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A B ST R A C T

This thesis describes a hybrid approach to compiler verification. Property-based
testing and mechanised proof are combined to support the verification of a
supercompiler — a particular source-to-source program optimisation. A careful
developer may use formal methods to ensure that their program code is correct
to specifications. Poorly constructed compilers (and their associated machinery)
can produce object code that does not have the same meaning as the source
program. Therefore, to ensure the correctness of the executable program, each
component of the compilation pipeline needs to be verified.

Lazy SmallCheck — a property-based testing library — is extended with
support for existential qualification, functional values and a technique for
displaying partial counterexamples. Lazy SmallCheck is then applied to the
efficient generation of test programs for a small first-order functional language,
specified using declarative statements of program validity. We extend the
technique with several definitions of canonical programs to reduce the test-data
space.

A supercompiler is implemented for a core higher-order language, contrast-
ing implementations found in other publications. We also survey the techniques
and themes seen in the literature on compiler proof. These surveys inform
the development of an abstract verified supercompiler in a dependently-typed
language. In this work, we represent correctness properties as types.

This abstract model is then adapted to integrate mechanical proof and results
of property-based testing to verify a working supercompiler implementation.
While more work is required to improve the framework’s ease-of-use and the
speed of verification, the results show that this approach to hybrid verification
is feasible.
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Part I

I N T R O D U C T I O N





1 I N T R O D U C T I O N

This chapter motivates a programme of research into hybrid methods of compiler
verification. My contributions to the topic are outlined and a roadmap for the thesis is
presented. There is also discussion of the notational style used by the thesis.

1.1 motivation

A compiler transforms a program in some source language into a program
in a target language. A key property of a compiler should be to preserve the
semantics of the source program in the compiler output. All compilers should
meet this minimal specification. The consequences of an incorrect compiler
include the introduction of (often subtle) bugs into execution behaviour, the
loss of portability and impeded maintainability of both the compiler and source
software.

Leroy (2009) poses the question “Can you trust your compiler?” Unfortunately,
even for many popular compilers, the answer is not as certain as many would
expect. Look at the bug tracker of your favourite compiler to find examples
of vanishing loop conditions and malformed bytecode output. The language
semantics may not be formally understood or, given the often infinite space of
source programs, coverage provided by test suites may be too low to account
for all the programs that a user may write. Some languages define their
semantics as the result of compiling programs using the latest release version
of some standardised compiler. This approach does not give many guarantees
of software behaviour.

expert testing Test suites for compiler correctness are often constructed
by a specialist through the analysis of a language specification or observation
of unexpected behaviour. This approach may be classified as expert testing to
distinguish it from the automated testing discussed later.

When used effectively, expert testing can reveal a wide variety of program-
ming errors. For the time invested in the implementation of testing, it can
return a large improvement in confidence of software correctness. For example,
a standardised suite of programs is often used to verify a compiler’s correct
behaviour. (Dietz, 2008; Goodenough, 1980; Partain, 1993; Wichmann and Sale,
1980) However, with compiler defect still being discovered, it would appear
that additional verification methods are required.

3
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Figure 1.1: Sketch graph of confidence against verification effort.

mechanised proof In an ideal world, all compilers would be formally
verified using rigorous proof techniques. The stated “ultimate goal” of McCarthy
and Painter (1967) was to “make it possible for a computer to check proofs that
compilers are correct.” However, their seminal 1967 paper only described a hand-
proof of a compiler for a small arithmetic language. It was not until Milner and
Weyhrauch (1972) that the objective of mechanised checking was achieved for
this small case study, as discussed in detail in Chapter 6.

Even a contemporary effort, CompCert, took “an estimated 2 person-years of
work” (Leroy, 2009) to verify correct. It is clear that mechanised proof techniques,
as they stand, are too costly to be widely accepted by the compiler community.

automated test An intermediate approach, between expert-authored test-
ing and mechanised proof, is automated testing. Examples include fuzzing
(Holler, 2011) and property-based testing (Claessen and Hughes, 2000; Runci-
man et al., 2008). In these automated testing methods, an algorithm is used
to generate tests against some correctness criteria. A developer does not have
to borrow or invent examples, and can appeal to the verification algorithm as
evidence of the compiler’s correctness.

However, important issues need to be addressed such as the definition of
compiler correctness, the method by which test programs are generated and
how to ensure adequate coverage of an often infinite test-program space.

confidence and effort Consider these three methods of verifying a com-
piler: expert testing, automated testing and mechanised proof. Figure 1.1
illustrates the comparative confidence we gain against effort involved with
these techniques.

Assuming that all three methods use some specification of the source and
target languages, any errors identified by testing would become apparent under

4



1.2 overview and contributions

mechanised proof. There is still a small possibility that the proof not sound. The
substantial resource costs involved in applying mechanised proof techniques
are a bigger concern (Leroy, 2009).

Despite the extensive testing applied to the Glasgow Haskell Compiler, Palka
et al. (2011) used a property-based testing technique to discover bugs in the
optimisation phase of the compiler. The technique still does not give the near-
complete confidence of mechanised proof as defects are still being discovered
today.

I propose a hybrid approach that uses property-based testing to give witness
to the correctness of unproven assumptions in an otherwise formally verified
compiler. Hybrid methods have already been applied to verification. The
Programatica project (Hallgren, 2003) produced tools for applying a variety
of verification techniques to high-assurance systems while managing varying
levels of confidence for certification. Some regions of the CompCert verified
compiler (Leroy, 2009) use runtime assertions to support assumptions in the
mechanised proof.

The application of hybrid verification has a number of advantages including;
(a) a solid, formal foundation with clear boundaries for evidence of correctness,
(b) partial automation of verification, (c) ease of reverification after require-
ments or implementation changes, and (d) modularity such that tests may be
replaced with proofs as they become available.

1.2 overview and contributions

This thesis presents evidence supporting the assertion that:

Combining property-based testing and mechanised proof verifies
compilers with higher confidence than property-based testing alone,
for less effort than mechanised proof alone.

Techniques and tools will be presented for applying property-based testing to
compiler verification. A framework for combining property-based testing and
mechanised proof is discussed and applied to a supercompiler implementation.

The diagram in Figure 1.2 gives an overview to the compiler development
methodology proposed in this thesis. Once an appropriate definition of correct-
ness has been determined with the necessary transitive property (see Section 7.4),
the compilation process can be decomposed into verifiable modules.

Using the property-based testing techniques discussed in Chapters 2 to 4,
these modules can be engineered until they test correctly and perform as
desired. These modules can then gradually be formally proven in a machine-
checkable logic, increasing confidence in the compiler’s correctness. Once all
modules have been proven correct, the correctness of the whole compiler is
proven, as discussed in Chapter 7.

5
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Figure 1.2: Overview of proposed methodology.

My contributions towards the topic of compiler verification are as follows:

• a new design and implementation of the Lazy SmallCheck property-
based testing library to support richer properties and display partial
counterexamples (Chapter 3);

• an application of Lazy SmallCheck to generate functional values, exploit-
ing the generation of partial algebraic structures (Chapter 3);

• an application of Lazy SmallCheck to efficiently generate test programs
from declarative definitions of validity and canonicity (Chapter 4);

• a scheme for decomposing supercompilers into verifiable components
(Chapters 5 and 7);

• a framework for combining property-based testing and mechanised proof
(Chapter 8);

• a formulation and verification of a supercompiler and its correctness prop-
erties in this framework, testing assumptions made by the mechanised
proof section (Chapter 8).

1.3 roadmap

This thesis has the following structure:

• Chapter 2 introduces the key concepts of property-based testing, discusses
the variety of strategies in use and reviews some of the literature on the
implementation and application of the technique.

6



1.4 code listings

• Chapter 3 discusses improvements made to Lazy SmallCheck, a bounded
exhaustive property-based testing library for Haskell. Extensions, since
the original release (Runciman et al., 2008), include a richer property
language and a new facility for enumerating functional values.

• Chapter 4 applies Lazy SmallCheck to the problem of enumerating test
programs of functional languages. It shows how lazy predicates may be
used to efficiently take a quotient of the space of test abstract syntax trees.

• Chapter 5 introduces supercompilation as a candidate for verification.
A reference implementation is developed for a small, core functional
language while the different design decisions are discussed with respect
to the literature on the topic.

• Chapter 6 reviews key publications on compiler verification through
theorem proof. It shows that program abstractions and modularity can
lead to simpler proofs but proving an “effective compiler” correct is still
time consuming.

• Chapter 7 defines a correct-by-construction abstract supercompiler in
Agda, a dependently-typed language. The model supercompiler abstracts
over source language and presents clear verifiable interfaces to be instan-
tiated.

• Chapter 8 applies the framework of the abstract supercompiler to a
particular supercompiler implementation, using property-based testing
to check unresolved proof obligations. The work in Chapters 3 and 4 is
extended to allow testing of properties over supercompiler data types
beyond valid syntax trees. A method for extracting necessary tests for a
supercompiler instantiation is provided.

• Chapter 9 summarises the results and conclusions of this thesis. Avenues
for further work are presented.

1.4 code listings

In several chapters, code listings and examples are included. Any text in
sans-serif indicates the code is in a host language (either Haskell or Agda).
Code in the typewriter typeface represents the target languages or program
interaction. Host language code is Literate (Knuth, 1984) Haskell and Agda
rendered into LATEX using lhs2tex and has been type-checked by the Glasgow
Haskell Compiler (GHC) version 7.6.3 and Agda version 2.3.3 respectively.

7





Part II

P R O P E RTY- B A S E D T E ST I N G





2 A R E V I E W O F P R O P E RTY- B A S E D
T E ST I N G

This chapter introduces property-based testing, including discussion of several strategies
and implementations. Particular attention is given to applications of property-based
testing to compiler verification, including the verification of a small running example.

2.1 introduction

Property-based testing is a software verification technique characterised by (1) the
formal specification of predicates that express how a program should behave
and (2) an automated process for finding counterexamples to those predicates.
A property-based testing library defines the language for describing the predicates
and a particular strategy for finding counterexamples.

In many cases (Claessen and Hughes, 2000; Koopman et al., 2003; Runciman
et al., 2008), these predicates or properties are defined in the host language of
the program, either as functions that result in a Boolean value or constructs of a
library-specific embedded domain specific language. For example, consider the
following example of a compiler from arithmetic expressions to stack-machine
instructions.

compile :: Source → [Target ]

compile (Lit n) = [Push n ]

compile (x :+ y ) = compile x ++ compile y ++ [Add ]

compile (Var c) = [Read c ]

compile (Let c x y ) = compile x ++ [Store c ] ++ compile y

The syntax and semantics for these languages is defined in Figure 2.1. Envir-
onments, Env , map characters to integers. These represent variable bindings
and register entries in the source and target languages respectively. An update
function, Γ [c 7→ n], updates the variable/register c with value n in heap Γ. The
eval function represents the direct semantics for the language whose abstract
syntax is represented by Source and zeros is an environment where all variables
are bound to 0. The step function gives the small-step operational semantics
for the language whose abstract syntax is represented by Target and the exec

function runs step for a list of Target instructions. The initial constant is the
initial state of the target semantics. The Maybe type represents partial functions,
with Just and Nothing indicating success and failure respectively.

11
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-- Variable environments
type Env = Char → Int

-- Environment update
· [· 7→ ·] :: Char → Int → Env → Env

Γ [c 7→ n] c ′ | c ≡ c ′ = n

| otherwise = Γ c ′

-- Source language abstract syntax
data Source = Lit Int -- Literals

| Var Char -- Variable
| Source :+ Source -- Addition
| Let Char Source Source -- Local definition

deriving Show

-- Source language direct semantics
eval :: Source → Env → Int

eval (Lit n) Γ = n

eval (x :+ y ) Γ = eval x Γ + eval y Γ
eval (Var c) Γ = Γ c

eval (Let c x y ) Γ = eval y (Γ [c 7→ (eval x Γ)])

-- Environment where all variables are zero
zeros = (const 0)

-- Target language syntax
data Target = Push Int -- Push to stack

| Add -- Sum top two elements of stack
| Store Char -- Store top of stack
| Read Char -- Read to sotp of stack

deriving Show

-- Target language operational semantics
step :: (Env , [ Int ])→ Target → Maybe (Env , [ Int ])

step (Γ,σ) (Push n) = Just (Γ, n : σ)
step (Γ,m : n : σ) Add = Just (Γ,m + n : σ)
step (Γ, n : σ) (Store c) = Just (Γ [c 7→ n],σ)

step (Γ,σ) (Read c) = Just (Γ, Γ c : σ)
step (Γ, ) = Nothing

exec :: (Env , [ Int ])→ [Target ]→ Maybe (Env , [ Int ])

exec = foldl (λstate i → state >>= flip step i) ◦ Just

-- Initial state for target machine
initial = (zeros, [ ])

Figure 2.1: Source and Target languages for compiler example.
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A desirable property of the compiler should be that all target programs
compiled from source expressions should be stack-safe. No program should
perform an Add instruction when the program contains less than two instruc-
tions. Neither should any program perform a Store instruction when the stack
is empty. We define the property prop_StackSafe that returns True when a
compiled Source expression successfully returns a result when executed.

prop_StackSafe :: Source → Bool

prop_StackSafe x = isJust (exec initial $ compile x)

Another property of the compiler should be that semantics are preserved
between source expressions and compiled programs. This is defined as the
property prop_SemanticsPreserving.

prop_SemanticsPreserving :: Source → Bool

prop_SemanticsPreserving x =

Just (eval x zeros) ≡ fmap (head ◦ snd) (exec initial $ compile x)

In Section 2.2, we shall test these properties using two property-based testing
libraries. Property-based testing offers benefits over more traditional testing
methodology, such as unit testing. Developers are freed from having to invent
likely failure cases. A suitable strategy will discover edge cases more reliably
than human intuition. However, it may be computationally difficult to explore
large input-data spaces and it is impossible to search infinite input-data spaces
exhaustively.

The techniques of property-based testing are best applied to programs that
do not rely on side-effects. Purity enables the property-based testing library
to fully account for program input without having to account for implicit
state. Claessen and Hughes (2002) present techniques of testing monadic code
with algebraic and model specifications. However, their technique operates by
making the state explicit.

2.2 strategies and implementations

The strategy by which a property-based testing library attempts to find counter-
examples is critical. It is not simply a matter of reaching any area of the
input-data space that contains failure cases. The counterexample needs to be
simple and clearly presented so that it can be understood and investigated by
the programmer.

13
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2.2.1 Random selection

The seminal QuickCheck library (Claessen and Hughes, 2000) randomly samples
input data to be tested against a program’s properties. The probability dis-
tributions are weighted towards finite instances of infinite data types. Many
different data types can be generated, including functional types. Once a
counterexample is found for the property, a process known as shrinking can be
used to find a similar but smaller counterexample.

The key assumption of the QuickCheck strategy is that should a program
have a fault, there is a high probably of it appearing after testing a sample of
the possible input-data. Claessen and Hughes (2000) highlight that “random
testing is most effective when the distribution of test data follows that of actual data”.
This is why QuickCheck leaves the definition of the test-data distribution to the
library user who should have domain specific knowledge.

running example We must define a probability distribution for Source so
that we can test our properties with the QuickCheck property-based testing
library. This is done by providing an instance of the Arbitrary type-class,
defining the arbitrary and shrink functions.

instance Arbitrary Source where

arbitrary = sized arbSized

where

arbSized 0 = oneof

[Lit <$> arbitrary ,Var <$> arbitrary ]

arbSized n = frequency

[ (1,Lit <$> arbitrary ), (1,Var <$> arbitrary )

, (2, (:+) <$> arbSized (n ‘div ‘ 2) <∗> arbSized (n ‘div ‘ 2))

, (2,Let <$> arbitrary

<∗> arbSized (n ‘div ‘ 2) <∗> arbSized (n ‘div ‘ 2)) ]

shrink (Lit n) = Lit <$> shrink n

shrink (Var v ) = Var <$> shrink v

shrink (x :+ y ) = [x , y ] ++

[x ′ :+ y | x ′ ← shrink x ] ++ [x :+ y ′ | y ′ ← shrink y ]

shrink (Let v x y ) = [x , y ] ++ [Let v ′ x y | v ′ ← shrink v ] ++

[Let v x ′ y | x ′ ← shrink x ] ++ [Let v x y ′ | y ′ ← shrink y ]

We use several combinators supplied by the QuickCheck library to define
arbitrary . The oneof combinator creates a uniform probablity distribution
between the listed elements. The frequency combinator, on the other hand,
allows the developer to manually set the relative probabilities of the listed
elements. The sized combinator is used to ensure that the Source expression
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tree is finite in size by supplying a finite integer to arbSized which decreases
on recursive calls. When the integer reaches zero only leaf syntax elements
are generated. The shrink function provides QuickCheck with possibilities for
reducing a counterexample’s complexity. For our example, we simply allow it
to choose subexpressions.

We can now test the properties using the quickCheck combinator.

>>> quickCheck prop_StackSafe
+++ OK, passed 100 tests.

>>> quickCheck prop_SemanticsPreserving
*** Failed! Falsifiable (after 67 tests and 54 shrinks):
Let ’r’ (Lit 1) (Var ’a’) :+ Var ’r’

QuickCheck finds the compiler is stack safe after 100 tests. However, after 67
tests and 54 shrinks, it finds a counterexample to the semantics preservation
property. Investigation of this counterexample shows that this is due to a
difference in the scoping behaviour of the source and target programs.

2.2.2 Exhaustive selection

Another approach is to systematically enumerate all possible test values up to
some size or some time limit. Bounded exhaustive selection appeals to the Small
Scope hypothesis (Jackson, 2012) that programming errors will appear for small
data values. If the space is searched in order of size, the goal of QuickCheck
shrinking is achieved by exhaustive selection with no further processing!

SmallCheck (Runciman et al., 2008) is an example of a size bounded property-
based testing library, whereas GAST (Koopman et al., 2003) uses a time limit.
Lazy SmallCheck (Runciman et al. 2008 and Chapter 3) extends the principles
of SmallCheck but uses the results for partial test values to prune away regions
of the test-data space, as will be discussed in Section 2.3.

running example To test our properties using SmallCheck (or indeed Lazy
SmallCheck), we define an instance of the type-class Serial for Source, supplying
an appropriate definition of series .

instance Serial Source where

series = cons1 Lit ∪ cons1 Var ∪ cons2 (:+) ∪ cons3 Let

There is no need for the developer to specify probability distributions for
the generators. Therefore, the Serial instances are often much simpler than
their Arbitrary counterparts. The consn combinators are used to define a series
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for a construction of arity n and the (∪) operator joins together series of the
same data type. These combinators are supplied by the SmallCheck and Lazy
SmallCheck libraries to help the user define Serial instances.

We apply the depthCheck combinator with an integer depth bound of 4 to
our properties to test with SmallCheck.

>>> depthCheck 4 prop_StackSafe
Depth 4:
Completed 6774491 test(s) without failure.

>>> depthCheck 4 prop_SemanticsPreserving
Depth 4:
Failed test no. 345725. Test values follow.
Let ’a’ (Lit (-1)) (Lit (-1)) :+ Var ’a’

Once again, the prop_StackSafe property appears to hold but another counter-
example was found for prop_SemanticsPreserving. This illustrates the same
compiler defect as that found by QuickCheck but with a much simpler test case.
However, SmallCheck had to test considerably more values then QuickCheck
to find it. No counterexample is found for prop_SemanticsPreserving when the
depth bound is set to 3.

At this point, it is worth explaining why −1 is the smallest integer literal for
which the property fails. Starting at a root depth bound of 4, counting the (:+),
Let , and Lit constructions we reach depth bound 1 for the integers. The series

instance for integers is defined as the in-order interval [−d . . d ] where d is
the depth bound. In this case, −1 is the first value selected and it falsifies the
property.

2.2.3 Comparison

Both strategies have their merits. Random testing has the potential to rapidly
find useful counterexamples deep in the test-data space but is reliant on a well-
tuned distribution of test-data. Systematic testing can easily be implemented
generically over most test-data types.

Christiansen and Fischer (2008) attempt to abstract away from strategies by
defining generators as a mapping from naturals to test-data values. A property-
based testing strategy supplies natural numbers (selected randomly, exhaust-
ively or by any method) to the mapping-generator. Property counterexamples
and witnesses now have unique, simple references by which a developer can
refer to specific test-data. However, this approach does impede test-data space
pruning strategies such as that used by Lazy SmallCheck. Even a bounded test-
data space may be computationally expensive to search for counterexamples.
This is where pruning becomes essential.
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Table 2.1: Values of xs used by Lazy SmallCheck when testing prop_ListSizes xs .

Test-data Result Test-data Result

(1) ⊥⊥⊥ Refine test-data (5) ⊥ :⊥ :⊥⊥⊥ Refine test-data
(2) [ ] Property satisfied (6) ⊥ :⊥ : [ ] Property satisfied
(3) ⊥ :⊥⊥⊥ Refine test-data (7) ⊥ :⊥ :⊥ :⊥⊥⊥ Refine test-data
(4) ⊥ : [ ] Property satisfied (8) ⊥ :⊥ :⊥ : [ ] Counterexample

2.3 pruning the test-data space

Lazy SmallCheck, like SmallCheck, exhaustively constructs all possible values of
a particular type, bounded by the depth of construction. However, it exploits
Haskell’s (Peyton Jones et al., 2003) non-strict semantics and exceptions to
prune away regions of the test-data space that can be represented by a simpler
example.

Lazy SmallCheck begins by testing undefined — ⊥— as the value and refines it
by need. The demands of the test property guide the exploration of the test-data
space. When evaluation of a property depends on an undefined component
of the test-data, exactly that component is refined. For algebraic data types,
undefined is refined to all possible constructions, each with undefined arguments.
To ensure termination, when Lazy SmallCheck is run, a bound is set on the
depth of possible refinements.

Consider the illustrative property prop_ListSize. It asserts that all lists with
Bool-typed elements have lengths less than three.

prop_ListSize :: [Bool ]→ Bool

prop_ListSize xs = length xs < 3

Clearly this property is false. The Lazy SmallCheck implementation described
in Chapter 3 finds the following counterexample where each occurrence of _
means any value.

>>> test prop_ListSize
...
Depth 3:
Var 0: _:_:_:[]

As Lazy SmallCheck searches for this counterexample, it refines the test
values bound to xs as shown in Table 2.1, where a bold, underlined ⊥⊥⊥ indicates
the particular undefined component that causes refinement. Notice that the
elements of the list xs are never refined as their values are never needed by the
property. This pruning effect is the key benefit of Lazy SmallCheck over eager
SmallCheck.
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running example The same Serial instance is sufficient for Lazy SmallCheck
as was written for SmallCheck in Section 2.2.2. To use Lazy SmallCheck, we
merely swap the libraries as they have mostly compatible interfaces. For
this example, we shall use the originally published implementation of Lazy
SmallCheck from Runciman et al. (2008).

>>> depthCheck 4 prop_StackSafe
OK, required 144541 tests at depth 4

>>> depthCheck 4 prop_SemanticsPreserving
Counter example found:
Let ’a’ (Lit (-1)) (Lit (-1)) :+ Var ’a’

Lazy SmallCheck returns the same results as SmallCheck but it needs less
tests to achieve them. When searching for a counterexample for prop_StackSafe,
Lazy SmallCheck only requires 2% of the tests required by SmallCheck to cover
the same space. This is because particular variables and literals do not affect
the stack safety of a compiled program and are, therefore, never enumerated.

2.4 applications and experience

quickcheck Since Claessen and Hughes’s (2000) seminal work, QuickCheck
has been applied in a variety of situations. A commercial variant, Quviq’s
QuickCheck for Erlang (Hughes, 2007) has, for example, found areas of ambi-
guity in the specification of Erlang’s ‘process registry’ (Hughes, 2007). Using the
generated examples, the Quviq testing team formalised and documented the be-
haviour of a reference Erlang implementation. The Quviq tools have also been
applied to the verification of automotive components (Madhavapeddy et al.,
2012). Applying QuickCheck to testing against the AUTOSAR industry stand-
ard “reduced the code size of the tests by at least an order of magnitude” compared
with those produced by outsourced experts.

cryptol Cryptol (Erkök and Matthews, 2009) is a domain-specific language
for describing cryptographic protocols. Its developers not only use QuickCheck
to verify the implementation of Cryptol (discussed by Hughes, 2007) but also
expose it to users of the language to verify their protocols (Erkök and Matthews,
2009).

exhaustive selections It is rarer to find specific examples of exhaustive
selections, perhaps due to the commercial backing of QuickCheck through
Quviq. The GAST library has been applied to the verification of reactive
systems (Koopman et al., 2003) such as communication protocols.
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Duke et al. (2009) applied SmallCheck to ensure algebraic properties held over
operations in a reference fixed-point arithmetic library. They also compared
behaviour between the reference and optimised versions of the library. The
authors state that SmallCheck “was invaluable in quickly teasing out a number of
bugs” (Duke et al., 2009).

compiler verification Palka et al. (2011) describe the use of QuickCheck to
generate random lambda terms for compiler testing. Their method essentially
inverts the type-checker to act as a generator of well-formed and well-typed
programs. Katayama (2007) takes an exhaustive approach, systematically enu-
merating well-typed lambda terms. Despite the difference in strategy used
to select test-data terms, both approaches directly construct only well-typed
terms.

In a case study, Pike et al. (2012) investigates several techniques for producing
a high-assurance compiler for an embedded domain specific language. The
authors reports that QuickCheck testing “is so easy to implement and so effective
that no EDSL compiler should be without it.” They also choose to generate type-
correct programs directly but briefly mention the alternative of generating all
possible abstract syntax trees and filtering away any that are unsuitable for
compiler testing. We shall adopt this second approach in Chapter 4.

2.5 summary

Property-based testing is a lightweight method of verifying software, using an
algorithm to search for counterexamples to specifications written as properties.
Program properties are often defined in the host language as functions returning
a Boolean value.

We have discussed two methods for selecting the test-data with which these
properties are instantiated — random selection and bounded exhaustive selec-
tion. Random selection has the opportunity to test a wide variety of complex
test-data but exhaustive selection gives guarantees of coverage. In Chapter 3,
we will investigate another benefit of exhaustive selection — existential quanti-
fication. We shall also look at exploiting the lazy pruning strategy to produce
counterexamples that are more concise and focused.

One of the arguments against the use of bounded exhaustive selection is
the sheer volume of test-data terms to be tested. The strategy used by Lazy
SmallCheck prunes this space effectively, exploiting the non-strict semantics
of the host language. In Chapter 4, we will use this functionality to produce
a collection of test programs suitable for compiler testing, using declarative
definitions of desirable features.
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3 A DVA N C E S I N L A Z Y S M A L LC H E C K

This chapter presents improvements to the Lazy SmallCheck property-based testing
library. Users can now test properties that quantify over first-order functional values
and nest universal and existential quantifiers in properties. When a property fails,
Lazy SmallCheck now accurately expresses the partiality of the counterexample. These
improvements are demonstrated through several practical examples. The work is used
to support the property-based testing component of the hybrid verification.

3.1 introduction

As discussed in Chapter 2, property-based testing is a lightweight approach to
verification where expected or conjectured program properties are often defined
in the source programming language. For example, consider the following
conjectured property that in Haskell every function with a list of Boolean values
as an argument, and a single Boolean value as result, can be expressed as a
foldr application.

prop_ReduceFold :: ([Bool ]→ Bool)→ Property

prop_ReduceFold r = exists $ λf z →
forAll $ λxs → r xs ≡ foldr f z xs

Like all other properties used as examples in this chapter, this property does
not hold; our goal is to find a counterexample. When this property is tested
using our advanced version of Lazy SmallCheck, a small counterexample is
found for r .

>>> test prop_ReduceFold
...
Depth 2:
Var 0: { [] -> False

; _:[] -> False
; _:_:_ -> True }

The counterexample is a function that tests for a multi-item list. It is expressed
in the style of Haskell’s case-expression syntax. Several new features of Lazy
SmallCheck are demonstrated by this example. (1) Two of the quantified
variables, r and f , are functional values. (2) An existential quantifier is used in
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the property definition. (3) The counterexample found for r is concise and
understandable.

Previous property-based testing libraries struggle with such a property. The
QuickCheck (Claessen and Hughes, 2000) library does not support existentials
as random testing ‘would rarely give useful information about an existential property:
often there is a unique witness and it is most unlikely to be selected at random’
(Runciman et al., 2008). QuickCheck also requires that functional values be
wrapped in a modifier (Claessen, 2012) for shrinking and showing purposes.

The original Lazy SmallCheck (Runciman et al., 2008) supports neither ex-
istentials nor functional values. SmallCheck (Runciman et al., 2008) supports
all the necessary features of the property. However, it takes longer to pro-
duce a more complicated looking counterexample. This is because SmallCheck
enumerates only fully defined test data and shows functions only in part, by
systematically enumerating small arguments and corresponding results.

3.1.1 Contributions

This chapter discusses the design, implementation1 and use of new features in
Lazy SmallCheck. We present several contributions:

• An algorithm for checking properties that may contain universal and
existential quantifiers in a Lazy SmallCheck-style testing library.

• A method of lazily generating and displaying functional values, enabling
the testing of higher-order properties.

• An evaluation of these additions with respect to functionality and run-time
performance.

3.1.2 Roadmap

Section 3.2 demonstrates the new features of the Lazy SmallCheck through
several examples. Section 3.3 describes architectural changes that enable these
new features. Section 3.4 presents the formulation of functional values. Sec-
tion 3.5 evaluates the new Lazy SmallCheck in comparison to other Haskell
property-based testing libraries. Section 3.6 summarises our findings.

1 Source code available at http://github.com/UoYCS-plasma/LazySmallCheck2012.
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3.2 new features in action

The following examples further illustrate the new features in Lazy SmallCheck.
The first generates functional values and displays partial counterexamples. The
second shows the benefits of generating small, partial functional values. The final
example demonstrates existential quantification.

3.2.1 Left and right folds

Let us look for a counterexample of another conjectured property. This property
states that foldl1 f gives the same result as foldr1 f for non-empty list arguments
with natural numbers as the element type.

prop_foldlr1 :: (Peano → Peano → Peano)→ [Peano ]→ Property

prop_foldlr1 f xs = (¬ ◦ null) xs =⇒ foldl1 f xs ≡ foldr1 f xs

As in the original Lazy SmallCheck (Runciman et al., 2008), testing this
property requires a Serial instance for the Peano data type. Additionally, an
Argument instance must be defined so that Lazy SmallCheck can produce
functional values with Peano arguments. We have defined a Template Haskell
function (Sheard and Peyton Jones, 2002) — deriveArgument — that derives a
suitable Argument instance automatically. Section 3.4.2 discusses this in more
detail.

data Peano = Zero | Succ Peano

deriving (Eq,Ord ,Show ,Data,Typeable)

instance Serial Peano where

series = cons0 Zero <|> cons1 Succ

der iveArgument ''Peano

Lazy SmallCheck finds a counterexample at depth 3. The function f returns
Succ Zero if its input is Zero and returns Zero in all other cases. The list xs is
of length three where the last element is Zero.

>>> test prop_foldlr1
Depth 3:
...
Var 0: { _ -> { Zero -> Succ _

; Succ _ -> Zero } }
Var 1: _:_:Zero:[]
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3.2.2 Generating predicates

Our next example is based on prop_PredicateStrings from Claessen (2012).

prop_PredStrings :: (String → Bool)→ Property

prop_PredStrings p = p "David" =⇒ p "Tony"

Lazy SmallCheck finds as a counterexample the function p that returns True

when the second character in its argument is ’a’ and False when any other
character occurs in the second position. The function is undefined for strings of
length less than two.

>>> test prop_PredStrings
...
Depth 4:
Var 0: { _:’a’:_ -> True

; _:_:_ -> False }

Why is this the first counterexample found? We might expect a function
that distinguishes an initial ‘L’ from an initial ‘S’. As the depth-bound for
testing increases, the extent to which the spines of list arguments can be refined
increases. But also the range of character values used in refinements increases
and the smallest non-empty range contains just ‘a’.

QuickCheck also finds counterexamples for this property but the functions
are stricter. They test equality with one of whole strings "Lazy SmallCheck"
or "SmallCheck".

3.2.3 Prefix of a list

This example is taken from Runciman et al. (2008). We assert that a (flawed)
definition of isPrefix satisfies a soundness specification of the function.

isPrefix :: Eq a⇒ [a ]→ [a ]→ Bool

isPrefix [ ] = True

isPrefix (x : xs) (y : ys) = x ≡ y ∨ isPrefix xs ys

isPrefix = False

prop_isPrefixSound xs ys = isPrefix (xs :: [Peano ]) ys =⇒
(exists $ λxs ′ → xs ++ xs ′ ≡ ys)

In Runciman et al. (2008), this property could only be checked by SmallCheck
as Lazy SmallCheck did not support existential properties. Running it through
the new Lazy SmallCheck gives another concise counterexample: if the first
argument of isPrefix is a multi-item list with first element Zero, and the second
argument is [Zero]; then isPrefix incorrectly returns True.
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>>> test prop_isPrefixSound
...
Depth 2:
Var 0: Zero:_:_
Var 1: Zero:[]

A smallest counterexample with both xs and ys non-empty suggests an error
in the second equation defining isPrefix . Indeed, a disjunction has been used in
place of a conjunction.

3.2.4 Quantifying over larger domains

Users of our advanced Lazy SmallCheck must be aware that, much like
SmallCheck, by default any nested quantifiers are tested to the same depth
as the root universal quantifier. In some cases, however, the witness for an
existential may occur at deeper level than the deepest value in the domain of the
root universal quantifier. Lazy SmallCheck, therefore, returns a false negative
for the property. In these cases, the framework user will need to increase depth
of the domain over which the existential quantifies.

Consider two formulations of prop_apex and prop_apex ′ from the example in
Runciman et al. (2008). To satisfy the properties Lazy SmallCheck must find a
value for zs such that it is the concatenation of any xs and ys .

prop_apex , prop_apex ′ :: [Bool ]→ [Bool ]→ Property

prop_apex xs ys = exists $ λzs → xs ++ ys ≡ zs

prop_apex ′ xs ys = existsDeeperBy (∗2) $ λzs → xs ++ ys ≡ zs

The prop_apex formulation of the property is never unsatisfiable at any depth,
as witnessed by the following executions.

>>> depthCheck 1 prop_apex
Var 0: [False]
Var 1: _:[]
>>> depthCheck 2 prop_apex
Var 0: [False]
Var 1: False:_:[]
>>> depthCheck 3 prop_apex
Var 0: [False]
Var 1: False:False:_:[]

This is because the satisfying witness for list zs will need to be of length
equal to the sum of the lengths of the deepest instantiations of xs and ys .
The property prop_apex ′ accounts for this using the existsDeeperBy combinator,
doubling the depth of the domain for zs .
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3.3 implementation of new lazy smallcheck

This section describes in detail how new Lazy SmallCheck achieves the process
outlined in Section 2.3. We shall return to the prop_ListSize example discussed
in Section 2.3 to illustrate the data types used in the implementation.

In places, instead of the actual definitions used in the implementation, we
give simpler versions that are less efficient but easier to read. These differences
will be summarised in Section 3.3.5.

abstractions We will make extensive use of the Functor , Applicative and
Alternative type-classes. All are defined in Figure 3.1. Functors are containers
with an associated fmap operation that applies functions to each contained
element. Lists, for example, are functors under the map function.

Applicative functors (McBride and Paterson, 2008) extend this by viewing
containers as contexts from which values may be obtained. Any ordinary value
can be wrapped up in a context using pure. A function-in-context can be
applied to a value-in-context using the (<∗>) operator. Returning to the lists
example, pure places the value into a singleton list and fs <∗> xs applies every
function in the collection fs to every argument in collection xs to obtain a
collection of results.

Alternative functors are an extension of applicative functors by the addition
of an empty container and an operation, (<|>), to merge containers. For lists,
empty is the empty list and (<|>) is list concatenation.

3.3.1 Partial values

refinement exceptions As highlighted in Section 2.3, the test-data space
includes partial values that are refined by need during the search for a counter-
example. When the value of an undefined is needed, an exception tagged with
the location of the undefined is raised and caught by the testing algorithm.
The implementation uses GHC’s user-defined exceptions. (Marlow, 2006) Lazy
SmallCheck’s refinement exceptions are defined in Figure 3.2.

The Location information uniquely identifies the component of a partial
test-data value that is needed by a property under test. The Path in a Location

gives directions from the root of a binary-tree representation to some specific
subtree. The Nesting in a Location is akin to a de Bruijn (1972) level: it identifies
the quantifier for the test-data variable that needs refining.

partial values functor A functor of Partial values is defined in Figure 3.3.
The only method of accessing the value inside the Partial functor is through
runPartial . It forces the result of a computation using partial values and catches
any refinement exception that may be raised.
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class Functor f where

fmap :: (a→ b)→ f a→ f b

infixl 3 <|>
infixl 4 <∗>,<$>

(<$>) = fmap

class Functor f ⇒ Applicative f where

pure :: a→ f a

(<∗>) :: f (a→ b)→ f a→ f b

class Applicative f ⇒ Alternative f where

empty :: f a

(<|>) :: f a→ f a→ f a

Figure 3.1: Definition of Functor , Applicative and Alternative type-classes.

type Location = (Nesting,Path)

type Nesting = Int

type Path = [Bool ]

data Refine = RefineAt Location deriving (Show ,Typeable)

instance Exception Refine

Figure 3.2: Definition of Location carrying exceptions.

newtype Partial a = Partial {unsafePartial :: a}
instance Functor Partial where

fmap f (Partial x) = Partial (f x)

instance Applicative Partial where

pure = Partial

Partial f <∗> Partial x = Partial $ f x

runPartial :: (NFData a)⇒ Partial a→ Either Refine a

runPartial value = unsafePerformIO $
(Right <$> evaluate (force (unsafePartial value)))

‘catch‘ (return ◦ Left)

refineAt :: Location → Partial a

refineAt = Partial ◦ throw ◦RefineAt

Figure 3.3: Definition of the Partial values functor.
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A Show instance is defined so that Partial values can be printed. The defini-
tion is omitted here but it follows the ‘Chasing Bottoms’ (Danielsson and Jansson,
2004) technique. This is what allows the display of wildcard patterns in counter-
examples.

running example Consider the third value, ⊥ :⊥, tested in Table 2.1 from
Section 2.3. Here is its simplified representation and the results of two small
computations using it.

>>> let step3 =
(:) <$> refineAt (0, [False, True])

<*> refineAt (0, [True]) :: Partial [a]

>>> runPartial (prop_ListSize <$> step3)
Left (RefineAt (0,[True]))

>>> print (step3 :: Partial [Bool])
_:_

The undefined arguments of the list-cons are uniquely tagged by locations.
The result of applying prop_ListSize shows that the second argument is needed.
Pretty-printing this partial value hides the complexity underneath.

3.3.2 Test-value terms

The representation of a test-value term contains tValue, the information needed
to obtain a partial test-data value, and tRefine, its possible refinements. The
Term data type is defined in Figure 3.4.

The Applicative instance for terms shows how: (1) the Path component of a
location is extended through the argument of tValue and (2) the tRefine uses
this information to pass the rest of the path to the relevant subterm.

The mergeTerms function demonstrates how a collection of terms can be
turned into a single undefined value paired with the ability to obtain the collec-
tion when required. This is key to the strategy illustrated in Section 2.3.

test-value environments After test data is generated but before a property
is applied to it, a pretty-printed representation of the partial value is recorded.
The benefit of this technique is that we need not record a pretty-printing that
could be obtained from the final test-value derived from the term. This will
be especially useful for the display of functional values in Section 3.4. The
test-value environments type is shown in Figure 3.5. We omit AlignedString but it
follows established pretty-printing techniques, such as that by Hughes (1995).
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data Term a = Term {tValue :: (Location → TVE (Partial a))

, tRefine :: (Path → [Term a ])}
instance Functor Term where

fmap f (Term v es) = Term ((fmap ◦ fmap ◦ fmap $ f ) v )

((fmap ◦ fmap ◦ fmap $ f ) es)

instance Applicative Term where

pure x = Term (pure ◦ pure ◦ pure $ x) (pure [ ])

fs <∗> xs = Term

(λ(n, ps)→ (<∗>) <$> tValue fs (n, ps ++ [False ])

<∗> tValue xs (n, ps ++ [True ]))

(λ(p : ps)→ if p then fmap (fs <∗>) (tRefine xs ps)

else fmap (<∗> xs) (tRefine fs ps))

mergeTerms :: [Term a ]→ Term a

mergeTerms xs = Term (TVE [string "_" ] ◦ refineAt) (const xs)

Figure 3.4: Definition of test-value terms and a merging operation.

data TVE a = TVE {tveEnv :: TVInfo, tveVal :: a}
type TVInfo = [AlignedString ]

instance Functor TVE where

fmap f (TVE ctx val) = TVE ctx (f val)

instance Applicative TVE where

pure = TVE [ ]

TVE ctx0 f <∗> TVE ctx1 x = TVE (ctx0 ++ ctx1 ) (f x)

Figure 3.5: Definition of test-value environments.

type Depth = Int

newtype Series a = Series {runSeries :: Depth → [Term a ]}
instance Applicative Series where

pure = Series ◦ pure ◦ pure ◦ pure

Series fs <∗> Series xs = Series $ λd →
[f <∗> mergeTerms x | d > 0, f ← fs d

, let x = xs (d − 1), (¬ ◦ null) x ]

instance Alternative Series where

empty = Series $ pure [ ]

Series xs <|> Series ys = Series $ (++) <$> xs <∗> ys

Figure 3.6: Definition of Series generators.
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class (Data a,Typeable a)⇒ Serial a where

series :: Series a

seriesWithEnv :: Series a

seriesWithEnv = Series $ fmap storeShow <$> runSeries series

storeShow :: (Data a,Typeable a)⇒ Term a→ Term a

storeShow (Term v es) = Term

((fmap $ λ(TVE x)→ TVE [string $ show x ] x) v )

(fmap storeShow <$> es)

Figure 3.7: Definition of the Serial type-class.

3.3.3 Test-value series generators

series functor Properties are tested against depth-bounded test-data terms.
The Lazy SmallCheck library defines instances for the test-data Series functor
that implicitly enforces depth-bounding and the introduction of partial test-
data values. These definitions are in Figure 3.6. As with the original Lazy
SmallCheck, a depth-cost is only introduced on the right-hand side of binary
applications so that each child of a constructor is bounded by the same depth.

running example The following are definitions for depth-bounded values
of Booleans, polymorphic lists and Boolean lists.

>>> let boolSeries = pure False <|> pure True
>>> let listSeries elem = pure []

<|> (:) <$> elem <*> listSeries elem
>>> let listBoolSeries = listSeries boolSeries

serial class A class of Serial types is defined in Figure 3.7. Lazy SmallCheck
uses Serial instances to automatically generate test values for argument variables
in properties. Using the generic Series operators of Figure 3.6, a family of consn
combinators can be defined exactly as described by Runciman et al. (2008).

running example again The library defines the series generators for many
data types. The Serial instances for Bool and lists are as below. Notice that we
no longer explicitly define how the arguments of list-cons are instantiated. It is
automatically handled by the type system.

instance Serial Bool where

series = cons0 False <|> cons0 True

instance Serial a⇒ Serial [a ] where

series = cons0 [ ] <|> cons2 (:)
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data Property = Lift Bool | Not Property

| And Property Property | Implies Property Property

| ForAll (Series Property ) | Exists (Series Property )

Figure 3.8: The underlying representation of the Property DSL.

3.3.4 Properties and their refutation

properties The Property data type in Figure 3.8 defines the abstract syntax
of a domain-specific language. It includes standard Boolean operators. Cru-
cially, it also provides a representation of universal and existential quantifiers
that supports searches for counterexamples and witnesses.

Though not defined here, smart wrappers are provided for all six Property

constructions. These automatically lift Bool-typed expressions to Property

and instantiate free variables in properties with appropriate series from Serial

instances.

refutation of properties The depthCheck function takes as arguments an
integer depth-bound and a Testable property that may contain free variables
of types of any Serial type. The counterexample and refute functions given in
Figure 3.9 search for a failing example.

A key point to observe is that refute recurses when it encounters a nested
quantification. All refinement requests must therefore be tagged with the
Nesting level for the associated quantifier. The RefineAt information can then
be passed onto the relevant tRefine function. Those refined terms are then
prepended onto the list of terms left to test.

3.3.5 Differences between versions of Lazy SmallCheck

The main differences between the new Lazy SmallCheck and the original Lazy
SmallCheck described in (Runciman et al., 2008) are as follows. In the new
implementation:

• Terms are generated directly using continuations. Previously they were
deserialized from a generic description.

• Terms can carry a test-value environment enabling the display of test-data
types (such as functions) that cannot be directly pretty-printed.

• The testing algorithm calls itself recursively, refining information about
enclosing quantifiers.
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counterexample :: Depth → Series Property → Maybe TVInfo

counterexample d xs = either ⊥ id $ refute 0 d xs

refute :: Nesting → Depth → Series Property →
Either Refine (Maybe TVInfo)

refute n d xs = terms (runSeries xs d)

where

terms :: [Term Property ]→ Either Refine (Maybe TVInfo)

terms [ ] = Right Nothing

terms (Term v es : ts)

= case (join ◦ runPartial ◦ fmap prop) <$> v (n, [ ]) of

TVE (Left (RefineAt (m, ps)))

| m ≡ n → terms $ es ps ++ ts

| otherwise → Left $ RefineAt (m, ps)

TVE info (Right False)

→ Right $ Just info

TVE (Right True)

→ terms $ ts

prop :: Property → Either Refine Bool

prop (Lift v ) = pure v

prop (Not p) = ¬ <$> prop p

prop (And p q) = (∧) <$> prop p <∗> prop q

prop (Implies p q) = ( =⇒ ) <$> prop p <∗> prop q

prop (ForAll xs) = isNothing <$> refute (succ n) d xs

prop (Exists xs)

= isJust <$> refute (succ n) (succ d) (fmap Not xs)

Figure 3.9: Definition of the refutation algorithm.
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The main differences between the real implementation of the new Lazy
SmallCheck and the slightly simplified variant described in this chapter are as
follows. In the real implementation:

• The Path data type is a difference list to optimise the list-snoc operation.

• Terms representing total and partial values are distinguished to optimise
performance and to allow the use of existing Show instances for total
terms.

• Terms representing partial values record the total number of potential
refined values they represent up to the depth bound. The refutation
algorithm counts the actual number of refinements performed. (This is
useful for performance measurements and comparison with other approaches.)

3.4 implementing functional values

The key to generating functional values is the ability to represent them as tries,
also known as prefix trees. New Lazy SmallCheck supports the derivation of
appropriate tries for given argument types, and the conversion of tries into
functions to be used as test values.

The use of test-value environments allows a trie to be pretty-printed before
it is converted into a Haskell function. This removes the need for the kind of
modifier used by Claessen (2012).

3.4.1 Trie representations of functions

We define a generic trie data type in Figure 3.10. It is expressed as a two-level,
mutually recursive GADT. Level one describes functions that either ignore their
argument — Wild , or perform a case inspection of it — Case.

Level two represents details of a case inspection. The Valu construction occurs
when the argument is of unit type and therefore returns the single result. The
Sum construction represents functions with a tagged union as argument type,
performing further inspection on their constituent types. The Prod construction
represents functions with arguments of a product type, producing a trie that
first inspects the left component of the product, then the right to return a value.

A construction Natu vs v represents a function with a natural number
argument. If an argument n is less than the length of vs , the value of vs !! n is
returned. Otherwise v is returned as default. The Cast construction is used in
all other cases. We shall say more about it in Section 3.4.2. The function applyT

converts a trie into a Haskell function.
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type (:→:) = Level1

data Level1 k v where

Wild :: v → Level1 k v

Case :: Level2 k v → Level1 k v

data Level2 k v where

Valu :: v → Level2 () v

Sum :: Level2 j v → Level2 k v → Level2 (Either j k) v

Prod :: Level2 j (Level2 k v ) → Level2 (j , k) v

Natu :: [v ]→ v → Level2 Nat v

Cast :: Argument k ⇒ Level1 (Base k) v → Level2 (BaseCast k) v

applyT :: (k :→: v )→ k → v

applyT (Wild v ) = const v

applyT (Case t) = applyL2 t

applyL2 :: Level2 k v → k → v

applyL2 (Valu v ) = v

applyL2 (Sum t ) (Left k) = t ‘applyL2 ‘ k

applyL2 (Sum t) (Right k) = t ‘applyL2 ‘ k

applyL2 (Prod t) (j , k) = t ‘applyL2 ‘ j ‘applyL2 ‘ k

applyL2 (Natu m d) (Nat k) = foldr const d $ drop k m

applyL2 (Cast t) (BaseCast k) = t ‘applyT ‘ k

Figure 3.10: Definition of the two-level trie data structure.
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class (SerialL2 (Base k),Typeable k ,Data k)⇒ Argument k where

type Base k

toBase :: k → Base k

fromBase :: Base k → k

data BaseCast a = BaseCast {forceBase :: Base a}
toBaseCast :: Argument k ⇒ k → BaseCast k

toBaseCast = BaseCast ◦ toBase

fromBaseCast :: Argument k ⇒ BaseCast k → k

fromBaseCast = fromBase ◦ forceBase

Figure 3.11: Definition of the Argument type-class.

instance Argument Peano where

type Base Peano = Either () (BaseCast Peano)

toBase Zero = Left ()

toBase (Succ n) = Right $ toBaseCast n

fromBase (Left ) = Zero

fromBase (Right n) = Succ $ fromBaseCast n

Figure 3.12: The Argument instance for Peano.

3.4.2 Custom data types for functional value arguments

The Argument class is defined in Figure 3.11. Users supply an instance
Argument t to enable generated functional test values with an argument of type
t . Each instance defines a base type representation and an isomorphism between
the argument type and the base type. This is a variation of the generic trie
technique used by Hinze (2000). The Cast construction of the trie data type
performs the necessary type conversions using the Argument instances.

The BaseCast functor is used at recursive points to prevent infinite representa-
tions of recursive data types. It is a type-level thunk indicating that an arbitrary
type can be translated into a Base type. For example, Figure 3.12 shows
the Argument Peano instance. The Template Haskell function deriveArgument

automatically produces Argument instances for any Haskell 98 type.

3.4.3 Serial instances of functional values

Functional values have been reified through the trie data type, so we first need
to define series of types. The Serial instances are defined in Figure 3.13. A
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seriesT :: (SerialL2 k)⇒ Series v → Series (k :→: v )

seriesT srs = (Wild <$>̂ srs) <|> (Case <$> seriesL2 srs)

class SerialL2 k where

seriesL2 :: Series v → Series (Level2 k v )

instance SerialL2 () where

seriesL2 srs = Valu <$>̂ srs

instance (SerialL2 j ,SerialL2 k)⇒ SerialL2 (Either j k) where

seriesL2 srs = Sum <$>̂ seriesL2 srs <∗>̂ seriesL2 srs

instance (SerialL2 j ,SerialL2 k)⇒ SerialL2 (j , k) where

seriesL2 srs = Prod <$>̂ seriesL2 (seriesL2 srs)

instance SerialL2 Nat where

seriesL2 srs = Natu <$>̂ fullSizeList srs <∗>̂ srs

instance Argument k ⇒ SerialL2 (BaseCast k) where

seriesL2 srs = Cast <$>̂ seriesT srs

Figure 3.13: Definition of Series generators for tries and functions.

special type-class SerialL2 is defined. It represents types that can be represented
as trie constructions. The applicative operators with a carret suffix introduce
no depth cost, as opposed to those defined in Section 3.3.3. These specialist
operators have been carefully placed to give a natural depth metric for functions
while keeping the series finite.

Using these definitions, a Serial instance for functional values is defined. The
default definition of seriesWithEnv is overridden to store the pretty-printed
form of the trie before it is converted into a Haskell function.

3.5 discussion and related work

A feature comparison of several Haskell property-based testing libraries can
be found in Table 3.1. The test-space exploration strategy is the main dis-
tinction between the QuickCheck library and SmallCheck family of libraries.
QuickCheck assumes that test data detecting a failure is likely within some
probability distribution. SmallCheck, on the other hand, appeals to the Small
Scope hypothesis (Jackson, 2012) — programming errors are likely to appear for
small test data.
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Table 3.1: Comparison of property-based testing library features.

Feature QuickCheck SmallCheck Original LSC New LSC

Test strategy Random Bounded
exhaustive

Bounded
exhaustive

Bounded
exhaustive

Test-space
pruning

N/A N/A Lazy
generation

Lazy
generation

Minimal result Shrinking Natural Natural Natural

Functional values Yesa Yes No Yes

Existentials No Yes No Yes

Nested
quantification

Yes Yes No Yes

Displays partial
counterexamples

N/A N/A No Yes

Haskell 98/2010 Partialb Compatible Compatible Noc

a Functional value is wrapped in a modifier at its quantification binding if showing or
shrinking is required.

b Originally Haskell 98 compatible but functional values modifier requires GADTs.
c Requires Haskell extensions: GADTs, type families and flexible contexts.

3.5.1 Runtime performance

We have compared this implementation’s runtime performance with the pre-
viously published Lazy SmallCheck using the benchmark properties from
Runciman et al. (2008). Experiments performed using GHC 7.6.1 with -O2
optimisation on a 2GHz quad-core PC with 16GB of RAM show very little
difference in execution times between the two encodings.

We had expected to see a performance improvement due to the removal of the
deserialization stage for generating terms. While there are minor improvements
in some examples, it seems that GHC was particularly adept at optimising the
deserialization process.

3.5.2 Alternative strategies

Lazy SmallCheck explores depth-bounded spaces of test-data values. An
alternative approach would be to explore size-bounded spaces, such as those
faciliated by Feat (Duregård et al., 2012). The benefit is that the search space
grows more slowly for each increase in maximum size than it does for maximum
depth. However, the technique used by Duregård et al. (2012) to efficiently
generate these spaces is not especially compatible with the demand driven
search of Lazy SmallCheck.
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3.5.3 Functional values

The original QuickCheck paper (Claessen and Hughes, 2000) explains how
functional test values can be generated through the Arbitrary instance of func-
tions with a Coarbitrary instance of argument types. At this stage, QuickCheck
could not display the failing example without bespoke use of the whenFail

property combinator. QuickCheck has since gained the ability not only to
display functional counterexamples but also to reduce their complexity through
shrinking. Claessen (2012) achieves this by transforming functions generated
using the existing Coarbitrary technique into tries.

Claessen’s formulation of tries slightly differs from ours. Existential types are
used in place of type families and there is no provision for non-strict functions.
Partiality of functions is explicitly expressed instead of being a result of partially
defined tries. Claessen also requires that functions are wrapped in a ‘modifier’
at quantification binding. This Fun modifier retains information for showing
and shrinking at the expense of a slightly more complex interface presented to
users.

In Lazy SmallCheck, on the other hand, we directly generate a trie and
then convert it into a Haskell function. A pretty-printed representation of
the trie is stored at the time of generation and retrieved for counterexample
output. The SmallCheck representation of functional values uses a coseries

approach, analogous to QuickCheck’s Coarbitrary . However, functional values
are displayed by systematically enumerating arguments.

3.5.4 Existential and nested quantification

As previously discussed in Section 3.1, it is not appropriate to use QuickCheck
for existential quantification as the chance of randomly selecting an (often)
single witness is negligible. The previous design of Lazy SmallCheck made
it difficult to conceive of a refutation algorithm that could handle the nested
quantification required to make existential properties useful. The use of the
Partial values functor in this implementation gives statically typed guarantees
that term refinements are performed at the correct quantifier nesting.

3.5.5 Benefits of laziness

Runciman et al. (2008) discussed the benefits and fragility of exploiting the lazi-
ness of the host language to prune the test-data search space. When applied to
functional values, we see further benefits. The partiality of a trie representation
corresponds directly with the partiality of the function it represents. Whereas
Claessen (2012) needs to shrink total function to partial functions, the latest
Lazy SmallCheck has partial functions as a natural result of its construction.
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3.6 summary

This chapter has described the extension of Lazy SmallCheck with several new
features: (1) quantification over functional values, (2) existential and nested
quantification in properties and (3) the display of partial counterexamples.

Properties that quantify over functional values occur often in higher-order
functional programming. Similarly, many properties may involve existential
quantification and even nesting of quantification within property definitions.
The examples in this chapter have demonstrated the power of a tool that can
find counterexamples for such properties.

This chapter takes an extensional view of functional values, characterising
them as mappings from input to output. An alternative would be to characterise
functions intensionally as lambda abstractions or other defining expressions,
perhaps allowing recursion (Katayama, 2007; Koopman and Plasmeijer, 2010).
We would expect the generic machinery for typed functional series to be more
complex. Also, when functions are needed as test values, alternative definitions
of the same extensional function are not particularly useful. This will be
resolved in the next chapter.
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4 P R O G R A M S A S T E ST- DATA

We describe experiments generating functional programs in a core, simply-typed, first-
order language with algebraic data types. Candidate programs are generated freely over
a syntactic representation with positional names. Static conditions for program validity
and canonical representatives of large equivalence classes are defined separately.

4.1 introduction

In this chapter, we use Lazy SmallCheck to enumerate all small test programs
that are valid (well-formed, well-scoped and well-typed, Section 4.2.3), canonical
(of a regular form detailed in Section 4.3) and terminating (also Section 4.3).

Rather than directly constructing programs that satisfy these conditions,
we freely generate abstract syntax trees and filter out those for which some
required condition does not hold. With careful representation choices for the
freely generated abstract syntax, a lazy and condition-driven approach to test
generation can efficiently and effectively prune large classes of unwanted test
programs. Ideally, we would treat these canonical programs as representatives
of equivalence classes from which test programs shall be selected. However, in
this chapter, we shall focus on exploring these equivalence classes through the
canonical programs.

4.2 generating valid programs

4.2.1 Our core language

We choose to work with a simply-typed, first-order core functional language
with algebraic data types. The following example is a program in this language.
The function add is addition over D, a representation of the Peano numerals.
The expression to be evaluated, indicated by >, adds one and one.

data D = Zero | Succ D
add m n = case m of

Zero -> n
Succ p -> Succ (add p n)

> add (Succ Zero) (Succ Zero)

41



programs as test-data

data Pro = Pro (Seq1 Nat) Exp (Seq RedDef )

data RedDef = Lam Nat Bod

data Bod = Solo Exp

| Case Exp (Seq1 Alt)

data Exp = Var VarId

| App DecId (Seq Exp)

data VarId = Arg Nat

| Pat Nat

data DecId = Con Nat

| Red Nat

data Alt = Nat :−→: Exp

Figure 4.1: Initial definition of our core language.

In order to generate programs in this language, we first define a data type for
its abstract syntax, as in Figure 4.1. A program Pro cds e rds consists of a single
data type definition represented as a sequence cds of one or more constructor
arities, a main expression e to be evaluated and zero or more top-level value
definitions rds whose applications are reducible. A top-level value definition
Lam ar b is a lambda abstraction of arity ar . The body may be just a single
applicative expression Solo e or it may be a case expression Case e as with
alternatives for different constructions of the subject e.

Expressions are, as usual, recursively composed applications with either
variables or zero-arity applications as leaves. Variable references are explicitly
tagged: Arg for argument variables and Pat for pattern variables in alternatives.
Applied references are also tagged: Con for constructors and Red for top-
level names whose applications are reducible. These are all referenced by the
natural-number positions of their definitions.

4.2.2 Free generation

Using SmallCheck (Runciman et al., 2008) we can now define functions to
enumerate all values of these AST data types bounded by a given depth of
construction. The Serial instances are defined in Figure 4.2.

The type Seq a is synonymous with the list type [a ] but the depth-bound is
the same for all elements of the list — a Seq a list bounded by depth d has at
most d items, each of which has depth at most d − 1. The Seq1 variant is for
lists with at least one element.

It is often convenient not to count simple tags or tupling structures when
determining the depth of a construction. The compositions with depth 0 are for
that purpose.
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instance Serial Pro where

series = cons3 Pro ◦ depth 0

instance Serial RedDef where

series = cons2 Lam ◦ depth 0

instance Serial Bod where

series = (cons1 Solo ∪ cons2 Case) ◦ depth 0

instance Serial Exp where

series = cons1 Var ∪ cons2 App

instance Serial VarId where

series = (cons1 Arg ∪ cons1 Pat) ◦ depth 0

instance Serial DecId where

series = (cons1 Con ∪ cons1 Red) ◦ depth 0

instance Serial Alt where

series = cons2 (:−→:) ◦ depth 0

Figure 4.2: The series generators for our initial syntactic representation.

Let’s run the Pro series generator with increasing depth bounds, and count
the number of programs generated.

>>> [ length (series i :: [Pro]) | i <- [0..] ]
[0, 4, 3504, 27700575980220, ...

What do the four Pro values at depth one look like? These can be rendered
as follows, with the convention that arguments are renamed x,y,..., pattern
variables p,q,..., constructors A,B,... and top-level functions f,g,....

data D = A
> x

data D = A
> p

data D = A
> A

data D = A
> f

As these programs are freely generated from the abstract syntax type, they
are as yet unconstrained by any static semantics. Only one of them is valid
— the third one. At depth two there are already thousands of similar-looking
Pro values, hardly any of which are valid. Beyond depth two our machines are
overwhelmed by the task of enumeration.
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-- Test a program is well-scoped and arity consistent.
valid :: Pro → Bool

valid (Pro (Seq1 cons) m (Seq eqns)) = valide 0 0 m ∧
all validr eqns

where

-- Test a reducable is well-scoped and arity consistent.
validr (Lam a (Solo e)) = valide a 0 e

validr (Lam a (Case s (Seq1 alts))) = valide a 0 s ∧
and [ indexThen c cons (λp → valide a p e)

| (c :−→: e)← alts ]

-- Test an expression is well-scoped and arity consistent.
valide a (Var (Arg v )) = a 6≡ 0 ∧ v < a

valide p (Var (Pat v )) = p 6≡ 0 ∧ v < p

valide a p (App d (Seq es)) = valida d (N $ length es) ∧
all (valide a p) es

-- Test an application is well-scoped and arity correct.
valida (Con c) n = indexThen c cons (λn′ → n ≡ n′)
valida (Red f ) n = indexThen f eqns (λ(Lam n′ )→ n ≡ n′)

-- Index an element from a list and apply predicate. Default to False.
indexThen :: Nat → [a ]→ (a→ Bool)→ Bool

indexThen (N i) xs f = (¬ ◦ null) xs ′ ∧ head xs ′

where xs ′ = map f (drop i xs)

Figure 4.3: Validity of positional programs.

4.2.3 Validity test

Only one of the programs generated at depth one was valid. The other three
referred to undefined variables or functions. At greater depths another form
of invalidity can occur: there may be arity disagreement between uses and
definitions. We must avoid, or cut short, the work of generating such invalid
programs.

We can define a predicate valid , as in Figure 4.3. The auxiliary functions validr ,
valide and valida test the validity of reducibles, expressions and applications
respectively. The first two arguments to valide are the enclosing scopes for
argument and pattern variables.

If we test the property λp → valid p =⇒ True, of the 3,504 syntactically
generated programs at depth two, just 160 are found to be valid. So even this
simple validity check greatly reduces the number of programs to be tested. But
as things stand, we still have to generate a large number of invalid programs,
only to reject them as test cases.
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4.2.4 Lazy free generation

The problem of generating test cases that satisfy conditions was a large part of
the motivation for Lazy SmallCheck (Runciman et al., 2008). This tool applies
conditions to partially defined values. If a test value is sufficiently defined to
allow a condition to be evaluated to True (or to False), then it is known from
this single evaluation that all possible refinements of this test value will also
satisfy (or fail to satisfy) the condition. If the partiality of a test value makes
the condition undefined, the test value is refined at exactly the place needed
for evaluation of the condition to proceed further.

In principle, Lazy SmallCheck might run more test cases than those seen
under SmallCheck for the same condition — since it tests partial values as well
as total ones. But in practice, where there is a structural condition that most
tests do not satisfy, Lazy SmallCheck uses many fewer tests.

If we again test the property λp → valid p =⇒ True, but this time using
Lazy SmallCheck, just 187 tests are needed to obtain the same 160 programs at
depth two. That is just under 5% of the tests required under SmallCheck.

4.3 canonicity

If we could only test a compiler using just two source programs, it would be a
better test if the two programs really were quite distinct, not just insignificant
variations of each other. The same argument applies even if we can use a large
number of test programs. Resources are always limited. So we don’t want to
waste them by testing umpteen versions of essentially the same program.

We shall use several principles to define canonical programs. Each of these
programs is a unique representative of a whole class of essentially equivalent
programs. The principles of canonicity are discovered through the analysis of
programs being generated.

For the purposes of testing, the set of canonical programs would ideally only
be used as identifiers of their equivalence classes. It is from these equivalence
classes that test candidates should be selected, preferably at random. This will
be discussed further in section 9.3. However, in this chapter we shall focus on
producing the set of canonical programs.

4.3.1 A note about parallel conjunction

Lazy SmallCheck (Runciman et al., 2008) exposes a parallel conjunction operator,
(∧par ), which is falsified if either of its conjuncts are false. In contrast, standard
conjunctions (∧) returns ⊥ if its first conjunct is ⊥ even if its second is False.
Properties defined using parallel conjunction instead of standard conjunction
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can reduce the amount of structure that must be expanded to reach a result
and therefore decrease the number of tests performed.

In the definitions of our canonicity principles, we often use parallel con-
junction between each principle and any component of a principle that will
independently traverse the abstract syntax tree. For instance, in Figure 4.4 we
use parallel conjunction between the tests of ordering over constructor arities,
equations and case alternatives.

4.3.2 Principles of ordering and complete reference

The two programs below perform the same computation under the obvious
isomorphism between their data types. The only difference between them is
the ordering of constructors, function definitions and case alternatives.

data D = A | B D D
f x y = case x of
A -> y
B p q -> B p (g q y)

g x = case x of
B p q -> p

> g (f A (B A A))

data D = A D D | B
f x = case x of
A p q -> p

g x y = case x of
A p q -> A p (g q y)
B -> y

> f (g B (A B B))

A canonical representative of both programs respects an ordering for each of
these things. Assuming the standard, automatically derived instances of Ord

for our AST data types, a canonical ordering predicate for programs is given in
Figure 4.4.

The orderings over equations and alternatives are irreflexive; we forbid
duplicate definitions. The ordering over constructor arities is not; we permit
more than one constructor of the same arity.

The following programs are also in direct correspondence. There is a duality
so far as the roles of the constructors A and B are concerned, and the arguments
of function f are flipped.

data D = A | B
f x y = case x of

A -> A
B -> y

> f B B

data D = A | B
f x y = case y of

A -> x
B -> B

> f A A

So here is a further ordering requirement in canonical programs. Constructors
of equal arity must be first used in the program in the same order as they are
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canonicalOrder (Pro (Seq1 cons) (Seq eqns)) =

-- Non-strict ordering of constructor arities
orderedBy (6) cons ∧par

-- Strict lexicographic ordering of equations
orderedBy (<) eqns ∧par

-- Strict ordering of case-alternatives by constructor
and [ orderedBy (<) [c | (c :−→: )← alts ]

| (Lam (Case (Seq1 alts)))← eqns ]

orderedBy :: (a→ a→ Bool)→ [a ]→ Bool

orderedBy f (x : y : zs) = f x y ∧ orderedBy f (y : zs)

orderedBy = True

Figure 4.4: Predicate for the ordering of constructors, equations and alternatives.

declared in the data type. And function arguments must be first used in the
function body in the order given by their argument positions.

Further, for any program that declares unused constructors, arguments or
pattern variables there is a simpler equivalent program without them. In a
canonical program, all constructors and arguments are used.

Finally, a program with unused function definitions also has a smaller equivalent
without them. In a canonical program, all functions can be reached by a static
call-chain from the main expression. See Section 4.3.8 for further discussion of
dead code.

After we impose all these ordering and complete-reference conditions, we
have just two programs at depth two, generated by Lazy SmallCheck as a result
of 109 tests. And at depth 3, instead of an overwhelming number of programs,
just 4,413 programs are produced as a result of 24,373,980 tests.

4.3.3 Unorderable equations

Consider the following programs that do not satisfy the equation-ordering
condition.

data D = A | B A
f x = B (g x)
g x = B (f x)
> f A

data D = A | B A
f x = B (g x)
g x = B (f x)
> g A

In the current positionally-referenced representation, these programs have
no canonical form. Reversing the equation ordering simply gives the other

47



programs as test-data

program. Our solution for now is to limit the number of top-level definitions to two
and change the referencing scheme as follows. Within a top-level definition
reference is either recursive or else it references the other top-level definition:
Self and Other . Within the main expression, we keep positional naming. i.e. 0
and 1.

As both of these reference models can be implemented with Boolean values,
the Red constructor is changed to hold Bool instead of Nat . The definition of
valid also needs to be changed to account for the new referencing scheme. The
ordering predicates work without modification.

4.3.4 Principle of depth balance

To reach a rich space of small test programs, we need to generate function
bodies at around depth four or five. But we do not need data types with four or
five constructors, each with four or five arguments! Nor do we need multiple
high-arity function declarations.

At depth n, the default syntactic generators give between one and n con-
structors. The constructors and functions each have ar ity ≤ n . Not only is
this signature space far richer than we need to express interesting programs
— LISP has taught us that — but also the depth limits largely prevent uses of
these declarations from being generated anyway.

Therefore, mirroring the top-level two function limit, the number of constructor
declarations and the arities of declarations are capped at two. This could be
implemented using a further condition but another approach will be outlined
in Section 4.3.6.

4.3.5 Principle of caller/callee demarcation

Wherever there is an application of a defined function, there may be different
ways to split work between caller and callee. A canonical program should make
this split only in standardised ways.

Both caller and callee should do something. The caller must do something: it
cannot just be the application of the callee to some of the caller’s arguments, or
else any application of the caller could more simply be an application of the
callee. The principle of complete reference excludes many cases, but we also
exclude as a body any application of a function to exactly the same arguments.
The callee must also do something: a function body cannot simply be one of
the arguments, or else any application could be replaced by a subexpression.
Again the principle of complete reference already excludes most cases, but we
also exclude the identity.

Even in our original program representation, we had a form of caller/callee
constraint: case expressions can only occur outermost in a function body. So
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data ProR = ProR ExpR (Seq0 ′2 BodR)

data BodR = SoloR ExpR | CaseR (AltR,AltR)

data ExpR = VarR VarIdR | AppR DecIdR (Seq0 ′2 ExpR)

data VarIdR = ArgR Bool | PatR Bool

data DecIdR = ConR Bool | RedR Bool

data AltR = NoAltR | AltR ExpR

Figure 4.5: Nonredundant representation of our core language.

the callee does the case distinction. In canonical programs, the caller computes
the case subject: that is, a case subject is just an argument variable, and by the
ordering principle, it must be the first argument.

This too could be implemented by a further condition, but we use another
approach, as the following section explains.

4.3.6 Principle of nonredundant representation

It is pleasing that Lazy SmallCheck can prune away the 3,502 invalid or non-
canonical programs of depth at most two by running only 109 tests, finally
delivering for us the two interesting test programs — or more precisely, two
equivalence classes of programs. But the very high proportion of Pro values
that fail the conditions does prompt a question: would a further change of
representation enable us to generate fewer invalid or non-canonical programs
in the first place?

We have already established that canonical case subjects are first arguments.
So in our new representation the case subject can be omitted.

For a program to be valid, all uses of constructors or functions must match
declared data type and function arities. In a canonical program with complete
reference, it follows that the data type can be determined from the other parts
of the program, and the arity of each function can be determined from its body.
So instead of generating a data type definition and function arities, and testing
for valid and complete uses, we need only generate a main expression and
function bodies.

The cap of two on the number of constructors and functions can also be
encoded in the sequence representation types in programs, and in Bool index
types for declarations. With function arities bounded by two a Bool index also
suffices for argument variables. Figure 4.5 details the new representation.

Case-alternative patterns now reference constructors according to their posi-
tion, doing away with the need for a separate ordering condition for alternatives.
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The arity of functions can be deduced by finding the maximum argument
in the function body. The data type definition can be inferred by combining
information about program constructor applications and the maximum pattern
variable in constructor alternatives. Conditions are still used to prune away non-
canonical programs that are not precluded by the nonredundant representation.

The change to a nonredundant representation dramatically reduces the num-
ber of tests required at each depth. At depth 3 (analogous to the previous
representation’s depth 2), only 25,393 tests are required to reduce a space of
2,371,256 programs to 11 canonical representatives. At depth 4, analogous to
the previously unattainable depth 5, it takes 28,311,473 tests to find 423,582
canonical programs.

4.3.7 Principle of live computation

Most interesting functional programs are recursive. But some recursively
defined functions can unproductively fail to terminate. For example, here are
two programs generated at depth 4.

data D = A
f = g A
g x = case x of

A -> f
> f

data D = A | B D
f = B f
g x = case x of

A -> x
B p -> g p

> g f

To exclude programs such as the one on the left, we add the condition that
any recursive applications are either beneath a constructor, or else descend into
the construction of a recursive argument. At depth 3, this simple termination
condition does not reduce the number of programs produced but it does reduce
the number of tests required to 19,099. At depth 4, only 74,414 canonical
programs are now produced after 20,550,413 tests.

This still leaves some non-terminating programs such as the one on the
right. (View D as Peano numerals, f as infinity and g as a semi-test for finite
numbers.) A far more sophisticated condition (e.g. Abel, 2000) would be needed
to eliminate such programs yet allow useful recursion.

For now, we have decided to accept that some unproductive programs
will remain. A more sophisticated condition would require significant extra
machinery and adversely affect lazy pruning performance. However, property
testing must allow for the possibility of an unproductive program.
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4.3.8 Principle of live code

The following programs are among those generated at depth 3. They are
indistinguishable in their execution as the B case alternatives are never used.
Some form of data-flow analysis is needed to detect dead code.

data D = A | B
f x y

= case x of
A -> y

> f A B

data D = A | B
f x y
= case x of

A -> y
B -> x

> f A B

data D = A | B
f x y
= case x of

A -> y
B -> A

> f A B

Dynamic evaluation of candidate test programs, followed by a simple reach-
ability analysis, detects dead code more accurately than reachability analysis
alone. We must avoid unbounded computation arising from recursive applica-
tions, but to avoid unfolding all recursive calls would limit results too much.
Our solution is single-shot recursion: on any call path we evaluate at most two
applications of the same function.

The bounded evaluation traverses the abstract syntax tree in normal order,
contrasting with the other in-order conditions. Validity checks can therefore be
bypassed due to the use of Lazy SmallCheck’s parallel conjunction operator. As
validity is required for evaluation, a partial validity checker is integrated into
the dead code checker.

Although the live-code condition supersedes the function-reachability and
constructor-use of Section 4.3.2, it is still worth applying all these conditions.
The combination of different traversal orders may prune failures sooner.

Eliminating programs with dead code results in another dramatic fall in tests;
depth 3 requiring only 2,731 tests and depth 4 only 445,791 tests. Now just four
canonical programs remain at depth 3. These are the constant A program and
the following:

data D = A | B
f x = case x of

A -> B
> f A

data D = A
f x y = case x of

A -> y
> f A A

data D = A | B
f x y = case x of

A -> y
> f A B

The leftmost program could be interpreted as partial inversion with D as the
Boolean type. Both other programs are partial conjunction, where A is True and
B is False, with different inputs. Alternatively, these could be viewed as partial
disjunction where A is False and B is True.

At depth 4, we have just 64 programs that satisfy all these principles of
canonicity and validity.
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Table 4.1: Performance of non-redundant representation at depth 3.

Conditions Execution time Tests required Programs

Validity 2643ms 138,617 855
+ Ordering + Use 690ms 34,745 124
+ Caller/Callee 580ms 25,393 11
+ Live Computation 437ms 19,099 11
+ Live Code 72ms 2,731 4

4.4 performance

So far, we have discussed performance abstractly, with regard to the number of
tests to reach a set of desirable programs. In this section, we shall also consider
execution time. All figures were obtained using GHC 7.0.3 on 2GHz dual-core
PC with 4GB of RAM.

Table 4.1 shows performance figures when applying the various conditions
at depth 3 of the non-redundant representation. The initial freely generated
space contains 2,043,136 ‘programs’. Execution times are measured using the
Criterion (O’Sullivan, 2011) benchmarking library, averaging 100 measurements
and ensuring a 0.95 confidence interval. As each additional condition is applied,
the number of tests required to reach a set of desirable programs falls. This
trend is mostly mirrored by a fall in execution time. However, execution time
does not fall quite as rapidly as the number of tests performed. The time per
test lengthens as the number of conditions increases. In fact, the mean execution
time per test increases by 38% from validity to the full suite of conditions for
canonicity.

Enumerating all canonical programs at depth 4 takes approximately 15
seconds. At depth 5, it takes around 3 hours to produce the 310,003 canonical
programs.

4.5 applications

We use these canonical programs to investigate the correctness properties
of language implementations and program optimisations. The first example
produces a small program that exposes the differences between static binding
and dynamic binding. The second investigates some correctness properties of
compiler optimisations both in terms of semantic preservation and performance
improvement.
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prop_bind :: Pro → Bool

prop_bind e = isJust static ∧ isJust dynamic =⇒ static ≡ dynamic

where static = evalFor 1000 False e >>= return ◦ forceResult 5

dynamic = evalFor 1000 True e >>= return ◦ forceResult 5

Figure 4.6: A mistaken equivalence between static and dynamic binding.

4.5.1 Static vs. dynamic binding

Suppose we implement different semantics for our source language. One
version uses static binding, evaluating arguments in the environment of the
application call. The other uses dynamic binding where arguments are evaluated
in the environment of the argument reference.

The generated programs are evaluated under each semantics up to a given
maximum derivation-tree depth and the results are compared under equality.
This property is defined as prop_bind in Figure 4.6. Testing discovers a small
example program at depth 4, for which static binding and dynamic binding
produce different results.

data D = A | B D
f = g A A
g x y = case x of

A -> B y
B p -> g p x

> g f f

Under static binding, the program returns B (B A) as we would usually
expect. However, under the dynamic binding semantics, the program returns
B A. In the recursive call to g, the environment contains {x 7→ p, y 7→ x , p 7→ A}
when variable y is referenced.

4.5.2 Optimisations on a Sestoft Abstract Machine

Sestoft (1997) details the derivation of a series of abstract machines of increasing
efficiency. These abstract machines evaluate expressions written in a core
higher-order functional language. A simple transformation converts our core
first-order language into a form that can be executed by the Sestoft Mark 2
abstract machine.

Our goal is to verify a simple program transformation that non-recursively
inlines function applications. In this case, we wish to ensure not only semantic
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prop_inline_sem :: ProR → Bool

prop_inline_sem p = isJust (haltState r0 ) =⇒
haltState r0 ≡ haltState r1

where r0 = (traceFor 1000 ◦ translate) p

r1 = (traceFor 1000 ◦ translate ◦ opt_inline) p

prop_inline_opt :: ProR → Bool

prop_inline_opt p = isJust (haltState r0 ) =⇒
length r0 > length r1

where r0 = (traceFor 1000 ◦ translate) p

r1 = (traceFor 1000 ◦ translate ◦ opt_inline) p

translate :: ProR → SestExpr

traceFor :: Int → SestExpr → [SestState ]

haltState :: [SestState ]→ Maybe SestExpr

Figure 4.7: Predicates for testing inlining transformation.

equivalence but also optimisation of reduction steps. These are formally defined as
prop_inline_sem and prop_inline_opt respectively in Figure 4.7.

At depth 5, the semantic equivalence property is satisfied by all 310,003
canonical programs. However, the following counterexample is found for the
optimisation property. If no inlining is performed then this program takes 44
steps to reduce to normal form. But if inlining is applied it takes 46 steps.

f x = case x of
A -> B x
B p -> g x p

g x y = case x of
A -> f y
B p -> x

> f (g A A)

The reason is as follows. In the original, g A A is only evaluated once but
after inlining it is evaluated twice. The shared evaluation of x in the body of f
is lost.
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4.6 related work

A survey from the late 1990s (Boujarwah and Saleh, 1997) discusses and clas-
sifies a range of techniques for generating test programs. The papers cited
generally use advanced generating grammars to ensure that only “semantically
correct" (valid) programs are produced. A few authors generate test programs
freely over context-free or EBNF grammars but with the stated aim of testing a
compiler’s syntax checker.

As discussed in Section 2.4, Palka et al. (2011) describes the use of QuickCheck
to generate random lambda terms for compiler testing. De Bruijn (1972) index-
ing is used to avoid problems of equivalence up to renaming. Aside from the
use of random lambda terms, as opposed to exhaustively enumerated small
equational programs, another significant difference from the approach reported
here is that Palka et al. rely on a generating context including the signatures of
pre-defined functions.

Other functional-programming researchers have looked into program enu-
meration. For example, Katayama (2007) enumerates typed lambda terms. The
motivation is to provide exhaustive search for appropriately typed expressions
during program synthesis. Katayama highlights the advantages of a de Bruijn
representation, and the importance of excluding “equivalent expressions which
cause redundancy in the search space and multiple counting”. In this work too,
the generator generates terms applying a library of pre-defined functions, and
one of the equivalance-avoiding techniques is to apply known simplification
laws for these functions. But the discussion notes a need to do more to eliminate
duplicate or equivalent solutions.

4.7 summary

Our aim has been to enumerate valid and canonical programs for the purposes
of compiler verification. We have shown that large spaces of freely generated
terms can be pruned effectively to yield ‘interesting’ programs. Exploration
of the search space indicates that Boolean programs such as partial inversion,
conjunction and disjunction appear at depth 3. Canonical programs involving
Peano numerals (e.g. addition) and lists (e.g. append) emerge at depth 6.

It is unclear at what depth the generated programs cease being ‘interesting’
for the purposes of identifying equivalence classes. Certainly, even with these
canonicity principles pruning the search space, the additional depth quickly
becomes unmanageable. It may be better to use a size-bounded approach like
Feat (Duregård et al., 2012).

This chapter roughly mirrors the process by which the principles were
discovered. First, an algebraic data type for the abstract syntax is defined and
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a free generator is created using (Lazy) SmallCheck combinators. Through
the observation of the resulting programs, conditions are defined to eliminate
invalid and non-canonical programs. The representation is reconsidered to
eliminate the redundancy that allows the invalid and non-canonical terms to
arise. And so the procedure repeats. Implementation details are occasionally
reevaluated to account for the interactions of the different conditions.

We have discovered several principles of canonicity for our first-order lan-
guage and dramatically reduced the problem size. We expect that further
investigation of the currently generated programs will reveal new principles of
canonicity or more restrictive variations of existing conditions.

We applied our testing technique to investigate several properties relating
to evaluation, compilation and optimisation. The results obtained are encour-
aging. However, more complex applications motivated our work: we wish to
investigate the correctness and improvement properties of supercompilers. This
is the focus of the upcoming chapters.
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5 A R E V I E W O F S U P E R C O M P I L AT I O N

This chapter introduces the concept of supercompilation. Literature on the topic is
reviewed through the construction of a literate supercompiler implementation. This
exercise prompts discussion of design choices and verification concerns. This reference
implementation will be used to design the verified supercompiler.

5.1 introduction

Supercompilation (Turchin, 1979) is a metaprogramming technique that, at
compile-time, reduces programs until an unknown value is required or some
other termination condition is met. The algorithm then proceeds by case ana-
lysis, reusing previously calculated results when appropriate. The output of a
supercompiler is a residual program.

For example, consider the following function definition. It is written in a
small core functional language described in detail in Section 5.2.

letrec map = \f xs ->
case xs of { Nil -> Nil;

Cons y ys -> Cons (f y) (map f ys) }
in \f g xs -> map f (map g xs)

This function composes two map operations over a list, xs . Unfortunately, the
inner map deconstructs the input and constructs the intermediate list only for
the outer map to deconstruct that intermediate list and construct the output list.
Applying the supercompiler described in this chapter yields the more efficient
definition:

letrec h0 = \f g xs ->
case xs of { Nil -> Nil;

Cons y ys -> Cons (f (g y)) (h0 f g ys) }
in h0

The composed map operations have been fused into one function, eliminating
the intermediate list. In a program that applies such higher-order functions, they
may be specialised for given functional arguments with further corresponding
performance gains at execution time.

Supercompilation is distinct from partial evaluation (Bjorner et al., 1988; Er-
shov, 1982; Jones, 1988; Jones et al., 1993) as it does not require input data to
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〈exp〉 ::= 〈var Id〉 | 〈conId〉
| λ〈var Id〉+ → 〈exp〉
| 〈exp〉 〈exp〉
| let 〈var Id〉 = 〈exp〉 in 〈exp〉
| letrec 〈var Id〉 = 〈exp〉 in 〈exp〉
| case 〈exp〉 of {〈alt〉+}
| (〈exp〉)

〈alt〉 ::= 〈conId〉 〈var Id〉∗ → 〈exp〉

Figure 5.1: Concrete syntax for core language.

be effective. While the resulting programs are similar to those that have had
deforestation (Wadler, 1990) and Mitchell and Runciman (2009) -style defunction-
alisation applied, the process by which this is achieved is quite different.

The following sections describe an implementation of a supercompiler for a
small core language. Design choices are contrasted with other implementations
in the literature.

5.2 the core language

The core source language for the supercompiler developed in this chapter is
an extended lambda calculus. It includes recursive and non-recursive local
definitions and case discrimination over algebraic data structures. The concrete
syntax for this language can be found in Figure 5.1. An abstract syntax is
defined in the Haskell language in Figure 5.2. Note that:

(a) Every node in the abstract syntax tree is tagged with a value of parameter
type t . As we shall see in Sections 5.3.1 and 5.3.2, this tagging allows the
operational semantics code to be reused in the supercompiler.

(b) While the concrete syntax uses named variables, the abstract syntax uses a
locally nameless (Charguéraud, 2012; McBride and McKinna, 2004) repres-
entation. Bound variables are referenced by de Bruijn indicies (de Bruijn,
1972) and free variables are referenced by their heap locations. This repres-
entation simplifies abstract syntax tree manipulations. Type signatures for
some of these manipulation functions can be found in Figure 5.14 on page
page 75 at the end of this chapter.

(c) Applications can only be made to variables. This forces application argu-
ment expressions onto the heap, ensuring results of their evaluation can be
shared.
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-- Tagged core language expressions
data Exp t = (Exp′ t)t

data Exp′ t = Var Ref

| Con Id [ (t,Ref ) ]

| \•→ (Scope t)

| Exp t ␣ Ref

| let • = Exp t in Scope t

| letrec • = Scope t in Scope t

| case (Exp t) of (Alts t)

-- Case alternatives
type Alts t = [(Id ,Scopes t) ]

-- Variable references
data Ref = Fre HP | Bnd Ix

-- de Bruijn indicies
newtype Ix = Ix Int

-- Binding scopes
newtype Scope t = Scope (Exp t)

data Scopes t = Open (Scopes t) | Closed (Exp t)

type Id = String

Figure 5.2: Tagged abstract syntax data type for core language.

-- Abstract machine states
data State t = 〈 (Heap t) | Exp t | Stack t 〉

-- Heap and heap pointers
type Heap t = (HP,Map HP (IsRec ,Exp t))

newtype HP = HP Int

-- Recursive definition flag
data IsRec = NonRec | Rec

-- Control stack
type Stack t = [(t,StkElem t) ]

data StkElem t = APP HP | UPD HP | CAS (Alts t)

-- Successful values are closures.
type Value t = Maybe (Heap t,Exp t)

Figure 5.3: Data types used by the operational semantics.
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A call-by-need operational semantics for this language is presented in Fig-
ure 5.4, utilising the data types and auxiliaries in Figures 5.3 and 5.14.

The State t data type in Figure 5.3 represents the abstract machine state in
our operational semantics. The states are parameterised by a tag type t to
match our tagged expression trees. A state consists of a heap, a control (or
focus) expression and a control stack.

The heap keeps track of the next fresh heap pointer and contains a mapping
from heap pointers to expressions. These expressions use a flag to recall if they
were introduced through a recursive let-binding or a non-recursive let-binding.
The control stack is a tagged list of stack elements, defined by the StkElem t

data type. It records expression contexts such as applications, heap updates
and case distinctions.

The semantics are presented as a Haskell function, step, so that (1) the
interpreter, run also defined in Figure 5.4, can be easily defined and (2) it can
be easily reused as part of the supercompiler. The semantics are based on the
Sestoft (1997) mark 3 abstract machine. An abstract machine state consists of a
heap, an expression under focus and a control stack. To evaluate an expression,
an initial machine state, with an empty heap and stack, can be constructed
using initialState. The · [? 7→ ·] function is used to place expressions onto
the heap, returning the a pointer to the expression on the heap, nxt , and the
updated heap.

5.3 a supercompiler for the core language

A supercompiler can be decomposed into four components: (1) a normaliser that
simplifies terms, (2) a terminator that prevents non-terminating simplification,
(3) a splitter that produces smaller terms for further supercompilation and (4)
a memoiser that reuses the results of supercompiling equivalent terms. These
are integrated through an overall controller algorithm. Others authors may
use different terms but the terminology use here is similar to that used by
Bolingbroke and Peyton Jones (2010).

5.3.1 Normalisation

Many past formulations of supercompilation (Jonsson and Nordlander, 2008;
Klyuchnikov, 2010; Mitchell, 2010; Mitchell and Runciman, 2008; Reich et al.,
2010; Sørensen et al., 1996) use custom simplification rules to normalise terms.
More recently, there has been a trend towards normalisation-by-evaluation (Boling-
broke and Peyton Jones, 2010). In this approach the term is evaluated under an
operational semantics, but restricting the application of rules that may involve
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-- Step function for operational semantics
step :: State t → Maybe (State t)

step 〈 Γ | (Var (Fre p))t | σ 〉 -- (Rule: var0)
= do ( , x)← lookup p Γ

Just 〈 Γ | x | (t,UPD p) : σ 〉
step 〈 Γ | (x ␣ (Fre p))t | σ 〉 -- (Rule: app0)

= do Just 〈 Γ | x | (t,APP p) : σ 〉
step 〈 Γ | (let • = x in y )t | σ 〉 -- (Rule: let)

= do let (p, heap′) = Γ [? 7→ (NonRec , x)]

Just 〈 heap′ | y [• := p] | σ 〉
step 〈 Γ | (letrec • = x in y )t | σ 〉 -- (Rule: letrec)

= do let (p, heap′) = Γ [? 7→ (Rec , x [• := p])]

Just 〈 heap′ | y [• := p] | σ 〉
step 〈 Γ | (case x of as)t | σ 〉 -- (Rule: case0)

= do Just 〈 Γ | x | (t,CAS as) : σ 〉
step 〈 Γ | (\•→ x)t | ( ,APP p) : σ 〉 -- (Rule: app1λ)

= do Just 〈 Γ | x [• := p] | σ 〉
step 〈 Γ | (Con c ps)t | (t1 ,APP p) : σ 〉 -- (Rule: app1c )

= do Just 〈 Γ | (Con c ((t1 ,Fre p) : ps))t | σ 〉
step 〈 Γ | (Con c ps)t | ( ,CAS as) : σ 〉 -- (Rule: case1)

= do y ← join $ listToMaybe

[ y [•... := [p | ( ,Fre p)← ps ]]

| (c ′, y )← as, c ≡ c ′ ]
Just 〈 Γ | y | σ 〉

step 〈 Γ | x | ( ,UPD p) : σ 〉 -- (Rule: var1)
= do Just 〈 (Γ [p 7→ x ]) | x | σ 〉

step ( ) -- (Rule: crash)
= do Nothing

-- Evaluate under operational semantics
run :: State t → Value t

run 〈 Γ | (Con c ps)t | [ ] 〉 = Just (Γ, (Con c ps)t)

run s = step s >>= run

Figure 5.4: Operational semantics for the core language.
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-- Normalise a state under the operational semantics
normalise :: State t → Maybe (State t)

normalise s = do s ′ ← step s

if isNormal s ′ then Just s ′ else normalise s ′

-- Determine if a state is in normal form
isNormal :: State t → Bool

isNormal 〈 Γ | (Var (Fre p))t | 〉 = maybe True ((≡ Rec) ◦ fst) $
lookup p Γ

isNormal s = isHalt s

-- Determine if a state is halting
isHalt :: State t → Bool

isHalt 〈 | (Con )t | [ ] 〉 = True

isHalt 〈 | (\•→ )t | [ ] 〉 = True

isHalt 〈 Γ | (Var (Fre p))t | 〉 = ¬ (p ‘isAllocated ‘ Γ)
isHalt = False

Figure 5.5: Normaliser for the core language.

recursion to ensure strong normalisation. Such a rule is only permitted if the
termination criterion (Section 5.3.2) is not triggered.

Normalisation-by-evaluation is very attractive for the purposes of constructing
a verifiable supercompiler, as it creates an explicit link between normalisation
and the language semantics. Our normaliser, using the semantic step function,
is shown in Figure 5.5. The isNormal function detects whether a state is in
normal form. We define normal form to be any state that is a variable reference
to a recursive binding or any halting state, detected by the isHalt function.

For example, consider the result of normalising the state created by applying
initialState to our motivating example from Section 5.1.

>>> normalise $ initialState example
Just
〈 (HP 1,fromList [(HP 0,(Rec, \f xs ->

case xs of { Nil -> Nil;
Cons y ys -> Cons (f y) (map f ys) }

in \f g xs -> map f (map g xs)))])
| ~HP 0~
| [] 〉

The state is evaluated until the control expression is a variable reference to
the heap location corresponding to map. As map is a recursive definition, this
expression is in normal form.
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-- Record of tag appearances in abstract syntax tree.
type Bag t = Map t Int

type History t = [Bag (Tag t) ]

-- Record of where in the state the tag was found.
data Tag t = Heap t | Focus t | Stack t

-- Ordering over bags.
(E) :: Ord t ⇒ Bag t → Bag t → Bool

ls E rs = Map.keysSet ls ≡ Map.keysSet rs ∧
and [ maybe False (> v ) (Map.lookup k rs)

| (k , v )← Map.toList ls ]

-- Determine if normalisation should continue.
canContinue :: Ord t ⇒ History t → State t → Maybe (History t)

canContinue hist s | any (Eb′) hist = Nothing

| otherwise = Just (b′ : hist)

where b′ = stateTags s

-- Calculate a tag bag from a state.
stateTags :: Ord t ⇒ State t → Bag (Tag t)

Figure 5.6: Tag-based termination.

5.3.2 Terminator

Online termination of rewriting systems is a well-developed topic. A wide
variety of termination conditions are available from and used in the literature
(Leuschel, 2002). A popular technique is to detect homeomorphic embeddings of
terms, appealing to Kruskal’s (1960) Tree Theorem.

Mitchell (2010) takes a different approach where every node in the abstract
syntax tree is tagged with elements from a finite set. Bolingbroke et al. (2011)
supplies a library for constructing and experimenting with various termination
conditions but settles on an implementation of Mitchell’s technique. Boling-
broke (2013, chapter 6) further exploits the tagging technique in the splitter for
term generalisation.

The tagging approach is better suited to normalisation-by-evaluation as no
expression reconstruction is required. Every node in the source program’s
abstract syntax tree is decorated with a unique tag. The tags associated with
syntactic elements are preserved by the operational semantics, migrating into
the heap and the stack when appropriate. See Figure 5.4 for detail.

If, after normalisation, the abstract machine state is focused on a variable
referring to a recursively defined expression, the terminator checks whether the
bag of tags appearing in the state is bigger than any previously seen tag bags
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under the (E) ordering. The relation bE b′ holds iff: (1) the sets of tags in b

and b′ are equal and (2) every tag appears at least as frequently in b′ as it does
in b.

Our implementation, shown in Figure 5.6, distinguishes tags found in the
state heap, focus and stack as suggested by Bolingbroke (2013, chapter 6). The
canContinue function searches a historical record of tag bags and only returns
a new history if the current state does not trigger the termination condition.

Consider the simplest non-terminating program that can be written in our
core language: (let x = x in x). We shall observe the sequence of states
that result from its repeated normalisation and stepping. In this representation,
we display tags as superscript integers.

>>> initialState infloop
〈 (HP 0,fromList [])
| (letrec x = x(1) in x(2))(0)

| [] 〉

>>> fromJust $ normalise it
〈 (HP 1,fromList [(HP 0,(True,~0~(1)))])
| ~0~(2)
| [] 〉

>>> fromJust $ normalise it
〈 (HP 1,fromList [(HP 0,(True,~0~(1)))])
| ~0~(1)
| [((2),UPD (HP 0))] 〉

>>> fromJust $ normalise it
〈 (HP 1,fromList [(HP 0,(True,~0~(1)))])
| ~0~(1)
| [((1),UPD (HP 0)),((2),UPD (HP 0))] 〉

On the final normalisation, the termination condition would be met as all
the tags in the third intermediate state appear in the same state components,
and appear at least as often, in the fourth intermediate state. This is indicative
of source program recursion that could be normalised forever as the same
syntactic elements are being added to the state.

From a verification perspective, the terminator never modifies the source
state. Instead, it is used to control supercompiler execution flow. It should not
interfere with semantic correctness proofs. Verification of termination properties
of a compiler are often a low priority. For example, Mitchell (2010) explicitly
highlights some of the edge cases for which the supercompiler he defines will
not terminate.
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data Split a b = Split {context :: Tree a→ a, subterms :: Tree b}
data Tree a = Leaf a | Branch [Tree a ]

mkIdentity :: a→ Split a b

mkIdentity x = Split (const x) (Branch [ ])

mkLeaf :: b → Split a b

mkLeaf x = Split (λ(Leaf x)→ x) (Leaf x)

mkBranch :: ([a ]→ a)→ [Split a b ]→ Split a b

mkBranch f xs = Split

(λ(Branch ys)→ f $ zipWith (($) ◦ context) xs ys)

(Branch $ map subterms xs)

Figure 5.7: Data types representing splitting notation.

5.3.3 Splitting

Once a term has been normalised, we must split the term into smaller subterms
on which supercompilation continues. Supercompilers that operate by rewriting
expressions split syntactically, often generalising with respect to previously seen
expressions. Supercompilers that operate through normalisation-by-evaluation
split the normalised states into smaller states and then recombine the results
of supercompilation as expressions. Bolingbroke and Peyton Jones (2010) state
that “a good split function will residualise as little of the input as possible, [further
optimising] as much as possible”. While not necessary to preserve semantic
correctness, a good split function must also conserve sharing.

The splitting process is described using the terminology of subterms which
represent the isolatable components of the current state and contexts into which
we shall insert the results of supercompiling the subterms. This is reified as a
data type in Figure 5.7.

The splitting algorithm, introduced in Figure 5.8, is a pipeline of three phases,
corresponding to the three components of an abstract machine state: (1) focus
expression splitting, (2) control stack splitting and (3) heap splitting. Each
phase, where appropriate, maintains lists of heap locations that may lose
sharing through non-linear use or missed updates.

splitting focus expressions There are four possible circumstances under
which the splitting algorithm may be called: (1) a variable references a letrec
binding and the termination condition is triggered; (2) a lambda is returned
as a value; (3) a variable references an ‘unknown’ value; (4) a construction is
returned as a value. These four cases correspond to different equations in the
definition of focusSplit in Figure 5.9:
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split :: Show t ⇒ State t → HeapSplit t

split s = heapSplit (updateMany upds Γ) freeRefs app splitStack

where 〈 Γ | x | σ 〉 = moveArgs s

(freeRefs, splitFocus) = focusSplit Γ x

(splitStack , (app, upds)) = runWriter (stackSplit σ splitFocus)

moveArgs :: State t → State t

moveArgs 〈 Γ | (Con c ps)t | σ 〉
= 〈 Γ | (Con c [ ])t | foldl (λstk (t,Fre p)→ (t,APP p) : stk) σ ps 〉

moveArgs s = s

-- Apply many updates to a Heap

updateMany :: Upds t → Heap t → Heap t

-- Specialised intermediate splits
type FocusSplit t = Split (Scopes t) (Scopes t)

type StackSplit t = Split (Scopes t) (Scopes t,Stack t)

type FreeRefs = Set HP

type Apps = Set HP

type Upds t = Map HP (Exp t)

Figure 5.8: Splitting a normalised state.

focusSplit :: Heap t → Exp t → (FreeRefs,FocusSplit t)

focusSplit Γ x = case x of

(Var (Fre p))t | isAllocated p Γ
→ (Set.singleton p,mkLeaf (Closed x))

(\•→ (Scope y ))t → (freeExp y , lambdaSplit t y )

→ (Set.empty , mkIdentity (Closed x))

lambdaSplit :: t → Exp t → FocusSplit t

lambdaSplit t body = Split (λ(Leaf (Open (Closed body )))→
Closed (\•→ (Scope body ))t)

(Leaf (Open (Closed body )))

Figure 5.9: Splitting the focus component of states.
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stackSplit :: Stack t → FocusSplit t →Writer (Apps,Upds t) (StackSplit t)

stackSplit [ ] focus = do

return $ addEmptyStack focus

stackSplit ((t,APP p) : σ) focus = do

tell (Set.singleton p,mempty )

stackSplit σ $ mkBranch (λ[Closed x ]→ Closed (x ␣ (Fre p))t) [focus ]

stackSplit ((t,UPD p) : σ) focus = do

tell (mempty ,Map.singleton p (reformFocus focus))

stackSplit σ $ mkLeaf (Closed (Var (Fre p))t)

stackSplit ((t,CAS as) : σ) focus = do

return $ mkBranch

(λ(Closed x : ys)→ Closed (case x of (zip (map fst as) ys))t)

(addEmptyStack focus : [mkLeaf (y ,σ) | (c , y )← as ])

addEmptyStack :: FocusSplit t → StackSplit t

addEmptyStack = fmap (, [ ])

reformFocus :: FocusSplit t → Exp t

reformFocus (Split ctx stm) = stripScope $ ctx stm

where stripScope (Closed x) = x

stripScope (Open x) = stripScope x

Figure 5.10: Splitting the control stack component of states.

1. A variable reference that triggers the termination condition creates a
subterm independent of control stack so that it can be supercompiled in
isolation.

2. When a lambda is returned as a value, the binding is the context and the
body is the subterm.

3. A reference to an unknown can be supercompiled no further. The context
is the reference itself and there are no subterms.

4. The constructor splits with each component argument as a subterm and
the spine as the context. This is achieved by placing the arguments back
on the control stack using moveArgs before following the same logic as in
(3).

splitting the control stack Once useful information is extracted from
the focus expression, the algorithm splits the control stack as shown Figure 5.10.
It is essential to preserve sharing and partially supercompiled results. So the al-
gorithm records the heap pointers that are being independently supercompiled

69



a review of supercompilation

and any incomplete heap update operations. These pointers are stored through
a Writer monad and will be used in the final heap splitting stage.

• Application stack frames, of the form APP p, result in the context being
extended with the application of the heap pointer p. The heap location p

is recorded for further supercompilation.

• Update frames, UPD p, result in the current context being reformed into
an expression and stored at heap location p. The context becomes a
variable pointing to heap location p.

• Case distinction frames, CAS as , produce subterms for each case alternat-
ive in as with the remaining control stack.

splitting the heap At this stage, any updates are applied to the heap, so
that partial supercompilation results can be shared. Then we use the application
and update information provided by the previous stages to determine which
heap locations are ‘unsafe’ — at risk of losing sharing. Any heap location that
may lose sharing is extracted and supercompiled independently. All these steps
can be seen in the definition of heapSplit in Figure 5.11.

5.3.4 Memoisation

Given the presence of recursion in our source language, an execution may be
non-terminating. Furthermore, there is a combination of recursion and unknown
values in the context of supercompilation. We risk replicating previously
supercompiled results unless these results are memoised and shared.

The memoisation component works in tandem with the termination compon-
ent. The terminator detects the possibility of repeated work, then the memoiser
creates a reference to that work.

In this implementation, each chain of normalisations is labelled with a binder,
a fresh heap pointer and record of the unknown variables introduced due to
lambdas. This behaviour is shown in the mkBinder function of Figure 5.12. Each
state normalisation is recorded with the label of the corresponding chain as a
promise of a terminating supercompilation. When the memoisation algorithm,
memoise, detects that the current state is equivalent to a previous promise, an
reference to the corresponding binder is constructed.

5.3.5 Control

An overarching controller algorithm marshals these components to achieve
supercompilation. As shown in Figure 5.13, the supercompile function accepts a
tagged expression as input and returns an untagged expression. It begins by
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type HeapSplit t = Split (Exp ()) (State t)

heapSplit :: Heap t → FreeRefs → Apps → StackSplit t → HeapSplit t

heapSplit Γ freeInFocus app focus = foldr aux focus ′ unsafe

where

-- Function to calculate accessible heap pointers
accessibleRef = fixpointRef Γ

-- Heap pointers to be driven independently
unsafe = Set.filter (‘isAllocated ‘Γ) $

Set.union app $ intersections $ map accessibleRef $
freeInFocus : map Set.singleton (Set.toList app)

-- Heap without unsafe locations
safeHeap = removeMany unsafe Γ
focus ′ = addHeap safeHeap focus

-- Create a subterm for heap location p
aux p spl = mkBranch letIn [mkLeaf 〈 heap′ | x t | [ ] 〉, spl ]

where

Just (rec , x t) = lookup p Γ
heap′ = copy p Γ safeHeap

letIn [x , y ] | rec ≡ Rec = (letrec • = x [p := •] in y [p := •])()
| otherwise = (let • = x in y [p := •])()

-- Add a heap to a split
addHeap :: Heap t → StackSplit t → HeapSplit t

-- Calculate the union of every intersection between distinct sets
intersections :: Ord a⇒ [Set a ]→ Set a

-- Assume a closed term
fromClosed :: Scopes t → Exp t

-- Bind all dangling references to fresh heap pointers
bindOpen :: Heap t → Scopes t → (Heap t,Exp t, [HP ])

-- Remove many pointers from a Heap

removeMany :: Set HP → Heap t → Heap t

-- Copy from one heap to another
copy :: HP → Heap t → Heap t → Heap t

Figure 5.11: Splitting the heap component of states.
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type Memo a = (Binder , [Promise ])→ a

type Binder = (HP,Set HP)

type Promise = (Binder ,State Int)

type Phase = State Int → Memo (Exp ())

mkBinder :: Phase → Phase

mkBinder cont s ((i , ), prevs)

| i ′ ∈ freeExp x ′ = (letrec • = x ′ [i ′ := •] in Scope (Var •)())()
| otherwise = x ′

where i ′ = pred i

(ps ′, s ′) = stripLambdas s

x ′ = reconstructLambdas ps ′ (cont s ′ ((i ′, ps ′), prevs))

memoise :: Phase → Phase

memoise cont s (this, prevs) | null matches = cont s (this, (this, s) : prevs)

| otherwise = head matches

where matches = [ foldr aux (Var (Fre iOld))() freeOld

| ((iOld , freeOld), sOld)← prevs

, freeMapping ← maybeToList (sOld ‘equivState‘ s)

, Map.keysSet freeMapping ≡ freeOld

, let find p = Map.findWithDefault p p freeMapping

, let aux p x = (x ␣ (Fre (find p)))() ]

-- Strip lambdas and instantiate with fresh heap pointers.
stripLambdas :: State t → (Set HP,State t)

-- Reform lambdas, abstracting given heap pointers.
reconstructLambdas :: Set HP → Exp t → Exp t

-- Test if two states are alpha-equivalent, returning the mapping.
equivState :: (Data a,Data b)⇒ State a→ State b → Maybe (Map HP HP)

Figure 5.12: Memoising results.
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supercompile :: Exp Int → Exp ()

supercompile x = mkBinder (drive [ ]) (initialState x) ((HP 0,Set.empty ), [ ])

drive, drive ′ :: History Int → Phase

drive hist = memoise (drive ′ hist)

drive ′ hist s = case (isHalt s, normalise s) of

(False, Just s ′)→ maybe (memoise $ tie hist) drive (canContinue hist s) s ′

otherwise → tie hist s

tie :: History Int → Phase

tie hist s memo = ctx (fmap residualise stms)

where Split ctx stms = split s

residualise s = mkBinder (drive hist) s memo

Figure 5.13: Control algorithm.

constructing a promise for a state representation of the expression and driving
with an empty history.

A memoised drive function tests if the input state is already halting or if
normalising it further results in a crash. Either of these conditions result in the
residualisation of subterms using the tie function.

Alternatively, the input state is tested against the termination condition. If
this condition is not met, the state is driven further. If the termination condition
is met, the subterms are residualised using a memoised variant of the tie

function. The recursive interaction of drive and tie on subterms results in the
construction of a residual program, the goal of supercompilation.

5.4 discussion

This chapter has introduced the key concepts in supercompilation and provided
a reference implementation. This represents the first stage towards our goal of
producing a verified supercompiler and we should analyse what we have seen
so far.

semantic types The normalisation, splitting and memoisation components
all operate on types for which we can define a semantics. Normalisation
takes states to states. Memoisation from states to expressions in some context.
Splitting takes states and produces a collection of substates and a method of
reconstructing an expression.

Given that these are the only functions that construct the residual program,
if these functions maintain semantic correctness locally, then global semantic
correctness should follow. This will be investigated further in Chapter 7.
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control flow and termination The control algorithm, discussed in Sec-
tion 5.3.5, has a control flow based on mutually recursive calls, often through
higher-order functions. Any change to the control algorithm will tend to affect
the termination of the supercompiler rather than change the semantics of the
resulting residual programs. However, its recursive higher-order nature does
complicate the process of verification. This issue reappears in Section 8.6.

A total correctness proof of termination will require an encoding of the
pigeonhole principle and demonstrating a well-founded decreasing ordering
over states through the recursive calls. Many mechanical proof system have
their own internal representations of program termination (for example Abel,
2000) and we would need to fit supercompiler termination to these models.

component complexity Some components would be easier to verify with
mechanised proof than others. For example, showing a semantic link for the
normalisation component is considerably easier (due to its close relationship
with the operational semantics) than for splitting. A hybrid verification model
could take advantage of this, using lightweight verification methods, such as
automated testing, for some components and combining it with heavyweight
verification, such as mechanised proof, for others. We shall require a hybrid
verification framework that enables modularity in the verification of different
components.

5.5 summary

In this chapter, we have implemented a supercompiler for a small functional lan-
guage. Through this implementation, we have introduced common terminology
and discussed design choices made in other implementations, such as those
from Bolingbroke (2013); Bolingbroke and Peyton Jones (2010); Jonsson and
Nordlander (2008); Klyuchnikov (2010); Mitchell (2010); Mitchell and Runciman
(2008); Reich et al. (2010); Sørensen et al. (1996).

A number of themes emerge when considering supercompilation for verifica-
tion. (1) We can define properties about the semantic nature of components. (2)
The control flow of the program presents challenges in decomposing the prob-
lem for proof. (3) Proof of termination will be difficult given the constructs of
the program. (4) Some form of hybrid verification will probably be necessary.
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-- Instantiate an open term with a single heap pointer
· [• := ·] :: HP → Scope t → Exp t

-- Instantiate an open term with multiple heap pointers
· [•... := ·] :: [HP ]→ Scopes t → Maybe (Exp t)

-- Initial abstract machine state
initialState :: Exp t → State t

initialState x = 〈 (HP 0,Map.empty ) | x | [ ] 〉
-- Store on heap, allocating a fresh heap pointer
· [? 7→ ·] :: (IsRec ,Exp t)→ Heap t → (HP,Heap t)

(nxt, Γ) [? 7→ x ] = (nxt, (succ nxt,Map.insert nxt x Γ))

-- Lookup on the heap
lookup :: HP → Heap t → Maybe (IsRec ,Exp t)

lookup p ( , Γ) = Map.lookup p Γ

-- Check if a heap pointer is in use
isAllocated :: HP → Heap t → Bool

isAllocated p Γ = isJust (lookup p Γ)

-- Update the expression at a heap location.
· [· 7→ ·] :: HP → Exp t → Heap t → Heap t

(nxt, Γ) [p 7→ x ] = (nxt,Map.adjust (second $ const x) p Γ)

Figure 5.14: Auxiliary functions for the operational semantics.

75





6 C O M P I L E R V E R I F I C AT I O N T H R O U G H
P R O O F

This chapter surveys some of the literature in the field of compiler verification. We
discuss some of the seminal publications, highlight some of the techniques used to
structure compiler verification and consider some of the tools used to aid the verification
process. Our findings will inform the hybrid verification of a supercompiler.

6.1 the origins of compiler correctness

The earliest example of compiler verification is reported by McCarthy and
Painter (1967). In their seminal paper, they produce a hand proof of correctness
for a compiler that translates a simple source arithmetic language to instructions
for a register machine.

The source language only contains natural numbers, variables bound to
natural numbers and the binary addition operator. The target language has just
four instructions:

• LI n — Load immediate value into the accumulator.

• LOAD r — Load the value of register r into the accumulator.

• STO r — Store the value of the accumulator in register r .

• ADD r — Add the value of register r to the accumulator.

McCarthy and Painter encode the semantics of the two languages into a first-
order predicate logic. States for the source semantics (and the target semantics)
are defined as predicates over variables (or registers) containing natural number
values.

A compiler is also defined in terms of first-order predicate logic and, as an
argument, takes a function that maps variables bound in the source state to
registers initialised in the target state.

A relation of partial equality between states is defined. For states σ1 and σ2 and
a set, A, of variable names, the relation σ1 =A σ2 holds if ∀x ∈ A ·σ1(x) = σ2(x).
Using this condition, McCarthy and Painter construct a theorem for compiler
correctness, which is proved using induction over the source language and the
lemmas about register access, that they had previously defined.

The authors point out that it is trivial to extend the proof to handle a source
language that contains multiplication. However, constructs such as sequential
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composition, conditionals and jump statements would require “a complete
revision of the formalism” (McCarthy and Painter, 1967).

By modern standards, the proof appears verbose. It exposes a large amount
of the theory that is taken for granted in a modern logic for reasoning about
computer languages. Although the source language may not contain the
features required for it to be considered ‘useful’ in a software engineering
context, the McCarthy and Painter (1967) example posed a vital question and
laid the foundations for a field.

6.2 mechanised proof

By 1972, there was work investigating the use of proof assistants and mechan-
ised logics to prove correctness properties of compilers. Using LCF (Milner,
1972), an implementation of Scott’s Logic of Computable Functions, Milner and
Weyhrauch prove the example from McCarthy and Painter (1967) and begin to
demonstrate a machine checkable proof for an “ALGOL-like language with as-
signments, conditionals, whiles and compound statements” (Milner and Weyhrauch,
1972).

Milner and Weyhrauch (1972) cite the work of other researchers who have
either mechanised proofs for languages of about the same complexity as the
one used by McCarthy and Painter (1967) or else have accepted hand proofs of
correctness for ALGOL and LISP compilers. The contribution of Milner and
Weyhrauch (1972) involves combining the two goals of machine-checkable proof
and the correctness of a more substantial compiler. They also use a different
formulation of the constructs involved, based on the work of Lockwood Morris
(1973).

Instead of the first-order predicate logic used by McCarthy and Painter,
Milner and Weyhrauch used a definition of the semantics based in “the theory
of typed lambda calculus, augmented by a powerful induction rule”. The “meaning
of the program is a partial computable function from states to states” (Milner and
Weyhrauch, 1972), the denotational semantics for a language. Furthermore,
states themselves are represented as functions from names to values. Many
of the low-level laws that must be explicitly stated for programs declared in
first-order predicate calculus are implicit in typed lambda calculus, leading to
smaller, more manageable proofs.

The proof is summarised in Figure 6.1. S and T are the source and target
languages. MS and MT are the semantics of those languages expressed as
partial functions from states to states. Ŝ and T̂ are state functions, mapping
names to values. The compiler function, comp, takes source programs to target
code. The proof is that a retrieval function, SIMUL can be constructed to
complete the diagram.
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S
comp

> T

Ŝ

MS∨
<

SIMUL
T̂

MT∨

Figure 6.1: Commutative diagram from Milner and Weyhrauch (1972)

The paper demonstrates a complete, machine-checked proof of the McCarthy
and Painter compiler using a lambda calculus encoding. The further goal of
machine-checked proof for a compiler for an ALGOL-like language is left in-
complete, but Milner and Weyhrauch have “no significant doubt that the remainder
of the proof can be done on the machine.”

Although they remain uncommitted about the algebraic approach to their
proof, Milner and Weyhrauch (1972) are of the opinion that “for machine-checked
compiler proofs some way of structuring the proof is desirable”.

6.3 algebraic models

Milner and Weyhrauch acknowledge that their algebraic approach is inspired
by discussions with Lockwood Morris. He develops the details of this algebraic
method in the subsequently published paper, ‘Advice on structuring compilers
and proving them correct’ (Lockwood Morris, 1973).

The “essence” of the advice presented in the paper consists of the commuting
diagram, Figure 6.1. Although different notation is used, the diagram conveys
the same information.

However, Lockwood Morris explicitly discusses the algebraic interpretation
of the diagram’s components. The languages, S and T , and meanings, Ŝ and
T̂ , are described as “heterogeneous (universal) algebras,” much like algebraic data
types in modern languages. In particular, S and T are initial algebras, such that
there is a unique homomorphism to any other algebra.

The semantics MS and MT are mappings of respective languages to mean-
ings. The functions comp and SIMUL are mappings between languages and
between meanings, respectively. These, under the algebraic interpretation,
become homomorphisms.

For an example, we shall discuss a homomorphism between two data types.
Consider algebraic data types A and B. These each have one or more construct-
ors which may take any number of arguments. For example, C0 is a constructor
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in the A data type that takes (m, 0) arguments of type A. A homomorphism, φ
from A to B would (for all x and some y ) satisfy Equation 6.1.

φ(Cx (z0, z1, ..., z(m,x))) = Dy (φ(z0),φ(z1),φ(z(m,x))) (6.1)

The very definitions of MS, MT and comp in Morris’s examples show that
they are homomorphisms. Due to the initiality of the S and T languages, the
comp, MS and MT functions are unique homomorphisms. All that remains is to
show that encode is a homomorphism, where encode is the inverse of SIMUL.
Once this is confirmed, by the unique extension lemma, Equation 6.2 must be
true, as there is only one homomorphism from an initial algebra to any other.

encode ◦MS = MT ◦ comp (6.2)

The example compiler in Lockwood Morris (1973) compiles a small, ALGOL-
like language to a flowchart representation of a stack machine. However, the
proof is left incomplete.

Thatcher et al. (1980) reasons that the difficulty is largely the lack of algebraic
structure on the right-hand side of the commuting diagram. Their paper,
‘More on advice on structuring compilers and proving them correct’, extends the
Lockwood Morris (1973) work by enlarging the source language further and
by introducing a categorical representation of flowcharts over a stack machine
as the target language. Most importantly, Thatcher et al. (1980) complete the
proof, where Lockwood Morris (1973) could not, by the same unique extension
principle.

Thatcher et al. (1980) commend the “extremely powerful methodology” as “no
structural induction is required for the definition of the arrows or the proof.” However,
they admit that the proofs that encode is a homomorphism are “considerably
longer and more cumbersome than [...] expected.”

One wonders whether this is a problem with their representations, notation
or an issue with the general algebraic technique. Furthermore, does this imply
that the proofs will become intractable as larger languages are introduced?

6.4 decomposition of compilers

Meijer (1994) takes a different view of compiler correctness. Instead of building
a compiler and proving it correct, why not “improve a correct compiler?”

The denotational semantics of the source language, MS in Figure 6.1, can be
expressed as a functional program that takes a source program and produces
a function mapping source states to values. Can we decompose this function
to produce the other functions (comp, MT and SIMUL) in the commuting
diagrams?

Meijer (1994) demonstrates such a decomposition for a first-order imperative
source language being compiled to a three-address code register machine. He
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Figure 6.2: From Meijer (1994). Diagrams (a) and (b) represent the divided correct-
ness problem. (c) is the combination of these triangles to give the usual
correctness commutativity diagram.

appeals to the same algebraic concepts of Lockwood Morris (1973) and Thatcher
et al. (1980).

The commuting diagram is split as shown in Figure 6.2. Notable differences
from previous work include the explicit realisation of various homomorphisms
as catamorphisms, signified by the ‘banana brackets.’ Catamorphisms have been
referred to in the previous literature as unique homomorphisms but were functions
constructed to fit the homomorphic structure. Meijer (1994) instead produces
functions that can be expressed using a standard catamorphic operator, ensuring
their catamorphic (and homomorphic) properties. In this sense, we can think
of them as a generalisation of the functional fold operator (Meijer et al., 1991).

Meijer (1994) formally transforms the catamorphic form of the source se-
mantics into the other homomorphisms in the diagram. In this way, he succeeds
in producing a compiler that is correct with respect to the rest of the diagram.

This technique seems particularly suited to first-order languages. “[Things]
get notoriously hard when the domains themselves become recursive, especially when
function spaces are involved” (Meijer, 1994). So, this technique may not suitable
for proofs about dependable compilers for a higher-order functional language.

6.5 equivalent graphs

Lazy functional languages can benefit from concise definitions through high-
level abstractions. Programs in these languages are often compiled for graph-
reduction machines, of which the G-machine (Augustsson, 1984) is the most
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widely studied. In his thesis, Lester (1988) proves that compiling a lazy func-
tional language to a G-machine implementation is correct.

Lester (1988) defines the denotational semantics and the operational semantics
of the lazy functional language. The operational semantics are modelled as
G-machine reductions.

In terms of the previous commuting diagram (Figure 6.1), the denotational
semantics still represent the MS morphism. However, the operational semantics
represent the composition of MT and comp, with the target meanings, T̂ , at a
higher level of abstraction to the state machine specifications used in previous
work.

Interestingly, there is a return to the decoding of target meanings into source
meanings, rather than the inverse used by Lockwood Morris (1973), Thatcher
et al. (1980) and Meijer (1994). The reasons why a decoding (concrete to abstract
state) relation is used, rather than an encoding (abstract to concrete state)
relation is not documented. It may be because it is more natural to consider the
retrieval of a less-defined state from a more-defined one.

Lester (1988) begins with a proof for a small lazy functional language that
only accounts for programs that terminate under the source semantics. The
proof makes use of fixpoint induction over states and structural induction of
the abstract syntax representations of the source language. Similar techniques
are then used to extend the proof to include built-in functions, data structures
and some compiler optimisations.

6.6 functional abstractions

Mintchev (1995), as part of his thesis, develops a mechanised version of the hand
proof by Lester (1988), his supervisor. Proofs are developed in Isabelle/LCF
and then again in a theorem prover that is developed as part of the thesis.
Mintchev’s theorem prover operates on a subset of the Haskell language,
dubbed Core.

During the development of an Isabelle/LCF proof, an error was found in the
original hand proof by Lester (1988). This discovery highlights the benefits of
using proof assistants for checking theorem validity. However, the recursive
nature of the source language is highlighted as a source of difficulty for the
logic, requiring the proof of a highly technical domain theoretic lemma “taking
up 85% of over 2000 lines of definitions, axioms, theorems and tactics” (Mintchev,
1995).

Mintchev (1995) uses his own theorem prover to develop a proof for a
variation of the problem tackled in Lester (1988). The operational semantics are
for a spineless G-machine (Burn et al., 1988) as “it avoids unnecessary updates after
each reduction step” (Mintchev, 1995).
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Another distinctive aspect of Mintchev’s work is the use of monads, now
a common functional programming abstraction, to describe the “heap free
operational semantics.” Mintchev (1995) states that monads were originally used
as useful abstraction for defining the abstract machine but “paid off in the proof
of correctness.”

The thesis does not discuss facilities for checking the soundness of Mintchev’s
custom theorem prover. Without verifying the theorem prover itself, no guaran-
tees can be made that the proofs it produces are valid.

6.7 program extraction

One of the perceived advantages of the Mintchev (1995) theorem prover was
that it operated directly on program code, maintaining the direct link between
theorems and the executable object.

Berghofer and Strecker (2004) investigate using Isabelle/HOL to verify a
compiler for a simplified, Java-like language, µJava. In their approach, they
use Isabelle’s code extraction facility to produce an ML program.

In addition to verifying the semantic equivalence of compiled programs, they
also prove a number of other compiler functions correct such as type-checking
and pretty printing. The result that the program is well-typed is a necessary
precondition for the correctness of code translation.

Berghofer and Strecker do not say much about how they structure the com-
piler to aid the verification process. Instead, they focus on the correctness
conditions that are verified and the preconditions that these depend on.

Berghofer and Strecker (2004) do question the dependability of the Isabelle
code extraction facility as it is “a complex piece of code and thus prone to errors.”
There is little literature on what guarantees have been developed about the
correctness of Isabelle code extraction since 2004.

6.8 practical compilers

Leroy (2009) represents a monumental achievement in the field of compiler
verification, the result of two man-years of effort. The artefact produced is
a mechanically verified compiler implementation which translates a C-like
language, Cminor, to PowerPC assembly code.

The compiler is developed and proved correct using the Coq proof assistant.
Similar to Berghofer and Strecker (2004), a code extraction tool processes the
theorems to produce an executable Caml program. Unlike the Isabelle/HOL
extraction facility (circa 2004), the Coq code extractor appears to be held in
higher esteem (Letouzey, 2008). Even so, Leroy (2009) indicates that one of their
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research aims is to investigate the “feasibility of formally verifying Coq’s extraction
mechanism and a compiler from Mini-ML to Cminor.”

The correctness condition used by Leroy (2009) is as follows. For all source
programs, if compilation completes successfully and the source program evalu-
ates to a non-error value, then the compiled program should evaluate to the
same value. This condition is valid for the compiler that fails for all input. Leroy
(2009) states that “whether the compiler succeeds to compile the source programs
of interest is not a correctness issue, but a quality of implementation issue, which is
addressed by non-formal methods such as testing.”

An essential lemma is that if any two compilers are verified, then their
composition is also verified. This enables the process of developing a verified
compiler to be split into several independent proof efforts, which can easily be
composed to form a proof for an entire compiler.

One highlighted area of weakness is “do the formal semantics of Cminor and PPC,
along with the underlying memory model, capture the intended behaviours” (Leroy,
2009)? As languages of increasing complexity are verified, it may be more
difficult to maintain confidence in the initial specifications. Possible solutions
include: (a) ensuring that the language specification remains small enough that
it can be checked successfully, (b) using a variety of semantic representations
simultaneously and checking for inconsistency, or (c) generating the lower-level
virtual or hardware machines from semantic specifications.

The only other concern that Leroy (2009) raises is that the Coq logic or
implementation might not be sound. This is highly unlikely as the kernel
of Coq has been kept intentionally small. Furthermore, “proofs mechanically
checked ... are orders of magnitude more trustworthy than even carefully hand-checked
mathematical proofs” (Leroy, 2009).

6.9 supercompiler correctness

Some components of supercompilation correctness are founded in other math-
ematical proofs. For example, the proof that driving must terminate under
homeomorphic embedding is derived from Kruskall’s Tree Theorem (Kruskal,
1960).

A number of hand-proofs of correctness have been produced for entire
supercompiler designs. According to Klyuchnikov (2010), prior to his own
verification of the HSOC supercompiler, Sørensen et al. (1996) and Jonsson
and Nordlander (2008) had published proofs of correctness for their respective
supercompilers.

However, none of these proofs has been mechanised. Correspondingly, no
automatically generated implementation has been produced. It is uncertain
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how easily the manual proofs could be machine checked as, in many places
there is appeal without proof to informally stated lemmas.

Krustev (2010) discusses “a simple supercompiler formally verified in Coq.” The
abstract highlights particular features that made the verification possible. “First,
a very limited object language; second, decomposing the supercompilation process into
many sub-transformations, whose correctness can be checked independently” (Krustev,
2010).

In a recent publication, Krustev (2013) builds on this result to introduce a
“a language-agnostic framework for building verified supercompilers,” also defined
in Coq. The model presented in Chapter 7 of this thesis was developed inde-
pendently at around the same time. The two models share key characteristics:
the decomposition of supercompilation into individually verifiable components
and the use of language-independence as a simplifying assumption.

6.10 summary

Since McCarthy and Painter (1967), the formal verification of compilers has
been an active topic due to its impact on the dependability of other compiled
software. This survey only accounts for a sample of the available literature
on the topic of formal reasoning about compilers. The aim has been to focus
on research that uses algebraic abstractions to structure proofs or that uses
mechanised tools to produce dependable compiler software.

Proof assistants not only help to ensure that a proof is sound. They are
essential in managing the complexity of larger language specifications and
more advanced compiler designs (Krustev, 2010, 2013; Milner and Weyhrauch,
1972; Mintchev, 1995). Furthermore, many modern proof assistants provide
mechanisms for extracting executable programs from theorems, increasing
confidence that the resulting software is a valid implementation of the formal
specification (Berghofer and Strecker, 2004; Leroy, 2009).

Induction over source language or states is a common proof method (Lester,
1988; McCarthy and Painter, 1967). Alternatively, mathematical abstractions,
such as initial algebras and unique homomorphisms, are used to reduce the
proof by appealing to existing theorems (Lockwood Morris, 1973; Thatcher
et al., 1980).

Meijer (1994) suggested using these abstractions to transform the source
semantics into the necessary compiler. The proof would be apparent from the
formal transformation process. This technique appears not to have been widely
adopted due to the difficulty in applying it to higher-order languages.

Some hand-proofs have been completed for certain supercompiler designs
(Jonsson and Nordlander, 2008; Klyuchnikov, 2010; Sørensen et al., 1996). Mech-
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anised proofs exist for simple and abstract supercompilers (Krustev, 2010, 2013)
but as of yet there is no complete mechanised proof of a supercompiler.

It is clear that proofs about compilers, whether by hand or with mechanisa-
tion, are costly to produce. It is unclear how proofs can be reused, and there is
little discussion of how they could be performed incrementally, to fit in with an
engineering process.
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7 P R O O F O F A N A B ST R A C T
S U P E R C O M P I L E R

This chapter presents an encoding of an abstract supercompiler in Agda, a dependently-
typed language. The key area of abstraction is over what source language is used. The
abstract supercompiler provides a framework for modular proofs of correctness and will
be incorporated into a hybrid verification model.

7.1 introduction

Before verifying a particular supercompiler implementation, it is useful to distill
the essence of what a supercompiler is and what it means for one to be correct.
For this purpose, we shall define an abstract supercompiler in Agda (Norell, 2009),
a dependently-typed programming language, encoding correctness properties
as types and correctness proofs as values inhabiting those types.

The abstract supercompiler does not define a particular language syntax or
semantics. Neither does it define a particular termination condition. Instead,
it presents interfaces for these particular artefacts and exposes the minimal
properties that should hold over them for a supercompiler that maintains
semantic correctness.

Section 7.2 gives a brief overview of Agda’s syntax and functionality, discuss-
ing how to encode properties and proofs in Agda’s type system. Section 7.3
begins our exploration of an abstract supercompiler by characterising the types
involved in an operational semantics. Section 7.4 encodes the concept of se-
mantics preserving functions and demonstrates how such functions may be com-
posed. Section 7.5 uses these constructs to describe a correct-by-construction
supercompiler. Section 7.6 briefly discusses some issues with Agda’s code
extraction mechanism, MAlonzo, and motivates the approach that is taken in
Chapter 8.

7.2 a whirlwind introduction to agda

Agda (Norell, 2009) has a very similar syntax to Haskell, our usual host lan-
guage, while permitting the expression of a wider range of properties than
Haskell’s type system. Critically, as a dependently-typed language, type specifica-
tions can depend on the values. We shall illustrate Agda’s syntax and capability
by example.
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module Whirlwind where
infixr 5 _::_ _++_
data List (α : Set) : Set where
[] : List α
_::_ : (x : α) (xs : List α)→ List α

_++_ : ∀∀∀ {α} → List α→ List α→ List α
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

map : ∀∀∀ {α β} → (α→ β)→ List α→ List β
map f [] = []
map f (x :: xs) = f x :: map f xs

_◦_ : ∀∀∀ {α β γ : Set} → (β → γ)→ (α→ β)→ (α→ γ)

(f ◦ g) x = f (g x)

Figure 7.1: Functional programming in Agda.

7.2.1 Functional programming

Figure 7.1 shows some basic functional programming concepts defined using
Agda. This fragment defines a list data type, a concatenation operator, a list
map function and a functional composition operator.

We declare a new module called Whirlwind in which we make our tutorial
definitions. List α is an algebraic data type representing a polymorphic list data
structure, equivalent to the list data type in Haskell. Notice that in Agda, the
polymorphic parameter α and List α are both members of type Set. In Haskell
2010, data types belong to the kind ∗, where kinds are distinct from types.

The infix declaration should be familiar to Haskell users but Agda’s parser
also permits arbitrary mixfix operators, composed of any unreserved unicode
characters. Therefore, one declares the fixity of an operator by using under-
scores to denote argument positions.

In Haskell 2010, type variables are implicitly declared and are implicitly
bound by type-inference. In Agda all type variables must be explicitly declared
although many may be implicitly bound by type-inference. These implicit
parameters are declared by setting them in curly braces. Notice that no type
signature is required for the implicit parameters in _++_ and map as the types
can be inferred from use. In contrast, a type signature must be supplied for the
implicit parameters in the composition, _◦_.
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module Whirlwind where ...
infix 4 _≡_
-- Propositional equality.

data _≡_ {α : Set} (x : α) : α→ Set where
refl : x ≡ x

-- Congruence under propositional equality.
cong : ∀∀∀ {α β} (f : α→ β) {x y} → x ≡ y→ f x ≡ f y
cong f refl = refl

-- The map fusion theorem.
thm-mapfusion : ∀∀∀ {α β γ} (f : β → γ) (g : α→ β)→

∀∀∀ xs→ map f (map g xs) ≡ map (f ◦ g) xs
thm-mapfusion f g [] = refl
thm-mapfusion f g (x :: xs) = cong (_::_ (f (g x)))

(thm-mapfusion f g xs)

Figure 7.2: Propositional equality and proofs on Lists.

7.2.2 Simple proofs

Thus far, Agda provides much the same functionality as Haskell 2010. Figure 7.2
introduces some of Agda’s power beyond that of Haskell.

The data type _≡_ is known as propositonal equality. We may read it as follows.
There exists a data type x ≡ y, where x and y both belong to an implicitly bound
data type α. The only construction within this data type is refl, which is the
definition of reflexivity. That is, y must be exactly x.

From propositional equality, we can derive the congruence lemma, cong.
Reading the type signature from left-to-right, for all data types α and β and
functions f from α to β, if x is equal to y, then f x is equal to f y.

Using the congruence lemma, we can prove the map fusion theorem (Wadler,
1981). This theorem states that mapping function f over the result of mapping
function g over a list is equivalent to mapping the composition, f ◦ g, over the
same list.

The proof is by induction over the list. In the base case, the results of both
sides of the equality evaluate to [ ], so the proof is by reflexivity of equality. In
the inductive case, the equality normalises to:

f (g x) :: map f (map g xs) ≡ f (g x) :: map (f ◦ g) xs

The congruence lemma can meet this proof obligation. We apply the function
_::_ (f (g x)) to both sides of the result of inductively/recursively applying the
proof/function to the tail of the list.
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module Whirlwind where ...
open import Coinduction using (∞; ]_; [)

-- The CoNaturals.
data CoNat : Set where
zero : CoNat
succ : (n : ∞ CoNat)→ CoNat

-- The lowest transfinite ordinal number in the CoNaturals.
ω : CoNat
ω = succ (] ω)

-- CoNatural equivalence relation.
data _≈_ : CoNat→ CoNat→ Set where
zero : zero ≈ zero
succ : ∀∀∀ {m n} → (m≈n : ∞ ([ m ≈ [ n))→ succ m ≈ succ n

thm-onemore : ω ≈ succ (] ω)
thm-onemore = succ (] lem-n≈n ω)
where

lem-n≈n : ∀∀∀ n→ n ≈ n
lem-n≈n zero = zero
lem-n≈n (succ n) = succ (] (lem-n≈n ([ n)))

Figure 7.3: Proofs on coinductive data types.

Proofs are possible in Agda because it appeals to the Curry-Howard correspond-
ence (Curry and Feys, 1958; Howard, 1980). In a constructive logic, propositions
can be considered as types and proofs can be considered values occupying
those proposition-types. Inductive proofs over inductive data types become
recursive proofs. Theorem proving is just functional programming!

7.2.3 Coinduction and guarded corecursion

Totality of functions is necessary for these proofs to be sound. Agda therefore
requires all functions that perform case-distinctions to include clauses for all
possible constructions. All recursive functions descend explicitly to a construc-
tion argument. A mechanism known as coinduction is used to express functions
that do not naturally fit these constraints. Example definitions for describing a
coinductive data type can be found in Figure 7.3.

We import several primitives from Agda’s standard library. Note that, unlike
Haskell, imports may be declared at any point of a module, not just the
beginning.

One can view the∞ primitive as a special purpose data type where∞ α has
only one construction, ] x , where x is of type α. However, the effect of ] is that
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it introduces laziness at this point of the data structure. It leaves the argument
unevaluated and unnormalised until it is forced by the [ primitive. Using∞,
] and [ we can represent infinite data types in Agda and use them to describe
proofs about infinite computations.

For example, consider the data structure CoNat, described in Figure 7.3.
It is an implementation of the series of natural numbers. The argument of
the successor function is non-strict. We can therefore implement a transfinite
number, such as ω, because the recursive call will not be normalised unless a [ is
applied.

We can perform proofs on this structure. The equivalence relation _≈_ is
satisfied by conatural numbers that are the same. The succ construction of
the relation is interesting for two reasons. (1) The m≈n argument is itself
coinductive and (2) it shares the name of the second construction of CoNat.
Agda permits constructions in different data types to share names as the
intended construction can be inferred from the type context.

Using the _≈_ data type, we can prove the theorem thm-onemore that the
successor to ω is an equivalent number. If we peel off the first succ of each side
of the equivalence, then what remains is ω ≈ ω. This can be proved with a
lemma demonstrating the reflexivity of the conatural equivalence relation.

7.2.4 Logical constructs

So far, we have seen universal quantification but few other logical constructs.
In this subsection and Figure 7.4, we introduce a few more.

Existentials in Agda are represented through a dependent product. We imple-
ment this using an Agda record type, a data type with precisely one construction.
We may read the declaration of ∃ as follows. Given some data type α and
predicate on α values, we must be able to construct some value of α and prove
the predicate for that value.

Shorthand functions are provided for constructing — _, _ — and accessing the
arguments of — proj1 and proj2 — the values of this data type. This dependent
product type is also a generalisation of a traditional product type, as shown by
the definition of _× _. Record types can also be viewed as a module and we
can expose the field accessors using the open keyword.

In Agda, we represent falseness through absurdity. The data type ⊥ has no
constructions. Negation of a proposition, ¬, is the implication that the ability to
construct it would result in the unconstructable absurdity.

A data type Dec represents decidable propositions. A yes-proof shows
directly that p belongs to the set P of true propositions. A no-proof shows that
if p were constructable, it would be absurd.
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module Whirlwind where ...
infixr 4 _,_
-- Existential quantification.

record ∃∃∃ {α : Set} (P : α→ Set) : Set where
constructor _,_
field

proj1 : α
proj2 : P proj1

open ∃∃∃

infixr 2 _×_
-- Pair or logical cojunction.

_×_ : Set→ Set→ Set
α × β = ∃∃∃ {α} (λ → β)

-- Empty or “absurd" set, representing false.
data ⊥ : Set where

-- No constructions for ⊥

-- Negation is absurdity.
¬ : Set→ Set
¬ P = P→ ⊥

-- Decidability of a proposition.
data Dec (P : Set) : Set where
yes : (p : P) → Dec P
no : (¬p : ¬ P)→ Dec P

Figure 7.4: Some logical constructions in Agda.
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module Whirlwind where ...
module WithSetoid where
postulate

-- Assume some set.
α : Set
-- Assume there is decidable equaility for that set.

_≡?_ : (x y : α)→ Dec (x ≡ y)

-- Proof of the injectivity of _::_.
lem-consinj : ∀∀∀ {α} {x y : α} {xs} {ys} →

(x :: xs ≡ y :: ys)→ (x ≡ y × xs ≡ ys)
lem-consinj refl = (refl , refl)

-- Tests if a list is a prefix of another. Correct-by-construction.
isPrefix : (xs zs : List α)→ Dec (∃∃∃ λ ys→ xs ++ ys ≡ zs)
isPrefix [] zs = yes (zs , refl)
isPrefix (x :: xs) [] = no (λ {(ys , ())})
isPrefix (x :: xs) (z :: zs) with x ≡? z | isPrefix xs zs
isPrefix (x :: xs) (.x :: zs) | yes refl | yes (ys , sound)
= yes (ys , cong (_::_ x) sound)

isPrefix (x :: xs) (z :: zs) | no x6≡z |
= no (λ {(ys , sound)→ x 6≡z (proj1 (lem-consinj sound))})

isPrefix (x :: xs) (z :: zs) | | no ¬sound
= no (λ {(ys , sound)→ ¬sound (ys , proj2 (lem-consinj sound))})

Figure 7.5: A correct-by-construction implementation of isPrefix.

7.2.5 Correctness-by-construction

Figure 7.5 uses these logical constructs define a correct-by-construction imple-
mentation of a list prefix test. This principle of correctness-by-construction
through the inhabiting of properties-as-types is how we intend to approach
verifying the abstract supercompiler.

First, we declare a nested module called WithSetoid. Within its scope, we
assume, or postulate, the existence of a data type α and a decidable equivalence
function over it. Once we prove the trivial lemma that the _::_ construction is
injective, we can define the isPrefix function.

Reading the type signature, isPrefix takes two lists xs and zs and decides if it
is the case that there exists another list ys such that if we were to concatenate it
to xs, we would get zs.

We define the correct-by-construction function isPrefix as follows:

• First we consider the case where xs is empty. An empty list is the prefix of
any list and therefore the proposition holds, trivially. The suffix required
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by the existential is precisely zs and both sizes of the equality normalise
to zs so the proof is reflexivity.

• The second case is where xs is non-empty but zs is empty. There is
nothing that we could concatenate onto a non-empty list to make it
empty. Therefore, the decision is no with the proof that any value of ys
immediately results in unconstructable absurdity.

• When xs and zs are both non-empty, we decide if their heads are equival-
ent. We also recursively call the isPrefix correct-by-construction function
on the tails.

– If the heads are equivalent and the tails form a prefix then this is a
prefix. The suffix is ys, the suffix for the tails. We extend the proof
using the congruence lemma from Section 7.2.2. Notice that the head
of both lists is now x as a result of the equivalence proof-construction.

– If the heads are not equivalent, then the function decided no. We
show that for any suffix ys, the heads would have to be equivalent
for the isPrefix correctness property to hold. This results in absurdity
through contradiction.

– If isPrefix on the tails of xs and zs decides no, then isPrefix xs zs must
also decide no. We show that for any suffix ys, if isPrefix (x :: xs) (z ::
zs) were to decide yes , then the isPrefix xs zs must necessarily decide
yes . This results in absurdity through contradiction.

Thus, isPrefix xs zs not only decides whether a list xs is a prefix of zs but
also (a) if xs is a prefix of zs , returns a suffix ys and a proof that xs ++ ys ≡ zs

and (b) if xs is not a prefix of zs , returns a proof that if there existed a ys such
that xs ++ ys ≡ zs , then absurdity through a contradiction would occur. These
properties are all expressed by the type signature of the isPrefix function and
checked by the type-checker. The definition is correct-by-construction.
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open import Data.Sum using (_]_)

postulate
Syntax : Set
State : Set
initState : Syntax→ State
Value : Set
step : State → Value ] State

Figure 7.6: Abstract definitions for language syntax and semantics.

open import Category.Monad.Partiality using (_⊥; now; later)
open import Coinduction using (]_)
open import Data.Sum using (inj1; inj2)

run : State→ Value ⊥
run s with step s
... | inj1 v = now v
... | inj2 s’ = later (] run s’)

Figure 7.7: Small step to big step semantics.

7.3 source language and evaluable types

A supercompiler consumes and produces abstract syntax trees. In our abstract
model, let us assume (or postulate) the existence of some data type representing
abstract syntax trees, as in Figure 7.6.

The programming language has an operational semantics represented by the
step function. The abstract machine operates on intermediate states and each
operational step will either return another step or a final value.

In Figure 7.7, we corecursively define a function that fully evaluates an
abstract machine state. The partiality monad (Danielsson, 2012) encapsulates
functions that take an indeterminate number of reductions to complete. One
benefit of this construction is that it can be used to compare the number of
reductions between two different functions, as we shall discuss in Section 7.4.

The Syntax and State data types can both be evaluated to a Value. We define
a set of evaluable types in Figure 7.8, representing each of them as a record
type. The first field, defines the type in question. The second, eval, holds the
canonical evaluation function for this type. A Value is already evaluated so the
evaluation function just states that the result is available immediately. A State
is evaluated using the run function. Syntax trees are transformed into initial
states before they are run.
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open import Function using (_◦_)

record Evaluable : Set1 where
constructor 〈_|_〉e
field
typee : Set
evale : typee → Value ⊥

open Evaluable

Valuee : Evaluable
Valuee = 〈 Value | now 〉e
Statee : Evaluable
Statee = 〈 State | run 〉e
Syntaxe : Evaluable
Syntaxe = 〈 Syntax | run ◦ initState 〉e

Figure 7.8: The definition of evaluable types.

7.4 verified functions

The correctness of a supercompiler is defined by a relationship between the
results of evaluating the input programs and the output programs. This
relationship could be an equivalence such as “input and output must evaluate
to the same value” or an ordering such as “output must evaluate with no more
reductions than the input.” Taking a minimal definition, let us assume some
refinement relation (Back, 1988; Dijkstra, 1972) between evaluations to Value
types. The refinement must be a preordering — reflexive and transitive. We
postulate its existence in Figure 7.9.

Given this correctness relation, we define verified functions over evaluable
types for which the relation holds. These are represented by the _y_ record
type, parametrised by Evaluable types representing function inputs and outputs.
The first field holds the plain Agda function. The second holds the proof
that this function’s inputs and outputs are related. The full-stop prefix for
the second field marks it as computationally irrelevant — the value of this field
is not used beyond the type-checker. It is useful for reducing type-checking
complexity and could potentially simplify code extraction (Cruz-Filipe and
Spitters, 2003).

In Figure 7.10 we define the verified functional identity and composition,
exploiting the reflexive and transitive properties of the correctness relation.

It will be useful to extend our notion of evaluable data types to include sums
of evaluable types, as in Figure 7.11. A selection function, [_, _]v , can be used to
choose a verified function based on the input sum.
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postulate
-- Refinement partial ordering on partial values.

_C_ : Value ⊥ → Value ⊥ → Set
-- Refinement is reflexive.

C-refl : ∀∀∀ x→ x C x
-- Refinment is transitive.

C-trans : ∀∀∀ {x y z} (xCy : x C y) (yCz : y C z)→ x C z

-- Verified functions, those that preserve refinement of values.
infix 0 _y_
record _y_ (α β : Evaluable) : Set where
constructor _IsVerifiedBy_

field
funcv : typee α→ typee β
.Cprfv : ∀∀∀ (x : typee α)→ evale α x C evale β (funcv x)

Figure 7.9: Refinement relation and verified functions.

id : ∀∀∀ {α : Set} → α→ α

id x = x

idv : ∀∀∀ {α} → αy α

idv {α} = id IsVerifiedBy (C-refl ◦ evale α)

infixr 10 _#_ _#v_
_#_ : ∀∀∀ {α β γ : Set} → (α→ β)→ (β → γ)→ (α→ γ)

f # g = g ◦ f

_#v_ : ∀∀∀ {α β γ : Evaluable} → (αy β)→ (β y γ)→ (αy γ)

(f IsVerifiedBy p) #v (g IsVerifiedBy q)
= (f # g) IsVerifiedBy (λ x→ C-trans (p x) (q ))

Figure 7.10: Identity and composition for verified functions.

open import Data.Sum using ([_,_]; [_,_]′)

infixr 1 _]e_
-- Sums of evaluable types.

_]e_ : Evaluable→ Evaluable→ Evaluable
〈 α | evalα 〉e ]e 〈 β | evalβ 〉e = 〈 α ] β | [ evalα , evalβ ]′ 〉e
-- Selecting an verified function by input sum.

[_,_]v : ∀∀∀ {α β γ} → (αy γ)→ (β y γ)→ ((α ]e β)y γ)

[ f IsVerifiedBy p , g IsVerifiedBy q ]v = [ f , g ]′ IsVerifiedBy [ p , q ]

Figure 7.11: Evaluable sums of evaluable types.
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open import Relation.Binary.PropositionalEquality using (_≡_; refl)

-- Verified functions, proved by simple reflexivity.
trivialv : ∀∀∀ {α β : Evaluable} → (f : typee α→ typee β)

→ (prf : (evale β ◦ f) ≡ evale α)→ αy β

trivialv {〈 | ◦ (eval ◦ f) 〉e } {〈 | eval 〉e } f refl
= f IsVerifiedBy (C-refl ◦ eval ◦ f)

exposev : ∀∀∀ {α β : Evaluable} → (typee α→ αy β)→ αy β

exposev f = (λ x→ funcv (f x) x) IsVerifiedBy (λ x→ Cprfv (f x) x)

Figure 7.12: Further verified function combinators.

Several other functions may be written to aid the definition of verified
functions. The tr iv ialv function, defined in Figure 7.12, uses a simple proof of
reflexivity to show that a function respects the required condition. The exposev
function uses the verified function input to construct or select a verified function
to operate on that input. In effect, it shows that we can determine control flow
on the input without breaking the refinement relation. These verified function
combinators are used to construct the abstract supercompiler.

7.5 the abstract supercompiler

In Chapter 5, the supercompiler was decomposed into four components: (1)
A normaliser that reduces terms. (2) A terminator that ensures normalisation
stops. (3) A splitter that produces smaller terms for further supercompilation.
(4) A memoiser that reuses the results of supercompiling equivalent terms.

The abstract supercompiler here follows the same model. It implements those
operations for which appropriate information is available and exposes verified
interfaces where definitions are omitted.

7.5.1 Normalisation

Normalisation (Section 5.3.1) is the process of applying the step function until
a normal form is reached. Therefore, to write the verified simplification function,
the step function must be shown to preserve the relation.

In Figure 7.13, the simulation preorder relation over values wrapped in the
partiality monad is imported from Agda’s standard library. We require an
additional assumption, postulated as C-Respects-&, that if the simulation
relation holds, it must be the case that the refinement relation holds.

Given these properties, we can construct the verified step function, stepv .
The proof, prfStep is as follows. For any state s :
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open import Category.Monad.Partiality
using (module Equality;module Equivalence)

open Equality {A = Value} (_≡_) using (_&_; now; laterl)
module & = Equivalence

postulate
C-Respects-& : ∀∀∀ {x y} → x & y→ x C y

stepv : Statee y Valuee ]e Statee
stepv = step IsVerifiedBy (C-Respects-& ◦ prfStep)
where
prfStep : ∀∀∀ s→ run s & [ now , run ]′ (step s)
prfStep s with step s
... | inj1 v = now refl
... | inj2 s’ = laterl (&.refl refl)

Figure 7.13: A verified version of the step function.

open import Data.Bool using (Bool; if_then_else_)

postulate
isNormal : State→ Bool

abstract
{-# NO_TERMINATION_CHECK #-}
normalisev : Statee y Valuee ]e Statee
normalisev = stepv #v

[ trivialv inj1 refl
, exposev (λ x→ if isNormal x then trivialv inj2 refl

else normalisev ) ]v

Figure 7.14: An abstract normaliser.

• If the next step, step s , results in it halting with value v , run s would
return the same value.

• If the next step, step s , results in another intermediate state, s ′, run s

would return the same value as run s ′ allowing for one additional reduc-
tion.

In Figure 7.14 we assume the existence of a function, isNormal , that decides
if a state is in normal form. Using isNormal , the verified step function, stepv ,
and the combinators introduced in Section 7.4, we can define normal isev — the
verified normalisation function. No additional verification work is required as
it is solely constructed from other verified functions.
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open import Data.Maybe using (Maybe;maybe)

postulate
TermHistory : Set
canContinue : TermHistory→ State→ Maybe TermHistory
emptyHistory : TermHistory

Figure 7.15: An abstract terminator.

7.5.2 Termination

The termination of the supercompilation algorithm is not being verified. There-
fore, the Agda termination checker must be disabled for the normal isev
function (defined in Figure 7.14) using the {-# NO_TERMINATION_CHECK #-}
pragma. The normalisation function may, indeed, not terminate depending on
the definition of isNormal . The function must be marked as abstract to prevent
possible non-termination of the Agda type-checker.

One must always be careful when disabling Agda’s termination checker.
As discussed in Section 7.2.3, totality is essential for proofs to be sound. A
function that never produces a value satisfies all property-types. However, for
the purposes of our model, it easier to prove outside of the Agda logic that
isNormal will eventually return true. Similarly, proofs outside of Agda will be
necessary for Figure 7.18.

Despite not including termination proofs in our abstract model, we must still
define the conditions under which driving (Section 5.3.5) terminates and splitting
begins. As discussed in Section 5.3.2, the choice of termination function differs
widely in supercompilation implementations. It is very dependent on the choice
of abstract syntax tree representation. However, as illustrated in Figure 7.15,
the key concepts are quite abstract. Given some record of the supercompilation
history, the termination component checks to see if the history can be extended
with a given state. If it can, it returns this new history. If not, it is a signal that
the termination condition has been triggered and normalisation must stop. The
empty history is assumed as the initial value for the algorithm.

The property that the termination condition must be triggered in a finite
number of steps is absent. A potential encoding would be that states form a
well-quasi-ordering under the termination condition. However, it is not clear
how to convey this information to Agda’s internal termination representation.
This issue will be discussed as further work in Section 9.5.
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postulate
BindingIn : Set
emptyBinding : BindingIn
BindingOut : Set

record BindingCtx (α : Set) : Set where
field
ctx : BindingOut
value : α

postulate
runBinding : BindingCtx Syntax→ State

BoundSyntaxe : Evaluable
BoundSyntaxe = 〈 BindingCtx Syntax | run ◦ runBinding 〉e
Phase = BindingIn→ Statee y BoundSyntaxe

postulate
finalBindingv : BoundSyntaxe y Syntaxe
memoisev : Phase→ Phase
residualisev : Phase→ Phase

Figure 7.16: An abstract memoiser.

7.5.3 Memoisation

The supercompiler must store and reuse results, not only for execution time
performance but also to ensure that the supercompiler terminates for recurs-
ive languages. This requirement for memoisation was discussed in detail in
Section 5.3.3.

Definitions for memoisation in the abstract supercompiler can be found in
Figure 7.16. A binding context holds information about shared supercompilation
results. The runBinding function takes partial syntax tree wrapped in a binding
context and produces a complete syntax tree. An expression contained in a
binding context can also be viewed as an evaluable data type.

The memoisev higher-order function will either (a) detect that the input
state has been processed before and return a reference to that result in the
binding context, or (b) process the state with the functional argument. Another
function, residual isev , extends the BindingIn binding information with a fresh
binder for a new chain of normalisations.
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postulate
Split : Set
runSplit : Split→ State

Splite : Evaluable
Splite = 〈 Split | run ◦ runSplit 〉e
postulate
splitv : Statee y Splite
applySubtermsv : (Statee y BoundSyntaxe)→ (Splite y BoundSyntaxe)

Figure 7.17: An abstract splitter.

7.5.4 Splitting

The final component of our abstract supercompiler splits a normal-form term
into a number of smaller terms so that supercompilation can continue. In the
reference implementation given in Section 5.3.3, the split function produced
a number of smaller states and a method of recombining the results of their
supercompilation into an expression.

Figure 7.17 defines a data structure Split for the results of splitting. Its precise
definition construction is left abstract. Instead, the splitv verified function
splits the normal-form state as a Split value and the applySubterms combinator
applies a verified supercompiler function to each subterm in a split before
recombining the results with the context.

The runSplit function is used to define Spl ite , the type for Split . It provides a
semantics for the split data type by converting them back into states. See the
instantiation of this signature in Section 8.5 for more detail.

7.5.5 Overall control algorithm

The definitions in Figure 7.18 complete the abstract model, combining the
components to achieve the supercompiler process. We assume finalStatev , a
verified function that describes how to turn semantic values into equivalent
abstract machine states.

The rest of the control algorithm essentially follows Section 5.3.5. States are
normalised in the drive phase until a termination condition is reached. They are
then split into further states in the tie phase. Results are memoised to preserve
sharing and global termination. Once again, the Agda termination checker is
overridden because there is not encoding of a proof that this algorithm must
terminate that satisfies Agda’s termination checker.
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postulate
finalStatev : Valuee y Statee

{-# NO_TERMINATION_CHECK #-}
mutual

drive : TermHistory→ Phase
drive hist = memoisev (drive’ hist)

drive’ : TermHistory→ Phase
drive’ hist binfo = normalisev #v ([ (finalStatev #v tie hist binfo) ,
exposev (λ s→ maybe drive (tie hist) (canContinue hist s) binfo) ]v )

tie : TermHistory→ Phase
tie hist binfo = splitv #v applySubtermsv (residualisev (drive hist) binfo)

supercompile : Syntaxe y Syntaxe
supercompile = trivialv initState refl #v

residualisev (drive emptyHistory) emptyBinding #v
finalBindingv

Figure 7.18: An abstract supercompiler.

7.6 code extraction

It is possible to extract a Haskell program from an Agda source using the
MAlonzo compiler. However, as discussed by Fredriksson and Gustafsson
(2011), it is not a perfect solution.

“Agda’s type system is more expressible [sic.] than Haskell’s. The backend
has to insert coercions around the result of all function calls and all function
arguments to make the program pass the type checker.” (Fredriksson
and Gustafsson, 2011)

This need for frequent explicit coercions impacts performance as many Haskell
compiler optimisations are dependent on type information.

Consider the example of a character counting program. Figure 7.19 contains
a naive Haskell solution and an Agda equivalent. The programs are very sim-
ilar, discounting some additional Agda functions to perform type-conversions
between Agda lists, strings and costrings.

However, the Haskell output from compiling the Agda variant looks nothing
like the program consisting of 70 characters in Figure 7.19. The extracted
Haskell contains 4,473 characters, mostly type-coercions, and this excludes all
the library functions that are compiled into separate Haskell files. Executing
the Haskell solution (compiled by GHC) and the Agda solution (compiled
into Haskell and then by GHC) illustrates even more startling differences.
The Haskell solution counts over 35 million characters per second. The Agda

103



proof of an abstract supercompiler

-- Word-count in Haskell
main :: IO ()

main = readFile "file.txt">>= putStrLn ◦ show ◦ length

-- Word-count in Agda
main : IO Unit
main = readFiniteFile "file.txt" >>=

putStrLn ◦ toCostring ◦ show ◦ length ◦ toList

Figure 7.19: Character count program source in Haskell and Agda.

solution counts around 150 characters per second with files larger than a million
characters causing a stack overflow. Fredriksson and Gustafsson (2011) carefully
examine several other examples in their masters’ thesis.

We conclude that using the MAlonzo compiler is not a reasonable method of
producing an “effective” (using the Leroy sense of the word) verified supercom-
piler. However, the simplicity of our model does lend itself to being translated
by-hand into a Haskell implementation, as we shall do in the next chapter.

7.7 summary

We have developed a more abstract model of a supercompiler than the Chapter 5
reference implementation. It is encoded in Agda, a dependently-typed lan-
guage, so that we can incorporate correctness properties as types. The satisfac-
tion of these properties is mechanically verified by Agda’s type-checker.

The key areas of abstraction in this model over are; (1) the source language
(2) the refinement preordering and (3) the termination condition. However,
once an operational semantics and the isNormal function have been instantiated,
the normaliser component of the supercompiler is not only complete but also
verified for any definition of refinement!

The splitting and memoisation components of the supercompiler must be
instantiated separately. However, the key result of the proof in this chapter is
that they may also be verified independently, at the component-level. Through
verified functions, we express at the type-level that correctness properties for
particular functions must be fulfilled.

In Chapter 8, we shall reuse verified functions to integrate proof results from
this abstract model and further verification results from property-based testing.
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8 H Y B R I D V E R I F I C AT I O N O F A
S U P E R C O M P I L E R

This chapter combines our previous contributions to verify a working supercompiler
implementation. Using the verified abstract supercompiler from Chapter 7 as a founda-
tion, we expose verifiable interfaces to a Haskell implementation and instantiate it with
components from the supercompiler described in Chapter 5. We test the correctness of
the unproven components using the techniques from Chapters 3 and 4.

8.1 introduction

An abstract framework for defining verified supercompilers was introduced in
Chapter 7. It showed how individual components of a supercompiler, discussed
in Chapter 5, could be verified independently to give a proof of the entire
system.

The normalisation and termination components were shown to be semantics
preserving by definition for any instantiation of the framework. On the other
hand, the definition of the memoisation and splitting components crucially
depends on the particular source language.

Instantiating the abstract model with a specific language is difficult in Agda.
The type-checking process slows considerably as more definitions are added.
Even the extracted Haskell programs do not perform as well as equivalent
programs in other functional languages, as we discussed in Section 7.6. Fur-
thermore, verifying the final components using Agda-style proof is laborious
and would be difficult to maintain if changes are made to the language and
supercompiler implementation.

This chapter proposes the use of a hybrid verification model that combines the
existing verification results from Chapter 7 with the property-based testing
techniques discussed in Chapters 2 to 4. Our objective is to construct a
supercompiler with an associated verification program that tests the correctness
of unproven components. The verification program’s output may take the form:

$ ./Mock-Chapter8
* Assumed correctness of component_v1
* Semantic preservation over component_v2
Passed after n2 tests.
* Semantic preservation over component_v3
Failed with counterexample:
...
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Hybrid verification is achieved by translating the abstract Agda model into a
Haskell definition. In this way we benefit from lower compilation and execution
times from a more mature language implementation, GHC. Then we use the
new version of the Lazy SmallCheck library (described in Chapter 3) to test
properties and assumptions that are not already covered by the Agda proof. In
general, inline code listings are used for type-class specifications while code
listings in figures are used for implementation detail.

The key questions answered by this chapter are:

• How can the features of Haskell be exploited to represent missing Agda
functionality? (Sections 8.2 and 8.3)

• How can the Chapter 7 definition of verified functions be translated to
use property-based testing instead of properties-as-types? (Section 8.2)

• How can the canonical test programs generated in Chapter 4 be used to
produce test-data for our correctness properties? (Section 8.4)

• What changes, if any, are required to the supercompiler in Chapter 5 to
fit this hybrid verification model? (Section 8.5)

• What are the short-comings of our hybrid verification model and what
improvements may be made? (Sections 8.5 and 8.6)

Section 8.2 shows how evaluable types and verified functions are represented
in the Haskell implementation. Section 8.3 translates the Agda abstract super-
compiler into Haskell. Section 8.4 generically creates valid syntax trees, states,
splits and final values. Section 8.5 gives an instantiation of the abstract super-
compiler for our source functional language. Section 8.6 records the results and
lessons learned from applying our hybrid verification to the supercompiler.

8.2 hybrid verification model

In Chapter 7, we introduced the concepts of verified functions over evaluable types.
Signatures comprised of these type-constructions were presented as interfaces to
our abstract implementation. What follows is a translation of these concepts to
Haskell and a property-based testing verification paradigm. In general, Haskell
type-classes take the place of Agda postulates. Lazy SmallCheck properties
take the place of Agda properties-as-types.

8.2.1 Evaluable types

An evaluable type (Section 7.3) has an associated function for evaluating values
to some result. The expression of evaluable types in Haskell is very simple if we
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use a widely adopted language extension — type families (Schrijvers et al., 2008).
An instance Evaluable a defines both a result type Resulte a and an evaluation
function evale that takes values of type a to Resulte a.

class Evaluable a where

type Resulte a

evale :: a→ Resulte a

8.2.2 Verified functions

Verified functions, on the other hand, require a different representation in
Haskell compared to Agda. Verified functions over evaluable types (Sec-
tion 7.4) maintain some semantic relationship between their inputs and outputs.
Haskell’s type specifications cannot depend on values and, therefore, cannot
represent the Cpr f proof obligation. Instead, we shall use property-based
testing in place of the constructive proofs.

In the Agda model, the proof obligations are marked as computationally
irrelevant. This means that the proof values may be erased at runtime with
no loss of computational behaviour. We will trust any function verified in the
Agda model to satisfy the semantic correctness property when translated into
Haskell. The two language share very similar semantics and without a more
formal and trusted translation mechanism, such as the compiler described in
Section 7.6, it is necessary for us to use this assumption.

This leaves the case where a component requires further implementation
details. If we intend to verify these components using property-based testing,
we must consider three areas where it differs from mechanical proof:

1. Agda reports invalid proof-values by identifying them through their
property-types and line number in the source code. In Haskell property-
based testing, we must label our properties in such a way that they can
be identified when falsified.

2. A constructive proof may rely on recursion to share common proof-values
that are applied recursively/inductively. If we are not careful, using the
same approach will lead to an infinite set of properties to test.

3. In our Agda model in Chapter 7, not all function arguments are relevant
to the semantics preservation properties. These are passed in as non-
verified functional arguments, such as the TermHistory argument in the
definition of drive in Section 7.5.5. We must incorporate these arguments
into the Haskell implementation of verified functions so that they can be
instantiated with test-data.
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type Assumptions = Map AsmDesc (Maybe Property )

type AsmDesc = String

data Verified r a b where

IsVerified :: (r → a→ b) → Assumptions → Verified r a b

Comp :: Verified r b c → Verified r a b → Verified r a c

Merge :: Verified r a b → Verified r a′ b → Verified r (Either a a′) b

Either :: Verified r a b → Verified r ′ a b → Verified (Either r r ′) a b

Modify :: (r → a→ r ′) → Verified r ′ a b → Verified r a b

type r  a y b = Verified r a b

type a y b = Verified () a b

Figure 8.1: Verified functions in Haskell

Figure 8.1 shows our implementation of verified functions in Haskell taking
into account these concerns. Obligations, or Assumptions , are represented
as a map of descriptions to Lazy SmallCheck properties. The assumption
descriptions are labels to identify any falsified properties for the user.

The type Verified is ternary as opposed to the binary (y) in Chapter 7.
These allow for the functional arguments that do not impact the semantic
preservation properties. The unit type, (), may be used when verified functions
do not require an auxiliary argument. We provide a shorthand type synonym,
(y), for these occasions.

Our Haskell implementation reifies a subset of the primitive operations on
verified functions. This deep embedding allows us to use the technique described
by Gill (2009) to recover sharing and so detect recursive definitions — see
Section 8.2.4. The internals of a Verified data structure should, as far as possible,
be hidden from the framework user. The following subsections describe the
combinators for building verified functions such that properties are maintained.

8.2.3 Construction of verified functions

Two alternative methods for lifting Haskell functions into verified functions
are shown in Figure 8.2. If the function has already been shown to preserve
semantics through Agda proof, the trustMe combinator may be used. Alternat-
ively, testMe pairs the pure function with the runtime property that it preserves
the semantics of the input value. As an equivalence relation, it satisfies the re-
finement pre-ordering condition from Section 7.4. These two combinators reflect
the essence of the hybrid verification methodology, incorporating verification
attained through theorem proof and property-based testing respectively.
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-- Trust that a function preserves semantics.
trustMe :: String → (r → a→ b)→ (r  a y b)

trustMe str f = IsVerified f (Map.singleton str ′ Nothing)

where str ′ = "Assumed correctness of "++ str

-- Test that a function preserves semantics.
testMe :: (Evaluable a,Evaluable b,Serial r ,Serial a,Eq (Resulte a)

,Resulte a ∼ Resulte b)⇒ String → (r → a→ b)→ (r  a y b)

testMe str f = IsVerified f (Map.singleton str ′ (Just prop))

where str ′ = "Semantic preservation over "++ str

prop = forAll $ λr x → evale x ≡ evale (f r x)

Figure 8.2: Converting Haskell functions into verified functions

The trustMe combinator just stores an identifier with no property so that it is
reported but not checked when the program is verified. The testMe combinator
requires that the types of the inputs and outputs to the Haskell function are
Evaluable and the input types are Serial . The combinator constructs a Haskell
verified function that carries the obligation that input and output evaluate to
the same value. A slight modification will be made to testMe in Section 8.4 to
cope with some peculiarities of the method used to generate test-data.

Figure 8.21 (on page 126 at the end of this chapter) describes a collection
of combinators over verified functions. As with the Agda model, we can
implement standard function-like combinators such as identity and composi-
tion. Verified functions are also defined for evaluable sums and conditionals,
supported by proofs in the Agda model.

8.2.4 Extraction of implementations and obligations

A normal Haskell function can be extracted from a verified function by apply-
ing funcv , defined in Figure 8.3. It discards the assumptions of an IsVerified

construction and replaces the other reification constructions with appropriate
Haskell functions.

Figure 8.4 contains the definition of a function, depthCheckAssumptions that
uses Lazy SmallCheck to test the assumptions of a verified function up to
a defined depth. The Data.Reify library (Gill, 2009) is used to expose any
recursion in our definitions and ensure that the set of properties to be checked
can be computed in finite time. This is achieved by defining an instance of
MuRef (Verified r a b) that maps our recursive data-structure to explicit graphs
of nodes ArrowNode n, where n is the type of unique labels for each node. The
function component of the Verified data-structure is discarded and only the
Assumptions are retained.
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funcv :: (r  a y b)→ r → a→ b

funcv (IsVerified f ) r = f r

funcv (Comp f g) r = funcv f r ◦ funcv g r

funcv (Merge f g) r = either (funcv f r ) (funcv g r )

funcv (Either f g) r = either (funcv f ) (funcv g) r

funcv (Modify m f ) r = funcv f =<<m r

Figure 8.3: Extracting a Haskell function from a verified function.

-- Labelled-graph model of verified functions.
data ArrowNode r = ArrowNode Assumptions [r ]

-- Recovery of sharing using Gill’s (2009) technique.
instance MuRef (Verified r a b) where

type DeRef (Verified r a b) = ArrowNode

mapDeRef f (IsVerified ps)

= pure $ ArrowNode ps [ ]

mapDeRef f (Comp g h)

= ArrowNode Map.empty <$> sequenceA [f g, f h ]

mapDeRef f (Merge g h)

= ArrowNode Map.empty <$> sequenceA [f g, f h ]

mapDeRef f (Either g h)

= ArrowNode Map.empty <$> sequenceA [f g, f h ]

mapDeRef f (Modify g)

= ArrowNode Map.empty <$> sequenceA [f g ]

extractAssumptions :: (r  a y b)→ IO Assumptions

extractAssumptions f = do

Graph gr ← reifyGraph f

return $ Map.unions [ps | ( ,ArrowNode ps )← gr ]

-- Display and check testable assumptions in a verified function.
depthCheckAssumptions :: Int → (r  a y b)→ IO ()

depthCheckAssumptions d f = do

ps ← extractAssumptions f

sequence_ [do putStrLn ("* "++ str )

when (isJust p) $ depthCheck d (fromJust p)

| (str , p)← Map.toList ps ]

Figure 8.4: Testing assumptions of verified functions
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8.3 an abstract supercompiler in haskell

Now we can translate the abstract supercompiler from Chapter 7 into Haskell.
Once again, we shall use Haskell’s type-classes extended with type families in
place of Agda’s postulates.

8.3.1 Languages

A type-class instance, Language `, defines the data types and functions needed
for a language (labelled `) with a small-step operational semantics. The fol-
lowing class deceleration is a direct translation of the Section 7.3 of the Agda
abstract model.

class Language ` where

data Syntax `

data Value `

data State `

initState :: Syntax `→ State `

step :: State `→ Either (Value `) (State `)

In Figure 8.5, we use instances of these signatures to derive a function run.
We also define, for any Language `, Syntax `, Value ` and State ` instances for
the Evaluable type-class. These definitions are the similar to the Agda model
in Section 7.3. However, given that our comparisons will be based on runtime
results, we need to ensure that our evaluations terminate, even when the test-
program is non-terminating. In Figure 8.5, we use the runFor combinator to
limit our evaluations to a finite number of operational steps.

Appealing to these definitions of Evaluable and the proofs in Figure 7.13, we
claim that the initState and step functions preserve any correctness property,
defining verified versions in Figure 8.6. These claims are expressed using the
trustMe method of introducing verified functions.

8.3.2 Normalisation

Any instance of Language ` can be extended with an isNormal function to form
an instance of Normaliser `.

class Language `⇒ Normaliser ` where

isNormal :: State `→ Bool

A generic, normalisation function normalisev is defined in Figure 8.7. It
follows the definition given in Section 7.5.1 but has been adjusted to use the
cond_v combinator from Figure 8.21.
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-- Run from a given state until termination
run :: Language `⇒ State `→ Value `

run = either id run ◦ step

instance Language `⇒ Evaluable (Value `) where

type Resulte (Value `) = Maybe (Value `)

evale = Just

-- Run a state for a finite number of steps
runFor :: Language `⇒ Int → State `→ Maybe (Value `)

runFor 0 s = Nothing

runFor n s = either Just (runFor (pred n)) $ step s

instance Language `⇒ Evaluable (State `) where

type Resulte (State `) = Maybe (Value `)

evale = runFor 1000

instance Language `⇒ Evaluable (Syntax `) where

type Resulte (Syntax `) = Maybe (Value `)

evale = evale ◦ initState

Figure 8.5: Definitions over Language instances.

initState_v :: Language `⇒ Syntax `y State `

initState_v = trustMe "initState_v" $ const initState

stepv :: Language `⇒ State `y Either (Value `) (State `)

stepv = trustMe "step_v" $ const step

Figure 8.6: ‘Trusted’ verified forms of initState and step.

normalisev :: Normaliser `⇒ State `y Either (Value `) (State `)

normalisev = stepv >>> left_v ||| cond_v (const isNormal) right_v normalisev

Figure 8.7: Normalisation for instances of Normaliser .
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8.3.3 Termination

Any language instance can also be extended with information about a super-
compilation termination condition (Section 5.3.2). As with the Agda abstract
model in Section 7.5.2, an instance must define a data type containing historical
information, an empty history and a method for determining if the termination
condition has been triggered.

class Language `⇒ Terminator ` where

data History `

emptyHistory :: History `

canContinue :: History `→ State `→ Maybe (History `)

8.3.4 Memoisation

Memoisation is required to reuse the results within a supercompilation and
is essential for supercompiling recursive programs, as was discussed in Sec-
tion 5.3.4. Another type-class determines the method by which a supercompiler
instance memoises results. Each particular language instance provides data
types to hold binding information, a verified function memoisev for memoising
supercompiler phases and a verified function residualisev that indicates a point
at which a new binder may be generated.

class Language `⇒ Memoiser ` where

data BindingIn `

data BindingOut `

memoisev :: Phasev `→ Phasev `

residualisev :: Phasev `→ Phasev `

emptyIn :: BindingIn `

runBWriter :: BoundSyntax `→ Syntax `

data BWriter ` a = BWriter (BindingOut `) a

type BoundSyntax ` = BWriter ` (Syntax `)

type Phasev ` = (BindingIn `,History `) State `y BoundSyntax `

The runBWriter function is used to retrieve syntax in a binding context. We
use it to define an evaluable type for such syntax. As runBWriter is shown to be
correct-by-construction in Section 7.5.3, we define a verified variant runBWriter v
in Figure 8.8.
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8.3.5 Splitting

Splitting is the process of taking a state in a normal form and separating it
into supercompilable subterms, as was described in Section 5.3.3. An instance
Splitter ` defines a Split ` data-structure that holds these subterms and a
residual context, the method of combining the results of their supercompilation
into a complete expression.

The verified function splitv turns intermediate states into splits while the
applySubtermsv applies a verified function to each subterm in the split before
recombining the results into an expression. The function runSplit is used to
recover a state from a split. An Evaluable instance is given in Figure 8.9, using
runSplit to define the semantics of a split.

class Language `⇒ Splitter ` where

data Split `

splitv :: State `y Split `

applySubtermsv :: Phasev `→
(BindingIn `,History `) Split `y BoundSyntax `

runSplit :: Split ` → State `

8.3.6 Supercompiler

Finally a type-class Supercompiler ` depends on all the previous type-classes rep-
resenting supercompiler components. In addition to these, it defines finalStatev
— a verified function for retrieving a state from a final value.

class (Normaliser `,Terminator `,Memoiser `,Splitter `)⇒
Supercompiler ` where

finalStatev :: Value `y State `

A supercompiler is defined for instances of the Supercompiler type-class in
Figure 8.10. It follows the definitions in Section 7.5.5 but, once again, is adjusted
for the ternary verified functions types.
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instance Memoiser `⇒ Evaluable (BoundSyntax `) where

type Resulte (BoundSyntax `) = Maybe (Value `)

evale = evale ◦ runBWriter

runBWriter v :: Memoiser `⇒ BoundSyntax `y Syntax `

runBWriter v = trustMe "runBWriter_v" $ const runBWriter

Figure 8.8: Evaluable types and verified functions for binding contexts.

instance Splitter `⇒ Evaluable (Split `) where

type Resulte (Split `) = Maybe (Value `)

evale = evale ◦ runSplit

Figure 8.9: Evaluable instances for splits.

supercompile :: Supercompiler `⇒ Syntax `y Syntax `

supercompile = initState_v >>>

apply v drive (emptyIn, emptyHistory ) >>>

runBWriter v

drive :: Supercompiler `⇒ Phasev `

drive = memoisev drive ′

drive ′ :: Supercompiler `⇒ Phasev `

drive ′ = constv normalisev >>> (constv finalStatev >>> tie) |||
(maybe_v canContinue ′ tie drive)

where canContinue ′ (r , h) x = (, ) r <$> (canContinue h x)

tie :: Supercompiler `⇒ Phasev `

tie = constv splitv >>> applySubtermsv (residualisev drive)

Figure 8.10: A verified abstract supercompiler in Haskell.

115



hybrid verification of a supercompiler

-- Only ASTs that are well-typed and canonical.
applyFilter :: ProgGen.ProR → Filtered (ProgGen.ProR)

applyFilter x = Filtered [ProgGen.good x ] x

instance Serial (Filtered ProgGen.ProR) where

series = applyFilter <$>̂ series

seriesWithEnv = applyFilter <$>̂ seriesWithEnv

Figure 8.11: Serial instance of filtered abstract syntax trees.

8.4 test data-values

As discussed at length in Chapters 2 to 4, the method by which we generate
test-data for our properties is crucial. In Chapter 4, we presented a method for
generating canonical programs for a first-order functional language. We shall
reuse this work as a basis for our test-data for supercompiler verification.

import qualified Chapter2 as ProgGen

Recall that the program-generation work in Chapter 4 was for a much smaller
language than that used in Chapter 5. Also, in Chapter 4 only well-formed,
canonical abstract trees were generated. As we have not yet produced a
method for non-canonical program selection (see Section 9.3), we shall use this
set of canonical representatives. We will also need to generate values, states,
splits and binding contexts if we are to test all the properties generated by the
hybrid verification model.

Recall that the approach take in Chapter 4 was to generate all possible
abstract syntax trees and then apply lazy predicates as antecedents to filter
away anything that is not well-formed, well-scoped, well-typed or canonical.
The use of antecedent filtering conditions does not immediately fit with the
formulation of the property associated with testMe, defined in Section 8.2.3. In
our original formulation, the property expects to freely generate test-data with
no constraints.

Therefore, to encapsulate this filtering behaviour at the type-level, we shall
wrap our abstract syntax trees (and other evaluable types) in a filtering context
which contains the value and properties deciding if it is valid.

data Filtered a = Filtered {filterPreCond :: [Property ]

, filterResult :: a}

We can now define the series of filtered abstract syntax trees for the core
language described by Figure 4.5. In Figure 8.11, the applyFilter function adds
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instance Functor Filtered where

fmap f (Filtered ps x) = Filtered ps (f x)

instance Monad Filtered where

return = Filtered [ ]

Filtered ps x >>= f = Filtered (ps ++ qs) fx

where (Filtered qs fx) = f x

emptyFilter :: Filtered a

emptyFilter = Filtered [ff ] $ error "emptyFilter: Bad precondition_v"

runFilter :: Filtered Bool → Property

runFilter (Filtered [ ] x) = mkProperty x

runFilter (Filtered ps x) = foldr1 (∧par ) ps =⇒ x

Figure 8.12: Monadic construction and evaluation of filtered properties.

the ProgGen.good predicate to a syntax tree as a filter. ProgGen.good combines
all the principles discussed in Chapter 4. As there is no obvious method for
showing Filtered types, we override the seriesWithEnv default to display the
wrapped Core.ProR value directly.

A monadic interface is presented to the Filtered data types, as defined in
Figure 8.12. Using these, a Filtered Property can be constructed which can be
converted into a Property using the runFilter combinator.

Test programs for a supercompiler can be created from the programs in
the language from Figure 4.5. A type-class Convertable ` contains a function
convert that translates programs in the ProgGen.ProR to the appropriate syntax
representation.

class Language `⇒ Convertable ` where

convert :: ProgGen.ProR → Syntax `

Use this convert function, we can generically define filtered series for Syntax `,
State `, Value ` and Split ` as shown in Figure 8.14. The supercompiler source
syntax trees are created directly by convert . Intermediate states are generated
by running a syntax tree for a number of operational semantic steps. We use
Peano numerals to represent the number of steps so that Lazy SmallCheck can
prune away any value for the number of steps that goes beyond halting or
crashing.

Final values, on the other hand, are created from syntax trees that termin-
ate with a value after being run for a finite number of steps. Splits, of the
form described in Section 8.3.5, are created by applying a split operation to
intermediate states.
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testMe ′ :: (Evaluable a,Evaluable b,Serial (Filtered r ),Serial (Filtered a)

,Eq (Resulte a), (Resulte a ∼ Resulte b))⇒
String → (r → a→ b)→ (r  a y b)

testMe ′ str f = IsVerified f (Map.singleton str ′ (Just prop))

where str ′ = "Semantic preservation over "++ str

prop = forAll $ λr x → runFilter $ do

r ′ ← r

x ′ ← x

return $ evale x ′ ≡ evale (f r ′ x ′)

Figure 8.13: Semantics preserving functions using Filtered series.

Generating termination histories and binding information depends crucially
on the particular language instantiation. They cannot be defined generically
but must be defined specifically for each language. See Section 8.6.

A new variant of the testMe combinator is defined in Figure 8.13. It quan-
tifies over filtered values, using runFiltered and the monadic interface from
Figure 8.12 to ensure that the filter preconditions are applied before the se-
mantics preservation property is tested. The testMe ′ combinator variant will
be used to introduce property-based tested functions in our supercompiler
instantiation.

8.5 a verified implementation

We shall now instantiate the type-classes in Section 8.3 with the components
from the supercompiler defined in Chapter 5. We begin by importing our
previous definitions and declaring a type-level tag for our core language.

import qualified Chapter5 as Core

data Core

For many parts of the core supercompiler, our instances are merely wrappers
around the previously defined Core functions imported from Chapter 5. This is
the case for the Language Core, Normaliser Core and Terminator Core instances
in Figure 8.15 which take their definitions from Sections 5.2, 5.3.1 and 5.3.2
respectively.

memoiser We need to make modifications to the implementation of the
memoiser component from Section 5.3.4. The Memoiser Core instance is defined
in Figure 8.16, making use of the auxiliary functions defined in Figure 8.22
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-- Generating syntax trees
instance (Convertable `)⇒ Serial (Filtered (Syntax `)) where

series = fmap convert <$>̂ series

seriesWithEnv = fmap convert <$>̂ seriesWithEnv

-- Generating intermediate states
stepFor :: Language `⇒ Peano → Filtered (Syntax `)→ Filtered (State `)

stepFor n x = x >>= aux n ◦ initState

where aux Zero = return

aux (Succ n) = either (const emptyFilter ) (aux n) ◦ step

instance (Convertable `)⇒ Serial (Filtered (State `)) where

series = stepFor <$>̂ series <∗>̂ series

seriesWithEnv = stepFor <$>̂ seriesWithEnv <∗>̂ seriesWithEnv

-- Generating final values
joinMaybe :: Filtered (Maybe a)→ Filtered a

joinMaybe (Filtered ps x)

= Filtered (ps ++ [mkProperty (isJust x) ]) (fromJust x)

instance (Convertable `)⇒ Serial (Filtered (Value `)) where

series = (joinMaybe ◦ fmap (runFor 1000)) <$>̂ series

seriesWithEnv = (joinMaybe ◦ fmap (runFor 1000)) <$>̂ seriesWithEnv

-- Generating split states
instance (Convertable `,Splitter `)⇒ Serial (Filtered (Split `)) where

series = fmap (funcv splitv ()) <$>̂ series

seriesWithEnv = fmap (funcv splitv ()) <$>̂ seriesWithEnv

Figure 8.14: Generic Serial instances for some Supercompiler types.
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instance Language Core where

data Syntax Core = CSyn {cSyn :: Core.Exp Int }
data Value Core = CVal {cVal :: Core.Value Int }
data State Core = CSte {cSte :: Core.State Int }
initState = CSte ◦Core.initialState ◦ cSyn

step (CSte 〈 Γ | (\•→ x)t | [ ] 〉) = Left $ CVal $ Just (Γ, (\•→ x)t)

step (CSte 〈 Γ | (Con c ps)t | [ ] 〉) = Left $ CVal $ Just (Γ, (Con c ps)t)

step (CSte s) = maybe (Left $ CVal Nothing) (Right ◦CSte) (Core.step s)

instance Normaliser Core where

isNormal = Core.isNormal ◦ cSte

instance Terminator Core where

data History Core = CHst {cHst :: Core.History Int }
emptyHistory = CHst [ ]

canContinue (CHst hist) (CSte s) = CHst <$> Core.canContinue hist s

Figure 8.15: Instances of Language, Normaliser and Terminator for Core.

instance Memoiser Core where

data BindingIn Core = MemoIn Core.Binder [Core.Promise ]

data BindingOut Core = MemoOut (Map Core.HP

(Core.FreeRefs,State Core))

emptyIn = MemoIn (Core.HP (−1),Set.empty ) [ ]

runBWriter (BWriter (MemoOut w ) (CSyn x)) = CSyn x ′

where x ′ = Map.foldlWithKey lets x (Map.map lams w )

lams (free, s) = Core.reconstructLambdas free

$ Core.rebuild $ join $ fmap cVal $ evale s

lets y p x = (letrec • = Core.abstract p x in

Core.abstract p y )0

memoisev cont = choose_v remember useReference_v cont

residualisev cont = testMe ′ "residualise_v" $ residualise (funcv cont)

Figure 8.16: Instance of Memoiser for Core.
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on page 127 at the end of this chapter. Information about binding contexts
is retained by a verified supercompiler so that BoundSyntax values can be
evaluated for the testing of properties.

The memoisev verified function adds this detail, distinguishing the function
from its equivalent in Section 5.3.4. The remember auxiliary function recalls
previous binding information that matches the current state. If a matching
binder is found, a reference is created using the useReference_v trusted com-
binator. Otherwise, control is passed to the continuation cont . The runBWriter

function reconstructs an equivalent syntax tree with the wider binding context
represented using let-expressions.

splits Splits in this hybrid verified supercompiler reuse the Core.Split struc-
ture from Section 5.3.3. The Splitter Core instance, defined in Figure 8.17,
creates a verified version of Core.split using the testMe ′ combinator. The
applySubtermsv function needs to perform some coercion on the tag types as
the hybrid supercompiler expects all core language objects to be tagged with
integers.

In the Section 5.3.3 definitions of splitting, we never considered the semantic
meaning of the Core.Split data type from Figure 5.7. We choose a very simple
definition by which we evaluate all the subterms and reconstruct abstract
syntax trees for their final values using Core.rebuild . These syntax trees are
then inserted back into the split contexts.

final states Finally, in Figure 8.18 we define a verified function for recov-
ering a final state from a core language value. This definition completes the
Supercompiler Core instance for a working supercompiler implementation.

8.6 testing the supercompiler

We can extract an implementation and supercompile a core program. Applying
it to the map-fusion example used in Section 5.1, gives the same result as our
reference implementation from Chapter 5.

>>> func_v supercompile () (CSyn Core.mapmap)
CSyn {cSyn = letrec h0 = \f g xs ->
case xs of { Nil -> Nil;

Cons y ys -> Cons (f (g y)) (h0 f g ys) }
in h0}

To complete the hybrid verification, we must now test the assumptions made
by our supercompiler implementation. Before we can apply Lazy SmallCheck
to our properties, a few further language-specific instances are required.
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instance Splitter Core where

data Split Core = CSpl {cSpl :: Core.HeapSplit Int }
splitv = testMe ′ "split_v" $ const $
λs → if isNormal s then CSpl ◦Core.split ◦ cSte $ s

else CSpl ◦Core.mkLeaf ◦ cSte $ s

runSplit (CSpl (Core.Split ctx stm))

= initState $ tagCoerce ctx $ fmap runRebuild stm

where runRebuild = (Core.rebuild ◦ join ◦ fmap cVal ◦ evale ◦CSte)

applySubtermsv f = testMe ′ "applySubterms_v" $
λr (CSpl (Core.Split ctx stm))→
(tagCoerce ctx ◦ fmap cSyn) <$> mapM (funcv f r ◦CSte) stm

-- Coerce tag types on split contexts
tagCoerce :: (Core.Tree (Exp ())→ Exp ())→

(Core.Tree (Exp Int)→ Syntax Core)

tagCoerce ctx = CSyn ◦Core.reTag ◦ ctx ◦ fmap Core.unTag

Figure 8.17: Instance of Splitter for Core.

instance Supercompiler Core where

finalStatev = testMe ′ "finalState_v" $ const $
CSte ◦Core.initialState ◦Core.rebuild ◦ cVal

Figure 8.18: Instance of Supercompiler for Core.
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-- Build a history from an intermediate state
mkHistory :: State Core → History Core

mkHistory = CHst ◦ aux

where aux s = Core.stateTags (cSte s) : either (const [ ]) aux (step s)

instance Serial (Filtered (History Core)) where

series = fmap mkHistory ‘fmap‘ series

seriesWithEnv = fmap mkHistory ‘fmap‘ seriesWithEnv

-- Build a binding context from a list of states
mkBindingIn :: [State Core ]→ BindingIn Core

mkBindingIn [ ] = emptyIn

mkBindingIn (s : xs) = MemoIn this (promises ′ s ′)
where

MemoIn ((i , )) promises = mkBindingIn xs

(free ′, s ′) = Core.stripLambdas $ cSte s

this = (pred i , free ′)
promises ′ s = (this, s) : maybe promises promises ′ (Core.step s)

instance Serial (Filtered (BindingIn Core)) where

series = fmap mkBindingIn ‘fmap‘ series

seriesWithEnv = fmap mkBindingIn ‘fmap‘ seriesWithEnv

Figure 8.19: Serial instances for some History Core and BindingIn Core.

An instance Convertable Core defines a translation from ProgGen.ProR to
Syntax Core. It is omitted here due to its length and the routine nature of the
encoding.

The Serial instances for Filtered (History Core) and Filtered (BindingIn Core)

are defined in Figure 8.19. Termination histories are generated by calculating
the tags on chains of intermediate states. Binding contexts are created from sets
of chains of intermediate states.

With this test-data generation apparatus in place, we can now query our
implementation to test its assumptions using the depthCheckAssumptions com-
binator described in Section 8.2.4.

A peculiarity of Gill’s (2009) Data.Reify combined with our heavy use of
type-classes is that the verification program must be compiled to work.

Here, for example, is the output from executing our verification program,
listed in Figure 8.20, which tests the supercompiler properties up to a depth 4.
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main = depthCheckAssumptions 3

(supercompile :: Syntax Core y Syntax Core)

Figure 8.20: Execution of property-based testing on the supercompiler.

$ time ./Chapter8
* Assumed correctness of Left
* Assumed correctness of Right
* Assumed correctness of initState_v
* Assumed correctness of runBWriter_v
* Assumed correctness of step_v
* Assumed correctness of useReference_v
* Semantic preservation over applySubterms_v
Passed after 482591 tests.
* Semantic preservation over finalState_v
Passed after 445984 tests.
* Semantic preservation over split_v
Passed after 445983 tests.
./Chapter8 488.71s user 4.72s system 99% cpu 8:15.20 total

The verification program lists six functions that have been assumed to pre-
serve semantics using the trustMe combinator, where their correctness has been
demonstrated through mechanised proof in Chapter 7. This is followed by
three functions that have had their semantic preservation checked through
property-based testing.

One may notice that absence of the residualisev verified function. This is
due to the method by which we formulated the applySubtermsv function in
the Splitter Core instance, specifically with how the functional argument was
handled. In the definition of applySubtermsv in Figure 8.17 (on page 122),
the verified continuation is unwrapped using the funcv combinator, prevent-
ing the property from being collected by the verification algorithm. As it is
here in the supercompilation algorithm (see Figure 8.10 on page 115), that
residualisev is introduced, the property does not appear independently of that for
applySubtermsv .

The hybrid verification framework does test the semantic preservation prop-
erty for residualisev . However, it is indistinguishable from the property test-
ing applySubtermsv . The correct identification of this property should be
applySubterms_v residualise_v but there is no facility for this in the current
form of the framework. Either applySubtermsv should be reimplemented such
that it does not use funcv to access the continuation or our hybrid verification
model needs to be adjusted to properly identify partially applied functions.
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To test the ability of the hybrid verification framework to find bugs, we inject
a defect into our supercompiler implementation. The stack splitting algorithm
from Figure 5.10 is adjusted so that the the application and update stack frame
rules are swapped. Our hybrid verification process reports the following result:

...
* Semantic preservation over split_v
Failed after 104524 tests.
_
Succ (Succ (Succ Zero))
data D = A | B
f x = case x of {A -> B}
> f A

It correctly reports a fault in the splitv function definition, which becomes
apparent with the state obtained by running the above program for three steps.

Both a working supercompiler implementation and a set of correctness
properties are mechanically extracted from a single program. Built on the
foundation of a machine-checked proof, this is the hybrid verification of a
supercompiler.

8.7 summary

Our supercompiler verified using a hybrid method is composed of several
components. In Chapter 7, we showed that if each of these components is
verified in isolation, then the whole compiler must be semantics preserving.
Some of the components, such as normalisation and termination are shown
to be correct through mechanised proof using properties-as-types. Others are
shown to be correct through property-based testing.

The method by which we integrate these results is through the verified function
generalisation, originally introduced in Section 7.4 but developed further in
Section 8.2. We use this structure to mechanically collect the properties that
need to be tested to show that the supercompiler is correct. These properties
are then systematically tested using Lazy SmallCheck.

Our results show that verified functions provide a natural interface for
building compilers that are correct-by-construction. The verified construction
follows a functional programming style that ensures any problems that would
be identified by property-based testing are located to a particular component
and as more rigorous verification is performed on components, property-based
testing can be replaced with mechanised proof. The next chapter, especially
Section 9.6, discusses several extensions to these techniques.
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instance Category (Verified r ) where

id = IsVerified (const id) Map.empty

(◦) = Comp

-- Combinators about sums
infixr 2 |||
(|||) :: (r  a y c)→ (r  b y c)→ (r  Either a b y c)

f ||| g = Merge f g

left_v :: (r  a y Either a b)

left_v = trustMe "Left" $ const Left

right_v :: (r  b y Either a b)

right_v = trustMe "Right" $ const Right

-- Conditionals based on a property-irrelevant argument
choose_v :: (r → a→ Either r0 r1 )→

(r0  a y b)→ (r1  a y b)→ (r  a y b)

choose_v m f g = Modify m (Either f g)

-- Boolean specialisation of conditional
cond_v :: (r → a→ Bool)→ (r  a y b)→ (r  a y b)→ (r  a y b)

cond_v f = choose_v (λr x → if f r x then Left r else Right r )

-- Maybe specialisation of conditional
maybe_v :: (r → a→ Maybe r ′)→

(r  a y b)→ (r ′  a y b)→ (r  a y b)

maybe_v f = choose_v (λr → maybe (Left r ) Right ◦ f r )

-- Ignore property-irrelevant argument
constv :: (a y b)→ (r  a y b)

constv = Modify (const $ const ())

-- Modify property-irrelevant argument
modify_v :: (r → a→ r ′)→ (r ′  a y b)→ (r  a y b)

modify_v = Modify

-- Supply property-irrelevant argument
apply v :: (r  a y b)→ r → (a y b)

apply v f r = Modify (const $ const r ) f

Figure 8.21: Arrow-like combinators for verified functions.
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-- Recall previous binding information
remember :: (BindingIn Core, a)→ State Core →

Either (BoundSyntax Core) (BindingIn Core, a)

remember (MemoIn this prevs, r ) (CSte s)

| null matches = Right (MemoIn this ((this, s) : prevs), r )

| otherwise = Left $ head matches

where matches =

[ BWriter (MemoOut (Map.singleton iOld (freeOld ,CSte sOld))) $
CSyn $ foldr aux (Var (Fre iOld))0 freeOld

| ((iOld , freeOld), sOld)← prevs

, freeMapping ← maybeToList (sOld ‘Core.equivState‘ s)

, Map.keysSet freeMapping ≡ freeOld

, let find p = Map.findWithDefault p p freeMapping

, let aux p x = (x ␣ (Fre (find p)))0 ]

-- Use reference to binder
useReference_v :: (BoundSyntax Core) State Core y BoundSyntax Core

useReference_v = trustMe "useReference_v" $ const

-- Create a new binder
type Phase = (BindingIn Core,History Core)→

State Core → BoundSyntax Core

-- Create a new binder, run continuation and then create binding syntax
residualise :: Phase → Phase

residualise cont (MemoIn (i , ) prevs, r ) s

| i ∈ ctx = BWriter (MemoOut $ Map.delete i ctx)

(CSyn $ (letrec • = · in ·
(Core.abstract i (cSyn x ′))
(Core.Scope (Var (Bnd (Ix 0)))0))0)

| otherwise = BWriter (MemoOut ctx) x ′

where

i ′ = pred i

(ps ′, s ′) = Core.stripLambdas $ cSte s

BWriter (MemoOut ctx) x ′ = cont (MemoIn (i ′, ps ′) prevs, r ) (CSte s ′)

Figure 8.22: Auxiliary functions for the Memoiser component.
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9 C O N C LU S I O N S A N D F U RT H E R W O R K

This chapter reviews the results of the programme of research reported in this thesis.
We first revisit our initial motivations from Chapter 1 and the literature reviews of
Chapters 2 and 6. We then discuss, in successive sections, what contributions have
been made in previous chapters. Each section closes with a brief discussion of areas for
future research. The chapter closes with some final overarching conclusions.

9.1 introduction

Previous chapters of this thesis have discussed techniques and technologies
to assist in the verification of compilers. In particular, the verification of a super-
compiler was introduced in Chapter 5 as a case study. The motivation for this
programme of research stemmed from the apparent absence of formal verifica-
tion methods from the development of popular compiler projects. The neglect
of verification is in spite of the regular discovery of defects that invalidate
semantic preservation between compiler inputs and outputs.

There have been many past endeavours to introduce mechanised theorem proof
to compiler verification. In Chapters 1 and 6 we cited McCarthy and Painter’s
1967 publication as the origin of compiler verification through hand proof. In
Chapter 6 we observed many attempts in the forty-five years that followed to
simplify the task of proving compilers correct, mostly through proof abstraction,
management and mechanised checking. This line of work culminated in Leroy’s
(2009) CompCert, a formally verified C compiler targeting PowerPC processors.
We conjectured in Chapters 1 and 6 that mechanised theorem proof is still
not widely accepted due to the amount and nature of effort required in its
application. It is not merely the experiences of Leroy’s (2009) “estimated 2-person
years of work” but also the often monolithic and non-incremental nature of the
proofs.

An alternative to theorem proving, introduced in Chapters 1 and 2 is to
apply property-based testing to the problem of compiler verification. There
are several instances (Katayama, 2007; Palka et al., 2011; Pike et al., 2012)
where property-based testing has been used to discover defects in what Leroy
would call “realistic compilers". However, we do not see the wide adoption of
these techniques either. This could be due to the difficulties in automatically
generating test programs and formulating properties for compiler verification.
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In Chapter 1, we proposed the hybridisation of mechanised theorem proof
with property-based testing for the purposes of compiler verification. The aim
was to combine the automation and re-usability of property-based testing with
a formal, trusted foundation provided by theorem proof.

This concluding chapter revisits various contributions set out in earlier
chapters of the thesis, where each section discusses lessons learned and avenues
for further work. Section 9.2 presents conclusions from the work performed on
improving Lazy SmallCheck’s functionality. Section 9.3 discusses our findings
from experiments in using Lazy SmallCheck to generate valid and canonical
programs as test-data. Section 9.4 summarises our review of supercompilation
and a literate implementation for a small core language. Section 9.5 discusses
the abstract formal model of a supercompiler developed as a basis for our hybrid
verification technique. Section 9.6 discusses the results of combining property-
based testing with the formal model to produce a verified supercompiler.
Section 9.7 revisits our aims from Chapter 1 and discusses the overarching
conclusions from this programme of research.

9.2 advances in lazy smallcheck

Lazy SmallCheck (Section 2.3 and Chapter 3) is a property-based testing library
that exhaustively searches a bounded space of test-data values for counter-
examples to given properties about programs. We have contributed something
missing in the original implementation (Runciman et al., 2008), testing prop-
erties containing existential quantification and functional values using a new
implementation of the pruning strategy provided by Lazy SmallCheck.

Section 3.5.5 discussed the deep link between partially-defined functional
values and partially-defined instances of the trie representation used within
Lazy SmallCheck. Our strategy naturally supplies partial functional values
using the non-strict semantics of the host language. Other property-based
testing libraries (Claessen, 2012) need to explicitly express partiality in their
internal representation.

We also showed the benefits of displaying partial counterexamples, where the
original implementation would only return total counterexamples to properties.
All the test examples in Section 3.2 returned counterexamples that succinctly
express partial terms, aiding the tester in debugging software.

The main conclusion of this work is there are benefits to including partial
values in the test-data for property-based techniques beyond the pruning of
the test-data space. Both in the concise display of counterexamples and the
generation of functional values, partial values play a crucial role in helping
developers produce high-assurance software.
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further work One could envision adding partial values to QuickCheck’s
(Claessen and Hughes, 2000) shrinking mechanism, which attempts to find smal-
ler variants of the counterexample found through random search through the
test-data space. These partial counterexamples are simpler in comparison with
those produced by some other property-based testing libraries which show in-
formation irrelevant to the property being testing. Adding partial values should
not impact runtime performance directly but the mechanism for displaying
these partial values is more complicated, as discussed in Section 3.3.1.

Parallelisation of the refutation algorithm is a current area of investigation.
A prototype implementation shows near-linear speedups, in multicore shared-
memory environments, for benchmarks in which no counterexample is found.
This benefit is derived from the tree structure of the Lazy SmallCheck test-value
search space. However, in some benchmarks where a counterexample is found
the overheads of continued searches in other threads can cause slowdowns
rather than speedups. The efficient exploitation of what should be an ‘embarass-
ingly parallel problem’ (Moler, 1986) would be very advantageous for managing
the large spaces of test-data for a supercompiler.

9.3 programs as test-data

The method by which test-data is generated is critical to the use of property-
based testing in compiler verification. In Chapter 2 we discussed the previous
work on generating programs as test-data by directly building only well-formed,
well-scoped and well-typed programs.

The approach we presented in Chapter 4 instead produces all possible abstract
syntax trees and uses declarative conditions to filter away any trees that do not
satisfy the requirements for valid test programs. This approach allows simpler
and more composable definitions than if we had directly generated only valid
programs. We further apply the approach to generate only canonical programs
(Section 4.3), reducing the number of tests that need to be performed.

The Lazy SmallCheck property-based testing library handles these declarative
conditions well, efficiently pruning large classes of invalid and non-canonical
programs, as shown in Section 4.4. The ability to display partial counter-
examples (introduced in Chapter 3) is unnecessary in this instance as only
fully-defined programs satisfy the validity conditions. Therefore, no partial-
programs can invalidate the property to be used as a counterexample. However,
in Section 4.5 we show that even small total examples can be useful for exploring
the behaviour of compilers.

Using declarative predicates to describe relevant test-data programs seems
far more natural than attempting to generate the required programs directly.
We show that desired characteristic can be represented as separate predicates
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that compose easily. This is not possible in the other approaches discussed in
the chapter.

further work Each canonical test program represents a class of programs
performing equivalent computations but with different naming, ordering or
abstraction boundaries, or with redundant parts. We would like to verify
that every interesting test program has a canonical equivalent. The program
generating framework itself could be used to test the existence of canonical
representatives. Assuming that every program is represented by a canonical
variant, we could write a function to transform any given program into a
canonical representative. We could then test whether the function satisfies its
specification.

If every valid core program has an equivalent representative, then in that
sense every core-program computation is represented in generated tests. This
technique has proved very successful in reducing the exhaustive space of
test programs. But what if some desired property of a compiler, or other
program-processor under test, fails only when a program is in some way
non-canonical? If only canonical programs are tested, such potential failures
will go undetected. A solution is to attach a post-processor to the canonical
program generator. Given each canonical program, the post-processor picks
an equivalent at random, not forgetting the possibility of picking the canonical
program itself.

The core language used in Chapter 4 lacks features found in other core
representations of functional languages. Other core languages, such as GHC
External Core (Tolmac et al., 2009) and F-lite (Naylor and Runciman, 2010),
include primitive values and operations, (recursive) local definitions and higher-
order functions. The abstract syntax data type, generator and validity checker
could be extended to include these features. However, the search-space of
generated programs would be greatly enlarged. Some further principles of
canonicity would be needed to prune this space.

A simple method for generating test-programs that involve higher-order
functions could introduce a fixed set of higher-order composition operators. We
could then combine the functions from similarly typed test-programs, generated
by the current method, using these composition operators. This would set up
the kinds of fusion cases that supercompilation optimises well.

Although we have explained principles of canonicity in terms of our core
language, the ideas are quite generic. In almost every programming language,
or other complex structural representation, there are choices of names or
positions, orderings and divisions between units, that do not fundamentally
alter the computations or structures being described. There is also the possibility
of parts that are in some sense redundant. So similar techniques might be
applied successfully to generate test examples in quite different formalisms.

134



9.4 a review of supercompilation

9.4 a review of supercompilation

Chapter 5 introduced supercompilation as a potential case study for verification.
It is selected because it is (a) a source-to-source transformation, (b) with close
links to formal language semantics, but (c) has non-trivial control-flow. These
features make it an interesting candidate for an investigation into compiler
verification techniques.

We compared different implementations from the literature and, in Sec-
tion 5.3, showed that a supercompiler can ultimately be decomposed into four
distinct components. (1) A normaliser that simplifies terms. (2) A terminator that
prevents non-terminating simplification. (3) A splitter that produces smaller
terms for further supercompilation. (4) A memoiser that reuses the results of
supercompiling equivalent terms.

We implemented a supercompiler along these lines for a small core language
described in Section 5.2, using the process as an opportunity to contrast the
approaches taken in other implementations. Ours most closely resembles that of
Bolingbroke and Peyton Jones (2010), as their implementation makes explicit use
of the operational semantics of the source language. Later, in Section 7.5.1, this
tight relationship allowed us to generically verify the normalisation component
for any language that fits an abstract verified model.

further work The reference implementation is, by intention, a simple su-
percompiler designed to give us the best chance of demonstrating correctness.
However, the literature contains a wide range of extensions to our basic model.
These deal with more advanced languages, improved efficiency of the super-
compilation process and better performing residual programs resulting from
supercompilation. These are essential techniques for making supercompilation
an acceptable optimisation for practical programming languages.

9.5 the proof of an abstract supercompiler

Chapter 7 used Agda, a dependently-typed programming language, to express
a verified abstract supercompiler that leaves the source language and operational
semantics undefined. Any areas of a supercompiler that critically depends on
these definitions are also left abstract but with clear verifiable interfaces on
what is required for the full compiler to be correct.

These interfaces take the form of verified functions over evaluable types, functions
that carry the proof that they maintain semantic correctness between inputs
and outputs. The advantage of these constructs is that they provide modularity
for proofs along the same boundaries as implementation and concisely identify
areas for verification at the type-level.
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Through this approach, we showed that several components such as nor-
malisation and termination are semantics preserving by construction for any
instantiation of the model and that if the other components are also semantics
preserving, it follows that the whole supercompiler is correct. These res-
ults form the foundation of the hybrid verification framework developed in
Chapter 8.

While it would be useful to apply automated program extraction to our
Agda models, we found that the MAlonzo Agda-to-Haskell compiler does not
produce code that is satisfactory for our needs. The Haskell programs produced
have far greater lines of code and poorer runtime performance than their hand-
written equivalents. We concluded that it would be better to translate our Agda
model into Haskell by hand.

further work As discussed throughout Chapter 7 and, in particular, in
Section 7.5.2, we have deliberately ignored proofs that the supercompiler must
terminate for all inputs. Agda normally enforces totality of functions to ensure
soundness of the logic. It was going to be very difficult to fit supercompiler
termination proofs into Agda’s requirements. There is recent work (Vytiniotis
et al., 2012) on encoding proofs of termination based on well-quasi-orderings
for the types of termination checkers used by mechanised constructive logics.
This would be a good start towards demonstrating total correctness of the su-
percompiler. It would still remain to show that the amount of supercompilation
left to do reduces with each split.

Although we had good reasons for the hand-translation approach taken in
Chapter 8, it is unsatisfying to be missing a mechanically checked link between
the proven Agda and efficient Haskell implementation. Given the unsuitability
of the MAlonzo compiler, it would be necessary to find alternative translations.
There is an Agda-to-Epic compiler currently in development (Fredriksson and
Gustafsson, 2011) but Epic does not have the full features of the mature GHC
Haskell implementation. Another alternative would be to reimplement our
proof in Coq and use its more advanced Coq-to-Haskell compiler to produce
efficient code.

9.6 the hybrid verification of a supercompiler

In Chapter 8, we used the previous discussed techniques to produce a working,
verified supercompiler for a core functional language. We translated the veri-
fied functions over evaluable types abstraction from Chapter 7 into Haskell and
extended it to use property-based testing in place of properties as types.

The abstract supercompiler was translated into Haskell using type-classes
and type families to represent postulated data types and functions. We also in-
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troduced abstractions for generating test-data for the supercompiler correctness
properties, using the techniques discussed in Chapter 4.

These interfaces were instantiated with components from the reference super-
compiler implemented in Chapter 5 and properties were automatically collected
by the hybrid verification framework. Through the systematic testing of the
unresolved properties, we showed that the supercompiler is indeed correct for
a set of canonical first-order programs as test-data. This set of programs was
sufficient to find a counterexample to our correctness properties when a fault is
injected into the supercompilation definitions.

further work If the property-based testing portion of our verified frame-
work had reported a defect in the applySubtermsv verified function, it would
have been difficult to locate the issue due to the presence of higher-order
functions in the memoisation and splitting components. Our current instan-
tiations blur the boundaries between the two components making an error
indistinguishable between the two. It is unclear if a revised instantiation can be
resolve this issue within the current framework formulation or if extensions are
required to the hybrid verification model to handle these cases.

Verified functions seem to form an arrow-like (Hughes, 2000) structure. If we
were to complete the bi-catesian closed category instance, we would be able
to make full use of arrow notation (Paterson, 2001) to ease the development of
compilers with verified function over evaluable types. In particular, the apply
and curry functions in the Control.Arrow library would give possible solutions to
our issues with higher-order functions and simplify some of the implementation
detail in the memoisation component.

One area that has not been discussed as a correctness property is that a
supercompiler should improve, or at least not diminish, the performance of its
input. It is not uncommon to find compiler ‘optimisations’ actually increasing
program run-times but it is certainly unwelcome. To integrate ‘do no harm’
property into the hybrid verification model, our semantic definitions of the
evaluable types need to preserving the execution-time semantics of their inputs.
Our current implementations do not make this requirement.

9.7 final conclusions

The stated aim from Chapter 1 was to collect evidence supporting the assertion
that:

Combining property-based testing and mechanised proof verifies
compilers with higher confidence than property-based testing alone,
for less effort than mechanised proof alone.
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In the process of investigating this claim, I have significantly improved pre-
viously available tools for property-based testing and exploited the unique
features of Lazy SmallCheck to generate relevant test-data and display con-
cise counterexamples. The use of declarative predicates to define desirable
test programs appears to be novel and well suited to property-based testing
with test-directed pruning. This has great potential to assist in the verification
of compilers, as a flexible technique that can be extended and composed as
compiler specifications change.

Verified functions over evaluable types provide clear boundaries by which
both compiler implementations and proofs can be modularised. This allows a
divide-and-conquer strategy to compiler verification and appropriate verifica-
tion techniques to be applied to different components of a compiler. This was
used in our case study, the verified supercompiler.

Although my initial aims for this thesis have not been fully realised, progress
have certainly been made to both the property-based testing and the mech-
anised proof of a supercompiler’s correctness, using each method’s strengths
to support the other. It is my hope that this is beginning of an engineering
methodology for building correct compilers, where proof obligations can be
isolated and the most appropriate verification technique may be applied. This
is the essential benefit of a hybrid verification.
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