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Abstract 

The aim of the research was to identify novel similarity measures for similarity-based 

virtual screening. Similarity-based virtual screening is at the lead identification stage of 

drug discovery process and normally requires explorations in large scale databases. 

Thus, the improvement of accuracy of the methods employed could result in a 

significant enhancement of effectiveness of the whole process of drug discovery. There 

are three key components involved in similarity-based virtual screening, i.e., structural 

representations, similarity coefficients and weighting schemes. The research focuses on 

the choice of similarity coefficient and weighting scheme.  

Three investigations have been conducted: investigation of interactions between 

weighting schemes and similarity coefficients; comparison of binary coefficients and 

evaluation of similarity coefficients using weighted fingerprints. Four chemical 

databases were used, i.e., MDDR, WOMBAT, MUV and ChEMBL. The results show 

that there are strong, and often quite subtle, interactions between the similarity 

coefficient and the weighting scheme comprising a similarity measure. They also 

exhibit that, although the Tanimoto coefficient remains one of the most practical 

coefficients for use in similarity-based virtual screening on binary representations, it 

may not be the coefficient of choice when weighting schemes are applied. In addition, 

other coefficients were identified as favorable for similarity-based virtual screening 

when weighted fingerprints are available. The findings indicate that the study of the 

combinations of weighting schemes and similarity coefficients could make a significant 

contribution to similarity-based virtual screening. 
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Chapter 1:  Introduction 

Launching a new drug requires considerable labor, time and expense. Twelve to fifteen 

years is generally recognized as the time required for developing a new drug from initial 

inception to final production. On average, it can cost approximately US$750 million and 

the tests up of a million compounds to identify a new molecule (Atkinson and Jones, 

2009). As a global industry, drug discovery is a crucial area of research. 

The modern drug design process can be generally described as five main steps as 

follows: 

 

Figure 1.1 The drug design process 

In the initial stages, a target (e.g., a protein) is identified as the focus of a certain disease 

from genetic information. The next two steps focus on the identification of new lead 

structures (i.e., drug candidates) that can block or activate the target, and the 

optimization of these structures in order to increase the biological activity and ADMET. 

The fourth step usually involves in vitro and in vivo tests which include toxicity 

assessments and animal tests. The final step focuses on human testing.  

In the drug design process, the identification and optimization of drug candidates are 

complicated, due to the complexity of molecular structure and features. Computational
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 methods thus are often used. The use of such methods to support lead identification and 

optimization is referred to as “chemoinformatics”.  

Brown (1998) first introduced the term, “chemoinformatics”, as: 

“The use of information technology and management has become a critical part of the 

drug discovery process. Chemoinformatics is the mixing of those information resources 

to transform data into information, and information into knowledge, for the intended 

purpose of making better decisions faster in the area of drug lead identification and 

optimization.” 

Gasteiger (2006) also provides a much broader definition of chemoinformatics: “The 

application of informatics methods to solve chemical problems”. Hence, 

chemoinformatics covers many areas such as “chemical structure representation, 

chemical reaction manipulation, data processing and data analysis, property prediction, 

chemometrics, data mining, structure elucidation, and synthesis design” (Gasteiger, 

2006). 

More recently, Brown (2009) emphasizes that chemoinformatics is not only an essential 

component of chemical discovery, but also the field affected by mathematics, statistics, 

biology and computer science. 

With the capabilities of generating compounds increased, it is expected that the drug 

discovery process can be significantly accelerated. The new field of chemoinformatics 

provides an invaluable tool in these efforts. As a crucial component of 

chemoinformatics, similarity-based virtual screening is the main focus of this thesis and 

is discussed in the next chapter. 

The objective of this thesis is to further develop previous research findings on similarity 

coefficients and weighting schemes, and identify the most effective and appropriate 

approaches. To achieve this aim, the thesis is organized in the following way:  
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Chapter 2 begins by laying out the main components of molecular similarity search, and 

then introduces the most relevant and recent research findings. Chapter 3 describes the 

experimental design of this study, which includes the experimental databases, the 

methods of similarity search and the methods to evaluate the experimental results. 

Chapter 4 investigates the interactions between similarity coefficients and weighting 

schemes in similarity-based virtual screening. Three similarity coefficients and five 

weighting schemes are involved. Chapter 5 compares a large number of coefficients (i.e., 

44) based on their performance on binary chemical similarity search. Chapter 6 explores 

the high performing coefficients in Chapter 5 and evaluates their performance when 

working with weighting schemes. The final chapter provides a conclusion of the thesis 

and suggests areas for future research based on this study. 
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Chapter 2:  Similarity-Based Virtual 

Screening 

2.1 Introduction 

In this chapter, aspects associated with the concept of similarity-based virtual screening 

are reviewed. The review starts with an introduction of how computational technology 

influenced modern drug design as well as main approaches in virtual screening. Then 

the three principal components in similarity-based virtual screening are discussed in 

detail. Applications of similarity search and several relevant studies are also reviewed. 

Therefore, this chapter presents a theoretical basis of the studies reported in this thesis.  

Traditional approaches to drug discovery rely on a step-wise synthesis and screening 

program for large numbers of compounds to optimize activity profiles. Since the 1980s, 

rational drug design has become the standard methodology for drug discovery. It is the 

inventive process which aims to find new medications based on the knowledge of the 

biological target (Guldbrandt et al., 2002). The drug is usually recognised as a small 

organic  molecule (sometimes  also referred to as a ligand) that can activate or inhibit 

functions of a biomolecule, such as a protein, that benefits patients.  

As shown in Figure 1.1, the first step of drug design process is the identification of a 

molecular target critical to a disease process or an infectious pathogen. The next step of 

drug design is the determination of the molecular structure of the target. In order to find 

suitable drug candidates, large numbers of compounds are tested to investigate how they 

interact with a certain biological target (Bajorath, 2002). This real screening process is 

known as high-throughput screening (HTS) and the most potential compounds obtained 

http://en.wikipedia.org/wiki/Invention
http://en.wikipedia.org/wiki/Medications
http://en.wikipedia.org/wiki/Biological_target
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Small_molecule
http://en.wikipedia.org/wiki/Biomolecule
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Patient
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are called hits. HTS can rapidly select those substances that affect the target; however, it 

is extremely expensive.   

Since the 1960s, computers have been used in drug discovery in order to reduce the cost 

and increase the effectiveness (Ekins, 2006). Richon (1994) indicated that: 

“…computational chemistry/molecular modeling is the science (or art) of representing 

molecular structures numerically and simulating their behaviour with the equations of 

quantum and classical physics.”  He claimed that in computational chemistry programs 

scientists can “generate and present molecular data including geometries (bond lengths, 

bond angles and torsion angles), energies (heat of formation, activation energy, etc.), 

electronic properties (moments, charges, ionization potential and electron affinity), 

spectroscopic properties (vibrational modes, chemical shifts) and bulk properties 

(volumes, surface areas, diffusion, viscosity, etc.).” At this stage, finding a suitable 

ligand is not the only factor of concern. In addition, according to Hubbard (1997), some 

other properties, bioavailability, metabolic half-life, lack of side effects etc. should be 

optimized before the ligand becomes an efficient drug . 

Armed with this information, researchers in the pharmaceutical industry can use 

powerful computational technology to search through databases containing the 

structures of many different chemical compounds. The computer can select compounds 

that are most likely to interact with the receptor, and these can be tested in the laboratory.  

If an interacting compound cannot be found, other programs could be used that try to 

build molecules that are likely to interact with the receptor. Further programs can search 

databases to identify compounds with similar properties to a known compound. Thus, 

the idea is to narrow down the search as much as possible to avoid the expense of large-

scale lab tests. This searching process also is known as virtual screening (VS). 

The purpose of virtual screening is to narrow the range of target molecules by scoring, 

ranking and/or filtering molecular datasets with computational methods and data mining 

technologies.  As defined by Walters et al. (1998), virtual screening is a process 

"automatically evaluating very large libraries of compounds" using computer programs.  

http://en.wikipedia.org/wiki/Bioavailability
http://en.wikipedia.org/wiki/Biological_half-life
http://en.wikipedia.org/wiki/Adverse_drug_reaction
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After virtual screening, a manageable number of compounds can be targeted for 

synthesis, testing or purchase.  

The process of virtual screening can be shown as a flowchart as follows (Leach and 

Gillet, 2007):  

 

Figure 2.1 Typical virtual screening processes 

As Figure 2.1 shows, typically the first step of virtual screening is to filter out the 

structures unlikely to be drug like molecules using some criteria, e.g., molecular weight, 

calculated value of logP, number of hydrogen bond donors and hydrogen bond acceptors 

(Lipinski et al., 1997). After the general filters, the virtual screening techniques can be 

divided into two categories: ligand-based (if the ligand is known) and structure-based (if 

the target structure is known).  

For ligand-based virtual screening approaches, three different techniques could be used 

in terms of the number of actives known. If only a single active molecule is known, such 

as a competitor's compound or a natural product, then similarity searching can be used. 

In addition, if several structurally related actives are available, then pharmacophore 

mapping can be applied to identify common patterns of features. Moreover, if it is 

difficult to identify common patterns and significant numbers of both active and inactive 

molecules are available, then machine learning techniques can be adopted to verify the 

structures that suitable for virtual screening, e.g., neural network (Leach and Gillet, 

2007). 
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For structure-based virtual screening approaches, once the 3D structure of protein(s) is 

known then protein-ligand docking can be employed. Although structure-based design 

methods have been studied for many years and numerous methods have been suggested 

for protein-ligand docking (Taylor et al., 2002), some drawbacks of structure-based 

approaches still need to be considered. Generally, there are two components to the 

docking problem, the method of identifying the poses of possible protein-ligands and the 

method of scoring the poses so as to find the binding mode for each compound. Due to 

the complexity and the flexibility of compounds, however, obtaining three-dimensional 

coordinates of the protein structure and docking ligands into the binding pocket of a 

target protein for large datasets are time consuming and difficult. Moreover, there are 

still problems regarding the ability of docking methods to predict the affinity or the rank 

of structures (Warren et al., 2006).  

Kuhn and colleagues (Schnecke and Kuhn, 2000; Zavodszky et al., 2009) summarized 

challenges of structure-based virtual screening. Firstly, for each binding site, many 

ligand candidates in many orientations need to be evaluated. Secondly, normally as 

many as a hundred low-energy conformations exist for one candidate. Thirdly, usually 

many thousands of candidates need to be screened to identify several lead compounds. 

In addition, the process of scoring and screening is too long due to computational 

intensity. More recently, Cheng et al. (2012) reviewed a number of successful 

applications in structure-based virtual screening. They also highlighted the aspects 

which are crucial to a successful implementation, i.e., the in-depth knowledge of target-

ligand interactions, optimized scoring function and the application of machine learning 

techniques.   

Compared with structure-based virtual screening methods, one of the most widely used 

and simplest methods is using chemical similarity analysis (or molecular similarity 

search) methods to scan all the molecules from a dataset against one active structure.  

As one of the most important topics in chemoinformatics, similarity search approaches 

have been intensively used and been considered to enhance the drug discovery process 
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(Geppert et al., 2010; Jaworska and Nikolova, 2004; Johnson and Maggiora, 1990; 

Willett, 2008). Similarity search is the process of identifying molecules in a database 

which are structurally similar to a reference molecule, where a reference molecule is one 

that has been shown to have the biological activity of interest. It is based on Johnson and 

Maggiora’s similar property principle: “similar compounds have similar properties” 

(Johnson and Maggiora, 1990). It has been demonstrated that structurally similar 

compounds do have similar biological activity, and that the biological similarity 

increases with the increasing structural similarity (Martin et al., 2002).  

Similarity search is a simple and straight-forward method for retrieving chemical 

information. It thus becomes important when applied at the beginning of the drug 

discovery process. With the increase in computational ability and storage capacity, it 

was assumed that increasing the chemical diversity of compound libraries would 

enhance the drug discovery process. Similarity search is therefore also widely adopted 

in molecular diversity analysis and compound clustering (Dean and Lewis, 1999). The 

early studies of similarity search were conducted by Carhart et al. (1985) and Willett 

and Winterman (1986).  

The number of reported chemical substances is over 71 million (CAS, 2013). This is a 

huge and consistently increasing (over one million new compounds are found in each 

year) amount of chemical data. Before any virtual screening task could be undertaken, 

database availability is the first consideration. These databases are specifically designed 

to store chemical information, e.g., information about chemical and crystal structures, 

spectra, reactions and thermophysical data. The information enables users to obtain the 

required results within seconds (Leach and Gillet, 2007; Raymond et al., 2003).  

The effectiveness of similarity searching, i.e., its ability to identify bioactive molecules, 

is determined by the similarity measure that determines the degree of resemblance 

between the reference structure and each of the database structures. Willett et al. (1998) 

identified three key components involved in similarity searching. They are structural 

representation, similarity coefficient and weighting scheme. With this discipline, the 
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similarity searching of chemical databases can be interpreted as: using a structure that is 

known to be active, comparing it with the rest of the structures of the database, 

measuring the quantity of likeness between the selected structure and each structure in 

the entire chemical database using a similarity coefficient. Different weighting schemes 

can be applied to the selected structure and/or the database to enhance similarity results.  

2.2 Representations of Molecular Structures 

A molecular structure represents a vast amount of information. The information can be 

as simple as the count of elements or as sophisticated as descriptions of its shape or 

electrostatic field. Therefore, molecules can be represented in various ways. 

Basically, molecules are formed from collections of atoms and can be represented 

symbolically in several different ways. The molecular structures are represented by 

languages of chemistry which contain fundamental information on these molecules. It is 

difficult, however, to determine an optimum approach to represent molecular structures 

which is suitable for varied applications. 

Traditionally, molecules are represented by molecular formulas, structural formulas and 

line drawings. Molecular formulas, also called chemical formulas, indicate the actual 

numbers of atoms of different elements in one molecule of a compound. One example of 

this is the chemical formula H2O which indicates that there are two hydrogen atoms and 

one oxygen atom in a water molecule. In most cases, a molecular formula alone does not 

represent a unique molecule. For example, in the case of isomers, molecules with the 

same molecular formula have different arrangements of atoms. Structural formulas 

depict the structure of a molecule. They designate individual bonds between the atoms 

within a molecule represented as lines. There are several ways to achieve this, namely 

symbolic structural formula, graphical depiction as ‘ball and stick’ model or space-filled 

model represents a molecule in terms of the approximate size of atoms in three 

dimensional way.  
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These representations are more easily constructed and interpreted by people, but are less 

suitable for computers. Thus, finding a way to specify the features of molecules, identify 

the molecular structure even in the three-dimensional manner in which the atoms are 

bonded together is crucial. Moreover, they should be readable, computable and 

retrievable by computers, i.e., molecular representations. 

Molecular representations can represent chemical structures and their properties in 

different format. They play a fundamental role in molecular similarity search. Their 

importance has been described by Todeschini and Consonni as follows: “It is the final 

result of a logic and mathematical procedure which transforms chemical information 

encoded within a symbolic representation of a molecule into a useful number or the 

result of some standardized experiment” (Todeschini and Consonni, 2000).  

2.2.1 Representations of 2D Molecular structures 

In 2D, most representations are generated on the basis of graph theoretical methods 

(Biggs et al., 1976; Varnek and Baskin, 2011). They account for topological properties. 

Since the 1960s when computers were first suggested for processing chemical 

information, different computer readable molecular representations have been developed.  

2.2.1.1  Linear Notations  

Linear notations represent a molecular structure in the form of a linear sequence of 

alphanumeric characters. They are simple and compact, and consequently are suitable 

for manipulation such as storing and retrieval of large numbers of molecules or 

compounds in a chemical information system (Leach and Gillet, 2007). The early line 

notations include the Dyson/IUPAC notation and the Wiswesser Line Notation (WLN) 

during 1960s to 1970s (Willett, 2009).   

Later, the Simplified Molecular Input Line Entry Specification (SMILES) notation was 

widely used. It consists of a series of characters to specify how the non-hydrogen atoms 
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are arranged.  Initially, it was designed as an input method. It was then found that 

SMILES was relatively easy and explicit for storing molecular structures.  

Recently, a more advanced and increasingly-used line notation, called InChI (IUPAC 

International Chemical Identifier) was proposed by IUPAC (International Union of Pure 

and Applied Chemistry) and NIST (National Institute of Standards and Technology). It 

characterizes chemical structures by strings, and also contains more information than 

traditional line notations, such as the atoms and their bond connectivity, tautomeric 

information, isotopic information, stereo chemical and electronic charge information 

(Engel, 2006; IUPAC, 2011). Consider ethanol, CH3CH2OH, it can be represented as 

CCO in SMILES, InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3 in InChI. Comparing 

SMILES and InChl, the former was developed for use in in-house industrial 

chemoinformatics systems, while the latter was developed for use in open-source 

chemoinformatics software (Holliday and Willett, 2011).  

Linear notations can be used for storing compounds as a compact molecular 

representation. They can also be used for computational manipulation. They cannot, 

however, provide explicit information of 2D arrangement that the chemoinformatics 

systems require for some cases. Thus, the connection table, a data structure that records 

the molecular topology information, i.e., the atoms within a molecule and the ways that 

bonds link those atoms together, need to be introduced.  

2.2.1.2  Connection Table 

The connection table is another notable format of chemical structure representation in a 

computer system and is also a suitable approach for representing molecules as graphs 

(Engel, 2006). A connection table is an example of a graph. It describes a set of objects 

and their relationships as nodes and edges in a mathematical construct (Diestel, 2000; 

Wilson, 1996). It is a 2D matrix containing chemical information about all the atoms 

and bonds in a 2D structure. In comparison with SMILES notation, a connection table 

provides the same information but in a different format. Each row represents 

information about a particular atom such as the atom number, symbol, and number of 
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atoms to which it is directly bonded. Each atom is numbered as an index forming an 

atom list; moreover, each row in the bond list shows the indices of two atoms connected 

by a particular bond type.  

Morgan (1965) introduced an algorithm involving a node labeling technique in order to 

obtain unique machine descriptions of chemical compounds. The algorithm can be 

described as follows (Leach and Gillet, 2007): First, all nonhydrogen atoms are assigned 

numbers according to the number of heavy atoms to which they are attached. Second, 

for each atom, calculate a new value as sum of each of its neighbors and assign the new 

value to the atom. Repeat this process until the numbers of each atom are unique and no 

longer increase. Finally, assign the highest labeled atom as number “1” and then assign 

its highest labeled neighbour atom as “2”, second highest as “3”, etc. Then, number the 

atoms which are attached to atom “2” in order of label values, and so on, until all atoms 

are numbered.   

By adopting the Morgan algorithm (Leiter et al., 1965), the connection tables have a 

unique coding  of the inter-connections between the atoms in a molecule. For storing 

and arranging molecules in databases, Chemical Abstracts Service set another standard 

which gives each compound a unique number to identify them with their connection 

table molecular representation in the CAS Registry System (Leiter et al., 1965).  

Figure 2.2 shows different representations of the structure of aspirin, where 

nonhydrogen atoms are numbered from 1 to 12. In the connection table representation, 

each row illustrates the way that the corresponding atoms are connected to the others. 

For example, the first row demonstrates that atom number 1 (Oxygen) is connected by a 

double bond (D) to atom number 2; the second row shows that atom number 2 (Carbon) 

is connected by a double bond (D) to atom number 1 and is connected by single bonds 

(S) to atom number 3 and atom number 4. 
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2.2.1.3  Reduced Graphs 

As mentioned at the beginning of Section 2.2.1, a chemical structure can be represented 

as a topological graph, where the nodes of the graph correspond to the atoms, and the 

edges represent the bonds. In a reduced graph, each node represents a group of 

connected atoms. An edge links two nodes, if there is a bond between any two atoms 

from the two separate groups.  

Reduced graphs were initially designed for structure and substructure searching (Gillet 

et al., 1991). The subsequent studies also demonstrated they can be employed for 

similarity searching, see Figure 2.3 (Gillet et al., 2003; Takahashi et al., 1992).  

 

Connection Table:     1 O D 2 

2 C D 1 S 3 S 4 

3 O S 2 

4 C S 2 D 5 S 9 

5 C D 4 S 6 

6 C S 5 D 7 

7 C D 6 S 8 

8 C S 7 D 9 

9 C S 4 D 8 S 10 

10 O S 9 S 11 

11 C S 10 D 12 S 13 

12 O D 11 

13 C S 11 

Figure 2.2 Structure, name, InChI, SMILES and connection table for aspirin (from 

(Holliday and Willett, 2011)). 

 

Name: 2-acetoxybenzoic acidSmiles: CC(=O)Oc1ccccc1C(=O)O

InChI: 1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)

1
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Figure 2.3 Two examples of different types of reduced graphs.  

According to the top original structure: (a) nodes represent to ring systems ○R  and 

connected acyclic components ○Ac ; (b) nodes correspond to connected carbon 

components ○C  and connected heteroatom components ○H  (from (Gillet et al., 

2003)). 

 

2.2.1.4  Fingerprints 

Neither linear notations nor connection tables, however, are suitable for performing 

similarity search in large scale databases efficiently due to computational complexity. 

Thus, fingerprints, a form of molecular representation which simply uses bit strings to 

indicate occurrence of molecular features, provide more rapid system for similarity 

search (Bajorath, 2002). The early study of this machine readable format was recorded 

by Adamson et al in the 1970s (Adamson and Bush, 1975; Adamson et al., 1973). 

Initially, fingerprints were designed to support chemical database substructure searching; 

currently, they are also widely used to carry out other applications, such as similarity 

searching, clustering, and classification (Rogers and Hahn, 2010). 
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In chemoinformatics, molecules can be characterized as structures consisting of 

different substructures or fragments. Thus, a fingerprint X of molecule A can simply be 

defined as below which basically is a sequence of numbers, see Error! Reference source 

not found.. 

    {          }  

Equation 2.1 A fingerprint X of molecule A 

Where    specifies the i-th structural unit contained in the molecule A, e.g., atoms, bonds 

or fragments. The value n relates to the length or the size of the fingerprints, i.e., the 

number of properties the molecule has. 

Rogers and Hahn stated a fingerprint of a molecule can be described as a sequence of 

bits or integers (Rogers and Hahn, 2010). For the sequence consisting of bits, each bit 

represents the presence or absence of a pre-defined substructure or fragment.  If a 

substructure is present, then its relevant bit is set to “1” which is similar to the “on” bit 

in binary code. In contrast, if a feature is absent, then the relevant bit is set to “0”. For 

the sequence consisting of integers, each non-zero number represents the frequency of 

occurrence of a fragment or molecular feature and zero indicates absence (Leach and 

Gillet, 2007). 

Commonly, there are two different types of fingerprints based on the ways used to 

generate them: dictionary-based fingerprints and hashed fingerprints (Leach and Gillet, 

2007). 

For generating dictionary-based fingerprints, the most important task is creating a 

dictionary.  The dictionary must contain a set of structural fragments that is used to 

decide whether each element in the fingerprints is set on or off. Figure 2.4 illustrates 

how dictionary-based fingerprints are generated. In this example, there is a simple 

dictionary consisting of just five fragments (usually dictionaries contain around 500 to 

5000 fragments or substructures). Four fragments are specific and one is generalized, 
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representing two substructures:  one contains sulphur and the other contains oxygen. 

Thus, the chemical structure in the left can be represented as a fingerprint as “11100” 

which shows that the first three substructures are present but not the last two. 

 

Figure 2.4 An example of how a dictionary-based fingerprint is generated (Based 

on Digital Chemistry, 2011). 

 

Unlike the dictionary-based fingerprints, hashed fingerprints do not rely on pre-defined 

substructure dictionaries. Take Daylight fingerprints as an example, the process of 

generating hashed-based fingerprints can be described as: “an algorithm is used for 

generating paths throughout a compound, with all the elements on the path being 

represented; then, a hashing function is used to create the binary fingerprints” 

(Daylight Chemical Information Systems, 2011). As shown in Figure 2.5, bit collision is 

allowed, i.e., various smaller fragments from different bigger fragments may share the 

same fingerprint position(s). The relationship between fragments and fingerprint 

position in hashed-based fingerprints, therefore, is many to many. This also means that 

once the fingerprint has been generated, it is not possible to identify the fragment(s) on 

each position. 
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Figure 2.5 An example of how a hashed-based fingerprint is generated.  

 
 

Regardless of the differences between dictionary-based fingerprints and hashed-based 

fingerprints, both of them have drawbacks. For the former, each bit maps to a specific 

fragment which is pre-defined in a structural fragment dictionary. The dictionary has to 

be created in the first place and then once the dictionary is changed, all the fingerprints 

should be changed as well. For the latter, each bit is a set of fragment combinations 

rather than a specific structural features, but this method may lead to ambiguity in which 

case it may be impossible to interpret bits back to fragments (Bajorath and Eckert, 2006).   

To avoid the shortcomings of either dictionary-based or hashed-based fingerprints, some 

fingerprints take advantages from both of them, e.g., structural keys and path-generating 

algorithm(s). An example is the Extended-connectivity fingerprints (ECFP), a newly 

developed fingerprint methodology. Since the ECFPs is the descriptors which are used 

in this study, all details are discussed in Chapter 3.  

Binary fingerprints, as discussed above, are one of the most popular molecular 

descriptors and have been intensively used in similarity-based virtual screening (Carhart 

et al., 1985; Willett et al., 1986). Recently, occurrence-based fingerprints started 

attracting more interests. Molecular hologram (Hurst and Heritage, 1998; Mezey, 2001) 
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is one of the representations known as occurrence-based descriptors. It consists of 

integers to encode the frequency a fragment occurs in a molecule rather than using 0s 

and 1s to encode the absence and presence of a fragment.  Alternatively, occurrence-

based fingerprints can be considered as a sort of weighted fingerprints. A further 

discussion of weighting is in Section 2.3. 

2.2.2 3D Molecular Representations 

In comparison to 2D molecular descriptors, 3D molecular representations also consider 

molecular geometries. They encode spatial relationships between atoms, ring centroids, 

and planes. Thus, 3D molecular representations can characterize molecules in a more 

accurate and unambiguous way, e.g., the difference between isomers can be easily found 

by 3D molecular representations but not so easy by 2D representations.  

 

Figure 2.6 A 3D model of the Aspirin structure (http:// www.3dchem.com). 

 

Figure 2.6 shows how the atoms are located geometrically in relation to each another in 

aspirin. The 3D structure can be generated from experimental data, e.g., X-ray 

crystallography, electron diffraction, and microwave spectroscopy. Typically, a 3D 

molecular descriptor consists of values of molecular surface area, volume, shape, spatial 

http://www.3dchem.com/
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distribution of atoms, potential energy, molecular properties, substructural groups or 

electrostatics.  

Most 3D molecular descriptors are calculated from a 3D connection table or chemical 

graph, which can be obtained either experimentally or computationally. The Cambridge 

Structural Database (CSD, 2011) and the Protein Data Bank (Berman et al., 1999; PDB, 

2011) are the databases which contain large numbers of experimentally generated 

molecular structures. Alternatively, 3D molecular representations can also be generated 

by structure generation software programs, such as CONCORD and CORINA. They are 

usually used to build computationally determined 3D molecular structures from a 

molecular graph (Pearlman, 1987).  

In the various descriptors, one of the most popular 3D molecular descriptors is 3D 

fingerprints which are similar to the 2D fingerprints described in the previous section. 

The major difference is that the structural units of 3D descriptors are based on 3D 

information, e.g., 3D distance-based, angle-based or pharmacophore-based.  

The distance-based fingerprints are based on the distance of features, such as atoms, 

atom types, ring centroids and planes (Pepperrell and Willett, 1991). In this case, all the 

distances are assigned to a distance range which could be equidistant or not, if the 

specific distance between two features is present. Then, the corresponding bit in the 

fingerprints is set to 1; otherwise it will be set to 0.  

The angle-based fingerprints are based on valence or torsion angles without considering 

if the corresponding atoms are connected (Bath et al., 1994). 

An alternative approach to 3D fingerprints is based on the concept of a pharmacophore, 

as the portion of a ligand molecule which binds to the receptor site, i.e., a spatial 

arrangement of chemical groups (e.g., atoms or the centroid of an aromatic ring). 

IUPAC defines a pharmacophore to be "an ensemble of steric and electronic features 

that is necessary to ensure the optimal supramolecular interactions with a specific 

http://en.wikipedia.org/wiki/IUPAC
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biological target and to trigger (or block) its biological response" (Wermuth et al., 

1998). The feature types include: Hbond donors, Hbond acceptors, positive charge, 

negative charge, positive ionizable, negative ionizable, aromatic ring and hydrophobic. 

Pharmacophore-based fingerprints can be specified as 2D pharmacophore fingerprints 

and 3D pharmacophore fingerprints: the former is defined by molecular feature or 

pharmacophore points and the corresponding inter-feature distances; the latter is similar 

to the former but using Euclidean distances based on 3D coordinates instead of 

topological distances. Figure 2.7 illustrates 3D coordinates and conformation of 

pharmacohpore points. 

  

Figure 2.7 3D coordinates and conformation of pharmacophore points.  

 

As a pharmacophore can be described as the spatial arrangement of functional groups 

required for binding, it can therefore be used to identify the features of one or more 

molecules with the same biological activity, i.e., similarity search; or used to do 

molecular dissimilarity search (Beno and Mason, 2001; Leach and Gillet, 2007). 

Typically, the pharmacophore-based descriptors consider only the heavy atoms of a 

molecule.  
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Recently, 3D fingerprints have been suggested in similarity searching, e.g., 3D 

pharmacophore fingerprints and 3D fingerprints generated by protein-ligand interaction 

information (Baroni et al., 2007; Deng et al., 2004; Kelly and Mancera, 2004; Mason et 

al., 1999). Several investigations tried to combine 3D information into 2D fingerprints 

for similarity searching. Tan et al. (2008) attempted to do 2D fingerprint-based 

similarity searching with 3D interaction information and still keep the 2D fingerprint 

format. Based on their results, they indicated that the conventional structural 

fingerprints-based similarity search can be further improved using interacting fragments 

which capture much compound class-specific information. 

As stated above, due to the complexity of molecular structures and features, many 

studies showed it is very difficult to design a universal molecular representation suitable 

for different demands.  In similarity search, the key should be the chemical libraries that 

cover as much chemical substructures or fragments as possible.  

2.3 Weighting Scheme 

 
Binary 2D fingerprints consist of “0”s and “1”s to show the incidence of fragments. 

They can, however, lose important information regarding how frequently they occur. 

This may result in a considerable impact on similarity search. For instance, if the key 

information to distinguish molecules from one class to another is that a certain fragment 

has to occur twice, then using binary fingerprints could not provide the correct 

information. In addition, a fragment with a high weight occurring in both a reference 

structure and a database structure should make a greater contribution to the overall 

degree of inter-molecular similarity than will a fragment in common that has a lesser 

weight. Therefore, fingerprint weighting schemes need to be considered in similarity 

search (Cosgrove and Willett, 1998; Ormerod et al., 1989; Willett and Winterman, 

1986). 
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In a study of simulation of property-prediction, Willett and Winterman suggest three 

types of weighting: “weighting based on the frequency of a fragment’s occurrence in an 

individual compound; weighting based on the frequency of a fragment’s occurrence in 

an entire database and weighting based on the total number of fragments within a 

compound” (Willett and Winterman, 1986). The former two types of weighting have 

been studied in work by Arif et al. (2009b, 2010), who found that the first type of 

weighting could bring about notable increases in screening effectiveness in some 

circumstances, but that the second type was of less general applicability. The study 

reported in this thesis hence focuses on the first approach, i.e., on exploiting information 

on how frequently fragments occur within individual molecules. 

Experiments have found that occurrence-based representations which show the nature of 

a molecule may be superior to the incidence-based (binary) representations either on 

small scale datasets or in large scale simulated virtual screening (Arif et al., 2009a; 

Baldi et al., 2007; Chen and Reynolds, 2002; Oprea et al., 2004; Willett and Winterman, 

1986). It is not always the case, however, as argued by Arif et al. (2010) that more 

occurrences may cause lower similarity.  

There are some weighting schemes successfully applied in other domains which can be 

implied in molecular similarity search, e.g., tf-idf in information retrieval and text 

mining (Sparck Jones, 1972). Tf-idf weight stands for term frequency- inverse document 

frequency. It has been intensively used to evaluate how important a word is to a 

document in a collection or corpus. The importance of a word to a document increases 

corresponding to the number of times it appears in the document, but offset by the 

frequency of it in the corpus.  For example, consider a document containing 100 words 

wherein the term A appears 7 times. Thus, the tf for A is (7/100) = 0.07. Assume the 

term A appears in one hundred of ten thousand documents. Then the idf is computed as 

log(10,000/100) = 2. Therefore, the tf-idf weight is the product of the two quantities:  

0.07*2=0.14.  
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Many variations of the tf or idf weighting scheme have been adopted in chemical 

similarity search. These weighting schemes enable differentiation of more important 

features from less important features in a representation. Several studies have shown 

weighted fingerprints gave far better results than did un-weighted fingerprints (Grier et 

al., 1988). Other studies, however, also suggested weighting schemes show 

effectiveness only with appropriate similarity coefficients (Arif et al., 2010). This 

suggestion is discussed in detail in Chapter 4. 

Many other weighting schemes have been applied to fingerprint weighting, e.g., square 

root to reduce the impact of high occurrence features, log to ignore the features which 

occurred only once (Arif et al., 2009a). As a result of their successful applications to 

text categorization, some term weighting schemes may be able to be adopted in 

similarity search, e.g., tf.rf, tf, logtf, ITF (Lan et al., 2005; Lan et al., 2007). 

2.4  Similarity Coefficients  

Regardless of varieties of molecular descriptions, similarity search follows a standard 

rule as described earlier in this chapter. It is necessary to compare the reference 

molecule and database molecules in a pair-wise manner and rank the similarity results in 

decreasing order by using a similarity coefficient.  

Hence, once the (possibly the weighted) molecular descriptions of both the reference 

molecule and molecules from the database are clarified, similarity coefficients can be 

used to quantify the similarity between them. Similarity coefficients are used in a wide 

range of disciplines such as biology, information retrieval, multivariate statistics, 

numeric taxonomy and marketing (Willett et al., 1998). In similarity search, a similarity 

coefficient is used to measure the grade of likeness between pairs of objects. Each object 

can be described by some number of attributes or descriptors (Holliday et al., 2002; 

Leach and Gillet, 2007). 
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There are four categories of coefficient described, i.e., distance, association, correlation, 

and probabilistic (Sneath and Sokal, 1962). Most of these coefficients can be used for 

either binary or continuous (e.g., real value vectors) descriptions, whereas the first two 

coefficients are commonly discussed in the literature and widely used in similarity 

searching (Holliday et al., 2002; Willett, 1987). For binary molecular descriptors, 

usually three different quantities are involved to measure the similarity between the two 

bit vectors: the number of bits set on in both molecules (a); the number of bits set on 

only in molecule A (b) and the number of bits set on only in molecule B (c). For 

continuous descriptors, the equivalent three quantities are defined as: 

   ∑       
 
     

   ∑      
 
   

 
  ∑       

 
    

   ∑      
 
   

 
  ∑       

 
    

Equation 2.2 The a, b and c parameters for the calculation of similarity coefficient 

when using continuous descriptors. 

where    represents the value of i-th element (property) of molecule A which has n 

properties. A few examples of most commonly used coefficients are listed in Table 2.1., 

more coefficients are described in Chapter 5 and Chapter 6. 

2.4.1  Distance Coefficients 

Distance coefficients are widely used for their simple geometric representation. In 

chemoinformatics, they are commonly applied to measure the dissimilarity between 

structures in a molecular space or the distance between two compounds. The value of 

distance indicates the discrepancy between compounds under consideration (Sneath and 

Sokal, 1962). Two objects are identical if their positions coincide, which means that the 

distance value between them, is 0; consequently, as the distance increases the 

probability of the two objects to be similar decreases. 
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Distance coefficients are referred to as metrics if they obey the following criteria (Leach 

and Gillet, 2007), if there are three objects, A, B and C:  

 The distance values are zero or positive, and the distance between identical 

structures is zero: DAB ≥ 0, DAA = DBB = 0;  

 The distance values are symmetric: DAB = DBA;  

 The distance values obey the triangular inequality rule: DAB + DBC ≥ DAC;  

 The distance value between non-identical structures is greater than zero: if A ≠ B, 

then DAB > 0.  

If a distance coefficient only obeys the first three criteria, then it is referred to as 

“pseudo-metric”, and a distance coefficient that does not satisfy the third criterion is 

called non-metric (Willett et al., 1998). Examples of metric distance coefficients include 

the Hamming, the Euclidean and the Soergel coefficients. The Euclidean coefficient is 

also one of the most popular distance coefficients and is broadly used in nearest 

neighbour algorithms or in clustering.   

2.4.2  Association Coefficients 

Association coefficients measure the agreement between pairs of compounds (Sneath 

and Sokal, 1962). They work well with both binary fingerprints and continuous 

fingerprints. Compared with distance coefficients, binary association coefficients 

measure the similarity between two compounds in which the value ranges from 0 and 1, 

denoting no similar features in common and an identical description, respectively (Salim 

et al., 2003). The higher the value of the coefficient, the more similar the two objects are. 

As one of association coefficients, the Tanimoto coefficient is the most commonly used 

similarity coefficient in 2D fingerprint similarity searching. It is a simple and intuitive 

coefficient and certainly most used in chemoinformatics (Chen and Reynolds, 2002; 

Willett, 2006): 

Other association coefficients are also popular, i.e., Dice, cosine, Fossum, Rusell-Rao 

and Forbes coefficients (Leach and Gillet, 2007). While the cosine coefficient has been 
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widely used in information retrieval with good performance, it has not been used in 

molecular similarity search as often as the Tanimoto coefficient. 

Another example of the association coefficient is the Tversky coefficient (Tversky, 

1977), which is: 

SAB =  
 

        
 

Equation 2.3 The Tversky coefficient for binary variables 

 

It allows the user to bias the similarity calculation with one of the structures, e.g., when 

  = 1, and   = 0, the Tversky similarity value         ⁄  represents the fraction of 

features of A that are present in B; if the similarity value is 1, then A is a substructure of 

B. If   =   = 1 then the Tversky coefficient is identical to the Tanimoto coefficient and 

when   =   = 
 

 
 then it is identical to the Dice coefficient which is widely used in 

information retrieval. Recently, the Tversky coefficient has been recommended for 

perceiving features and similarity of images. In chemoinfomatics, some studies showed 

the Tversky coefficient can enhance similarity search by optimizing the effect of the size 

of molecular structures, e.g., similarity calculation using MACCS keys on the MDDR 

database (Wang and Bajorath, 2008; Wang et al., 2007). 

2.4.3  Correlation Coefficients  

Correlation coefficients measure the degree of correlation, i.e., proportionality and 

independence, between the sets of values that describe the pair of objects. Typical 

examples are the Spearman Rank coefficient, Pearson, Stiles and Yules correlation 

coefficients (Salim et al., 2003). The Spearman rank coefficient was first applied in 

chemoinformatics as a measure of electrostatic similarity (Manaut et al., 1991). It is 

illustrated below: 
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Equation 2.4 The Spearman rank coefficient  

 

The use of correlation coefficients in chemoinformatics is problematic. Jardine and 

Sibson (1971) indicated that correlation coefficients might not be an appropriate 

measurement for similarity comparisons. Hubalek (1982) also pointed out that the 

values in a comparison cannot show the similarity of two objects because it can either be 

correlated or not. Normally, for correlation coefficients, the used properties should have 

independent distributions. In chemical similarity search, however, chemical information 

is usually not independent and the properties are correlated with each other. Thus, the 

correlation coefficients might not be suitable for similarity search. 

2.4.4  Probabilistic Coefficients  

Probabilistic coefficients are based on the frequency distribution of the descriptors in a 

database. One study found that they can yield poor performances when applied in 

chemistry and required extensive computations (Adamson and Bush, 1975). They have 

therefore not been investigated to any extent in molecular similarity measures. 

2.4.5  Choice of Coefficient 

There are various types of coefficients available for similarity search. In order to choose 

the most appropriate one, certain factors need to be considered. First, different similarity 

coefficients denote similarity on different ranges. For example, the result measured by 

the Tanimoto coefficient ranges by zero to one whereas some other coefficients such as 

Euclidean provide a wider range of zero to infinity. Therefore, a standardization 

procedure may be required to convert the attribute value to a range of zero to one 

(Holliday et al., 2002; Leach and Gillet, 2007). Second, the molecular size may also 
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affect the calculation of similarity especially on the binary representations, as many 

conventional similarity coefficients only take bits into account that are set to 1, e.g., the 

Tanimoto coefficient (Holliday and Haranczyk, 2008; Salim et al., 2003). For example, 

in a binary fingerprint similarity search with the Tanimoto coefficient, the small 

molecules usually have lower similarity scores since they are likely to have fewer bits 

set in fingerprints than large molecules. By contrast, small molecules tend to be more 

similar when using the Hamming distance (Leach and Gillet, 2007). With such biases of 

coefficients on different sized molecules, it requires some degree of size standardization 

to avoid such problems.  

It has been established that there is no single coefficient which consistently performs 

better than others (Holliday and Haranczyk, 2008; Willett et al., 1998). Further research 

has suggested that using mixed indices combining two or more standard measures may 

exhibit better performance on similarity searching (Leach and Gillet, 2007). In brief, it 

may be true that there is still a need to find the most appropriate coefficient or 

combination of coefficients for specific similarity searching applications.   

 

2.5 Data Fusion  

 
Although many types of descriptor have been used in similarity searching, by far the 

best established is the 2D fingerprint (Willett, 2006). As one of the traditional methods 

for chemical database mining, the similarity measure using 2D molecular fingerprints is 

normally used with the Tanimoto coefficient. However, this conventional similarity 

measure might not be the most suitable choice for similarity searching. Thus, developing 

optimized similarity measures has been an important topic in chemoinformatics for a 

long time and continues to be an interesting subject in drug discovery.  
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Table 2.1 Typical coefficients commonly used in similarity search.  

SAB and DAB represent the value of similarity and the value of distance of two 

molecules A and B, respectively. a is defined as the number of bits set on in both 

molecule A and B; b as the number of bits set on only in molecule A; c is the 

number of bits both set on only in B; and     represents the value of i-th element 

(property) of a molecule. Table based on (Leach and Gillet, 2007; Willett et al., 

1998).  

Name Formula for continuous variables 
Formula for binary 

variables 

Tanimoto coefficient SAB =  
∑    

 
      

∑       
   

 
  ∑       

   
 
  ∑    
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Dice coefficient SAB =  
 ∑    

 
      

∑       
   

 
  ∑       

   
 
 
 SAB =  

  

       
 

Euclidean distance DAB =  [∑     
 
        ]

 

  DAB =  [   ]
 

  

Hamming distance DAB = ∑ |       |
 
     DAB =     

 

A number of studies as discussed at the end of Section 2.2 focus on the enhancement of 

fingerprints rather than considering other key factors in similarity search. There have 

been many comparisons of fingerprints and similarity coefficients for similarity 

searching, e.g., the recent detailed studies by Duan et al. (2010) and Sastry et al. (2010). 

However, selecting an appropriate fingerprint for a given problem is still a challenging 

topic that requires ongoing research and improvement. The same also goes for choosing 

the appropriate coefficients and weighting schemes. 

Considering that no single similarity measure will be consistently the best, data fusion 

has been increasingly used in similarity search for years. This idea is derived from 
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information retrieval in which the integration of multiple sources of evidence has been 

shown to greatly enhance the retrieval performance (Willett, 2006a; Croft, 2000)  

In the domain of chemoinformatics, this technique is also known as “consensus scoring” 

in ligand docking and scoring algorithms. Two main approaches are widely adopted: 

using one reference structure with different descriptors or similarity coefficients for each 

search, combining all of the results; using multiple reference structures with the same 

descriptor and similarity measure, combining all the results. For each case, the key 

factor is the fusion rule which is a function to calculate the final score. 

A typical fusion process can be described as follows (from Leach and Gillet, 2007). 

 

Figure 2.8 A typical fusion process (Leach and Gillet, 2007). 

 

As shown in Figure 2.8, S1 and S2 are the results which are produced when using 

different similarity measures. Then, a fusion rule involves combining the results, e.g., 

MIN, MAX or SUM. The final step is truncating the top (usually 1% or 5%) from the 

combination list.  

Many studies found data fusion methods can enhance the similarity search. Ginn et al. 

(2000) investigated the application of similarity data fusion methods on the 
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combinational ranking results calculated by various types of descriptors and datasets. 

They studied three fusion rules, MAX, MIN and SUM. Their findings showed that data 

fusion performed more consistently than any single similarity measure; besides, the 

SUM rule was the most effective and robust rule. Salim and co-workers (2003) studied 

the SUM rule in similarity searches using the same descriptor for the compounds in the 

database, but varied the number of fused coefficients. The results showed that data 

fusion improved the overall results of similarity searches compared with the use of a 

single coefficient. However, they also found none of the combinations was consistent 

enough across all the searches. 

The subsequent studies (Hert et al., 2004a; Whittle et al., 2004) of data fusion discussed 

the potential problems in previous studies, which is the fact that different similarity 

measures cannot be directly fused due to incompatibilities among them. They proposed 

an alternative to the previous similarity fusion approach which is called “group fusion”. 

The main idea of group fusion is using multiple reference structures rather than multiple 

similarity measures. Furthermore, they calculated the actual similarity scores instead of 

the rankings results. It showed that the fusion of scores was much more effective than 

the fusion of ranks, especially in the case of more heterogeneous drug classes. Moreover, 

the MAX rule was superior to SUM (Hert et al., 2004a). 

More recently, many further investigations of group fusion have been carried out (Chen 

et al., 2009; Gardiner et al., 2009; Hert et al., 2006; Medina-Franco et al., 2007; 

Muchmore et al., 2008; Whittle et al., 2006; Williams, 2006). According to these studies, 

data fusion was recommended to be utilized in similarity search either using multiple 

reference structures or using multiple similarity measures.  

Gardiner et al. (2009) reported a detailed evaluation of an extension of similarity 

searching, namely, turbo similarity searching (TSS). TSS makes the assumption that the 

nearest neighbors of a reference structure are truly active and these can then be used as 

reference structures in addition to the original reference structure, for group fusion. The 

process of TSS is shown as Figure 2.9, where the user provides an original reference 
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structure to match against each of the database structures, the top ranked structures are 

the nearest neighbors and are then used as the reference structures. Therefore, for k 

nearest neighbors, k rankings of similarity searching are produced in addition to the 

ranking results from the initial similarity searching. Then the k+1 rankings are fused 

into a single ranking as the ranked output by using group fusion rule. The results showed 

that TSS can provide enhancements in screening performance but that this is normally 

achieved only if the initial similarity searching has already achieved some reasonable 

level of search effectiveness. They (Gardiner et al., 2009) also concluded that: the 

ECFP_4 fingerprints would be the choice of structure representation for similarity-based 

virtual screening; TSS is likely to provide notable enhancement in screening 

performance if the actives are tightly grouped, but is unlikely be effective for 

heterogeneous sets of actives.  

 

Figure 2.9 Schematic outline of a turbo similarity search (Gardiner et al., 2009). 

 

There are many parameters which could affect the results of fusion based similarity 

search, i.e., the type of structure representations, the selection of databases, the choice of 

fusion rules, the selection of weighting schemes or similarity coefficients etc. It can thus 

be suggested that developing an optimized similarity measure is the precondition for the 

implementation of data fusion. This is also the aim of the study reported in this thesis.   
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2.6 Conclusion 

This chapter discussed the three key components involved in similarity search: 

molecular descriptors which are used to represent and differentiate compounds; 

similarity coefficients which measure the degree of similarity between compounds; and 

the weighting schemes which can be used in similarity measurements.  It also introduced 

the common approach of similarity search and the relative works of this thesis.  

To sum up, the performance of similarity search is determined by combinations of 

similarity measures used. As discussed before, molecular representations are the most 

important element in similarity search. However, molecular structures are very complex. 

A little variance may cause significant differences of features. This is why significant 

improvement in similarity search can be achieved through studying weighing schemes 

design and comparing different coefficients. Thus, the main objective of this PhD study 

is to investigate the use of different coefficients and weighting schemes in similarity-

based virtual screening. 



Chapter 3:  Methodology  

3.1 Introduction 

This chapter will outline the experimental design used for the three investigations 

reported in this thesis. The three investigations are: first, the evaluation of interactions 

between weighting scheme and similarity coefficient in similarity-based virtual 

screening (reported in Chapter 4); second, the comparison of established level of binary 

coefficients for chemical similarity search (reported in Chapter 5); third, the comparison 

of similarity coefficients using weighted chemical data (reported in Chapter 6). Since 

the experimental background was mostly in common to all three chapters, this chapter 

provides the details of methodology in terms of the databases and evaluation methods 

used.  

3.2 Data 

3.2.1 Chemical Databases 

There are several databases now available for evaluation purposes, and four were used 

in this study, so as to ensure that the results obtained are not overly dependent on the 

nature of the test data. These databases were: the MDL Drug Data Report and WOrld of 

Molecular Bioactivity databases (MDDR and WOMBAT, as described in detail by 

Gardiner et al. (2009)); the Maximum Unbiased Validation database (MUV, as 

described in detail by Rohrer and Baumann  (2009)); and the ChEMBL database 

(Gaulton et al., 2012; Heikamp and Bajorath, 2011).  

In each database, there are sets of molecules with some specific biological activity and 

the remainder of the database is assumed to be inactive. The effectiveness of similarity 
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searching can hence be evaluated by the extent to which it is possible to retrieve the 

known active molecules from the database. 

3.2.1.1  MDDR 

The MDDR database (available from Accelrys Inc. at http://www.http://accelrys.com/), 

developed in collaboration with Prous Science, provides essential information from new 

patent applications about drugs recently launched or under development. It contains the 

structures and pharmacological class information for molecules that have been reported 

in patents, journals and conference proceedings as exhibiting biological activity, i.e., 

over 180,000 biologically relevant compounds and well-defined derivatives. All of the 

information can be found in Prous Science’s Drug Data Report. Each year, Prous 

Science publishes about 10,000 new compounds including primary compounds, 

derivatives and formulations (Accelrys Software, 2009). The activity data is qualitative: 

a molecule is noted as exhibiting a specific activity, and it is assumed to be inactive if 

that is not the case. The dataset utilized in this study was the version from 1995 which 

contained 102,540 molecules. 

The searches of MDDR in chapters 4-6 were carried out for the 11 classes of active 

compounds that were first described by Hert et al. (2004b) and that were devised in 

collaboration with Novartis (Novartis, 2012). It has been used in several subsequent 

studies both at the University of Sheffield and in many other research groups.  

Table 3.1 summarizes the 11 selected activity classes with different diversities that 

belong to MDDR. Each row of the table contains an activity class, the number of active 

molecules in the class, the number of distinct scaffolds present in the class and the mean 

pairwise similarity (MPS) values.  

In Table 3.1, the numbers of scaffold for each activity class are also presented. The term 

“Scaffold” is widely used to describe the core structure that is the central component of 

a molecule, i.e., the substantial substructure that contains the molecular material 

necessary to ensure that the functional groups are in a desired geometric arrangement 

http://www.http/accelrys.com/
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and therefore bioisosteric. An extensively used definition of scaffold in 

chemoinformatics was given by Bemis and Murcko (1996). Based on their definition, 

the scaffold of a molecule is a reduced molecular framework, maintaining the original 

atom typing and bond orders but not side chains. Therefore, scaffolds can be applied in 

molecular classification or molecular diversity selection (Brown, 2009). The type of 

scaffold defined in this study is Murcko scaffold, shown as an example in Figure 3.1.   

 

Figure 3.1 A molecule from the ChEMBL database (left) and its corresponding 

Murcko scaffold (right).   

 

The MPS value in each row was calculated by comparing each member of an activity 

class with all of the other members of that class, calculating the inter-molecular 

similarities using the standard UNITY 2D fingerprints (available from Tripos Inc. at 

http://www.tripos.com) and the Tanimoto coefficient, and then computing the mean 

intra-set similarity (Gardiner et al., 2009; Hert et al., 2004b). MPS values indicate the 

diversity of activity classes: it is easier for a similarity search method to retrieve 

molecules from the activity classes which has a high MPS value and vice versa. These 

activity classes were used throughout the study (Chapter 4-6).  

3.2.1.2  WOMBAT 

The WOrld of Molecular BioAcTivity database (WOMBAT) was released by Sunset 

Molecular and is a leading small molecule chemogenomics database (World of 

Molecular Bioactivity, 2011) which contains data (structures) extracted from important 

drug-discovery journals such as the Journal of Medicinal Chemistry and Bioorganic & 

Medicinal Chemistry, etc.  The bioactivity data for WOMBAT is quantitative, e.g., 

http://www.sunsetmolecular.com/
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having an IC50 (the half maximal inhibitory concentration). Gardiner et al.(2009) 

converted the activity data to qualitative using the drug potency, expressed as pIC50 

(known as the higher the value of the –log IC50), to determine a particular compound as 

active for a class. They set the threshold of pIC50 at 5.0. For each activity class, 

molecules with pIC50 >= 5.0 are marked as active for that class, and molecules with 

pIC50 < 5.0 are removed from that class. The resulting database contained a total of 

138,127 molecules reduced from the original version which has 186,117 molecules by 

removing duplicated molecules and compounds that do not possess the desired effect. 

The WOMBAT dataset used in this study is described in Gardiner et al. (2009). 

14 activity classes were selected from this database. They are similar to the 11 activity 

classes selected from MDDR with several additional activity classes. Table 3.2 presents 

the 14 selected activity classes derived from WOMBAT with the same structure of 

Table 3.1. These 14 activity classes are used throughout this study (Chapter 4-6).   

Both of the MDDR and WOMBAT databases have been extensively used for virtual 

screening, as well as in all of the initial experiments reported in the following three 

experimental chapters, but they do have a limitation. Since the molecules which are 

considered as active are because of they have been shown to be active against a 

biological target. Thus, the limitation with these two databases (MDDR and WOMBAT) 

is that: the molecules which have not been tested against the target were assumed as 

inactive for the screenings; however, they might in fact be active. For that reason, two 

following databases were used to attempt to overcome this limitation. 

3.2.1.3  MUV 

The Maximum Unbiased Validation (MUV) dataset (available by download from  

http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html, (MUV, 2011)) is rather 

different in nature from the MDDR and WOMBAT databases, since it has been 

designed specifically for the evaluation of virtual screening systems, using structure-

activity data from the PubChem database. It was designed to overcome the problem of 

analog bias, i.e., active molecules are too similar to each other, and artificial enrichment, 

http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html
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i.e., actives are too dissimilar from the inactives.  The design strategy comprised of three 

major steps: 1. For a collection of potential actives, compounds with a potential for 

unspecific bioactivity are removed. 2. Actives devoid of decoys are removed and the rest 

are required to be well embedded in decoys. 3. Subsets are selected with a spatially 

random distribution of actives and decoys regarding simple molecular properties, in 

which a set of 30 actives and 15000 decoys are contained (Rohrer and Baumann, 2009). 

The MUV consists of 17 datasets, 30 actives with 15,000 decoys for each dataset. All 

those datasets have “a non-clumpy, spatially random topology” (Rohrer and Baumann, 

2009). The 17 datasets are named as aid466, aid548, aid600, aid644, aid652, aid689, 

aid692, aid712, aid713, aid733, aid737, aid810, aid832, aid846, aid852, aid858 and 

aid859, which come from the Assay IDs referring to the bio-assays in PubChem that 

were used for the assignment of bioactivities.  

Table 3.3 shows the activity classes of the MUV database which were applied 

throughout studies in Chapter 5 and Chapter 6. The last column makes clear the high 

diversity (i.e., low MPS values) of the MUV data set when compared with the MPS 

values for the other three databases.   

3.2.1.4  ChEMBL 

ChEMBL (available by download from https://www.ebi.ac.uk/chembldb) is relatively 

new, and is one of the largest publicly available databases of curated compound activity 

data chosen from medicinal chemistry sources. It is an Open Data database containing 

binding, functional and ADMET information for a large number of drug-like bioactive 

compounds. It contains 2D structures, calculated properties (e.g., logP, Molecular 

Weight, Lipinski Parameters, etc.) and abstracted bioactivities (e.g., binding constants, 

pharmacology and ADMET data). These data are manually abstracted from the main 

published literature on a regular basis, then further extracted and standardized to 

maximize their value and utility across a wide range of chemical biology and drug-

discovery research problems. Currently, the database contains more than 1 million 

compounds and 5200 protein targets (Gaulton et al., 2012).  

https://www.ebi.ac.uk/chembldb
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Heikamp and Bajorath (2011) provided some directions for 2D similarity search on 

publicly available activity classes. In their study, 266 activity classes were extracted 

from ChEMBL (Version 9) and all compounds were represented as MACCS structural 

keys and ECFP_4 fingerprints. For each class, a number of reference compounds were 

randomly selected and the similarity values were calculated by comparing those 

reference compounds with the rest of the compounds in the database. Based on their 

similarity values, compound recovery rates (RRs) were generated to show the ratio of 

active compounds obtained in each activity class.  Eventually, 50 activity classes were 

identified based on the selection criteria, which states that the minimum compound 

recall yielded for MACCS is more than 30% while the maximum compound recall 

obtained for ECFP_4 is less than 80%. The difference between the relative search results 

is more than 20%, i.e., |                             –                           |  

   , thus reflecting the overall performance range (Heikamp and Bajorath, 2011). 

The ChEMBL database used here is version 9 which contains 657,733 molecules, and 

searches were carried out for 50 classes of 11,561 active compounds in total. The 50 

activity classes are presented in Table 3.4. The MPS values presented in the last column 

were calculated by using UNITY 2D fingerprints and the Tanimoto coefficient. The 

ChEMBL database was employed throughout studies in Chapter 5 and Chapter 6.  

Table 3.4 shows 50 activity classes from ChEMBL. The first column contains the ids of 

activity classes and the structure of the rest of the table is similar to Table 3.1 to Table 

3.3. 
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Table 3.1 MDDR 11 selected activity classes  

Activity class (with abbreviations) 
Number of 

Actives 
Number of 

Scaffolds 
MPS 

5HT3 antagonists (5HT3) 752 417 0.35 

5HT1A agonists (5HT1A) 827 450 0.34 

5HT Reuptake inhibitors (5HT) 359 181 0.35 

D2 antagonists (D2) 395 258 0.35 

Renin inhibitors (Renin) 1130 554 0.57 

Angiotensin II AT1 antagonists (AT1) 943 464 0.40 

Thrombin inhibitors (Thrombin) 803 425 0.42 

Substance P antagonists (SubP) 1246 586 0.40 

HIV protease inhibitors (HIVP) 750 461 0.45 

Cyclooxygenase inhibitors (COX) 636 282 0.27 

Protein kinase C inhibitors (PKC) 453 171 0.32 

 

Table 3.2  WOMBAT 14 selected activity classes 

Activity class (with abbreviations) 
Number 

of 

Actives 

Number of 

Scaffolds 
MPS 

Renin inhibitors (RENIN) 474 253 0.59 

Protein kinase C inhibitors (PKC) 142 31 0.57 

Matrix metalloprotease inhibitors (MMP1) 694 280 0.44 

Angiotensin II AT1 antagonists (ANG) 724 253 0.44 

HIV protease inhibitors (HIVP) 1128 473 0.44 

Substance P antagonists (SUBP) 558 186 0.43 

Thrombin inhibitors (THR) 421 196 0.42 

5HT1A antagonists (5HT1A) 592 224 0.40 

Factor Xa inhibitors (Fxa) 842 328 0.39 

5HT3 antagonists (5HT3) 220 117 0.38 

Acetylcholine esterase inhibitors (AChE) 503 220 0.37 

D2 antagonists (D2) 910 324 0.37 

Phosphodiesterase inhibitors (PDE4)  596 270 0.36 

Cyclooxygenase inhibitors (COX) 965 220 0.32 
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Table 3.3 MUV 17 activity classes  

Activity class (with aid key) 
Number 

of 

Actives 

Number 

of 

Scaffolds 
MPS 

Sphingosine-1-phosphate 1 receptor potentiators (aid 466) 30 28 0.29 

Protein kinase A inhibitors (aid 548) 30 27 0.29 

Steroidogenic factor 1 inhibitors (aid 600) 30 24 0.29 

Rho kinase 2 inhibitors (aid 644) 30 27 0.27 

HIV reverse transcriptase RNase (aid 652) 30 27 0.26 

Ephrin type-A receptor 4 antagonist inhibitors (aid 689) 30 29 0.27 

Steroidogenic factor 1 activators (aid 692) 30 30 0.25 

Heat shock protein 90kDa alpha inhibitors (aid 712) 30 27 0.26 
Estrogen receptor-alpha coactivator binding inhibitors (aid 

713) 30 26 0.26 
Estrogen receptor-beta coactivator binding inhibitors (aid 

733) 30 28 0.27 
Estrogen receptor-alpha coactivator binding potentiators 

(aid 737) 30 28 0.30 

Focal adhesion kinase inhibitors (aid 810) 30 28 0.28 

Cathepsin G (aid 832) 30 24 0.32 

Factor XIa (aid 846) 30 21 0.28 

Factor XIIa (aid 852) 30 24 0.30 

Dopamine receptor D1 allosteric modulators (aid 858) 30 24 0.25 

Muscarinic receptor M1 allosteric modulators (aid 859) 30 29 0.28 
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Table 3.4  ChEMBL 50 activity classes 

ChEMBL tid Activity class 

Numbe

r of 

Actives 

Number 

of 

Scaffolds 

MPS 

Target_no_4 Phosphodiesterase 4D 152 60 0.43 

Target_no_8 Thymidylate synthase 103 44 0.38 

Target_no_9 Ghrelin receptor 493 228 0.42 

Target_no_10 Tyrosine-protein kinase ABL 170 64 0.43 

Target_no_12 Tyrosine-protein kinase SRC 442 229 0.40 

Target_no_13 Tyrosine-protein kinase receptor FLT3 122 49 0.38 

Target_no_14 Serine/threonine-protein kinase Aurora-A 124 66 0.47 

Target_no_16 Insulin-like growth factor I receptor 303 124 0.46 

Target_no_21 C-Jun N-terminal kinase 1 208 51 0.42 

Target_no_35 Carbonic anhydrase XII 119 60 0.39 

Target_no_42 Glucocorticoid receptor 485 169 0.37 

Target_no_44 Progesterone receptor 330 99 0.39 

Target_no_52 Beta-2 adrenergic receptor 150 88 0.47 

Target_no_54 Muscarinic acetylcholine receptor M3 252 140 0.40 

Target_no_57 Dopamine D3 receptor 388 214 0.39 

Target_no_59 Serotonin 1d (5-HT1d) receptor 67 45 0.45 

Target_no_81 Neuropeptide Y receptor type 5 367 182 0.38 

Target_no_86 G protein-coupled receptor 44 427 132 0.39 

Target_no_95 Cyclooxygenase-2 349 117 0.33 

Target_no_98 Renin 550 183 0.47 

Target_no_105 Beta-secretase 1 536 246 0.45 

Target_no_112 Glycine transporter 1 174 66 0.41 

Target_no_113 Vasopressin V1a receptor 188 110 0.47 

Target_no_115 Oxytocin receptor 161 55 0.42 

Target_no_120 Somatostatin receptor 5 130 67 0.46 

Target_no_121 Neuropeptide Y receptor type 1 174 66 0.40 

Target_no_129 C5a anaphylatoxin chemotactic receptor 170 67 0.46 

Target_no_140 C-C chemokine receptor type 4 142 87 0.40 

Target_no_142 C-C chemokine receptor type 2 605 178 0.46 

Target_no_143 Sodium channel protein type IX alpha subunit 200 58 0.42 

Target_no_146 Leukotriene A4 hydrolase 160 87 0.45 

Target_no_147 Phosphodiesterase 4A 73 38 0.39 

Target_no_148 Cathepsin S 625 298 0.41 

Target_no_152 Voltage-gated potassium channel subunit Kv1.5 201 97 0.42 

Target_no_163 Cathepsin L 161 67 0.37 

Target_no_168 Cytochrome  P450 2C9 50 31 0.37 

Target_no_171 Orexin receptor 2 100 43 0.45 
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Target_no_181 Nicotinic acid receptor 1 170 80 0.38 

Target_no_186 Serine/threonine-protein kinase B-raf 144 73 0.48 

Target_no_195 Cathepsin B 105 56 0.44 

Target_no_196 P2X purinoceptor 7 137 69 0.44 

Target_no_210 

Inhibitor of nuclear factor kappa B Kinase beta 

subunit 103 46 0.42 

Target_no_211 Interleukin-8 receptor B 274 76 0.39 

Target_no_213 Sphingosine 1-phosphate receptor Edg-1 133 51 0.37 

Target_no_220 Urotensin II receptor 120 74 0.53 

Target_no_230 Melatonin receptor 1B 166 52 0.48 

Target_no_234 Liver glycogen phosphorylase 347 104 0.48 

Target_no_238 Metabotropic glutamate receptor 1 188 84 0.42 

Target_no_241 Estradiol 17-beta-dehydrogenase 3 106 39 0.36 

Target_no_250 Macrophage colony stimulating factor receptor 117 59 0.44 

 

3.2.1.5 Comparison of Databases’ Diversity  

As noted in the previous sections, the MPS values signify the diversity of activity 

classes, which is important for evaluating similarity search approaches.  Therefore, the 

four databases used in this study are compared based on their MPS values. 

As shown in Figure 3.2, the MUV dataset is obviously the most diverse one with MPS 

value in the range from 0.25 to 0.32. The median MPS values of MUV is the lowest at 

0.28 compared with >0.35 for the other three databases.  

Observation from the other three databases indicates that, MDDR and WOMBAT have 

outlier(s), i.e., the MPS values of some activity classes are far more than of the others, 

e.g., Renin from MDDR (0.57), Renin from WOMBAT (0.59) and PKC from 

WOMBAT (0.57). The three outliers here indicate the most homogeneous classes. The 

most heterogeneous activity class in MDDR is COX with the lowest MPS value 0.27, 

which is also the most diverse class in WOMBAT with a MPS value of 0.32. The MPS 

values of ChEMBL are in the range from 0.33 to 0.53, with no outliners. Generally, 

WOMBAT and ChEMBL are similar in terms of their median MPS values, minimum 

MPS values and 3
rd 

quartiles values. MDDR is more diverse than WOMBAT and 
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ChEMBL. This is shown diagrammatically in Figure 3.2 and suggests that searching 

MUV activity classes will be much more difficult than for the other three databases. 

 

Figure 3.2 Comparison of MPS values of four databases using boxplot.  

The construction of a box is shown on the right hand side of this figure. The dark 

thick segment in the box represents the median MPS value; the lower quartile 

and the upper quartile are equal to the first and third quartiles MPS values. The 

outlier is shown as an empty circle.   

 

3.2.2 Molecular Representation 

As noted in Chapter 2, in 2D similarity searching, the approach of comparing 

fingerprints is based on the assumption that the similarity of two fingerprints also 

indicates a similarity between two molecules in terms of their structures and activities. 

An appropriate fingerprint, therefore, is one of the most important components in 

similarity search.   
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Hert et al. (2004b) provided an in-depth analysis and comparison of different 

fingerprints. A total of 15 fingerprint types were evaluated and classified into four 

categories: structural keys, hashed fingerprints, circular substructures and 

pharmacophores. Based on their study, circular substructures have been demonstrated to 

be the most effective molecular descriptors in similarity searching. A typical type of 

circular substructure-based descriptors, the Extended Connectivity Fingerprints (ECFPs), 

have been given a detailed description of their generation in comparison to other 

fingerprints by Rogers et al. (2010).  

The ECFPs are not based on pre-defined substructural keys and are designed to capture 

molecular features related to molecular activity.  They were first released by Pipeline 

Pilot (Accelrys Software, 2009) and have been widely utilized since then. ECFPs are 

recognized as novel class of topological fingerprints for molecular description. They are 

popular in ligand-based virtual screening and have obtained very good performances in 

chemoinformatics (Rogers and Hahn, 2010). The generation process of ECFPs 

systematically records the neighborhood of each non-hydrogen atom into multiple 

circular layers up to a given diameter. These atom-centered substructural features are 

then mapped into integer codes using a hashing procedure.   

The ECFPs generation process starts by assigning an integer to each nonhydrogen atom 

of a molecule. The value of the integer relates to the atom properties, e.g., atomic 

number and connection count. A number of iterations can then take place to combine the 

initial atom identifier(s) with the identifier(s) of the neighbor atom(s) in a given 

diameter. All of the iterations can encode a list which consists of integer(s) that are 

calculated by a suitable hashing function. Figure 3.3 illustrates the process of generating 

extended connectivity descriptors (Morgan, 1965; Rogers and Hahn, 2010).  

https://www.chemaxon.com/jchem/doc/user/ECFP.html#generation
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Figure 3.3 Schematic representation for generating extended connectivity 

descriptors (Rogers and Hahn, 2010). 

 

The ECFPs used in this study refer to Pipeline Pilot’s Extended-Connectivity 

Fingerprints. They encode the central atom and the neighboring atoms within a diameter 

of 2 (i.e., ECFP(C)_2), 4 (i.e., ECFP(C)_4) or 6 (i.e., ECFP(C)_6) atoms. Where, the 

last letter “C” in ECFC refers to count. Hence, the ECFP consists of binary strings while 

the ECFC consists of counts (numbers). They characterize a much bigger set of features 

than is common for other fingerprints that may be valuable for molecular comparison, 

e.g., a typical molecule may generate fingerprints containing hundreds or thousands of 

features; a typical molecular catalog may contain several thousand or millions of 

different features (Accelrys Software, 2009). 
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In this study, the molecules were characterized by ECFP_4 and ECFC_4 extended 

connectivity fingerprints, generated using Pipeline Pilot software (Accelrys Software, 

2009). The ECFP_4 and ECFC_4 integer codes representing a circular substructure were 

hashed to give a fixed-length fingerprint containing 1024 elements, in which the 

ECFP_4 were applied to experiments in Chapter 4 and Chapter 5 and the ECFC_4 were 

applied to experiments in Chapter 4 and Chapter 6. 

 

3.3 Procedure of Similarity Search  

In 2D similarity search, a fingerprint can be considered as a vector with every element 

denoting a fragment occurring any number of times in a molecule. The common 

approach for similarity search can be described briefly as: matching a known bioactive 

molecule (often called the reference structure) against each of the structures in a 

database, computing the degree of similarity in each case, and then ranking the database 

structures in order of decreasing similarity.  As noted in Chapter 2, the similar property 

principle indicates that molecules that are structurally similar have similar properties.  

Thus, the top-ranked structures from a similarity search are most likely to exhibit the 

required bioactivity (Sheridan, 2007; Stumpfe and Bajorath, 2011; Willett, 2009). 

The workflow of similarity search experiments in this work is shown as Figure 3.4, that： 

Step 1:  For each database, ten active molecules are selected from each activity 

class as the reference structures. In the studies on the MDDR and WOMBAT 

databases, each group of ten active molecules was selected by the MaxMin 

method. The MaxMin algorithm was reported as suitable for dissimilarity-based 

compound selection and also for large database processing (Holliday et al., 1995; 

Snarey et al., 1997).  The algorithm starts with a subset containing a single 

randomly selected structure. This structure can then be used to compare against 

the rest of structures from the database, and the most dissimilar structure (the one 
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which has the smallest value of similarity) will be added into the subset. In that 

case, the two structures in the subset can be used to compare the rest of 

structures from the database; the most dissimilar structure will be identified and 

added into the subset, and so on until ten reference molecules are selected. Due 

to the high diversity of the MUV database and the large scale of ChEMBL 

database, the reference molecules of these two databases were selected randomly.  

Step 2:  A similarity coefficient is selected, and, the number of active molecules 

that occurred in the top 1% of the database when ranked in order of decreasing 

similarity to each reference molecule is calculated. 

Step 3:   For each reference molecule, there is a result of a number of active 

molecules from the same active class as the reference molecule. 

Step 4:  The mean active number achieved for the certain class by averaging 

over the ten results.  

After selecting reference molecules, different weighting schemes were applied in some 

of the experiments to weight both the reference molecules and the whole database. In 

the study in Chapter 4, five weighting schemes were employed which resulted in a total 

of 25 weighting combinations. In the study in Chapter 6, two kind of weighting 

combinations were adopted. 
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Figure 3.4 Procedure of Similarity Search. 

  

3.4 Evaluation Method 

Evaluating similarity search methods focus on two aspects: the efficiency and the 

effectiveness (Edgar et al., 2000). The efficiency refers to the computational 

requirements for searching. The effectiveness, on the other hand, measures if the actual 

output meets the desired output. There are a number of studies interested in criteria for 

the evaluation of virtual screening experiments (Edgar et al., 2000; Jain and Nicholls, 

2008; Truchon and Bayly, 2007). The studies in this thesis are concerned with criteria 

for measuring the effectiveness of similarity search, i.e., the number of the active 

molecules which have been retrieved at a cut-off threshold in the ranking. For example, 

setting the cut-off point in the rank at 5%, if 30% of active molecules have been 

retrieved, then it indicates a six-fold enrichment of the output compared with a random 

screening of the database. Amongst the thresholds of cut-off, top 1% is simple to 

compute and to understand and widely used. Hence, in this study, the effectiveness of a 
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similarity search for a reference structure can be determined by the number of structures 

from the same active class as the reference structure contained within the top 1% of the 

ranking (see Section 3.3).     

In the studies reported in this thesis, either weighting combination or similarity 

coefficients are involved in similarity search approaches. Based on the large amount of 

experimental results that were obtained, statistical tests are used for determining if 

differences in performance between similarity search methods are significant, i.e., if the 

observed differences are meaningful or simply due to chance (Hull, 1993). The most 

common significance tests are known as parametric tests which were pointed out as 

being not suitable for discrete measures (Van Rijsbergen, 1979). Therefore, non-

parametric tests that do not require stringent distributional assumptions are valid for 

evaluating similarity search approaches.     

Here, Kendall’s W test and Wilcoxon Signed Rank test were selected to evaluate the 

statistical significance of the experimental results.  

Kendall's W test (also known as Kendall's coefficient of concordance) is a non-

parametric statistic. It makes no assumptions regarding the nature of the probability 

distribution and can cope with any number of distinct outcomes. The value of W 

indicates the degree of unanimity among a group of judges, such as the various different 

activity classes associated with one of the four databases described in Section 3.2.1. For 

example, the calculated W value can help us to identify the performance of different 

weighting schemes in Chapter 4, and the performance of different similarity coefficients 

in Chapter 5 and Chapter 6. 

The Wilcoxon signed-rank test is also a non-parametric test of statistical significance 

that can be used to compare two related samples when the data is not known to satisfy 

the assumptions inherent in the more common t-test (interval or ratio scale data with a 

normal distribution) (McDonald, 2009; Siegel and Castellan, 1988). There are two 

nominal variables and one measurement variable, one of the nominal variables has only 
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two values, such as "before" and "after," and the other nominal variable often represents 

individuals. For instance, in Chapter 4 of this study, a pair of coefficients can be 

considered as one of the nominal variables and the weighting schemes can be regarded 

as another. The Wilcoxon signed-rank test can give the level of significance of the 

difference between the screening effectiveness of two similarity coefficients. 

3.4.1 The Kendall W Test of Concordance 

The Kendall W test of concordance is a measure of the agreement among several (k) 

judges that are assessing a given set of N objects (Siegel and Castellan, 1988).  For k 

judges, a set of rankings, in which each ranking has N objects are generated.  The null 

hypothesis of Kendall’s test is: the k judges produced independent rankings of the 

objects.  Thus, the higher the calculated W  values are, the higher is the concordance of 

the ranked objects by the different judges. 

The concordance level W can be calculated based on the ranks of corresponding objects, 

shown as Error! Reference source not found.. 

  
  ∑   

  
              

             
           

Equation 3.1 Formula of Kendall’s W statistic test 

Where,     is the sums of ranks received by the i-th object, N is the number of objects, k 

is the number of judges.   is a correction factor for tied ranks (Error! Reference source 

not found.): 

  ∑(  
    )
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Equation 3.2 Formula of T 

Where    is the number of tied ranks in each j of m groups of ties.  Then the   value can 

be computed adding over all groups of ties found in all k judges. For the obtained tied 

ranks, the average of their ranking scores will be re-assigned. 

When N >7, 
2 value has to be obtained from W (Error! Reference source not found.). 

This quantity is asymptotically distributed like chi-square with )1( N degrees of 

freedom. It is then used to derive the corresponding probability value and to test W for 

statistical significance.  

WNk )1(2   

Equation 3.3 Formula of 
2  

The Kendall W test in this study is used to determine whether or not the agreement 

occurred on ranking different methods, e.g., 25 combinations of weighting schemes 

(Chapter 4), or the 44 different coefficients (Chapter 5). The typical significance level (p 

value) of 0.05 was chosen as a threshold which means that a set of rankings is related 

and has not just occurred by chance if the p value is less than 0.05. If a significant value 

is achieved in the Kendall’s W test then Siegel and Castellan (1988) suggest that one can 

obtain a ranking of the N objects. For instance, in Chapter 4, combinations of weighting 

schemes can be compared using their mean rank value after averaged over their ranks of 

all activity classes, if a significant W value was obtained.    

3.4.2 The Wilcoxon Signed-rank Test 

Another non-parametric between pairs test, Wilcoxon signed-rank test (Wilcoxon, 1946), 

has been used to test the significance of the differences between pairs of the coefficients. 

Wilcoxon indicated the possibility of using ranking methods so as to attain a quick 

rough plan of the significance of the differences in experiments.  
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The Wilcoxon signed- rank test is based on the signed differences which are obtained in 

each pair of observations.  Then a ranking can be calculated by the absolute values of 

the differences. The absolute value of the differences between observations are ranked 

from smallest to biggest, with the smallest difference getting a rank of 1, then next 

larger difference getting a rank of 2, etc. Ties are assigned the mean rank value. The 

rank values of all positive and negative differences are summed separately. For each pair 

 ,    is used to denote the difference. According to the values of    , two statistics 

  and    can be produced, in which    is the sum of the ranks of positive    and    

indicates the sum of the ranks of negative   . If the difference between   and    is too 

small then it is more possible that there is no statistical difference between methods. 

The Wilcoxon signed-rank test has been used in this study to test if there is any evidence 

that one coefficient performs better than another. In this case, the smaller of these two 

sums   and    is the test statistic, which equals to min(  ,   ), e.g., the number of 

times that the Tanimoto coefficient gives a markedly better result than the cosine 

coefficient is about the same as the number of times that the converse applies.  

In this study, the Wilcoxon signed-rank tests were carried out on the Tanimoto-cosine 

comparison, Tanimoto-MinMax comparison and the cosine-MinMax comparison in 

Chapter 4.  As for the Kendall W test the significance levels for the statistics were 

measured at the thresholds of 5%. 

3.5 Clustering Method 

According to the number and range of coefficients tested in Chapter 5 and Chapter 6, 

hierarchical cluster analysis was adopted to classify the coefficients based on their 

retrieval abilities.  

In chemoinformatics, cluster analysis has been widely used to partition a set of 

structures into clusters (Varin et al., 2009). The structures in each cluster can hence 

exhibit high degree of both intra-cluster similarity and inter-cluster dissimilarity (Downs 
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and Barnard, 2002; Raymond et al., 2003; Willett, 1987). As one of the more practical 

methods of cluster analysis, the hierarchical cluster analysis is the main method for 

finding relatively homogeneous clusters based on measured characteristics. Basically, 

there are two types of algorithms for hierarchical clustering: agglomerative hierarchical 

clustering and divisive hierarchical clustering. The process of agglomerative hierarchical 

clustering can be described as: at first, each object is considered a separate cluster; two 

most similar clusters are then combined sequentially until only one cluster is left. 

Divisive hierarchical clustering is an inverse procedure of agglomerative hierarchical 

clustering, i.e., it starts from a single cluster and finally divides it into object number of 

clusters.  

Hierarchical cluster analysis produces a dendogram (tree) to show the hierarchy of the 

clusters. The clustering method uses the similarities/dissimilarities or distances between 

objects when forming the clusters. In cluster analysis, the clustering algorithm is crucial 

as the rule that measures distances between objects and determines cluster membership. 

In this study, Ward’s method was selected as the most appropriate clustering algorithm. 

It is an agglomerative clustering method proposed by Ward (Ward, 1963). Distinct from 

other hierarchical methods, it uses an analysis of variance approach to evaluate the 

distances between clusters and it is less susceptible to noise and outliers. This algorithm 

is particularly useful and has been widely used in chemoinformatics (Bocker et al., 2005; 

Downs et al., 1994; Schuffenhauer et al., 2007; Varin et al., 2009).  

The Ward’s method is based on the error sum of squares within a cluster. Let    
  denotes 

the value of the kth element of ith examples in a cluster l and    denotes the number of 

examples in l. Therefore, the error sum of square of cluster l can be defined as: 

   ∑∑    
   ̅ 

  
 

 

   

  

   

 

Equation 3.4 
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Where  ̅ 
  is: 

 ̅ 
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Equation 3.5 

For another cluster m, the error sum of square can be obtained by: 

   ∑∑    
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Equation 3.6 

Then the two clusters l and m can be merged as a new cluster lm when      is minimum 

with respect to all the clusters. Where,      can be given by: 

     
    

     
∑  ̅ 

   ̅ 
  

 
 

   

 

Equation 3.7 

and for cluster lm,     is defined as: 

                

Equation 3.8 

This process is repeated until all of the initial clusters are merged into a single cluster. In 

this study, the hierarchical structures of clusters are visualized as dendrograms with 

heatmaps, see details in Chapter 5 and Chapter 6. 
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3.6 Summary 

This chapter represents the methods that are involved in the studies reported in this 

thesis. It contains all the databases that have been tested; the experimental design and 

also the statistics methods that have been adopted to evaluate the experimental results. 

However, for the next chapters, the experimental details may vary. Thus, specific 

clarification will be given separately.   



Chapter 4:  Evaluation of Interactions 

between Weighting Scheme and 

Similarity Coefficient in Similarity-based 

Virtual Screening 

4.1 Introduction 

In this chapter, there is an analytical elaboration of the interactions between weighting 

scheme and similarity coefficient in similarity-based virtual screening. Three similarity 

coefficients and five weighting schemes were investigated. Through the process of 

comparing and contrasting their respective features, the central objective was to evaluate 

and comment on their interactions with each other.  

Of particular interest to this study are the findings of Arif et al. (2009b). Arif et al. 

discussed the interactions between structural representation, weighting scheme and 

similarity coefficient when a chemical similarity measure is produced. In their study, 

five weighting schemes were applied to fragment occurrence data to identify their 

effectiveness in similarity search. One similarity coefficient was selected according to 

its known success and extensive use for binary similarity search, namely, the Tanimoto 

coefficient.  

Given its widespread usage with binary fingerprints, Arif et al. (2009b) used the 

Tanimoto coefficient in their experiments on frequency-based weighting, but found that 

problems could arise that were absent when conventional binary fingerprints were being 

compared.  Specifically, they found that even quite small variations in the weighting 
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scheme could affect the magnitudes of the Tanimoto coefficients that are calculated in a 

similarity search; most notably they found that if there is a large discrepancy in the 

weights computed for the reference structure and for the database structure then 

screening effectiveness is likely to be markedly less than if the two weights are of 

comparable magnitude. This behavior was ascribed to the precise mathematical form of 

the Tanimoto coefficient, and it was suggested that other types of coefficient might be 

less affected by changes in the weighting scheme that was being used.  Thus, the study 

reported in this chapter attempted to determine whether other coefficients may be 

preferable to the Tanimoto coefficient when frequency-weighted fingerprints are used 

for similarity-based virtual screening. 

Another finding from Arif et al. (2009b) is, out of the above five weighting schemes in 

their research, one was found to be superior to the others, namely, W4, i.e., the square 

root weighting scheme. Since their primary interest was in the incidence and occurrence 

representations, and the measures where both the reference structures and the database 

structures are weighted the same. Thus, they analysed 19 rather than a total of 25 

possible weighting combinations which are introduced in next section. 

Therefore, the study reported in this chapter focused on determining whether other 

coefficients maybe superior to the Tanimoto coefficient, and combinations of weighting 

schemes and coefficients that could enhance similarity searching.   

4.2 Method 

As described in Chapter 3, ECFC_4 fingerprints were chosen as the molecular 

descriptors throughout this study. All molecules were characterized by 1,024 fixed-

length ECFC_4 fingerprints generated using Pipeline Pilot software (Accelrys Software, 

2009). Three publicly available databases were investigated, i.e., the MDDR databases, 

the WOMBAT databases and the MUV database. The former two databases were 

utilized in comparison with Arif et al.’s (2009b) study and the MUV database was used 

in this study to mirror the results obtained from the former two databases. 
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The experimental process is described in Chapter 3. Before completing the similarity 

search, illustrated by Figure 3.4, selected weighting scheme(s) was(were) applied to 

weight both the reference molecules and the molecules from a database. Each search 

involved computing the similarity between one of the ten reference structures chosen 

from each activity class and all of the database structures, ranking the database 

structures in decreasing order of the computed similarities, and then checking how many 

of them in the top-1% of the ranked list belonged to the same activity class as the 

reference structure.  This was repeated for each of the ten chosen structures in an 

activity class, and then the mean number of actives retrieved was calculated to describe 

the effectiveness of screening. Searches were carried out for each of the eleven MDDR 

activity classes, for each of the 14 WOMBAT activity classes and for each of the 17 

MUV activity classes, using the combinations of weighting schemes. 

Following Arif et al. (2009b), five types of weighting schemes were adopted in this 

study, i.e., W1 to W5. Details of these weighting schemes are given later in this section. 

In order to identify the possible 25 combinations of weighting schemes,     has been 

introduced (Arif et al., 2009b) where   represents the weighting scheme applied to the 

molecules from database, and   represents the weighting scheme applied to a reference 

molecule. For example,     represents the similarity measure using W1 as the 

weighting scheme for molecules in the database, and using W5 as the weighting scheme 

for a reference molecule.  

The ECFC_4 fingerprint can be considered as a vector,   (where   can denote either the 

reference structure or a database structure), with the i-th element denoting a fragment 

occurring    times in a molecule      ). If     , i.e., if a fragment occurs at least 

once in a molecule, then the    value may then be weighted. In this experiment, the    

value was weighted with five different weights (denoted here by W1- W5). 

W1:  the incidence weight, in which the element is set to one, i.e., as with a 

conventional binary fingerprint. The value of non-zero ith element:   
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W1:        

W2:  the occurrence weight, i.e., using the raw occurrence counts. In this study, 

ECFC_4 fingerprints were used as molecular descriptors, in which the elements are ‘0’s, 

or counts, that stand for a certain feature (fragment)’s absence or frequency of 

occurrence, respectively. 

W2:         

 

These two weighting schemes, W1 and W2, are the obvious weights, and the ones that 

are normally meant when binary and weighed fingerprints are referred to in the 

chemoinformatics literature. Following Arif et al., three further weights were included 

in this study, of which the first two are standard normalizations in data analysis, and the 

final weight is a normalization which has been widely used to weight terms in text 

search engines (Salton and Buckley, 1988). 

 W3:  the natural logarithm. Due to the fact that many fragments in a molecule occur 

only once, the natural logarithm was applied to the non-zero elements in order to 

emphasize the high-frequency occurrence elements. It is expected to result in very 

sparse fingerprints containing much smaller numbers of non-zero elements than for the 

other weights. The value of non-zero ith element: 

 

W3:             

 

W4:  the square root. In order to reduce the contribution of high-frequency occurrence 

in a molecule, square root was used on the non-zero elements. Then the value of the 

non-zero elements:   

W4:      √   
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W5:  In chemoinformatics, it has been proven by studies that the method which works 

well in Information Retrieval (IR) can be applied to retrieve desired molecules from 

chemical databases effectively, e.g., scoring, term weighting and vector space model etc. 

(Willett, 2000; Willett, 2009). By taking molecular size into account, the weighting 

scheme below was used to normalize the non-zero i-th element’s value to generate a 

number in the range of [0.5, 1].  This scheme is derived from the same formula which 

has been used as an effective method in automatic text retrieval (Boyce, 1990; Salton, 

1986; Salton and Buckley, 1988). It expresses the raw occurrence frequency as a 

fraction of the frequency of the most frequently occurring fragment in the molecule. 

Here,     {  } stands for the largest value on i-th element of fingerprints in the whole 

molecule. 

W5:             
  

   {  }
 

 

Table 4.1 provides quantitative data for the coding of the three datasets using the 

weights W1-W5.  Many fragments in a molecule will occur only once and hence the use 

of the logarithmic W3 weight results in sparse fingerprints containing much smaller 

numbers of non-zero elements than for the other weights.   

Table 4.1 Statistical data describing the MDDR, WOMBAT and MUV datasets 

using ECFC_4 fingerprints.   

 
MDDR WOMBAT MUV 

Number of molecules 102,540 138,127 255,510 

Mean non-zero elements per fingerprint 52.43 50.32 44.46 

Mean non-zero elements (W3) per fingerprint 15.15 15.21 12.60 

Mean value of the non-

zero elements 

W1 1.00 1.00 1.00 

W2 1.70 1.76 1.56 

W3 1.07 1.08 1.02 

W4 1.22 1.24 1.19 

W5 0.61 0.61 0.61 
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As denoted before, structures can be represented as vectors. Each structure therefore has 

its own axis in a vector space. The similarity of any two structures can be calculated 

based on the Euclidean distance or/and the angle formed between these two structures. 

When two structures are similar, they will be relatively close in space and the angle 

formed between them will be relatively small. If a similarity metric is based on the angle, 

theoretically, it is less affected by the way of the employed weighting schemes, e.g., the 

two structures are weighted the same or not. For example, when calculating the 

similarity between a structure and its weighted form, the similarity metric based on their 

angle can provide higher similarity values than the similarity metric based on their 

distance. Therefore, the two ways of weighting, i.e. the two structures weighted equally 

and non-equally, both are considered in this study.  

In this chapter, three similarity coefficients were used to measure the similarity S 

between the vectors X and Y, representing a reference structure and a database structure, 

respectively.  If    is used to represent the value of a certain element of the reference 

molecule and    for the value of the same element of a database molecule, then the 

similarity coefficients applied are: 

The first of these was the Tanimoto coefficient     (Willett et al., 1998), as used in the 

previous study of occurrence-based weighting schemes. The formula of the Tanimoto 

coefficient was listed in Table 2.1, where     denotes    and     denotes    and the 

summations are over all of the elements in each fingerprint.  In previous study (Arif et 

al., 2009b), this performs effectively when X and Y are weighted in the same way, i.e., 

using M11, M22, M33, M44 or M55 (a situation refers to as a symmetric weighting 

scheme), but has been found to be capable of giving highly variable levels of screening 

effectiveness when X and Y are weighted using different weights (e.g., M14 or M23, a 

situation referred to as an asymmetric weighting scheme). Their results suggested that a 

positive bias given to the features in the reference structures or a negative bias given to 

the features in the database structures tends to improve active analogue search. This 

indicates the situation that the reference and the database structures weighted non-

equally need to be considered in similarity search. Arif et al. (2009b) also showed that 
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this variation in performance is due to the second and third components of the 

denominator of the Tanimoto coefficient.  The first component relates to the reference 

structure and hence makes a constant contribution in a database search, but the relative 

contributions of the second and third components of the denominator are highly 

dependent on the precise weights that are used. The experiments in this study have 

hence used an alternative coefficient that does not involve the third factor in the 

Tanimoto’s denominator. This is the cosine (or Ochiai) coefficient   (Willett et al., 

1998). 

       
∑     

 
   

√∑   
  

    ∑   
  

   

 

 

Equation 4.1 

which is clearly similar in form to the Tanimoto coefficient and which has been widely 

used in information retrieval (IR) with excellent performance (Korenius et al., 2007). It 

has also been found to offer comparable levels of performance when binary fingerprints 

are used (Holliday et al., 1995; Willett, 2006), but not been proved superior to the 

Tanimoto coefficient in occurrence-weighted similarity searching.  

As a further, rather different, the MinMax coefficient    was tested. It has been 

introduced and used in mutagenicity and toxicity prediction by Swamidass et al. (2005): 

       
∑     {      

 
   }

∑     {      
 
   }

 

Equation 4.2 

which reduces to the Tanimoto coefficient in the case of binary fingerprints.   

To evaluate the statistical significance of the results obtained, Kendall’s W test and 

Wilcoxon Signed Rank test were used in this study.  
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As noted in Chapter 4, Kendall’s W test (Siegel and Castellan, 1988) evaluates the 

significance of agreement between  k, different classes, and N, objects from each class.  

For N>7,  

    
  ∑   

  
            

       
  

Equation 4.3 

  , also known as chi-square value, can be given by Equation 3.3. 

Here,    is the average of the ranks assigned to the i-th object, e.g., M11. In this study, 

for the MDDR searches, k=11 and N=25 and for the WOMBAT searches, k=14 and 

N=25.  

The other statistical test, Wilcoxon signed-rank test (Wilcoxon, 1946), was used to test 

the significance of the differences between pairs of the three coefficients, i.e., paired 

results of 25 similarity measures on MDDR and WOMBAT with three coefficients. 

Thus, the Wilcoxon signed-rank test was carried out on the Tanimoto-cosine comparison, 

Tanimoto-MinMax comparison and the cosine-MinMax comparison.  

4.3 Results 

In Arif et al. (2009b), 19 weighting combinations were employed and M44 has been 

found is superior to other similarity measures with the Tanimoto coefficient. Their study 

was conducted in MDDR and WOMBAT datasets. Hence, the results presented and 

discussed in this section and the next were from the MDDR and the WOMBAT 

databases so as to compare with Arif et al.’s.  The investigation carried out on the MUV 

database will reported in Section 4.5 as a further validation.  

Tables 4.2 to Table 4.4 illustrate the average number of active molecules retrieved in 

each class using the three coefficients and different similarity measures in the MDDR 
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databases. The results of the WOMBAT databases are attached to Appendix A, Table 

A.1 to Table A.3. For each table, the antepenultimate columns show the mean of active 

molecules averaged over different activity classes and the penultimate columns show the 

corresponding median values (eleven activity classes in MDDR and fourteen activity 

classes in WOMBAT). The last columns show the mean of average rank over different 

activity classes (eleven classes in MDDR and fourteen activity classes in WOMBAT) in 

descending order.  In each column except the last, the dark-shaded cell indicates the 

largest value; in the last column the dark-shaded cell indicates the smallest value. 

The penultimate columns show the median value of active molecules averaged over 

different activity classes. The previous study (Arif et al., 2009b) compared weighting 

schemes using the numbers of Mean actives retrieved from activity classes. However, 

for evaluating data, in some cases, the median value is more resistant to outliers than is 

the mean, so this study used both the numbers of Mean actives and the numbers of 

Median actives from activity classes. The numbers of Median actives were calculated to 

mitigate the effects of some other activity classes (most obviously the Renin and AT1 

activity classes) which have far greater numbers of actives than for the other classes. 

After averaging the rank results of 11 activity classes in MDDR (5HT3, 5HT1A, 5HT, 

D2, Renin, AT1, Thrombin, SubP, HIV P, COX and PKC), 14 in WOMBAT (5HT3, 

5HT1A, AChE, D2, Renin, PDE4, Thrombin, SubP, HIV P, COX, PKC, ANG, FXa and 

MMP1) and ten reference structures for each activity class, the mean rank result for each 

similarity measure is shown on the last column of Table 4.2 to Table 4.4 and Table A.1 

to Table A.3. The top rank is dark shaded. Kendall’s W values and chi-square values are 

shown in the captions of all the tables.   

4.3.1 MDDR Results 

From Table 4.2, M54 retrieved the largest mean number of active molecules in MDDR.  

M44 and M14 were ranked first. M23 performed badly on mean actives, median actives 
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and mean rank, with the mean active molecules only retrieving 13.48, while the median 

actives value was 6.60. 

The W value is 0.58 and the chi-square value yielded is 154.02; both are significant at 

the 0.001 level of statistical significance. If a significant value is achieved in the 

Kendall’s W test then Siegel and Castellan (1988) suggest that one can obtain a ranking 

of the N objects. Thus, the rank of the 25 measures is: 

M14>M44>M55>M41>M51>M54>M12>M11>M52>M22>M15>M45>M42>M35>M

33>M24>M31>M34>M21>M53>M43>M32>M25>M13>M23 

The mean ranks from this analysis are shown in the final column of Table 4.2. They are 

based on the ranks for each of the classes. Correspondingly, the mean actives result is: 

M54>M51>M12>M52>M14>M44>M55>M11>M41>M42>M35>M31>M15>M22>M

34>M45>M33>M24>M32>M53>M21>M43>M13>M25>M23 

and the median actives result is: 

M11>M55>M14>M51>M41>M44>M54>M12>M15>M52>M22>M33>M42>M45>M

53>M35>M24>M21>M34>M31>M43>M13>M32>M25>M23 
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Table 4.2 Average numbers of actives molecules retrieved in the top 1% of searches 

of the MDDR database using the Tanimoto coefficient.  

(W=0.58, chi-square=154.02, p<= 0.001) 

Similarity 

measure 

Activity class Mean 

actives 

Median 

actives 

Mean 

rank 
5HT3 5HT1A 5HT D2 Renin AT1 Thrombin SubP HIV P COX PKC 

M11 89.60 81.30 24.60 27.20 420.20 235.70 56.60 120.60 86.70 28.20 35.40 109.65 81.30 7.36 

M12 86.60 72.10 24.70 28.90 513.60 241.20 52.30 136.50 94.00 23.70 31.90 118.68 72.10 6.91 

M13 40.20 54.10 11.90 10.00 50.60 8.30 2.30 79.60 23.30 17.40 20.40 28.92 20.40 21.82 

M14 91.70 79.00 23.90 28.80 460.50 238.60 54.60 135.60 88.20 27.50 36.30 114.97 79.00 5.36 

M15 89.00 79.00 22.00 24.50 302.30 179.60 42.70 99.10 66.50 29.50 33.00 87.93 66.50 11.18 

M21 94.90 66.90 17.80 21.40 169.00 65.10 39.40 33.20 19.10 18.20 13.20 50.75 33.20 16.91 

M22 76.20 62.90 23.30 27.60 283.50 180.70 36.10 128.40 57.90 29.90 41.10 86.15 57.90 10.55 

M23 45.80 41.30 6.60 4.80 9.50 0.40 5.00 13.90 3.30 11.80 5.90 13.48 6.60 23.45 

M24 98.60 71.00 21.50 24.60 196.00 91.40 35.50 76.40 28.30 27.30 19.10 62.70 35.50 14.82 

M25 82.80 54.70 13.80 14.20 43.60 14.30 17.10 7.90 4.80 14.70 7.40 25.03 14.30 21.00 

M31 15.50 45.40 5.80 16.40 471.50 125.90 15.20 138.10 96.80 8.20 30.60 88.13 30.60 16.00 

M32 5.00 17.90 2.00 6.90 255.90 86.30 11.40 122.00 70.20 5.60 22.30 55.05 17.90 20.64 

M33 73.50 61.10 16.10 26.90 193.70 106.00 30.50 131.50 57.30 28.20 35.10 69.08 57.30 14.18 

M34 13.40 36.50 3.70 14.90 417.20 136.10 15.70 138.70 106.50 9.20 32.70 84.05 32.70 16.36 

M35 39.20 62.10 13.80 27.40 468.20 175.10 40.60 129.80 57.00 20.20 35.20 97.15 40.60 13.82 

M41 90.00 77.60 23.70 28.70 418.60 239.50 56.20 124.20 75.40 31.20 36.10 109.20 75.40 6.82 

M42 56.50 59.90 17.40 22.00 420.50 202.30 32.10 139.00 84.40 22.30 37.20 99.42 56.50 12.09 

M43 40.70 57.10 16.30 13.80 65.80 23.90 7.90 78.40 20.50 27.40 25.00 34.25 25.00 19.64 

M44 80.50 74.60 23.10 28.90 449.10 247.20 49.50 143.20 88.90 31.90 43.20 114.55 74.60 5.36 

M45 90.30 75.30 22.50 24.10 252.40 169.40 43.20 88.70 48.40 31.90 32.60 79.89 48.40 11.73 

M51 84.70 76.10 23.40 27.30 501.70 259.40 61.30 133.40 93.30 24.80 33.50 119.90 76.10 6.82 

M52 81.40 66.10 21.20 27.70 525.00 246.90 51.20 130.50 66.60 21.00 32.10 115.43 66.10 10.45 

M53 45.50 63.00 15.30 20.70 155.00 50.20 8.20 112.80 44.90 23.00 34.00 52.05 44.90 17.64 

M54 86.20 73.50 22.10 28.20 535.50 259.00 58.40 136.90 85.90 25.30 33.90 122.26 73.50 6.82 

M55 90.00 80.20 23.30 27.60 446.90 240.30 53.60 127.90 84.30 29.30 38.90 112.94 80.20 6.64 
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Table 4.3 Average numbers of active molecules retrieved in the top 1% of searches 

of the MDDR database using the cosine coefficient.  

(W=0.57, chi-square=150.96, p<= 0.001) 

Similarity 

measure 

Activity class Mean 

actives 

Median 

actives 

Mean 

rank 
5HT3 5HT1A 5HT D2 Renin AT1 Thrombin SubP HIV P COX PKC 

M11 88.90 80.50 23.90 26.50 425.40 233.30 55.40 120.40 88.80 27.60 34.60 109.57 80.50 8.73 

M12 86.90 73.70 21.20 22.00 310.40 123.00 33.20 98.80 51.90 27.40 31.70 80.02 51.90 16.91 

M13 47.90 60.70 14.10 14.70 111.80 19.80 4.30 91.90 27.30 19.20 24.30 39.64 24.30 23.36 

M14 90.00 80.00 23.00 26.40 401.50 209.10 48.00 121.80 79.20 28.10 37.60 104.06 79.20 9.82 

M15 90.40 80.30 23.50 26.90 418.10 227.40 53.30 120.90 84.80 27.90 36.10 108.15 80.30 8.82 

M21 76.90 72.80 21.00 29.40 500.30 224.50 55.50 133.80 85.70 21.50 30.00 113.76 72.80 10.18 

M22 57.30 58.70 18.20 26.40 340.20 207.80 30.90 122.60 62.80 21.70 40.40 89.73 57.30 15.82 

M23 38.10 55.00 12.10 23.50 272.10 160.00 24.30 130.40 63.20 19.50 38.30 76.05 38.30 19.00 

M24 73.00 68.90 21.50 30.40 469.70 253.10 46.60 139.30 92.00 24.20 42.10 114.62 68.90 8.00 

M25 76.50 71.00 21.80 29.80 496.30 250.50 51.20 140.50 93.40 24.10 39.10 117.65 71.00 7.55 

M31 32.80 58.90 9.80 22.70 478.20 144.30 31.70 133.30 82.90 13.10 28.60 94.21 32.80 18.64 

M32 66.70 57.50 17.80 24.10 285.90 113.00 25.50 102.80 35.50 28.30 32.00 71.74 35.50 19.00 

M33 66.70 59.90 16.90 26.10 237.40 108.30 29.10 120.10 43.80 27.00 32.20 69.77 43.80 18.73 

M34 51.10 63.30 14.80 27.00 449.00 188.10 36.90 135.30 69.00 20.70 36.10 99.21 51.10 14.27 

M35 43.60 61.60 12.60 25.50 479.90 174.30 34.30 137.40 83.20 17.20 34.80 100.40 43.60 15.55 

M41 81.30 76.20 22.60 27.00 481.50 258.70 55.10 137.10 100.00 28.00 37.90 118.67 76.20 5.82 

M42 66.90 67.10 21.00 25.60 359.60 203.60 35.00 119.30 63.80 26.60 40.60 93.55 63.80 14.36 

M43 37.70 58.20 13.10 22.20 237.30 100.40 22.10 122.00 57.20 22.70 36.80 66.34 37.70 20.45 

M44 76.90 73.30 21.80 28.00 464.30 252.10 47.40 138.90 93.80 30.00 42.90 115.40 73.30 6.27 

M45 79.90 75.20 22.30 27.90 478.50 258.20 52.10 140.90 99.30 29.50 40.80 118.60 75.20 5.09 

M51 87.80 80.30 23.50 26.90 448.90 243.10 55.70 126.20 89.60 28.60 37.30 113.45 80.30 6.82 

M52 81.40 71.80 22.80 23.10 326.30 156.40 33.40 108.30 52.80 30.40 36.90 85.78 52.80 13.91 

M53 46.40 60.70 15.40 19.30 158.70 40.80 10.00 102.00 32.70 22.70 31.70 49.13 32.70 21.73 

M54 88.40 78.00 22.50 27.70 430.20 227.30 47.90 127.30 79.10 30.10 40.40 108.99 78.00 8.18 

M55 89.20 79.10 23.70 27.00 446.60 238.90 53.40 127.40 85.20 29.00 39.20 112.61 79.10 6.55 

 

Using the cosine coefficient on MDDR (see Table 4.3), M45 and M41 achieved a very 

good performance both on the number of active molecules and the order of rank.  The 

worst measure is M13 which scored 39.64 mean active molecules and 24.30 median 

actives; however, it is three times the number of actives which M23 gained with the 

Tanimoto coefficient. 
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The W value is calculated to be 0.57 and the chi-square value is yielded to be 150.96; 

both are significant at the 0.001 level of statistical significance.  

Table 4.4 Average numbers of active molecules retrieved in the top 1% of searches 

of the MDDR database using the MinMax coefficient.  

(W=0.56, chi-square=147.95, p<= 0.001) 

Similarity 

measure 

Activity class 
Mean 

actives 

Median 

actives 

Mean 

rank 5HT3 5HT1A 5HT D2 Renin AT1 Thrombin SubP HIV P COX PKC 

M11 89.60 81.30 24.60 27.20 420.20 235.70 56.60 120.60 86.70 28.20 35.40 109.65 81.30 8.82 

M12 88.50 79.30 24.70 27.60 453.40 246.60 58.60 128.00 94.60 27.50 34.20 114.82 79.30 7.45 

M13 44.70 59.90 13.70 13.50 62.90 17.20 3.10 88.10 27.70 18.80 23.60 33.93 23.60 21.36 

M14 89.60 81.10 24.40 27.30 435.70 240.90 57.50 123.20 89.80 27.80 35.10 112.04 81.10 8.18 

M15 90.80 80.40 22.90 26.20 361.30 206.70 47.30 110.40 74.90 29.70 35.50 98.74 74.90 11.27 

M21 94.70 72.00 23.60 25.50 286.90 200.80 54.30 76.30 55.50 24.90 22.20 85.15 55.50 14.73 

M22 92.50 75.00 25.30 30.00 411.20 235.20 51.30 154.30 80.30 33.20 45.90 112.20 75.00 6.73 

M23 41.10 47.00 8.60 5.80 15.30 1.90 2.50 26.10 6.40 11.10 8.00 15.80 8.60 24.00 

M24 102.70 75.40 23.40 28.20 336.70 194.80 54.10 107.70 58.00 25.90 26.60 93.95 58.00 12.36 

M25 94.80 68.00 21.60 23.20 184.90 153.60 42.50 55.10 41.20 24.00 18.90 66.16 42.50 17.36 

M31 24.30 55.30 8.30 19.70 570.60 123.40 21.40 141.00 83.10 10.20 25.90 98.47 25.90 16.82 

M32 5.40 30.10 2.40 9.50 332.20 100.10 14.00 124.20 80.90 6.60 22.80 66.20 22.80 20.82 

M33 82.30 63.90 17.20 28.10 242.80 112.40 34.20 143.00 60.10 29.60 36.10 77.25 60.10 13.27 

M34 12.60 39.30 4.90 15.00 456.70 130.80 16.10 136.50 110.10 9.50 29.10 87.33 29.10 16.82 

M35 48.70 68.00 12.00 24.20 519.10 159.20 36.00 136.50 47.00 16.00 26.20 99.35 47.00 15.73 

M41 92.60 79.10 24.90 27.10 378.50 229.20 57.70 106.90 73.70 28.60 30.90 102.65 73.70 10.00 

M42 78.40 77.50 21.50 26.60 467.00 252.30 52.20 146.50 108.80 30.00 42.80 118.51 77.50 7.64 

M43 44.20 57.40 14.40 10.20 48.70 11.90 3.70 65.80 17.20 17.40 20.30 28.29 17.40 22.27 

M44 92.40 81.70 24.80 29.20 447.60 248.10 55.70 144.80 89.20 31.30 42.20 117.00 81.70 4.27 

M45 94.40 77.20 23.80 25.20 300.10 198.00 49.30 91.50 58.80 29.70 29.30 88.85 58.80 12.73 

M51 91.30 78.60 22.70 27.70 470.00 245.90 59.10 126.30 85.90 26.80 34.00 115.30 78.60 8.55 

M52 88.40 75.80 22.90 27.10 494.70 255.40 62.20 131.30 88.20 24.40 30.40 118.25 75.80 9.00 

M53 51.10 65.90 14.50 20.70 133.80 43.70 6.30 111.10 38.20 22.70 31.20 49.02 38.20 18.82 

M54 91.20 77.20 23.30 27.30 481.00 249.50 60.40 128.50 87.40 26.70 32.70 116.84 77.20 7.91 

M55 90.40 81.40 24.40 28.10 435.20 243.90 55.60 128.20 86.60 29.70 38.50 112.91 81.40 7.00 

 

On the MDDR database (see Table 4.4), M44 demonstrated a good performance 

working with the MinMax coefficient. The inferior measure is M23, which scored 15.80 
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mean active molecules and 8.60 median actives. This result is very similar to that 

achieved with the Tanimoto coefficient. 

The W value is calculated to be 0.56 and the chi-square value is yielded to be 147.95, 

both are significant at the 0.001 level of statistical significance. Notably, the top three 

similarity measures are symmetric similarity measures.  

4.3.2 WOMBAT Results 

Table A.1 to Table A.3 illustrate the performance of the three coefficients on the 

WOMBAT databases.  

When the similarity search was performed on the WOMBAT database with the 

Tanimoto coefficient, M54 achieved the best performance, and then M12.  Still, M23 

only retrieved 8.24 active molecules and 7.05 of median actives was the worst. The W 

value is 0.71 and the chi-square value yielded is 239.79; both are significant at the 0.001 

level of statistical significance. 

Very similar to the results obtained from the MDDR database, M41 and M45 were 

shown to be the best measures in the WOMBAT database with the cosine coefficient. 

M13 was the worst one but yielded more than four times of active molecules compared 

to M23 with the Tanimoto coefficient. The W value is 0.60 and the chi-square value 

yielded is 202.83; both are significant at the 0.001 level of statistical significance.  

When the similarity search was carried out with the MinMax coefficient on the 

WOMBAT database, M44 achieved the best performance, and then M22. M23 worked 

poorly: it only retrieved 11.76 active molecules and the median value of 11.45 actives 

was the worst. The W value 0.73 and the chi-square value yielded is 245.40; both are 

significant at the 0.001 level of statistical significance.  

Generally, as shown in Table 4.5, symmetric measures performed better than 

asymmetric measures, e.g., M44, M55. This is in line with Arif et al.’s finding.   
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Table 4.5 Rankings of the 25 measures for combinations of database and similarity coefficient.  

(based on the results from the last three columns, Table 4.2 to Table 4.4 and Table A.1 to Table A.3) 

 

Database Coefficient Ranking type Ranking result 

MDDR 

Tanimoto 

rank 
M14>M44>M55>M41>M51>M54>M12>M11>M52>M22>M15>M45>M42>M35>M33>M24>M31>M34>

M21>M53>M43>M32>M25>M13>M23 

mean actives 
M54>M51>M12>M52>M14>M44>M55>M11>M41>M42>M35>M31>M15>M22>M34>M45>M33>M24>

M32>M53>M21>M43>M13>M25>M23 

median actives 
M11>M55>M14>M51>M41>M44>M54>M12>M15>M52>M22>M33>M42>M45>M53>M35>M24>M21>

M34>M31>M43>M13>M32>M25>M23 

cosine 

rank 
M45>M41>M44>M55>M51>M25>M24>M54>M11>M15>M14>M21>M52>M34>M42>M35>M22>M12>

M31>M33>M23>M32>M43>M53>M13 

mean actives 
M41>M45>M25>M44>M24>M21>M51>M55>M11>M54>M15>M14>M35>M34>M31>M42>>M22>M52>

M12>M23>M32>M33>M43>M53>M13 

median actives 
M11>M51>M15>M14>M55>M54>M41>M45>M44>M21>M25>M24>M42>M22>M52>M12>M34>M33>

M35>M23>M43>M32>M31>M53 

MinMax 

rank 
M44>M22>M55>M12>M42>M54>M14>M51>M11>M52>M41>M15>M24>M45>M33>M21>M35>M34>

M31>M25>M53>M32>M13>M43>M23 

mean actives 
M42>M52>M44>M54>M51>M12>M55>M22>M14>M11>M41>M35>M15>M31>M24>M45>M34>M21>

M33>M32>M25>M53>M13>M43>M23 

median actives 
M44>M55>M11>M14>M12>M51>M42>M54>M52>M22>M15>M41>M33>M45>M24>M21>M35>M25>

M53>M34>M31>M13>M32>M43>M23 
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Database Coefficient 
Ranking 

type 
Ranking result 

WOMBAT 

Tanimoto 

rank 
M54>M12>M14>M51>M52>M11>M55>M44>M41>M15>M22>M45>M35>M42>M24>M33>M21>M53>M34>

M31>M25>M43>M13>M32>M23 

mean 

actives 

M54>M12>M51>M14>M52>M11>M55>M44>M41>M22>M15>M42>M35>M45>M33>M24>M53>M34>M31>

M21>M43>M13>M32>M25>M23 

median 

actives 

M54>M52>M55>M44>M14>M12>M11>M41>M51>M15>M45>M22>M42>M35>M33>M53>M31>M24>M34>

M21>M43>M13>M25>M32>M23 

cosine 

rank 
M41>M45>M51>M55>M25>M11>M44>M24>M54>M15>M14>M21>M42>M52>M22>M34>M12>M35>M23>

M33>M43>M32>M53>M31>M13 

mean 

actives 

M41>M45>M51>M25>M55>M11>M24>M44>M15>M54>M21>M14>M42>M22>M34>M52>M35>M23>M12>

M33>M43>M31>M32>M53>M13 

median 

actives 

M55>M45>M25>M24>M44>M54>M15>M21>M51>M41>M11>M14>M42>M52>M12>M22>M34>M35>M23>

M33>M43>M31>M53>M32>M13 

MinMax 

rank 
M44>M22>M54>M12>M52>M51>M14>M55>M42>M11>M41>M24>M15>M45>M21>M33>M35>M25>M53>

M31>M34>M13>M32>M43>M23 

mean 

actives 

M44>M12>M52>M54>M22>M42>M51>M14>M55>M11>M41>M15>M24>M45>M21>M33>M35>M25>M31>

M34>M53>M32>M13>M43>M23 

median 

actives 

M22>M44>M55>M42>M14>M11>M51>M54>M12>M52>M24>M41>M15>M45>M21>M33>M35>M25>M31>

M53>M34>M32>M13>M43>M23 
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4.4 Discussion 

Compared with the previous study (Arif et al., 2009b), this study carried out a further 

investigation using different coefficients. Furthermore, the impact from typical activity 

classes also was noticed and analyzed. 

The general results show that the W4 weighting scheme yields more actives and the W3 

weighting scheme performed the worst. The average number of actives retrieved either 

by the cosine coefficient or by the MinMax coefficient is more than the number 

achieved using the Tanimoto coefficient. Some particular classes contributed more than 

other classes in the similarity search, for example, Renin and AT1 in MDDR; Renin, 

PKC and ANG in WOMBAT. More detailed discussion is given in this section. 

4.4.1 Comparison of Coefficients 

For each of the three coefficients, the mean and standard deviation values for all of the  

25 combined weighting schemes were calculated, based on the results from Table 4.2 -

4.4 and Table A.1 – A.3, which is shown in Table 4.6. 

Table 4.6 Screening effectiveness of 25 combined weighting schemes in similarity 

searches of the MDDR and WOMBAT databases using three similarity coefficients. 

  Mean actives Median actives 

  ST SC SM ST SC SM 

MDDR 
Mean 82.06 94.84 89.55 50.66 59.22 57.00 

S.D. 33.50 22.37 30.33 23.59 18.71 24.21 

WOMBAT 
Mean 72.81 84.32 80.83 59.60 69.73 66.93 

S.D. 31.79 18.83 29.69 25.76 15.13 23.26 

 

Table 4.6 demonstrates that the Tanimoto coefficient yielded a lower mean and a greater 

standard deviation than did the cosine coefficient.  It is evident that the latter was hence 

both more effective (in that it retrieved more active molecules) and more robust (in that 

there is much less variation across the range of weighting schemes). Similar comments 
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apply when it is compared with the MinMax coefficient (though to a lesser extent).  The 

variability of the Tanimoto and the MinMax results is illustrated in Figure 4.1, which 

shows the median numbers of actives retrieved for the 25 different weighting schemes 

using the MDDR dataset. The figures highlight the poor performance of several of the 

schemes involving W3 (e.g., W13 and W23) for the Tanimoto and MinMax coefficients, 

whereas the cosine coefficient is far less affected.   

From Table 4.2 to Table 4.4, pairs of observations in the MDDR database were obtained 

based on the mean actives retrieved and the median actives retrieved. Thus, the 

Wilcoxon signed-rank test was employed to judge whether there is a difference between 

the observations that were taken using the Tanimoto coefficient and observations taken 

using the cosine coefficient; the observations that are taken using the cosine coefficient 

and observations taken using the MinMax coefficient; the observations that are taken 

using the Tanimoto coefficient and observations taken using the MinMax coefficient, 

respectively. For example in Table 4.2 and 4.3, the data from the columns headed 

“Mean actives” were tested to see whether there is a significant difference between the 

two sets of 11 values retrieved by two coefficients, i.e., the Tanimoto coefficient and the 

cosine coefficient. Pairs of observations in the WOMBAT database can be inspected in 

Table A.1 to Table A.3. 

For the Tanimoto–cosine comparison, the Wilcoxon's W value is 91 and 80.5 on MDDR 

pairs; 107 and 99.5 on WOMBAT pairs. The p values on MDDR are significant with 

p=0.05 on the Mean actives pair and p=0.03 on the Median actives. However, the p 

values on WOMBAT are not significant showing p=0.15 on the Mean actives pair and 

p=0.09 on the Median actives pair. These statistical results can help us draw a rough 

conclusion: the cosine coefficient was superior to the Tanimoto coefficient on MDDR 

but this was not proved when they were applied on WOMBAT. 

The Wilcoxon signed-ranks test analyses of the pairs on two databases are depicted in 

Table 4.7. 
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Table 4.7 The Wilcoxon signed-ranks test analysis for all results on MDDR and 

WOMBAT.  

Here, ST-SC indicates the Tanimoto – cosine comparison, ST-SM indicates the 

Tanimoto- MinMax comparison and SC-SM indicates the cosine – MinMax 

comparison. W stands for the Wilcoxon's W value and P for the P value. Significant 

p values (p<=0.05) are bolded. 

Coefficients 

MDDR WOMBAT 

Mean actives Median actives Mean actives Median actives 

W P W p W p W p 

ST-SC 91.0 0.050 80.5 0.030 107.0 0.150 99.5 0.090 

ST-SM 72.0 0.026 49.0 0.004 59.0 0.010 63.0 0.013 

SC-SM 133.0 ≥0.200 138.5 ≥0.200 149.0 ≥0.200 152.0 ≥0.200 

 

Observation from Table 4.7 indicates that the cosine coefficient is significantly better 

(i.e., p≤0.05) than the Tanimoto coefficient for MDDR (both mean and median number 

of actives), and that the MinMax coefficient is significantly better than the Tanimoto 

coefficient for both MDDR and WOMBAT (both mean and median numbers of actives).  

The cosine coefficient is not significantly better than the MinMax coefficient in any set 

of experiments (despite the former’s better screening figures in Tables 4.2 - 4.4 and A.1 

- A.3). 

As described in Section 4.2, weighting schemes can impact on the density of 

fingerprints, e.g., W3 changed the values of all the elements that occurred once from 1 

to 0. Thus, in the subsequent sections, the detailed comparison of the three coefficients 

are based on the weighting schemes applied, i.e., if the weighting schemes are 

Symmetric or asymmetric, and W3 involved or non-W3 involved. The Wilcoxon signed-

rank test analysis for all the results for these schemes are illustrated in Table 4.13. 

4.4.1.1  Symmetric or Asymmetric Weighting  

It was reported that symmetric measures (both the reference molecule and the molecule 

from the database are weighted by using the same weighting scheme. e.g., M11, M33) 

performed better than the asymmetric measures (e.g., M13, M45) using the Tanimoto 
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coefficient (Arif et al., 2009b). Therefore, these two observations are discussed 

separately. 

Table 4.8 Mean actives (a) and Median actives (b) results of using symmetric (both 

reference molecule and database structure are weighted by using the same 

weighting scheme) similarity measures.  

Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 
M11 109.65 109.57 109.65 103.15 101.66 103.15 

M22 86.15 89.73 112.20 86.04 83.12 106.36 

M33 69.08 69.77 77.25 71.77 65.45 79.28 

M44 114.55 115.40 117.00 103.01 100.79 108.64 

M55 112.94 112.61 112.91 103.11 101.84 104.36 

Averaged over five symmetric similarity measures 98.47 99.42 105.80 93.42 90.57 100.36 

                                                                                    (a) 

Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 
M11 81.30 80.50 81.30 83.90 80.60 83.90 

M22 57.90 57.30 75.00 68.50 66.75 91.25 

M33 57.30 43.80 60.10 60.50 56.55 72.00 

M44 74.60 73.30 81.70 85.80 83.65 90.10 

M55 80.20 79.10 81.40 86.05 86.15 86.45 

Averaged over five symmetric similarity measures 70.26 66.80 75.90 76.95 74.74 84.74 

                                                                                  (b) 

Table 4.8 illustrates that the MinMax coefficient performed the best of the three 

coefficients and there was no significant difference between the Tanimoto coefficients 

and the cosine coefficient.  

From Table 4.8(a) and Table 4.13(a), the Tanimoto coefficient with the cosine 

coefficient in MDDR pairs and WOMBAT pairs, p values of the Wilcoxon signed-rank 

test’s are p>0.2, p<0.001 for MDDR pairs and p<0.001, 0.1<p<0.2 for WOMBAT pairs 

based on five participants. The result shows no evidence that the two coefficients are 

different. 
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By comparing the cosine coefficient with the MinMax coefficient, all the p values of the 

four pairs are less than 0.001, which shows the MinMax coefficient performed better 

than the cosine coefficient both on MDDR dataset and on WOMBAT dataset when 

symmetric measures are used. 

For the Tanimoto- MinMax comparison, the p value on MDDR- Mean actives is 0.2, 

which is insignificant; the p values on MDDR- Median pair and pairs of WOMBAT are 

less than 0.001, significant.  

For the symmetric similarity measures, as shown in Table 4.8(a) and Table 4.8(b), the 

MinMax coefficient retrieved more actives than did the Tanimoto coefficient and the 

cosine coefficient on the two databases, while the Tanimoto coefficient performed 

slightly better than the cosine coefficient. From Table 4.8, the performances of the three 

coefficients are in the order: MinMax > Tanimoto > cosine.  However, it must be 

emphasized that only five observations are available for each comparison, which makes 

it difficult to draw conclusions. 

Table 4.9 demonstrate the results of the 20 asymmetric similarity measures. It is obvious 

that the cosine coefficient performed the best on MDDR of the three coefficients. 

According to the averaged Mean (Median) actives, the performances of the three 

coefficients are in the order: cosine > MinMax  > Tanimoto.   

Inspection of the values in Tables 4.8 and 4.9 suggests that the differences between the 

Tanimoto coefficient and the other two coefficients are quite small for the five 

symmetric weighting schemes (e.g., M11 or M44) but markedly greater for the 

remaining asymmetric weighting schemes (e.g., M21 or M24). The Wilcoxon 

probability values for the asymmetric weighting schemes (in Table 4.13 (a)) are 

analogous to those in Table 4.13 (b) illustrate that both the cosine and MinMax 

coefficients often out-performing the Tanimoto coefficient. 

A rationale for the robustness of the cosine coefficient in the face of changes in the 

weighting scheme can be obtained by using an upper-bound analysis.  The basic form of 

the cosine coefficient between a reference structure, X, and a database structure, Y, see 

Equation 4.21. 

http://13.as/
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Here, regarding as the combination of two weights, a and b, to form a weighting scheme 

Mab and make two simplifying assumptions.  First, that the reference structure is 

matched with itself, i.e., that X=Y, in which case all of the fragment substructures in the 

two fingerprints are identical. Second, and more thoroughly, that all of the fragments 

that are present in the reference structure occur the same number of times, and are thus 

assigned the same weight; let this weight be Mnz, the mean value of the non-zero 

elements in a fingerprint (as listed in Table 4.1).  Then for a weighting scheme Mab with 

mean weight values Mnz(a) and Mnz(b), the cosine self-similarity of the reference 

structure with itself will be  

       
∑               

   

√∑         
   ∑         

   

 

 

Equation 4.4 

Similarly, the self-similarities using the Tanimoto and MinMax coefficients will be  

      
∑               

   

∑         
    ∑         

    ∑               
   

 

Equation 4.5 

and 

       
∑     {              

   }

∑     {              
   }

 

Equation 4.6 

If a symmetric weighting scheme (e.g., M11 or M44) is used then Mnz(a) = Mnz(b)  for 

all of the fragments, resulting in all three of the coefficients having the value of unity, 

which is the upper-bound value for these coefficients.  This will also be the case if an 

asymmetric weighting scheme (e.g., M14 or M23) is used with the cosine coefficient, 

since the numerator and the denominator terms cancel each other out.  For the other 

coefficients, however, the upper-bound value may not be unity when an asymmetric 
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weighting scheme is used.  The value of the resulting similarity in each case can be 

calculated by using the data in Table 4.1.  For example, using the MDDR database and 

the w1 and w2 weights, the values of Mnz from Table 4.1 are 1.00 and 1.70, respectively; 

substituting these into the upper-bound formulae above, the computed values (rounded 

to two decimal places) of the cosine, Tanimoto and MinMax coefficients for matching 

the reference structure in the W1 representation with itself in the W2 representation are 

1.00, 0.78 and 0.59, respectively.  Table 4.1 can be used to compute analogous upper-

bound values for all of the combined weighting schemes, and the resulting values are 

listed in Table 4.10 (since self-similarities are being considered here, M21, for example, 

will give the same value as that listed in the table for M12).  Very similar values are 

obtained in the WOMBAT database, shown in Table 4.10. 

Inspection of Table 4.10 shows that the cosine upper-bound is unity for all the weighting 

schemes; indeed, this is evident from inspection of the formula.  However, the Tanimoto 

and MinMax upper-bounds vary considerably, meaning that these coefficients are 

markedly less robust in the face of variations in the weighting schemes used for 

similarity searching.  In saying that, one must remember that the values in this table are 

for reference-structure self-similarity (whereas in virtual screening, the reference 

structure is matched against each of the database structures in turn), and are upper-

bounds (rather than the actual values that would be obtained in practice) based on the 

assumption that all the fragments occur the same number of times in the reference 

structure. Even so, the figures demonstrate clearly the very different character of the 

cosine coefficient, a characteristic that supports the use of this coefficient for weighted 

similarity searching.  It must be emphasized that the cosine coefficient will not give the 

best performance in all circumstances (see, e.g., the results in Table 4.2 for the M12 

scheme); however, when averaged over multiple activity classes and weighting schemes, 

it was superior to the other two coefficients. 
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Table 4.9 Mean actives (a) and Median actives (b) results of using asymmetric 

(reference molecule and database structure are weighted by using different 

weighting schemes) similarity measures. 

Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 
M12 118.68 80.02 114.82 108.08 72.94 107.15 

M13 28.92 39.64 33.93 26.16 39.14 33.75 

M14 114.97 104.06 112.04 105.84 95.05 105.15 

M15 87.93 108.15 98.74 84.69 99.81 93.71 

M21 50.75 113.76 85.15 50.02 97.49 86.22 

M23 13.48 76.05 15.80 8.24 73.87 11.76 

M24 62.70 114.62 93.95 62.06 100.91 91.87 

M25 25.03 117.65 66.16 22.65 102.71 68.99 

M31 88.13 94.21 98.47 55.19 65.03 65.96 

M32 55.05 71.74 66.20 24.99 62.51 34.53 

M34 84.05 99.21 87.33 55.95 82.74 54.29 

M35 97.15 100.40 99.35 80.43 76.97 79.00 

M41 109.20 118.67 102.65 100.86 104.27 98.91 

M42 99.42 93.55 118.51 82.01 84.70 106.23 

M43 34.25 66.34 28.29 31.55 65.42 26.31 

M45 79.89 118.60 88.85 77.04 104.06 86.72 

M51 119.90 113.45 115.30 107.19 102.92 105.66 

M52 115.43 85.78 118.25 104.75 77.91 106.51 

M53 52.05 49.13 49.02 56.04 49.10 49.83 

M54 122.26 108.99 116.84 109.46 97.67 106.49 

Averaged over 20 asymmetric similarity measures 77.96 93.70 85.48 67.66 82.76 75.95 

                                                                             (a) 
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Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 
M12 72.10 51.90 79.30 84.90 68.85 82.80 

M13 20.40 24.30 23.60 22.75 35.05 30.95 

M14 79.00 79.20 81.10 85.10 78.25 84.45 

M15 66.50 80.30 74.90 74.50 82.05 78.70 

M21 33.20 72.80 55.50 40.95 81.35 72.05 

M23 6.60 38.30 8.60 7.05 60.20 11.45 

M24 35.50 68.90 58.00 44.65 84.05 81.35 

M25 14.30 71.00 42.50 21.30 84.65 59.45 

M31 30.60 32.80 25.90 45.95 49.95 50.15 

M32 17.90 35.50 22.80 17.10 45.70 31.15 

M34 32.70 51.10 29.10 42.45 65.60 42.65 

M35 40.60 43.60 47.00 63.75 60.45 63.45 

M41 75.40 76.20 73.70 83.30 80.65 80.55 

M42 56.50 63.80 77.50 67.70 74.70 85.20 

M43 25.00 37.70 17.40 27.15 51.65 22.40 

M45 48.40 75.20 58.80 69.10 85.60 74.35 

M51 76.10 80.30 78.60 80.55 80.85 83.70 

M52 66.10 52.80 75.80 86.35 69.85 82.25 

M53 44.90 32.70 38.20 51.05 46.55 49.50 

M54 73.50 78.00 77.20 89.65 83.65 83.00 

Averaged over 20 asymmetric similarity measures 45.77 57.32 52.28 55.27 68.48 62.48 

                                                                                       (b) 

 Table 4.10 Upper-bound values for the self-similarity of two single reference 

structures from MDDR and WOMBAT databases, using the Tanimoto, cosine and 

MinMax coefficients. 

 
Similarity measure 

MDDR WOMBAT 
ST SC SM ST SC SM 

M12 0.78 1.00 0.59 0.75 1.00 0.57 

M13 1.00 1.00 0.93 0.99 1.00 0.93 

M14 0.96 1.00 0.82 0.96 1.00 0.81 

M15 0.80 1.00 0.61 0.80 1.00 0.61 

M23 0.82 1.00 0.63 0.80 1.00 0.61 

M24 0.90 1.00 0.72 0.89 1.00 0.70 

M25 0.47 1.00 0.36 0.45 1.00 0.35 

M34 0.98 1.00 0.88 0.98 1.00 0.87 

M35 0.76 1.00 0.57 0.75 1.00 0.56 

M45 0.67 1.00 0.50 0.66 1.00 0.49 
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4.4.1.2  W3 Involved or Non-W3 Involved Weighting 

According to the depiction in Section 4.2, W3 is dissimilar with the other four weighting 

schemes. It can change all the elements equal to 1, i.e., features set on these potions 

which occurred only once, into 0. Thus, the fingerprints weighted by using W3 consist 

of more zeros, which could produce a big impact on the results, shown in Table 4.1, 

evidentially.  Therefore, the results are listed separately based on W3 involved or non-

W3 involved weighting.  

As shown in Table 4.11, in general, the cosine coefficient yielded more actives than did 

the other two coefficients. It performed even better on a particular measure, i.e., M23, 

where the coefficient retrieved five to nine-fold more actives than did the other two. 

However, its good performance is not always the case, i.e., both the MinMax coefficient 

and the Tanimoto coefficient can retrieve more with M33, compared to the other W3-

measures.  

The Wilcoxon signed-ranks test analysis in Table 4.13 (c) shows only the Tanimoto- 

cosine comparison in MDDR-Mean has a significantly difference.  

Table 4.11 Mean actives (a) and Median actives (b) results of using W3 involved 

similarity measures. 

Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 

M13 28.92 39.64 33.93 26.16 39.14 33.75 

M23 13.48 76.05 15.80 8.24 73.87 11.76 

M31 88.13 94.21 98.47 55.19 65.03 65.96 

M32 55.05 71.74 66.20 24.99 62.51 34.53 

M33 69.08 69.77 77.25 71.77 65.45 79.28 

M34 84.05 99.21 87.33 55.95 82.74 54.29 

M35 97.15 100.40 99.35 80.43 76.97 79.00 

M43 34.25 66.34 28.29 31.55 65.42 26.31 

M53 52.05 49.13 49.02 56.04 49.10 49.83 

Averaged over nine  W3 involved similarity measures 58.02 74.05 61.74 45.59 64.47 48.30 

                                                                       (a) 
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Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 

M13 20.40 24.30 23.60 22.75 35.05 30.95 

M23 6.60 38.30 8.60 7.05 60.20 11.45 

M31 30.60 32.80 25.90 45.95 49.95 50.15 

M32 17.90 35.50 22.80 17.10 45.70 31.15 

M33 57.30 43.80 60.10 60.50 56.55 72.00 

M34 32.70 51.10 29.10 42.45 65.60 42.65 

M35 40.60 43.60 47.00 63.75 60.45 63.45 

M43 25.00 37.70 17.40 27.15 51.65 22.40 

M53 44.90 32.70 38.20 51.05 46.55 49.50 

Averaged over nine  W3 involved similarity measures 30.67 37.76 30.30 37.53 52.41 41.52 

                                     (b) 

Table 4.12 Mean actives (a) and Median actives (b) results of using non-W3 

involved similarity measures. 

Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 

M11 109.65 109.57 109.65 103.15 101.66 103.17 

M12 118.68 80.02 114.82 108.08 72.94 107.15 

M14 114.97 104.06 112.04 105.84 95.05 105.15 

M15 87.93 108.15 98.74 84.69 99.81 93.71 

M21 50.75 113.76 85.15 50.02 97.49 86.22 

M22 86.15 89.73 112.20 86.04 83.12 106.36 

M24 62.70 114.62 93.95 62.06 100.91 91.87 

M25 25.03 117.65 66.16 22.65 102.71 68.99 

M41 109.20 118.67 102.65 100.86 104.27 98.91 

M42 99.42 93.55 118.51 82.01 84.70 106.23 

M44 114.55 115.40 117.00 103.01 100.79 108.64 

M45 79.89 118.60 88.85 77.04 104.06 86.72 

M51 119.90 113.45 115.30 107.19 102.92 105.66 

M52 115.43 85.78 118.25 104.75 77.91 106.51 

M54 122.26 108.99 116.84 109.46 97.67 106.49 

M55 112.94 112.61 112.91 103.11 101.84 104.36 

Averaged over 16 non-W3 involved similarity measures 
95.59 106.54 105.19 88.12 95.49 99.13 

                                                                          (a) 
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Similarity measure 
MDDR WOMBAT 

ST SC SM ST SC SM 

M11 81.30 80.50 81.30 83.90 80.60 83.90 

M12 72.10 51.90 79.30 84.90 68.85 82.80 

M14 79.00 79.20 81.10 85.10 78.25 84.45 

M15 66.50 80.30 74.90 74.50 82.05 78.70 

M21 33.20 72.80 55.50 40.95 81.35 72.05 

M22 57.90 57.30 75.00 68.50 66.75 91.25 

M24 35.50 68.90 58.00 44.65 84.05 81.35 

M25 14.30 71.00 42.50 21.30 84.65 59.45 

M41 75.40 76.20 73.70 83.30 80.65 80.55 

M42 56.50 63.80 77.50 67.70 74.70 85.20 

M44 74.60 73.30 81.70 85.80 83.65 90.10 

M45 48.40 75.20 58.80 69.10 85.60 74.35 

M51 76.10 80.30 78.60 80.55 80.85 83.70 

M52 66.10 52.80 75.80 86.35 69.85 82.25 

M54 73.50 78.00 77.20 89.65 83.65 83.00 

M55 80.20 79.10 81.40 86.05 86.15 86.45 

Averaged over 16  non-W3 involved similarity measures 61.91 71.29 72.02 72.02 79.48 81.22 

                                                                             (b) 

For the non-W3 involved similarity measures, the average value of mean actives and 

median values show that both the cosine coefficient and the MinMax coefficient 

retrieved more actives than the Tanimoto coefficient produced. 

The values of Wilcoxon signed-ranks test in Table 4.13 (d) show that, the Tanimoto- 

MinMax comparisons in WOMBAT and in MDDR-Median have significantly 

difference.   

A rationale for the robustness of the cosine coefficient can also be obtained by using the 

upper-bound analysis (refer to Section 4.4.1.1 and Table 4.10) .  

4.4.1.3  Conclusion  

At the end of the comparison of the three coefficients, two figures (Figure 4.1 and 

Figure 4.2) are plotted to compare the three coefficients over the 25 measures. As stated 

at the beginning of the results section, the median value is more resistant to outliers than 

is the mean value. In this study, the median value can mitigate the effects of some 
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activity classes (most clearly the Renin and AT1 classes). Therefore, the median values 

are used to give a general comparison of the three coefficients. 

These two figures demonstrate that both the cosine coefficient and the MinMax 

coefficient yielded better results than did the Tanimoto coefficient. Additionally, the 

cosine coefficient is distinctly less affected by changes in the weighting scheme that is 

used, while the Tanimoto coefficient and the MinMax coefficient give very low levels of 

performance with some types of weighting schemes, e.g., W3;  compared with the 

Tanimoto coefficient, the MinMax coefficient provided good performance with 

symmetric similarity measures, i.e., M22, M33, M44.  

Here, conclusions can be drawn that: The cosine coefficient and the MinMax coefficient 

often yield larger numbers of actives than are obtained with the Tanimoto coefficient 

when the frequency-based fingerprints and fragment weighting approaches are used; 

Moreover, the performance of the cosine coefficient is better than the MinMax 

coefficients when averaged over 25 weighting schemes. In addition, the cosine 

coefficient is noticeably less affected by the precise nature of the weighting function that 

is used, whereas the Tanimoto coefficient and the MinMax coefficient give relatively 

poor performance when several types of weighting schemes are used. 
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Table 4.13 The Wilcoxon signed-ranks test analysis for the comparison of pairs of 

similarity coefficients: (a) five symmetric schemes; (b) 20 asymmetric weighting 

schemes; (c) W3 involved weighting schemes; (d) Non-W3 involved weighting 

schemes. Significant p values (p<=0.05) are bolded. 

Coefficients 

MDDR WOMBAT 

Mean actives Median actives Mean actives Median actives 

W p W p W p W p 

ST-SC 3 0.200 0 0.001 0 0.001 1 0.150 

ST-SM 1 0.200 0 0.001 0 0.001 0 0.001 

SC-SM 0 0.001 0 0.001 0 0.001 0 0.001 

(a) five symmetric schemes 

Coefficients 

MDDR WOMBAT 

Mean actives Median actives Mean actives Median actives 

W p W p W p W p 

ST-SC 54 0.063 35 0.008 54 0.063 46.5 0.030 

ST-SM 57 0.081 39 0.013 51 0.046 54 0.080 

SC-SM 68 0.190 65 0.150 75 0.200 71 0.200 

(b) 20 asymmetric weighting schemes 

Coefficient

s 

MDDR WOMBAT 

Mean actives Median actives Mean actives Median actives 

W p W p W p W p 

ST-SC 2 0.015 10 0.200 6 0.060 7 0.070 

ST-SM 9 0.150 19 0.200 12 0.200 11 0.200 

SC-SM 9 0.150 11 0.200 11 0.200 12 0.200 

(c) W3 involved weighting schemes 

Coefficients 

MDDR WOMBAT 

Mean actives Median actives Mean actives Median actives 

W p W p W p W p 

ST-SC 54 0.200 38.5 0.140 59 0.200 56.5 0.200 

ST-SM 31 0.120 2 0.001 25 0.050 25 0.050 

SC-SM 54 0.200 38.5 0.140 53 0.200 53 0.200 

(d) Non-W3 involved weighting schemes



Chapter 4: Evaluation of Interactions between Weighting Scheme and Similarity Coefficient in Similarity-Based Virtual Screening 

88 
 

 

 

 

 

Figure 4.1 Median numbers of actives retrieved in searches of the MDDR database using the Tanimoto, cosine and 

MinMax similarity coefficients. 
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Figure 4.2 Median numbers of actives retrieved in searches of the WOMBAT database using the Tanimoto, cosine and 

MinMax similarity coefficients. 
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4.4.2  Comparison of Weighting Schemes 

To investigate the effect of the five weighting schemes working on occurrence 

frequency of fingerprints, the median value of actives are plotted in Figure 4.3 (averaged 

over the two databases). As Figure 4.3 illustrates, it is apparent that weighting schemes 

involving W3 performed poorly. Since W3 has been discussed in the previous section, 

the results are not surprising at all.   

The decreasing order of median value of actives molecules retrieved by 25 weighting 

schemes is: 

M55>M11>M44>M14>M54>M51>M41>M15>M12>M52>M42>M22>M45>M24>M

21>M33>M35>M25>M34>M53>M31>M43>M32>M13>M23 

It is clear that three symmetric measures ranked the top three positions, i.e., M55, M11 

and M44. In general, the W4 weighting schemes provided high performance, followed 

by W5, W1 and W2. To enhance this observation, ranks of the 25 weighting 

combinations are listed in Table 4.14. 

Inspection of Table 4.14, after averaging two databases and three coefficients, the 

decreasing order of the 25 weighting schemes is: 

M44>M51>M55>M54>M41>M14>M11>M12>M52>M45>M15>M22>M42>M24>M

21>M25>M35>M33>M34>M31>M53>M43>M32>M13>M23 

The result shows the top five rankings are related with W4 and W5. This demonstrates 

that it is notably better when weighting schemes are applied in similarity measures, 

rather than with a binary representation (W1). This is coincident with the conclusion 

from Arif et al. (2009b). 
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Figure 4.3 Median value of active molecules retrieved by 25 measures (average over MDDR and WOMBAT databases 

and three coefficients) 
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Table 4.14 Rankings of 25 combined weighting schemes in similarity searches of 

the MDDR and WOMBAT using three similarity coefficients. The best result in 

each column is shaded. 

Combined weighting scheme 

Similarity coefficient 

Mean 
ST SC SM 

MDDR WOMBAT MDDR WOMBAT MDDR WOMBAT 

M11 7.36 6.79 8.73 7.36 8.82 8.57 7.94 

M12 6.91 5.21 16.91 15.50 7.45 6.21 9.70 

M13 21.82 21.86 23.36 23.14 21.36 20.93 22.08 

M14 5.36 5.64 9.82 10.07 8.18 7.36 7.74 

M15 11.18 10.64 8.82 8.57 11.27 11.21 10.28 

M21 16.91 16.43 10.18 10.43 14.73 14.00 13.78 

M22 10.55 11.00 15.82 14.21 6.73 5.29 10.60 

M23 23.45 24.43 19.00 18.29 24.00 24.43 22.27 

M24 14.82 14.07 8.00 8.00 12.36 10.79 11.34 

M25 21.00 20.21 7.55 7.07 17.36 17.00 15.03 

M31 16.00 18.93 18.64 21.79 16.82 19.14 18.55 

M32 20.64 22.57 19.00 20.79 20.82 22.79 21.10 

M33 14.18 14.50 18.73 18.57 13.27 14.71 15.66 

M34 16.36 18.43 14.27 14.86 16.82 20.86 16.93 

M35 13.82 12.57 15.55 17.64 15.73 15.79 15.18 

M41 6.82 7.36 5.82 5.64 10.00 10.43 7.68 

M42 12.09 12.71 14.36 12.79 7.64 7.64 11.21 

M43 19.64 21.21 20.45 19.29 22.27 23.07 20.99 

M44 5.36 7.21 6.27 7.64 4.27 4.71 5.91 

M45 11.73 12.14 5.09 5.86 12.73 13.64 10.20 

M51 6.82 5.71 6.82 6.64 8.55 6.93 6.91 

M52 10.45 6.57 13.91 13.71 9.00 6.57 10.04 

M53 17.64 16.57 21.73 21.29 18.82 18.43 19.08 

M54 6.82 4.57 8.18 8.36 7.91 6.07 6.99 

M55 6.64 7.07 6.55 6.86 7.00 7.50 6.94 
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4.5 Further Analysis and Evaluation 

4.5.1  Effect of Fingerprint’s Density 

Shown as Figure 4.4, it is apparent that several particular classes contributed more than 

did other classes in similarity search, i.e., Renin and AT1 in MDDR; Renin and ANG in 

WOMBAT yielded many more actives than the other classes.  

As noted in previous sections, weighting schemes can change the density of fingerprints, 

i.e., W3 replace all the values of elements that equal to 1 with 0. According to this 

observation, the fingerprints of the activity classes used in this study are analysed by 

computing their elements density. Here, the density of fingerprints indicates statistical 

data for the coding of the ECFC_4 fingerprints in a particular activity class. For example, 

after averaging over all actives in the class, the fingerprints’ density of activity class 

Renin in MDDR database can be described using four quantitative values, number of 

elements valued zero (947.41), number of elements valued one (49.27), number of 

elements valued rather than zero and one (27.32), and the maximum value occurred in 

the fingerprints of the class. Inspection of Table 4.15 indicates that it is evident that the 

higher contributed activity classes have higher fingerprints density, e.g., in MDDR 

database, fingerprints of a structure in activity class Renin normally consists of 34 

(981.53-947.41) more non-zero elements than the fingerprints in COX; when W3 

weighting scheme applied, although the fingerprints from both two activity classes 

become sparse, fingerprints’ density from Renin still about three times higher than it 

from COX, i.e., non-zero elements in the fingerprints from Renin is 27.32 compare to 

10.54 from COX. Combined with the MPS analysis in Section 3.2.1, the higher 

fingerprints density classes also provide higher MPS values.  

Three coefficients are compared based on the outcomes from individual activity classes. 

As shown in Figure 4.4, averaging all 25 weighting schemes, activity class Renin 

contributed the most in MDDR and activity classes Renin and ANG obtained the best 

performance in WOMBAT. It can be seen that the cosine coefficient performed better 
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than the other two coefficients when it working with the high density activity classes, 

i.e., Renin. The performance of the three coefficients were similar when working with 

the low density activity classes.  

Motivated by these observations, a further evaluation needed to be carried out on 

different databases. Thus, the Maximum Unbiased Validation (MUV) dataset (available 

by download from  http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html, (MUV, 

2011)) was selected. This dataset was designed to overcome the problem of analog bias 

and specifically for the evaluation of virtual screening systems (Rohrer and Baumann, 

2009). It is rather different in nature from the MDDR and WOMBAT databases.   

Therefore, to further validate this study, the same methods were applied to the 

Maximum Unbiased Validation (MUV) database. 

 

 

 

 

 

 

 

 

http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html
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(a) 

 

(b)  

Figure 4.4 Comparison of activity classes. (a)  on MDDR,  (b) on WOMBAT. 
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Table 4.15 ECFC_4 fingerprints’ analysis for each activity classes in MDDR and 

WOMBAT, respectively.  

Columns 3-5 stand for fingerprints’ distribution of activity classes (by averaging 

over all actives in the class).  Column 6 stands for the maximum value occurred in 

the class.  

Dataset 
Activity 

classes 

Fingerprints' distribution 

Mean zero 

elements per 

fingerprint 

Mean one 

elements per 

fingerprint 

Mean none-zero 

and non-one 

elements 

Maximum 

value in 

fingerprints  

MDDR 

Renin 947.41 49.27 27.32 25.00 

AT1 962.74 45.71 15.56 22.00 

Thrombin 961.14 45.24 17.62 36.00 

HIVP 960.65 41.29 22.05 28.00 

SubP 965.91 39.38 18.72 39.00 

D2 972.90 36.59 14.50 21.00 

5HT 976.55 35.70 11.74 17.00 

5HT3 978.87 33.45 11.68 19.00 

PKC 974.31 33.03 16.66 30.00 

5HT1A 977.16 32.25 14.59 16.00 

COX 981.53 31.94 10.54 18.00 

WOMBAT 

Renin 945.51 50.49 28.00 24.00 

ANG 961.36 46.08 16.56 28.00 

THR 961.95 45.43 16.61 21.00 

FXa 965.18 43.09 15.73 21.00 

HIVP 960.17 40.13 23.70 31.00 

5HT1A 972.64 36.57 14.78 16.00 

D2 974.06 35.83 14.11 23.00 

MMP1 972.54 35.74 15.72 17.00 

PDE4 973.16 35.57 15.27 20.00 

SubP 969.92 34.84 19.24 24.00 

5HT3 978.98 34.41 10.60 14.00 

AChE 975.90 32.30 15.80 26.00 

COX 982.82 30.37 10.81 18.00 

PKC 980.04 26.06 17.91 28.00 
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4.5.2  Results and Analysis 

The methods applied to MUV are the same as used on MDDR and WOMBAT databases. 

Table A.4 shows the average numbers of active molecules retrieved in the top 1% of 

searches of the MUV database using the three coefficients.  Although the results are 

poor due to the low MPS value of the MUV database, they are still comparable with 

those for MDDR and WOMBAT. 

Table 4.16 demonstrates the Wilcoxon signed-ranks test analysis of the three 

coefficients based on the median values.   

Table 4.16 Statistical p values for the comparison of pairs of similarity coefficients 

in the Wilcoxon signed-ranks test on MUV:  

column (a) all 25 schemes; (b) 5 symmetric schemes; (c)20 asymmetric weighting 

schemes; (d) W3 involved weighting schemes; (e) Non-W3 involved weighting 

schemes. Significant p values (p<=0.05) are bolded.  

Coefficients (a) (b) (c) (d) (e) 

ST-SC 0.01 < P < 0.02 P > 0.2 0.02 < P < 0.05 0.02 < P < 0.05 P > 0.2 

ST-SM P > 0.2 P > 0.2 P > 0.2 0.10 < P < 0.20 P > 0.2 

SC-SM 0.01 < P < 0.02 P > 0.2 0.01 < P < 0.02 P < 0.001 P > 0.2 

 

From Table 4.16, it is clear that the difference between ST-SC and the difference between 

SC-SM are significant. As the conclusions have been drawn in Section 4.4 that: in general, 

the cosine coefficient performs better than the Tanimoto coefficient when non-binary 

fingerprints are used; the cosine coefficient is noticeably less affected by the selection of 

different weighting schemes, whereas the Tanimoto coefficient and the MinMax 

coefficient give relatively poor performance when some types of weighting schemes are 

used; similarity search with weighted fingerprints can retrieve more actives than the 

search with binary fingerprints, e.g., W4, W5.  

Figure 4.5 and Figure 4.6 are plotted to demonstrate the comparison of the three 

coefficients. As shown in Figure 4.5, it is obvious that the differences between activity 

classes are not as much as it on MDDR and WOMBAT. Moreover, it is also clear that 
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the cosine coefficient retrieved more active molecules than did the Tanimoto coefficient 

and the MinMax coefficient after averaging over 25 similarity measures. This 

observation supports the conclusion that has been drawn from MDDR and WOMBAT. 

Based on Figure 4.5, the difference among the three coefficients’ performance in each 

active datasets are very similar. Thus, the three coefficients working with the 25 

similarity measures are compared averaging over 17 activity classes, plotted in Figure 

4.6. As shown in Figure 4.6, the cosine coefficient yielded better results than the other 

two in most cases. However, the MinMax coefficient performed the best when 

symmetric similarity measures are used, i.e., M22, M33, M55. These observations are 

corresponding to the previous conclusion from the investigation on MDDR and 

WOMBAT databases. 

From Figure 4.6, it is clear that the weighting schemes related with W4 and W5 obtain 

better performance, rather than binary (W1), which is also corresponding to the 

conclusion in Section 4.4.2. Rankings of the 25 weighting schemes is (averaged over 

three coefficients): 

The MinMax coefficient: 

M41>M44>M42>M55>M45>M22>M15>M11>M21>M14>M12>M24>M25>M54>M

51>M52>M33>M53>M35>M13>M43>M31>M34>M32>M23 

The Tanimoto coefficient: 

M44>M41>M45>M55>M11>M12>M14>M15>M51>M54>M42>M22>M24>M52>M

21>M25>M33>M35>M53>M43>M34>M32>M31>M13>M23 

The cosine coefficient: 

M44>M45>M41>M51>M15>M11>M55>M54>M14>M42>M25>M24>M52>M21>M

12>M22>M32>M33>M23>M34>M43>M35>M53>M31>M13 
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Figure 4.5 Comparison of three coefficients on MUV database (averaged over 25 similarity measures) 

 

Figure 4.6 Comparison of three coefficients on MUV database (averaged over 17 active datasets) 
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4.6  Conclusion 

In this chapter, detailed investigations were carried out into the interactions between 

weighting scheme and similarity coefficient in similarity-based virtual screening.  

These experiments clearly demonstrate that generally both the cosine coefficient and the 

MinMax coefficient tended to retrieve greater numbers of active molecules than the 

Tanimoto coefficient when weighted fingerprints are used. Figure 4.1 and Figure 4.2 

demonstrate that the cosine coefficient is more robust than the Tanimoto coefficient in 

that its screening abilities are much less affected by the precise nature of the weights 

applied to the fingerprints for the reference structure and the database structures in a 

similarity search, i.e., the cosine coefficient exhibited an enhanced retrieval performance 

than the Tanimoto coefficient and the MinMax coefficient when asymmetric measures 

were applied. For symmetric measures, when compared with the Tanimoto coefficient, 

the MinMax coefficient was particularly effective. Generally, the cosine coefficient is 

noticeably less affected by changes in the nature of the employed weighting scheme, 

whereas both the Tanimoto coefficient and the MinMax coefficient indicated reduced 

levels of performance with some types of weighting schemes, e.g., W3. However, with 

the diversity of different activity classes, more research is required, as the findings so far 

might not be transferable to all activity classes. 

Another finding was that W4 (square root) and W5 weighting schemes were superior in 

2D molecular similarity search, compared to W3, W1. The results showed that increases 

in performance can be achieved by weighting the bits in a fingerprint, indicating the 

presence or absence of 2D substructural fragments.  

These findings are hence suggested as the coefficient of choice for similarity-based 

virtual screening when weighted fingerprints are available, e.g., if the characters 

(weight/size) of the structures (reference or database) are unknown, then the cosine 

coefficient might be appropriate for similarity-based virtual screening; if the activity 

classes are known less diverse, then the cosine and the MinMax coefficients can be the 

choice for similarity-based virtual screening and W4 and W5 can be used to enhance the 

performance.  
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The findings are also suggested further investigation on the interactions between 

coefficients and weighting schemes, i.e, the coefficients and weighting schemes need to 

be both considered rather than be considered independently. In addition, more 

coefficients and weighting schemes need to be identified and be adopted in similarity 

searching.  

  



Chapter 5:  Comparison of Established 

Level of Binary Coefficients for Chemical 

Similarity Search  

5.1 Introduction 

Given the conclusions in Chapter 4, it is evident that certain weighting schemes can 

enhance the effectiveness of similarity-based virtual screening. The outcome revealed 

when the weighting schemes were applied, the cosine and the MinMax coefficients 

exhibited more effective performance. It was also found that when the cosine and the 

MinMax coefficients were applied to non-weighted data, they yielded similar or 

identical results as the Tanimoto coefficient.  

The results from Chapter 4, however, are based on the investigation of three coefficients. 

There is a wide variety of coefficients can be adopted in similarity-based virtual 

screening. Before testing and evaluating the interactions between weighting schemes 

and a wide range of coefficients, it is necessary to test their performance with non-

weighted data, and then select the best performing coefficients. These will be further 

analysed in Chapter 6. 

As explained in Chapter 2, a fingerprint can be considered as a vector with the i-th 

element indicating whether a fragment is present or absent in a molecule. The 

coefficients studied in the previous chapter focused on the fragment presences rather 

than their absences, i.e., the Tanimoto, the cosine and the MinMax coefficients. Thus, in 

this chapter, coefficients which take the fragment absences into account are also 

investigated.  
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The study reported in this chapter is part of a collaboration with the Milano 

Chemometrics and QSAR Research Group (see http://michem.disat.unimib.it/chm/), 

which compared 44 coefficients using simulated data. An extended comparison of the 

44 coefficients was carried out in this study to determine which of these coefficients 

were suitable for similarity search using real data. The nature and extent of the 

collaboration is made explicit by Todeschini et al.(2012), where the sections on virtual 

screening are based on research carried out during the thesis and reported in this chapter 

(which also contains much additional material). 

This chapter reports detailed investigations of 44 binary coefficients. Although there 

have been many previous comparisons of association coefficients for similarity 

searching (Holliday and Haranczyk, 2008; Holliday et al., 2002; Holliday et al., 2003; 

Salim et al., 2003; Willett, 2006), none have involved either the number or the range of 

coefficients considered here.  

5.2 Coefficients for Binary Variables 

With the intention of choosing the right coefficient, the different coefficients and their 

nature need to be better understood. Based on the study of Batagelj et al (1995) on set 

theory, a vector can be represented as a unit   which has   properties and each property 

is of a binary type indicating presence/absence. Unit   has thus the form    

[                 ]         {   } where      , if unit   has the i-th property 

in set  , and      , if   lacks the i-th property in set C,       . Thus, the scalar 

product     ∑       
 
     of units      , and with  ,    the complementary vectors 

of          [     ] and          [     ].  Therefore, for any pair 

of vectors   and  , the resemblance can be described by four quantities (a, b, c, and d), 

see Table 5.1. 

 

 

http://michem.disat.unimib.it/chm/


Chapter 5: Comparison of Established Level of Binary Coefficients for Chemical Similarity 
Search 

104 
 

Table 5.1.Contingency table of quantities 

 

            

 

      a  b      

      c  d      

 

        n  

 

In this table,      indicates the number of common properties present in   and   and 

       the number of common properties absent.       and     are the number of 

properties present in   and  , respectively.         and       stand for the number 

of properties that appear only in a single side.   is the total of the four quantities, equal 

to        , which is the length of the binary vectors. In other words,   is the 

proportion of 1s that   and   share in the same positions (i.e., common "presences"),   

is the proportion of 0s that both   and   share in the same positions (i.e., common 

"absences").  

Therefore, the diagonal entries   and   express the similarity between the two vectors 

while the entries   and   provide information on their dissimilarity.  

As illustrated in the following example, two objects are represented by two following 

vectors   and  . 

 :  1 0 1 1 1 0 0 1 0 1 

 :  1 1 0 1 0 1 1 0 0 0 

Thus, the        and   values can be calculated as: 

  = 2      = 4 

  = 3      = 1 
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and   = 10, the total number of binary variables. 

Here, in this study, all structures are represented as 1,024 length ECFP_4 fingerprints. 

Therefore, value of     is fixed at 1,024. The actual chemical data used here are sparse 

databases, i.e., fingerprints consist of a large number of 0s. The value of parameter d 

could therefore be the largest compared with the other three. For example, for a pair of 

structures from activity class 5HT3 in MDDR, the d value is around 940 while   is 

about 10, b is around 40 and c is about 40.  

5.3 Classification and Rescaling of Coefficients 

5.3.1  Classes of Coefficient 

Concerning the importance of property occurrence and nonoccurrence, many similarity 

measures have been discussed (Baulieu, 1989; Gower and Legendre, 1986; Harris and 

Lahey, 1978; Hubalek, 1982; Liebetrau, 1983; Snijders et al., 1990; Sokal and Sneath, 

1963). Sokal and Sneath (1963), for example, argued that quantity   (i.e., certain 

properties both absent in two objects) does not contribute to similarity. In their analysis, 

  is improper when calculating the similarity between two species, e.g., the absence of 

wings would surely be an absurd character of the affinity between a camel and nematode. 

Many conventional coefficients such as the Jaccard (1912), the Dice (1945), the 

Kulczynski (1927) and the DK (Driver and Kroeber, 1932) do not take   into account. 

Goodman and Kruskal (1954), however, asserted that coefficients should be based on 

    in general. In cases where 1 and 0 stand for two mutually exclusive attributes, e.g., 

correct and incorrect, the quantities   and   should be equally weighted. The typical 

coefficient of this sort is the Simple Matching coefficient (Sokal and Michener, 1958), 

which has also been proposed by Rand (1971), for comparing two clustering algorithms.    

In this study, a major distinction of classifying coefficients focuses on those that do, and 

those that do not, include  : in symmetric coefficients both   and   counts are equally 

considered; in asymmetric coefficients only   count is considered in measuring the 
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similarity. There are also intermediate coefficients where both   and   counts are 

considered, but   is underweighted with respect to   count. The class of correlation-

based coefficients is also considered here (Although the correlation coefficients have 

been argued as being not appropriate for similarity search, as discussed in Section 2.4.3, 

this has not been proven via large scale screening test). 

The 44 coefficients adopted here, therefore, can be classified as belonging to one of the 

following classes: symmetric (S), asymmetric (A), intermediate (I) and correlation-

based (Q). It should be noted that each coefficient will be given an abbreviated symbol 

in italic, e.g., coefficient Sokal-Michener is given as SM. In later sections of this chapter, 

abbreviated symbols are used to represent the coefficients, abbreviations and formulas 

as detailed in Table 5.2. 

5.3.2  Rescaling of Coefficients 

 

As noted in Table 5.2, many similarity coefficients are defined as fractions. Therefore, 

the denominator of a coefficient may become zero but it cannot provide appropriate 

similarity values. For example, when calculating the similarity of two identical objects 

which means       , the Mou coefficient gives    
  

         
 

  

 
; if the two 

identical objects consist of only ‘1’s which indicates     and        , then the 

RG coefficient gives    
 

      
 

 

      
  

 

  
 

 

 
 . For these critical cases, the value 

of the coefficient is redefined under specific conditions, i.e., when     or    , the 

similarity value of two objects     is set to 1; when the value of the denominator equals 

zero,    . Another case is when the calculated similarity value can extend beyond the 

range [0, 1]. To solve this case, the similarity measure was rescaled using linear 

transform: 
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Equation 5.1 Formula for rescaling coefficients 

Where    is the original similarity measure,    the rescaled function yielding a similarity 

value between [0,1] and   and   are numerical parameters. Obviously,       and 

      indicate no transformation. Examples of some coefficients can be rescaled using 

above formula: the symmetric coefficient Phi and the correlation-based coefficients Mic, 

CO1, CO2, Yu1 and Yu2. 

5.4 Method 

This chapter is devoted to the examination of the performance of different coefficients 

in virtual screening. Four databases were studied, i.e., MDDR, WOMBAT, MUV and 

ChEMBL, and all molecules were represented as 1024-length ECFP_4 fingerprints.   

The experimental process is described in Chapter 3 and the Kendall W test of 

concordance has been applied to determine which coefficient is in fact superior 

compared with the others. Hierarchical cluster analysis has also been used to classify 

coefficients based on their retrieval abilities, and the hierarchical structures of clusters 

are visualized as dendrograms with heatmaps.  

In this chapter, the initial investigation was carried out on three databases, MDDR, 

WOMBAT and MUV; then a validation experiment was accomplished on the much 

larger ChEMBL database. 
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Table 5.2.  List of the binary similarity coefficients.  

The first column indicates the abbreviations of coefficients; the second column lists the used coefficients’ name(s); the 

formulas are listed in the third column and the last column shows the symbols of classes the coefficients belong to. Two 

columns α and β provide parameters used for rescaling coefficients. For each coefficient, the corresponding class is 

shown in the last column, namely S (symmetric), A (asymmetric), I (intermediate) and Q(correlation-based). 

Symbol Name(s) Formula α β Class 

SM Sokal-Michener, Rand, simple matching 
   

 
 0 1 S 

RT Rogers-Tanimoto  
   

     
 0 1 S 

JT Jaccard,Tanimoto   
 

     
 0 1 A 

Gle Gleason, Dice, Sorenson  
  

      
 0 1 A 

RR Russel-Rao  
 

 
 0 1 A 

For Forbes 
  

          
 0 

 

 
 A 

Sim Simpson 
 

    {           }
 0 1 A 

BB Braun-Blanquet  
 

    {           }
 0 1 A 

DK Driver-Kroeber, Ochia, cosine

 

 

√          
 0 1 A 

BUB Baroni_Urbani-Buser
 √    

√        
 0 1 I 

Kul Kulczynski  
 

 
   [

 

   
  

 

   
] 0 1 A 
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SS1 Sokal-Sneath  
 

       
 0 1 A 

SS2 Sokal-Sneath  
     

     
 0 1 S 

Ja Jaccard  
  

      
 0 1 A 

Fai Faith   
       

 
 0 1 I 

Mou Mountford   
  

         
 0 2 A 

Mic Michael  
         

             
 +1 2 Q 

RG Rogot-Goldberg   
 

      
 

 

      
 0 1 S 

HD Hawkins-Dotson   
 

 
  [

 

     
 

 

     
] 0 1 S 

Yu1 Yule   
     

     
 +1 2 Q 

Yu2 Yule  
√   √  

√   √   

+1 2 Q 

Fos Fossum in Holiday et al.   
          

          
 0 

        

 
 A 

Den Dennis in Holiday et al.   
     

√           
 

 

 √ 
 

   

√ 
 Q 

Co1 Cole   
     

          
 n-1 n Q 

Co2 Cole   
     

          
 n-1 n Q 
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dis dispersion in Choi et al.  
     

  
 1/4 1/2 Q 

GK Goodman-Kruskal  
               

               
 +1 2 S 

SS3 Sokal-Sneath  
 

 
  [

 

   
 

 

   
  

 

   
  

 

   
]

 

0 1 S 

SS4 Sokal-Sneath  
 

√          
   

 

√          
 

0 1 S 

Phi Pearson-Heron  
     

√                     
+1 2 Q 

Di1 Dice, Wallace, Post-Snijders  
 

   
 0 1 A 

Di2 Dice, Wallace, Post-Snijders  
 

   
 0 1 A 

Sor Sorgenfrei   
  

          
 0 1 A 

Coh Cohen   
         

                     
 +1 2 Q 

Pe1 Peirce   
     

          
 +1 2 Q 

Pe2 Peirce   
     

          
 +1 2 

 

Q 

MP Maxwell-Pilliner   
         

                     
 +1 2 Q 
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HL Harris-Lahey   
          

         
 

          

         
 0 n S 

CT1 Consonni-Todeschini   
         

       
 0 1 S 

CT2 Consonni-Todeschini   
                 

       
 0 1 S 

CT3 Consonni-Todeschini   
       

       
 

0 1 A 

CT4 Consonni-Todeschini   
       

           
 

0 1 A 

CT5 Consonni-Todeschini   

                 

     
  

 
 

 0 1 S 

AC Austin-Colwell 
 

 
        √

   

 
 0 1 S 



Chapter 5: Comparison of Established Level of Binary Coefficients for Chemical Similarity 
Search 

112 
 

5.5 Results of Initial Investigation 

In the following Section 5.5.1, the 44 coefficients are compared using their rank 

positions of each activity class. For each coefficient, a median value of retrieved active 

compounds was calculated over 10 runs. These very extensive tests are summarized in 

Appendix B. In each activity class, all of the coefficients can therefore be ranked using 

the median values in decreasing order to show their retrieval abilities from 1 to 44. 

These ranks can provide a general view of the coefficients’ performance. 

In Section 5.5.2, the 44 coefficients are compared using the actual results. The impact 

from the nature of activity classes can therefore be determined, and the variation of the 

coefficients’ performance can be quantitatively measured. 

5.5.1  Ranks of Retrieval Abilities 

According to the median value of retrieved active compounds, in each activity class, the 

44 coefficients were ranked in decreasing order. Thus, for each coefficient in an activity 

class, corresponding rank positions can be numbered from 1 to 44.    

Table 5.3 gives the statistically significant levels of concordance of number of actives 

across the activity classes which were observed for the MDDR, WOMBAT and MUV 

databases. The W values of the three databases are significant. Hence, the overall 

rankings for the three databases can be generated and these are shown in Table 5.4. It 

should be noted that even though the W value of MUV database is statistically 

significant, it is in the weak range (W = 0.185).   

Table 5.3 Kendall’s test of concordance results. 

 
Statistic  

 
W χ² P 

MDDR 0.353 167 p ≤ 0.001 

WOMBAT 0.504 303 p ≤ 0.001 

MUV 0.185 135 p ≤ 0.05 
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Based on the outcomes in Table B.1 to Table B.3 (see Appendix B), for each similarity 

coefficient, Table 5.4 presents the ranks of retrieval ability in the three databases using 

Kendall’s W test. Note that the lower the average rank, the greater the capability of a 

coefficient to retrieve compounds belonging to a specific active class. The MDDR and 

WOMBAT columns in Table 5.4 reveal a very high degree of resemblance throughout 

the entire ranked list. The ranking for the MUV dataset is rather different, with the top-

ranked coefficients for MDDR and WOMBAT appearing lower down the ranked list; 

however several of the clusters of coefficients that are apparent in the MDDR and 

WOMBAT columns are also apparent here (e.g., the clusters containing coefficients JT, 

Gle, SS1, Ja and coefficients Yu1, Yu2, CT5).  Moreover, observation from Table B.3 

indicates that it is probably not appropriate to read too much into the MUV column of 

Table 5.4.   

According to Table 5.4, the results of coefficients JT, Gle, SS1, Ja and CT4 are clearly 

evident, with all ranked first equal over the 11 activity classes comprising the MDDR 

data set, and coefficient Phi and HL ranked fifth and numerically very near to the first-

placed group. Among these performance indices, there is the Tanimoto coefficient (JT), 

which is the coefficient of choice in most operational similarity searching systems 

(Leach and Gillet, 2007). Also ranked high, along with others, is the coefficient Fos. 

While for coefficients SM, RT, SS2, CT1, CT2, AC the ranks observed are very low, both 

in MDDR and WOMBAT. By detecting the coefficients’ classes, JT,  Gle,  SS1, Ja and 

CT4 belong to the asymmetric class in which the value d is not involved in calculating 

the similarity value, while SM, RT, SS2, CT1, CT2, AC are from the symmetric class in 

which d is an equally treated factor when calculating similarity values.  

From Table 5.4, it can be seen that a number of coefficients provide identical ranks, i.e., 

coefficients {JT, Gle, SS1, Ja}, coefficients {dis, Pe1}, coefficients {For, DK, Sor}, 

coefficients {Yu1, Yu2, CT5}, coefficients {RR, Di1, CT3}, coefficients {Co2, Di2} and 

coefficients {SM, RT, SS2, CT1, CT2, AC}. Based on these observations, the diversity of 

the coefficients and the relationship between type of coefficient and screening 
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effectiveness should be considered. This is analysed and discussed using a cluster 

analysis method in more detail later in this chapter. 

Figure 5.1 and Figure 5.2 illustrate the hierarchical structures of clusters by similarity 

coefficients based on the ranks of coefficients’ retrieval abilities in different activity 

classes. For each figure, the intersection of a column (coefficient) and a row (activity 

class) represents the rank of retrieval ability among the 44 coefficients in a 

corresponding activity class. All cells are coloured from red to blue to indicate their 

retrieval abilities from strong to weak (the colour keys are shown in the left corner scale) 

in a certain class, as a heatmap. For example, in Figure 5.1, the first cell (intersection of 

the first column and the first row) is blue which indicates that the AC coefficient’s 

retrieval ability was ranked about the 40th among all coefficients in activity class 5HT. 

When comparing other cells in the first column, the first cell also demonstrates that the 

AC coefficient is much less effective in 5HT compared to activity class COX in the first 

column coloured red. In both figures, the class of coefficients are labelled after their 

names, as shown in the x axes. All coefficients were clustered and were linked at 

increasing levels of dissimilarity, as shown the dendrograms in the top of the heatmaps. 

The clustering method was introduced in Section 3.5. For example, in Figure 5.1, the 

clustering process starts out with all examples (coefficients) in 44 clusters of size 1 each, 

and each coefficient consists of 11 elements (their ranks in 11 activity classes). Then the 

pairs (group) of coefficients that yield the smallest error sum of squares (refer to Section 

3.5) will form a new cluster. This process stops when all coefficients are combined into 

a single large cluster of size 44. The heatmaps clearly shows that the coefficients are 

grouped in terms of ranks of their retrieval abilities.  
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Table 5.4 Rank positions of each of the 44 coefficients when averaged over all of 

the activity classes for each of the three databases.  

Rank MDDR 
Average 

ranks 
WOMBAT 

Average 

ranks 
MUV 

Average 

ranks 

1 
JT, Gle, SS1, Ja, 

CT4 
13.86 HL 10.46 BUB 18.53 

2 
 

 CT4 10.75 Fai 19.71 

3 
 

 JT, Gle, SS1, Ja 12.96 

RG, Den, SS4, Coh, 

MP 
19.76 

4 
 

 
 

   

5 
   

   

6 Phi, HL 15.36 
 

   

7 
  

BB 13.14   

8 Fos 15.50 Fos 14.11 Fos 19.85 

9 SS4 15.73 GK 14.64 HD 20.38 

10 dis, Pe1 15.96 RG, dis, Pe1 15.07 CT4 20.59 

11 
 

 
  

SS3 20.74 

12 For, DK, Sor 16.09 
 

 For, DK, Phi, Sor, HL 20.79 

13 
 

 For, DK, Sor 15.54   

14 
    

  

15 Den 17.14 
 

   

16 MP 17.18 SS4 15.61   

17 Coh 17.27 Coh 15.79 GK 21.18 

18 GK 17.64 MP 16.07 BB 21.26 

19 Co1 18.36 Phi 17.75 JT, Gle, Kul, SS1, Ja 21.71 

20 Kul, RG 18.91 Kul 18.61   

21 
  

SS3 18.93   

22 BB 19.64 Den 19.04   

23 SS3 20.41 HD 19.93   

24 Mic 20.64 Co1 21.96 Yu1, Yu2, CT5 21.76 

25 BUB 21.09 BUB 22.21   

26 Yu1, Yu2, CT5 23.50 Mic 23.36   

27 
 

 Yu1, Yu2, CT5 24.75 Sim 23.35 

28 
   

 RR, Di1, CT3 23.71 

29 RR, HD, Di1, CT3 25.73 
  

  

30 
 

 RR, Di1, CT3 26.29   

31 
 

 
 

 Mic, Co1, dis, Pe1 23.74 

32 
 

 
 

   

33 Pe2 28.68 Fai 28.61   

34 Mou 29.14 Sim 28.86   

35 Sim 29.91 Mou 30.93 Pe2 24.00 

36 Fai 30.23 Pe2 32.96 

SM, RT, SS2, Co2, 

Di2, CT1, CT2, AC 
24.29 

37 Co2, Di2 31.05 Co2, Di2 33.93   

38 
 

 
 

   

39 
SM, RT,SS2, 

CT1,CT2, AC 
36.32 

SM, RT,SS2,CT1, 

CT2, AC 
38.61   

40 
 

 
 

   

41       

42       

43       

44     Mou 43.38 
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From Figure 5.1 and Figure 5.2, it can be seen that the best performing coefficients in 

MDDR and WOMBAT columns from Table 5.4 all achieved high ranks in the majority 

of activity classes, e.g., coefficients JT, Gle, SS1, Ja, CT4 and For ranked high in many 

activity classes, both in MDDR and WOMBAT. After clustering the coefficients, most 

of the coefficients from the asymmetric class, and those from the correlation-based class, 

were well clustered. In MDDR, asymmetric coefficients CT3, RR, Di1 and correlation-

based coefficients dis, Pe1, Co1, Mic were tightly clustered together.  In another cluster, 

asymmetric coefficients Kul, CT4, Fos, For, DK, Sor, BB, JT, Gle, SS1, Ja and 

correlation-based coefficients Phi, Den, MP, Coh were also clustered together. Five 

symmetric coefficients SS3, HL, SS4, GK, RG were also grouped in this cluster. All the 

coefficients in these two clusters yielded high ranks. The poorer performing coefficients 

were clustered together, consisting of two intermediate coefficients Fai and BUB, eight 

symmetric coefficients AC, CT2, CT1, SS2, SM, RT, CT5, HD, four correlation-based 

coefficients Yu1, Yu2, Pe2, Co2 and three asymmetric coefficients Sim, Mou, Di2. 

Similarly, the poorer performing cluster in WOMBAT consisted of the same coefficients 

of those in MDDR, except BUB and HD.  

Inspection of Figure 5.1 indicates that activity class COX is anomalous among the 11 

activity classes. The top ranked six coefficients (RT, SM, SS2, CT1, CT2, AC) in COX 

all have complementary performance in the other 10 activity classes. In COX, the top 

ranked six coefficients are symmetric measures and the last four are asymmetric 

measures. To investigate the differences between COX and the other activity classes, 

MPS of activity classes were considered (see Chapter 3 Table 3.1). These indicate the 

class’s diversity (i.e., its degree of structural heterogeneity).  COX is the most diverse 

class in MDDR with the MPS value at 0.27, the lowest among all 11 activity classes. 

Another interesting observation is that the performance of asymmetric coefficients Di1, 

RR and CT3 are very effective in less diverse activity classes HIVP, Thrombin, AT1 and 

Renin compared to the highly diverse activity classes COX, PKC, 5HT3, 5HT1A and 

5HT. Similarly, correlation-based coefficients dis, Pe1, Mic and Co1 that yielded high 

ranks in less diverse activity classes and performed poorly in the highly diverse activity 

classes.  
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Figure 5.1 Heatmap of the ranks of coefficients in MDDR.  

The columns (coefficients) are clustered using Ward’s method. Ranks are coloured 

from red to blue which represents coefficients’ retrieval abilities from strong to 

weak. In the left top corner legend, the X axis scales the ranks where red 

represents higher positions and blue denotes lower positions; the Y axis measures 

the frequency of corresponding ranks where the histographic curve shows the 

number of the ranks.  

Similar observations also detected in Figure 5.2. Coefficients’ ranks in COX and PKC 

were different from the ranks of the other 12 classes. For example, in PKC, poor 

performing symmetric coefficients RT, SM, SS2, CT1, CT2 and AC obtained high ranks 

while high achieving coefficients Pe1, dis, CT4 and HL performed badly. Similar to 
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PKC, ranks of COX were also visibly different, e.g., Yu1, Yu2 and CT5 ranked very high 

only in PKC and COX but not in the others. 

 

Figure 5.2 Heatmap of the ranks of coefficients in WOMBAT.  

The columns (coefficients) are clustered using Ward’s method. Ranks are coloured 

from red to blue which represents coefficients’ retrieval abilities from strong to 

weak. In the left top corner legend, the X axis scales the ranks where red 

represents higher positions and blue denotes lower positions; the Y axis measures 

the frequency of corresponding ranks where the histographic curve shows the 

number of ranks. 
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5.5.2  Comparison of Retrieval Rate of Active Compounds 

5.5.2.1  Retrieval Rate of Active Compounds 

The experiment did not simply classify coefficients by their mode of construction 

described in Section 5.3.1 (based on the involvement of variable a, b, c and d). The 

retrieval rate of active compounds was used here for grouping coefficients. It is the ratio 

of retrieved active compounds to the total active compounds in the corresponding 

activity class. Different from using the actual number of retrieved actives, using retrieval 

rate of actives can reduce the influence of the nature of activity classes, i.e., the 

difference of the size of activity classes. For instance, activity classes M and N consist 

of 100 and 1000 actives, respectively. Coefficient A retrieved 50 actives from M and 

500 actives from N. Coefficient B retrieved 80 actives from M and 450 from B. Thus, 

the total amount of actives retrieved by A was 550 and that retrieved by B was 530. In 

this case, the total amount of retrieved actives is not suitable for evaluating the 

performance of the two coefficients. While, their performance can be compared using 

the percentage of actives retrieved, as shown below: 

                     
                           

                                             
     

 

Equation 5.2 Formula of Retrieval rate 

Here,                      refers to the percentage of active compounds retrieved at a 

certain intercept  . In this study,   equals 1. 

Table B.4 in Appendix B is an example to represent the median retrieval rate out of 10 

runs of 11 activity classes in MDDR. 

5.5.2.2  Grouping Coefficients using Retrieval Rate of Active Compounds 

In Section 5.5.1, coefficients were clustered using their ranks. Most of the coefficients 

from the same class can be clustered together, e.g., correlation-based coefficients dis, 
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Pe1, Co1, Mic were tightly clustered together. However, a small number of coefficients 

from different classes were also grouped, e.g., symmetric coefficients SS3, SS4 were 

grouped with asymmetric coefficients Kul, CT4, For, Sor and DK. In order to mirror 

these observations, the values of retrieval rate of active compounds were used for cluster 

analysis. 

Figure 5.3 illustrates the top 1% retrieval rates of active compounds in MDDR. Similar 

to Figure 5.1, coefficients’ retrieval rates are coloured blue to red to show the values of 

retrieval rates from low to high. For example, the first cell (intersection of the first 

column and the first row) is blue which indicates that the Pe2 coefficient’s retrieval rate 

in 5HT class was low. The first column shows clearly that the Pe2 coefficient performed 

well (with retrieval rate at 17.23%) on the AT1 activity class, to a lesser extent on the 

5HT3 activity class with retrieval rate at 9.77%, and poorly on the remaining nine 

activity classes (retrieval rates less than 5%). The outcomes are scaled in the left top 

corner legend where the X axis values refer to the percentage of retrieval rates and the Y 

axis represents the frequency of corresponding retrieval rates. It is evident that, all of the 

44 coefficients’ retrieval rates were below 20% in class HIVP, 5HT3, SUBP, COX, 

Thrombin, D2, 5HT, PKC and 5HT1A. In SUBP and COX, most of their outcomes were 

below 5%. Two activity classes, however, were distinct from the other nine classes, i.e., 

AT1 and Renin which are less diverse classes with MPS value 0.40 and 0.57, 

respectively. In AT1, all coefficients’ retrieval rates were between 20% and 40% and 

symmetric coefficients RT, SM, SS2, CT1, CT2 and AC worked less well than the others. 

In Renin, half of the coefficients achieved more than 40% retrieval rates. Symmetric 

coefficients RT, SM, SS2, CT1, CT2 and AC were ineffective with retrieval rates under 

10%. Generally, asymmetric coefficients and correlation-based coefficients performed 

better than other coefficients. Similar findings were also found in WOMBAT, as 

illustrated in Figure 5.4. 

After clustering, from the dendogram in Figure 5.3, most of the asymmetric coefficients 

and correlation-based coefficients with higher retrieval rates were clustered together. In 

these, three asymmetric coefficients CT3, RR, Di1 and four correlation-based 
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coefficients Mic, Co1, dis, Pe1 were tightly clustered together, which is similar to the 

observations in Figure 5.1. Five symmetric coefficients SS3, HL, SS4, GK, RG yielding 

high retrieval rates also grouped in this cluster which is in agreement with Figure 5.1. 

Compared to the low performance cluster in Figure 5.1, one more asymmetric 

coefficient BB was grouped in the low retrieval rates cluster.     

According to Table B.4, the average retrieval rates of asymmetric, symmetric, 

correlation-based and intermediate coefficients over 11 activity classes in MDDR can be 

ordered as follows: asymmetric coefficients > correlation-based coefficients > 

intermediate coefficients > symmetric coefficients with average values of 10.57%, 

10.21%, 8.01% and 7.70% respectively. For WOMBAT, the average retrieval rates of 

the four classes of coefficients over 14 activity classes are ordered accordingly: 

asymmetric coefficients > correlation-based coefficients > intermediate coefficients > 

symmetric coefficients with average values of 13.63%, 12.98%, 11.86% and 10.32% 

respectively.   

Observations from Figure 5.3 and Figure 5.4 support well the classification of 

coefficients in Section 5.5.1. They also show that coefficients from the same class often 

yield similar retrieval rates of active compounds. Coefficients from the symmetric class, 

can, however, also produce very different results, i.e., coefficients RG, SS3, SS4 and HL 

performed very well compare to coefficients SM, RT, SS2, CT1,CT2 and AC, both in 

MDDR and WOMBAT.    
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Figure 5.3 Heatmap of the retrieval rates of coefficients in MDDR.  

The columns (coefficients) are clustered using Ward’s method. Retrieval rates are 

coloured from red to blue which represents coefficients’ retrieval abilities from 

strong to weak. In the left top corner legend, the X axis scales the retrieval rates 

where red represents higher rates and blue stands for lower rates; the Y axis 

measures the frequency of corresponding rates where the histographic curve shows 

the number of that rates. 
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Figure 5.4 Heatmap of the retrieval rates of coefficients in WOMBAT.  

The columns (coefficients) are clustered using Ward’s method. Retrieval rates are 

coloured from red to blue which represents coefficients’ retrieval abilities from 

strong to weak. In the left top corner legend, the X axis scales the retrieval rates 

where red represents higher rates and blue stands for lower rates; the Y axis 

measures the frequency of corresponding rates where the histographic curve shows 

the number of that rates. 
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Figure 5.5 Comparison of similarity coefficients from Symmetric measures on 

MDDR.  

 

Figure 5.6 Comparison of similarity coefficients from Symmetric measures on 

WOMBAT.  

The distances between coefficients are scaled from blue (high correlated) to red 

(low correlated) as shown in the right hand label. 
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5.5.2.3  Comparison of Coefficients based on Nature of Classes  

As discussed in Section 5.5.1 and Section 5.5.2, a number of coefficients appear to be 

affected by the nature of activity classes. For example, in WOMBAT, coefficients Pe1, 

dis, CT4 and HL obtained high ranks in activity classes PDE4, Fxa, ANG, RENIN and 

THR but not in activity classes PKC, 5HT3 and COX; coefficients RT, SM, SS2, CT1, 

CT2 and AC worked poorly in all activity classes except PKC. One more example, 

asymmetric coefficients Gle, JT, SS1 and Ja achieved good performance in class MMP1 

compared to the results obtained in PKC, etc. It is also very clear that a coefficient can 

yield very different rank results in specific activity classes, e.g., the performance of 

coefficients  JT and Gle in activity classes COX and PKC, both in MDDR and 

WOMBAT databases. 

As noted in previous sections, in MDDR, the most diverse activity class COX (with 

MPS value 0.27) resulted in very low retrieval rate (2.89% averaged over 44 coefficients 

and the max retrieval rate is only 3.93%). However, the less diverse activity class Renin 

(with MPS value 0.57), retrieved 33.67% when averaged over all coefficients and the 

highest retrieval rate reached 59.16%. It is obvious that the nature of classes can affect 

the results of similarity search. Thus, the 11 activity classes in MDDR were divided into 

two groups according to their MPS values (threshold value was set at 0.40, see Chapter 

3 Table 3.1), homogeneous and heterogeneous. The homogeneous group consists of 

activity classes AT1, HIVP, Renin, SubP and Thrombin, and the heterogeneous group 

contains activity classes 5HT, 5HT3, 5HT1A, COX, D2 and PKC.  

Thus, in MDDR, the coefficients’ retrieval rates from homogeneous classes can be 

ranked as: 

Pe1, dis (Q  22.79%) > Co1 (Q  22.70%) > Mic (Q  22.33%) > RR, Di1, CT3 (A  

22.20%) > CT4 (A  20.07%) > HL (S  18.84%) > Fos (A   18.56%) > Kul (A  18.49%) > 

For, DK, Sor (A  18.34%) > SS4 (S  17.84%) > JT, Gle, SS1, Ja (A  17.65%) > GK (S  

17.54%) > SS3 (S  17.34%) > Phi (Q  17.31%) > MP (Q   16.87%) > Coh (Q  16.78%) > 

Den (Q  16.75%) > RG (S  16.64%) > HD (S  15.05%) > BB (A  14.29%) > BUB (I  
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12.92%) > Yu1, Yu2 (Q  11.97%), CT5 (S  11.97%) > Sim (A  10.48%) > Mou (A  

9.80%) > Fai (I  9.37%) > Pe2 (Q  6.88%) > Co2 (Q  6.25%), Di2 (A  6.25%) > SM, RT, 

SS2, CT1, CT2, AC (S  4.40%)  

It is obvious that the best performing coefficients yielded five-fold more retrieval rates 

than coefficients that ranked the last.  

In heterogeneous classes, the performance of all coefficients is poor compared to their   

retrieval rates from homogeneous classes.  The retrieval rates obtained from the 

heterogeneous classes are: 

Den (Q  5.68%) > Phi (Q 5.66%), JT,  Gle , SS1, Ja (A  5.66%) > Coh (Q  5.65%) > MP 

(Q  5.64%) > RG (S  5.60%) > BUB (I  5.59%) > SS4 (S  5.58%) > GK (S  5.55%), For, 

DK, Sor (A  5.55%) > Fos (A  5.52%) > SS3 (S  5.49%) > BB (A  5.47%) > CT4 (A  

5.45%) > HL (S  5.44%), Kul (A  5.44%) > Yu1, Yu2 (Q  5.41%), CT5 (S  5.41%) > Pe2 

(Q  5.33%) > Co2 (Q  5.26%), Di2(A  5.26%) > Mou(A  5.22%) > Fai (I  5.19%) > HD 

(S  5.14%) > dis, Pe1 (Q  4.59%) > SM, RT, SS2, CT1, CT2, AC (S  4.54%) > Sim ( A  

4.44%) > Co1 (Q  4.31%) > Mic (Q  4.18%) > RR, Di1, CT3 (A  3.50%) 

It can be seen that the retrieval rates obtained from the four groups of coefficients are 

very close. There is no big difference when the coefficients are applied to heterogeneous 

class. 

Based on the outcomes above, average retrieval rates can be calculated from different 

activity classes. Averaged over all coefficients, the retrieval rates of homogeneous 

classes and heterogeneous classes are 13.84% and 5.16%. Results obtained from four 

main groups of coefficients are presented in Table 5.5 (a). 

In WOMBAT, 14 activity classes were grouped based on the threshold (0.40) of their 

MPS values. Thus, 5HT1A, ANG, HIVP, MMP1, PKC, RENIN, SUBP and THR are 

clustered as homogeneous classes; 5HT3, AChE, COX, D2, Fxa and PDE4 are grouped 

as heterogeneous classes. Averaging the retrieval rates over all coefficients, the results 
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for homogeneous classes and heterogeneous classes are 16.06% and 7.10%. Table 5.5 (b) 

gives the outcomes based on the four classes of coefficients. 

From Table 5.5, in general, working on homogeneous classes, asymmetric coefficients 

and correlation-based coefficients obtained notably better retrieval rates than symmetric 

coefficients. However, there are some exceptions. For example, in MDDR, some 

symmetric coefficients performed better than asymmetric coefficients and correlation-

based coefficients, i.e., symmetric coefficient HL yield an excellent retrieval rate, more 

than 18%, while asymmetric coefficients Di2 and Mou achieved less than 10% retrieval 

rates, and correlation-based coefficients CO2 and Pe2 only achieved less than 10%. The 

same observations were also found in WOMBAT. 

Table 5.5 Comparison of coefficients on different activity classes based on their top 

1% retrieval rates.  

Last row indicates the outcomes by averaged over all 44 coefficients. (a) is for 

MDDR; (b) is for WOMBAT. 

 

Homogeneous classes Heterogeneous classes 

Asymmetric coefficients 17.06 5.09 

Symmetric coefficients 10.89 5.03 

Correlation-based coefficients 16.28 5.14 

Intermediate coefficients 11.14 5.39 

 

13.84 5.16 

(a) 

 

Homogeneous classes Heterogeneous classes 

Asymmetric coefficients 18.22 7.71 

Symmetric coefficients 13.22 6.46 

Correlation-based coefficients 17.07 7.53 

Intermediate coefficients 15.72 6.71 

 

16.06 7.10 

(b) 
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5.5.3 Conclusion 

The results of the initial investigation show that there are a number of coefficients which 

are suitable for chemical similarity search. Generally, asymmetric coefficients and 

correlation-based coefficients performed better than symmetric coefficients and 

intermediate coefficients. The hierarchical cluster analysis revealed that most of the 

coefficients from same class can yield similar results. The analysis based on the nature 

of activity classes indicates that the performance of coefficients may vary when applied 

to homogeneous classes, and that asymmetric coefficients yielded the best results. 

However, in the initial investigation (Section 5.5.1 and 5.5.2), the three databases (the 

MDDR, WOMBAT and MUV databases) had been extensively used in previous studies 

of ligand-based virtual screening (Nasr et al., 2009). Additionally, as the results shows 

in Table 5.3, MUV might not favorable for fingerprint-based similarity search. Given 

diversity of databases, validation experiments are needed, as the findings here might not 

be transferable to other chemical databases.  

5.6 Validation Experiments 

To extend the work described previously in this chapter (Section 5.5), 50 activity classes 

extracted from all compound data sets of ChEMBL (Heikamp and Bajorath, 2011) were 

employed as the dataset for validation experiments. The detail of this dataset is in 

Chapter 3, Section 3.2.1.4.  

The experiments carried out here mirror those reported in Section 5.4. 

The Kendall W test resulted in a value of W=0.597 and p < 0.001 which indicates the 

results are highly statistically significant. Table B.5 illustrates the top 1% retrieval rates 

of active compounds yielded by different coefficients. On the basis of the results, 

heatmaps are plotted to demonstrate the retrieval abilities of coefficients. Figure 5.7 

illustrates the ranks of coefficients and Figure 5.8 demonstrates the values of retrieval 
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rates. The descriptions of these heatmaps can be found in Section 5.5.1 and Section 

5.5.2, referring to Figure 5.1 and Figure 5.3.  

After clustering, the poor performing clusters in Figure 5.7 and Figure 5.8 consist of 15 

coefficients which are the same as observed in the WOMBAT dataset (Figure 5.2 and 

Figure 5.4) and most of the asymmetric coefficients are tightly clustered together. 

Compared to Figure 5.3 and Figure 5.4, Figure 5.8 shows that the variation in coefficient 

retrieval abilities on different activity classes is not great in ChEMBL, where the 

majority of coefficient retrieval rates range from 20% to 40% compared to 10% in 

Figure 5.3 (MDDR) and 15% in Figure 5.4 (WOMBAT).  

Six symmetric coefficients, HL, GK, SS4, SS3, RG and HD still achieved relatively good 

results in ChEMBL, and were grouped in a high performance cluster. The other seven 

symmetric coefficients were continuously ranked last, as with their performance in 

MDDR and WOMBAT. Figure 5.9 shows the correlations of symmetric coefficients 

based on their retrieval rates in 50 activity classes. It gives similar results to those of 

Figure 5.5 and Figure 5.6.  
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Figure 5.7 Heatmap of the ranks of coefficients in ChEMBL.  

The columns (coefficients) are clustered using Ward’s method. Ranks are coloured 

from red to blue which represents coefficients’ retrieval abilities from strong to 

weak. In the left top corner legend, the X axis scales the ranks where red 

represents higher positions and blue denotes lower positions; the Y axis measures 

the frequency of corresponding ranks where the histographic curve shows the 

number of the ranks. 
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Figure 5.8 Heatmap of the retrieval rates of coefficients in ChEMBL.  

The columns (coefficients) are clustered using Ward’s method. Retrieval rates are 

coloured from red to blue which represents coefficients’ retrieval abilities from 

strong to weak. In the left top corner legend, the X axis scales the retrieval rates 

where red represents higher rates and blue stands for lower rates; the Y axis 

measures the frequency of corresponding rates where the histographic curve shows 

the number of that rates.. 
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Figure 5.9 Correlations of symmetric coefficients in 50 activity classes of ChEMBL. 

The distances between coefficients are scaled from blue (high correlated) to red 

(low correlated) as shown in the right hand label.  

 

Figure 5.8 shows the activity classes in ChEMBL are less diverse as most of their 

retrieval rates are between 20% and 40%. Averaged over all 50 activity classes, the 

percentages of retrieval rates yielded by four classes of coefficients are: asymmetric 

coefficients (28.33%) > correlation-based coefficients (27.68%) > intermediate 

coefficients (27.19%) > symmetric coefficients (25.11%). Symmetric coefficients RT, 

SM, SS2, CT1, CT2 and AC gave worse outcomes among the 44 coefficients. Checked 

against the MPS values of 50 activity classes in Chapter 3 Table 3.4 the values are in 

range of 0.33 to 0.53. Therefore, the 50 activity classes can also be divided into two 

groups for further comparison. Based on the threshold (0.42) of their MPS values, 50 

activity classes are grouped as 25 homogeneous classes and 25 heterogeneous classes.  
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Table 5.6 Comparison of coefficients on different activity classes based on their top 

1% retrieval rates in ChEMBL.  

Last row indicates the outcomes by averaged over all 44 coefficients.  

 

Homogeneous class Heterogeneous class 

Asymmetric coefficients 32.21 24.44 

Symmetric coefficients 28.13 22.08 

Correlation-based coefficients 31.36 24.01 

Intermediate coefficients 30.84 23.54 

 

30.64 23.52 

 

Shown as Table 5.6, the finding is in line with the observations on MDDR and 

WOMBAT in which asymmetric coefficients and correlation-based coefficients yielded 

more actives than did symmetric coefficients in homogeneous classes, but this is less 

notable due to the lower diversity of the activity classes in ChEMBL.  In heterogeneous 

classes, four classes of coefficients worked quite equally.  

Table 5.7 presents the rank positions of the 44 coefficients based on their retrieval rates 

and ranks averaged over all the 50 activity classes. Results from this table can be 

compared with the outcomes in Table 5.4 which shows that a number of coefficients 

have as good retrieval ability as the JT (Tanimoto) coefficient, e.g., coefficients CT4, 

HL, Fos, etc. Details of the results are presented in Table 5.8, where Min., Max., Median, 

1st Qu., 3st Qu., Mean refer to the minimum, maximum, median, first quartile, third 

quartile and mean value of retrieval rates over the 50 activity classes, respectively.  

The results obtained from all of the three databases show that coefficients can yield 

identical similarity ranking with other coefficients, with different similarity values. 

These pair/group coefficients are defined as being monotonic to each other (Gasteiger 

and Engel, 2003; Leach and Gillet, 2007; Willett et al., 1998). For example, coefficients 

JT, Ja, SS1 and Gle are monotonic to each other.   
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Table 5.7 Rank positions of the 44 coefficients when averaged over all of the 

activity classes in the  ChEMBL dataset.  

The second and third columns present the rank positons based on the average 

retrieval rates; the last two columns provide the rank positions according to the 

average ranks. Coefficients’ class are shown in brackets after their names.   

Rank Average retrieval rates Average ranks 

1 HL (S) 29.85% JT, Gle, SS1, Ja  (A) 12.20 

2 CT4 (A) 29.82% 

  
3 JT, Gle, SS1, Ja  (A) 29.74% 

  
5 

  

HL (S) 12.39 

6 

  

RG (S) 12.58 

7 Fos (A) 29.64% CT4 (A) 12.80 

8 RG (S) 29.57% Coh (Q) 13.08 

9 For , DK, Sor (A) 29.56% Fos (A) 13.34 

10 

  

MP (Q) 13.55 

11 BB (A) 29.54% SS4 (S) 14.30 

12 Coh (Q) 29.53% For , DK, Sor (A) 14.31 

13 SS4 (S) 29.51% 

  
14 MP (Q) 29.50% BB (A) 14.66 

15 GK (S) 29.49% GK (S) 15.89 

16 Phi (Q) 29.26% Phi (Q) 15.99 

17 Den (Q) 29.14% Den (Q) 17.03 

18 Kul (A) 29.07% HD (S) 17.35 

19 HD (S) 29.04% dis, Pe1 (Q) 17.90 

20 SS3 (S) 28.88% 

  
21 dis, Pe1 (Q) 28.79% Kul (A) 18.83 

22 

  

SS3 (S) 19.65 

23 Co1 (Q) 28.42% Co1 (Q) 19.84 

24 BUB (I) 28.29% Mic (Q) 20.84 

25 Mic (Q) 28.16% BUB (I) 21.80 

26 RR, Di1, CT3 (A) 27.43% RR, Di1, CT3 (A) 24.41 

30 CT5 (S), Yu1, Yu2 (Q) 26.43% CT5 (S)  27.58 

33 Fai (I) 26.09% Yu1, Yu2 (Q) 27.64 

34 Sim (A) 24.97% Fai (I) 28.79 

35 Mou (A) 24.94% Sim (A) 31.37 

36 Pe2 (Q) 24.11% Pe2 (Q) 32.07 

37 Co2 (Q) , Di2 (A) 23.65% Co2 (Q), Di2 (A) 33.70 

38 

    
39 SM, RT,SS2,CT1, CT2, AC  (S) 20.60% Mou (A) 33.79 

40 

  

SM, RT,SS2,CT1, CT2, AC  (S) 39.84 
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Some coefficients can be mathematically identical under certain conditions, i.e., the 

rescaled GK coefficient is identical to the  Gle coefficient when satisfied d>a, where, 

    
  [

               

               
  ]   

 

 
 [

      

      
  ]   

 

 
 [

  

      
]   

 

 
 

  

      
 

       

the  Sim coefficient is identical to the Di1 coefficient if b<c, thereby, 

     
 

    {           }
  

 

     
       

one more example, the BB coefficients is identical to the Di2 coefficient when b>c, thus, 

    
 

    {           }
  

 

     
       

It is apparent from the above transformations that although the GK coefficient was 

defined as a symmetric coefficient due to the fact that quantity d is included, however, it 

can be changed to an asymmetric coefficient when the number of common occurrence 

elements is less than the number of elements that did not occur in both objects. In 

chemical similarity search, quantity d  normally obtained a higher value than quantity a, 

but it is not always the case, thus, the GK coefficient and the Gle coefficient are not 

monotonic to each other. In addition, the transformation indicates the GK coefficient’s 

relatively high achievement as the good performance of the Gle coefficient.   

In some cases, two coefficients may not be completely monotonic but may give highly 

correlated similarity results. The Wilcoxon signed rank test (as described in Section 

3.4.2) was employed here to compare coefficients which produced the best results in 

Table 5.8, i.e., JT, Gle, For, BB, DK, Kul, Ja, RG, Fos, GK, SS4, MP, HL, SS1 and CT4. 

For each coefficient, 50 results of retrieval rate were applied to do head-to-head 

comparisons.  

Table 5.9 demonstrates the p-values of the Wilcoxon signed rank test. The p-values are 

bolded and italic if they are less than the 0.05 significance level. Since coefficients JT, 
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Ja, SS1 and Gle are monotonic to each other and the For, DK and Sor coefficients are 

monotonic to each other, the p-values of the pairs of them were marked as NA. At 0.05 

significance level, it can be concluded that the retrieval rates yield of most of the 

coefficients from ChEMBL data set are highly correlated, e.g., JT with RG, Fos, BB, HL 

and CT4.  

According to the analysis data above, it is clear that coefficient CT4 and HL are as good 

as JT, the Tanimoto coefficient. Moreover, many other coefficients can give similar 

performance to JT. The finding here confirmed the assumption in the beginning of this 

chapter that there exist other coefficients which are suitable for similarity search in 

virtual screening. 
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Table 5.8 Coefficients analysis of the retrieval rates in 50 activity classes of ChEMBL.  

 
      SM       RT       JT      Gle       RR      For      Sim       BB       DK      BUB      Kul 

Min. 7.00 7.00 9.00 9.00 10.00 9.00 9.00 9.00 9.00 9.00 9.00 

1st Qu. 15.40 15.40 23.27 23.27 21.38 21.86 18.31 22.43 21.86 20.34 20.94 

Median 20.29 20.29 28.46 28.46 25.61 28.47 24.22 28.52 28.47 27.63 28.76 

Mean 20.60 20.60 29.74 29.74 27.43 29.56 24.97 29.54 29.56 28.29 29.07 

3rd Qu. 24.38 24.38 35.40 35.40 33.69 35.83 31.05 35.82 35.83 33.08 35.00 

Max.   35.53 35.53 55.42 55.42 46.63 53.61 45.67 53.01 53.61 54.52 53.01 

            

 
     SS1      SS2       Ja      Fai      Mou      Mic       RG       HD      Yu1      Yu2      Fos 

Min. 9.00 7.00 9.00 7.00 6.00 9.00 9.00 9.00 8.00 8.00 9.00 

1st Qu. 23.27 15.40 23.27 19.42 18.13 22.15 22.33 21.27 19.14 19.14 22.03 

Median 28.46 20.29 28.46 25.23 24.47 27.14 28.23 27.66 25.40 25.40 28.89 

Mean 29.74 20.60 29.74 26.09 24.94 28.16 29.57 29.04 26.43 26.43 29.64 

3rd Qu. 35.40 24.38 35.40 32.49 30.23 34.48 35.34 34.81 32.38 32.38 35.94 

Max.   55.42 35.53 55.42 50.90 47.89 46.88 55.12 54.82 50.00 50.00 53.61 

            

 
     Den      Co1      Co2      Dis       GK      SS3      SS4      Phi      Di1      Di2      Sor 

Min. 9.00 9.00 8.00 9.00 9.00 9.00 9.00 9.00 10.00 8.00 9.00 

1st Qu. 21.20 22.50 16.61 22.61 23.29 20.60 21.56 21.34 21.38 16.61 21.86 

Median 27.64 28.05 23.26 28.28 28.33 28.08 28.47 27.93 25.61 23.26 28.47 

Mean 29.14 28.42 23.65 28.79 29.49 28.88 29.51 29.26 27.43 23.65 29.56 

3rd Qu. 34.84 34.57 27.42 34.81 35.23 34.90 35.60 35.19 33.69 27.42 35.83 

Max.   54.52 46.88 44.23 47.60 54.22 53.31 53.61 53.61 46.63 44.23 53.61 

            

 
     Coh      Pe1      Pe2       MP       HL      CT1      CT2      CT3      CT4      CT5       AC 

Min. 9.00 9.00 8.00 9.00 9.00 7.00 7.00 10.00 9.00 8.00 7.00 

1st Qu. 22.21 22.61 17.40 21.99 23.64 15.40 15.40 21.38 23.67 19.14 15.40 

Median 28.20 28.28 23.61 28.20 28.75 20.29 20.29 25.61 29.03 25.40 20.29 

Mean 29.53 28.79 24.11 29.50 29.85 20.60 20.60 27.43 29.82 26.43 20.60 

3rd Qu. 35.34 34.81 29.14 35.23 35.94 24.38 24.38 33.69 36.04 32.38 24.38 

Max.   55.12 47.60 44.71 55.12 53.31 35.53 35.53 46.63 52.11 50.00 35.53 
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Table 5.9 The p-values of Wilcoxon signed rank test. All the p-values that turned out to be less than the 0.05 

significance level were bolded and italic. 

 
JT Gle For BB DK Sor Kul Ja RG Fos GK SS4 MP HL CT4 SS1 

JT      
 

         
 

Gle NA 
    

 
         

 

For 0.0335 0.0335 
   

 
         

 

BB 0.5087 0.5087 0.9076 
  

 
         

 

DK 0.0335 0.0335 NA 0.9076 
 

 
         

 

Sor 0.0335 0.0335 NA 0.9076 NA  
         

 

Kul 0.0003 0.0003 <0.0001 0.1025 <0.0001 <0.0001 
         

 

Ja NA NA 0.0335 0.5087 0.0335 0.0335 0.0003 
        

 

RG 0.0603 0.0603 0.5925 0.9005 0.5925 0.5925 0.0011 0.0603 
       

 

Fos 0.1573 0.1573 0.0029 0.8847 0.0029 0.0029 <0.0001 0.1573 0.7421 
      

 

GK 0.0001 0.0001 0.4456 0.8179 0.4456 0.4456 0.0177 0.0001 0.2619 0.1145 
     

 

SS4 0.0421 0.0421 0.2989 0.9166 0.2989 0.2989 <0.0001 0.0421 0.2231 0.0223 0.6335 
    

 

MP 0.0421 0.0421 0.9655 0.9502 0.9655 0.9655 0.0015 0.0421 0.0418 0.2429 0.4010 0.7672 
   

 

HL 0.2329 0.2329 0.0146 0.3050 0.0146 0.0146 <0.0001 0.2329 0.0870 0.0774 0.0008 0.0425 0.0678 
  

 

CT4 0.3654 0.3654 0.1325 0.4006 0.1325 0.1325 0.0007 0.3654 0.2232 0.3911 0.0126 0.1683 0.1315 0.5115 
 

 

SS1 NA NA 0.0335 0.5087 0.0335 0.0335 0.0003 NA 0.0603 0.1573 0.0001 0.0421 0.0421 0.2329 0.3654  
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5.7 Conclusion 

In this chapter, 44 binary similarity coefficients were analysed by an extensive 

comparison of their retrieval abilities in similarity-based virtual screening, both by 

comparison of their ranks in each class and their retrieval rates of active compounds. 

The Ward’s method was used to cluster coefficients based on their retrieval rates.  

There are four main findings. First, in heterogeneous activity classes, the performances 

of coefficients from different classes were often similar. Second, the asymmetric 

coefficients and the correlation-based coefficients worked very well with less diverse 

activity classes. Third, working on homogeneous classes, a number of coefficients 

performed better than the Tanimoto coefficient which is the conventional coefficient in 

similarity search, i.e., correlation-based coefficients Pe1, dis, Co1 and Mic in MDDR 

and correlation-based coefficients Pe1 and dis in WOMBAT. Finally, the symmetric 

coefficient HL, and the new asymmetric coefficient CT4 yielded very good results in 

both homogeneous and heterogeneous classes and performed superior to the Tanimoto 

coefficient in WOMBAT and ChEMBL. Therefore, it can be suggested that when 

working with un-weighted fingerprints, if the characters of the structures are unknown, 

then coefficients HL and CT4 might be appropriate for similarity-based virtual screening 

instead of the standard Tanimoto coefficient. 

In published work (Todeschini et al., 2012), it has been shown that it is generally more 

important in chemoinformatic applications to take account of the properties that are 

present rather than those which are absent. It also suggested several coefficients may be 

worthy of further study for applications in chemoinformatics. In this study, in addition 

to the small-scale similarity results, the results of the performed experiments showed 

that a number of coefficients had better/similar retrieval ability to the Tanimoto 

coefficient. It is also possible to apply these suggested coefficients, e.g., the HL 

coefficient and the CT4 coefficient, to large-scale virtual screening. In addition, data 

fusion approach can be adopted to optimise similarity search using selected high 

performing coefficients.  



Chapter 6:  Comparison of Similarity 

Coefficients using Weighted Chemical 

Data 

6.1  Introduction 

In the previous two chapters, investigations were carried out to evaluate interactions 

between weighting schemes and similarity coefficients in similarity-based virtual 

screening (Chapter 4) and the comparison of binary coefficients for chemical similarity 

search (Chapter 5). The results have shown that both weighting schemes and the choice 

of similarity coefficient can affect similarity search. In addition, a number of binary 

coefficients were detected which exhibit better retrieval abilities than the Tanimoto 

coefficient in similarity search. Thus, in this chapter, the emphasis is on comparing the 

performance of coefficients when applied to weighted data, and on identifying 

coefficients which provide consistently high performance when different weighting 

schemes are involved.    

6.2 Selection of Coefficients 

In Chapter 5, 44 similarity coefficients were compared. These similarity coefficients are 

specific for dichotomic (binary) variables, and are based on comparisons between co-

occurring elements and non-co-occurring elements. The results demonstrate the 

importance of similarity coefficient choice, so that the most effective ones in each 

specific situation can be employed. Among these coefficients, many have been widely 

utilized for different applications. The majority of studies, however, tend not to justify 

their preferences for any one particular model. The most common coefficient, the 
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Tanimoto/Jaccard coefficient, has been investigated and compared with different 

coefficients in many chemoinformatics studies (Chen et al., 2009; Chen and Reynolds, 

2002; Duarte et al., 1999; Holliday et al., 2002; Salim et al., 2003; Sesli and Yegenoglu, 

2010; Snijders et al., 1990; Whittle et al., 2003). Holliday et al. (2002) compared the 

performance of thirteen coefficients in similarity searches of chemical databases. In 

subsequent research, data fusion techniques were applied to investigate the 

combinations of coefficients as well as their relative (Holliday et al., 2002) individual 

performance (Chen et al., 2009; Salim et al., 2003). Their studies illustrated that some 

other coefficients may be less affected by the compound bit-density that occurs with the 

Tanimoto coefficient. Their results also indicated that combining coefficients does 

improve the performance of similarity searches when compared with the use of a single 

measure, in particular the industry standard Tanimoto measure. They also concluded 

that no single combination showed a consistently high performance across all types of 

activities.  

As well as studies in chemoinformatics, comparisons of similarity coefficients have also 

been carried out in studies of genetic divergence. Meyer et al. (2004) compared eight 

coefficients to evaluate whether different similarity coefficients used with dominant 

markers can influence the results of cluster analysis. Their results revealed that the 

Anderberg (Anderberg, 1973), Sorensen-Dice (Sørensen, 1948) and the 

Tanimoto/Jaccard coefficient had almost identical results. These two coefficients were 

also studied and provided identical results to the Tanimoto coefficient in Chapter 5, 

namely, the SS1 coefficient and the Gle coefficient. Meyer et al. (2004) also proposed 

that the choice of similarity coefficient can be based on excluding the negative co-

occurred properties in the similarity measure, i.e., the symmetric coefficients in Chapter 

5. 

The results of above studies are in agreement with the findings in Chapter 5 that 

coefficients which do not consider the negative co-occurrences (parameter d) generally 

performed better. Furthermore, there were other coefficients performed better than the 

Tanimoto coefficient. According to the results in Chapter 4, showing that the choice of 
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weighting scheme can enhance similarity search, it seems reasonable to apply the high-

achieving coefficients in Chapter 5 to the weighted data.  

A few studies, however, have reported the alternative forms of binary coefficients that 

can be used to quantify the degree of similarity between non-binary data (Ellis et al., 

1993; Holliday et al., 2009; Whittle et al., 2003). Ellis et al. (1993) reviewed 27 

similarity coefficients applied to binary fingerprints and, in all but ten coefficients, these 

have an equivalent non-binary form. Among the remaining 17 non-binary coefficients, 

three coefficients arguably cannot produce appropriate rankings because the self-

similarity value is not always the highest, i.e., two molecules, A and B can be more 

similar to each other, than each is to itself, when a non-binary fingerprint is used. These 

are coefficients Russell-Rao, Kulczynski(2) and Forbes (Whittle et al., 2003).  

More recently, Al Khalifa et al. (2009) investigated the effects of applying similarity 

coefficients to a set of compounds from MDDR. These compounds were characterized 

by 378 real-valued structure-based property descriptors. They measured 12 coefficients, 

from those by Ellis et al. (1993) and Whittle et al.(2003).  Al Khalifa et al. (2009) 

concluded that there is no single coefficient which worked consistently well across all 

methodologies. The Tanimoto, Dice, Kulczynski(1), and Sokal/Sneath(1) coefficients, 

which were found to show near identical performance when applied to similarity 

searches  using binary fingerprints, exhibited good performances when applied on 

continuous descriptors. Two other coefficients found to be near identical in the binary 

case, the Cosine and Fossum, also achieved good results on non-binary descriptors. Al 

Khalifa et al. concluded that the Cosine and Fossum coefficients would be more 

favorable for nonhierarchical clustering. Their study, however, was carried out on a 

small subset containing just 20,000 compounds from the MDDR database. Their 

conclusion would be enhanced by the use of more appropriate databases and alternative 

characterizations. 
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In the following sections, selected similarity coefficients are tested to determine whether 

coefficients that work well with binary fingerprints can function effectively when 

applied to weighted fingerprints.   

6.2.1  Identification of Coefficients 

In Chapter 5, 44 similarity coefficients were compared. Apart from the results achieved 

in MUV, coefficients were ranked in decreasing order by their retrieval abilities in each 

dataset. The top 22 (50%) of these are listed in Table 6.1. The shaded cells indicate the 

coefficients ranked in the top 22 in all three databases. 

Table 6.1. Coefficients ranked in top 50% among databases using binary 

fingerprints.  

 
MDDR WOMBAT ChEMBL 

1 dis CT4 HL 

2 Pe1 dis CT4 

3 Co1 Pe1 JT 

4 Mic HL Gle 

5 CT4 BB SS1 

6 RR JT Ja 

7 Di1 Gle Fos 

8 CT3 SS1 RG 

9 HL Ja For 

10 Fos GK DK 

11 Kul Fos Sor 

12 For For BB 

13 DK DK Coh 

14 Sor Sor SS4 

15 SS4 RG MP 

16 JT Co1 GK 

17 Gle SS4 Phi 

18 SS1 Coh Den 

19 Ja MP Kul 

20 GK Mic HD 

21 Phi Phi SS3 

22 SS3 Kul dis 
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As shown in Table 6.1, 15 coefficients were identified. Based on the studies of Ellis et 

al. (1993), nine coefficients’ formulae for continuous variables can be verified. Two of 

these coefficients, the DK coefficient and the Sor coefficient, are monotonic to each 

other, i.e., they produce identical similarity rankings against a specified target, even 

though their similarity values are different. Thus, only one of them was studied in this 

chapter, i.e., the DK coefficient.  

Two other coefficients of these nine were previously described: the Forbes coefficient 

and the Kulczynski(2) coefficient. Ellis et al. (1993) argued, however, that the above 

cited coefficients cannot provide appropriate rankings with continuous representation 

(Whittle et al., 2003). The Forbes coefficient, however, even working on binary data, 

was regarded as not a suitable coefficient for calculating similarity degree (Cole, 1957; 

Michael, 1920). Nevertheless, in chemoinformatics, it was found to be effective in 

similarity search (Holliday et al., 2003; Salim et al., 2003; Willett, 2006). According to 

Michael’s deduction (1920), another coefficient, the Fossum coefficient, which is very 

similar to the Forbes coefficient, is considered unsuitable for measuring the degree of 

similarity with non-binary descriptors. Al Khalifa et al. (2009), however, showed that 

the Fossum coefficient performed well in similarity search and clustering as a non-

binary coefficient. Motivated by the success for binary fingerprints, the two debatable 

coefficients, the Fossum and Forbes coefficients, have hence been included in the 

coefficients list for subsequent study.  

The CT4 coefficient,  which was derived by applying the logarithm transformation to the 

Tanimoto coefficient (Consonni and Todeschini, 2012),  can be transformed to 

continuous format based on the original formula applied to binary data.  The Ja (Jaccard) 

coefficient, which is not listed in Ellis et al.’s (1993) report,  can also be transformed to 

non-binary form by analogy with  the formula of the JT coefficient. 

Thus far, 10 non-binary similarity coefficients forms have been identified. The formulas 

are shown in Table 6.2.  
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Table 6.2.  Ten Non-binary similarity coefficients. 

     is the value of a descriptor in compound A at attribute  ;     the value of a 

descriptor in compound B at attribute  ;   is the total number of descriptors used 

for each compound.  

Name Formula for continuous variables Formula for binary variables 

JT 

(Jaccard/ 

Tanimoto) 

      
∑      

       

∑      
  

    ∑      
  

    ∑    
 
       

       
  

     
 

DK 

(Driver-Kroeber 

/cosine) 

       
∑    

 
       

√∑      
  ∑      

  
   

 
   

       
 

√          
 

Gle 

(Gleason /Dice) 
      

 ∑    
 
       

∑      
  

    ∑      
  

   

       
   

      
 

For 

(Forbes) 
       

 ∑    
 
       

∑      
  

    ∑      
  

   

       
   

          
 

Kul 

(Kulczynski (2)) 
      

∑    
 
          ∑      

  
    ∑      

  
    

   ∑      
     

   ∑      
  

    
       

 

 
 [

 

   
 

 

   
] 

SS1 

(Sokal-Sneath) 
      

∑    
 
       

 ∑      
 
   

 
   ∑      

 
   

 
   ∑    

 
       

       
  

       
 

Fos 

(Fossum) 
       

  ∑    
 
        –        

∑      
   

     ∑      
  

   

       
           

          
 

Phi 

(Pearson)       
∑        ̅̅ ̅         ̅̅ ̅  

   

√∑        ̅̅ ̅ 
  ∑         ̅̅ ̅   

   
 
   

       
     

√                    
 

CT4 

(Consonni - 

Todeschini) 

      
      ∑    

 
        

  (   ∑      
  

    ∑      
  

    ∑    
 
       )

       
        

            
 

Ja 

(Jaccard) 
      

 ∑      
       

∑      
  

    ∑      
  

    ∑    
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6.2.2  More Coefficients  

Apart from the 44 coefficients in Chapter 5, a large number of similarity and distance 

coefficients have been defined and extensively used in different domains. Many of them 

are closely related to each other or identical, e.g., they have been discovered and 

rediscovered by different authors. A number of coefficients, which are equivalent when 

applied to binary variables, generate different results when applied to continuous 

variables. A number of coefficients are defined as being monotonic to each other. In 

some cases, two coefficients may not be completely monotonic and may give highly 

correlated rankings. Hence, the high performing coefficients that give the same or 

similar performance on binary data need to be considered in this study. 

Even though numerous binary similarity measures have been described in the literature, 

only a few comparative studies have collected a wide variety of binary similarity 

measures. For example, Cha (2008) enumerated 45 coefficients classified in seven 

groups. Out of these 45, a number of distance coefficients were reported as giving 

similar results to the Jaccard/Tanimoto coefficient, e.g., the Sorensen distance. This 

coefficient has been widely used in ecology (Looman and Campbell, 1960). A number 

of coefficients have distance forms which are identical to others, e.g., the distance form 

of the Czekanowski coefficient (Campbell, 1978) is identical to the Sorensen coefficient 

(Sørensen, 1948). Several coefficients are proportional to others, e.g., half of the 

Czekanowski coefficient is called the Motyka similarity or is known as the Kulczynski 

similarity. A number of coefficients have different names, e.g., the cosine coefficient 

has other names including the Ochiai coefficient and the Carbo coefficient; The Dice 

coefficient is occasionally called Sorensen, Czekanowski, Hodgkin-Richards or Morisita.  

More recently, Choi et al. (2010) reviewed 76 binary similarity and distance measures 

used over the last century. The definitions of binary similarity and distance measures are 

expressed by Operational Taxonomic Units in a 2 x 2 contingency table. The 

coefficients were analysed and classified through hierarchical clustering, and the close 

relationships among several of the measures were observed.  
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Based on these studies, several more coefficients can be considered, since they exhibited 

identical or very similar performance with the Jaccard/Tanimoto coefficient in binary 

case. They are listed in Table 6.3. 

Table 6.3 Additional Non-binary similarity coefficients. 

     is the value of a descriptor in compound A at attribute  ;     the value of a 

descriptor in compound B at attribute  ;   is the total number of descriptors used 

for each compound.  

Name Formula for continuous variables Formula for binary variables 

Soe 

(Soergel) 
     

∑ |       |
 
   

∑               
 
   

      
   

     
 

MR 

(MinMax /Ruzicka) 
     

∑               
 
   

∑               
 
   

      
 

     
 

Hel 

(Hellinger) 

       
√
   

∑        
 
   

√∑      
 
   

 
 ∑      

 
   

 

         √   
 

√          
  

Cze 

(Czekanowski) 
      

 ∑              
 
   

∑           
 
   

      
  

      
 

 

In Table 6.3, the Soe coefficient and the Hel coefficient are distance/dissimilarity 

coefficients. The capital letter ‘D’ represents the coefficients. The calculated similarity 

values range from 1 to 0 in both binary and continuous data. A high value indicates high 

dissimilarity, and a low value indicates high similarity, i.e., 0 represents the condition 

that two structures are identical and vice versa. In this study, distance coefficients were 

transformed directly to similarity coefficients taking the complement D = 1−S, e.g., the 

Soe coefficient takes the form that complements the Tanimoto coefficient if it is used 

with dichotomous (binary) data.  

Checking against their continuous formulae, it was found that: 
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The MR coefficient is the MinMax coefficient used in Chapter 4. It is effective when 

weighting schemes are applied. For further comparision with other high performing 

coefficients in a larger chemical dataset (ChEMBL), the MR coefficient was selected, 

while the complementary coefficient Soe was excluded.  

In Table 6.2 and 6.3, certain coefficients are identical in binary case with the same 

formula. When working on continuous variables, they may be different, i.e., the Cze 

coefficient and the Gle coefficient.  

Thus, three coefficients from Table 6.3 were selected in this study, i.e., the coefficients 

MR, Hel and Cze, with those in Table 6.2 gives a total of 13 available for evaluation. 

6.3 Method 

In this study, experiments were carried out on three databases, MDDR, WOMBAT and 

ChEMBL. The representation of all structures is based on the frequency of fragment 

occurrence, i.e., ECFC_4 fingerprints. According to the results in Chapter 4, two high 

performing weighting schemes were adopted to weight both the reference structure and 

the structures from database.  They are: 

W4:    √     

W5:          
  

   {  }
 

Where,    represents the frequency of occurrence of the   -th element and    {  } is 

the largest     value for a whole molecule, see details in Section 4.2. 
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Based on the conclusion in Chapter 4,   in general, the symmetric weighing schemes 

performed better than the asymmetric ones. In this chapter, therefore, both reference 

structures and database structures were weighted equivalently, i.e., M44, M55. The 

experimental process is described in Chapter 3 Figure 3.4. 

6.4 Results and Discussion 

For each coefficient, a median value of retrieved active compounds was calculated over 

10 runs (the results calculated from the 10 reference structures). In each activity class, 

therefore, all of the coefficients can be ranked using their median values to show their 

retrieval abilities from 1 to 13.  

In Table 6.4, the statistically significant levels of concordance of number of actives (raw 

results are attached in Appendix C, Table C.1 to Table C.6) across the activity classes 

which were observed for the MDDR, WOMBAT and ChEMBL databases. As the W 

values are significant for these three databases, it is possible to generate overall rankings 

for MDDR, WOMBAT and ChEMBL databases combined with two weighting schemes.  

Table 6.4 The Kendall W test results for the combinations of weighting schemes 

and databases.  

 W4 weighting scheme W5 weighting scheme 

 W p W p 

MDDR 0.156 0.056 0.217 <0.005 

WOMBAT 0.461 <0.001 0.240 <0.001 

ChEMBL 0.425 <0.001 0.297 <0.001 

 

Observation of the six combinations from Table 6.5 reveals a very high degree of 

correspondence throughout the entire ranked list. For each combination, coefficients 

have been ranked when averaged over all of the activity classes.  For example, 

coefficient CT4 was ranked first in MDDR with the W4 weighting scheme, followed by 

coefficients MR and Cze then the next coefficient Fos was ranked the fourth. The first 
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positions of all six combinations were occupied by Coefficient CT4 and coefficients MR 

and Cze, alternately. The Tanimoto coefficient (JT) ranked in the middle among all of 

the combinations.   

According to Table 6.5, three groups of monotonic coefficients can be identified. They 

are coefficients (MR, Cze), coefficients (DK, Hel) and coefficients (JT, Gle, SS1, Ja). Of 

these, four coefficients JT, Gle, SS1 and Ja were also found to be monotonic with each 

other when applied to binary representations. When compared to the formulae in Table 

6.2 and Table 6.3, the MR coefficient is identical to the JT coefficient in binary form but 

monotonic with the Cze coefficient when using the weighting schemes. 

The total rank is calculated averaging all the average ranks based on Table 6.5. As 

shown below: 

MR, Cze (5.09) <  CT4 (5.19) < JT, Gle, SS1, Ja (6.35) < Fos (6.40) < DK, Hel (7.29) < 

Phi (8.26) < Kul (9.32) < For (11.67) 

The rank above shows that the high-performing coefficient from Chapter 5 also 

performed well when the weighting schemes applied, i.e., coefficient CT4. The CT4 

coefficient was highly ranked: higher than the JT coefficient. The other two coefficients  

MR  and Cze performed the best.  

Figure 6.1 to Figure 6.3 illustrate the details of the 13 coefficients’ top 1% retrieval rates 

in MDDR, WOMBAT and ChEMBL databases. In each Figure, plot (a) illustrates the 

results when the W4 weighting scheme was applied and plot (b) displays the outcomes 

when the W5 weighing scheme was used. For each plot, the retrieval abilities of 

coefficients are displayed as bars which indicate the retrieval rates of all activity classes 

over the databases. Activity classes are differentiated using varying colours as shown in 

the right hand side legends but not in Figure 6.3 due to the large number of activity 

classes. The Y axis scaled the value of total retrieval rates.  
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It is clear that the For coefficient performed poorly in all of the three databases. It 

performed even worse when the W4 weighting scheme was applied, i.e., in MDDR, all 

of the other coefficients yielded three times more results. Based on the study of Whittle 

et al. (2003), the performance of the For coefficient is more strongly affected by 

molecular size or the density of the bits set than the other coefficients. In Table C.1, the 

For coefficient retrieved similar results, as did the other coefficients, on activity classes 

5HT1A, D2, COX, 5HT3 and 5HT in MDDR. It performed extremely poorly, however, 

on the activity class Renin with retrieval rates of 1.42% and 4.65% compared to those 

over 43% and 46% that were retrieved by other coefficients with W4 and W5 weighting 

schemes in MDDR, respectively. As shown, the difference in performance between 

coefficient For and the others is not notable in ChEMBL compared with MDDR. 

Whittle et al. (2003) suggests that the For coefficient is a suitable coefficient in 

similarity search for small actives but it may not be appropriate for continuous variables. 

They also analysed the possible reason theoretically. Although the theoretical 

explanation cannot support another coefficient’s success, i.e., the Fos coefficient, it is 

still worth to have a further investigation based on their conclusion.  

Generally, the performances of coefficients were more diverse when the W4 weighting 

scheme were employed, rather than cases where the W5 weighting scheme was used, 

e.g., more coefficients produced similar results in Figure 6.3 (b), compared with Figure 

6.3 (a). It is also evident that some coefficients performed better than the Tanimoto 

coefficient with different combinations, e.g., the DK, Fos, Phi, CT4 and Hel coefficients 

in the MDDR when using the W4 weighting scheme. 

The same methods are used to analyse results in this chapter as in Chapter 5. First, the 

13 coefficients are presented and roughly clustered using heatmaps. Then, they are 

compared by averaging over the activity classes to detect the effect of the choice of 

weighting schemes. 
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Table 6.5 Rank positions of each of the 13 coefficients when averaged over all of the activity classes for each of the 

combination with databases and weighting schemes.  

For each combination, coefficients were ranked of their retrieval abilities with the averaged ranks, where, lower the 

average rank greater the retrieval ability.   

Rank MDDR_W4 MDDR_W5 WOMBAT_W4 WOMBAT_W5 ChEMBL_W4 ChEMBL_W5 

1 CT4 5.18 CT4 5.73 MR,Cze 4.07 CT4 3.61 MR, Cze 3.83 MR, Cze 5.29 

2 MR, Cze 5.73 MR, Cze 5.91 

  

MR, Cze 5.71 

    3 
    

CT4 4.18 

  

JT,Gle,SS1,Ja 5.96 CT4 5.62 

4 Fos 6.23 JT,Gle,SS1,Ja 5.95 JT,Gle,SS1,Ja 6.25 Fos 5.79 

  

Fos 6.00 

5 DK, Hel 6.45 

    

JT,Gle,SS1,Ja 6.68 

  

JT,Gle,SS1,Ja 6.23 

6 
            7 Phi 6.95 

      

CT4 6.81 

  8 JT,Gle,SS1,Ja 7.05 Fos 6.18 Fos 6.71 

  

DK,Hel 7.38 

  9 
  

DK,Hel 7.59 DK,Hel 7.36 DK,Hel 7.54 

  

DK,Hel 7.42 

10 
        

Fos 7.47 

  11 
  

Kul 7.64 Phi 8.39 Phi 8.46 Phi 8.13 Kul 8.54 

12 Kul 9.64 Phi 9.00 Kul 11.57 Kul 8.64 Kul 9.87 Phi 8.59 

13 For 10.45 For 11.64 For 12.29 For 11.29 For 12.46 For 11.91 
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(a) 

 

(b) 

Figure 6.1 Comparison of the top 1% retrieval rates of active compounds in 

MDDR. (a) W4 weighted, (b) W5 weighted.  
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(a) 

 

(b) 

Figure 6.2 Comparison of the top 1% retrieval rates of active compounds in 

WOMBAT. (a) W4 weighted, (b) W5 weighted.  
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(a) 

 

(b) 

Figure 6.3 Comparison of the top 1% retrieval rates of active compounds in 

ChEMBL. (a) W4 weighted, (b) W5 weighted. 
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Figure 6.4 to Figure 6.6 illustrate the details of coefficients’ performance on MDDR, 

WOMBAT and ChEMBL. For each figure, coeffcients’ retrieval abilities are 

demonstrated using blue to red, representing the retrieval ability from low to high. Rows 

present the activity classes, columns illustrate the coefficients. An intersection of a 

specified row and a specified column shows the outcome of the corresponding 

coefficient working on the specified class.  For each figure, the left top corner legend 

scaled the frequency of the correlated retrieval rates, where the X axis value refers to the 

value of retrieval rates and the Y axes represents the counts (frequency) of 

corresponding retrieval rates.  

All of the coefficients provided superior outcomes on ChEMBL with a large number of 

retrieval rates ranging from 20% to 50%, compared with MDDR and WOMBAT, in 

which most of the outcomes are less than 10% and 20%, respectively. The results are 

similar to those in Chapter 5.  

Inspection of Figure 6.4 shows that when applying the W4 weighting scheme, the Kul 

coefficient and coefficients (JT, Gle, SS1, Ja)  are tightly clustered. Coefficients Fos, 

Kul, DK and Hel and coefficients (JT, Gle, SS1, Ja) are highly correlated when the W5 

weighting scheme is applied.  

CoeffIcient CT4, which is derived from the Tanimoto coefficient, does not show high 

correlations to coefficient JT in Figure 6.4 and 6.6, while in Figure 6.5, the CT4 

coefficient is highly correlated with coefficients JT, Gle, SS1 and Ja.   

Figure 6.4 to Figure 6.6 also illustrate the retrieval abilities are affected by the nature of 

activity classes. Coefficients often retrieved more actives in less diverse activity classes, 

e.g., the retrieval rates obtained by most of the coefficients are around 50% in activity 

class Renin both in the MDDR and WOMBAT databases. This is in agreement with the 

observation from Chapter 5. 
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Figure 6.4 Heatmaps of the top 1% retrieval rates of active compounds in MDDR. 

Upper, W4 weighted; Lower, W5 weighted. 
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Figure 6.5 Heatmaps of the top 1% retrieval rates of active compounds in 

WOMBAT. Upper, W4 weighted; Lower, W5 weighted. 
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(b) 

Figure 6.6 Heatmaps of the top 1% retrieval rates of active compounds in ChEMBL. (a), W4 weighted; (b), W5 weighted. 
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As described in Chapter 4, weighting schemes can enhance similarity search, the 

outcomes are hence plotted by averaging the coefficients’ retrieval rates over all activity 

classes to give an overview of the effect from the weighting schemes.  

   

Figure 6.7 Mean retrieval rates of the 13 coefficients. 

 

As shown in Figure 6.7, the mean retrieval rates of coefficients are calculated by 

averaging over the activity classes in the database. Thus, six groups of mean retrieval 

rates were obtained, e.g., MDDR_W4 refers to the combination of data from the MDDR 

database using the W4 weighting scheme.  

All of the coefficients performed well in the ChEMBL database with mean retrieval 

rates of approximately 30%. The mean retrieval rates obtained from the MDDR and 

WOMBAT databases are rather poor at about 12% and 16%. In ChEMBL, nearly all of 

the coefficients worked better with the W5 weighting scheme compared to the W4 

weighting scheme.  
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The Wilcoxon signed rank test was employed to compare the two weighting schemes 

which produced the best results in Figure 6.7. The null hypothesis is that, on a specified 

database, the retrieval rates of the 13 coefficients using the two weighting schemes are 

identical. Thus, the two weighting schemes were compared in three pairs according to 

the three databases. The p-values were 0.092, 0.261 and 0.003 from the MDDR, 

WOMBAT and ChEMBL databases, respectively. The p-values indicate that the two 

weighting schemes have significant differences working on the ChEMBL database, but 

not with the MDDR and WOMBAT dataset. 

From Figure 6.7, it is apparent that some coefficients produced almost identical results 

when different weighting schemes were adopted, i.e., the DK, SS1, Ja, Fos, Phi, CT4 

and Hel coefficients in MDDR and WOMBAT; the MR and Cze coefficients in 

ChEMBL. This suggests that those coefficients are less affected by the change of 

weighting schemes in specific databases.  

According to the observations above, four high performing coefficients(group) were 

selected to detect the effect of the choice of weighting schemes. Hence, the (JT, Gle, 

SS1, Ja), CT4, (MR, Cze) and Fos coefficients were compared with their outcomes from 

Chapter 5.  

Table 6.6 illustrates the comparison of coefficients working with the two weighting 

schemes. The results in the W1 rows are from Chapter 6 where W1 is used to specify the 

binary (non-weighted) data. It is apparent that the two weighting schemes can 

sometimes improve similarity search in the MDDR and WOMBAT databases.  The W5 

weighting scheme provide improvement when employed by the CT4 coefficient. The 

W4 weighting scheme shows preference when applied to the coefficients MR and Cze. 

From Table 6.6, the MR, Cze coefficient(s) gave notable improvement over the JT 

coefficient when applying weighting schemes and the CT4 coefficient consistently over-

achieved the JT coefficient. 
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Table 6.6 Mean retrieval rates of four high-achieving coefficient(group)s.  

  JT, Gle, SS1, 

Ja 

CT4 MR, Cze Fos 

 W1 11.11 12.09 11.11 11.45 

MDDR W4 11.18 12.25 11.64 12.07 

 W5 11.64 12.61 11.36 12.01 

 W1 15.04 15.78 15.04 14.94 

WOMBAT W4 15.74 15.97 16.50 15.45 

 W5 15.35 16.32 15.47 15.43 

 W1 29.74 29.82 29.74 29.64 

ChEMBL W4 28.90 28.64 30.19 28.47 

 W5 29.84 29.98 30.04 29.84 

 

6.5 Conclusion 

The experiments in this chapter investigated whether there were other coefficients that 

could perform better than the Tanimoto coefficient in similarity search when weighting 

schemes were applied. Most of the coefficients investigated here were taken from the 

high performing coefficients list based on the outcomes from Chapter 5. Coefficients 

from the other studies with similar characteristics with these high performing 

coefficients were also included.  

The outcomes showed that there are a number of coefficients which perform well on 

binary descriptors and can be applied to non-binary variables. Several of them can 

consistently perform well, with different weighting schemes. Moreover, the experiments 

confirm that weighting schemes can enhance similarity search, i.e., coefficients CT4, 

MR and Cze yielded marked improvements when weighted. 

On average, the overall best performing coefficients are CT4, MR and Cze. Of these, the 

CT4 coefficient consistently provided better performance over the JT coefficient. These 

findings therefore suggested that when weighting schemes applied, CT4, MR and Cze 

might be appropriate for similarity-based virtual screening and CT4 might be the choice 
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when applied on un-weighted and weighted fingerprints. This study has found that 

although the JT (Tanimoto) coefficient is strong in the use of similarity search, some 

coefficients can be viable alternatives to the JT (Tanimoto) coefficient using both binary 

and weighted fingerprints. The finding also ascertained that the interactions between 

coefficients and weighting schemes can be considered in similarity search. This is hence 

suggested that future study can investigate more combinations of similarity measures by 

adopting different data fusion rules.   
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Chapter 7:  Conclusion  

The aim of the research reported in this thesis was to identify novel similarity measures 

for ligand-based virtual screening. Ligand-based virtual screening belongs to the lead 

identification stage of drug discovery process, as shown as Figure 1.1 in Chapter 1. It 

normally requires explorations in large scale databases. Thus, a slight improvement of 

accuracy of the methods employed can result in a significant enhancement of 

effectiveness of the whole process of drug discovery. 

The theoretic foundations of the research reported in this thesis are Johnson and 

Maggiora’s similar property principle (Johnson and Maggiora, 1990), and the three key 

components in similarity search were introduced by Willett et al. (1998). As the similar 

property principle states, structurally similar compounds do have similar biological 

activity, and the biological similarity increases with the increasing structural similarity. 

Therefore, the three principal components involved in similarity search can be used to 

measure the correlation of molecular similarity. They are structural representation, 

similarity coefficient and weighting scheme.  

The experimental section of the thesis started with investigating the effect of the 

combinations of weighting schemes and similarity coefficients. The idea of fragment 

weighting schemes was derived from information retrieval, and the five weighting 

schemes investigated in this thesis were from a previous study (Arif et al., 2009b). Since 

weighting schemes can be applied on reference structures, database structures and on 

both, five weighting schemes results in 25 weighting combinations in total. As reported 

in Chapter 4, in Arif et al.’s study, 19 out of 25 weighting schemes were chosen and the 

experiments were conducted in two databases, i.e., MDDR and WOMBAT. According 

to their results, they concluded that some weighting schemes could enhance similarity 

search when the Tanimoto coefficient was employed. The Tanimoto coefficient, one of 
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the most conventional coefficients has been widely utilized in similarity search as well 

as other aspects in chemoinformatics. In order to verify if the weighting schemes can 

consistently enhance similarity search when other coefficients were applied, in the first 

part of the investigation, experiments were carried out in the same databases, i.e., 

MDDR and WOMBAT. The results confirmed that some weighting schemes can boost 

similarity search, i.e., W4 and W5. For all weighting combinations, the symmetric 

weighting combinations performed better than the asymmetric weighting combinations.  

Another finding was that when weighting schemes are applied, the cosine coefficient 

performed in a more stable manner than the Tanimoto coefficient. When averaged over 

all results of 25 weighting combinations, the cosine coefficient outperformed the 

Tanimoto coefficient. Due to the limitations of the two databases that were used, a 

further evaluation was carried out on the MUV database. The results were similar to 

those from the MDDR and WOMBAT databases. 

The main conclusion from the first investigation was that there are strong, and often 

quite subtle, interactions between the similarity coefficient and the weighting scheme 

comprising a similarity measure. These interactions indicate that the Tanimoto 

coefficient may not be the coefficient of choice when weighted fingerprints are used. It 

is therefore suggested some other coefficients may be favorable for similarity-based 

virtual screening when weighted fingerprints are available. 

The second investigation focused on the identification of binary coefficients which can 

be used for similarity search. Based on the findings from the first investigation, the 

similar performed coefficients in non-weighted case can exhibit different performance 

when weighting schemes were applied, i.e., the MinMax coefficient was identical to the 

Tanimoto coefficient but yielded better results with weighting schemes. There are many 

similarity coefficients that have been employed in other domains. It is possible to 

identify a number of them which might provide similar/better performance to the 

Tanimoto coefficient. For this purpose, 44 binary coefficients were extensively analysed 

and compared, most of those have so far not been studied in similarity-based virtual 
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screening. The initial investigation was carried on the MDDR, WOMBAT and MUV 

databases. The statistical values indicated, however, the MUV database might not be 

favorable for fingerprint-based similarity searching. Therefore, the ChEMBL database 

has been used for further validation.  

The comparison of the 44 coefficients was implemented by using their retrieval abilities, 

i.e., their ranks in each activity class and their retrieval rates of active compounds. The 

Ward’s method was used to cluster coefficients based on their retrieval abilities. 

The outcome showed that there are a number of coefficients which are suitable for 

similarity search. Generally, the asymmetric coefficients and the correlation-based 

coefficients performed better than the symmetric coefficients and the intermediate 

coefficients. The hierarchical cluster analysis revealed that most of the coefficients from 

the same class can yield similar results. The analysis based on the nature of activity 

classes indicates that the performance of coefficients may vary when applied to 

homogeneous classes, and that asymmetric coefficients yielded the best results. Working 

on homogeneous classes, a number of coefficients performed better than the Tanimoto 

coefficient. Therefore, it is possible to apply the identified high performing coefficients 

to large-scale virtual screening, and, these identified might also provide consistently 

good performance with weighting schemes, i.e., CT4, DK, Gle, For, Kul, SS1, Fos, Phi, 

Ja, Sor.     

The final investigation hence focused on the interactions between the high performing 

coefficients and weighting schemes. In the first investigation, there was an analytical 

elaboration of five weighting schemes. Two of these are considered appropriate and 

effective systems for similarity-based virtual screening, i.e., W4 and W5. Apart from the 

high performing coefficients from the second investigation, coefficients from the other 

studies with similar characterises with these coefficients were also included. The 

outcomes showed that there are a number of coefficients which perform well on binary 

descriptors and can be applied to weighted fingerprints. Several of them can consistently 

perform well, with different weighting schemes. The experiments also confirmed that 
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weighting schemes can enhance similarity search. In addition, this study has found that 

although the Tanimoto coefficient is strong in the use of similarity search, some 

coefficients can be viable alternatives to the Tanimoto coefficient using both binary and 

weighted fingerprints, i.e., CT4, MR and Cze.  

The research reported in this thesis has shown that although the Tanimoto coefficient 

remains one of the most practical coefficients for use in similarity searching on binary 

representations, it may not be the coefficient of choice when weighting schemes were 

applied. Therefore, the further study in the interactions of similarity coefficient and 

weighting schemes is expected to provide supplementary consequential contribution to 

similarity-based virtual screening. 

The future research would further investigate possibilities to optimize these similarity 

measures through adding data fusion rules such as MAX and TSS discussed in Section 

2.5. Other weighting schemes and different types of fingerprints can also be involved in 

the future study and provide more solid conclusions in various circumstances. 
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Appendix A:  Results of Chapter 4  

 Table A.1 Average numbers of active molecules retrieved in the top 1% of 

searches of the WOMBAT database using the Tanimoto coefficient. (W=0.71, chi-

square=239.79, p<= 0.001) 

 

 

 

similarity 

measure 

Activity class 
Mean 

actives 

Median 

actives 

Mean 

rank 
5HT3 5HT1A AChE D2 Renin PDE4 Thrombin SubP HIV P COX PKC ANG FXa MMP1 

M11 34.90 78.30 29.70 90.00 274.60 67.60 71.00 89.50 127.90 103.90 48.10 226.90 127.40 74.30 103.15 83.90 6.79 

M12 36.70 78.90 32.10 90.90 302.70 68.00 68.60 107.60 124.90 99.80 48.90 246.40 135.50 72.10 108.08 84.90 5.21 

M13 13.50 24.90 14.90 20.50 49.00 21.50 3.60 53.80 24.00 41.00 41.10 15.10 17.50 25.80 26.16 22.75 21.86 

M14 36.70 80.00 28.90 90.20 288.10 67.20 69.00 107.40 125.20 107.10 48.70 229.00 129.90 74.30 105.84 85.10 5.64 

M15 35.40 71.80 26.00 77.20 211.20 58.10 46.10 83.00 98.80 102.80 49.50 161.90 97.00 66.90 84.69 74.50 10.64 

M21 39.90 75.20 29.60 65.20 123.50 40.70 27.80 20.70 35.30 43.00 41.20 71.90 31.20 55.10 50.02 40.95 16.43 

M22 34.10 81.60 24.80 71.90 248.20 36.80 39.10 65.10 73.00 118.70 56.40 174.20 120.90 59.70 86.04 68.50 11.00 

M23 24.50 17.90 11.90 9.20 4.70 13.60 1.10 4.90 1.10 10.90 2.70 1.30 2.40 9.20 8.24 7.05 24.43 

M24 44.10 81.30 29.20 66.00 168.80 41.00 37.30 40.30 44.60 60.70 44.70 103.60 37.80 69.50 62.06 44.65 14.07 

M25 35.50 53.50 28.60 34.60 24.50 29.20 10.10 8.50 8.50 18.10 10.20 15.00 14.80 26.00 22.65 21.30 20.21 

M31 5.00 48.80 13.50 41.70 160.10 21.10 24.00 50.70 94.80 50.00 43.10 128.70 70.70 20.40 55.19 45.95 18.93 

M32 1.60 23.60 8.10 14.40 35.70 11.50 6.10 63.60 39.70 13.00 19.80 64.30 36.70 11.70 24.99 17.10 22.57 

M33 33.80 88.80 28.90 62.50 198.20 29.10 33.70 55.60 77.90 79.50 38.40 129.40 90.50 58.50 71.77 60.50 14.50 

M34 5.10 44.30 12.50 33.10 140.60 22.00 22.30 80.60 91.30 43.30 41.60 131.60 86.40 28.60 55.95 42.45 18.43 

M35 18.20 87.30 16.10 67.90 254.10 33.70 41.70 59.60 102.20 79.80 50.90 168.00 90.70 55.80 80.43 63.75 12.57 

M41 36.50 82.60 27.30 92.60 263.40 57.60 69.20 84.00 117.80 108.40 48.80 225.90 121.20 76.80 100.86 83.30 7.36 

M42 26.50 68.60 21.30 66.80 226.00 42.80 39.00 98.50 85.50 75.40 48.80 166.80 136.40 45.80 82.01 67.70 12.71 

M43 28.00 37.50 10.60 26.30 66.10 21.00 6.20 41.70 22.60 65.50 35.90 26.20 22.30 31.80 31.55 27.15 21.21 

M44 33.00 83.50 26.30 88.10 271.80 51.10 62.10 100.10 119.20 117.10 52.30 223.00 140.90 73.70 103.01 85.80 7.21 

M45 37.60 74.20 24.00 72.50 188.20 47.90 42.90 63.30 72.40 102.10 49.10 149.50 89.00 65.80 77.04 69.10 12.14 

M51 34.60 83.30 33.20 100.10 287.20 69.90 75.00 75.10 126.90 99.60 47.80 257.60 132.60 77.80 107.19 80.55 5.71 

M52 34.90 84.70 32.70 100.70 280.80 62.40 58.50 88.00 107.90 95.70 48.60 264.50 122.80 84.30 104.75 86.35 6.57 

M53 25.10 53.30 15.50 40.40 154.10 30.70 12.20 72.60 42.50 89.70 55.60 82.00 62.00 48.80 56.04 51.05 16.57 

M54 35.10 85.70 33.20 103.20 290.00 67.60 70.00 93.60 122.30 101.50 48.50 269.30 128.30 84.10 109.46 89.65 4.57 

M55 36.30 80.80 28.20 91.30 273.10 62.30 66.70 96.50 119.00 109.90 48.50 226.00 127.10 77.90 103.11 86.05 7.07 
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Table A.2 Average numbers of active molecules retrieved in the top1% of searches 

of the WOMBAT database using the cosine coefficient. (W=0.60, chi-

square=202.83, p<=0.001) 

 

 

 

 

Similarity 

measure 

Activity class 
Mean 

actives 

Median 

actives 

Mean 

rank 
5HT3 5HT1A AChE D2 Renin PDE4 Thrombin SubP HIV P COX PKC ANG FXa MMP1 

M11 34.90 77.00 30.10 89.60 266.90 70.10 68.80 84.20 126.60 102.10 48.60 222.60 127.70 74.10 101.66 80.60 7.36 

M12 35.80 69.20 24.80 70.30 210.70 54.10 27.20 85.50 68.50 88.20 50.80 103.20 76.80 56.10 72.94 68.85 15.50 

M13 21.60 35.60 17.70 29.80 93.50 32.50 5.90 69.30 27.60 59.30 46.20 35.90 38.50 34.50 39.14 35.05 23.14 

M14 36.50 74.80 26.90 81.70 252.50 65.90 55.30 100.60 108.50 105.10 49.90 190.30 113.60 69.10 95.05 78.25 10.07 

M15 35.90 76.40 28.30 87.70 263.60 69.00 65.00 93.70 118.60 104.50 48.80 211.40 122.10 72.30 99.81 82.05 8.57 

M21 32.50 95.30 29.20 100.40 263.10 51.90 61.30 58.20 116.20 95.20 47.80 238.10 108.20 67.50 97.49 81.35 10.43 

M22 27.30 75.30 22.70 63.80 241.40 35.50 39.50 70.80 69.70 99.00 56.30 181.90 125.20 55.30 83.12 66.75 14.21 

M23 22.20 69.60 14.70 49.90 208.60 32.30 30.50 67.40 67.70 93.30 52.50 159.80 112.70 53.00 73.87 60.20 18.29 

M24 31.10 91.10 28.60 86.30 263.10 47.30 61.10 81.80 120.30 107.00 52.10 237.10 129.30 76.60 100.91 84.05 8.00 

M25 31.90 92.30 30.30 98.20 268.00 48.10 63.40 75.40 125.80 104.30 49.30 250.30 123.70 77.00 102.71 84.65 7.07 

M31 14.20 70.80 14.60 54.40 202.70 26.30 30.60 45.50 101.30 59.50 44.90 144.00 73.90 27.70 65.03 49.95 21.79 

M32 28.90 75.30 19.70 59.10 225.40 28.90 25.30 43.20 39.80 62.00 43.80 108.70 67.40 47.60 62.51 45.70 20.79 

M33 32.10 85.70 25.00 58.80 201.10 28.00 31.40 49.80 60.10 69.50 35.00 110.00 75.50 54.30 65.45 56.55 18.57 

M34 24.50 88.20 19.80 64.10 240.40 35.00 42.20 67.10 109.10 82.30 52.00 171.50 101.70 60.50 82.74 65.60 14.86 

M35 20.60 81.50 17.10 58.40 229.80 31.80 38.40 62.50 108.10 76.60 49.80 166.40 89.80 46.80 76.97 60.45 17.64 

M41 32.60 81.90 30.90 93.30 269.70 61.30 69.40 79.40 130.40 105.60 48.70 247.00 135.70 73.90 104.27 80.65 5.64 

M42 31.40 74.40 22.40 75.00 244.90 41.20 36.10 82.50 75.40 112.50 58.90 152.50 124.50 54.10 84.70 74.70 12.79 

M43 25.50 56.30 11.80 43.20 192.40 32.10 18.40 78.90 48.40 104.50 54.90 105.90 99.90 43.70 65.42 51.65 19.29 

M44 31.90 81.00 27.00 86.30 265.10 52.70 60.60 95.40 116.80 113.70 52.80 218.50 137.80 71.40 100.79 83.65 7.64 

M45 31.60 81.20 29.80 90.00 269.30 56.50 66.60 90.70 127.30 110.40 49.30 238.80 140.30 75.10 104.06 85.60 5.86 

M51 35.10 79.50 29.80 93.80 268.90 67.50 69.20 82.20 125.00 104.70 48.30 231.40 129.80 75.70 102.92 80.85 6.64 

M52 37.60 73.80 23.80 72.40 227.00 47.50 27.20 81.40 67.30 105.30 57.00 123.90 83.50 63.10 77.91 69.85 13.71 

M53 27.60 49.20 17.20 37.00 133.70 30.90 8.30 68.30 30.80 83.00 51.90 54.80 50.80 43.90 49.10 46.55 21.29 

M54 37.10 79.80 26.40 87.50 257.90 60.70 55.80 97.00 107.40 111.20 52.40 200.80 118.10 75.30 97.67 83.65 8.36 

M55 36.30 80.00 29.10 92.30 265.60 64.70 65.90 93.50 118.10 108.50 48.60 221.10 125.80 76.20 101.84 86.15 6.86 
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Table A.3 Average numbers of active molecules retrieved in the top1% of searches 

of the WOMBAT database using the MinMax coefficient. (W=0.73, chi-

square=245.40, p<= 0.001) 

Similarity 

measure 

Activity class 

Mean 

actives 

Median 

actives 

Mean 

rank 5HT3 5HT1A AChE D2 Renin PDE4 Thrombin SubP HIV P COX PKC ANG FXa MMP1 

M11 34.90 78.30 29.70 90.00 274.60 67.60 71.00 89.50 127.90 103.90 48.10 226.90 127.40 74.30 103.15 83.90 8.57 

M12 35.20 80.40 31.40 92.00 292.40 71.40 74.10 85.20 132.80 101.50 47.40 244.40 136.10 75.80 107.15 82.80 6.21 

M13 15.90 31.50 16.70 24.80 56.90 27.10 5.50 63.10 30.40 60.00 47.20 27.50 32.60 33.30 33.75 30.95 20.93 

M14 34.90 79.30 29.90 91.00 283.40 69.30 71.80 89.60 131.00 103.00 48.20 233.40 131.70 75.60 105.15 84.45 7.36 

M15 36.50 74.90 26.20 82.50 243.10 61.90 57.40 91.70 110.90 105.50 48.80 191.80 109.70 71.00 93.71 78.70 11.21 

M21 38.10 75.40 28.70 81.00 223.80 59.10 63.80 54.90 81.00 92.20 46.70 193.00 100.70 68.70 86.22 72.05 14.00 

M22 40.80 89.70 32.20 92.80 284.70 52.80 59.60 107.60 111.20 122.90 55.20 220.30 136.60 82.60 106.36 91.25 5.29 

M23 15.00 21.00 13.60 11.10 8.90 17.30 1.20 10.30 9.80 13.30 21.50 5.20 4.60 11.80 11.76 11.45 24.43 

M24 41.60 85.20 30.00 80.80 250.50 57.80 62.40 75.40 83.80 94.00 47.70 194.20 100.90 81.90 91.87 81.35 10.79 

M25 37.90 70.10 28.40 66.40 156.60 52.00 45.50 41.00 59.60 85.50 46.60 139.60 77.40 59.30 68.99 59.45 17.00 

M31 6.70 60.60 13.60 50.80 251.50 28.10 29.20 53.10 111.90 49.50 43.90 127.90 69.00 27.60 65.96 50.15 19.14 

M32 2.70 31.90 11.50 22.80 43.00 14.80 13.80 48.70 73.30 30.40 38.70 80.80 54.40 16.60 34.53 31.15 22.79 

M33 35.20 91.50 30.70 70.20 225.10 32.60 38.90 73.80 82.40 93.70 46.00 132.40 91.20 66.20 79.28 72.00 14.71 

M34 4.60 45.70 10.50 37.40 147.80 21.40 22.10 61.50 101.00 43.40 41.90 119.60 79.20 24.00 54.29 42.65 20.86 

M35 19.00 73.60 16.20 59.60 285.00 38.90 39.30 67.30 92.30 73.90 50.00 160.90 80.40 49.60 79.00 63.45 15.79 

M41 37.00 78.30 26.80 88.90 263.60 65.20 71.00 82.80 106.70 101.90 47.90 219.50 121.80 73.40 98.91 80.55 10.43 

M42 32.00 83.50 28.70 86.90 271.10 58.10 69.10 104.70 141.90 107.20 50.50 229.60 147.40 76.50 106.23 85.20 7.64 

M43 18.40 29.50 12.20 18.90 46.00 23.10 4.90 40.80 19.70 46.40 38.50 21.70 19.00 29.30 26.31 22.40 23.07 

M44 36.90 85.80 28.70 94.40 286.40 61.30 72.30 112.60 126.30 115.30 51.60 231.50 135.00 82.80 108.64 90.10 4.71 

M45 38.40 74.40 25.20 77.90 219.30 58.00 57.00 74.30 86.10 100.90 48.10 183.90 102.00 68.60 86.72 74.35 13.64 

M51 36.30 84.80 30.50 100.20 283.20 66.80 73.00 82.60 119.60 103.10 47.80 244.80 125.50 81.00 105.66 83.70 6.93 

M52 35.60 84.10 32.60 102.40 288.30 69.90 73.70 74.40 123.40 99.40 46.80 254.00 126.20 80.40 106.51 82.25 6.57 

M53 24.60 49.10 16.50 37.40 117.90 35.20 9.50 72.10 40.50 82.20 54.40 54.30 54.00 49.90 49.83 49.50 18.43 

M54 35.90 85.10 31.60 101.50 287.40 68.50 74.10 79.40 120.90 102.00 47.60 249.30 126.70 80.90 106.49 83.00 6.07 

M55 35.60 81.50 29.10 91.40 277.60 64.90 70.70 98.70 121.90 107.30 49.00 228.60 128.90 75.80 104.36 86.45 7.50 
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Table A.4  Average numbers of active molecules retrieved in the top1% of searches of the MUV database using the 

Tanimoto coefficient (a), the cosine coefficient (b) and the MinMax coefficient (c). 

Similarity 

measure 

Activity class 
Mean 

actives 

Median 

actives aid466 aid548 aid600 aid644 aid652 aid689 aid692 aid712 aid713 aid733 aid737 aid810 aid832 aid846 aid852 aid858 aid859 

M11 1.77 3.97 1.90 2.77 1.73 2.13 1.40 2.07 1.77 1.93 1.60 1.87 4.00 4.03 3.97 1.57 1.37 2.34 1.90 

M12 1.73 3.80 1.83 3.10 2.07 1.90 1.43 2.23 1.80 1.93 1.63 1.73 3.67 3.57 4.07 1.63 1.50 2.33 1.90 

M13 0.53 2.03 0.73 2.30 0.60 0.67 0.70 0.97 0.80 0.73 0.50 0.83 0.43 1.00 0.93 0.70 1.30 0.93 0.73 

M14 1.77 3.87 1.80 3.00 1.93 2.00 1.43 2.10 1.87 1.90 1.57 1.80 3.83 3.77 3.90 1.60 1.37 2.32 1.90 

M15 1.73 4.07 1.83 2.87 1.73 2.03 1.43 1.90 1.80 1.93 1.50 1.80 3.80 3.83 4.17 1.57 1.40 2.32 1.83 

M21 1.50 3.97 1.70 2.40 1.43 1.60 1.33 1.50 1.70 1.80 1.33 1.83 2.90 3.30 3.60 1.60 1.10 2.04 1.70 

M22 1.67 3.50 1.93 3.30 1.90 1.50 1.30 2.47 1.80 1.57 1.73 1.80 2.90 3.17 3.50 1.70 1.60 2.20 1.80 

M23 0.40 1.70 0.60 2.23 0.40 0.30 0.80 1.10 0.80 0.80 0.20 1.27 1.00 0.70 0.67 0.73 0.63 0.84 0.73 

M24 1.43 3.93 1.93 3.23 1.57 1.47 1.40 1.67 1.73 1.70 1.53 1.80 3.10 3.27 4.20 1.73 1.27 2.17 1.73 

M25 1.23 3.43 1.73 2.50 1.13 1.53 1.43 1.37 1.53 1.50 1.17 1.67 2.57 3.13 2.97 1.73 1.03 1.86 1.53 

M31 0.83 1.27 0.97 1.03 0.97 1.27 0.53 1.17 1.03 0.83 1.30 1.30 0.67 0.60 0.70 0.90 1.03 0.96 0.97 

M32 1.47 1.07 1.17 1.27 1.13 1.60 0.57 1.73 1.27 0.97 1.00 1.43 0.77 0.17 0.60 1.40 2.07 1.16 1.17 

M33 1.53 3.20 1.97 2.90 1.97 1.43 1.33 1.83 1.47 1.43 1.77 1.53 1.70 2.00 2.20 1.47 1.53 1.84 1.70 

M34 1.20 1.57 1.37 1.47 1.37 1.43 0.63 1.43 1.23 1.00 1.33 1.43 1.00 0.53 0.87 1.40 1.63 1.23 1.37 

M35 1.10 2.50 1.70 1.97 1.37 1.27 1.03 1.50 1.43 1.10 1.43 1.47 1.17 1.80 1.50 1.13 1.20 1.45 1.43 

M41 1.80 4.13 1.83 3.00 1.83 2.07 1.40 2.17 1.90 1.93 1.70 1.73 3.87 3.93 4.20 1.60 1.37 2.38 1.90 

M42 1.63 3.00 2.00 2.90 2.03 2.10 1.43 2.80 1.80 1.80 1.63 1.77 3.33 3.00 3.30 1.80 1.70 2.24 2.00 

M43 0.87 2.73 1.10 2.97 1.10 1.03 1.13 1.70 1.27 1.17 0.70 1.40 1.20 1.10 1.33 1.33 1.20 1.37 1.20 

M44 1.80 3.97 1.87 3.30 1.93 1.93 1.47 2.40 1.87 1.90 1.60 1.83 3.70 3.60 4.23 1.80 1.40 2.39 1.90 

M45 1.77 4.17 1.83 3.23 1.83 1.87 1.47 2.00 1.83 1.93 1.43 1.83 3.73 3.87 4.33 1.73 1.30 2.36 1.83 

M51 1.80 3.73 1.93 2.73 1.90 2.00 1.40 2.07 1.80 1.97 1.77 1.83 3.87 3.77 3.77 1.60 1.37 2.31 1.93 

M52 1.67 3.37 1.97 2.73 1.93 1.77 1.43 1.87 1.87 1.73 1.70 1.83 3.33 3.17 3.63 1.67 1.30 2.17 1.87 

M53 0.93 2.97 1.00 3.07 1.30 1.23 1.00 1.83 1.23 1.03 0.90 1.30 1.27 1.27 1.13 1.37 1.47 1.43 1.27 

M54 1.67 3.70 1.97 2.83 1.97 2.00 1.40 2.10 1.87 1.87 1.63 1.87 3.70 3.57 3.83 1.67 1.37 2.29 1.97 

M55 1.77 3.93 1.87 2.97 1.83 2.00 1.43 2.17 1.90 1.87 1.57 1.77 3.93 3.83 4.07 1.60 1.40 2.35 1.87 

(a) 
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Similarity 

measure 

Activity class 
Mean 

actives 

Median 

actives aid466 aid548 aid600 aid644 aid652 aid689 aid692 aid712 aid713 aid733 aid737 aid810 aid832 aid846 aid852 aid858 aid859 

M11 1.80 3.93 1.90 2.87 1.73 2.10 1.40 2.03 1.77 1.97 1.60 1.83 4.00 4.07 4.03 1.57 1.37 2.35 1.90 

M12 1.67 3.90 1.70 3.40 1.73 1.83 1.43 1.87 1.80 1.87 1.33 1.80 3.57 3.57 4.17 1.60 1.47 2.28 1.80 

M13 0.77 2.67 0.83 2.90 0.93 0.80 0.97 1.30 1.07 1.00 0.73 0.97 0.90 1.17 1.07 0.97 1.37 1.20 0.97 

M14 1.77 3.93 1.87 3.03 1.87 1.97 1.43 2.13 1.87 1.93 1.50 1.77 3.80 3.77 4.07 1.63 1.47 2.34 1.87 

M15 1.77 4.00 1.87 2.90 1.83 2.07 1.40 2.10 1.87 2.00 1.57 1.83 3.87 3.97 4.10 1.57 1.40 2.36 1.87 

M21 1.70 3.80 2.00 2.90 1.93 1.87 1.40 2.00 1.80 1.83 1.77 1.67 3.47 3.63 4.13 1.60 1.33 2.28 1.87 

M22 1.73 3.17 1.87 3.27 1.90 1.57 1.27 2.87 1.83 1.57 1.60 1.90 3.03 3.10 3.27 1.97 1.47 2.20 1.90 

M23 1.43 2.97 1.87 2.97 1.73 1.30 1.27 2.60 1.63 1.30 1.53 1.50 1.60 1.63 1.87 1.67 1.63 1.79 1.63 

M24 1.77 3.50 1.90 3.33 1.90 1.83 1.37 2.37 1.87 1.73 1.60 1.93 3.47 3.30 4.07 1.73 1.40 2.30 1.90 

M25 1.77 3.67 1.93 3.00 2.00 1.90 1.40 2.27 1.80 1.73 1.73 1.73 3.57 3.57 4.10 1.73 1.37 2.31 1.90 

M31 1.03 1.87 1.23 1.63 1.13 1.27 0.87 1.30 1.20 1.07 1.23 1.23 0.97 1.27 1.33 0.93 1.03 1.21 1.23 

M32 1.50 3.23 1.97 3.00 1.60 1.33 1.33 1.67 1.53 1.50 1.63 1.80 1.73 2.07 2.33 1.60 1.40 1.84 1.63 

M33 1.47 3.20 1.83 2.83 1.73 1.33 1.33 1.77 1.53 1.37 1.60 1.67 1.70 2.00 2.43 1.53 1.47 1.81 1.67 

M34 1.30 3.00 1.87 2.57 1.57 1.47 1.30 1.77 1.60 1.37 1.60 1.70 1.50 1.90 1.97 1.47 1.43 1.73 1.60 

M35 1.17 2.50 1.77 2.03 1.43 1.30 1.07 1.63 1.50 1.17 1.43 1.50 1.27 1.63 1.67 1.20 1.23 1.50 1.43 

M41 1.80 3.90 1.87 3.00 1.97 2.13 1.37 2.30 1.83 1.93 1.73 1.83 3.87 3.90 4.07 1.60 1.40 2.38 1.93 

M42 1.57 3.60 1.90 3.53 1.87 1.73 1.47 2.77 1.83 1.83 1.43 1.83 3.33 3.33 3.93 1.83 1.53 2.31 1.83 

M43 1.23 3.03 1.43 3.07 1.63 1.57 1.37 2.47 1.43 1.23 1.17 1.37 1.47 1.50 1.50 1.60 1.57 1.68 1.50 

M44 1.77 3.87 1.87 3.30 1.93 2.00 1.43 2.47 1.87 1.87 1.60 1.93 3.83 3.60 4.27 1.77 1.40 2.40 1.93 

M45 1.80 3.83 1.87 3.13 1.93 2.00 1.43 2.40 1.93 1.90 1.67 1.87 3.87 3.73 4.17 1.67 1.37 2.39 1.93 

M51 1.87 3.97 1.87 2.90 1.80 2.13 1.40 2.13 1.83 1.93 1.63 1.83 4.00 3.87 4.00 1.60 1.40 2.36 1.87 

M52 1.67 3.87 1.90 3.50 1.77 1.73 1.40 2.13 1.93 1.83 1.37 1.87 3.37 3.37 4.17 1.77 1.43 2.30 1.87 

M53 0.97 2.93 1.10 3.13 1.20 1.17 1.13 1.83 1.23 1.07 0.93 1.27 1.23 1.37 1.13 1.27 1.47 1.44 1.23 

M54 1.73 3.83 1.83 3.10 1.93 1.93 1.43 2.23 1.87 1.90 1.53 1.80 3.73 3.67 4.23 1.70 1.47 2.35 1.90 

M55 1.77 3.87 1.87 2.93 1.83 2.03 1.43 2.23 1.90 1.87 1.60 1.77 3.90 3.83 4.10 1.60 1.43 2.35 1.87 

(b) 
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Similarity 

measure 

Activity class 
Mean 

actives 

Median 

actives aid466 aid548 aid600 aid644 aid652 aid689 aid692 aid712 aid713 aid733 aid737 aid810 aid832 aid846 aid852 aid858 aid859 

M11 1.77 3.97 1.90 2.77 1.73 2.13 1.40 2.07 1.77 1.93 1.60 1.87 4.00 4.03 3.97 1.57 1.37 2.34 1.90 

M12 1.83 3.80 1.87 2.77 1.73 2.10 1.37 2.00 1.77 1.93 1.67 1.83 4.03 4.03 4.00 1.57 1.33 2.33 1.87 

M13 0.67 2.47 0.80 2.50 0.70 0.77 0.73 1.37 0.93 0.83 0.67 0.97 0.63 1.03 1.07 0.93 1.33 1.08 0.93 

M14 1.77 3.87 1.90 2.80 1.73 2.13 1.40 2.07 1.77 1.93 1.63 1.83 4.00 4.10 3.93 1.57 1.33 2.34 1.90 

M15 1.77 4.07 1.80 2.83 1.83 2.13 1.40 2.07 1.87 1.93 1.53 1.77 4.00 3.87 4.17 1.57 1.40 2.35 1.87 

M21 1.80 4.13 1.80 2.87 1.77 2.07 1.47 1.90 1.67 2.03 1.57 1.80 3.97 3.97 4.13 1.67 1.23 2.34 1.80 

M22 1.73 4.40 1.83 3.40 1.93 1.70 1.40 2.23 1.77 1.90 1.50 1.97 3.53 3.37 4.17 1.83 1.43 2.36 1.90 

M23 0.43 1.90 0.63 2.40 0.53 0.43 0.73 0.80 0.63 0.57 0.13 0.97 0.67 0.77 0.77 0.70 0.73 0.81 0.70 

M24 1.70 4.13 1.87 3.13 1.83 1.80 1.37 1.90 1.70 2.03 1.50 1.90 3.70 3.77 4.03 1.70 1.40 2.32 1.87 

M25 1.87 4.17 1.77 2.93 1.73 2.00 1.47 1.83 1.63 2.00 1.47 1.83 3.77 3.80 4.20 1.70 1.30 2.32 1.83 

M31 0.90 1.67 1.00 1.30 0.97 1.33 0.63 1.20 1.10 1.10 1.20 1.10 0.77 1.07 0.90 0.87 0.93 1.06 1.07 

M32 0.77 1.07 0.80 1.00 0.90 1.43 0.47 1.33 0.93 0.93 1.00 1.17 0.77 0.27 0.60 0.93 1.17 0.91 0.93 

M33 1.57 3.77 1.93 2.97 1.93 1.40 1.33 1.83 1.57 1.43 1.67 1.43 1.77 2.13 2.30 1.47 1.43 1.88 1.67 

M34 0.87 1.23 0.97 0.97 1.07 1.33 0.50 1.30 1.17 0.87 1.17 1.33 0.80 0.40 0.73 0.93 1.13 0.99 0.97 

M35 1.00 2.43 1.30 1.73 1.00 1.23 0.90 1.33 1.27 1.23 1.20 1.10 1.03 1.53 1.90 1.03 1.07 1.31 1.23 

M41 1.87 4.03 1.87 2.97 1.77 2.03 1.47 2.03 1.70 2.03 1.60 1.90 4.07 4.07 4.17 1.60 1.33 2.38 1.90 

M42 1.77 3.83 1.80 3.07 1.87 2.13 1.30 2.37 1.83 1.83 1.77 1.90 3.90 3.70 4.17 1.70 1.40 2.37 1.87 

M43 0.57 2.13 0.93 2.83 0.70 0.73 0.87 1.17 1.00 0.87 0.40 1.07 0.77 0.97 1.13 1.03 1.13 1.08 0.97 

M44 1.77 4.03 1.83 3.10 1.90 1.93 1.37 2.23 1.90 1.90 1.67 1.80 3.87 3.83 4.10 1.73 1.37 2.37 1.90 

M45 1.83 4.07 1.77 2.93 1.87 2.00 1.43 2.03 1.77 2.03 1.50 1.77 4.00 3.90 4.20 1.63 1.37 2.36 1.87 

M51 1.73 3.87 1.90 2.77 1.83 2.00 1.40 2.10 1.77 1.90 1.70 1.80 3.83 3.80 3.83 1.63 1.40 2.31 1.90 

M52 1.70 3.73 1.90 2.73 1.93 1.93 1.40 2.03 1.80 1.93 1.73 1.80 3.93 3.73 3.83 1.63 1.40 2.30 1.93 

M53 0.87 2.90 1.13 3.07 1.10 1.07 1.03 1.67 1.23 1.03 0.87 1.20 1.10 1.33 1.10 1.23 1.43 1.37 1.13 

M54 1.73 3.77 1.90 2.80 1.87 2.00 1.40 2.10 1.80 1.93 1.73 1.80 3.93 3.77 3.83 1.63 1.40 2.32 1.90 

M55 1.90 3.93 1.90 2.90 1.80 2.00 1.37 2.20 1.87 1.97 1.67 1.83 4.00 3.93 4.07 1.63 1.33 2.37 1.90 

 (c)
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Table B.1 Median numbers of active molecules retrieved in the top 1% of searches of the MDDR database using the 44 

coefficients  

  5HT 5HT3 5HT1A AT1 COX D2 HIVP PKC Renin SubP Thrombin 

SM 12.50 57.00 38.00 126.50 25.00 14.00 20.00 18.50 26.00 21.50 15.00 

RT 12.50 57.00 38.00 126.50 25.00 14.00 20.00 18.50 26.00 21.50 15.00 

JT 20.00 79.50 44.00 280.50 18.00 18.50 65.00 22.50 481.00 40.00 32.50 

Gle 20.00 79.50 44.00 280.50 18.00 18.50 65.00 22.50 481.00 40.00 32.50 

RR 14.50 29.50 27.00 320.50 11.50 17.50 72.00 16.00 665.00 36.00 45.50 

For 19.00 80.00 43.00 282.00 17.50 18.00 70.00 22.00 511.00 39.00 33.00 

Sim 15.00 59.00 37.50 218.50 13.50 16.50 72.00 17.00 143.00 29.50 37.00 

BB 19.00 71.00 39.50 252.00 19.50 19.00 44.00 24.50 358.50 41.50 30.50 

DK 19.00 80.00 43.00 282.00 17.50 18.00 70.00 22.00 511.00 39.00 33.00 

BUB 17.50 81.50 43.50 248.50 19.00 16.50 42.00 24.50 296.00 36.00 28.50 

Kul 19.00 78.00 41.50 277.00 17.00 17.50 73.00 22.00 521.00 36.50 34.50 

SS1 20.00 79.50 44.00 280.50 18.00 18.50 65.00 22.50 481.00 40.00 32.50 

SS2 12.50 57.00 38.00 126.50 25.00 14.00 20.00 18.50 26.00 21.50 15.00 

Ja 20.00 79.50 44.00 280.50 18.00 18.50 65.00 22.50 481.00 40.00 32.50 

Fai 15.50 73.50 41.50 214.50 23.50 16.00 33.00 19.50 154.50 32.50 27.50 

Mou 15.00 76.50 42.50 194.00 21.00 15.00 46.00 21.50 183.00 33.50 27.50 

Mic 16.00 45.00 29.00 323.00 11.50 19.50 74.50 20.00 666.00 36.50 45.00 

RG 19.00 81.00 44.50 277.00 18.00 18.00 61.00 21.50 438.50 38.00 31.00 

HD 18.50 75.50 43.00 268.00 18.50 17.50 46.00 14.00 383.00 38.00 30.00 

Yu1 16.00 77.50 43.50 204.50 19.00 16.00 58.50 24.50 268.00 34.50 31.00 

Yu2 16.00 77.50 43.50 204.50 19.00 16.00 58.50 24.50 268.00 34.50 31.00 

Fos 18.50 79.50 43.00 285.00 17.50 18.50 70.50 21.50 518.00 39.50 33.50 
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Den 19.50 81.00 43.00 274.00 18.50 18.00 64.00 23.50 442.00 38.00 32.00 

Co1 16.50 49.50 29.00 328.50 11.50 19.50 79.00 20.00 668.50 39.50 46.50 

Co2 15.50 73.50 41.00 155.00 25.00 15.50 33.50 21.00 54.00 31.50 24.50 

dis 16.50 55.50 31.00 330.50 13.00 19.50 86.00 22.00 658.00 41.50 47.00 

GK 20.00 79.50 43.50 275.50 16.50 18.50 65.00 21.00 481.50 40.00 32.00 

SS3 18.50 79.50 42.50 264.00 17.00 17.00 67.00 23.00 483.00 36.50 33.00 

SS4 19.00 80.00 42.50 281.00 17.50 18.00 67.00 23.00 487.50 39.00 33.50 

Phi 19.50 81.00 43.00 278.00 18.00 18.00 65.50 23.50 465.00 38.50 33.00 

Di1 14.50 29.50 27.00 320.50 11.50 17.50 72.00 16.00 665.00 36.00 45.50 

Di2 15.50 73.50 41.00 155.00 25.00 15.50 33.50 21.00 54.00 31.50 24.50 

Sor 19.00 80.00 43.00 282.00 17.50 18.00 70.00 22.00 511.00 39.00 33.00 

Coh 19.50 81.00 44.00 277.00 18.00 18.00 62.00 22.50 444.50 38.00 31.00 

Pe1 16.50 55.50 31.00 330.50 13.00 19.50 86.00 22.00 658.00 41.50 47.00 

Pe2 15.50 73.50 42.50 162.50 24.50 15.50 34.50 22.50 74.00 32.50 27.50 

MP 19.50 81.00 43.50 277.00 18.00 18.00 62.00 22.50 449.00 39.00 31.00 

HL 18.50 76.50 42.00 288.00 18.00 18.50 71.00 21.50 528.00 41.00 33.50 

CT1 12.50 57.00 38.00 126.50 25.00 14.00 20.00 18.50 26.00 21.50 15.00 

CT2 12.50 57.00 38.00 126.50 25.00 14.00 20.00 18.50 26.00 21.50 15.00 

CT3 14.50 29.50 27.00 320.50 11.50 17.50 72.00 16.00 665.00 36.00 45.50 

CT4 20.50 74.00 40.50 299.00 16.50 18.50 79.00 22.50 568.50 39.50 37.00 

CT5 16.00 77.50 43.50 204.50 19.00 16.00 58.50 24.50 268.00 34.50 31.00 

AC 12.50 57.00 38.00 126.50 25.00 14.00 20.00 18.50 26.00 21.50 15.00 
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Table B.2 Median numbers of active molecules retrieved in the top 1% of searches of the WOMBAT database using 

the 44 coefficients 

 

5HT1A 5HT3 AChE ANG COX D2 Fxa HIVP MMP1 PDE4 PKC RENIN SUBP THR 

SM 44.50 18.50 21.50 71.00 26.50 34.00 42.50 26.00 22.00 24.50 16.50 46.50 33.50 16.50 

RT 44.50 18.50 21.50 71.00 26.50 34.00 42.50 26.00 22.00 24.50 16.50 46.50 33.50 16.50 

JT 58.50 26.50 30.00 224.00 28.00 67.00 102.50 68.50 48.50 51.50 13.50 325.00 73.50 69.00 

Gle 58.50 26.50 30.00 224.00 28.00 67.00 102.50 68.50 48.50 51.50 13.50 325.00 73.50 69.00 

RR 53.50 20.50 40.00 238.50 18.50 43.50 99.50 100.00 37.00 44.50 12.00 278.50 59.00 47.50 

For 58.50 24.50 30.50 222.50 27.00 68.00 102.00 72.50 45.50 52.50 16.00 309.50 71.00 68.50 

Sim 49.00 22.50 35.50 156.50 24.50 42.00 100.00 98.50 27.50 37.50 16.50 162.50 47.50 32.50 

BB 65.50 30.00 25.00 233.00 29.00 77.00 102.00 49.50 49.00 42.00 12.00 331.00 89.00 69.00 

DK 58.50 24.50 30.50 222.50 27.00 68.00 102.00 72.50 45.50 52.50 16.00 309.50 71.00 68.50 

BUB 56.50 27.50 23.50 192.00 28.50 56.00 88.00 51.00 44.50 36.50 16.50 254.00 73.50 52.00 

Kul 56.50 24.50 30.50 212.50 27.00 63.50 102.00 84.00 41.50 52.50 16.50 274.50 67.00 66.00 

SS1 58.50 26.50 30.00 224.00 28.00 67.00 102.50 68.50 48.50 51.50 13.50 325.00 73.50 69.00 

SS2 44.50 18.50 21.50 71.00 26.50 34.00 42.50 26.00 22.00 24.50 16.50 46.50 33.50 16.50 

Ja 58.50 26.50 30.00 224.00 28.00 67.00 102.50 68.50 48.50 51.50 13.50 325.00 73.50 69.00 

Fai 51.00 24.50 25.50 151.50 27.50 45.00 78.00 34.00 31.50 26.00 19.00 197.50 66.00 41.50 

Mou 49.00 23.00 23.50 142.50 28.00 45.50 89.50 46.00 34.00 40.50 15.50 173.00 59.00 28.00 

Mic 55.00 21.00 41.50 253.00 23.00 47.00 100.50 91.50 38.50 45.50 12.00 306.00 62.50 59.50 

RG 59.50 26.50 28.00 216.00 28.00 67.50 102.00 64.00 48.50 51.50 15.00 308.50 74.50 64.00 

HD 59.50 28.50 26.00 202.50 26.00 60.50 102.00 58.00 47.50 37.00 16.00 283.00 75.50 60.50 

Yu1 50.50 24.50 24.50 161.00 30.50 47.00 102.00 53.50 37.00 44.00 17.00 201.50 61.00 42.00 

Yu2 50.50 24.50 24.50 161.00 30.50 47.00 102.00 53.50 37.00 44.00 17.00 201.50 61.00 42.00 

Fos 58.50 25.00 30.50 225.50 27.00 67.50 102.00 73.50 46.50 53.00 15.50 313.00 70.00 70.50 

Den 57.00 27.00 28.00 205.50 28.00 63.00 102.00 68.00 42.50 50.00 16.50 268.00 72.00 62.50 

Co1 56.00 21.00 43.00 255.50 23.00 49.00 101.50 91.50 39.00 45.50 12.00 312.50 66.50 63.50 

Co2 48.00 24.00 21.00 104.00 27.00 43.00 70.00 36.00 29.00 28.50 16.50 52.50 52.50 17.50 

dis 56.50 21.00 43.50 262.00 23.00 63.00 106.00 91.00 42.50 53.50 12.00 333.00 73.00 82.50 
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GK 58.00 26.50 30.00 222.50 27.50 67.00 102.50 68.50 48.50 51.50 13.50 324.50 73.00 69.00 

SS3 56.50 25.00 30.50 200.50 27.00 63.50 102.00 76.50 42.00 51.50 17.50 262.00 68.50 62.00 

SS4 58.50 26.50 30.50 216.50 27.50 68.00 102.00 72.50 45.50 51.50 16.00 301.50 70.50 66.50 

Phi 58.00 27.00 30.00 210.00 27.50 63.50 102.00 70.50 44.50 51.00 16.50 281.50 71.00 64.50 

Di1 53.50 20.50 40.00 238.50 18.50 43.50 99.50 100.00 37.00 44.50 12.00 278.50 59.00 47.50 

Di2 48.00 24.00 21.00 104.00 27.00 43.00 70.00 36.00 29.00 28.50 16.50 52.50 52.50 17.50 

Sor 58.50 24.50 30.50 222.50 27.00 68.00 102.00 72.50 45.50 52.50 16.00 309.50 71.00 68.50 

Coh 59.00 26.50 28.00 215.50 28.00 67.00 102.00 64.50 48.00 51.50 15.50 307.50 74.00 64.00 

Pe1 56.50 21.00 43.50 262.00 23.00 63.00 106.00 91.00 42.50 53.50 12.00 333.00 73.00 82.50 

Pe2 48.00 24.00 21.50 112.50 27.00 43.50 72.00 37.00 29.00 28.00 16.50 70.00 55.50 17.50 

MP 59.00 26.50 30.00 215.00 28.00 64.50 102.00 66.50 47.50 51.50 15.50 305.00 73.50 65.00 

HL 60.00 26.00 30.50 239.50 27.50 68.50 104.00 71.50 48.00 54.50 12.50 338.50 71.50 70.00 

CT1 44.50 18.50 21.50 71.00 26.50 34.00 42.50 26.00 22.00 24.50 16.50 46.50 33.50 16.50 

CT2 44.50 18.50 21.50 71.00 26.50 34.00 42.50 26.00 22.00 24.50 16.50 46.50 33.50 16.50 

CT3 53.50 20.50 40.00 238.50 18.50 43.50 99.50 100.00 37.00 44.50 12.00 278.50 59.00 47.50 

CT4 59.50 23.50 32.50 245.00 27.00 71.00 107.00 81.00 47.50 57.50 12.50 348.00 72.00 75.00 

CT5 50.50 24.50 24.50 161.00 30.50 47.00 102.00 53.50 37.00 44.00 17.00 201.50 61.00 42.00 

AC 44.50 18.50 21.50 71.00 26.50 34.00 42.50 26.00 22.00 24.50 16.50 46.50 33.50 16.50 
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Table B.3 Median numbers of active molecules retrieved in the top 1% of searches of the MUV database using the 44 

coefficients 

  aid466 aid548 aid600 aid644 aid652 aid689 aid692 aid712 aid713 aid733 aid737 aid810 aid832 aid846 aid852 aid858 aid859 

SM 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

RT 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

JT 1.00 2.50 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

Gle 1.00 2.50 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

RR 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.50 1.50 4.00 3.00 2.50 1.00 1.00 

For 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

Sim 1.50 2.00 2.00 2.50 2.00 2.00 1.00 1.00 1.00 2.00 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

BB 1.00 3.00 1.50 2.00 2.00 2.00 1.00 2.00 2.00 2.00 2.00 1.50 4.00 3.50 3.50 1.00 1.00 

DK 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

BUB 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.50 2.00 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

Kul 1.00 2.00 2.00 2.50 2.00 2.00 1.00 1.00 1.50 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

SS1 1.00 2.50 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

SS2 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

Ja 1.00 2.50 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

Fai 1.00 3.00 1.50 3.00 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.50 3.50 3.50 1.00 1.00 

Mou 0.00 2.00 1.00 1.50 1.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 3.00 2.50 2.50 0.00 0.00 

Mic 1.50 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.50 1.50 4.00 3.00 3.00 1.00 1.00 

RG 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

HD 1.00 2.50 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 4.50 1.00 1.00 

Yu1 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 1.50 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

Yu2 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 1.50 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

Fos 1.00 2.50 2.00 3.00 2.00 2.00 1.00 1.00 1.50 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

Den 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

Co1 1.50 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.50 1.50 4.00 3.00 3.00 1.00 1.00 

Co2 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

dis 1.50 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.50 1.50 4.00 3.00 3.00 1.00 1.00 
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GK 1.00 2.50 2.00 3.00 2.00 2.00 1.00 1.00 2.00 2.00 1.00 1.50 4.00 4.00 3.50 1.00 1.00 

SS3 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 1.50 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

SS4 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

Phi 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

Di1 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.50 1.50 4.00 3.00 2.50 1.00 1.00 

Di2 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

Sor 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

Coh 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

Pe1 1.50 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.50 1.50 4.00 3.00 3.00 1.00 1.00 

Pe2 1.00 3.00 1.50 3.00 1.50 2.00 1.00 1.00 1.00 2.00 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

MP 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 4.00 1.00 1.00 

HL 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

CT1 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

CT2 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 

CT3 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 1.50 1.50 4.00 3.00 2.50 1.00 1.00 

CT4 1.50 2.00 2.00 2.50 2.00 2.00 1.00 1.00 2.00 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

CT5 1.00 2.50 2.00 2.50 2.00 2.00 1.00 1.00 1.50 2.00 1.00 2.00 4.00 4.00 3.50 1.00 1.00 

AC 1.00 3.00 2.00 3.00 1.00 2.00 1.00 1.00 1.00 1.50 1.00 2.00 4.00 3.00 3.50 1.00 1.00 
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Table B.4  Top 1% retrieval rates of the 44 coefficients in MDDR 

  5HT 5HT3 5HT1A AT1 COX D2 HIVP PKC Renin SubP Thrombin 

SM 3.48 7.58 4.60 13.42 3.93 3.54 2.67 4.08 2.30 1.73 1.87 

RT 3.48 7.58 4.60 13.42 3.93 3.54 2.67 4.08 2.30 1.73 1.87 

JT 5.57 10.57 5.32 29.75 2.83 4.68 8.67 4.97 42.57 3.21 4.05 

Gle 5.57 10.57 5.32 29.75 2.83 4.68 8.67 4.97 42.57 3.21 4.05 

RR 4.04 3.92 3.27 33.99 1.81 4.43 9.60 3.53 58.85 2.89 5.67 

For 5.29 10.64 5.20 29.91 2.75 4.56 9.33 4.86 45.22 3.13 4.11 

Sim 4.18 7.85 4.53 23.17 2.12 4.18 9.60 3.75 12.66 2.37 4.61 

BB 5.29 9.44 4.78 26.72 3.07 4.81 5.87 5.41 31.73 3.33 3.80 

DK 5.29 10.64 5.20 29.91 2.75 4.56 9.33 4.86 45.22 3.13 4.11 

BUB 4.88 10.84 5.26 26.35 2.99 4.18 5.60 5.41 26.20 2.89 3.55 

Kul 5.29 10.37 5.02 29.37 2.67 4.43 9.73 4.86 46.11 2.93 4.30 

SS1 5.57 10.57 5.32 29.75 2.83 4.68 8.67 4.97 42.57 3.21 4.05 

SS2 3.48 7.58 4.60 13.42 3.93 3.54 2.67 4.08 2.30 1.73 1.87 

Ja 5.57 10.57 5.32 29.75 2.83 4.68 8.67 4.97 42.57 3.21 4.05 

Fai 4.32 9.77 5.02 22.75 3.70 4.05 4.40 4.31 13.67 2.61 3.43 

Mou 4.18 10.17 5.14 20.57 3.30 3.80 6.13 4.75 16.20 2.69 3.43 

Mic 4.46 5.98 3.51 34.25 1.81 4.94 9.93 4.42 58.94 2.93 5.60 

RG 5.29 10.77 5.38 29.37 2.83 4.56 8.13 4.75 38.81 3.05 3.86 

HD 5.15 10.04 5.20 28.42 2.91 4.43 6.13 3.09 33.89 3.05 3.74 

Yu1 4.46 10.31 5.26 21.69 2.99 4.05 7.80 5.41 23.72 2.77 3.86 

Yu2 4.46 10.31 5.26 21.69 2.99 4.05 7.80 5.41 23.72 2.77 3.86 

Fos 5.15 10.57 5.20 30.22 2.75 4.68 9.40 4.75 45.84 3.17 4.17 

Den 5.43 10.77 5.20 29.06 2.91 4.56 8.53 5.19 39.12 3.05 3.99 

Co1 4.60 6.58 3.51 34.84 1.81 4.94 10.53 4.42 59.16 3.17 5.79 

Co2 4.32 9.77 4.96 16.44 3.93 3.92 4.47 4.64 4.78 2.53 3.05 

dis 4.60 7.38 3.75 35.05 2.04 4.94 11.47 4.86 58.23 3.33 5.85 



Appendix B: Result of Chapter 5 

193 
 

GK 5.57 10.57 5.26 29.22 2.59 4.68 8.67 4.64 42.61 3.21 3.99 

SS3 5.15 10.57 5.14 28.00 2.67 4.30 8.93 5.08 42.74 2.93 4.11 

SS4 5.29 10.64 5.14 29.80 2.75 4.56 8.93 5.08 43.14 3.13 4.17 

Phi 5.43 10.77 5.20 29.48 2.83 4.56 8.73 5.19 41.15 3.09 4.11 

Di1 4.04 3.92 3.27 33.99 1.81 4.43 9.60 3.53 58.85 2.89 5.67 

Di2 4.32 9.77 4.96 16.44 3.93 3.92 4.47 4.64 4.78 2.53 3.05 

Sor 5.29 10.64 5.20 29.91 2.75 4.56 9.33 4.86 45.22 3.13 4.11 

Coh 5.43 10.77 5.32 29.37 2.83 4.56 8.27 4.97 39.34 3.05 3.86 

Pe1 4.60 7.38 3.75 35.05 2.04 4.94 11.47 4.86 58.23 3.33 5.85 

Pe2 4.32 9.77 5.14 17.23 3.85 3.92 4.60 4.97 6.55 2.61 3.43 

MP 5.43 10.77 5.26 29.37 2.83 4.56 8.27 4.97 39.74 3.13 3.86 

HL 5.15 10.17 5.08 30.54 2.83 4.68 9.47 4.75 46.73 3.29 4.17 

CT1 3.48 7.58 4.60 13.42 3.93 3.54 2.67 4.08 2.30 1.73 1.87 

CT2 3.48 7.58 4.60 13.42 3.93 3.54 2.67 4.08 2.30 1.73 1.87 

CT3 4.04 3.92 3.27 33.99 1.81 4.43 9.60 3.53 58.85 2.89 5.67 

CT4 5.71 9.84 4.90 31.71 2.59 4.68 10.53 4.97 50.31 3.17 4.61 

CT5 4.46 10.31 5.26 21.69 2.99 4.05 7.80 5.41 23.72 2.77 3.86 

AC 3.48 7.58 4.60 13.42 3.93 3.54 2.67 4.08 2.30 1.73 1.87 
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Table B.5 Top 1% retrieval rate of the 44 coefficients in ChEMBL dataset. First 25 classes (a), latter 25 classes (b). 
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220 
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SM 30.05 23.95 9.07 21.67 13.69 20.29 19.01 20.25 24.50 35.00 34.25 8.08 13.93 22.98 7.00 19.00 20.29 28.13 17.14 15.33 34.47 9.49 24.44 24.17 33.13 

RT 30.05 23.95 9.07 21.67 13.69 20.29 19.01 20.25 24.50 35.00 34.25 8.08 13.93 22.98 7.00 19.00 20.29 28.13 17.14 15.33 34.47 9.49 24.44 24.17 33.13 

JT 48.80 29.41 21.86 27.67 14.68 25.88 25.70 41.57 35.25 44.69 47.26 20.88 24.38 23.60 9.00 20.00 27.35 35.76 25.24 16.06 32.04 18.80 35.34 35.42 55.42 

Gle 48.80 29.41 21.86 27.67 14.68 25.88 25.70 41.57 35.25 44.69 47.26 20.88 24.38 23.60 9.00 20.00 27.35 35.76 25.24 16.06 32.04 18.80 35.34 35.42 55.42 

RR 46.63 15.55 20.31 21.67 12.90 24.71 24.30 39.34 36.50 32.19 44.52 21.28 23.13 23.60 10.00 19.50 25.00 36.81 22.86 20.07 32.04 16.79 30.45 36.67 36.75 

For 49.04 31.93 21.75 27.33 14.68 25.88 25.70 40.74 36.25 43.75 47.26 20.64 24.38 23.60 9.00 20.00 27.94 36.11 25.24 16.06 32.04 18.25 34.21 35.00 53.61 

Sim 45.67 22.69 13.61 24.00 13.29 24.71 22.54 27.19 34.00 38.44 43.84 12.48 19.15 23.60 9.00 19.50 26.18 35.76 20.00 15.33 34.95 15.33 30.45 31.25 36.75 

BB 48.32 26.89 21.75 27.33 14.68 26.18 25.00 43.22 32.75 44.06 47.95 22.24 24.38 22.98 9.00 20.00 25.00 36.46 20.95 16.06 32.04 16.06 31.95 35.83 53.01 

DK 49.04 31.93 21.75 27.33 14.68 25.88 25.70 40.74 36.25 43.75 47.26 20.64 24.38 23.60 9.00 20.00 27.94 36.11 25.24 16.06 32.04 18.25 34.21 35.00 53.61 

BUB 48.32 28.15 19.90 27.33 14.68 25.59 25.00 38.76 30.75 45.00 45.21 17.60 23.63 22.98 9.00 20.00 25.29 36.46 21.90 16.06 32.04 15.69 33.08 32.92 54.52 

Kul 48.56 31.09 20.93 26.33 14.09 25.88 26.06 39.01 36.50 43.13 46.58 19.36 23.63 23.60 9.00 20.00 28.53 36.46 25.24 16.06 33.01 17.70 33.46 35.00 53.01 

SS1 48.80 29.41 21.86 27.67 14.68 25.88 25.70 41.57 35.25 44.69 47.26 20.88 24.38 23.60 9.00 20.00 27.35 35.76 25.24 16.06 32.04 18.80 35.34 35.42 55.42 

SS2 30.05 23.95 9.07 21.67 13.69 20.29 19.01 20.25 24.50 35.00 34.25 8.08 13.93 22.98 7.00 19.00 20.29 28.13 17.14 15.33 34.47 9.49 24.44 24.17 33.13 

Ja 48.80 29.41 21.86 27.67 14.68 25.88 25.70 41.57 35.25 44.69 47.26 20.88 24.38 23.60 9.00 20.00 27.35 35.76 25.24 16.06 32.04 18.80 35.34 35.42 55.42 

Fai 45.67 26.89 16.70 24.67 14.68 24.12 22.54 33.72 29.50 43.13 40.41 12.48 20.65 22.98 7.00 20.00 23.82 35.07 20.95 15.69 33.98 12.77 29.32 32.50 50.90 

Mou 45.91 28.15 14.74 24.33 14.09 24.41 23.59 30.58 27.75 42.19 39.04 11.60 18.41 22.36 6.00 19.00 24.41 33.68 19.05 14.96 33.01 13.69 28.95 29.17 47.89 

Mic 46.88 18.07 21.44 24.00 13.10 25.00 24.30 40.50 37.50 34.69 45.21 23.04 22.89 23.60 9.00 19.50 28.24 36.46 21.90 16.79 32.04 18.43 30.83 36.67 39.76 

RG 49.04 29.41 21.86 28.00 14.88 25.88 25.35 41.07 34.50 44.69 46.58 20.24 24.38 23.60 9.00 20.00 27.35 36.11 25.24 16.06 32.04 18.07 34.59 35.00 55.12 

HD 48.80 29.83 21.03 27.67 14.88 25.88 25.70 40.41 32.50 45.00 45.89 19.12 23.88 23.29 9.00 20.00 26.18 36.11 24.29 16.06 32.04 15.33 33.83 35.00 54.82 

Yu1 46.39 27.31 15.77 25.33 14.48 25.29 24.30 32.48 30.25 44.06 43.15 12.40 20.40 22.98 8.00 20.00 25.00 34.72 20.48 15.69 33.98 15.51 31.58 32.08 50.00 

Yu2 46.39 27.31 15.77 25.33 14.48 25.29 24.30 32.48 30.25 44.06 43.15 12.40 20.40 22.98 8.00 20.00 25.00 34.72 20.48 15.69 33.98 15.51 31.58 32.08 50.00 

Fos 49.04 31.93 21.75 27.33 14.48 25.88 25.70 40.66 36.50 43.75 47.26 20.72 24.38 23.60 9.00 20.00 28.53 36.11 25.24 16.06 32.04 18.43 34.96 35.42 53.61 

Den 48.56 31.93 21.44 27.33 14.88 25.88 25.70 39.59 34.75 43.75 45.89 19.04 24.13 23.60 9.00 20.00 27.35 36.11 25.24 16.06 33.01 17.88 33.46 35.00 54.52 

Co1 46.88 18.49 21.44 24.67 13.10 25.00 24.30 40.66 37.50 34.69 45.89 22.56 23.13 23.60 9.00 19.50 28.53 36.11 22.38 17.52 32.04 18.43 31.20 36.67 40.36 

Co2 44.23 26.47 12.47 23.67 14.29 23.53 20.77 25.54 25.75 41.88 36.30 9.44 16.42 22.98 8.00 19.50 25.00 33.33 18.57 15.33 34.47 12.04 27.44 27.08 40.36 

dis 47.60 19.75 21.55 26.33 13.29 25.00 24.30 40.91 37.75 35.00 45.89 22.56 23.38 23.60 9.00 19.50 28.82 36.11 24.29 17.52 32.04 18.61 31.58 36.67 45.48 

GK 47.60 28.99 21.75 27.67 14.68 25.29 25.70 41.40 35.25 44.69 47.26 20.80 24.38 23.60 9.00 20.00 27.35 35.76 24.76 16.06 32.04 18.07 34.21 34.58 54.22 

SS3 48.56 31.51 20.41 26.67 14.48 25.59 25.70 38.35 35.50 43.75 45.89 18.64 23.88 23.60 9.00 20.00 28.24 36.11 25.24 16.06 33.01 17.70 33.83 35.00 53.31 

SS4 48.80 31.93 21.75 27.67 14.68 25.88 26.06 40.58 35.75 44.06 46.58 20.16 24.13 23.60 9.00 20.00 27.94 36.81 25.24 16.06 32.04 17.88 34.21 35.00 53.61 

Phi 48.56 31.93 21.44 27.67 14.88 25.88 25.70 39.92 35.25 44.06 45.89 19.76 24.13 23.60 9.00 20.00 27.65 36.11 25.24 16.06 32.04 18.07 34.21 35.00 53.61 

Di1 46.63 15.55 20.31 21.67 12.90 24.71 24.30 39.34 36.50 32.19 44.52 21.28 23.13 23.60 10.00 19.50 25.00 36.81 22.86 20.07 32.04 16.79 30.45 36.67 36.75 

Di2 44.23 26.47 12.47 23.67 14.29 23.53 20.77 25.54 25.75 41.88 36.30 9.44 16.42 22.98 8.00 19.50 25.00 33.33 18.57 15.33 34.47 12.04 27.44 27.08 40.36 

Sor 49.04 31.93 21.75 27.33 14.68 25.88 25.70 40.74 36.25 43.75 47.26 20.64 24.38 23.60 9.00 20.00 27.94 36.11 25.24 16.06 32.04 18.25 34.21 35.00 53.61 

Coh 49.04 29.41 21.86 27.67 14.88 25.88 25.35 41.07 34.50 44.69 46.58 20.24 24.38 23.60 9.00 20.00 27.35 36.11 25.24 16.06 32.04 18.07 34.59 35.00 55.12 

Pe1 47.60 19.75 21.55 26.33 13.29 25.00 24.30 40.91 37.75 35.00 45.89 22.56 23.38 23.60 9.00 19.50 28.82 36.11 24.29 17.52 32.04 18.61 31.58 36.67 45.48 

Pe2 44.71 27.31 13.40 24.00 14.48 24.12 21.13 27.27 25.75 42.19 36.30 9.68 16.67 22.98 8.00 19.50 25.00 34.38 19.52 15.33 33.98 12.77 27.44 29.17 42.47 

MP 49.04 29.41 21.75 27.67 14.88 25.88 25.70 40.99 34.75 44.69 45.89 20.24 24.13 23.60 9.00 20.00 27.35 36.11 25.24 16.06 32.04 18.07 34.59 35.00 55.12 

HL 48.80 31.51 21.65 27.33 14.68 25.88 25.35 42.15 36.50 43.75 47.95 22.08 24.13 23.60 9.00 20.00 28.24 36.11 24.29 16.06 32.04 18.43 35.34 35.42 53.31 

CT1 30.05 23.95 9.07 21.67 13.69 20.29 19.01 20.25 24.50 35.00 34.25 8.08 13.93 22.98 7.00 19.00 20.29 28.13 17.14 15.33 34.47 9.49 24.44 24.17 33.13 

CT2 30.05 23.95 9.07 21.67 13.69 20.29 19.01 20.25 24.50 35.00 34.25 8.08 13.93 22.98 7.00 19.00 20.29 28.13 17.14 15.33 34.47 9.49 24.44 24.17 33.13 

CT3 46.63 15.55 20.31 21.67 12.90 24.71 24.30 39.34 36.50 32.19 44.52 21.28 23.13 23.60 10.00 19.50 25.00 36.81 22.86 20.07 32.04 16.79 30.45 36.67 36.75 

CT4 48.56 30.67 21.75 27.33 14.68 25.88 24.65 42.56 36.50 43.13 47.95 22.64 24.38 23.60 9.00 20.00 28.53 36.11 24.29 16.79 32.04 19.34 34.59 35.83 52.11 

CT5 46.39 27.31 15.77 25.33 14.48 25.29 24.30 32.48 30.25 44.06 43.15 12.40 20.40 22.98 8.00 20.00 25.00 34.72 20.48 15.69 33.98 15.51 31.58 32.08 50.00 

AC 30.05 23.95 9.07 21.67 13.69 20.29 19.01 20.25 24.50 35.00 34.25 8.08 13.93 22.98 7.00 19.00 20.29 28.13 17.14 15.33 34.47 9.49 24.44 24.17 33.13 

(a) 
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SM 28.53 14.10 24.06 24.79 14.66 24.23 23.91 21.01 30.75 16.79 11.00 16.19 15.69 17.57 32.09 14.69 22.88 35.53 21.36 20.59 8.53 15.61 18.03 16.94 11.22 

RT 28.53 14.10 24.06 24.79 14.66 24.23 23.91 21.01 30.75 16.79 11.00 16.19 15.69 17.57 32.09 14.69 22.88 35.53 21.36 20.59 8.53 15.61 18.03 16.94 11.22 

JT 35.16 16.22 25.00 40.17 14.94 34.23 45.65 29.26 39.94 38.06 20.09 26.65 27.52 21.39 39.55 30.41 29.85 44.74 31.55 32.05 23.53 23.19 21.31 29.84 24.75 

Gle 35.16 16.22 25.00 40.17 14.94 34.23 45.65 29.26 39.94 38.06 20.09 26.65 27.52 21.39 39.55 30.41 29.85 44.74 31.55 32.05 23.53 23.19 21.31 29.84 24.75 

RR 28.67 14.89 24.53 38.89 16.67 33.46 41.30 30.05 39.37 35.07 23.55 20.92 23.54 20.57 28.36 26.42 26.67 40.46 26.21 33.77 29.12 23.30 18.85 29.44 23.93 

For 34.87 15.96 25.00 40.17 14.94 34.23 45.65 28.99 39.94 36.85 19.55 26.65 26.81 21.39 39.55 30.41 30.00 44.74 32.04 31.44 23.53 22.17 21.31 29.84 21.45 

Sim 30.40 14.89 25.00 36.75 14.94 27.31 37.89 27.66 36.78 21.08 12.91 22.78 19.79 20.30 35.82 21.13 29.24 39.14 27.67 24.44 9.71 17.53 18.03 25.00 12.38 

BB 35.73 15.96 25.00 38.89 14.94 35.77 44.41 27.93 40.80 39.37 21.18 29.94 29.27 21.93 38.81 31.44 29.24 45.39 27.18 31.74 29.12 23.64 20.08 29.84 25.25 

DK 34.87 15.96 25.00 40.17 14.94 34.23 45.65 28.99 39.94 36.85 19.55 26.65 26.81 21.39 39.55 30.41 30.00 44.74 32.04 31.44 23.53 22.17 21.31 29.84 21.45 

BU

B 35.30 16.22 25.00 38.46 14.94 33.08 42.55 27.93 39.08 32.46 15.82 27.22 26.23 20.98 38.81 28.09 30.76 43.42 31.07 28.40 20.29 19.91 20.49 29.84 18.48 

Kul 34.15 15.96 25.00 39.32 14.94 33.46 43.79 28.99 39.94 34.98 18.45 26.36 26.93 20.98 39.55 29.90 29.70 43.75 32.04 30.43 22.65 20.81 19.67 29.84 19.80 

SS1 35.16 16.22 25.00 40.17 14.94 34.23 45.65 29.26 39.94 38.06 20.09 26.65 27.52 21.39 39.55 30.41 29.85 44.74 31.55 32.05 23.53 23.19 21.31 29.84 24.75 

SS2 28.53 14.10 24.06 24.79 14.66 24.23 23.91 21.01 30.75 16.79 11.00 16.19 15.69 17.57 32.09 14.69 22.88 35.53 21.36 20.59 8.53 15.61 18.03 16.94 11.22 

Ja 35.16 16.22 25.00 40.17 14.94 34.23 45.65 29.26 39.94 38.06 20.09 26.65 27.52 21.39 39.55 30.41 29.85 44.74 31.55 32.05 23.53 23.19 21.31 29.84 24.75 

Fai 35.45 16.22 25.00 32.48 14.94 30.38 36.02 27.13 37.07 25.47 13.18 24.79 22.25 19.89 38.81 25.64 28.94 41.45 28.64 26.06 14.12 17.76 19.26 28.23 15.02 

Mou 33.86 15.43 24.53 33.76 13.79 28.08 36.34 25.27 36.49 22.11 12.36 25.79 21.43 20.16 32.84 23.07 29.09 39.47 27.18 25.35 10.59 17.42 18.03 24.60 12.87 

Mic 29.68 15.16 24.53 39.32 17.24 33.85 43.48 29.26 40.23 36.01 23.45 21.49 24.59 21.80 28.36 28.99 27.58 43.75 26.70 33.57 29.41 24.32 19.67 29.84 25.91 

RG 35.45 16.22 25.00 40.17 14.94 34.23 45.03 28.46 39.94 36.85 18.09 27.65 27.63 21.39 40.30 30.41 30.30 45.07 32.04 31.34 23.53 21.49 22.13 29.84 22.94 

HD 36.17 16.22 25.00 39.74 14.94 34.23 43.17 27.66 39.94 33.96 16.73 25.79 27.40 21.12 40.30 30.03 30.45 44.74 32.04 30.63 22.65 20.36 21.72 29.84 20.79 

Yu1 34.29 15.96 25.47 36.75 14.94 30.00 38.51 26.60 37.36 23.41 13.09 26.07 23.42 20.57 38.81 24.48 30.15 40.79 29.13 27.08 13.82 18.21 18.85 28.23 13.70 

Yu2 34.29 15.96 25.47 36.75 14.94 30.00 38.51 26.60 37.36 23.41 13.09 26.07 23.42 20.57 38.81 24.48 30.15 40.79 29.13 27.08 13.82 18.21 18.85 28.23 13.70 

Fos 35.16 15.96 25.00 40.17 14.94 34.23 45.65 29.26 39.94 37.13 19.82 26.65 26.81 21.39 39.55 30.41 30.00 44.74 32.04 31.74 23.53 22.29 21.31 29.84 21.95 

Den 34.87 16.22 25.00 39.74 14.94 33.46 43.48 27.93 39.94 33.96 16.64 26.93 27.05 21.12 40.30 30.03 30.30 45.07 32.04 30.43 22.06 20.36 20.90 29.84 20.30 

Co1 30.40 15.43 24.53 39.32 17.24 34.23 43.48 29.26 40.23 36.47 23.00 21.63 24.71 22.48 32.09 29.25 27.58 44.08 29.13 33.67 29.12 24.66 19.67 29.84 26.07 

Co2 31.12 15.96 25.47 27.35 14.66 26.15 32.61 22.61 33.62 16.14 11.73 24.79 19.91 19.35 41.79 20.10 29.24 38.16 26.21 22.82 9.12 17.19 18.44 21.77 11.22 

dis 31.56 15.96 24.53 39.74 16.95 34.23 44.41 29.52 40.52 36.94 22.36 22.78 24.94 22.48 32.09 29.51 28.33 44.74 29.13 33.27 28.24 24.77 19.67 29.84 26.24 

GK 35.16 15.96 23.58 40.17 14.94 34.23 44.41 29.26 39.94 37.78 20.00 25.79 27.52 21.39 39.55 30.03 29.70 44.74 31.07 31.44 23.82 23.19 21.31 29.84 24.75 

SS3 34.58 15.96 25.00 39.74 14.94 33.46 43.79 27.93 39.94 33.12 16.45 26.22 26.81 20.98 40.30 29.77 29.85 43.75 32.04 29.82 21.18 20.48 19.67 29.84 18.32 

SS4 35.16 15.96 25.00 40.17 14.94 34.23 45.03 28.99 39.94 36.19 19.09 26.65 27.05 21.39 40.30 30.28 30.00 45.07 32.04 31.24 23.53 21.49 21.31 29.84 21.12 

Phi 34.58 16.22 25.00 40.17 14.94 33.46 43.79 28.19 39.94 35.26 17.09 26.79 26.93 21.12 40.30 30.15 30.30 45.07 32.04 30.73 22.94 20.59 21.31 29.84 20.46 

Di1 28.67 14.89 24.53 38.89 16.67 33.46 41.30 30.05 39.37 35.07 23.55 20.92 23.54 20.57 28.36 26.42 26.67 40.46 26.21 33.77 29.12 23.30 18.85 29.44 23.93 

Di2 31.12 15.96 25.47 27.35 14.66 26.15 32.61 22.61 33.62 16.14 11.73 24.79 19.91 19.35 41.79 20.10 29.24 38.16 26.21 22.82 9.12 17.19 18.44 21.77 11.22 

Sor 34.87 15.96 25.00 40.17 14.94 34.23 45.65 28.99 39.94 36.85 19.55 26.65 26.81 21.39 39.55 30.41 30.00 44.74 32.04 31.44 23.53 22.17 21.31 29.84 21.45 

Coh 35.45 16.22 25.00 40.17 14.94 34.23 45.03 28.72 39.94 36.57 18.00 27.36 27.40 21.39 40.30 30.28 30.30 45.07 32.04 31.34 23.53 21.27 22.13 29.84 22.44 

Pe1 31.56 15.96 24.53 39.74 16.95 34.23 44.41 29.52 40.52 36.94 22.36 22.78 24.94 22.48 32.09 29.51 28.33 44.74 29.13 33.27 28.24 24.77 19.67 29.84 26.24 

Pe2 31.56 15.96 25.47 29.06 14.94 26.54 33.54 22.61 34.20 18.00 12.00 25.21 20.26 19.89 41.79 21.01 29.39 38.16 26.70 23.23 9.12 17.19 18.44 22.58 11.22 

MP 35.30 16.22 25.00 40.17 14.94 34.23 45.03 28.72 39.94 36.10 18.00 27.36 27.40 21.39 40.30 30.28 30.30 45.07 32.04 31.24 23.53 21.15 22.13 29.84 21.95 

HL 34.87 15.96 25.00 40.17 14.94 34.23 46.58 29.26 39.94 38.25 20.91 26.93 26.81 21.53 39.55 30.67 29.55 45.07 31.55 32.25 24.41 23.76 21.31 29.84 25.74 

CT1 28.53 14.10 24.06 24.79 14.66 24.23 23.91 21.01 30.75 16.79 11.00 16.19 15.69 17.57 32.09 14.69 22.88 35.53 21.36 20.59 8.53 15.61 18.03 16.94 11.22 

CT2 28.53 14.10 24.06 24.79 14.66 24.23 23.91 21.01 30.75 16.79 11.00 16.19 15.69 17.57 32.09 14.69 22.88 35.53 21.36 20.59 8.53 15.61 18.03 16.94 11.22 

CT3 28.67 14.89 24.53 38.89 16.67 33.46 41.30 30.05 39.37 35.07 23.55 20.92 23.54 20.57 28.36 26.42 26.67 40.46 26.21 33.77 29.12 23.30 18.85 29.44 23.93 

CT4 34.58 15.96 25.00 39.74 14.94 34.23 46.27 29.52 40.52 37.97 21.27 26.07 26.35 21.53 38.81 30.54 29.55 44.74 31.55 32.96 25.88 23.87 20.49 29.84 25.91 

CT5 34.29 15.96 25.47 36.75 14.94 30.00 38.51 26.60 37.36 23.41 13.09 26.07 23.54 20.57 38.81 24.48 30.15 40.79 29.13 27.08 13.82 18.21 18.85 28.23 13.70 

AC 28.53 14.10 24.06 24.79 14.66 24.23 23.91 21.01 30.75 16.79 11.00 16.19 15.69 17.57 32.09 14.69 22.88 35.53 21.36 20.59 8.53 15.61 18.03 16.94 11.22 

(b) 
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Table C.1 Top 1% retrieval rates in MDDR with W4 weighting scheme. 

 

JT Gle For DK Kul SS1 Ja Fos Phi CT4 MR Hel Cze 

5HT1A 4.53 4.53 4.23 4.17 3.87 4.53 4.53 4.17 4.23 4.23 5.08 4.17 5.08 

Thrombin 3.36 3.36 1.62 3.92 3.99 3.36 3.36 3.92 3.92 3.42 3.80 3.92 3.80 

subP 3.81 3.81 1.28 3.13 2.33 3.81 3.81 3.13 3.09 4.05 3.81 3.13 3.81 

Renin 43.45 43.45 1.42 49.87 41.77 43.45 43.45 50.49 47.65 52.26 43.98 49.87 43.98 

PKC 7.51 7.51 2.98 8.06 7.51 7.51 7.51 8.06 8.06 8.17 7.17 8.06 7.17 

HIVP 7.27 7.27 1.73 9.93 9.47 7.27 7.27 10.13 9.53 10.20 8.73 9.93 8.73 

D2 4.81 4.81 4.18 4.68 4.18 4.81 4.81 4.56 4.56 4.30 4.56 4.68 4.56 

COX 3.46 3.46 3.62 2.91 2.20 3.46 3.46 2.75 3.14 2.91 3.38 2.91 3.38 

AT1 31.18 31.18 6.10 31.87 31.87 31.18 31.18 32.13 31.23 32.61 31.34 31.87 31.34 

5HT3 8.31 8.31 8.64 8.11 7.45 8.31 8.31 7.98 8.18 6.98 10.57 8.11 10.57 

5HT 5.29 5.29 5.01 5.29 5.01 5.29 5.29 5.43 5.29 5.57 5.57 5.29 5.57 
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Table C.2 Top 1% retrieval rates in MDDR with W5 weighting scheme. 

 

JT Gle For DK Kul SS1 Ja Fos Phi CT4 MR Hel Cze 

5HT1A 4.96 4.96 4.59 4.78 4.78 4.96 4.96 4.90 4.90 4.96 5.08 4.78 5.08 

Thrombin 3.80 3.80 3.24 3.92 4.42 3.80 3.80 4.42 3.80 4.86 3.99 3.92 3.99 

subP 3.33 3.33 2.69 3.05 2.97 3.33 3.33 3.09 3.13 3.09 3.33 3.05 3.33 

Renin 46.81 46.81 4.65 48.05 48.63 46.81 46.81 50.00 45.18 54.38 43.81 48.05 43.81 

PKC 6.51 6.51 6.07 6.29 6.29 6.51 6.51 6.18 6.40 5.85 5.85 6.29 5.85 

HIVP 8.80 8.80 4.93 8.93 9.40 8.80 8.80 9.47 8.60 10.40 8.93 8.93 8.93 

D2 4.30 4.30 3.80 4.18 4.18 4.30 4.30 4.18 4.05 4.56 4.18 4.18 4.18 

COX 2.91 2.91 4.40 2.75 2.75 2.91 2.91 2.59 2.75 2.52 3.07 2.75 3.07 

AT1 30.33 30.33 16.38 30.59 30.28 30.33 30.33 30.97 29.80 32.50 30.75 30.59 30.75 

5HT3 11.04 11.04 8.18 10.90 10.70 11.04 11.04 10.97 10.97 10.31 10.57 10.90 10.57 

5HT 5.29 5.29 5.15 5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.43 5.29 5.43 
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Table C.3 Top 1% retrieval rates in WOMBAT with W4 weighting scheme. 

 

JT Gle For DK Kul SS1 Ja Fos Phi CT4 MR Hel Cze 

5HT1A 9.12 9.12 7.85 8.36 8.19 9.12 9.12 8.36 8.53 9.12 9.21 8.36 9.21 

5HT3 10.68 10.68 11.59 10.45 9.32 10.68 10.68 10.45 10.68 10.45 14.32 10.45 14.32 

AChE 4.27 4.27 3.08 4.67 4.67 4.27 4.27 4.77 4.27 5.27 5.47 4.67 5.47 

ANG 30.46 30.46 4.35 30.18 24.65 30.46 30.46 30.46 29.21 32.25 32.18 30.18 32.18 

COX 2.85 2.85 2.44 2.90 2.80 2.85 2.85 2.90 2.90 2.85 2.80 2.90 2.80 

D2 8.08 8.08 4.01 8.24 6.76 8.08 8.08 8.19 8.02 8.79 8.24 8.24 8.24 

Fxa 13.60 13.60 5.40 13.24 11.82 13.60 13.60 13.48 13.00 14.61 12.89 13.24 12.89 

HIVP 4.83 4.83 1.46 4.88 3.46 4.83 4.83 5.10 4.65 5.81 5.63 4.88 5.63 

MMP1 6.27 6.27 3.10 6.05 5.26 6.27 6.27 6.05 5.91 6.48 8.57 6.05 8.57 

PDE4 5.87 5.87 4.28 6.12 5.54 5.87 5.87 6.12 6.12 6.38 6.96 6.12 6.96 

PKC 23.24 23.24 9.15 23.24 13.03 23.24 23.24 23.24 26.76 20.42 20.42 23.24 20.42 

RENIN 73.42 73.42 3.90 70.46 28.06 73.42 73.42 70.57 68.25 73.10 74.68 70.46 74.68 

SUBP 13.89 13.89 3.49 13.08 12.37 13.89 13.89 13.08 13.08 14.25 13.53 13.08 13.53 

THR 13.78 13.78 3.68 13.42 7.96 13.78 13.78 13.54 12.59 13.78 16.03 13.42 16.03 
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Table C.4 Top 1% retrieval rates in WOMBAT with W5 weighting scheme. 

 

JT Gle For DK Kul SS1 Ja Fos Phi CT4 MR Hel Cze 

5HT1A 5.32 5.32 4.22 4.90 4.65 5.32 5.32 4.98 4.98 5.15 4.81 4.90 4.81 

5HT3 12.27 12.27 7.27 13.86 13.86 12.27 12.27 14.55 12.05 15.00 13.18 13.86 13.18 

AChE 12.52 12.52 3.48 12.33 11.93 12.52 12.52 12.72 11.53 13.72 13.12 12.33 13.12 

ANG 31.15 31.15 12.50 30.46 29.70 31.15 31.15 31.63 29.14 35.22 31.63 30.46 31.63 

COX 3.01 3.01 3.11 2.69 2.75 3.01 3.01 2.69 2.75 2.69 2.69 2.69 2.69 

D2 8.63 8.63 5.55 8.74 8.46 8.63 8.63 9.01 8.41 9.62 7.91 8.74 7.91 

Fxa 12.11 12.11 8.61 12.11 12.11 12.11 12.11 12.11 12.11 12.05 12.29 12.11 12.29 

HIVP 4.65 4.65 2.62 4.88 5.90 4.65 4.65 5.67 4.79 6.12 5.19 4.88 5.19 

MMP1 7.28 7.28 4.25 6.70 6.56 7.28 7.28 7.13 6.70 7.78 7.42 6.70 7.42 

PDE4 7.72 7.72 4.87 8.22 8.05 7.72 7.72 8.56 8.05 9.56 8.31 8.22 8.31 

PKC 10.56 10.56 14.79 11.97 12.68 10.56 10.56 11.27 13.03 9.15 11.97 11.97 11.97 

RENIN 72.68 72.68 10.76 68.14 60.44 72.68 72.68 69.20 63.82 75.00 71.20 68.14 71.20 

SUBP 13.53 13.53 9.77 13.17 12.81 13.53 13.53 13.26 12.90 13.62 13.17 13.17 13.17 

THR 13.42 13.42 11.40 13.42 13.18 13.42 13.42 13.30 13.66 13.78 13.66 13.42 13.66 
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Table C.5 Top 1% retrieval rates in ChEMBL with W4 weighting scheme. 

 
JT Gle For DK Kul SS1 Ja Fos Phi CT4 MR Hel Cze 

Target_no_10 29.12 29.12 8.82 28.53 27.65 29.12 29.12 28.53 27.94 29.41 30.59 28.53 30.59 

Target_no_105 34.24 34.24 4.85 32.28 26.59 34.24 34.24 32.18 32.00 33.40 37.50 32.28 37.50 

Target_no_112 33.05 33.05 26.72 33.05 32.76 33.05 33.05 33.05 33.05 33.33 35.63 33.05 35.63 

Target_no_113 28.99 28.99 6.91 28.72 28.46 28.99 28.99 28.72 28.99 28.72 29.26 28.72 29.26 

Target_no_115 45.65 45.65 26.09 45.34 43.17 45.65 45.65 45.34 45.34 45.03 46.89 45.34 46.89 

Target_no_12 23.64 23.64 13.69 23.19 21.72 23.64 23.64 23.19 22.85 24.32 25.57 23.19 25.57 

Target_no_120 51.92 51.92 28.08 50.38 49.23 51.92 51.92 50.38 49.62 50.77 58.08 50.38 58.08 

Target_no_121 14.94 14.94 13.79 14.94 15.52 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 

Target_no_129 26.18 26.18 19.12 26.18 26.18 26.18 26.18 26.18 26.18 26.18 26.18 26.18 26.18 

Target_no_13 20.90 20.90 17.21 20.90 20.49 20.90 20.90 20.90 20.90 20.90 20.08 20.90 20.08 

Target_no_14 34.27 34.27 22.18 34.27 33.87 34.27 34.27 34.27 33.47 35.08 33.87 34.27 33.87 

Target_no_140 20.07 20.07 19.37 20.77 20.77 20.07 20.07 20.77 20.77 20.07 21.48 20.77 21.48 

Target_no_142 40.50 40.50 17.77 38.51 34.96 40.50 40.50 38.43 38.10 40.33 40.66 38.51 40.66 

Target_no_143 31.25 31.25 15.75 31.75 31.50 31.25 31.25 31.75 31.25 33.00 37.00 31.75 37.00 

Target_no_146 42.19 42.19 32.19 39.06 35.31 42.19 42.19 39.06 39.69 38.75 39.69 39.06 39.69 

Target_no_147 47.95 47.95 30.14 47.26 46.58 47.95 47.95 47.26 47.26 47.26 45.89 47.26 45.89 

Target_no_148 11.20 11.20 7.52 10.32 9.60 11.20 11.20 10.32 10.24 11.44 16.00 10.32 16.00 

Target_no_152 24.88 24.88 12.19 24.38 24.13 24.88 24.88 24.38 24.38 24.88 24.88 24.38 24.88 

Target_no_16 32.51 32.51 10.73 32.51 27.56 32.51 32.51 32.51 31.68 32.67 32.01 32.51 32.01 

Target_no_163 23.60 23.60 22.67 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.91 23.60 23.91 

Target_no_168 13.00 13.00 11.00 13.00 12.00 13.00 13.00 13.00 12.00 13.00 15.00 13.00 15.00 

Target_no_171 20.00 20.00 18.50 19.50 19.50 20.00 20.00 19.50 19.50 20.00 20.00 19.50 20.00 

Target_no_181 28.53 28.53 24.71 28.53 25.88 28.53 28.53 28.53 28.53 27.94 27.35 28.53 27.35 

Target_no_186 37.85 37.85 28.82 37.85 37.50 37.85 37.85 37.85 37.85 36.46 38.19 37.85 38.19 

Target_no_195 17.14 17.14 9.05 14.76 12.86 17.14 17.14 14.76 14.76 16.67 21.90 14.76 21.90 

Target_no_196 19.34 19.34 14.23 20.44 18.61 19.34 19.34 20.44 19.71 21.90 15.69 20.44 15.69 

Target_no_21 41.35 41.35 31.01 41.59 39.66 41.35 41.35 41.11 41.35 39.42 47.36 41.59 47.36 

Target_no_210 32.04 32.04 34.47 32.04 32.52 32.04 32.04 32.04 32.04 32.04 32.04 32.04 32.04 
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Target_no_211 20.62 20.62 10.40 19.71 17.34 20.62 20.62 19.89 19.16 19.16 24.27 19.71 24.27 

Target_no_213 27.44 27.44 20.30 27.82 26.69 27.44 27.44 28.20 28.20 26.69 29.32 27.82 29.32 

Target_no_220 34.58 34.58 18.75 34.58 33.75 34.58 34.58 34.58 34.58 35.00 35.83 34.58 35.83 

Target_no_230 43.67 43.67 33.13 40.66 33.43 43.67 43.67 40.66 41.57 40.06 52.11 40.66 52.11 

Target_no_234 32.13 32.13 20.03 32.28 30.84 32.13 32.13 32.28 32.28 30.55 34.44 32.28 34.44 

Target_no_238 15.43 15.43 13.83 15.16 14.10 15.43 15.43 15.16 15.16 14.63 15.96 15.16 15.96 

Target_no_241 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 

Target_no_250 40.60 40.60 26.50 40.60 40.60 40.60 40.60 40.60 40.60 40.60 40.60 40.60 40.60 

Target_no_35 24.37 24.37 24.79 21.85 18.49 24.37 24.37 21.85 22.27 26.89 30.25 21.85 30.25 

Target_no_4 46.05 46.05 33.88 45.72 44.08 46.05 46.05 46.05 45.72 46.38 47.37 45.72 47.37 

Target_no_42 20.10 20.10 7.32 18.97 17.63 20.10 20.10 18.97 18.97 20.10 21.03 18.97 21.03 

Target_no_44 28.94 28.94 24.70 29.09 28.79 28.94 28.94 29.09 29.24 28.33 29.39 29.09 29.39 

Target_no_52 22.67 22.67 20.00 23.00 24.67 22.67 22.67 23.00 23.00 22.00 26.67 23.00 26.67 

Target_no_54 21.63 21.63 12.30 21.43 21.83 21.63 21.63 21.43 21.23 21.83 16.47 21.43 16.47 

Target_no_57 35.44 35.44 16.49 34.92 32.99 35.44 35.44 34.92 34.79 35.31 37.76 34.92 37.76 

Target_no_59 27.61 27.61 24.63 28.36 33.58 27.61 27.61 28.36 28.36 26.12 29.10 28.36 29.10 

Target_no_8 24.27 24.27 19.90 26.70 25.73 24.27 24.27 26.70 26.70 25.24 28.16 26.70 28.16 

Target_no_81 20.71 20.71 16.21 20.71 20.57 20.71 20.71 20.71 20.57 20.44 22.62 20.71 22.62 

Target_no_86 19.56 19.56 12.65 18.97 17.21 19.56 19.56 18.85 18.97 19.32 20.84 18.97 20.84 

Target_no_9 32.66 32.66 8.82 32.25 32.25 32.66 32.66 32.56 32.05 33.06 32.76 32.25 32.76 

Target_no_95 32.38 32.38 14.18 30.23 27.51 32.38 32.38 30.09 30.95 30.95 30.23 30.23 30.23 

Target_no_98 22.73 22.73 7.45 21.45 18.82 22.73 22.73 21.45 21.27 22.73 21.73 21.45 21.73 

 

 

 



Appendix C: Result of Chapter 6 

202 
 

Table C.6  Top 1% retrieval rates in ChEMBL with W5 weighting scheme. 

 
JT Gle For DK Kul SS1 Ja Fos Phi CT4 MR Hel Cze 

Target_no_10 30.59 30.59 10.59 30.00 29.71 30.59 30.59 30.29 29.71 30.59 30.59 30.00 30.59 

Target_no_105 36.66 36.66 12.78 35.63 34.51 36.66 36.66 35.54 34.42 36.29 37.50 35.63 37.50 

Target_no_112 35.63 35.63 31.03 35.92 35.92 35.63 35.63 36.21 35.63 35.92 36.21 35.92 36.21 

Target_no_113 27.66 27.66 24.73 27.39 28.19 27.66 27.66 28.19 27.39 28.46 29.26 27.39 29.26 

Target_no_115 46.27 46.27 32.61 46.27 45.96 46.27 46.27 46.58 45.65 47.20 45.96 46.27 45.96 

Target_no_12 23.76 23.76 17.31 22.96 22.17 23.76 23.76 23.64 22.29 24.77 24.89 22.96 24.89 

Target_no_120 55.00 55.00 36.92 55.00 55.00 55.00 55.00 55.38 55.00 56.15 56.54 55.00 56.54 

Target_no_121 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 

Target_no_129 25.88 25.88 23.24 25.88 25.88 25.88 25.88 25.88 25.88 25.59 25.88 25.88 25.88 

Target_no_13 20.90 20.90 19.26 20.49 20.08 20.90 20.90 20.49 20.49 20.49 20.08 20.49 20.08 

Target_no_14 33.47 33.47 29.03 33.47 33.47 33.47 33.47 33.87 33.47 33.87 33.87 33.47 33.87 

Target_no_140 21.13 21.13 19.72 21.48 21.48 21.13 21.13 21.13 21.48 21.13 21.48 21.48 21.48 

Target_no_142 41.65 41.65 24.63 40.66 39.09 41.65 41.65 41.65 39.92 42.73 40.83 40.66 40.83 

Target_no_143 35.50 35.50 25.50 35.75 35.75 35.50 35.50 36.00 35.00 36.25 36.50 35.75 36.50 

Target_no_146 38.75 38.75 39.69 37.50 36.56 38.75 38.75 37.50 37.50 35.00 37.81 37.50 37.81 

Target_no_147 48.63 48.63 36.99 49.32 47.95 48.63 48.63 48.63 48.63 47.95 47.95 49.32 47.95 

Target_no_148 15.84 15.84 8.80 15.68 15.28 15.84 15.84 16.00 15.04 16.72 16.96 15.68 16.96 

Target_no_152 23.88 23.88 17.16 23.63 23.63 23.88 23.88 23.88 23.38 24.13 24.38 23.63 24.38 

Target_no_16 27.56 27.56 12.21 26.40 23.10 27.56 27.56 26.90 24.09 28.88 30.36 26.40 30.36 

Target_no_163 23.60 23.60 22.98 23.60 23.60 23.60 23.60 23.91 23.60 23.91 23.60 23.60 23.60 

Target_no_168 15.00 15.00 13.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 

Target_no_171 20.00 20.00 19.50 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

Target_no_181 26.76 26.76 25.00 27.06 27.06 26.76 26.76 27.06 26.76 27.06 26.76 27.06 26.76 

Target_no_186 36.46 36.46 35.76 36.81 36.81 36.46 36.46 37.15 36.46 36.11 37.15 36.81 37.15 

Target_no_195 24.76 24.76 17.62 24.29 25.24 24.76 24.76 24.76 24.76 25.24 22.86 24.29 22.86 

Target_no_196 16.06 16.06 14.96 16.06 16.06 16.06 16.06 16.06 16.06 16.06 16.06 16.06 16.06 

Target_no_21 47.12 47.12 40.63 46.88 46.88 47.12 47.12 47.12 47.12 47.60 48.32 46.88 48.32 

Target_no_210 32.04 32.04 33.01 32.04 32.52 32.04 32.04 32.04 32.52 32.04 32.04 32.04 32.04 
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Target_no_211 21.17 21.17 14.05 21.35 21.17 21.17 21.17 22.08 20.26 22.99 20.80 21.35 20.80 

Target_no_213 28.95 28.95 25.56 28.57 28.20 28.95 28.95 28.95 28.57 29.70 28.95 28.57 28.95 

Target_no_220 35.83 35.83 25.42 35.83 35.83 35.83 35.83 35.83 35.83 35.83 35.83 35.83 35.83 

Target_no_230 53.01 53.01 33.13 51.51 50.60 53.01 53.01 52.11 51.81 52.11 52.71 51.51 52.71 

Target_no_234 34.44 34.44 27.67 33.72 33.00 34.44 34.44 33.57 33.72 33.57 34.01 33.72 34.01 

Target_no_238 15.96 15.96 15.43 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 

Target_no_241 25.00 25.00 25.47 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 

Target_no_250 40.60 40.60 31.62 40.60 40.60 40.60 40.60 40.60 40.60 40.60 40.60 40.60 40.60 

Target_no_35 28.57 28.57 30.25 28.99 30.25 28.57 28.57 30.67 29.41 31.51 30.67 28.99 30.67 

Target_no_4 46.71 46.71 35.53 46.05 45.07 46.71 46.71 46.38 45.72 46.71 46.05 46.05 46.05 

Target_no_42 21.96 21.96 12.58 21.75 21.24 21.96 21.96 21.96 21.24 21.96 21.96 21.75 21.96 

Target_no_44 29.39 29.39 27.88 29.39 29.24 29.39 29.39 29.39 29.39 29.39 29.70 29.39 29.70 

Target_no_52 26.00 26.00 25.00 26.33 27.33 26.00 26.00 26.00 27.67 26.00 26.00 26.33 26.00 

Target_no_54 16.27 16.27 16.07 16.07 15.87 16.27 16.27 15.87 16.47 15.08 16.07 16.07 16.07 

Target_no_57 34.54 34.54 23.45 34.54 34.15 34.54 34.54 34.28 34.28 34.54 34.66 34.54 34.66 

Target_no_59 34.33 34.33 29.10 34.33 33.58 34.33 34.33 34.33 33.58 34.33 34.33 34.33 34.33 

Target_no_8 29.61 29.61 24.76 30.10 30.10 29.61 29.61 30.10 29.61 29.61 30.10 30.10 30.10 

Target_no_81 21.39 21.39 19.75 21.12 21.12 21.39 21.39 21.53 20.98 22.07 22.34 21.12 22.34 

Target_no_86 19.67 19.67 16.28 19.44 18.85 19.67 19.67 19.56 19.09 19.79 20.96 19.44 20.96 

Target_no_9 31.85 31.85 23.12 31.34 30.02 31.85 31.85 31.44 30.22 31.64 32.15 31.34 32.15 

Target_no_95 29.23 29.23 24.79 28.80 27.79 29.23 29.23 28.37 28.65 27.36 28.08 28.80 28.08 

Target_no_98 21.91 21.91 11.45 21.82 21.82 21.91 21.91 22.18 21.00 23.09 21.36 21.82 21.36 

 

 

 

 



Appendix C: Result of Chapter 6 

204 
 

 

 


