal allocation here in the same way

as we have done for area Ai, that is ignoring the constraints to find

the optimal allocation first and then excluding the point it if it does

not satisfy the constraints. since a local optimal allocation lying on

the boundaries will be missed. As the constraints are incorporated in
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the process of finding the optimal allocation and they are implying

wj = wk, we can just calculate either max
C∈Lj

U(Pj} or max
C∈Lk

U(Pk}. As

shown in equation (1.47), there are various cases for which Li = ∅
depending on si. We will check them first. If Li = ∅ we let ŨLi =

−Inf . If not then we use the following strategy. As when Li 6= ∅
the constraints for Li are c2 = sici and 0 ≤ c1 ≤ e

1+si
. We denote

1Ci as the optimal allocation for the function U(Pj} with the equality

constraint c2 = sic1. Notice here we put a superscript on the left of

C to emphasize that we are solving for c1. We can find the optimal

allocation with the equality constraint and then modify it to satisfy

the inequality constraint. Next I will demonstrate how to get 1Ci for

two types of utility functions - CARA and CRRA, which are the two

functions used in this thesis.

CARA Assume individuals have the particular form of CARA utility

function defined in equation (1.21)

u(w) = −1

r
e−rw

Then the expected utility function is

U(wj) = −
∑
j

pj
1

r
e−rwj

By inserting the constraint that c2 = sic1, we get the first order con-

dition ∑
j

pj(d1j + sid2j)e
−r(d1jc1+d2jsic1+e) = 0 (1.52)

Denote c∗1 as the solution for equation (1.52). So we have 1C =

[c∗1 sic
∗
1].

CRRA Assume individuals have the particular form of CRRA utility

function defined in equation (1.25)

u(w) =
w1−r

1− r
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Then the expected utility function is

U(wj) =
∑
j

pj
w1−r
j

1− r
(1.53)

By inserting the constraint that c2 = sic1, we get the first order con-

dition is

∑
j

pj(d1j + sid2j)(d1jc1 + d2jsic1 + e)−r = 0 (1.54)

Denote c∗1 as the solution for equation (1.54). So we have 1C =

[c∗1 sc∗1]. Notice that 1Ci = [c∗1 sic
∗
1] may not be inside C. Using

the constraints for Li in Table 1.2, we get that for Li, the optimal

allocation is

C∗Li =


C1 0 ≤ c∗1 ≤ e

1+si

[0, 0] c∗1 < 0

[ e
1+si

, esi
1+si

] c∗1 >
e

1+si

(1.55)

and the corresponding maximized utility is Ũ∗Li = U(C∗Li).
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We have discussed how to find the local optimal allocation for the various

situations in each the 7 subsets in C in detail. The global optimal allocation

C∗∗ is the one that generates the highest local utility. Based on the analy-

sis, Algorithm 3 shows how to find the MEU optimal allocation combining

numerical methods with analytical results.

Algorithm 3: Numerical method employing analytical results to find MEU
optimal allocation (Part 1)

Input : r, p1, p2, p3,D, e
Output: C∗

// Find si, i ∈ {1, 2, 3} according to equation (1.39)

s1 = −(d12 − d13)/(d22 − d23);
s2 = −(d11 − d13)/(d21 − d23);
s3 = −(d11 − d12)/(d21 − d22);

// Find the corner probabilities Pi, i ∈ {1, 2, 3} according to

equation (1.35)

P1 = [1− p2 − p3, p2, p3]
′

;

P2 = [p1, 1− p1 − p3, p3]
′

;

P3 = [p1, p2, 1− p1 − p2]
′

;

// Find CAi , i ∈ {1, 2, 3} according to equation (1.49)
for i = 1 to 3 do

[Ci, Ũi] = f1(U(Pi)) ; // Ci = CAi,Ũi = ŨAi
// f1 refers to Algorithm 1

end

// Exclude the temporary local optimal allocation of Ai if

it is not in the area of Ai

for i = 1 to 3 do
W = CiD;
if W(i) 6= min{W} then

Ũi = −Inf
end

end
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Algorithm 3: Numerical method employing analytical results to find the
MEU optimal allocation (Part 2)

// Find CLi , i ∈ {1, 2, 3} according to equation (1.55)
// C4 = CL1 C5 = CL2 C6 = CL3

C4 = f2(U(P2)) // f2 refers to equation (1.55)
C5 = f2(U(P3));
C6 = f2(U(P1));

// Ũ4 = ŨL1 Ũ5 = ŨL2 Ũ6 = ŨL3

U4 = U∗(P2)) ;
U5 = U∗(P3));
U6 = U∗(P1));

// Exclude local optimal allocations according to Table

(1.2)
if s1 < s2 < s3 then
Ũ5 = −Inf ;

else if s1 < s3 < s2 then
Ũ5 = Ũ6 = −Inf ;

else if s2 < s1 < s3 then
Ũ4 = Ũ5 = −Inf ;

else if s2 < s3 < s1 or s3 < s1 < s2 then
Ũ4 = Ũ5 = Ũ6 = −Inf ;

else
Ũ5 = −Inf ;

end
for i = 4 to 6 do

if si−3 < 0 then
Ũi = −Inf ;

end

end

C∗∗ = {Ck | Ûk = max{Û1, Û2, Û3, Û4, Û5, Û6, Û7}}

Illustration of Algorithm 3 to the find MEU optimal allo-

cation

First I apply Algorithm 3 to find the MEU optimal allocation, then I illustrate

the local optimal allocation in figure 1.16 to illustrate how we get the global
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optimal allocation. Consider a return table

D =

[
0.7 −0.1 −0.4

−1 −0.9 2.1

]
(1.56)

and a probability lower bound vector

P− =
[
0.2 0.1 0.4

]′
Consider an individual who has MEU Preferences with a CARA utility function

and risk parameter r = 0.002. Then we can write his/her objective function

as

U = −
∑
j

pj
1

0.002
e−0.002wj

Applying Algorithm 3

Find si, i ∈ {1, 2, 3} according to equation (1.39)

s1 = −d12 − d13

d23 − d23

= 0.1

s2 = −d11 − d13

d21 − d23

= 0.35

s3 = −d11 − d12

d21 − d22

= 8

Find the corner probabilities Pi, i ∈ {1, 2, 3} according to equation

(1.35)

P1 = [0.5, 0.1, 0.4]
′

P2 = [0.2, 0.4, 0.4]
′

P3 = [0.2, 0.1, 0.7]
′

Find CAi , i ∈ {1, 2, 3} according to equation (1.49) For CAi the cor-

responding probability vector is Pi. Then by Algorithm 1 we have C1 =
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[66.2 33.8], Ũ1 = −393.5, C2 = [0, 66.8], Ũ2 = −401.9 and C3 = [0, 100], Ũ3 =

−337.3.

Exclude the temporary local optimal allocation of Ai if it is not in the

area of Ai For A1, W = C1D = [12.6 − 37.1 44.4]
′
. W(1) = 12.6 6=

min{W}, so we update Ũ1 = −Inf . For A2, W = C2D = [−66.8 −
60.1 140.2]

′
. W(2) = −60.1 6= min{W}, so we update Ũ2 = −Inf . For

A3, W = C3D = [−100 − 90.1 210.0]
′
. W(3) = 210.0 6= min{W}, so

we update Ũ3 = −Inf .

Find CLi , i ∈ {1, 2, 3} according to equation (1.55) By Algorithm

1 and assigning probability vectors as P2 and P3 and P1, we get C4 =

[8.5 68.2], Ũ4 = −402.0, C5 = [73.8 26.2], Ũ5 = −407.6 and C6 =

[0 0], Ũ6 = −409.4.

Exclude local optimal allocations according to Table (1.2) As there

is s1 < s2 < s3 we update Ũ5 = −Inf

Find MEU utility of C0 according to equation (1.50) C0 = [0 0] and

Ũ0 = u(100) = −409.4

Find the global maximum C∗ As Ũ4 = max{Ũ0, Ũ1, Ũ2, Ũ3, Ũ4, Ũ5, Ũ6}
we have C∗ = C4 = [8.5 68.2].

Illustration for finding the global optimal allocation

Table 1.3 lists all seven local optimal allocations and their corresponding

MEU utility for the purpose of illustration. In Figure 1.16, seven subsets and

their corresponding seven local optimal allocations are marked in Allocation

Triangle. A1 is the area above L3. A2 is the area between L1 and L3. A3 is

the area below L1. As shown in the figure, C1, C2 and C3 are outside their

corresponding areas so are excluded.
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C1

C2

C3

C4

C5

C6

A1

A2

A3

L1

L2

L3

c1

c2

0
(100, 0)

(0,100)

Figure 1.16: Example : The seven Local Optimal Allocations

Ci Local Optimal Allocation Valid U(Ci) Ũi
C0 C0 = [0, 0] YES −409.4 −409.4
A1 C1 = [66.2 33.8] NO −393.5 −Inf
A2 C2 = [0, 66.8] NO −401.9 −Inf
A3 C3 = [0, 100] NO −337.3 −Inf
L1 C4 = [8.5, 68.2] YES −402.0 −402.0
L2 C5 = [73.8, 26.2] NO −407.6 −Inf
L3 C6 = [0, 0] YES −409.4 −409.4

Table 1.3: Example : 7 Local Optimal Allocations

For L1, its local optimal allocation C4 is a valid one. For L2, the line

c2 = s2s1 = 0.35c1 is lying in the area A2 where w2 = min{W}. But

the definition for L2 is w1 = w3 = min{W}. So L2 = ∅ and its local

optimal allocation C5 indicated by the dashed line in this figure. For L3, its

local optimal allocation C6 is a valid one though it coincides with C0. By

assigning −Inf to the utility of invalid optimal allocations, we compare all

utilities and are able to conclude that C4 is the global optimal allocation.
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1.4.4 α-Maxmin Expected Utility (α-MEU) Preferences

α-MEU is a generalisation of MEU. Instead of assuming individuals only look

at the worst case that would happen, α-MEU assumes individuals both look

at the worst case and also the best case. α-MEU introduces a parameter α

which weights the two cases in the objective utility function. Denote P as

the set of all possible priors, and C as the set of all possible allocations, then

the objective function of α-MEU can be written as

U = max
C∈C

αmin
P∈P

∑
j∈{1,2,3}

{pju(wj)}+ (1− α)max
P∈P

∑
j∈(1,2,3)

{pju(wj)}


(1.57)

We can see, when α = 1, α-MEU becomes MEU, which means extreme

ambiguity aversion. When α = 0, the individual only considers the best

case. Just like we describe risk attitude, we can consider this individual as

ambiguity loving. To work out the optimal allocation, we can use a similar

method. Similar to the derivation of equation (1.36), we have

max
P∈P

 ∑
j∈(1,2,3)

{pju(wj)

 = U(Pj,W) s.t wj = max{W} (1.58)

The meaning of equation (1.58) is, the maximum utility is calculated by as-

signing the biggest probability to the state that generates the biggest payoff.

For any given allocation C, we can calculate W and then check the min-

imum and maximum payoff state. Then we assign the biggest probability

to the minimum payoff state and assign the biggest probability to the maxi-

mum payoff state to calculate the minimum Expected Utility and maximum

Expected Utility accordingly. The α-MEU objective function (1.57) can thus

be written as

U = max
C∈C

( αU(Pi,W) + (1− α)U(Pj,W)) (1.59)

s.t. wi = min{W, i ∈ {1, 2, 3}}, wj = max{W, j ∈ {1, 2, 3}}

Now we are not going to develop a similar algorithm as Algorithm 3. But at

least we can improve the totally numerical Algorithm 2 to Algorithm 4 using
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equation (1.59). First we denote K as the total number of C ∈ C.

Algorithm 4: Improved numerical method for finding α-MEU optimal allo-
cation
Input : r, p1, p2, p3, e,D, α
Output: C∗

Calculate P1, P2 and P3;
for k = 1 to K do

// The loop below is for calculating the α-MEU objective

utility for each Ck

W = CkD ;
wi = minW;
wj = maxW;
Uk = αU(Pi,Wi) + (1− α)U(Pj,Wj) ; // calculate the

objective function (1.59) for any given C

end
UK = {Uk|k ∈ [1, K]};
C∗ = {Ck|Ûk = max{UK};

Notice that Algorithm 4 is plausible when we have a relatively small size for

C.

1.4.5 Conclusion

In this section, we have developed Algorithm 3 for calculating the optimal

allocation for MEU, which is more efficient and reliable than the purely nu-

merical Algorithm 2. We have developed Algorithm 4 to calculate the optimal

allocation for α-MEU. It is plausible when we have a relatively small size of

C.16

16These two algorithms will be called for estimation when we fit these two preferences
theories in the experimental data.



Chapter 2

Portfolio Choice under

Ambiguity - Experiment

1

2.1 Experimental Design

2.1.1 Introduction

In Chapter 1, we provided Algorithms for finding the optimal allocation if indi-

viduals have Expected Utility (EU), Mean Variance (MV), Maxmin Expected

Utility (MEU) and α-MEU preferences. Now we carry out an experiment

to test how well these models work on real data. The problem setup in

the experiment is exactly the same as in the theory. There is one safe as-

set/cash, for which the relative return is 0 and two ambiguous assets, for

which the absolute returns are contingent on the three states. Subjects are

endowed with a certain amount of money e and can allocate the money to

the safe asset and the two ambiguous assets which are both priced at 1 unit

of cash. Subjects can not short sell any asset and they do not need to spend

1This experiment was financed with funds from MIUR.

60
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Table 2.1: Payoff Table

Pink Green Blue
Asset 1 1.7 0.9 0.6
Asset 2 0 0.1 3.1

all the cash endowment. They can see Payoff Table which gives informa-

tion about the end-of-period total payoff in all three states for each of the

two assets. Also for implementing the experiment, we name the three states

as Pink, Green and Blue respectively (the reason for this terminology will

become clearer later). Thus in the experiment, subjects are given a Payoff

Table with the format as in Table 2.1. Notice that in the theoretical part,

we always employ the asset relative return table for concise mathematical

analysis. But we think Payoff Table is more obvious for subjects so it is used

in the experiment. A Payoff Table implies a unique return table. Consider

a Payoff Table. This means if the Pink state occurs, for every unit of Asset

1 invested the total payoff is 1.7 unit of cash and for Asset 2 is 0. As both

assets are priced as 1 unit of cash, the relative returns for Asset 1 and 2 are

(1.7− 1)/1 = 0.7 and (0− 1)/1 = −1 respectively. The relative return can

be calculated as the payoff minus 1 as the assets are priced at 1. So This

Payoff Table implies the following return table.

D =

[
0.7 −0.1 −0.4

−1 −0.9 2.1

]

Each subject is given a Payoff Table and endowment e, then they are asked to

choose a portfolio. We call this a Problem. Because there are two allocations

(the cash allocation is automatically decided by the two allocations to the

ambiguous assets), it is more informative to let the subjects do an allocation

problem rather than a pairwise problem. So in the experiment, we let the

subjects actually choose the amounts they wish to buy of the two assets. As

we need to specify a particular number of decimal places for the allocation

amounts, we restricted subjects to choosing integer amount (e was always

100). When subjects make the allocations for the two ambiguous assets, the

program calculates the remaining cash and subjects can read the Portfolio
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Table 2.2: Portfolio

Asset 1 c1

Asset 2 c2

Cash e− c1 − c2

Table 2.3: Portfolio Payoff

Pink Green Blue
Portfolio w1 w2 w3

table as shown in Table 2.2. They are also shown a Portfolio Payoff table

which shows the total payoffs in each state for the portfolio they choose. The

availability of the Portfolio Payoff table saves the subjects from complicated

mathematical calculations and lets them focus on choosing their desired

portfolios. The format of the Portfolio Payoff is shown in Table 2.3.

We have

wj = c1d1j + c2d2j + e− c1 − c2

Each subject was given 65 problems. These 65 problems were chosen by us

after extensive simulations 2. In each problem, there is different Payoff Table

but the same cash endowment (100 units of experimental money). As long

as the Payoff Tables are different from problem to problem, each problem is

different from the others. We keep the cash endowment to be the same for

all problems to make the experiment as simple as possible.

The payment is also decided by the colour. Here is how we implemented

ambiguity. We placed a Bingo Blower 3 in the clear view of the subjects and

in continuous motion throughout the experiment. A camera projected the

image of the Bingo Blower onto two screens in the laboratory. The subjects

2We used Matlab to do the simulations; the program is available on request. The
simulation was designed to produce a set of problems that would enable us to distinguish
between subjects in terms of their preference functional and beliefs. Clearly what are
‘good’ problems depends upon what these preferences and beliefs are, so we chose a
range of problems to distinguish different subjects.

3A Bingo Blower is a rectanglular machine with glass sides in which a number of
coloured balls were in continuous motion - being driven by a fan of air.
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were able to see there were balls of three different colours (Pink, Green and

Blue) but they could not count the balls of different colours (because they

are in continuous motion). It is a good way to implement ambiguity in an

experiment. Subjects are able to formulate some belief about the numbers

of each colour, but not form precise probabilities. We actually put 10 pink

balls and 20 green balls and 10 blue balls in the bingo blower so the true

probabilities of the three colours were 0.25, 0.5 and 0.25. It is likely that

subjects realised that the number of green balls were more than pink and

blue. 4

At the end of the experiment, each subject individually drew a ticket from a

bag containing 65 tickets numbering from 1 to 65; this number determined

which problem was to be played out for that subject. Then the subject

was asked expel one ball out of the Bingo Blower - they could not control

the colour to be expelled. The problem to be played out having already

been decided, the colour of the expelled ball determined their payoff (w∗)

in experimental money, taken from the appropriate Payoff Table. Their final

payment in money was that portfolio payoff divided by the exchange rate,

12 units of experimental money equivalent to £1.005, plus a £2.50 show up

fee.

Payment = £(
w∗

12
+ 2.5)

Taking a particular Payoff Table as an example

Pink Green Blue

Asset 1 1.2 0.6 1.6

Asset 2 0.5 1.4 1.4

.

Suppose a subject chose the portfolio [40 30] for the problem that was

randomly selected, then it means his/her cash remaining is 100− 30− 40 =

4This property suggested an interesting heuristic rule which we formulated later. More
details about this heuristic are given in Section 2.3.

5which they had been told in the Instructions.
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30. So his/her portfolio payoff would be
wP = 40 ∗ 1.2 + 30 ∗ 0.5 + 30 = 93

wG = 40 ∗ 0.6 + 30 ∗ 1.4 + 30 = 93

wB = 40 ∗ 1.6 + 30 ∗ 1.4 + 30 = 136

and the corresponding payment for each state would be
PP = 93/12 + 2.5 = 10.3

PG = 93/12 + 2.5 = 10.3

PB = 136/12 + 2.5 = 13.8

2.1.2 Experimental Details

Subjects were asked to arrive at EXEC laboratory at a specific time and then

they were asked to read the Instructions at their seats. After 10 minutes,

they were given a PowerPoint presentation of the experimental instructions,

and then given the chance to ask any questions they may have had. A

short demonstration was given about how the Bingo Blower works. Then

they were asked to read Instructions again. Subjects individually drew the

attention of the experimenter when they were ready to start. As mentioned

in the previsou section when they finished all the questions in the experiment

they needed to draw a ticket and then expel a ball from Bingo Blower as

mentioned in the previous section. Their payment then was calculated and

they were paid. The total time for the experiment was from one hour to 2

hours; most subjects finished in around one-and-a-half hours. The average

payment was £13, including the show-up fee.

Software

The experimental software was written in Visual Basic. It is an executable file

called portfoliochoice.exe which runs under any Windows system. The return

table and endowment for each problem were stored in an Access file which
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was put in the same directory as the executable file. The portfoliochoice.exe

and parameters.mdb were stored on the lab server so every machine in the

lab could run the program and read the input data. When each subject began

the experiment, another Access file under the subject’s number is created;

his/her allocations were stored in that file.

The main experimental interface contains an Allocation Triangle (AT), which

is an important design feature of this experiment. Also on the screen there

were three tables which give information about the assets and the current

portfolio choice. AT is consistent with the definition of the Allocation Tri-

angle in the theory section of this thesis, that is, a triangular area in which

the allocations satisfy the No-short-selling constraints (1.28) on Page 17.

Then any point in AT represents a possible allocation. Notice subjects can

only make integer portfolio choice as any point inside the Triangle will be

automatically rounded to the nearest integer. The three tables are Payoff

Table, Portfolio table and Portfolio Payoff table . They are defined in Table

2.1, 2.2 and 2.3 respectively.

When the main interface was opened, subjects saw the AT with red lines on

the screen. When they moved the cursor inside the AT they saw that each

particular point in the triangle representing an allocation of their 100-unit

endowment of experimental money to the two assets and to residual exper-

imental money. The horizontal distance from the left hand side indicated

the number of units allocated to Asset 1; the vertical distance from the bot-

tom indicated the number of units allocated to Asset 2; the residual amount

of experimental money was then automatically calculated by the software

and shown in Portfolio table. For example, if they put the cursor at the

bottom corner of the AT (actually the mouse cursor always started at this

point which represented their initial situation), this represented buying zero

of both assets and hence the residual cash is 100: the bottom-right hand

corner represented spending all the endowment on Asset 1; the top-left hand

corner represented spending all the endowment on Asset 2; and the middle

of the triangle represented spending one-third of their endowment on Asset

1, one-third on Asset 2 and keeping one-third in the form of experimental

money. Subjects could see this information in the Portfolio table. When
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they moved the cursor inside the AT, the information in the Portfolio table

changed dynamically. Given a Payoff Table, subjects could move the cursor

around in the AT; the Payoff Table changed dynamically according to the

Portfolio table.

Once subjects had decided on their desired allocation, they needed to double

click with their mouse to register the choice. When the cursor was outside

the AT, Portfolio Table and the Payoff Table table became blank; similalry

when subjects double clicked outside the AT, they saw a warning message

in a pop-out window telling them the allocations were invalid. After double

clicking the cursor, subjects were asked to confirm their decision, and they

could change it if they wished (by clicking on ‘No’). To stop subjects just

clicking rapidly through the experiment, we put a minimum time for each

problem of 30 seconds. If they tried to make a decision before it, they would

get a warning box popping out. There was also a maximum time for each

problem of 120 seconds. If a subject did not make a decision in the maximum

time, the progam would record his/her porfolio choice as [0 0]. Subjects see

a timer showing the count-down at the upper-right corner. Figure 2.1 shows

the main screen used in the experiment. The Instructions given to subjects

are attached in Appendix A.

2.1.3 The Design of the Problems

Why did we choose 3 States?

This experiment is to study individuals’ portfolio choices. On the one hand,

there has been at least two states, otherwise the assets are not ambiguous.

On the other hand, we do not want the problems to be too complicated for

subjects. We initially considered having two states cases but decided it was

not informative enough. The reason is as follows. Remember that we use

the return table for the theoretical analysis, so from now we use the term

return table. If there are only two possible states for the ambiguous assets.
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Figure 2.1: Experiment Main Screen

Then the return table is

D =

[
d11 d12

d21 d22

]
and the probability vector is

P =
[
p1 p2

]′
and the portfolio payoff vector is

W = CD =

[
c1d11 + c2d21 + e

c1d12 + c2d22 + e

]

The objective function for EU preferences is

U = p1u(w1) + p2u(w2)

= p1u(c1d11 + c2d21 + e) + p2u(c1d12 + c2d22 + e)
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If we use a CARA utility function u = −1
r
e−rw, the derivative in terms of c1

is

∂U

∂c1

= d11p1e
−r(c1d11+c2d21+e) + d12p2e

−r(c1d12+c2d22+e)

= −rd11p1u(w1)− rd12p2u(w2)

Similarly we have

∂U

∂c2

= −rd21p1u(w1)− rd22p2u(w2)

so the the first order conditions becomep1d11u(w1) + p2d12u(w2) = 0

p1d21u(w1) + p2d22u(w2) = 0

For this equation system, the solution only exists when the following equation

stands.

(p1d11)(p2d22) = (p1d21)(p2d22) (2.1)

For a CRRA utility function u = w1−r

1−r , we have that the first order conditions

are  ∂U
∂c1

= d11p1w
−r
1 + d12p2w

−r
2

∂U
∂c2

= d12p1w
−r
1 + d12p2w

−r
2

For this equation system, the solution also only exists when equation (2.1)

is satisfied. The intuition here is that when equation (2.1) is satisfied, indi-

viduals can always construct a portfolio that makes the maximised expected

utility infinite. As in the experiment the allocations are bounded, it is likely

subjects will make the same allocations and it would be difficult to estimate

their subjective parameters. So two states are not enough. So we decided on

three states, to keep the experiment as simple as possible for the subjects,

while also being informative to us.
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What are, and do we want, Sure-Win return tables?

A Sure-Win return table is the one that gives subjects the opportunity to earn

from investing in the ambiguous assets irrespective of which state occurs. To

demonstrate such a table we use the terminology of Chapter 1, though we

still do the theoretical analysis with the relative return table. A Sure-Win

return table would not be informative as all the subjects are going to spend

all the cash on the two ambiguous assets in some proportion as long as they

are non-satiated with money. Before I formally define a Sure-Win return

table, I would like to give an example. Consider the return table

D =

[
−0.4 0.4 0.3

0.5 −0.4 0.1

]

Assume that the individuals spend x units of cash in buying the two assets

and let π be the portion invested in asset 1 and 1− π in asset 2. Since both

assets are priced at 1, the portfolio is C = [xπ x(1−π)]. Then the portfolio

payoff vector is

W = CD = x


0.5− 0.9π + 1

−0.4 + 0.8π + 1

0.1 + 0.2π + 1


Let wj > 0 for j ∈ 1, 2, 3 and the solution is

1

2
< π <

5

9

It means as long as investors make the allocations in the two assets as a

proportion between 1
2

and 5
9
, they will earn more than x irrespective of the

state which occurs. So subjects may just spend all their cash irrespective of

their risk attitudes and their beliefs about the probabilities.6 Sure-Win return

tables should not be included in the experiment as they are not informative in

the sense of revealing information about the subjects preferences and beliefs.

6Notice this is different from the concept of arbitrage. Arbitrage means the opportunity
to construct a portfolio with variance equal to 0. But in this case, the portfolio variance
could still be positive.
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Formal definition A sure win return table means there exists a π that

makes

wj = πd1j + (1− π)d2j > 0 for ∀j ∈ {1, 2, 3}

which can be written as 
π(d21 − d11) < d21

π(d22 − d12) < d22

π(d23 − d13) < d23

(2.2)

If we want to exclude Sure-Win return tables, then we need to make sure

there is no solution to equation (2.2). First, if

d2j − d1j > 0 ∀j ∈ {1, 2, 3} (2.3)

then there is always a solution which is

π < min{ d21

d21 − d11

,
d22

d22 − d12

,
d23

d23 − d13

} (2.4)

So we should check the return table to make sure that equation (2.3) cannot

be satisfied. By symmetry,

d1j − d2j > 0 ∀j ∈ {1, 2, 3} (2.5)

cannot be satisfied either. The intuition for equation (2.3) and (2.5) is that

there is one asset which dominates the other. That means the return for one

asset is higher than the other in all three states. When they are excluded,

then it means for a return table, the following scenarios exist - one asset has

lower payoff in one state and higher payoffs in the other two states. Assume

it is asset 2. As the order of the states is not important, the return table

can always be arranged to 
d21 − d11 < 0

d22 − d12 > 0

d23 − d13 > 0

(2.6)
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Then equation (2.2) becomes

π >
d21

d21 − d11

π <
d22

d22 − d12

π <
d23

d23 − d13

And then the condition for there to be no solution is

d21

d21 − d11

> min{ d22

d22 − d12

,
d23

d23 − d13

} (2.7)

In conclusion, we can exclude Sure-Win return tables by creating return tables

which satisfy the following conditions.

1. Equation (2.3) and (2.5) are not satisfied.

2. Arrange the return table to let equation (2.6) to be satisfied and hence

let equation (2.7) be satisfied.

Choosing the return tables

As we analyse the experimental data individual by individual, it is important

to give return tables which could be informative enough for us to estimate

subjects’ parameters. We expect heterogeneity in risk aversion and in beliefs

about the priors. Since the subjects’ decisions are determined by the return

table as well as their preferences and beliefs, it is crucial to design a good

set of return tables to be as informative as possible, with respect to the

revelation of subject’s risk and ambiguity attitudes. For example, if all the

return tables are chosen in the sense that the two assets are really ambiguous,

then the majority of subjects would just hold all cash to be safe. Then we

would be unable to distinguish between different attitudes. When we apply

the data to different ambiguity models, we may need to estimate different

parameters. It is hard to design a set of return tables that will be ”good”

for every model.
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Asset 1 Asset 2

Figure 2.2: Histogram of expected return

We are going to estimate the risk and ambiguity parameters of our subjects.

We expected that most of the subjects would be risk-averse. They could

be either extremely risk-averse or approaching risk-neutrality. If subjects are

really risk-averse then it is likely that they do not invest any cash into the

ambiguous assets at all, so we need to give some really attractive return ta-

bles-with high payoff and low risk. If a subject is approaching risk-neutrality,

then he/she is likely to invest all the cash in the ambiguous assets so we

need to include some less attractive return tables. To do this, we calculate

the mean and variance for the two ambiguous assets using the true probabil-

ities p = [0.25, 0.5, 0.25]. Figure 2.2 shows the histograms of the expected

return for both assets. Table 2.4 summarises the mean (expected return)

and variance information for the two assets. Note that for Asset 1, for 18 of

the 65 return tables the expected return are negative, and 6 of the 65 return

tables the expected return negative for Asset 2. There are 50 return tables

in which the covariance of the two assets are positive. Because if the co-

variance is positive, it is more likely subjects want to construct a portfolio of

buying one asset and selling another. But they cannot sell assets since this is

not allowed under the experimental rules. As discussed in Section 1.3, when

the Unconstrained optimal allocation is positive for one asset and negative

for another asset, the Constrained optimal allocation is always putting 0 in

the one which is negative. And it is the same for either Mean Variance or

Expected Utility preferences. So we choose more return tables with positive
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Table 2.4: Mean Variance Information for the 65 return tables

Mean Covariance
≥ 0 < 0 ≥ 0 < 0

Asset1 47 18
15 50

Asset2 59 6

covariances. We still want some return tables with negative covariances be-

cause we are not sure about subjects’ preferences. The negative ones may

lead us to find some interesting results.

As we assume subjects’ beliefs are described by lower bounds on the probabil-

ities, the lower bounds P = [p
1
p

2
p

3
]
′

have to be estimated. So the return

tables need to be designed in such a way that we can estimate the lower

bounds precisely. As stated in equation (1.36), for one return table, only two

lower bounds are actually involved in the optimal allocation. So it means the

loss of information about the lower bound in one state. And it is not clear

which one would be omitted unless we know the subjects’ parameters, since

we do not have an explicit expression of the optimal allocation in terms of

the risk parameter. But what we want to do is to provide to the subjects

a set of problems to reveal all the information about the lower bounds. In

order to realise this we need to do some ‘manipulation’ of the return tables.

The strategy is to add some Least-Payoff return tables, for which the port-

folio payoff in a particular state is always the smallest, and hence the lower

bounds of the other two states will be captured in the optimal solution. We

call such states Least-Payoff states. A least Payoff-State can be created just

by making the portfolio payoff to be the smallest in one state for any portfolio

choice. For example, if we choose state 1 as the least portfolio payoff and

we let d11 = min{d11, d12, d12} and d21 = min{d21, d22, d22} hence

w2 − w1 = (d12 − d11)c1 + (d22 − d21)c2 ≥ 0

w3 − w1 = (d13 − d11)c1 + (d23 − d21)c2 ≥ 0

as we have c1 ≥ 0 and c2 ≥ 0. We have included 31 Least-Payoff return
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tables in total7, among them there are 15 for state 1, 7 for state 2 and 9 for

state 3.

Conditions for the Optimal Solution

As discussed in the section 1.2, there are explicit solutions for the uncon-

strained portfolio choice problem, though there are some conditions for the

existence for solutions. Because these solutions are to be used in the algo-

rithms to get the Constrained optimal allocation and furthermore the algo-

rithms are called in the estimation program, it is better that we let these

conditions be satisfied. The conditions are different for different preferences

and different utility functions. For Expected Utility preferences with a CARA

utility function the conditions are only related to the return table, but for

Mean-Variance Preferences and EU preferences with CRRA utility function

the conditions also concern the probabilities. As the subjective probabilities

are unknown ex ante, what we can do is to let the return table satisfy the con-

ditions for EU preferences with CARA utility functions, which are equations

(1.20) and (1.23) and (1.24).

2.2 Error Specification

2.2.1 Introduction

Experimental Literature (e.g. Kroll ( et al) 1998) shows Modern Portfolio

choice (MPC) theory does not work well (the allocations are far away from

optimal ) in the laboratory, but surprisingly the Capital Asset Pricing Model,

which is built on MPC, works well at the market level. Bossaerts ( et al)

(2007) propose a CAPM+ε model which is not rejected by their experimental

data. In their method they add a utility perturbation to individuals’ demand

functions.

7We do not want to let all 65 return tables to have the property because we do not
want subjects to notice the pattern.
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Most experimental result shows that people are inconsistent even in simple

binary choices experiments when they are asked to repeat the same prob-

lem (Camerer 1989, Starmer and Sugden 1989, Hey and Orme 1994, and

Ballinger and Wilcox 1997). Research results (Hey 1995, Buschena and Zil-

berman 2000) suggest that the standard deviation of error tends to be higher

when subjects are facing problem with more outcomes. So it is not hard to

imagine that the degree of error that subjects would make when they are

facing a portfolio choice problem, if we assume they do have deterministic

preferences. Because a portfolio choice problem basically means that sub-

jects are facing an infinite, or a relatively huge amount of multiple choice

problems. Their brains have to deal with a huge number of the possible

outcomes of their possible choices. Then it strikes me to try to answer the

following question: Is it that Modern Portfolio choice theory really does not

work in the lab, or it does work, but we just have not found the correct model

of the error term?

It appears that the mainstream of experimental study of error stories is in the

environment of pairwise choice problems. When studying portfolio choice,

pairwise choices are less informative than allocation problems. So we hope

our study could be valuable in suggesting the proper stochastic specification

for allocation problems, especially in the scenario where the allocation is

bounded. In most experimental finance studies, the allocations have to be

bounded as we do not want subjects to go bankrupt in an experiment as in

such cases subjects would have to pay money to the experimenter. Besides in

real life there does not exist a situation where people can allocate an unlimited

amount. We emphasise this point here because the stochastic specification

for boundaries raises many interesting issues. Furthermore, as one portfolio

choice involves two allocation, the dependence of the two stochastic variables

makes the problem more complicated, and interesting.

In this chapter, we report on a Portfolio Choice under Ambiguity (PCA) ex-

periment. The intention of conducting this experiment is to shed light on

individual portfolio choice when the assets are ambiguous, rather than risky.

In order to achieve this, first we need to find a good stochastic specification

for our portfolio choice problem. In this section, I discuss the plausibility of
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error stories falling into three categories. The first two categories assuming

there is a deterministic preference and error is coming from the implementa-

tion and the measurement of utility respectively. The third category is rather

different from the first two by assuming the preferences are stochastic and

hence the decisions are stochastic.

2.2.2 Implementation Error

Introduction

In this section, we discuss errors are coming from implementation. For the

time being, we assume that the two allocations are independent. So next

I use c to refer to the two allocations in general. We assume subject have

deterministic preferences which give them an optimal allocation c∗. This

optimal allocation c∗ is decided by the problem itself and their subjective

parameters of preferences.

c∗ = OPT (U(D,S)). (2.8)

here S is a vector that contains the subjects’ parameters. The elements of S

may be different depending on which preference theory we are considering.

For example, if we use Subjective Expected Utility, then S contains the risk

parameter and 3 probabilities for the 3 states. If we use Maxmin Expected

Utility, then S contains risk parameter and 3 lower bounds on probabilities for

the 3 states. Remember in the experiment, subjects can only make integer

allocations. We think this leads to two different mind processing ways when

subjects are making their choices. The first is they think about the allocations

in a continuous sense and hence c∗ is continuous. And when implementing

their intended allocation, they ‘add on’ an error ε, which is also continuous.

The experimental interface then rounds up c∗ + ε, which is a continuous

number, to the actual allocation ĉ, which is an integer number. It means for

any observed ĉ, the likelihood is calculated by the cumulative probability at

the point ĉ+ 0.5 minus probability at the point ĉ− 0.5.
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Table 2.5: Error Specifications

Continuous Discrete
- Binomial

Beta Beta Binomial
Biased Beta (BB) Biased Beta Binomial (BBB)

Two Beta1 Two Beta Binomial
Beta Exponential2 -
1 We use a Beta distribution for the open area from 0 to 1 and another Beta
distribution only for boundaries. Similar for the Two Beta Binomial.

2 We use a Beta distribution for the open area from 0 to 1 and a truncated
Exponential distribution only for boundaries.

The second approach is to assume that they discretise the problem so c∗

are integers and the error ε is also an integer. So we need continuous and

discrete distributions to model c respectively. Which approach is a realistic

description of the actual processes of the subjects is difficult to say ex ante.

We need to use bounded distribution as c is bounded in the area between 0

and 100 (the cash endowment in each problem being 100). We have to treat

the error stories for the boundaries very carefully, as we will see. In Table

2.5 we summarise the various error stories that we discuss in detail in this

section.

Continuous Stochastic Specification - BB specification

As c ∈ [0, 100] and is continuous, we assume

x ∼ Beta(α, β), 0 ≤ x =
c

100
≤ 1

Here we scale the allocation c by the initial endowment e to make it possible

to be represented by a beta distribution, which is defined on the range [0, 1].

We will use the same notation for the scaled allocation x as c. For example,

x̂ =
c

100
means the scaled actual allocation and x∗ =

c∗

100
means the scaled

optimal allocation.
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We want to specify the parameters α and β. Notice that they need to satisfy

α > 0 and β > 0. For a beta distribution, the relation between the mean

x̄, and variance V of its parameters α and β is as follows. The mean and

variance can be calculated from α and β as
x̄ =

α

α + β

V =
αβ

(α + β)2(α + β + 1)

(2.9)

and the α and β can be derived from the mean and the variance asα = (1−x̄
V
− 1

x̄
)x̄2

β = α( 1
x̄
− 1)

(2.10)

A first possibility is to follow others in assuming that the actual allocations

are centred on their optimal allocation and that the variance of errors made

by subjects is the same everywhere - that is for all x∗ = [0, 1]. But a

constant variance is inappropriate as we think subjects make big error in the

middle and less error when approach to the boundaries. Hey and Pace (2014)

suggest a way of specifying α and β as follows.α = x∗(s− 1)

β = (1− x∗)(s− 1).
(2.11)

hence the mean and variance are as followsx̄ = x∗

V = (1−x∗)x∗
s

(2.12)

where s is defined as precision parameter. They assume the distribution is

centred on the optimal allocation and the variance is specified such that it

is smallest at the boundaries and reaches at the maximum in the middle. In

their case they have 0 < x∗ < 1 while we have 0 ≤ x∗ ≤ 1. According

to equation (2.12), the variance V is equal to 0 when x∗ = 0 or x∗ = 1.

It implies subjects make no mistake at the boundaries. In the experiment,

since subjects are not allowed to short sell, it is likely that they are going to
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the hit the boundaries often8 If we do not want the variance to be equal to

zero at the boundaries, then the distribution of x has to be biased. If we

let x̄ = 0 for x∗ = 0, then the distribution has to be spread both in the

part of x > 0 and x < 0 to make x̄ = 0. As x can not be negative, x̄

has to be positive if the variance is not zero. The similar analysis applies to

the situation when x∗ = 1. x̄ has to be less than one at x∗ = 1. Hence

our solution is to add a bias parameter to x̄. Differently from Hey and Pace

(2014) who assumed that the distribution is unbiased, we assume it is centred

on the biased optimal allocation which is defined as follows.

x
′
=
b

2
+ (1− b)x∗ 0 < b < 1 (2.13)

As we want 0 < x
′
< 1, we let 0 < b < 2. And we also want the x

′
to

be positively related to x∗, we let b < 1. So we assume 0 < b < 1. And

the degree of bias is increasing when x is away from 0.5. When b = 0 we

have x
′

= x∗ then there is no bias. When b = 1 we have x
′

= b
2

which is

not related to x∗, which means subjects’ allocations are total random. As

x ∈ [0, 1] we have x
′ ∈ [ b

2
, 1 − b

2
]. There is x

′ − x∗ = b(1
2
− x∗) which can

be seen as a indication of the bias. When x∗ < 1
2
, we have x

′ − x∗ > 0, so

x is positively biased. When x∗ = 1
2
, x is not biased. When x∗ > 1

2
, x is

negatively biased. Notice as x∗ ∈ [0, 1] we have x
′ ∈ [ b

2
, 1 − b

2
] and hence

0 < x̄ < 1. We can call x
′

as biased scaled optimal allocation. Replacing x∗

by x′ in equation (2.12), we have a new specification for x as follows.
x̄ = x

′

V =
(1− x′)x′

s

(2.14)

where α and β are as followsα = x
′
(s− 1)

β = (1− x′)(s− 1).
(2.15)

Figure 2.3 on Page 80 shows the relation of V to x∗. We have x
′

= b
2

+

8The experimental data also proves this point.
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Figure 2.3: Concave Variance under Biased Beta Distribution

(1− b)x∗, so V (x∗ = 0) = V (x∗ = 1) = 1
4

(2−b)b
s
6= 0 which are the minima

and V (x∗ = 0.5) = 1
4s

which is the maxima. So far we have constructed a

satisfactory biased beta distribution specification, which we call Biased Beta

specification. Equation (2.16) shows the complete Biased Beta specification.

x ∼ Beta(α, β), 0 ≤ x ≤ 1 (2.16)

where 
x
′

= b
2

+ (1− b)x∗

α = x
′
(s− 1)

β = (1− x′)(s− 1).

and

0 < b < 1, s > 1

Denote F (x;α, β) 9as the cumulative distribution function for a beta distri-

bution. Now we can write the sum of the log-likelihood function for the 65

9When x > 1 we have F = 1, and when x < 0 we have F = 0.
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problems Cj = [ĉ1, ĉ2], j ∈ N+
65 as

L =
65∑
j

log

(
2∏
i

Lij

)
, i ∈ N+

2 , j ∈ N+
65 (2.17)

where

Lij = F (
ĉij + 0.5

100
, αi, βi)− F (

ĉij − 0.5

100
, αi, βi), c∗ij ∈ N100

where 
αi =

(
bi
2

+ (1− bi)
c∗ij
100

)
(si − 1)

βi =

(
1− bi

2
− (1− bi)

c∗ij
100

)
(si − 1)

0 < bi < 1, si > 1.

Now let us explore a little more the implications about this specification,

especially the implication of the precision and bias parameters, as they have

not been used before with this particular specification.

Figure 2.4 10 on Page 82 shows the pdf for different values of s and b

when x∗ = 0 and x∗ = 0.5.The mean of the both distributions are equal to

x
′

= x∗ + b
2

= 0.05. Assume the same bias parameter. The individual with

lower precision, say s=5, is likely to make bigger errors overall. But he/she

seems to better express his intention when x∗ approaches the boundaries.

The likelihood of choosing 0 (also the ones quite near 0) when x∗ = 0 is

much bigger for s=5 than for s=50. This does not seem to be quite sensible.

So we ask the question: Is it sensible to add a bias to a whole range when

we only want to tackle the issue concerning the boundaries?

So let us now focus on how to specify the biased distribution only at the

boundaries. We would like to think the mode of the distribution is at the

boundaries, it means we assume subjects are most likely to choose the bound-

aries when the actual optimal allocation is at the boundaries. The relation

10For better demonstration for the pdf functions, the range for x is set from 0 to 0.4
instead of 0 to 1 when in the case x∗ = 0.
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Figure 2.5: Beta distribution for boundaries

of the mode to the parameters for a beta distribution is as follows.

Mo =
α− 1

α + β − 2
, α > 1, β > 1

It implies Mo = 0 when α = 1, β > 1

Mo = 1 when α > 1, β = 1

When α = 1, β > 1, we get a distribution whose mode is equal to 0 and

the pdf is strictly decreasing. We can use it to model the distribution when

x∗ = 0. It seems sensible to assume that the most likely choice for x is equal

to 0 when x∗ = 0. When α > 1, β = 1, we have Mo = 1 and the pdf

is strictly increasing, which could be used to specify the distribution when

x∗ = 1. Figure 2.5 on Page 83 shows the pdf for these two special cases.

We would like to assume that the distributions at the two boundaries are

symmetric by letting x ∼ Beta(1, b) when x∗ = 0, and x ∼ Beta(b, 1) when

x∗ = 1. When 0 < x∗ < 1, we assume the unbiased Beta distribution which

centred on the x∗. We call this specification as the Two Betas specification
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as it involves two different types of Beta distributions. Equation (2.18) shows

the complete Two Betas specification.
x ∼ Beta(1, b), x∗ = 0

x ∼ Beta(α, β) 0 < x∗ < 1

x ∼ Beta(b, 1), x∗ = 1

(2.18)

where α = x∗(s− 1)

β = (1− x∗)(s− 1).

and

b > 1, s > 1

Now we can write the sum of likelihood function for the 65 portfolio choice

Cj = [ĉ1, ĉ2], j ∈ N+
65 as

L =
65∑
j

log

(
2∏
i

Lij

)
, i ∈ N+

2 , j ∈ N+
65 (2.19)

where

Lij =



F (
0.5

100
, 1, bi) if c∗ij = 0

F (
ĉij + 0.5

100
, αi, βi)− F (

ĉij − 0.5

100
, αi, βi) if c∗ij ∈ N99+

1− F (
ĉij
100

, bi, 1) if c∗ij = 100

where 
αi =

c∗ij
100

(s1 − 1)

βi = (1−
c∗ij
100

)(s2 − 1)

bi > 1, si > 1.
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Beta Exponential

We have put a lot of effort into modelling the error at the boundaries. One

might think, why not just use a truncated distribution for the boundaries? We

have explored this possibility too. We still keep using the scaled allocation x

for analysis here. Let us assume that x has an (unbiased) Beta distribution,

when 0 < x∗ < 1, but let us assume that it has an exponential distribution

when x∗ = 0 or 1. Next I go through the details about this specification.

Suppose we use a exponential distribution to model the distribution when

x∗ = 0. The pdf for an exponential distribution is

f(x;λ) =

 1
λ
e−

1
λ
x x ≥ 0

0 x < 0

and we have x̄ = λ and V (x) = λ and the mode Mo = 0. It is good in

the way that the pdf is monotonically decreasing from 0. As the exponential

distribution is defined in [0, ∞], we need to truncate the part that x > 1.

Denote F (x;λ) as the probability mass function. We cannot just do the

following.

L(1) = F (∞;λ)− (0.995;λ)

11 as it gives a big likelihood for x = 1. Figure 2.6 on Page 86 shows the pdf

for λ = 0.3. The cumulative probability from 0.995 to∞ is equal to 0.0363.

We have L(0.99) = F (0.995; 0.3) − F (0.985; 0.3) = 0.0012 < L(1). It

means the subject is more likely to choose 1 than 0.99. This is not sensible.

We need to truncate the exponential distribution and scale the pdf as follows.

f(x;λ) =
1
λ
e−

1
λ
x

1− (F (∞;λ)− F (1;λ))
, 0 ≤ x ≤ 1

For x∗ = 1, we can use the rescaled distribution of x∗. The pdf is as follows.

f(x;λ) = 1−
1
λ
e−

1
λ
x

1− (F (∞;λ)− F (1;λ))
, 0 ≤ x ≤ 1

11Remember that in the experiment, an observed allocation 100 is assumed to be
rounded, so the likelihood is calculated from 99.5 to 100.
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Figure 2.6: Truncated Exponential Distribution for x∗ = 0

The sum of the log-likelihood function is similar to that in equation (2.19)

so we do not give details here.

Discrete Stochastic Specification - the BBB specification

Hareless and Camerer (1994) proposed the use of a tremble to model the

stochastic process involved in the actual decision. Their story is based on a

pairwise-choice problem, either choose lottery l1 or lottery l2 in a problem.

They think individuals’ behaviour rule could be explained by a deterministic

preference theory plus a tremble. Denote S as a unique set of parameters

represents an individual’s preferences. Determined by his/her preferences, an

individual has an optimal decision l∗ which also can be called the individual’s

intended decision. They further claim that a subject will make a mistake in

implementation with a constant probability λ by choosing otherwise instead
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of l∗ across all problems.

l̂ =

l∗ p = 1− λ

{l1, l2} − {l∗} p = λ

This model can be adapted to our portfolio choice problem, by discretisation

of the allocations. Remember in the experiment, there are two allocations

in one portfolio choice problem, which we denote by C = [c1, c2]. The

allocation can only be made in integers and they satisfy

c1 ≥ 0, c2 ≥ 0, c1 + c2 ≤ 100

In a pairwise-choice experiment, the choice is between two options while we

have 5151 choices in the experiment.12 We can think in this way. Sub-

jects have a deterministic decision C∗, which is in integer, based on their

preferences, but when they implement their decisions they make mistakes by

choosing another. It might because that they tremble away from C∗ when

they are clicking the mouse. And the further away a choice from C∗, the

less likely subjects choose it by mistake. The stochastic specification of c is

written as follows.

ĉ =



...

c∗ − 1 pc∗−1

c∗ pc∗

c∗ + 1 pc∗+1

...

12Assuming that c1 and c2 are independent, so for each of them the total number is
101. But all possible portfolio choices are not simply 101*101 as c1 + c2 ≤ 100. For
example, if the total endowment is 5 then for each of them the total number of possible
allocation is 36. But the possible portfolios are [0, 0], [0, 1], [0, 2], [0, 3],[0, 4], [0, 5], [1, 0],
[1, 1], [1, 2], [1, 3], [1, 4], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [4, 0], [4, 1], [5, 0].
The total number pf possible portfolio choice is only 21. Similarly, when the endowment
in 100, the total number of portfolio choice is 5151. More details about the independence
of the two allocations will be discussed later in this section.
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The Binomial distribution seems to be a possible specification of the tremble.

Denote by Bin(p, n) a binomial distribution with probability parameter p ≥ 0

and n ∈ N+. The variable has a discrete distributed over the set of integers

between 0 and n, with mean c̄ = np and V = np(1−p). Let us assume that

c ∼ Bin(p∗, 100) where p∗ =
c∗

100

hence that the mean of c is c∗. There is no parameter to be estimated, that

is we are assuming all subjects are making the same errors. Given that we

think that heterogeneity (over subjects) in error is important in our problem,

this Binomial distribution does not seem to be a good specification.

A way round this problem is to use a Beta-Binomial distribution. Such a

distribution can be thought of as a binomial distribution

c ∼ Bin(p, n)
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where the probability parameter

p ∼ Beta(α, β).

This Beta-Binomial involves two steps of stochastic processes. The first step

is in generating the probability parameter p from the beta distribution. The

second is generating the actual allocation from a Binomial Distribution using

that probability parameter, which we denote as p̂. The probability mass

function for a Beta-Binomial distribution is

fBB(ĉ|α, β, n) =

(
n

k

)
fBeta(k + α, n− k + β)

fBeta(α, β)
(2.20)

here fBeta is the probability density function for Beta distribution.

We can let the mean of p to be equal p∗ and the variance to be related to p∗

and another parameter s, which we call the precision. This extra parameter

allows us to estimate subjects’ heterogeneity in errors. Before we go further,

we should warn ourselves about the implications of assuming that the mean

of p is equal to p∗. Remember in the continuous case, we found that there

is no variance for a Beta distribution at the boundaries 0 and 1. And we do

not want to assume that subjects do not make mistakes at the boundaries.

We have the same problems here. If we let p be centred on p∗, then p̂ equal

to 0 for sure when p∗ = 0 instead of stochastically generated from a Beta

Distribution. Furthermore, the variance is equal to zero again for a Binomial

Distribution Bin(0, n). We fail to incorporate variance for p∗ = 0 in both

steps. The same analysis applies to the case when p∗ = 1. Luckily we have

solved a similar problem in the continuous case by adding bias, which makes

sure that the Beta distribution is not centred on either 0 or 1. The bias can

be added over the whole range of p∗ = [0, 1] and also can only be added at

the boundaries. If we add the bias over the whole range, we let p be centred

on p′, which is defined as following

p
′
=

c∗

100
(1− b) +

b

2
, 0 < b < 1, (2.21)
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Here we obtain equation (2.21) by the inspiration of equation (2.13). Sup-

pose x∗ = 0, then we have p∗ = 0 and p
′

= b
2
> 0. So p̂ is stochastically

generated from a Beta distribution with mean equal to b
2
> 0. Notice the

actual allocation c ∼ Bin(p̂, 100) and p̂ could still be equal to 0. But we

do not need to worry about it, as we have already incorporated the variance

from the first step. We still need to specify the variance for p. In the con-

tinuous case, we decided that a constant variance does not seem to be a

good specification for bounded distribution as in our setting. So again, we

use similar specification as we use in the continuous case. We specify α and

β as follows. α = p
′
(s− 1)

β = (1− p′)(s− 1).
(2.22)

hence 
p̄ = p

′

V =
(1− p′)p′

s
.

(2.23)

here s > 1 is a precision parameter s, which allows us to specify subjects’

heterogeneity in errors. Here we obtain equation (2.22) by replacing x′ with p
′

in equation (2.15). By specifying α and β as in equation (2.22) for equation

(2.20), we completed the specification for Biased Beta Binomial distribution.

Remember that Biased Beta-Binomial distribution is the case in which we

add the bias over the whole range. We can also add bias only for the bound-

aries. We call this specification as Two Beta-Binomial distribution and its

specification is as follows.

P (ĉ)13


fBB(ĉ|b, 1, 100), ĉ = 0

fBB(ĉ|α, β, 100), ĉ ∈ N99

fBB(ĉ|1, b, 100), ĉ = 014

(2.24)

13When c∗ = 0 and hence p∗ = 0, we assume p ∼ Beta(b, 1) which guarantees the
mode of the distribution is at 0 and is monotonically decreasing from 0 to 1. The mean
is equal to b

1+b > 0, so the distribution of p is positively biased. When c∗ = 1 and hence
p∗ = 1, we assume pis ∼ Beta(1, b) which guarantees the mode of the distribution is at
1 and the pdf is monotonically decreasing from 1 to 0. The mean is equal to 1

1+b < 1,
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where 
α = p∗(s− 1)

β = (1− p∗)(s− 1)

0 < b < 1, s > 1

Remark : Independence Issues about Two allocations

So far we have assumed c1 and c2 are independent, in terms of both the

optimal allocation c∗1, c∗2 and the errors. Though the optimal allocations

satisfy the constraint c∗1 + c∗2 ≤ 100, the actual allocation implied by these

stochastic modelling does not necessarily satisfy ĉ1 + ĉ2 ≤ 100. For example,

c∗1 = 40 and c∗2 = 40. Suppose they are independently distributed in [0, 100],

then it is possible that ĉ1 = 56 and ĉ2 = 44 and hence ĉ1 + ĉ2 = 110 ≤ 100.

Such violations do not happen in the experimental data as subjects can

not implement such a portfolio. So we may have a divergence between

the error story model and its application when we are estimating data. The

subjects might choose one allocation first and then another allocation, whose

error has to be conditioned on the first allocation. Or they choose the two

allocations simultaneously and the errors are formulated in a specific way. We

have only considerred the first possibility in our specifications. Take Biased

Beta-Binomial distribution for an example. When c∗1 = 40, b1 = 0.2 and

c∗2 = 40, b2 = 0.2, we have p
′
1 = p

′
2 = 0.42 by equation (2.21), then

c1 ∼ Bin(0.42, 100), c2 ∼ Bin(0.42, 100) (2.25)

The distributions of c1 and c2 are shown in Figure 2.8 on Page 93. The two

distributions are exactly the same as they have the same parameters. But if

so the distribution is negatively biased. When ĉ ∈ N99, the specification of α and β
guarantees the mean and variance to be follows.p̄ = p∗

V =
(1− p∗)p∗

s
.

As p̄ = p∗, the distribution of p over 0 < p∗ < 1is unbiased. We have discussed this in
detail when we specified the Biased Beta specification in the continuous case in equation
(2.18).
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ĉ1 = 30, the area from 70 to 100 are actual not valid as ĉ2 can not exceeding

70. This is the situation when ĉ1 < c∗1. When ĉ1 = 60 > c∗1 the area is

relatively bigger in the shadowed area, which is around 0.04.

Define c2 on 100 − c∗1 Instead of assuming both the two allocations are

distributed on [0, 100], an alternative way is assuming

c1 ∼ Bin(p
′′

1 , 100), c2 ∼ Bin(p
′′

2 , 100(1− p′′1)) (2.26)

where 
p
′′
1 =

c∗1
100

(1− b1) + b1
2

p
′′
2 =

c∗2
100

(1− b2) + b2
2

1− p′′1
such that c1 and c2 are still centred on their own biased optimal allocation.

It seems that the specification in equation (2.26) is more sensible; after all

it incorporates the constraints that c∗1 + c∗2 ≤ 100. Take c∗1 = 40, b1 = 0.2

and c∗2 = 40, b1 = 0.2 as an example. By equation (2.27), we have p
′′
1 =

40
100

(1− 0.2) + 0.2
2

= 0.42 and p
′′
2 = 40

100∗(1−0.42)
(1− 0.2) + 0.2

2
= 0.47

c1 ∼ Bin(0.42, 100), c2 ∼ Bin(0.72, 58)

The distribution of c1 is exactly the same as in Figure 2.8. Figure 2.9 on

Page 94 shows the distribution of the c2 in this case. Their means are the

same while the variance of c2 is less than c1 though they share the the same

parameters. That is because the range of c2 is reduced from 0 to 100 to 0 to

100− c2. Again it does not totally eliminate the possibility of ĉ1 + ĉ2 > 100,

but at least it is less likely to happen as many times as the specification

defined in equation (2.25). But it does not cover a lot of possibilities for c2.

For example, if c1 = 30, c2 can be between 0 to 70. But in this specification,

the likelihood of any number more than 58 is equal to 0 as c2 is defined on

0 to 58.
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Define c2 on 100− ĉ1 Another way of is to assume

c1 ∼ Bin(p
′′′

1 , 100), c2 ∼ Bin(p
′′′

2 , 100− ĉ1) (2.27)

where 
p
′′′
1 =

c∗1
100

(1− b1) + b1
2

p
′′′
2 =

c∗2
100

(1− b2) + b2
2

1− ĉ1
100

This specification guarantees that ĉ1 + ĉ2 ≤ 100. But p
′′′
2 can be bigger than

1 when ĉ1 < c∗. For example, ĉ2 = 60 we have p
′′′
2 =

0.42

1− 0.6
> 1.

2.2.3 Stochastic Utility

We have been assuming the ĉ1 ĉ2 are independent. Figure 2.10 on Page 95

shows the Indifference Curves in the Allocation Triangle. In the direction of

OO1 the expected utility decreases at the largest speed, while in the direction

OO2 it decreases at the minimum speed. If two points in these two directions
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have the same distance to the optimal allocation, the likelihoods calculated

are the same which seems inplausible on the direction of OO1 as it generates

lower expected utility.

Hey and Orme (1994) proposed a model of adding noise to the valuation of

the gambles. They assumed that subjects make mistakes when they measure

the possible valuations in a problem. Denote U as subjects’ utility function

and C as all possible allocations. Instead of finding a optimum to maximise

their utility function U, they think subjects are maxmising the stochastic

valuation.

Ĉ∗ = OPT (Û), Û = U(D,S) + ε (2.28)

In the original Hey-Orme model paper, they considered pairwise-choice prob-

lems. It is relatively easy to understand this model in that setting. That is,

subjects makes mistakes when measuring the vauation of the two lotteries

and take the better one from the mistaken valuation. They assume the error

is a so called white noise, which means a normally distribution with mean

to be equal to 0 and and with a constant standard error. Later Hey (1995)
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Table 2.6: Portfolio Choice with Stochastic Valuation

U ( U∗ = Uj ) Û = U∗ + ε (Û∗ = Uk)
C1 U1 U1 + ε1

...
...

...
C∗ = Ch U∗ = Uh Uh + εh

...
...

...

Ĉ∗ = Ck Uj Uk + ε1
...

...
...

C5151 U5151 U5151 + ε5151

generalised the model by assuming the error to be heteroskedastic, that is

related to the each problem itself. This seems easy to understand. Assume

an individual is asked to solve two problems. In the first one he could earn

a maximum of £100 and minimum of £90 In the second one he could earn

£1000 and could lose £1000. Then it is not hard to imagine that the he

would try harder to make less mistake in the second one. So the error for

the second problem is likely to be smaller. But for time being, let us explore

the possibility of applying this model in our setting. Consider the discrete

portfolio choice.15 Remember that there are 5151 possible portfolio choices

in Cj, j ∈ N+
5151. As shown in Table 2.6 on page 96, for each portfolio choice

Cj, there is a corresponding utility denoted as Uj. But subjects evaluates

Uj as Ûj by mistake, here Û = U + ε. If subjects make no errors, they

would choose Cj as it produces the maximised utility. But since they make

mistakes when evaluating prospects, they will choose Ck instead, as Ûj is

the maximised noised valuation.

15When applying the Hey-Orme story, I use the discrete set-up. Because we want to
assume the error is heteroscedastic. So we need to find the magnititude of the difference
between the best case and worst case for each problem. That is, among all 5151 possible
choices, we need calculate the minimum utility and maxmimum utility. In the discrete
optimisation routine it is easy to do so as we calculate the utilities for all choices. Before
we just pick out the best one. Now we can just add another line to identify the minimum
one. But in the the continuous optimisation routine, we have used the first order condition
to help find the optimal allocation. We do not see a efficient way to find the allocation
which minimises the utility function, which are all concave.
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Suppose we can assume εj ∼ N(Uj, σ
2) and for portfolio choice its εj are

independent from each other. We assume subjects have constant variance

for all problems. Notice here Û can be more than U∗. Blavatskyy (2007)

suggests that truncating the error such that the stochastic utility is inside

the area of the minimum utility and maximum utility. For now let us just

keep it simple. We think stochastic utility model would be really suitable for

specifying portfolio choice errors. But the problem is, we do not have clear

idea to construct the likelihood function for a observed portfolio choice Ĉ.

This could be future work.

2.2.4 Random Preference Model

Random Preference theory (Loomes and Sugden 1995) might be a good way

to specify the errors in the sense that it captures the correlation of the two al-

locations. Notice that Random Preference theory is very different from what

we have done before where we assumed an implementation error. Instead

of assuming the actual implemented choice are stochastic, they assume that

preference function does not have determistic parameters but ones that are

stochastic. In our experiment, if we fit the MEU model, we have the set

of parameter S = [r, p
1
, p

2
, p

3
], which are the risk parameter and the three

lower bounds on probabilities. We assume r is stochastic while p are non-

stochastic. 16 Assuming the element r̂ for each decision choice is randomly

generated from a normal distribution N (r̄, σ), each set of observations of

choice Ĉj can be rationalised as

Sj = [r̂j, p1
, p

2
, p

3
] = U−1(Ĉ) (2.29)

here U−1 means the inverse function of U as defined in equation (2.8). For

65 problems, we calculate the mean and standard deviation of r, which we

16If we also assume the lower bounds are stochastic, then we have to assume all three are
as they are indifferent from each other. But we have 0 ≤ p1 and 0 ≤ p

1
+ p

2
+ p

3
≤ 1. It

would be difficult to implement as a two-allocation choice make the stochastic specification
very complicated.
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Figure 2.11: Optimal Allocations for different risk parameter

denote by r̄ and σr. The sum of the log-likelihoods function is written as

L =
65∑
j

log(f(r̂j, r̄, σ)) (2.30)

here f is the probability density function of normal distribution

f(r̂j, r̄, σ) =
1

σ
√

2π
e−

(r̂−r̄)2

2σ2

As we assume r ∈ N (r̄, σ2), there is no constraint on it so the specification

is less messy. But here is the problem. In order to use this model, the

optimisation function U needs to be invertible, that is there always exists

a risk parameter which can rationalise any given observed optimal choice.

Unfortunately for the optimisation function, which is based on either MEU,

EU or MV preference theory, cannot do this. Figure 2.11 on Page 98 shows

an example of the optimal allocation of MEU preference given different risk

parameters. We can see that in general, any point between the the lines

cannot be rationalised by the any risk parameters.
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2.2.5 Conclusion

In this chapter, we have discussed stochastic specifications for portfolio prob-

lems. There are two major possibilities of the stochastic specification. One

is to assume errors come from implementation. Another is to assume errors

come from evaluating the prospects. We have given a formal analysis for

the first possibility, both in the discrete and the continuous cae. We have

discussed the possibilities for the second possibility, and pointed out the their

advantages and difficulties of applications.

2.3 Experimental Analysis and Results

2.3.1 Introduction

In the experiment, we had 77 subjects. Each subject made 65 portfolio

choices C, with each choice containing two allocations c1 and c2. We use

four preference theories, α-Maxmin Expected Uitlity (α-MEU), Maxmin Ex-

pected Utility (MEU), Subjective Expected Utility (SEU), Mean-Variance, to

explain the data. We also use Safety-First (SF), which is a heuristic rule to

explain the data. We use two different error stories, which are the Biased

Beta-Binomial (BBB) specification and the Biased Beta (BB) specification.

We then combine different preference theories, including SF (which we de-

scribe below), combined with the two error stories to fit the data using Max-

imum Likelihood Estimation (MLE). BBB specification assumes the subjects

are calculating in integers and make errors in integers, and BB specification

assumes subjects are calculating continuously and also make continuous er-

rors. Table 2.7 shows the preferences theories we have estimated with BBB

or BB respectively. The reason why we do not combine α-MEU and SF with

BB is that it is very difficult to calculate the continuous optimal allocation.

In the experiment, as we have imposed the No-short-selling constraint, we

have no explicit solution for any objective function for any preference theories

other than EU. We have developed a reliable and precise algorithm for finding

the MEU optimal allocation building on the EU solution. We could develop a
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Table 2.7: Estimation Methods

BBB(discrete) BB (continuous)
Preference Theory α-MEU, MEU, EU, MV, SF MEU, EU

similar one for α-MEU and SF but it would be very difficult. We also do not

trust the purely numerical method, that is optimising the objective function

using the built-in optimisation routine in most mathematical software, be-

cause of the fact that the objectives functions for α-MEU and SF are kinked.

So we only use the Grid search method to find the integer optimal alloca-

tion for α-MEU and SF. And so they are only combined with the discrete

specification. The general idea for grid search is that we calculate the utility

for all possible allowable portfolio choices which can be implemented in the

experiment, which are 5151 sets, and pick out the one with the maximum

utility.

This section is organised as follows. In Section 2.3.2 I introduce the SF

rule. In Section 2.3.3 I demonstrate the algorithms for finding the optimal

allocation for α-MEU, ME, SEU,MV and SF using the Grid Search Method.

In Section 2.3.5, I compare the results of different preference theories and

error models using statistical tests. In Section 2.3.6 I present other interesting

findings in the estimation results. Section 2.3.7 concludes.

2.3.2 Heuristic Rule - Safety-First (SF)

At the end of each session of the experiment, we gave a short post-experimental

questionnaire to the subjects. Many of the subjects claimed that they fol-

lowed a two-step simple heuristic rule: first they make sure that the payoff

in each state is above a threshold; then they look for an allocation that max-

imises the payoff in the Green state. The green balls are half of the total

number in the Bingo Blower, so subjects are almost certain that the the prob-

ability for a Green ball to be chosen is the largest, though they do not know

the exact probability. We think this rule may come from subjects’ reaction

to ambiguity. For the first step, we think it suggests ambiguity aversion. For
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the second step, it does not necessary to be seen as ambiguity averse. Next

I present the formal construction of the SF rule.

The maximisation function is easy to explain with matrices. Remind ourselves

that C = [c1, c2] is a 1*2 matrix, which represents the the two allocations.

And the return table D is a 2 by 3 matrix, with each row giving the return

for the assets in the 3 states. In the experiment, we used colour Pink, Green

and Blue to present the three states. The colour Green corresponds to state

2, so its return is the second column in D. The payoff for a portfolio in

the three states is W = CD which is a 1*3 vector. So the payoff of a

portfolio for in state 2 is the second column in W. And that is the number

that subjects would like to maximise, with the constraints that each element

in W is bigger than w, which is the minimum payoff that subjects want to

keep.

C∗ = max{W(2)} s.t. W (i) ≥ w, i = 1, 2, 3 (2.31)

2.3.3 Grid Search Method of Finding Optimal Alloca-

tion

The general idea of the Grid Search Method is to calculate the utility of a

specific preferences theory for all possible portfolio choices and then choose

the one with the highest utility. It is reliable and efficient, when the size of the

choices is not too large. In our experiment, we have 5151 possible choices,

this method has proved to be more efficient than using the algorithms for

finding continuous optima. The former takes just 5% of the time of the

latter. We suspect subjects may also arrive at their portfolio choice also

based on the integers. To implement this method, first we work out the

set of portfolio choices C. The procedure is first let c1 = 0, then we have

c2 ∈ N100, which is any integer number from 0 to 100. We then repeat this

step with c1 = 1. Generally when c1 = i, then c2 ∈ N100−i. Then we save

all choices in a 5151*2 matrix file under the name C. Then we calculate the
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utility for ∀C ∈ C.17 As all possible utility values are there, it is easy to find

the the maximised one and the corresponding optimal allocation. We next

give the details for SF Optimal Allocation and state briefly the algorithms

for the remaining theories as they are similar to SF.

SF Optimal Allocation

Algorithm 5: Safety-First Optimal Choice

Input : w, C, D
// w: lower bound for payoff

// C: (5151*2 matrix) The set of all possible portfolio

choice in integers

// D: return table

Output: C∗ : Optimal Allocation

// calculate the payoff of 3 states for all allocations W:

5151*3 matrix

W = CD;

// check each row of W if there is any number less than

the lower bound. If so, assign the second element (the

payoff in green state) of that row as minus Infinity.

Doing so we eliminate this portfolio choice as it

violates the lower bound condition

W(any(W < w, 2), 2) = −Inf ;

// in the updated W find the highest number in second

column and read its index maxnum. We do not need to know

the highest number itself, so we use ∼ means we do not

need that value

[∼,maxnum] = max(W (:, 2));

// use the index to find the optimal allocation in C
C∗=C(maxnum,:)

The objective function for SF preferences is defined in function (2.31). The

general routine is as follows. First, for each portfolio choice Ci ∈ C, i ∈
17We could also write a loop for doing this instead of work out the set of portfolio

choices first. But in Matlab, it is always much efficient to use matrix calculation than
writing a loop is Matlab is designed for matrix calculation.
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N+
5151, we calculate the payoff for each 3 states. If for any C, there is a

state in which the payoff is less than the subjects’ lower bound w, then we

eliminate its possibility to be the optimal allocation. Then in the remaining

set, we look for the optimal allocation for which the payoff in state 2 is the

highest among all remaining portfolio choices. Notice here for calculating

the optimal allocation, the subject’s only parameter is the lower bound w.

Algorithm 5 on Page 102 shows the pseudo code for finding the optimal

allocation for SF rule in Matlab.

Notice SF is a rather simple heuristic rule. It differs radically from the rule

followed by a expected payoff maximiser. First, it assumes that the individual

has a required minimum portfolio payoff, no matter which state occurs. Sec-

ond individuals do not care about the probability weighted expected payoff.

They only maximise the payoff in the state that is most likely to happen. We

use the BBB stochastic specification because we solved the maximisation

problem in the discrete setting. So the parameters estimated are

SSF = SMV = [w, s1, b1, s1, s2]

where w is the minimum payoff s and b are the precision and bias parameters

for the two allocations. Notice that in both the BBB and BB specification,

we have 4 parameters s1, b1, s1, s2 to be estimated no matter what preference

theory we are assuming. We call these four parameters as error parameters

and other parameters, which are related to individuals’ preferences, as pref-

erence parameters. In the case of SF, there is only one preference parameter,

w.

EU, MEU, α-MEU

Grid Search in EU is straightforward. We calculate the expected utility ∀C ∈
C given subjects’ parameter set, the risk parameter r, and the subjective

probability vector P = [p1, p2, p3]
′
. Then we locate the optimal allocation as

that with the maximised utility.
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For MEU, we have an extra step compared with EU. Given the risk parameter,

and subjective probability lower bound vector P = [p
1
, p

2
, p

3
]
′
, we calculate

three expected utilities [U1, U2, U3] for each allocation based on three prob-

ability sets 18 and choose the minimum one which we call it minEU. Then

we repeat the step similar to EU, locating the optimal allocation with the

maximised minEU.

For α-MEU, we need one extra subject’s parameter α, which measures the

subject’s ambiguity aversion level. The difference from calculating utility

from MEU is that we take into acccount both minEU and maxEU, which is

the maximum in [U1, U2, U3] as follows

U = αminEU + (1− α)maxEU

The details are in Algorithm 4 on Page 59.

2.3.4 Estimation Method

The general procedure is as follows. We specify the parameter space S.

Then we search S ∈ S and use the preference parameters of it to calculate

its theoretical optimal allocations. Then we use the error parameters of it,

along with the theoretical optimal allocations using the appropriate error

specification to calculate the sum of the log-likelihoods. The optimal S∗ is

the one maximises the sum of the log-likelihoods. Table 2.8 summarises the

preference parameters estimated for each preference theory. Notice that for

EU and MV, though it seems we have to estimate p1, p2, p3, there are only

two free parameters as one of them is 1 minus the other two. Next I use

MEU (BB) as an example to illustrate the method. For MEU, the estimated

parameters is

SMEU = [p
1
, p

1
, p

1
, r, s1, b1, s1, b2]

18They are P1 = [1 − p
2
− p

3
, p

2
, p

3
]
′
, P2 = [p

1
, 1 − p

1
− p

3
, p

3
]
′
, P3 = [p

1
, p

1
, 1 −

p
2
− p

3
]
′
.
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Algorithm 6: Estimation for MEU preferences

Input : Dn, Cn where n ∈ [1, N ],e
Output: S∗ = [r, p1, p2, p3, s1, b1, s2, b2], L∗

special treatment of the first line;
for i = 1 to S do

choose a start point S1 ∈ S;
for n = 1 to N do

C∗ = fM(r, p1, p2, p3,D
n);

x∗1 = c∗1/e;
x∗2 = c∗1/e;

α1 = [ bi
2

+ (1− bi)x∗1](s− 1);

β1 = [1− bi
2
− (1− bi)x∗1](s− 1);

α2 = [ bi
2

+ (1− bi)x∗2](s− 1);

β2 = [1− bi
2
− (1− bi)x∗2](s− 1);

[c1, c2] = Cn;
lx1 = f b( c1−0.5

e
, α1, β1)− f b( c1−0.5

e
, α1, β1);

lx2 = f b( c2−0.5
e

, α2, β2)− f b( c2−0.5
e

, α2, β2);
ln = lx1lx2 ;

end

Li =
∑N log(ln);

choose the next point that Si+1 ∈ S;

end
Find L∗i = max{L};
[r, p1, p2, p3, s1, b1, s2, b2] = Si;

Table 2.8: Estimated Preference Parameters

Parameters Total number
EU p1, p2, r 3
MV p1, p2, r 3

MEU p
1
, p

2
, p

3
, r 4

α-MEU p
1
, p

2
, p

3
, r, α 5

SF w 1
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For the lower bounds on the probabilities we have

p1 + p2 + p3 ≤ 1

For the risk parameter, we let r > 0 as we assume risk aversion. For the bias

parameter we have 0 < b1 < 1, 0 < b2 < 1. And for the precision we have

s1 > 1 and s2 > 1. The parameter space S is the set that satisfies all these

constraints. For any S, we calculate the theoretical optimal C∗ first. By

denoting fM as Algorithm 3 on Page 53, we can calculate the MEU optimal

allocation for problem i ∈ N+
65.

C∗ = fM(r, p1, p2, p3,D, e) (2.32)

here D is the return table and e is the cash endowment for the problem i.

We repeat this step for ∀i ∈ N+
65. Then we read the actual portfolio choice

of each problem for one subject and calculate the sum of the log-likelihoods

use equation (2.19). We then search for S∗ that maximises the sum of the

log-likelihoods. Algorithm 6 on Page 105 summarises the method.

2.3.5 Preference Theory Comparison Results

Within one error specification, we compare the performance of nested pref-

erences theories using the Likelihood Ratio Test (LRT), which is a statistical

method for testing two nested models. Denote L0 as the sum of the log-

likelihoods of the null model and L1 as the sum of log-likelihoods of the

alternative model, we have the test statistic

T = −2((L1)− (L0))

The test statistic has a Chi-square distribution with degrees of freedom equal

to the difference in the number of parameters in these two models. We

have EU nested in MEU, and MEU nested in α-MEU. MEU has one more

parameter than EU and α-MEU has one more parameter than MEU and

α-MEU has two more parameter than EU. So the corresponding degrees of

freedom are 1, 1 and 2. We have 77 subjects, so we compare each subject’s
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Table 2.9: Likelihood Ratio Test Result comparing EU, MEU and α-
MEU

A : Five percentage significance level
BBB BB

MEU v EU 21 (27%) 14 (18%)
α-MEU v MEU 10 (12%) ∼
α-MEU v EU 17 (22%) ∼

α-MEU+MEU v EU 23 (32%) ∼

B : One percentage significance level
BBB BB

MEU v EU 19 (25%) 13 (17%)
α-MEU v MEU 9 (12%) ∼
α-MEU v EU 14 (18%) ∼

α-MEU+MEU v EU 20 (26%) ∼

sum of log-likelihoods and calculate the test statistic. For a 5% significance

level test, the p-values for Chi square test at 1 and 2 degree of freedom are

3.84 and 5.99. For a 1% significance level test, the p-values for Chi square

test at 1 and 2 degree of freedom are 6.63 and 9.21. In the BB specification,

we have not fitted α-MEU using the data, so we only test MEU against EU.

The results are summarised in Table 2.9 on Page 107. In each entry, the

first number is the number of subjects for who the fit is significantly better,

while the second number is its percentage out of the 77 subjects. It seems

that neither MEU nor α-MEU are particularly better than EU if we consider

the percentages of the subjects. But as we analyse the data individually, we

may want to interpret that result as that most subjects seems to have EU

preferences and a small proportion of subjects are sophisticated enough to

have MEU and α-MEU preferences. At the five percentage significance level,

15 subjects are significantly better both in MEU and α-MEU, which means

there are 21 + 17− 15 = 23 (32%) in total subjects are significantly better

explained by ambiguity preference. This number at the one percentage level

is 20 (26%). It means one third of the total subjects seem to have multiple

priors.

We compare the performance of non-nested theories using the Clarke Test
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(Clarke 2007) 19. The Clarke test is a distribution-free test used for comparing

non-nested models. For example, if we compare the EU with SF, the null

hypothesis is

H0 : P (L1 − L2 > 0) = 0.5

here L1 denotes the individual log-likelihood (the log-likelihood of each 65

problems, which is calculated by the estimated parameters) of EU and L2

denotes the log-likelihood of SF. The test statistic is the

T =
65∑
i

Ii(L1 − L2) (2.33)

here

Ii =

1, L1 − L2 > 0

0, L1 − L2 ≤ 0

The test statistic is T ∼ Bin(65, 0.5). Under a 5% significance level, the

condition (for an upper tail test) of rejecting the null hypothesis is T ≥ 40.

For example, if for one subject, T = 42 > 40, then we can reject the null

hypothesis. We say EU is significantly ‘better” than SF at 5% significance

level. Table 2.10 on Page 109 summarise the tests results. Notice we have

not corrected the log-likelihood using the number of parameters. From Table

2.10, EU, MEU and α-MEU seem to fit better than SF for the majority of

the subjects, though they do have more parameters than SF (See Table 2.8

on Page 105). EU and MEU seems to fit better than MV. It is not surprising

to get this result considering we only have three states for the ambiguous

assets. d’Acremont and Bossaerts (2008) suggest Mean Variance preferences

are more likely to be adopted by the human brain when the number of states

is increasing.

19In the paper, Clarke suggests correcting the test statistic by adding a factor of the
number of parameters of the two competing models. We think it is vicious. If we do so,
the individual corrected log-likelihoods of SF are always bigger than those of the other
theories as it has only 1 preference parameter.
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Table 2.10: Clarke Test Result

Comparison between SF and EU, MEU α-MEU
EU v SF MEU v SF α-MEU v SF

EU � SF SF � EU MEU � SF SF � MEU α-MEU�SF SF �α-MEU
55% 8% 56% 10% 58% 4%

Comparison between MV and EU, MEU, α-MEU
EU v MV MEUv MV α-MEU v MV

EU � MV MV � EU MEU � MV MV� MEU α-MEU�MV MV�α-MEU
42% 19% 49% 7% ∼ ∼

2.3.6 Estimation Results concerning beliefs about prob-

abilities

Even though the subjects do not know the exact number of balls of each

colour, the results suggest that they on average do a good job of guessing

the true values but there is considerable variation. We put 15 pink balls, 30

green balls and 15 blue balls into the Bingo Blower, so the corresponding

probabilities are 0.25, 0.5 and 0.25. Figure B.1 on page 116 shows the

histogram of the three estimated probabilities in the EU (BBB) estimation.

On average, the estimated probabilities for each colour in the same order are

0.28, 0.49 and 0.23. Figure B.6 on page 121 shows the estimation results

for the lower bounds of probabilities in the three states in the MEU(BBB)

estimation. Figure B.7 on page 122 shows the estimation results for the sum

of the lower bounds of probabilities in the MEU (BBB) estimation. Figure

B.8 on page 123 shows the estimation results for probabilities in three states

in the MV (BB). The average estimated probabilities for the three colours

are 0.26 0.50 and 0.24, which are even better than EU (BB) in terms of the

closeness to the true probabilities. Table 2.11 A on Page 110 summarises

the estimation results on the (lower bounds of the) probabilities in the BBB

specification. In the BB specification, the results are quite close as in the

BBB specification except the there is a divergence in EU preferences. Table

2.11 B on Page 110 summarise the estimation results on the (lower bounds

of the) probabilities in the BB specification. It is interesting to find that even
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Table 2.11: Estimation Results of Priors

A : BBB specification
Pink(0.25) Green(0.5) Blue(0.25) sum

EU 0.29 0.52 0.19 1
MEU 0.24 0.46 0.18 0.88
α-MEU 0.22 0.45 0.10 0.77

MV 0.26 0.50 0.24 1

B : BB specification
Pink(0.25) Green(0.5) Blue(0.25) sum

EU 0.28 0.49 0.23 1
MEU 0.25 0.47 0.17 0.89
MV 0.26 0.50 0.24 1

though there is a big disparity among the subjects of the estimation of the

lower bounds, on average they guess the probabilities quite well. This is also

a big disparity among the subjects concerning the sum of the three lower

bounds as shown in Figure B.4 on Page 119 and B.7 on Page 122.

2.3.7 Conclusion

In this section, we fit different preference theories to the experiment data.

The statistics suggests that multiple priors preferences (MEU and α-MEU)

fit better than EU for one third of the subjects. Subjects have heterogeneous

beliefs about the (lower bounds of the) probabilities but on average do a job

at guessing the probabilities. EU and MEU fit significantly better than MV

in the majority of subjects. EU, MEU, α-MEU seems to fit better than SF

if we do not consider the number of parameters.
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A Experimental Instruction

There are the Instructions given to the subjects in the experiment.
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Instructions 

 

Preamble 

Welcome to this experiment. Thank you for coming. These instructions are to help you to understand 

what the experiment is about and what you are being asked to do during it. The experiment gives you 

the chance to earn money, which will be paid to you in cash after you have completed the experiment. 

The payments described below are in addition to a participation fee of £2.50 that you will be paid 

independently of your answers. 

The Bingo Blower 

At the back of this laboratory you will see a Bingo Blower. You can inspect the Blower at any time that 

you want.  At the front you will see the projections of the Bingo Blower.  In it, as you will see, there are 

balls of three different colours – Pink, Green and Blue – which are being blown around inside the 

Blower. After you have responded to the various problems in the experiment, you will go to the Bingo 

Blower and you will activate a mechanism which will expel one ball from the Bingo Blower. The colour of 

this one ball, combined with your answer to a randomly chosen one of the problems during the 

experiment, will determine your payment for taking part in this experiment – as we describe below.  

Payment 

At the end of the experiment, one of the 65 problems will be picked at random by your picking at 

random a lottery ticket from a set of such tickets numbered from 1 to 65. We will then look at what you 

did on that problem (your allocation to Asset 1, your allocation to Asset 2 and your experimental money 

remaining). You will then go to the Bingo Blower and you will eject one ball. The colour of that ball will 

determine your payment, because it will determine the payments on the two assets. You will be paid in 

cash and then we will ask you to sign a receipt and to confirm that you participated voluntarily in this 

experiment. Then you will be free to go. 

 



The Problems 

This experiment is a simulated investment game. The experiment consists of 65 different problems. In 

each problem, you will be endowed with 100 units of experimental money, and you can use it to buy 

two assets. The price of each asset is 1 unit of experimental money. You do not need to spend all of your 

endowment on the assets, and you cannot borrow any experimental money to buy the assets. Any 

experimental money not allocated to the two assets will remain as experimental money. We call an 

allocation of your 100-unit endowment of experimental money between the two assets and 

experimental money a portfolio decision. The computer software will tell you for any given portfolio 

decision the payoff you would get for each of the three colours.  

There are three different possible states (Pink, Green, and Blue) that could happen and each of the 

states gives a payoff to each asset. For each problem, the possible payoffs for the two assets are 

different. You will get this information in a payoff table when you start each problem. An example is 

given here: 

 Pink Green Blue 

Asset 1 1.2 0.6 1.6 

Asset 2 0.5 1.3 1.4 

 

The colour will be decided by one draw from the Bingo Blower – as we have described. If the payoff 

table for the randomly selected problem is that above, then for every unit of Asset 1 that you bought in 

that problem you will be given 1.2 units of experimental money if the ball drawn is Pink, 0.6 units if the 

ball drawn is Green and 1.6 units if the ball drawn is Blue; similarly for every unit of Asset 2 that you 

bought in that problem you will be given 0.5 units of experimental money if the ball drawn is Pink, 1.3 

units if the ball drawn is Green and 1.4 units if the ball drawn is Blue. As we have already said any units 

of experimental money that you kept in that problem will remain as experimental money.  

Continuing with the example above, if your portfolio decision in this problem was to buy 40 units of 

Asset 1 and 30 units of Asset 2 (thus keeping 30 units of experimental money as experimental money) 

then you would end up with 93 ( = 40*1.2 + 30*0.5 + 30) units of experimental money if a Pink ball is 

drawn, 93 ( = 40*0.6 + 30*1.3 + 30) if a Green ball is drawn and 136 ( = 40*1.6 + 30*1.4 + 30) if an Blue 

ball is drawn: 

Pink Green Blue 

93 93 136 

 

If instead you had decided to buy 60 units of Asset 1 and 40 units of Asset 2 (thus having no units of 

experimental money left) then you would end up with 92 ( = 60*1.2 + 40*0.5 + 0) units of experimental 



money if a Pink ball is drawn, 88 ( = 60*0.6 + 40*1.3 + 0) if a Green ball is drawn and 152 ( = 60*1.6 + 

40*1.4 + 0) if an Blue ball is drawn. Notice that you do not need to calculate these payoffs as the 

computer will tell you the payoffs for each of the three states. The experimental money that you end up 

with will be converted into real money (which you will be paid in addition to the £2.50 show-up fee) at 

the rate of 12 units of experimental money equal to £1 in real money. 

How you express your desired purchases 

When you start each problem you will see a triangle with red sides on the screen. When you move the 

cursor into the screen you will see that each particular point in the triangle represents an allocation of 

your 100-unit endowment of experimental money to the two assets and to residual experimental 

money. This will be written alongside the triangle. The horizontal distance from the left hand side 

indicates the number of units of Asset 1; the vertical distance from the bottom indicates the number of 

units of Asset 2; the residual amount of experimental money is written beside the triangle. You can see a 

Portfolio Table on the screen that shows the amounts for two assets and experimental money when you 

move your cursor inside the triangle. For example, if you put the cursor at the bottom corner of the 

triangle (actually the mouse cursor is always starting at this point which represents your initial 

situation), this represents buying zero of both assets: the bottom-right hand corner represents spending 

all the endowment on Asset 1; the top-left hand corner represents spending all the endowment on 

Asset 2; and the middle of the triangle represents spending one-third of your endowment on Asset 1, 

one-third on Asset 2 and keeping one-third in the form of experimental money.  Move the cursor around 

until you see your desired allocation. Then double click with your mouse to make this choice. You 

will be asked to confirm your decision, though you can change it if you wish by clicking on ‘No’. 

How Long the Experiment Will Last 

Because it is in your interest to consider the problems carefully, we are imposing a minimum time of 30 seconds 

for your answer on any problem; you cannot go onto the next problem until these 30 seconds have elapsed. We 

are also imposing a maximum time of 180 seconds; if you do not answer and confirm you decision in these 180 

seconds, we will assume that your allocation to each of the two assets is zero. 

We estimate that the experiment will take at least 60 minutes of your time. You can take longer and it is clearly in 

your interests to be as careful as you can when you are answering the questions.  

Enrica Carbone 
Xueqi Dong 
John Hey 
May 2013 
 



115

B Experimental Results
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Figure B.1: Estimated probabilities for EU(BBB)
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Figure B.2: Estimated lower bound of probabilities for MEU(BBB)
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Figure B.3: Estimated lower bound of probabilities for α-MEU(BBB)
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Figure B.4: Estimated sum of lower bound for MEU(BBB) and α-
MEU(BBB)
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Figure B.5: Estimated probabilities for EU(BB)
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Figure B.6: Estimated lower bound of probabilities for MEU(BB)
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Figure B.7: Estimated sum of lower bound of probabilities for
MEU(BB)
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Figure B.8: Estimated lower bound of probabilities for MV(BB)

Pink (p1 = 0.25, p̂1 = 0.26)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

Green (p2 = 0.5, p̂1 = 0.50)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Blue (p2 = 0.25, p̂1 = 0.24)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8



Chapter 3

Error Stories and the Estimation

of Preference Functionals using

3-Way Allocation Data

1

3.1 Introduction

Experimentalists are increasingly using allocation problems to make infer-

ences about subjects’ preferences – the reason being that allocation prob-

lems appear more informative than other types of problems - such as pairwise

choices, Holt-Laury price lists and the Becker-DeGroot-Marschak mechanism.

At the same time some experimentalists are broadening the type of alloca-

tion problem, moving from allocations over just two events to allocations

over more than two, again to get more information from experiments. Even

with just two allocations, the issue of the error process is already interesting;

going to allocations over more than two increases the interest as well as the

1This chapter is joint written with John Hey as a result of join research. It is an on
going project.
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complexity of the problem. This paper examines some of the various possi-

bilities and solutions. It also carries out a simulation exercise to investigate

the problems caused by using the wrong stochastic specification.

3.2 The decision Problem

Consider a 3-way allocation problem, in which subjects are asked, in a se-

ries of problems (one of which will be randomly selected at the end of the

experiment to determine the subject’s payment) to allocate a given quantity

of tokens between three risky events, with given exchange rates between to-

kens and money for each state, and with given probabilities for each state.

Denote by m the quantity of tokens to allocate, by e1, e2 and e3 the three

exchange rates, and by p1, p2 and p3 the three probabilities. Let x1, x2 and

x3 denote the three allocations (where x1 +x2 +x3 = m), then, assuming an

Expected Utility maximiser, the subject’s decision is to choose the allocations

to maximise p1u(e1x1) + p2u(e2x2) + p3u(e3x3) subject to the constraint.

The first-order conditions are pieiu
′(eix

∗
i ) = λ, for i = 1, 2, 3, where λ is

the Lagrangian multiplier and the asterisk denotes the optimal allocation.

After making all the allocations, one of the problems is chosen at random, a

random device is invoked (with the specified probabilities for that problem)

and the subject paid the money equivalent (given the exchange rates of that

problem) of the number of tokens allocated to that state by that subject.

From the experiment are obtained observations of the allocations that sub-

jects actually made. These observations will be used to infer the preference

functions of the subjects. Specifically it might be the case that is desired to

infer whether these preferences are CARA (Constant Absolute Risk Averse)

or CRRA (Constant Relative Risk Averse); it also desired to infer their de-

gree of risk aversion. This latter is captured by the parameter r of the utility

function. The two functions are as follows:

CARA u(w) =


−e−rx r > 0

x r = 0

e−rx r < 0
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here if r is positive, zero, negative, then the individual is risk-averse, risk-

neutral, risk-loving.

CRRA u(w) =


xr r > 0

ln(x) r = 0

−xr r < 0

here if r is less than, equal to or larger than 1, then the individual is risk-

averse, risk-neutral, risk-loving. For either preference functional and for any

value of the parameter r we can find the optimal unconstrained allocations.

These are specified in Appendix C on Page 138. It will be seen there that with

the CARA specification there is a problem in that the optimal unconstrained

allocations may be negative or may exceed the amount to be allocated.

Clearly in an experiment we cannot allow subjects to make allocations such

that they may lose money as a consequence. So we have to tell the subjects

that they cannot make negative allocations: they will be implementing their

optimal constrained allocations. That is what will be observed. Again details

are given in Appendix C. These problems do not arise with the CRRA spec-

ification as the optimal unconstrained allocations necessarily strictly satisfy

the non-negativity constraints, as Appendix C makes clear.

3.3 Error Specifications

Now we come to the meat of the chapter – the stochastic specification. It

is clear that subjects make mistakes when taking their decisions, and do not

precisely implement the optimal (constrained or unconstrained as appropri-

ate) allocations. Their actual allocations depart from these in some way.

We need an error story for our estimation (which will be by means of Max-

imum Likelihood estimation). The stochastic assumptions underlying this

estimation embody a story about the error process.

The reader should be warned that there is a lot of technical detail in what

follows, but it is important. We want to somehow capture the process fol-

lowed by the subjects in arriving at their actual allocations - to try and get
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inside their minds. What we presume, in keeping with all tests of economic

theories, is that subjects do have some preference functional (which we are

assuming is deterministic, so we are excluding random preference stories in

what follows), and that they try and optimise it. We assume that subjects

calculate their (constrained) optimal allocations with error - so that the error

is ‘added into’ the actual (constrained) allocations. We note that in most

experiments subjects are usually restricted to discrete allocations, so that the

data we have is discrete, and it is an interesting question as to whether sub-

jects do this discretisation before or after errors are ’added’. In what follows

we assume that subjects first arrive at continuous allocations with error and

then discretise them. Different error stories2 would be needed if subjects first

discretise their optimal (constrained) allocations before the error is ‘added

in’.

We presume that these errors are built ‘on top of’ the optimal constrained

allocations, rather than on the optimal unconstrained allocations3. In this

context one cannot do as many people do – just add on a normally dis-

tributed error term to the optimal allocations to get the actual allocations –

because the implied actual allocations might then violate the non-negativity

constraints. However, we can use the fact that the optimal (constrained if

necessary) allocations must lie between 0 and m (the amount to be allo-

cated). So the proportions x∗i /m must lie between 0 and 1. This suggests

one obvious error story: that the actual proportions xi/m have beta distri-

butions centred on the optimal allocations x∗i /m. The way to achieve this

has been used by Hey and Pace (2014). If we take xi/m to have a beta

2Obvious contenders here are a beta-binomial distribution, a beta-binomial with bias
(the meaning of which will become clearer later) and a two-beta-binomial (again the
meaning of which will become clearer later).

3It is difficult to conceive of subjects making errors in their unconstrained allocations
and then somehow adding error into them.
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distribution4 with parametersαi = x∗i (si − 1)/m

βi = (m− x∗i )(si − 1)/m
(3.1)

then the mean of xi/m is x∗i /m and its variance is x∗i (m− x∗i )/(m2si), and

hence it follows that the mean of xi is x∗i and its variance is x∗i (m− x∗i )/si.
There is no bias in the allocations. Here the parameter si is an indicator

of the precision of the subject in taking decisions – the higher the more

precise. Note also that this variance expression implies that the spread of

the distribution of xi is smaller the closer that x∗i is to its bounds; this seems

a natural behavioural assumption: subjects make smaller errors towards the

bounds.

But we have three allocations. We can ignore one as they must add up to

m. Let us concentrate on allocations 1 and 2. The above method works for

each of the other two individually, but, if we apply it to two of them at the

same time, there is no guarantee that x1 + x2 ≤ m. If this is not true it

would imply that x3 < 0, which is not allowed by the rules of the experiment.

There are two ways to proceed at this point: first, one can simply ignore the

cases in which x1 + x2 > m; second, one can devise an error story for which

it is guaranteed that x1 + x2 ≤ m. This latter is what we do here. To do

this, we use the fact given x1, x2 needs to lie between 0 and m− x1. So let

us first assume that x1/m has a beta distribution with parametersα1 = x∗1(s1 − 1)/m

β1 = (m− x∗1)(s1 − 1)/m
(3.2)

which guarantees that the mean of x1 equals x∗1 and its variance equals

x∗i (m − x∗i )/s1; and then assume that x2/(m − x1) has a beta distribution

4A beta distribution with parameters α and β lies in [0,1] and has mean
α

α+ β
and

variance
αβ

(α+ β)2(α+ β + 1)
.
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with parametersα2 = x∗2(s2 − 1)/(m− x∗1)

β2 = (m− x∗1 − x∗2)(s2 − 1)/(m− x∗1)
(3.3)

This would imply that the mean of x2/(m−x1) would be equal to x∗2/(m−x∗1)

and its variance would be equal to

x∗2(m− x∗1 − x∗2)(s2 − 1)2

(m− x∗1)2(s2 − 1)2s2

=
x∗2(m− x∗1 − x∗2)

(m− x∗1)2s2

;

and hence the mean of x2 is equal to x∗2(m−x1)/(m−x∗1) while the variance

of x2 is x∗2(m − x∗1 − x∗2)(m − x1)2/[s2(m − x∗1)2]. Note that the nice

properties of the variance are still preserved and that s2 remains a measure

of the precision of the subject 5. It might appear from the result on the mean

of x2 that it is biased – but this is conditional on the value of x1 and it, in

turn, is unbiased, so that the unconditional mean of x2 is indeed equal to x∗2.

Behaviourally it seems reasonable to assume that the (distribution of the)

error on x2 depends on x1, which is what the above specification implicitly

assumes and implies. Note that this method guarantees that x1 + x2 ≤ m

and hence that x3 ≥ 0.

This error specification is appropriate for when the preference functional is

CRRA – since the optimal allocations are strictly between 0 and m, and so

the error distributions are not degenerate. When we combine CRRA with

this error specification we will refer to this combination as Specification 1.

However there are problems with this error specification with CARA since the

optimal unconstrained allocations may lie outside this interval and therefore

the optimal constrained allocations may lie on the bounds. It will be clear

from the above that if x∗i is equal to either 0 or m then the variance of xi is

zero and its distribution is degenerate at the bound. Implicitly this specifica-

tion implies that subjects do not make mistakes at the bounds. So this model

cannot rationalise any observation inside the bounds in the cases where the

optimal constrained allocation is at a bound. We suspect that subjects may

5In what follows we will put s1 = s2 as there seems to be no reason why subjects
should be more precise on one state than on the other.
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still make errors even at the bounds, and, to cover such case, propose the

following two specifications. We note that one important criterion is that

the sum of the three actual allocations must be m.

Specification 2 ‘beta with bias’

Here we assume a beta distribution as above but with bias. We define

variables x′i = bim/3 + (1− bi)x∗i and replace x∗i in the above with x′i. Here

the parameters bi are bias parameters. If bi = 0 then there is no bias; but if

bi > 0 there is bias, which depends upon the value of x∗i . If x∗i = m/3 once

again there is no bias, so the bias increases away from the equal division. We

note that here, even if the value of x∗i is at a bound the distributions of the

xi are not degenerate, so we may observe a non-zero actual allocation even

though the optimal allocation is zero.

Specification 3 ‘two betas’

In this we continue to use Specification 1 when the optimal allocation is

within the bounds, but we add in a special case - when the x∗i is 0 (or m).

When x∗i is 0 we assume that the actual allocation is beta with parameters

1 and d so that xi has mean 1/(1 + d) and variance d/[(1 + d)2(d + 2)].

When x∗i is 1 we assume that the actual allocation is beta with parameters d

and 1 so that xi has mean d/(1 + d) and variance d/[(1 + d)2(d+ 2)]. But

we also need to take into account the fact that the actual allocations sum

to m. There are various cases that we need to consider:

• If all of the x∗i are positive, then we do as in Specification 1.

• If one of the x∗i is m (and hence the other two are zero), then we

generate the corresponding xi as Beta(1, d); this will be less than m,

and we make the other two allocations equal to half of (m− xi).

• If one of the x∗i is zero and the other two positive, we have three cases.

Let us take just one of them – when x∗1 = 0, x∗2 > 0 and x∗3 > 0 –
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the other two cases are treated symmetrically. In this case we make

the actual allocation x1 to be beta with parameters 1 and d, and then

make the allocation x2/(m− x1) to be beta with parametersα2 = x∗2(s2 − 1)/(m− x∗1)

β2 = (m− x∗1 − x∗2)(s2 − 1)/(m− x∗1)
(3.4)

This guarantees that x1 + x2 ≤ m.

3.4 A simulation study

Some econometricians who analyse experimental data – particularly Wilcox

(2008) – feel that the error specification may be more important than the

preference functional. Wilcox has extensively investigated and compared dif-

ferent error stories in the context of an experiment involving pairwise choices.

To see whether his results – which show that the error specification is a cru-

cial decision variable for the experimenter – carry over to our (allocation)

context, we report on simulation results that we have generated.

The simulation was conducted as follows We have the three stochastic spec-

ifications described above. We examine the estimation results obtained from

the 9 pairwise combinations of the three true error specifications with the

three assumed-true (estimated) specifications. This will enable us to see if

the inferences drawn are very different if we use the wrong stochastic spec-

ification. Clearly the results from any such simulation may be sensitive to

the underlying parameters, so the simulations have been carried out with a

number of different parameter sets. These parameters are those relating to

the preferences of the subjects and the precision and bias in their responses.

The preferences we take to be either CRRA or CARA with risk aversion index

denoted by r in both cases. The implied utility functions that we use are

those stated above.

In the simulation we normalise by putting the value of m equal to 1, so that

these functions span the range from 0 to 1. For a CRRA subject, a value of



132

r greater or equal to 1 indicates a subject who is risk-loving or risk-neutral;

for such subjects their optimal decision is simple – to allocate everything to

the state i for which piei is the greatest. Clearly we are not going to get any

information about their value of r if it is greater than 1. For a CRRA person

the value r can be zero or negative, in which cases the function takes different

forms. We restrict attention to positive values of r (between 0 and 1) as

this covers a range of reasonably risk-averse subjects. Those with negative

values of r are very risk-averse. For CARA subjects, roughly the same range

of risk attitudes is captured by letting r range from 1 to 5, though one cannot

strictly compare the risk attitudes of the two types of subjects. For a CARA

person the value of r can be zero or negative, in which cases once again the

function takes different forms. If r is zero the subject is risk-neutral and if

r is negative the subject is risk-loving; once again we would not be able to

discriminate between different degrees of risk-loving. Note that with CRRA

an increase in r implies less risk-aversion while for CARA an increase in r

implies more risk-aversion. Our sets of parameters are listed in Table D.1

on Page 141 . There are 10 different parameter sets in two blocks of 5: the

same set of risk-aversion parameters are in the two blocks and the blocks

differ in their precision – the amount of noise in behaviour – the second block

is more precise. Within a block risk-aversion increases throughout the block

for both CRRA and CARA. Although, as we have already noted, there is no

strict mapping between a value of r for a CRRA subject and the value of r for

a CARA subject, we have chosen the parameter values so that the highest

value of r for the CRRA subjects implies roughly the same (low) amount of

risk-aversion (concavity) as the lowest value of r for the CARA subjects, and

so that the lowest value of r for the CRRA subjects implies roughly the same

(high) amount of risk-aversion (concavity) as the highest value of r for the

CARA subjects. Figure 3.1 shows the implied utility functions for both the

least risk-averse and the most risk-averse simulated subjects for both CRRA

and CARA; Table 3.1 is a rough mapping between a value of r for a CRRA

subject and the value of r for a CARA subject, though we should emphasise

that the mapping is not precise.

We ran the simulations on 72 different allocation problems (combinations of

p1, p2, p3, e1, e2 and e3). These are listed in Table D.2 on Page 142. As
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Figure 3.1: The utility functions implied by the lowest and highest risk
aversion indices

CRRA with r = 0.9 (low
risk-aversion)

CRRA with r = 0.1 (high
risk-aversion)

CARA with r = 1 (low risk-
aversion)

CARA with r=5 (high risk-
aversion)

CRRA r CARA r
0.9 1
0.7 2
0.5 3
0.3 4
0.1 5

Table 3.1: Rough mapping from CRRA r to CARA r
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will be seen there is a range of possible values for all of these. We assume

that all states are treated equally, given their probabilities, and hence that

there is no psychological bias towards or away from particular states6. The

set of problems was chosen to span as much of the state space as possible,

so we might expect a variety of behaviours from different subjects7. Mirror-

ing what is done in experiments, we restricted the number of decimal places

in the stated allocations to 2 – exactly as if the total number of tokens to

allocate was 100 and subjects had to choose integer allocations. This has an

effect, as we will see, on the inferences drawn. A total of 10008 simulations

was implemented; the means and the standard deviations of the estimated

parameters r and s, (for all three Specifications), b (for Specification 2) and

d (for Specification 3) are presented in Table D.3 through Table D.6 from

Page 143 to Page 146 with the standard deviation in italics under the corre-

sponding mean. These tables are arranged in 10 blocks, each corresponding

to a particular one of the 10 parameter sets. The means and standard de-

viations of the maximised log-likelihood are presented in Table D.7 on Page

147, with, again, the standard deviations are in italics. We should note that

no specification is nested inside any other. It might look on the surface the

Specification 2 is nested inside Specification 1 when b = 0, but the for-

mer specification involves CARA preferences while the latter involves CRRA

preferences. Similarly it might look as if Specification 3 is nested inside Spec-

ification 1 when d = ∞, but, once again, the former specification involves

CARA preferences while the latter involves CRRA preferences. We begin by

looking at Table D.3, which reports the means and standard deviations of

the risk-aversion parameter r. Looking down the main diagonal of each block

we see that everywhere the mean estimated parameter is close to the true

value – as one would expect: if one uses the correct specification one should

recover the true preferences, though the CRRA estimated values seem to be

closer to the true values than the CARA estimated values9. However it is the

off-diagonal elements that are most interesting and informative as these tell

6Perhaps because of their representation.
7Actually one of the purposes of this simulation exercise was to enable us to choose a

‘good’ problem set for use in a future experiment.
8Matlab was used for the simulations; the program is available on request.
9Though it seems to be never the case that the mean r value are significantly different

at 1% from their true values.
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Figure 3.2: An example of mis-specification

CRRA with r = 0.9 (low
risk-aversion)

CRRA with r = 0.1 (high
risk-aversion)

us about the dangers of misspecification10. Care must be exercised however,

since the r for CRRA means something different from an r for CARA. For

example, look at Parameter set 1 (the first block) when the true specification

is CRRA with r = 0.9 and when specification 2 is used for estimation, the

mean estimated value of r is 0.634. Figure 3.2 on Page 135 illustrates (where

the true model is CRRA with r = 0.5 and the estimated model is CARA un-

der Specification 2 (where the mean estimated CARA is 1.948)); while one

cannot say that the two functions are the same, they are similar. The same is

true elsewhere. Precisions, however, are comparable; examine Table D.4 on

Page 144. Again along the main diagonal of each block the mean estimated

precision is close to the true precision, though the standard errors are quite

large. This latter is a consequence of the likelihood function being rather

flat along towards its minimum, indicating that differences in precision do

not make a big difference to behaviour. The off-diagonal elements, however,

do depart quite sharply from the true values. As a general rule, though it is

not always the case, the estimated precision is less than the true precision.

This is an interesting result which suggests that mis-specification might lead

to an under-estimation of the precision of the subjects. The results for the

10Note that in some cases the mean estimate of r is 0.01 (and the standard error is 0);
these are cases when the estimate hit its lowest bound (specified as 0.01) in all simulations;
this lower bound was there to stop the software crashing if s reached zero. Perhaps a
lower lower-bound might have been appropriate.
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bias b parameter in Table D.5 on Page 145 are interesting. This is appro-

priate only when the estimated specification is Specification 2. When the

true specification is Specification 1 the estimates of b are close to their true

values but occasionally depart significantly from them. When the true value

of b is zero, the estimated values are not significantly different from zero.

The estimates of the d parameter in Specification 3 appear reasonable as

Table D.6 on Page 146 shows. This is appropriate only when the estimated

specification is Specification 3. It is it interesting to note, however, that

for the parameter sets with higher risk aversion, the estimated values of d

for true Specification 1 are ’well below’ (if that means anything) their true

value of ∞. Finally we examine Table D.7 which reports the means and

standard deviations of the minimised negative log-likelihoods. We feel that

these log-likelihoods are comparable across specifications. What we had ex-

pected was that the entries down the main diagonal of each block would

be the smallest in each row (remember that these numbers are the negative

of the minimised log-likelihood) – indicating that if one chooses between

specifications on the basis of the maximised log-likelihoods, then one would

always correctly identify the true specification. But that is not true. Take

the rows where Specification 1 is the true specification. Everywhere Specifi-

cation 3 has the lowest (negative) log-likelihood; it is almost the same when

Specification 2 is the true specification. There appears to be a systematic

bias: experimentalists could be wrongly led to believe that Specification 3 is

the true specification even when it is not. This is rather worrying. But the

reasons are clear and it is to do with our recurring issue about the bounds on

the optimal allocations. It is also to do with the fact that actual allocations

were rounded to two decimal places11. Examine Table D.8 on Page 148.

This displays the optimal allocations for CRRA and CARA – in the first 6

columns to 7 decimal places and in the last 6 columns to just 2. Of particular

importance are the ’0’s and ’1’s. It will be noted that, to 7 decimal places,

where there is a ’0’ in the CARA columns, there is (but this is just to 7 dec-

imal places) a positive number in the CRRA columns; similarly where there

is a ’1’ in the CARA columns there is (but this is just to 7 decimal places)

11The reason for that, as we have mentioned before, is that in experiments subjects
are not allowed to express allocations to any number of decimal places, and usually, for
example, when the amount to allocate is 100, they are restricted to integer allocations.
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a number less than 1 in the CRRA columns. However when the number of

decimal places is cut to 2, there are usually ’0’s and ’1’s in the same place.

As a consequence the estimation procedure gets confused as to whether the

true preferences are CRRA or CARA. In addition, Specification 3 tells a nice

story about what happens at the bounds – a story different from that told

elsewhere.

3.5 Conclusions

The messages that this study suggest are negative in some ways and pos-

itive in others, though this depends on your perspective. If you are solely

interested in getting an idea as to the magnitude of the risk-aversion of the

subjects, then the message seems to be that the specification is relatively

unimportant. If, however, you are interested in the precision of the subjects,

then it would appear that the specification is important – getting it wrong

can lead to systematic under-estimates of the precision. One might also get

wrong the bias of the subjects. But the really negative, and surprising, result

is that choosing the ‘best’ specification on the basis of the best log-likelihood

can seriously lead you astray. But if you are only interested in estimates of

risk-aversion, it might not matter. Perhaps there is a moral here – if ex-

perimentalists are really concerned about deciding whether preferences are

CRRA or CARA, they ought to let subjects express their allocations to more

decimal places.
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C The optimal allocations

CARA

Unconstrained

x∗1 = {rme2e3 − e2ln(p3e3/p1e1)− e3ln(p2e2/p1e1)}/d1

x∗2 = {rme3e1 − e2ln(p3e3/p2e2)− e3ln(p1e1/p2e2)}/d1

x∗3 = {rme1e2 − e2ln(p1e1/p3e3)− e1ln(p2e2/p3e3)}/d1

where d1 = r(e2e3 + e3e1 + e1e2.

Constrained 1

x∗1 = 0

x∗2 = {rme3 − ln(p3e3/p2e2)}/d2

x∗3 = {rme2 − ln(p2e2/p3e3)}/d2

where d2 = r(e2 + e3).
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Constrained 2

x∗1 = {rme3 − ln(p3e3/p1e1)}/d3

x∗2 = 0

x∗3 = {rme1 − ln(p1e1/p3e3)}/d3

where d3 = r(e1 + e3).

Constrained 3

x∗1 = {rme2 − ln(p2e2/p1e1)}/d4

x∗2 = {rme1 − ln(p1e1/p2e2)}/d4

x∗3 = 0

where d4 = r(e1 + e2).

Constrained 4

x∗1 = 0

x∗2 = 0

x∗3 = m

Constrained 5

x∗1 = 0

x∗2 = m

x∗3 = 0
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Constrained 6

x∗1 = m

x∗2 = 0

x∗3 = 0

If the unconstrained solution violates the non-negativity constraints we need

to check the six constrained allocations and choose the optimal which is the

one that satisfies the constraints and yields the maximum expected utility.

CRRA

x∗1 = m(p1e1)1/(1+r)e2e3/d

x∗2 = m(p2e2)1/(1+r)e3e1/d

x∗3 = m(p3e3)1/(1+r)e1e2/d

where

d = (p1e1)1/(1+r)e2e3 + (p2e2)1/(1+r)e3e1 + (p3e3)1/(1+r)e1e2
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D Tables for Simulation

This appendix contains the tables of simulation parameters and simulation

results.

Table D.1: The Parameters Sets
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Table D.2: The Problem Sets

 

 
p1 p2 p3 e1 e2 e3 

0.40 0.30 0.30 0.75 0.75 0.75 

0.40 0.40 0.20 0.75 0.75 0.75 

0.50 0.30 0.20 0.75 0.75 0.75 

0.50 0.40 0.10 0.75 0.75 0.75 

0.60 0.20 0.20 0.75 0.75 0.75 

0.60 0.30 0.10 0.75 0.75 0.75 

0.70 0.20 0.10 0.75 0.75 0.75 

0.80 0.10 0.10 0.75 0.75 0.75 

0.40 0.30 0.30 0.75 0.75 1.00 

0.40 0.40 0.20 0.75 0.75 1.00 

0.50 0.30 0.20 0.75 0.75 1.00 

0.50 0.40 0.10 0.75 0.75 1.00 

0.60 0.20 0.20 0.75 0.75 1.00 

0.60 0.30 0.10 0.75 0.75 1.00 

0.70 0.20 0.10 0.75 0.75 1.00 

0.80 0.10 0.10 0.75 0.75 1.00 

0.40 0.30 0.30 0.75 0.75 1.25 

0.40 0.40 0.20 0.75 0.75 1.25 

0.50 0.30 0.20 0.75 0.75 1.25 

0.50 0.40 0.10 0.75 0.75 1.25 

0.60 0.20 0.20 0.75 0.75 1.25 

0.60 0.30 0.10 0.75 0.75 1.25 

0.70 0.20 0.10 0.75 0.75 1.25 

0.80 0.10 0.10 0.75 0.75 1.25 

0.40 0.30 0.30 0.75 1.00 0.75 

0.40 0.40 0.20 0.75 1.00 0.75 

0.50 0.30 0.20 0.75 1.00 0.75 

0.50 0.40 0.10 0.75 1.00 0.75 

0.60 0.20 0.20 0.75 1.00 0.75 

0.60 0.30 0.10 0.75 1.00 0.75 

0.70 0.20 0.10 0.75 1.00 0.75 

0.80 0.10 0.10 0.75 1.00 0.75 

0.40 0.30 0.30 0.75 1.00 1.00 

0.40 0.40 0.20 0.75 1.00 1.00 

0.50 0.30 0.20 0.75 1.00 1.00 

0.50 0.40 0.10 0.75 1.00 1.00 

0.60 0.20 0.20 0.75 1.00 1.00 

0.60 0.30 0.10 0.75 1.00 1.00 

0.70 0.20 0.10 0.75 1.00 1.00 

0.80 0.10 0.10 0.75 1.00 1.00 

0.40 0.30 0.30 0.75 1.00 1.25 

0.40 0.40 0.20 0.75 1.00 1.25 

0.50 0.30 0.20 0.75 1.00 1.25 

0.50 0.40 0.10 0.75 1.00 1.25 

0.60 0.20 0.20 0.75 1.00 1.25 

0.60 0.30 0.10 0.75 1.00 1.25 

0.70 0.20 0.10 0.75 1.00 1.25 

0.80 0.10 0.10 0.75 1.00 1.25 

0.40 0.30 0.30 0.75 1.25 0.75 

0.40 0.40 0.20 0.75 1.25 0.75 

0.50 0.30 0.20 0.75 1.25 0.75 

0.50 0.40 0.10 0.75 1.25 0.75 

0.60 0.20 0.20 0.75 1.25 0.75 

0.60 0.30 0.10 0.75 1.25 0.75 

0.70 0.20 0.10 0.75 1.25 0.75 

0.80 0.10 0.10 0.75 1.25 0.75 

0.40 0.30 0.30 0.75 1.25 1.00 

0.40 0.40 0.20 0.75 1.25 1.00 

0.50 0.30 0.20 0.75 1.25 1.00 

0.50 0.40 0.10 0.75 1.25 1.00 

0.60 0.20 0.20 0.75 1.25 1.00 

0.60 0.30 0.10 0.75 1.25 1.00 

0.70 0.20 0.10 0.75 1.25 1.00 

0.80 0.10 0.10 0.75 1.25 1.00 

0.40 0.30 0.30 0.75 1.25 1.25 

0.40 0.40 0.20 0.75 1.25 1.25 

0.50 0.30 0.20 0.75 1.25 1.25 

0.50 0.40 0.10 0.75 1.25 1.25 

0.60 0.20 0.20 0.75 1.25 1.25 

0.60 0.30 0.10 0.75 1.25 1.25 

0.70 0.20 0.10 0.75 1.25 1.25 

0.80 0.10 0.10 0.75 1.25 1.25 
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Table D.3: Means and standard deviations of the estimated value of
the risk-aversion prametr r
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Table D.4: Means and standard deviations of the estimated value of
the precision parameter s
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Table D.5: Means and standard deviations of the estimated value of
the bias parameter b (note that this is only estimated for specification 2)

*Indicates parameter b is irrelevant
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Table D.6: Means and standard deviations of the estimated value of the
second beta parameter d (note that his is only estimated for specification

3)

*Indicates parameter s is irrelevant
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Table D.7: Means and standard deviations of the maximised log-
likelihoods
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Table D.8: Allocations under CRRA and under CARA for parameter
set 1

 

 
CRRA to 7 decimal places CARA to 7 decimal places CRRA to 2 decimal places CARA to 2 decimal places 

x1* x2* x3* x1* x2* x3* x1* x2* x3* x1* x2* x3* 

0.8987738 0.0506131 0.0506131 0.5890507 0.2054746 0.2054746 0.90 0.05 0.05 0.59 0.21 0.21 

0.4997560 0.4997560 0.0004880 0.5000000 0.5000000 0.0000000 0.50 0.50 0.00 0.50 0.50 0.00 

0.9938861 0.0060096 0.0001042 0.8405504 0.1594496 0.0000000 0.99 0.01 0.00 0.84 0.16 0.00 

0.9030370 0.0969629 0.0000001 0.6487624 0.3512376 0.0000000 0.90 0.10 0.00 0.65 0.35 0.00 

0.9999661 0.0000169 0.0000169 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9990244 0.0009756 0.0000000 0.9620981 0.0379019 0.0000000 1.00 0.00 0.00 0.96 0.04 0.00 

0.9999964 0.0000036 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.5536138 0.0311759 0.4152103 0.5031186 0.1195425 0.3773389 0.55 0.03 0.42 0.50 0.12 0.38 

0.4967695 0.4967695 0.0064611 0.5000000 0.5000000 0.0000000 0.50 0.50 0.01 0.50 0.50 0.00 

0.9926118 0.0060019 0.0013862 0.8398944 0.1587935 0.0013121 0.99 0.01 0.00 0.84 0.16 0.00 

0.9030360 0.0969628 0.0000012 0.6487624 0.3512376 0.0000000 0.90 0.10 0.00 0.65 0.35 0.00 

0.9997576 0.0000169 0.0002255 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9990242 0.0009756 0.0000002 0.9620981 0.0379019 0.0000000 1.00 0.00 0.00 0.96 0.04 0.00 

0.9999963 0.0000036 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.1505061 0.0084755 0.8410184 0.4634851 0.0799090 0.4566059 0.15 0.01 0.84 0.46 0.08 0.46 

0.4768937 0.4768937 0.0462126 0.4407143 0.4407143 0.1185713 0.48 0.48 0.05 0.44 0.44 0.12 

0.9838147 0.0059488 0.0102365 0.7713357 0.0902349 0.1384294 0.98 0.01 0.01 0.77 0.09 0.14 

0.9030288 0.0969620 0.0000092 0.6487624 0.3512376 0.0000000 0.90 0.10 0.00 0.65 0.35 0.00 

0.9983055 0.0000169 0.0016776 0.9188933 0.0000000 0.0811067 1.00 0.00 0.00 0.92 0.00 0.08 

0.9990228 0.0009756 0.0000016 0.9620981 0.0379019 0.0000000 1.00 0.00 0.00 0.96 0.04 0.00 

0.9999960 0.0000036 0.0000004 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9999999 0.0000000 0.0000001 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.5536138 0.4152103 0.0311759 0.5031186 0.3773389 0.1195425 0.55 0.42 0.03 0.50 0.38 0.12 

0.0698360 0.9300958 0.0000682 0.4070388 0.5929612 0.0000000 0.07 0.93 0.00 0.41 0.59 0.00 

0.9253814 0.0745216 0.0000970 0.6989392 0.3010608 0.0000000 0.93 0.07 0.00 0.70 0.30 0.00 

0.4115157 0.5884843 0.0000000 0.5345494 0.4654506 0.0000000 0.41 0.59 0.00 0.53 0.47 0.00 

0.9997576 0.0002255 0.0000169 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9871608 0.0128392 0.0000000 0.8031229 0.1968771 0.0000000 0.99 0.01 0.00 0.80 0.20 0.00 

0.9999517 0.0000483 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.4000000 0.3000000 0.3000000 0.4000000 0.3000000 0.3000000 0.40 0.30 0.30 0.40 0.30 0.30 

0.0697773 0.9293151 0.0009075 0.4070388 0.5929612 0.0000000 0.07 0.93 0.00 0.41 0.59 0.00 

0.9242766 0.0744326 0.0012908 0.6989392 0.3010608 0.0000000 0.92 0.07 0.00 0.70 0.30 0.00 

0.4115155 0.5884840 0.0000006 0.5345494 0.4654506 0.0000000 0.41 0.59 0.00 0.53 0.47 0.00 

0.9995491 0.0002254 0.0002254 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9871606 0.0128392 0.0000002 0.8031229 0.1968771 0.0000000 0.99 0.01 0.00 0.80 0.20 0.00 

0.9999517 0.0000483 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.1362781 0.1022086 0.7615133 0.3495682 0.2621761 0.3882557 0.14 0.10 0.76 0.35 0.26 0.39 

0.0693712 0.9239065 0.0067223 0.3651809 0.5615678 0.0732513 0.07 0.92 0.01 0.37 0.56 0.07 

0.9166444 0.0738180 0.0095376 0.6585173 0.2707444 0.0707383 0.92 0.07 0.01 0.66 0.27 0.07 

0.4115140 0.5884819 0.0000042 0.5345494 0.4654506 0.0000000 0.41 0.59 0.00 0.53 0.47 0.00 

0.9980976 0.0002251 0.0016773 0.9188933 0.0000000 0.0811067 1.00 0.00 0.00 0.92 0.00 0.08 

0.9871592 0.0128391 0.0000016 0.8031229 0.1968771 0.0000000 0.99 0.01 0.00 0.80 0.20 0.00 

0.9999514 0.0000483 0.0000004 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9999999 0.0000000 0.0000001 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.1505061 0.8410184 0.0084755 0.4634851 0.4566059 0.0799090 0.15 0.84 0.01 0.46 0.46 0.08 

0.0099771 0.9900132 0.0000097 0.3695872 0.6304128 0.0000000 0.01 0.99 0.00 0.37 0.63 0.00 

0.6249590 0.3749754 0.0000655 0.6250000 0.3750000 0.0000000 0.62 0.37 0.00 0.63 0.38 0.00 

0.0858028 0.9141972 0.0000000 0.4811590 0.5188410 0.0000000 0.09 0.91 0.00 0.48 0.52 0.00 

0.9983055 0.0016776 0.0000169 0.9188933 0.0811067 0.0000000 1.00 0.00 0.00 0.92 0.08 0.00 

0.9116573 0.0883426 0.0000000 0.7161608 0.2838392 0.0000000 0.91 0.09 0.00 0.72 0.28 0.00 

0.9996404 0.0003596 0.0000000 0.9959687 0.0040313 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9999999 0.0000001 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.1362781 0.7615133 0.1022086 0.3495682 0.3882557 0.2621761 0.14 0.76 0.10 0.35 0.39 0.26 

0.0099759 0.9898944 0.0001297 0.3695872 0.6304128 0.0000000 0.01 0.99 0.00 0.37 0.63 0.00 

0.6244550 0.3746730 0.0008721 0.6250000 0.3750000 0.0000000 0.62 0.37 0.00 0.63 0.38 0.00 

0.0858028 0.9141971 0.0000001 0.4811590 0.5188410 0.0000000 0.09 0.91 0.00 0.48 0.52 0.00 

0.9980976 0.0016773 0.0002251 0.9188933 0.0811067 0.0000000 1.00 0.00 0.00 0.92 0.08 0.00 

0.9116572 0.0883426 0.0000002 0.7161608 0.2838392 0.0000000 0.91 0.09 0.00 0.72 0.28 0.00 

0.9996404 0.0003596 0.0000000 0.9959687 0.0040313 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9999999 0.0000001 0.0000000 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.0821296 0.4589352 0.4589352 0.2922592 0.3538704 0.3538704 0.08 0.46 0.46 0.29 0.35 0.35 

0.0099675 0.9890666 0.0009659 0.3350894 0.6097142 0.0551964 0.01 0.99 0.00 0.34 0.61 0.06 

0.6209618 0.3725771 0.0064611 0.6019873 0.3611924 0.0368203 0.62 0.37 0.01 0.60 0.36 0.04 

0.0858027 0.9141964 0.0000009 0.4811590 0.5188410 0.0000000 0.09 0.91 0.00 0.48 0.52 0.00 

0.9966504 0.0016748 0.0016748 0.8820267 0.0589867 0.0589867 1.00 0.00 0.00 0.88 0.06 0.06 

0.9116560 0.0883425 0.0000015 0.7161608 0.2838392 0.0000000 0.91 0.09 0.00 0.72 0.28 0.00 

0.9996401 0.0003596 0.0000004 0.9959687 0.0040313 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.9999998 0.0000001 0.0000001 1.0000000 0.0000000 0.0000000 1.00 0.00 0.00 1.00 0.00 0.00 

0.8987738 0.0506131 0.0506131 0.5890507 0.2054746 0.2054746 0.90 0.05 0.05 0.59 0.21 0.21 

0.4997560 0.4997560 0.0004880 0.5000000 0.5000000 0.0000000 0.50 0.50 0.00 0.50 0.50 0.00 
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