
A Flexible Multiprocessor Resource

Sharing Framework for Ada

Shiyao Lin

Submitted for the Degree of Doctor of Philosophy

University of York

Department of Computer Science

September 2013

Abstract

Lock-based resource sharing protocols for single processor systems are well under-

stood and supported in programming languages such as Ada and the Real-Time

Specification for Java, and in Real-Time Operating Systems, and those that con-

form to the Real-Time POSIX standard. In contrast, multiprocessor resource

sharing protocols are still in their infancy with no agreed best practices, and yet

current real-time programming languages and operating systems claim to be suit-

able for supporting multiprocessor applications. This thesis argues that, instead

of supporting a single resource sharing protocol, a resource sharing framework

should be provided that allows application-defined resource sharing protocols to

be implemented. The framework should be flexible and adaptive so that a wide

range of protocols with different design characteristics can be integrated and im-

plemented effectively with minimum runtime overheads. The thesis reviews the

currently available multiprocessor resource allocation policies and analyzes their

applicability to the main industry standard real-time programming languages. It

then proposes a framework that allows programmers to define and implement their

own locking policy for monitor based concurrent control mechanisms. Instantia-

tion of the framework is illustrated for the Real-Time Specification for Java and

POSIX. A prototype implementation of the full framework for Ada is developed

and evaluated.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Processor Architecture . 4

1.3 Scheduling Algorithms . 5

1.3.1 Hybrid Scheduling . 6

1.4 Resource Sharing . 7

1.4.1 Resources . 7

1.4.2 Blocking . 11

1.4.3 Priority Inheritance - A Solution for Priority Inversion . . . 14

1.5 Thesis Hypothesis . 17

1.6 Thesis Outline . 18

2 Literature Review 20

2.1 Single Processor Resource Sharing Algorithms 20

2.1.1 Priority Ceiling Protocol . 21

2.1.2 Stack-Based Resource Sharing Protocol 22

2.2 Multiprocessor Resource Sharing Algorithms 23

2.2.1 Motivation and Challenges 23

2.2.2 MPCP . 24

2.2.3 MSRP . 30

2.2.4 Flexible Multiprocessor Locking Protocol 34

2.2.5 Parallel-PCP . 38

2.2.6 OMLP . 45

2.2.7 Priority Donation . 49

2.2.8 SPEPP . 52

I

2.2.9 Main Characteristics of Resource Sharing Protocols 54

2.3 Support for Multiprocessor Scheduling and Resource Control Pro-

tocols in Ada, RTS and Linux . 56

2.3.1 Multiprocessor Support in Ada 56

2.3.2 Multiprocessor Support in RTSJ 61

2.3.3 Operating System Support 62

2.4 Summary . 72

3 A Flexible Resource Sharing Framework 75

3.1 Basic Assumptions . 76

3.2 Monitors . 77

3.3 Methodology . 78

3.4 A Framework for Multiprocessor Application-Defined Resource Con-

trol Protocols . 80

3.5 Supporting the Framework in Ada 83

3.6 Supporting Framework in RTSJ . 87

3.7 Supporting the Framework in a POSIX-Compliant OS 88

3.8 Supporting Application-Defined Condition Synchronization 95

3.9 Summary . 98

4 Implementing the Ada Framework 99

4.1 GNAT Structure . 100

4.2 How GNAT Implements Protected Object 102

4.2.1 The Semantics of Protected Objects 102

4.2.2 GNAT Implementation of Protected Objects 105

4.3 Framework Implementation . 109

4.3.1 Effectiveness of the Simulation Method 110

4.3.2 Framework API Proposal . 112

4.4 Framework Overheads . 114

4.4.1 Ada Real-Time Clock Facilities 114

4.4.2 Original Ada Protected Object Overhead 115

4.4.3 A Simulated Framework Implementation 118

4.5 Summary . 122

II

5 Expressive Power of the Ada Framework 124

5.1 Evaluation Approach . 126

5.2 Multiprocessor Stack Resource Policy - MSRP 133

5.3 Multiprocessor Priority Ceiling Protocol - MPCP 139

5.4 Flexible Multiprocessor Locking Protocol - FMLP 145

5.5 O(m) Locking Protocol - OMLP . 153

5.6 Priority Donation - Clustered OMLP 160

5.7 Summary . 172

6 Conclusions and Future Work 174

6.1 A Summary of the Key Thesis Contributions 174

6.2 Limitations of this Work . 177

6.3 Future Work . 178

6.4 Final Words . 181

A Priority Donation Implementation 183

B QueueLock Package 189

III

List of Figures

1.1 Race Condition . 8

1.2 Direct Local Blocking . 12

1.3 Remote Blocking . 13

1.4 Transitive Blocking . 15

1.5 Priority Inheritance Blocking Chain 16

2.1 MPCP Illustration Example . 26

2.2 MSRP Example . 33

2.3 FMLP Example . 36

2.4 Scheduling Example of PIP . 40

2.5 Response Time for T5 under PIP 42

2.6 Scheduling Example of P-PCP . 43

2.7 Response Time of T5 under P-PCP 44

2.8 Global OMLP Example . 47

2.9 OMLP Priority Donation . 51

3.1 Basic Classes . 81

3.2 Integrating an Application-Defined Resource Control Protocol . . . 82

3.3 Integrating an Application-Defined Resource Control Protocol in Ada 84

3.4 Supporting the Framework in POSIX 94

4.1 GNARL Components [68] . 102

4.2 The Protected Object of Ada . 103

4.3 Time Drifting of Clock() . 115

4.4 Simulated Implementation Interaction 119

5.1 Evaluation Task Model . 127

IV

5.2 Priority Donation Main Components Interaction 163

5.3 Priority Donation Release Check 165

5.4 Priority Donation Lock Routine . 168

5.5 Priority Donation Unlock Routine 169

V

Symbol Description
Pi Processor i
Ti A specific task with id i
ti A specific global time i
M The number of processors in the system
Ri A General shared resource
Gi A Global shared resource
Si A Short shared resource
Li A Long shared resource
αi PPCP threshold for priority level i

Ceil(R) Ceiling of resource R
PH Starting priority of a global resource
FQ FIFO queue
PQ Priority queue

Table 1: List of Symbols

VI

Acknowledgement

It would not have been possible to write this thesis without the help and support

of the people around me, only some of whom it is possible to mention here:

I would like to express my deepest appreciation to Profession Andy Wellings:

he has continually and convincingly conveyed the spirit of research, and the ex-

citement of achieving goals with world-class academics. Without his guidance and

persistent help, my research work and this dissertation would not have been pos-

sible.

The appreciation will also go to Dr. Thomas Richardson for the advice, un-

equivocal support and the valuable friendship which has been a great accelerator

of the whole work. The welcomed distractions has been a great balance preventing

the work from being too stressful.

In addition, a thank you to my friends Abdul Haseeb Malik, Seyeon Kim and

many people in the RTS group for their feedbacks and opinions. These have been

of critical importance in refining ideas and identifying opportunities.

Finally, I would like to thank my parents together with my sister for all their

love and support throughout my life and never doubting that I would get to the

end.

Declarations

I declare that the research work described in this thesis is original work unless

otherwise indicated. The research was conducted by me with the supervision of

Professor Andy Wellings. Certain parts of this thesis have appeared in previously

published papers.

• In Chapter 3 and Chapter 4, the design and implementation of the framework

is based on: S. Lin, A. J. Wellings, and A. Burns. Supporting lock-based mul-

tiprocessor resource sharing protocols in real-time programming languages.

Concurrency and Computation: Practice and Experience, 2012.

• In Chapter 4, supporting the framework in Ada is based on this publication:

S. Lin, A. Burns, and A. J. Wellings. Ada 2012: Resource sharing and

multiprocessors. In Proceeding of the 15th IRTAW, volume XXXII, pages

32-44.ACM Letters, April 2013.

• In Chapter 3, supporting the framework in RTSJ is based on: A. J. Wellings,

S. Lin, and A. Burns. Resource sharing in RTSJ and SCJ systems. In

JTRESS, pages 11-19, 2011.

Chapter 1

Introduction

1.1 Motivation

The term “real-time system” does not refer to a system with a super fast processing

speed. It denotes the system with the ability to respond to real-world events in

real-world time. The correctness of those systems is depending on the completion

time of the tasks [4]. Producing a response later than the completion time, which

is also known as deadline missing in real-time systems, will be erroneous and may

have a significant impact to the system and its operating environment. As the

system may need to react with their environment in a timely fashion, the real-

time system is commonly distinguished into the hard and soft real-time systems.

The hard real-time systems are very sensitive to the satisfaction of the deadlines

of the tasks. The failure to meet a hard deadline may create catastrophic damage

to the system or the surrounding environment. The soft real-time systems are

less sensitive to deadline misses. Although strongly undesirable, they are tolerant

of missing deadlines. This is because the application environment often applies

mixed hard and soft real-time requirements to the system.

The categorization of hard and soft real-time systems inspires the idea of un-

derstanding more of its operating environments for a better system design. This

idea soars not only in real-time systems but general systems engineering [65]. Solv-

ing real-time problems in multiprocessor systems is likely to benefit from having

more considerations for the operating scenarios in the system design.

At the systems requirement level, real-time systems must satisfy the following

1

characteristics [15].

Large and Complex real-time systems have to support systems from the small

single processor to the large multiprocessor distributed systems.

Extremely Reliable and Safe real-time systems are often deployed to mission-

critical systems. The software must, therefore, be engineered to the highest

integrity. The implementations of real-time systems should comprise mini-

mum programming errors and the execution results must follow the expec-

tations. Hence, the predictability of real-time system is emphasized.

Interaction with Hardware Interfaces The real-time systems are often sensi-

tive of multiple infrastructure layers because of the overheads. It is often

the case that real-time systems are deployed as embedded. It is therefore

necessary for the real-time systems to have the ability to interact with the

hardware and low level interfaces.

Efficient Implementation and Predictable Execution Environment Since

real-time systems are time-critical, the implementation efficiency is more im-

portant than other systems. Being predictable to its execution is the key to

the correctness of real-time systems.

The development of multiprocessor systems imposes a challenge to real-time

systems. General purpose processor manufacturers have started to provide more

processor cores on the same chip [17]. This is the industry’s response to the limi-

tations of processor clock speed and the exponential increasing cost of producing

faster uniprocessor chips [41]. Modern processor technology is already edging to-

wards its limits. It is clear that the standard uniprocessor architecture will not be

able to support the need of computing power, even when taking into account the

integrated circuit technology advances. Exploiting more Instruction Level Paral-

lelism (ILP) has proven difficult with current process technologies [7].

Having more processing power to the real-time systems seems to be a significant

improvement. As indicated by [71], allowing more than one processors to solve a

real-time problem will exploit more parallelism in multiprocessor systems. It is a

more natural reflection of the operating environment. For example, the sensors of

an aircraft engine will be working independently and in true parallel to each other.

2

Reflecting the parallel nature of the systems will make the implementation more

readable, maintainable and reliable.

However, having concurrent executions in multiprocessor systems endangers

the satisfaction of the high level real-time system requirements. Parallel execut-

ing tasks have to coordinate their executions especially for the complex problems.

Failure to do so will endanger the result of the execution and jeopardize the whole

system. A typical phenomenon of having uncontrolled parallel execution is de-

scribed by Section 1.4.1. Therefore, coordinating the execution of parallel tasks

is essential and it may vary in the forms of synchronization and communication.

These coordination, which is also known as resource sharing, in multiprocessor is

complicated.

The characteristics of multiprocessor real-time scheduling algorithms have been

described by [20]. The optimality and predictability are the two most important

properties attracted the interest of this research. The predictability is important

because it emphasizes on the real-time property of the tasks that even the worst-

case scenario must be acceptable by the application scenario [51]. The resource

sharing algorithms should therefore be considered for their worst case behaviour

where the highest priority task suffers the maximum blocking. The other property

is optimality. This property is crucial to this research as it is the fundamental

observation and assumption of the work. According to the definition given in

[20], an optimal algorithm should be able to schedule all of the task sets that can

be scheduled by any other algorithms. Whenever such an algorithm exists, the

resource sharing algorithm design can therefore be more focused. However, due

to the complex nature of scheduling tasks in multiprocessor systems, there is no

optimal multiprocessor resource sharing algorithm yet known to the academics.

The methods of multiprocessor resource sharing are still underdeveloped [23].

The performance optimality of multiprocessor resource sharing is much more com-

plex to determine than its counterpart uniprocessor algorithms. The predictability

property still has to be satisfied as a precedent in multiprocessor resource sharing

protocol development. The maximum blocking time suffered by the highest prior-

ity task must therefore be determined and bounded by the deployment of resource

sharing protocols, which then assures the predictability of the whole algorithm.

The performance factors of multiprocessor resource sharing algorithms are still

being studied and measured. There is a number of known factors, at the imple-

3

mentation level, which are critical to the performance of multiprocessor scheduling

algorithms:

• Scheduling algorithm: Partitioned, Global or Hybrid

• Task allocation for Partitioned or Hybrid systems

• Mutual exclusion waiting mechanism: Spin or Suspension

• Queuing policy: FIFO or Priority Queue

• Preemptive or non-preemptive scheduling

• Resource accessing priority: original, ceiling or priority inheritance

• Degree of mutual exclusion: spin, Read/Write Lock or complete mutual

exclusion

Theses factors will be discussed in the following subsections.

1.2 Processor Architecture

In multiprocessor systems, the performance of executing tasks is closely linked

with the processor architecture. Processors in multiprocessor systems are often

connected to each other in order to share resources. Shared memory multiproces-

sors consist of a number of processors connected with a shared memory area. This

shared memory provides a means for processors to communicate [30].

There are two types of shared memory multiprocessor architecture, namely the

uniform memory accecss (UMA) and the non-uniform memory access (NUMA).

UMA is a multiprocessor architecture where all processors access the shared mem-

ory via a central switching mechanism [47]. It is often the case that all processors

are connected to a common bus where the cost of the memory access is identical.

The NUMA system, in contrast, does not have constant nor identical memory

access costs [67]. Remote memory access normally incurs high latency.

Despite the difference in hardware connectivity, the NUMA system imposes

no significant difference to the UMA system with regard to resource sharing in

multiprocessors. The method in which the application-defined resource sharing

4

protocols integrates with programming languages should be unaffected at a high

level. The processor architecture will only impact the low level interfacing and

resource sharing algorithms design so as to incorporate the extra memory access

cost. Therefore, in the interest of the resource sharing protocol framework design

and evaluation, we are concerned only with the shared memory multiprocessor sys-

tems and assumed the underlying system architecture is UMA where all processors

have an undeviating cost to access the shared memories.

1.3 Scheduling Algorithms

The multiprocessor resource sharing algorithm works in collaboration with the

scheduling algorithms to intervene in the execution of tasks. The choice of the

underlying scheduling algorithm will have a great impact on the type and per-

formance of the resource sharing algorithms. The blocking time of the highest

priority task will therefore have different result depending on those choices. Un-

fortunately, it is still a debate on which scheduling algorithm works the best for

sharing resources in multiprocessor systems. In partitioned scheduling, tasks are

statically assigned to dedicated processors for their entire execution. Tasks un-

der global scheduling are not subject to such restriction and can migrate from

one processor to other. At run time, the executing tasks may suspend from one

processor and migrate to continue their remaining execution [44]. Renowned for

its simplicity and predictability, partitioned scheduling has received more research

attention than global scheduling [3]:

1. Partitioned scheduling appears to have an advantage of the best feasibility

tests over global scheduling with respect to the statistical chance of being

able to schedule an arbitrary hard-deadline task set.

2. Experience and algorithms developed in uniprocessor scheduling can be ap-

plied to each scheduling partition. The reason is that, under fully partitioned

scheduling, processors are unified independently. Each processor, thus, has

its own run queue. The environment for each processor is more or less the

same as it was in the uniprocessor.

The fully partitioned scheduling algorithm fixes task execution affinity. The

processor assignment of the tasks is known prior to the start of their execution.

5

The processor assignment is a difficult challenge with significant impact on the

performance of the partitioned scheduling algorithms. The assignment process is

known to be a typical NP-hard bin-packing problem [37]. A common solution is

to deploy related heuristic functions to find a satisfactory assignment. However,

each of the heuristic functions has its own advantages and disadvantages. The

optimal situation is one where the affinity assignment uses the least number of

processors [43]. Although we can measure how many more processors are needed

to schedule a task set in the worst-case scenario, the processor capacity of each

processor cannot be fully utilized as the bin packing solutions cannot guarantee

the sum of allocated task utilization is a perfect match for the processor capacity.

In this case, some of the processor capacity will be too little for any tasks to fit

in, which will be wasted as well.

Global scheduling is appealing in the context of processor utilization. The

advantages of global scheduling against partitioned scheduling are summarized as

follows [20]:

1. Global scheduling is more suitable for open systems where tasks are capable

of running on any processor in the system.

2. Since all tasks are managed by a single run queue with global scheduling,

resource sharing is more manageable.

Davis and Burns [20] explained that, in general, multiprocessor scheduling al-

gorithms are incomparable to each other. This is because some task sets, although

schedulable by some algorithms, may not be schedulable by others. Through an

empirical comparison, [5] explained that the worst-case performance of both fully

partitioned and global scheduling is about the same. This leaves no advantage of

either approach.

1.3.1 Hybrid Scheduling

The argument for the optimality of partitioned and global scheduling can be long

and tedious. Hybrid scheduling was proposed to support more scalable operat-

ing architecture by scheduling tasks according to the similarity of their runtime

requirements.

6

Tasks executed in multiprocessors may incur different costs to access shared

memories. The cost of accessing memory can either be classified as Uniform Mem-

ory Access (UMA) costs or Non-uniform Memory Access (NUMA) costs depending

on the remoteness of the data [62]. In an SMP system, the locality of the data

is often ignored as memory is shared as a single entity across all processors in

the system. The cost of accessing the memory is assumed to be constant for all

processors; this is often referred as UMA access.

With this processor architecture, the main benefit of implementing hybrid

scheduling, also known as clustering in distributed systems, is that high data

locality can be achieved through distributing and replicating system services and

data resources [63]. Also, a hierarchical (clustered) system can be easily adapted

to different hardware configurations and architectures with the strength of scaling

the underlying architecture. Hierarchical structure incorporates the principle of

structuring from loosely-coupled and distributed systems [66]. The basic unit of

structuring is a cluster. This is regarded as the basic unit of the system which

provides a complete set of services as a part of the underlying system. Data and

system services are expected to be shared by all processors and tasks in the same

cluster. The grouping of clusters offers the mechanism of inter-cluster communica-

tion and integrate the consistent underlying clusters as a sub-system. Due to the

nature of memory contention of shared resources, specific algorithm is required for

inter-cluster communications.

Chandra and Prashant[18] offers the definition of hierarchical scheduling based

on the above principles. Hierarchical scheduling is a scheduling framework that

groups together processes, threads and applications to achieve aggregate resource

partitioning. This framework enables the allocation of resources to collections of

entities to benefit from the hierarchical underlying hardware structure.

1.4 Resource Sharing

1.4.1 Resources

Parallel programs can be non deterministic. This behaviour is hazardous to real-

time systems as the result of execution is unpredictable [42]. Synchronization

techniques are often deployed to ensure the integrity of the shared data between

7

tasks. Shared data access is often called a critical section, where execution is

supposed to be atomic. Without proper synchronization, a critical section may

be modified by other tasks so that data integrity is violated. The result of this

program execution is non deterministic. Figure 1.1 exhibits the effect of race

condition without proper synchronization:

Figure 1.1: Race Condition

Let us assume we have two tasks T1 and T2 running parallel to each other on

processor P1 and P2. A resource R1 with initial value of 1 is shared between two

tasks. T1 contains a single loop trying to increment R1 by 1 and T2, in contrast, is

trying to deduct 1 from R1 on each loop. Each loop contains a read operation, that

has a current value of R1, and write operation, that commits the final value of the

operation to R1. Without proper synchronization, T1 and T2 can simultaneously

read the initial value from R1. Let us assume T1 commit the arithmetic result

first. The value of R1 will be 2 temporarily before T2 commit. Since T2 works

on the initial value 1 instead of 2, the result committed to R1 by T2 is 0. It is

difficult to determine the final value of R1 as it depends on the committing order

of T1 and T2. With proper locking protocol, T2 can neither read nor write R1

before T1 has committed. This will prevent such race condition and ensures that

8

the value of R1 is always 1.

The resources mentioned in this thesis refer to the shared objects at the pro-

gramming language level. At the low level, the resource primarily stands for the

physical memory units. Although the physical memory has more details like clock

and cache coherence considerations, both kinds of resources need mutual exclusion

which is provided by semaphores and locks etc. They are both viewed as generic

shared objects from the language perspective.

In this thesis, we consider three types of resource sharing primitives that differ

with respect to their sharing constraint. The mutual exclusive resource requires

serialized access where only one task is allowed to use the resource at any time.

The resource holding task may conduct mixed read and write operations. The

mutual exclusive lock ensures the integrity of the data is protected so that no

other tasks can access the resources without holding the lock. Since the task

bodies are sequentially executed, the internal usage of the resource is serialized.

The degrees of parallelism can be increased by allowing multiple tasks to have

parallel read access to a shared resource at any one time. The reader-writer re-

source deploys two protocols to the acquiring task depending on the nature of the

access. The write access of the task is exclusive where only one writer is allowed

to execute the resource at any time. The reader can have simultaneous access to

the resource as the shared data can only be changed by the writers (RW synchro-

nization). The mutual exclusive and RW resource have diversified behavior under

different scenarios. The mutual exclusive resources are likely to chain all waiting

tasks that the blocking time for the tailing task can be quite high. The RW lock

incorporate certain degrees of parallelism to the waiting tasks so that the average

blocking time is likely to be lower. However, starvation could be an important

issue where it is difficult to assign appropriate priorities to the read and write

phase appropriately.

The spin lock is another fundamental synchronization primitive for resource

sharing on SMP systems. It is usually implemented through atomic read-modify-

write operations and busy waiting on a single word [69]. Since the tasks will be

spinning and waiting for the lock instead of suspending, it is called a spin lock.

When a task attempts to acquire a lock for a resource, the protocol appends its

requests to the end of the spin queue. The tasks in the spin queue are often

served in FIFO manner. The task at the head of the run queue after accessing the

9

resources, updates the spin variable for the next task in the queue so that the next

task is capable of locking the resource. This is also called spin lock replenishment.

[21] highlighted two advantages of spin locks: 1) Each task spinning variable can be

chosen to be locally cached. This approach ensures waiting tasks do not generate

excessive bus traffic. 2) Since the queue is FIFO ordered, the waiting time can be

easily determined.

Whether it be spinning or suspension, the delaying approach is orthogonal to

the type of locks being acquired. It is often the case that the RW lock implemen-

tation uses mutex as the lock to suspend the readers waiting from an unfinished

writer. The readers in this case are not only limited to be suspended but spinning

is also permitted depending on the implementation decisions of the developers. In

this thesis, we consider only mutual exclusion locks, as these are basic mechanisms

widely available in programming languages.

Resources can also be shared by using lock-free and wait-free algorithms. The

motivation for considering alternative methods is that the cost of locking proto-

cols can be significant when the length of critical section is short. The lock-free

methods incorporate a retry loop on each task taking snapshots of the state of

the shared data on each attempt [31]. The attempt at using the resource can

either succeed or fail. A failed attempt will have no effect on the current status

of the resource. In wait-free methods, shared resources are executed by carefully

designed sequential code. Tasks with wait-free methods must be guaranteed to

correctly finish their operations with bounded number of instructions [60]. Wait

free methods are strengthened lock-free algorithms where the execution progress

of every task in the system is guaranteed.

As a new alternative to the traditional lock based approach, the non-blocking

methods possess certain advantages:

1. They avoid the priority inversion phenomenon which cause long blocking

chains and complex scheduling analysis for locking methods.

2. They eliminate deadlocks as no locks are used.

3. If the codes are carefully designed, interference between different tasks is

completely eliminated.

However, in order to be useful to real-time systems, resource sharing protocols must

10

be time efficient and predictable. Non-blocking methods often have high space

demand and are hardware dependent [72]. Schedulability analysis of non-blocking

methods is still underdeveloped. Therefore, this thesis concentrates mainly on lock

based blocking algorithms.

1.4.2 Blocking

When locks are used, tasks issue resource requests to the system scheduler for

mutual exclusive access. If such requests are not satisfied for various reasons, the

issuing task is said to be blocked. Once approved, the issuing task can proceed

to the critical section of the resource. Other issuing tasks will be blocked. The

blocked task can have various effects on other executing or non-executing tasks in

the system. The impact of the blocking effect can propagate to other processors

and affect all tasks in the system. Depending on the significance of the effect, the

blocking can be categorized as follows, if FIFO within priority scheduling is used:

Local Blocking Tasks are distributed to different processors to be executed in

a multiprocessor system. Regardless of which scheduling algorithm is used, only

one task can be executed on one processor at any time. The highest priority

task can be blocked by a lower priority task on the same processor if the required

shared resource is not available and is held by the lower priority task. When

this happens on the same processor, the highest priority task has to wait for the

lower priority task to finish the resource before being resumed for execution. The

resource execution time of the lower priority task is therefore added to the blocking

time suffered by the highest priority task.

Local blocking is depicted by Figure 1.2. Task T1 and T2 are both assigned

to processor 1. T2 is released at t0 and soon acquires resource R1 shared between

T1 and T2. When T1 is released at t1, T2 is preempted because T1 has higher

priority. T1 executes until t2 when shared resource R1 is needed. The resource,

however, is being held by T2. T2 is then resumed to finish its execution in R1

and releases the resource at t3. Once the resource becomes available, T1 has the

opportunity to lock the resource and finish its execution at t4. The blocked task

and the resource holding task happen to be on the same processor.

11

Figure 1.2: Direct Local Blocking

Remote Blocking In multiprocessor systems, resources may be shared between

tasks running on different processors. Synchronization is therefore required on two

processors where one processor must stop and wait for the other to finish execution

first. The highest priority task being blocked on a remote processor can suffer extra

blocking time on the processor remote to the resource. This is because the resource

required by tasks on a remote processor may be held by a lower priority task on that

processor. The following figure demonstrates a typical remote blocking scenario

in detail:

In Figure 1.3, T1 and T2 are running on processor 2. T3 is running on processor

1. At t0, T3 and T2 are released on processor 1 and processor 2 respectively. All

three tasks share the same resource R1. R1 firstly acquired by T2 at t1. At t2,

T3 requires R1 and will not be able to proceed as R1 has already been locked by

T2. T3, in this case, suffers blocking from T2 on processor 2. At t4, T1 attempts

to lock R1 but becomes blocked as R1 is held by T2. The suspension length of T3

depends on the status of R1 on processor 2. Although the resources are released

by T2 on t5, T1 with higher priority will lock R1 immediately. T3 has to wait

till t6 when the resource is finally available. It can then proceed to the critical

12

Figure 1.3: Remote Blocking

13

section of R1 and finishes execution soon after t7. Without proper multiprocessor

resource sharing protocol, T3 can suffer indefinite blocking from tasks on processor

2 with higher priority than T2, and therefore, it is highly likely that T3 will miss its

deadline due to this blocking effect. The blocking suffered by T3 can be unbounded

because T2 on processor 2 can be preempted by more higher priority tasks than

T1. The execution time of all these tasks are added to the blocking time of T3. In

order to maintain the predictability property, it is essential to bound this remote

blocking with the use of a resource sharing protocol.

Transitive Blocking In a typical multiprocessor real-time system, there are

multiple instances of shared resources. The interconnections between the different

shared resources can be significant so that tasks waiting on different resources can

be queued up in a single queue. No other tasks can proceed until the resource re-

quest of the non-preemptive task is satisfied. This is demonstrated by the following

example:

Typical transitive blocking involves multiple shared resource. Each task in

Figure 1.4 acquires two resources. T1 acquires R1 then R2. T2 acquires R2 first

then R3. T3 acquires R3 only. All tasks are assigned to independent processors.

At t0, all tasks are released to their home processor. T1 acquires R1 at t1. At the

same time, T2 acquires R2 on processor 2. At t2, T1 acquires R2 within the critical

section of R1. However, R2 is not available as it has been locked down by T2. At

this moment, T3 locks R3 on processor 3. At t3, T2 acquires R3 but fails because

R3 is being held by T3. Although T1 does not share any resources with T3, T1

indirectly joins the waiting queue headed by T3. T1 can only proceed with its

execution when T3 finishes its execution in R3 and T2 releases R2 on processor 2.

This kind of blocking is transitive; there could well be another task that acquires

R3 ahead of T3. In this case, T1 is blocked further.

1.4.3 Priority Inheritance - A Solution for Priority Inver-

sion

The priority inheritance technique was designed to solve the priority inversion

problem. Priority inversion is a typical resource sharing phenomenon where a

high priority task can be blocked by a low priority task holding the resource being

14

Figure 1.4: Transitive Blocking

15

required by the former. Although it has a higher priority, since the resource is non-

preemptive, the task needs to wait for the low priority task to finish the resource

before it can use it.

Figure 1.5: Priority Inheritance Blocking Chain

The priority inheritance protocol [58] was hence developed so that the low

priority task in this case inherits the priority of the blocked high priority task in

order to minimize blocking time. However, there is still a potentially long blocking

chain where a high priority task may be blocked by low priority tasks for multiple

times. For example, as shown in Figure 1.5, we have three tasks T1, T2 and T3

running in a single processor. They are assigned priority 2, 1 and 0 respectively.

Let us assume that T3 requires resource R1, and T2 requires resource R2 and the

highest priority task T1 requires both resource R1 and R2. At the beginning, T3

is released and locks resource R1. While T3 is operating in the critical section of

R1, T2 is released. Because its priority is higher than T3, T2 preempts T3 and

locks the free resource R2. While T2 is holding R2, T1 is released and starts to

execute as the highest priority task in the system. It attempts to lock R1 and

finds that R1 is held by T3. Therefore, T3 is resumed and inherits the priority of

T1. At this point, T1 can only use R1 after R1 has been released by T3. In the

16

same manner, T1 attempts R2 later at t8 and T2 is resumed. In this scenario,

we can see that T1 suffers blocking from T2 and T3 which forms a blocking chain

potentially producing long blocking delay.

Also, [49] states that priority inheritance may produce deadlock. This can be

easily illustrated by simplifying the above scenario. Let us assume there are only

two tasks T1 and T2 sharing two resources R1 and R2 in a single processor system.

T2 has a higher priority than T1. T1 starts its execution at time t0. It then locks

R2 at t1. T2 is released and preempts T1 (due to its higher priority) at t2. It

then locks R1 at t3. At t4, T2 attempts to lock R2, but is blocked because T1 is

holding it. At t5, according to the priority inheritance rule, T1 resumes execution

by inheriting the priority of T2. Shortly after this, T1 attempts to lock R1 but

becomes blocked again due to the resource being held by T2. Both tasks at this

moment cannot proceed and become deadlocked.

1.5 Thesis Hypothesis

The performance of a multiprocessor resource sharing algorithm can be affected

by many factors. The environment, the choice of scheduling algorithm, the system

architecture, the semantics of the application and the algorithm itself can all have

an impact on the performance of the algorithm. The design of an optimal algorithm

may not be available. This is because the performance of the resource sharing

algorithms in multiprocessors varies in different operating scenarios. Other factors,

including the locking primitives, the processor architecture and the underlying

scheduling algorithms, are all having influencing impact. Therefore, the aim of this

thesis is to investigate these related factors and propose a flexible resource sharing

framework for multiprocessors where programmers can design and implement the

best suited algorithm based on the operating application scenarios.

Sharing resources on multiprocessor platforms is inherently difficult. It involves

using an appropriate scheduling algorithm, implementing the most suitable locking

primitive, and utilising an appropriate locking algorithm.

The new algorithms are still under development to agree a best approach to

estimate the execution time of tasks with shared resources in multiprocessors.

[19] indicated that the conventional approach of modeling a global fixed priority

scheduling queue inflates the worst-case execution time of every task to account

17

for the longest time that could be spent on spinning by that task. Such estimation

sometimes appears to be too pessimistic. The simple queuing structure estimation

accounts for too much blocking so that more tasks can interfere with the task

under analysis at low priority levels. This inflation significantly limits the resource

sharing performance of global scheduling algorithms that granted fewer tasks for

execution.

David and Burns [20] states that an optimal scheduling algorithm should sched-

ule all of the task sets that comply with the task model, and all deadlines of all

possible sequences of jobs should be satisfied. Neither partitioned scheduling nor

global scheduling is optimal as they both perform differently in different scenarios.

There is no single algorithm that dominates all other algorithms in all scenarios.

The multiprocessor resource sharing algorithms, which rely on the scheduling al-

gorithms, are largely affect by the choice of scheduling algorithm. The operating

scenario may have different preferences in scheduling algorithm choices, locking

primitives, queuing policies and implementation specifications. Therefore, the op-

timality of the resource sharing algorithms is largely dependent on its operating

scenario. This is demonstrated in detail in the following sections and chapters.

Consequently, the research hypothesis is:

The performance of a multiprocessor resource sharing protocol is

largely dependent on the application semantics. This thesis contends

that it is, therefore, inappropriate to introduce support for a particu-

lar multiprocessor resource sharing protocol into a language definition.

Instead, a language should support a framework that allows a variety

of protocols to be implemented (either by the programmer or via pre-

written standard libraries). A flexible framework can be applied to

a wide range of multiprocessor resource sharing protocols with small

overheads.

1.6 Thesis Outline

The remainder of the thesis is organized in the following chapters:

Chapter 2 Explains the related theories and technologies associated with multi-

processor resource sharing.

18

Chapter 3 Presents the abstract structure of the multiprocessor flexible resource

sharing framework

Chapter 4 Demonstrates the details of the proposed framework implementation

in Ada.

Chapter 5 Evaluate the applicability of the framework to various protocols.

Chapter 6 Presents the conclusions and future work

19

Chapter 2

Literature Review

In order to meet the goal of this thesis, providing a multiprocessor flexible resource

sharing framework for programming languages, it is necessary to discuss the un-

derlying principles and theories before the actual introduction of the framework.

These concepts are vital to the design and performance of the contribution. The

following section explains the terminologies which are commonly used by later

sections.

2.1 Single Processor Resource Sharing Algorithms

The blocking phenomenon introduces some critical factors to be considered in

resource sharing algorithm design. The scheduling policy, priority assignment and

resource accessing priority are all important and critical to the effectiveness and

performance of resource sharing methods. The synchronization between tasks

is adding an extra blocking time worsening the response time of the high priority

tasks. Tasks under scheduling algorithms with shared resources are supposed to be

schedulable where the worst case response time is less or equal to their deadlines.

The highest priority real-time task should suffer the minimum blocking as the

highest priority task, with conventional rate monotonic assignment, is more likely

to least laxity to its deadline which means only minimum delay is allowed. Various

resource sharing algorithms were designed with the above factors considered.

20

2.1.1 Priority Ceiling Protocol

In uniprocessor resource sharing schemes, the Priority Ceiling Protocol (PCP) [58]

is a well known method for fixed priority scheduling systems. It imposes an extra

condition from the priority inheritance protocol where a task can only acquire a

new resource if its priority is higher than all priority ceilings of all the resources

allocated to tasks other than itself. The priority ceiling is defined to be the highest

priority of any task that may use the resource. In other words, a resource request

from task T is denied if the resource is already allocated to another task or the

priority of T is not higher than all priority ceilings for resources allocated to tasks

other than T at the time.

There are two varieties of PCP called the Immediate and the Original Priority

Ceiling Protocol (IPCP and OPCP). Both approaches have the same worst-case

performance [58]. The main difference between these two approaches is the priority

assigned to the acquiring task. The OPCP demands the resource acquiring task to

be blocked if its active priority is not higher than the current system ceiling. The

dynamic priority of the tasks under OPCP is the higher of its own priority and

any priority it inherits from its blocked high priority tasks. The system ceiling is

set to the priority of the resource having the highest ceiling among those locked by

other tasks currently. Under IPCP, the task’s priority is immediately raised to the

ceiling of the resource being acquired instead of being raised at the time when the

high priority task is blocked. This will block other tasks with the same or lower

priority from executing whether acquiring resources or not. The main advantage

of IPCP is that it reduces the number of context switches produced by OPCP.

Let us recall the example with IPCP from Figure 1.5. After T3 locks resource

R1, its priority is raised to 2 as this is the ceiling of the resource. The ceiling of R1

is 2 because both T1 and T3 requires R1. But T1 is the highest priority task in the

system which assigns the ceiling of R1 to 2. T2 later on cannot execute because its

priority is lower than T3 which is running at the ceiling of the resource. Therefore,

T1 only suffers blocking from T3 instead of both T2 and T3. The priority ceiling

protocol improves the response time of high priority tasks with bounded maximum

blocking delay by preventing transitive blocking. Since the priority of low priority

task will be raised to the ceiling of the resource, the high priority task only needs

to wait for one critical section of the underlying low priority task. The worst case

21

of this waiting time will take place in the situation where the underlying task has

the longest critical section among all other tasks. Owing to this feature, after the

highest priority task in the chain has the resource, the blocking chain is resolved

gradually from the highest priority task to the lowest. In this way, the deadlocks

are also prevented.

2.1.2 Stack-Based Resource Sharing Protocol

The other main uniprocessor resource sharing algorithm is the Stack-Based Re-

source Sharing Protocol (SRP) [4] for EDF scheduling and Rate Monotonic schedul-

ing. The SRP is similar to IPCP in that it also blocks the tasks from execution

rather than from accessing the resource. It is called stack based because the late

coming task at the top of the stack with higher preemption level will preempt the

tasks at the lower levels of the stack. This imposes a rule that only the task at the

top of the stack can execute without suspension. The SRP manages the execution

of the tasks according to their preemption levels. The preemption levels proposed,

distinguished from priorities, is to enable the protocol to predict blocking, in the

presence of dynamic scheduling schemes like EDF. The preemption levels are stat-

ically assigned to tasks inversely to their relative deadlines. The earliest deadline

task is assigned with the highest preemption level. The essence of the preemp-

tion level imposes a constraint on the task execution that the lower preemption

level task cannot preempt the tasks with higher preemption level. The preemption

levels were designed and extended by SRP to restrict lower or equal preemption

level tasks from execution. Once the execution begins, a task cannot be blocked

from accessing shared resources. If a low preemption level resource holding task

is preempted, the top executing task is consequently blocked where a deadlock

will emerge. The execution eligibility rule for SRP is more strict than PCP where

a task can only start execution if its preemption level is higher than the highest

ceiling of all locked resources. With the example from above, T2 in this case will

not start execution at t2 because its preemption level is not higher than the ceiling

of resource R1 at this moment. When T3 finishes R1, T1 and T2 are eligible for

execution. However, at this point, T1 has an earlier absolute deadline than T2.

Therefore, T1 starts execution granted with resource R1. Later on, T2 can start

execution if R1 is released by T1.

22

2.2 Multiprocessor Resource Sharing Algorithms

2.2.1 Motivation and Challenges

With the advent of multiprocessor resource sharing, [13] [3] compared different

protocols and concluded the following:

1. Non blocking methods are generally preferred for small simple objects. Wait-

free implementations are generally preferable for large or complex objects.

2. Wait free algorithms are preferable to lock-free algorithms.

3. Suspension based locking should be avoided under partitioned scheduling for

global resources.

4. If a system spends at least 20% of its time in critical sections, the use of

suspension based locking will not lead to better schedulability than spinning

based locking.

These conclusions agree with [20] that different locking primitives have various

performance under different scenarios. The small and efficient locks, such as spin

locks are effective for small simple objects. This is because, if suspension based

locking is used, most of the time spent in the critical section will be consumed

by the locking overheads. Suspension based locks are not efficient for small and

simple objects. However, if long and complex objects are shared between tasks,

such overhead is relatively small compared to their whole execution length. The

flexibility, where schedulers can inherently change the priority or the queuing order

of the tasks, gained from deploying suspension based locks, seems to be worthwhile.

This suggests that the interaction with the scheduler is complex and expensive.

The suspension based locking can interact the schedulers to reduce the blocking

time suffered by the highest priority task to a minimum. For example, the MPCP

imposes an important property that the highest priority task only suffers at most

one longest critical section of any lower priority task. When the blocking time saved

becomes significant to the overhead spent, the suspension based lock becomes more

efficient.

Therefore, based on the motivation that the best suitable resource sharing algo-

rithm in multiprocessor is the one most suitable for a particular scenario, this thesis

23

proposed a flexible resource sharing framework to allow the application develop-

ers to integrate their own best resource sharing protocol with their applications

at compile time. The framework will shield the developers from the hazard of

interacting with various underlying primitives and structures.

There are many inspirations for multiprocessor resource sharing algorithm de-

velopments. Extending existing uniprocessor algorithms is a promising method as

it can transform well understood knowledge from uniprocessors into multiproces-

sors. Multiprocessor resource sharing suffers additional impact from other factors

than the uniprocessor algorithms. The extension of the underlying hardware intro-

duces extra factors to be considered in resource sharing. In uniprocessor systems,

tasks are dispatched to the same processor where all tasks are ordered by the sin-

gle run queue. The execution and resource accessing eligibility can then be easily

determined by comparing the priority of those tasks in the queue. This unified

scheduling scheme is lost in some multiprocessor systems. As mentioned in Chapter

1, partitioned multiprocessor systems can have multiple run queues managing dif-

ferent tasks. The resource sharing, in which case, is becoming difficult because the

priorities across different run queues are not comparable to each other. Also, the

multiprocessor architecture possesses unique factor to be considered. The remote

blocking is the effect that never existed in uniprocessors. The remote blocking is

a significant issue to multiprocessor resource sharing because indefinite blocking

may happen and worsen the response time of the highest priority task. The fol-

lowing algorithms describes the problem of multiprocessor resource sharing from

different perspectives.

2.2.2 MPCP

With the disciplines from PCP in the uniprocessor world, [49] proposed the Mul-

tiprocessor Priority Ceiling Protocol (MPCP) for partitioned scheduling systems

bringing resource sharing towards multiprocessor platforms. Since tasks are exe-

cuting in parallel to each other, the resource sharing protocols in the multiprocessor

world needs to be generalized to consider and minimize remote blocking.

The MPCP solves this problem by introducing a synchronization processor

and the idea of a globalized critical section. It is proposed to isolate the block-

ing caused by local and global resources. A processor responsible for executing

24

a global critical section (global resource), which is the resource shared between

tasks across different processors, is called the synchronization processor. All other

processors are called application processors. In the event of attempting to access

a global resource, the acquiring task can then be considered to be migrated to the

synchronization processor. As for the local resource sharing, PCP is imposed and

tasks remain in their original processor for execution.

As a variation of PCP, the priority ceiling is applied to global resources. In

MPCP, the ceiling of a local resource is defined to be the highest priority task that

will ever use the resource. The ceiling of global resource is defined by the following

two rules:

1. The ceiling of a global resource must be higher than the highest base priority

task in the system.

2. The ceiling of a global resource is the sum of the highest priority task ac-

cessing the resource and the base priority of the global resources.

Under these rules, the priority ceilings of global resources are higher than the

ceilings of local resources in the system and maintained in a priority order. In

other words, tasks in global resources are always executed in preference to local

resources. High priority tasks in global resources are executed in preference to

low priority tasks in global resources. For example, A task T with base priority 4

accesses a global resource. Let us assume the base priority for the global resource

is 5. The active priority of task T, when executing in the global shared resources,

will be 9 (4+5). It will have a higher execution eligibility any task with priority

lower than 9.

The MPCP is then defined by the following rules:

• Each application processor runs the normal PCP with resources shared lo-

cally.

• If a task requests a global resource, it will be migrated to the synchronization

processor guarded by a global ceiling.

Figure 2.1 explains in detail how MPCP works with an example. The exam-

ple was specifically set for demonstrating how global resources are shared in a

mixed environment of local resource. In this example, we can see how the global

25

Figure 2.1: MPCP Illustration Example

26

synchronization processor minimizes the blocking suffered by the highest priority

task. As shown in the figure, we have three processors P1, P2 and PG. PG is the

synchronization processor. Task T1, T3, T5 are assigned to P1. The other tasks

are assigned to P2. R1 and R2 are shared with other tasks which are not relevant

to this scenario. Since the highest base priority is 6, the base priority of the global

resources is 7. Table 2.1 illustrates the resource required by each task:

Task Base Priority Requiring Resource Affinity
T1 1 R1 P1
T2 6 G2 P2
T3 5 G1 P1
T4 2 R2 P2
T5 3 G1 P1
T6 4 G2 P2

Table 2.1: MPCP Resource Table 1

Resource Ceiling
R1 1
R2 2
G1 12
G2 13

Table 2.2: MPCP Resource Table 2

At t0, T3 is released at priority 5 on P1. It immediately start execution.

At t1, T4 becomes runnable on P2 at priority 2. It acquires R2 sooner after its

execution has been started. During this time, T3 migrates to the synchronization

processor PG and attempts to lock G1.

At t2, T2 is released to P2 at priority 6. Since it has a higher priority, its

execution is started immediately. On P1, T1 starts execution and acquires R1 at

priority 1.

At t3, T2, which started execution on t2, migrates to the synchronization

processor PG and attempts to acquire global resource G2. It locks the resource

with its active priority increased to the ceiling of the resource. With higher active

priority (6+7=13) than the current executing task, T2 immediately preempts T3

27

and becomes runnable from t3. Since T2 has already been migrated to PG, T4 is

resumed for execution on P2.

At t4, T6 is released to P2 at priority 4. T4 is preempted in this case because

it has lower priority than T6.

At t5, T6 migrates to PG and attempts to lock G2. At the same time, T2

has finished its execution in G2. It releases the global resource and migrated back

to P2. As the highest priority task on P2, it continues its execution. T4 is still

suspended. The next highest priority task on PG is T3 with active priority 12. It

is resumed for execution due to the fact that T2 has already left the processor.

At t6, T2 stops its execution on P2. It yields the processor to T4 which can

continue its execution in R2. On PG, T3 has finished its execution in G1 and

migrates back to P1. T6, as the next highest priority task, locks G2 and starts

execution at priority 11.

At t7, the execution of T3 is finished and T3 stops on P1. Similarly, T4 stops

execution on P2. T6 has finished its execution in G2 and migrates back to P2. As

the only task runnable in P2, it is resumed for execution immediately.

Similarly, T5 has finished its critical section in G1 on PG and migrates to P1

to finish its remaining execution on P1.

The MPCP produces minimized blocking behavior similar to the PCP in the

uniprocessor world. The paper indicated that an outermost global resource request

can be blocked for the duration of at most one global critical section of all lower

priority tasks on a synchronization processor. This can be illustrated by simplifying

the above example. Let us assume there are only 3 tasks in the system which are

T3, T4 and T2. All tasks wish to lock the same resource R1. The ceiling of the

resource is then set to 13. If the tasks are released for execution in the same order

as depicted by Figure 2.1, T4 will be migrated PG acquiring G1 once it has started

execution at t1. It finds that G1 is not available and thus becomes suspended. T2

migrates to PG and attempts to lock G1 once it has been released for execution at

t2. However, due to the fact that T3 is holding the resource, T2 is blocked. At t3,

T2 will be granted for the access of the resource instead of T4 because it has the

highest ceiling priority of the resource. T4, which is also waiting on locking G1,

will be blocked again. No other tasks with lower priority than T2 will be granted

the access to G1 at t3. This is an important property of MPCP that the blocking

suffered by the highest priority task is bounded.

28

There are other versions of the Multiprocessor Priority Ceiling Protocol (MPCP).

Initially, [49] proposed the synchronization processor approach. This was then gen-

eralized in the same paper to allow multiple synchronization processors, but again

each global resource was assigned to one synchronization processor. A task that

wishes to access a global resource migrates to the synchronization processor for

the duration of its access. Each global resource is also assigned a ceiling equal to

PH + 1 + maxi{ρi|Ti uses Rk}, where PH is the highest priority of all tasks that

are bound to that processor, τi is the priority of task T and Rk is a resource. The

generalized protocol is defined below:

1. Tasks are partitioned to processors. PCP is used for local resource sharing.

2. When a task Ti is blocked by a global resource, it is added to a prioritized

queue and is suspended. The resource holding task will continue its execution

at the inherited highest priority of the tasks being blocked on that resource

(if higher than its own priority).

3. If task Ti locks a free global resource, it will execute at its current active

priority.

4. When task Ti leaves the resource, the next highest priority task in the queue

(if any) will be granted access to the resource.

For the simplicity of implementation, [49] suggest that the priority when ac-

cessing a global resource can be raised to the ceiling immediately. We also note

that with the basic MPCP there was a single synchronization processor and nested

resource accesses were allowed. This is because, after migrating to the synchroniza-

tion processor, the nested resource request can assigned non-decreasing priority.

In which case, the inner nested resource request will have the highest execution

eligibility where the deadlock is avoided. With the generalized MPCP, the exe-

cution priority of the nested resource request is only raised to the highest local

priority level which is not high enough to avoid deadlock. This is the situation

where two highest priority tasks may require the resource being hold by each other

where the resource requests are essentially deadlocked. This is perhaps too strong

a constraint. What is really required is that the group of resources involved in a

nested chain is assigned to the same synchronization processor.

29

Later, [49, 48] renamed the MPCP as the Distributed Priority Ceiling Protocol

(DPCP) and clarified the remote access mechanism. In order to access a global

resource, a task must acquire a local agent first. A local agent is a task on the re-

mote processor where the global resource is being held. Any remote request for the

global resource must be accomplished through the agent. When a global request

is granted through the agent, the agent executes at an effective priority higher

than any of the normal tasks on that processor. Hence, the protocol was targeted

at distributed shared memory systems. For globally shared memory systems, the

need for remote agents is removed and all global resources can be accessed from

all processors. This protocol is now generally referred to as the MPCP.

It is worth restating the important properties of MPCP here as the summary.

MPCP deploys priority ceiling protocol on both normal and synchronization pro-

cessors. The priority ceiling protocol avoids deadlocks on uniprocessor systems.

As nested resource locking is prohibited, all locking transactions and requests are

managed by the PCP protocol running on individual processors. It is therefore

clear that the MPCP avoids deadlocks on multiprocessors. MPCP demands the

ceiling of the global resource is absolutely higher than the highest priority of the

task in the system. The blocking time for the highest priority task accessing the

global shared resource is bounded for at most one longest critical section for any

lower priority task. All other tasks waiting for accessing shared resources are

ordered in priority queues.

2.2.3 MSRP

The Stack Resource Policy, proposed by [4], emphasizes that:“a job is not allowed

to start executing until its priority is the highest among the active jobs and its

preemption level is greater than the system ceiling.” If allowed to lock any resource,

the current executing job must be running at the ceiling of the resource. Once a

job starts, all its resources will be available. With this approach, all the tasks in

the system can use the same run-time stack (hence the name of the policy).

In order to preserve this property, [26] proposed the Multiprocessor Stack Re-

source Policy (MSRP) for partitioned EDF scheduling. Resources are divided into

two groups: local and global. Local resources are only accessed by tasks that ex-

ecute on the same processor. Global resources are those that can be accessed by

30

tasks running on different processors. Unlike SRP, global resources have different

ceilings on each processor. The ceiling indicates the highest priority of the sharing

tasks on that processor. Furthermore, each processor has its own system ceiling

which is equal to the highest preemption level task dispatched to that processor.

On processor k, tasks are only allowed to execute global resources at the processor

ceiling priority, which is the highest preemption level of all the tasks on processor

k.

The MSRP protocol is thus defined as:

Rule 1 For each individual processor, SRP is used for sharing local resources.

Every tasks has its preemption level, and ceilings are given to local resources.

Rule 2 Nested resource access is allowed for local resources, and local resources

can use a global resources nestedly. However, nested global resources are

prohibited - in order to prevent deadlocks.

Rule 3 The systems ceiling on each processor is defined to be greater than or equal

to the maximum preemption level of the tasks allocated on that processor.

Rule 4 When a task requires a global resource R from processor k, it sets k’s

system ceiling to resource R’s ceiling for that processor. If the resource is

not available, the tasks busy waits in a FCFS queue.

Rule 5 When a global resource is released by task Ti executing on processor k,

the tasks at the head of the FCFS queue (if any) will be granted access to

the resources. The system ceiling for k is restored to its previous value.

The following example demonstrates the MSRP protocol in detail:

Task Affinity Requiring Resource Preemption Level
T1 P1 nil 3
T2 P1 R1(G1) 2
T3 P1 R1 (G1) 1
T4 P2 G1 1
T5 P2 nil 2

Table 2.3: MSRP Resource Table

31

The preemption level, as described in SRP section, is used to track the locking

behaviour of tasks at run time and is assigned inversely to the relative deadlines of

tasks. The earliest deadline task is assigned with highest preemption level. Con-

sider a system consisting of two processors and five tasks sharing two resources

together. Table 2.3 shows the details of the task assignment and resource require-

ments. The ceiling of R1 is 2. The system ceiling of processor P2 is 2 and processor

P1 is 3. When accessing G1 on P1, the priority of the tasks accessing G1 will be

raising to 3 (the system ceiling) instead of 2 (the resource ceiling) in order to

become non-preemptive.

The scheduling detail is shown in Figure 2.2. At time t0, T3 is released on

processor 1. It immediately locks R1 on t0 and G1 on t3. When T2 is released on

processor 1 at time t2, it finds that its preemption level is not higher than current

system ceiling and is therefore blocked. Similarly, T1 is blocked immediately when

released to processor 1 at time t4 as its preemption level is not higher than the

system ceiling. This is because, when G1 is locked by T3, the system ceiling is

raised to 3 which is the maximum preemption level of the tasks on processor 1.

When T4 is released on processor 2, it attempts to lock G1 at time t4. However,

G1 is being held by T3 on processor 1. T4 therefore joins the global FCFS queue

waiting for G1 to be released. Since G1 has ceiling 2 on processor 2, T5 is blocked

immediately after its release since its preemption level is not higher than the system

ceiling at time t4. At time t5, G1 is released by T3. T1, with preemption level

3, can proceed with its normal execution on processor 1. On processor 2, T3 is

granted the access to G1 as it is the head of the FCFS queue. When G1 is released

on processor 2, T4 is suspended and yield the processor to T5. It can only proceed

with its execution starting from time t8 when the system ceiling is falls back to

the lower level. On processor 1, T3 releases R1 at time t7. T2, with preemption

level 2, is granted with the processor to execute. It then locks local resource R1 at

time t8 and finishes execution at time t10. At this time, T3 can use the processor

to finish its remaining non critical execution.

MSRP shares global resources across processors in an FCFS manner. In order

to acquire a global resource, a task must be running at the processor ceiling which

makes it non-preemptive. Of course, a task on another processor will be able to

acquire another global resource. Hence, it is possible that a task, once executing,

will find some of its global resources already allocated. In order to minimize the

32

Figure 2.2: MSRP Example

33

blocking time suffered by the highest priority task, it is, therefore, necessary to

non-preemptively busy-wait on the resource. The alternative approach would be

to not allow the other tasks to execute (that is, implement a global system ceiling).

This could result in processors potentially being kept idle.

In MPCP, the highest priority task can be suspended by having unavailable

resources and resumed back for execution once the current resource holding task

is finished. This results in a context switch on each resource access on the suspen-

sion based locking algorithms like MPCP. MSRP has an advantage of using the

system ceilings of preemption levels so that the context switches is reduced to one

[50]. However, wasting the processor cycles by spinning on unavailable resources

is certainly the associated expense.

It is also worthwhile restating the property of the MSRP. All tasks on different

processors are accessing global resources non-preemptively. If the resource is not

available, the acquiring tasks are set to spinning in FIFO queue. Apart from the

FIFO spinning time, the blocking time for any high priority task is bounded by

MSRP to at most one critical section of any tasks with lower preemption level.

2.2.4 Flexible Multiprocessor Locking Protocol

The Flexible Multiprocessor Locking Protocol [9] proposed new ways to share

resources in multiprocessor systems. The FMLP became the first resource sharing

protocol to support nested resource, which can be applied to both global and

partitioned scheduling.

With the inspiration of achieving a high degree of parallelism, the FMLP main-

tains a balance between busy-waiting from spin locks and blocks from suspensions

locks with the following rules:

1. Resource Division: Depending on the duration they can be held, the re-

sources are divided into long and short resources. Conventional suspension

locks are used for guarding long resources. Spin locks are used for sharing

short resources.

2. Minimize Short Busy-Waiting: As a feature of this protocol, the time of a

task spent on waiting for a short resource should be minimized. The protocol

ensures this by constraining the short resource requests. A short resource

34

request is non-preemptive. Also, long resource requests cannot be contained

in short resource request so that the length of execution in short resources

can be minimized.

3. Resource Grouping: Similar resources are grouped together in order to be

dealt with efficiently. Each group contains only either long or short re-

sources. The resources, required by nested requests, are grouped into the

same group. The resource type of the group is determined by its outermost

request. Therefore, a long resource group may contain requests for short re-

sources. However, a short resource group may not contain requests for long

resources.

After the resources have been grouped, the tasks must acquire the group lock

first before locking the actual resource. For example, a short resource request S

from a task T must require S’s group lock first. Since any possible nested resource

requests from T at this stage are short, T remains in a non-preemptable spinning

state until the resource lock has been released. As for long resource requests,

priority inheritance is used. Similar to the short resource requests, a task T must

also acquire a long resource L’s group lock first. If T blocks a higher priority task

requesting a resource in the same group, it will inherit its priority and finish L as

soon as possible. If another long resource is required inside L by T, the request will

be granted immediately if the requested resource is in the same group. However, if

the acquiring nested resource is short, the above mentioned short resource sharing

protocol will be used.

The following Figure 2.3 illustrates the FMLP in a detailed example using

partitioned scheduling.

In Figure 2.3, we have 4 tasks running on two processors P1 and P2. The tasks

T1, T2, T3 and T4 have priority assigned 3, 2, 1 and 4 respectively. The resources

shared between the tasks are listed in the following table:

Task Priority Requiring Resource
T1 3 S1
T2 2 S1 (S2), L1
T3 1 S2
T4 4 L1

35

Figure 2.3: FMLP Example

36

S1 and S2 are two short resources grouped in one short resource group with

group lock G1 because T2 acquires nested access to S1 and S2. L1 is a long

resource and is therefore grouped individually in a long group with group lock G2.

In Figure 2.3, T1 is released to P1 at t0. It then successfully obtains G1 and

locks S1.

Between t0 and t1, T2 is released to P2 and requires S1 immediately. However,

it finds that G1 has already been granted to T1. Since T1 is in a non-preemptive

state, T2 is therefore set spinning. T3 is released to P1 later on before t1. It

cannot start execution since T1 is holding the processor P1 at this moment.

At t1, T1 finishes execution in S1 and releases G1. T2 is then granted with

G1 and locks S1. At this point, T3 is granted with the processor P1 for execution

and requires S2. However, since G1 has been granted to T2, T3 is blocked.

At t2, T2 finishes execution in S1, S2 and releases G1. It then locks the long

resource group lock G2 and locks the free resource L1. Since G1 is free now, T3

can then obtains G1 and locks down S2.

At t3, T4 is released to P2. Since its priority is higher than T2, it starts

execution immediately.

At t4, it attempts to lock L1 and finds G2 has already been locked by T2. T2

at this point is therefore resumed and inherits the priority from T4 running at

priority 4. At this moment, T3 finishes execution in S2 and released both the lock

for the resource and the group.

At t5, T2 finishes execution in L1 and releases the group lock G2 leaving L1

to T4.

In this scenario, since the resources are guarded by group locks, T3 is blocked

by T1 although it requires a different short resource. Also, it is worthwhile noticing

that T2 gets the short resource group lock G1 ahead of T3 because the spin lock

queue is operated in FIFO manner.

The FMLP protocol promoted the classification of long and short resources

depending on the critical section length of the shared resources. The long re-

sources, whose scheduling expenses are relatively small to its total execution time,

is granted to the highest priority task using mutex based lock. The short resources,

with less execution time to spare for heavy scheduling expenses, is granted to the

first waiting task in the FIFO spinning queue. This classification reduces the

scheduling overheads and simplifies the schedulability analysis for multiproces-

37

sor resource sharing. The FMLP is significant also in supporting nested resource

sharing. short resource requests are allowed to be nested within long resource re-

quests. Restriction on scheduling is also lifted where both partitioned and global

scheduling are permitted.

2.2.5 Parallel-PCP

We have seen the problem discovered in the priority inheritance protocol where a

high priority task gets blocked multiple times by lower priority tasks. The PCP

was developed to prevent this multiple blocking. The low priority tasks in this case

have to wait until the resources have been released by high priority tasks. This

imposes a high risk to low priority tasks so that they may need to wait a long time

since the blocking chain starting from high priority tasks may be very long. [21]

pointed out that the response time of a task depends on three parameters: 1) the

execution time of the task itself; 2) the amount of time that the task needs to wait

before being granted with resources; 3) the amount of execution time from other

tasks that have higher priority. The more resources high priority tasks require the

more response time delay is added to low priority tasks.

New global fixed-priority preemptive multiprocessor scheduling algorithm called

Parallel-PCP (P-PCP) improve the average performance of the foreseen resource

sharing protocols by allowing certain number of low priority tasks to block high

priority tasks [23]. That is the low priority tasks to lock resources in some situ-

ations which are not permitted by PCP. In PCP, a high priority task only needs

to wait for one longest critical section used by one underlying lower priority task

in the worst case. This is not always true in P-PCP. A task T with priority P is

allowed to lock a shared resource if the total number of tasks with base priority less

than P, which refers to the lower priority tasks, and active priority greater than I,

which refers to a subset of those tasks which are running at a higher priority with

potentials to block high priority tasks, is at most αi. αi is a threshold defined for

each priority level of the system. According to the rule, a low priority 3’s αi is not

higher than a high priority 4’s αi. αi’s value is assigned artificially. A low value

for αi implies that fewer tasks with base priority lower than αi are simultaneously

allowed to execute at an active priority higher than αi. The PCP is an extreme

instance to P-PCP where αi is set to one for all priority levels which means at most

38

one lower priority task may be able to block the execution of a high priority task.

Although the response time of high priority tasks is improved, the rule in PCP

reduces the parallelism in the system. The protocol therefore is looking forward to

manipulate an appropriate value for αi in order to gain a trade off between both

parallelism and efficient response time for high priority tasks.

The scheduling rules of P-PCP are summarized as follows:

Rule 1 The principle rule is : a job is allowed to lock a shared resource if the

total number of tasks with base priority less than i and active priority greater

than i is at most αi. αi is an implementation defined value that determines

the maximum length of the blocking chain of the conventional priority in-

heritance protocol. By setting αi to 1, PPCP works similarly to PCP. If set

to the total number of tasks in the system, the protocol will have the same

semantics as the Priority Inheritance Protocol (PIP).

Rule 2 If there are any unassigned processors and a task Ti does not require any

resource, the free processor is assigned to Ti. Otherwise, continue to Rule 3.

Rule 3 If the current executing task Ti requires a resource and the resource is

locked, PIP applies. If the resource is free, Rule 1 applies and resource is

either assigned to Ti or the task is suspended.

In order to show the advantage of P-PCP, the blocking suffered by T5 in the

following two examples is demonstrated and analyzed. The examples in Figure 2.4

and Figure 2.6 comprise 8 tasks(T1..T8) and 3 processors. The tasks are assigned

with decrementing priority where T1 has the highest and T8 has the lowest. The

resources shared between the tasks are explained by the following table:

Resource Shared between Tasks
R1 T8, T3
R2 T7, T4
R3 T5, T6, T2

Table 2.4: P-PCP Resource Table

With only priority inheritance in place, as seen in Figure 2.4, any lower priority

task can block high priority tasks as long as it holds the resource being required

by the latter.

39

Figure 2.4: Scheduling Example of PIP

40

The system is globally scheduled and starts with T8 holding R1 on P1, T7

holding R2 on P2 and T6 holding R3 on P3.

At t0, T3 is released and finds that R1 has been locked by T8. Therefore, T8

inherits T3’s priority and is raised to priority level 6. Similarly, T7 inherits T4’s

priority and is raised to priority level 5. The highest priority task T1 is released

by preempting T6. At this point, only T1, T7 and T8 are executing.

Between t0 and t1, T7 and T8 finish R1 and R2. Theses two resources are then

granted to T3 and T4 respectively.

At t1, as T4 finishes its execution making the processor idle, T6 holding R3

still, as a preempted task, resumes its execution. It is worthwhile noting that T5

cannot lock R3 here because R3 is still locked up by T6.

Between t1 and t2, T3 finishes R1. The processor is then yielded to a newly

released task T2 which will lock R3 after it has been released by T6.

At t2, T5 is then finally eligible to lock R3.

Under pure priority inheritance, T5 suffers blocking from two lower base prior-

ity tasks (T7 and T8). The number of time units T5 suffers is analyzed in Figure

2.5

Figure 2.5 analyzes the response time of T5 in the scenario demonstrated by

Figure 2.4. By assuming it is released at time 2, T5 in this situation suffers a delay

from t2 to t9.

This is reduced in P-PCP by setting α to 3 for all priority levels greater than

4 and to 2 for priority levels less or equal to 4. The impact of Z is demonstrated

by Figure 2.6

In Figure 2.6, we can see that the resource request to R2 from T7 at t0 is not

granted. At each scheduling event, the scheduler will search through all tasks in

the system seeking tasks with lower priority but higher effective priority holding

shared resources for all priority levels. At this point, the scheduler finds that there

are three tasks falling into this type for priority level 4. Since α4 has been set to 2,

which means at most 2 tasks with lower basic priority and higher effective priority

than 5 are allowed to execute for priority level 5, and T8 has already released and

locked R1, T7 is therefore suspended.

Since T8 has is already executing, T7’s request is therefore denied. In this case,

T8 is popped up to priority 2 for execution. T6 starts by holding R3.

Then at t1, T1 as the highest priority task in the system is released to the only

41

Figure 2.5: Response Time for T5 under PIP

42

Figure 2.6: Scheduling Example of P-PCP

43

available processor. Then, T3 is released. Since R1 has already been locked up by

T8, T3 is blocked and suspended. T8 inherits its priority running at priority level

6. Since T7 has been suspended, R2 is granted to the newly released task T4. T4

with a higher priority preempts the current executing task T6. T5 at this point

is suspended as well because R3 has been locked up by T6. The three currently

running tasks are T1, T8 and T4.

At t2, T4 finishes R2 which then yields the processor to the preempted task

T6.

At t3, after T6 releases R3, T5 is granted with R3 and starts execution.

In this case, T5 suffers blocking only from T8 and T6 instead of T6, T7 and

T8 in the previous case. This is owing to the tuning parameter α which suspends

T7 at t0.

The number of units T5 suffers in this situation is shown in Figure 2.7

Figure 2.7: Response Time of T5 under P-PCP

All executions for tasks other than T7 are the same as they were in Figure 2.5.

44

Since T7 is suspended at time 1, the blocking introduced to T5 is reduced. As we

can see in this figure, T5 only suffered delay from t2 to t6.

Since P-PCP was developed to reduce the blocking chain length to improve the

general response time of high priority tasks, the paper conducted a response time

analysis estimating the upper bound of the blocking time encountered by a task

T under global scheduling. The response time of task T on multiprocessor can be

estimated from the following factors:

• Execution time of task T itself

• The amount of time that task T needs to wait before being granted the

resource

• The amount of execution by other tasks that have higher effective-priority

than T.

Compared with previous resource sharing schemes, P-PCP reduces the inter-

ference suffered by the highest priority task by restricting the number of lower

basic priority but higher effective priority task allowable for execution. By the

time when the highest priority task is released, the longest waiting time suffered

will be limited to the α set to the highest priority level. Also, the low priority

tasks are benefited from this rule. By reducing the length of blocking chain, the

waiting time of low priority tasks is reduced. The faster the low priority task

processes the shared resource, the smaller chances the highest priority task gets

blocked by unavailable resources. When less number of tasks are blocked on un-

available resources, more tasks can be executed in parallel which in turn increases

the performance of the system. However, P-PCP didn’t introduce support for

nested resource sharing.

2.2.6 OMLP

The O(m) locking protocol (OMLP) [11] was introduced with an m-exclusion lock

to reduce the negative effect of using priority inversion algorithms on long re-

sources. Low priority resource requests are still delayed but the starving effect is

prevented. The OMLP algorithm is proposed with an alternative design principle

which abandons the resource participation method used by FMLP. Unlike the idea

45

of resource classification, OMLP separates the tasks into two queues based on the

number of resource-competing tasks running at one time. When the total number

of resource-contenting tasks is smaller than the number of processors in the system,

all resource contending tasks are inserted into a dedicated FIFO queue where the

shared resources are served in FIFO order. If there are at least M tasks requesting

the same resource, the excessive tasks are inserted into the priority queue where

all tasks are ordered by their active priority.

OMLP supports both partitioned and global scheduling. In partitioned schedul-

ing, a global FIFO queue and a dedicated priority queue is needed for each resource

on every processor. This is because tasks are not allowed to migrate to different

processors in execution. A contention token is inserted into each processor act-

ing as a binary semaphore representing the resource request in a dedicated global

FIFO queue. The task holding the contention token waiting in the global FIFO

queue is suspended until it becomes the head. In which case, it is granted the

shared resource and all other tasks waiting on the same resource are suspended.

The algorithm is explained in detail as follows:

Global OMLP Each global resource, k, is managed by two queues: a FIFO

queue (FQk) and a Priority Queue (PQk). A resource is always granted to

the head element of FQk. The FQk is restricted to contain M (the number

of processors in the system) tasks waiting to access the resource. If the

number of waiting task exceeds M - 1, the rest are placed in PQk. Tasks

in PQk are priority ordered where the highest priority task will be the next

task dispatched to FQk if the number of task in FQk at any time is less than

M. When a task releases the resource k, it is dequeued from the FQk queue

and the task at the new head of the queue is resumed at a priority which is

equal to the highest priority of any task in FQk and PQk.

Partitioned OMLP Partitioned OMLP uses contention tokens to control access

to global resources. There is one token per processor, which is used by all

tasks on that processor when they wish to access a global resource. Associ-

ated with each token there is a priority queue PQm. There is only one queue

per global resource, a FIFO queue, again of maximum length M. In order

to acquire a global resource, the local token must be acquired first. If the

token is not free, the requiring task is enqueued in PQm. If free, the token is

46

acquired, its priority is then raised to the highest priority on that processor,

and the task is added to the global FQk and, if necessary, suspended. When

the head of FQk finished with the resource, it is removed from the queue,

releases its contention token, and the next element in the queue (if any) is

granted the resource.

Figure 2.8: Global OMLP Example

Figure 2.8 demonstrates the Global OMLP multiprocessor resource sharing

47

algorithm in a detailed example. The scenario contains 6 tasks running on 2

processors. The release time of the tasks varies from t0 to t5. For demonstration

purpose, only a single resource is shared between all tasks.

T1 is the first task released in the system at t0. It starts execution and im-

mediately acquires the shared resource R. At the same time, T2 is released but

finds the shared resource R is not available. According to the global OMLP rule,

T2 joins the global FIFO queue and waiting for R to be available again. At t1,

T3 is released to processor 2. It is blocked as well since R is still being held by

T1. However, T3 is not able to join the global FIFO queue because the length of

the FIFO queue is limited to 2 in this scenario and there are already two tasks

running in the FIFO Queue. T3 therefore joins the priority queue and waiting for

a position to become available in the FIFO queue.

T6 is then released and acquires resource R. As R is still being held by T1,

T6 is suspended and joins the priority queue of R for similar reason to T3. T5

and T4 are released on t3 and t4 respectively. They both join the priority queue

and wait for R to become available. At this moment, there are 4 tasks waiting in

the priority queue. T4 is the one with the highest priority. For this reason, it is

positioned at the head of the priority queue.

When T1 releases R at t6, T2 is immediately granted with the resource and

starts execution. T4, the head of the priority queue, is removed into the FIFO

queue. It is positioned as the next task accessing the shared resource once R is

released by T2. T6, T5 and T4 are migrated from the priority queue to the FIFO

Queue sequentially and granted the shared resource R. When T3 joins the FIFO

queue, there is no task waiting in the priority queue. It is granted with R at t10

and finishes execution at t11.

In partitioned OMLP, task organization is more complicated than in its coun-

terpart global OMLP. In global OMLP, all tasks are managed by the pair of global

FIFO and priority queue. In partitioned OMLP, tasks are managed by one global

FIFO queue and a number of priority queues. This complex partitioned queue

structure causes problems in the context of sharing more than one resources. That

is, when a high priority task arrives at a partition or cluster, the resource holding

a low priority task can be preempted. This can result in extra priority inversion

and possibly cause deadline missing for the late arriving task.

The combination of FIFO and priority queues reveals the significance of OMLP

48

in obtaining the best from both FIFO and priority based queuing policies. The

highest priority task in OMLP has to wait only at most M number of tasks waiting

in the FIFO queue. Although not competitive to MPCP, where the highest pri-

ority task suffers only one longest critical section of any lower priority tasks, it is

still positive that the blocking suffered by the highest priority task is predictable.

However, further optimization can be considered to reduce the blocking time of

highest priority task.

2.2.7 Priority Donation

The priority donation protocol is an extension of the OMLP for clustered based

systems. The priority donation is a form of priority boosting where the resource

holding tasks are forced to be unconditionally scheduled within its cluster. Let

us firstly consider a simplified example of illustrating the motivation of priority

boosting. T1 and T2 are the two tasks running in a cluster with only one processor.

T3 is dispatched to a different cluster but sharing the same resource R with the

other two tasks. If T1 is firstly released and locked the resource, the release

of T2 will preempts the resource holding task T1 since it has a higher priority.

T3, if becomes released and attempts R in a different cluster, will suffer extra

blocking from T2. The priority boosting prevents this situation by forcing T1 to be

scheduled. The original priority boosting has a potential side effect of preempting

the same “victim” task. It is highly possible that one task can suffer more than

one priority boosting during its execution cycle. The priority donation forms a

special one to one relationship between the priority donor and the priority recipient

task where only the task actually cause the priority inversion will have its priority

donated. With priority donation, the “victim” task is predetermined at the releases

and each task is preempted at most once.

The rules of priority donation are summarized as follows [12]:

1. A task Td becomes a priority donor to Ti during ta (ta : the time period

between a task issuing its resource request and the resource being released

by the task) if :

(a) Ti was the Cth highest priority pending task prior to Td’s release

(b) Td has one of the C highest base priorities

49

(c) Ti has issued a global request that is incomplete at period ta

2. Ti inherits the priority of Td during ta.

3. If Td is displaced from the set of the C highest priority tasks by the release

of Th , then Th becomes Ti’s priority donor and Td ceases to be a priority

donor.

4. If Ti is ready when Td becomes Ti’s priority donor, then Td suspends imme-

diately. Ti and Td are never ready at the same time.

5. A priority donor may not issue resource requests. Td suspends if it requires

a resource while being a priority donor.

6. Td ceases to be a priority donor as soon as either :

• Ti completes its request

• Ti’s base priority becomes one of the C highest

• Td is being relieved by a later released priority donor task.

Let us consider the following example which demonstrates the priority donation

in a greater detail:

Figure 2.9 depicts a fixed priority schedule where T1 and T4 donate their

priority to lower priority tasks T3 and T6. The system contains two clusters

running 3 tasks each. Two resources R1 and R2 are shared between all tasks in

the system. Since there are two processors in the system, each cluster allows two

tasks to be running parallel to each other.

T2 is firstly released to cluster 2 at t0. At the same time, T3 with the lowest

priority 1 is released and immediately requires R1 at t1. T1 is released at t3 with

the highest priority in cluster 2. By the definition of the used scheduling algorithm,

T3 could have been preempted and yield the processor to T1. However, according

to the rule of priority donation, T3, as a resource holding task should always

be scheduled and, continues executing and receives priority from T1. It is then

running at priority T1 and becomes a priority recipient. T1 in this case becomes

a priority donor that is not allowed to require any resources when its priority is

being donated. T1 ceases to be a priority donor from t4 and immediately starts

50

Figure 2.9: OMLP Priority Donation

51

execution blocked by T4 in cluster 1. It resumes execution at t7 when R2 is

released by T2.

Similarly, when T4 is released at cluster 1 at t4, T6 has already issued the

resource request of R1. T4 therefore donates its priority to T6 and is suspended

when it becomes one of the two highest priority task in the system. This is

happening at t5 when T5 finishes its execution in cluster 1. T4 in this case starts

execution and acquires R2. T6, running at priority 6, acquires R1 shortly after t4

and finishes just after t5.

Without priority donation, a possible schedule could cause T6 to miss its dead-

line. That is, when T1 is released, T3 is immediately preempted. T6 has to wait

both T1 and T3 to finish their execution which increases its blocking time in ac-

quiring R1. With T1’s priority being donated, T1 is not allowed to execute while

being a priority donor. T3 will execute R1 without interference. In this case, T6

will be able to start execute once R1 is released from T3. The interference from

T1 is removed.

2.2.8 SPEPP

Making resource holding tasks non-preemptive has an advantage of reducing the

scheduling cost of all tasks. This is because the preemption operation itself is

expensive [46]. With a FCFS-ordered queueing spin lock algorithm, in the case of

being preempted, waiting tasks can be enqueued at the end of the waiting queue.

This preempted task has to wait for other tasks to execute before beginning its

reexecution. This expense, known as the preemption cost, must be minimized in

order to for system scalability. The main motivation behind this consideration is

that the interrupt handler and system interrupt are often assigned equal or higher

priority than the highest priority task in the system. The interrupt rate in systems

is normally very high [61]. The preemption cost often worsens the interrupt service

time.

The SPEPP algorithm, proposed by [61], was designed to minimize the impact

of preemption cost. Tasks under SPEPP are enqueued with an operation block on

the waiting queues. An operational block contains all memory space for input and

return values. With this structure, the resource requests appended in the queues

are executed in strictly FCFS manner regardless of preemption. If it is the task’s

52

turn to acquire the lock while it is preempted, the posted operation is executed by

the non-preempted task at the head of the queue. Since SPEPP is more focused on

low-level resource sharing details, it can be applied to either partitioned or global

scheduling. The SPEPP algorithm is summarized as follows [61]:

• The atomic test and set primitive is used to update the shared variable

indicating the preemption condition of the waiting task.

• Once a task acquires the lock, it executes all the operations in the queue

without releasing the lock until it executes its own operation, except when

an interrupt request is detected.

• The interrupt request is probed during doing test and set for the spin locks.

However, pending interrupts must be served. The resource holding task must

check the interrupt requests after serving the lock. If there are pended inter-

rupt requests, it executes the corresponding interrupt handler for a bounded

time before getting back to execute operations requested by the other tasks.

• The data structure for the spin lock and that for the operation queue are

merged into a single data structure.

The pseudo code of the algorithm is given as below [61]:

1 shared var OpQueue ; // The operat i on queue ;
2 shared var SpinLock ; // Spin Lock
3
4 var opblock ; // operat i on block
5
6 var op ; // po in t e r to an operat i on block
7
8 // main rout in e
9 e n q u e u e t a i l (&opblock , OpQueue) ;

10 while the opera t i on in opblock has not been executed do
11 a c q u i r e l o c k (SpinLock) ;
12 op = dequeue top (OpQueue) ;
13 execute (op) ;
14 r e l e a s e l o c k (SpinLock) ;
15 end ;

Listing 2.1: SPEPP synchronization

The head task will follow the main routine depicted by Listing 2.1 to execute

all operations until either there are no operations appended in the queue or it has

met the other request issued by itself. Once a critical section has been executed,

53

the corresponding shared variable of the waiting task will be updated. The waiting

task will actively check on its own shared variable. If updated, the waiting task

will exit the resource request routine and leave the spin queue.

The significance of the SPEPP algorithm is the delegation of execution rights.

All previous multiprocessor resource sharing protocols assume that the task exe-

cutes the critical section needs to be the owner task itself. The order of accessing

a shared resource depends on the scheduling outcome of the owner tasks. The

SPEPP algorithm offers an alternative perspective to solve the multiprocessor re-

source sharing problem through decoupling task scheduling and resource sharing.

2.2.9 Main Characteristics of Resource Sharing Protocols

The above multiprocessor resource sharing protocols are explained in detailed sce-

narios. Such examples are good for demonstration purposes but are less effective

for revealing the main characteristics of the algorithms. Table 2.5 summarizes the

main characteristics of the above protocols:

The algorithms, shown by Table 2.5, are all having different restrictions on

scheduling algorithms, differentiating global and local resource, supporting of nested

resources, accessing priority of shared resources and queuing policies. MPCP and

MSRP only work with partitioned scheduling. Only FMLP and OMLP accept

nested resources. The resource accessing priorities are under the dual impact of a

resource sharing algorithm and the programming language restrictions. The choice

of resource accessing priority has to satisfy the integrity of the resource sharing

algorithm. Some algorithms are using ceiling priority as the accessing priority

instead of priority inheritance. Alternative non preemptive accessing and priority

donation mechanisms are also permitted. Similarly there is no single queueing

policy that defines the waiting tasks operations agreed by all algorithms. Overall,

no single protocol has emerged as being suitable for all resource sharing situations.

54

Protocol Scheduling Resources Nested
Re-
sources

Access Priority Queueing

MPCP Partitioned Yes No Ceiling Suspends in a priority
ordered queue

DPCP Partitioned Yes Yes Ceiling Suspended in a prior-
ity ordered queue

MSRP Partitioned Yes No Non Preemptive Spins in a FIFO queue
FMLP Both Yes Group

Lock
Non Preemptive
for short; Sus-
pension for long

Short: Spins in a
FIFO queue; Long:
Suspends in FIFO
queue

PPCP Global No No Inheritance Suspends in a Priority
queue

OMLP Both Yes Group
Lock

Inheritance for
global, Non
preemptive for
partitioned

Suspends in FIFO
and Priority-ordered
or Contention token
queues

Clustered
OMLP

Clustered No Group
Lock

Priority Dona-
tion

Suspends in a FIFO
queue

SPEPP Both No No Non Preemptive Spins in a FIFO queue

Table 2.5: Summary of Multiprocessor Resource Sharing Protocols

55

2.3 Support for Multiprocessor Scheduling and

Resource Control Protocols in Ada, RTS and

Linux

The emergence of multiple processors imposes challenges on language abstractions.

The facilities that the languages provide to exploit parallelism in multiprocessor

architectures vary and there are no agreed standards. In order to benefit from

this new architecture, tasks must be able to run in true parallel to each other on

different processors. Tasks are usually assigned affinities to restrict the degree of

migration between processors. The affinity settings also acts as a support mecha-

nism for multiprocessing. The control of affinities is as important as the control of

priorities in multiprocessor environment[16]. On top of this basic requirement, the

predictability of the tasks is also important in real-time systems. The tasks shar-

ing resources together are tightly coupled and their execution is normally modified

by synchronization. The following sections investigate the support of multiproces-

sors in programming languages and operating systems in the context of processor

affinity and available resource sharing mechanisms.

2.3.1 Multiprocessor Support in Ada

In the context of scheduling algorithms, Ada 2012 offers a wide range of scheduling

options available for multiprocessor systems [24].

• Global preemptive priority-based scheduling

• Fully partitioned preemptive priority-based scheduling

• Global EDF scheduling

• Partitioned EDF scheduling

In addition to the above, Ada allows groups of processors to form “dispatching

domains” (clusters), where each processor can only be part of one dispatching

domain. Tasks can be globally scheduled within a single dispatching domain and

it is also possible to fix a task to run on a single processor within a dispatching

domain.

56

Coordination between tasks is required for resource allocation between com-

peting tasks. In reality, external devices, files, shared memory spaces, buffers and

protected algorithms are not physically transmitted between tasks. These devices

often have shared information available to other devices through read and write

operations[15]. Resource control protocols protect the integrity of the shared in-

formation. If the integrity of the data is compromised, for example when a task

fails to update the data, it would be necessary to inform all involved tasks. Ada

adopts the avoidance approach to support resource sharing at the language level.

The avoidance approach relies on the guard or the acceptance of the conditions.

Only the tasks satisfying the conditions under the acquiring request can be safely

accepted and proceed. The condition is normally known as the guard (a barrier).

In conventional monitors, read and write operations are regarded as the same

operation having a similar impact on the shared data. It offers a level of abstraction

where both read and write operations on shared data require mutual exclusion.

However, Ada offers a distinction between read and write appreciating the fact

that read operation is not changing the underlying content of the data. Therefore,

multiple read operations are allowed to run parallel to each other in Ada.

A protected object provides three types of accesses to its encapsulated shared

data via protected entry, protected procedure and protected function. These pro-

tected actions ensure that the integrity of the encapsulated data is protected. A

protected procedure provides complete mutual exclusive access to the data irre-

spective of the read or write nature of the operation. A protected function appre-

ciates the nature of the read operations where concurrent read-only access to the

data is allowed. A protected entry is similar to protected procedure with an extra

boolean expression, also known as the barrier. In a call to a protected entry, the

barrier is firstly evaluated. The caller task can only proceed inside the body of the

entry if the barrier is evaluated to be true. If not, it is suspended until the barrier

evaluates it to be true and no other tasks are currently active inside the protected

object. The protected objects of Ada is explained with further detail in Chapter

4.

However, the Ada Reference Manual (ARM) and its annotated companion

(AARM) do not fully define the access protocol for protected objects on a multi-

processor system. The following points summarize the current position.

1. Where there is contention for a protected object’s lock, the possibility to use

57

spin-locks is a discussion point to a note.

“If two tasks both try to start a protected action on a protected ob-

ject, and at most one is calling a protected function, then only one

of the tasks can proceed. Although the other task cannot proceed,

it is not considered blocked, and it might be consuming processing

resources while it awaits its turn. There is no language-define or-

dering or queuing presumed for tasks competing to start a protected

action - on a multiprocessor such tasks might use busy-waiting;”

for monoprocessor considerations, see D.3, “Priority Ceiling Lock-

ing”.

2. It is implementation defined whether to spin non-preemptively, or, if not at

what priority. Furthermore, it is not defined whether there are queues (FIFO

or priority) associated with the spin-lock

“It is implementation defined whether, on a multiprocessor, a task

that is waiting for access to a protected object keeps its processor

busy.” AARM D.2.1. par 3

3. The task which executes a protected action is not specified.

“An implementation may perform the sequence of steps of a pro-

tected action using any thread of control; it need not be that of the

task that started the protected action. If an entry body completes

without requeuing, then the corresponding calling task may be made

ready without waiting for the entire protected action to complete.

The reason for this is that these permissions are intended to allow

flexibility for implementations on multiprocessors. On a monopro-

cessor, the thread of control that executes the protected action is

essentially invisible, since the thread is not abortable in any case,

and the “current task” function is not guaranteed to work during

a protected action seeC.7.1.” AARM 9.5.3 pars 22 and 22.a

4. The ceiling locking policy must be used with EDF scheduling.

“If the EDF Across Priorities policy appears in a Priority Specific

Dispatching pragma seeD.2.2 in a partition, then the Ceiling Locking

58

policy seeD.3 shall also be specified for the partition.” AARM

D.2.6 par 11.2

“The locking policy specifies the meaning of the priority of a pro-

tected object, and the relationships between theses priorities and

task priorities”. AARM D.3 6.2

5. The value of the ceilings can be altered by the implementation.

Every protected object has a ceiling priority, which is determined

by either a Priority or Interrupt Priority pragma as defined in D.1,

or by assignment to the Priority Attribute as described in D.5.2.

The ceiling priority of a protected object orceiling, forshort is an

upper bound on the active priority a task can have when it calls

protected operations of that protected object.” AARM D.3 par 8.2

“The implementation is allowed to round all ceilings in a certain

subrange of SystemṖriority or Systemİnterrupt Priority up to the

top of that subrange, uniformly.”

In summary, Ada generally assumes the use of spinlocks but does not rule out

other approaches.

The order of accessing protected objects is determined by the scheduling and

dispatching algorithms. Since Ada 2005, Ada has supported different dispatching

policies including fixed priority (FP) and EDF. EDF dispatching can be applied

across the whole range of priorities or across a restricted range. In this way,

EDF scheduling is integrated into a FP framework. Baker’s stack resource policy

[4] is also integrated with Ada’s ICP protocol to support resource sharing using

protected objects.

The approach that Ada adopted for EDF scheduling was novel, and the pro-

tocol’s correctness was not formally verified. As a result the initial definition was

found to contain errors [75] and had to be corrected. Although the protocol is now

believed to be correct, its properties on a multiprocessor platform are unclear.

This is partly because Ada does not completely define how protected objects are

accessed in a multiprocessor environment. Also, according to [26], the SRP was

59

designed for single processor systems and cannot be directly applied to multipro-

cessors.

“The Stack Resource Policy has several interesting properties. It pre-

vents deadlock, bounds the maximum blocking times of tasks, reduces

the number of context switches and can easily extend to multi-unit re-

sources. ... However, the SRP does not scale to multiprocessor sys-

tems.”

Table 2.5 captures the main characteristics of the resource sharing protocols

reviewed in this thesis. The following summarizes whether the current protocols

are compatible with Ada when busy-waiting is assumed.

MPCP No: MPCP suspends on an unavailable lock.

DPCP No: DPCP suspends on an unavailable lock.

MSRP Yes: if MSRP uses ceiling of ceilings for resources.

FMLP Partial: if FMLP supports short resources only.

PPCP No: PPCP suspends on an unavailable lock and no immediately inheri-

tance.

OMLP No : OMLP suspends on an unavailable lock.

As can be seen, MPCP, DPCP, PPCP and OMLP are not a good match for Ada

as they suspend on access to a resource. In a fully partitioned system, this might

be enforced by a Ravenscar-like profile [22], as a slight variant of the MSRP can

be used. That is tasks are set to spinning at the highest priority of the processor

ceilings. If FMLP is constrained to short resources, it is essentially equivalent to

using MSRP on the group lock and treating all resources as global. It perhaps

should be noted as an aside, that use of the Ada rendezvous could be considered

a long resource.

In Ada, nested resource access is allowed. In most of the protocols, as shown

by Table 2.5, either nested resource accesses are disallowed, or the notion of groups

is introduced (as in the FMLP) and a group lock must be obtained. This is to

avoid deadlocks.

60

2.3.2 Multiprocessor Support in RTSJ

The Real-Time Specification for Java (RTSJ) Version 1.1 [10] provides more ex-

plicit support for multiprocessor issues than previous versions of the languages.

However, issues surrounding the use of synchronized objects are still, to a large

extent, unresolved.

In Java, a monitor is an object with the important property that the methods

that are labeled as synchronized are executed atomically with respect to each

other. This means that one synchronized method call cannot interfere with the

execution of another synchronized method. The way this is achieved, in practice,

is by ensuring that the calls are executed in mutual exclusion. There are several

different ways of implementing this, for example, by having a lock associated with

the monitor and requiring that each method acquires (sets) the lock before it can

continue its execution.

The support that the RTSJ provides for multiprocessor systems is primarily

constrained by the support it can expect from the underlying operating system.

The following have had the most impact on the level of support that has been

specified.

• The notion of processor affinity (or dispatching domains, as Ada calls them)

is common across operating systems and has become the accepted way to

specify the constraints on which processor a thread can execute. RTSJ di-

rectly supports affinities. A processor affinity set is a set of processors that

can be associated with a Java task or RTSJ schedulable object. The in-

ternal representation of a set of processors in an AffinitySet instance is not

specified, but the representation that is used to communicate with this class

is a BitSet, where each bit corresponds to a logical processor ID. The rela-

tionship between logical and physical processors is not defined. Affinity sets

allow cluster scheduling to be supported.

Support is grouped together within the ProcessorAffinitySet class. The class

also allows the addition of processor affinity support to Java threads without

modifying the threads object’s visible API.

• The range of processors on which global scheduling is possible is dictated by

the operating system. RTSJ supports an array of predefined affinity sets.

61

Theses are implementation-defined. They can be used either to reflect the

scheduling arrangement of the underlying OS or they can be used by the

system designer to impose defaults for, say, Java threads, non-heap real-

time schedulable objects etc. A program is only allowed to dynamically

create new affinity sets with a cardinality of one.

• Many OSs give system operators command-level dynamic control over the

set of processors allocated to a process. Consequently, the real-time JVM

has no control over whether processors are dynamically added or removed

from its OS process.

Predictability is a prime concern of RTSJ. Clearly, dynamic changes to the

allocated processors will have a dramatic, and possibly catastrophic, effect

on the ability of the program to meet timing requirements. Hence, RTSJ

assumes that processor set allocated to RTSJ threads does not change during

its execution.

RTSJ Version 1.1 does not prescribe a particular implementation approach

for supporting communication between schedulable objects running on separate

processors.

In summary, RTSJ allows both globally scheduled, cluster and partitioned sys-

tems to be constructed but is silent on the details of communication between

parallel schedulable objects - simply allowing priority inheritance or priority ceil-

ing emulation. The problem is that the RTSJ/Java model is so flexible that an

implementation does not have enough knowledge of what the application is do-

ing in order to optimize its approach. Nested resource access must be assumed,

and self suspension while holding a lock is possible. However, the soundness of

these assumptions is based on the accordance of the semantics of the implementa-

tions. Of course, if an implementation only supports single processor pre-defined

affinity sets then it is enforcing a fully-partitioned system. These implementation

restrictions must be fully minded by the application developers.

2.3.3 Operating System Support

Although multiprocessors are becoming prevalent, there are no agreed standards on

how best to address real-time demands. For example, the RTEM operating system

62

does not dynamically move tasks between CPUs. Instead it provides mechanisms

whereby they can be statically allocated at a link time. In contrast, QNX’s Neu-

trino [59] distinguishes between “hard thread affinity” and “soft thread affinity”.

The former provides a mechanism whereby the programmer can require that a task

be constrained to execute only on a set of processors (indicated by a bit mask).

With the latter, the kernel dispatches the task to the same processor on which it

last executed (in order to cut down on preemption costs). Other operating systems

provide similar facilities. For example, IBM’s AIX allows a kernel thread to be

bound to a particular processor [32].

POSIX POSIX is an abbreviation of the important standard known as Portable

Operating System Interface for Computer Environments [34]. Since its first pro-

posal in 1980 in AT&T’s Unix system, POSIX was developed to a family of IEEE

standards that supports portable programming. The first standard, introduced

in 1990, defines the C language interface to operating system services [1]. The

standards describes itself as:

“[POSIX.1] defines a standards operating system interface and envi-

ronment to support application portability at the source-code level.

It is intended to be used by both application developers and system

implementors.”

Improving the application performance is always attracting the interests of

the developers. Parallel processing, by having multiple processors running at the

same time, is an applicable way of enhancing the computation power from the

hardware. At the software side, multi-threading is essential to extract benefit from

the parallel executing hardware or, at the bottom line, increase the throughput of

applications on uniprocessor systems. A series of POSIX standards were proposed

and authorized by IEEE technical committee on Operating Systems for tightly

coupled multitasking environments. The specific functional areas covered are [27]:

Thread Management Creation, Control and Termination of Threads under a

common shared address space

Synchronization Primitives Mutual exclusion and conditional variables, opti-

mized for multitasking environments (e.g: Multiprocessors)

63

Harmonization Conforming to POSIX 1003.1 interfaces.

The POSIX 1003.1 and 1003.5b defines a range of scheduling algorithms in-

cluding fixed priority scheduling policy, round robin and sporadic server policy.

These scheduling algorithms are embedded into the POSIX compatible OS and

accessible to application tasks running on those systems. It is possible for POSIX

to incorporate dynamic new policies in addition to the existing ones. This is evi-

denced by that fact that the SCHED OTHER policy in POSIX is implementation

defined.

POSIX.1 defines a “Scheduling Allocation Domain” as a set of processors on

which an individual thread can be scheduled at any given time. POSIX states that

[33]:

• “For application threads with scheduling allocation domains of size equal to

one, the scheduling rules defined for SCHED FIFO and SCHED RR shall be

used.”

• “For application threads with scheduling allocation domains of size greater

than one, the rules defined for SCHED FIFO, SCHED RR, and SCHED

SPORADIC shall be used in an implementation-defined manner.”

• “The choice of scheduling allocation domain size and the level of applica-

tion control over scheduling allocation domains is implementation-defined.

Conforming implementations may change the size of scheduling allocation

domains and the binding of threads to scheduling allocation domains at any

time.”

With this approach, it is only possible to write strictly conforming applications

with real-time scheduling requirements for single-processor systems. If an SMP

platform is used, there is no portable way to specify a partitioning between threads

and processors.

Additional APIs have been proposed but currently these have not been stan-

dardized [57]. The approach has been to set the initial allocation domain of a

thread as part of its thread-creation attributes. The proposal is only in draft and

so no decision has been taken on whether to support dynamically changing the

allocation domain.

64

There are no additional access protocols other than the standard priority inher-

itance and the immediate priority ceiling protocol (called the highest lock protocol

by POSIX) supported by default in POSIX. However, POSIX does provide some

primitive basic locking primitives for high level languages such as spin lock, mutex

lock and rw lock.

As a basic conventional primitive of a POSIX shared variable, the mutex lock

is granted to only one pthread at any one time. If several pthreads try to lock a

mutex only one pthread will be successful. No other pthreads can proceed until

the lock has been released by the owner pthread. The API is given below:

1 #include <pthread . h>
2 int pthread mutex lock (pthread mutex t ∗ mutexlock)
3 int pthread mutex try lock (pthread mutex t ∗ mutexlock)
4 int pthread mutex unlock (pthread mutex t ∗ mutexlock)

A typical example using a POSIX mutex lock looks like the following pseudo-

code:

1 // Thread 1
2 pthread mutex lock (mutexlock)
3 A = 2
4 pthread mutex unlock (mutexlock)
5
6 // Thread 2
7 pthread mutex lock (mutexlock)
8 A = A + 1
9 pthread mutex unlock (mutexlock)

As well being blocked on a mutex variable, POSIX provides a mechanism for

pthreads to wait on conditional variables. This is particularly useful in asyn-

chronous blocking where no predefined access order is agreed by the acquiring

pthreads.

1 #include <pthread . h>
2 int pthread cond wait (pthread cond t ∗ cond , pthread mutex t ∗mutex)
3 int pth r ead cond s i gna l (pthread cond t ∗ cond)
4 int pthread cond broadcast (pthread cond t ∗ mutex)

The pthread cond wait(...) function blocks the calling task until the associated

condition has been signaled. This function is called while the mutex is locked.

This is to prevent the data of the function being corrupted by race condition. If

the acquiring task is blocked on the condition, the associated mutex is released

for the next task waiting outside the function. Once a signal is received by the

conditional variable, the task is awakened and the mutex is automatically locked.

65

The task executing inside must release the mutex before leaving the critical section

of the data. The phread cond signal takes the responsibility to signal the waiting

conditional variable. If multiple conditional variable need to be signaled at one

time, the pthread cond broadcast function should be used.

The pthread conditional variable should work closely with the mutex locks. A

typical template should look like the following:

1 #include <pthread . h>
2 pthread mutex mutex ;
3 pthread cond t cond ;
4 int count ;
5
6 void ∗ cond wr i t e procedure (void ∗ t)
7 {
8 pthread mutex lock(&mutex) ;
9 p r i n t f (” I am operat ing i n s i d e the c r i t i c a l s e c t i o n ”) ;

10 count ++;
11 pth r ead cond s i gna l (&cond) ;
12 pthread mutex unlock(&mutex) ;
13 }
14
15 void ∗ cond read procedure (void ∗ t)
16 {
17 pthread mutex lock(&mutex) ;
18 pthread cond wait (&cond ,&mutex) ; /∗ The mutex w i l l be

au t oma t i c a l l y un locked here ∗/
19 p r i n t f (” counter :%d” , count) ;
20 pthread mutex unlock(&mutex) ;
21 } ;

From Linux, the additional support was found for mutex from POSIX. The

read write lock with the pthread rwlock t type and its associated functions are

introduced in the POSIX threads API [33]. With the read write lock, the syn-

chronization between tasks is achieved in a way that the readers and writers are

exclusively operating the shared data. With the reading lock, multiple readers are

allowed to read the data at one time. Since multiple writing can corrupt the data,

only one single task is allowed to write the data at one time and no readers are

allowed to read when a write lock is being held by a writing task. In order to

inhibit writer starvation, new readers are not allowed to obtain the lock once a

new writer is waiting for access. This guarantees that the writers will be able to

acquire the lock in a finite time.

1 #include <pthread . h>
2 int pthread rw lock rd lock (pthread rw lock t ∗ rwlock) ;
3 int pthread rwlock wr lock (pthread rw lock t ∗ rwlock) ;
4 int pthread rwlock un lock (pthread rw lock t ∗ rwlock) ;

66

In addition to the API above, POSIX states that [33]:

• “If the Thread Execution Scheduling option is supported, and the threads

involved in the lock are executing with the scheduling policies SCHED FIFO

or SCHED RR, the calling thread shall not acquire the lock if a writer holds

the lock or if writers of higher or equal priority are blocked on the lock;

otherwise, the calling thread shall acquire the lock”.

• “If the Threads Execution Scheduling option is supported, and the threads

involved in the lock are executing with the SCHED SPORADIC scheduling

policy, the calling thread shall not acquire the lock if a writer holds the lock

or if writers of higher or equal priority are blocked on the lock; otherwise,

the calling thread shall acquire the lock”.

• “If the Thread Execution Scheduling option is not supported, it is implemen-

tation -defined whether the calling thread acquires the lock when a writer

does not hold the lock and there are writers blocked on the lock. If a writer

holds the lock, the calling thread shall not acquire the read lock. If the read

lock is not acquired, the calling thread shall block until it can acquire the

lock. The calling thread may deadlock if at the time the call is made it holds

a write lock”.

With this approach, the choice of scheduling algorithm has a direct impact

on the semantics of the read write lock. Again, writing strictly conforming ap-

plications in a multiprocessor environment is challenging. The behaviour of the

read write lock, according to the above rule, is implementation defined. This open

option means that there is no unified solution to the read write locks.

Linux and Unix In order to accommodate more real-time capabilities in mul-

tiprocessors, initial support for SMP systems was provided in kernel version 2.5.8

[38]. The Linux 2.6 kernel was introduced in 2003 with major features of SMP

scalability and task affinity [64]. With the PREEMPT RT patch, the new Linux

kernel re-implemented locking and scheduling primitives. As a result, critical sec-

tions are protected with spin locks and RW locks. Priority inheritance has been

built into the kernel becoming applicable for spin locks and semaphores.

67

In the context of scheduling, partitioning of user tasks and threads is obtained

via the notion of CPU affinity. Each process in the system can have its CPU

affinity set according to a CPU affinity mask [2]. A task’s CPU affinity mask

determines the set of CPUs on which its tasks are eligible to run. The affinity

mask is actually a per-task attribute that can be adjusted independently for each

of the task in a task group. The real-time scheduler of the PREEMPT RT patchset

uses cpusets to create a root domain. This is a subset of CPUs that does not

overlap with any other subset. The scheduler adopts an active push-pull strategy

for balancing real-time tasks. This refers to the tasks whose priority ranges from

0 to (Max RT RT PRIO-1) across CPUs. Each CPU has its own run queue. The

scheduler decides [28]:

1. where to place a task on wakeup

2. what action to take if a lower-priority task is placed on a run queue running

a task of higher priority

3. what action to take if a low-priority task is preempted by the wake-up of a

higher-priority task

4. what action to take when a task lowers its priority and thereby causes a

previously lower-priority task to have the higher priority.

Essentially, a push operation is initiated in cases 2 and 3 above. The push

algorithm considers all the run queues within its root domain to find one that has

a lower priority task (than the task being pushed) at the head of its run queue.

The task to be pushed then preempts the lower priority task.

A pull operation is performed for case 4. Whenever the scheduler is about to

choose a task from its run queue that is lower in priority than the previous one, it

checks to see whether it can pull tasks of higher priority from other run queues. If

it can, at least one higher priority tasks is moved to its run queue and is chosen

as the task to be executed. Only real-time tasks are affected by push and pull

operations.

Linux does not provide additional support for mutexes. However, HP-UX (the

Unix operating system implemented by HP) provides the following non-portable

extensions to the pthread library [56]

68

1 #include <pthread . h>
2
3 int pthread mutexat t r s e t sp in np (pthread mutexatt r t ∗ attr , int sp in

) ;
4 int pthread mutexat t r ge t sp in np (const pthread mutexatt r t ∗ att r ,

int ∗ sp in) ;
5
6 int pth r ead mutex s e ty i e l d f r eq np (int y i e l d) ;
7 int pthread mutex ge ty i e ld f r eq np (int ∗ y i e l d) ;

The possible values for the spin attribute are as follows:

• positive integer - the pthread mutex lock() function will busy-wait on the

mutex lock for the specified number of iterations before blocking the task.

• PTHREAD MUTEX SPINONLY NP - inhibits blocking on the mutex lock

altogether.

• PTHREAD MUTEX SPINDEFAULT NP - uses a built-in default value for

the number of busy-wait iterations

The yield attributes specify how frequently the processor should be yielded

during busy-waiting. The possible values for the yield attribute are as follows:

• positive integer - the busy-wait loop in the pthread mutex lock() will yield

the processor after each specified number of iterations of the spin loop (where

the total number of iterations is controlled by the per-mutex spin attribute).

• PTHREAD MUTEX YIELDNEVER NP - inhibits yielding in the mutex

lock altogether.

• PTHREAD MUTEX YIELDFREQDEFAULT NP - uses a built-in default

value for the frequency of yields in the busy-wait loop.

The major issue of incorporating application defined scheduling is the sound-

ness of the integrated system and the compliance to the standards. There are sug-

gestions about the application-defined scheduling algorithms to be programmed as

a kernel module and integrated with the kernel schedulers. Running the application-

defined algorithms at low level will prevent excessive interrupts from the user space.

By running at the kernel space, the execution of the code will be running at higher

69

Event Code Description Additional In-
formation

New Task A new task has requested attachment to the
scheduler

None

Block A task has been blocked None
Lock Mutex A Task has invoked a “lock” operation on an

availalbe application-scheduled mutex
pointer to the
mutex

Unlock Mutex A task has released the lock of an application
scheduled mutex

Pointer to the
mutex

Table 2.6: Non-Exhaustive List of Registered Scheduling Events

priority. However, reprogramming kernel code is not only risky and time con-

suming, but a single error in code will corrupt the whole system. Therefore, the

advent of supporting application-defined scheduling was more preferred to run the

application-defined algorithms as a special thread [36]. In which case, the ap-

plication scheduling thread is acting as a special POSIX signal handler for the

corresponding POSIX event. For example, when a task is blocked due to unavail-

able resource, the kernel scheduler will be notified by the POSIX signal that the

calling task is blocked. The kernel scheduler will check the background of the

task and call the corresponding application scheduler thread which will make the

correct scheduling decisions.

An approach along theses lines has been proposed in RTLinux [52], in which a

two-level scheduler is used, where the upper level is implemented as a user task that

maps application-defined server parameters to low-level attributes. An application

scheduler can be created using the API depicted in Listing 2.2. The structure

posix appsched scheduler opts will contain pointers only to the functions used in

that particular scheduler. When a registered system event occurs, as depicted by

the Table 2.6, the system scheduler will check the corresponding function linked

by the pointers. If assigned, the application-defined algorithm is called. If no

application level algorithm has been defined, the pointers to the function will not

be used nor defined.

1 p o s i x a p p s c h e d s c h e d u l e r c r e a t e
2 (const p o s i x a p p s c h e d u l e r o p t s t ∗ sched ops ,
3 s i z e o f t s c h e d l e r d a t a s i z e ,
4 void ∗ arg ,
5 s i z e t a r g s i z e ,
6 p o s i x a p p s c h e d s c h e d u l e r i t t ∗ s ched id) ;

70

Listing 2.2: Application-Defined Scheduler

Changes have been proposed to low level POSIX compliant API:

1 typdef struct {
2
3 void (∗ i n i t) (void ∗ sched data , void ∗ arg) ;
4
5 void (∗ new thread)
6 (void ∗ sched data , pthread t thread ,
7 p o s i x a p p s c h e d a c t i o n s t ac t ions ,
8 struct t imespec ∗ cur r ent t ime) ;
9

10 void (∗ th read b lock)
11 (void ∗ sched data , pthread t thread ,
12 p o s i x a p p s c h e d a c t i o n s t ac t ions ,
13 struct t imespec ∗ cur r ent t ime) ;
14
15 void (∗ thread unblock)
16 (void ∗ sched data , pthread t thread ,
17 p o s i x a p p s c h e d a c t i o n s t ac t ions ,
18 struct t imespec ∗ cur r ent t ime) ;
19
20 . . . // S imi lar d e f i n i t i o n s o f the s chedu l i n g event hand l e r s
21 }

Listing 2.3: POSIX Compliant API for Integrating Application-Defined Scheduler

In Listing 2.3, the operations and methods defined in application schedulers

are linked via the pointers to the primitives operations which are invoked by the

system when a scheduling event occurs. For example, a new application task may

be created with the underlying system using new thread function. The applica-

tion developers can redefine the behaviour of the method by associating a new

customized function using the above interface.

The interactions between the scheduler and the POSIX is described by the

pseudo code of the init module() function:

1 int i n i t modu l e (void) {
2 p t h r e a d a t t r t a t t r ;
3 struct sched param sched param ;
4 pthread t task ;
5 . . . // o ther d e f i n i t i o n s
6 p o s i x a p p s c h e d s c h e d u l e r i d t ∗ e d f s c h e d u l e r i d ;
7
8 p o s i x a p p s s c h e d s c h e d u l e r o p s t e d f s c h e d u l e r o p s =
9 (. . .) ;

10
11 // Schedu ler c r ea t i on
12 p o s i x a p p s c h e d s c h d u l e r c r e a t e (

71

13 &e d f s c h e d u l e r o p s ,
14 0 , Null , 0 ,
15 &e d f s c h e d u l e r i d) ;
16
17 // App l i ca t i on schedu l ed threads c r ea t i on
18 . . .
19 }

Listing 2.4: Init module()

The use of resources may cause priority inversions or other blocking effects,

it is necessary that the scheduler takes the resources into consider to establish its

own protocols adapted to particular task set. POSIX has POSIX THREAD PRIO

INHERIT and POSIX THREAD PRIO PROTECT built in as the default pro-

tocols for synchronization between tasks. However, the applications cannot change

the priority of the tasks using the default protocols. Rivas and Harbour [53] de-

fined a scheduling interface following the application-defined scheduling framework

from above to incorporate the application-defined resource sharing protocols into

the application schedulers. It classified the mutexes as below:

System-Scheduled Mutexes The default POSIX defined protocols can be used

to access resource shared between application schedulers and the system

schedulers.

Application-Scheduled Mutexes These protocols are only applicable to those

threads created by the same scheduler. The behaviour of the protocol itself

is defined by the application schedulers.

When a scheduling event, LOCK MUTEX, UNLOCK MUTEX, occurs with

impact on any application scheduled task, the related application scheduler is

notified through POSIX signals and the corresponding primitive operation will be

invoked. The application scheduler will then decide what action to take in order

to resolve the resource sharing confliction. Through the use of these functions, an

application scheduler can reactivate or suspend its scheduled tasks for the purpose

of resource sharing.

2.4 Summary

In order to benefit from multiprocessor architectures, the necessary updates are

applied to conventional uniprocessor resource sharing algorithms and brand new

72

elements are introduced. The remoteness of the resource and affinity of the tasks

are all having an impact on the predictability of real-time systems. Various mul-

tiprocessor resource sharing protocols have been designed to reduce the impact

of remote blocking and incorporate new resource sharing principles. For exam-

ple, MPCP tackles remote blocking by introducing a synchronization processor.

P-PCP makes a trade-off between parallelism and response time of high priority

tasks. OMLP utilizes the power of the priority queue reducing the waiting time

of high priority task. Priority Donation means that preemption cost, which is

expensive and common in multiprocessors, is reduced. However, there is little ev-

idence to prove that there is an optimal solution available yet for resource sharing

in multiprocessors. The main reasons behind this are:

• The locking primitives are mainly provided by the underlying hardware and

the operating systems. The POSIX and Linux are still developing their

incorporation of multiprocessor primitives.

• The requirements and scope of the multiprocessor resource sharing algo-

rithms are all different from each other. For example, some support parti-

tioned scheduling only. Some do not support nested resource.

• The multiprocessor resource sharing algorithm suffers impact from a wide

range of factors (Task affinities, length of the resource, scheduling algorithm,

underlying hardware primitives and nature of the tasks etc.). These factors

are often affected largely by the application semantics. There are hardly any

unified solutions available to solve this problem under all scenarios. This is

further evidenced by [20] that there is no dominant scheduling algorithm yet

available to multiprocessors.

Research efforts have emerged from different perspective to provide support

for sharing resources in multiprocessors. The POSIX standard has provided three

locking primitives. The Linux real-time patched 2.6 kernel has provided a pre-

empted kernel, SMP support, real-time priorities and SCHED FIFO schedulers.

Programming languages have suggested that the effectiveness of the resource shar-

ing algorithm is largely dependent on implementation (as it is implementation

defined).

73

Finally, this chapter provides the evidence to support the thesis hypothesis,

namely: The performance of a multiprocessor resource sharing protocol

is largely dependent on the application semantics. This thesis contends

that it is, therefore, inappropriate to introduce support for a particular

multiprocessor resource sharing protocol into a language definition. In

the following two chapters, the thesis explains how the application-defined pro-

tocols can be integrated into a programming language through the framework to

achieve better resource sharing performance in multiprocessor systems.

74

Chapter 3

A Flexible Resource Sharing

Framework

It is clear that techniques for multiprocessor scheduling and global resource access

are still in their infancy. The new facilities that Ada and the RTSJ 1.1 provide

for global, cluster-based and partitioned scheduling have added a great deal of

flexibility into the languages. As reviewed in the previous chapter, the affinity and

multiprocessor dispatching domains are all open to various implementation deci-

sions. The implementation developers can define the best suitable multiprocessor

resource sharing protocols according to their needs. According to [20], tuning the

existing multiprocessor resource sharing protocols alone is not effective to obtain

the optimal protocol. The optimality of a particular protocol, varies with the

application scenarios. The programming language should therefore incorporate

the facility to accept application-defined resource sharing protocols. This requires

a flexible multiprocessor resource sharing framework that is integrated with the

programming languages resource sharing model.

This chapter introduces a flexible resource sharing framework that incorpo-

rates the mechanism that the application developers can use to integrate their

own multiprocessor resource sharing protocol at compile and run-time. With the

framework, the application developers can instantiate a template from the frame-

work and implement their own protocol by overloading the original procedures. At

compile time, those procedures will be instantiated and linked with the runtime li-

brary. Whenever the specific resource is called, the application-defined procedures

75

will be dispatched instead of the default ones.

The framework is based on the monitor which is a widely accepted concept

in popular programming languages and underlying systems. In this chapter, the

concept of a monitor is explained first. It is followed by demonstrating the design

of the framework together with its interactions with runtime libraries and other

language facilities.

It is expected that the application-defined protocols can be integrated through

standardized API with the framework at a reasonable low cost. The interactions

between the framework and the underlying systems are then measured to estimate

the overhead of the framework at the next chapter. It has been considered that

a full pledged implementation is not feasible for the purpose of this research. A

series of simulation implementations were deployed as an approximation of the full

pledge code.

3.1 Basic Assumptions

Due to the complexity and variety of the fast changing underlying hardware com-

ponents, the following assumptions are made:

1. It is assumed that the processors are executing the code at the same speed.

All processors are identical to each other.

2. Two programs with the same assembly code should have the same semantics.

3. The main memory access cost is uniform and does not depend from which

processor it is being accessed.

4. Tasks are the smallest scheduling entity within the system. The critical

sections are executed by the tasks themselves.

5. The resources are software resources. That is a critical-section of code where

mutual exclusive access is required to protect the data encapsulated from

corruption. We do not consider read-write locks in this thesis.

76

3.2 Monitors

A monitor is a synchronization entity that enforces mutual exclusion [55]. The

monitor was firstly introduced by Concurrent Pascal [29] as a synchronization

mechanism to incorporate resource sharing between tasks. It is inherited by Java

and has become widely accepted by popular programming languages. The defi-

nition of monitor varies between different language; In Ada, it takes the form of

protected object. A general definition was given by [71]

“A monitor is an encapsulation of a resource definition where all oper-

ators that manipulate the resource execute under mutual exclusion”

The resource under protection is typically referred to the data that is declared

as private to the monitor. This data can only be accessed by the code listed inside

the monitor. In the context of Ada, the resource hidden in the body of monitor

can only be accessed via the procedures defined in the specification. Although,

there can be multiple tasks calling the same method of a monitor at one time, it is

guaranteed, by definition, that only one task is allowed to execute at a time. Other

tasks must wait until the previous granted task has finished with the resource. A

typical monitor is depicted by the pseudo code in Listing 3.1:

1 monitor c l a s s Account {
2
3 p r i v a t e int balance := 0 ; // Shared resource
4
5 // Access method : withdraw
6 pub l i c method boolean withdraw (int amount)
7 pre cond i t i on amount >= 0 // Asser t ion
8 {
9 i f balance < amount then return f a l s e

10 else
11 {
12 balance := balance − amount ;
13 return t rue ;
14 }
15 }
16
17 // Access method : d epo s i t
18 pub l i c method depos i t (int amount)
19 pr econd i t i on amount >= 0 // Asser t ion
20 {
21 balance := balance + amount ;
22 }
23 }

Listing 3.1: A Monitor Template

77

The account is a monitor type. It contains one account balance to be shared

between different tasks. The access to the balance is only granted through two

methods (withdraw and deposit). Since declared as a monitor, the compiler nor-

mally assigns a semaphore with the deposit and withdraw methods to guarantee

the mutual exclusion. In addition, conditional variable can be associated with the

monitors. They act as a queue of the monitor with two extra procedures. Essen-

tially, wait blocks the calling thread and places it at the queue; signal removes a

thread from the queue and gives it access to the monitors.

The monitor is a flexible programming model that provides inter-process com-

munication with distinction between synchronization and data communication.

However, the monitor, is a passive entity. There is no mechanism in monitors

that actively controls the scheduling of the tasks nor the order of accessing the

shared data. The order of accessing shared resource in monitor is decided by the

scheduler or in a predefined manner by the programmer. However, the synchro-

nization methods incorporate a series of scheduling event that the programmers

can intervene so that dynamic changes to the resource accessing order becomes

possible. For example, when all resources are available, the control of the resource

is passed back to the calling task. When a resource is released from an executing

task, all tasks either waiting on semaphores or conditional variables are notified if

the blocking condition is still true. If false, the waiting task becomes blocked.

3.3 Methodology

The idea of incorporating application-defined scheduling has attracted wide atten-

tion of scheduling researchers. The advantage of implementing application-defined

scheduling is that the developers can have more flexibility to modify the schedul-

ing policy in order to meet their application’s needs without any changes to the

kernel.

Linux has become one of the most popular OS in a short period since its re-

lease. Users have been attracted because of its flexibility and capability. [70]

proposed a two level hierarchical scheduler framework to enhance its flexibility.

The participation of application and system scheduler, namely the allocator and

dispatcher, results in a mapping between the application and system tasks. The

users can modify the attributes of new tasks and the routines of application sched-

78

ulers. The application schedulers are essentially high priority tasks collaborating

with lower-level system schedulers. However, the predefined parameters of the

tasks limit the scope of scheduling algorithms available to be implemented by the

developers. Other algorithms requiring extra parameters (other than those that

have been supported) is not applicable for implementation in their scheme.

This idea also promoted an alternative approach to implement the application

scheduling algorithms as loadable kernel modules to Linux as proposed by [73]. At

every scheduling event, the loadable kernel modules invoked by predefined APIs

is executed to implement application-defined scheduling algorithms. It is fast and

efficient but a bug in the application code can be catastrophic and the whole kernel

can be affected.

Application-defined scheduling was developed further by [53] [54] to improve

the reliability of the system and the ability to share resources between tasks. It

is believed that task scheduling cannot be separated from task synchronization

because the timing properties of the scheduling policy are closely linked to the

synchronization protocols used[54]. In their proposal, application developers can

implement their scheduler as a runnable task scheduled by the underlying sys-

tem scheduler. There are two risks of running application-defined scheduler: 1)

It is difficult to determine the relationship between the tasks priority managed

by the application schedulers and the priority of the application scheduler itself.

2) The application schedulers are not free from race condition because multiple

application schedulers may be running in parallel on different processors. The de-

velopers should obtain a systematic overview of the whole system and write well

designed code to ensure the executions are all serializable. In the context of Ada,

[53] extended the framework towards supporting application-defined resource shar-

ing protocols. A similar strategy was adopted where two kinds of mutexes were

introduced: System-scheduled mutexes and application scheduled mutexes. The

system-scheduled mutexes are mainly used by application schedulers in terms of

resource sharing. The application-defined protocols defines the behavior of the

application-scheduled mutexes. However, the range of application-defined proto-

cols is constrained by the current POSIX APIs: No Priority Inheritance, High-

est Ceiling Priority (Immediate Ceiling Priority) or Highest Blocked Task (Basic

Priority Inheritance).

Regardless of the various proposals available, the principle of incorporating

79

application-defined scheduling provides more flexibility from the system. The pre-

vious proposals all have constraints on the scope of protocols that the application

developers can implement. The system can provide more flexibility by opening up

lower system primitives to the application developers. However, direct interaction

with low-level system system is risky because a little mistake of error in the user

code can corrupt the whole system kernel.

The active application schedulers are troublesome to the extent that their in-

teractions with the system schedulers must be carefully designed and verified. This

thesis proposes to simplify the application-defined schedulers to be passive so that

all scheduling decisions are passed onto the system scheduler. The system sched-

uler will drive all the interactions with different application-defined algorithms

and should be reliable and effective. The motivation of incorporating application-

defined scheduling is to encourage the application developers to implement their

own algorithm through standardized APIs. The flexibility of the framework is

greatly enhanced as no constraints are imposed on the range of protocols the users

can implement. In the mean time, the reliability of the system is protected as

no active decisions will be made by the application-defined protocols and only

interactions through the standardized API are accepted.

3.4 A Framework for Multiprocessor Application-

Defined Resource Control Protocols

The flexibility of the monitor can be enhanced to benefit resource sharing in mul-

tiprocessors. We adopt the approach supported by most real-time programming

languages and operating systems shown as Figure 3.1. The first element of the

approach requires a monitor control protocol to be associated with a particu-

lar monitor. This is already supported in the RTSJ and those OS supporting the

POSIX pthread extensions. However, no application-defined protocols are allowed.

The monitor control protocol will manipulate one or more locking primitives to

achieve the required blocking semantics. Here, we define two such primitive locks,

one where tasks spin waiting for the lock, the other where they are suspended.

The spin lock and queue lock are primitives provided by the underlying OS.

They are all relied on a variable shared between tasks indicating the condition of

80

the lock. If the variable is set or the spin flag is raised, the spin lock is being held

by the other task. The effectiveness of incorporating these primitives is evaluated

in the next chapter.

On the programming language side, the concept of monitor is applicable to Ada,

Java, C and the POSIX standard. The Ada protected object is essentially following

the template of monitor depicted by Listing 3.1. The shared data is declared

in the private section of the object specification. The protected function, entry

and procedures are associated as the access methods. The synchronization of the

methods are provided by the language semantics of the protected methods. RTSJ

has similar facilities where the methods requiring mutual exclusion are marked with

the keyword “synchronized”. POSIX mutexes give a low-level API that supports

monitors.

Figure 3.1: Basic Classes

Two primitive locks are provided to facilitate the implementation of the monitor

control protocol:

Spin Lock There are two main characteristics of a spin lock. The priority at

which the spinning occurs and the order at which the spinning tasks gain

access.

Suspension Lock The main characteristic of a suspension lock is the queuing

order. Here, we assume that no automatic priority inheritance is performed.

Whenever the run-time system (Ada runtime support system, Java virtual

machine, or OS) needs to lock/unlock an object (an Ada protected object, Java

monitor or an OS mutex) it calls out to the application and requests that it

provides the lock protocol. This mechanism has to be integrated into the language

81

(rather than simply provided by an application abstract data type or class) as

locking and unlocking are synchronization points and have defined effects on when

updated memory locations become visible to an application. For example, both

the Java and Ada memory models require that any shared data updated between

locking and unlocking become visible to other threads/tasks in the program when

unlocking completes. The details of the interface between the compiler/run-time

and application will vary between languages, but the principles are the same.

Figure 3.2 illustrates the approach.

Figure 3.2: Integrating an Application-Defined Resource Control Protocol

1. The application creates an instance of its resource sharing protocol.

2. The application creates a resource encapsulated in a monitor

82

3. The application informs its runtime library support system that the created

monitor should use the created resource control protocol

4. The application calls a method in the monitor

5. The monitor infrastructure code requests a lock from the runtime library

6. The runtime library forwards the call to the application’s resource control

protocol which provides the locking mechanism.

7. The monitor code indicates that it has finished and that the monitor should

be unlocked.

8. The runtime library calls the unlock method in the applications resource

control protocol.

When this framework is integrated with an OS (say a POSIX mutex) and used

with C, then it is the responsibility of the applications programmer to ensure

that any data shared between tasks that is accessed in the monitor code becomes

globally visible to all threads that require access to it. This is because C 1 is a

sequential language and its compiler is not aware of any multi-tasking.

3.5 Supporting the Framework in Ada

The typical control sequence of the framework is illustrated in Figure 3.3 for a

dynamically created protected object. The model is essentially the same as that

in Figure 3.2 except the compiler generates the initialization code.

The application in Figure 3.3 depicts the sequential code written by users.

During the development phase, the users will write their resource sharing protocol

by extending the Protected Controlled type shown in Listing 3.2. When declaring

a protected object, the users have to associate the application-defined protocol

with the object. At compile time, the compiler will interpret the code and bound

everything together with the protected object. At the run time, when a protected

method is actually called by the application code, the compiled protected object

1This thesis assumes the use of C99. The recent varies of C11 [35] provided more support to
encourage the use of multithreading and shared data.

83

Figure 3.3: Integrating an Application-Defined Resource Control Protocol in Ada

84

code will pass on the call to the runtime library. The runtime library then redis-

patches the call to the application-defined method. The application-defined code

can possibly use the original provided locking primitives. If this is the case, the OS

lock API is called by the runtime library. If not, the application-defined methods

will be called. When the lock is obtained, the control is passed back to the pro-

tected object where the critical section will be executed. Once finished, the unlock

method of the protected object will be called. The runtime library will redispatch

the call to the corresponding application-defined method automatically. In which

case, the users can obtain the control over the next accessing task by manipulating

the task order in the waiting queue. Similar to the locking methods, the users can

make their own decisions on whether to use the OS unlocking primitives or not.

Following the design above, the following new language-defined package is in-

troduced.

1 with Ada . F i n a l i z a t i o n ; use Ada . F i n a l i z a t i o n ;
2 with System ; use System ;
3 with Ada . T a s k I d e n t i f i c a t i o n ; use Ada . T a s k I d e n t i f i c a t i o n ;
4
5 package Ada . Protec ted Objec t Acces s i s
6 type Lock Type i s (Read , Write) ;
7 type L o c k V i s i b i l i t y i s (Local , Global) ;
8 type Protec t ed Cont ro l l ed i s new Limited Contro l l ed with private ;
9

10 overriding procedure I n i t i a l i z e (C : in out Protec t ed Cont ro l l ed) ;
11 overriding procedure F i n a l i z e (C : in out Protec t ed Cont ro l l ed) ;
12
13 procedure Lock (C : in out Protec t ed Cont ro l l ed ;
14 L : Lock Type ;
15 V : L o c k V i s i b i l i t y ;
16 C e i l i n g : P r i o r i t y ;
17 Tid : Task Id := Current Task) ;
18 procedure Unlock (C : in out Protec t ed Cont ro l l ed ;
19 Tid : Task Id := Current Task) ;
20 private
21 −− implementat ion de f ined
22 end Ada . Protec ted Objec t Acces s ;

Listing 3.2: Ada API for the Framework

The Ada application programmer can now create an instance of the Pro-

tected Controlled type and write their own locking protocol. Ada provides a

generic mechanism for mapping its high-level data types to the underlying machine

level type. Of course, it provides default implementations of the abstractions, but

it grants the programmer some control where it is necessary. These generic mech-

anisms are called aspect specifications. Here, we assume the introduction of a new

85

protected object aspect called Lock Visibility; when set to true, this indicates that

(i) the protected object can be accessed from more than one processor and (ii) the

ceiling priority should be interpreted as an order requirement. A new locking pol-

icy, called User Protected is also introduced. When this policy is enforced, every

protected object can have an associated controller object which implements the

access protocol.

When an object of Protected Controlled is associated with a protected object,

every time the Ada run-time system wants to lock/unlock the object, the associated

lock/unlock procedure will be called. A protected object can be associated with

the controller using the aspect specification. So, taking a simple PO type as an

example, it would be written as follows:

1 protected type PO (PC : access Protec t ed Cont ro l l ed) with
2 Lock ing Po l i cy => (User Protected , L o c k V i s i b i l i t y => Global ,

Locking Algorithm => PC) i s
3 procedure P;
4 function F return I n t e g e r ;
5 end PO;

Listing 3.3: Associate a Protected Controlled type with a PO

where PC is a type that is derived from the Protected Controlled type.

1 a s p e c t s p e c i f i c a t i o n : := with aspect mark [=> a s p e c t d e f i n i t i o n] { ,
aspect mark [=> a s p e c t d e f i n i t i o n] }

2
3 aspect mark : := a s p e c t i d e n t i f i e r [’ Class]
4
5 a s p e c t d e f i n i t i o n : := name | exp r e s s i on | i d e n t i f i e r

Listing 3.4: Aspect Specification Grammar

The extension proposed by Listing 3.3 follows the Ada aspect specification

grammar are shown by Listing 3.4. This extension must be included in the ap-

plication source code at the compile time declaring the relationship between the

protected object and its linked access methods. The with clause is an instruction

to the compile to set up internal linkage to the compiled code so that the default

links of lock and unlock methods are overwritten by the methods defined in Listing

3.2.

86

3.6 Supporting Framework in RTSJ

The RTSJ already directly supports the notion of a monitor control policy, encap-

sulated by the following class.

1 package javax . r e a l t ime ;
2
3 public abstract class MonitorControl {
4
5 // con s t ru c t o r s
6 protected MonitorControl () ;
7
8 public stat ic MonitorControl getMonitorControl () ;
9 public stat ic MonitorControl getMonitorControl (

10 Object monitor) ;
11 public stat ic MonitorControl setMonitorContro l (
12 MonitorControl p o l i c y) ;
13 public stat ic MonitorControl setMonitorContro l (
14 MonitorControl p o l i c y) ;
15 }

Listing 3.5: RTSJ Monitor Control Policy

This allows the programmer to specify whether a particular objects (moni-

tor) lock should be subject to priority inheritance (the default) or priority ceiling

emulation.

1 package javax . r e a l t ime ;
2
3 public class P r i o r i t y I n h e r i t a n c e extends MonitorControl {
4 public stat ic P r i o r i t y I n h e r i t a n c e in s t ance () ;
5 }
6
7 package javax . r e a l t ime ;
8 public class Pr io r i tyCe i l i ngEmula t i on extends MonitorControl {
9 public int g e t C e i l i n g () ;

10 public stat ic Pr io r i tyCe i l i ngEmula t i on getMaxCei l ing () ;
11 public stat ic Pr io r i tyCe i l i ngEmula t i on in s t ance (int c e i l i n g) ;
12 }

Listing 3.6: RTSJ Priority Inheritance and Priority Ceiling Emulation

To extend this model to support application-defined monitor resource control

policies requires the introduction of lock-related primitive operations in the Mon-

itorControl class, as illustrated below.

1 package javax . r e a l t ime ;
2
3 pub l i c abstract c l a s s MonitorControl {
4 . . // as be f o r e
5
6 protected void lock () ;

87

7 protected void unlock () ;

Listing 3.7: RTSJ MonitorControl Class

Whenever the real-time JVM wishes to lock/unlock an application object, it

calls the lock/unlock methods in its associated monitor control policy object. The

default implementation of this method is a null operation. The overridden methods

in the RTSJ-defined subclasses implement the appropriate policy. An application

that wishes to perform is own lock policy can extend the MonitorControl class and

override the methods. Internal JVM locks would not be delegated in this way.

Essentially, the aforementioned approach requires the JVM to delegate respon-

sibility for implementing the application monitors of specified objects to the ap-

plication. The sequence diagram for Java would not be fundamentally different

from the Ada one. For example, when using a synchronized statement, the Mon-

itorEnter byte code is executed. The JVM would delegate this operation to the

application-defined code.

3.7 Supporting the Framework in a POSIX-Compliant

OS

Processes were the schedulable entities before Linux 2.6. In order to be POSIX

compatible and improve its threading facilities, Linux introduced new threading

library to support full multi-threading at the kernel level. The NPTL (Native

POSIX Thread Library) was firstly introduced in Red Had 9 with full implemen-

tations of synchronization primitives for inter-process communication [40].

Version 2.6 onwards Linux benefit from this property of futex and implemented

new POSIX compliant blocking primitives. It is worthwhile restating the blocking

primitives supported by POSIX:

1 // Pthread Mutex Lock
2 int pthread mutex in i t (pthread mutex t ∗mutex , const

pthread mutexatt r t ∗mutexattr) ;
3 int pthread mutex lock (pthread mutex t ∗mutex) ;
4 int pthread mutex unlock (pthread mutex t ∗mutex) ;
5 int pth r ead mutexa t t r s e tp ro toco l (pthread mutexatt r t ∗ attr ,
6 int pro to co l) ;

88

7
8 // Pthread RW Lock
9 int p t h r e a d r w l o c k i n i t (p thread rw lock t ∗ r e s t r i c t rwlock ,

10 const p t h r e a d r w l o c k a t t r t ∗ r e s t r i c t a t t r) ;
11 int pthread rw lock rd lock (pthread rw lock t ∗ rwlock) ;
12 int pthread rwlock wr lock (pthread rw lock t ∗ rwlock) ;
13 int pthread rwlock un lock (pthread rw lock t ∗ rwlock) ;
14
15 // Pthread Spin Lock
16 int pth r ead sp i n de s t r oy (p t h r e a d s p i n l o c k t ∗ l o ck) ;
17 int p t h r e a d s p i n l o c k (p t h r e a d s p i n l o c k t ∗ l o ck) ;
18 int pthread sp in un lock (p t h r e a d s p i n l o c k t ∗ l o ck) ;

Listing 3.8: POSIX locking primitives API

As shown in Listing 3.8, the POSIX supports three locking primitives: Mutex,

RW and Spin lock. The mutex is a suspension based locking where blocked tasks

are suspended for unavailable resources. The RW lock participated the acquiring

tasks into readers and writers. The shared resources are assigned to the two groups

of tasks in turn. The spin lock sets the blocked tasks spinning for unavailable

resources.

The pthread mutex type is defined as a struct in C. It is composed of various low

level internal mutex variables including the lock for futex, count for reference

counting and owner to check the ownership of the mutex etc. All these variables

are integer type whose bits are individually set and resit in the mutex operations.

The application and system developers are allowed to declare the following kinds

of mutex:

PTHREAD MUTEX NORMAL normal plain mutex.

PTHREAD MUTEX RECURSIVE recursive mutex where recursive locking

is permitted. The owner thread must call pthread mutex unlock enough

times to set the mutex free.

PTHREAD MUTEX ERRORCHECK mutex with error checking which will

return error code EDADLK when recursive calling is made.

The developers can set the type of the mutex by passing the pthread attributes

to the pthread mutex init function. At the initialization stage, the first two bits

of kind variable will be set indicating the specific type of the mutex. When the

corresponding locking primitive is called for the mutex, the type of the mutex is

firstly determined as follows:

89

1
2 int pthread mutex lock (mutex)
3 pthread mutex t ∗mutex ;
4 {
5 a s s e r t (s izeof (mutex−> s i z e) >= s izeof (mutex−> data)) ;
6
7 unsigned int type = PTHREAD MUTEX TYPE (mutex) ;
8
9 i f (b u i l t i n e x p e c t (type & ˜PTHREAD MUTEX KIND MASK NP, 0))

10 return p t h r e a d m u t e x l o c k f u l l (mutex) ;
11
12 i f (b u i l t i n e x p e c t (type , PTHREAD MUTEX TIMED NP)
13 == PTHREAD MUTEX TIMED NP)
14 {
15 s imple :
16 /∗ Normal mutex . ∗/
17 . . .
18 }
19 else i f (b u i l t i n e x p e c t (type == PTHREAD MUTEX RECURSIVE NP, 1))
20 {
21 /∗ Recurs ive mutex . ∗/
22 . . .
23 return 0 ;
24 }
25
26
27 }
28 else i f (b u i l t i n e x p e c t (type == PTHREAD MUTEX ADAPTIVE NP, 1))
29 {
30 /∗ Adaptive Mutex ∗/
31 . . .
32 }
33 else
34 {
35 a s s e r t (type == PTHREAD MUTEX ERRORCHECK NP) ;
36 /∗ Error Check Mutex ∗/
37 . . .
38 }
39 return 0 ;
40 }

Listing 3.9: pthread mutex lock structure for dealing with different mutexes

Within each condition of the if statement in Listing 3.9, the reference counter

(count variable) is incremented. The lock is sent as the key to the futex func-

tions to update the system so that future calls to pthread mutex lock to this

unavailable resource will be suspended. When the resource has been finished, the

corresponding pthread mutex unlock will be called where the reference counter

and the futex will be reset. The implementation of the mutex was written in C.

The definition and implementation of mutex incorporates the flexibility for exten-

90

sions. For example, some of the high end bits of kind variable remain largely

unused. It left a scope for the developers to define new mutex type which can be

recognized by the “if statements” in the pthread mutex lock function. This scope

of extension is also found at the resource sharing protocols side in POSIX.

Implementing the mutex alone is not enough. The POSIX defines two resource

sharing protocols to avoid deadlocks by default:

PTHREAD PRIO NONE No resource sharing protocol is supported

PTHREAD PRIOR INHERIT Standard priority inheritance protocol is sup-

ported. The calling task should be executed at the highest priority of itself

or the priority of the highest priority thread waiting on the shared resources

initialized with this protocol.

PTHREAD PRIO PROTECT Priority ceiling protocol is supported. The

calling task should be executed at the highest priority of all tasks initial-

ized with this protocol.

The application or system developers can specify the use of resource sharing

protocol by calling the pthread mutexattr setprotocol method. The function ac-

cepts a pointer to a particular mutex attribute and one of the above protocols as

parameters. The protocol passed by the developer will be assigned to the mutex

kind variable of the mutex attribute.

1 int pth r ead mutexa t t r s e tp ro toco l (at t r , p r o to co l)
2 pthread mutexatt r t ∗ a t t r ;
3 int pro to co l ;
4 {
5 /∗ Sani ty checks are omit ted ∗/
6
7 struct pthread mutexattr ∗ i a t t r = (struct pthread mutexattr ∗) a t t r

;
8
9 i a t t r−>mutexkind = ((i a t t r−>mutexkind & ˜

PTHREAD MUTEXATTR PROTOCOL MASK)
10 | (p ro to co l << PTHREAD MUTEXATTR PROTOCOL SHIFT)) ;
11
12 return 0 ;
13 }

Listing 3.10: Set the resource sharing protocol in POSIX

In the function depicted by Listing 3.10, the 28th and 29th bits of the mu-

texkind variable is set to indicate the specific algorithm used for resource sharing.

91

This setting takes effect in the pthread mutex full lock function. The function

shifts the 28th and 29th bits of the mutexkind variable and analyzes which algo-

rithm was specified by the variable. The default setting is priority inheritance.

However, if priority ceiling is specified, the correct priority assigned to the blocked

task will be calculated by the pthread tpp change priority function at line 23

shown by Listing 3.11:

1 stat ic int p t h r e a d m u t e x l o c k f u l l (pthread mutex t ∗mutex)
2 {
3 int o ldva l ;
4
5 switch (PTHREAD MUTEX TYPE (mutex))
6 {
7 case PTHREAD MUTEX ROBUST RECURSIVE NP:
8 /∗ More cases f o r mutex type ∗/
9 . . .

10 case PTHREAD MUTEX PP ADAPTIVE NP:
11 {
12 int kind = mutex−> data . k ind & PTHREAD MUTEX KIND MASK NP;
13
14 o ldva l = mutex−> data . l o c k ;
15
16 int o l d p r i o = −1, c e i l v a l ;
17 do
18 {
19 int c e i l i n g = (o ldva l & PTHREAD MUTEX PRIO CEILING MASK)
20 >> PTHREAD MUTEX PRIO CEILING SHIFT;
21 /∗Ce i l i n g s an i t y checks are omit ted ∗/
22
23 int r e t v a l = p t h r e a d t p p c h a n g e p r i o r i t y (o ldpr io ,

c e i l i n g) ;
24 c e i l v a l = c e i l i n g << PTHREAD MUTEX PRIO CEILING SHIFT;
25 o l d p r i o = c e i l i n g ;
26
27 /∗ Updated the l o c k depending on the s p e c i f i c p r o t o co l

used ∗/
28
29 o ldva l
30 = atomic compare and exchange va l acq (&mutex−> data .

l o c k ,
31 #i f d e f NO INCR
32 c e i l v a l | 2 ,
33 #else
34 c e i l v a l | 1 ,
35 #e n d i f
36 c e i l v a l) ;
37 . . .
38 }
39 while ((o ldva l & PTHREAD MUTEX PRIO CEILING MASK) != c e i l v a l)

;
40
41 /∗ Sani ty checks are omit ted ∗/

92

42 default :
43 /∗ d e f a u l t ac t i on ∗/
44 }
45 return 0 ;
46 }

Listing 3.11: POSIX implementation of PI and PCP

The pthread mutex full lock is a comprehensive version of pthread mutex lock

making all locking calls to the kernel space. The simplified version of

pthread mutex full lock utilizes user space reference counting to reduce the num-

ber of such calls to improve average system performance. The structures of

these versions are the same. Mutexes are proceeded through different routines

depending on their types. For example, as depicted by Listing 3.11, mutex de-

clared as the pthread mutex pp adaptive np type is managed by resource shar-

ing protocols. When this type of mutex is called on locking, the mutex lock

and the pre-defined ceiling protocol are retrieved (line 12-20). These parameters

will help the pthread tpp change priority function (line 23) to calculate the ap-

propriate priority assigning to the calling task. In order to make the decision,

the pthread tpp change priority scans through the tasks waiting in the blocking

chain. If priority inheritance is used, the priority of the highest waiting priority

task will be assigned. If priority ceiling is used, more scans will be made in order

to determine the ceiling of the resource.

The implementation of the pthread mutex locks are well structured and flex-

ible. The high end bits of the mutexkind variable of pthread mutexattr t are

available for the application developers to incorporate new mutexes. The imple-

mentation of the POSIX library in glibc (implementation version of NPTL) is well

designed and structured. The 32-bits integer mutexkind variable allows the ap-

plication developers to extend for application-defined protocols. The application

developers can set the 28th and 29th bit of mutexkind to specify an application-

defined protocol. Also, a new application-defined mutex type can be introduced to

the pthread mutex library. When the application-defined mutex is called within

the pthread mutex lock function, the application-defined resource sharing protocol

will be called where the priority management and scheduling can be directly inter-

vened by application developers. Inspired by the RTLinux approach, the flexible

resource sharing framework can introduce a pre-defined function pointer to the if

statements of the pthread locking methods. The actual function implementing the

93

locking behaviours is only retrieved at the run-time when the corresponding func-

tion pointer is executed. Most of the interactions are remained in user space. The

application developers can use the well designed locking primitives provided by

the framework instead of making direct system calls to the kernel. The interaction

of the multiprocessor flexible resource sharing framework is illustrated further by

Figure 3.4:

Figure 3.4: Supporting the Framework in POSIX

The semantics of the interactions is summarized as follows:

1. A new protocol is created from the framework.

2. The application declares a new pthread mutex t typed variable creating a

mutex object and new pthread mutexattr t typed object.

94

3. The newly declared protocol is associated with the mutex by passing PTHREAD

PRIO APP to the pthread mutex setprotocol.

4. The mutex object is initialized by calling the pthread mutex init function.

PTHREAD MUTEX APP indicates this mutex is an application-defined

mutex which should be managed by application-defined routines.

5. The pthread mutex lock is called on the application-defined mutex

(PTHREA MUTEX APP). Since this is an application-defined mutex, the

function pointer to the application-defined routines is invoked by the under-

lying OS so that the application-defined locking routines are retrieved and

executed.

6. When the execution in the resource is finished and the pthread mutex unlock

is called at the run-time, the application-defined unlock routines will be called

through the associated function pointer.

If no application-defined routines are assigned, the framework can always use

the default locking protocols available at the POSIX library. The above sequence

diagram is only designed to illustrate the interactions in principle. The interac-

tions are meant to show the applicability of the framework to the POSIX compli-

ance systems. It is highly acceptable that the implementations will have different

approaches in declaring the application-defined mutex, using the bits of mutex

integers and implementing different locking primitives etc.

3.8 Supporting Application-Defined Condition Syn-

chronization

The locks are implemented to prevent two tasks accessing the same shared resource

at the same time. Only the task that has obtained the lock may proceed to

executed the critical section. The waiting task will be blocked due to the fact that

the lock has already been obtained by the other task. This single ownership of the

lock is effective in protecting the integrity of shared resources from race condition.

However, the synchronization between tasks sometimes relies on the condition of

the shared resources.

95

Let us consider the following pseudo code example for condition synchroniza-

tion:

1 Buf f e r : : Consumer (Lock)
2 {
3 Lock−>acqu i r e () ; // Acquire the l o c k f i r s t ;
4 While (Lock−>counter == 0)
5 {
6 Lock−>r e l e a s e () ;
7 Lock . WaitOnNotify () ;
8 Lock−>l o ck () ;
9 } ; // Remove data from the b u f f e r

10 Lock−>counter−−;
11 Lock . Not i f yA l l () ;
12 Lock−>r e l e a s e () ;
13 } ;
14
15 Buf f e r : : Producer (Lock)
16 {
17 Lock−>acqu i r e () ;
18 While (Lock−>counter == MAX LMT)
19 {
20 Lock−>r e l e a s e () ;
21 Lock . WaitOnNotify () ;
22 Lock−>l o ck () ;
23 } ; // Add data to the b u f f e r
24 Lock−>counter++;
25 Lock−>Not i f yA l l () ;
26 Lock−>r e l e a s e () ;
27 }

Listing 3.12: Pseudo Code for Buffer Operation

Listing 3.12 depicts two methods of a buffer. The consumer takes an element

on each iteration from the buffer. if no element is left in the buffer, it will set itself

suspended waiting for the notification from the producer for new elements. The

producer acquires the permission to access the buffer and inserts a new element

on each iteration. If the buffer is full, the producer will wait for the elements

to be consumed and the corresponding notification from the consumers. The

synchronization between the consumer and the producer does not only depend on

the lock for the buffer but also the number of elements in the buffer.

This is a typical condition synchronization example. The waiters, namely the

consumer in this case, acquires the lock to the shared resource first. It then checks

the condition of the shared resource. If the current situation does not satisfy the

requirement, it will be suspended for further notification from other tasks which

have been granted the rights to change the condition of the shared resource. Before

96

suspension, the acquired lock will be released to grant the access to other tasks. If

the resource condition has been changed and satisfies the requirements, the waiters

will be resumed and the lock for the resource will be immediately acquired.

The flexibility of the framework incorporates the scope of supporting application-

defined resource sharing algorithms in condition synchronization in Ada. Although

Ada does not have direct implementation of the wait and notify methods, the con-

dition synchronization is already provided by the protected entry facilities in Ada.

It is worthwhile restating the principles of Ada protected entries. The protected

entry is an access method to the data in protected objects. The protected entry

is guarded by a boolean expression known as the barrier. The calling task must

acquire the lock to the protected object first. If the access is granted, the task will

evaluate the barrier. If the barrier is evaluated to be true, the task can therefore

proceed into the critical section of the resource. Otherwise, the task is blocked on

the barrier and the acquired lock of the object is released. The barrier is evaluated

when there might have been changes imposed to the parameters of the barrier or a

task has finished its execution in related protected methods with read/write locks.

Following this design, the buffer example can be rewritten in Ada as protected

entries:

1 protected body Buf f e r i s
2 entry Consumer when counter > 0 i s
3 begin −− Remove data from the b u f f e r
4 counter := counter − 1 ;
5 end Consumer ;
6
7 entry Producer when counter < MAX LMT i s
8 begin −− Add data to the b u f f e r
9 counter := counter + 1

10 end Producer ;
11 . . .
12 end Buf f e r ;

Listing 3.13: Buffer with Protected Entries

The interpretation of the code in Listing 3.13 will have the barrier evaluation

encapsulated by a pair of lock and unlock of protected objects. In normal situa-

tions, the default locking protocols are invoked at the run-time. If the application-

defined protocol is specified at the aspect specification of the protected objects, the

barrier evaluation will then be encapsulated by a pair of application-defined meth-

ods where necessary priority changes and task management can be implemented.

At run-time, the application-defined methods, as methods of Protected Controlled

97

type, will be executed by the compiler instead of the default ones.

3.9 Summary

Inspired by the literatures of resource sharing in multiprocessor systems, a flexible

resource sharing framework is the key focus of this chapter. The framework is

designed to lift some of the restrictions of resources sharing protocols on multi-

processor systems. The application developers are capable of defining a suitable

algorithm for their application needs. This is motivated by the fact that the

optimality of the resource sharing algorithm is based on individual application

scenarios.

This principle of involving application participation in system operations is a

common method of resolving the problem of adding new protocols to underly-

ing OS. POSIX adopted a different but more concrete approach so that applica-

tion defined scheduler procedures are directly passed to low level systems. The

application-defined methods were called passively by the kernel schedulers and as-

sociated methods are invoked when the corresponding event occurred at the low

level.

Although Ada is chosen to be the target language for the experiments of this

research, the framework is widely applicable to different programming languages.

The framework is designed to facilitate the monitor structure which is widely ac-

cepted by popular programming languages which support the monitors approach.

Flexibility is a key concern of the framework where different locking primitives

and resource sharing protocols can be integrated. The framework itself can work

seamlessly with the underlying system scheduler to deliver the requirement of

application-defined resource sharing protocols to lower systems. As we can see,

the framework principles are widely accepted by underlying OS and programming

languages. The framework itself is then adaptive to different languages and oper-

ating systems.

98

Chapter 4

Implementing the Ada

Framework

This chapter discusses the prototype implementation of the framework. The ex-

pectation is that the framework should impose acceptable overheads to the ap-

plications in exchange for the flexibility for applications to implement the most

suitable multiprocessor resource sharing protocol. The result should improve the

application predictability and performance.

The implementation chooses Ada as the experimental language as it is the

only ISO standard, object-oriented, concurrent, real-time programming language.

Ada was specifically designed for large, long-lived embedded applications where

reliability and efficiency are essential. It was developed in the 1980s to supersede

hundreds of programming languages used by US Department of Defence. Because

of its safety-critical features, it is now used not only for military applications,

but in safety critical commercial projects [25]. For example, the European Train

Control System (ETCS), a system for high speed train signal control, was written

in Ada.

The framework implementation comprises a large number of elements. Firstly,

the extension to the aspect specification should be introduced where the applica-

tion developers can integrate their algorithm with the framework. Secondly, the

runtime library should be refined and extended to be integrated with the frame-

work. Finally, the implementation should follow the original language semantics

and the definition of the protocols. The following sections implement the frame-

99

work in Ada with an estimation of the runtime overheads.

4.1 GNAT Structure

The implementation of the Ada framework comes in three parts: the aspect specifi-

cation, the Protected Object Access type and the runtime integration. The pseudo

code for the aspect specification and the introduction of Protected Object Access

type is given in Chapter 3. The implementation is then focused on the integration

of the framework with Ada. In order to do so, the Ada compiler (GNAT) must rec-

ognize the aspect specification depicted by Listing 3.3 where appropriate structure

can be established for runtime use. Before explaining further, short introduction

to the GCC GNAT is given:

The compiler used by this thesis is for Ada 2005 and its corresponding GNAT
1. GNAT is an open source complete Ada compiler integrated into the GCC com-

piler system. A compiler is essentially a translator. It scans a set of instructions

written in plain text and translates it into a set of machine instructions executable

by the underlying hardware [6]. Such a translation should maintain an important

property, platform independent execution. In order to do this, a series of inter-

connected steps must be followed. Peterson[45] offers an abstraction of the GCC

compiling process:

1. Lexical analysis happens at the beginning of the process. It reads the char-

acters and spaces in order to parse the meaningful terms (symbols, numbers

and punctuation etc.) for later use.

2. The parser conducts further analysis of the output of the lexical analysis and

determines the relationships between the terms. The output is represented

in a tree structure and sent to the back end compiler.

3. This is a special feature of GCC for optimization purpose. The parse tree

is translated to a pseudo assembly code called a Register Transfer Language

(RTL).

1GNAT is available for download at: http://www.gnu.org/software/gnat/

100

4. After receiving the RTL output, the back end compiler starts the process

of optimizing the code. Unreachable code, groupings of similar code and

further optimizations are carried out at this stage.

5. The optimized code is translated into assembly language of the target ma-

chine.

6. The assembler is translated further into executable object code.

7. An executable program is created by combining the executable object code

with the object files of the runtime libraries.

The compiling process of Ada is no different to the above abstract process ex-

cept the Ada libraries are linked with the final executable code in the end. The

API proposed by Listing 3.3 enforces new specification (Locking Policy, Lock-

ing Visibility, Locking Algorithm used in the with clause) to be accepted by Ada.

This imposes changes to the whole compiler: 1) The lexical analysis and parser

should be updated to recognize those key terms; 2) Distinct tree nodes must be

established to represent the link of the data structure; 3) Rules of optimization

must be refined; 4) The linker should recognize the updated runtime library so

that necessary framework library code can be effectively linked at runtime.

As described above, the final executable code compiled by the GNAT is linked

against the object code of the pre-implemented runtime library. In Ada, the GNU

Ada Runtime Library (GNARL) is an implementation of the Ada tasking model

which is closely linked to the performance of our framework. The GNARL collab-

orate with GNU Low-Level Interface (GNULLI) to reconciliate the Ada tasking

model with the standard POSIX thread services. The layout of the GNARL is

shown by Figure 4.1:

The GNULLI abstracts the implementation of the services that GNARL needs

from the host operation system. It is not upward compatible because the GNULLI

interface is changed when used by a different OS. For example, at the bootstrapping

process of GCC, the auto configuration routine will detect the target machine’s

hardware. The GNULLI will be changed at the bootstrapping process depending

on the underlying system (Linux, Sparcs or Solaris etc). The main responsibility

of GNULLI is the abstraction of the POSIX interfaces. For example, the pthread

101

Figure 4.1: GNARL Components [68]

mutex type is an abstract of Task Primitives.Lock which is an instantiation of the

pthread mutex t type.

The intent of GNARL is to be an upward compatible extension of earlier at-

tempts to converge on a common real time system interfaces for Ada83 [68]. It

attempts to implement the Ada tasking model as directly as possible with the as-

sistance from GNULLI. It isolates as much of the tasking semantics, thus reducing

the interactions with application level code . The control flow of the GNARL is

procedural. The compiler communicates with the tasking runtime system through

function or procedure calls without direct reference to the data structures of the

tasking runtime system.

4.2 How GNAT Implements Protected Object

4.2.1 The Semantics of Protected Objects

Protected Objects is a synchronization mechanism of Ada. It provides synchro-

nization based on a data object rather than between tasks. A protected type

provides safe resource sharing to its encapsulated data. Protected procedures al-

low mutual exclusive access to the data encapsulated in the protected object so

102

Figure 4.2: The Protected Object of Ada

that only one task is allowed to access the data at once. Protected functions pro-

vide concurrent read-only access to the encapsulated data. The protected entry is

similar to the protected procedure with an extra barrier. The calling task must

evaluate the boolean barrier to true in order to proceed to the protected data. If

the boolean barrier is evaluated to false, the calling task is blocked.

Figure 4.2 illustrates the structure of a protected object in Ada. The large

circle represents the protected object with its associated lock. Tasks acquiring the

encapsulated data need to obtain the lock. If there is a procedure or entry call

inside, no other tasks are allowed to enter. If the protected object is occupied by a

function, other function calls can proceed in. This is because protected functions

can provide read-only parallel access to its shared data. T1 and T5 are not yet

able to access the data because they have to evaluate the Entry boolean barrier

to true. Due to the state of the encapsulated data, the barrier of Entry 1 is

evaluated to false. Therefore, T1 is blocked. T1 can only be resumed if the barrier

is evaluated to true made by another procedure or Entry call on the same object.

The tasks blocked on the entries are organized in the corresponding Entry queues.

103

Depending on the queuing policy configured by the programmer, such tasks can

either be priority or FIFO ordered.

The following example explains the protected object further:

1 with Ada . Text IO ; use Ada . Text IO ;
2
3 procedure Crossroads i s
4 −−−−−Al l S p e c i f i c a t i o n s−−−−−−
5 task type Train i s
6 end Train ;
7
8 protected type Junct ion i s
9 entry Approach ;

10 procedure Passed ;
11 function Status return Boolean ;
12 private
13 Bar Up : Boolean := True ;
14 end Junct ion ;
15
16 −−−−−Al l Implementations−−−−−−−
17 protected body Junct ion i s
18 entry Approach (item : i n t e g e r) when Bar Up i s
19 begin
20 Bar Up:= False ;
21 Put Line (”A t r a i n i s approaching ”) ;
22 end ;
23
24 procedure Passed i s
25 begin
26 Put Line (”The junc t i on i s f r e e again ”) ;
27 Bar Up:=True ;
28 end ;
29
30 function Status return Boolean i s
31 begin
32 return Bar Up ;
33 end ;
34 end Junct ion ;
35
36 TrainA , TrainB , TrainC : Train ; −− Three Customers
37 AJunction : Junct ion ; −− One Waiter
38
39 task body Train i s
40 begin
41 AJunction . Approach ;
42 i f AJunction . Status = True then
43 Put Line (” C o l l i s i o n ! ”) ;
44 Passed ;
45 end Train ;
46
47
48 begin
49 end Crossroads ;

104

The code illustrates a scenario where three trains are approaching the same junc-

tion. Only one train can cross the junction at one time. On approach, a train

should send a message to the junction indicating its desire for using the junction.

If denied, the train should stop and wait on the junction to be free. If the junction

is free, which means the bar is up, the train can proceed directly to the junction

and the bar is to prevent other trains entering the junction. The bar will be lifted

again if the current approaching train has gone through the junction, this signals

that the junction is ready for the next approaching train. Whenever a train is

in doubt of the condition of the junction, the status function is always available.

Multiple trains can consult the status of the junction at any one time.

Although safe mutual exclusive access to shared data is provided, deadlock

is not prevented by using protected objects alone. Let us consider the following

example. We have two tasks T1 and T2 sharing two protected objects R1 and R2.

At first, T1 and T2 lock R1 and R2 respectively. If T1 continues to Lock R2, the

two tasks become deadlocked. This is because R2 will not be released until T2

finishes executing R1. Also, R1 will not be released until T1 finishes executing in

R2. At this point, neither T1 nor T2 can proceed. The two tasks are therefore

deadlocked. This problem can be avoided by using resource sharing algorithms

(e.g: Accessing the Protected Object at the ceiling priroity).

4.2.2 GNAT Implementation of Protected Objects

Protected Objects present a complex problem in implementation since there are

various forms of locking behaviour which all have different semantics. The pro-

tected entry grants the access to the calling task depending on the barrier evalu-

ation and the states of the private data of the protected object. Ada requires this

to be checked after each protected procedure or entry call (AARM 9.5.3 pars 22

and 22.a). This requires extra routines to be implemented so that the barriers of

the protected entries are checked for any passed tasks. If so, the corresponding

bodies of these tasks are executed. This is also known as the proxy model which

allows the tasks to continue with other waiting tasks on open barriers [68]. The

compiler normally translates all barrier expressions into boolean functions and all

entry bodies into procedures. The following simplified protected objects demon-

strates the translation of the protected objects in a layering manner.

105

1 procedure Entrytes t i s
2 protected type PO i s
3 entry Wait ;
4 entry S igna l ;
5 procedure i dent ;
6 function Is Open return Boolean ;
7 private
8 . . .
9 end PO;

10
11 protected body PO i s
12
13 entry Wait when True i s
14 begin
15 null ;
16 end Wait ;
17
18 entry S igna l when Is Open i s
19 begin
20 null ;
21 end S igna l ;
22
23 procedure Ident i s
24 begin
25 null ;
26 end Ident ;
27
28 function Is Open return Boolean i s
29 begin
30 return True ;
31 end Is Open ;
32
33 end PO;
34
35 obj : PO;
36
37 begin
38 obj . Wait ;
39 obj . S i gna l ;
40 obj . Ident ;
41 end ;

Listing 4.1: A Simple Protected Object

Listing 4.1 describes a simple protected object comprising four access methods.

The following Listing 4.2 is a schematic intermediate representation of protected

object and its associated access methods which might be generated at the GNARL

level. This code is to be extended and instantiated by GNULLI.

106

1 type PO i s record
2 Object : Pro tec t i on (Num Entries => N) ;
3 . . .
4 −− add i t i o n a l s t a t e s o f o b j e c t
5 . . .
6 end record ;
7
8 procedure Ident (
9 obj : in out PO;

10 . . .
11 −−add i t i o n a l parameters f o r un in t e rpe r e t ed data e t c .
12 . . .
13) i s
14 Dummy : Boolean ;
15 begin
16 Defer Abort ion ;
17 Lock (obj . Object) ;
18 . . . −− in c r i t i c a l s e c t i on
19 S e r v i c e E n t r i e s (obj , Dummy) ;
20 Unlock (obj . Object) ;
21 Under fer Abort ion ;
22 end Ident ;
23
24 function Is Open (
25 obj : PO;
26 . . .
27 −−add i t i o n a l parameters f o r un in t e rpe r e t ed data e t c .
28 . . .
29) i s
30 temp : Boolean ;
31 begin
32 Defer Abort ion ;
33 Lock Read Only (obj . Object) ;
34 . . . −− Read Only opera t i ons in c r i t i c a l s e c t i on
35 temp := expr e s s i on ;
36 Unlock (obj . Object) ;
37 Undefer Abort ion ;
38 return temp ;
39 end Is Open ;
40
41 procedure S igna l (
42 obj : PO;
43 . . .
44 −−add i t i o n a l parameters f o r un in t e rpe r e t ed data e t c .
45 . . .
46) i s
47 Dummy : Boolean ;
48 Pending Serv iced : Boolean ;
49 begin
50 Defer Abort ion ;
51 Lock (obj . Object) ;
52 Protec t ed Entry Ca l l (obj . Object , 1 , Uninterperted Data ,

S imple Ca l l) ;

107

53 −− The b a r r i e r s are eva l ua t ed in t h i s f unc t i on
54 S e r v i c e E n t r i e s (obj . Object , Pending Serv iced) ;
55 Unlock (obj . Object) ;
56 −− Other House keep ing rou t i n e s ;
57 end S igna l ;
58
59 −− This i s the rou t ine to se rve the wa i t ing entry c a l l s on open

b a r r i e r s
60 procedure S e r v i c e E n t r i e s (
61 ID : Task Id ;
62 obj : in out PO;
63 Pend ing Serv i ce sd : out Boolean
64) i s
65 Uninterpreted Data : System . Address ;
66 subtype PO Entry Index i s Protected Entry Index range 0 . . 2 ;
67 B a r r i e r s : Bar r i e r Veto r (1 . . 2) ;
68 E : PO Entry Index ;
69 PS : Boolean ;
70 Cumulative PS : Boolean := Fal se ;
71 begin
72 Queuing . S e l e c t e d P r o t e c t e d E n t r y C a l l (Id , obj , obj . Entry Cal l) ;
73 −− Queue the curren t entry c a l l to the queue f i r s t
74
75 loop
76 B a r r i e r s (1) := . . . −− Barr ier expre s s i on ;
77 B a r r i e r s (2) := . . . −− Barr ier expre s s i on ;
78 Next Entry Cal l (obj . Object , Bar r i e r s , Uninterpreted Data , E)

;
79 case E i s
80 when Nul l Protec ted Entry => exit ;
81 when 1 =>
82 . . . −− sequence o f s ta tements
83 Complete Entry Body (PS) ;
84 when 2 =>
85 . . . −− sequence o f s ta tments
86 Complete Entry Body (PS) ;
87 end case ;
88 . . . −− Other housekeep ing rou t i n e s
89 end loop ;
90 end S e r i v c e E n t r i e s ;

Listing 4.2: PO intermediate interpretation at GNARL

Listing 4.2 is an abstraction of the actual code of GNARL. It is not possible to

fully reprint the full code of the protected object library. The code was abstracted

from the actual implementation to demonstrate the collaboration between GNARL

and GNULLI in the context of implementing the high level language semantics.

At the high language semantics level, ARM (Ada Reference Manual) requires that

the barriers are to be evaluated before the actual protected entry call. In GNARL,

the barriers are evaluated in the Protected Entry Call function where the barrier

108

function address is retrieved from the uninterpreted data and executed. Also, Ada

dictates that the protected entry cannot terminate if there are entries waiting on

open barriers. As mentioned in previous section, Ada adopted the proxy model for

barrier evaluation as shown by Service Entries. When a protected entry is called,

the calling task is firstly appended to the protected entry queue. Depending on the

queuing policy, the next entry call will be chosen. The index of the entry, together

with the address of the pass in parameters, is retrieved to execute the entry call of

the next waiting task on the open barrier. When the body of the entry is complete,

the waiting task will be notified by GNARL calling the Complete Entry Body

function. The waiting task will be waked up. These tasks can then continue their

execution right after the entries. The Service Entry routine repeats this progress

until the Next Entry Call cannot find an eligible entry body for execution. The

integration of Ada protected entries is discussed in a greater detail in Chapter 6 .

All these protected objects operations rely on the comprehensive support of

GNULLI. The blocked tasks at closed barriers are suspended and a context switch

occurs for those tasks whose entry body has been executed by the operating task.

All tasks in Ada are managed by the Ada Task Control Block (ATCB) which

is mapped to the Thread Control Block (TCB) by GNULLI to POSIX. Simi-

larly, GNARL locks the the protected procedure to prevent race condition. The

GNULLI function Write Lock will be called with the associated protected object

lock retrieved. The Write Lock function will call the pthread mutex lock function

to instruct the OS to lock the resource down.

4.3 Framework Implementation

The previous sections have explained the composition of GNAT, where the frame-

work will be implemented. This includes the runtime redispatching at the GNARL

level to integrate application-defined calls and APIs to application developers in

Listing 4.2. Also, instrumentation at the GNULLI level is necessary in order to in-

corporate the application-defined locking primitives. A full implementation would

also involve reprogramming the front end compiler. As explained in Section 4.1,

the front end compiler recognizes the lexical words with a parser and sets up a

tuple tree with lexical analysis. Necessary lexical tokens, as explained later in this

section, will be required to be recognized by the front end compiler. This work

109

volume is large and beyond the scope of this thesis. It is therefore not feasible to

support a full implementation.

As an alternative to the full implementation, a simulation approach assumes

that the lexical tokens introduced by the framework were recognizable by the com-

piler. As discussed, the GCC compiler translates all source code into executable

object file and linked with runtime library. This is irrespective of the changes to the

hardware platform and the sort of programming language used. The last readable

text before the object file is the assembler code. It represents the optimized final

execution order of the code in terms of explicit function calls and register moves

are shown. The simulation method adopted for the framework implementation

follows the expectation that two code with identical compiled assembly code has

the same semantics at high language level. Therefore, one code can be an excellent

approximation of the other, which is also known as simulation. The implemen-

tation of the framework is actually simulated with application code collaborating

with the extended runtime library so that the front end compiler remains intact.

The simulation code is expected to generate identical assembly code as if it was

fully implemented and the front end compiler was instrumented.

4.3.1 Effectiveness of the Simulation Method

The following experiments were conducted to check the effectiveness of the simula-

tion. It is expected that the test application code will generate the same assembly

code as the original Ada runtime library for protected objects. It is worthwhile

restating the example code shown in Listing 4.1. Each method represents a partic-

ular category which is expected to have different assembly code at the lower level.

When compiled, the actual assembly code generated is as follows (only function

calls are shown):

1 e n t r y t e s t p o i d e n t N .3182
2
3 s y s t e m s o f t l i n k s a b o r t d e f e r (%r i p) , %rax
4 −− s e t the c a l l i n g task so that i t cannot be aborted during the

c a l l ;
5
6 s y s t e m t a s k i n g p r o t e c t e d o b j e c t s e n t r i e s l o c k e n t r i e s
7 −− l o c k s the protec ted procedure ident
8
9 −− the code o f the ac tua l protec t ed entry i s p laced here

10

110

11 s y s t e m t a s k i n g p r o t e c t e d o b j e c t s o p e r a t i o n s s e r v i c e e n t r i e s
12 −− unlocks the protec ted procedure indent
13
14 s y s t e m s o f t l i n k s a b o r t u n d e f e r (%r i p) , %rax
15 −− s e t the c a l l i n g task so that i t can be aborted during again

Listing 4.3: Pseudo Assembly Code for procedure ident in code 4.1

1 e n t r y t e s t p o s i g n a l B 6 b . 2 3 7 1 :
2
3 gnat rcheck CE Access Check
4 −− s an i ty check
5
6 e n t r y t e s t p o i s o p e n N .3188
7 −− c a l l the b a r r i e r func t i on
8
9 s y s t e m s t a n d a r d l i b r a r y a b o r t u n d e f e r d i r e c t

10 −− s e t the c a l l i n g task so that i t can be aborted
11
12 sy s t em ta sk ing p ro t e c t ed ob j e c t s ope ra t i on s commun i ca t i on b l o ck IP
13 −− handles the communication with under ly ing system
14
15 s y s t e m t a s k i n g p r o t e c t e d o b j e c t s o p e r a t i o n s p r o t e c t e d e n t r y c a l l
16 −− c a l l the runtime l i b r a r y rou t in e to lock the PO
17
18 −− the code o f the ac tua l protec t ed entry i s p laced here
19
20 s y s t e m t a s k i n g p r o t e c t e d o b j e c t s o p e r a t i o n s c o m p l e t e e n t r y b o d y
21 −− unlocks the PO

Listing 4.4: Pseudo Assembly Code for Entry Signal in code 4.1

Following the introduced semantics, a protected object procedure in Listing

4.1 is translated into a series of assembly code leading by entrytes po identN3̇182.

The assembly code comprises a pair of lock and unlock procedure calls to the

System.Tasking.Protected Objects package. The actual operation in the critical

section of the resource is thus protected. Before this, the calling task is set to

be non-abortable. It is reset after the resource has been released. The protected

entry calls was compiled with no significant difference to the protected proce-

dures. The corresponding assembly code is shown by Listing 4.4. The entry

barrier clause is interpreted as a function call to entrytest po is open. When the

barrier is cleared, the assembly code follows the pattern of protected procedure

calls encapsulating the critical section execution with lock and unlock calls to

System.Tasking.Protected Objects package.

The interpretation is inline with the semantics of the language defined in the

Ada reference manual and the GNARL library. At the end of the test, the actual

111

compilation of the test application code generates the same assembly code as the

original Ada library.

4.3.2 Framework API Proposal

The full implementation of the resource sharing framework proposed in this thesis

is deployed at the runtime library of Ada. A new Ada package is introducd to be

instantiated and reloaded by the application developers in their source code. The

lock and unlock functions were designed to define the semantics of the application-

defined resource sharing protocols.

1 protected body Ada . Protec ted Objec t Acces s i s
2 overriding procedure I n i t i a l i z e (C : in out Protec t ed Cont ro l l ed)

i s
3 begin
4 −− i n i t i a l i z e the data s t r u c t u r e f o r the c o n t r o l l e r
5 end ;
6
7 overriding procedure F i n a l i z e (C : in out Protec t ed Cont ro l l ed)

i s
8 begin
9 −− perform any necessary f i n a l i z a t i o n

10 end ;
11
12 procedure Lock (C : in out Protec t ed Cont ro l l ed ;
13 L : Lock Type ;
14 V : L o c k V i s i b i l i t y ;
15 C e i l i n g : P r i o r i t y ;
16 Task Id := Current Task) i s
17 begin
18 −− d e f a u l t l o c k i n g p ro t o co l here
19 end ;
20
21 procedure Unlock (C : in out Protec t ed Cont ro l l ed ;
22 Tid : Task Id := Current Task) i s
23 begin
24 −− d e f a u l t un lock ing p ro t o co l here
25 end ;
26 end package Ada . Protec ted Objec t Acces s ;

Listing 4.5: Ada.Protected Object Access

The application defined lock and unlock procedures are integrated with the

original Ada protected objects. The runtime library is instrumented to call the

correct routine associated with the calling Protected Controlled object. The Sys-

tem.Tasking.Protected Object package is re-defined as follows.

112

1 with Ada . F i n a l i z a t i o n ; use Ada . F i n a l i z a t i o n ;
2 with System ; use System ;
3 with Ada . T a s k I d e n t i f i c a t i o n ; use Ada . T a s k I d e n t i f i c a t i o n ;
4 with Ada . Protec ted Objec t Acces s ; use Ada . Protec ted Objec t Acces s ;
5
6 package System . Tasking . Protected Object i s
7
8 −− The compi ler w i l l g enera te code to
9 −− the c l a s s−wide l o c k i n g / un lock ing procedures

10
11 procedure Lock (C : access Protec ted Contro l l ed ’ Class ;
12 L : Lock Type ;
13 V : L o c k v i s i b i l i t y ;
14 C e i l i n g : P r i o r i t y ;
15 Tid : Task Id) ;
16 procedure Unlock (C : access Protec ted Contro l l ed ’ Class ;
17 Tid : Task Id) ;
18 private
19 type Protec t ed Cont ro l l ed i s new Limited Contro l l ed with null

record ;
20 end System . Tasking . Protected Object ;

Listing 4.6: Ada.Protected Object

The body of this package is illustrated below:

1 package body System . Tasking . Protected Object i s
2
3 procedure Lock (C : access Protec ted Contro l l ed ’ Class ;
4 L : Lock Type ;
5 V : L o c k V i s i b i l i t y ;
6 C e i l i n g : P r i o r i t y ;
7 Tid : Task Id := Current Task) i s
8 begin
9 −− perform any gener i c p roce s s ing here ;

10 −− f o r example , check ing f o r c e i l i n g v i o l a t i o n s
11
12 Lock (C. al l , L , V, Ce i l ing , Tid) ;
13 −− r e d i s p a t c h e s to the appropr ia t e l o c k i n g rou t ine .
14
15 −− perform any gener i c p roce s s ing here
16 end ;
17
18 procedure Unlock (C : access Protec ted Contro l l ed ’ Class ;
19 Tid : Task Id := Current Task) i s
20 begin
21 −− perform any gener i c p roce s s ing here
22
23 Unlock (C. al l , Tid) ;
24 −−r e d i s p a t c h e s to the appropr ia t e un lock ing rou t ine
25
26 −− perform any gener i c p roce s s ing here
27 end ;
28

113

29 end System . Tasking . Protected Object ;

Listing 4.7: Ada.Protected Object Body

In the body of System.Tasking.Protected Object package, all lock and unlock

functions are redispatched at line 12 and 23. The compiler will search the corre-

sponding lock and unlock routine with the same set of parameters and the invisible

tag. Those routines are then called instead of the original ones. However, if the

application developers have not defined their own routines. The calls will be re-

dispatched to the original Ada routines.

4.4 Framework Overheads

In order to determine the overheads of using the framework, experiments were

performed with the Ada Core GNAT system.

4.4.1 Ada Real-Time Clock Facilities

In the following tests, all measurements use the Ada.Real Time package. In order

to coordinate the program’s execution with the natural time of the environment,

the Ada.Real Time package provides access to a hardware clock that approximates

the passage of real time. The package implements a monotonic regular clock for

real time application needs. The package supports long term application execution

up to 50 years. The minimum tick value of the underlying clock is restricted to

be less or equal to 1 millisecond. The smallest amount of time representable by

the time unit must be no greater than 20 milliseconds. The high resolution time

is returned by the function Clock(). The return of the Clock() is a duration of the

time [74] shown as follows:

1 function Monotonic Clock return Duration i s
2 TS : aliased t imespec ;
3 Result : I n t e r f a c e s .C. i n t ;
4 begin
5 Result := c l o c k g e t t i m e
6 (c l o c k i d => CLOCK REALTIME, tp => TS’ Unchecked Access) ;
7 pragma Assert (Result = 0) ;
8 return To Duration (TS) ;
9 end Monotonic Clock ;

Listing 4.8: System.Task Primitives.Operations.Monotonic Clock

114

The To Duration function converts the underlying C compatible time to Ada

program accessible types on each returns of the call. This is the inaccuracy of

the measurement which will reduce the effectiveness of the time stamping. In our

experiment, in absence of interrupts and preemption, the execution time of the

code is measured by sampling the start and the end time. A possible time drifting

is demonstrated by the following diagram:

Figure 4.3: Time Drifting of Clock()

The inaccuracy at the right of Figure 4.3 represents the time cost to convert

the high resolution time value returned by the underlying POSIX API. The inac-

curacy at the left of Figure 4.3 indicates the elapse of time to the time when the

actual underlying hardware clock is stamped. It is expected that the overall drift

suffered by the measurement code is at most one entire Clock() function. To get

more precise estimation of the measurement code, the affect of time drift must be

minimized from the measurement. It is left over to the later implementation and

evaluation work mainly because it imposes less significant difference to the overall

performance figure.

4.4.2 Original Ada Protected Object Overhead

The previous sections explained the interactions and details for a full implemen-

tation of the framework. However, such an implementation requires enormous

amount of work and it is beyond the scope of this research. The purpose of this

simulated implementation, is to model the existing Ada facilities and show that the

code is effective in multiprocessor systems, is to obtain an estimate on the order of

magnitude of the overhead introduced by the framework into the application code.

115

Therefore, estimating the execution time of the code instead of acquiring exact

cost of introducing the API is the concern of this research. Although cumbersome

implementation details is avoided, the simulation implementation still requires a

full implementation of the framework at the runtime library level. The interactions

are then changed and addressed in the following sections.

Consider the following simple Ada program, which calculates the time taken

to make 1000 null protected procedure calls.

1 with Text IO ; use Text IO ;
2 with Ada . Real Time ; use Ada . Real Time ;
3
4 procedure Main i s −− Orig ina l Ada program
5 T0 : Time ;
6 Elapsed : Time Span ;
7 type Elapsed Array i s array (1 . . 1 1 0 0) of Time Span ;
8 Execution Time : Elapsed Array ;
9

10 protected PO i s
11 procedure Enter ;
12 end PO;
13
14 begin
15 for i in 1 . . 1 0 0 0 loop
16 T0 := Clock ;
17 for j in 1 . . 1 0 0 0 loop
18 PO. Enter ; −− Make the p ro t e c t ed c a l l to PO
19 end loop ;
20 Execution Time (i) := Clock − T0 ;
21 end loop ;
22
23 for i in 1 . . 1 0 0 0 loop
24 Put Line (” Elapsed ”&Duration ’ Image (To Duration (Execution Time

(i)))) ;
25 end loop ;
26 end Main ;

Listing 4.9: Protected Object Full Implementation Test Code

The evaluation platform is a 2.66 GHz Intel Core 2 Duo processor with 4GB

1067 MHz memory and Linux ubuntu 2.6.38-11 SMP kernel. As with any Linux

application, the evaluation application suffers from system interrupts and other

system overheads. The measurement will attempt to exclude the incidental data

and obtain an approximation to the true value of the execution cost of the code.

In order to achieve this, the protected object call is encapsulated in a “for”

loop call, which contains 1000 iterations. A pair of time snapshots is only taken

for every 1000 iterations. This is because the accuracy of the data is too small to

116

IRQ Name CPU1 CPU2 Comment
RES 68453 74467 Rescheduling interrupts
CAL 23503 5418 Function call interrupts
TLB 48526 49659 TLB shootdowns

Table 4.1: /proc/interrupts before 10 seconds testing period

IRQ Name CPU1 CPU2 Comment
RES 68455 74472 Rescheduling interrupts
CAL 23505 5419 Function call interrupts
TLB 48527 49661 TLB shootdowns

Table 4.2: /proc/interrupts after 10 seconds testing period

sustain from the impact of the time drifting. Therefore, the execution time of a

large number of iterations is taken to minimize the effect of such impact. Also, the

expense of interrupts when a common issue for measuring application performance

in Linux. The interrupts are sent by the underlying system in the context of

changing scheduling and timing requests. It is random in terms of maintaining

routine services at a lower level of the system. The Linux provided the reference

facilities to count the total number of interrupts since installation. The counter

file is used as an approximation to estimate the impact of system interrupts on the

evaluation program, using “cat/proc/interrupts; sleep10; cat/proc/interrupts”.

This command counts the number of system interrupts received by the kernel in

the period of 10 seconds with the reference to the interrupts statistics. The result

is shown by table 4.1 and table 4.2:

In the 10 seconds period, there are 7 rescheduling interrupts, 3 function call

interrupts and 3 multiprocessor memory interrupts received by the kernel. The

associated interrupt handlers are then invoked to preempt the current executing

task. This process sometimes can be expensive. For example, the TLB shootdowns

break the mapping between the virtual and physical memory of local processors,

which, will invalidate the mappings of remote processors in turn. The interrupt

handlers of TLB shootdowns is expensive and has a wide effect on all processors

in the system [8]. Owing to its nature, the execution of interrupt handlers can be

easily identified as a spike in the execution time curve.

117

Program Median Time for 1000
protected procedure
in milliseconds

Inter-Quartile Range
in miliseconds

Original Ada Program 0.777 0.001

Table 4.3: Overhead of the Original Ada Protected Object Call

It is not of the concern of this research to accurately estimate the execution

time of the interrupt handlers. The mandate is to reduce the impact of interrupt

handling and obtain an effective estimation of the measured code. The noise data

can then be identified and excluded. The inter-quartile range is an effective statis-

tical method for this purpose. It measures the statistical dispersion of the sample

data, being equal to the difference between the upper and the lower quartiles. A

smaller number indicates a less dispersed data set. The performance of the original

Ada protected object depicted by Listing 4.9 is shown by Table 4.3:

As the measurement code showed, an average time taken to complete 1000

protected object entry call is 0.78 millisecond. The inter-quartile range indicates

that the data set is converged. There is only a few pieces of deviated data arriving

at an exceptional large number. These numbers put into a perspective to be

compared against the overhead of the framework.

4.4.3 A Simulated Framework Implementation

The overhead imposed by the simulated framework is twofold: 1) The simulation

cost 2) The actual overhead of executing the framework.

The evaluation and implementation of the framework is firstly set to estimate

the cost of simulation. Certain changes have been imposed to the original design

of the framework:

In Figure 4.4, the application is solely acting as the event driver. When com-

pared with Figure 3.3, the simulation eliminates the Protected Controlled type. It

interacts with the Protected Object package and the runtime library directly. This

interaction is a simplified version of the simulated approach because the runtime

redispatching is not included in application-defined protocols. The application

program directly calls the default lock method through the Protected Object.lock

interface. Control is passed back to the application once the lock is obtained.

118

Figure 4.4: Simulated Implementation Interaction

119

When finished, the application calls the unlock interface in the Protected Object

package. The interface invokes the unlock method provided by the underlying run-

time library. This design estimate the execution time of the simulation method.

The source code can be found in Listing 4.10:

1 with Text IO ; use Text IO ;
2 with System . Tasking . I n i t i a l i z a t i o n ; use System . Tasking . I n i t i a l i z a t i o n

;
3 with System . So f t L ink s ; use System . So f t L ink s ;
4 with System . Tasking . Protec ted Objec t s ;
5 use System . Tasking . Protec ted Objec t s ;
6 with Ada . Real Time ; use Ada . Real Time ;
7 with Ada . T a s k I d e n t i f i c a t i o n ; use Ada . T a s k I d e n t i f i c a t i o n ;
8
9 procedure Main i s −− hand compi led code

10 package SPO renames System . Tasking . Protec ted Objec t s ;
11
12 T0 : Time ;
13 Elapsed : Time Span ;
14 type Elapsed Array i s array (1 . . 1 1 0 0) of Time Span ;
15 Execution Time : e l a p s e d a r r a y ;
16
17 obj : aliased SPO. Protec t i on ;
18
19 begin
20 SPO. I n i t i a l i z e (Obj ’ Unre s t r i c t ed Acce s s) ;
21
22 for i in 1 . . 1 0 0 0 loop
23 T0 := Clock ;
24 for j in 1 . . 1 0 0 0 loop
25 Abort Defer . a l l ;
26 SPO. Lock (Obj ’ Unre s t r i c t ed Acce s s) ;
27 null ;
28 SPO. Unlock (Obj ’ Unre s t r i c t ed Acce s s) ;
29 Abort Undefer . a l l ;
30 end loop ;
31 Execution Time (i) := Clock − T0 ;
32 end loop ;
33 . . .
34 end Main ;

Listing 4.10: Protected Object Simulation Code

The object on line 17 is the data representation of the protected object, which

is initialized on line 20. The call to the protected procedure is mapped to the calls

on lines 25-29. The results of executing the hand compiled program is listed in

Table 4.4:

The simulated code is slightly more efficient than the original code. There is

some, essentially, null code that is generated by the compiler for house keeping

purposes. Since the interactions with the Ada default protocol are eliminated,

120

Program Median Time for 1000
protected procedure
in milliseconds

Inter-Quartile Range
in miliseconds

Hand Compiled Program 0.670 0.002

Table 4.4: Overhead of the Simulated Ada Protected Object Call

the surrounding maintenance code on the entry and exit of protected procedure

calls are not present in the simulation code. The simulation, however, offers an

approximation of the original Ada protected object call. This approximation is

an effective baseline measurement to be compared with the performance of the

refactored program with the framework integrated.

The refactored program imposes necessary changes to Ada in order to incorpo-

rate application-defined resource sharing protocols through our framework. The

concept of polymorphism is a powerful tool for this purpose. Ada supports the

idea of polymorphism by introducing the concept of class. For each tagged type

T, there is an associated type T’Class. T’Class, also called “the class wide type

of T”, comprises the union of all types in the tree of derived types rooted at T

[39]. Owing to this routine, a subprogram can define one or more parameters as

a type of the form T’Class. Different types are thus created under the same type

but different parameters. Dynamic dispatching is the process provided by Ada at

runtime to determine which routine to call. Ada will check the parameters of the

incoming calls and searches the invisible tag associated of the T’Class for a perfect

match. The implementation of the framework utilized this concept by passing in a

class-wide type of Protected Controlled. The compiler will determine at runtime

which lock routine to call in terms of this protected controlled object. In which

case, the application-defined lock and unlock methods will be automatically called

upon its associated protected object.

The full simulated measurement is based on the above refactored Ada library.

The updated library will redispatch each incoming lock and unlock calls to its

associated routine instead of directly using the original primitives. Extra execution

expense is expected to emerge in this routine. However, the application-defined

resource sharing protocols can benefit from this low cost integration. In order

to maintain the consistency of the measurement data, same measurement code is

used in this case (as shown in code 4.10). The test result is illustrated by Table

121

Program Median Time for 1000
protected procedure
in milliseconds

Inter-Quartile Range
in miliseconds

Hand Compiler Program 0.700 0.002

Table 4.5: Overhead of Simulated Ada Refactored Protected Object Call

4.5:

In general, the data obtained shows that the average cost of completing an

protected object call to a refactored Ada program is 0.03 milliseconds greater than

the hand compiled program. It is inline with the expectation that the redispatching

facility will impose extra cost to the runtime library. Although the measurement

data suggested that the refactored program is more efficient than the original

Ada program, the refactored program, in fact, has longer execution time than the

original program. As mentioned in previous paragraphs, the refactored program

follows the simulation principle where certain house keeping routines are omitted.

Taken into account the extra 0.1 milliseconds saved, the refactored program his

0.03 milliseconds execution time longer than its equivalent original Ada program

for 1000 protected object calls.

4.5 Summary

Following the previous discussions, this chapter examines the framework through

practical implementation in Ada. Due to the fact that programming at low level

involves different components, the framework implementation is likely to vary from

the scope of the modification and the efficiency of the code execution. Those com-

ponents, like GNAT and protected objects of Ada, were examined at the beginning

of this chapter.

The complete implementation of the resource sharing framework requires the

full support of the GNAT compiler so that the new specification introduced by

the framework need to be recognized by the parser and the semantics imposed by

the framework can be implemented by the runtime library. The framework was

fully implemented at the library level using the simulation approach. This will

not mitigate the benefit of extra flexibility imposed by the framework with minor

runtime overheads.

122

As any application developer would expect, the interface must be light and

efficient. The framework is evaluated and measured from its efficiency against the

original Ada protected objects. The implementation evaluation comprises three

experiments found that the overhead imposed by the framework is acceptable.

More specifically, a 0.03 milliseconds increase for every 1000 protected object calls.

This is equivalent to a 4% increase of the total execution time of the call. We

can therefore conclude that the added flexibility of allowing application defined

resource sharing protocols justifies the small increase in runtime overheads.

123

Chapter 5

Expressive Power of the Ada

Framework

In this chapter, we present various multiprocessor resource sharing protocols and

their implementations to demonstrate the expressive power of the flexible mul-

tiprocessor resource sharing framework in Ada. These protocols were presented

and explained with concrete examples in Chapter 2. It is worth reproducing the

summary of multiprocessor resource sharing protocols in Table 5.1 to remind us

of their properties.

The multiprocessor resource sharing algorithms were characterized by different

design principles. Some protocols, like MPCP, are designed to minimize the remote

blocking by using suspension locks. Some protocols emphasize on efficiency by

using the spin locks instead of suspension locks. Other protocols are more closely

linked to the underlying hardware structure of multiprocessor systems by deploying

hierarchical queues for resource sharing. Perhaps, it is the diverging views on the

solution of sharing resources in multiprocessor systems which have caused the

segregated solutions. The algorithms considered in this section are summarized by

Table 5.1.

It becomes a challenge for the framework to support all of these protocols.

With well diversified requirements, the protocols do not have a unified resource

acquiring model. They may attempt to lock at the start of their execution as well

as at any random time point. They may require multiple instances of different

queuing policy on different processors. It is also highly possible that they may be

124

Protocol Scheduling Resources Nested
Resources

Access Priority Queueing

MSRP Partitioned Yes No Non Preemptive Spins in a FIFO queue
FMLP Partitioned Yes Group

Lock
Non Preemptive
for short; Sus-
pension for long

Short: Spins in a
FIFO queue; Long:
Suspends in FIFO
queue

MPCP Partitioned Yes No Ceiling Suspends in a priority
ordered queue

OMLP Global Yes Group
Lock

Inheritance for
global

Suspends in FIFO
and Priority-ordered
queues

Clustered
OMLP

Clustered No Group
Lock

Priority Dona-
tion

Suspends in a FIFO
queue

Table 5.1: Resource Sharing Protocols Evaluated in this Chapter

interested in modifying scheduler decisions at runtime. This chapter, therefore,

evaluates the framework against the possible requirements of the protocols with

designated operating scenarios. It is expected that the application developers can

implement application defined protocols by purely using our framework and the

programming language facilities.

The structure of this chapter is as follows:

In section 5.1, we summarize our overall evaluation approach. In section 5.2,

we consider MSRP, which requires tasks to spin while blocked on a global re-

source. This is the approach suggested by the Ada Reference Manual. However,

our framework allows approaches based on suspension locks as well. In section 5.3,

we consider MPCP which is a simple suspension based protocol. In section 5.4, we

consider FMLP, which combines suspension with spin. Finally, we consider two

versions of OMLP. The basic OMLP is described in section 5.5. The clustered

OMLP is a more complex algorithm has more interactions with the scheduler than

the other algorithms. This protocol is the most challenging to support in our

proposed framework.

125

5.1 Evaluation Approach

The prototype implementation of the framework was not designed to understand

the effectiveness of the underlying resource sharing algorithm, but to investigate

the expressive power of the framework. It is expected that the framework can

operate effectively enough to support different multiprocessor resource sharing al-

gorithms at various levels in adaptive ways. For example, different resource sharing

algorithms may be viewed as a black box which requires different combination of

input and output. The framework should be adaptive in itself so that it can be

integrated with the algorithm and the application program seamlessly. When the

application developers modifies the input to the framework, the framework should

be adaptive so that no recompilation is needed. The evaluation therefore should

enumerate as many combinations as possible to test the features of the framework

in various scenarios. The expected result of the evaluation is that the framework

can provide enough support for the application-defined protocol candidates in the

context of Ada. The application developers should be able to implement their

algorithm using only the framework and the high level language facilities.

Evaluation Task Model The task model used for the evaluation work is im-

portant. It determines the behaviour of the evaluation tasks which will lead to

different behaviour of the resource sharing algorithms at run time. In order to

maintain the objectivity of the test, the following general tasking model is used:

An evaluation task can have as many as five states. At the creation stage,

a task will be created and its parameters will be initialized. However, it is not

runnable as it has not been officially released to the scheduler. After creation, it

can be released to the scheduler and enters the running state at some late time

according to its scheduling eligibility. Once the execution starts, an evaluation

task can acquire shared resources at any time and execute in the critical section

of the resource after obtaining the lock. When its execution in the resource is

finished, the task will release the resource and continue its normal execution for

some time. It will finally enter the termination state once all its execution has

finished.

It is worthwhile mentioning that an evaluation task can spend an indefinite

amount of time between any two adjacent states. This is quite common in the real

126

Figure 5.1: Evaluation Task Model

world where a task, for example, involves a heavy math computation but only uses

shared resource when it wants to write the result to the output. Alternatively,

when a task operates heavily in memory operations, it may spend a minimum

amount of time spent in normal calculations and incur minimum execution delays

between any of the non critical states. Adjusting the execution delays between the

states can dynamically simulate different semantics of the application environments

demanding different corresponding behaviours of the framework and the resource

sharing algorithms.

In order to improve the presentation quality, the main test drive program of

the following protocols are not individually presented as they all have the same

structure. An example test drive program is listed as below to illustrate how the

task model is implemented for evaluations:

1 pragma Task Dispatch ing Po l i cy (FIFO With in Pr io r i t i e s) ;
2 with Some Locking Protoco ls ; use Some Locking Protoco ls ;
3 procedure Main i s
4
5 Start Time : Time ;
6
7 procedure ComputationWork (c : i n t e g e r) i s
8 temp : i n t e g e r :=0;
9 begin

10 for j in 1 . . c loop

127

11 for i in 1 . . 100000 loop
12 temp := temp + 1 ;
13 end loop ; temp := 0 ;
14 end loop ;
15 end ;
16 pragma i n l i n e (ComputationWork) ;
17
18 −− ================== Resource De f i n i t i on ==================
19 protected type Resource (p r i : P r i o r i t y ; V: L o c k i n g V i s i b i l i t y ; PC:

access Some Locking Protocol)
20 with P r i o r i t y => pr i , L o c k i n g V i s i b i l i t y => V, Locking Algorithm

=> PC i s
21 procedure Access Resource Access Resource (t1 , t2 , t3 : I n t e g e r ;

R: access Resource) ;
22 procedure Nested Access (t1 , t2 , t3 : I n t e g e r ; R: access Resource

) ;
23 end Resource ;
24
25 protected body Resource i s
26 procedure Access Resource (t : I n t e g e r) i s
27 begin
28 ComputationWork (t) ;
29 end ;
30
31 procedure Nested Access (t1 , t2 , t3 : I n t e g e r ; R: access Resource) i s
32 begin
33 ComputationWork (t1) ;
34 R. Access Resource (t2) ;
35 ComputationWork (t3) ;
36 end ;
37 end Resource ;
38
39 −− ================== Task De f i n i t i on ============================
40 −− Task acqu i r ing no resource
41 task type No Resource Worker (
42 p r i : I n t e g e r ;
43 r e s : access Resource ;
44 a f f i n i t y : I n t e g e r ;
45 d : I n t e g e r) i s
46 pragma P r i o r i t y (p r i) ;
47 end No Resource Worker ;
48
49 task body No Resource Worker i s
50 begin
51 STPO. s e t a f f i n i t y (STPO. s e l f , a f f i n i t y) ; −− a f f i n i t y
52 delay until Start Time ;
53 ComputationWork (d) ;
54 stop ;
55 end
56 −− Task acqu i r ing s i n g l e resource
57 task type Sing le Resource Worker (
58 p r i : I n t e g e r ;
59 r e s : access Resource ;
60 a f f i n i t y : I n t e g e r ;

128

61 d1 , d2 , d3 : I n t e g e r) i s
62 pragma P r i o r i t y (p r i) ;
63 end Sing le Resource Worker ;
64
65 task body Sing le Resource Worker i s
66 begin
67 STPO. s e t a f f i n i t y (STPO. s e l f , a f f i n i t y) ; −− a f f i n i t y
68 delay until Start Time ;
69 ComputationWork (d1) ;
70 r e s . Access Resource (d2) ;
71 ComputationWork (d3) ;
72 stop ;
73 end Sing le Resource Worker ;
74
75 −− Task acqu i r ing nes ted resource
76 task type Nested Resource Worker (
77 p r i : I n t e g e r ;
78 res1 , r e s2 : access Resource ;
79 a f f i n i t y : I n t e g e r ;
80 d1 , d2 , d3 , d4 , d5 : I n t e g e r) i s
81 pragma P r i o r i t y (p r i) ;
82 end Nested Resource Worker ;
83
84 task body Nested Resource Worker i s
85 begin
86 STPO. s e t a f f i n i t y (STPO. s e l f , a f f i n i t y) ; −− a f f i n i t y
87 delay until Start Time ;
88 ComputationWork (d1) ;
89 r e s1 . Nested Access (d2 , d3 , d4 , r e s2) ;
90 ComputationWork (d5) ;
91 stop ;
92 end Nested Resource Worker ;
93
94 R1 : aliased Resource (Some Locking protocol ’ access) ;
95
96 procedure d r i v e r i s
97 T1 : S ing le Resource Worker (1 , R1 ’ access , 1 , 2 , 2 , 3) ;
98 begin
99 null ;

100 end d r i v e r ;
101
102 begin
103 Start Time := Clock + m i l l i s e c o n d s (1000) ; −− Set the s t a r t up

time .
104 d r i v e r ; −− Driver procedure to s t a r t the t a s k s
105 end Main ;

Listing 5.1: Original Evaluation Main Program

Listing 5.1 shows the structure of the test programs. The actual programs are

controlled so that tasks are released in an appropriate order for the purpose of

evaluation. In Chapter 2, each protocol was illustrated with a particular scenario.

The test program were engaged to follow theses scenarios.

129

As mentioned in Chapter 4, the full implementation of the framework require

modification to the front end Ada compiler which is beyond the scope of this

research. The simulation approach was used instead. The evaluation test follows

this principle and derived the compiled evaluation drive program as follows:

1 pragma Task Dispatch ing Po l i cy (FIFO With in Pr io r i t i e s) ;
2 −− with necessary packages
3
4 procedure Main i s
5 package STPO renames System . Task Pr imi t ive s . Operat ions ;
6
7 Start Time : Time ;
8
9 procedure ComputationWork (c : i n t e g e r) i s

10 temp : i n t e g e r :=0;
11 begin
12 for j in 1 . . c loop
13 for i in 1 . . 100000 loop
14 temp := temp + 1 ;
15 end loop ; temp := 0 ;
16 end loop ;
17 end ;
18 pragma i n l i n e (ComputationWork) ;
19
20 R1 : aliased Global MPCP (3 , f a l s e , 1 , 1) ; −− f o r example
21
22 −− ================== Resource De f i n i t i on ==================
23 type Resource (PC : access Protec ted Contro l l ed ’ Class) i s
24 null
25 record ;
26
27 resourceR1 : aliased Resource (R1 ’ access) ;
28
29 procedure Access Resource (t : I n t e g e r) i s
30 begin
31 ComputationWork (t) ;
32 end ;
33
34 procedure Nested Access (t1 , t2 , t3 : I n t e g e r ; R: access Resource) i s
35 begin
36 ComputationWork (t1) ;
37 Lock (R.PC. a l l) ;
38 ComputationWork (t2) ;
39 Unlock (R.PC. a l l) ;
40 ComputationWork (t3) ;
41 end Nested Resource ;
42
43 −− ================== Task De f i n i t i on =======================
44 −− Task acqu i r ing no resource
45 task type No Resource Worker (
46 p r i : I n t e g e r ;
47 r e s : access Resource ;
48 a f f i n i t y : I n t e g e r ;

130

49 d : I n t e g e r) i s
50 pragma P r i o r i t y (p r i) ;
51 end No Resource Worker ;
52
53 task body No Resource Worker i s
54 begin
55 STPO. s e t a f f i n i t y (STPO. s e l f , a f f i n i t y) ; −− a f f i n i t y
56 delay until Start Time ;
57 ComputationWork (d) ;
58 stop ;
59 end No Resource Worker ;
60
61 −− Task acqu i r ing s i n g l e resource
62 task type Sing le Resource Worker (
63 p r i : I n t e g e r ;
64 r e s : access Resource ;
65 a f f i n i t y : I n t e g e r ;
66 d1 , d2 , d3 : I n t e g e r) i s
67 pragma P r i o r i t y (p r i) ;
68 end Sing le Resource Worker ;
69
70 task body Sing le Resource Worker i s
71 begin
72 STPO. s e t a f f i n i t y (STPO. s e l f , a f f i n i t y) ; −− a f f i n i t y
73 delay until Start Time ;
74 ComputationWork (d1) ;
75 Lock (r e s .PC. a l l) ;
76 Access Resource (d2 , r e s) ;
77 Unlock (r e s .PC. a l l) ;
78 ComputationWork (d3) ;
79 stop ;
80 end Sing le Resource Worker ;
81
82 −− Task acqu i r ing nes ted resource
83 task type Nested Resource Worker (
84 p r i : I n t e g e r ;
85 res1 , r e s2 : access Resource ;
86 a f f i n i t y : I n t e g e r ;
87 d1 , d2 , d3 , d4 , d5 : I n t e g e r) i s
88 pragma P r i o r i t y (p r i) ;
89 end Nested Resource Worker ;
90
91 task body Nested Resource Worker i s
92 begin
93 STPO. s e t a f f i n i t y (STPO. s e l f , a f f i n i t y) ; −− a f f i n i t y
94 delay until Start Time ;
95 ComputationWork (d1) ;
96 Lock (r e s1 .PC. a l l) ;
97 Nested Access (d2 , d3 , d4 , r e s2) ;
98 Unlock (r e s1 .PC. a l l) ;
99 ComputationWork (d5) ;

100 stop ;
101 end Nested Resource Worker ;
102

131

103 −− ================== Driv ing Procedure ===================
104 procedure d r i v e r i s
105
106 −− Prior iy , resource , p a r t i t i on , a f f i n i t y , de l ay 1 − 3
107 T1 : S ing le Resource Worker (1 , resourceR1 ’ access , 1 , 2 , 2 , 3) ;
108
109 begin
110 null ;
111 end d r i v e r ;
112
113 begin
114 Start Time := Clock + m i l l i s e c o n d s (1000) ; −− Set the s t a r t up

time .
115 d r i v e r ; −− Driver procedure to s t a r t the t a s k s
116 end Main ;

Listing 5.2: Compiled Evaluation Main Program

Listing 5.2 demonstrates the actual evaluation main program for the protocol

tests. Application programmers can define their application-defined protocols as

shown by the example at line 20. If the evaluation task acquires only one shared

resource, the template single resource worker will be instantiated. However, if

multiple shared resources are required at run time, the nested resource worker

template will be used. It will call the nested access procedure at line 34 first.

Within this procedure, another simulated resource attempt will be made at line

37. This is to simulate the calling sequence of the nested resource requirements.

QueueLock package The System.Multiprocessors.QueueLock package (often

renamed as SQL in the following codes) was specifically created for the evaluation

work and for common support for all protocols. It was introduced as an interface

and tools package between the evaluation code and the low level programming

language for channeling low level functionalities to the application codes. The Ada

compiler GCC 4.6.1 used for the evaluation is strict about the test program using

internal GNAT functions. Some crucial functions required by the implementation

of the resource sharing algorithms at the application level are not available. This

package was therefore created as an aggregate of functionalities including system

locks, scheduling functions, task operations and type casts etc. These procedures

were fully wrapped and tested before being used by the evaluation code. The full

implementation is listed in Appendix B.

132

Time Stamping and Status Message The following evaluation code often

prints the current time point associated with some brief messages explaining the

current state of the executing task. This is an effective evaluation method to

identify the current state of the calling task. The brief message will not only

verify that if the current calling task was executed as expected, but also reveals

the situation of all other tasks. For example, a low priority task will not print

anything if it has been preempted by a high priority task. The time stamping will

check the order of the events ensuring the protocol and framework were all making

expected decisions in a correct order.

5.2 Multiprocessor Stack Resource Policy - MSRP

Tasks in MSRP are blocked at the release stage. Once released, the execution

will not be blocked due to unavailable resource. Protocols like MSRP use spin

based locking. This imposes a challenge to the framework because it involves early

interaction and has to dynamically adjust the system ceilings to release the blocked

tasks.

As shown by Table 5.1, the Multiprocessor Stack Resource Policy requires

partitioned scheduling and FIFO spinning to unavailable global resource. In the

Ada context, the preemption level of the task is directly related to the Ada task

priority. This can be set at the task creation using an Ada pragma.

The partitioning of the task is achieved using the Ada 2012 CPU aspect. Since

we are using Ada 2005, we have to call the set task affinity function explicitly.

MSRP is a ceiling protocol, so when a task is inside a protocol object, the task

runs at the priority of the protected object ceilings. Ada supports preemptive

priority based scheduling and no preemption will occur once a task is inside a

protected object and another task wants to use the same protected object. Hence,

the current system ceiling is implicitly the ceiling of the locked protected object

with the highest ceiling value. The scheduling scenario, depicted by Figure 2.2,

assigns 5 tasks on two processors. The resource allocation and preemption level

assignments are given in Table 5.2:

With the shared resource specified 1, the evaluation test was conducted to verify

1T1 is released first followed by T2 and T4

133

Task Affinity Requiring Resource Preempt Level Release Order
T1 P1 nil 3 1
T3 P1 R1 (G1) 2 2
T2 P1 R1 (G1) 1 3
T4 P2 G1 1 2
T5 P2 nil 2 3

Table 5.2: Resource Table of MSRP

the behaviour of the MSRP protocol in the framework. If the scheduling outcome

including the intermediate states and use of the fundamental primitives matches

the expected results, the spin lock based protocols like MSRP can be supported

by the framework.

The implementation of the MSRP can be found at Listing 5.3:

1 −− with necessary packages
2
3 package MSRP i s
4
5 package SQL renames System . Mu l t ip roc e s so r s . QueueLock ;
6 type Global MSRP (Num Of Tasks : Natural ; V: L o c k i n g V i s i b i l i t y ; ID :

I n t e g e r ; Ce i l : I n t e g e r) i s new Protec t ed Cont ro l l ed with private ;
7
8 overriding procedure I n i t i a l i z e (C : in out Global MSRP) ;
9 overriding procedure F i n a l i z e (C : in out Global MSRP) ;

10 overriding procedure Lock (C : in out Global MSRP) ;
11 overriding procedure Unlock (C : in out Global MSRP) ;
12
13 power on : Time ;
14
15 private
16
17 type Global MSRP (Num Of Tasks : Natural ; V: L o c k i n g V i s i b i l i t y ; ID :

I n t e g e r ; Ce i l : I n t e g e r) i s new Protec t ed Cont ro l l ed with
18 record
19 Global Lock : aliased SQL. Spin Lock ;
20 end record ;
21
22 end MSRP;

Listing 5.3: MSRP Package Specification

A shared resource under MSRP is a new protected controlled type acceptable

by the framework. The implementation overrides four methods of the framework

to specify the behaviours of tasks in shared resources. The package specification

defines types and records needed for the implementation.

134

1 package body MSRP i s
2
3 package STPO renames System . Task Pr imi t ive s . Operat ions ;
4
5 procedure stop i s
6 begin
7 −− reduce system c e i l i n g
8 Print Time ;
9 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” stops execut ion ”) ;

10 end ;
11
12 overriding procedure I n i t i a l i z e (C : in out Global MSRP) i s
13 begin
14 SQL. I n i t i a l i z e (C. Global Lock) ;
15 end ;
16
17 overriding procedure F i n a l i z e (C : in out Global MSRP) i s
18 begin
19 null ;
20 end ;
21
22 overriding procedure Lock (C : in out Global MSRP) i s
23 P : i n t e g e r ;
24 begin
25 i f C.V then −− Globa l Resource
26 Print Time ;
27 Put Line (” => ” &image (c u r r e n t t a s k) (1 . . 2) &” attempts to lock

r e sou r c e G”&Integer ’ image (C. ID)) ;
28 S e t P r i o r i t y (C. Ce i l + SQL. Get PML) ;
29 SQL. SimpleSpinLock (C. Global Lock) ;
30 Print Time ;
31 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” Got the Global Lock

and acqu i red G”&Integer ’ image (C. ID)) ;
32 else −− Local Resource
33 Print Time ;
34 Put Line (” => ” &image (c u r r e n t t a s k) (1 . . 2) &” attempts to lock

r e sou r c e R”&Integer ’ image (C. ID)) ;
35 S e t P r i o r i t y (C. Ce i l) ;
36 Print Time ;
37 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” Got the Local Lock

and acqu i red R”&Integer ’ image (C. ID)) ;
38 end i f ;
39 end Lock ;
40
41 overriding procedure Unlock (C : in out Global MSRP) i s
42 P : i n t e g e r ;
43 begin
44 i f C.V then −− Globa l Resource
45 Print Time ;
46 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” unlocked G”&

Integer ’ image (C. ID)) ;
47 SQL. SimpleSpinUnlock (C. Global Lock) ;
48 S e t P r i o r i t y (SQL. Get PML) ;
49 else −− Local Resource

135

50 Print Time ;
51 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” unlocked R”&

Integer ’ image (C. ID)) ;
52 S e t P r i o r i t y (SQL. Get PML) ;
53 end i f ;
54 end Unlock ;
55
56 end MSRP;

Listing 5.4: MSRP body

Listing 5.4 explains the implementation details of the MSRP protocol within

the framework. The test program ensures the release follows the sequence given in

Figure 2.2. The protocol starts when a task becomes runnable. Since MSRP is fully

partitioned, the released task is firstly assigned to its allocated processor following

the design of the evaluation task model. The preemption levels of the tasks are

reflections of their priorities. The evaluation test program is set to use FIFO within

priority scheduling. The tasks with low preemption level will not be released for

execution by the scheduler because there is a higher priority task executing in

the system. This feature facilitates the assertions of the MSRP algorithm so

that only the tasks with higher preemption level than the system ceiling will be

able to start execution. During its execution cycle, the released tasks may access

the global/local shared resource through the lock and unlock procedures. If the

resource is global, its priority is immediately raised to the corresponding highest

and becomes non-preemptive at line 28. It appends itself to the global FIFO queue

waiting for the precedence tasks to finish. When the resource is granted, the calling

task will be returned from the SimpleSpinLock function. It will finish the lock

procedure and continues its execution in the critical section. This implementation

relies on the pthread spin lock functions to provide the FIFO queuing facilities 2

If the resource is local, starting from line 32, the calling task will raise its priority

and return. There is no lock requests necessarily required by the local resources

because the protocol itself guarantees that the released task will not be blocking

once released. In the unlock procedure, the calling task will delete itself from the

global FIFO, if the resource is global, and yield the resource to the next waiting

2The implementation of the pthread spin lock may vary in the distribution versions of Linux.
The version used by the evaluation tests is using the kernel 3.6.11x86 64 #1 SMP PREEMPT.
The implementation utilizes a 32bits integer, depending on the implementation, as the FIFO
queue for the spin locks. It always append the new tasks to the higher bits and releases the tasks
at the lower bits.

136

task.

As shown by Table 5.2, there are two resources shared between 5 tasks in the

scenario. R1 is the local resource shared between T2 and T3 on processor 1. G1

is a global resource required by both T3 and T4. Since MSRP supports nested

resources, T3 have the nested resource requests of R1 and G1. In order to verify

the effect of the algorithm in various scenarios, the tasks are set to be released

at different times. Table 5.2 demonstrates the relative release sequence of the

tasks. T3 is the first task to be released on processor 1 in the system. T2 and T4

were then released followed by T1 and T5. This release sequence will examine the

global blocking mechanism of and other different important properties of MSRP.

The output of the evaluation driving program is as follows:

1 [1 . 00 031] => T3 s t a r t s execut ion
2 [1 . 01 070] => T3 attempts to lock r e sou r c e R1
3 [1 . 01 073] => T3 Got the Local Lock and acqu i red R1
4 T3 => Got R1
5 [1 . 02 083] => T4 s t a r t s execut ion
6 [1 . 03 083] => T3 attempts to lock r e sou r c e G1
7 [1 . 03 085] => T3 Got the Global Lock and acqu i red G1
8 T3 => Got G1
9 [1 . 04 132] => T4 attempts to lock r e sou r c e G1

10 [1 . 05 044] => T3 unlocked G1
11 [1 . 05 046] => T4 Got the Global Lock and acqu i red G1
12 T4 => Got G1
13 [1 . 05 048] => T1 s t a r t s execut ion
14 [1 . 06 056] => T1 stops execut ion
15 [1 . 06 065] => T4 unlocked G1
16 [1 . 06 069] => T5 s t a r t s execut ion
17 T5 => Executing !
18 [1 . 08 009] => T5 stops execut ion
19 [1 . 08 012] => T3 unlocked R1
20 [1 . 08 014] => T3 stops execut ion
21 [1 . 08 016] => T2 s t a r t s execut ion
22 [1 . 08 017] => T2 attempts to lock r e sou r c e R1
23 [1 . 08 019] => T2 Got the Local Lock and acqu i red R1
24 T2 => Got R1
25 [1 . 09 031] => T2 unlocked R1
26 [1 . 09 033] => T4 stops execut ion
27 [1 . 10 029] => T2 stops execut ion

Listing 5.5: MSRP Evaluation Results

The evaluation result shown by Listing 5.5 ordered the outputs by their stamped

times. These time stamps can be mapped against the time points in the original

scenario which is fully demonstrated by the following table:

According to Table 5.3, all scheduling outcomes took place as expected by the

137

Evaluation
Stamped Time

Original Scenario Time Event

1.00031 t0 T3 starts
1.01070 t1 T3 locks R1
1.02083 t2 T4 starts
1.03083 t3 T3 locks G1
1.04132 t4 T4 attempts G1
1.05046 t5 T4 locks G1
1.06065 t6 T4 unlocks G1
1.08012 t7 T3 unlocks R1
1.08017 t8 T2 locks R1
1.09031 t9 T2 unlocks R1
1.10029 t10 T2 stops

Table 5.3: Mapping time stamps to Figure 2.2

original scenarios. The evaluation output is analyzed further as follows:

Tasks Execution Order In MSRP, tasks are released for execution in the order

of their preemption levels. A high preemption level task once released will not

be blocked until it has finished its execution or its preemption level is not the

highest. Our test result in Listing 5.5 demonstrates this effect by showing,

for example, T3 has been released and executes all the way through till it

has released R1 and terminates execution at time 1.08014. The effectiveness

of the preemption level is also demonstrated by the preemption of T4. At

time 1.06065, T4 unlocked G1 and returns its preemption level to 1. T5 with

a higher preemption level immediately starts execution at time 1.06069. T4

only get a chance to continue its work and terminates execution at time

1.09033.

Global FIFO Blocking The MSRP protocol demands the global resources shared

in FIFO spin queue. At time 1.03085, T3 has successfully obtained the global

resource G1. On processor 2, T4 attempts to lock G1 at time 1.04132. It

becomes blocked and spinning in a global FIFO queue until T3 releases G1

at time 1.05044. As the next waiting task in the global FIFO queue, T4 was

granted the resource at time 1.05046.

138

Execution Tasks are never blocked This is an important property of MSRP

because violation of this rule will lead to the failure of the protocol and dead-

lock of the underlying tasks. In our test scenario, all tasks are released and

executed straight to the end. For example, T3, acquiring most of the shared

resources, starts execution at time 1.00031 and finished at time 1.08014. Its

execution are never blocked due to unavailable resources. Similarly, T2 re-

leased at time 1.08016 has successfully obtained R1 at time 1.08019 because

its release has been postponed by the protocol. If it starts its execution be-

fore time 1.08012, it will be blocked immediately because T3 will be holding

R1.

The evaluation output matches the expected scheduling results of the original

MSRP protocol. The implementation of MSRP was carried out using purely the

framework and Ada language facilities. It demonstrate the ability of the frame-

work of incorporating spin lock based protocols, providing release state blocking,

differentiating global and local resources, supporting non-preemptive spinning wait

for shared resources and nested locking with the permission of the protocol.

5.3 Multiprocessor Priority Ceiling Protocol -

MPCP

MPCP is a typical resource sharing algorithm used for applications with suspen-

sion based locks. It is based on partitioned scheduling where tasks are statically

assigned to processors before execution. The suspension lock is heavily used be-

cause the critical sections of these applications are often long and requires lengthy

computations. The scheduling and resource sharing overheads are often small to

the total execution time of the long critical section.

Resources are labeled as either global or local. Global resources are shared

within a global ceiling priority range which is absolutely higher than any local

priorities. Local resources are shared at the ceiling of local priorities with the

original ceiling priority protocol.

1 package MPCP i s
2
3 type Global MPCP(SynchIndex : I n t e g e r ; Ce i l : I n t e g e r ; ID : I n t e g e r ; V:

V i s i b i l i t y) i s new Protec t ed Cont ro l l ed with private ;

139

4
5 overriding procedure I n i t i a l i z e (C : in out Global MPCP) ;
6 overriding procedure F i n a l i z e (C : in out Global MPCP) ;
7 overriding procedure Lock (C : in out Global MPCP) ;
8 overriding procedure Unlock (C : in out Global MPCP) ;
9

10 −− I n t e rna l procedures were omit ted
11 private
12
13 type Global MPCP(SynchIndex : I n t e g e r ; Ce i l : I n t e g e r ; ID : I n t e g e r ; V:

V i s i b i l i t y) i s new Protec t ed Cont ro l l ed with
14 record
15 Llock : aliased SQL. Suspension Lock ;
16 DCeil : I n t e g e r ;
17 T : Task ID ;
18 end record ;
19
20 power on : Time ;
21
22 end MPCP;

Listing 5.6: MPCP Package Specification

As shown by Listing 5.6, the Global MPCP type is a new protected controlled

type extending the framework with four new overriding methods. It accepts the

parameters including the index of the synchronization processor, the ceiling of the

resource, ID of the resource and the visibility indicating the resource type. In-

side the resource type record, there is the actual suspension lock and the dynamic

ceiling of the local resource. The lock and unlock methods were overridden to

implement the behaviour of MPCP. When the corresponding protected object is

called, the runtime system dynamically detects the associated resource sharing al-

gorithm. If it is MPCP, the overridden initialize, finalize, lock and unlock methods

are called instead of the original ones.

1 package body MPCP i s
2
3 package STPO renames System . Task Pr imi t ive s . Operat ions ;
4
5 overriding procedure I n i t i a l i z e (C : in out Global MPCP) i s
6 begin
7 SQL. S impleSuspens ionIn i t (C. Llock) ;
8 power on := Clock ;
9 end ;

10
11 overriding procedure F i n a l i z e (C : in out Global MPCP) i s
12 begin
13 null ;
14 end ;
15

140

16 overriding procedure Lock (C : in out Global MPCP) i s
17 p : I n t e g e r ;
18 begin
19 i f C.V then −− g l o b a l resource
20 Print Time ;
21 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” attempts to lock

r e sou r c e G”&Integer ’ image (C. ID)) ;
22 Print Time ;
23 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” migrates to PG”) ;
24 STPO. s e t a f f i n i t y (STPO. s e l f , C. SynchIndex) ;
25 SQL. SimpleSuspensionLock (C. Llock) ;
26 S e t P r i o r i t y (SQL. Get PML+C. Ce i l) ;
27 else −− l o c a l resource
28 −− implementat ion o f Or i g ina l P r i o r i t y Ce i l i n g Protoco l
29 end Lock ;
30
31 overriding procedure Unlock (C : in out Global MPCP) i s
32 p : I n t e g e r ;
33 begin
34 C.T := Nul l Task Id ;
35 p := SQL. GetAf f i n i ty ;
36 SQL. SimpleSuspensionUnlock (C. Llock) ;
37 i f C.V then −− g l o b a l resource
38 Print Time ;
39 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” unlocked G” &

Integer ’ image (C. ID)) ;
40 Print Time ;
41 Put Line (” => ” &image (c u r r e n t t a s k) (1 . . 2)&” migrates back to

p r oc e s s o r ”&Integer ’ Image (a f f i n i t y s e t (Integer ’ va lue (image (
c u r r e n t t a s k) (2 . . 2))))) ;

42 STPO. s e t a f f i n i t y (STPO. Se l f , a f f i n i t y s e t (Integer ’ va lue (image (
c u r r e n t t a s k) (2 . . 2)))) ;

43 S e t P r i o r i t y (SQL. Get PML) ; −− r e s t o r e the o r i g i n a l p r i o r i t y
44 else −− l o c a l resource
45 −− implementat ion o f Or i g ina l P r i o r i t y Ce i l i n g Protoco l
46 end i f ;
47 end Unlock ;
48
49 end MPCP;

Listing 5.7: MPCP Package Body

Listing 5.7 demonstrates the details of MPCP in the framework. The lock

procedure is called when an evaluation task attempts to lock a shared resource. If

the resource being acquired is global, the current calling task will be migrated to

the synchronization processor as shown by line 24. Its priority will be immediately

raised to the corresponding global ceiling at line 26 after obtaining the resource. As

depicted by [48], the global critical section is always executed at the global ceiling

priority which is higher than the assigned priority of the highest priority task in

the system. If the resource is local, the task will obtain the resource according

141

to the original priority ceiling protocol. Its priority will only be raised if actual

blocking takes place.

When the unlock is called, the underlying suspension lock is firstly released.

The tasks on synchronization processor have to migrate back to their original

processors when their global resource execution is finished. This is accomplished

at line 42 and reset the tasks to its original priority at line 43. If the resource

is local, the task will restore its previous priority and yield the resource to any

waiting tasks. The implementation of unlock local resources were following the

semantics of original priority ceiling protocol.

The evaluation program declares two local resources (R1, R2) and two global

resources (G1, G2). The resource requirements are depicted by the following table:

Task Affinity Requiring Resource Base Priority Release Sequence
T1 P1 R1 1 3
T2 P2 G2 6 3
T3 P1 G1 5 1
T4 P2 R2 2 2
T5 P1 G1 3 5
T6 P2 G2 4 4

Table 5.4: MPCP Resource Table

Since the global ceiling must be absolutely higher than all local ceilings, G1 and

G2 are assigned ceilings 12 (7+5) and 13 (7+6) respectively. After being declared

at line 8, the resources are associated with Ada protected objects within our eval-

uation task model. At this point, the framework was configured with application

defined resource sharing protocols so that when the compiled protected objects

are called the application lock and unlock procedures are dispatched instead. As

shown by Table 5.4, there are 6 tasks running in the system. The affinity of the

tasks are statically determined at compile time. Following our evaluation task

model, all tasks are released to the system at the same time (1000 milliseconds

after the system startup). After a variable initialization delay, all tasks are re-

sumed from startup delay and attempt to run. During their executions, the tasks

can access the shared resources through lock/unlock procedures. Once started,

the tasks executions are independent to each other and delays between states are

effective in creating requests with different timings. The same test scenario with

142

different delays may result in distinguishing protocol behaviour.

In order to verify the correctness of the implementation, tasks are set with

various release times. T3 is firstly released on P1. T4 is then released for acquiring

R2 on P2. T2 and T1 are released at the same time after T4 has obtained the lock.

Before T3 releases G1 on the synchronization processor, T6 and T5 are released

in sequence. The test program ensures such release follows the sequence given in

Figure 2.1. The output of the evaluation is collected and analyzed by Listing 5.8:

1 [1 . 00 027] => T4 attempts to lock r e sou r c e R 2
2 T4 => Got R2
3 [1 . 00 032] => T3 attempts to lock r e sou r c e G 1
4 [1 . 00 035] => T3 migrates to PG
5 T3 => Got G1
6 [1 . 00 052] => T1 attempts to lock r e sou r c e R 1
7 T1 => Got R1
8 [1 . 00 072] => T2 attempts to lock r e sou r c e G 2
9 [1 . 00 074] => T2 migrates to PG

10 T2 => Got G2
11 [1 . 00 112] => T6 attempts to lock r e sou r c e G 2
12 [1 . 00 115] => T6 migrates to PG
13 [1 . 00 122] => T2 unlocked G 2
14 [1 . 00 123] => T2 migrates back to p ro c e s s o r 2
15 [1 . 00 138] => T5 attempts to lock r e sou r c e G 1
16 [1 . 00 140] => T5 migrates to PG
17 [1 . 00 147] => T1 unlocked R 1
18 [1 . 00 148] => T1 stops execut ion
19 [1 . 00 148] => T2 stops execut ion
20 [1 . 00 156] => T3 unlocked G 1
21 [1 . 00 157] => T3 migrates back to p ro c e s s o r 1
22 T6 => Got G2
23 [1 . 00 178] => T4 unlocked R 2
24 [1 . 00 179] => T4 stops execut ion
25 [1 . 00 181] => T3 stops execut ion
26 [1 . 00 181] => T6 unlocked G 2
27 [1 . 00 183] => T6 migrates back to p ro c e s s o r 2
28 T5 => Got G1
29 [1 . 00 207] => T5 unlocked G 1
30 [1 . 00 207] => T5 migrates back to p ro c e s s o r 1
31 [1 . 00 208] => T6 stops execut ion
32 [1 . 00 233] => T5 stops execut ion

Listing 5.8: MPCP Evaluation Output

The number surrounded by a pair brackets indicates the spot time of the

message printed. The following message explains the current state of the exe-

cuting task. For example, at time 1.00027 second, T4 has become released and

attempts to lock R2. It is then granted the access to R2 and printed the message

“T4 => Got R2”.

143

In order to verify the MPCP implementation, the time stamps of the evaluation

output are mapped to the time stamps of Figure 2.1 as follows:

Evaluation
Stamped Time

Original Scenario Time Event

1.00027-1.00032 t1
T3 locks G1,
T4 releases and locks R2

1.00052 t2 T1 releases and locks R1
1.00072 t3 T2 releases and locks G2
1.00072-1.00112 t4 T6 releases and attempts G2
1.00112 t5 T2 unlocks G2
1.00138 t6 T5 releases and attempts G1
1.00178-1.00183 t7 T4 unlocks R2, T6 unlocks G2
1.00207 t8 T5 unlocks G1
1.00233 t9 T5 stops execution

Table 5.5: Mapping time stamps to Figure 2.1

According to Table 5.5, all scheduling outcomes were take place as expected

by the original scenarios. The evaluation output is analyzed further as follows:

Minimizing Remote Blocking The MPCP scales up the global resource ceiling

to reduce the remote blocking phenomenon on accessing global resources. At

time 1.00032, T3 attempts to lock G1. It migrates to the synchronization

processor and continues execution. However, at time 1.00072, T2 becomes

released and attempts to lock G2. It therefore migrates to the synchroniza-

tion processor and immediately preempts T3 because T3 has lower priority.

T3 will only be resumed if T2 has finished its execution and migrated back

to P2. The events at time 1.00156 to 1.00157 testifies that T3 was resumed

as expected. The preemption of T3 justifies the fact that T2 was actually

set running at higher priority. The remote blocking is minimized in this case

because, if T2 was set running at a lower priority, it could suffer blocking

from other high priority tasks which may or may not require G2.

Local Ceilings R2 is used by T4 and shared between some other tasks with a

lower priority and not relevant to this test. T4 was the second earliest task

released to the system and acquired R2 at time 1.00027. Although running

144

at the local ceiling, T4 was preempted by higher priority task T2 and T6.

Its execution is finally finished at time 1.00179 before T6. This matches the

theorem scheduling outcome of processor 2 in the literature review.

Effective of Priority Scheduling and Task Allocation There is at most one

task execution at any processor at any time. The highest priority task is

always scheduled for execution.

5.4 Flexible Multiprocessor Locking Protocol -

FMLP

The FMLP is a protocol with the concept of group locking. The previously men-

tioned protocols are all treating the individual tasks as the smallest scheduling

entity to share the resources on a stand alone basis. The group locks of FMLP

differentiate the shared resources in terms of the length of their critical sections.

Resources with similar critical section length are grouped together so that nested

resource requests are allowed by holding a group lock.

The evaluation test follows the original FMLP proposal and introduces 4 evalu-

ations tasks running on 2 processors. The test was designed to evaluate the ability

of the framework in supporting resource division, deploying multiple locking prim-

itives as well as resource grouping. It is expected that the evaluation outcome will

match the theorem scheduling results of the original proposal. Since both global

and partitioned scheduling are supported by FMLP, partitioned scheduling was

chosen as the scheduling algorithm for the evaluation test. This is because par-

titioned FMLP has no task migration which is more effective for demonstration

purposes.

The resource requests of the tasks are depicted by the following table:

S1 and S2 are two short resources grouped in one short resource group with

group lock G1. T2 requires nested access to S1 and S2 by holding G1. L1 is a long

resource and individually grouped to G2. T1 is firstly released on P1 followed by

T2 on P2. T3 is then released on P1 before T1 releases S1. T4 is released before

T2 releases L1 on P2. The implementation of FMLP is explained by Listing 5.9

145

Task Affinity Requiring Resource Priority Release Sequence
T1 P1 S1 3 1
T2 P1 S1 (S2), L1 2 2
T3 P2 S2 1 3
T4 P2 L1 4 4

Table 5.6: FMLP Resource Table

1 package FMLP i s
2
3 package SQL renames System . Mu l t ip ro c e s so r s . QueueLock ;
4
5 type Resource Type i s (short , long) ;
6 type Group Lock i s private ;
7 type FMLP (r : Resource Type ; GL: Group Lock ; index : I n t e g e r ; id :

I n t e g e r) i s new Protec t ed Cont ro l l ed with private ;
8
9

10 overriding procedure i n i t i a l i z e (C : in out FMLP) ;
11 overriding procedure F i n a l i z e (C : in out FMLP) ;
12 overriding procedure Lock (C : in out FMLP) ;
13 overriding procedure Unlock (C : in out FMLP) ;
14
15 power on : Time ;
16
17 private
18
19 type FMLP (r : Resource Type ; GL: Group Lock ; index : I n t e g e r ; id :

I n t e g e r) i s new Protec t ed Cont ro l l ed with
20 record
21 s l o c k : SQL. Spin Lock ;
22 dlock : SQL. Spin Lock ;
23 l l o c k : SQL. Suspension Lock ;
24 end record ;
25
26 type l o n g r e c o r d i s record
27 lock : SQL. S Object ;
28 p r i : I n t e g e r ;
29 end record ;
30
31 type s h o r t a r r t i s array (0 . . SQL. Num Of Task) of SQL. Spin Lock ;
32 type l o n g a r r t i s array (0 . . SQL. Num Of Task , 0 . . SQL. Num Of Task)

of l o n g r e c o r d ;
33 type owner a r r t i s array (0 . . SQL. Num Of Task) of Task Id ;
34 type c e i l a r r t i s array (0 . . SQL. Num Of Task) of i n t e g e r ;
35
36 type Group Lock i s
37 record
38 SQ : s h o r t a r r t ;
39 LQ : l o n g a r r t ;

146

40 LQN: c e i l a r r t ;
41 da ta l o ck : SQL. Spin Lock ;
42 t o t a l : i n t e g e r := 0 ;
43 owner : owner a r r t ;
44 ptr , DPrio : c e i l a r r t ;
45 end record ;
46
47 end FMLP;

Listing 5.9: FMLP Package Specification

A resource in FMLP can be either short or long. The type of resource is defined

at line 5. An FMLP resource is a new protected controlled type acceptable by the

framework. It accepts three parameters. The Resource Type indicates whether

this is a short or a long resource. The Group Lock is instantiated and passed in by

the application developers. The application developers may group multiple FMLP

resources into the same group by passing the same group lock to the instances

of these resources. The group lock type must be consistent with its outer most

enclosing resource. If the enclosed resource is short, the group lock must be short

typed. Otherwise, the group lock is long. The id assigns an unique ID to each

resource. This is especially useful of understanding the internal states of the

resource and debugging.

As shown by line 21-23 Listing 5.9, FMLP resource is implemented with a spin

lock and a suspension lock. The group lock record is visible to all tasks in the

system containing both spin and suspension locks. The application developers can

instantiate a group lock and associate it with an FMLP object following the type

definition at line 7. The implementation will differentiate the type of the FMLP

protocol by applying corresponding actions. If the resource is short, the spin lock

at line 21 will be used. If the resource is long, the suspension lock at line 23 will

be deployed instead.

The implementation of FMLP protocol is depicted by Listing 5.10

1 package body FMLP i s
2
3 package STPO renames System . Task Pr imi t ive s . Operat ions ;
4
5 overriding procedure i n i t i a l i z e (C : in out FMLP) i s
6 begin
7 SQL. I n i t i a l i z e (C. d lock) ;
8 SQL. I n i t i a l i z e (C. s l o c k) ;
9 SQL. S impleSuspens ionIn i t (C. l l o c k) ;

10 −− o ther i n i t i a l i z e r ou t i n e s i n c l u d i n g a s s i gn UID to C. index e t c .
11 end ;

147

12
13 overriding procedure F i n a l i z e (C : in out FMLP) i s
14 begin
15 null ;
16 end ;
17 overriding procedure Lock (C : in out FMLP) i s
18 begin
19 SQL. SimpleSpinLock (C. dlock) ; −− data l o c k
20 i f C. r = shor t then
21 Print Time ;
22 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2) & ” attempts to lock

Short S”&Integer ’ image (C. id)) ;
23
24 i f C.GL. owner (C. index)/=c u r r e n t t a s k or C.GL. owner (C. index)=

Nul l Task Id then
25 append (index , owner , C.GL. owner (C. index)) ; −− FIFO tas k
26 append (index , p r i o r i t y , Ge t Pr i o r i t y (Current Task)) ; −− FIFO

p r i o r i t y
27 S e t P r i o r i t y (System . Any Prior i ty ’ Last) ;
28 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
29 SQL. SimpleSpinLock (C.GL.SQ(C. index)) ; −− acqu i re Group Lock
30
31 SQL. SimpleSpinLock (C. dlock) ; −− data l o c k
32 Print Time ;
33 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” obtained [Group

Lock , Short] ” &Integer ’ image (C. index)) ;
34 C.GL. owner (C. index) := c u r r e n t t a s k ;
35 C.GL. DPrio (C. index) := System . Any Prior i ty ’ Last ;
36 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
37 else
38 S e t P r i o r i t y (System . Any Prior i ty ’ Last) ;
39 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
40 end i f ;
41
42 SQL. SimpleSpinLock (C. s l o c k) ; −− acqu i re resource l o c k
43 Print Time ;
44 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” obtained Spin Lock

f o r S”&Integer ’ image (C. id)) ;
45 C.GL. ptr (C. index) := C.GL. ptr (C. index) + 1 ;
46 else
47 Print Time ;
48 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” attempts to Lock L”

&Integer ’ image (C. id)) ;
49 i f (C.GL. DPrio (C. index)<Get Pr i o r i t y (Current Task) and C.GL.

owner (C. index)/=Nul l Task Id) then
50 append (index , p r i o r i t y , Ge t Pr i o r i t y (C.GL. owner (C. index))) ;

−− FIFO
51 C.GL. DPrio (C. index) := Get Pr i o r i t y (Current Task) ;
52 S e t P r i o r i t y (Ge t Pr i o r i t y (Current Task) , C.GL. owner (C. index))

;
53 end i f ;
54
55 i f C.GL. owner (C. index) /= c u r r e n t t a s k and C.GL. owner (C. index)

/=Nul l Task Id then

148

56 C.GL.LQN(C. index) := C.GL.LQN(C. index) + 1 ;
57 C.GL.LQ(C. index , C.GL.LQN(C. index)) . p r i := Get Pr i o r i t y (

Current Task) ;
58 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
59 SQL. Suspend Unt i l l True (C.GL.LQ(C. index , C.GL.LQN(C. index)) .

l o ck) ; −− Group Lock
60 SQL. SimpleSpinLock (C. dlock) ; −− data l o c k
61 Print Time ;
62 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” obtained [Group

Lock , Long] ” &Integer ’ image (C. index)) ;
63 else
64 C.GL. owner (C. index) := c u r r e n t t a s k ;
65 end i f ;
66 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
67 SQL. SimpleSuspensionLock (C. l l o c k) ; −− Resource Lock
68 Print Time ;
69 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” obtained Suspension

Lock f o r L”&Integer ’ image (C. id)) ;
70 C.GL. ptr (C. index) := C.GL. ptr (C. index) + 1 ;
71 end i f ;
72 end Lock ;
73
74 overriding procedure Unlock (C : in out FMLP) i s
75 temp : I n t e g e r ;
76 begin
77 SQL. SimpleSpinLock (C. dlock) ;
78 i f C. r = shor t then
79 C.GL. ptr (C. index) := C.GL. ptr (C. index) − 1 ;
80 Print Time ;
81 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” r e l e a s e s Spin Lock

f o r S”&Integer ’ image (C. id)) ;
82 SQL. SimpleSpinUnlock (C. s l o c k) ; −− r e l e a s e resource l o c k
83
84 i f C.GL. ptr (C. index) = 0 then
85 C.GL. owner (C. index) := Nul l Task Id ;
86 Print Time ;
87 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” r e l e a s e s [Group

Lock , Short] ”&Integer ’ image (C. index)) ;
88 C.GL. owner (C. index) := get (C. index , owner) ;
89 C.GL. DPrio (C. index) := get (C. index , p r i o r i t y) ;
90 temp := C.GL. DPrio (C. index) ;
91 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
92 SQL. SimpleSpinUnlock (C.GL.SQ(C. index)) ; −− Release the group

l o c k
93 S e t P r i o r i t y (temp) ;
94 else
95 SQL. SimpleSpinUnlock (C. d lock) ;
96 end i f ;
97 else
98 C.GL. ptr (C. index) := C.GL. ptr (C. index) − 1 ;
99 Print Time ;

100 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” r e l e a s e s Suspens ion
Lock f o r L”&Integer ’ image (C. id)) ;

101 SQL. SimpleSuspensionUnlock (C. l l o c k) ; −− Resource Lock

149

102 i f C.GL. ptr (C. index) = 0 then
103 C.GL. owner (C. index) := NULL Task Id ;
104 Print Time ;
105 Put Line (” => ”&image (c u r r e n t t a s k) (1 . . 2)&” r e l e a s e s [Group

Lock , Long] ”&Integer ’ image (C. index)) ;
106 SQL. Set True (C.GL.LQ(C. index , f ind max (C.GL, C. index)) . l o ck) ;

−− Group Lock
107 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
108 S e t P r i o r i t y (get (C. index , p r i o r i t y)) ;
109 else
110 SQL. SimpleSpinUnlock (C. d lock) ; −− data l o c k
111 end i f ;
112 end i f ;
113 end Unlock ;
114
115 end FMLP;

Listing 5.10: FMLP Body

The implementation extends the four methods of the framework to implement

the FMLP protocol. The lock and unlock procedures are overriding. When a short

FMLP resource is called, it firstly check whether the calling task is holding the

group lock at line 24. If not, it attempts to save its current priority and obtain

the group lock. According to protocol rules, tasks waiting or using the short re-

sources should be executed non-preemptively until the lock has been relinquished.

Therefore the priority of the calling task is raised to the highest at line 27 and

reset accordingly at line 93. By setting the priority to the highest and using FIFO

within priority scheduling, no other tasks will be able to preempt the spinning

task until it voluntarily reduces its priority to a lower value. The current calling

task is then safe to acquire the actual lock of the resource at line 42. It is worth-

while mentioning here that only short resources are allowed to be nested. Since

the priority has been raised to the highest and the group lock is obtained, any

nested short resource requests will be satisfied immediately. Tasks acquiring inner

resource will jump through the ownership check and proceed to the resource lock

directly. The priority of the calling task will only be reset back to its original value

once all locked resources have been released. This is confirmed by checking the

nesting levels of the call. If the nesting level is equal to zero, the calling task must

have released all resources it has previously locked. Therefore, it is safe to restore

its priority to its previous value. The previous priority of the task is saved to a

FIFO queue at line 25-26. This is happening before the priority of the calling task

has been set to non-preemptively high. If the calling task has locked some other

150

group lock before acquiring this short group lock, its priority must be decreased

gradually to the previous value. It is highly possible that the priority of the calling

task was inherited from a task which was blocked on another long resource group

lock.

All resource requests for the long resources must obtain the group lock as well.

Any high priority task blocked on the group lock should have its priority inherited

by the low priority owner task at line 52. Similar to the short resources, the priority

of the long resource group owner task must be saved to a FIFO queue at line 50 for

priority resetting. After registering its priority, the long resource acquiring task is

then checked if it has the ownership of the group lock at line 55. If it is not the

owner, it will suspend itself at the group lock at line 59. After obtaining the group

lock, it will attempt to acquire the actual resource lock at line 67. Once obtained

the resource lock, it will increase the nesting level at line 70. On the unlocking

phase, the current calling task will reduce its nesting level followed by releasing

the shared resource. If it has released all its locked resources, the ownership is

reset and the highest priority task waiting on the long group lock will be released.

After releasing the data lock, its priority is reduced to its previous value which

was saved at the FIFO queue at line 50.

The test program is configured to release the tasks following the sequence

given in Figure 2.3. The evaluation output of the above implementation is shown

as follows:

1 [1 . 00 020] => T1 attempts to lock Short S 1
2 [1 . 00 022] => T1 obtained [Group Lock , Short] 1
3 [1 . 00 023] => T1 obtained Spin Lock for S 1
4 T1 => Got S1
5 [1 . 00 090] => T2 attempts to lock Short S 1
6 [1 . 00 093] => T1 r e l e a s e s Spin Lock for S 1
7 [1 . 00 095] => T1 r e l e a s e s [Group Lock , Short] 1
8 [1 . 00 096] => T1 stops execut ion
9 [1 . 00 096] => T2 obtained [Group Lock , Short] 1

10 [1 . 00 096] => T2 obtained Spin Lock for S 1
11 T2 => Got S1
12 [1 . 00 107] => T3 attempts to lock Short S 2
13 [1 . 00 139] => T2 attempts to lock Short S 2
14 [1 . 00 139] => T2 obtained Spin Lock for S 2
15 T2 => Got S2
16 [1 . 00 177] => T2 r e l e a s e s Spin Lock for S 2
17 [1 . 00 178] => T2 r e l e a s e s Spin Lock for S 1
18 [1 . 00 178] => T2 r e l e a s e s [Group Lock , Short] 1
19 [1 . 00 179] => T3 obtained [Group Lock , Short] 1
20 T3 => Got S2
21 [1 . 00 179] => T2 attempts to Lock L 1

151

22 [1 . 00 181] => T2 obtained [Group Lock , Long] 2
23 [1 . 00 182] => T3 obtained Spin Lock for S 2
24 [1 . 00 184] => T2 obtained Suspension Lock for L 1
25 T2 => Got L1
26 [1 . 00 252] => T4 attempts to Lock L 1
27 [1 . 00 253] => T3 r e l e a s e s Spin Lock for S 2
28 [1 . 00 254] => T3 r e l e a s e s [Group Lock , Short] 1
29 [1 . 00 255] => T3 stops execut ion
30 [1 . 00 299] => T2 r e l e a s e s Suspens ion Lock for L 1
31 [1 . 00 300] => T2 r e l e a s e s [Group Lock , Long] 2
32 [1 . 00 301] => T2 stops execut ion
33 [1 . 00 301] => T4 obtained [Group Lock , Long] 2
34 [1 . 00 336] => T4 obtained Suspension Lock for L 1
35 T4 => Got L1
36 [1 . 00 337] => T4 r e l e a s e s Suspens ion Lock for L 1
37 [1 . 00 337] => T4 r e l e a s e s [Group Lock , Long] 2
38 [1 . 00 342] => T4 stops execut ion

Listing 5.11: FMLP Evaluation Results

The full effect of FMLP is illustrated and evaluated through comparing the

evaluation results to the original scenario. In order to do so, the evaluation time

stamps are mapped to the time stamps of the original scenario in Table 5.8.

Evaluation
Stamped Time

Original Scenario Time Event

1.00020-1.00023 t0 T1 releases and locks S1

1.00090-1.00096 t1
T1 releases S1 and the group lock,
T2 resumes and locks S1

1.00177-1.100179 t2
T2 releases S2 and S1 with their
group locks

1.00252 t3 T4 attempts L1 but blocked
1.00299-1.00300 t4 T2 releases L1 and its group lock
1.00301 t5 T2 stops
1.00342 t6 T4 releases L1 and stops

Table 5.7: Mapping time stamps to Figure 2.3

According to Table 5.8 and Figure 2.3, the scheduling events were take place as

expected. The evaluation output is analyzed further against the original scenario

of FMLP:

Group Locking Effect This evaluation demonstrates various blocking phenomenon

as the result of group locking. At time 1.00090, T2 attempts to acquire re-

source S1 and gets blocked due to the group lock of S1 is being held by T1.

152

T2 only gets the group lock after it has been released at time 1.00096. T2

then continues its execution and subsequently locks S2. When T3 becomes

released and attempts to lock S2, it is blocked at time 1.00107 due to the

unavailable group lock G1 even though the S2 is free at that time. T3 only

gets the resource after G1 has been released by T2 at time 1.00178.

Nested Resource Requests In FMLP, a task may issue nested resource request

if it is holding the corresponding group lock. T2, in this case, acquires S1

and S2 in a nested way after obtaining the group lock at time 1.00096. By

holding the group lock, it prevents other tasks from entering the resource

group and suffers minimum blocking from accessing nested resource. This is

evidenced by blocking T3 from acquiring S2.

Incorporating different locking primitives FMLP requires both spin and sus-

pension lock to operate the execution of the whole protocol. At time 1.00181,

T2 obtained the long group lock for L1. T4 was therefore suspension blocked

by the group lock at time 1.00252. At this moment, T2 inherits T4’s priority

and continue execution. T4 was resumed back and grants the resource at

time 1.00301.

Customize Resource Configuration FMLP requires shared resources to be as-

sociated with certain group locks. The framework should therefore take ex-

tra input parameters passed in at run time and be adaptive. The evaluation

shows that the framework is flexible and sufficient to take such customized

resources. The implementation verifies the ability of the framework to take

online configuration with the flexibility to manage different types of shared

resources.

5.5 O(m) Locking Protocol - OMLP

The previously examined protocols have an implicit assumption that each shared

resource is guarded by a particular queuing policy. This constraint is efficient if

the application developers are interested in using one queuing policy for a sin-

gle resource. However, when the application requires multiple different queuing

policies, this constraint must be lifted. The OMLP protocol is a typical complex

153

protocol which uses multiple queuing policies on one single resource. It supports

both global scheduling and partitioned scheduling. In global OMLP, as shown by

this evaluation test, each resource is associated with an M long FIFO queue and a

priority queue. The head of the FIFO queue gets the shared resource. Tasks join

the FIFO queue waiting for the resource. Since the FIFO queue is limited to M

length, the other tasks join the priority queue. Only the highest priority task is

released to the FIFO queue when there is an available position.

The definition of the types and procedures of the implementation of Global

OMLP in the framework is depicted by Listing 5.12

1 package OMLP i s
2
3 package SQL renames System . Mu l t ip roc e s so r s . QueueLock ;
4
5 type Global OMLP(FQMax : i n t e g e r) i s new Protec t ed Cont ro l l ed with

private ;
6
7 overriding procedure i n i t i a l i z e (C : in out Global OMLP) ;
8 overriding procedure F i n a l i z e (C : in out Global OMLP) ;
9 overriding procedure Lock (C : in out Global OMLP ; L : Lock Type ; V:

L o c k V i s i b i l i t y ; C e i l i n g : P r i o r i t y ; Tid : Task Id) ;
10 overriding procedure Unlock (C : in out Global OMLP ; Tid : Task Id) ;
11 power on : Time ;
12
13 private
14 type Q record i s
15 record
16 id : Task Id ;
17 p r i : I n t e g e r ;
18 lock : SQL. S Object ;
19 end record ;
20
21 type Q Arr t i s array (1 . . SQL. Num of Task) of Q record ;
22
23 type Global OMLP(FQMax : i n t e g e r) i s new Protec t ed Cont ro l l ed

with
24 record
25 FQ, PQ : Q Arr t ;
26 FQH, FQL, PQH, PQL: i n t e g e r :=1;
27 da ta l o ck : aliased SQL. Spin Lock ;
28 end record ;
29
30 end OMLP;

Listing 5.12: OMLP Header

An OMLP resource is defined as a new protected controlled type with an extra

customized configuration parameter specifying the length of the FIFO queue. The

FQ and PQ are two arrays of Q record. The S Object is a specially implemented

154

conditional wait atomic synchronization object. The state of an S Object can be

changed via the access method. The benefit of having the S Object in the im-

plementation is to obtain the direct control of the tasks on suspension given in

Appendix B. The task suspended in a false state S Object will only wake up once

the state has been turned to true by the other tasks. Having an array of S Objects

will provide us such direct control so that the application-defined protocol can

resume the target task directly without affect the other tasks. Each OMLP re-

source contains one FIFO queue and one priority queue. The indexes of the FIFO

queue and the priority queue are associated with the S Objects. Tasks waiting

in both queues are suspended in their allocated indexed S Objects. The appli-

cation developers then have the absolute control over the sequence of the tasks

being released from these queues if they choose to have discretionary management

over their queues instead of using the OS primitives. The data lock is used as the

mutual exclusion mechanism to protect the heavy queue operations.

The four virtual method of the framework were overridden by Listing 5.13 to

implement the OMLP protocol.

1 package body OMLP i s
2
3 package STPO renames System . Task Pr imi t ive s . Operat ions ;
4 package ATI renames Ada . T a s k I d e n t i f i c a t i o n ;
5 package ADP renames Ada . Dynamic Pr i o r i t i e s ;
6
7 overriding procedure i n i t i a l i z e (C : in out Global OMLP) i s
8 begin
9 −− i n i t i a l i z a t i o n work

10 end ;
11
12 overriding procedure F i n a l i z e (C : in out Global OMLP) i s
13 begin
14 null ;
15 end ;
16
17 overriding procedure Lock (C : in out Global OMLP ; L : Lock Type ; V:

L o c k V i s i b i l i t y ; C e i l i n g : P r i o r i t y ; Tid : Task Id) i s
18 index : I n t e g e r ;
19 begin
20 SQL. SimpleSpinLock (C. da ta l o ck) ; −− data l o c k
21
22 i f (C.FQ(C.FQL) . id/=Nul l Task Id and C.FQ(C.FQL) . pr i<Get Pr i o r i t y

(c u r r e n t t a s k)) then
23 S e t P r i o r i t y (Ge t Pr i o r i t y (c u r r e n t t a s k) , C.FQ(C.FQL) . id) ;
24 end i f ;
25
26 i f ((C.FQH−C.FQL) >= C.FQMax) then
27 index := append PQ (C) ;

155

28 C.PQ(index) . id := c u r r e n t t a s k ;
29 C.PQ(index) . p r i := Get Pr i o r i t y (c u r r e n t t a s k) ;
30 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
31 SQL. Suspend Unti l True (C.PQ(index) . l o ck) ; −− PQ loc k
32 SQL. SimpleSpinLock (C. da ta l o ck) ; −− data l o c k
33 delete PQ (C, index) ;
34 Print Time ;
35 Put Line (image (c u r r e n t t a s k) (1 . . 2)&” j o i n s FQ from PQ”) ;
36 end i f ;
37 i f C.FQ(C.FQL) . id/=Nul l Task Id then
38 i f C.FQ(C.FQH) . id/=c u r r e n t t a s k then
39 C.FQH := C.FQH + 1 ;
40 end i f ;
41 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
42 SQL. Suspend Unti l True (C.FQ(C.FQH) . l ock) ; −− FQ Lock
43 SQL. SimpleSpinLock (C. da ta l o ck) ; −− data l o c k
44 end i f ;
45 C.FQ(C.FQL) . id := c u r r e n t t a s k ;
46 i f f ind max (C)>Get Pr i o r i t y (c u r r e n t t a s k) then
47 C.FQ(C.FQL) . p r i := find max (C) ;
48 S e t P r i o r i t y (C.FQ(C.FQL) . p r i) ;
49 else
50 C.FQ(C.FQL) . p r i := Get Pr i o r i t y (c u r r e n t t a s k) ;
51 end i f ;
52 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
53 end Lock ;
54
55 overriding procedure Unlock (C : in out Global OMLP ; Tid : Task Id) i s
56 begin
57 SQL. SimpleSpinLock (C. da ta l o ck) ; −− data l o c k
58 C.FQL := C.FQL + 1 ;
59 i f ((C.FQH−C.FQL)<C.FQMax and f ind max (C.PQ)/=−1) then
60 SQL. Set True (C.PQ(find max (C.PQ)) . l o ck) ;
61 C.FQH := C.FQH + 1 ;
62 C.FQ(C.FQH) . id := C.PQ(find max (C.PQ)) . id ;
63 end i f ;
64 SQL. Set True (C.FQ(C.FQL) . l o ck) ;
65 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
66 S e t P r i o r i t y (SQL. Get PML) ;
67 end Unlock ;
68
69
70 end OMLP;

Listing 5.13: OMLP Body

When the protected object associated with OMLP protocol is called, the lock

and unlock procedure in Listing 5.13 will be dispatched. A task will call the

lock procedure whenever it wants to lock an OMLP resource. It will check if the

resource is being held by some other tasks and donates its priority to the resource

holding task when its priority is higher than the resource holding task. It will

then examine the size of the FIFO queue. If there is more than M number of

156

task already waiting, it will append itself to the priority queue and suspend on the

priority queue lock at line 30. Each task has its dedicated S Object in both priority

and FIFO queue. Whenever a position in the FIFO queue becomes available, the

OMLP protocol will only wake up the highest priority waiting task in the queue.

Other normal priority task will remain suspended. When a task is resumed by

the protocol from the priority queue, it firstly delete its index from the priority

queue at line 32 and insert itself to the FIFO queue at line 39. Once released from

the priority queue, the calling task will check if the resource is being hold by any

other tasks. If so, it will set itself suspended at the end of the FIFO queue. Once

resumed back from suspension in FIFO queue, it will check its current priority is

the highest in both queues. If not, it will inherit the priority from the highest

priority task in both queues.

Since the OMLP protocol requires the number of CPU available to make pro-

visions for the data structure of the FIFO queue, the customized configuration

parameter, C.FQMax, is used to provide such information to the framework. The

CPU count was passed into the framework to configure the FIFO queue length. R,

the shared resource in the evaluation scenario, is declared as an OMLP resource

with a FIFO queue of 2 tasks. In this evaluation test, 6 tasks are assigned to 2

processors with global scheduling. All our previous evaluations were using parti-

tioned scheduling. This evaluation was specifically designed for global scheduling.

It is worthwhile mentioning that the release procedure in Listing 5.13 is not setting

the affinity of the calling tasks anymore. The test driving program will not set the

affinity of the tasks either. In this case, the underlying system will dispatch the

executing tasks globally across its available processors.

In order to check the queue operation of OMLP, all tasks are released before

T1 has released the resource. T1 and T2 are firstly released by granting resource

to T1. T2 therefore will be blocked due to unavailable resource. All tasks are

attempting to lock resource immediately after release. The rest tasks, T3, T6, T5

and T4, are released in sequence before R has been unlocked by T1. The output

of the evaluation program is listed as follows:

1 [1 . 00 005] => T1 r e l e a s e d at p r i o r i t y : 1
2 [1 . 00 005] => T2 r e l e a s e d at p r i o r i t y : 2
3 [1 . 00 017] =appendFQ= : i n s e r t i n g T1
4 T1 => Got R
5 [1 . 00 018] =appendFQ= : i n s e r t i n g T2
6 [1 . 00 048] => T3 r e l e a s e d at p r i o r i t y : 3

157

7 [1 . 00 070] => T6 r e l e a s e d at p r i o r i t y : 4
8 [1 . 00 075] => T3 Lock : append PQ : 1
9 [1 . 00 095] => T6 Lock : append PQ : 2

10 [1 . 00 116] => T5 r e l e a s e d at p r i o r i t y : 5
11 [1 . 00 138] => T4 r e l e a s e d at p r i o r i t y : 6
12 [1 . 00 140] => T5 Lock : append PQ : 3
13 [1 . 00 162] => T4 Lock : append PQ : 4
14 [1 . 00 224] =deleteFQ= : r e l e a s i n g T1
15 [1 . 00 227] => T1 Unlock : re lease HQ : T2
16 [1 . 00 229] T2 j o i n s FQ from PQ
17 T2 => Got R
18 [1 . 00 229] => T1 stops execut ion
19 [1 . 00 230] =appendFQ= : i n s e r t i n g T4
20 [1 . 00 233] => T2 Unlock : delete PQ : 2
21 T4 => Got R
22 [1 . 00 275] =deleteFQ= : r e l e a s i n g T4
23 [1 . 00 277] => T4 Unlock : re lease HQ : T5
24 [1 . 00 278] T5 j o i n s FQ from PQ
25 [1 . 00 280] => T5 Unlock : delete PQ : 3
26 [1 . 00 280] =appendFQ= : i n s e r t i n g T5
27 [1 . 00 301] => T2 stops execut ion
28 [1 . 00 301] =deleteFQ= : r e l e a s i n g T4
29 [1 . 00 303] => T4 Unlock : re lease HQ : T6
30 T5 => Got R
31 [1 . 00 304] T6 j o i n s FQ from PQ
32 [1 . 00 307] => T6 Unlock : delete PQ : 2
33 [1 . 00 308] =appendFQ= : i n s e r t i n g T6
34 [1 . 00 326] => T4 stops execut ion
35 [1 . 00 327] =deleteFQ= : r e l e a s i n g T5
36 [1 . 00 330] => T5 Unlock : re lease HQ : T3
37 T6 => Got R
38 [1 . 00 331] T3 j o i n s FQ from PQ
39 [1 . 00 335] => T3 Unlock : delete PQ : 1
40 [1 . 00 335] =appendFQ= : i n s e r t i n g T3
41 [1 . 00 353] => T5 stops execut ion
42 [1 . 00 356] =deleteFQ= : r e l e a s i n g T6
43 T3 => Got R
44 [1 . 00 382] => T6 stops execut ion
45 [1 . 00 383] =deleteFQ= : r e l e a s i n g T3
46 [1 . 00 386] => T3 stops execut ion

Listing 5.14: OMLP Evaluation Results

In order to fully verify the correctness of the queue operation, the evaluation

results must be linked back to the original scenario in Figure 2.8. The evaluation

time stamps are mapped back to the time stamps of the original scenario in Table

5.8.

Following the time mappings, the whole output is analyzed against the original

proposal as follows:

Time[1.00005] The first two released and resource acquiring tasks T1 and T2

158

Evaluation
Stamped Time

Original Scenario Time Event

1.00005 t0 T1 T2 released
1.00048 t1 T3 released
1.00075 t2 T3 attempts to lock R
1.00095 t3 T6 attempts to lock R
1.00116 t4 T5 released
1.00138 t5 T4 released
1.00224 t6 T1 unlocks R
1.00233 t7 T2 unlocks R
1.00277 t8 T4 unlocks R
1.00280 t9 T5 unlocks R
1.00307 t10 T6 unlocks R
1.00335 t11 T3 unlocks R

Table 5.8: Mapping time stamps to Figure 2.8

are appended to the FIFO queue successfully.

Time[1.00005-1.00138] T3 and T6 have also become released and immediately

acquire resource R. Although having higher priority than T1 and T2, they

are inserted at the priority queue. Similarly T5 and T4 are released and

appended to the priority queue. It is expected that T4 will be the first task

released from the priority queue as it has the highest priority 6.

Time[1.00227-1.00277] T1 has released resource R. T2, as the next waiting

task in the FIFO queue, is granted the resource. This is evidenced by the

print out of T2. At the same time, T4 was released from the priority queue

to the FIFO queue at time 1.00277.

Time[1.00280-1.00386] T5, T6 and T3 are gradually released from the priority

queue to the FIFO queue in order. This is because T5 has higher priority

than T6 and T3. The release order was correct because T3 is the last finished

task and it has the lowest priority 3.

The output of the evaluation test matches the original proposal. This reveals

the ability of the framework in supporting multiple queuing policy at one shared

resource.

159

5.6 Priority Donation - Clustered OMLP

The priority donation imposes extra challenges to the framework. It requires a

closer interaction with the scheduler to control the priority donation tasks. When-

ever a task displaces a resource sharing low priority task from executing on the

processors, the priority donation mechanism will suspend the priority donor task

and resumes the resource holding task for execution. The priority donor task will

have to be automatically resumed when the priority donation is finished. All pre-

vious evaluated protocols are only dealing with the current executing task and no

interactions with suspended tasks are required on behalf of the resource sharing

protocols except those already handled by Ada. It also needs the support of cluster

scheduling and the tracking of the C 3 highest executing tasks in the cluster.

Since priority donation is a very complex algorithm, its rules are recalled here

[12]:

1. A task Td becomes a priority donor to Ti during ta (ta : the time period

between a task issuing its resource request and the resource being released

by the task) if :

(a) Ti was the Cth highest priority pending task prior to Td’s release

(b) Td has one of the C highest base priorities

(c) Ti has issued a global request that is incomplete at period ta

2. Ti inherits the priority of Td during ta.

3. If Td is displaced from the set of the C highest priority tasks by the release

of Th , then Th becomes Ti’s priority donor and Td ceases to be a priority

donor.

4. If Ti is ready when Td becomes Ti’s priority donor, then Td suspends imme-

diately. Ti and Td are never ready at the same time.

5. A priority donor may not issue resource requests. Td suspends if it requires

a resource while being a priority donor.

3C : the number of processors allocated to a cluster

160

6. Td ceases to be a priority donor as soon as either :

• Ti completes its request

• Ti’s base priority becomes one of the C highest

• Td is being relieved by a later released priority donor task.

Implementing the priority donation algorithm in Ada requires tasks to be

stopped from running when they are released. Although Ada allows a task to be

suspended (using the Ada.Synchronous Task Control package), these tasks have to

be explicitly identified. With priority donation, the donating task can not be ex-

plicitly identified before it is released. Hence, with the current framework it is not

possible to implement the priority donation algorithm. Burns and Wellings [14]

have recognized that Ada provides a set of low-level mechanisms that needs to be

combined to implement the real-time programming abstractions such as periodic,

aperiodic and sporadic tasks. They present a group of these high-level abstrac-

tions including a release manager, which can handle the various release patterns

along with deadline miss and cost overrun detection facilities. Task templates are

then given that utilize the release managers so relieving the tasks of having to use

the low-level mechanisms. The following (taken from [14]) is an example of these

templates.

1 package Real Time Tasks i s
2 task type Simple Real Time Task (S : Any Task State ; R :

Any Release Mechanism ; I n i t P r i o : P r i o r i t y) i s
3 pragma P r i o r i t y (I n i t P r i o) ;
4 end Simple Real Time Task ;
5 . . .
6 end Real Time Tasks ;
7
8 with Ada . T a s k i d e n t i f i c a t i o n ; use Ada . T a s k I d e n t i f i c a t i o n ;
9 package body Real Time Tasks i s

10
11 task body Simple Real Time Task i s
12 begin
13 S . I n i t i a l i z e ;
14
15 loop
16 R. Wait For Next Release ;
17 S . code ;
18 end loop ;
19 end Simple Real Time Task ;
20 end Real Time Tasks ;

Listing 5.15: Release Manager Template

161

The real time tasks can be released by the passage of time or via certain events.

The tasks, as depicted by Listing 5.15, are registering themselves to the release

manager via calling Wait For Next Release. The calling task will be waiting at

the function until its release timer elapsed or certain events have occurred.

The main goal of the framework is that the application only indirectly interacts

with the framework when it requests and releases a resource. This goal has to be

relaxed in order to give the required flexibility. The overall approach taken in this

section is that tasks, which wish to use the framework with resource allocation

algorithm that are tightly coupled with the scheduler, must register themselves

with the framework immediately once they are released. The proposed interaction

between the main components of the priority donation protocol is summarized by

Figure 5.2. The tasks executing in the systems need the support from both the

release manager and the framework. At the release stage, the release manager

needs to receive the timing event from the epoch timer in order to release the

tasks at the correct time. The priority donation manger in the framework needs

to authorize the release of the tasks that are not violating the priority donation

rules. Similarly, at the lock, unlock and complete stages, the tasks needs to interact

with the framework closely in order to proceed its execution.

In order to interact with these tasks, as shown by Listing 5.16, the release

manager is defined as a protected type. It defines the semantics of the release

action and how to execute the release at appropriate times. Following the defini-

tion at Figure 5.2, the release manager uses Ada timing events facility to release

the pending tasks at predetermined times. The first time calling task therefore

will have its release procedure registered with its release time by setting up a

coordinated timing event. The associated event handler will be called automati-

cally once the timing event has occurred, since the task should already be waiting

on the Wait For Next Release function, opening the barrier will set the task re-

leased immediately. The release procedure, defines how the release behaviours of

the tasks, provides an interaction with the framework where application defined

protocols may call back to influence the task releases at this level. Certain re-

lease events may cause a task to be released. The application defined protocols,

like priority donation, may have specific controls on which tasks can be released.

For example, a task may not be released if its priority is to be donated to some

other task. In this case, the release manager checks with the framework if the

162

Figure 5.2: Priority Donation Main Components Interaction

163

current task can be released after setting up the time event. If so, the guard of

the Wait For Next Release entry will be open and the task will be released. The

tasks will remain blocked on the guard otherwise.

1 package Release Mechanisms . Pe r i od i c i s
2 protected type P e r i o d i c R e l e a s e (S : Any Per iod ic Task State) i s new

Release Mechanism with
3 entry Wait For Next Release ;
4 pragma P r i o r i t y (System . Pr i o r i t y ’ Last) ;
5 procedure Release (TE : in out Timing Event) ;
6 procedure Al low Release ;
7 procedure ReSuspend ;
8 private
9 Event : Timing Event ;

10 Next : Time ;
11 New Release : Boolean := True ;
12 F i r s t : Boolean := True ;
13 end P e r i o d i c R e l e a s e ;
14 end Release Mechanisms . Pe r i od i c ;

Listing 5.16: Periodic Release Manager Specification

1 package body Release Mechanisms . Pe r i od i c i s
2 protected body P e r i o d i c R e l e a s e i s
3 entry Wait For Next Release when New Release i s
4 begin
5 i f F i r s t then
6 F i r s t := Fal se ;
7 Epoch Support . Epoch . Get Start Time (Next) ;
8 Next := Next + S . Period ;
9 Event . Set Handler (Next , Release ’ Access) ;

10 New Release := Fal se ;
11 requeue P e r i o d i c R e l e a s e . Wait For Next Release ;
12 else
13 New Release := Fal se ;
14 end i f ;
15 end Wait For Next Release ;
16
17 procedure Release (TE : in out Timing Event) i s
18 begin
19 Next := Next + S . Period ;
20 TE. Set Handler (Next , Release ’ Access) ;
21 i f ReleaseCheck (Al low Release ’ Access) then −− c a l l b a c k to the

framework
22 New Release := True ;
23 end i f ;
24 end Release ;
25
26 procedure Al low Release i s
27 begin
28 New Release := True ;
29 end ;
30 end P e r i o d i c R e l e a s e ;
31 begin

164

32 null ;
33 end Release Mechanisms . Pe r i od i c ;

Listing 5.17: Periodic Release Manager Body

Given this approach, we are now able to provide full controls of the tasks

releases through interacting with the Ada periodic release manager. The full im-

plementation is given in Appendix A. At the abstraction level, as shown by Listing

5.18 and Figure 5.3, the implementation of the priority donation must make de-

cisions on whether the current task can be released and pass that decision to the

release manager. If the current task can be released, the “ReleaseCheck” func-

tion will return true. At every call to the “ReleaseCheck”, the “Allow Release”

procedure is passed onto the framework. Since every task in the system has its

individual release manager, the framework keeps track of the matching between

the tasks and the “Allow Release” procedures. In this way, the framework may

release a particular task by making a callback to the low level release manager

through its associated “Allow Release” procedure.

Figure 5.3: Priority Donation Release Check

165

Figure 5.3 demonstrates the release check routines of the framework. When

the framework is called upon a release check, the calling task will be tested if it

is a priority donor task. If so, the framework will return false. The calling task

will therefore not be released. If it is a potential donor task, it is marked with

special flag and released. However, this task may not issue any resource request. A

potential donor task will call the “ReSuspend” procedure to get itself suspended in

the resource locking procedure. Using the Ada synchronous task control package,

the implementation of the “ReSuspend” procedure is able to actively control the

release sequence of these suspending tasks. The task is released normally otherwise.

The priority donation protocol was implemented as a protected type and as-

signed one per each cluster. As it is only used by tasks in the same cluster, it

can have a different protected object or protocol. The priority donation manager

may intercept the execution of a task at various stages. At the release stage, the

“PDRelease” called via the “ReleaseCheck” function will check the calling task

against the priority donation rules. The function will return false to the underly-

ing Ada facilities if the task has failed the test. As mentioned in previous chapters,

the implementation of protected function is the same as the protected procedures

in GNAT. Mutual exclusion is implemented for the accesses of the “PDRelease”.

The “ReDonate” implements priority donation at every release of shared resources.

This procedure was specially designed for enforcing the next resource holding task

to be scheduled if it may be preempted by the release of a higher non resource hold-

ing priority task. Whenever the priority donation is finished, the “StopDonation”

procedure will be called and the DonationLog will be updated.

1 package OMLP i s
2
3 Num of Clusters : constant I n t e g e r := 2 ;
4 Num of Proc : constant I n t e g e r := 2 ;
5
6 type Global OMLP i s new Protec t ed Cont ro l l ed with private ;
7
8 overriding procedure i n i t i a l i z e (C: in out Global OMLP) ;
9 overriding procedure F i n a l i z e (C: in out Global OMLP) ;

10 overriding procedure Lock (C: in out Global OMLP ; L : Lock Type ; V:
L o c k V i s i b i l i t y ; C e i l i n g : P r i o r i t y ; Tid : Task Id) ;

11 overriding procedure Unlock (C: in out Global OMLP ; Tid : Task Id) ;
12
13 type Release Cal lBack i s access protected procedure ;
14 function ReleaseCheck (CallBack : Re lease Cal lBack) return Boolean ;
15 procedure stop ;
16 power on : Time ;

166

17
18 private
19 −− see appendix
20 end OMLP;

Listing 5.18: Priority Donation Specification

Figure 5.4 demonstrates the implementation routines of the priority donation

lock procedure where tasks are calling for locking shared resources. When a task

attempts to lock a shared resource, it is firstly evaluated in order to determine

whether it is a donor task. If so, according to the priority donation rules, it is

not eligible for acquiring resources and should be suspended immediately. When

it passes the test, it checks if the resource is already locked. If the resource is free,

it acquires the resource and returns. If some other task is holding the resource, it

becomes blocked at an appropriate position either in the priority queue (PQ) or

FIFO queue (FQ). It will only return from the lock procedure if it becomes the

head of the FQ with the resource locked.

In the unlock procedure, as shown by Figure 5.5, since the resource request is

finished, any task donating its priority to this priority recipient should be resumed

and released. After that, according to the rules of cluster OMLP, the highest

priority task from the PQ should be released and migrated into the FQ. If there

is no other task waiting for the resource, the unlocking task will simply return. If

there is some other task waiting, the calling task will check if the next resource

holding task can be resumed successfully. If not, there must be a higher priority

task released and that task should be suspended with its priority donated. The

unlock procedure will swap the priority of these tasks making sure the high priority

released task will not preempt the resource holding task when it is scheduled for

execution.

The evaluation test comprises 6 tasks running in 2 clusters with two processors

each. R1 and R2 are two priority donation shared resources. It specifies that the

resource is shared in a system with 2 clusters and each cluster should contain 2

processors. The resource allocation between tasks are depicted by the following

table:

The evaluation scenario was specifically designed to check the priority donation

mechanisms. Low priority tasks are set with large execution time so that, when

high priority task becomes released, the low priority resource acquiring task will

be the priority recipient and blocks the high priority task. Each evaluation task

167

Figure 5.4: Priority Donation Lock Routine

Task Cluster Affinity Requiring Resource Priority Release Sequence
T1 1 R2 3 3
T2 1 nil 2 1
T3 1 R1 1 1
T4 2 R2 6 4
T5 2 nil 5 2
T6 2 R1 4 2

Table 5.9: Priority Donation Resource Table

168

Figure 5.5: Priority Donation Unlock Routine

169

in the test calls the setCluster procedure before being released. This sets the cpu

mask of the calling task to the range specified by the passed in parameters. The

tasks is then allowed to migrate between the allowed processors.

Tasks are set to be released at various times. The setting was designed to

promote one priority donation on each individual cluster. T3 and T2 are firstly

released on cluster 2 followed by T6 and T5 on cluster 1. T1 is released at the

same time as T3 attempts to lock R1. T4 is released to cluster 1 after T3 has

obtained R1 on cluster 2. The latter two releases are specially designed to trigger

the priority donating between tasks. The output of the evaluation program is as

follows:

1 [1 . 00 071] =Lock= : T3 j o i n s FQ
2 [1 . 00 076] =appendFQ= : i n s e r t i n g T3
3 T3 => Got R1
4 T5 => Executing !
5 [1 . 00 082] =Lock= : T6 j o i n s FQ
6 [1 . 00 082] =appendFQ= : i n s e r t i n g T6
7 [1 . 00 084] =Pr ior i tyDonat ion= : T4 donating i t s p r i o r i t y to T6
8 [1 . 00 086] =Pr ior i tyDonat ion= : T1 donating i t s p r i o r i t y to T3
9 T6 => Got R1

10 [1 . 00 117] =deleteFQ= : r e l e a s i n g T3
11 [1 . 00 118] =Pr ior i tyDonat ion= : T1 c e a s e s to be P r i o r i t y Donor
12 [1 . 00 120] =stop= : T5 stops execut ion
13 [1 . 00 121] =Lock= : T1 j o i n s FQ
14 [1 . 00 123] =appendFQ= : i n s e r t i n g T1
15 [1 . 00 124] =Pr ior i tyDonat ion= : T4 c e a s e s to be P r i o r i t y Donor
16 [1 . 00 125] =Lock= : T4 j o i n s FQ
17 [1 . 00 125] =appendFQ= : i n s e r t i n g T4
18 [1 . 00 128] =deleteFQ= : r e l e a s i n g T6
19 T4 => Got R2
20 [1 . 00 135] =Lock= : T2 j o i n s FQ
21 [1 . 00 135] =appendFQ= : i n s e r t i n g T2
22 [1 . 00 151] =stop= : T3 stops execut ion
23 [1 . 00 152] =deleteFQ= : r e l e a s i n g T4
24 [1 . 00 154] =stop= : T4 stops execut ion
25 T2 => Got R2
26 [1 . 00 165] =deleteFQ= : r e l e a s i n g T2
27 T1 => Got R2
28 [1 . 00 176] =stop= : T2 stops execut ion
29 [1 . 00 176] =stop= : T6 stops execut ion
30 [1 . 00 178] =deleteFQ= : r e l e a s i n g T1
31 [1 . 00 179] =stop= : T1 stops execut ion

Listing 5.19: OMLP Evaluation Results

The priority donation protocol is a complex algorithm where priority donating

mechanism only take place in certain scenarios. The test program is configured to

release the tasks in a specific order agreed by the original scenario in Figure 2.9 to

170

ensure the protocol is tested and verified. The evaluation time are mapped to the

time stamps of the original scenarios in Table 5.10

Evaluation
Stamped Time

Original Scenario Time Event

1.00000-1.00071 t0-t2
T2 and T3 get released on cluster 2
T5 and T6 get released on cluster 1
T3 attempts R1

1.00082 t3 T6 attempt to lock R1
1.00109-1.00117 t4 T3 unlocks R1
1.00135 t5 T2 attempts to lock R2
1.00152-1.00154 t6 T4 unlocks R2 and stops execution
1.00165 t7 T2 unlocks R2
1.00179 t8 T1 unlocks R2 and stops execution

Table 5.10: Mapping time stamps to Figure 2.9

With the time stamps mapped to the original scenario, the implementation is

credited because the scheduling outcome were inline with the expectation. The

whole output is analyzed further against the original proposal as follows:

Priority Donating At time 1.0084, T4 has been released to the release manager

for scheduling. It checks the cluster record and found T5 and T6 are already

executing. Both tasks have lower priority. The lowest priority task, T6, has

issued resource request at time 1.00082. It therefore decided to donate its

priority to T6 and suspend from execution. Similarly, T1 donates its priority

to T3 which is the lowest priority task in cluster 1. Therefore, T6 was able

to carry forward its resource request and obtained R1 at 1.00084. At time

1.00117, T3 has finished R1 and informed the priority donation manager the

priority donation relationship should be ceased. T1 was therefore resumed

by the priority donation manager at time 1.00121. As the highest priority

task, it immediately acquires R2 and obtained the resource at time 1.00165.

T4, the priority donating task in cluster 2, was resumed by the unlocking of

T6 at time 1.00128. It successfully obtained R2 and finished execution at

time 1.00154.

Nested Protected Object The implementation of the priority donation pro-

tocol incorporates two internal protected objects. The priority donation

171

manager is associated with a series of protected entries and procedures to fa-

cilitate the release mechanism of the priority donation protocol respectively.

The evaluation scenarios rely on the original Ada protected object shared

protocol to order the tasks waiting to be released on the release entry fam-

ilies. However, the application developer may want to introduce their own

protocol to regulate the release order of tasks in the release manager. The

application developer can create a new resource sharing protocol using the

framework and attaching it to the protected objects. The framework there-

fore will dispatch the application defined routines to schedule the release

waiting tasks. All other tasks operating outside the release manager will

execute as normals.

The priority donation protocol of OMLP is a complex algorithm but it is effec-

tive in testing the flexibility and effectiveness of the framework. It involves closer

interaction with the scheduler compared with previously examined protocols. The

tasks involve blocking from the start to the finish of their executions. Multiple

queue policies are also required for the normal execution of the protocol. However,

the evaluation test argues that the framework together with the language facilities

provided by Ada is sufficient in providing all above services to the application de-

velopers. The application developers may even have nested protected objects with

different resource sharing protocol by using the framework.

5.7 Summary

This chapter evaluates the flexibility of the framework in supporting different re-

source sharing protocols by verifying their prototype implementations. The evalu-

ation test starts with MSRP. MSRP is a spin based protocol with resource waiting

tasks spinning on unavailable global resources. Since the MSRP prototype im-

plementation can generate the same scheduling result as expected by the original

MSRP semantics, the implementation demonstrates that spin lock based protocols

(like MSRP) can be fully supported by the protocol. The evaluation tests are then

carried forwards to suspension lock based protocols like MPCP. By having all tasks

suspending on different locks, the MPCP implementation demonstrates the ability

of the framework of having explicit control of task ordering and different locking

172

policy on different resources. The FMLP protocol evaluates the framework further

by imposing restrictions and differentiations on the shared resources. Since the

framework accepts customized configuration parameters, the application develop-

ers can pass in the type of the resource at runtime. The application developers

can also collect different shared resources into one resource group. By holding the

group lock, protocols like FMLP can support nested locks in the framework. The

OMLP protocol is sophisticated because of its complex queue operation. The eval-

uation of the framework demonstrates that the application developers may deploy

different queuing policies on a single resource in the framework. The framework is

then evaluated against a more complex algorithm requiring close interaction with

the underlying scheduler (clustered OMLP with priority donation). The priority

donation protocol requires release blocking, tracking of the highest executing pri-

ority task and cluster based scheduling. Priority donation was implemented with

the framework by having direct control of the tasks on release. Priority donat-

ing tasks are suspended from release until their priority recipients have finished

execution and returned their priority back.

173

Chapter 6

Conclusions and Future Work

This chapter concludes the thesis by summarizing the key contributions of the

research. The thesis goals, hypothesis and contributions are reviewed. The future

directions of this research are also discussed in conjunction with the limitations of

the research.

6.1 A Summary of the Key Thesis Contributions

The performance of multiprocessor systems with resource sharing is affected by

many factors. As described in Chapter 1, the scheduling algorithms may have a

distinctive impact on the system performance. Globally scheduled systems have

better processor utilization in comparison to partitioned systems. Partitioned

scheduling has an advantage in having better schedulability analysis results by

implementing well studied uniprocessor algorithms on the partitioned processors.

For a system with large number of processors, a cluster-based scheduling may give

better scalability.

Sharing resources in multiprocessor systems is never a simple task. A shared

resource in multiprocessor systems may block the tasks in many different ways:

direct blocking, remote blocking, transitive blocking and priority blocking etc.

Furthermore, the tasks in multiprocessor systems are likely to suffer more block-

ing than in uniprocessor systems. The multiprocessor resource sharing algorithms

were designed to reduce the blocking suffered by the highest priority task. As

described in Chapter 2, MPCP, a partitioned suspension based protocol, deploys

174

the global resource sharing tasks to an absolute higher priority range to prevent

them from being blocked by local tasks. MSRP, a partitioned spin based lock-

ing protocol, implements spin locks on tasks waiting for global resources. More

advanced mechanisms were introduced by later algorithms. The group lock was

introduced by FMLP where tasks are allowed to acquire nested resource if they

obtained the group lock first. OMLP introduces the possibility of having dual

queuing policies for one shared resource and priority donation to overcome the

drawbacks of priority inheritance in cluster scheduled systems. As shown in Table

2.5, all these algorithms have different characteristics in terms of the choice of

scheduling algorithms, resource categorization, nested resource support, resource

accessing priority and the choice of task queuing policy. The significance of those

choices will have a great impact on the performance of the algorithms. For ex-

ample, suspension based protocols will have better performance with long critical

sections where the suspension overhead is fractional to the length of the whole

critical section. Although spin based protocols are more efficient in short criti-

cal sections, high priority tasks may suffer more blocking than if guarded by the

suspension based protocols [13]. The performance of the multiprocessor resource

sharing algorithms is largely dependent on the application scenarios. It is therefore

inappropriate to introduce a particular protocol to be used for all applications.

Therefore, the thesis was motivated to introduce a flexible resource sharing

framework as recalled by the thesis hypothesis:

The performance of a multiprocessor resource sharing proto-

col is largely dependent on the application semantics. This

thesis contends that it is, therefore, inappropriate to intro-

duce support for a particular multiprocessor resource sharing

protocol into a programming language definition. Instead, a

language should support a framework that allows a variety of

protocols to be implemented (either by the programmer or

via pre-written standard libraries). A flexible framework can

be applied to a wide range of multiprocessor resource- sharing

protocols with relatively small overheads.

This thesis provides three key contributions. The first contribution is the pro-

posal of the flexible resource sharing framework. The proposal defines the interac-

175

tions between the systems and the application developers on how the application

defined resource sharing protocols can be integrated with the systems. Different

systems were considered for this feasibility of applying the framework.

The second contribution of the thesis is to investigate the details of incorpo-

rating the framework with Ada. Integrating the framework with any system is

challenging because the framework should not violate the rules and semantics of

the original facilities. It should provide the application developers with the con-

fidence that, by following the framework, they are protected from the low level

interactions hazards. The protected objects in Ada may have Ceiling Locking, a

predefined protocol of Ada, where tasks cannot have a higher priority than the pro-

tected object ceiling when accessing the resource. The Real-Time Systems Annex

of the Ada reference manual allows implementations to define a new relationship

between the priority of the tasks and the priority of the protected objects (AARM

D.3 par 6.2). This offers the scope for our framework to introduce application-

defined protocols to work with Ada’s original routines. The application-defined

protocols can therefore be integrated with the Ada language through our frame-

work while the original Ada runtime library routines remains largely intact. This

contribution revisits the semantics of Ada according to the Ada reference manual

and the prototype implementations of the framework. The work defines trans-

actions of the framework with Ada runtime in flow diagrams. The evaluation

programs investigates the overheads of the framework by running the prototype

implementations in a simulated environment. The overhead incurred at the ex-

pense of running the framework is fractional to the total execution overheads.

The third contribution, perhaps the most challenging one, is to argue the frame-

work is capable of supporting with different multiprocessor algorithms. The chal-

lenge of working with different resource sharing algorithms is that they all have

different interaction requirements for the framework and the underlying systems.

The framework was evaluated against the prototype implementation of MPCP for

supporting the suspension based locking protocols. It has also tested against the

spin based protocols like MSRP. The challenge of having nested resource requests

is met by testing against the implementation of FMLP. Supporting sophisticated

queuing policy and sharing resources with cluster scheduling is verified by imple-

menting the OMLP family protocols. By running through all these prototyped

evaluation tests, the thesis argues that the framework is flexible enough to coop-

176

erate with all these algorithms.

6.2 Limitations of this Work

The limitation of this work is constrained by the assumptions of the framework.

As depicted by the implementations of the protocols evaluated in Chapter 5, the

interaction with the framework is assumed to occur only on resource accesses. This

assumption is valid for protocols like MPCP where tasks are scheduled in normal

priority order when executing outside of their critical sections. The priority inver-

sion normally occurs at the event of locking when the resource holding task blocks

high priority tasks. The conventional resource sharing protocols are then deployed

here to avert this priority inversion. However, when sophisticated protocols are

required, such as blocking tasks outside the critical sections on a precautionary

basis, this assumption must be relaxed for the framework to provide such con-

trol to the application developers. The implementation of the priority donation

algorithm illustrates how this assumption is relaxed.

The tasks scheduled by the framework are also assumed to execute their own

critical sections. This assumption is inherited from the literatures introduced in

earlier chapters where schedubility analysis is carried out on per task basis. How-

ever, at the OS level, a task may contain memory blocks, resource requirements,

operation blocks and many other decomposable parts. It is possible that its critical

section may be executed by other tasks as long as global memory blocks access is

allowed. New algorithms like SPEPP are imposing this challenge to the framework.

The framework needs to be adapted to more closely linked with the scheduler to

incorporate such changes.

The other important limitation of this work is the evaluation approach. As

mentioned in Chapter 4, the framework introduces new specifications to the aspect

specification to associate the application-defined protocols. The full implementa-

tion of this will require an update to the front end compiler from the parser to

the RTL language. This work is entensive and beyond the scope of this research.

Therefore, the simulation approach was adopted instead. This prototype evalua-

tion approach is then focused on verifying the flexibility of the framework instead

of obtaining the optimal performance figure of the framework. However, with a

full implementation, where the front end compiler is changed, the performance of

177

the framework can be measured more accurately.

6.3 Future Work

The main future research work of this thesis is to relax the second assumptions of

the supported algorithms as mentioned earlier. That is the tasks may be allowed to

execute the critical sections on behalf of other tasks. This enables the framework to

support new algorithms like SPEPP [61] (SPEPP stands for “Spinning Processor

Executes for Preempted Processors”). Task in SPEPP decouples a memory block

when it attempts to access a shared resource. The memory block contains the

preserved memory for the input and output parameters used when accessing the

resource. All memory blocks from different tasks are ordered in a FIFO queue

with a spin lock. Once queued, the resource holding task at the head of the queue

executes all its critical sections of the other tasks in the queue in sequence using

the appropriate memory block until it has reached its own memory block or it is

interrupted. The other tasks which have inserted memory blocks into the queue

will periodically check the status flag in the queue to see whether their memory

blocks have been executed or not. The algorithm is fully explained in Chapter 2.

A possible implementation of SPEPP would evaluate the feasibility of integrat-

ing of the framework with Ada protected entries. This is because the semantics of

SPEPP closely match those of Ada protected entries. Evidenced by the assembly

code shown in Chapter 4, the protected entry is compiled as a protected procedure

if the barrier was always set to true. In essence, the protected entry is a special

form of protected procedure with extra initial function calls for barrier evaluation

and different service routines. The unique implementation of Ada protected en-

tries offers an opportunity for the framework to be introduced in a similar manner

to the protected procedures. Although Ada has implemented the protected en-

tries using the proxy model internally, no such functionality is available to the end

users. This also imposes a challenge to the framework to support interactions with

low language level details.

1 with Ada . F i n a l i z a t i o n ; use Ada . F i n a l i z a t i o n ;
2 with System ; use System ;
3 with Ada . T a s k I d e n t i f i c a t i o n ; use Ada . T a s k I d e n t i f i c a t i o n ;
4 with System . Tasking . Protec ted Objec t s ;
5
6 package Ada . Protec ted Objec t Acces s i s

178

7 type Lock Type i s (Read , Write) ;
8 type L o c k V i s i b i l i t y i s (Local , Global) ;
9 type Protec t ed Cont ro l l ed i s new Limited Contro l l ed with private ;

10
11 type Subprogram Body Id i s private ;
12
13 overriding procedure I n i t i a l i z e (C : in out Protec t ed Cont ro l l ed) ;
14 overriding procedure F i n a l i z e (C : in out Protec t ed Cont ro l l ed) ;
15
16 procedure Lock (C: in out Protec t ed Cont ro l l ed ; L : Lock Type ; V:

L o c k V i s i b i l i t y ; C e i l i n g : P r i o r i t y ; Tid : Task Id := Current Task) ;
17 procedure Unlock (C: in out Protec t ed Cont ro l l ed ; Tid : Task Id :=

Current Task) ;
18
19 procedure Lock (C: in out Protec t ed Cont ro l l ed ; C e i l i n g : P r i o r i t y ; Tid

: Task Id := Current Task ; Body Id : in out Subprogram Body Id) ;
20 procedure Unlock (C: in out Protec t ed Cont ro l l ed ; Tid : Task Id :=

Current Task ; Body Id : in out Subprogram Body Id) ;
21
22 function Eva luat e Bar r i e r (Body Id : Subprogram Body Id) return

boolean ;
23 procedure Execute Body (Body Id : Subprogram Body Id) ;
24
25 private
26 type Subprogram Body Id i s
27 record
28 Index : System . Tasking . Protec ted Objec t s . Protected Entry Index ;
29 O : System . Address ;
30 P : System . Address ;
31 B : System . Tasking . Protec ted Objec t s . Entry Body ;
32 end record ;
33 −− implementat ion de f ined
34 end Ada . Protec ted Objec t Acces s ;

Listing 6.1: Ada API for the Framework

Providing such information at the framework is essential for the framework

to support Ada protected entry like protocols such as SPEPP where the resource

holding task may execute others critical sections. This is owing to the fact that

the application defined protocols may need to access the entry barriers and bodies

of other tasks. The “Subprogram Body Id” is proposed for this purpose that low

level function pointers to be encapsulated in this type. The application defined

protocols are shielded from handling the low level details but saving this record

from the framework. A “Subprogram Body Id” will be instantiated with three

pointers (function pointer for the protected entry, barrier function and the body)

and the index of its position in the Ada entry queue. Once created, the application

programmer will only need to concern the maintenance of the entry queue. Two

essential auxiliary functions are provided to evaluate the barrier and execute the

179

body. These function are provided at the framework so that the barrier and the

body of the entries could be easily executed with its “Subprogram Body Id”.

1 package SPEPP i s
2
3 type SPEPP Protocol i s new Protec t ed Cont ro l l ed with private ;
4
5 type SPEPP Record i s private ;
6 type SPEPP Record Access i s access SPEPP Record ;
7
8 procedure I n i t i a l i z e (SP : in out SPEPP Protocol) ;
9 procedure F i n a l i z e (SP : in out SPEPP Protocol) ;

10
11 procedure Lock (C: in out SPEPP Protocol ; L : Lock Type ; V:

L o c k V i s i b i l i t y ; C e i l i n g : P r i o r i t y ; Tid : Task Id) ;
12 procedure Unlock (C: in out SPEPP Protocol ; Tid : Task Id) ;
13
14 procedure Lock (SP : in out SPEPP Protocol ; C e i l i n g : Any Pr ior i ty ;

Tid : Task Id ; Body Id : in out Subprogram Body Id) ;
15 procedure Unlock (SP : in out SPEPP Protocol ; Tid : Task Id ; Body Id :

in out Subprogram Body Id) ;
16
17 private
18 type sp in queue i s array (1 . . 5 0) of Spin Lock ;
19
20 type SPEPP Protocol i s new Protec t ed Cont ro l l ed with
21 record
22 SLock : Spin Lock ;
23 RQ : sp in queue ;
24 PO Executed : sp in queue ;
25 RQ Index : i n t e g e r ;
26 RQ total : i n t e g e r ;
27 Entry Head : SPEPP Record Access ;
28 g l o b a l : i n t e g e r ;
29 t i d : Task Id ;
30 end record ;
31
32 type SPEPP Record i s
33 record
34 bid : Subprogram Body Id ;
35 next : SPEPP Record Access ;
36 end record ;
37
38 end SPEPP;

Listing 6.2: SPEPP Specification

Following the updates to the framework, the SPEPP algorithm can be imple-

mented as shown by Listing 6.2. The SPEPP specification extends the framework

by instantiating the newly defined lock and unlock procedures. The protected

entry queue is defined in the SPEPP Protocol record to keep track of the waiting

tasks for the resource. With this specification, all tasks waiting for the shared

180

resources are spinning to a dedicated lock in the queue. The resource holding task

holds all the lock and may release a particular task if its critical section has been

executed.

The other main direction of the future research work is to provide deadlock free

guarantees to the application developers. The framework offers the freedom for

the application developers to implement any locking protocols by inheriting the

framework. At the moment, the framework relies on the integrity of the protocols

to ensure they are deadlock free. There is a possibility that the application codes

may contain deadlocks which will be critical to the systems. The framework may

be extended with deadlock prevention techniques to handle such situation. A

deadlock can occur if the following four conditions are satisfied:

Mutual Exclusion only one task can use a resource at once.

Hold and Wait there must exists tasks which are holding resources while waiting

for others.

No Preemption A resource can only be released voluntarily by a task

Circular Wait A circular chain of tasks must exist for tasks to cross waiting for

each other’s resource.

The framework may introduce a deadlock prevention approach to dynamically

detect if the deadlock condition exit. If so, the framework should reject the resource

request of the task and prevent the deadlock from happening. For example, the

framework may impose compulsory priority orders for the nested resource in order

to prevent circular waiting. If a task using an application-defined resource sharing

protocol attempts to acquire a nested resource with lower priority than its first

resource, the attempt should be rejected by the framework.

6.4 Final Words

The contribution of this thesis enables Ada application developers to implement

the most suitable multiprocessor resource sharing algorithms for their operating

scenarios. In the development of the traditional uniprocessor real time applica-

tions, only the predefined resource sharing algorithms are available to the appli-

cation developers. This approach was convenient for the uniprocessor systems as

181

the research community has identified the optimal algorithm for their specific sce-

narios. However, this constraint was broken in multiprocessor systems. Currently

multiprocessor resource sharing algorithms are still in their infancy and there is

no optimal solution. A flexible resource sharing framework therefore seems to a

practical solution for the application developers.

The real time community still maintains widely diverging views as to how

resources should be shared in multiprocessors. The amount of interest in non-

blocking and non-locking methods is good evidence of this. However, it is widely

accepted that the success of a multiprocessor resource sharing protocol depends

on resources being shared as efficiently as possible with satisfaction to all real time

requirements. It is still unknown whether an optimal algorithm will be proposed for

sharing resources in multiprocessor systems. At the moment, divide and conquer

seems to be a good strategy.

182

Appendix A

Priority Donation

Implementation

This appendix give the full prototype implementation of the priority donation al-

gorithm discussed in Chapter 5. The code given in Chapter 5 was an abbreviation

from this full implementation for the demonstration purposes. Due to the com-

plexity of the program and for the presentation purposes, the full implementation

is only given in this appendix. The package specification was given by Listing A.1.

1 package OMLP i s
2
3 package SQL renames System . Mu l t ip roc e s so r s . QueueLock ;
4 package ART renames Ada . Real Time . Timing Events ;
5
6 Num of Clusters : constant I n t e g e r := 2 ;
7 Num of Proc : constant I n t e g e r := 2 ;
8
9 type Global OMLP i s new Protec t ed Cont ro l l ed with private ;

10
11 overriding procedure i n i t i a l i z e (C: in out Global OMLP) ;
12 overriding procedure F i n a l i z e (C: in out Global OMLP) ;
13 overriding procedure Lock (C: in out Global OMLP ; L : Lock Type ; V:

L o c k V i s i b i l i t y ; C e i l i n g : P r i o r i t y ; Tid : Task Id) ;
14 overriding procedure Unlock (C: in out Global OMLP ; Tid : Task Id) ;
15
16 type Release Cal lBack i s access protected procedure ;
17 function ReleaseCheck (CallBack : Re lease Cal lBack) return Boolean ;
18 procedure stop ;
19 power on : Time ;
20
21 private
22 data l o ck : aliased SQL. Spin Lock ;
23 type Q record i s
24 record

183

25 lock : SQL. S Object ;
26 id : Ada . T a s k I d e n t i f i c a t i o n . Task Id ;
27 p r i : I n t e g e r ;
28 end record ;
29
30 type Q Arr t i s array (1 . . SQL. Num of Task) of Q record ;
31 type PQ Arr t i s array (1 . . 2 , 1 . . SQL. Num of Task) of Q record ;
32 type N Arr t i s array (1 . . SQL. Num of Task) of i n t e g e r ;
33 Global FQ : Q Arr t ;
34 Global FQH , Global FQL : i n t e g e r ;
35
36 type Global OMLP(CSize : i n t e g e r ; proc : i n t e g e r) i s new

Protec t ed Cont ro l l ed with
37 record
38 FQ : Q Arr t ;
39 PQ : PQ Arr t ; −− one PQ per c l u s t e r
40 FQ Lock : SQL. Spin Lock ;
41 FQH, FQL: i n t e g e r :=1;
42 PQH, PQL: N Arr t := (others=>0) ;
43 end record ;
44
45 type c l u s t e r s e t t i s array (1 . . 1 0) of i n t e g e r ;
46 c l u s t e r s e t : c l u s t e r s e t t :=(2 , 2 , 2 , 1 , 1 , 1 , 0 , 0 , 0 , 0) ;
47 Cluster Lock : aliased SQL. Spin Lock ;
48 type c l u s t e r r e c o r d t i s
49 record
50 id : Ada . T a s k I d e n t i f i c a t i o n . Task Id ;
51 lock : SQL. S Object ;
52 req : boolean ; −− i s s ued resource r e que s t ?
53 end record ;
54 type c l u s t e r t i s array (1 . . CSize , 1 . . proc) of c l u s t e r r e c o r d t ;
55 c l u s t e r : c l u s t e r t ;
56 c1 , c2 : i n t e g e r := 1 ;
57
58 end OMLP;

Listing A.1: Priority Donation Specification

Listing A.2 demonstrates the implementation details of the priority donation

algorithm. The callback functions, ReleaseCheck and Release Now, are defined at

line 4 to 22. The priority donation manager is given at line 25-58. The conventional

framework methods are given from line 100 onwards.

1 package body OMLP i s
2
3 −− Release Manager In t e r a c t i on F a c i l i t i e s
4 function ReleaseCheck (CallBack : Re lease Cal lBack) return Boolean

i s
5 c id : i n t e g e r ;
6 id : Task Id ;
7 CB : Re lease Cal lBack ;
8 begin
9 SQL. SimpleSpinLock (da ta l o ck) ; −− data l o c k

184

10 id := c u r r e n t t a s k ;
11 append CB (id , CallBack) ;
12 c id := (SQL. GetAf f i n i ty / 3) +1;
13 return PDManager(c id) . PDRelease (id , c id) ;
14 end ;
15
16 procedure Release Now (id : Task Id) i s
17 begin
18 index := Find Task Index In DQ (cid , id) ;
19 c l u s t e r (c id , index) . exe := True ;
20 c l u s t e r (c id , p o s i t i o n) . donor := False ;
21 Get CB(id) .CB. a l l ;
22 end ;
23
24 −− Pr i o r i t y Donation Manager
25 protected body PriorityDonationManager i s
26
27 function PDRelease (id : Task Id ; c id : I n t e g e r) return Boolean i s
28 pos i t i on , index : i n t e g e r ;
29 begin
30 p o s i t i o n := append cluster DQ (cid , c u r r e n t t a s k) ;
31 c l u s t e r (c id , p o s i t i o n) . exe := True ;
32 −− Note : At most Num of Proc t a s k s exe f l a g w i l l be t rue at any

time .
33
34 i f F i n d a v a i l P r o c e s s o r (c id)=−1 then −− i f t h e r e i s no

a v a i l a b l e proces sor
35 index := i n d e x o f C t h H P t a s k i n c l u s t e r (c id) .DQ;
36 i f Al l Resource F lag (c id)=True and c l u s t e r (cid , index +1) . id/=

Nul l Task Id and c l u s t e r (cid , index +1) . req=True then
37 −− a l l p r ev ious t a s k s have i s sued resource r e que s t and the C

+1 h i g h e s t p r i o r i t y t a s k
38
39 i f c l u s t e r (cid , index +1) . exe=True then −− i f the C+1

h i g h e s t p r i o r i t y t a s k i s e x ecu t ing
40 Print Time ;
41 Put Line (” =Pr ior i tyDonat ion= : ”&image (id) (1 . . 2)&”

donating i t s p r i o r i t y to ”&image (c l u s t e r (p , pid) . id)
(1 . . 2)) ;

42 c l u s t e r (cid , p o s i t i o n) . donor := True ;
43 c l u s t e r (cid , p o s i t i o n) . exe := Fal se ;
44 DonationLog (LogLength) . r e c i p i e n t := c l u s t e r (p , index +1) .

id ;
45 DonationLog (LogLength) . donor := id ;
46 LogLength := LogLength + 1 ;
47 S e t P r i o r i t y (DonationLog (LogLength) . r e c i p i e n t ,

Ge t Pr i o r i t y (id)) ;
48 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
49 return False ;
50 else −− i f i t i s suspended
51 c l u s t e r (cid , p o s i t i o n) . donor := True ;
52 end i f ;
53 end i f ;
54 end i f ;

185

55 Release Now (c u r r e n t t a s k) ;
56 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
57 return True ;
58 end ;
59
60 procedure StopDonation (id : Task Id ; c id : I n t e g e r) i s
61 p : i n t e g e r ;
62 begin
63 SQL. SimpleSpinLock (da ta l o ck) ; −− data l o c k
64 Print Time ;
65 −− r e s e t exe f l a g in DQ
66 for i in DonationLog ’ range loop
67 i f DonationLog (i) . r e c i p i e n t = id then
68 S e t P r i o r i t y (DonationLog (LogLength) . donor , Ge t Pr i o r i t y (

DonationLog (LogLength) . donor)) ;
69 c l u s t e r (cid , DonationLog (i) . pid) . id := Nul l Task Id ;
70 DonationLog (LogLength) . r e c i p i e n t := Nul l Task Id ;
71 Release Now (DonationLog (LogLength) . donor) ;
72 DonationLog (LogLength) . donor := Nul l Task Id ;
73 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
74 return ;
75 end i f ;
76 end loop ;
77 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
78 end ;
79
80 procedure ReDonate i s
81 t id1 , t id2 , t i d3 : Task Id ;
82 cid , p r i 1 : I n t e g e r ;
83 begin
84 t id1 := C.FQ(C.FQL) . id ;
85 c id := C.FQ(C.FQL) . c c id ;
86
87 t id2 := t h e H P E X E t a s k w i t h n o r e s o u r c e r e q u e s t i n t h e c l u s t e r ;
88 t id3 := t h e L P E X E t a s k i n c l u s t e r o t h e r t h a n t i d 1 t i d 2 ;
89 −− t i d 3 might be n u l l or the next t a s k schedu l ed f o r execu t i on .
90 pr i 2 := Get Pr i o r i t y (t i d2) ;
91 i f t i d1/= Nul l Task Id and t i d2/=Nul l Task Id and Get Pr i o r i t y (

t i d2)>Get Pr i o r i t y (t i d1) and t i d3/=Nul l Task Id and
Get Pr i o r i t y (t i d1)>=Get Pr i o r i t y (t i d3) then

92 S e t P r i o r i t y (t id1 , Ge t Pr i o r i t y (t i d2)) ;
93 S e t P r i o r i t y (t id2 , C.FQ(C.FQL) . p r i) ;
94 C.FQ(C.FQL) . p r i := Get Pr i o r i t y (t i d2) ;
95 −− update Donation Log
96 −− s e t the req f l a g o f t i d 2 o f i t s home c l u s t e r DQ
97 end i f ;
98 end ReDonate ;
99 end PriorityDonationManager ;

100
101 overriding procedure i n i t i a l i z e (C : in out Global OMLP) i s
102 begin
103 −− a l l i n i t i a l i z a t i o n work here
104 end loop ;
105

186

106 overriding procedure F i n a l i z e (C : in out Global OMLP) i s
107 begin
108 null ;
109 end ;
110
111 −− Clus t e red OMLP
112 overriding procedure Lock (C : in out Global OMLP ; L : Lock Type ; V

: L o c k V i s i b i l i t y ; C e i l i n g : P r i o r i t y ; Tid : Task Id) i s
113 cid , DQindex , PQindex , temp : i n t e g e r ;
114 begin
115 SQL. SimpleSpinLock (da ta l o ck) ;
116 c id := (SQL. GetAf f i n i ty / 3) +1;
117
118 DQindex := Find Task Index In DQ (cid , id) ;
119 i f c l u s t e r (cid , DQindex) . donor=True then
120 −− p r i o r i t y lowered
121 end i f ;
122 c l u s t e r (c id , DQindex) . req := True ;
123 i f (C.FQH−C.FQL)>=Num of Clusters then
124 c l u s t e r (c id , DQindex) . exe := Fal se ;
125 Print Time ;
126 Put Line (” =Lock= : ”&image (c u r r e n t t a s k) (1 . . 2) & ” j o i n s PQ”) ;
127 PQindex := append PQ (C, c id) ;
128 C.PQ(p , PQindex) . p r i := Get Pr i o r i t y (c u r r e n t t a s k) ;
129 C.PQ(p , PQindex) . c c i d := c id ;
130 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
131 SQL. Suspend Unti l True (C.PQ(p , PQindex) . l o ck) ; −− PQ loc k
132 SQL. SimpleSpinLock (C. da ta l o ck) ; −− data l o c k
133 delete PQ (C, p , PQindex) ;
134 Print Time ;
135 Put Line (image (c u r r e n t t a s k) (1 . . 2)&” j o i n s FQ from PQ”) ;
136 end i f ;
137 i f C.FQ(C.FQL) . id/=Nul l Task Id then
138 i f C.FQ(C.FQH) . id/=c u r r e n t t a s k then
139 C.FQH := C.FQH + 1 ;
140 end i f ;
141 c l u s t e r (c id , DQindex) . exe := Fal se ;
142 −− update FQ record
143 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
144 SQL. Suspend Unti l True (C.FQ(C.FQH) . l ock) ; −− FQ Lock
145 c l u s t e r (c id , DQindex) . exe := True ;
146 SQL. SimpleSpinLock (C. da ta l o ck) ; −− data l o c k
147 end i f ;
148 Print Time ;
149 Put Line (” =Lock= : ”&image (c u r r e n t t a s k) (1 . . 2) & ” j o i n s FQ”) ;
150 C.FQ(C.FQL) . id := c u r r e n t t a s k ;
151 SQL. SimpleSpinUnlock (C. da ta l o ck) ; −− data l o c k
152 end Lock ;
153
154 overriding procedure Unlock (C : in out Global OMLP ; Tid : Task Id)

i s
155 cid , DQindex : i n t e g e r ;
156 begin
157 SQL. SimpleSpinLock (da ta l o ck) ;

187

158 C.FQL := C.FQL + 1 ;
159 releasePQ (C) ; −− r e l e a s e the h i g h e s t p r i o r i t y t a s k from PQ
160 deleteFQ (C) ; −− r e l e a s e the next t a s k in FQ and increa se C.FQH
161 c id := (SQL. GetAf f i n i ty / 3) +1;
162 DQindex := Find Task Index In DQ (cid , id) ;
163 c l u s t e r (c id , DQindex) . req := False ;
164 PDManager(c id) . StopDonation (cur r ent ta sk , SQL. GetAf f i n i ty) ;
165 PDManager(c id) . deReg i s t e r (c u r r e n t t a s k) ;
166 PDManager(c id) . ReDonate ;
167 SQL. SimpleSpinUnlock (da ta l o ck) ;
168 S e t P r i o r i t y (SQL. Get PML) ;
169 end Unlock ;
170
171 end OMLP;

Listing A.2: Priority Donation Implementation

188

Appendix B

QueueLock Package

The System.Multiprocessors.QueueLock package was specifically created for the

prototype evaluation implementations. It channels low level functionalities to the

high level for the convenience of protocol implementations. It provides crucial

functionalities including suspension, spinning and atomic test and set operations

etc. The full implementation can be found as follows:

1 with System ;
2 with System . Linux ;
3 with System . Tasking ;
4 with System . Task Pr imi t ives ;
5 with System . OS Inte r face ;
6 with I n t e r f a c e s .C;
7 with I n t e r f a c e s ;
8 with System . Task Pr imi t ives . Operat ions ;
9

10 package System . Mu l t ip roc e s so r s . QueueLock i s
11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 −−−−−−− Pr i o r i t y Patch Routines −−−−−
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14
15 procedure S e t P r i o r i t y (p r i : I n t e g e r) ;
16 −− d e f a u l t s chedu l i n g i s SCHED FIFO
17 function GetAf f in i ty return i n t e g e r ;
18 −− Spin Locks −−
19 type Queue Order i s (FIFO Ordered , Pr i o r i ty Orde red) ;
20 type Spin Lock i s private ;
21 type RWLockT i s private ;
22
23 type p t h r e a d s p i n l o c k t i s new I n t e r f a c e s .C. i n t ;
24 pragma Convention (C, p t h r e a d s p i n l o c k t) ;
25 type p t h r e a d s p i n l o c k s t a t u s i s limited private ;
26 type Suspension Lock i s limited private ;
27
28 −−−−−−−−−−−−−−−−−−−−−−−−

189

29 −−−− MSRP Routines −−−−
30 −−−−−−−−−−−−−−−−−−−−−−−−
31 −− MAX PRIORITY 49;
32 −− MIN PRIORITY 1;
33 Num of Processors : constant I n t e g e r := 32 ;
34 Num of Task : constant I n t e g e r := 20 ;
35
36 −− Schedu ler rou t ine p r o t e c t i on l o c k s
37 MSRPQ : aliased p t h r e a d s p i n l o c k t ;
38 type C e i l i n g t i s array (0 . . Num of Processors) of I n t e g e r ;
39 type MSRP i s record
40 Lock : Spin Lock ;
41 C e i l i n g : C e i l i n g t ;
42 Global : Boolean ;
43 end record ;
44
45 −− procedure I n i t i a l i z e ;
46
47 procedure Release (CPU : I n t e g e r) ;
48 pragma I n l i n e (Re lease) ;
49
50 procedure Lock (r e s : in out MSRP) ;
51 pragma I n l i n e (Lock) ;
52
53 procedure Unlock (r e s : in out MSRP) ;
54 pragma I n l i n e (Unlock) ;
55
56 procedure Set PML (P : I n t e g e r) ;
57 pragma I n l i n e (Set PML) ;
58
59 function Get PML return I n t e g e r ;
60 pragma I n l i n e (Get PML) ;
61
62 function GetSpinIndex return i n t e g e r ;
63 pragma I n l i n e (GetSpinIndex) ;
64
65 procedure SetSpinIndex (i : i n t e g e r) ;
66 pragma I n l i n e (SetSpinIndex) ;
67
68 function GetSusIndex return i n t e g e r ;
69 pragma I n l i n e (GetSusIndex) ;
70
71 procedure SetSusIndex (i : i n t e g e r) ;
72 pragma I n l i n e (SetSusIndex) ;
73
74 procedure setProc (CPU : I n t e g e r ; C : I n t e g e r) ;
75 pragma I n l i n e (setProc) ;
76
77 procedure Stop ;
78 pragma I n l i n e (Stop) ;
79
80 procedure MSRP Init ;
81
82 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

190

83 −−−− Assembler Routines −−−−
84 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
85 function Sync Val Compare And Swap
86 (Des t inat i on : access I n t e r f a c e s . Unsigned 32 ;
87 Comparand : I n t e r f a c e s . Unsigned 32 ;
88 New Value : I n t e r f a c e s . Unsigned 32)
89 return I n t e r f a c e s . Unsigned 32 ;
90
91 −−−−−−−−−−−−−−−−−−−−−−−−−−
92 −−−− RWLocks Routines −−−−
93 −−−−−−−−−−−−−−−−−−−−−−−−−−
94 procedure RWIni t ia l i z e (RWLock : in out RWLockT) ;
95
96 procedure RLock (RWLock : in out RWLockT) ;
97 procedure RUnlock (RWLock : in out RWLockT) ;
98
99 procedure WLock (RWLock : in out RWLockT) ;

100 procedure WUnlock (RWLock : in out RWLockT) ;
101
102 −−−−−−−−−−−−−−−−−−−−−−−−
103 −− Spin Lock Routines −−
104 −−−−−−−−−−−−−−−−−−−−−−−−
105
106 procedure I n i t i a l i z e (SPL : in out Spin Lock) ;
107 pragma I n l i n e (I n i t i a l i z e) ;
108
109 procedure Acquire (SPL : in out Spin Lock) ;
110 pragma I n l i n e (Acquire) ;
111
112 procedure Release (SPL : in out Spin Lock) ;
113 pragma I n l i n e (Re lease) ;
114
115 function H Queued Prior ity (SPL : in out Spin Lock)
116 return System . Any Pr ior i ty ;
117
118 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119 −− Suspension Lock Routines −−
120 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
121 procedure I n i t i a l i z e (
122 SL : in out Suspension Lock ;
123 Ce i l : System . Any Pr ior i ty ;
124 QOrder : Queue Order) ;
125 procedure Release (SL : in out Suspension Lock) ;
126 pragma I n l i n e (Re lease) ;
127
128 procedure Acquire (SL : in out Suspension Lock) ;
129 pragma I n l i n e (Acquire) ;
130
131 function H Queued Prior ity (SL : in out Suspension Lock)
132 return System . Any Pr ior i ty ;
133
134 function Get Pr i o r i t y (Id : System . Tasking . Task Id)
135 return System . Any Pr ior i ty ;
136 procedure S e t P r i o r i t y (

191

137 Id : System . Tasking . Task Id ;
138 Prio : System . Any Pr ior i ty) ;
139 function Current Task
140 return System . Tasking . Task Id ;
141 function Head Task (SL : Suspens ion Lock)
142 return System . Tasking . Task Id ;
143 function Head Task (SPL : Spin Lock)
144 return System . Tasking . Task Id ;
145 function I s Equa l (Tid1 : System . Tasking . Task Id ; Tid2 : System .

Tasking . Task Id)
146 return boolean ;
147 pragma I n l i n e (I s Equa l) ;
148
149 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
150 −− Simple Spin Lock Routines −−
151 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
152 procedure SimpleSpinUnlock (SPL : in out Spin Lock) ;
153 procedure SimpleSpinLock (SPL : in out Spin Lock) ;
154
155 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
156 −− Simple Mutex Lock Routines −−
157 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
158 procedure S impleSuspens ionIn i t (SPL : in out Suspension Lock) ;
159 procedure SimpleSuspensionLock (SPL : in out Suspension Lock) ;
160 procedure SimpleSuspensionUnlock (SPL : in out Suspension Lock) ;
161 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
162 −−−−−−− PO Entry Routines −−−−−
163 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
164
165 −− ASSUMPTION: NO NESTED RESOURCE
166
167 −− Mutex imports
168 −−−− C data type
169 subtype i n t i s I n t e r f a c e s .C. i n t ;
170 subtype long i s I n t e r f a c e s .C. long ;
171 subtype uns igned char i s I n t e r f a c e s .C. uns igned char ;
172 subtype uns igned long i s I n t e r f a c e s .C. uns igned long ;
173 type u n s i g n e d l o n g l o n g t i s mod 2 ∗∗ 64 ;
174 type pthread mutexatt r t i s record
175 mutexkind : i n t ;
176 end record ;
177 pragma Convention (C, pthread mutexatt r t) ;
178
179 type pthread mutex t i s new System . Linux . pthread mutex t ;
180 type pthread cond t i s array (0 . . 47) of uns igned char ;
181 pragma Convention (C, pthread cond t) ;
182 for pthread cond t ’ Alignment use uns i gned l ong l ong t ’ Alignment ;
183
184 type pthr ead condat t r t i s record
185 dummy : i n t ;
186 end record ;
187 pragma Convention (C, p th r ead condat t r t) ;
188
189 type t ime t i s new long ;

192

190 type t imespec i s record
191 t v s e c : t ime t ;
192 tv nse c : long ;
193 end record ;
194 pragma Convention (C, t imespec) ;
195 Mutex Attr : aliased pthread mutexatt r t ;
196 Cond Attr : aliased pthr ead condat t r t ;
197
198 −− Linux error re turn
199 EINTR : constant := System . Linux .EINTR;
200 ENOMEM : constant := System . Linux .ENOMEM;
201
202 −− Suspension Object
203 type S Object i s record
204 State : Boolean ;
205 pragma Atomic (State) ;
206 Waiting : Boolean ;
207 L : aliased pthread mutex t ;
208 CV : aliased pthread cond t ;
209 end record ;
210
211
212 procedure I n i t i a l i z e (S : in out S Object) ;
213 procedure Se t Fa l s e (S : in out S Object) ;
214 procedure Set True (S : in out S Object) ;
215 procedure Suspend Unti l True (S : in out S Object) ;
216
217
218 private
219 Length Limit : constant I n t e g e r := 50 ;
220
221 type Task Id i s new System . Tasking . Task Id ;
222
223 type p t h r e a d s p i n l o c k s t a t u s i s new I n t e r f a c e s .C. i n t ;
224 pragma Convention (C, p t h r e a d s p i n l o c k s t a t u s) ;
225
226 type Node ;
227 type Node Ptr i s access Node ;
228
229 type Node i s record
230 Id : System . Tasking . Task Id ;
231 Ppri : System . Any Pr ior i ty ;
232 end record ;
233
234 type NodeQueue i s array (1 . . Length Limit) of Node ;
235
236 −− Based on imported sp in l o c k p r im i t i v e s @ s−os in te−l i n u x . ads −−
237 −− NOTE : Under ly ing sp in l o c k i s STRICTLY FIFO based −−
238 type S p i n n i n g P r i o r i t y i s (A c t i v e P r i o r i t y o f T a s k ,

Non Preemptively) ;
239 type Spin Lock Array t i s array (0 . . Length Limit) of
240 aliased p t h r e a d s p i n l o c k t ;
241 type Sp in Lock Flag t i s array (0 . . Length Limit) of I n t e g e r ;
242

193

243 type Spin Lock i s
244 record
245 Lock Entry : Sp in Lock Array t ;
246 Lock Flag : Sp in Lock Flag t ;
247 QueueLock : aliased p t h r e a d s p i n l o c k t ;
248 Length : I n t e g e r := 0 ;
249 Length Limit : I n t e g e r := 10 ;
250 Num of Wait : I n t e g e r := 0 ;
251 Order : Queue Order ;
252 At Pri : S p i n n i n g P r i o r i t y := Non Preemptively ;
253 SPQ : NodeQueue ;
254 end record ;
255 −− FIX ME: QLock i s f o r i n t e r n a l use on ly . Realy shouldn ’ t be here

−−
256 PTHREAD PROCESS SHARED : p t h r e a d s p i n l o c k s t a t u s := 1 ;
257 PTHREAD PROCESS PRIVATE : p t h r e a d s p i n l o c k s t a t u s := 0 ;
258 t e s t s p i n : Spin Lock ;
259 −− Assume Mutex Lock i s r e qu i r ed f o r suspens ion l o c k −−
260
261 type Sus Cond Array t i s array (0 . . Length Limit) of
262 aliased System . OS Inte r face . pthread cond t ;
263 type Sus Array t i s array (0 . . Length Limit) of
264 aliased System . OS Inte r face . pthread mutex t ;
265 type Queue Rec i s array (0 . . Length Limit) of I n t e g e r ;
266 type Suspension Lock i s
267 record
268 Lock Flag : Boolean ;
269 Routine : Boolean ;
270 Lock : aliased System . OS Inte r face . pthread mutex t ;
271 QLock : aliased System . OS Inte r face . pthread mutex t ;
272 PLock : aliased p t h r e a d s p i n l o c k t ;
273 ACond : aliased System . OS Inte r face . pthread cond t ;
274 Queue : Queue Rec ;
275 LockSeq : Sus Array t ;
276 Cond : Sus Cond Array t ;
277 Length : I n t e g e r := 0 ;
278 Order : Queue Order ;
279 C e i l i n g : System . Any Pr ior i ty ;
280 SSQ : NodeQueue ;
281 end record ;
282
283 −−−−−−−−−−−−−−−−−−−−−−−−
284 −−−− MSRP Routines −−−−
285 −−−−−−−−−−−−−−−−−−−−−−−−
286
287 type Tas ;
288 type Tas Ptr i s access Tas ;
289
290 type Tas i s record
291 T id : System . Tasking . Task Id ;
292 PML : I n t e g e r ;
293 end record ;
294
295 −− Suspension Lock Foundamentals

194

296 Task Queue : array (0 . . Num of Processors , 0 . . Num of Task) of Tas ;
297 Task Queue Length : array (0 . . Num of Processors) of I n t e g e r ;
298 −− Processor System Ce i l i n g
299 Ce i l i ng Array : array (0 . . Num of Processors , 0 . . Num of Task) of

I n t e g e r ;
300 Ce i l ing Array Length : array (0 . . Num of Processors) of I n t e g e r ;
301
302 −−−−−−−−−−−−−−−−−−−−−−−−−−
303 −−−− RWLocks Routines −−−−
304 −−−−−−−−−−−−−−−−−−−−−−−−−−
305 type RWLockT i s record
306 r in , rout : I n t e r f a c e s . Unsigned 32 ; −− r in (0) :=PHID; r in (1) :=

PRES
307 rinQ , routQ : Spin Lock ;
308 win , wout : I n t e r f a c e s . Unsigned 32 ;
309 winQ , woutQ : Spin Lock ;
310 WriterLock : Spin Lock ;
311 end record ;
312
313
314 end System . Mu l t ip ro c e s so r s . QueueLock ;

Listing B.1: Queue Lock Package Specification

1 with Ada . Dynamic Pr i o r i t i e s ;
2 with System . Tasking ; use System . Tasking ;
3 with System . Task Pr imi t ives ;
4 with System . Task Pr imi t ives . Operat ions ;
5 with Ada . T a s k I d e n t i f i c a t i o n ;
6 with Ada . Unchecked Conversion ;
7 with Ada . Unchecked Deal locat ion ;
8 with I n t e r f a c e s .C;
9 with System . OS Inte r face ;

10 with Text IO ; use Text IO ;
11 with System . OS Primit ives ;
12 with System . So f t L ink s ;
13 with System . Machine Code ; use System . Machine Code ;
14 with I n t e r f a c e s ; use I n t e r f a c e s ;
15
16 package body System . Mu l t ip ro c e s so r s . QueueLock i s
17
18 package STPO renames System . Task Pr imi t ive s . Operat ions ;
19 package ADPR renames Ada . Dynamic Pr i o r i t i e s ;
20 package ATID renames Ada . T a s k I d e n t i f i c a t i o n ;
21 package OSI renames System . OS Inte r face ;
22 package SSL renames System . So f t L ink s ;
23
24 use System . Task Pr imi t ive s . Operat ions ;
25 use I n t e r f a c e s .C;
26 use I n t e r f a c e s ;
27
28 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 −−−−−−− Pr i o r i t y Patch Routines −−−−−
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 procedure S e t P r i o r i t y (p r i : I n t e g e r) i s

195

32 Att r ibute s : aliased OSI . p t h r e a d a t t r t ;
33 Result : I n t e r f a c e s .C. i n t ;
34 Param : aliased OSI . s t ruct sched param ;
35 begin
36 Param . s c h e d p r i o r i t y := i n t (40) ;
37 Result :=
38 OSI . pthread setschedparam
39 (STPO. Get Thread Id (STPO. S e l f) , OSI .SCHED FIFO, Param ’

Access) ;
40 pragma Assert (Result = 0) ;
41 end S e t P r i o r i t y ;
42
43 function GetAf f in i ty return i n t e g e r i s
44 begin
45 return I n t e g e r (STPO. S e l f .Common. Base CPU) ;
46 end GetAf f in i ty ;
47
48 function GetSpinIndex return i n t e g e r i s
49 begin
50 return STPO. S e l f .Common. SpinQ index ;
51 end ;
52
53 procedure SetSpinIndex (i : i n t e g e r) i s
54 begin
55 STPO. S e l f .Common. SpinQ Index := i ;
56 end ;
57
58 function GetSusIndex return i n t e g e r i s
59 begin
60 return STPO. S e l f .Common. SuspensionQ Index ;
61 end ;
62
63 procedure SetSusIndex (i : i n t e g e r) i s
64 begin
65 STPO. S e l f .Common. SuspensionQ Index := i ;
66 end ;
67
68 −−−−−−−−−−−−−−−−−−−−−−−
69 −− Local Subprograms −−
70 −−−−−−−−−−−−−−−−−−−−−−−
71 procedure OrderQueue (SL : in out Suspension Lock) ;
72 −− Conversion func t i on s between d i f f e r e n t forms o f Task Id
73 procedure Free i s new Ada . Unchecked Deal locat ion (
74 Object => Node , Name => Node Ptr) ;
75 function FindPos (SPL : in out Spin Lock) return I n t e g e r ;
76 function FindPos (SL : in out Suspension Lock) return I n t e g e r ;
77 function FindNext (SL : in out Suspension Lock ;
78 s t a r t : I n t e g e r) return I n t e g e r ;
79
80 −−−−−−−−−−−−−−−−−−
81 −− Current Task −−
82 −−−−−−−−−−−−−−−−−−
83 function Current Task return System . Tasking . Task Id i s
84 begin

196

85 return System . Task Pr imi t ives . Operat ions . S e l f ;
86 end Current Task ;
87
88
89 function I s Equa l (Tid1 : System . Tasking . Task Id ; Tid2 : System .

Tasking . Task Id)
90 return boolean
91 i s
92 begin
93 i f Tid1 = Tid2 then
94 return True ;
95 else
96 return False ;
97 end i f ;
98 end I s Equa l ;
99

100 −−−−−−−−−−−−−−−−−−−−−−
101 −− Reorganize Queue −−
102 −−−−−−−−−−−−−−−−−−−−−−
103 −− Only Pr i o r i t y Queue needs t h i s −−
104 procedure OrderQueue (SL : in out Suspension Lock) i s
105 i : I n t e g e r ;
106 temp : Node ;
107 begin
108 for i in 1 . . (SL . Length − 1) loop
109 i f (STPO. Get Pr i o r i t y (SL . SSQ (i) . Id) <
110 STPO. Get Pr i o r i t y (SL . SSQ (i + 1) . Id)) then
111 temp := SL . SSQ (i) ;
112 SL . SSQ (i) := SL . SSQ (i + 1) ;
113 SL . SSQ (i + 1) := temp ;
114 end i f ;
115 end loop ;
116 end OrderQueue ;
117
118 function Get Pr i o r i t y (Id : System . Tasking . Task Id)
119 return System . Any Pr ior i ty
120 i s
121 begin
122 return STPO. Get Pr i o r i t y (Id) ;
123 end Get Pr i o r i t y ;
124
125 procedure S e t P r i o r i t y (
126 Id : System . Tasking . Task Id ;
127 Prio : System . Any Pr ior i ty)
128 i s
129 begin
130 STPO. S e t P r i o r i t y (Id , Prio) ;
131 end S e t P r i o r i t y ;
132
133 function Head Task (SL : Suspens ion Lock)
134 return System . Tasking . Task Id
135 i s
136 begin
137 return SL . SSQ (1) . Id ;

197

138 end Head Task ;
139
140 function Head Task (SPL : Spin Lock)
141 return System . Tasking . Task Id
142 i s
143 begin
144 return SPL .SPQ (1) . Id ;
145 end Head Task ;
146 −−−
147 −− Pthread Sp in lock Plat form dependent −−
148 −−−
149
150 function p t h r e a d s p i n i n i t
151 (s p i n t : not null access p t h r e a d s p i n l o c k t ;
152 s p i n s h a r e : p t h r e a d s p i n l o c k s t a t u s) return i n t ;
153 pragma Import (C, p t h r e a d s p i n i n i t , ” p t h r e a d s p i n i n i t ”) ;
154
155 function pth r ead sp i n de s t r oy
156 (s p i n t : not null access p t h r e a d s p i n l o c k t) return i n t ;
157 pragma Import (C, p thread sp in de s t roy , ” p th r ead sp i n de s t r oy ”) ;
158
159 function p t h r e a d s p i n l o c k
160 (s p i n t : not null access p t h r e a d s p i n l o c k t) return i n t ;
161 pragma Import (C, p th r ead sp in l o ck , ” p t h r e a d s p i n l o c k ”) ;
162
163 function pthread sp in un lock
164 (s p i n t : not null access p t h r e a d s p i n l o c k t) return i n t ;
165 pragma Import (C, pthread sp in un lock , ” pthread sp in un lock ”) ;
166
167 function p t h r e a d s p i n t r y l o c k
168 (s p i n t : not null access p t h r e a d s p i n l o c k t) return i n t ;
169 pragma Import (C, p t h r ea d s p in t r y l o c k , ” p t h r e a d s p i n t r y l o c k ”) ;
170
171 function pthread cond broadcast
172 (cond : access OSI . pthread cond t) return i n t ;
173 pragma Import (C, pthread cond broadcast , ” pthread cond broadcast ”

) ;
174
175 −−−−−−−−−−−−−−−−−−−−−−−−
176 −− Spin Lock Routines −−
177 −−−−−−−−−−−−−−−−−−−−−−−−
178 procedure I n i t i a l i z e (SPL : in out Spin Lock) i s
179 Result : I n t e r f a c e s .C. i n t ;
180 i : I n t e g e r ;
181 begin
182
183 for i in SPL .SPQ’Range loop
184 SPL .SPQ (i) . Id := null ;
185 SPL .SPQ (i) . Ppri := System . Any Prior i ty ’ F i r s t ;
186 end loop ;
187
188 for i in 0 . . SPL . Length Limit loop
189 SPL . Lock Flag (i) := 0 ;
190 Result := p t h r e a d s p i n i n i t (

198

191 SPL . Lock Entry (i) ’Access , PTHREAD PROCESS SHARED
) ;

192 pragma Assert (Result = 0) ;
193 end loop ;
194
195 Result :=
196 p t h r e a d s p i n i n i t (SPL . QueueLock ’ Access ,

PTHREAD PROCESS SHARED) ;
197 pragma Assert (Result = 0) ;
198
199 SPL . Length := 0 ;
200 end I n i t i a l i z e ;
201
202 −−−−−−−−−−−−−−−−−−
203 −− Acquire Lock −−
204 −−−−−−−−−−−−−−−−−−
205 function FindPos (SPL : in out Spin Lock)
206 return I n t e g e r
207 i s
208 i : I n t e g e r ;
209 begin
210 for i in 1 . . SPL . Length loop
211 i f SPL . Lock Flag (i) = −1 then
212 return i ;
213 end i f ;
214 end loop ;
215 SPL . Length := SPL . Length + 1 ;
216 return SPL . Length ;
217 end FindPos ;
218 pragma I n l i n e (FindPos) ;
219
220 procedure SimpleSpinLock (SPL : in out Spin Lock) i s
221 Result : I n t e r f a c e s .C. i n t ;
222 begin
223 Result := p t h r e a d s p i n l o c k (SPL . QueueLock ’ Access) ;
224 end SimpleSpinLock ;
225
226 procedure SimpleSpinUnlock (SPL : in out Spin Lock) i s
227 Result : I n t e r f a c e s .C. i n t ;
228 begin
229 Result := pthread sp in un lock (SPL . QueueLock ’ Access) ;
230 end SimpleSpinUnlock ;
231
232
233 procedure Acquire (SPL : in out Spin Lock) i s
234 Result : I n t e r f a c e s .C. i n t ;
235 T Pr i o r i t y : System . Any Pr ior i ty ;
236 Posi : I n t e g e r ;
237 begin
238 Result := p t h r e a d s p i n l o c k (SPL . QueueLock ’ Access) ;
239 pragma Assert (Result = 0) ;
240 −− I n i t −−
241 i f Current Task .Common. Spinning = False then
242 Posi := FindPos (SPL) ;

199

243 pragma Assert (Posi >= 1) ;
244
245 SPL .SPQ (Posi) . Id := Current Task ;
246 SPL .SPQ (Posi) . Ppri := STPO. Get Pr i o r i t y (Current Task) ;
247 SPL . Num of Wait := SPL . Num of Wait + 1 ;
248 Current Task .Common. SpinQ Index := Posi ;
249 SPL . Lock Flag (Current Task .Common. SpinQ Index) :=
250 SPL . Num of Wait ;
251 −− I f the queue i s FIFO ordered −−
252 Current Task .Common. Spinning := True ;
253 end i f ;
254 −− I n i t Done −−
255 Result := pthread sp in un lock (SPL . QueueLock ’ Access) ;
256 pragma Assert (Result = 0) ;
257
258 loop
259 Result :=
260 p t h r e a d s p i n l o c k (SPL . QueueLock ’ Access) ;
261 pragma Assert (Result = 0) ;
262
263 Result :=
264 p t h r e a d s p i n l o c k (
265 SPL . Lock Entry (Current Task .Common. SpinQ Index) ’

Access) ;
266 pragma Assert (Result = 0) ;
267
268 Result := pthread sp in un lock (SPL . QueueLock ’ Access) ;
269 pragma Assert (Result = 0) ;
270
271 i f SPL . Lock Flag (Current Task .Common. SpinQ Index) = 1 then
272 Result :=
273 pthread sp in un lock (
274 SPL . Lock Entry (
275 Current Task .Common. SpinQ Index) ’Access) ;
276 pragma Assert (Result = 0) ;
277 exit ;
278 else
279 Result :=
280 pthread sp in un lock (
281 SPL . Lock Entry (
282 Current Task .Common. SpinQ Index) ’Access) ;
283 pragma Assert (Result = 0) ;
284 end i f ;
285 end loop ;
286 end Acquire ;
287
288 procedure Release (SPL : in out Spin Lock) i s
289 Result : I n t e r f a c e s .C. i n t ;
290 i , j : I n t e g e r ;
291 Index : I n t e g e r ;
292 begin
293 Result := p t h r e a d s p i n l o c k (SPL . QueueLock ’ Access) ;
294 pragma Assert (Result = 0) ;
295

200

296 for i in 1 . . SPL . Length loop
297 Result := p t h r e a d s p i n l o c k (
298 SPL . Lock Entry (SPL .SPQ (i) . Id .Common. SpinQ Index) ’

Access) ;
299 pragma Assert (Result = 0) ;
300 Index := SPL .SPQ (i) . Id .Common. SpinQ Index ;
301 SPL . Lock Flag (Index) :=
302 SPL . Lock Flag (Index) − 1 ;
303
304 i f SPL . Lock Flag (Index) = 0 then
305 SPL .SPQ (Index) . Id := null ;
306 SPL .SPQ (Index) . Ppri := −1;
307 SPL . Lock Flag (Index) := −1;
308 SPL . Num of Wait := SPL . Num of Wait − 1 ;
309 Current Task .Common. SpinQ Index := −1;
310 Current Task .Common. Spinning := False ;
311 end i f ;
312 Result := pthread sp in un lock (
313 SPL . Lock Entry (Index) ’Access) ;
314 pragma Assert (Result = 0) ;
315 end loop ;
316
317 Result := pthread sp in un lock (SPL . QueueLock ’ Access) ;
318 pragma Assert (Result = 0) ;
319 end Release ;
320
321 function H Queued Prior ity (SPL : in out Spin Lock)
322 return System . Any Pr ior i ty i s
323 Result : I n t e r f a c e s .C. i n t ;
324 i : I n t e g e r ;
325 temp : Node Ptr ;
326 t P r i o : System . Any Pr ior i ty := System . Any Prior i ty ’ F i r s t ;
327 begin
328 Result := p t h r e a d s p i n l o c k (SPL . QueueLock ’ Access) ;
329 for i in SPL .SPQ’Range loop
330 i f t P r i o < STPO. Get Pr i o r i t y (SPL .SPQ (i) . Id) then
331 t P r i o := STPO. Get Pr i o r i t y (SPL .SPQ (i) . Id) ;
332 end i f ;
333 end loop ;
334 Result := pthread sp in un lock (SPL . QueueLock ’ Access) ;
335 return t P r i o ;
336 end H Queued Prior ity ;
337
338 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
339 −− Suspension Lock Programs −−
340 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
341 procedure I n i t i a l i z e (
342 SL : in out Suspension Lock ;
343 Ce i l : System . Any Pr ior i ty ;
344 QOrder : Queue Order)
345 i s
346 MutexAttr : aliased OSI . pthread mutexatt r t ;
347 CondAttr : aliased OSI . p th r ead condat t r t ;
348 Result : I n t e r f a c e s .C. i n t ;

201

349 i : I n t e g e r ;
350 begin
351 SL . Length := 0 ;
352 SL . C e i l i n g := Ce i l ;
353 SL . Order := QOrder ;
354 Result := OSI . p th r ead mutexa t t r i n i t (MutexAttr ’ Access) ;
355 pragma Assert (Result = 0) ;
356
357 Result := OSI . p thread mutex in i t (
358 SL . Lock ’ Access , MutexAttr ’ Access) ;
359 pragma Assert (Result = 0) ;
360
361 Result := OSI . p thread mutex in i t (
362 SL . QLock ’ Access , MutexAttr ’ Access) ;
363 pragma Assert (Result = 0) ;
364
365 Result := p t h r e a d s p i n i n i t (
366 SL . PLock ’ Access , PTHREAD PROCESS SHARED) ;
367 pragma Assert (Result = 0) ;
368
369 Result := OSI . p t h r e a d c o n d a t t r i n i t (CondAttr ’ Access) ;
370 pragma Assert (Result = 0) ;
371
372 Result := OSI . p t h r e a d c o n d i n i t (
373 SL . ACond ’ Access , CondAttr ’ Access) ;
374 pragma Assert (Result = 0) ;
375
376 for i in SL . SSQ’Range loop
377 SL .SSQ (i) . Id := null ;
378 SL .SSQ (i) . Ppri := System . Any Prior i ty ’ F i r s t ;
379
380 Result := OSI . p t h r e a d c o n d i n i t (
381 SL . Cond (i) ’Access , CondAttr ’ Access) ;
382 pragma Assert (Result = 0) ;
383
384 SL . Queue (i) := −1;
385 end loop ;
386
387 for i in 1 . . Length Limit loop
388 Result := OSI . pthread mutex lock (
389 SL . LockSeq (i) ’Access) ;
390 pragma Assert (Result = 0) ;
391 end loop ;
392 SL . Lock Flag := False ;
393 SL . Routine := Fal se ;
394 end I n i t i a l i z e ;
395
396 function FindPos (SL : in out Suspension Lock)
397 return I n t e g e r
398 i s
399 Result : I n t e r f a c e s .C. i n t ;
400 i : I n t e g e r ;
401 begin
402 for i in 1 . . SL . Length loop

202

403 i f SL . Queue (i) = −1 then
404 return i ;
405 end i f ;
406 end loop ;
407 return −1;
408 end FindPos ;
409 pragma I n l i n e (FindPos) ;
410
411 function FindNext (
412 SL : in out Suspension Lock ;
413 s t a r t : I n t e g e r) return I n t e g e r
414 i s
415 Result : I n t e r f a c e s .C. i n t ;
416 i : I n t e g e r ;
417 begin
418 for i in s t a r t . . SL . Length loop
419 i f SL . Queue (i) /= −1 then
420 return i ;
421 end i f ;
422 end loop ;
423 return −1;
424 end FindNext ;
425 pragma I n l i n e (FindNext) ;
426
427 procedure I n s e r t (SL : in out Suspension Lock) i s
428 Index : I n t e g e r ;
429 Result : I n t e r f a c e s .C. i n t ;
430 begin
431 SL . Length := SL . Length + 1 ;
432 Index := FindPos (SL) ;
433 SL . Queue (Index) := 1 ;
434 pragma Assert (Index > −1) ;
435 Current Task .Common. SuspensionQ Index := Index ;
436 SL .SSQ (SL . Length) . Id := Current Task ;
437 SL .SSQ (SL . Length) . Ppri := STPO. Get Pr i o r i t y (Current Task) ;
438
439 end I n s e r t ;
440
441 procedure Remove PRIO (SL : in out Suspension Lock) i s
442 Index , i , Next : I n t e g e r ;
443 T P : System . Any Pr ior i ty := System . Any Prior i ty ’ F i r s t ;
444 Result : I n t e r f a c e s .C. i n t ;
445 begin
446
447 Next := 2 ;
448 pragma Assert (Next >= 1) ;
449 for i in 2 . . SL . Length loop
450 i f T P < STPO. Get Pr i o r i t y (SL . SSQ (i) . Id) then
451 Next := i ;
452 T P := STPO. Get Pr i o r i t y (SL . SSQ (i) . Id) ;
453 end i f ;
454 end loop ;
455
456 SL . Queue (Current Task .Common. SuspensionQ Index)

203

457 := −1;
458 SL .SSQ (1) . Id := SL . SSQ (Next) . Id ;
459 SL .SSQ (1) . Ppri := SL . SSQ (Next) . Ppri ;
460
461 for i in Next . . SL . Length loop
462 SL .SSQ (i) . Id := SL . SSQ (i + 1) . Id ;
463 SL .SSQ (i) . Ppri := SL . SSQ (i + 1) . Ppri ;
464 end loop ;
465
466 SL . Length := SL . Length − 1 ;
467 end Remove PRIO ;
468
469 procedure Remove FIFO (SL : in out Suspension Lock) i s
470 Index : I n t e g e r ;
471 Result : I n t e r f a c e s .C. i n t ;
472 begin
473 for i in 1 . . (SL . Length) loop
474 SL .SSQ (i) . Id := SL . SSQ (i + 1) . Id ;
475 SL .SSQ (1) . Ppri := SL . SSQ (i + 1) . Ppri ;
476 end loop ;
477 SL . Queue (Current Task .Common. SuspensionQ Index)
478 := −1;
479 SL . Length := SL . Length − 1 ;
480 end Remove FIFO ;
481
482 procedure S impleSuspens ionIn i t (SPL : in out Suspension Lock) i s
483 MutexAttr : aliased OSI . pthread mutexatt r t ;
484 CondAttr : aliased OSI . p th r ead condat t r t ;
485 Result : I n t e r f a c e s .C. i n t ;
486 i : I n t e g e r ;
487 begin
488 Result := OSI . p th r ead mutexa t t r i n i t (MutexAttr ’ Access) ;
489 pragma Assert (Result = 0) ;
490
491 Result := OSI . p thread mutex in i t (
492 SPL . Lock ’ Access , MutexAttr ’ Access) ;
493 pragma Assert (Result = 0) ;
494 end S impleSuspens ionIn i t ;
495
496 procedure SimpleSuspensionLock (SPL : in out Suspension Lock) i s
497 Result : I n t e r f a c e s .C. Int ;
498 begin
499 Result := OSI . pthread mutex lock (SPL . Lock ’ Access) ;
500 pragma Assert (Result = 0) ;
501 end SimpleSuspensionLock ;
502
503 procedure SimpleSuspensionUnlock (SPL : in out Suspension Lock) i s
504 Result : I n t e r f a c e s .C. Int ;
505 begin
506 Result := OSI . pthread mutex unlock (SPL . Lock ’ Access) ;
507 pragma Assert (Result = 0) ;
508 end SimpleSuspensionUnlock ;
509
510 procedure Acquire (SL : in out Suspension Lock) i s

204

511 T Pr i o r i t y : System . Any Pr ior i ty ;
512 Index , i : I n t e g e r ;
513 Result , t e s t : I n t e r f a c e s .C. i n t ;
514 begin
515 Result := OSI . pthread mutex lock (SL . QLock ’ Access) ;
516 pragma Assert (Result = 0) ;
517 I n s e r t (SL) ;
518 i f SL . Lock Flag = True then
519 Result := OSI . pthread mutex unlock (SL . QLock ’ Access) ;
520 pragma Assert (Result = 0) ;
521 Result := OSI . pthread mutex lock (
522 SL . LockSeq (Current Task .Common. SuspensionQ Index) ’Access

) ;
523 pragma Assert (Result = 0) ;
524 else
525 SL . Lock Flag := True ;
526 Result := OSI . pthread mutex unlock (SL . QLock ’ Access) ;
527 pragma Assert (Result = 0) ;
528 end i f ;
529 end Acquire ;
530
531 procedure Release (SL : in out Suspension Lock) i s
532 temp : I n t e g e r ;
533 i , Next , Index : I n t e g e r ;
534 T P : System . Any Pr ior i ty := System . Any Prior i ty ’ F i r s t ;
535 Result : I n t e r f a c e s .C. i n t ;
536 begin
537 Result := OSI . pthread mutex lock (SL . QLock ’ Access) ;
538 pragma Assert (Result = 0) ;
539 i f SL . Order = Pr io r i ty Orde red then
540 Remove PRIO (SL) ;
541 else
542 Remove FIFO (SL) ;
543 end i f ;
544
545 i f SL . Length > 0 then
546 Result := OSI . pthread mutex unlock (SL . QLock ’ Access) ;
547 pragma Assert (Result = 0) ;
548 Index := SL .SSQ (1) . Id .Common. SuspensionQ Index ;
549 −− Put Line (”∗∗∗∗ Releas ing ” & Integer ’ Image (Index)) ;
550 Result := OSI . pthread mutex unlock (SL . LockSeq (Index) ’

Access) ;
551 pragma Assert (Result = 0) ;
552 else
553 SL . Lock Flag := False ;
554 Result := OSI . pthread mutex unlock (SL . QLock ’ Access) ;
555 pragma Assert (Result = 0) ;
556 end i f ;
557 end Release ;
558
559 function H Queued Prior ity (SL : in out Suspension Lock)
560 return System . Any Pr ior i ty i s
561 i : I n t e g e r ;
562 Result : I n t e r f a c e s .C. i n t ;

205

563 T P , T Pr i o r i t y : System . Any Pr ior i ty := System . Any Prior i ty ’
F i r s t ;

564 begin
565 Result := OSI . pthread mutex lock (SL . QLock ’ Access) ;
566 pragma Assert (Result = 0) ;
567 for i in 1 . . SL . Length loop
568 i f T Pr io r i t y < STPO. Get Pr i o r i t y (SL .SSQ (i) . Id) then
569 T Pr i o r i t y := STPO. Get Pr i o r i t y (SL .SSQ (i) . Id) ;
570 end i f ;
571 end loop ;
572 Result := OSI . pthread mutex unlock (SL . QLock ’ Access) ;
573 pragma Assert (Result = 0) ;
574 return T Pr io r i t y ;
575 end H Queued Prior ity ;
576
577 −−−−−−−−−−−−−−−−−−−−−−−−
578 −−−− MSRP Routines −−−−
579 −−−−−−−−−−−−−−−−−−−−−−−−
580 function pthread mutex in i t
581 (mutex : access pthread mutex t ;
582 a t t r : access pthread mutexatt r t) return i n t ;
583 pragma Import (C, pthread mutex in i t , ” pthread mutex in i t ”) ;
584
585 function pthread mutex destroy (mutex : access pthread mutex t)

return i n t ;
586 pragma Import (C, pthread mutex destroy , ” pthread mutex destroy ”) ;
587
588 function pthread mutex lock (mutex : access pthread mutex t)

return i n t ;
589 pragma Import (C, pthread mutex lock , ” pthread mutex lock ”) ;
590
591 function pthread mutex unlock (mutex : access pthread mutex t)

return i n t ;
592 pragma Import (C, pthread mutex unlock , ” pthread mutex unlock ”) ;
593
594 function p t h r e a d c o n d a t t r i n i t
595 (a t t r : access pthr ead condat t r t) return i n t ;
596 pragma Import (C, p t h r e a d c o n d a t t r i n i t , ” p t h r e a d c o n d a t t r i n i t ”) ;
597
598 function pthr ead condat t r de s t roy
599 (a t t r : access pthr ead condat t r t) return i n t ;
600 pragma Import (C, pthread condat t r de s t roy , ”

p th r ead condat t r de s t roy ”) ;
601
602 function p t h r e a d c o n d i n i t
603 (cond : access pthread cond t ;
604 a t t r : access pthr ead condat t r t) return i n t ;
605 pragma Import (C, p thr ead cond in i t , ” p t h r e a d c o n d i n i t ”) ;
606
607 function pthread cond dest roy (cond : access pthread cond t)

return i n t ;
608 pragma Import (C, pthread cond destroy , ” pthread cond des t roy ”) ;
609

206

610 function pth r ead cond s i gna l (cond : access pthread cond t) return
i n t ;

611 pragma Import (C, pthread cond s igna l , ” p th r ead cond s i gna l ”) ;
612
613 function pthread cond wait
614 (cond : access pthread cond t ;
615 mutex : access pthread mutex t) return i n t ;
616 pragma Import (C, pthread cond wait , ” pthread cond wait ”) ;
617
618 function pthread cond t imedwait
619 (cond : access pthread cond t ;
620 mutex : access pthread mutex t ;
621 abstime : access t imespec) return i n t ;
622 pragma Import (C, pthread cond timedwait , ” pthread cond t imedwait ”

) ;
623
624
625 procedure I n i t i a l i z e (S : in out S Object) i s
626 Result : I n t e r f a c e s .C. i n t ;
627 begin
628 S . State := False ;
629 S . Waiting := False ;
630 Result := pthread mutex in i t (S . L ’ Access , Mutex Attr ’ Access) ;
631 pragma Assert (Result = 0 or else Result = ENOMEM) ;
632 i f Result = ENOMEM then
633 raise Storage Error ;
634 end i f ;
635 Result := p t h r e a d c o n d i n i t (S .CV’ Access , Cond Attr ’ Access) ;
636 pragma Assert (Result = 0 or else Result = ENOMEM) ;
637 i f Result /= 0 then
638 Result := pthread mutex destroy (S . L ’ Access) ;
639 pragma Assert (Result = 0) ;
640 i f Result = ENOMEM then
641 raise Storage Error ;
642 end i f ;
643 end i f ;
644 end I n i t i a l i z e ;
645
646 procedure Se t Fa l s e (S : in out S Object) i s
647 Result : I n t e r f a c e s .C. i n t ;
648 begin
649 SSL . Abort Defer . a l l ;
650 Result := pthread mutex lock (S . L ’ Access) ;
651 pragma Assert (Result = 0) ;
652 S . State := False ;
653 Result := pthread mutex unlock (S . L ’ Access) ;
654 pragma Assert (Result = 0) ;
655 SSL . Abort Undefer . a l l ;
656 end Se t Fa l s e ;
657
658 procedure Set True (S : in out S Object) i s
659 Result : I n t e r f a c e s .C. i n t ;
660
661 begin

207

662 SSL . Abort Defer . a l l ;
663 Result := pthread mutex lock (S . L ’ Access) ;
664 pragma Assert (Result = 0) ;
665 i f S . Waiting then
666 S . Waiting := False ;
667 S . State := False ;
668 Result := pth r ead cond s i gna l (S .CV’ Access) ;
669 pragma Assert (Result = 0) ;
670 else
671 S . State := True ;
672 end i f ;
673 Result := pthread mutex unlock (S . L ’ Access) ;
674 pragma Assert (Result = 0) ;
675 SSL . Abort Undefer . a l l ;
676 end Set True ;
677
678 procedure Suspend Unti l True (S : in out S Object) i s
679 Result : I n t e r f a c e s .C. i n t ;
680 begin
681 SSL . Abort Defer . a l l ;
682 Result := pthread mutex lock (S . L ’ Access) ;
683 pragma Assert (Result = 0) ;
684
685 i f S . Waiting then
686 Result := pthread mutex unlock (S . L ’ Access) ;
687 pragma Assert (Result = 0) ;
688 SSL . Abort Undefer . a l l ;
689 raise Program Error ;
690 else
691 i f S . State then
692 S . State := False ;
693 else
694 S . Waiting := True ;
695 loop
696 Result := pthread cond wait (S .CV’ Access , S . L ’ Access) ;
697 pragma Assert (Result = 0 or else Result = EINTR) ;
698
699 exit when not S . Waiting ;
700 end loop ;
701 end i f ;
702
703 Result := pthread mutex unlock (S . L ’ Access) ;
704 pragma Assert (Result = 0) ;
705
706 SSL . Abort Undefer . a l l ;
707 end i f ;
708 end Suspend Unti l True ;
709
710 procedure Set PML (P : I n t e g e r) i s
711 begin
712 STPO. S e l f .Common.PML := P;
713 end Set PML ;
714
715 function Get PML return I n t e g e r i s

208

716 begin
717 return STPO. S e l f .Common.PML;
718 end Get PML ;
719
720 procedure setProc (CPU : I n t e g e r ; C : I n t e g e r) i s
721 begin
722 Ce i l ing Array Length (CPU) := Cei l ing Array Length (CPU) + 1 ;
723 Ce i l i ng Array (CPU, 1) := C;
724 end setProc ;
725
726 procedure MSRP Init i s
727 Result : I n t e r f a c e s .C. i n t ;
728 begin
729 −− i n i t i a l i z e p r o t e c t i on l o c k
730 Result :=
731 p t h r e a d s p i n i n i t (MSRPQ’ Access , PTHREAD PROCESS SHARED) ;
732 pragma Assert (Result = 0) ;
733 end MSRP Init ;
734
735 procedure Lock (
736 r e s : in out MSRP)
737 i s
738 temp , c l en , s l e n , C, i : I n t e g e r ;
739 Result : I n t e r f a c e s .C. i n t ;
740 begin
741 null ;
742
743 end Lock ;
744
745
746 procedure Unlock (
747 r e s : in out MSRP)
748 i s
749 temp , c l en , s l e n : I n t e g e r ;
750 C : I n t e g e r ;
751 comp , comp index : I n t e g e r ;
752 Result : I n t e r f a c e s .C. i n t ;
753 r e l e a s e d : Boolean := Fal se ;
754 begin
755 null ;
756 end Unlock ;
757
758 procedure Stop i s
759 C, comp , comp index : I n t e g e r ;
760 c l en , s l e n : I n t e g e r ;
761 r e l e a s e d : Boolean := Fal se ;
762 Result : I n t e r f a c e s .C. i n t ;
763 begin
764 null ;
765 end Stop ;
766
767 function Sync Val Compare And Swap
768 (Des t inat i on : access Unsigned 32 ; −− the t a r g e t number
769 Comparand : Unsigned 32 ; −− was i t s t i l l t he o ld va lue

209

770 New Value : Unsigned 32) −− the new va lue
771 return Unsigned 32
772 i s
773 Pr ior Value : Unsigned 32 ;
774 pragma Suppress (Al l Checks) ;
775 begin
776 Asm(” lock cmpxchg %1, %2;” ,
777 Inputs => (Unsigned 32 ’ Asm Input (” r ” , New Value) , −−

%1
778 Unsigned 32 ’ Asm Input (”m” , Des t inat i on . a l l) , −−

%2
779 Unsigned 32 ’ Asm Input (”a” , Comparand)) ,
780 Outputs => (Unsigned 32 ’ Asm Output (”=a” , Pr ior Value)) , −−

%0
781
782 Clobber => ”memory , cc ” ,
783 V o l a t i l e => True) ;
784 −− re turn %eax
785
786 return Pr ior Value ;
787 end Sync Val Compare And Swap ;
788 end System . Mu l t ip ro c e s so r s . QueueLock ;

Listing B.2: Queue Lock Package Implementation

210

Bibliography

[1] IEEE standard for information technology - portable operating system in-

terface (posix). shell and utilities. IEEE Std 1003.1, 2004 Edition The

Open Group Technical Standard. Base Specifications, Issue 6. Includes IEEE

Std 1003.1-2001, IEEE Std 1003.1-2001 Cor 1-2002 and IEEE Std 1003.1-

2001 Cor 2-2004. Shell, pages 0 1–, 2004.

[2] Linux Manual Page, http://www.linuxmanpages.com/, Aug, 2013.

[3] B. B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor

scheduling: to partition or not to partition. In RTCSA ’00: Proceedings of

the Seventh International Conference on Real-Time Systems and Applications,

page 337, Washington, DC, USA, 2000. IEEE Computer Society.

[4] T. P. Baker. Stack-based scheduling for realtime processes. Real-Time Syst.,

3(1):67–99, April 1991.

[5] T. P. Baker. A comparison of global and partitioned edf schedulability tests

for multiprocessors. In International Conf. on Real-Time and Network Sys.,

pages 119–127, 2005.

[6] W. A. Barrett, R. M. Bates, D. A. Gustafson, and J. D. Couch. Compiler

construction: theory and practice (2nd ed.). SRA School Group, USA, 1986.

[7] N. L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K.

Reinhardt. The m5 simulator: Modeling networked systems. Micro, IEEE,

26(4):52 –60, july-aug. 2006.

[8] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill. Translation lookaside

buffer consistency: a software approach. In Proceedings of the third inter-

211

national conference on Architectural support for programming languages and

operating systems, ASPLOS III, pages 113–122, New York, NY, USA, 1989.

ACM.

[9] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A flexible

real-time locking protocol for multiprocessors. In RTCSA ’07: Proceedings of

the 13th IEEE International Conference on Embedded and Real-Time Com-

puting Systems and Applications, pages 47–56, Washington, DC, USA, 2007.

IEEE Computer Society.

[10] G. Bollella and J. Gosling. The real-time specification for java. Computer,

33(6):47–54, 2000.

[11] B. B. Brandenburg and J. H. Anderson. Optimality results for multiprocessor

real-time locking. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st,

pages 49 –60, 2010.

[12] B. B. Brandenburg and J. H. Anderson. The OMLP family of optimal multi-

processor real-time locking protocols. Design Automation for Embedded Sys-

tems, pages 1–66, 2012.

[13] B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, and J. H.

Anderson. Real-time synchronization on multiprocessors: To block or not to

block, to suspend or spin? In RTAS ’08: Proceedings of the 2008 IEEE Real-

Time and Embedded Technology and Applications Symposium, pages 342–353,

Washington, DC, USA, 2008. IEEE Computer Society.

[14] A. Burns and A. J. Wellings. Concurrent and Real-Time Programming in Ada.

Cambridge University Press, New York, NY, USA, 3rev ed edition, 2007.

[15] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages

(Fourth Edition). Addison-Wesley Longmain, 2009.

[16] A. Burns and A. J. Wellings. Dispatching domains for multiprocessor plat-

forms and their representation in ada. In Proceedings of the 15th Ada-Europe

international conference on Reliable Software Technologies, Ada-Europe’10,

pages 41–53, Berlin, Heidelberg, 2010. Springer-Verlag.

212

[17] J. Casazza. Intel core i7-800 processor series and the intel core i5-700 processor

series based on intel microarchitecture (nehalem). Intel White Paper, Intel

Corporation, USA, 2009.

[18] S. Chandra, A. and Prashant. Hierarchical scheduling for symmetric multi-

processors. IEEE Trans. Parallel Distrib. Syst., 19(3):418–431, 2008.

[19] Y. Chang, R. Davis, and A.J. Wellings. Reducing Queue Lock Pessimism

in Multiprocessor Schedulability Analysis. In Proceedings of the 18th In-

ternational Conference on Real-Time and Network Systems, pages 99–108,

Toulouse, France, November 2010.

[20] R. Davis and A. Burns. A survey of hard real-time scheduling algorithms and

schedubility analysis techniques for multiprocessor systems. 2009.

[21] U. C. Devi, H. Leontyev, and J. H. Anderson. Efficient synchronization under

global edf scheduling on multiprocessors. In ECRTS ’06: Proceedings of the

18th Euromicro Conference on Real-Time Systems, pages 75–84, Washington,

DC, USA, 2006. IEEE Computer Society.

[22] B. Dobbing and A. Burns. The ravenscar tasking profile for high integrity real-

time programs. In Proceedings of the 1998 annual ACM SIGAda international

conference on Ada, SIGAda ’98, pages 1–6, New York, NY, USA, 1998. ACM.

[23] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority

preemptive multiprocessor scheduling. Real-Time Systems Symposium, IEEE

International, 0:377–386, 2009.

[24] S. Edmond. Towards Ada 2012: An interim report. In Jorge Real and Tullio

Vardanega, editors, Reliable Software Technologiey Ada-Europe 2010, volume

6106 of Lecture Notes in Computer Science, pages 238–250. Springer Berlin

Heidelberg, 2010.

[25] M. B. Franklin. Who’s Using Ada? http://www.seas.gwu.edu/m̃feldman/ada-

project-summary.html. Technical report, Feburary 2012.

[26] P. Gai, G. Lipari, and M. Natale. Minimizing memory utilization of real-time

task sets in single and multi-processor systems-on-a-chip. In In Proceedings of

213

the 22nd IEEE Real-Time Systems Symposium, pages 73–83. Society Press,

2001.

[27] F. Garcia and J. Fernandez. POSIX thread libraries

http://dl.acm.org/citation.cfm?id=348120.348381. Linux J., 2000(70es),

February 2000.

[28] A. Garg. Real-time linux kernel scheduler.

[29] P. B. Hansen. Monitors and concurrent pascal: a personal history. In The

second ACM SIGPLAN conference on History of programming languages,

HOPL-II, pages 1–35, New York, NY, USA, 1993. ACM.

[30] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative

Approach. Morgan Kaufmann Publishers, 2007.

[31] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support

for lock-free data structures. In Proceedings of the 20th annual international

symposium on computer architecture, ISCA ’93, pages 289–300, New York,

NY, USA, 1993. ACM.

[32] IBM. IBM AIX Systems Manual, http://www-

03.ibm.com/systems/power/software/aix/about.html, 2012.

[33] The IEEE and The Open Group. The Open Group Base Specifications Issue

7 – IEEE Std 1003.1, 2007 Edition. IEEE, New York, NY, USA, 2007.

[34] J. Isaak. Standards-the history of posix: a study in the standards process.

Computer, 23(7):89–92, 1990.

[35] ISO. ISO/IEC 9899:2011 Information technology — Programming languages

— C. International Organization for Standardization, Geneva, Switzerland,

December 2011.

[36] P. Li, B. Ravindran, S. Suhaib, and S. Feizabadi. A formally verified

application-level framework for real-time scheduling on posix real-time op-

erating systems. IEEE Trans. Software Engineering, 30:629, 2004.

214

[37] J. Liebeherr, A. Burchard, Y. Oh, and Sang H. Son. New strategies for

assigning real-time tasks to multiprocessor systems. volume 44, pages 1429–

1442, Los Alamitos, CA, USA, 1995. IEEE Computer Society.

[38] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wsowski. Evolution of

the linux kernel variability model. In Proceedings of the 14th international

conference on Software product lines: going beyond, SPLC’10, pages 136–150,

Berlin, Heidelberg, 2010. Springer-Verlag.

[39] J. Miranda, E. Schonberg, and G. Dismukes. The implementation of ada

2005 interface types in the gnat compiler. In Tullio Vardanega and Andy

Wellings, editors, Reliable Software Technology ?Ada-Europe 2005, volume

3555 of Lecture Notes in Computer Science, pages 208–219. Springer Berlin

Heidelberg, 2005.

[40] I. Molnar. The native posix thread library for linux,

http://www.cs.utexas.edu/witchel/372/lectures/POSIX Linux Threading.pdf.

Technical report, Tech. Rep., RedHat, Inc, 2003.

[41] G.E. Moore. Cramming more components onto integrated circuits. Proceed-

ings of the IEEE, 86(1):82 –85, Jan. 1998.

[42] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and

formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, March 1992.

[43] Y. Oh and S. H. Sang. Fixed-Priority Schedul-

ing of Periodic Tasks on Multiprocessor Systems,

http://www.ncstrl.org:8900/ncstrl/servlet/searchformnamez=detail. Char-

lottesville, VA, USA, 1995. University of Virginia.

[44] U. Omar, P. Zapata, and P. M. Alvarez. Edf and rm multiprocessor scheduling

algorithms: Survey and performance evaluation. 08 2010.

[45] R. Petersen. Linux: The Complete Reference. McGraw-Hill Professional, 4th

edition, 2000.

[46] G. F. Pfister and V. A. Norton. “hot spot” contention and combining

in multistage interconnection networks. IEEE Transactions on Computers,

34(10):943–948, 1985.

215

[47] M. J. Quinn. Parallel computing (2nd ed.): theory and practice. McGraw-Hill,

Inc., New York, NY, USA, 1994.

[48] R. Rajkumar. Real-time synchronization protocols for shared memory mul-

tiprocessors. In Distributed Computing Systems, 1990. Proceedings., 10th In-

ternational Conference on, pages 116 –123, June 1990.

[49] R. S. Rajkumar, L. Lehoczky, and J.P.Lehoczky. Real-time synchronization

protocols for multiprocessors. Real-Time Systems Symposium Proceedings.,

pages 259–269, 12 1988.

[50] J. Ras and M. K. Cheng, A. An evaluation of the dynamic and static multipro-

cessor priority ceiling protocol and the multiprocessor stack resource policy

in an smp system. In RTAS ’09: Proceedings of the 2009 15th IEEE Sympo-

sium on Real-Time and Embedded Technology and Applications, pages 13–22,

Washington, DC, USA, 2009. IEEE Computer Society.

[51] H. Rhan and J. W. Liu. Validating timing constraints in multiprocessor and

distributed real-time systems. In Proceedings of the 14th International Con-

ference on Distributed Computing Systems, pages 162–171.

[52] I. Ripoll, A. Crespo, and P. Balbastre. A new application-defined scheduling

implementation in rtlinux. In Sixth Real-Time Linux Workshop, pages 175–

181, 2004.

[53] M. A. Rivas and M. G. Harbour. A POSIX-Ada interface for application-

defined scheduling. In Proceedings of the 7th Ada-Europe International Con-

ference on Reliable Software Technologies, Ada-Europe ’02, pages 136–150,

London, UK, UK, 2002. Springer-Verlag.

[54] M. A. Rivas and M. G. Harbour. Application-defined scheduling in ada.

In Proceedings of the International Real-Time Ada Workshop (IRTAW-2003,

pages 77–84, 2003.

[55] S. Robbins. Starving philosophers: experimentation with monitor synchro-

nization. In Proceedings of the thirty-second SIGCSE technical symposium on

Computer Science Education, SIGCSE ’01, pages 317–321, New York, NY,

USA, 2001. ACM.

216

[56] P. Rogers and A. J. Wellings. Openada: Compile-time reflection for ada 95. In

Albert Llamos and Alfred Strohmeier, editors, Reliable Software Technologies

- Ada-Europe 2004, volume 3063 of Lecture Notes in Computer Science, pages

166–177. Springer Berlin Heidelberg, 2004.

[57] B. Senouci, A. Bouchhima, F. Rousseau, F. Petrot, and A. Jerraya. Fast

prototyping of posix based applications on a multiprocessor soc architecture:

“hardware-dependent software oriented approach”. In Rapid System Pro-

totyping, 2006. Seventeenth IEEE International Workshop on, pages 69–75,

2006.

[58] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An

approach to real-time synchronization. IEEE Trans. Comput., 39(9):1175–

1185, 1990.

[59] QNX Software. QNX neutrino RTOS 6.3.2,

http://www.qnx.org.uk/products/neutrino-rtos/neutrino-rtos.html, 2007.

[60] H. Sundell and P. Tsigas. Space efficient wait-free buffer sharing in multi-

processor real-time systems based on timing information. In Real-Time Com-

puting Systems and Applications, 2000. Proceedings. Seventh International

Conference on, pages 433 –440, 2000.

[61] H. Takada and K. Sakamura. A novel approach to multiprogrammed multi-

processor synchronization for real-time kernels. In Real-Time Systems Sym-

posium, 1997. Proceedings., The 18th IEEE, pages 134–143, Dec.

[62] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware schedul-

ing on smp-cmp-smt multiprocessors. In EuroSys ’07: Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,

pages 47–58, New York, NY, USA, 2007. ACM.

[63] R. Thekkath and S. J. Eggers. Impact of sharing-based thread placement on

multithreaded architectures. In Proceedings of the 21st annual international

symposium on Computer architecture, ISCA ’94, pages 176–186, Los Alamitos,

CA, USA, 1994. IEEE Computer Society Press.

217

[64] L. A. Torrey, J. Coleman, and B. P. Miller. A comparison of interactivity in

the linux 2.6 scheduler and an mlfq scheduler. Softw. Pract. Exper., 37(4):347–

364, April 2007.

[65] A. Tripathi. Challenges designing next-generation middleware systems. Com-

mun. ACM, 45(6):39–42, June 2002.

[66] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical clustering:

a structure for scalable multiprocessor operating system design. J. Supercom-

put., 9(1-2):105–134, 2005.

[67] T. V. Verghese. Resource management issues for shared-memory multiproces-

sors. PhD thesis, Stanford, CA, USA, 1998. AAI9837261.

[68] Giering E. W. and T. P. Baker. The gnu ada runtime library (gnarl). In

Proceedings of the eleventh annual Washington Ada symposium & summer

ACM SIGAda meeting on Ada, WADAS ’94, pages 97–107, New York, NY,

USA, 1994. ACM.

[69] C. Wang, H. Takada, and K. Sakamura. Priority inheritance spin locks for

multiprocessor real-time systems. 2nd International Symposium on Parallel

Architectures, Algorithms and Networkds, pages 70–76, 1996.

[70] Y. C. Wang and K. J. Lin. Implementing a general real-time scheduling

framework in the red-linux real-time kernel. In Real-Time Systems Sympo-

sium, 1999. Proceedings. The 20th IEEE, pages 246–255.

[71] A. J. Wellings. Concurrent and Real-Time Programming in Java. John Wiley

& Sons, Inc., 2004.

[72] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for

store-wait-free multiprocessors. SIGARCH Comput. Archit. News, 35(2):266–

277, June 2007.

[73] V. Yodaiken. The RTLinux Manifesto,

http://citeseer.ist.psu.edu/yodaiken99rtlinux.html. In Proc. of The 5th

Linux Expo, Raleigh, NC, March 1999.

218

[74] J. Zamorano, J. Ruiz, and J.A. Puente. Implementing ada.real time.clock and

absolute delays in real-time kernels. In Dirk Craeynest and Alfred Strohmeier,

editors, Reliable SoftwareTechnologies Ada-Europe 2001, volume 2043 of Lec-

ture Notes in Computer Science, pages 317–327. Springer Berlin Heidelberg,

2001.

[75] A. Zerzelidis, A. Burns, and A. J. Wellings. Correcting the edf protocol in

ada 2005. In Proceedings of IRTAW 13, Ada Letters, XXVII(2), pages 18–22,

2007.

219

