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Abstract 

To overcome the difficulty of incorporation of hydrophobic carbon materials into 

refractory castables, TiC and SiC coatings with much better water-wettability were 

prepared on carbon particles from metallic powders (Ti or Si) by using a novel low 

temperature molten salt synthesis technique. The preparation conditions were 

optimized by varying processing parameters including synthesis temperature, 

holding time, salt assembly and metal/carbon molar ratios.  

Homogeneous TiC coatings were prepared on carbon black (CB) particles by firing 

them with Ti powders in KCl or KCl-LiCl at 750-850 C for 4 hours. Alternatively, TiC 

coatings could be prepared at a lower cost by firing the mixture of TiO2 and Ti (in 

molar ratio of 1/3) with CB in KCl at 950 C for 4 hours. High quality SiC coatings 

were prepared on CB spheres after firing them with Si powders in a binary 

NaCl-NaF salt for 6 hours at as low as 1100 C. NaF was proven to be essential in 

the molten salt synthesis of SiC and its optimal amount was 2.5-5 wt% in the binary 

salt. In addition, graded SiC/SiO2 composite coatings were prepared by controlled 

oxidation of SiC-coated CB in air at 450 C for 90 minutes to further improve their 

water-wettability.  

Carbide-coated CB spheres were identified as having a core-shell structure by 

scanning/transmission electron microscopy (SEM/TEM) and the thicknesses of TiC 

and SiC shells (Ti/C or Si/C =1/8 in molar ratio) were estimated as ~10 nm and ~12 

nm, respectively. Nevertheless, the coating thickness and corresponding particle 

density could be readily tailored by controlling the metal/carbon molar ratio in the 

initial batch mixture to meet practical requirements in real castable systems. The 

coated CB particles retained similar morphologies and sizes to as-received CB, 

indicating the formation of carbide coatings in molten salt at test temperatures was 

governed by a template growth mechanism: dissolution of Ti or Si in molten salt and 

subsequently fast delivery of dissolved Ti or Si species to the surface of carbon 

particles, forming carbide coatings on the template. The growth of carbide coatings 

was dependent on the inward diffusion of Ti or Si and outward diffusion of carbon 

through an initially formed carbide coating layer. 

The water-wettability, dispersion behaviour and flowability of CB after carbide 

coating were evaluated by sedimentation comparison, zeta potential measurement 

and rheology testing. Owning to the formation of hydrophilic Ti-OH and Si-OH 
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groups on the surface of carbide-coated CB particles, they were able to be 

immediately wetted by water and well dispersed in aqueous solutions. Moreover, 

improved dispersivity and flowability of CB after carbide coating were verified by the 

increased zeta potential values (e.g. at pH=10, ~46.1 mV for TiC-coated CB, ~54.7 

mV for SiC-coated CB and ~65.9 mV for SiC/SiO2-coated CB but only ~22.6 mV for 

uncoated CB) and lowered apparent viscosity (e.g. the apparent viscosity of 

suspensions containing 25 wt% coated CB was over one order of magnitude lower 

than that containing as-received CB) of coated CB containing suspensions. In 

addition, thermogravimetric analysis (TGA) and differential scanning calorimetry 

(DSC) verified that the improvement in oxidation resistance of carbon after carbide 

coating was limited, however, the annealing treatment at 1200-1500 C could 

promote the growth of carbide nanocrystals and make the carbide coating denser, 

thus effectively improving carbon’s oxidation resistance. Both weight-loss curve 

(TGA) and exothermic peaks of carbon oxidation (DSC) were right shifted to higher 

temperatures. It was also found that annealing atmosphere and temperature were 

influential on the oxidation resistance of coated CB particles. 

To investigate the effect of carbide coating on water demand for preparation of 

carbon-containing castables, both uncoated and carbide-coated carbon particles 

(carbon black and graphite fakes) were incorporated into model low cement Al2O3-C 

castables. The water addition was found to decrease dramatically, from 8.5-9.7 wt% 

required for uncoated carbon containing castables to 6.5-7.0 wt% for carbide-coated 

carbon containing castables when both of them reached the similar flow values. The 

evident decrease in water addition led to a considerable drop in apparent porosity 

and increase in bulk density. As a result, castables containing carbide-coated 

carbon particles after coking at 1500 C showed over 6 times higher compression 

strength and 3-5 times higher bending strength than uncoated carbon containing 

castables. Furthermore, oxidation resistance of carbon-containing castables was 

improved as well. Uncoated CB containing castable was severely oxidised at 1000 

oC for 3 hours and showed the decarbonized depth of 10.48 mm, whereas 

TiC-coated and SiC-coated CB containing castables showed respectively 6.82 mm 

and 6.35 mm decarbonized depths under the same oxidation conditions. 
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Chapter 1 Introduction 

1.1 Background of the project  

Refractories are inorganic non-metallic materials which can be resistant to heat and 

retain sufficient physical and chemical stability for structural purposes when they are 

exposed to high temperature environments.[1-3] They are normally used in massive 

quantities to line vessels and furnaces in which other materials such as metals, 

glass, and cements are manufactured at high temperature in the range of 600 C to 

as high as 2000 C.[4] In a harsh environment, they are subject to mechanical 

abrasion, thermal stress/strain, corrosion/erosion from molten solids, hot liquids and 

gases. The refractory industry is considered to be the fundamental industry behind 

other manufacturing industries. Without refractories, other manufacturing activities 

would not be possibly realized.[5] 

Refractories are classified primarily on the basis of their chemical compositions and 

the forms in which they are used.[4, 6-8]. Chemically, the majority of them are based 

on six single oxides (Al2O3, MgO, SiO2, CaO, ZrO2, Cr2O3) or their combinations. 

They may be fabricated and sold in shaped or unshaped (monolithic) forms. For 

shaped refractories, they go through mixing, shaping and firing before delivering to 

customers. Compared with refractory bricks or blocks, there has been a significant 

increase in the use of monolithic refractories (e.g. castables, mouldables and 

rammables) worldwide, which now, in many countries, account for more than 50% of 

world total production [9], owning to their quicker and cheaper preparation and 

installation and to their properties approaching those of shaped refractories. 

However, conventional oxide-based refractories suffer, for example, from poor 

resistance to slag corrosion and penetration (especially in a basic slag environment) 

and structural spalling.[10-12] All these problems have been significantly alleviated 

since the 1970s when carbon was incorporated into oxide-based refractory bricks. 

Thanks to carbon’s high thermal conductivity, low thermal expansion coefficient and 

non-wettability by molten metal/slag, carbon-containing refractory bricks (CCRBs) 

show much better physicochemical properties and performance than their 

carbon-free oxide-based counterparts, resulting in increased lining lifetimes and 

reduced specific consumption.[5, 13] Therefore, a range of CCRBs with improved 

properties were developed and produced such as MgO-C, Al2O3-C, ZrO2-C, 
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Al2O3-SiC-C and Al2O3-MgO-C. 

The benefits from incorporating of carbon and making castable-formed refractories 

have stimulated development and commercialization of the so-called 

carbon-containing refractory castables (CCRCs). In the past two decades 

considerable R&D work has been carried out worldwide in this area, but with only 

limited success. Several technical difficulties are considered to be responsible for 

this, including carbon’s poor water-wettability and dispersivity [14]. These technical 

problems lead to high demand of water during casting and placement of castables. 

After drying, high porosity of CCRCs caused by evaporation of excess water results 

in low mechanical properties, poor oxidation resistance and high permeability to 

molten slag. These would adversely decrease service lives of refractory linings. 

Therefore, it is necessary to improve wettability and dispersion property of carbon 

materials in order to reduce the water addition for castable making and applications. 

To overcome these problems, several techniques have been attempted, for example, 

using a surfactant (dispersing agent) to improve carbon’s water affinity [15], making 

micropellets/briquettes to reduce carbon exposure to water [16] and coating carbon 

with more water-wettable carbon, oxides or carbides [17-27]. (All these techniques 

will be reviewed in Section 2.3 in more detail.) However, it is still not possible to 

prepare carbon materials economically with satisfactory water-wettability and 

dispersive properties, and consequently realize scaled-up production and 

applications in industry. So the aim of the present work is to find an effective and 

economic way to tackle these problems. 

1.2 Objectives 

In the present study, a molten salt synthesis technique was further developed and 

employed to prepare carbide coatings (TiC and SiC) on carbon to increase its 

water-wettability and dispersion ability, and as well as flowability. A model 

alumina-carbon (Al2O3-C) low cement castable was used as a work tool to evaluate 

the effect of carbide coating on castable’s water demand and flowability, and 

relevant refractory properties.  

The main objectives of this thesis can be defined as follows: 

1) To prepare TiC and SiC coatings on carbon particles by using molten salt 

synthesis technique and to characterise the microstructure of coated carbon 
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particles. 

2) To optimise processing parameters for coating preparation, such as synthesis 

temperature, holding time, initial ratio of reactants and salt selection. 

3) To investigate wettability and dispersion property of uncoated and carbide 

coated carbon in water, and their oxidation resistance. 

4) To compare and evaluate the flowability and water demand for Al2O3-C low 

cement castables containing uncoated and coated carbon materials. 

5) To investigate the physical and mechanical properties, and oxidation resistance 

of castables at elevated temperature. 

6) To examine microstructures of the model castable after casting, firing and 

oxidation at high temperature. 

1.3 Main content of the thesis 

This PhD thesis consists of 9 chapters in total. Chapter 1 gives a brief introduction of 

the research background, and objectives of the project. 

Chapter 2 introduces the development of refractory composites, in particular, 

development of carbon-containing refractory castables and reviews the work in the 

literature on the possible solutions to improve the water-wettability of graphite. In 

addition, molten salt synthesis of carbides is highlighted. 

In Chapter 3, the details of raw materials, experimental procedure and 

characterisation for phase analysis and microstructure are documented. In addition, 

testing methods for flowability, apparent porosity, cold crushing strength, cold 

rupture of modulus, oxidation resistance are comprehensively presented.  

Chapter 4 documents the work of preparation of TiC coatings on carbon black (CB) 

surfaces. The synthesis condition was optimized by varying heating temperature, 

selecting the appropriate chloride salt and ratios of Ti/C. The feasibility of replacing 

part of the metallic Ti powders by TiO2 was also discussed with details of XRD 

phase analysis and morphological changes.  

Chapter 5 focuses on the molten salt synthesis of SiC coatings on CB surface. In 

addition to optimization of synthesis conditions, the core-shell microstructure formed 

after SiC coating was characterised in detail. In addition, SiC/SiO2 composite 
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coatings were prepared by slight oxidation of SiC in air to further increase 

water-wettability SiC coated CB.  

The investigation of wettability and oxidation resistance of carbide coated carbon 

materials is presented in Chapter 6. To characterise the changes of these properties 

after carbide coating, zeta potential measurement, sediment test, apparent viscosity, 

and TGA-DSC thermal tests were employed.  

In Chapter 7, carbon materials (graphite flakes (GF), TiC-coated GF, SiC-coated GF, 

CB, TiC-coated CB, and SiC-coated CB) were incorporated into model high alumina 

low cement castables. Comparisons were made between the effects of uncoated 

and coated carbon on their flowability, water addition, physical and mechanical 

properties, and oxidation resistance.  

Further discussions are made in Chapter 8 on molten salt synthesis of carbide 

coatings, mechanism of improvement in carbon’s wettability, and the effects of 

carbide coating on flowability, physical and mechanical properties, and oxidation 

resistance of carbon-containing castables.  

Chapter 9 concludes all the findings in the studies and gives some suggestions for 

further work. 
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Chapter 2 Literature review 

This chapter introduces the development and applications of refractory composites, 

in particular, carbon-containing refractory castables. The techniques for improving 

water-wettability and dispersion property of carbon materials are reviewed in detail. 

In addition, molten salt synthesis (MSS) of carbides and relevant applications in 

refractory castables are highlighted. 

2.1 Refractory composites 

2.1.1 Classification and Composition 

There are several classification methods for refractories, mainly based on their 

chemical composition and physical form. For instance, according to their chemical 

nature, they are grouped as acidic, basic and neutral (Table 2.1).[4] In terms of 

shapes and installation methods, they are classified as shaped refractories (bricks 

or blocks) and unshaped or monolithic refractories (e.g. castables, ramming mix, 

gunning mix and mortars).[6, 8] To a lesser extent, refractories may be identified by 

association with a particular function such as thermal insulation, or a special 

manufacturing process, for example, fusion casting. 

Table 2.1 Classification according to their chemical composition.[4] 

 

Despite the various classifications, only a few chemical elements are involved to 

form refractory compounds, including: Aluminium(Al), Silicon(Si), Magnesium(Mg), 

Chromium (Cr), Calcium(Ca) and Zirconium(Zr), and their corresponding oxides : 

Al2O3, SiO2, MgO, Cr2O3, CaO and ZrO2. Refractory materials are based on these 

six single oxides or their combinations; and more recently, often in combination with 

carbon materials [28] (Fig. 2.1). 
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Fig. 2.1 Base material pyramid with the location of the refractory materials.[28] 

Due to the high melting temperature of these oxides and their binary compounds 

(Table 2.2) and their inert nature in oxidizing atmosphere, they can remain stable 

chemically and physically at very high temperature. In addition, all these oxides are 

readily available in nature so they are ideal raw materials to manufacture refractory 

composite products used for other industrial activities. Compared with other 

materials, refractory composites usually do not have an intrinsic melting point. 

However, they melt or soften within a more or less narrow temperature range. 

Therefore, the end point only indicates the extreme temperature that can stay stable. 

The application-specific property data of main refractory oxides and their 

compounds are listed in Table 2.2. 
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Table 2.2 Application-specific property data of main refractory oxides and their 
compounds.[28] 
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A typical refractory composite generally consists of aggregate with a size up to 

centimetres and fine powders to fill the void between large grains and to increase 

packing efficiency. In some cases, additives such as antioxidants and sintering aids 

are added to improve the densification and high temperature properties. Binders 

could be carbon derived from pyrolysed pitches and phenolic resins for 

carbon-containing refractories, mullite and glass from decomposed clays for other 

shaped refractories, and calcium aluminate cement, hydraulic alumina or silica 

sol-gel for monolithic refractories.[29] The microstructure after powder processing is 

schematically illustrated in Fig. 2.2. In addition to main aggregates, fine powders 

and bonding phases, impurities from raw materials and porosity generated during 

mixing and processing are also present. 

 

Fig. 2.2 Schematic microstructure of refractory composites.[30] 

2.1.2 Manufacturing process 

In general, four stages are involved with refractory manufacturing, e.g. raw material 

processing, forming, firing and machining [31] (Fig. 2.3). Raw materials, both ores 

and synthetics, are crushed and ground, and classified into different groups 

according to their particle sizes (e.g. coarse (>1.2 mm), intermediate (0.25-1.2 mm), 

and fine (<0.25 mm)). The correctly sized powders are mixed together with binders 

and other additives under wet or moist conditions, and shaped in designed moulds. 

The shaped green materials are then dried and fired to high temperatures to obtain 

the final products. In order to keep the products in the correct shape and size after 

firing, milling, grinding, and sandblasting of the finished product are carried out, 

since the changes in shape and size after firing always occur. 
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However, the manufacturing process for monolithic refractories is different, because 

they do not need to be pre-shaped and pre-fired before delivering to customers, and 

monolithic refractory products are generally made at the working site. For example, 

castables are mainly installed by vibration casting. Raw materials with certain 

compositions are mixed with water and binders, and then pumped via a hose into a 

furnace or ladle, inside which a mould is placed so as to provide a shape. The 

mixture is then vibrated to remove air bubbles. The shaped mixtures develop a 

hydraulic or mineral bond at room temperature which converts to a ceramic bond on 

firing in-situ in a furnace. 
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Fig. 2.3 Flow chart of refractory manufacturing process.[31] 

2.1.3 Applications of refractory composites  

Refractories are extensively used in the manufacture of metals, glass, cement, 

ceramic and petroleum products, as well as in aerospace and nuclear industries. 

However, the iron and steel-making industry is refractories’ main consumer, uses 
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~70% of the total production of refractory materials worldwide.[32] 

Fig. 2.4 shows schematically the steps in the production of refined steel from iron 

ore. The choice of refractories used to line various furnaces, ladles and vessels is 

governed by the operating condition at each stage in the process.[30, 33] 

 

Fig. 2.4 Schematic of iron and steel- making processes.[30] 

1) Blast furnaces (BFs)  

Modern BFs produce hot metals from reduction of iron ore by carbon and limestone 

and operate in a reducing CO-rich atmosphere at 200-2000 C, with molten fluxes, 

metals and slags. So BF refractories must be able to tolerate severe conditions of 

temperature and corrosion as well as erosion and abrasion from the loading of ore. 

The operating conditions vary in a tower up to 70 m tall with a hearth diameter 10-14 

m so that various refractories are used depending on positions in the BF. For 

example, on the hearth pad flint clay bricks and low cement corundum (or 

chrome-alumina) castables are used to resist severe erosion. High alumina faced 

with SiC are used as the linings of the upper stack of a BF to resist abrasion and 

thermal shock. 
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2) Torpedo ladles 

Torpedo ladles are used to transport hot metals from the BF to the primary steel 

works. Desulphurization metal treatment may also be carried out in torpedo ladles 

and other transfer ladles. Ladles which are simply for transport purposes are 

generally lined with flint clay, andalucite or bauxite bricks. However, High quality 

refractories such as unfired resin-bonded alumina-graphite can impart improved 

slag resistance and be used for the linings of ladles in which metal treatments are 

carried out. 

3) Basic oxygen furnaces (BOFs) 

BOFs, accounting for 70% of world steel production, are mainly used to remove 

carbon (C) and other unwanted elements such as P, Mn, Ti. High-purity oxygen is 

blown on to the metal and combines with these impurities, forming the slag. The 

typical BOF lining refractory material is magnesia-graphite. Higher graphite contents 

are added for the area which is subject to severe slag attack. Additionally, fused 

magnesia is added to increase corrosion resistance in the most severe wear areas.  

4) Electric arc furnaces (EAFs) 

EAFs are now used just for melting of steel scrap, and steel refining is carried out in 

a secondary steel-making process. MgO-graphite is the main slag line material and 

high levels of graphite are used to maximize the thermal conductivity and take full 

advantage of water cooling. 

5) Steel ladles 

Modern steel ladle linings must withstand increasingly severe conditions associated 

with secondary steel-making in the ladles before continuous casting, since various 

alloying, stirring and deglassing procedures occur in the ladles. So high alumina, 

magnesia-carbon or zircon brick or monolithic materials of similar compositions are 

prepared and used to resist extensive wear. 

6) Continuous casting 

During the continuous casting process, various casting hollowares are used, 

including ladle shrouds, stopper rods, submerged entry nozzles, rotary valves, and 

submerged entry shrouds. All these parts of a continuous caster are made of 

different refractory materials. For example, alumina-graphite is used to prepare ladle 

shrouds providing sufficiently thermal shock resistance to withstand rapid heating 
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from the steel stream. In addition, stopper tips which are subject to erosion and 

corrosion are generally made of MgO-graphite and ZrO2-graphite.  

With continuous increase of steel production worldwide (rising to 1.55 billion tonnes 

in 2012 [34]), more refractories were consumed. It was estimated that total world 

production of refractories reached 41.5 million tonnes in 2012 and would rise to 46 

million tonnes in 2017. However, specific consumption of refractories per tonne of 

steel has been falling since 1975. The demand for refractories in kg per tonne of 

steel (kg/t) decreases in the range of 1 to 2% per year, reaching ~7.8 kg/t in Japan 

and ~10 kg/t in Europe and North America in 2012. Further declines are likely to be 

slow and modest in these countries/regions.[4, 32] 

Overall, there are two main reasons attributed to the declining trend. The first 

reason is that with the development and advancement of manufacturing 

technologies both in refractory and iron and steel-making industries, productivity 

increase and manufacturing process improvement lead to lower consumption of 

refractories in practice. For example, improvement in the technology of hot gunning 

repair has notably reduced replacement cycles and helped make full use of 

refractories, hence decreasing the consumption of refractories.[35, 36] In addition, 

the development and application of the continuous casting process further reduces 

refractory consumptions. Another reason is due to dramatic improvement on 

refractory quality and increase in service performance. One of the typical examples 

is the development and application of carbon-containing refractories with 

significantly improved thermal shock resistance and slag corrosion resistance. 

2.1.4 Development of carbon-containing refractory castables 

The most significant trend in refractories technology in the last three decades has 

been the ever increasing use of unshaped (monolithic) refractories such as 

castables. More than 50% of the refractories were produced and used as 

monolithics in some countries, for example, ~64% in Japan and ~52% in United 

States.[9] This is attributed to the advantages of unshaped refractories such as 

faster, easier and cheaper installation, and fewer corrosion-susceptible lining 

joints.[37, 38] For example, castables can be installed 10 times more efficiently than 

their brick counterparts and thus their energy consumption can be reduced by up to 

90%.[39] In addition, they can be used to make complicated shapes and repair the 

furnaces in a short time. Taking energy consumption and environment protection 
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into consideration, the unshaped refractories (including castables) will replace 

shaped counterparts to a larger extent in the future. 

However, most of the castables mainly comprise oxides so that they suffer the same 

drawbacks as oxide-based refractory bricks. For example, Al2O3 based castables 

have poor resistance to corrosion and spalling. MgO based castables exhibited poor 

slag penetration and spalling resistance. These problems lead to decreased lining 

lifetimes and hinder the application of oxide-based castables in the linings of various 

furnaces and ladles.[40]  

Incorporation of free carbon into oxide-based refractory bricks (or CCRBs) (e.g. 

burned and impregnated MgO-C bricks) since the 1970s has led to significant 

improvements in their performance and thus greatly extended their service lives and 

reduced their specific consumption, which is mainly attributed to carbon’s superior 

thermal properties (in particular, thermal shock resistance) and excellent slag 

resistance.[5, 41] 

The successful development of CCRBs suggested that introducing carbon into 

current oxide-based castables would give improved properties. For example, by 

adding 5 wt% pitch to an MgO castable, the lifetime of the MgO-C castable in slag 

test was doubled compared to that of an Al2O3-MgO castable.[42] Sakamoto [25] 

prepared Al2O3-SiC-C castables and bricks and compared their performance at the 

same high temperature. It was found that the physical and mechanical properties of 

castable were competitive to those of brick. Similar corrosion and oxidation 

resistance were obtained for both forms of Al2O3-SiC-C refractories, but with treated 

graphite incorporated in the castable, it exhibited even better performance than 

shaped refractories.  
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2.2 Carbon-containing refractory castables 

2.2.1 Carbon source 

As in CCRBs, there are several carbon materials that can be used as carbon source 

for carbon-containing refractory castables (CCRCs), including graphite, carbon 

black, pitch, resin, coke (coal or petroleum coke), tar (metallurgical or pitch tar). 

However, graphite is the favourite carbon source, due to its unique structure and 

thermal properties. Carbon black is also incorporated in castables as its 

nano-scaled size is able to help reduce the overall carbon content in 

carbon-containing refractories.[43, 44]  

2.2.1.1 Graphite 

There are two types of graphite, natural graphite and synthetic graphite. The former 

can be subdivided into 3 sub-groups, known as amorphous, flake and high 

crystalline graphite.[45] Natural flake graphite is a favourite carbon material that is 

used to make carbon-containing refractories, due to its ordered structure, high 

crystallinity, appropriate carbon content and abundant graphite supply compared 

with the other two natural graphites. Synthetic graphite is produced from calcined 

petroleum coke or coal tar pitch after a high temperature heat-treating process. The 

cost of synthetic graphite is very high and with a lot of pores in the final products. 

Graphite has a planar structure with an infinite two dimensional array of carbon 

atoms arranged in hexagonal networks in the form of a giant aromatic molecule (Fig. 

2.5). The covalent carbon-carbon bonds connect the carbon atoms within the 

parallel plane and therefore they are strongly bonded. However in the perpendicular 

direction, the planes are bonded by weak Van der Waal forces. Thus, graphite has a 

layered structure and shows preferred orientation of crystallites. It is the reason why 

graphite has anisotropic properties.[46] 
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Fig. 2.5 Planar structure of graphite. 

Because of the unique structure of graphite, it has some unique properties which 

can be used to improve thermal shock resistance and slag corrosion resistance. The 

detailed properties are outlined below.[46, 47] 

1) Planar structure with no reactivity and wettability 

The carbon atoms in a planar are in sp2 bonding with no bonding directed out of the 

layer, but each layer is bonded to its neighbour by weak Van der Waal’s force. So 

there is no propensity to bond or react in the direction at right angles to the plane. 

Any reactivity must be seen as deriving from the crystal edges. It is very difficult to 

bond to a basal surface other than through some physical mechanism. So the 

surface of graphite has no wetting ability. Thus graphite containing refractories 

cannot be readily corroded and penetrated by molten slag. The lifetimes of linings 

for furnaces, ladles or vessels thus can be extensively extended.  

2) High thermal stability, conductivity and flexibility 

Graphite has a very high melting temperature, over 3500 C, and does not melt at 

normal pressure. The thermal conductivity of graphite (96.3 W/mK at 1000 C) is 

about 10 times higher than refractory oxides (10.1 W/mK at 1000 C for MgO, 9.5 

W/mK at 1000 C for Al2O3). As consequence of the cleavage on the basal plane 

and the lack of any directional bonding in the plane, graphite is extremely flexible. 

This makes graphite a very tough material and fracture across the flake is very 

difficult. 
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2.2.1.2 Carbon black 

Carbon black refers to a group of industrial carbon materials which are also called 

thermal black, furnace black, acetylene black and channel blacks. They mainly 

consist of elemental carbon in spherical form but with different content of ash which 

depends on the manufacturing process. Carbon black is produced by the 

incomplete combustion of heavy petroleum products such as coal tar, ethylene 

cracking tar, and a small amount from vegetable oil. It is normally classified in terms 

of manufacturing process, because its characteristics and properties are very 

dependent on that process. For example, furnace black, most commonly used now, 

is produced with a furnace process. Carbon black was used as pigment in black ink 

in the early century, but is now widely used as filler or reinforcement for elastomers, 

plastics and other materials to improve thermal, mechanical or electrical 

properties.[48]  

 

Fig. 2.6 Model microstructure of carbon black with random crystallite orientation.[49] 

Carbon black is a form of amorphous carbon which is totally different from graphite 

and so there are no characteristic peaks appear on its X-ray diffraction pattern. But 

a model microstructure [49, 50] based on XRD was proposed which shows random 

crystallite orientation within a single carbon black particle (Fig. 2.6). As can be seen, 

the single carbon black particle is made of crystallites with an average of four 

graphite layers. The layer planes are roughly parallel and equidistant. Carbon black 

particles are generally aggregated, forming pellets with different size. There are 
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several different types of carbon black according to their particle size and specific 

surface area (Table 2.3). 

Table 2.3 Carbon black with various particle size and surface area values.[51] 

 

2.2.2 Aggregates 

Aggregate is the main matrix component in castable refractories and normally 

comprises 60-85 wt% of the castable mix. The aggregate selection is important and 

critical, as the final properties of castable products, in particular, thermal shock and 

corrosion resistance, are determined by aggregates’ chemical composition and 

physical characteristics.[29] In practice, any natural or synthetic refractory oxides 

can be used in castable composites as aggregates for low cost purpose, similar to 

the case of refractory bricks. 

2.2.2.1 Alumina (Al2O3) 

Alumina is one of the most favourable oxides used in castable systems, due to its 
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high strength, relatively low thermal expansion coefficient, and good resistance to 

chemical attack. In the past, natural alumina resources such as chamotte 

(grog>40%, Al2O3>30% SiO2<4%, Fe2O3<2% CaO+MgO [52]) and bauxite 

(Al2O3>80%, SiO2<10%, with small amounts of TiO2, Fe2O3, CaO and MgO [53]) 

were used mainly for castables’ aggregates for low cost purposes. In the recent 

years, more synthesized high purity and performing alumina materials, for example, 

calcined, fused alumina and sintered alumina have been used. 

Calcined alumina is produced from bauxite by the Bayer process in which sodium 

aluminate is extracted by soda (NaOH). After hydrolysis and calcination of Al(OH)3 

in a rotary kiln at 1200 C, calcined alumina powders are formed. Soda exists in 

small amounts as the major impurity. White fused alumina (WFA) is produced by 

fusion of calcined alumina in an electric arc furnace (EAF). The characteristic 

microstructure of WFA is in the form of sharp and fractured corundum grains. WFA 

usually contains impurities such as Na, K, Fe2O3, TiO2, and CaO. In contrast, brown 

fused alumina (BFA) is prepared by fusion of bauxite and has a greater amount of 

impurities than WFA. Sintered alumina is produced by firing calcined alumina above 

1900 C. After sintering, sintered aluminas having flat table-like α-Al2O3 crystals, 

usually averaging 50 μm or greater, are termed ‘tabular’ alumina (TA). The particle 

bulk density of TA is in the range of 3.40-3.65 g/cm3, due to grain boundary porosity 

entrapped during rapid sintering.[54] 

2.2.2.2 Magnesia (MgO) 

Magnesium oxide (MgO) is also one of the main aggregates for preparation of 

refractory composites (normally accounting for 70-95 wt% in MgO-C bricks). The 

natural sources of MgO are either from magnesium carbonate (MgCO3) ores or from 

magnesium salts in sea water. To obtain MgO from both precursors, calcination and 

further heat-treatments are required. For the former precursor, a double burning 

process is usually used: i.e. start with low-temperature (~200 C) treatment, 

followed by briquetting, and finish with high temperature (500~700 C) sintering of 

MgO in a shaft kiln/furnace. For the latter, the following treatments are essential: the 

magnesium salts in sea water react first with hydrated CaO (from dolomite or 

limestone) to produce Mg(OH)2. The Mg(OH)2 is then washed, filter pressed, dried 

and calcined at 750~1000 C. To prevent active MgO from reacting with CO2 and 

H2O, it has to be dead burned at >1500 C in a rotary kiln/furnace or be treated by 
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melting calcined MgO in an EAF at a temperature above its melting point (>2800 C). 

The properties of MgO are governed by such key factors as CaO/SiO2 ratios, purity, 

grain size and bulk density. 

MgO-C brick is an important shaped refractory composite used as BOF and EAF 

lining material. However, the hydration of MgO has dramatically influenced the 

development of MgO-C castables for the same applications. The formation of 

Mg(OH)2 after hydration worsens the flowability and setting behaviour of castables. 

The release of water from dehydration of Mg(OH)2 on heating also causes cracks, 

reducing mechanical properties of MgO containing castables.[55, 56] Extensive 

studies revealed that the hydration of MgO was related to the magnesia source 

(particle size, specific surface area, purity, CaO/SiO2 ratio, production route, 

magnesite calcination temperature) [57-60], the pH and temperature of the liquid 

medium [61, 62], the interactions of MgO with other castables’ raw materials (such 

as calcium aluminate cement, hydratable alumina and silica fume) and the additives 

[63-66]. 

2.2.3 Superfines 

Apart from large-sized aggregates, superfines are also an important part of a 

refractory matrix. The superfines are normally below 45 μm and can even be smaller 

than 1 μm. They are added into castables to reach reasonable particle size 

distribution and fill the void spaces between the larger particles, so that the densest 

packing is possibly achieved.[29] Among superfines, silica fume and calcined 

alumina (or reactive alumina) are the most commonly used in both low cement 

castables (LCCs) and ultralow cement castables (ULCCs).   

2.2.3.1 Microsilica 

Microsilica, also called silica fume, is an amorphous silicon dioxide consisting of 

sub-micron spherical primary particles with average diameter of 0.15 μm. It has no 

internal porosity and its specific gravity is about 2.3 g/cm3. The specific surface area 

may vary between 15 and 30 m2/g.[67] The primary function of microsilica in the 

refractory castable is to act as filler. When microsilica particles are dispersed in 

castables, they fill the voids between aggregate grains and release entrapped water, 

thus reducing water demand and decreasing porosity of castables. It was found that 

the use of microsilica reduced open porosity of castable composite after firing at 
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1000 C from 20-30% to 8-16%.[68, 69] In the meantime, the addition of microsilica 

can help achieve a reasonable particle size distribution and improve flowability and 

workability during the castable making process (Fig. 2.7). In addition, in a refractory 

castable using calcium aluminate cement (CAC) as a binder, microsilica could 

influence hydration of cement and delay the settings of castable by sequestering the 

multivalent cations Ca2+ and Al3+.[70] Upon heating, microsilica would also react 

with CAC, forming eutectic liquid phase, C-A-S ternary phase which would 

deteriorate the hot strength at above 1200 C.[71] However, it was claimed that in 

high alumina-based castables, formation of needle-shaped mullite crystals from the 

reaction of microsilica and alumina could significantly increase the hot strength at 

1300-1400 C.[72] 

 

Fig. 2.7 The effect of microsilica content on flow and water addition to a tabular alumina 
based refractory castable.[73] 

Since microsilica would form a liquid phase with cement at high temperature which 

is detrimental to mechanical properties of castables, the ratio of microsilica and 

cement content should be carefully controlled. To avoid the negative impact of 

microsilica, calcined and reactive alumina are added to improve packing density and 

enhance the development of ceramic bonding phases at low temperature.[74] 

2.2.3.2 Calcined/Reactive alumina 

Calcined alumina is obtained by milling calcined alumina aggregates to smaller 

sizes, normally below 44 μm (95-99%). Reactive alumina is the superground 

alumina with relatively high surface area, exhibiting higher densification and reaction 

rates. The use of fine reactive aluminas results in LCCs with excellent hot properties 
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and very low mixing water requirements for placement. 

2.2.4 Binders 

Unlike oxide-carbon bricks in which pitch and phenolic resin are used to bind 

aggregates together, refractory castables usually are bonded by calcium alumina 

cement, hydratable alumina and colloidal silica/alumina.  

2.2.4.1 Calcium alumina cement (CAC) 

CAC is the most popular binder used in castable systems. Based on lime (CaO) 

content, cement containing castable is divided into three types: conventional cement 

(CaO >2.5%), low cement (2.5 >CaO >1.0%), ultra-low cement (1.0% >CaO >0.2%), 

and cement free (CaO <0.2%).[54, 75] With development of cement containing 

castables, cement content has been dramatically reduced from conventional 

addition of ~30%, because high cement would cause high water addition, lower 

strength after dehydration process and heating at high temperature. Thus, low 

cement castables (LCCs) and ultralow cement castables (ULCCs) have been widely 

used since the 1970s.[76] 

CACs are produced by reaction of alumina and lime either via a clinker sintering 

process at 1315-1425 C or fusion at 1450-1550 C.[54] The calcium aluminate 

phases are governed by the lime/alumina ratio and firing temperature. As predicted 

by the CaO-Al2O3 binary phase diagram [29], lime and alumina react with each other 

until completely combined as follows. 

                              (2.1) 

The hydration mechanism of CACs has been extensively investigated and 

discussed previously.[29, 77, 78] In the presence of water, the main calcium 

aluminate phases, CA, CA2 and C12A7, begin to dissolve quickly forming a saturated 

solution of ions (Ca2+ and Al(OH)4
--). The subsequent nucleation and precipitation 

would produce an interlocked network which provides strength for green castables. 

The formation of hydrates is largely dependent on temperature. As shown in Fig. 2.8, 

CAH10 and AH3 gel are formed at low temperature (<21 C), C2AH8 formed at 

intermediate temperature (21-35 C), and more stable compounds C3H6 and AH3 

crystals formed at relatively high temperature (>35 C). Upon firing, the hydrates 

experience dehydration forming anhydrous phases. On heating to 200 C 
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dehydration occurs and by 400 C C12A7 starts to form. Elongated CA forms at 900 

C from reaction of alumina with C12A7. At 1000-1200 C CA reacts with alumina to 

form coarse and globular CA2 while at >1300 C CA2 reacts with alumina to form 

hexagonal platelets of CA6 which is able to improve mechanical properties and 

thermal shock resistance of alumina castables.[79] 

 

Fig. 2.8 Calcium aluminate hydrates formation as a function of temperature.[80] 

2.2.4.2 Hydratable alumina (HA) 

HA has been used as a CaO-free binding agent for refractory castables to avoid the 

unfavourable influences of CAC on high-temperature properties.[81, 82] In addition, 

CAC is not compatible with MgO, as low melting phases formed from CAC and MgO 

would decrease the refractoriness of MgO and corrosion resistance of MgO-C 

castables.[83] HA is mainly in a high surface area transition phase, ρ-Al2O3, 

generally produced by flash calcination of gibbsite (γ-Al(OH)3). Similar to CAC, the 

binding ability of HA is derived from its rehydration. During hydration, a thick layer of 

gel is formed, which consists of major quantities of bayerite (α-Al(OH)3) and small 

amount of boehmite (γ-AlO(OH)). The mechanical strength is provided by 

interlocking bayerite crystals and gels through forming honeycomb structures on the 

surface of aggregates.[81] The evidence shows that formation of bayerite gel is 

strongly dependent on hydration temperature.[84, 85] High temperature is beneficial 

to bayerite formation. The hydration of HA is quite slow at room temperature but 

could be completed at ~55 C for 24 hours.[86] However, the presence of reactive 

magnesia accelerates the hydration of HA and promotes the formation of 

hydrotalcite-like compound which increases the strength of the castables after frying 

at 110 C and firing at 816 C.[87] Although the castable with HA does not suffer 

from low-melting phases as formed in microsilica containing CAC castables, it has 

higher risks of explosive spalling, due to its less permeable structure after 

drying.[88] 
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2.2.4.3 Colloidal silica/alumina 

In the recent years, colloidal silica or alumina have been used as nano-binders for 

refractory castables.[89-91] High reactive silica sol could lower the formation 

temperature of Mullite for alumina-rich systems (1100 C). In addition, the use of 

colloidal silica binder does not result in generation of hydrated phases, making 

castable processing and placement safer and quicker. The mechanical strength 

provided by colloidal silica is obtained by gelling and coagulation through 

condensation of siloxane groups on the particle surface as expressed in the 

following equation.[92] 

                                      (2.2) 

The properties of three types of castable binders are listed in Table 2.4, providing a 

general principle of binder selection before use. As stated above, each binder has 

both advantages and disadvantages. The function and developed binding strength 

are highly dependent on the practical use of a specific castable system. So it is 

essential to make an appropriate decision on choosing the best binder for actual 

castable production. 
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Table 2.4 Properties of three types of binders, colloidal silica/alumina, hydratable alumina 
and calcium aluminate cement.[93] 

Binder 
type 

Chemical 
specification 

(wt%) 

Surface 
area 

(m2/g) 

Aggregate 
size 

Surface 
charge 

pH 
range 

Stabilizer 
BD 

(g/cm3) 

Colloidal 
alumina 

Al2O3: 40 100 80 nm Anionic 6-9 Citric acid 1.5 

Colloidal 
silica 

SiO2: 40 200 15 nm Anionic 10 Na-stabilized 1.3 > 

N2O <0.4 

Calcium 
aluminate 

Al2O3 >69 

0.4 

-45 μm: 82 
wt% 

D50= 13 μm 

— — — 2.9-3.05 
CaO <30 

SiO2 >0.3 

Fe2O3 <0.3 

Hydratable 
alumina 

Al2O3: 90 270 D50= 2.5 μm — — — 3.2 

Na2O: 0.5 

LOI: 6.5 

2.2.5 Additives 

To improve castable processing and maximize their high temperature performance, 

a small amount of additives are added during raw materials mixing. For different 

functions and purposes, different additives are added, such as dispersants, 

accelerators, retarders, plasticizers, deflocculants or water reducers, explosion 

inhibitors, and antioxidants. Herein, the special focus is made on three important 

additives for carbon-containing castables, which are deflocculants, carbon 

dispersants, and antioxidants.   

2.2.5.1 Deflocculants 

In many studies, microsilica and calcium cement are used at the same time. 

Microsilica with negative charges on the surface is prone to be attacked by 

abundant cations, Ca2+ and Al3+ from dissolution of cement in water.[94] Thus, the 

gelling and coagulation occur before completion of mixing and casting, increasing 

viscosity and making the castable mixture difficult to flow freely. Therefore, 

deflocculants added to prevent the absorption of calcium on microsilica surface so 
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as to improve flowability of castables and reduce water additions at the same time. 

Currently, there are three main commercial deflocculants used for castable 

applications, Calgon (sodium polyphosphate), Darvan (sodium polyacrylate) and 

Castaman FS20 (polycarboxylate ether (PCE)). As shown in Fig. 2.9a. both Darvan 

and Calgon are able to increase negative charges of microsilica, but Castaman 

FS20 is not. However, PCE with a negatively charged backbone and noon-ionic side 

chains exhibits an excellent function to improve workability of high cement castables 

(Fig. 2.9b), due to both steric and electrostatic stabilization.[95-97] For ultralow 

cement castables, investigation carried out by Otroj [98] suggested that sodium 

polyacrylate helped castables obtain the best flowability. However, for zero cement 

castables, dispersants rather than deflocculants are required. Studart and 

Pandolfelli [99] suggested that short-chain molecules with high density of 

dissociable sites such as 3,4,5-Trihydroxybenzoic acid (Gallic acid) and 

2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) were suitable for basic pH 

environment (high alumina castables, 8<pH<10), but citric acid for acid pH 

conditions. 

   

Fig. 2.9 (a) Zeta potential of microsilica as a function of deflocculant addition (expressed as 
addition per surface area) [94], (b) Self-flow of basic high alumina castable containing 
various deflocculants.[96]  

2.2.5.2 Carbon dispersants 

Due to poor wettability of carbon materials, a carbon dispersant is added to improve 

water-wettability of carbon surfaces and enhance the dispersion of carbon particles 

in a castable matrix. The organic dispersant normally has a structure of hydrophobic 

and hydrophilic functional groups on two ends [100] as schematically shown in Fig. 

2.10. The hydrophobic end is attached to the surface of carbon particles, and the 

hydrophilic end interacts with water, generating steric/electrostatic repulsions 

between carbon particles.[101] The use of dispersants is one of the methods to 

improve wettability of carbon materials. The details are given in Section 2.3.2. 

(a) (b) 
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Fig. 2.10 Polyfunctional surfactants for aqueous systems.[100] 

2.2.5.3 Antioxidants 

The incorporation of carbon materials brings another problem. That is the carbon’s 

high susceptibility to oxidation in oxidising atmospheres. So highly effective 

antioxidants are required in carbon-containing refractories. The antioxidants 

developed in the past include metals powders such as Al, Mg, Si, or Al-Mg and Al-Si, 

carbides (mainly SiC), and boron-based compounds such as B4C, ZrB2, CaB2.[40] 

Metal powders can react with carbon monoxide prior to oxidation of carbon 

materials. The formed carbon and oxides decrease porosity and block the 

penetration of oxidizing gases.[5] SiC is able to prevent carbon oxidation by reacting 

with CO at high temperatures. The comparison of the effects of these antioxidants 

on carbon oxidation losses is shown in Fig. 2.11. B4C is the most effective 

antioxidant for MgO-C refractories, since liquid phase magnesium borate (Mg3B2O6) 

is formed upon heating and effectively fills up the open pores and forms a protective 

layer on the surface.[102, 103] However, liquid phase would significantly reduce the 

mechanical properties and refractoriness. So the amount of B4C needs to be 

controlled and it is normally used with Al. All these studies of antioxidants were 

carried out in refractory bricks, however, metal powders should be carefully used in 

castables, due to evident hydration in water.[104] So attempts have been made to 

improve hydration resistance of Al powder in water by using inorganic-organic 

hybrid coatings.[105] Recently, two complex carbides, Al4SiC4 and Al8B4C7 have 

been used as antioxidants with excellent hydration resistances [106, 107] However, 

it has been proved that the effect of Al4SiC4 on improving oxidation resistance of 

Al2O3-SiC-SiO2-C castable was limited, because the carbon source was oxidised 

earlier before Al4SiC4 functioned.[108] Luz and Pandolfelli’s work [109] suggested 

that a blend of antioxidant (Si, B4C and sodium borosilicate glass) was effective to 

improve oxidation resistance and increase mechanical strength of 

carbon-containing castables. 
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Fig. 2.11 Carbon losses of MgO-C specimens with/without 3 wt% antioxidant at 1500 

C.[102] 
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2.3 Solutions for improving carbon’s water-wettability 

2.3.1 Poor water-wettability of carbon materials 

Trying to make carbon-containing refractory castables (CCRCs) introduces many 

new c arising from the hydration tendency of MgO fines and aluminium based 

antioxidants (reviewed in Section 2.2.2.2 and 2.2.5.3), and poor water-wettability 

and dispersion property of carbon materials. The latter technical problem is fatal, 

because it directly leads to high water demand for casting castables, and 

consequently high apparent porosity and low mechanical property of CCRCs, 

making it difficult to add carbon into castables to acquire equivalent refractory 

properties of carbon-containing refractory bricks (CCRBs).[40] 

The water-wettability and dispersion behaviour of carbon materials is associated 

with their intrinsic nature of water affinity and the presence of hydrophilic functional 

groups on their surface, such as –OH and –COOH. This can be reflected in their 

Zeta (ζ) potential in water. A higher ζ value leads to better water-wettability and 

dispersion property. For example, compared with oxides such as alumina and silica 

(Fig. 2.12a), both flake graphite and grain graphite (Fig. 2.12b) show much lower ζ 

potential over a wide range of pH.[110] As for carbon black, it was reported carbon 

black contained oxygen-containing functional groups on its surface [111], however, 

limited amount of hydrophilic groups were not able to impart carbon black with 

desirable water-wettability and dispersivity. 
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Fig. 2.12 Zeta potential (ζ) of (a) graphite, and (b) alumina and silica in 0.01 M KCl as function 
of pH.[110] 

Therefore, to improve water-wettability and dispersion property of carbon materials 

and promote their application in CCRCs, various methods have been investigated, 

including using surfactants, making graphite micropellets or briquettes and coating 

carbon with other materials.  

2.3.2 Surfactants 

Surfactants (or surface active agents) have been used to improve aqueous 

wettability and dispersion of graphite since they can increase its water affinity 

through physical absorption.[112, 113] However, the surfactants specially designed 

for graphite seem not be commercially available. Thus Kawasaki et al [114, 115] 

prepared a surfactant which could be used to improve the wettability of graphite. 

This is the first method that has ever been developed to tackle the problem. In this 

method, a water soluble polymer (cationic cellulose) was used to coat graphite as 

the first ionic layer and sodium silicate (Na2SiO3) as the second ionic layer. (Fig. 

2.13) 

(a) (b) 
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Fig. 2.13 Schematic drawing of surfactants coated graphite. 

The wettability and dispersion property of graphite were slightly improved by simple 

absorption of double ionic layers. Nevertheless, the system of ionic layers was not 

stable, as excessive adsorption of anions would remove the polymeric adsorption 

layer. A self-developed dispersant was prepared thereafter by Isomura et al [116]. 

Some organic acids such as polycarboxylic acid, polyacrylic acid and 

naphthalenesulfone acid were used, however, no further details were reported on 

the dispersant. 

Although these surface active agents are cheap and easy to prepare, the main 

problem is that the simple physical adsorption is not always stable so that the 

improvement in wettability and dispersion is limited. Therefore, it is difficult to 

incorporate a large amount of graphite into a castable system. Surfactants also 

often interfere with other additives, such as deflocculants. In addition, carbonization 

of polymer agents upon firing at high temperature will adversely increase porosity 

and decrease mechanical strength of castables. 

2.3.3 Micropellet /briquette techniques 

Instead of straightforward incorporation of flake graphite into castables, Zhou and 

Rigaud [117, 118] prepared micro-pelletized graphite and briquetted 

alumina-graphite and tried them in Al2O3-SiC-C and Al2O3-MgO-C castables .  

Micro-pelletized graphite was mainly composed of flake graphite, antioxidants and 

liquid binder. Two metal powders (Al and Si) and two boron bearing powders (B4C 

and ZrB2) were included as antioxidants. Fine alumina powers were added to adjust 

graphite content and balance the density of the pellets. Organic binders such as 

polyvinyl alcohol, phenolic resin and molasses were used to bind all raw materials. 

After homogeneous mixing and shaping, heat treatment was done to cure the resin 

and form carbon bonding. 
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The detailed process of fabricating micro-pelletized graphite comprised four steps: 

mixing all the raw materials in Horbart N50 mixer; extruding from a screw-press 

extruder with different diameters of orifice; curing at room temperature and heated 

at 200 C; breaking up into the designed pellet size. The resultant graphite 

micro-pellets were in diameter of ~0.5 mm and length up to 5 mm as seen in 

following figure. 

 

Fig. 2.14 Graphite micro-pellets in carbon-containing castable.[118] 

Briquetted alumina-graphite was actually a mixture of 70% alumina and 30% 

graphite, in which phenolic resin was used as binder. Raw materials were mixed and 

blended in a mixer and then briquetted under a pressure of 70 MPa into 204×52×62 

mm prisms. After heat treatment at 180 C for 24 hours, they were crushed into 

different size fractions between 0.074 and 3.36 mm. 

The resultant graphite-containing pellets were incorporated into a Al2O3-SiC-C 

castable system to examine their actual effectiveness. Fig. 2.15 compares flow 

value and water demand of the castables containing different graphite sources. It 

shows that the castable with unmodified graphite required the highest water level 

but exhibited the lowest flow value. However, water demand for making castables 

containing micro-pelletized graphite and briquetted alumina-graphite decreased by 

about 1.5%. 
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Fig. 2.15 Flow value and water demand of Al2O3-SiC-C castables containing different types 
of carbon listed in Table 2.5.[117] 

Table 2.5 The weight percentage of carbon source in Al2O3-SiC-C castables.[117] 

 PG-0 PG3-2 PG3-4 PG3-6 FG-4 CFG-4 BAG-13 

Carbon type Micro-pelletized graphite 
Flake 

graphite 
TiO2-coated 

graphite 
Briquetted 

alumina-graphite 

Carbon-oxide 
mixture (wt%) 

0 2 4 6 4 4 13 

Carbon 
content (wt%) 

0 1.7 3.4 5.1 4 ~4 3.9 

 

Micropellet/briquette methods appear to decrease water demand effectively and are 

experimentally straightforward. However, it is difficult to achieve a homogeneous 

distribution of graphite in the castable microstructure, because graphite is prefixed 

in the micropellets or briquettes prior to incorporation into castables. This will 

weaken the corrosion resistance and decrease mechanical strength. In addition, 

micropellets and briquettes bonded by resin are easily disintegrated during vigorous 

mixing with aggregates.  

2.3.4 Surface coating 

2.3.4.1 Carbon coating 

Zhang [40] summarized that depending on crystallinity and surface activity of carbon 
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materials (e.g. graphite flakes, carbon black and carbon from pitch, resin and coke, 

etc.), they show different aqueous wettability and dispersion. The lower the 

crystallinity or the more active the surface, the better the wettability and dispersion. 

Thus, some work has been done to coat graphite flakes with active amorphous 

carbon materials. 

Pitch was initially used to coat graphite flakes, due to its low melting point (100-200 

C) and easy preparation procedure.[17] Graphite flakes were mixed with 10-60 wt% 

of a pitch (coal tar) and heated over 100 C to soften pitch. After cooling, the bulk 

mixture was subsequently crushed to produce carbon granules. However, the 

improvement in wettability is limited, because pitch has only slightly better aqueous 

wettability than graphite. Furthermore, pitch is undesirable from an environmental 

standpoint. Toxic vapours would also be released from pitch decomposition, causing 

environmental concerns. 

Sharifsh [18] prepared a coating layer of 50 nm on graphite flakes using carbon 

black in the assistance of an ink colloid. In the study, nanosized carbon black N220 

was dispersed in ink by stirring and ultrasonic vibration, forming colloidal 

suspensions. Graphite flakes were then immersed into carbon black-containing 

suspensions and the absorption was enhanced by vigorously stirring. In this way, 

graphite flakes was coated with carbon black (Fig. 2.16a). The surface of graphite 

flakes became rough and a lower contact angle was obtained (Fig. 2.16 a&b), 

indicating the improvement in wettability. However, the coatings were discontinuous 

and weak physical attached carbon black would lead to peeling off during mixing 

and casting. 
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Fig. 2.16 (a) SEM image of carbon black coated graphite flake, and contact angle of a water 
drop on (b) uncoated and (c) coated graphite.[18] 

Other carbon coating methods are mainly based on chemical vapour deposition 

(CVD).[119, 120] Amorphous carbon was deposited on a graphite surface from 

gaseous carbon precursors such as methane CH4 and ethane C2H2 when they were 

heated up to around 1000 C under Ar flow. The method has widely been used to 

modify natural graphite to prevent it from electrolyte attack in the application of 

lithium-ion batteries.[121, 122] The electrochemical performance of pyrolytic 

carbon-coated graphite was studied but the water-wettability of coated graphite was 

not yet reported. Another concern arises from its high cost when it finds its 

application in refractory industry  

2.3.4.2 Oxide coating 

Among the coatings, oxide coatings are of most interest to modify the hydrophobic 

surface of graphite flakes. As for preparation of oxide coatings, sol-gel process is 

the most favourite method. Sol-gel process initially referred to the production of 

inorganic oxides, either from colloidal dispersion or from metal alkoxides, however, 

currently it is also used to synthesise some other components such as nitrides, 

sulphides and hybrid organic-inorganic materials.[123, 124] 

The synthesis of ceramic materials via the sol-gel process goes through four main 

steps, which are 1) selection of appropriate sol precursor, 2) gelation, 3) hydrolysis 

and 4) sintering (Fig. 2.17). 

(a) 

(c) 

(b) 
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Fig. 2.17 Flow chart of sol-gel process.[124] 

Sol-gel processes could be used to prepare oxide coatings from two types of 

molecular precursors, metal alkoxides in organic solvents and metal salts in 

aqueous solutions. The mechanism of sol-gel preparation of oxides were well 

documented in many books [125-127] and review papers [128-130]. 

Starting with metal alkoxides, parent alcohol is used to dissolve the precursors prior 

to hydrolysis, as metal alkoxides are normally not miscible with water. The first step 

is hydrolysis for formation of reactive M-OH groups. 

                                    (2.3) 

Or partially hydrolysed  

                            (2.4) 

which is followed by condensation and network formation. 

                                (2.5) 

                                  (2.6) 
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                         (2.7) 

When metal salt dissolves in aqueous solution,              species are formed 

by interacting with dipolar water. Spontaneous deprotonation also occurs as follows: 

                 (2.8) 

Condensation is usually initiated by adding a base to aquo-cations        . 

Depending on the oxidation state of cations, two condensation mechanisms are 

proposed. For cations of low oxidation sate (z <4), olation reactions occur. 

                         (2.9) 

For cations of high oxidation sate (z>4), an ‘oxo’ bridge is formed via oxolation 

reactions 

                (2.10) 

Due to better water affinity of oxides, various oxides coatings were prepared via 

sol-gel process on graphite flakes from alkoxide precursors. For example, 

Yoshimatsu [131] was the first to use a sol-gel technique to prepare Al2O3 coatings 

on graphite flakes. Mixing with various content of Al2O3 gel in a mixer spinning, 

graphite flakes were coated with Al2O3 coating after subsequent drying at 100 C for 

3h and calcination up to 500 C. After coating, wettability of graphite flakes was 

improved (Fig. 2.18a) and it led to less water addition when incorporated into 

castables.[132] In addition, Yilmaz’s work [133] showed that the oxidation resistance 

of coated graphite flakes was also improved (Fig. 2.18b).  

   

Fig. 2.18 (a) Sediment volume of graphite coated with various amounts of Al2O3,[131] (b) TG 
results of uncoated and coated graphite flakes.[133] 

Similarly, Yu et al [134] mixed graphite with various amounts of titanium alkoxide 

(a) (b) 
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(Ti(OC4H9)4). TiO2 was consequently formed when heating the mixture in air where 

alkoxide reacted with water and then decomposed. The effect of TiO2 on wettability 

was reflected in the change of the floating ratio of graphite in water. When the TiO2 

content was increased to above 0.5%, it showed much better wettability as expected 

(Fig. 2.19a). ZrO2 coating was also attempted from hydrolysis of zirconium 

oxychloride.[20] In this case, a surfactant, polyvinyl alcohol (PVA), was added to 

enhance ZrO2 absorption, due to low wettability of ZrO2 for graphite. However, the 

as-prepared ZrO2 coating was low quality and the zeta potential results (Fig. 2.19b) 

did not show much improvement on the wettability of graphite. SiO2 coating on 

graphite prepared by Zhang [21] showed the better water-wettability and oxidation 

resistance than Al2O3 coated graphite.  

 

Fig. 2.19 (a) Fraction of the floating graphite powders as a function of the amount of TiO2 
coating,[134] (b) Zeta potential of ZrO2, raw graphite and ZrO2 coated graphite as a function 
of pH.[20] 

Beside single oxide coatings, binary oxide coatings such as Al2O3-SiO2, Al2O3-ZrO2 

were prepared.[21, 135, 136] They all show similar wettability and oxidation 

resistance, indicating that binary oxide coatings did not further enhance the effect on 

graphite’s wetting behaviour. Unlike simply preparing a Al2O3·SiO2 composite oxide 

coating at around 500 C, Mukhopadhyay [22] fabricated mullite (3Al2O3·2SiO2) by 

firing a hybrid polymeric precursor at high temperature where mullitization of Al2O3 

and SiO2 took place. Mullite formation from sol-gel precursors initiated at above 940 

C [137] and showed poor crystallinity at 1000 C, whereas at 1200 C and above, 

the orthorhombic mullite phases became prominent. The wettability of Mullite coated 

graphite was not solely demonstrated, but water demand for castable containing 

mullite coated graphite could be reduced to 7.8–8.2% which was lower in 

comparison with that of castable containing uncoated graphite (11.0%).[138] It also 

(b) (a) 
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showed that castables containing mullite-coated graphite were more resistant to 

thermal shock. 

 

Fig. 2.20 Flowchart of preparation of MgAl2O4 spinel coated graphite particles.[23] 

Due to excellent chemical resistance and refractoriness of MgAl2O4 spinel, Saberi 

[23, 139] and Mukhopadhyay [140, 141] prepared spinel coating on graphite by 

using magnesium nitrate (Mg(NO3)26H2O) and aluminium nitrate (Al(NO3)39H2O). 

Following a complicated process (Fig. 2.20), crystalline spinel was completely 

converted at 900 C from an amorphous intermediate phase which was formed at 

450 C. With spinel coating on graphite surface, the zeta potential was increased 

but not significantly (Fig. 2.21a), showing a certain improvement in wettability. 

However, the water demand for casting spinel coated graphite containing castable 

was at 8.5%, lower than 11.0% for uncoated graphite containing counterpart.[140] 

The reduction in water addition resulted in much lowered apparent porosity and 

higher bulk density at elevated temperature (Fig. 2.21b). It shows the importance of 

wettability of carbon materials on the physical and mechanical properties of 

castables. 
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Fig. 2.21 (a) Zeta potential of uncoated graphite, spinel coated graphite and spinel powder 
as a function of pH,[23] (b) Comparison of bulk density and apparent porosity of castables 

containing uncoated graphite and spinel graphite after firing at 110, 900, 1500 C, 
respectively.[140] 

To further reduce water demand and enhance the compatibility of the castable 

matrix with binding materials, calcium aluminate (CaAl2O4) was prepared on 

graphite via a sol-gel process.[142] CaAl2O4 coatings were originated from 

aluminum-sec-butoxide and hydrated calcium nitrate and formed after calcination at 

above 900 oC. With more functional groups such as –OH, hydrophilicity of graphite 

was significantly improved. The water addition in castable placement was reduced 

to 7.5% from original 10.8%. In addition, improvement in oxidation resistance of 

carbon was also remarkable. For example, only 10% weight loss was found for 

coated graphite after firing in air to 1000 C, compared with nearly 100% weight loss 

for uncoated graphite in the same condition.  

Overall, the aqueous wettability and dispersivity of graphite is improved to various 

extents by the oxide coatings discussed above. Sol-gel coating technique allows the 

coating preparation to be carried out at low temperature for a short time. However, 

the main drawback is that it is difficult to prepare thick coatings so as to further 

improve carbon’s wettability and oxidation resistance. Secondly, oxide coatings 

readily crack after hydrolysis, condensation and drying of their alkoxide precursors. 

In addition, the high cost of raw materials makes this method uncompetitive for the 

mass production and not affordable for the refractory industry. 

2.3.4.3 Carbide coating 

Due to good water affinity of carbide materials, SiC coatings were also attempted on 

graphite flakes to improve their wettability and dispersion property. With 

development of (Chemical Vapour Deposition) CVD technique, SiC coatings could 

(a) (b) 
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be prepared on various carbon substrates including bulk C/C composite [143] and 

carbon fibres [144] from gaseous mixture of H2 and methyltrichlorosilane (CH3SiCl3). 

However, it is difficult to homogenously coat carbon powders (e.g. graphite flakes 

and carbon black nanoparticles) with SiC by this method. The high cost of this 

technique will limit its application and development in the refractory industry. To 

prepare SiC coatings at low cost, Ono and co-authors [110, 145] proposed a high 

speed impact treatment. In their research, graphite and SiC powders were mixed in 

a container with assistance of high speed gas. The high speed spinning activated 

the graphite surface and enabled SiC to be absorbed on the graphite surface. The 

wettability of resultant hybrid SiC/C powders were examined by zeta potential which 

showed a higher zeta potential value than that of as-received graphite. 

Unfortunately, the resultant coating was not continuous, and SiC particles were only 

physically and loosely absorbed on the graphite and would easily peel off on 

prolonged mixing. 

Recently, molten salt synthesis technique has been developed by Zhang’s group to 

prepare in-situ carbide coatings on various carbon templates. In addition to 

successful fabrication of TiC [146] and SiC [147] coating on carbon fibre, template 

growth of carbide materials could be realised on carbon nanotubes [148, 149]. 

Inspired by this, the preparation of carbide coatings can be extended to carbon 

particles to improve their wettability and oxidation resistance.  
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2.4 Molten salt synthesis (MSS) 

2.4.1 Principle of MSS 

MSS was initially used in preparing ceramic powders, in particular complex oxide 

powders. A low melting water-solvable salt (or a salt assembly) is used to form a 

reaction medium to accelerate the synthesis from constituent materials (e.g. single 

oxides and carbonates).[150] Similarly to wet chemical reactions in aqueous 

solution or organic solvent assisted reactions, the salt-solution medium facilitates 

the dissolution of the reactants; thus enabling the achievement of a more 

homogeneous mixing in the liquid medium. In addition, mobility of reactant species 

in molten salt is remarkably increased, for example, the mobility of oxide species 

is >10 orders of magnitude faster in molten salt than in the solid state [151]. 

Therefore, compared with conventional high temperature solid-solid reaction, 

reaction in molten salt can be completed at relatively low temperature and in a short 

time. In addition, MSS has many other advantages as summarized by Zhang [152], 

including: 

1) In principle any kinds of precursor can be used as starting materials, including 

cheap natural raw materials. 

2) The resulting powders are homogeneous and in high purity, and have high 

surface reactivity. 

3) Particle shapes (spheroidal, platelet-shaped or lath/needle-shaped) and sizes 

(nano-scale to micro-scale) can be tailored. 

4) The process is easy to perform and economical. 

To take full advantages of MSS, a salt or salt assembly needs to be carefully chosen 

to meet the following: 1) does not react with reactants and resulting products; 2) 

have low melting temperature and low viscosity at reaction temperature so as to 

facilitate the diffusion of species; 3) the reactants should have high enough 

solubilities in the selected salt; 4) have high solubility in water so as to be readily 

removed from resultant powders. 

A typical MSS process is shown in Fig. 2.22, including raw materials mixing with 

salts, firing at target temperature, washing and separating from salt, and drying 

finally. 
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Fig. 2.22 Flow chart of preparation procedure of molten salt synthesis.[152]  

2.4.2 Mechanism of MSS 

Two reaction mechanisms, ‘’dissolution-precipitation’’ and ‘’dissolution-diffusion’’ (or 

‘’template –growth’’), are involved in MSS.[150, 152] The difference of these two 

mechanism results in different particle size and shape (Fig. 2.23). The relative 

dissolution rate (solubility) of reactants determines the dominant formation 

mechanism. 

 

Fig. 2.23 Schematic diagram of mechanisms of particle formation in molten salt, (a) 
dissolution-precipitation and (b) dissolution-diffusion.[150] 
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When the dissolution rate of the two reactants in molten salt, A and B (Fig. 2.23a), 

are comparable, the MSS process will be dominated by the 

‘’dissolution-precipitation’’ mechanism. As a result, the resultant powder, P, 

precipitates from the salt oversaturated with the two reactants. In this case, the 

reaction rate is fast and synthesis temperature is relatively low, due to dissolution of 

both of reactants in molten salt. In addition, the morphology and size of products are 

usually different from the reactants. A typical example is the MSS of LaAlO3 in the 

KCl-KF eutectic salt in which both La2O3 and Al2O3 are soluble. The synthesis 

temperature was reduced to as low as 630 C, ~1000 C lower than by conventional 

synthesis methods. As shown in Fig. 2.24, unlike spheroidal La2O3 and Al2O3 

powders, rhombohedral LaAlO3 were synthesized.[153]  

 

Fig. 2.24 SEM images of (a) La2O3, and (b) Al2O3, (c) LaAlO3 prepared in KF-KCl eutectic 

salt at 630 C [153] 

However, the reaction dominated by ‘’dissolution-diffusion’’ requires much higher 

temperature and the reaction rate is slower compared with that of 

‘’dissolution-precipitation’’. As the dissolution rate of reactant A (Fig. 2.23b) is 

considerably higher than that of B in molten salt, the product P will form on the 

surface of B by diffusion of A through molten salt. The initial formation of product P is 

fast but becomes slower with the build-up of a product layer on the less-soluble 

(a) 

(c) 

(b) 
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reactant. This is because A and B species have to diffuse through the barrier layer to 

continue the reaction. Following this manner of reaction, the shape of product P is 

almost the same as the less-soluble particle B. So ‘’dissolution-diffusion’’ 

mechanism is also called ‘‘template-growth’’. For example, MgAl2O4 (MA) 

microplatelets were prepared from α-Al2O3 platelets with MgO or Mg(NO3)2 powders 

in KCl.[154] MgO powder had much high solubility than α-Al2O3, so the formation of 

MA initiated at the surface of α-Al2O3 platelets and consequently MA retained the 

morphology and size of Al2O3 (Fig. 2.25). 

  

Fig. 2.25 SEM images of (a) Al2O3, and (b) MgAl2O4 prepared from Al2O3 and MgO in KCl at 

1150 C.[154] 

2.4.3 Carbide synthesis via MSS 

2.4.3.1 TiC and SiC synthesis 

Based on ’’template-growth’’ mechanism, carbide materials (e.g. TiC and SiC) can 

also be prepared on various carbon templates.[26, 146-149] Since Ti and Si are 

more soluble in molten salt than carbon, the resulting carbides retain the 

morphologies and sizes of carbon templates. Although the exact solubility of Ti/Si is 

not clear, the size and microstructure changes of Ti and Si after interaction with 

molten salt (as reported by Liu [155] and Xie [156]) indicate that Ti and Si did 

dissociate into mobile cations and delocalized electrons, a state intermediate 

between ionic and metallic.[157] However, carbon templates from micron-sized 

carbon fibre to nano-sized carbon nanotube are both physical and chemical stable 

in molten salt at reaction temperatures. Thus, dissolved Ti and Si species rapidly 

diffuses onto the surface of carbon and consequently the reaction begins and 

continues until they are completely consumed. So the obtained carbides retain the 

size and morphology of carbon substrates. In addition, the synthesis temperature for 

carbide formation is significantly reduced. For example, compared with commercial 

(a) (b) 
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preparation of TiC and SiC by carbothermal reduction of TiO2 and SiO2 with carbon 

at relatively high temperatures, 1700-2100 C for TiC [158] and 1400-1600 C for 

SiC [159], the synthesis temperature for TiC and SiC by MSS was remarkably 

reduced to 850-950 C for TiC [26, 146] and 1100-1200 C for SiC [147, 160]. The 

advantage of lower synthesis temperature indicates that MSS of TiC and SiC will be 

commercialized in the future. 

Following ‘’template growth’’ mechanism, carbide materials were prepared from 

metallic Ti and Si with various templates, such as carbon nanotubes (CNT), natural 

cotton fibres (NCF), carbon fibre (CF), and graphite flakes (GF) (Fig. 2.26). For 

example, TiC nanofibres were synthesized from multi-walled CNTs at 950-960 C in 

LiCl-KCl-KF ternary salt.[148] The resultant TiC nanofibres (Fig. 2.26a) appeared 

curved and entangled, similar to their CNT templates. The diameters of these fibres 

were about 40-90 nm, slightly larger than their CNT precursors. In addition, Xie and 

Zhang [149] prepared SiC nanorods (Fig. 2.26b) from multi-walled carbon 

nanotubes (CNTs) and Si particles in NaCl-NaF binary salt at 1200 C, which was 

200-250 C lower than that required by conventional vapour-solid formation of SiC 

nanorods. They completely followed the morphologies of unreacted CNTs. Similarly, 

TiC and SiC fibres were prepared from a natural cotton derived carbon template 

using the same synthesis conditions (Fig. 2.26 c, d), indicating it is possible to 

prepare carbides with various size, shape and morphology from natural carbon 

precursors at low cost.[156, 161] 

In addition to complete conversion of carbon substrates to carbide, carbide coatings 

(Fig. 2.26 e, f) could also be realised. Li [146] mixed titanium powders and carbon 

fibre at weight ratio of 1/1.5 and fired in the molten salt of KCl-LiCl-KF at 900-950 C 

for 5h. After reaction, the carbon fibre was coated with TiC coating with thickness of 

~800 nm. Xie [147] prepared SiC coatings on carbon fibre in NaCl-NaF. By changing 

Si/C weight ratios (1/5 and 1/10), both “thick” (300 –350 nm) coatings and “thin” 

coatings were obtained. Using MSS process, Liu [26, 27] also prepared TiC 

coatings on carbon particles (graphite flakes) in KCl (or KCl-LiCl, or KCl-LiCl-KF) at 

950 C. The coating quality was examined by high magnification SEM and AFM, 

revealing the resultant TiC coatings consisted of nanoparticles on graphite were 

uniform, continuous and crack-free. Liu’s work [155] also tried to coat graphite flakes 

with SiC coatings, however, SiC coatings consisted of loosely connected nanorods 

and they did not fully cover each graphite flake.  



Chapter 2 Literature review 

47 
 

 

Fig. 2.26 (a)TiC nanofibres [148], (b) SiC nanorods [149], (c) TiC fibres from natural cotton 
[156], (d) SiC fibres from natural cotton [156], (e) TiC-coated carbon fibre [146], (f) 
SiC-coated carbon fibre [147], (g) TiC-coated graphite flakes [26], (h) SiC-coated graphite 
flakes.[155] 

(b) 

(c) (d) 

(e) (f) 

(g) (h) 

(a) 
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2.4.3.2 TiC or SiC coated carbons for refractory castable applications 

TiC and SiC are considered to be important high-temperature structural materials, 

due to their superior physical and chemical properties, high melting point, high 

thermal conductivity, high hardness and Young’s modulus, and high chemical 

stability.[162, 163] As for their refractory applications, TiC ( or TiCN) powders were 

added into MgO-C bricks [164] and Al2O3 based castables [165], and it has been 

proven that they were beneficial to mechanical properties, oxidation and slag 

resistance of refractory composites. SiC were used in carbon-containing refractories 

as antioxidants to prevent carbon from oxidation at early stage [102] and also used 

in Al2O3-SiC-C bricks/castables as an aggregate to provide them with high thermal 

shock resistance.[166] On the other hand, since coating carbon with carbide 

materials is an effective way to improve wettability and dispersion properties of 

carbon materials (as introduced in Section 2.3.4.3), TiC and SiC are ideal 

candidates of the coating materials for surface modifications of carbon particles (e.g. 

graphite flakes and carbon black nanoparticles). 

The investigation on wettability, dispersion property and flowability of uncoated, and 

TiC or SiC coated graphite flakes prepared by MSS showed that the improvement 

after coating had been achieved.[155] The contract angle for uncoated graphite was 

~101, in contrast, it was reduced to <60 for both TiC and SiC coated graphite. In 

addition, as shown in Fig. 2.27a, zeta potential values of graphite after coating with 

TiC and SiC were significantly increased, indicating better dispersion of graphite in 

aqueous solution was obtained. The decrease in apparent viscosity (Fig. 2.27b) of 

graphite after coating (one order of magnitude) implies better flowability of castables 

could be achieved when coated graphite was used. The preliminary results indicate 

TiC and SiC coated carbon particles prepared by using a MSS technique for 

castable refractory applications are promising, however, the actual use of them in 

castable systems has not yet been reported. So application studies on this aspect 

will be conducted in this work. 
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Fig. 2.27 (a) Zeta potential and (b) apparent viscosity of suspensions (slurries) containing 
uncoated, TiC coated (T15-950) or SiC coated (S12-1200) graphite flakes.[155] 

In addition to natural graphite flakes, the use of amorphous nano carbon black has 

been of increasing interest to researchers [44, 167, 168] as much lower levels of 

carbon content and lower water addition were pursued. The reasons for this trend is 

as discussed below. 

1) To reduce carbon content in carbon-containing refractories (CCRs). As high level 

of carbon in CCRs (>25% carbon in commercial CCRs) causes several serious 

problems, such as great heat loss, contamination in clean steel making and 

emission of green house gases, lower carbon additions are needed. In this case, 

nano-scale carbon with high specific surface area is required. The research 

conducted by Bag [44] shows that MgO-C refractories containing a combination 

of 0.9 wt% nano carbon black and 3 wt% graphite flakes exhibited better 

performance (low porosity, high mechanical strength and high thermal shock 

resistance) than that containing 10 wt% graphite. In Ochiai’s experiments [168], 

1.5% nano carbon containing MgO-C refractories showed thermal spalling 

resistance equivalent to that of conventional refractories containing 18% 

graphite. 

2) To further reduce water additions for castable making. With characteristics of 

nano-scale size and spherical shape, carbon black shows better 

water-wettability and flowability than graphite. As shown in Fig. 2.28, to achieve 

the same flow value, carbon black (before surface coating) containing MgO-C 

castables required lower water addition compared with graphite and coke.[42]  

(a) (b) 
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Fig. 2.28 Water demand of MgO-C castable using various forms of carbon.[42] 

2.5 Motivation and objectives of present work 

In summary, the development and commercialization of high performance 

carbon-containing refractory castables have been hindered in the past two decades 

mainly by carbon’s poor water-wettability and dispersivity. Although considerable 

research work were carried out worldwide, the success achieved on this aspect was 

limited. However, the recent development of molten salt synthesis indicates carbide 

coatings can be prepared on carbon particles to improve their water-wettability and 

dispersive properties. As a result, the water demand for preparing carbon-containing 

castables will be reduced and refractory properties of castables improved 

correspondingly. 

The objectives of present project are: 1) to prepare high quality TiC and SiC 

coatings on carbon black particles (from sub-micron to nano scale) under optimal 

conditions by using the MSS technique; 2) to improve water-wettability, dispersivity 

and oxidation resistance of carbon particles by carbide coating on them; 3) to 

reduce water addition and improve flowability, physical/mechanical properties and 

oxidation resistance of castables by incorporating carbide-coated carbon particles. 
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Chapter 3 Experimental details 

3.1 Raw materials 

3.1.1 Raw materials for carbide coating synthesis 

TiC and SiC coatings were prepared from metallic Ti or Si powders on carbon black 

(CB) spheres, and on graphite flakes (GF) as well for comparison. Chloride and 

fluoride salts were used to form reaction media at test temperatures. Particle size, 

purity and physical properties of all raw materials are listed in Table 3.1 and the salts 

are given in Table 3.2. 

Table 3.1 Raw materials for molten salt synthesis of TiC and SiC coatings 

Materials Particle size 
Purity 

(wt %) 

Density 

(g/cm3) 

Provided by 

GF ~149 μm 94% 2.23 Vesuvius, UK 

CB * (N990/991) 
~280 nm 

(100-700 nm) 
99.9% 1.8-1.9 Cancarb Ltd, Canada 

CB (N660) 
~62 nm on 

average 
>99.2% 1.7-1.9 Makrochem, Poland 

CB (N330) 
~30 nm on 

average 
>99% 1.7-1.9 

Socachim  fine  

chemicals, USA 

Micron-Si ~44 μm 99% 2.33 

Sigma-Aldrich Nano-Si < 100 nm >98% 0.08 

Ti ~149 μm 99.7% 4.50 

*Trade name of CB N990/N991 is Thermax® medium thermal carbon black 
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Table 3.2 Chloride and fluoride salts for molten salt synthesis of TiC and SiC coatings 

Salts 
Purity 

(wt %) 

Density 

(g/cm3) 

Melting 

point (C) 

Boiling 

point (C) 

Provided by 

KCl >99% 1.98 790 1420 

Sigma-Aldrich 
LiCl 99% 2.07 605 1382 

NaCl >99% 2.17 801 1413 

NaF >99% 2.56 993 1695 

3.1.2 Raw materials for castable preparation 

3.1.2.1 Castable matrix 

1) Al2O3 

Two types of alumina were used for the preparation of model castables. Tabular 

alumina (T-64) provided by Almatis with different size fractions from 3 mm to smaller 

than 0.02 mm were used as the aggregates. Reactive and calcined aluminas, 

CT3000SG and Nabalox 315 (<5 μm), were also added as ultrafines to improve 

packing efficiency of the aggregates. Their detailed information are given in Table 

3.3 and described below. 
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Table 3.3 Chemical composition and physical properties of alumina materials.[169-171] 

 Tabular Al2O3 Reactive Al2O3 Calcined Al2O3 

 T64 CT3000SG Nabalox 315 

Chemical 

composition 

Al2O3 99.5 99.7 99.6 

Na2O ≤ 0.40 0.08 0.3 

SiO2 ≤ 0.09 0.03 0.03 

Fe2O3 ≤ 0.02 0.02 0.03 

CaO ― 0.03 ― 

MgO ― 0.07 ― 

Specific surface (BET) ― 7.5 m2/g 1.5 m2/g 

Particle size (d50) ≤ 3mm, wide range 0.5 μm 4 μm 

Specific density (g/cm3) ≥ 3.50 3.90 3.90 

Supplier company Almatis Nabaltec 

 

Tabular alumina T64 is a pure sintered α-alumina material that has been converted 

to corundum form from aluminium oxide by rapid-sintering in excess of 1800 C just 

below the fusion point of Al2O3 (2035 C). The nomination of ‘tabular’ is because of 

its well developed hexagonal tablet shaped crystals of 40 to 200 μm diameter. Due 

to overall low open porosity and large crystals with closed pores entrapped during 

rapid sintering, tabular alumina possesses excellent thermal volume stability and 

thermal shock resistance. In combination with its high refractoriness, high 

mechanical strength and abrasion resistance, Tabular alumina is commonly used as 

an aggregate in unshaped and shaped refractory composites.[169] Reactive 

alumina (γ-Al2O3) is produced by calcining aluminium trihydroxide obtained by the 

Bayer process at 140-150 C. Its excellent sintering reactivity and highly controlled 

particle size distribution enables monolithic refractories to have better particle 

packing, reduced water demand and increased mechanical strength by forming 

strong ceramic bonds. Calcined alumina in the alpha phase obtained after 

calcination of aluminium hydroxide at 1200 C is used for enhancing castables’ 
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refractoriness, mechanical strength and abrasion resistance.[171] 

2) Microsilica 

Microsilica, also called fumed silica, is amorphous silicon dioxide consisting of 

0.1-0.3 μm diameter spherical particles. It is commonly used in low or ultra-low 

cement castables and gel-bonded castable systems. Microsilica has no internal 

porosity, and has a specific gravity of about 2.3 g/cm3. Its specific surface area may 

vary between 15 and 30 m2/g.[67] Elkem Microsilica with chemical compositions 

shown in Table 3.4 was used in this work. 

Table 3.4 Chemical composition of microsilica 971U.[172] 

Oxide/Element SiO2 C Fe2O3 Al2O3 CaO MgO 

Weight % * 98.4 0.50 0.01 0.20 0.20 0.10 

Oxide/Element K2O Na2O P2O5 SO3 Cl H2O** 

Weight % 0.20 0.15 0.03 0.10 0.01 0.20 

*Typical content; ** when packed 

3) Calcium aluminate cement 

SECAR®71, one type of calcium aluminate cements (CAC) supplied by Kerneos, 

was employed as the main binder for castable preparation. It is a hydraulic binder 

containing approximately 70% alumina and 30% lime (Table 3.5). It possesses the 

general properties of high refractoriness and can help achieve exceptional flow and 

high early compressive strength via interacting with most organic and mineral 

additives. In addition, it is very compatible in all types of deflocculated castable 

systems.[173, 174] Thus, it has been used extensively in alumina based castables. 

As shown in Table 3.6, the main phases in CAC are CA and CA2. 
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Table 3.5 Chemical composition of calcium aluminate cement SECAR®71.[173, 174] 

Chemical composition Content (wt%) 

Al2O3 68.7-70.5 

CaO 28.5-30.5 

SiO2 0.2-0.6 

Fe2O3 0.1-0.3 

TiO2 <0.4 

MgO <0.5 

Na2O+K2O <0.5 

SO3 <0.3 

 

Table 3.6 Typical physical properties and mineralogical composition of calcium aluminate 
cement SECAR®71.[173, 174] 

Physical properties  

Bulk density (g/cm2) 1.04-1.23 

Specific gravity 2.90-3.05 

Specific surface area* 3800-4400 

Laser PSD – d50 (μm) 12 

Laser PSD – d90 (μm) 50 

Mineralogical composition  

Principal phases CA, CA2 

Secondary phases C12A7, α-A 

*Blaine specific surface area (cm2/g) –EN 196-6 

3.1.2.2 Additives 

1) Carbon materials 

Two types of carbon materials, CB and GF, were used for preparing 
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carbon-containing castables. To investigate the effect of carbide coating, both 

uncoated and coated CBs or GFs were incorporated into castables, respectively. 

Natural GFs usually contain some impurities. As-received graphite flakes were 

oxidized in air at 1000 C for 45 minutes for phase analysis. XRD of the ash (6 wt% 

as indicated by supplier) was illustrated in Fig. 3.1, showing the impurities comprise 

SiO2, Fe2O3 and Al2O3.  

CB is also called medium thermal carbon black. CB used by this work was  

supplied by Cancarb Ltd, which is specially produced for refractory applications 

because of its high purity ((low ash (0.1 wt%), low sulphur content (150 ppm) and 

low surface area (9.5 m2/g)). It has wide particle size distribution, 100-700 nm, but 

the average size is ~280 nm.[175]  

  

Fig. 3.1 XRD pattern of the residual powders after oxidation of as-received GFs at 1000 C 
for 45 minutes in air. The insert are the impurities obtained after combustion of GFs.  

2) Carbon dispersant 

To compare the effects of commercial carbon dispersant and water-wettable carbide 

coatings on water demand and flowability of carbon-containing castables, a sodium 

sulfonate-based carbon dispersant was used.  

3) Deflocculant 

Sodium triphosphate (STPP), Na5P3O10, was used as a deflocculant to enhance the 
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flowability of castables. The function of STPP is similar to that of sodium 

hexametaphosphate (SHMP) for castable applications. Being a highly charged 

chelating agent, TPP5- anions bind with dications such as Ca2+ and Mg2+ preventing 

of coagulation or flocculation of particles as described in Section 2.2.5.1. 

 

Fig. 3.2 Molecular structure of STPP. 

3.2 Experimental procedure 

3.2.1 Carbide coating synthesis 

The typical sample preparation process for preparation of carbide coatings on CB 

was demonstrated in Fig. 3.3 and described below. 

 

Fig. 3.3 A flow chart of experimental procedure for preparing carbide coating on carbon black 
spheres. 
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1) Mixing 

The carbide coating synthesis started with dry mixing of starting materials with solid 

salts using a ball milling at low speed or by mixing and grinding in an agate mortar. 

The dosage of chloride salts was 10-20 times higher than reactants by weight. As 

for submicron-sized CB particles, they were ultrasonically dispersed in isopropyl 

alcohol (IPA) for 2 hours. IPA was later removed by evaporation in an oven.  

2) Firing 

The powder mixture of raw materials was placed in an Al2O3 or graphite crucible 

with a lid and fired in a tube furnace under Ar protection at high temperature. The 

required synthesis temperature varied depending on starting materials, 750-950 C 

for TiC synthesis and 1100-1200 C for SiC formation. After cooling to room 

temperature, samples were collected from the tube furnace.  

3) Washing 

The solidified mass was washed with hot distilled water to remove any residual salts. 

This process was repeated several times until no Cl
―
 was detected in the filtrate by 

an AgNO3 solution (i.e., no AgCl precipitation was observed when an AgNO3 

solution was added dropwise to the filtrate). The resulting coated CB powders were 

oven-dried over-night at 110 C before further characterisation. 

3.2.1.1 Preparation of TiC coatings 

The processing parameters for TiC coating formation such as initial Ti/C ratio, salt 

composition and synthesis temperature are detailed in Table 3.7.  
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Table 3.7 Synthesis conditions for TiC coating formation on CB. 

Sample No. Ti/C molar ratio 
Salt assemble (wt%) Temperature (C) 

-Holding time (hour) KCl LiCl 

1 1/8 100 0 950-4 

2 1/8 100 0 850-4 

3 1/8 55 45 850-4 

4 1/8 55 45 750-4 

5 1/8 55 45 650-4 

6 1/4 100 0 850-4 

7 1/2 100 0 850-4 

8 1/8 0 0 850-4 

9 1/8 100 0 850-4 

10 1/8 100 0 850-4 

11 Only Ti 100 0 850-4 

Note: No.1-8: TiC coating on CB N990/N991; No.9: TiC coating on CB N660; No.10: 

TiC coating on CB N220. 

In order to reduce the cost in the TiC coating formation on carbon black, Ti was 

completely or partially replaced with TiO2. The corresponding synthesis conditions 

are listed in Table 3.8. The final molar ratio of Ti/C was determined as 1/8 (which is 

equivalent to the TiC coatings obtained from metallic Ti powders in initial Ti/C molar 

ratio of 1/8), assuming all initial titanium sources (TiO2 or Ti+TiO2) were converted to 

TiC after the reactions were completed. 
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Table 3.8 Synthesis conditions for TiC coating on CB from only TiO2 or combination of Ti and 
TiO2. 

(1) TiC coating using TiO2 as titanium source 

Sample No. TiO2/C molar ratio Salt 
Temperature (C) 

-Holding time (hour) 

1 1/10 ― 950-4 

2 1/10 KCl 950-4 

3 1/10 KCl 1200-4 

4 1/10 KCl 950-4-1200-4 

(2) TiC coating using TiO2+Ti as titanium source 

Sample No. Ti/TiO2/C molar ratio Salt Temperature (C)  

-Holding time (hour) 

5 1/2/28 KCl 950-4 

6 1/1/18 KCl 950-4 

7 2/1/26 KCl 950-4 

8 3/1/34 KCl 950-4 

9 1/2/28 KCl 1050-4 

10 1/1/18 KCl 1050-4 

11 2/1/26 KCl 1050-4 

3.2.1.2 Preparation of SiC and SiC/SiO2 composite coatings 

NaCl-NaF binary salt instead of KCl or KCl-LiCl was used for SiC formation on CB. 

Synthesis parameters such as temperature, holding time, the mass ratio of two 

sodium salts, and particle size of Si powders were varied to optimize the SiC 

synthesis conditions. In addition, SiC coatings with different thicknesses on CB were 

prepared by changing the initial molar ratio of Si/C before firing. The detailed 

parameters are listed in Table 3.9. To assist in verifying the formation of SiC coating, 

as-prepared particles were also heated at 600 C for 60 min in air to oxidize their 

carbon cores. 
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Table 3.9 Synthesis conditions for SiC coating formation on CB. 

Sample 

No. 
Si/C molar ratio 

Salt ratio (wt%) Temperature (C) 

-Holding time (hour) NaCl NaF 

1 1/8 80 20 1200-8 

2 1/8 80 20 1200-8 

3 1/12 80 20 1200-8 

4 1/4 80 20 1200-8 

5 1/2 80 20 1200-8 

6 1/8 80 20 1100-6 

7 1/8 80 20 1000-6 

8 1/8 80 20 900-6 

9 1/8 95 5 1100-6 

10 1/8 97.5 2.5 1100-6 

11 1/8 98.75 1.25 1100-6 

12 1/8 100 0 1100-6 

13 1/8 0 0 1100-6 

14 Only Si 100 0 1100-6 

15 Only Si 95 5 1100-6 

16 Only Si 80 20 1100-6 

17 Only Si 0 100 1100-6 

Note: No.1: SiC coatings were prepared using nano-sized Si powders (<100 nm), 

and the rest of the samples were prepared using micro-sized Si powders (~44 μm). 

To further enhance the water affinity of SiC-coated CB, pre-oxidation was carried out 

in order to form a thin layer of SiO2 on the SiC surface. In this case, the oxidation 

conditions were critical, since severe oxidation would cause damage to SiC coatings 

and carbon burning off. So SiC-coated CB particles were exposed to air at different 
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temperatures for a certain time as shown in Table 3.10. 

Table 3.10 Oxidation conditions for preparation of SiO2/SiC composite coatings on CB. 

Sample No. Oxidation temperature (oC) Oxidation time (minutes) 

1 400 30 

2 450 30 

3 500 30 

4 400 90 

5 450 90 

6 500 90 

7 450 60 

3.2.1.3 Kg-scale production of carbide-coated CB and GF 

For large scale trials of carbide-coated carbon materials in practical castable 

systems, a large vertical tube furnace with two sealable ends (Fig. 3.4) was used to 

prepare the materials. In this case, a graphite crucible was used. To avoid reaction 

between the graphite crucible and Ti or Si, the graphite crucible was pre-fired with a 

small amount of Si in NaCl-NaF at 1200 C to create an interior SiC protective 

coating layer.  



Chapter 3 Experimental details 

63 
 

 

Fig. 3.4 The experimental set-up for molten salt preparation of kg-scale carbide-coated CB 
and GF particles. 

To maximize the production of TiC or SiC coated CB and GF (TiC-CB, SiC-CB, 

TiC-GF, SiC-GF) and to save energy and labour, salt usage was reduced to just two 

times higher than the reactants by weight, as this barrel-shaped graphite crucible 

could enable all reactants to be immersed in smaller amounts of molten salt. About 

100g samples were prepared for each run and more details are given in Table 3.11.  
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Table 3.11 Composition and synthesis conditions for preparation of kg-scale carbide-coated 
CBs and GFs. 

Raw materials (g) TiC-GF TiC-CB SiC-GF SiC-CB 

Molar ratio Ti(Si)/C 1/8 1/8 1/8 1/8 

Ti 33.3 33.3   

Si   21.9 21.9 

GF 66.7  75.1  

CB  66.7  75.1 

KCl 200 200   

NaCl   156 156 

NaF   29 29 

Temperature (C) 950 850 1200 1100 

Holding time (hour) 4 4 8 6 

3.2.2 Castable preparation 

3.2.2.1 Composition of castables  

A model carbon-containing castable was prepared by incorporating 5 wt% carbon 

into a commercial high alumina low cement castable as reported in Ref [176, 177]. 

Such a carbon-containing alumina castable (Al2O3-C) contained tabular Al2O3 (≤3 

mm), along with reactive and calcined Al2O3 fines. About 4 wt% ultrafine microsilica 

particles were added to improve flowability and particle packing. Only 4 wt% Secar 

71 calcium aluminate cement (CAC) was used as the binder. The detailed 

composition and notation for Al2O3-C low cement castables are listed in Table 3.12.  
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Table 3.12 Composition and notation of Al2O3-C low cement castables. 

Notation GF TiC-GF SiC-GF CB TiC-CB SiC-CB SiC-CB-8 

T64 Al2O3 76 76 76 76 76 76 76 

Reactive+Calcined Al2O3 11 11 11 11 11 11 11 

Microsilica (Elkem 971) 4 4 4 4 4 4 4 

CAC (Sear 71) 4 4 4 4 4 4 4 

Carbon materials (wt%) 
GF TiC-GF SiC-GF CB TiC-CB SiC-CB SiC-CB 

5 5 5 5 5 5 8 

STPP (wt%) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 

Before applying uncoated and coated carbon particles into the castable systems, 

particle size distribution (PSD) analysis was carried out to ensure high packing 

density could be achieved for specific Al2O3-C castable compositions. The objective 

is to get as dense refractory structure as possible, but suitable flow is also required 

for casting after wet mixing of raw materials. Since the added water left porosity 

upon its evaporation, its amount has to be carefully controlled. PSD analysis has 

proven to be an effective tool to help achieve a dense structure and minimize water 

addition as well.[178, 179] By adjusting the fractions of different particle sizes based 

on a reference castable model -Al2O3 low cement castable [176, 177], the optimal 

compositions for the Al2O3-C castables were obtained (Table 7.1). 
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Table 3.13 Compositions of Al2O3-C castables (wt%). 

Raw materials Grain size Content 

Tabular Alumina 

1-3 mm 28% 

0.5-1 mm 17% 

0.2-0.6 mm 13% 

0-0.2 mm 18% 

Reactive Alumina d50 =0.5 μm 6% 

Calcined Alumina d50 =4.1 μm 5% 

Microsilica d50 =0.15 μm 4% 

CAC 

Secar 71 

d50 = 12.05 μm 4% 

Carbon 
Uncoated/Coated GF ~149 μm 

5% 

Uncoated/Coated CB ~ 100-700 nm 

 

PSD analysis was performed by using the well-known Andreassen’s model which is 

a semi-empirical equation, but has advantage of only requiring different particles to 

have similar shapes.[179, 180]The Andreassen equation is expressed as 

CPFT = (d/D)q ∗ 100                        (3.1) 

where CPFT is cumulative percent finer than (in vol%), d refers to particle size and 

D the maximum particle size. In the case, q was set at 0.29 (relatively high q-value, 

close to 0.3) for vibratable castables, which is suitable for low cement high alumina 

castable system. PSD analysis was realized by numerical simulation based on the 

software EMMA developed by Elkem, so as to optimise and refine the refractory mix 

designs.[181] 

After adjusting the amounts of particles with different sizes, the cumulative 

percentage (vol%) for GF containing alumina castable (Al2O3-GF) was determined 

(Fig. 3.5). It can be seen that experimental curve (blue line) almost matches with 

theoretical Andreassen curve (red line), indicating the particle size distribution of 

castable model shown in Table 3.13 is reasonable, and therefore it is able to achieve 

the highest packing efficiency for vibrate flow castables. 
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Fig. 3.5 Particle size distribution and q-value of Al2O3-GF castable. 

When micron-sized GF were replaced with submicron-sized CB particles, the 

experimental curve changed, as the percentage of particles less than 1 micron 

increased. It could still be considered to be reasonable particle size distribution, 

however, the flow pattern of castables changed, as the actual curve fits well with the 

theoretical curve at q= 0.22 (Fig. 3.6). If relatively a low q-value is used (i.e. less 

than 0.25) then self-flow will be dominant. However, in this case, due to the poor 

water-wettability of CB, self-flow was not likely to occur and external vibration force 

had to be used to help casting.  

 

Fig. 3.6 Particle size distribution and q-value of Al2O3-CB castable. 
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3.2.2.2 Castable specimens preparation 

The specimen preparation went through three steps: mixing, casting and drying. All 

raw materials were dry mixed for 5 minutes and wet mixed for another 5 minutes 

after adding water in a Hobart mixer (Fig. 3.7a). Around 5.5 kg castables were made 

for sample casting for each formula. Before casting, the flow value of castable of 

each formula was measured and recorded. All these well-mixed and flowable 

castable materials were cast in moulds with assistance of a vibration table (Fig. 

3.7b). Vibration with frequency of 66 Hz lasted (~5 minutes) until no gas bubbles 

were seen coming out of the castable. All these castable specimens were left in the 

moulds (Fig. 3.7c) for 24 hours at room temperature followed by demoulding and 

drying at 110 C for another 24 hours in an oven.  

 

Fig. 3.7 Photos of (a) Hobart mixer, (b) vibration table and (c) moulds for casting specimens 
(bars and cubes). 

Cubes (50×50×50 mm) were made for measurements of bulk density (BD), 

apparent porosity (AP), permanent linear (volume) change (PLC/PVC), crushing 

strength and oxidation resistance. Prism bars (25×25×150 mm) were made for 

evaluation of rupture failure under a load. 

(a) 

(c) 

(b) 
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3.3 Characterisation and Testing 

3.3.1 Phase identification and microstructural observation 

3.3.1.1 X-ray Diffraction (XRD) 

XRD is a non-destructive analytical technique which can yield the unique fingerprint 

of Bragg reflections associated with a crystal structure. It is widely used to identify 

crystalline phases and orientation, and to determine atomic arrangement, lattice 

parameters, residual stress and strain, and grain size.[182] 

 

Fig. 3.8 A schematic diagram of interaction of X-rays with a crystal structure. 

An X-ray tube is the most important component of X-ray diffractometer. In an X-ray 

tube, the electron beam from the cathode provided by a heated tungsten filament is 

accelerated towards an anode by a potential difference of ~30kV. When electrons 

strike the metal target (normally Cu or Co), X-rays are emitted. For most diffraction 

experiments, a monochromatic beam of X-rays is desirable. Crystals consist of 

planes of atoms that are spaced a distance, d, apart, but can be resolved into many 

atomic planes, each with a different d-spacing. X-rays with a wavelength (λ) similar 

to the distances between these planes can be reflected such that the angle of 

reflection is equal to the angle of incidence, θ, as shown in Fig. 3.8. When diffraction 

occurs, it must follow the Bragg’s Law: 

2dsinθ = nλ                               (3.2) 

The X-rays after `Bragg reflection  ́will be picked up by a detector scanning at this 

angle. Thanks to Bragg’s Law, the inter-layer spacings of atoms in the crystal 

structure can be identified by the positions of these reflections. The obtained X-ray 

diffraction pattern corresponds to a unique crystal structure. Thus, the crystal 
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phases can be identified. It is also possible to quantify each phase present in the 

sample. It has to be noted that for amorphous materials, there are no characteristic 

XRD peaks in the obtained patterns. 

In this study, phases present in the samples obtained from different processing 

stages were identified by powder X-ray diffraction (XRD) analysis (Siemens D500 

reflection diffractometer). ICCD cards used for identification were TiC (65–242), SiC 

(29-1129), TiO2 (21-1272), C (graphite) (75-2078), Ti (44–1294) and Si (27-1402). 

Spectra were recorded at 30 mA and 40 kV using Ni-filtered Cu Kα radiation (λ = 

1.54178 Å). The scan rate (2θ) was 2 /min at a step size of 0.05. 

3.3.1.2 Scanning Electron Microscopy (SEM) 

SEM is a type of electron microscopy technique for studying the texture, topography 

and surface features of powders or solid pieces. The SEM images are produced by 

scanning the specimens with a focused beam of electrons. The electron-matter 

interactions result in a number of different particles or waves being emitted (e.g. 

secondary electrons, back-scattered electrons, X-rays, photons and Auger 

electrons).  

Secondary electrons (SE) are produced through inelastic scattering that results in 

the ejection of loosely bound electrons from the specimen. Imaging with secondary 

electrons provides information about morphology and surface topography. In 

contrast, back-scattered electrons (BE) are beam electrons that are reflected from 

the sample by elastic scattering. BE images can provide information about the 

distribution of different elements in the sample, since the intensity of the BE signal is 

strongly related to the atomic number (Z). X-rays give characteristic chemical 

information of the emitting atoms. The probed depth in EDS analysis is around 1-3 

µm (Fig. 3.9). All these electrons and waves are collected by corresponding 

detectors equipped with a specimen chamber, and then images and spectra can be 

presented after signal processing. 
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Fig. 3.9 A schematic diagram of electron-matter interactions for SEM.[183] 

In the present study, microstructures and morphologies were observed by using a 

field emission gun scanning electron microscope (SEM) (Inspect F, FEI Company) 

equipped with an energy-dispersive spectroscope (EDS) (Oxford instrument) to 

identify the local chemical composition. Powder samples were directly dropped onto 

conductive sticky carbon films and characterised after gold coating. However, for 

nano-sized particles, they were dispersed in isopropyl alcohol (IPA) to avoid 

agglomeration. One drop from the suspension was then put on the sticky carbon film, 

followed by drying IPA in air and gold coating. For bulk castable samples, they were 

sectioned and mounted in cold setting resin. Standard ceramographic grinding and 

polishing techniques were then used, after which all samples were coated with 

carbon and examined by backscattered electron imaging (BEI) and secondary 

electron imaging (SEI). 

3.3.1.3 Transmission Electron Microscopy (TEM)  

TEM is an electron microscopy technique allowing visualisation and analysis of 

specimens in the realms of microspace to nanospace. It is commonly used to 

investigate crystal structures, specimen orientations and chemical compositions. 

Unlike an optical microscope, a focused beam of high energy electrons is used in 

TEM. As shown in Fig. 3.10, an electron beam is emitted from a filament in electron 

gun and passes through condenser lenses (which is used to control how strongly 

beam is focused onto specimen). An image is formed from the interaction of the 

electrons transmitted through the specimen. The image can be magnified by 
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objective lenses and projected on an imaging device (e.g. a fluorescent screen). 

TEMs are capable of imaging at a significantly higher resolution than light 

microscopes, owing to the small de Broglie wavelength of electrons. As the 

wavelength of high-energy electrons is far smaller than the spacing between atoms 

in a solid, diffraction also occurs when an electron beam is transmitted through 

specimens. Selected area electron diffraction (SAED) can be used to determine the 

crystal structure of samples. 

 

Fig. 3.10 A generalised cut-away diagram of the internal structure of a transmission electron 
microscope alongside an example of a modern instrument.[184] 

In this study, microstructure of carbide coated CB was observed by using a 

transmission electron microscope (TEM) (Philips EM 420T instrument). Selected 

area electron diffraction (SAED) was used to assist identifying local phases. A high 

resolution TEM (HRTEM, JEOL 2010F microscope) was also applied for 

lattice-resolved imaging to identify the atomic structure of carbide shells. Based on 

mass-thickness contrast, regions of specimen which are thicker, or of higher density, 

will scatter more strongly and will appear darker in the image. So the thickness of 

carbide coatings could be estimated by measuring the darker shells. As for TEM 

specimen preparation, fine powders were dispersed in IPA with assistance of 

ultrasonic vibration for 15 minutes. One drop from the suspension was put on a 
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carbon film with Cu grids. IPA was evaporated in air prior to TEM characterisation. 

3.3.1.4 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR is a chemically-specific analysis technique. It can be used to identify chemical 

compounds, and constituent groups. When an infrared beam with continuous 

frequencies passes through a sample, the interaction between beam and sample 

causes the absorption of specific frequencies of the infrared wave. Since the 

vibration frequencies of the atomic bonds of materials are unique, the obtained 

infrared spectrum containing characteristic absorption peaks can be used for 

identification of chemical bonds. However, the infrared absorption only occurs when 

infrared radiation interacts with a molecule undergoing a change in dipole. On the 

other hand, the incoming infrared photon should have sufficient energy for the 

transition to the next allowed vibrational energy state. If these two rules are not met, 

no absorption will occur.[185] 

The normal instrumental process is shown in Fig. 3.11. The interferometer is the 

most important component, which is used to produce an interferogram with 

information about every infrared frequency. The signals after collection by detectors 

and decoding via Fourier transformation are presented in an infrared spectrum for 

analysis. 

 

Fig. 3.11 Schematic diagram of the sample analysis process.[186] 

FTIR measurements were carried out on a Spectrum 2000 (Perkin Elmer, USA) to 

identify atomic bonds in the phases. For better transmittance, ~5 mg as-prepared 

powders were mixed with 200 mg KBr powders and pressed into a thin pellet. The 

pellet samples were scanned from 4000 cm-1 to 400 cm-1 at an interval of 1 cm-1. 
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The spectrum was recorded as a function of wavelength of the incident radiation. 

3.3.2 Property measurements 

3.3.2.1 Particle density 

Density is merely calculated as the ratio of mass to volume. For a regular shape e.g. 

cubic or prim, the volume of the bulk object can be readily measured by a ruler, 

because the substance in the bulk is closely packed. However, for sub-micron or 

nano-sized particles, they exist in a form of loose packing. To determine the true 

density of particles (not packing density), the true volume of particles needs to be 

measured precisely, excluding the void space between particles and internal or 

open porosity. Thus, gas pycnometry needs to be used to measure the volume and 

true density of solid particles without damaging the samples.[187] The basic 

procedure of this method is putting a sample of known mass into a cell of known 

volume. Then helium gas is introduced into the cell which is at a vacuum, so helium 

occupies the space in the cell that is not occupied by the sample. The volume 

difference is determined by pressure change before and after gas filling. The 

calculation is based on gas displacement and well-known Boyle's Law (P1V1=P2V2). 

In this study, true densities of as-received uncoated CB and as-prepared TiC or SiC 

coated CB after ultrasonic dispersion were determined using a Helium Pycnometer 

(AccuPyc II 1340, Micromeritics Instruments (Fig. 3.12)). Before testing, a proper 

amount (~0.1-0.2 g), m, of powders was weighted and placed in a 1 cm3 sample 

chamber. Their absolute volume was measured as △V. So true densities of 

particles were obtained according to Equation 3.3.  

                               ρ𝑡 = 𝑚/∆V                             (3.3) 
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Fig. 3.12 A helium Pycnometer (AccuPyc II 1340) supplied by Micromeritics Instruments. 

3.3.2.2 Zeta potential 

Zeta potential is a physical property exhibited by particles in suspensions. The 

magnitude of zeta potential gives an indication of the potential stability of the 

colloidal or suspension system. Herein, it is used to characterise corresponding 

dispersion ability of uncoated and coated carbon particles in water. 

When a particle is immersed in an electrolyte or water, the surface charge is 

developed by dissociation of ionogentic groups on the particle surface or by 

differential adsorption from solution of ions of different charges into the surface 

region. In addition, an electrical double layer (Fig. 3.13) is formed around each 

particle. In the inner region (also called stern layer), the ions with opposite charge of 

particle surface are strongly bonded. Next to the stern layer is the diffusion region 

(diffusion layer) where the ions are less firmly attached. There is a notional 

boundary called the slipping plane. When a particle moves, ions within the boundary 

move with it, but any ions beyond the boundary do not travel with the particle. Thus, 

the potential detected at this boundary is known as the zeta potential.[188] The 

large negative or positive zeta potential indicates particles in colloidal or suspension 

are stable due to a high repelling force between each other. On the other hand, low 

zeta potential values are obtained, showing there is no sufficient force to prevent 

particles from coming together or flocculating.  
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Fig. 3.13 A schematic diagram of electrical double layer.[188] 

Zeta potential measurements were performed on a ZetaProbe Analyzer (Colloidal 

Dynamics Pty Ltd, USA) based on the multi-frequency electroacoustic principle. The 

sample used in this case was a water suspension containing 2 wt% ultrasonically 

dispersed uncoated or coated CB powders. 1 mol/L HCl and KOH solutions were 

used for pH titration from 3 to 12. 

3.3.2.3 Sedimentation testing 

Sedimentation testing was done to visually demonstrate the improvement in 

water-wettability and dispersivity of CB after coating. 1 gram as-received or coated 

CB powders were put in water and agitated violently for 1 minute. After setting aside 

for 5 min, their wetting behaviours were observed and photos of the suspensions 

were taken for comparison.  

3.3.2.4 Rheological behaviour 

Rheology is the study of the flow of matter, primarily in the liquid state, but also as 

'soft solids' or solids under conditions in which they respond with plastic flow rather 
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than deforming elastically in response to an applied force. It is important for 

industrial production processes, such as in the fields of resin, cement, paintings, and 

food systems, etc. As for castable production, the study on rheological behaviour of 

oxide pastes or carbon materials in water is necessary, as the workability of 

castables is normally governed by flowability of fine powders. 

According to the Newton’s law of viscosity, the strain rate is proportional to the 

applied stress (Equation 3.4). 

                                σ = η∙                                (3.4) 

where η (Pa∙s) is the viscosity which is independent of the applied stress and strain, 

σ is shear stress and  refers to the rate of shear strain. The fluids that obey the 

Newton’s law of viscosity are called Newtonian fluids. Their characteristic is that the 

viscosity is constant with time of shearing and does not vary with shear rate. 

However, for a large number of fluids, the viscosity changes with the shear rate. 

These fluids such as slurries, pastes, gels and polymer are called non-Newtonian 

and the typical relationship of viscosity and shear rate is shown in Fig. 3.14.  

 

Fig. 3.14 Viscosity-Shear rate relationship.[189] 

To investigate the flowability of carbon materials before and after surface 

modification, a strain-controlled rheometer (TA instruments AR 2000, USA) was 

used to investigate rheological properties of water suspensions containing 25 wt% 

of uncoated or TiC (or SiC)-coated CBs at room temperature (20 °C, pH= 6 or 10). A 

flat plate geometry with 60 mm diameter was used for the steady rate sweep 

ranging from 0.01 to 500 s−1. 

3.3.2.5 Thermal analysis (TGA+DSC) 

Thermogravimetry (TG) measures the change in mass of a substance as a function 
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of temperature or time. A sample is heated at a constant rate and has a varying 

mass when the decomposition or oxidation takes place over a range of 

temperatures. The changes in mass are fundamental properties of the sample and 

can be used for quantitative calculations of compositional changes. Differential 

scanning calorimetry (DSC), a thermoanalytical technique, is used to determine 

glass transition temperature and to study crystallization, oxidation and other 

chemical reactions. The enthalpy changes could be measured directly by 

maintaining the sample and an inert reference at the same temperature. The extra 

heat is input to the reference when the sample undergoes an exothermic change, 

and vice versa.[190] 

In this study, TG and DSC analysis were carried out simultaneously to examine the 

oxidation behaviour of uncoated and carbide-coated carbon materials in air at 

elevated temperature by using SDT-Q600 (TA instruments, Fig. 3.15) The sample 

(~10 mg) was put in an alumina crucible and heated in a sealed furnace chamber 

from room temperature to 1000 C at heating rate of 10 C/min. The air flow was set 

at 100 mL/min. 

 

Fig. 3.15 SDT-Q600 simultaneous TGA/DSC supplied by TA instruments. 

3.3.3 Testing methods for castable samples 

3.3.3.1 Water demand and flowability 

The water demand was determined by the amount of water required for castables to 

achieve a certain flow value under vibration. It is meaningful when both the water 

addition and flow value are considered together. In the present work, they were 
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measured based on ASTM C1445-99.[191] The well-mixed castables (as described 

in Section 3.2.2.2) were filled into a bronze cone (φ70×φ100×50 mm) and then 

pre-vibrated for 2 or 3 up-and-down stands while holding firmly on vibration table as 

shown in Fig. 3.16. After levelling the surface to the top of the cone, the cone was 

carefully removed. The castable in a cone shape was then flowed freely under 

up-and-down vibration. The diameter of the spread mass was measured at the ends 

of 6 arbitrary diameters after 15 cycles of vibration. The average diameter was taken 

as the flow value of castable at the certain water addition. In this study, water was 

added until the castable reached a flow value between 140 to 150 mm.  

 

Fig. 3.16 A photo of bronze flow cone and simplified vibration stand. 

3.3.3.2 Bulk density, apparent porosity and permanent linear change 

Apparent porosity (AP) and bulk density (BD) were measured according to ASTM 

C830-00.[192] A castable test specimen (50×50×50 mm cube) was dried to constant 

weight by heating at 110 C for 24 hours. The dry weight, md, was determined using 

a balance before it was placed in a vacuum-pressure vessel and fully impregnated 

with water under pressure for a certain time. Following this, the suspended weight, 

ms, was measured when the saturated specimen was suspended in water. Finally, a 

blotting operation was performed to slightly remove all drops of liquid on the surface 

of the test specimen and then the saturated weight, mw, was measured in air.  

Flow cone 

100 mm 

70 mm 

50 mm 

Vibration stand 
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According to ASTM C830-00, AP is the percentage ratio of the volume of open 

pores in the refractory specimen to its exterior volume and calculated using 

Equation 3.5. 

                          AP (%) =
mw−md

mw−ms
× 100%                      (3.5) 

Bulk density of the test specimen is calculated as follows 

                         BD (g/𝑐𝑚3) =
md

mw−ms
× ρH2O                      (3.6) 

 

Fig. 3.17 A setup for bulk density and apparent porosity measurement. 

AP and BD values were measured for both types of castable specimens (uncoated 

or coated carbon containing castables) after drying at 110 C and after coking in 

graphite powders at 1500 C respectively to investigate the changes of physical 

properties before and after high temperature heating.  

In addition, permanent linear and volume changes before and after firing were also 

examined based on standard test method ASTM C1407-98 [193] to characterise the 

dimensional stability of castables. The lengths of three sides of the cube before 

coking were measured and labelled as La, Lb and Lc. The corresponding length after 

coking are referred as L’a, L’b and L’c, respectively. PLC and PVC are calculated 

according to the following equations. 

                                 ∆La =
La

′ −La

La
                          (3.7) 
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                                ∆Lb =
Lb

′ −Lb

Lb
                            (3.8) 

                                ∆Lc =
Lc

′ −Lc

Lc
                            (3.9) 

                        PLC(%) =
ΔLa+ΔLb+ΔLc

3
× 100%                  (3.10) 

                      PVC (%) =
La

′ ∗Lb
′ ∗Lc

′ −La∗Lb∗Lc

La∗Lb∗Lc
× 100%                (3.11) 

3.3.3.3 Cold crushing strength and cold modulus of rupture 

Cold crushing strength (CCS) and cold modulus of rupture (CMOR) were 

determined by using the standard testing method ASTM C133-97.[194] For the 

crushing testing, a cubic specimen (50×50×50 mm) after drying was placed in the 

centre of sample holding platform, and subject to a load until collapse or reduction of 

specimen height to 90% of its original value. It should be noted that the selected 

compression test section must be free of cracks, chipped surfaces, and other 

obvious defects. The loaded surfaces should be approximately parallel planes. The 

CCS was calculated as 

                               CCS =
Fmax

A0
                            (3.12) 

Where： 

CSS = cold crushing strength, N/mm2=MPa 

Fmax = maximum load at failure, N 

A0 = surface area where subjected to load, mm2 

CMOR testing was performed on a three bending strength tester. The testing bar 

(150×25×25 mm) was positioned flat on bearing cylinders with a span of 100 mm 

and a load applied at mid-span, as illustrated in Fig. 3.18. The loading rate for the 

CMOR was controlled by the speed of the cross head. It was set as 1.3 mm/min in 

this work.  
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Fig. 3.18 A schematic diagram of three point bending test. 

The CMOR value was calculated by the following equation, 

                            MOR = 3FL/(2bd2)                       (3.13) 

MOR = modulus of rupture, N/mm2=MPa, 

Where F is the maximum load applied at rupture (N); L is the span between two 

bottom bearing cylinders (100mm for all the tests in this work); b is the width of the 

test specimen (25 mm in this work); d is the depth or height of specimen (also 25 

mm in this work). Each value is the average of three parallel specimen. 

3.3.3.4 Oxidation resistance 

Oxidation resistance of carbon-containing castables was evaluated by two main 

parameters: the depth of decarbonized layer and oxidation area. Since no 

antioxidants were added into investigated castables in this study, the oxidation test 

was carried out at 1000 C in air for 30 minutes and 3 hours, respectively. Cubic 

samples were placed into a hot chamber furnace prefixed at 1000 C. For 

unidirectional oxidation for each face of cube, a layer of coarse fused magnesia 

grains were placed at the bottom of the cube to expose the bottom face of the cube 

to air flow.  

After oxidation test, castable specimens were sectioned from the middle, and the 

average depth of the decarbonized layer was measured as one of the indexes for 

evaluation of oxidation resistance. The oxidation area of each specimen was also 

calculated. The oxidized samples were also characterised by using SEM, to assist 

understanding the oxidation mechanism of the samples in air at high temperature. 
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Chapter 4 Molten salt synthesis of TiC coatings on CB 

In this chapter, a molten salt synthesis technique was developed and employed for 

preparation of TiC coatings on CB. The synthesis parameters such as temperature, 

Ti/C molar ratios, CB particle size and salt assembly were optimised. 

Microstructures of TiC coated CB particles were characterised by SEM, EDS, TEM, 

and SAED. Apart from Ti, TiO2 was used as an alternative Ti source for preparing 

TiC coatings on CB in order to reduce their fabrication cost.  

4.1 Preparation of TiC coatings on CB using Ti  

4.1.1 Synthesis temperature 

Fig. 4.1 shows XRD of products of firing the mixtures of Ti and CB (in the molar ratio 

of 1/8) (referred to as the CB-Ti mixtures hereafter) for 4 hours in KCl-LiCl at 

650-750 C and in KCl at 800-850 C. The reaction between CB and Ti initiated at 

as low as 650 C, as indicated by the small TiC peaks. However, intensive Ti peaks 

(shifted slightly to the left probably due to formation of Ti(C) solid solution [195, 196]) 

still remained, indicating that the reaction was not complete. On increasing the 

temperature to 750 C, Ti disappeared and only TiC was detected along with 

unreacted CB (indicated by the broad peak centred at about 25.6), indicating that Ti 

was completely consumed to form TiC. This preparation temperature was 100-200 

C lower than that used in the preparation of TiC coated graphite [26], which is 

attributable to the higher reactivity of submicron-sized amorphous CB. On further 

increasing temperature to >800 C, no further phase changes were seen, but the 

TiC peaks became slightly higher and sharper, indicating a slight increase in its 

crystallinity and/or crystal size. The results indicate that the optimal reaction 

temperature for the MSS was 750-850 C. 
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Fig. 4.1 XRD of product powders of firing the mixtures of Ti and CB (with Ti/C=1/8) for 4 

hours at (a) 650 C and (b) 750 C in KCl-LiCl, and (c) 800 C and (d) 850 C in KCl. 

4.1.2 Microstructure characterisation 

4.1.2.1 Morphological changes of CB-Ti mixtures after firing 

Figs. 4.2a and b illustrate typical SEM images of raw materials, spherical CB 

particles (~280 nm in average diameter) and micron-sized Ti powders (~44 μm). 

However, after firing the CB-Ti mixtures in molten salt at 750-850 C Ti disappeared 

and only spherical particles were seen (Fig. 4.2c, d). These particles showed similar 

morphologies and sizes to the unreacted CB particles (Fig. 4.2a), but exhibited 

rougher surfaces, indicating new phase formation on their surfaces. Fig. 4.2c and d 

also compare the microstructures of product powders after firing the CB-Ti mixtures 

for 4 hours in KCl at 850 C and in KCl-LiCl at 750 C. The latter was similar to the 

former but showed slightly heavier agglomeration. The reason for this was not clear, 

but could be related to the difference in the salt properties (e.g. viscosity, wettability 

and surface tension) which might have affected the dispersion of CB particles. A 

higher magnification SEM image (Fig. 4.3a) further reveals the presence of many 

nanosized grains on their surfaces. These particles contained C and Ti (Fig. 4.3b). 

This, along with the XRD pattern shown in Fig. 4.1d, verified the formation of TiC 

coatings on the original CB particles. 
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Fig. 4.2 Typical SEM images of (a) as-received uncoated CB particles and (b) Ti powders, 
and product powders of firing the mixtures of CB and Ti (with Ti/C = 1/8) for 4 hours in (c) KCl 

at 850 C and (d) KCl-LiCl at 750 C. 

 

Fig. 4.3 (a) Higher magnification SEM image of a typical individual CB particle shown in Fig. 
4.2c, and (b) EDS of the surface of the particle shown in (a). 

Fig. 4.4 presents together back-scattered electron images (BEI) of as-received CB 

and as-prepared TiC-coated CB particles (synthesised at 850 C for 4 hours in KCl). 

(a) 

(c) (d) 

(b) 

1 μm 

1 μm 1 μm 

1 μm 
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Compared to uncoated CB particles with dark contrast (Fig. 4.4a), as-prepared CB 

particles showed homogeneous brighter contrast, additionally indicating the 

homogeneous distribution of Ti and the formation of TiC coatings. 

 

Fig. 4.4 BEI images of (a) as-received carbon black and (b) TiC coated carbon black (with 

Ti/C =1/8) prepared from KCl at 850 C for 4 hours. 

4.1.2.2 Core/shell structure of TiC coated CB 

The core/shell structure of TiC coated CB was confirmed directly by TEM 

observations. As shown in Fig. 4.5a, the surfaces of as-received uncoated CB 

particles appeared to be smooth, with identical contrast over the whole particles 

(apart from the overlapped areas). However, in the case of coated CB particles, a 

slightly darker-contrast shell was seen, covering each individual particle core (Fig. 

4.5b, c). The SAED pattern of the shell shows three diffraction rings corresponding 

respectively to the (111), (200) and (220) planes of the cubic TiC, which further 

verifies the formation of TiC coatings. In terms of the TEM image in Fig. 4.5c, the 

thickness of the shell corresponding to Ti/C = 1/8 was estimated to be 11.09 nm. 
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Fig. 4.5 TEM images of (a) uncoated CB, (b) TiC coated CB (with Ti/C=1/8) prepared at 850 

C for 4 hours in KCl, and (c) an individual TiC coated CB particle from (b).The insert in (b) is 
the SAED pattern of the shell, showing the (1 1 1), (2 0 0) and (2 2 0) diffraction planes of TiC. 

To further reveal core/shell structure of TiC-C composite spheres, carbon was 

removed by combustion of them in air at 500 C for 30 minutes. Fig. 4.6a shows 

XRD of TiC-coated CB particles after oxidation, in which TiO2 phase was detected 

along with a small amount of TiC remained in the resulting powders. The 

disappearance of carbon peak (broad peak centred at about 25.6 as shown in Fig. 

4.1) confirmed the removal of carbon at this oxidation temperature. As can be seen 

from Fig. 4.6b, spherical shape of the resulting particles still remained and some 

broken spheres (e.g. indicated by the black arrows) shows the obviously hollow 

structure. Despite TiC shells were oxidised and converted to TiO2 shells during 

oxidation treatment, the hollow structure verified the formation of TiC coatings on 

carbon cores.  
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Fig. 4.6 (a) XRD pattern and (b) SEM image of TiC-coated CB particles after oxidation in air 

at 550 C for 30 minutes, showing their hollow structure after oxidation removal of the carbon 
cores in air.  

4.1.3 Effect of Ti/C molar ratio on TiC formation 

To reveal the controllability of TiC coating thickness, the mixtures of Ti and CB in 

other molar ratios (1/4-1/2) were also fired under the identical conditions. The 

formation of TiC coatings on the original CB particles was also verified by XRD and 

SEM. Fig. 4.7 shows XRD of product powders of firing the mixture of Ti and CB in 

the molar ratio of 1/4 and 1/2. Only TiC crystalline phase was detected after reaction, 

indicating all Ti powders were completely converted to TiC coatings at 850 C in KCl 

though the proportion of Ti in starting materials was increased. Furthermore, the 

(a) 

(b) 

1 μm 
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intensity of TiC peaks increased, concurrent with a decrease in the broad CB peak, 

indicating the formation of more TiC or thicker TiC coatings. SEM images (Fig. 4.8) 

of as-prepared CB particles prepared from higher initial Ti/CB molar ratios shows 

thicker TiC coatings retain as high quality as the thin counterparts (prepared in low 

Ti/CB molar ratio (1/8)). 

 

Fig. 4.7 XRD of product powders of firing the mixture of Ti and CB in the molar ratio of (a) 1/4 

and (b) 1/2 for 4 hours at 850 C in KCl. 

 

Fig. 4.8 SEM images of product powders of firing the mixture of Ti and CB in the molar ratio 

of (a) 1/4 and (b) 1/2 for 4 hours at 850 C in KCl. 

Unfortunately, with increasing coating thickness, it became more difficult for the 

accelerating electrons to be transmitted through the coatings. Consequently, it 

became almost impossible to take clear TEM images for estimating the coating 

(b) (a) 
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thickness. Nevertheless, considering the difference in the densities of CB and TiC, 

the TiC coating thicknesses could be roughly estimated based on the true densities 

of CB particles after coating. As shown in Fig. 4.9, the density of as-received CB 

was 1.89 g/cm3, whereas that of TiC coated CB when Ti/C = 1/8 was 2.59 g/cm3, 

and further increased to 3.70 g/cm3 upon increasing Ti/C to1/2. Such an increase in 

the density of TiC-coated CB particles could narrow the density difference between 

them and other grains (e.g. MgO and Al2O3) used in castable systems, thus 

assisting more homogeneous distribution/dispersion of carbon in the castable 

systems. Based on the true densities, the coating thickness was estimated to be 

~10 nm when Ti/C= 1/8, which is close to that (~11 nm) estimated from TEM images 

(e.g., Fig. 4.5c). Upon increasing the Ti/C ratio to 1/2, the estimated TiC coating 

thickness increased to ~50 nm. These results indicate that the TiC coating thickness 

and true density of CB could be readily tailored to meet practical requirements 

simply via adjusting the Ti/C ratio of the starting mixture. 

 

Fig. 4.9 True density of CB particles and corresponding TiC coating thickness as a function of 
Ti/C. 

4.1.4 Effect of CB particle size on TiC formation 

To study the feasibility of molten salt preparation of TiC coatings on smaller carbon 

particles, two types of CB particles, N660 (~62 nm) and N330 (~30 nm), were used 

as carbon templates. After firing CB-Ti mixtures (Ti/CB =1/8 in molar ratio) in KCl at 

850 C for 4 hours, the produced particles, as shown in Fig. 4.10, to a large extent, 
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appeared to retain the morphologies and sizes of the their corresponding uncoated 

CB particles. To confirm the formation of TiC coatings on nano-sized CB particles 

(<100 nm), the approach of removal of carbon cores in air was also employed. As 

indicated by black arrows in Fig. 4.11, the hollow structure of nano-particles (< 50 

nm) was obtained after completely oxidizing carbon cores (CB N330), indicating TiC 

coatings could even be prepared on nano-sized CB particles (30-60 nm diameter) 

by using the MSS technique. 

 

Fig. 4.10 SEM images of TiC-coated CB particles (Ti/C = 1/8 in molar ratio) prepared in KCl at 

850 C for 4 hours using (a) CB N660 and (b) CB N330. 

 

Fig. 4.11 TEM image of hollow particles after firing as-prepared TiC-coated CB (N330) in air 

at 500 C for 30 minutes. 

(a) (b) 
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Hollow structure 
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4.1.5 Effect of molten salt on TiC formation 

Based on above experimental results, it can be concluded that high quality TiC 

coatings were successfully prepared on CB particles with the assistance of molten 

salt at a low temperature. To demonstrate the role of molten salt played in TiC 

coating preparation, the synthesis was also conducted under conditions without 

using a salt. Fig. 4.12b shows XRD of the products resultant from firing the CB-Ti 

mixture (Ti/C = 1/8 in molar ratio) at 850 C for 4 hours in the absence of salt. The 

appearance of TiC peaks indicates CB was able to directly react with Ti in salt-free 

condition, however, a certain amount of unreacted Ti (or Ti(C)) as indicated in Fig. 

4.12b, formed due to solid solution of C in unreacted Ti) still remained, which was 

further verified by SEM (indicated by white arrow in Fig. 4.13a). Differently from the 

morphology of TiC coated CB particles prepared from the molten salt (Fig. 4.2c), 

micron-sized TiC/C powders (~20-100 μm) rather than dispersive submicron-sized 

particles were obtained in the product powders (Fig. 4.13a). A high magnification 

SEM image (Fig. 4.13b) revealed that these TiC/C powders’ surface was consisted 

of sintered micron-sized TiC crystals. These results indicate solid-solid reaction 

(without molten salt media) of CB and Ti could not produce TiC coatings on CB, 

which further indicates the important role played by the molten salt in the TiC 

coating formation.  

 

Fig. 4.12 XRD of the powders of (a) before and (b) after firing the CB-Ti mixture (Ti/C = 1/8 in 

molar ratio) in the absence of KCl at 850 C for 4 hours. 
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Fig. 4.13 (a) Low magnification and (b) high magnification SEM images of the resulting 

powders of firing the CB-Ti mixture (Ti/C = 1/8 in molar ratio) in the absence of KCl at 850 C 
for 4 hours. 

This is attributed to the interaction between metallic Ti powders and molten salt at 

the reaction temperature. Fig. 4.14 shows the microstructure of the Ti powders after 

firing in KCl at 850 C for 4 hours. As shown in Fig. 4.2b, as-received Ti powders 

had irregular shapes with a micron-size (~44 µm), however, after firing in the molten 

salt at 850 C for 4 hours, the size was reduced evidently, and some nano-sized 

particles (indicated by white arrows) were seen. Based on these results, it can be 

reasonable to speculate that the changes in shapes and size of Ti powders are 

attributed to dissolution of Ti in molten salt, although the solubility of Ti in KCl is 

unclear. Micron-sized Ti were partially dissolved into molten salt at high temperature, 

and then re-precipitated out of the salts upon cooling. Such a 

‘dissolution-precipitation’ process was verified by the appearance of nano-sized Ti 

particles as shown in Fig. 4.14. The dissolved Ti would be readily diffused through 

the salt onto CB particles and then reacted with CB forming TiC coatings. This 

mechanism will be detailed in Chapter 8. 

1 μm 100 μm  

Unreacted Ti 

TiC/C powders 

(a) 
 

(b) 
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Fig. 4.14 SEM image of as-received Ti powders after firing in KCl at 850 C for 4 hours.  
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4.2 Preparation of TiC coatings on CB using TiO2/Ti 

To further reduce the cost of preparing TiC coatings, relatively cheap TiO2 was used 

as an alternative titanium source in molten salt synthesis. According to Razavi’s 

study [197], the carbothermal reduction of TiO2 and formation of TiC go through 

three stages: 

TiO2 + C      TinO2n-1 + CO                                            (4.1) 

TinO2n-1 + C      TiCxOy + CO                                          (4.2)   

TiCxOy + C      TiC + CO                                             (4.3) 

TiO2 will be reduced gradually by carbon, forming sub-oxides such as Ti4O7, Ti3O5 

and Ti2O3. With carbothermal reduction progressing, part of oxygen in TinO2n-1 will 

be replaced by carbon and intermediates with different O/C ratios in form of TiCxOy 

are formed before completely converting to TiC. So The overall process of the 

carbothermal reduction of TiO2 is shown as follows: 

TiO2 + 3C      TiC + 2CO                                             (4. 4) 

4.2.1 Using TiO2 

TiO2 was initially mixed with CB in molar ratio of 1/10 which is equivalent to 1/8 of 

Ti/C if the carbothermal reaction (Reaction 4.4) is completed. Fig. 4.15 shows XRD 

of the product powders of firing the mixtures of TiO2 and CB (in the molar ratio of 

1/10) (referred to as the CB-TiO2 mixtures hereafter) at 950 C with or without KCl. 

No TiC crystalline phase was detected by XRD after firing in the absence of KCl 

whereas phase transition of TiO2 from anatase to rutile occurred (Fig. 4.15b). In 

contrast, in the presence of KCl, the intensity of TiO2 peaks (Fig. 4.15c) decreased 

dramatically and some intermediate phases (TiOx, x=1.83-1.89) were formed, 

indicating TiO2 was slightly reduced by carbon in KCl. The fact shows that molten 

salt is beneficial to carbothermal reduction of TiO2. Unfortunately, TiC was not 

obtained either, although the carbothermal reduction was initiated in KCl at 950 oC. 
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Fig. 4.15 XRD of the product powders of the CB-TiO2 mixtures (with TiO2/C =1/10 in molar 

ratio) (a) before, and after firing at 950 C for 4 hours (b) in the absence of KCl, and (c) in the 
presence of KCl. 

When increasing temperature to 1200 C, the carbothermal reduction of TiO2 was 

accelerated in molten salt. As shown in Fig. 4.16a, the main phase of the product of 

firing the CB-TiO2 mixture at 1200 C for 4 hours in KCl was Ti3O5 (TiOx, x=1.67), 

along with a small amount of Ti2O3 (TiOx, x=1.5). When the holding time was 

extended to 8 hours, the intensity of Ti2O3 peak increased evidently, indicating a 

higher reduction extent. Comparison between Fig. 4.15c and Figs. 4.16a, b reveals 

that increasing reaction temperature and time can lead to a further reduction of TiO2 

to sub-oxides with lower O/Ti ratios. Nevertheless, in all cases, complete reduction 

of TiO2 to TiC was still not achieved. However, TiC could be obtained (Fig. 4.16c) 

when a double stage heating schedule (950 C-4 hours-1200 C-4 hours) was 

employed. Furthermore, all titanium oxides disappeared, indicating TiO2 was 

completely reduced and relatively pure TiC was formed. This is because the first 

stage (heating at 950 C) significantly improved the mixing of TiO2 and CB in a liquid 

medium (molten salt) so that carbothermal reduction could be completed at higher 

temperature (1200 C) in the second stage. 
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Fig. 4.16 XRD of product powders of firing the CB-TiO2 mixtures (with TiO2/C =1/10 in molar 

ratio) in KCl (a) at 1200 C for 4 hours, (b) at 1200 C for 8 hours, and (c) at 950 C for 4 hours 

and then 1200 C for 4 hours. 

The microstructures of the product powders of firing the CB-TiO2 mixtures in molten 

salt were characterised by SEM, along with EDS analysis. Fig. 4.17a and b show 

the morphologies of the resulting powders prepared at 950 and 1200 C, 

respectively. Micron-sized titanium oxide crystals such as TiOx (x=1.83-1.89) and 

Ti3O5 confirmed by XRD (Fig. 4.15a and Fig. 4.16b) were found (as indicated by 

black arrows in Fig. 4.17a, b) in the resulting powders. However, as shown in Fig. 

4.17c, they disappeared after the double stage heating process in KCl (at 950 C for 

4 hours and 1200 C for 4 hours). EDS (Fig. 4.17e) did not detect any oxygen, 

indicating TiO2 was completely reduced to TiC and none of the titanium oxide 

intermediate phases remained. A higher magnification SEM image (Fig. 4.17d) 

revealed that not all CB particles were coated with TiC. As indicated by the black 

arrows, TiC nanocrystals were observed on some of the CB particles, however, the 

surface of the rest of CB particles (indicated by the white arrows) remained smooth, 

which was similar to the surface of uncoated CB. Apparently, TiC coatings were not 

prepared on every individual CB particles, although a pure TiC was formed by the 

carbothermal reduction in KCl via the double stage heating process (950+1200 C).  
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Fig. 4.17 SEM images of product powders of firing the CB-TiO2 mixtures (with TiO2/C =1/10 in 

molar ratio) in KCl (a) at 950 C for 4 hours, (b) at 1200 C for 8 hours, and (c) and (d) at 950 

C for 4 hours and then 1200 C for 4 hours; (e) Typical EDS spectrum of the coating shown 
in (d). 

4.2.2 Using TiO2 and Ti 

Another attempt was made to prepare TiC coatings by using a combination of TiO2 

and Ti as the titanium source. To produce equivalent high quality TiC coatings on CB, 

the final molar ratio of Ti/C was set at 1/8, assuming all TiO2 and Ti were converted 

to TiC after the reaction completed. Since the molar ratio of TiO2/Ti is crucial to the 
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formation of TiC coatings in molten salt, the mixtures of TiO2, Ti and CB (referred to 

as the CB-Ti-TiO2 mixtures hereafter) with different TiO2/Ti molar ratios were 

prepared and fired in KCl at 950 C. As shown in Fig. 4.18, only Ti2O3 was found 

after firing the mixture containing TiO2 and Ti in molar ratio of 2/1. TiC formation was 

initiated at TiO2/Ti molar ratio of 1/1. Upon decreasing to 1/3, titanium oxides (e.g. 

Ti2O3 and Ti3O5) disappeared and only TiC was detected along with unreacted CB 

(labelled by a small empty circle in Fig. 4.18d), indicating TiO2 and Ti were 

completely consumed to form TiC. The phase evolution reveals pure TiC can be 

obtained from firing CB-TiO2-Ti in KCl at as low as 950 C when the TiO2/Ti molar 

ratio is strictly controlled <1/3. 

 

Fig. 4.18 XRD of the product powder of firing mixtures of TiO2, Ti and CB at 950 C in KCl in 
TiO2/Ti molar ratio of (a) 2/1, (b) 1/1, (c) 1/2, and (d) 1/3.  

As concluded in Section 4.2.1, a high temperature is beneficial to carbothermal 

reduction of TiO2 in molten salt. In order to prepare TiC by using TiO2 and Ti in a 

higher molar ratio, the synthesis temperature was increased to 1050 C. As shown 

in Fig. 4.19c, nearly a pure TiC was obtained, along with small amounts of titanium 

oxide intermediates when firing CB-Ti-TiO2 mixture (with a TiO2/Ti molar ratio of 1/2) 

in KCl at 1050 C. The TiC peaks were shifted slightly to the right due to a small 

amount of oxygen remaining in TiC nanocrystals, thus they were assigned to TiC(O). 

In contrast, when TiO2/Ti molar ratio increased to 1/1 and 2/1, sub-oxides after 

reduction of TiO2 such as Ti3O5 was the main crystalline phase in the product 
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powders. 

 

Fig. 4.19 XRD of the powders of firing mixtures of TiO2, Ti and CB at 1050 C in KCl in TiO2/Ti 
molar ratio of (a) 2/1, (b) 1/1, (c) 1/2 

As-prepared TiC/CB mixtures were further characterised and analyzed by SEM and 

EDS. Fig. 4.20a show the resulting powders of firing CB-TiO2-Ti mixture (TiO2/Ti = 

1/3 in molar ratio) at 950 C in KCl. The rough surface was clearly seen on spherical 

particles, indicating TiC phase was formed on CB. The as-prepared TiC coatings 

were in high quality (uniform, crack-free), similar to that prepared from Ti and CB. 

Elemental analysis (Fig. 4.20c) confirmed no titanium oxide remained in the 

resulting powders. However, upon increasing TiO2/Ti molar ratio from 1/3 to 1/2 in 

the starting materials, TiC coatings cracked (Fig. 4.20b), although they were tightly 

attached on the CB surfaces. A minor amount of oxygen (Fig. 4.20d) was detected, 

showing minor amounts of titanium oxides still remained in the obtained powders, 

which was also confirmed by XRD (Fig. 4.19c). Therefore, the upper limit for 

replacing TiO2 with Ti for the formation of TiC coatings is 25% mole percentage. 

When the molar ratio of TiO2/Ti is >1/3, a higher temperature (> 1050 oC) will be 

required, but the TiC coatings will not be as high quality as expected.  
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Fig. 4.20 SEM images of the resultant powders after firing TiO2/Ti mixture in KCl at molar 

ratio of (a) and (b) 1/3 at 950 C, (c) and (d) 1/2 at 1050 C. Typical EDS spectra of the 
coatings, (e) shown in (b), and (f) shown in (d). 
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Chapter 5 Molten salt synthesis of SiC coatings on CB 

In this chapter, SiC coatings were prepared on CB by using a molten salt synthesis 

technique. The effects of the size of Si powders, synthesis temperature, NaF-NaCl 

assembly, and Si/C molar ratios on SiC coating formation were investigated. The 

microstructure of SiC coated CB particles were characterised by SEM, EDS, TEM 

and SEAD. In addition, graded SiC/SiO2 composite coatings were prepared by 

controlled oxidation of SiC-coated CB in air to further improve their water-wettability. 

5.1 Preparation of SiC coatings on CB 

5.1.1 Optimisation of SiC coating formation 

To study the effect of the size of Si powders on SiC formation, CB particles were 

mixed with micron-sized Si (~44 μm) or nano-sized Si powders (<100 nm) in the 

Si/C molar ratio of 1/8 and fired under the same conditions. Fig. 5.1 shows XRD of 

the product powders of firing the mixtures of micron-sized Si and CB (micron-Si-CB) 

and nano-sized Si and CB (nano-Si-CB) respectively at 1200 C for 8 hours in a 

NaF-NaCl binary salt containing 20 wt% NaF (referred to as 20%NaF-NaCl 

hereafter). In these two fired samples, Si peaks were absent and apart from the 

broad peak (centred at about 25.6) attributed to the residual CB, only β-SiC peaks 

were seen. These results indicated that under this firing condition both micron-sized 

and nano-sized Si had completely reacted with CB to form β-SiC, which further 

indicated that cheaper micron-sized Si powders instead of expensive nano-sized Si 

powders (which were used to react with carbon nanotubes forming SiC nanorods 

[149]) could be used to prepare SiC. Therefore, micron-sized Si powders were used 

as the main silicon source in the following experiments. 
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Fig. 5.1 XRD of the powders of firing the mixtures of (a) micron-sized Si and CB, and (b) 

nano-sized Si and CB at 1200 C for 8 hours in 20%NaF-NaCl. 

Fig. 5.2 shows phase evolution in the mixtures of Si and CB (with the molar ratio of 

1/8) (referred to as the 1/8 Si-CB mixture hereafter) after 6 hours firing in 

20%NaF-NaCl, at various temperatures. At 900 C, no SiC was formed and only 

unreacted carbon (indicated by the broad peak) and Si remained, whereas at 1000 

C, SiC started to appear and Si peaks concurrently decreased. On increasing the 

temperature to 1100 C, Si disappeared and only SiC was seen along with 

unreacted carbon. On further increasing the temperature to 1200 C, no further 

phase changes were seen, though the peaks of SiC became slightly sharper, 

indicating its enhanced crystallinity or increased size.  
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Fig. 5.2 XRD patterns of the product of firing mixtures of Si and CB (in the molar ratio of 1/8) 

for 6 hours in 20%NaF-NaCl at 900, 1000, 1100 and 1200 C. 

To investigate the effect of NaF on the SiC synthesis, the 1/8 Si-CB mixtures were 

also fired in NaCl-based salt containing different amounts of NaF. Fig. 5.3 presents 

XRD patterns of products of firing the 1/8 Si-CB mixtures after 6h at 1100 C in a 

NaCl-based salt containing 0, 1.25, 2.5 or 5 wt% NaF. Almost no SiC was detected 

in the absence of NaF. However, when 1.25 wt% NaF was used in the salt, SiC 

peaks started to appear and Si peaks decreased concurrently. On further increasing 

the NaF content to 2.5 wt%, Si disappeared and only SiC along with unreacted 

carbon was present. In addition to the primary SiC peaks, two tiny shoulder peaks at 

2θ≈ 33.78 and 38.01 (marked as black stars) were seen, in particular, in the case 

of using 1.25 wt% NaF. They are believed to arise from the stacking faults 

commonly existing in β-SiC.[198, 199] Further increasing the NaF content to 5 wt% 

did not result in any further phase changes, but the two small shoulder peaks almost 

disappeared. The XRD pattern in this case was almost identical to that when using 

20 wt% NaF (Fig. 5.2), indicating that 2.5-5 wt% NaF in the binary salt was sufficient 

for the MSS process of SiC. 
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Fig. 5.3 XRD patterns of the product of firing mixtures of Si and CB (in the molar ratio of 1/8) 

at 1100 C for 6 hours in a NaCl-based salt containing 0, 1.25, 2.5 and 5 wt% NaF. 

5.1.2 Morphological changes of Si-CB mixtures after firing 

Figs. 5.4 a and b show respectively typical SEM images of micron-Si-CB mixture 

and nano-Si-CB mixture. The difference in Si particle size was clearly demonstrated 

(indicated by white arrows). Micron-sized Si particle is ~440 times larger than 

nano-sized Si particle. After dispersion treatment, the agglomeration of nano-sized 

particles was not observed (indicated as the insert in Fig. 5.4b). However, after firing 

starting material mixtures at 1200 C, the resultant powders in both cases exhibited 

almost the same morphologies. Si powders in micron-scale or nano-scale 

disappeared and spheres similar to CB particles were seen (Figs. 5.4c, d), which 

was consistent with the phase analysis (Fig. 5.1). Furthermore, it also verified that it 

was feasible to replace nano-sized Si with micron-sized Si to synthesize SiC on CB. 
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Fig. 5.4 SEM images of the micron-Si-CB mixture (a) before and (c) after firing at 1200 C for 
8 hours in 20%NaF-NaCl; the nano-Si-CB mixture (b) and (d) after firing under the same 
firing conditions. 

In addition, a small amount of nanofibres were also seen in the fired samples 

(indicated by white arrows in Figs. 5.4c, d). To identify these nanofibres, further 

characterisations were carried out. As shown in high resolution SEM images (Fig. 

5.5a, b), the nanofibres were distributed in the gaps of C/SiC composite spheres, 

and had high length/diameter ratios and the average diameter of ~40 nm (Fig. 5.5b). 

TEM images (Fig. 5.5c) further reveled that these nanofibres were bamboo-like. 

Their crystal structure was determined by selected area electron diffraction (SAED). 

Both these nanofibres and C/SiC spheres showed similar diffraction patterns (Fig. 

5.5e, f) which were assigned to the (111), (220), (311) planes of 3C-SiC (also called 

β-SiC). These results confirmed that the nanofibres were SiC, and also revealed 

polycrystalline nature of the formed SiC phase.  
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Fig. 5.5 (a) and (b) magnified SEM images, and (c) and (d)TEM images of nanofibres and 
C/SiC composite spheres in resulting powders of firing micron-Si-CB mixture at 1200 oC for 
8h in 20%NaF-NaCl; (e) An SAED pattern from C/SiC composite spheres shown in (c); (f) An 
SAED pattern from nanofibres shown in (d). 

The morphologies of the resulting powders prepared at lower temperature (1100 C) 

were also examined by SEM. Phase analysis in Fig. 5.2c confirmed that the reaction 

of Si and CB (in molar ratio of 1/8) was completed at 1100 oC, even in a NaCl-based 

salt containing less NaF (2.5-5 wt%) (Fig. 5.3c, d). Fig. 5.6 shows SEM images of 

the resulting powders prepared at 1100 oC in NaCl-based salts containing 

respectively 20 wt% and 5 wt% NaF, exhibiting almost the same morphologies in 

both cases. Only spheres with rough surface were presented, indicating the 

reduction in NaF content in the binary salts had no negative effect on the SiC 

formation and products’ morphologies.  

(a) 

(d) (c) 

(b) 

(e) 

40.1 nm 

500 nm 

(f) 

1 μm 

500 nm 



Chapter 5 Molten salt synthesis of SiC coatings on CB 

108 
 

 

Fig. 5.6 SEM images of the product powders of firing 1/8 Si-CB mixtures at 1100 C for 6 
hours in NaCl based salt containing (a) 20 wt% and (b) 5 wt% NaF. 

5.1.3 Microstructural characterisation of SiC-coated CB spheres 

5.1.3.1 Core-shell structure of CB-SiC spheres 

To reveal the microstructure of CB/SiC composite spheres, characterisation on 

individual particles were performed by using high resolution SEM and TEM. As 

shown in Fig. 5.6b, Si disappeared after firing at 1100 C for 6 hours in 5%NaF-NaCl 

and only spherical particles were seen. These particles showed similar 

morphologies and sizes to the unreacted CB particles, but exhibited rougher 

surfaces, indicating new phase formation on their surfaces. Incomplete coverage 

was occasionally seen on some of these spherical particles (Fig. 5.7a), seemingly 

revealing the formation of a core-shell structure. EDS (Fig. 5.7b) further reveals that 

the shell contained mainly carbon and silicon, along with minor oxygen arising from 

some contamination [200]. This, along with the corresponding XRD (Fig. 5.3) 

verified the formation of SiC coatings (containing minor oxygen) on CB particles. 

The core-shell structure of the spherical particles shown in Fig. 5.6b can be more 

directly revealed by TEM (Fig. 5.8a). The black contrast shells with fairly consistent 

thicknesses were identified as SiC by SAED (not shown). High resolution TEM (Fig. 

5.8b) reveals that the SiC shells were composed of nanocrystals about 10 nm in 

size. Furthermore, the main lattice interlayer distance was identified as ~0.25 nm 

which corresponds to the (111) plane of β-SiC. 

 

(a) 
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Fig. 5.7 (a) SEM image of CB particles showing some incomplete SiC coverage, which were 
occasionally found in the microstructure shown in Fig. 5.6b. (b) Typical EDS spectrum of the 
coating shown in (a). 

 

Fig. 5.8 TEM images of (a) SiC coated carbon black particles, and (b) High resolution TEM 
image of a typical SiC coating on a carbon black particle. The inset reveals the regular 
stacking sequence of β-SiC. 

5.1.3.2 Hollow SiC spheres 

Since CB is more vulnerable to oxidation than SiC, the carbon cores could be 

removed by oxidation in air at an appropriate temperature (in this case 600 oC) to 

further reveal the formation of SiC coatings. Nevertheless, the oxidation 

temperature and time are crucial and so need to be carefully optimised. If the 

oxidation temperature is too low or the time is too short, carbon cores will not be 

completely removed. On the other hand, if the temperature is too high or the time is 

too long, although carbon cores can be removed completely, part of the SiC shell 

might also be oxidised to silica (SiO2). Trials under different conditions (500-700 C 

(b) 



Chapter 5 Molten salt synthesis of SiC coatings on CB 

110 
 

for 30-90 minutes) revealed that the optimal oxidation condition was 90 minutes at 

600 C. This condition was slightly different from that (600-700 C for 2 hours) used 

by Zhang et al [201] and Liu et al [202]. However, even under this optimal oxidation 

condition, there was still some minor oxidation of SiC. Consequently, a small 

amount of amorphous SiO2 were always detected in the samples after the oxidation 

treatment. As shown in Fig. 5.9 (Curve a), after oxidation under the optimal condition, 

the two broad peaks of CB disappeared, but a new broad peak (around 2θ = 22.01) 

attributable to amorphous SiO2 appeared. The presence of SiO2 in the sample after 

oxidation treatment was also revealed by FTIR (Fig. 5.10a). As shown in Fig. 5.10a, 

in addition to the intensive sharp peak at around 820 cm-1 arising from the 

fundamental stretching vibration of SiC, two other absorption bands at 1095 and 471 

cm-1 respectively were found. These two bands were attributed to the antisymmetric 

and symmetric stretching vibrations of Si-O-Si bonds, respectively. [203] 

  

Fig. 5.9 XRD of (a) hollow SiC spheres obtained after oxidizing SiC coated CB spheres in air 

at 600 C for 90 minutes and (b) final hollow SiC spheres obtained after the NaOH treatment. 
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Fig. 5.10 FTIR spectra of SiC hollow spheres: (a) before and (b) after the NaOH treatment. 

A 40 wt% NaOH solution was used to etch out the amorphous SiO2 present in the 

samples. As shown in Fig. 5.9 (Curve b), the broad SiO2 peak disappeared after 

such treatment. The absence of amorphous SiO2 after the NaOH treatment was 

also confirmed by FTIR (Fig. 5.10b) which shows that while the absorption band of 

SiC still remained, the Si-O absorption bands disappeared. 

After such oxidation removal of carbon cores, hollow SiC spheres remained, which 

were demonstrated by SEM and TEM characterisation. Fig. 5.11a shows that 

spherical particles were obtained and their surfaces were rough and composed of 

nanosized SiC particles (Fig. 5.11b). Occasionally some broken SiC spheres or 

spheres with small holes (up to ~100 nm) were seen, indirectly indicating their 

hollow structures. The hollow structure can be seen more clearly and directly from 

TEM images (Figs. 5.11 c, d). Near-spherical hollow spheres were observed (Fig. 

5.11c). Some small (20-100 nm) holes (bright contrast areas indicated by the arrows) 

were also seen in some of the shells (Fig. 5.11d), which might be created during the 

oxidation treatment, although further work is needed to clarify this.  
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Fig. 5.11 (a) and (b) SEM images, and (c) and (d) bright field TEM images of hollow SiC 
spheres after carbon core removal, followed by the NaOH treatment: The insert in (c) is an 
SAED pattern from SiC shell. 

5.1.4 Effect of Si/C ratio on SiC formation 

5.1.4.1 Preparation of ‘thicker’ SiC coatings on CB 

Fig. 5.12 shows XRD patterns of the powders resulting from firing Si-CB mixtures in 

molar ratio of 1/4 and 1/2, respectively at 1100-1150 C in molten salt. At 1100 C, 

small Si peaks in addition to intensive SiC peaks were detected in the fired sample 

with Si/C molar ratio of 1/4, indicating not all Si powders were completely reacted to 

form SiC. However, when the heating temperature was increased to 1150 C, only 

SiC crystalline phase was present in the fired samples (in molar ratio of 1/4 and 1/2). 

These results showed that the increase in the molar ratio of Si/C would require 

slightly higher temperature to complete the reaction within the same reaction time. 

Meanwhile, compared with XRD of SiC coated CB prepared from Si/C molar ratio of 

1/8 (Fig. 5.3), the intensity of SiC peaks increased with higher Si/C molar ratio, and 

(a) (b) 

(c) (d) 
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carbon peaks decreased concurrently, indicating more SiC were formed. SEM 

images (Fig. 5.13) show that the resultant particles appeared similar morphologies 

and sizes to unreacted CB particles and SiC-coated CB prepared in lower Si/C 

molar ratio (1/8) (Fig. 5.6). In this case, more Si was consumed and converted to 

SiC coatings on CB, indicating the coating thickness was most likely increased with 

Si/C molar ratio. This will be verified by TEM in the later section.  

 

Fig. 5.12 XRD of the product powders of firing Si-CB mixtures in molar ratio of (a) 1/4 at 1100 

C, (b) 1/4 at 1150 C, and (c) 1/2 at 1150 C in NaCl-based salt containing 5 wt% NaF. 

 

Fig. 5.13 SEM images of the powder of firing Si-CB mixtures in molar ratio of (a) 1/4 (b) 1/2 at 

1150 C for 6 hours in NaCl-based salt containing 5 wt% NaF. 

1 μm 1 μm 

(a) (b) 
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5.1.4.2 SiC coating thickness 

Based on above results, it can be concluded that the SiC coating thinness could be 

readily tailored by controlling the molar ratio of Si to CB (Si/C). The different 

thicknesses of SiC coatings prepared in different molar ratios of Si/C were both 

theoretically calculated and experimentally determined.   

1) Theoretical calculation of SiC coating thickness 

A SiC-coated CB sphere model shown in Fig. 5.14 was built up for theoretical 

calculation of thickness of coating layer, based on the following two main 

assumptions. 

i. The volume expansion of the CB sphere does not occur after reaction.  

ii. The formed SiC nanocrystals are closely packed and SiC coatings are firmly 

bonded on the carbon core. In other words, the true density of the formed SiC 

coating is 3.21 g/cm3 which is as same as that of the bulk SiC. 

The initial diameter of CB sphere is supposed to be D0, the diameter of CB sphere 

after reaction D1, and the diameter of SiC-coated CB sphere D2. Furthermore, the 

mole number of an individual CB sphere is supposed to be n0 and the mole number 

be reduced to n after molten salt reaction completes. In addition, it is assumed that 

the model SiC-coated CB sphere is prepared from an initial mixture of Si and C in 

the molar ratio of 1/x (i.e., 1 mole silicon and x mole CB were mixed for preparation 

of SiC-coated CB). As we know, the density of CB is ρ =1.89 g/cm3, and its molar 

mass is M = 12 g/mol. 
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Fig. 5.14 A schematic diagram of a typical SiC-coated CB sphere. 

The volume of CB particle before reaction is calculated as  
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3

                           (5.1)                  

If all of Si completely react with CB after reaction, the volume of residual CB should 
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The volume of SiC-coated CB sphere is  
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Based on V=m/ρ, m= M*n, the ratio of carbon volume before and after reaction is 

expressed as    
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By combining Equations 5.4 and 5.5, D1 can be written as a function of x, 
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  D1 = D0 √
x−1

x

3
                           (5.6)                                   

After 1 mole Si completely reacts with 1 mole CB, 1 mole SiC will be produced, thus,  

                          nSiC = nSi = n(consumed C)                      (5.7)                                    

The ratio of the volume of SiC to consumed CB is  

 
VSiC

Vconsumed C
=

mSiC/ρSiC

mC/ρC
=

nSiCMSiC/ρSiC

nconsumed CMC/ρC
=

MSiCρC

MCρSiC
=

40×1.88

12×3.21
= 1.96     (5.8)           

Also, we have 

                                 VSiC = V2 − V1                        (5.9)                               

 Vconsumed C = V0 − V1                   (5.10)                             

By combining Equations 5.5, 5.6, 5.8, 5.9 and 5.10, we can have, 

                           V2 = V0 [1.96 −
0.96(x−1)

x
]                     (5.11)              

                           D2 = D0 √1.96 −
0.96(x−1)

x

3
                    (5.12)                   

Therefore, the thickness of SiC coating, t, on the surface of carbon black is  

                    t =
D2−D1

2
=

D0

2
[√1.96 −

0.96(x−1)

x

3

− √
x−1

x

3
 ]            (5.13)            

Clearly, the thickness of SiC coatings is a function of the initial diameter of CB 

sphere and Si/C molar ratio. When D0 is set as 300 nm, the corresponding SiC 

coating thicknesses corresponding to various Si/C molar ratios can be calculated 

and listed in Table 5.1. 

Table 5.1 Thickness of SiC coating as a function of molar ratio of Si/C=1/x. 

Molar ratio of Si/C 1/12 1/10 1/8 1/6 1/4 1/2 

x 12 10 8 6 4 2 

SiC coating 

thickness (nm) 
8.2 9.8 12.3 16.4 24.9 51.9 

2) Experimental measurement of SiC coating thickness 

Due to mass-thickness contrast and Bragg contrast of TEM image formation, SiC 

shell and carbon core were distinguished by different contrasts. So the thickness of 
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SiC shell can be estimated by measuring the width of dark ring over the carbon core. 

Fig. 5.15 shows TEM images of four individual SiC-coated CB spheres prepared 

using different molar ratios of Si/C from 1/12 to 1/2. The thicknesses of SiC coatings 

were estimated based on these TEM images. As shown in Fig. 5.16, with increasing 

Si/C from 1/12 to 1/2, the SiC coating thickness continuously increased, from ~12 

nm to ~66 nm. These results are closed to the ones obtained from the theoretical 

calculations, indicating that the theoretical calculation based on specific Si/C molar 

ratio can be used to predict the SiC coating thickness. 

 

Fig. 5.15 Typical TEM images of individual SiC-coated CB particles prepared using various 
molar ratios of Si/C: (a) 1/12; (b) 1/8; (c) 1/4 and (d) 1/2, respectively. 

(a) (b) 

(c) (d) 

1/12 1/8 

1/4 1/2 

SiC 

Carbon core 

100 nm 100 nm 

100 nm 100 nm 
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Fig. 5.16 Thickness of SiC coatings corresponding to different molar ratios of Si to C. 

5.1.4.3 Particle density 

When the thickness of formed SiC coating was varied with molar ratio of CB and Si, 

the particle density of SiC-coated CB sphere also changed. As shown in Fig. 5.17, 

the density of as-received CB was 1.89 g/cm3, whereas that of SiC coated CB 

increased to 2.14 g/cm3 (13% increment) and 2.78 g/cm3 (47% increment) upon 

increasing Si/C to 1/12 and 1/2, respectively. Such increases in density would 

narrow the density gap between carbon and other oxide grains in future castable 

systems, which could avoid or alleviate segregation, thus additionally improving the 

dispersion/distribution of carbon. 
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Fig. 5.17 Particle densities of SiC coated CB particles prepared using different Si/C molar 
ratios. 

5.1.5 Effect of molten salt on SiC formation 

As indicated by above results, SiC coatings were prepared on CB at as low as 1100 

C in molten salt, which is 200 C lower than that (1300 C) required by the 

conventional vapour–solid reaction technique [201, 202]. To further demonstrate the 

effect of molten salt on SiC formation, the micron-Si-CB mixture (in molar ratio of 1/8) 

was fired at 1100 C in the absence of NaF-NaCl. Fig. 5.18 shows almost the same 

XRD patterns of the micron-Si-CB mixture before and after firing at the target 

temperature, indicating no SiC was formed from reaction of Si and CB in the 

absence of molten salt, indicating that molten salt (NaF-NaCl in this case) is key to 

synthesize SiC coating at a relatively low temperature. Fig. 5.19 shows typical SEM 

images of the micron-Si-CB mixture after firing at 1100 C without molten salt. 

Unreacted Si and CB particles were still seen (Fig. 5.19b), and many particles of the 

former were loosely attached to the latter. 
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Fig. 5.18 XRD of the mixture of micron-sized Si and CB in molar ratio of 1/8 (a) before and (b) 

after firing at 1100 C for 6 hours in the absence of molten salt. 

 

Fig. 5.19 Low magnification and (b) high magnification SEM images of the resulting powders 

of firing the micron-Si-CB (Si/C = 1/8 in molar ratio) at 1100 C for 6 hours in the absence of 
molten salt. 

In order to further investigate the role of the molten salt and the corresponding 

reaction mechanisms, Si powders alone (without CB) were mixed with NaCl-NaF 

salts, followed by firing in Ar at the SiC formation temperature. Fig. 5.20, as an 

example, shows together SEM images of Si before (Fig. 5.20a) and after firing in a 

single NaCl (Fig. 5.20b), a binary NaCl-NaF salt containing 5 wt% NaF (Fig. 5.20c) 

and a single NaF (Fig. 5.20d). The original sharp edges of Si grains (Fig. 5.20a) 

appeared to be rounded and their sizes became evidently smaller after firing in the 

(b) 

CB covered Si 

Unreacted Si 

Unreacted CB 

100 μm 

(a) 

5 μm 
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NaCl based salt containing NaF (Fig. 5.20c). Furthermore, after firing in a single 

NaF salt, significant nano-sized Si particles were seen along with some small Si 

dendrites (Fig. 5.20d). On the other hand, after firing in a single NaCl salt, the 

morphologies and sizes of Si changed very little (Fig. 5.20b). These results indicate 

that Si did not dissolve significantly in a molten NaCl salt, but had some solubility in 

a NaF-containing NaCl salt. This explained the more significant formation of SiC in 

the sample fired in a NaF containing salt than in a single NaCl salt without NaF, and 

the lower synthesis temperature in the case of the former (Fig. 5.2 and Fig. 5.3). 

 

Fig. 5.20 SEM images of (a) as-received Si powders, and after 6h firing in (b) a single NaCl 
salt, (c) a binary salt containing 5 wt% NaF and (d) a single NaF salt, respectively. 

5.1.6 Void formation at higher Si/C molar ratio 

In this study, a void or gap at the interface between SiC shell and carbon core was 

observed under TEM (Fig. 5.15). It was hard to find the void in the particles coated 

with thin SiC (Si/C ≤ 1/8), however, it appeared when the thickness of SiC coating 

increased to ~36.5 nm (at which Si/C = 1/4). The void formation became more 

evident in the SiC coated CB sphere prepared from Si/C molar ratio of 1/2. As 
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shown in the inserts in Table 5.2, the widths of the labelled voids or gaps were 

measured as ~8.4 nm at Si/C molar ratio of 1/4 and ~18.4 nm at 1/2. 

Table 5.2 The void formed at interface of SiC shell and carbon core. 

Si/C 1/12 1/8 1/4 1/2 

Individual SiC-coated CB sphere 

(TEM images shown in Fig. 5.15 ) 

    

Width of the void (nm) 0 0 8.4 18.4 

Thickness of SiC coating (nm) 12.2 18.4 36.5 66.3 

 

The above results indicated that the void formation was associated with Si/C molar 

ratio or thickness of the formed SiC coatings. Based on this, the hollow void could 

be formed by increasing the Si/C to 1/1. This was verified by firing Si and CB (two 

sizes, ~280 nm and ~100 nm) in molar ratio of 1/1 at 1150-1200 C for 12-16 hours 

in NaF-NaCl. As revealed by Fig. 5.21, carbon cores disappeared in both cases, 

however, the hollow structure of the resulting particles became more evident and 

visible (Fig. 5.21b) when CB sphere in smaller size (~100 nm) was used. The 

formation of void and hollow structure is attributed to different diffusion rates of the 

reagents, Si and C in this case, at the fired temperatures. This phenomenon is also 

called Kirkendall effect [204, 205] which will be detailed in Chapter 8. In addition, the 

above observations suggest that the Si/C molar ratio should be reasonably 

controlled (Si/C≤1/8) to avoid the formation of voids. 
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Fig. 5.21 TEM images of the resultant SiC hollow spheres prepared from (a) Si and CB (N991, 
~ 280 nm), and (b) Si and CB (N660, ~100 nm) (Si/C=1/1 in both cases) in NaF-NaCl.  

  

(a) (b) 

Hollow 
structure 

Hollow 
structure 
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5.2 Preparation of SiC/SiO2 composite coating 

SiC coatings were prepared on CB to improve water-wettability of CB particles, due 

to their excellent water affinity. Nevertheless, the fundamental studies [200] 

revealed that good wettability of SiC was mainly attributed to formation of SiO2 thin 

film when SiC was exposed to air (see more details about this in the Discussion 

chapter). So it can be reasonably speculated that the water-wettability of SiC 

coatings will be enhanced if more SiO2 (thicker SiO2 films) is formed on the surface 

of SiC. For this reason, a graded SiC/SiO2 composite coating was attempted by 

controlled oxidation of as-prepared SiC coated CB in air at optimised low 

temperatures.  

Since CB is more vulnerable to oxidation than SiC at low temperature, the 

pre-oxidation conditions have to be carefully controlled. As demonstrated in Section 

5.1.3.2, carbon core was etched out from SiC shell by combustion at 600 C for 90 

minutes. But in this case, to avoid carbon combustion, as-prepared SiC-coated CB 

particles (with Si/C molar ratio of 1/8) were fired in air at a lower temperature 

between 400-500 C for a shorter time period (30-60 minutes). 

5.2.1 Phase analysis of SiC/SiO2 composite coatings 

Preliminary examination by XRD (Fig. 5.22) shows no new crystalline phases were 

detected after firing SiC-coated CB under various pre-oxidation conditions, but the 

intensity of broad carbon peak (centred at ~25.5) and SiC peak ((111) plane) 

decreased slightly with increasing oxidation temperature from 400 and 500 C. The 

weakening in peak intensity is most likely due to formation of amorphous SiO2 from 

SiC coatings.  

The phase evolution was further verified by using FTIR. Fig. 5.23 shows infrared 

spectra of as-prepared SiC coated CB particles after pre-oxidation at various firing 

conditions. The absorption at 1640 cm-1 was assigned to water which was absorbed 

while making KBr pellets in the ambient environment. The fundamental stretching 

vibration of SiC was observed at absorption at ~820 cm-1. In addition, the obvious 

change was the appearance of absorption peaks at 1080 cm-1 and 440 cm-1 (which 

were attributed to the antisymmetric and sym-metric stretching vibrations of Si–O–Si 

bond, respectively) after pre-oxidation. Si-O-Si bonding peaks started becoming 

sharp and clear after firing in air at 450 C for 30 min, indicating small amounts of 
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SiO2 were formed at above 450 C. When increasing oxidation temperature to 500 

C (for 30 minutes) or extending oxidation time to 60 minutes at 450 C, SiO2 

absorption peaks appeared shaper and the transmittance ratio of SiO2/SiC 

decreased concurrently, indicating more SiO2 was formed. 

 

Fig. 5.22 XRD of the resulting powders after firing SiC-coated CB particles (Si/C = 1/8) in air 

at 400, 450 and 500 C for 30 minutes, and 450 C for 90 minutes. 
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Fig. 5.23 FTIR spectra of the resulting powders after firing SiC-coated CB particles (Si/C = 

1/8) in air at 400, 450 and 500 C for 30 minutes, and 450 C for 90 minutes. 

5.2.2 Microstructural characterisation of SiC/SiO2 composite coating 

Microstructural characterisations by using SEM and EDS were carried out to probe 

the surface changes before and after pre-oxidation of SiC-coated CB particles. Fig. 

5.24 a and b show SEM images of SiC-coated CB particles after pre-oxidation at 

500 C for 30 minutes and 450 C for 60 minutes. Clearly, the particles before and 

after oxidation treatment in both conditions changed very little in their morphologies 

and sizes (Fig. 5.6), indicating SiC-coated CB particles did not suffer severe 

damage during this process. So the appropriate pre-oxidation temperature for 

preparing SiC/SiO2 composite coating was at 450-500 C. However, some cracked 

SiC-coated CB particles were occasionally seen in the sample fired at 500 C for 30 

minutes (indicated by white arrows in the insert in Fig. 5.24a).  

The typical EDS spectrum (Fig. 5.24c) on the sample (after pre-oxidation at 450 C 

for 60 minutes) shows a significant increase in oxygen content compared with that 

of SiC-coated CB before oxidation (Fig. 5.7b) in which very minor quantities of 

oxygen were detected on SiC surface. The oxygen content on particle surface 

treated under different conditions was roughly estimated and compared by the net 

intensity of oxygen presented in their corresponding EDS spectra. Fig. 5.24d shows 
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that the oxygen content increased considerably after increasing oxidation 

temperature from 400 to 450 C, and continued rising to 500 C, which is consistent 

with the result detected by FTIR. However, the highest level of SiO2 was obtained in 

the sample oxidised at 450 C for 60 minutes. This, along with microstructural 

observation (Fig. 5.24a, b) shows that high quality SiC/SiO2 composite coatings on 

CB were prepared by controlled oxidation at 450 C for 60 minutes. 

 

Fig. 5.24 SEM images of SiC-coated CB after pre-oxidation at (a) 500 C for 30 minutes and 

(b) 450 C for 60 minutes. (c) Typical EDS spectrum on SiC-coated CB after pre-oxidation at 

450 C or 60 minutes as shown in (b). (d) Net intensity of oxygen element detected by EDS 
as a function of different pre-oxidation conditions. 

  

(a) 

(d) (c) 
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Chapter 6 Water-wettability and oxidation 

resistance of carbide-coated carbon 

materials 

In this chapter, the wettability and dispersion ability of uncoated and carbide coated 

CB particles in aqueous solutions were evaluated and compared by zeta potential 

measurement and sedimentation testing. The effect of carbide coatings on 

rheological behaviour of CB containing suspensions was investigated. In addition, 

thermogravimetry (TG) analysis were performed to examine the oxidation 

resistances of uncoated and carbide coated CB particles. The effect of annealing 

treatment of as-prepared coated CB particles on their oxidation resistance was also 

examined. 

6.1 Zeta potential 

Shown in Fig. 6.1 are zeta potentials of as-received and TiC-coated CB particles in 

water at pH = 3-12. Zeta potential (absolute value) in all cases generally increased 

with pH, in particular when pH>8. Nevertheless, at a given pH, zeta potential in the 

case of TiC-coated CB was much greater than that in the case of uncoated CB. 

Furthermore, an isoelectric point (IEP) appeared at pH=3.96 in the latter, but was 

absent in the former. These results indicated that TiC-coated CB particles had more 

negative charges on their surfaces than uncoated CB particles. The much increased 

zeta potential in the case of TiC-coated CB particles would improve their water 

wettability and dispersivity. 
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Fig. 6.1 Effect of coating thickness (Ti/C ratio) and pH on zeta potential. 

Fig. 6.2 shows zeta potential-pH profiles of uncoated and SiC-coated CBs. The 

absolute value of zeta potential in the case of uncoated CB was small (<10 mV) at 

pH < 8.5, although it started to increase upon increasing the pH to > 8.5. In contrast 

to this, a much greater zeta potential value was also seen in the case of SiC coated 

CB at a given pH. In this case, the zeta potential (SiC-coated CB (Si/C=1/8)) 

increased continuously from ~20.4 to ~58.0 mV with increasing pH from 3.6 to 12.0. 

It is also noted that with decreasing SiC thickness, zeta potential increased slightly, 

which is similar to the case of TiC-coated CB (Fig. 6.1). In principle, with the same 

coatings on particles, the measured zeta potentials should be the same. However, 

CB coated with thicker coatings had higher density (as indicated in Fig. 5.17) and 

thus they readily settled down in aqueous suspensions under gravity. So fewer 

charged particles were detected between two testing electrodes of zeta potential 

probe and consequently lower zeta potential values were obtained. 
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Fig. 6.2 Effect of coating thickness (Si/C ratio) and pH on zeta potential. 

These results indicate that SiC-coated CB particles had many more negative 

charges on their surfaces, which would be beneficial to their dispersion/distribution 

when used in future castable systems. The much greater zeta potential in this case 

is believed to be related to the increased functional groups on the CB surface, such 

as hydrophilic carboxylate group (COOH) and silanol group (SiOH). The mechanism 

behind this will be discussed in detail in Chapter 8. 

The zeta potential of SiC/SiO2-coated CB particles in aqueous solution was also 

measured. As shown in Fig. 6.3, compared with SiC-coated CB, higher zeta 

potentials were obtained at various pH (3 to 10) for CB coated with SiC/SiO2 

composite coatings. For example, at pH=10, zeta potential of the former was ~54.7 

mV, whereas that of the latter was ~65.9 mV. This is because outer SiO2 coatings 

resulted in more functional silanol groups (Si-OH) on CB particles in water. 
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Fig. 6.3 Zeta potential as a function of pH for SiC-coated CB and SiC/SiO2-coated CB 
spheres. 

6.2 Sedimentation testing 

The differences in wetting and dispersing behaviours of uncoated and coated CB 

particles were also demonstrated by sedimentation testing. For example, ~1 gram 

as-received CB and TiC-coated CB powders were dispersed in distilled water, 

respectively and their wetting and dispersing behaviours were recorded. As 

illustrated by Fig. 6.4a, most of the as-received uncoated CB particles were hardly 

wetted by water and consequently floated on the surface of water, whereas 

TiC-coated CB particles were much better wetted and dispersed in water. After 

agitating for 1 minute and subsequently setting aside for 5 minutes, there still was a 

large amount of uncoated CB particles floating on the top whilst some of 

agglomerated clusters settled down under the action of gravity. In contrast, CB 

particles coated with either thin or thick TiC coatings (in Ti/C molar ratio of 1/8 to 1/2) 

were homogeously dispersed in water juding from their unifom black appearences. 

The above distinct phenomena indicated that carbide coatings significantly 

improved the water-wettability of CB particles and their dispersion property. 
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Fig. 6.4 Photographs comparing the dispersions of uncoated and coated CB particles in 
water. 

6.3 Rheological behaviour 

6.3.1 TiC coated CBs 

Fig. 6.5a presents apparent viscosity values of water suspensions containing 25 wt% 

as-received uncoated or TiC-coated CB particles subject to different shear rates. 

The viscosity in the former was two orders of magnitude higher than in the latter at a 

low shear rate and nearly one order of magnitude higher at a high shear rate. This is 

believed to be related to the improved water-wettability and dispersivity as shown in 

Fig. 6.1 and 6.4. Moreover, under a given shear rate, there was no obvious 

difference in the viscosity between CB particles with different thickness TiC coatings, 

indicating little effect of coating thickness on the flowability of CB in water.  

Fig. 6.5b shows the relationship between shear stress and shear rate for water 

suspensions containing 25 wt% uncoated and TiC-coated CB particles, respectively. 

A major feature is that the yield shear stress of the former was evidently higher than 
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that of the latter over the whole range of shear rates (0.1 to 500 s-1), indicating 

suspensions containing coated CB particles flow more easily when subject to an 

equal external force. In addition, despite the overall trend of shear stress for 

uncoated CB-containing suspension increased with shear rate, an evident 

fluctuation (black line, a typical curve from three parallel test) occurred in the range 

of shear rate of 1 to 100 s-1, which was mainly due to the instability of uncoated CB 

suspensions. High degree of agglomeration likely occurred in the case of uncoated 

CB, because small repel forces were formed between uncoated CB particles, which 

were reflected on low zeta potential values (Fig. 6.2). 

 

(a) 
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Fig. 6.5 (a) Apparent viscosity and (b) shear stress of water suspensions (pH=10) containing 
25 wt% uncoated and TiC-coated CB as a function of shear rate. 

6.3.2 SiC-coated CBs 

Rheological behaviour of CB particles after SiC coating (Si/C=1/8) was also 

changed. Fig. 6.6, as an example, shows variations in the apparent viscosity of 

water suspensions containing uncoated and SiC coated CBs respectively with the 

shear rate. Suspensions containing either uncoated CB or SiC coated CB both 

exhibited a shear thinning behaviour, i.e., they became more stable and were 

subjected to less stress upon increasing the shear rate. Nevertheless, the 

suspension containing SiC coated CB (pH=10) showed much lower apparent 

viscosity than the suspension containing uncoated CB (pH=10) at a given shear rate, 

two orders of magnitude lower at a low shear rate (<10 s-1) and about one order 

lower at a high shear rate (>10 s-1). This suggests that SiC-coated CB particles 

would have better flowability in a real castable system than their uncoated 

counterparts. 

On the other hand, pH affects apparent viscosity of suspensions. The rise in 

apparent viscosity was dramatic for uncoated CB-containing suspension, one order 

of magnitude higher at pH=6 than that at 10. However, only a slight increase in the 

viscosity of suspensions containing SiC-coated CB occurred at low shear rate, and 

nearly no change observed at high shear rate when pH was reduced from 10 to 6. 

(b) 
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This is because more negative charges formed on particle surface in basic 

environment and less in acidic environment as indicated by zeta potential 

measurement (Fig. 6.2). This change caused by pH was more significant for 

uncoated CB, for example, ~2.3 mV detected at pH=6 and ~22.7 mV at pH=10. 

Enriched negative charges lead to high repel force between particles and thus result 

in low viscosity and improved flowability.  

 

Fig. 6.6 Apparent viscosity of water suspensions containing 25 wt% as-received CB and SiC 
coated CB, respectively, at various shear rates (pH=6 and 10). 

The apparent viscosity was also associated with solid content of the suspension. 

For instance, when the solid content in SiC-coated CB suspension was increased to 

35 wt% (Fig. 6.7), the viscosity was dramatically increased, over two orders of 

magnitude higher than that of suspension containing 25 wt% coated CB particles. 

This gives us a clue that high level of CB addition in castable would cause poor 

flowability and high water demand. 
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Fig. 6.7 Apparent viscosity of SiC-coated CB suspensions (pH=10) with different solid 
loadings as a function of shear rate. 

The flowability of CB-containing water suspensions can be further improved by 

formation of SiC/SiO2 composite coatings on them. As shown in Fig. 6.8, the 

apparent viscosity of water suspension containing SiC/SiO2-coated CB was lower 

than that of the suspension containing SiC-coated CB particles over a wide range of 

shear rate, indicating that the formation of SiC/SiO2 composite coatings on CB is 

effective to enhance flowability of CB particles in water.  

 

Fig. 6.8 Apparent viscosity of water suspensions (pH=10) containing 25 wt% SiC or SiC/SiO2 
composite coatings at various shear rates. 
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6.4 Oxidation resistance 

6.4.1  Post-treatment of carbide coated CB (Annealing) 

6.4.1.1 Annealing of TiC-coated CB 

In order to improve oxidation resistance of TiC-coated CB particles, they were 

annealed in Ar and N2 atmospheres, respectively. Fig. 6.9 shows the phase changes 

before and after annealing at 1300 C for 4 hours in Ar and N2. After heat-treatment 

in Ar, no new phases were seen, but the TiC peaks became slightly higher and 

sharper, indicating a slight increase in its crystallinity and/or crystal size. However, 

the annealing in N2 at 1300 C caused TiC peaks shifting right to higher two-theta 

angles and approaching the locations of TiN characteristic peaks (ICCD card 

[38-1420]). This indicates that the nitrogen might be incorporated into TiC crystal 

structure, forming a TiCN solid solution. 

 

Fig. 6.9 XRD of as-prepared TiC-coated CB (Ti/C=1/8) (a) before and after annealing at 1300 

C for 4 hours in (b) Ar and (c) N2, respectively.  

By peak calibration and refinement and corresponding calculations, the lattice 

constants (referred as ‘A’ hereafter) were obtained for these samples. As shown in 

Table 6.1, the lattice constant of as-prepared TiC coating was 4.3247 Å, very close 

to that of perfect TiC crystals (A=4.3274 Å, (ICCD card [38-1420])). Nevertheless, it 

dropped to 4.2505 Å after annealing in N2, which is close to cell parameter of TiN 

(A=4.2417).  
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The TiCN phase was modelled as a perfect TiC1-X – TiNX solid solution, 0≤ X ≤1, with 

a NaCl type crystal lattice.[206] In accordance with Vegard’s rule, 

ATiCN = Xc·ATiC + XN·ATiN                                                 (6.1) 

Where Xc = 1 - XN                                                      (6.2) 

So XN = (ATiC - ATiCN)/ (ATiC - ATiN)                                         (6.3) 

According to Equation 6.3, the atomic percentage of carbon and nitrogen atoms 

could be estimated from parameter ATiCN. The specific composition of TiCN phase 

was listed in Table 6.1. 

Table 6.1 Cell parameter and Specific composition of as-prepared TiC and TiCN phases  

TiCxNy TiC As-prepared TiC After annealing in N2 TiN 

A (Å) 4.3274 4.3247 4.2505 4.2417 

X 1  0.1027 0 

1-X 0  0.8973 1 

 TiC TiC TiC0.1N0.9 TiN 

 

The morphologies and chemical compositions of the heat-treated powders were 

examined by SEM and EDS. Fig. 6.10 a and b show SEM images of TiC-coated 

particles after annealing at 1300 C in Ar and N2, respectively. They showed similar 

morphologies and size to TiC-coated particles without such a post-treatment. EDS 

(Fig. 6.10c) shows TiC-coated particles treated in N2 at 1300 C comprised nitrogen 

in addition to C and Ti. This, along with phase analysis (Fig. 6.9c) revealed that 

titanium carbonitride (TiC0.1N0.9) coatings were formed on CB particles by annealing 

treatment in N2. 
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Fig. 6.10 SEM images of TiC-coated CB particles after annealing at 1300 C for 4 hours in (a) 
Ar and (b) N2, and EDS spectrum obtained from (b) showing its chemical composition. 

6.4.1.2 Annealing of SiC-coated CB 

As-prepared SiC-coated CBs were heat-treated in Ar at 1200 and 1500 C for 4 

hours, respectively. Similarly to the case of TiC-coated CB, no new phases were 

detected (Fig. 6.11) after annealing in Ar, but the intensities of SiC characteristic 

peaks gradually increased with annealing temperature from 1200 to 1500 C. The 

width of XRD peaks decreased, indicating the increase in crystal size of SiC. This 

change was further verified by microstructure observation on SiC coatings. As 

shown in Fig. 6.12, SiC-coated CB particles after post-treatment still remained 

dispersive and the size of SiC nanocrystals appeared to increase compared with 

as-prepared SiC-coated CB (Si/C=1/8, formed at 1100 C for 6 hours) (Fig. 5.6). 

Moreover, the SiC coatings after annealing seemed to be denser than the one 

before annealing. 

(b) 

1 μm 1 μm 

(a) 

(c) 
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Fig. 6.11 XRD of as-prepared SiC-coated CB (a) before and (b) after annealing in Ar for 4 

hours at (b) 1200 C and (c) 1500 C. 

 

Fig. 6.12 SEM of as-prepared SiC-coated CB after annealing in Ar for 4 hours at (a) 1200 C 

and (b) 1500 C. 

6.4.2 Thermogravimetry analysis (TGA) 

6.4.2.1 TiC-coated CBs 

Fig. 6.13 shows TG curves of uncoated and TiC-coated CB particles prepared from 

different Ti/C molar ratios of 1/8 to 1/2 (TiC thickness ranging from ~10.4 to ~50.3 

nm as described in Fig. 4.9) at 850 C for 4 hours. As it can be seen, CB particles 

were prone to be oxidized in air, starting losing weight at ~472 C. The oxidation 

process began to accelerate at ~600 C and eventually ended up at ~678 C, 

(a) 

1 μm 1 μm 

(b) 
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remaining 0.38% ash after combustion completed. As for CB coated with thin TiC 

coatings (Ti/C=1/8), a weight gain was observed at ~400–500 C (which was 

attributed to oxidation of TiC coatings at early oxidation stage), followed by a 

dramatic weight loss at ~500–700 C. It shows uncoated and TiC-coated CB 

(Ti/C=1/8) were completely oxidized at nearly the same temperature, however, the 

oxidation of CB was slightly retarded by TiC coatings in terms of the rate of weight 

loss judging by the decreased slope of TG curve in the period of weight loss. Such 

retardation in CB oxidation was more evident in the TG curves of the samples with 

thick TiC coatings. For example, the weight loss of TiC-coated CB (with Ti/C molar 

ratio of 1/4 and 1/2) ended up at ~748 C, about 70 C postponement in carbon 

oxidation.  

 

Fig. 6.13 TG curves of uncoated CB and TiC-coated CB with Ti/C molar ratio of 1/8, 1/4 and 
1/2.  

However, the oxidation resistance of TiC-coated CB was significantly improved by 

annealing at 1300 C in either Ar or N2 atmosphere. Fig. 6.14 shows that TG curves 

of TiC-coated CB (with Ti/C molar ratio of 1/8) after heat-treatment are right shifted 

to higher oxidation temperatures. The weight gain for the sample treated in Ar and 

N2 was postponed, reaching the highest point at ~532 C for the former and ~635 C 

for the latter compared with ~495 C obtained from the sample before annealing. 

The rate of weight loss after weigh again for these three samples was almost the 

same, however, TiC-coated CB after annealing in Ar lost all carbon at ~821 C and 
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the one treated in N2 terminated its weight loss at ~838 C, about 150 oC higher than 

that without heating treatment (~688 C). Such retardation in weight loss implies 

annealing treatment is effective to improve oxidation resistance of TiC-coated CB 

particles.  

 

Fig. 6.14 TG curves of TiC-coated CB (with Ti/C molar ratio of 1/8) before and after annealing 

in Ar and N2 at 1300 C, respectively. 

6.4.2.2 SiC-coated CBs 

The effect of SiC coatings on oxidation resistance of CB was also investigated by 

TGA. Fig. 6.15 shows the weight loss against temperatures for uncoated and 

SiC-coated CB particles prepared in different Si/C molar ratios (1/8, 1/4 and 1/2). 

Slightly different to pristine CB (which commenced oxidation at ~472 C), 

SiC-coated CB (Si/C=1/8) began to lose weight at ~510 C, and ~543 C and ~554 

C for ‘thick’ SiC coatings prepared in Si/C molar ratio of 1/4 and 1/2, respectively. 

This implies CB oxidation was postponed gradually with increasing SiC coating 

thickness. However, the TG curves of pristine CB and SiC-coated CB with Si/C 

molar ratios 1/8 and 1/4 nearly overlapped in the range of ~500 to 650 C, indicating 

the latter did not effectively protected CB from oxidation at the elevated 

temperature.  

Unlike TiC-coated CB, a weight gain at ~400–500 C (which was due to TiC 

oxidation) was not seen in this case, because SiC normally have higher oxidation 
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temperature. However, small amounts of SiC indeed have been oxidised during the 

process of carbon oxidation, which was verified by XRD in Section 5.1.3.2. The 

formation of SiO2 would balance the weight loss resulted from carbon combustion. 

For example, for SiC coated carbon black prepared from Si/C molar ratio of 1/8, the 

weight fraction of carbon is calculated as 67.7 wt%. So it might remain 32.3 wt% 

after carbon is completely oxidized, however, it was determined as 45.3 wt% 

experimentally. Such an increase in weight is mainly due to the conversion of SiC to 

SiO2 

 

Fig. 6.15 TG curves of uncoated CB and coated CB with different thickness of SiC coatings 
prepared from initial Si/C molar ratio of 1/8, 1/4 and 1/2, respectively. 

As indicated in Section 6.4.2.1, the annealing treatment is beneficial to the 

improvement in oxidation resistance of carbide-coated CB. Fig. 6.16 gives TG 

profiles of SiC-coated CB (Si/C=1/8) before and after annealing in Ar at 1200 and 

1500 C. Compared with as-prepared SiC-coated CB which commenced losing 

weight at ~510 C and ended up at ~649 C, SiC-coated CB after annealing 1200 C 

started being oxidized at 577 C and ended at 774 C, over 100 C higher than that 

of the former. Upon further increasing annealing to 1500 C, the finishing point of 

carbon combustion was at 866 C, indicating carbon oxidation was postponed 

remarkably. Since the chemical composition of coated CB particles was not 

changed during annealing treatment, the shift of TG curves to higher temperature 

directly reflects their improved oxidation resistance. In addition, higher annealing 
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temperature results in better oxidation resistance. For example, at 774 C, 

SiC-coated CB after annealing at 1200 C nearly lost all carbon materials, but there 

still remained more than 15 wt% (61.5-46.5 wt%) carbon in the sample annealed at 

1500 C.  

 

Fig. 6.16 TG profiles of SiC-coated CB before and after annealing at 1200 and 1500 C in Ar. 

6.4.3 Oxidation process 

The oxidation behaviour of as-prepared TiC or SiC coated CB before and after 

annealing at high temperature was investigated by SEM and EDS in order to clearly 

demonstrate the oxidation process of carbide coated CB. Fig. 6.17a, as an example, 

shows SEM image of as-prepared TiC-coated CB particles in air 500 C for 30 

minutes. The spherical shape of particles remained, but high level of oxygen was 

detected on particle surface by EDS (Fig. 6.17d). However, only minor oxygen was 

found in the sample annealed in Ar (Fig. 6.17b, e) when they were exposed to the 

same oxidation conditions. For TiC-coated CB after annealing in N2, the spheres 

remained almost the same to the one before oxidation at 500 C, and elemental 

oxygen was hardly found (Fig. 6.17 c, f). This observation is consistent with the 

comparisons in weight loss characterized by TGA (Fig. 6.14). 



Chapter 6 Water-wettability and oxidation resistance of carbide-coated carbon materials 

145 
 

 

Fig. 6.17 SEM images of TiC-coated CB (Ti/C=1/8) (a) before and after annealing at 1300 C 
in (b) Ar and (c) N2. (d-f) are EDS spectra corresponding to (a-c). All these samples were 

characterised after firing in air at 500 C. 

Analogously, SiC-coated CB after annealing at high temperatures showed better 

oxidation resistance than the one without heat-treatment. Firing in 600 C for 30 

minutes, carbon was oxidised and SiC coatings were damaged to some extent. 

Some cracked spheres (as indicated by black arrows in Fig. 6.18a) were seen in the 

sample of SiC-coated CB without any treatment. Furthermore, the increase in 

oxygen intensity (Fig. 6.18b) was significant compared with the one before oxidation 

(Fig. 5.7b). In contrast, SiC-coated CB after annealing at 1500 oC remained the 

same as the one before oxidation, including undamaged SiC coatings and oxygen 

content on CB. Such a different performance under oxidation shows that annealing 

treatment is useful to improve oxidation resistance of SiC-coated CB, due to the 

formation of denser SiC coatings after post-treatment. This will be discussed in 

detail in later chapter.  

(d) 

(c) (b) 

(f) (e) 

(a) 

O N 
O 
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Fig. 6.18 SEM images of SiC-coated CB (Si/C=1/8) (a) before and (b) after annealing at 

1500 C, and their corresponding EDS spectra (c) and (d). Both of these two samples were 

characterised after firing in air at 600 C for 30 minutes. 
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Chapter 7 Al2O3-C castables 

This chapter will be mainly focused on the applications of TiC or SiC coated carbon 

materials (GF and CB) in model low cement high alumina castables. Comparisons 

were made on water demand and flowability for uncoated and carbide-coated 

carbon containing castables during casting and placement. Their physical and 

mechanical properties, in terms of bulk density (BD), apparent porosity (AP), 

permanent linear change (PLC) cold crushing strength (CCS) and cold modulus of 

rupture (CMOR) were investigated after drying at 110 C and coking at 1500 C, 

respectively. Oxidation resistances of carbon-containing castables as well as their 

microstructures after oxidation testing were also examined. 

7.1 Kg-scale production of carbide-coated CB and GF 

For large scale trials of carbide-coated carbon materials in alumina castable 

systems, carbide-coated CB and GF particles were produced in kg-scale in a large 

vertical furnace (Fig. 3.4). Since the use of salts was significantly reduced for 

kg-scale production of coated CB and GF (the weight ratio of salt/reactants was 

reduced to 2/1 from 20/1 as described in Table 3.11), the coating quality of TiC and 

SiC was re-examined by SEM before their incorporation in castables. Fig. 7.1 shows 

typical SEM images of coated carbon particles prepared under such preparation 

conditions. Unreacted Ti and Si powders were not seen in the fired samples (Fig. 

7.1a, b) and TiC-coated CB and SiC-coated CB particles appeared highly dispersed 

and showed the similar morphologies and sizes to the one prepared in small scale 

shown in Fig 4.2c and 5.6, indicating equivalent high quality of coated CB particles 

were produced with less salt consumption and lower cost. Meanwhile, TiC and SiC 

coated GF were also prepared for applications in Al2O3-C low cement castables in 

order to investigate the effect of carbon types on their flowability, physical and 

mechanical properties. As shown in Fig. 7.1c and d, TiC was uniformly coated on GF, 

however, SiC coatings could not fully cover up all graphite flakes. This is consistent 

with the report by Liu [26]. 
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Fig. 7.1 SEM images of (a) TiC-coated CB, (b) SiC-coated CB, (c) TiC-coated GF and (d) 
SiC-coated GF prepared in a large vertical furnace.  

  

(d) (c) 

(b) (a) 
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7.2 Water demand and flowability 

The water demand and flowability of castables were determined based on standard 

testing method ASTM C1445-99 (as described in Section 3.3.3.1). The criterion for 

good flowability (flow value) in this work was set as 140-150 mm where water 

addition was recorded. 

Firstly, the effect of commercial sodium sulfonate-based carbon dispersant (referred 

to as ‘SS’ hereafter) on dispersion and flowability of GF in castables was 

investigated. Due to limited amounts of as-prepared coated GF, 2.5 kg-scale 

castables were prepared in this case. As shown in Fig. 7.2, castable without GF 

achieved a flow value of 150 mm at only 5 wt% water addition, however, it required 

more water (8 wt%) to make castable paste flow properly when 5 wt% GFs were 

added. The dramatic increase in water addition is due to GF’s poor wettability and 

dispersion in water (as addressed in Section 2.3.1). When carbon dispersant, SS, 

was incorporated along with GFs into alumina-based castable, the flowability of 

castable at 8 wt% water addition, on the contrary, was slightly decreased compared 

with GF-containing castable (referred as GF castable hereafter), indicating SS has 

almost no positive effect on improving flowability of castable and reducing water 

demand correspondingly. Nevertheless, such a carbon dispersant is beneficial to 

the homogenous dispersion of GF in castables. Fig. 7.3, as an example, shows the 

surface of castable specimens after casting in cubic moulds. A number of clusters of 

shinning GFs (as indicated by black arrows) were seen in the GF castable without 

SS (Fig. 7.3a), whereas GFs were homogeneously dispersed in the castable 

containing SS (Fig. 7.3b).  

As for TiC-coated GF containing castables (referred to as GF-TiC castables 

hereafter) either in the presence of SS or not, it required 6.25-6.5 wt% water to 

achieve similar flow value to GF-castable (Fig. 7.2), indicating a reduction of 1.5 wt% 

in water addition was achieved for castable preparation. This shows TiC coatings on 

GF are beneficial to improve flowability of castables and reduce their water demand. 
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Fig. 7.2 Flow value and water addition of castables containing uncoated and TiC-coated GF 
(2.5 kg-scale batch). 

 

Fig. 7.3 Photos of GF-containing castables (a) without and (b) with SS after casting in cubic 
moulds with assistance of vibration. 

Based on the above investigation, it can be concluded that carbon dispersant (SS) 

was not capable of reducing water addition effectively for preparation of 

carbon-containing castables. So carbon dispersant was not added in all castable 

batches prepared hereafter. Thus, standard trials (5.5kg for each batch) were 

carried out to investigate the effect of carbide coatings, carbon types and carbon 

content on water demand for castable casting.  

Fig. 7.4 shows that GF castable required the highest water level (9.7 wt% water 

addition) to achieve the standard flow value (140-150 mm in the present work), 

(a) (b) 
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however, SiC-CB castable showed the lowest requirement for water, only 6.5 wt% at 

an equivalent level of carbon addition (5 wt%). Compared with GF castable, TiC-GF 

castable only required 7.0 wt%, showing 2.7 wt% reduction in water addition level. 

However, SiC-GF castable did not show a significant improvement, due to low 

quality of SiC coatings formed on GF. In terms of amorphous carbon, castable 

containing 5 wt% uncoated CB showed better flowability and less water demand 

(8.5 wt%) than that containing GF. It is believed that it results from spherical shape 

of CB particles and a few functional groups on their surface. With carbide coating on 

CB, the water demand for castable achieving standard flow was further reduced, 

only 7.0 wt% for TiC-CB castable and 6.5 wt% for SiC-CB castable. The remarkable 

reduction in water addition would lead to less apparent porosity and better 

mechanical properties (See 7.3). When increasing SiC-CB content in castable from 

5 to 8 wt%, more water (7.5 wt%) was needed to reach the same flow value. 

 

Fig. 7.4 Flow value and water addition of castables containing different carbon sources 
(standard 5.5 kg-scale batch). 
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7.3 Physical and mechanical properties 

7.3.1 Bulk density, Apparent porosity and Permanent linear change 

The apparent porosity (AP) and bulk density (BD) of castables after drying at 110 C 

and coking at 1500 C were measured respectively. As shown in Fig. 7.5, apparent 

porosity of castables containing various carbon particles after coking at 1500 C 

appeared to be higher than that just after drying without high-temperature treatment. 

The increase is obviously caused by the loss of chemically combined water 

molecular which were not driven off at 110 C and evaporation of free water which 

were trapped in closed pores.[207] The rise in AP from 110 to 1500 C was dramatic 

for castables containing uncoated carbon particles (22.6% to 26.5% for GF and 24.6% 

to 29.8% for CB). High level of water addition required for casting GF or CB 

containing castables is responsible for such a significant increase in AP after coking 

at 1500 C.  

In the cases of TiC-coated GF and TiC-coated CB containing castables, similar 

flowability (Fig. 7.4) was achieved when equivalent water (7 wt%) was added in both 

castables, but the latter exhibited slightly higher AP than the former. Castable with 

TiC-GF showed the lowest AP of only 17.2% at 110 C and 19% at 1500 C which 

was lower than that of spinel-coated GF containing castable (over 22% at 1500 C) 

investigated by Mukhopadhyay et al [140]. Compared with model TiC-CB castable, 

SiC-CB containing castable showed ~2% lower in AP than the former. 

In terms of bulk density, castables with carbide-coated GF or CB generally had 

higher BD than with uncoated counterpart, exhibiting denser structure. For example, 

TiC-GF castable had bulk density as high as 3.0 g/cm3, but the one with CB had the 

lowest BD (2.5 g/cm3 after coking) among these castables. Low apparent porosity is 

mainly responsible for high bulk density, however, the contribution of carbide 

coatings to density increase cannot be ignored. Furthermore, when increasing 

SiC-CB content from to 5 to 8 wt%, the bulk density of corresponding castable was 

decreased, for instance, from 2.88 to 2.71 g/cm3 at 1500 C, which is attributed not 

only to increased water addition and AP but also to the increased addition of SiC-CB 

particles with lower density (2.23 g/cm3, see Fig. 5.17) compared to aggregate 

grains (e.g. Al2O3, ≥ 3.50 g cm3). In addition, showing the opposite trend of apparent 

porosity, the bulk density of castables after coking 1500 C increased slightly, mainly 
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due to shrinkage in dimensions or volumes as shown in Table 7.1. 

 

Fig. 7.5 Apparent porosity and bulk density of castables containing different carbon 
materials. 

Permanent linear (or volume) changes (PLC or PVC) were also determined to 

evaluate the dimension changes and suitability of refractories in ranges of working 

temperatures. The changes were recorded before and after coking at 1500 C. 

Table 7.1 shows PLC and PVC of castables containing different carbon particles. In 

all these castables, shrinkage occurred to some extent, which is most likely due to 

consequence of sintering at high temperature. Some liquid phases such as 

CaO-Al2O3-SiO2 (CAS or CAS2) would also contribute to the volume reduction.  

As for control sets, uncoated GF containing castable showed greater linear change 

than uncoated CB containing castable. Although GF and CB were incorporated at 

the same addition level (by weight percentage), CB possessed more numbers of 

particles due to the smaller size. It means more carbon particles were distributed in 

CB castables and consequently contributed more to keep stable in dimensions at 

elevated temperature. In addition, the highest shrinkage took place on castable with 

TiC-GF, while the lowest shrinkage on the one with SiC-CB. Despite the shrinkage 

occurred after firing at 1500 C, the PLC of each model castable was in the range of 

-0.46% to -1.42% which is tolerated for practical use (less ±2.5%)[117]. 
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Table 7.1 Permanent linear change and permanent volume change of castables containing 
different carbon materials. 

 GF TiC-GF SiC-GF CB TiC-CB SiC-CB SiC-CB-8 

PLC on 

Firing (%) 

-1.05 -1.42 -1.02 -0.59 -1.40 -0.46 -0.62 

PVC on 

Firing (%) 
-3.10 -4.19 -3.01 -1.76 -4.14 -1.37 -1.86 

7.3.2 Cold crushing strength and cold modulus of rupture 

Mechanical properties such as cold crushing strength (CCS) and cold modulus of 

rupture (CMOR) were investigated on both green castables just after drying at 110 

C and castables after coking in a reducing atmosphere (CO) at 1500 C for 5 hours. 

Fig. 7.6 shows cold crushing strength of castables containing different carbon 

materials. It can be seen that castables incorporated with TiC or SiC coated carbon 

particles (GF and CB) showed 6 times higher in CCS than uncoated GF or CB 

containing castables. Among coated carbon containing castables, TiC-GF castable 

after coking at 1500 C was able to withstand higher crushing strength than TiC-CB 

counterpart, mainly due to its lower AP. Moreover, specific layer-structured graphite 

enabled TiC-GF castable to resist high compression stress. However, SiC-GF 

castable showed less crushing resistance than corresponding SiC-CB castable, due 

to evidently low AP caused by high water demand for proper flow (Fig. 7.4). When 

the content of SiC-CB was increased to 8 wt%, CCS slightly decreased, since part 

of alumina grains were replaced by SiC-CB particles. 

Interestingly, the crushing strength did not show a consistent increase for all 

castable specimens after firing and sintering at 1500 C in CO environment. It must 

have to be the consequence of intensive competition between increased 

unfavourable apparent porosity (Fig. 7.5) and formation of strong ceramic bindings 

such as dehydrated CA binding phases, solidified CAS phases and formed mullite 

phase at high temperature.  
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Fig. 7.6 CCS as a function of different carbon materials incorporated castables. 

However, the increase in bending strength of castables after coking at 1500 C was 

quite evident compared with that of green castables, and such a trend was followed 

by all model castables as shown in Fig. 7.7. Overall, the bending strength after high 

temperature sintering was almost doubled for uncoated carbon containing castables 

but even tripled for coated carbon containing castables. Consistent with results of 

cold crushing strength, uncoated CB or GF containing castable showed the lowest 

bending strength, for example, only 1.6 MPa at 110 oC and 3.5 MPa at 1500 oC for 

CB castable. In contrast, the rupture strength could reach 13.8 MPa for TiC-CB 

castable and 18.3 MPa for SiC-CB castable at 1500 oC. TiC-GF castable exhibited 

the highest rupture strength after coking, reaching 22.1 MPa which is over four 

times higher than that of GF castable.  
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Fig. 7.7 CMOR as a function of different carbon materials incorporated castables. 
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7.4 Oxidation resistance 

In this work, antioxidants such as Al, Si or B4C were not added to the castables in 

order to investigate the effect of carbide coatings alone on the oxidation resistance 

of carbon particles in carbon-containing castables at elevated temperatures. The 

oxidation test was initially performed at 1000 C for 30 minutes. Fig. 7.8 shows the 

cross-sections of uncoated GF and CB castables after oxidation under the 

conditions. It can be seen that the oxidation was not so severe and only a thin 

oxidation layer (white zone as shown in Fig 7.8) was obtained.  

 

Fig. 7.8 Preliminary oxidation test of castable samples containing uncoated GF (left) and 

uncoated CB (right) performed at 1000 C for 30 minutes.  

To increase evident oxidation extent, the oxidation of carbon-containing castables at 

1000 C was extended to 3 hours in air. Fig. 7.9 demonstrates the cross-sections of 

oxidized castables, showing more severe oxidation was obtained compared to Fig. 

7.8. Overall, there were more unoxidised carbon materials (indicated by black area 

in the centre of cubes) left in carbide coated GF or CB containing castables than 

uncoated GF or CB containing castable, indicating carbide coatings show a positive 

effect on oxidation resistance of carbon in the castable applications.  

The oxidation of carbon-containing castables was commonly indexed by 

decarbonized depth and corresponding oxidation area. Fig. 7.10 shows the 

decarbonized depth of TiC-GF castable was 6.28 mm, much less than that of 

uncoated GF castable (7.90 mm). CB castable was severely oxidized and showed 

the decarbonized depth of 10.48 mm, whereas TiC-CB castable’s decarbonized 

depth was 6.82 mm. Furthermore, SiC-CB castable exhibited even better oxidation 

resistance with a decarbonized depth of 6.35 mm.  
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As shown in Fig. 7.9f, the oxidised area of SiC-CB castable appeared light grey 

rather white colour, indicating unoxidised SiC-coated CB particles or SiC shells 

remained after oxidation. This is because SiO2 would be formed from oxidation of 

black SiC coatings and thus appeared white in oxidized area, similar to TiO2 

containing oxidized area shown in Fig 7.9e. More details will be revealed by 

microstructural observation in later section. 

 

Fig. 7.9 Cross-sections of Al2O3-C castables containing 5 wt% (a) GF, (b) TiC-coated GF, (c) 
SiC-coated GF, (d) CB, (e) TiC-coated CB, and (f) SiC-coated CB, respectively, after 

oxidation in air at 1000 C for 3 hours. 
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(f) (e) (d) 
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Fig. 7.10 Decarbonized depth and oxidation area of various castable models after oxidation 

at 1000 C for 3 hours. 
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7.5 Microstructural examination 

7.5.1 Castable specimens after coking at 1500 C 

All castable specimens were embedded in coke and fired at 1500 C for 5 hours in 

air where CO-rich atmosphere was produced by reaction of the coke with oxygen. 

Since GF castable was highly porous (Fig. 7.5) and showed low mechanical 

properties (as indicated in Figs 7.6 and 7.7), it was difficult to obtain high quality 

polished surface of samples for microstructural examination. Fig. 7.11a shows a 

typical back-scattered image (BEI) of fracture surface of GF castables. Flaky 

graphites (dark contrast) were dispersed in the matrix and several pores (> 100 μm) 

were seen. Fig. 7.11b shows BEI of the polished surface of TiC-GF castable. In 

addition to large tabular alumina (TA) grains, TiC-coated GF (bright phase 

surrounding dark stripe-like substance as indicated by white arrows) were closely 

embedded in the matrix. TiO2 was not formed in this case, since the Gibbs free 

energy of reaction between TiC and CO at 1500 C was +70.4 kJ. In addition, low 

melting calcium aluminium silicate (CAS) liquid formed in the matrix leaving bright 

CAS-rich regions. The CAS phase was further verified by secondary-scattered 

imaging (SEI) (Fig. 7.11c) and EDS analysis (Fig. 7.11d, Spot A) in which Al, Ca, Si 

and O elements were detected. Moreover, it was noticed that the solidified CAS 

liquid bonded all matrix and additives (e.g. TiC-GF) together, providing mechanical 

strength for the castables. The EDS analysis (Fig. 7.11d, Spot B) showed TiC 

coatings still remained on GF (as indicated by black arrows in Fig. 7.11c) and not 

destroyed after vigorous mixing with aggregates and firing in CO at 1500 C. 
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Fig. 7.11 BEI of (a) GF castable and (b) TiC-GF castable after coking at 1500 C; (c) SEI of 

TiC-GF castable after coking at 1500 C; (d) EDS spectra detected from spot A and B in (c). 
(CAS- CaO·Al2O3·SiO2 ternary phase; TA- Tabular alumina) 

Given the high mean atomic weight of TiC, TiC-CB spheres with bright contrast were 

observed in BEI shown in Fig. 7.12a. Most of TiC-CB spheres were well dispersed in 

the matrix (Fig. 7.12c), but a few of the spheres were agglomerated (as indicated 

black arrows in Fig. 7.12a). The slightly dark agglomerates of TiC-CB spheres, 

implying that CB with TiC coating can be well mixed with fine gradients in the 

castable. As for SiC-CB containing castable (Fig. 7.12b), part of SiC-coated CB 

spheres appeared as dense phase in the microstructure. The EDS confirmed that 

the agglomerates (Spot A) also contained Al2O3, SiO2, and CaO phases or their 

combinations with unidentified ratios. It could be speculated that SiC-coated CB 

spheres was compatible with cement and microsilica so that they were bonded 

together as clusters and sintered at high temperature. The morphology of SiC-CB 

containing castable (Fig. 7.12d) shows that despite of a few clusters, SiC-CB 
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spheres were dispersed homogeneously in the matrix. In addition, a large number of 

well-developed mullite (Mu) crystals (Fig 7.12b, Spot B) formed inside alumina 

agglomerates suggesting that the microsilica reacted with the alumina forming 

aluminosilicates at 1500 C. EDS (Fig 7.12b, Spot B) shows a Al/Si ratio of 3/1, 

consistent with mullite (3Al2O3·2SiO2, A3S2) composition. Mullite formation is quite 

common for silica-containing high alumina castables in which microsilica reacts with 

alumina at above 1200 C.[208, 209]. The presence of mullite can contribute to the 

physical, chemical and mechanical properties of refractory castables. 

 

Fig. 7.12 BEI of castables containing (a) TiC-CB and (b) SiC-CB, SEI of castable containing 
(c) TiC-CB and (d) SiC-CB. The EDS spectra on spot A and B were also given at the bottom. 
(CA- CaO·Al2O3 calcium aluminate; Mu-3Al2O3·2SiO2) 
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7.5.2 Castable specimens after oxidation test 

7.5.2.1 Uncoated and coated GF containing castables 

Fig. 7.13 shows BEI of unoxidised and decarbonized areas after oxidation of GF 

castable at 1000 C for 3 hours. Several large pores were seen from this poor 

texture before oxidation (Fig. 7.13a), which further verified its high apparent porosity 

(Fig. 7.5) caused by high level of water addition for proper castable flow. The 

graphite flakes were observed as stripe-like shape when viewed from lateral side of 

flaky graphite. After oxidation (Fig. 7.13b), GFs were burnt out and left cavities with 

a GF’s shape. However, sintering was not started at 1000 C, leading to even higher 

porosity. As a result, oxygen readily diffused through newly-formed pores and 

aggravated carbon oxidation.  

 

Fig. 7.13 BEI of (a) unoxidised and (b) decarbonized areas after oxidation of GF castable at 

1000 C for 3 hours. 

Compared with GF castable (Fig. 7.13a), aggregates, fine powders and GF were 

closely packed (Fig. 7.14a). In the unoxidised area, the bright phase surrounding 

black GF was identified as TiC by EDS (Fig. 7.14c), indicating that TiC coating 

remained when subjected to vigorous mixing during castable preparation. Two 

graphite flakes stuck together with Al2O3 and SiO2 fine powders clipped between 

them, forming a sandwich structure. As indicated by red dotted circle in Fig. 7.14a, 

the graphite flakes were tightly bonded with matrix, which was not seen in uncoated 

GF containing castable. The phenomenon implies that GFs coated with TiC are 

highly compatible with oxide matrix, forming compacted bulk composite. After firing 

in air atmosphere, in addition to oxidation of GF, TiC was converted to TiO2 (Fig. 

7.14b), which was evidenced by EDS (Fig. 7.14d). The formation of TiO2 consumed 
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part of O2 and thus reduce carbon oxidation to some extent. On the other hand, the 

voids generated by graphite oxidation were filled with TiO2, further deceasing the 

oxygen diffusion into the internal of castable and consequently retarding further 

oxidation.  

 

Fig. 7.14 BEI of (a) unoxidised area and (b) oxidized area in TiC-GF castable; (c) EDS on  
graphite surface shown in (a), and (d) EDS of bright phase indicated by arrows shown in (b). 

7.5.2.2 uncoated and coated CB containing castables 

Compared with uncoated CB-containing castable, TiC-CB castable showed over 3.6 

mm less in the thickness of decarbonized layer than that in the case of the former 

(Fig. 7.9d, e), exhibiting much better oxidation resistance. This is mainly attributed to 

much lower apparent porosity and closely packed structure. Fig. 7.15 shows the 

microstructures of TiC-CB castable in unoxidised and decarbonized area, 

respectively. There was no major difference in the texture and phase compositions 

except the conversion of TiC to TiO2. EDS (Fig. 7.15c) shows the clusters in 

unoxidised area (slightly bright contrast as indicated by black arrows) comprised C, 

Ti, O, Al and Si, showing the clusters were the mixtures of TiC-CB, Al2O3 and SiO2. 

After oxidising the castable, bright TiO2 area as well as cement phase (dehydrated 
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CA) was seen in Fig. 7.15b, which was further verfied by XRD (Fig. 7.16) 

 

Fig. 7.15 BEI of (a) unoxidised and (b) decarbonized area in TiC-CB castable after oxidation 

at 1000 C for 3 hours; (c) EDS of bright powder clusters shown in (a). 
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Fig. 7.16 XRD of decarbonized area of TiC-CB castable. 

Fig. 7.17 shows the differences in the microstructure of unoxidised and oxidized area 

in SiC-CB castable after oxidation at 1000 C. Differently from TiC-CB castable, in 

addition to dispersed SiC-coated CB particles in castable, a number of dark grey 

clusters in the range of ~5-20 μm were observed in Fig. 7.17a. As identified by EDS 

(Fig 7.12), they were most likely to be the mixture of SiC-coated CB paritcles, Al2O3 

fine powders fumed silica and calcium aluminate cement which were clearly seen in 

the high magnification BEI shown in Fig. 7.17c. Furthermore, the decease in 

amounts of these grey clusters after oxidaiton at 1000 oC verfired that SiC-coated 

CB particles were certainly contained in the clusters. This means that SiC coating 

not only changes the wetting behaviour of carbon in water, but also enhanced 

compatibility with oxide aggregate and other oxide additives. Moreover, as shown in 

Fig. 7.17d, the porous-like cluster still appeared to be grey under SEM oberservation 

and its corresponding EDS spectrum (insert in Fig. 7.17d) shows a centain level of Si 

and C elements still remained after oxidation, indicating SiC coatings were not 

completely oxidised to form SiO2.  

In addition, dehydrated cement agglomerates CA were also seen in SiC-CB 

castable after heating in 1000 C (Fig. 7.17a, b). EDS shown in Fig. 7.17e confirmed 

the bright CA phase was only consisted of Al, Ca and O, along with Al/Ca ≈2, 

verfirying the CA composition to be CaO·Al2O3. Meanwhile, CA2 shown in an insert 
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in Fig 7.17b were formed in the cement agglomerates due to reaction of CA with 

alumina, which also observed in Sarpoolaky’s research work [209]. EDS (Fig. 7.17f) 

verified that the Al/Ca molar ratio was increased to ~4/1 (CaO·2Al2O3). 

 

Fig. 7.17 BEI of (a) unoxidised and (b) oxidised area in SiC-CB castable after oxidation at 

1000 C, with their corresponding high magnification BEI (c) and (d); (e) and (f) are EDS 
spectra of bright phases (CA and CA2) shown in (b). 

It was also noticed that the boundary between decarbonised area and unoxidised 

area was blurred. The bulk sample appeared light grey on the external surface 

rather than white colour. (After oxidation test it should show as white appearance as 

TiC-CB castable.) Thus, the external surface of SiC-CB castable after oxidation was 

characterised by SEM (Fig. 7.18). Interestingly, it appeared quite dense on the top 
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surface with only a few cracks. In contrast, a number of large pores and cracks were 

seen on the top surface of uncoated CB-containing castable after oxidation and 

alumina grains seemed to be peeled off during oxidation test. In this case, oxygen 

gas was able to readily go through pores and cracks and burn off all carbon 

materials at high temperature. 

As shown in the high magnification SEM (Fig, 7.18c), it seemed a layer of 

continuous liquid phase was coated on the surface, and micron-pores were hardly 

found. EDS (Fig. 7.18c) verified that the surface was mainly composed of elemental 

Al, Si and O, as well as a small amount of Ca. Their corresponding compounds 

might be CA, Al2O3 and SiO2 or their combinations. The dense layer on the top 

surface of SiC-CB castable after oxidation was further identified by XRD. Fig. 7.19 

shows in addition to high intensive Al2O3 corundum, sillimanite (Al2O3·SiO2) peaks 

were also shown up. Fig. 7.18d shows the morphology of the area underneath top 

surface of SiC-CB castable after oxidation. It was found that after carbon core was 

oxidised and SiO2 shells remained in the composites as indicated by the arrow. 

Although carbon was oxidised, the space was still occupied by SiO2 shell, which 

might be able to slow down the inward diffusion of air to some extent and reduce 

carbon oxidation. In addition, it was believed that the formed dense surface is 

responsible for excellent oxidation resistance of castables.  



Chapter 7 Al2O3-C castables 

169 
 

 

Fig. 7.18 SEM images of  top surface of (a) SiC-CB castable and (b) CB castable after 

oxidation at 1000 C; (c) high magnification SEM and EDS shown in (a); (d) SEM of the 
oxidized area underneath top surface of SiC-CB castable. 

 

Fig. 7.19 XRD of denser layer on the top of SiC-CB castable after oxidation at 1000 

C for 3 hours.  
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Chapter 8 Further discussions 

As described and discussed in the previous chapters, novel carbon materials, 

carbide coated CB particles, can be successfully prepared by using the low 

temperature MSS technique. Herein, the effects of key processing parameters such 

as synthesis temperature, metal/carbon molar ratios and molten salt, will be 

discussed in more detail. The synthesis mechanism of carbide coating formation will 

be clarified based on characteristics of MSS and solid experimental evidences.  

Carbide-coated CB exhibited significantly improved water-wettability, dispersion 

property and flowability, and excellent oxidation resistance. In this chapter, the 

reasons for good water-affinity of carbide coatings and better oxidation resistance of 

carbide-coated CB will be revealed. In addition, the promising results showing the 

potential application of coated carbon materials (GF and CB) in actual castable 

systems will be highlighted. The effects of carbide coatings on flowability, oxidation 

resistance, and physical and mechanical properties of carbon-containing castables 

will be further discussed.  

8.1 Factors affecting molten salt synthesis of carbide coatings 

8.1.1 Synthesis temperature 

Synthesis temperature is one of the most critical parameters influencing the 

formation of high quality carbide coatings on CB particles. It relates to reaction time, 

diffusion rate of atoms, and crystal nucleation and growth. The synthesis 

temperatures for formation of TiC and SiC were preliminarily predicted by 

thermodynamic calculations. The standard Gibbs free energy changes for formation 

of TiC and SiC from metallic powders (Ti or Si) and carbon are given below. 

TiC: ∆G0 = −184100 + 12.16T (J)                                         (8.1) 

SiC: ∆G0 = −73220 + 7.95T (J)                                          (8.2) 

From above equations, we can find that the Gibbs free energy for formation of TiC or 

SiC compound is obviously negative at even room temperature (T=293K), indicating 

that the reaction can take place in an ambient environment without any exterior 

energy input. However, for some kinetic reasons, for example, low contact area 

between Ti or Si with C, and slow atom diffusion rate at room temperature, it is not 
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possible for such a reaction to proceed at room temperature. 

When firing the mixture of Ti powders and CB particles at 850 C for 4 hours, XRD 

shown in Fig. 4.12 revealed that unreacted Ti remained in the fired sample though 

part of TiC was formed, indicating higher temperature or longer holding time would 

be required for completion of the reaction. In addition, none of SiC was formed after 

firing Si-CB mixture at 1100 C for 6 hours (Fig. 5.18), implying that SiC formation 

was not even initiated at this temperature and higher temperature (>1100 C) was 

required. In contrast, the reaction between metallic powders and CB particles in 

molten salt initiated at 650 C for TiC (Fig. 4.1) and 1000 C for SiC (Fig. 5.2), 

however, full conversion of reactants to carbides required as low as 750 C for TiC 

and 1100 C for SiC. The dramatic decrease in synthesis temperature in the 

presence of molten salt is mainly attributed to the liquid reaction medium formed by 

melting chloride or fluoride salts at target temperatures. The salt-solution medium 

facilitates the transport or diffusion of reactant species, Ti, Si and CB in this case, 

increasing the possibility of the contact between reactants during reaction. One of 

typical examples is that the mobility of oxide species in the solid state is 1×10−18 

cm2/s whereas it is increased to 1×10−5–1×10−8 cm2/s in the molten salt.[151] 

Secondly, the interaction of metallic Ti or Si with molten salt at reaction 

temperatures resulted in dissolution of micron-sized metal particles and formation of 

highly active species (Fig. 4.14 and 5.20) which could be readily diffused onto CB 

surface through the molten salt, forming carbide coatings.  

Compared with other reported methods for TiC and SiC synthesis shown in Table 

8.1, molten salt synthesis offers a low temperature synthesis route of refractory 

carbide coatings. It is advantageous to reduce the energy consumption and save 

fabrication cost of TiC and SiC coatings. 
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Table 8.1 Comparisons in synthesis temperature required for TiC and SiC formation.  

Carbide Synthesis methods 
Starting 

materials 

Temperature 

(C) 

Reaction 

products 

TiC 

Molten salt synthesis Ti + CB/GF 750-950 TiC 

Chemical vapour deposition TiCl4 +H2 +CH4 1000-1200 TiC [210] 

Sol-gel & Microwave 

carbothermal reduction 
C16H36O4Ti 1200-1300 TiC [211] 

Carbothermal reduction TiO2 + C(C3H6) 1550 
TiC, TiCxOy 

[212] 

Self-propagating Synthesis Ti + C 1400-1650 TiCx [213] 

Thermal plasma processing Ti+CH4 - TiC [214] 

SiC 

Molten salt synthesis Si + CB/GF 1100-1200 β-SiC 

Chemical vapour deposition 

CH3SiCl3 + H2 1100 β-SiC [215] 

SiCl4-CH4-H2 1250 β-SiC [216] 

SiH4 +CH4+H2 1200-1400 β-SiC [217] 

Vapour solid synthesis SiO + CO/CNT 1250-1550 β-SiC [218] 

Sol-gel & carbothermal 

reduction 
Si(OC2H5)4 +CF 1400-1650 β-SiC [219] 

Carbothermal reduction SiO2 +Si +CF 1500-1800 β-SiC [220] 

Note: CB=carbon black, GF=graphite flakes, CF=carbon fibres 

As for molten salt synthesis of carbide coatings, the synthesis temperature was also 

dependent on reactants including metallic powders and carbon types, and molar 

ratio of metal/carbon. Their relationship was illustrated in Fig. 8.1. It can be seen 

that it normally required higher synthesis temperature (> 300 C higher) for 

formation of SiC than TiC, mainly owing to their difference in intrinsic reactivity. As 



Chapter 8 Further discussions 

173 
 

shown in Figs. 4.1 and 5.2, part of TiC was formed from Ti and CB at 650 oC, 

whereas Si did not show any sign of reaction with CB at even 900 C. In terms of 

carbon source, it can be found that preparation of TiC and SiC coatings on GF 

required a slightly higher temperature than that on CB. For example, SiC-coated CB 

was prepared at 1100 C for 6 hours (Fig. 5.2) and the reaction of Si with GF took 

place at 1200 C for 8 hours (Fig. 7.1). This indicates that CB particles exhibit higher 

reactivity than GF, due to smaller size and amorphous nature of carbon. In addition, 

depending on molar ratio of metal/carbon, the required synthesis temperatures were 

slightly different. For example, the completion of reaction between Si and CB in 

NaF-NaCl occurred at 1150 oC for Si/C of 1/2 and 1/4, and 1100 oC for 1/8. 

Therefore, synthesis temperature of carbide coating in molten salt is mainly 

dependent on reactivity of reactants and their initial molar ratios. 

 

Fig. 8.1 Synthesis temperatures required for formation of TiC and SiC coatings on CB and 
GF in various Ti/C and Si/C molar ratios (Holding time for complete reaction: 4 hours for 
TiC-CB and TiC-GF, 6 hours for SiC-CB and 8 hours for SiC-GF).  

8.1.2 Metal/Carbon ratio 

In the case of chemical vapour deposition, SiC coating thickness can be tailored  

by controlling flow rate of gaseous precursor and reaction time [221], and in the 

case of vapour-solid preparation, it can be tailored by controlling silcionization 

degree [202]. Different from these, the thickness of carbide coatings prepared by 

using the MSS technique could be readily tailored by simply adjusting the molar 
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ratio of metal/carbon (described in Chapters 4 and 5). In addition to variation in 

thickness of SiC coatings, the particle density and carbon content also changed with 

metal/carbon molar ratios. As summarised in Table 8.2, the thickness of carbide 

coatings and corresponding particle density of coated CB increased with increasing 

metal/carbon ratios, whereas the carbon content decreased adversely.  

Table 8.2 TiC/SiC coated CB prepared with different initial metal/C ratios. 

Metal/C initial 

ratio(by mole) 

Carbon content 
Particle density 

(g/cm3) 

Coating 

thickness** (nm) 
By volume* (%) By weight (%) 

TiC-CB 

1/2 40.44 16.67 3.70 50.3 

1/4 62.79 37.50 3.02 23.7 

1/8 76.93 58.33 2.59 10.4 

SiC-CB 

1/2 32.58 23.08 2.78 66.3 

1/4 56.64 47.37 2.46 36.5 

1/8 74.05 67.74 2.23 18.4 

1/12 80.82 76.74 2.14 12.2 

*Volume percentage was calculated based on measured particle density of carbide-coated 

CB spheres. 

** The thickness of TiC coating was estimated based on particle density, and SiC coating 

thickness was measured from TEM images of SiC-coated CB spheres. 

As shown in Table 8.2, the metal/carbon molar ratio is such a critical parameter for 

preparation of carbide-coated carbon particles that it should be carefully controlled 

when the coated carbon powders are used for refractory castable applications. 

Firstly, it is responsible for coating quality. If metal/carbon ratio is too high, for 

example, Ti/C or Si/C =1/1, all carbon would be consumed and converted to carbide 

(e.g. TiC and SiC nanorods as reported in Ref [148] [149]). On the other hand, if it is 

too low, i.e., the metal is not sufficient, coatings on carbon templates would be 

discontinuous. Fig 8.2, as an example, shows that high quality TiC coatings (uniform 

and crack-free) were obtained from initial Ti/C molar ratio of 1/8, whereas uncoated 
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GF surface was still seen when Ti/C molar ratio was reduced to 1/16. Secondly, it is 

necessary to prepare carbide coatings with an appropriate thickness for improving 

oxidation resistance of carbon particles. Li [146] and Xie [156] suggested that TiC 

and SiC coatings with a thickness of >200 nm could effectively protect carbon fibre 

from oxidation in air at elevated temperature. In the present study, the results 

indicate (Fig 6.13 and 6.15) that thicker carbide coatings (~30-60 nm) were able to 

improve oxidation resistance of CB. Thirdly, a high molar ratio of metal/carbon leads 

to high particle density (Table 8.2) which would narrow the density gap between 

carbon and other oxide grains (e.g. MgO and Al2O3) in future castable systems, 

assisting more homogeneous distribution/dispersion of carbon in the castable 

systems. However, free carbon content would be reduced in the case of using a high 

metal/carbon molar ratio, which might adversely affect the functionality of carbon in 

improving carbon-containing refractories’ thermal shock and corrosion resistance. 

 

Fig. 8.2 SEM images of TiC coatings on GF prepared from Ti/C molar ratio of (a) 1/8 and (b) 
1/16.  

8.1.3 Molten salt 

Molten salt played an important role in carbide coating formation. Firstly, it provides 

liquid environment for metal/carbon reaction. Under this condition, reactants were 

well mixed and contact possibility of them was increased, and consequently 

reactions were accelerated from kinetic aspect. This was supported by the fact that 

TiO2 was reduced by carbon to sub-titanium oxides at 950 C in the presence of KCl, 

whereas it was not the case in the absence of molten salt at the same temperature 

(Fig. 4.15).  

Secondly, molten salt enables metallic powders to dissolve in it upon heating to 
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above melting temperature. Similarly to the dissolution of oxides in molten salt [153, 

154], metals also dissolve into molten salt to some extent. Despite of unavailable 

data on solubilities of metal particles in molten salt, dissolution was verified 

experimentally in this work. Micron-sized Ti was fired alone in KCl at 850 C and the 

size and shape of particles changed considerably (Fig. 4.14). The presence of 

nano-sized Ti particles after interaction between Ti and molten salt is owing to 

‘dissolution-precipitation’ process [156] in which micron-sized Ti dissolves in KCl 

and precipitates out of the salts upon cooling. Wei and Li [222, 223] suggested that 

dissolved Ti might be in form of mobile cations and delocalized electrons, an 

unstable intermediate state between ionic and metallic. The dissolution 

phenomenon of Ti in molten salt was also confirmed by Liu and Xie [155, 156]. 

Likewise, micron-sized Si powder have a certain solubility in NaF or NaF-based 

salts (Fig. 5.20). Since the coefficients of diffusion of reactants in liquid state are 

much higher than those in the solid state [224], the dissolved Ti or Si species will be 

fast delivered to carbon surface in liquid environment. The dissolution of metal in 

molten salt not only decreases the synthesis temperature compared with other 

methods (Table 8.1), but also realizes in-situ formation of carbide.  

In the case of molten salt synthesis of carbide coatings, the use of an appropriate 

salt is the key. For example, among chloride salts, KCl is the best salt candidate for 

TiC coating formation, and NaF is essential for SiC formation at >1100 C. Generally, 

the salt selection for molten salt synthesis of carbide is determined by three factors, 

viscosity of molten salt, carbon’s wettability in molten salt, and solubility of metallic 

powders in molten salt.[156, 225] The relevant data of viscosity of molten salt and 

their contact angle on carbon surface are listed in Table 8.3. LiCl shows the lowest 

viscosity among these salts but with the worst wettability with graphite. NaCl has 

similar viscosity to that of KCl after melting, but also exhibits poor wettability. Based 

on these two factors, KCl might be the most suitable candidate for reaction of Ti or 

Si with CB. However, metallic powders have different solubilities in specific salts. 

For example, as shown in Fig. 5.20, micron-sized Si powders were evidently 

dissolved in a single NaF at 1100 C and appeared as nano-sized Si particles when 

extracting from the solidified salt after cooling to room temperature. In contrast, Si 

powders changed very little after firing in a single NaCl under the same conditions, 

indicating Si has an extreme low solubility in NaCl at 1100 C. Therefore, all these 

factors (viscosity of molten salt, carbon’s wettability in molten salt, and solubility of 
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metallic powders in molten salt) should be taken into considerations when choosing 

the salts for molten salt synthesis of carbides. 

Table 8.3 Viscosity of single molten salt at 850 C and its corresponding contact angle with 
graphite.[226, 227] 

Single salt Viscosity at 850 oC (mPa·s) Contact angle with graphite 

LiCl 0.9244-0.9250 127-137 (900-1100 C) 

KCl 1.0210-1.0226 73-78 (780-950 C) 

NaCl 1.0460-1.0470 113-128 (810-950 C) 

NaF — 115-127 (1000-1100 C) 

 

In some cases, salt assembles were used for molten salt synthesis, since salt 

assembles could provide lower melting temperature (also called eutectic melting 

temperature). For instance, the LiCl-KCl binary salt starts to melt at as low as 353 

C when 45 wt% LiCl and 55 wt% KCl (referred to as 45%LiCl-KCl hereafter) are 

mixed together, whereas single KCl melts at temperatures as high as 771 oC (Fig. 

8.3). In the case of TiC formation by MSS, 45%LiCl-KCl instead of single KCl was 

used to synthesise TiC at as low as 750 C. Although TiC coatings were obtained, 

as-prepared TiC-coated CB appeared slightly heavier agglomeration (Fig. 4.2d). 

This might be due to the reaction of Ti and C occurring in molten salt at low 

temperature (<750 C) when the viscosity was high but homogenous dispersion of 

CB particles had not been achieved. So the ratio between LiCl and KCl should be 

readjusted, for example, 15 wt% LiCl and 85 wt% KCl. 

It is also noticed that NaF content in the NaF-NaCl salt assembly was reduced to 

2.5-5 wt% from 20 wt% for the synthesis of SiC coatings on CB. Fig. 5.3 and 5.6 

show almost the same high quality SiC coatings were obtained when NaF was 

reduced. This not only reduces the use of environmentally-unfriendly fluoride but 

also reduces the evaporation of the salt mixture. As shown in Fig. 8.4, the 

evaporated salts incrased with NaF content (from 0 to 20 wt%) in the salt assembly. 

This is because eutectic melting temperature increased with less NaF (< 20 wt%) in 

the salt mixtures. 
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Fig. 8.3 Phase diagram of KCl-LiCl.[228] 

 

Fig. 8.4 The weight percentage of recycled salts separated from solidified resultant samples 

after firing at 950 C for 4 hours as function of content of NaF in the salt assembly. 

8.1.4 Template growth mechanism 

Attributed to the use of molten salt in the reaction, carbide formation occurred at 

relatively low temperature, 750-850 C for TiC and 1100-1200 C for SiC (Fig. 8.1). 

Furthermore, as-prepared carbide coated CB retained the similar morphologies and 

sizes to uncoated CB spheres (Fig. 4.2 and 5.6), indicating the formation of carbide 
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coatings was dominated by the template growth mechanism in which carbon 

sources acted as hard templates for carbide growth. Such a mechanism was also 

verified by previous studies such as carbide formations on carbon fibre [146] [147] 

[146,147], carbon nanotube [148] [149] and natural cotton [156] and wood [161]. 

Herein, the template growth mechanism was further discussed to illustrate the 

formation and growth of carbide coating based on more experimental evidences. It 

is vital to understand how active Ti and Si species react with carbon, thus using this 

understanding to precisely control the reaction process and reduce the defects 

created during formation. 

The template formation and growth of carbide comprise two main steps, dissolution 

and diffusion, as schematically illustrated in Fig. 8.4. The dissolution of metallic 

reactants in molten salt is the prerequisite to in-situ formation of carbide coatings on 

carbon templates. As evidenced in Fig. 4.13, irregularly micron-sized TiC clusters 

rather than TiC coatings were obtained after firing the mixture of Ti powders and CB 

particles in the absence of molten salt. In this case, formation of TiC is based on 

solid-solid reaction and the reaction occurred on the template of micron-sized Ti 

powders. In contrast, the dissolution of metallic powders (discussed in Section 8.1.3) 

in molten salt not only increases the reactivity and activity of metal species, but also 

increases the motion rate of metallic reactants. Nevertheless, carbon materials are 

quite stable in the molten salt, neither size nor shape changed after interaction at 

reaction temperature [156]. Thus, CB particles acted as templates in the reaction.  

The formation and growth of carbide coatings are mainly based on diffusion of Ti 

and Si through molten salt and their inter-diffusion of carbon and Ti/Si through TiC or 

SiC thin films. The specific details are stated bellow. When active Ti or Si species 

reach the top surface of carbon particles, carbide compounds are formed 

immediately and an initial thin carbide coating (shown as cross-section of a layered 

structure at diffusion step in Fig. 8.5) is formed. Since the first layer of carbides 

blocks the direct contact of reactants (Ti or Si with C), the reaction rate slows down. 

The subsequent reaction will proceed by inward diffusion of silicon or titanium atoms 

and outward diffusion of carbon atoms through pre-formed carbide coating. The 

inter-diffusion will continue until all metallic reactants are consumed. For this reason, 

formation of thick coatings normally required slightly higher temperature or longer 

reaction time (Fig. 8.1), allowing the completion of slow inter-diffusion of Ti or Si and 

C through increased TiC or SiC coating layer. 
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Fig. 8.5 A Schematic diagram of template growth (dissolution-diffusion) mechanism for 
carbide coating formation. The cross-sections in the second step showing the interface 
between carbon top surface and as-formed SiC coating. (M= Ti or Si) 

So the diffusion coefficients of Ti or Si and C in carbide will be critical to the growth 

of carbide coatings. The extensive studies [229-232] reveal that carbon diffuses 

faster than Si in the lattice of β-SiC, that is Dc >DSi. So when a low content of Si is 

added (low Si/C in this case), thin SiC coatings are formed on carbon core within a 

short time mainly by direct contact reaction. However, when high Si/C molar ratio is 

used, most of SiC is formed by inter-diffusion through pre-formed SiC. It will take 

longer for Si to go through thick SiC shell, whereas C atoms can go through SiC by 

outward diffusion using less time, due to its higher diffusion coefficient. As a result, 

voids or gaps (white zone indicated in Fig 8.5) at the interface between carbon core 

and SiC shell were formed. The analysis and conclusion were verified by TEM 

observation of SiC-coated CB prepared in high Si/C molar ratio (1/4 to 1/2) (Table 

5.2). It showed the higher the Si/C molar ratio used, the larger the void formed. 

When Si/C was made as 1/1 and all carbon was consumed and converted to SiC, 

hollow structure (Fig. 5.21) was formed. This phenomenon is also called Kirkendall 
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effect.[204] 

It also should be noticed that the dissolution of metal in molten salt and reaction of 

metal with carbon occurred simultaneously. Since the solubility of Ti or Si in molten 

salt is small (reflected from only part of Ti or Si powders were dissolved in molten 

salt as shown in Fig. 4.14 and 5.20), dissolution is easy to reach saturation. When 

dissolved Ti and Si species are consumed making the molten salt unsaturated with 

Ti or Si again, metallic powders will continue to dissolve in molten salt until all 

reactants are reacted eventually. Such a conclusion was also supported by analysis 

on equilibrium concentration of reactants in molten salt.[150] 

Taking advantages of the template growth mechanism of MSS, different structures 

of carbide coated carbon or carbides could be readily configured based on different 

carbon templates, showing the variability and simplicity of MSS technique. This will 

be beneficial to extend the use of molten salt synthesis in synthesis of other 

functional ceramics.  
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8.2 Water-wettability and oxidation resistance of carbide-coated 

carbon materials  

8.2.1 Effects of carbide coatings on wettability, dispersivity and flowability 

8.2.1.1 Water-wettability 

Although the water-wettability values of uncoated and carbide-coated CB were not 

quantitatively determined in this work, the improvement in water-wettability for 

coated CB was clearly demonstrated by straightforward dispersion of carbon 

particles in water. As shown in Fig. 6.4, TiC-coated CB particles, as an example, 

were immediately wetted by water and well dispersed in water either with assistance 

of vibration or not, whereas most of uncoated CB particles remained on the top of 

water. Such a change in wetting behaviour was also observed by Liu [155]. In her 

work, the contact angle for natural graphite with water was measured as 101 

(considered as hydrophobic when contact angle greater than 90), whereas contact 

angle for TiC or SiC-coated GF was ~60, indicating TiC and SiC coatings were 

hydrophilic. 

The improvement in water-wettability was further discussed and explained from the 

following three aspects which are responsible for the wettability of solid surface. 

[233]: physical surface tension (or interfacial free energy), geological microstructure 

and chemical composition. As reported form literature [234], the interfacial free 

energy between TiC and water is 2768.6 mJ/m2, about 44 times higher than that 

between carbon and water (63.1 mJ/m2). According to Young’s theory [235], contact 

angle is inversely proportional to interfacial free energy between solid surface and 

liquid. Thus, theoretically, TiC (or SiC) should show smaller contact angle and more 

wettable with water than carbon. 

Based on the observations from SEM and TEM images (Fig. 4.3, 4.5, 5.7 and 5.11), 

carbide-coated CB showed a rough surface, due to the formation of carbide 

nancrystals on the surface. Liu [26] also clearly characterised the surface of 

TiC-coated GF by using AFM, revealing the roughness of carbon surface was 

increased after TiC coating. According to Johnson’s model [236, 237], the wettability 

will be enhanced by the increased roughness when contact angle is smaller than 

90. So carbide-coated CB is proven to be water-wettable in terms of the change in 

geological microstructure of solid surface. 
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Another factor to influence the wettability of solid surface is the chemical 

composition. As for carbon materials without any oxidation or other treatments, 

there are very limited hydrophilic functional groups such as –COOH or –OH 

attached on the surface. Thus, no hydrophilic bond could be formed with water and 

this makes carbon difficult to be dispersed in an aqueous environment.[238] 

However, after coating with carbide materials, the surface chemical composition of 

CB has been changed. TiC surface is found to be Ti terminated.[239] These Ti 

terminals are believed to be unsaturated, existing in the form of Ti+ which are 

unstable and will easily combine oxygen from their surroundings.[134] The 

existence of TiO2 was experimentally proved by Zhang and Tan [240] by using XPS 

element analysis. They found that around 86% of titanium content on the surface 

combined with oxygen, forming TiO2. They also suggested that TiO2 tended to 

coordinate with water molecules to form  which could enhance the water 

affinity with TiC coated carbon materials. Similarly, a thin layer of SiO2 was observed 

on the surface SiC when exposed to air.[149, 200] As well known, SiO2 is very 

hydrophilic and tends to form functional silanol group (Si-OH) in the presence of 

water. In addition, Adar et al. [241] and Cerovie et al. [242] suggested that Si-C 

bonds could interact with water, forming carboxylate group (COO−). Thus, with a 

great number of silanol groups and carboxylate groups on the surface, SiC-coated 

carbon could be readily wetted and dispersed. 

8.2.1.2 Dispersion property 

The dispersion property of uncoated and carbide-coated CB were compared in 

sediment tests (Fig. 6.4), showing better dispersion property was achieved for 

coated CB. This was also verified by zeta potential measurement. The higher value, 

the better dispersion ability. The plots of zeta potential versus pH for uncoated and 

coated CB in water (shown in Fig. 6.1 and 6.2) are integrated in one figure (Fig. 8.6) 

and used to compare with uncoated and TiC-coated GF. The common feature is that 

zeta potential values of coated carbon particles were higher than those of uncoated 

ones, indicating improved dispersion property for CB coated with carbides. 

Moreover, coated CB showed higher zeta potential than coated GF, for example, at 

pH=10, ~46 mV for TiC-coated CB and ~54 mV for SiC-coated CB, whereas only 

~13 mV for TiC-coated GF. In addition, better dispersion property of carbide-coated 

carbon was obtained in basic environment (pH>8). This enables them to 

homogeneously disperse in oxide-based refractory castables, as Al2O3 or 



Chapter 8 Further discussions 

184 
 

MgO-based systems are usually basic (pH=10.5) [58].  

 

Fig. 8.6 Zeta potential as a function of pH for uncoated and coated carbon particles in water. 

The reason for high zeta potential value and much improved dispersion of coated 

carbon particles is that there are more negative charges formed on particle surface 

than in the case of uncoated one. As discussed in above section, Ti-OH and Si-OH 

are usually formed on TiC and SiC surface in the presence of water. The 

dissociative chemisorption of water molecules led to a hydroxylated surface, which 

can specifically adsorb H+ and OH- according the following equations [243]: 

                                (8.3) 

                                          (8.4) 

Si-OH +H2O → Si-OH2
+ +OH-                                               (8.5) 

Si-OH → Si-O- + H+                                                     (8.6) 

When H+ is dominant, it is beneficial to form Ti-OH2
+ and Si-OH2

+ (Equation 8.3 and 

8.5). When more OH- was added into suspensions, the formation of Ti-OH2
+ and 

Si-OH2
+ is suppressed and the surface will be surrounded by more negative charges 

(Ti-O- and SiO-) (Equation 8.4 and 8.6). Therefore, for TiC and SiC coating, high pH 

will enable surfaces with more negative charges and it is helpful to disperse carbon 

particles in water. However, for uncoated carbon, in particle for graphite, pH value 

has little influence on their dispersion due to the lack of charged sites.  
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8.2.1.3 Flowability 

The rheological behaviours of uncoated and coated carbon containing suspensions 

were extensively studied and described in Chapter 6, and their plots of apparent 

viscosity vs shear rate are shown together in Fig. 8.7. It can be seen that uncoated 

GF containing suspension exhibited the highest viscosity and worst flowability, 

nearly two orders of magnitude higher than that of uncoated CB. Despite the 

flowability of GF in water was improved by TiC coatings, the former still appeared 

more viscous than the latter. This indicates that nanosized spherical CB particles 

are more flowable that micron-sized flaky graphite. The flowability of uncoated CB 

was further improved by TiC and SiC coating, almost two orders of magnitude 

higher than that in the former at a low shear rate and nearly one order of magnitude 

higher at a high shear rate. The decrease in apparent viscosity is associated with 

the improved water-wettability and dispersivity as discussed above. With TiC or SiC 

coating, there are a number of negative charges on the carbon surface due to 

formation of Ti-O- and Si-O-, in particular, in alkaline environment. This will generate 

strong repulsive forces between particles in suspensions and consequently prevent 

agglomeration or flocculation during suspension flow.[244, 245] As a result, the 

apparent viscosity decreased. The phenomenon of agglomeration or flocculation of 

uncoated CB was observed in Fig. 6.6b, showing unstable shear stress detected 

with increasing shear rate. 

 

Fig. 8.7 Apparent viscosity of water suspensions (pH=10) containing 25 wt% uncoated and 
carbide coated CB as a function of shear rate. 
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The rheological behaviours of carbon suspensions are also highly related to pH. Fig. 

6.6 gives us a clue that in alkaline suspensions, low apparent viscosity of carbide 

coated CB was obtained. This is because at high pH, carbide surface was 

surrounded with more negative ions, generating even more repulsive forces 

between particles. This explanation was supported by zeta potential measurement 

that at high pH, high value of zeta potential was obtained. 

8.2.2 Effect of carbide coatings on oxidation resistance 

8.2.2.1 As-prepared carbide coatings 

The oxidation resistances of uncoated and coated CB were investigated by TG 

(Section 6.4.2) in which both of them were exposed to air flow at elevated 

temperature up to 1000 C. As shown in Figs. 6.13 and 6.15, the oxidation 

resistance of CB particles was only slightly improved by carbide coatings. The 

retardation in carbon oxidation was more evident in the TG curves of the samples 

with thick TiC or SiC coatings, indicating thicker carbide coating is beneficial to 

increase carbon’s oxidation resistance. 

The limitation in improving oxidation resistance of carbon particles is attributed to 

two aspects. One reason is that the coating layer is too thin. The thickness of TiC 

coating at Ti/C=1/8 was estimated as only ~10 nm, and ~50 nm at Ti/C=1/2. The thin 

TiC coating was effective to improve water affinity of carbon particles, however, it 

was still not thick enough to protect carbon from oxidation. As reported in Literature 

[146], the oxidation resistance of carbon fibre was improved by TiC coating with a 

thickness reaching above ~200 nm. The second reason is that as-prepared carbide 

coatings were not dense enough. For example, it can be clearly seen from high 

resolution SEM of the individual TiC-coated CB sphere (Fig. 4.3) that there were 

some nanopores between TiC nanocrystals (~10nm) though TiC coating was 

continuous. Thus, small oxidising gas molecules (e.g. O2) would readily penetrate 

through these open nanopores and consequently oxidise carbon and TiC 

simultaneously from both inside and outside of TiC coatings. So thin TiC or SiC 

coatings cannot act as barriers to oxidation and thus cannot effectively improve 

oxidation resistance of CB. 

8.2.2.2 Effect of annealing treatment 

Based on above analysis, there are two ways to further improve the oxidation 
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resistance of carbide-coated CB: One is to increase coating thickness and the other 

is to make coating denser. Since a reasonable level of carbon content needs to 

remain after carbide coating, it is not possible to further increase metal/carbon molar 

ratio to over 1/2. As a result the formation of thicker coatings (e.g. >60 nm) cannot 

be realised. However, denser carbide coatings can be achieved just simply by 

high-temperature annealing. Figs. 6.14 and 6.16, as examples, show an evident 

retardation in oxidation of the annealed samples at elevated temperature, indicating 

improved oxidation resistance after annealing treatment at 1200-1500 C. Such a 

significant improvement was also verified by a shift of exothermic peaks of carbon 

oxidation (indicated by black arrows shown in Fig. 8.8) to higher temperatures. 

 

Carbon oxidation 
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Fig. 8.8 DSC curves of (a) TiC-coated CB before and after annealing in Ar and N2 at 1300 C, 
and (b) SiC-coated CB before and after annealing in Ar at 1200 and 1500 C 

As for TiC-coated CB, the sample after annealing in N2 exhibited slightly better 

oxidation resistance than that after annealing in Ar, due to the formation of TiCN 

solid solution during annealing process (Figs. 6.9 and 6.10 and Table 6.1). On the 

other hand, the oxidation resistance of carbide-coated CB is also associated with 

annealing temperature. Figs. 6.16 and 8.18b verify that higher annealing 

temperature resulted in better oxidation resistance. This is because at higher 

temperature, carbide coatings became denser than that before annealing treatment. 

The changes in phases and microstructures of carbide coatings before and after 

heating-treatment was further analyzed by XRD and SEM. As shown in Fig. 8.9 (left), 

the XRD intensity of the main peak of β-SiC at 2θ ≈ 35.65 increased dramatically 

after annealing and reached the highest at 1500 C, indicating the increase in 

crystallinity of SiC phase. SEM images of SiC coatings on CB (Fig. 8.9) show that, 

with the growth of nanocrystals, nanopores in the SiC coatings were gradually 

eliminated and coating layer became denser during annealing treatment. 

Carbon  
oxidation 
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Fig. 8.9 Refined XRD profiles of main peak of β-SiC ((111) plane) before (as-prepared at 

1100 C) and after heat-treatment at 1200 and 1500 C (Left figure) and their corresponding 
SEM image of individual SiC coated CB sphere on the right hand. 
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8.3 Carbon-containing high alumina castables 

8.3.1 Effects of carbide coatings on water demand and flowability 

As described in the literature review (Chapter 2), the major difficulty in developing 

carbon-containing castable is the poor wettability of carbon materials, since high 

water demand is required to achieve a reasonable flow value when carbon particles 

are incorporated. This was also addressed in this work. In the preliminary 

experiments, it witnessed a remarkable increase in water addition after adding 

uncoated GF into model castables, from 5 wt% to 8 wt% to reach the flow value 

equivalent to that of carbon-free castable (Fig. 7.2). Zhou [117] proposed a 

mechanism/model to explain the increase in water addition when GF were added 

into oxide-based castables. As shown in Fig. 8.17, a thin water film is formed on the 

surface of oxides to make a castable flow. When the added GF contacts with oxides, 

the continuous water film is destroyed. However, the new continuous water film is 

not able to form because of non-wettability of GF with water. Under this 

circumstance, a proper flow of particles including oxides and graphite is hard to 

achieve. Consequently, high water addition is required to separate GF and oxide 

particles and rebuild the continuous water film. 

 

 Fig. 8.10 Schematic diagram of the water wetting on Oxide-GF surface.[117] 

In the experiment, a carbon dispersant, SS, was added in the model castable as a 

comparison set. However, it did not work effectively to reduce the water demand. 8 

wt% water was added into GF containing castables with and without SS, but the flow 

value of SS-containing castable decreased adversely (172 mm for castable without 

SS, and 164 mm for SS added with castable). The function of the carbon dispersant 
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should be that the non-polar end of the macromolecule attaches on the carbon 

surface, and the ionic end (for example, —SO3
—
 in this case) faces towards the 

external. So the GF coated with SS would be negatively charged, similarly to SiO2 

and Al2O3 in the alkaline aqueous environment. One reason of the dispersant not 

working on GF might be that the SS was consequently not firmly attached on GF 

surface and GF’s water-wettability was not improved. Secondly, it is probably due to 

the interaction of negative SS with some of cations, Ca2+ and Al3+, released from 

cement.  

In contrast, carbide coatings could significantly reduce water demand when carbon 

was incorporated into castables. As for standard 5.5kg-scale batch (Fig. 7.4), 

coated-carbon containing castable required only 6.5-7.0 wt% water, however, it 

required 8.5 wt% water for uncoated CB castable and 9.7 wt% water for uncoated 

GF castable. When increasing SiC-coated CB content from 5 to 8 wt%, only 7.5 wt% 

water was needed to reach the same flow value. The improvement in reducing 

water demand is more significant than that achieved by previous research. For 

example, the water addition was as high as 8.5 wt% when spinel coated GF 

prepared by sol-gel technique was incorporated into castables.[140] 

So the advantages of carbide coating on carbon were fully demonstrated during 

castable making. Firstly, the water-wettability of carbon particles was improved by 

carbide coatings. As discussed in Section 8.2.1, TiC and SiC showed excellent 

water-affinity, due to the formation of Ti-OH and Si-OH on the surface in contact with 

water. So carbide coated carbon particles were readily wetted by water. Secondly, 

the dissociation of Ti-OH and Si-OH in alkaline solutions imparted the particles with 

negative charges (TiO- and SiO-) (demonstrated as high zeta potential in Chapter 6) 

which generate strong repel forces between particles and prevent carbon 

agglomeration during mixing. Thirdly, the carbide coatings were able to increase the 

density of carbon materials, making them more comparable with oxide aggregates. 

It also enables carbon particles to distribute uniformly in the castable matrix.  

8.3.2 Effect of carbide coatings on oxidation resistance 

As no antioxidants were added into castables, the results of oxidation tests 

performed at 1000 C could directly reflect the effect of carbide coatings on 

oxidation resistance of carbon-containing castables. As shown in shown in Figs. 7.9 

and 7.10, castables containing carbide-coated carbon particles (except SiC-coated 
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GF) showed much less decarbonised depth (6.28-6.82 mm) than that containing 

uncoated carbon particles (7.90-10.48 mm), indicating the improved oxidation 

resistance was achieved by carbide coatings. The oxidation resistance of castables 

was presented in order of TiC-GF>SiC-CB>Ti-CB>GF>Si-GF>CB. Overall, there 

are two aspects responsible for the improvement in oxidation resistance of 

carbon-containing castables. One is attributed to the decreased apparent porosity 

(Fig. 7.5). Higher porosity enabled oxidising gas to diffuse readily into the inside of 

castables and promote the oxidation of carbon materials. So it was effective to 

retard carbon oxidation by decreasing porosity. Secondly, such an improvement 

comes from the contribution of high-quality carbide coatings. TiC and SiC on carbon 

particles acted as a barrier to prevent direct contact with oxidising gases and 

consequently slowed down the oxidation rate. Moreover, the oxidation of TiC and 

SiC would consume part of oxidising gases and thus their concentration or pressure 

during oxidation process decreased, similar to the performance of antioxidants like 

metallic Al and Si in carbon-containing bricks [108]. In addition, TiO2 and SiO2 

remained in the generated pores after carbon oxidation (Fig. 7.14 and 7.15) and 

decreased the porosity to some extent. In the case of SiC-CB castable, the 

formation of aluminosilicate dense layer on the external surface of castable also 

help prevent the further invasion of oxygen. 

8.3.3 Effect of phase evolution on mechanical properties 

Unlike shaped and pre-fired refractory composites in which the mechanical strength 

is provided by carbon networks derived from pyrolysed pitches or phenolic resins, 

castables, Al2O3-C castable in this case, was bonded by inorganic binders such as 

hydraulic calcium aluminate cements (CACs). 

As for green castables just after placement (110 C), the mechanical strength was 

developed by hydration of CAC cement with water and subsequent formation of 

stable hydrated compounds C3AH6 and AH3 [80] when temperature rose to above 

35 C. The mechanical strength of green castables was generally very low (Fig. 7.7) 

After coking at 1500 C, the bending strength was remarkably increased, even 

doubled or tripled at 1500 C for castables containing carbide-coated CB compared 

with that at 110 C. This is due to the formation of strong ceramic bonding phases 

such as mullite and CAS at high temperature.[208, 209] 

In addition, it was found that coated-carbon castables exhibited higher mechanical 
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strengths than uncoated-carbon castables at both 110 oC and 1500 oC. This is 

mainly attributed to the decreased apparent porosity of castables. The apparent 

porosity (Fig. 7.5) was followed in the order of CB>GF> 

SiC-GF>TiC-CB>SiC-CB>TiC-GF. Correspondingly, the mechanical strengths of 

carbon-containing castables (Fig. 7.6 & Fig. 7.7) was presented in the order of 

TiC-GF>SiC-CB>TiC-CB>SiC-GF>GF>CB. It reveals that mechanical properties of 

castables are highly dependent on their apparent porosity. On the other hand, from 

microstructures of castables (Fig. 7.11 and 7.15), it can also be seen that coated 

carbon particles were tightly bonded by calcium aluminate phase and closely 

surrounded by oxides. This verifies that carbide-coated carbon particles are more 

compatible than the uncoated ones in oxide-based matrix. This fact could be 

additionally contributes to the improved mechanical strength in the cases using 

carbide coated carbon. 
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Chapter 9 Conclusions and Future work 

9.1 Conclusions 

In this study, a molten salt synthesis technique has been further developed and 

employed to prepare carbide coatings (TiC and SiC) on carbon black particles. The 

water-wettability, dispersivity and oxidation resistance of CB were effectively 

improved by carbide coating. As a result, low water demand and improved 

flowability were achieved when carbide-coated carbon particles were incorporated 

into the castables. The resulting castables exhibited lower apparent porosity, much 

improved mechanical properties and oxidation resistance compared with castables 

using uncoated-carbon. Based on the results and discussions presented in the 

previous chapters (Chapters 4-8), the main conclusions can be drawn as follows.  

9.1.1 Preparation of carbide-coated CB 

The preparation of TiC or SiC coated CB was optimised by varying synthesis 

conditions, for example, firing temperature, holding time, salt assembly, and Ti/C or 

Si/C molar ratios. The morphology of the resulting powders and microstructure of 

coated particles were characterised by SEM, EDS, TEM and SAED. The main 

findings from these are given below. 

1) Homogeneous TiC coatings were prepared on CB particles by firing them with Ti 

powders in KCl or KCl-LiCl for 4 hours at 750-850 C which is 100–200 C lower 

than that required for preparation of TiC coatings on GF. It was also feasible to 

use a combination of Ti and TiO2 as a titanium source to reduce the preparation 

cost of TiC coatings. High quality TiC coatings were obtained when firing the 

mixture of TiO2 and Ti (in molar ratio of 1/3) at 950 C for 4 hours. 

2) High quality SiC coatings were prepared on CB spheres after firing them with Si 

powders in a binary NaCl-NaF salt for 6 hours at 1100 C which is much lower 

than that required by vapour-solid reaction (1350-1550 C) for SiC coating 

formation. NaF was proven to be essential in the molten salt synthesis of SiC 

and its optimal amount was 2.5-5 wt% in the binary NaCl-based salt. In addition, 

graded SiC/SiO2 composite coatings were also prepared by controlled oxidation 

of SiC-coated CB in air at 450 C for 90 minutes to further improve their 

water-wettability. 
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3) The core/shell structure of carbide-coated CB spheres was clearly verified by 

SEM and TEM. The thickness of the TiC and SiC coating (shell) prepared in the 

metal/carbon molar ratio of 1/8 was estimated as ~10 and ~12 nm respectively. 

By controlling the metal (Ti or Si) to CB ratio in the initial batch mixture, the 

carbide coating thickness could be readily tailored to meet practical 

requirements in real castable systems. The increase in particle density of CB 

after carbide coating would narrow the density difference between carbon and 

other aggregates of castable (e.g. Al2O3 and MgO), thus additionally improving 

the dispersion/distribution of carbon particles in castables. 

4) Molten salt synthesis of carbide coatings from metallic powders and carbon 

particles was dominated by the template growth mechanism. The dissolution of 

Ti or Si in molten salt not only increased their reactivity and accelerated the 

reaction but also enabled active Ti or Si active species to fast deliver to the 

surface of carbon particles and form carbide coatings on the template. The 

growth of carbide coatings was dependent on the inward diffusion of Ti or Si and 

outward diffusion of carbon through a pre-formed carbide coating layer. Since 

the diffusion coefficient of carbon is greater than that of metals, (e.g. Dc> DSi), 

defects such as voids would emerge when thick carbide coatings were 

attempted to form. 

9.1.2 Water-wettability and oxidation resistance of carbide-coated CB 

The water-wettability and relevant dispersion property of uncoated and coated CB 

were evaluated by zeta potential measurements and visual observation of carbon 

dispersion in water. The rheological behaviours of suspensions containing carbon 

particles were investigated by measuring apparent viscosity against shear rate. In 

addition, oxidation resistance of as-received and carbide-coated CB was examined 

and compared by TGA and DSC. The main points are concluded as below. 

1) The water-wettability of CB particles was significantly improved after carbide 

coating. Compared with uncoated CB, the sediment test showed carbide-coated 

CB could be rapidly wetted by water and well dispersed in water within a short 

time. It was also found that carbide-coated CB particles exhibited better 

dispersion property and flowability in water, in particular, in an alkaline 

environment. Zeta potential values of carbide-coated CB were much higher than 

that of uncoated CB, for example, at pH=10, ~46.1 mV for TiC-coated CB, ~54.7 
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mV for SiC-coated CB and ~65.9 mV for SiC/SiO2-coated CB but only ~22.6 mV 

for uncoated CB. Moreover, the apparent viscosity of suspensions containing 25 

wt% coated CB was over one order of magnitude lower than that containing the 

same level of as-received CB. This is attributed to the formation of TiO2 and SiO2 

thin film layers on the surface of carbide-coated carbon. A number of hydrophilic 

Ti-OH and Si-OH groups were generated in contact with water. Consequently, 

negative charges Ti-O- and Si-O- formed on the particle surface at high pH 

prevented carbon from agglomeration and imparted them excellent dispersion 

properties and flowability. 

2) TGA and DSC verified that the improvement in oxidation resistance of carbon 

after carbide coating was limited, due to formation of nanopores in carbide 

coatings. However, the annealing treatment at 1200-1500 C could promote the 

growth of carbide nanocrystals and make the carbide coating denser, thus 

evidently improving their oxidation resistance. The TG curves of carbide-coated 

CB after post-treatment were right shifted to higher temperatures and the 

completion of carbon oxidation was postponed. For example, as-received CB 

was completely oxidized at ~678 C, but TiC-coated CB after annealing at 1300 

C in N2 lost all carbon at ~838 C, and annealed (1200-1500 C) SiC-coated CB 

at ~800-866 C. The observation of microstructure and elemental changes of 

carbide-coated CB during the oxidation process indicated annealing atmosphere 

and temperature were influential to their oxidation resistance.  

9.1.3 Application of carbide-coated carbon in castables 

Both uncoated and coated carbon particles (including CB and GF) were 

incorporated into model castables to investigate the effects of carbide coatings on 

water addition, flowability, mechanical properties, and oxidation resistance of 

carbon-containing castables. The results indicated that carbide coatings had 

positive influences on all these aspects, and the main conclusions based on this 

part of work can be made as follows.  

1) The water addition was reduced by over 20%, from 8.5-9.7 wt% required for 

uncoated carbon containing castables to 6.5-7.0 wt% for coated carbon 

containing castables (to achieve the similar flow values). In other words, 

flowability or workability of castables was improved when the same amount of 

water was added. The dramatic decrease in water addition led to a considerable 
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drop in apparent porosity (e.g. 24.6% to 17.2% at 110 oC, and 29.8% to19.2% at 

1500 C for uncoated and coated CB) and an increase in bulk density (e.g. 2.52 

to 2.88 g/cm3 at 1500 C for uncoated and coated CB).  

2) The mechanical properties of castables have benefited from decreased 

apparent porosity when carbide-coated carbon particles were incorporated. 

Castables containing carbide-coated carbon particles after coking at 1500 C 

showed over 6 times higher compression strength and 3-5 times higher bending 

strength than that containing uncoated carbon particles. For example, an 

uncoated CB containing castable resisted crushing at 7.8 MPa and bending at 

3.5 MPa, whereas SiC-coated CB containing castable crushed at 54.4 MPa and 

ruptured at 18.28 MPa, respectively. In addition, oxidation resistance of 

carbon-containing castables was improved significantly. A CB castable was 

severely oxidized and showed a decarbonized depth of 10.48 mm, whereas 

TiC-CB castable’s decarbonized depth was 6.82 mm and that of a SiC-CB 

castable was 6.35 mm. 

9.2 Future work 

The research work presented in this thesis has made a big progress in terms of 

improving carbon’s water-wettability and reducing water demand for preparation of 

carbon-containing castables. As a result, apparent porosity was decreased and 

mechanical properties and oxidation resistance were correspondingly increased. 

However, much effort is still needed to make to further improve the process of 

coating synthesis and castable preparation, eventually realizing the wide 

commercial applications of carbon-containing castables in the iron and steel 

industry for example. 

1) High quality TiC coatings have been successfully prepared on amorphous 

carbon black and graphite flakes, however, it was very difficult to obtain 

equivalently high quality SiC coatings on natural crystalline graphite flakes. It is 

necessary to readjust the synthesis conditions or modify the graphite surface 

before SiC coating. 

2) The production efficiency of carbide-coated carbon particles needs to increase. 

In this work, only 100g samples were produced from each run by using an 

enlarged graphite crucible and furnace. This cannot meet the high demand of 
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carbon materials for applications in refractory castables. So more efficient 

production apparatus and processes are required to make coated carbon 

commercially available. 

3) By incorporating a dispersant specially designed for dispersion of carbides in 

aqueous suspensions (e.g. tetramethyl ammonium hydroxide (TMAH) for 

dispersion of SiC), a much lower water addition for making castables might be 

achieved. 

4) Appropriate antioxidants such as Si and B4C are required for further improving 

the oxidation resistance of carbon-containing castables. Meanwhile, high 

temperature mechanical properties and slag corrosion tests should be carried 

out to make a comprehensive assessment of the use under industrial conditions. 
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