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ABSTRACT 

Biopharmaceutical production through transient gene expression (TGE) is used 

within industry for the rapid supply of product for early stage testing. A key 

requirement of the process is the large scale transfection of mammalian cells, 

for which the cationic polymer, polyethylenimine (PEI), is widely used.  

In this thesis, the mechanism of PEI mediated transfection of CHO-S cells is 

explored at the cell surface, a fundamental barrier to successful transgene 

delivery. By approaching the question from first principles, exploring the kinetics 

of transfection at the cell surface, bio-physical and bio-molecular interactions 

governing polyplex binding to the cell surface, three key findings were made. 

Firstly, polyplex uptake was biphasic. Initial, rapid endocytosis of polyplex and 

heparan sulphate proteoglycans (HSPG) was followed by a slower phase of 

polyplex uptake, on depletion of cell surface HSPGs. Enzymatic depletion of cell 

surface HSPGs was found to reduce TGE by 25%, whereas sequestration of 

cholesterol using methyl-β-cyclodextrin abrogated TGE. Taken together, the 

data indicate that HSPGs mediate maximal TGE (via an early, rapid phase of 

endocytosis) but that the predominant mechanism of polyplex uptake is through 

the clustering of lipid rafts, occurring at depleted cell surface HSPG levels.  

Secondly, the role of both electrostatic and hydrophobic interactions in polyplex 

binding to the cell surface was investigated. These experiments revealed that at 

statistically optimized conditions for TGE (with respect to PEI:DNA ratio) the net 

charge of the polyplex in chemically defined medium was approximately neutral. 

Under these conditions polyplexes bound to the cell surface, predominantly, via 

a hydrophobic interaction, independent of cell surface HSPGs. Accordingly 

polyplex binding to the cell surface was disrupted by both non-ionic surfactant 

and depletion of plasma membrane cholesterol by methyl-β-cyclodextrin. An 

increase in polyplex zeta potential at elevated polyplex PEI:DNA ratio increased 

polyplex binding to the cell surface, but was accompanied by increased 

cytotoxicity with elevated PEI internalization. A decrease in polyplex zeta 

potential using ferric (III) citrate resulted in decreased polyplex binding to the 

cell surface. Both alterations in polyplex charge reduced TGE. Taken together, 
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these data indicate that hydrophobic binding of polyplexes to cell surface lipid 

rafts (bearing passenger HSPGs) is the primary molecular interaction that 

promotes subsequent lipid raft clustering and polyplex micro/macropinocytosis 

to facilitate maximal TGE. 

Lastly, in order to engineer increased binding and endocytosis of recombinant 

DNA, alkylated PEIs varying in alkyl chain length and degree of substitution 

were chemically synthesized in order to increase polyplex hydrophobicity. 

Compared to unmodified PEI in TGE processes, optimized by Design of 

Experiments Response Surface Modelling, propyl-PEI was found to mediate 

more efficient TGE at similar reporter gene titre via a reduction in plasmid DNA 

load. Propyl-PEI formed polyplexes were found to mediate enhanced polyplex 

uptake relative to polyplexes formed of unmodified PEI. 
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Chapter 1 Biopharmaceuticals 1 

CHAPTER 1 

Biopharmaceuticals and their 
Production 

 

This chapter provides an overview of biopharmaceuticals and production of 

biopharmaceuticals. Specific emphasis is given to recombinant protein 

production through transient gene expression. The aim of this chapter is to 

contextualize the research presented in this thesis, with respect to its industrial 

application. 

1.1 Biopharmaceuticals 

A “biopharmaceutical” or “biologic” is “a protein or nucleic acid based 

pharmaceutical substance used for therapeutic or in vivo diagnostic purposes, 

which is produced by means other than direct extraction from a native (non-

engineered) biological source” (Walsh, 2002). Biologics can be broadly divided 

into nine classes: monoclonal antibodies (mAbs), hormones, growth factors, 

fusion proteins, cytokines, blood factors, therapeutic enzymes, recombinant 

vaccines and anticoagulants (Aggarwal, 2012). Biologics are used to treat a 

plethora of disease conditions, ranging from cancer to chronic autoimmune 

conditions to viral infections (Marasco and Sui, 2007). The first gene therapy 

was approved in 2012, Glybera®, for treatment of lipoprotein lipase deficiency 

(Yla-Herttuala, 2012). 

In 2006 biopharmaceuticals made up 44% of all drugs in development (Walsh, 

2006) and since then the sector has seen moderate year on year growth of 

approximately 5% (Aggarwal, 2012). Blockbusters drugs, defined as having >$1 

billion world-wide annual sales, have contributed to this increase (Lawrence 

2007).   

Whilst numerous biopharmaceuticals have become hugely profitable for 

pharmaceutical companies, their inherent cost of production has and continues 
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to limit their uptake; the individual cost burden is considerable, whether it be for 

the individual patient, the insurance companies or the National Health Service 

(NHS) in the United Kingdom (Kelly and Mir, 2009). Moreover, the high cost of 

biopharmaceuticals limits their potential market, making their use in numerous 

developing countries impossible.  

1.1.1  Recombinant Protein Technology 

Pioneering research in the 1970s, describing the production of hybrid DNA 

molecules, through restriction enzyme digestion and recombination of the 

fragments (Jackson et al., 1972; Cohen et al., 1973) and production of 

recombinant proteins from the recombinant DNA, provided the framework for 

the production of therapeutic recombinant proteins/ biopharmaceuticals. The 

human hormone, somatostatin, was the first protein to be produced through 

recombinant DNA technology and chemical synthesis of the somatostatin gene 

sequence (Itakura et al., 1977), in  Escherichia coli. Recombinant somatostatin 

paved the way for production of human insulin (Humulin®), also in an 

Escherichia coli expression platform (Johnson, 1983).  

1.1.2 Antibody Therapeutics 

Immunotherapies, based on antibodies, make up the largest class of biologics 

(Aggarwal, 2012) and thus the technology (Reichert et al., 2005) for their 

production will be discussed here and in Table 1.1. 

Immunotherapies were first used in the form of serum from inoculated animals 

or humans, from the work of Kitasato, Behring and Ehrlich, at the turn of the 

20th century (Bosch and Rosich, 2008). However, serum sickness was 

frequently associated with such therapies.  

As part of the natural immune system, antibodies are produced by plasma cells, 

terminally differentiated B cells (Shaprio-Shelef and Calame, 2005; Dinnis and 

James, 2005). Thus, monoclonal antibodies (mAbs) were first produced by 

fusing a murine myeloma cell with a murine B cell from an immunised mouse, 

creating an immortal, mAb secreting “hybridoma” cell line (hybridoma 

technology) (Kohler and Milstein, 1975). The mAbs produced by this method, 

however, had potentially serious immunogenic side effects in the clinic, such as 
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the human anti-mouse antibody (HAMA) response (Tjandra et al., 1990). They 

also had poor efficacy due to lack of synergy between with the patient’s immune 

system, failure to activate the complement system or initiate antibody 

dependent cellular cytotoxicity (Waldmann, 2003).  

‘Chimeric antibodies’ were  produced by joining variable region genes from a 

murine myeloma cell line with known antigen specificity with human 

immunoglobulin constant domain genes through recombinant DNA technology 

(Morrison et al., 1984; Boulianne et al., 1984). Chimeric antibodies activated the 

desired responses in the human immune system, mimicking human antibodies, 

but also undesired immunogenic reactions, the human anti chimeric antibody 

(HACA) response for example (Mirick et al., 2004). ‘Humanized’ antibodies 

were then developed, comprising an entirely human protein sequence, except 

for a murine complimentarity determining region (CDR) (Jones et al., 1986).   

Better success in the clinic was achieved through production of fully ‘human’ 

antibodies without associated HAMA or HACA side effects. Two technologies: 

phage display and transgenic animals enabled this break-through. The 

technique of phage display (McCafferty et al., 1990; Carmen and Jermutus, 

2002), involves cloning of human variable antibody genes into bacteriophage 

(Griffiths and Duncan, 1998). Screening the bacteriophage (expressing an array 

of antibody variable genes on their surface) with an array of antigens, allows an 

antigen to be matched to an antibody variable gene. Transgenic mice can also 

be used for the development of human antibodies, whereby the mice express a 

repertoire of human antibody gene sequences and antibody variable sequences 

can be isolated for a given antigen (Lonberg, 2005; Green et al., 1994; Lonberg 

et al., 1994.)  

Coming full circle, polyclonal antibodies have re-emerged as immunotherapies, 

with a manifold of inherent benefits due to the therapeutic approach being 

closer to the natural immune response than treatment with a mAb (Haurum, 

2006). The first method, Symplex™ technology involves sorting of antibody 

producing cells from immune individuals, followed by antibody heavy and light 

chain mRNA reverse transcription and amplification by linked Simplex PCR 

technology and (enabling original pairing of heavy and light chains) and finally 

phage display (Haurum, 2006; Waltz, 2006). Alternatively, polyclonal antibodies  
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Table 1.1 Immunotherapies: Development Chronology 

  

  

Type Antibody  
Technology  

Reference  First Drug  
Approved  
[Trade name] 

Polyclonal 

Immunized  
human serum   

- 

Multiple therapies 
Immunized  
animal serum 

- 

  
  
  
  
  
  
  
  
Monoclonal  

Hybridoma 
(murine) 

Kohler and  
Milstein, 1975  

Muromonab-CD3 
(1986) 
Orthoclone OKT3  

Chimeric  
recombinant 
antibody (66% 
human) 

Morrison et al., 
1984  

Abciximab (1994) 
ReoPro  

CDR grafted 
antibody 
(humanized, 90% 
human)  

Jones et al., 
1986  

Daclizumab 
(1997) 
Zenapax  

Phage  
Display (human)  

McCafferty et 
al., 1990  

Adalimumab 
(2002) 
Humira  

Transgenic 
(human)  

Lonberg et al., 
1994 
Green et al., 
1994  

Panitumumab 
(2006) Vectibix  

Polyclonal 

Symplex 
technology 
(human)  

Meijer et al., 
2006 

Numerous in  
pipeline 

Transgenic 
(human)  

Kuroiwa et al., 
2002 

Numerous in  
pipeline 

Fc fusion proteins 
Human Fc  
domain 

Capon et al., 
1989 

Etranercept 
(1998) 
Enbrel 

Bispecific 
monoclonal 
antibodies 

Hybridoma (rat/ 
mouse) 

Staerz et al., 
1985; Perez et 
al., 1985 

Catumaxomab 
(2009) 
Removab 
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can be  developed in transgenic animals (Kuroiwa et al., 2002; Kuroiwa et al., 

2009; Waltz, 2006). 

Alongside developments in antibody technologies, recombinant fusion proteins 

were developed, based on the immunoglobulin Fc domain linked to a targeting 

peptide (Czajkowsky et al., 2012). In addition, the first bispecific antibody 

(Kontermann, 2012), Removab®, recently came to the market, produced by 

hybridoma technology (Chames et al., 2009).  

Recombinant DNA technology and in vitro expression in mammalian cells is 

used for production of therapeutic antibodies and other proteins in the vast 

majority of cases (Wurm, 2004). Alternative methods of production include 

hybridoma technology and direct synthesis in transgenic animals. 

1.2 Production of Biopharmaceuticals 

1.2.1 Expression Systems 

Marketed biopharmaceuticals have been produced in mammalian cells, 

bacterial, yeast and insect cells; and plant based expression systems for 

production of health care products (Walsh, 2010). Cell free protein expression 

systems, although promising, are not at the commercial stage (Kovtun, 2011).  

Unlike insulin, antibodies have a complex quaternary structure and require post 

translational glycosylation to function in vivo (Jefferis, 2005). Whilst E. coli is still 

used as an expression system for simple proteins, such as Humulin®, for 

production of more complex proteins, such as antibodies, eukaryotic expression 

systems are utilized (Jenkins et al., 1996, Walsh and Jefferis, 2006; Walsh, 

2010).  Yeast glycosylation is high mannose type, which leads to a short half life 

in vivo, reduced efficacy and in some cases immunogenicity (Gerngross, 2004; 

Demain and Vaishnav, 2009), so has limited suitability for therapeutic protein 

product at present.  

The majority of biopharmaceuticals are produced in mammalian cell culture 

(Wurm, 2004; Birch and Racher, 2006), mainly cell lines derived from the 

Chinese hamster and original CHO-K1 cell line, or other rodent cell lines, such 

as murine lymphoid cell lines, NS0 and SP2/0. CHO cell lines possess key 

features amenable to biomanufacturing, such as fast growth rate in a synthetic 
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culture environment (Birch and Racher, 2006), susceptibility to foreign DNA 

integration and resistance to majority of viruses that infect humans (Berting et 

al., 2010).  

Human derived cell lines, due to their ability to confer human post translational 

modifications, are increasingly attractive for biomanufacturing (Durocher and 

Butler, 2009; Schiedner et al., 2008). For example human retina derived PER-

C6® cells (Crucell) and human amniocyte derived cells CAP® (Cevec) are used 

for production of numerous therapies in clinical trial at present. Despite the 

benefits of human cell line expression systems, CHO cells have the most 

established history of regulatory approval and thus are an attractive, safe option 

for biomanufacturing and remain the industry “work-horse” (Jayapal et al., 

2007). 

1.2.2 Engineering Strategies to Improve Production 

In 1986 typical recombinant protein titres from mammalian systems were 

approximately 50 mg L-1; nearly 30 years later, productivity has increased over 

100 fold and titres ranging from 10-13 g L-1 are commonly achieve within 

industry (Wurm, 2004; Kelley, 2009; Hacker et al., 2009). Increased productivity 

has been achieved through a myriad of strategies, that can be broadly defined 

as 1) process design optimizations and 2) Cell line/ vector engineering 

strategies (O’Callaghan and James, 2008; Davies and James, 2009; Hacker et 

al., 2009; Dietmair et al., 2012; Butler and Meneses-Acosta, 2012). Optimization 

of chemically defined culture media, free of animal derived products (e.g. 

serum), has  been a key factor in increased productivity (Keenan et al., 2006; 

Jayme and Smith, 2000; Wurm, 2004; Birch and Racher, 2007).  

Biopharmaceuticals can be produced through three distinct processes: stable 

cell line generation, stable transfectant pool technology or through transient 

gene expression, illustrated in Figure 1.1. The choice of process is determined 

by the end point requirements. Stable gene expression produces the highest 

titres of recombinant protein but can take many months. Often therapeutic 

product is needed on a shorter time scale, for example in the development 

stages of drug development or for toxicology testing, for example. In such  
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cases, a transient gene expression platform or stable transfectant pool 

technology may be implemented (Table 1.2).  

In addition to the relatively high product titres obtained by stable gene 

expression, production from a “clonal” cell line is used for biomanufacturing, to 

aid product homogeneity and meet regulatory requirements. However, there is 

evidence that mAbs from whole transfected populations (i.e. transfectant pool 

technology) are comparable in glycosylation to mAbs produced from a stable 

cell line (Ye et al., 2010). 

1.2.3 Stable Cell Line Generation   

Large scale production of therapeutic recombinant proteins involves generation 

of recombinant cell lines. To isolate cells that have successfully integrated the 

transgene/ daughter cells that have inherited the transgene following mitosis, a 

selection and amplification system is used. The dehydrofolate reductase 

(DHFR)/ methotrexate (MTX) (Figure 1.2A) and glutamine synthetase (GS)/ 

methionine sulphoximine (MSX) (Figure 1.2B) systems are commonly used in 

industry (Bebbington et al., 1992; Kaufman et al., 1985; Matasci et al., 2008). 

Both systems follow the same principles: an expression vector containing the 

DHRF or GS gene along with the gene of interest (GOI) is transfected into the 

cells, after a certain length of time the only cells that can survive have 

successfully integrated the expression vector into a transcriptionally active 

region of the host cell chromosomes. Amplification can be achieved by adding a 

selection pressure, methotrexate or methionine sulphoximine, which inhibits the 

action of the selection gene (dehydrofolate reductase or glutamine synthetase 

respectively).  

Clones are then isolated from the recombinant cells, expanded and screened 

for productivity and a single cell line used for bioreactor production (Birch and 

Racher, 2006; Browne and Al-Rubei, 2007; Porter et al., 2010; Porter et al., 

2010b). For production of recombinant polyclonal antibodies through 

Sumpress™ technology, multiple vials of cell expressing an array of 

recombinant antibodies are used to inoculate the bioreactor (Haurum, 2006). 

Although lengthy, the selection and amplification process, followed by clone  
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Dihydrofolic 
acid 

Tetrahydrofolic  
acid 

Dihydrofolate  
reductase 

Methotrexate 

NADPH NADP+ 

Ammonia 

Glutamate 

Glutamine 

Methionine 
Sulphoximine 

Glutamine 
Synthetase + 

ATP ADP Pi + 

Figure 1.2 Systems used for selection and amplification of recombinant 

cells: DHFR and GS. 
Dehydrofolate reductase (DHFR) (A) or glutamine synthetase (GS) (B) en-

zymes are included on the expression vector and the cells cultured in media 

lacking hypoxantine and thymidine (HT) or glutamine respectively. Meth-
otrexate or methionine sulphoximine are added to amplify expression of the 

transgene.  

A 

B 
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isolation, expansion and screening, can result in isolation of cells with excellent 

specific productivities (qP) (O’Callaghan et al., 2010). 

One of the biggest challenges facing the process of recombinant protein 

production through stable gene expression is production instability. Despite the 

use of “clonal” cell lines for production, they remain genetically heterogeneous 

(Altschuler and Wu, 2010; Hyman and Simon, 2011; Davies et al., 2012). Loss 

of productivity is a fundamental problem for biopharmaceutical production 

(Chusainow et al., 2009), through loss of recombinant genes and epigenetic 

gene silencing over time (Yang et al., 2010; Kim et al., 2011).   

Table 1.2  

Biopharmaceutical Production Strategies: Development Timelines 

 

 

 

 

1.2.4  Stable Transfectant Pool Technology 

Recombinant protein production through stable transfectant pool technology is 

similar to production through stable gene expression, except that the step of 

producing a clonal cell line is omitted, thus reducing the duration of the 

production process. The stably transfected parental population, following 

selection and amplification, is used for bioreactor production of recombinant 

proteins, as illustrated in Figure 1.1. Within two months post transfection, gram 

quantities of mAb can be generated, on a 200 L scale, with productivities 

ranging from 100mg L-1 to 1000 mg L-1 (Ye et al., 2010). Stable pools offer an 

advantage over transient gene expression (TGE) platforms, in that production 

does not require large quantities of non-GMP plasmid DNA, potentially 

contaminated with endotoxin (Schmid et al., 2001; Bertschinger et al., 2006a). 

Therefore, recombinant proteins produced from stable pools rather than by TGE 

are more likely to be used for early stage testing in the clinic, in the future.   

 

Production Strategy Time scale Reference 

Stable cell line generation 4-12 months Ye et al., 2009 

Stable transfectant pool technology 2 months Ye et al., 2010 

Transient gene expression 1-14 days Hacker et al., 2009 
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1.2.5 Transient Gene Expression 

Transient gene expression (TGE) platforms rely on the expression of plasmid 

DNA in the parental cell line. TGE has been used for decades in biology 

laboratories for analytical and research purposes (often termed transient 

transfections) but only in the last fifteen years has it been scaled-up and used 

for rapid supply of biopharmaceuticals (Baldi et al., 2007; Geisse, 2009).  

HEK293 cells were originally used for scaled up TGE, but more recently, high 

titres have been achieved with CHO cells (>2g L-1 in industry data reported at 

conferences). HEK293 cells were used due to a system for episomal replication 

being well established, whereas systems for episomal replication in CHO cells 

came later (Geisse, 2009). Within the literature, the highest titres reported are 

>1 g L-1 in HEK293E cells, with episomal replication, co-expression of human 

acidic Fibroblast Growth Factor (aFGF) and cell cycle regulators, p18 and p21 

(Backliwal et al., 2008a). In CHO cells, the highest reported titre within the 

literature is 875 mg L-1, described later (Cain et al., 2013).  

Whilst HEK293 cells are regularly used in TGE, for expression of various 

proteins (Swiech et al., 2011), for alignment of early stage (TGE) production 

with manufacturing production through (SGE), use of the same cell line is 

desirable. Hence, TGE processes have been developed in CHO cells (the 

industry “work horse” for biomanufacturing  (Codamo et al., 2011a; Codamo et 

al., 2011b). Similarly, for the human aminocyte derived cell line CAP®, a 

complimentary TGE-specific cell line, CAP-T®, has been developed (Fischer et 

al., 2012). 

Strategies to improve TGE platforms can be broadly divided into three 

approaches: 

1) Cell line and/ or vector engineering 

2) Nutritional/ non nutritional additives post transfection 

3) Optimization of culture modality  
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1.2.5.1 Cell Line and Vector Engineering 

Several episomal TGE systems have been developed that allow maintenance 

and replication of the plasmid within the mammalian cell (Meissner et al., 2001; 

Durocher et al., 2002; Geisse 2009) (Table 1.3). Systems include: constitutive 

expression of the large  SV40 large T-antigen in trans with a plasmid containing 

the SV40 origin of replication (SV40ori) or constitutive expression of Epstein-

Barr virus nuclear antigen 1 (EBNA1) protein in trans with a plasmid containing 

the Epstein-Barr virus origin of replication (OriP) (Yates et al., 1985; Young et 

al., 1988).  Alternatively, the EBNA-1 element can be included in the expression 

vector for transient expression (Durocher et al., 2002). Another system is the 

epiCHO one (Codamo et al., 2011a; Codamo et al., 2011b), which consists of 

cells constitutively expressing the Polyomavirus large T antigen (PyLT) 

combined with an expression vector containing the Py origin of replication 

(PyOri) and Epstein Barr Virus OriP for plasmid retention (Kunaparaju et al., 

2005). Finally, episomal replication, at low copy number, has been achieved 

without viral transformation of the CHO cell line, by including in the expression 

vector, chromosomal scaffold/ matrix attachment regions (S/MARs) in cis with 

the SV40 ori (Piechaczek et al., 1999). 

It has been reported that translation and post translational mechanisms are 

limiting bottlenecks in transient protein production in CHO cells (Mason et al., 

2012). Recently, an engineering strategy based on increasing the secretary 

capacity of the host cell line for TGE was employed, whereby CHO-S cells were 

engineered to express X box binding protein (XBP-1S) and endoplasmic 

reticulum oxidoreductase (ERO1-Lα) (Cain et al., 2013). XBP-1 A is a regulator 

of protein secretion and the unfolded protein response (Lee AH et al., 2003), its 

over-expression has been found to enhance recombinant protein production in 

CHO cells (Tigges and Fussenegger, 2006; Becker et al., 2008). Antibody 

structure is dependent on disulphide bonds between heavy chains and heavy 

and light chains. Over expression of the protein disulphide isomerase (PDI) 

enzyme, which forms and isomerizes disulfide bonds, was found to increase 

secretion rate of recombinant monoclonal antibodies in CHO cells (Borth et al., 

2005). ERO1-Lα in an oxidoreductase enzyme that catalyses the re-oxidation of 

disulphides in the active site of the protein disulphide isomerase (PDI) enzyme; 
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PDI over expression has previously been shown to enhance mAb production in 

recombinant CHO cells (Mohan et al., 2007; Mohan and Lee, 2010). The CHO-

SXE cell line, expressing XBP-1 and ERO1-Lα (Cain et al., 2013), increased 

antibody yields, 6 fold relative to CHO-S cells. 

Other strategies to enhance TGE yields have included engineering CHO cells to 

express the anti-apoptotic protein, Bcl-xL (Majors et al., 2008), which was found 

to enhance both mAb production and culture viabilities. The same group then 

over-expressed another Bcl-2 family protein, Mcl-1, resulting in, again,  

improved mAb yields and higher culture viabilities (Majors et al., 2009). Work on 

TGE at Genentech has focussed on Bax and Bak, which are pro-apoptotic 

proteins that induce apoptosis by permeabilizing the mitochondrial membrane 

and activating the caspase proteolytic cascade (Wei et al., 2001). A Bax  Bak 

double knock out CHO cell line was found to have higher PEI:DNA polyplex 

uptake capacity than the standard CHO cells and higher transient antibody 

production (3-4 fold) (Macaraeg et al., 2013). Higher polyplex uptake capacity in 

DKO cells relative to CHO-K1 was concluded to be due to the enhanced ability 

of the DKO cell line to resist transfection induced apoptosis (Macaraeg et al., 

2013). Cell line engineering strategies for TGE are summarized in Table 1.3. 
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1.2.5.2 Yield Enhancing Additives Post Transfection 

Epigenetic methods of gene regulation, methylation and histone deacetylation 

(Nan et al., 1998), as with processes based on stable cell line generation (Kim 

et al., 2011), impact on TGE platforms (Hong et al., 2001; Nan et al., 2004). 

Chemical inhibitors of histone deacetylase have been found to improve TGE 

yields, as described in Table 1.4.  

As described in Table 1.4, other strategies to enhance TGE have included 

addition of growth factors (Galbraith et al., 2006) or transient co-expression of 

growth factors (Backliwall et al., 2008a). Cell cycle attenuation, either through 

nocodazole supplementation (Tait et al., 2004) or transient co-expression of p18 

or p21 cell cycle modulators (Backliwal et al., 2008a), have also been shown to 

enhance TGE. The process-improving effects of lithium acetate have been 

demonstrated on numerous occasions (Ye et al., 2009), but a mechanism of 

action never suggested.  

Nutritional additives, such as peptones, when added post transfection, have 

been shown to significantly enhance transient protein yields (Pham et al., 2003; 

Pham et al., 2005). Fed batch culture has also been shown to enhance 

transient protein yields (Sun et al., 2006). 

1.2.5.3 Optimization of Culture Modality  

Hypothermic growth conditions were found to enhance recombinant interferon-

gamma production in CHO cells (Fox et al., 2005a), due to elevated 

recombinant mRNA levels (Fox et al., 2005b). For TGE, hypothermic conditions 

have been shown to dramatically enhance transient protein titres on numerous 

occasions (Galbraith et al., 2006, Wuhlfard et al., 2008; Rajendra et al., 2011).  

Recent advances in bioreactor technology have been highly suited to large 

scale TGE, such as WAVE™ bioreactors (Haldanker et al., 2006). Strategies, 

such as high density transfection (Sun et al., 2008; Backliwal et al., 2008b; 

Thompson, 2011) have also enhanced yields. 

Just as consistency of host cell line between transient and stable production 

phases is desirable, so is culture modality (Silk et al., 2010). Increasingly, 

automated micro-scale bioreactor systems, such as ambr™ (TAP Biosystems), 
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are being used for cell line development and TGE processes, to better predict 

the performance of a cell line in the bioreactor. 
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CHAPTER 2 

Transfection 

Chapter Overview 

This chapter provides a synopsis of methods of transfection, with specific focus 

on the cationic polymer, polyethylenimine (PEI). Mechanistic insights into 

PEI:DNA polyplex cyto-delivery and cyto-trafficking are discussed. However, 

literature describing key steps in this process, including polyplex-cell surface 

binding and cyto-internalization, the focus of research presented in this thesis, 

are summarized in later results chapters. The aim of this chapter is to 

contextualize the data presented within this thesis, with respect to the body of 

literature describing transfection and specifically the mechanism of PEI 

mediated transfection.  

2.1 Methods of Transfection 

A fundamental process across biotechnology is transgene delivery to 

mammalian cells or “transfection” (Luo and Saltzman, 2000a). It is a process 

particularly important to therapeutic protein production through TGE, as the 

process relies on large scale transfection. Gene delivery strategies or methods 

of transfection (including viral transduction) are summarized in Table 2.1 and 

below. 

2.1.1 Viral 

Millions of years of evolution have rendered viruses preeminent gene delivery 

vehicles (Verma and Weitzman, 2005). Viral vectors are the most frequently 

used method for gene therapy applications (Warnock et al., 2011), with 

numerous in clinical trial (Sheridan, 2011) and the first gene therapy gaining 

approval, Glybera®, itself an adeno-associated viral vectors expressing 

lipoprotein lipase (Yla-Herttuala, 2012). Viral vectors have been used on 

numerous occasions for TGE in cell culture (Blasey et al., 1997; Blasey et al., 

2000). Systems use include alpha virus (including Semliki Forest virus), 
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adenovirus and vaccinia virus vectors (Wurm and Bernard, 1999). However, the 

limited DNA carrying capacity and the lengthy process of recombinant virus 

isolation (Pear et al., 1993), combined with biosafety concerns (Pham et al., 

2006), have resulted in episomal vectors (Van Craenenbroeck et al., 2000), 

combined with a delivery vehicle, being used for biomanufacturing and TGE 

rather than viral vectors. Nevertheless, much can be learned from viral 

mediated gene delivery in the design and development of non-viral delivery 

vehicles (Zuber et al., 2001; Wagner, 2004). 

2.1.2 Physical 

A plethora of physical transfection methods have been reported within the 

literature, including: microinjection (Capecchi, 1980; Derouazi et al., 2006a), 

particle bombardment (Sanford et al., 1993), electroporation (Neumann et al., 

1982), pressure mediated transfection (Mann et al., 1999) laser irradiation/ 

“optical transfection” (Tsukakoshi et al., 1984; Tao et al., 1987; Tirlapur and 

Konig, 2002) and ultrasound (Taniyama et al., 2002). Until recently, none of 

these methods has been suitable for scale-up. However, with the advent of 

MaxCyte™ large scale electroporation technology, electroporation for TGE is 

becoming an increasingly attractive option (Cain et al., 2013).  

2.1.3 Chemical: Co-precipitation 

The calcium phosphate co-precipitation method of transfection was first used by 

Graham and Van der Eb, (1973), and optimized by Jordan et al., (1996) with a 

view to producing recombinant proteins though large scale transfection and 

TGE (Jordan et al., 1998). Despite the widespread use of calcium phosphate for 

transfection and its efficacy (Girard et al., 2001; Girard et al., 2002; Chenuet et 

al., 2008), the requirement of serum in the media (Jordan and Wurm, 2004) 

renders the method sub-optimal for biomanufacturing.  

2.1.4 Cationic lipids 

Cationic lipids, such as DOTMA, DOTAP, DDAB, DOSPA, have been widely 

used for transfection, often in proprietary formulations (Choosakoonkriang et al., 

2001; Midoux et al., 2008). “Helper”, neutral lipids, such as DOPE or  
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cholesterol, are often added to the lipid formulation to aid transfection 

(Dabkowska et al., 2012). Despite its widespread use for microscale research 

applications, lipid based transfection, is not used for large scale TGE simple 

due to its prohibitive cost. In addition, higher transient protein production has 

been reported following transfection mediated by the much less expensive 

alternative, PEI, compared to some lipid based formulations (Wiseman et al., 

2003). 

2.1.5 Cationic polymers 

The cationic polymer, polyethylenimine, first presented as a transfection reagent 

by Boussif et al., (1995) has immerged as leading method of transfection for 

bioproduction through TGE (Geisse, 2009, Wong et al., 2010; Codamo et al., 

2011b; Rajendra et al., 2011, Thompson et al., 2012, Raymond et al., 2012). 

Combined with its efficacy as a method of transfection, it is suitable for large 

scale transfection due to its low cost. Other cationic polymers, such as 

polylysine, have shown inferior transfection properties compared to PEI 

(Putman et al., 2001; Mannisto et al., 2007). 

2.1.6 PEI 

Within the literature, a plethora of PEIs have been described, linear or branched 

(Figure 2.1), of different molecular weights and with derivatized chemical 

groups. The branched form is produced by cationic polymerization from 

aziridine monomers via a chain growth mechanism and the linear form by 

cationic polymerization of a 2-substituted 2-oxazoline monomer (Godbey et al., 

1999a). Of a range of different molecular weights available (2, 22, 25, 60, 800, 

1600 kDa) (Schlaeger and Christensen, 1999; Fischer et al., 1999; Godbey et 

al., 1999b), 25 kDa linear PEI has emerged as the PEI of choice for large scale 

TGE in HEK 293 and CHO cell platforms (Backliwal et al., 2008a; Eberhardy et 

al., 2009; Rajendra et al., 2011; Raymond et al., 2012; Thompson et al., 2012). 

Although, 22 kDa jetPEI™ (Polyplus transfection) is frequently used within 

industry (Wong et al., 2010).  
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2.2 Engineering PEI mediated Transfection to improve the TGE process 

At the most basic level, the process of transfection (mediated by PEI) has been 

engineered through optimization of transfection conditions, with respect to 

amount of DNA, PEI etc. (discussed in more detail in Chapter 4). Further 

improvements have been reported by transfecting cells cultured at high density. 

Sun et al., (2008) reported the success of high density transfection (107 cells 

mL-1) followed by perfusion culture for large scale TGE. High density 

transfection (~20x106 cells mL-1), followed by  a lower density production period 

(106 cells mL-1) was also reported by Backliwal et al., (2008b). One of the 

benefits of the high density transfection protocol is that a priori PEI:DNA 

complex formation is not required (Backliwal et al., 2008b). It has been reported 

that population context determines cell to cell variability in endocytic capacity 

(Snider et al., 2009) and it is possible that at relatively high cell densities, 

endocytic trafficking, for which PEI:DNA transfection is dependent, could be up-

regulated. 

 

 

 

 

 

 

 

 

 

 

PEI was originally tested as a transfection agent, due to its predicted ability to 1) 

condense DNA and 2) protect DNA from degradation within lysosomes (the 

“proton sponge” hypothesis) (Boussif et al., 1995), discussed in section 2.3. To 

A 

B 

Figure 2.1  

Chemical structure of polyethylenimine, branched (A) and linear (B). 

Branched PEI contains primary, secondary and tertiary amines and linear PEI 
only secondary amines. The molecular weight of the linear and branched PEI 

monomer is 41.3g mol-1 and 489.8 g mol-1 respectively. 
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target other intracellular obstacles (Figure 2.2) various derivatized PEIs have 

been developed. For example, acetylated PEI was reported to enhance 

transgene expression by providing decreased affinity with DNA, relative to 

unmodified PEI (Gabriel son and Pack, 2006). Alkylated PEIs were found to 

enhance in vivo transgene expression, developed under the hypothesis that 

PEIs with enhanced hydrophobicity would display enhanced binding to the cell 

surface (Thomas and Klibanov, 2002; Fortune et al., 2011) (discussed in 

Chapter 5 and 8). To avoid obstacles specific to in vivo delivery, such as 

opsonization, PEGylated PEIs were found to be efficacious (Ogris et al., 1999) 

(discussed in Chapter 5). Biodegradable PEI was developed to reduce the 

cytotoxicity of PEI, and was found to provide excellent transgene expression in 

vitro (Breunig et al., 2007). However, despite the plethora of examples within 

the literature of derivatized PEIs, for large scale transfection for industrial 

biopharmaceutical production by TGE, unmodified PEI continues to be utilized 

as the gene delivery vehicle. 

To enable knowledge based engineering of PEI mediated transfection, an 

understanding of the process is required, from PEI:DNA polyplex formation, 

cyto-delivery to cyto-trafficking (Figure 2.2).  

2.3 PEI:DNA Polyplexes: Cyto-Delivery and Cyto-Trafficking  

Following PEI:DNA polyplex formation (1), as illustrated in Figure 2.2, the 

polyplex interacts with cell culture media components (2), binds to the cell 

surface (3), is internalized by the cell (4), escapes from endosomes (5), is 

trafficked to the nucleus (6), enters the nucleus (7); once inside the nucleus, the 

recombinant DNA is transcribed (8). Numerous reviews have described 

intracellular trafficking of transfection complexes (Godbey et al., 1999c; Wiethoff 

and Middaugh, 2003; Guillem and Alino, 2004; Medina-Kauwe et al., 2005; 

Belting et al., 2005; Lungwitz et al., 2005; Midoux et al., 2008; Adler and Leong, 

2010; Thompson, 2011). 

Stages 1 and 5-8 will be discussed below and stages 2-4 within Chapters 4, 5, 

6, 7 and 8. 
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(1) PEI:DNA Polyplex Formation 

PEI was first tested as a transfection agent due to its high charge/ density ratio 

(the highest of any organic macromolecule) and its predicted ability to ionically 

condense DNA though amine-phosphate interactions, between PEI and DNA, 

respectively (Boussif et al., 1995). Condensation of the DNA by PEI, protects it 

from digestion by extra and intracellular nucleases (Godbey et al., 2000; Moret 

et al., 2001). 

Condensation of DNA by PEI, resulting in the formation of polyplexes (Godbey 

et al., 1999d), is considered as fundamental for successful gene delivery. The 

thermodynamics of PEI:DNA binding and condensation was explored by Utsuno 

and Uludag (2010), who used isothermal titration calorimetry. They reported two 

types of binding, firstly, PEI binding to the DNA groove and secondly PEI 

binding to the DNA phosphate back bone, accompanied by condensation of the 

DNA. 

The sulphated glycosaminoglycan, heparin, has been shown to displace DNA 

from PEI:DNA complexes (Moret et al., 2001; Clamme et al., 2003; Bertschinger 

et al., 2006b). Dextran sulphate has also been shown to relax PEI:DNA 

polyplexes (Ikonen et al., 2008). Osmolarity was found to affect PEI:DNA 

complex stability (Bertschinger et al., 2006b); at high salt concentrations 

(≥0.5M) DNA disassociated from PEI. Bovine serum albumin (BSA) was also 

found to cause PEI:DNA polyplex disassembly (Bertschinger et al., 2006b). 

(5) Endosomal Release 

Endocytosed cargo in mammalian cells is degraded within the acidic 

environment within lysosomes (Asokan and CHO, 2002; Luzio et al., 2009). A 

key feature of PEI as a transfection reagent, is believed to be its ability to 

accept protons or act as a “proton sponge” within endosomes/ lysosomes 

(Boussif et al., 1995; Behr, 1997). There are two complimentary theories for the 

function of PEI within endosomally contained PEI:DNA polyplexes: the buffering 

properties of PEI leads to 1) an influx of protons and chloride ions, subsequent 

osmotic swelling and rupture, allowing release of polyplexes into the cytoplasm, 

and 2) neutralization of the lysosomal compartment, thus inhibiting the action of 
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lysosomal nucleases (active at low pH) and protecting DNA from degradation 

(Behr, 1997).  Convincing evidence supporting the theory was provided by  
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Akinc et al., (2005), who reported that N-quaternization of PEI (reducing its 

buffering capacity) and addition of bafilomycin A1 (a proton pump inhibitor) 

reduced TGE by approximately two orders of magnitude (Kichler et al., 2001; 

Thomas and Klibanov, 2002). 

(6) Nuclear Trafficking 

PEI:DNA polyplexes have been shown to be trafficked to the nucleus via active 

motor protein driven transport on microtubules (Suh et al., 2003). Nuclear 

localization signals (Kalderon et al., 1984), have been covalently attached to 

plasmid DNA for transfection (Sebestyen et al., 1998; Zanta et al., 1999). NLS 

have also been used with polyethylenimine-DNA complexes (Matschke et al., 

2012; Zhang et al., 2013).    

 (7) Nuclear Uptake 

There are two hypothesise for polyplex nuclear entry; 1) polyplexes enter the 

nucleus during the break down of the nuclear membrane during cell division and 

2) polyplexes enter the nucleus by active transport through the nuclear 

envelope, independently of cell division. 

Cell cycle control has been exploited to enhance transgene expression 

following PEI mediated transfection (Tait et al., 2004; Backliwal et al., 2008a), 

putatively enhancing transgene accumulation in the nucleus. However, it is 

likely polyplexes are taken into the nucleus through both mechanisms 1 and 2.  

Cell cycle was found to affect gene expression following transfection mediated 

by linear 22 kDa PEI (6 fold increase in gene expression recorded in G1 

synchronized cells compared to cell synchronized in the late S phase), but to a 

much lesser extent than it did for gene expression mediated by lipofectamine 

(Brunner et al., 2002), branched PEI or adenovirus (Brunner et al., 2000). In 

addition, Grosse et al., (2006) demonstrated that whilst mitosis lead to a higher 

proportion of GFP expressing cells, cell division was not necessary for gene 

expression. Han et al., (2009) further demonstrated nuclear uptake of 

polyplexes in non dividing cells (Horbinski et al., 2001). 

Only a small fraction of plasmid delivered to the cell is translocated to the 

nucleus (~10%) (Carpentier et al., 2007; Cohen et al., 2009). Plasmid copy 
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number per nucleus was found to approach saturation with respect to gene 

expression (Cohen et al., 2009; Glover et al., 2010) or to increase linearly with 

gene expression (Cohen et al., 2009) for different cell lines. The relationship 

between plasmid copy number per nucleus and gene expression is likely to be 

transfection protocol dependent (i.e. nuclear plasmid DNA copy number may 

increase beyond the level required for maximum gene expression if the cell is 

transfected with excess DNA and vice versa if too little DNA is transfected). 

(8)Transcription of plasmid DNA 

Once in the nucleus, transcription of plasmid DNA is thought to occur 1) whilst 

complexed with PEI or 2) following dissociation from PEI. Either way, 

transcription factors and polymerases must be able to access the plasmid DNA. 

Schaffer et al., (2000) and Bieber et al., (2002) present conflicting data on the 

effect of PEI on plasmid DNA, measured using in-vitro transcription studies; 

Schaffer et al., (2000) reported (without showing data) that PEI complexation 

inhibited plasmid DNA transcription whereas Bieber et al., (2002) reported no 

difference in transcription between PEI-complexed and uncomplexed plasmid 

DNA. Following microinjection into the nucleus, transgene expression was 

similar for polyethylenimine condensed- and naked plasmid DNA (Pollard et al., 

1998). Similar results were obtained by Honore et al., (2005), who reported that 

at N/P ratios between 5 and 15, transgene expression was similar for PEI 

condensed- and naked plasmid DNA following intranuclear microinjection. One 

hypothesis is that plasmid DNA is displaced from the PEI polyplex by nuclear 

RNA or DNA (Bertschinger et al., 2006b). It should be noted that within the 

nucleus this displacement reaction could take place, following PEI:DNA 

polyplex microinjection. 
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2.4 Thesis Overview 

The cell surface is the initial barrier that that transgene complex must pass to 

gain entry into the mammalian cell factory (Luo and Saltzman, 2000b). PEI was 

first tested as a transfection regent due to its ability to accept protons and act as 

a “proton sponge” within lysosomes, both protecting DNA from degradation and 

allowing release into the cytoplasm (Boussif et al., 1995). Thus PEI was not 

utilized for its ability to facilitate DNA delivery across the plasma membrane, but 

for its ability to overcome a subsequent intracellular obstacle for DNA trafficking 

to the nucleus. Whilst there are numerous reports within the literature of PEI 

derivatives for transfection (Neu et al., 2005), none have been used for CHO 

based bioprocessing. Thus, in this thesis, the mechanism of PEI mediated 

transfection of suspension CHO-S cells is explored at the cell surface, 

approaching the question from first principles (Chapters 4-7). In the final chapter 

of this thesis, novel, knowledge based engineering strategies are explored, 

based on mechanistic insights to PEI mediated transfection at the cell surface 

provided by published literature and the data presented in Chapters 4-7.  

Transfection kinetics, with respect to total polyplex cellular association and cyto-

internalization are characterized, along with basic system-specific transfection 

parameters (Chapter 4). Bio-physical interactions between polyplexes and the 

cell surface are explored in Chapter 5; specifically, by manipulation of polyplex 

charge and use of non-ionic surfactants to explore the role of electrostatic and 

hydrophobic interactions. In Chapter 6, bio-molecular polyplex-cell surface 

interactions are investigated, in particular, focusing on the role of lipid rafts and 

heparan sulphate proteoglycans in PEI mediated transgene delivery. The 

efficacy of canonical chemical inhibitors of endocytosis in CHO cell platforms 

are described in Chapter 7. Based on data presented in Chapter 4-6, 

engineering strategies to improve PEI mediated transfection are explored in 

Chapter 8, namely by utilizing PEIs with enhanced hydrophobicity and cell line 

selection through clone screening. In Chapter 9, work within previous chapters 

is discussed as a whole. 
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CHAPTER 3 

Materials and Methods 

The materials and methods used for experiments described throughout this 

thesis are described in this chapter.  

Mammalian cell culture and microbial work were conducted in separate 

laboratories. Cell culture sterility was maintained by conducting work in a 

laminar flow hood and by using a solution of 70% industrial methylated spirits 

(IMS) on all surfaces and plastic-wear. All materials used were of the highest 

purity available, unless otherwise stated. Deionised Milli-Q water (Millipore) was 

used, unless otherwise state.  

3.1 Mammalian Cell Culture 

The suspension adapted CHO-S cell line, derived from the CHO-K1 cell line, 

was cultured in CD-CHO medium (Life Technologies, Paisley, UK), 

supplemented with 8 mM L-glutamine (Life Technologies). Cells were routinely 

cultured in vented, flat bottomed Ehrlenmeyer shake flasks (Corning) (Fisher 

Scientific, Loughborough, UK), of 125 mL, 250 mL, 500 mL or 1 L total volume. 

Culture volume was 20-25% of total flask capacity. Every 3-4 days cells were 

passaged, seeding at a density of 2x105 cells mL-1. Cells were incubated at 

37°C, 5% CO2 140 rpm incubators (Infors, Derby, UK), without humidification. 

Cell counts, cell viability and cell diameter was measured using a ViCell™ Cell 

Viability Analyser (Beckman Coulter, High Wycombe, UK), which uses trypan 

blue exclusion to indicate cell viability. A Nikon Eclipse TS100 inverted light 

microscope, with a 40x objective lens, was used to check for bacterial 

contamination. Cultures were also routinely tested for mycoplasma infection. 

To constrain genetic diversity, master- and working cell banks were created and 

cells were maintained for 20 passages only. Five passages separated the 

master and working cell banks. For creation of cell banks, cells were pelleted 

and resuspended in 9 parts CD-CHO medium, 1 part dimethyl sulphoximide 
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(DMSO) (Sigma-Aldrich, Dorset, UK) at a density of 1x107 viable cells mL-1 and 

aliquoted into cryovials (Nunclon) (Sigma-Aldrich, Dorset, UK). Cryovials were 

gradually frozen to -80°C using a Nalgene®  Mr Frosty container filled with 

isopropanol, before transferring to cryostats containing liquid nitrogen (-196°C) 

for long term storage. Cells were brought up from liquid nitrogen storage by 

incubating the cryovial in water at 37°C, until the culture had melted, and 

resuspending in warmed CD-CHO media. To remove DMSO, the cells were 

pelleted and resuspended in CD-CHO medium supplemented with 8 mM L-

glutamine and maintained as described above. The entire vial (1x107 cells) was 

used to inoculate the flask following cryo-storage.   

Cell doubling time was calculated as described by equation 3.1. Generation 

number was calculated as described in equation 3.2. Cell specific growth rate 

(µ) was calculated as described in equation 3.3. Where t  is time, f  is final, VCD 

is viable cell density. 

 

Cell doubling time = 
           

                        
 

Generation number = 
                           

            
 

µ  = 
                      

        
 

3.2 Cell Fixing    

Cells were fixed in a 4% (w/v) paraformaldehyde (PFA) (Sigma-Aldrich) 

phosphate buffered saline (PBS) solution. Cells were washed in PBS prior to 

incubating for 15 min at a concentration of 1x107 cells mL-1 in PFA PBS solution 

at 4°C. Cells were resuspended at a concentration of 1x106 cell mL-1 in PBS 

and stored at 4°C.  

3.3 Plasmid DNA Preparation 

Plasmid gWIZ™ SEAP (Genlantis) (AMS-Biotechnology, Abingdon, UK) was 

transformed into Library Efficiency® DH5α™ Escherichia coli competent cells 

(Life Technologies). Cells (DH5α™)  were thawed on wet ice and mixed gently 

3.1 

3.2 

3.3 
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with plasmid DNA at a ratio of 1:50, incubated on ice for 30 min, incubated in 

water at 42°C for 20 s, incubated on ice for 2 min and finally added to 0.9 mL 

Luria broth and incubated at 37°C for 1 h. The inoculum was then used to 

streak Luria broth (Fisher Scientific) agar plates (100 µg mL-1 kanamycin), which 

were incubated for 12-16 hours at 37°C. A colony was picked and used to 

inoculate 5 mL Luria broth (100 µg mL-1 kanamycin), which was incubated for 

12-16 h at 37°C. Glycerol solution (50:50 glycerol to water) was added to the 

starter culture at a 0.3:1 ratio of glycerol solution to culture, for long term 

storage at -80°C of the transformed DH5α™ cells. For bulk amplification of 

plasmid DNA, starter culture or glycerol stocks were used to inoculate Luria 

broth (100 µg mL-1 kanamycin), which was incubated at 37°C, 170 rpm for ~20 

h.  

Plasmid DNA was purified using Maxi- or Mega-Prep Kits (Qiagen, Manchester, 

UK), following the manufacturer’s protocol (2005). Plasmid DNA was stored in 

Tris-HCl buffer, pH 8.5 in aliquots at -20°C. The concentration of DNA was 

calculated according to the Beer Lambert Law (equation 3.4), whereby the 

extinction co-efficient of double stranded DNA is 0.02 µg mL-1 cm-1 at a 

wavelength of 260 nm (equation 3.5). Absorbance at 260 and 280 nm was 

measured using a Biomate™ UV spectrophotometer. The purity of the DNA 

solution was determined by using the 260/280 ratio and DNA solutions with 

260/280 ratios between 1.8 and 1.9 were used for transfections.  

A = εbc 

Where A is absorbance, ε is molar absorptivity (L mol-1 cm-1), b is path length 

(cm), c is concentration (mol L-1). 

DNA concentration (mg L-1) = 
      

     
  

If subsequent purification of plasmid DNA was required, nucleic acid was 

precipitated using ethanol. A solution of 0.1 volume 3 M sodium acetate (pH 

5.2) and 2-3 vol. 100% ethanol were added to the DNA solution, which was then 

incubated at -20°C for several hours. The DNA was pelleted by centrifuging at 

13 000g for 30 min and resuspended in Tris-HCl buffer, pH 8.5.  

 

3.4 

3.5 
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3.4 Fluorescent labelling of DNA 

Plasmid DNA was labelled with fluoroscein or cy5 using Mirus Label IT® nucleic 

acid labelling kit (Cambridge Biosciences, Cambridge, UK), at a ratio of 1:4 

(w/v) plasmid DNA to labelling reagent. Following incubation of the plasmid 

DNA and Label IT reagent solution, DNA was purified by ethanol precipitation, 

as described above.   

3.5 Transfections 

Linear 25kDa polyethylenimine (PEI) (Polysciences) (Park Scientific, 

Northampton, UK) was dissolved in deionised water (heated to 50°C and 

vortexed) at a concentration of 1 mg mL-1, the pH of the solution adjusted to 7.2 

using hydrochloric acid and 0.22 µm filter sterilized. Solutions of PEI were 

stored in single use aliquots at -80°C. The solution of PEI, DNA and 150 mM 

sodium chloride (NaCl), of total volume 66.6 µL per mL transfection volume, 

was mixed by pipetting and incubated at room temperature for exactly 1 min 

prior to addition to cells (CHO-S). Unless otherwise stated, CultiFlask 50 

disposable bioreactors (Sartorius-Stedim, Epsom, UK) were used for 

transfection in shaking modality, with incubation at 37°C, 5% CO2 170 rpm 

rotation and without humidification (Infors). For static micro-scale culture, 

Corning® Costar® Ultra-Low attachment 24 well plates (Sigma-Aldrich), with a 

neutral hydrophilic hydrogel surface, were used and cells cultures at 37°C, 5% 

CO2 with humidification (Heraeus, Fisher Scientific). The discrete and 

continuous parameters used for transfections are summarized in Table 3.1 and 

Table 3.2 respectively. 

Table 3.1 Discrete Transfection Parameters  

Protocol Modality PEI Plasmid PEI:DNA 
incubation 

solution 

Cell line Media and 
supplements 

A Static 
24 well 
plate 

25 
kDa 

linear 

pgWiz™ 
SEAP 

 

150 mM 
NaCl sol. 

 

CHO-S CD CHO, 8 mM 
L-glutamine. 
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Table 3.2 Continuous Transfection Parameters 

Protocol [PEI] 
µg/ 
106 

cells 

[DNA] 
µg/ 106 

cells
 

PEI:DNA 
ratio 
w/w 

molar N/P 

PEI:DNA 
incubation 

time 

PEI:DNA 
incubation 

solution 
volume 

[Cells]  
(cells 
mL-1) 

Culture 
Volume 

(mL) 

A 4.7 4
 

1.2 
9

 
1 min 66.6 µL per 

mL culture 
volume 

1x106 0.5 

 

The molar ratio of PEI to DNA was calculated as described by equation 3.6.  

PEI/DNA ratio   = 
         

             
 

Where the molecular weight of the ethylenimine monomer (C2H5N)  is 43.1 

grams mole-1 and the average molecular weight of deoxyribonucleotide 

monosphosphate is 327 grams mole-1.   

3.6  Transfections with fluorescently labelled plasmid DNA 

Transfections were performed as described above and at the indicated times 

post transfection, cells were either resuspended in CellScrub™ (AMS 

Biotechnology) or DPBS (to distinguish between internalized polyplex and total 

cell associated polyplex respectively) and incubated for 10 min at 4°C,  washed 

a second time with PBS and stored on ice before flow cytometric analysis or 

confocal microscopy. 

 

 For polyplex-cell surface binding experiments, transfections were incubated at 

4°C for 4 h, washed twice with PBS and incubated on ice before flow cytometric 

or analysis or microscopy.  

3.7 Secreted Alkaline Phosphatase (SEAP) reporter protein assay 

Relative secreted alkaline phosphatase (SEAP) reporter protein (Berger et al., 

1998)  was measured using a colorimetric Anaspec SensoLyte® pNNP 

Secreted Alkaline Phosphatase Reporter Gene Assay Kit (Cambridge 

Bioscience). Alkaline phosphatase catalyses the hydrolysis of paranitrophenyl 

phosphate to paranitrophenol (equation 3.6), which has a yellow colour, 

3.6 
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measured spectrophotometrically at  405 nm.  Thus absorption is a measure of 

SEAP activity and concentration. Supernatant was stored at -20°C prior to 

relative SEAP quantification. In a 96 well plate, 50 µL paranitrophenyl 

phosphate (pNPP) was added to 50 µL  of (diluted) supernatant. The 

absorbance was measured at 405 nm using a PowerWave™ 

spectrophotometer plate reader (BioTek, Potton, Bedfordshire, UK). Kinetic 

readings were taken, to ensure absorbance readings were within linear range. 

Where normalized values are given, maximum absorbance at 405 nm was 

given a value of 1. For quantification of reporter output, a human placental 

SEAP standard curve was prepared by serial dilutions in CD CHO media 

(Figure 3.1). 
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Figure 3.1 Example SEAP standard, concentration (µg L-1) against absorb-

ance (405 nm). 
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3.8 Flow Cytometry 

A BD FACSCalibur™ (Oxford, UK) was used for flow cytometry. The cell 

population was gated according to side and forward scatter, Figure 3.2. 

Fluoroscein was excited using a 488 nm laser and detected using a 530/30 

band pass filter. Cells without a fluorescent label were measured to determine 

cellular auto-fluorescence. Unless otherwise stated, a sample of 5000 cells was 

measured. Data was analyzed using FloJo™ software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9 Microscopy 

A Nikon Eclipse TS100 microscope was used for light microscopy. Images were 

captured using a Nikon Digital Sight camera. For confocal microscopy, upright 

and inverted Zeiss LSM 510 microscopes were used and images analysed 

using Zen 2009 light edition software. 

Figure 3.2 Example flow cytometry plots 

Cell population gated for granularity and size (A). Example histogram of  
fluorescence for cells without a fluorescent stain/ label (auto-fluorescence) (B).  
Example histogram of cells with fluorescent label (C). 
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3.10 Zeta potential measurements 

PEI:DNA polyplexes were formed in 150 mM sodium chloride solution, as 

described above. PEI:DNA polyplexes were added to solutions at the same 

concentration as for transfections and incubated for 5 min at room temperature 

prior to measurement. Particle electrophoretic mobility was measured using a 

Brookhaven ZetaPALS (Cheadle, Cheshire, UK) system, using phase analysis 

light scattering. Zeta potential was obtained by using the Smoluchowsky model.  

3.11 Statistics 

Unless otherwise stated, the mean of triplicate experiments is shown and the 

error bars represent one standard deviation about the mean. To test for 

significance, an unpaired, two tailed, student’s t-test was used. 
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CHAPTER 4 

Characterization of Transfection 
Parameters and Kinetics 
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Chapter Overview 

This chapter describes a DoE-RSM optimized protocol for the micro-scale 

transfection of CHO-S cells. Key parameters surrounding the transfection 

process are explored, such as the kinetics of polyplex cell-association and cyto-

internalization and the cytotoxicity of PEI and PEI mediated transfection. The 

aims of this chapter are to: 

 Describe the DoE-RSM optimized PEI mediated transfection protocol. 

 Characterize the host cell line (CHO-S) for parameters relevant to PEI 

mediated transfection and transient gene expression. 

 Establish the kinetics of transfection, with respect to polyplex-cell 

association and cyto-internalization. 

 Investigate the toxicity of PEI and PEI:DNA polyplexes. 

 

In summary, a DoE optimized PEI mediated transfection protocol is described, 

justified and explored at the molecular level.  
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4.1 Introduction 

4.1.1 Cell line specific transfection optimization 

As described in section 1.2.1, amongst other mammalian cell lines, cell lines 

derived from a Chinese Hamster Ovary (CHO) are the most frequently used for 

the production of complex, glycosylated biopharmaceuticals. First taken from 

the Chinese Hamster Ovary in 1956 (Puck et al., 1956), the cell line has 

diverged and numerous variant, parental CHO cell lines now exist (Derouazi et 

al., 2005). Frequently used CHO variant cell lines for biomanufacturing include 

the CHOk1sv and CHO DG44 cell lines. 

For the study presented in this thesis, the CHO-S parental cell line was used 

throughout. The CHO-S cell line in a suspension adapted CHO cell line variant, 

adapted to grow in serum free culture and is freely available to purchase from 

Life Technologies, unlike several other variant CHO cell lines, which are 

propriety cell lines. A suspension adapted, rather than adherent, cell line was 

utilised, due to its relevance to biomanufacturing.  

Heterogeneity exists between cell lines, between variant CHO cell lines and 

between clones of the same cell line (Wurm and Hacker, 2011). It is likely that 

the the results presented in this thesis are cell line specific. However, the CHO-

S cell line is a suitable “model” cell line for biomanufacturing, rendering the data 

presented in this thesis applicable to other cell lines with similar characterisitics. 

Optimization of transfection involves the fine tuning of numerous discrete and 

continuous parameters (Thompson et al., 2012). Discrete parameters  include 

host cell line, vector or system (Table 1.3). Recently, the variability in CHO cell 

line specific TGE capacity has been demonstrated. CHO cell lines were found 

to vary in their reporter protein output, following transfection (CHO-S cells were 

found to secrete >4 fold the level of SEAP secreted by CHO-L and CHO-M 

cells) (Thompson et al., 2012). In addition, CHO-K1SV derived clones have 

been found vary dramatically in their clone specific transient mAb or GFP 

production capacity following transfection by lipofection or electroporation 

(Davies et al., 2012). 

Continuous parameters for optimization include the cell density at time of 

transfection and PEI and plasmid DNA concentration. Optimization of these 
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variables can be achieved via a one factor at a time approach (OFAT) 

(Rajendra et al., 2011; Raymond et al., 2012), or via design of experiments 

(DoE) methodology (Bollin et al., 2011; Thompson et al., 2012). As described by 

Mandenius and Brundin (2008), optimization using DoE methodology is superior 

to OFAT in that, often, fewer experiments are required and a true optimum is 

more likely to be achieved. Using OFAT, if one variable is kept constant, a quasi 

optimum may result due to the inter-dependency of the variables (Mandenius 

and Brundin, 2008).  

Optimization of continuous parameters is often specific to discrete parameters, 

for example plasmid vector, culture modality, media and cell line. Thus, 

transfection optimization is an unavoidable step in PEI mediated TGE. 

4.1.2 Transfection kinetics: polyplex-cell-surface association and cyto-

internalization 

The kinetics of polyplex nuclear delivery have been explored (Glover et al., 

2010), but not the kinetics of polyplex-cell association or cyto-internalization.  

Transfection kinetics were explored, indirectly, by Bertschinger et al., (2008), by 

adding excess competitor DNA to the culture at set times post transfection, 

which was taken to inhibit subsequent uptake of PEI:DNA polyplexes. At 60 min 

post transfection with PEI, addition of excess stuffer DNA resulted in TGE (GFP 

reporter protein) at 80% of control levels (without addition of stuffer DNA).  

Polyplex-cell association and cyto-internalization was explored by Thompson et 

al., (2012) for three variant CHO cell lines. Cell-line specific polyplex 

internalization capacity was found to be >4 fold higher in CHO-S cells, relative 

to CHO-L and CHO-M. Cyto-internalization, but not total cell-association, of 

fluorescently labelled polyplexes, across three cell-lines, was linked to SEAP 

reporter protein production at cell line specific optimized conditions. 

The role of cell surface constituents (e.g. heparan sulphate proteoglycans) in 

polyplex-cell surface interactions will be discussed and explored in Chapter 6. 
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4.1.3 Cyto-toxicity of PEI and PEI mediated transfection 

Two outputs are normally required for TGE processes: high transgene 

expression and high culture viability post transfection (Lv et al., 2006). Low cell 

viabilities, due to stress at transfection or during the TGE process, leading to 

release of intracellular proteases or glycosidases, can adversely affect product 

quality and/or titre (Cruz et al., 2002). Of a range of cationic polymer/ 

macromolecular transfection agent, polyethylenimine was found to be relatively 

toxic (Fischer et al., 2003). Thus an understanding of toxicity caused by PEI 

mediated transfection may help improve TGE platforms. 

Cyto-toxicity of PEI and PEI:DNA polyplexes has been reported to occur in two 

phases (Moghimi et al., 2005). The first stage of toxicity was found to occur 

within the first hour post addition of PEI/ PEI:DNA polyplexes, attributed to 

necrotic damage to the plasma membrane (assessed by lactate dehydrogenase 

release and phosphatidylserine translocation to the cell surface). The second 

stage of toxicity was reported at 24 hours post addition of PEI/ PEI:DNA 

polyplexes and was attributed to mitochondrially mediated apoptosis (assessed 

by release of proapoptotic cytochrome c, activation of caspase c and alteration 

of mitochondrial membrane potential) (Moghimi et al., 2005). 

Necrotic changes at the plasma membrane have also been reported at 1-2 

hours following PEI:DNA polyplex addition (phosphatidyl serine exposure and 

plasma membrane permeability measured through propidium iodide staining) by 

Grandinetti et al. (2011). The authors also reported apoptotic markers at early 

time points post transfection (1-2 h), by measuring caspase 9 activity and a 

decrease in mitochondrial membrane potential. PEI:DNA polyplexes were also 

shown to co-localize with mitochondria, within two hours post transfection. 

Additionally, Grandinetti et al., (2011) demonstrated that the effect of PEI on 

mitochondrial membrane potential was potentiated by addition of cyclosporin A 

(an inhibitor of the mitochondrial membrane permeability transition pore), 

rotenone  and oligomycin (respiratory chain inhibitors). 

Mitochondria are a source of reactive oxygen species (ROS) in mammalian 

cells (Murphy, 2009), which can in turn lead to the induction of apoptosis 

(Anderson et al., 1999; Green and Reed, 1998; Simon et al., 2000) (Figure 4.1). 
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Recently, efforts to reduce ROS following PEI mediated transfection have been 

reported (Lee et al., 2013). Transfection with PEI lead to significant production 

of ROS in HepG-2 cells, which was abated by addition of the anti-oxidant, 

tocopherol. An amphiphilic copolymer (PEI-PLGA) was synthesized and used to 

co-transport the anti-oxidant alpha-tocopherol alongside plasmid DNA (PEI-

PLGA/Toco/pDNA polyplex); it was found to enhance transfection efficiency 

dramatically in HepG2, MCF-7 and HCT-116 cells (Lee et al., 2013).   

Acylated PEIs have been reported as efficacious for in vitro and in vivo gene 

delivery (Forrest et al., 2004; Nimesh et al., 2007; Aravindan et al., 2009). 

Recently, acylated PEI nano-particles have been shown to result in lower levels 

of ROS production relative to non-acylated PEI based nano-particles (Calarco 

et al., 2013).  

The toxicity of charged medical nano-particles is well reported (Baek et al., 

2011; Frohlich, 2012). Substantial work has been directed towards reducing the 

toxicity of PEI:DNA polyplexes by shielding the net positive charge on their 

surface through PEGylation and lipid coating (Luo et al., 2012). PEGylation and 

lipid coating of polyplexes successfully reduced their zeta potential and 

numerous PEG-PEI:DNA polyplexes displayed lower toxicity and higher 

transfection efficiency relative to PEI:DNA polyplexes, especially at higher N/P 

ratios (Luo et al., 2012). Acylated- and PEGylated-PEIs are lipo-polyplexes are 

discussed in more detail in Chapters 5 and 8.  

The relative toxicity and transfection efficacy of PEI:DNA polyplexes, PEI:DNA 

polyplexes purified by size exclusion chromatography (SEC) or PEI:DNA 

polyplexes purified by SEC with additional free PEI added was explored 

(Boeckle et al., 2004). Purified polyplexes were found to be severely detrimental 

to gene expression in the case of branched 25 kDa PEI. However, for linear 22 

kDa PEI, purified polyplexes were found to have no effect or enhance gene 

expression, for a selection of the cell lines tested (CT26, B16-F10, HeLa). 

Furthermore, transfection with purified polyplexes dramatically improved the 

toxicity profile and, for both branched and linear PEI, increased levels of cell 

associated DNA (Boeckle et al., 2004). In addition, Godbey et al., (1999d) 

reported the detrimental effects of free PEI on transfection.  
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4.2  Materials and Methods 

For all experiments described in this chapter, CHO-S cells were used, using the 

culture conditions described in Chapter 3. Cells were transfected with 25 kDa 

linear polyethylenimine according to protocol A, as described in Chapter 3, 

Tables 3.1 and 3.2.  

4.2.1 Transfection Optimization 

Transfection was optimized using design of experiments software (Design 

Expert 7, Statease (PRISM-TC, Cambridge, UK), specifically using a central 

composite design. Cell density at time of transfection was kept constant, at 1 

x106 cells mL-1. Cells were cultured in a total volume of 500 µL in 24 micro-well 

plates. DNA concentration was varied between 1 and 5 µg mL-1 and PEI was 

varied, as a ratio of DNA mass, between 1 and 3.  

4.2.2 Biotinylating and staining with streptavidin-FITC 

Sulpho-NHS-SS Biotin was purchased from Fisher Scientific. A 10 mM solution 

was prepared immediately before use and added to 106 live cells at a 

concentration of 250 µM. Cells were incubated for 30 min on ice, washed once 

Figure 4.1 Apoptotic CHO-S cell. 

Cells (CHO-S) were biotinylated and stained with streptavidin FITC and viewed 
using a Cytoviva. Membrane blebbing (Coleman et al., 2001) is a morphologi-
cal change characteristic to apoptosis. Cells were imaged using a 100x objec-

tive lens. Bar=10µm. 
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with PBS and fixed with PFA. Biotinylated, fixed cells (106 in 1 mL volume) were 

incubated at 4°C, in darkness for 20 min with 2.5 µg streptavidin FITC (BD 

Biosciences) and washed and resuspended in PBS.  

4.2.3 Analysis of reactive oxygen/nitrogen species 

The Oxiselect™ In vitro ROS/RNS Assay Kit (Cambridge Bioscience) was used 

to measure free radical levels in the culture supernatant.  The method employs 

the fluorogenic probe, 2, 7-dichlorodihydrofluorescein (DCFH). In the presence 

of ROS and RNS, DCFH is oxidized to the fluorescent 2,7-dichlorofluorescein 

(DCF) (λexcitation =498nm; λemission =522nm). Fluorescence intensity is proportional 

to the total ROS/RNS level within the sample. Fluorescence was measured 

using a Fluoroskan-Ascent plate reader (Fisher Scientific). 

4.2.4 Fluorescent microscopy 

Fluorescent cells were visualised using an Olympus BX51 microscope, a 

Cytoviva Dual Mode Fluorescence Module (Aetos Technologies), an Exfo X-cite 

120 Fluorescent light source and a Progress C5 camera and software 

(Jenoptik). 

4.3  Results 

4.3.1 Optimization of micro-scale PEI mediated transfection of CHO-S 

cells using design of experiments methodology 

Using design of experiments, a micro-scale protocol was developed in static 24 

well plate format, using 25 kDa linear PEI, CHO-S cells in CD CHO media and a 

pgWiz™ SEAP expression vector (Figure 4.2). SEAP activity increased with 

increasing DNA concentration and decreasing PEI:DNA ratio (Figure 4.2A). 

However, by reducing DNA concentration, culture percentage viability increased 

significantly (Figure 4.2B). Balancing SEAP production and culture viability, a 

DNA concentration of 4 mg L-1 and PEI concentration of 4.7 mg L-1 (PEI:DNA 

ratio of 1.2 w/w or molar N/P ratio of 9) were predicted by the model and 

validated experimentally.  
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4.3.2 Characterization of host cell line for TGE mediated by PEI 

The CHO-S cell-line was used as a host cell line due to its ability to grow to high 

density in suspension culture and its superior susceptibility to transfection and 

TGE (Thompson et al., 2012). The cell growth and the culture percentage 

viability were measured from cultures over a 200 h period, with readings taken 

at approximately 24 h intervals (Figure 4.3A). Cell specific growth rate, µ, was 

calculated for the period that the cells were in exponential growth phase (up to 

96 h), and found to be 0.04 h-1. It was determined that cells would be passaged 

and transfected at approximately 72 h post sub-culture (in the mid-exponential 

phase). Up to approximately 100 h, the cells doubled at an approximately 

constant rate and between 100 and 125 h, the doubling rate increased 

substantially. 

To constrain the genetic diversity of the CHO-S host cell line, cell banks were 

created and cells were maintained for 20 passages only. Cells at passage 1 and 
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Figure 4.2  Design of experiments response surface models (DoE-RSM) 

for micro-scale PEI mediated transfection of CHO-S cells with 
pgWiz™SEAP expression vector. 

Transfection of CHO-S, suspension adapted cells cultured in a static 24 well 

micro-plate modality was optimized using design of experiments soft-ware 
(Design Expert 7) (a central composite design). Optimized conditions were 

based on a sweet point between maximum SEAP production and high culture 
viabilities. A: SEAP response surface and B: culture % viability response sur-

face.  

A B 
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21 were transfected using standard conditions (Figure 4.4). Limited difference in 

SEAP production, viable cell density or culture percentage viability was seen 

between transfections at passages 1 and 21 (Figure 4.4 A, B). In addition, there 

was no significant difference between viable cell density and culture percentage 

viability of un-transfected cells (Figure 4.4 C).  
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Figure 4.3 Growth of CHO-S Cells in batch culture. 

CHO-S cells were grown in CD CHO media with 8mM L-glutamine in a total 
volume of 50 mL in 250 mL Erlenmeyer flasks, at 37°C, 5% CO2 and 170 rpm. 
At the indicated times post sub-culture, viable cell density (squares, right axis), 

culture %viability (diamonds, left axis) and average cell diameter (triangles, 
right axis) were measured. The mean value ± standard deviation from triplicate 

shake-flasks is shown. 

Time post sub-culture (h) 
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Figure 4.4  

Transfection at passage 1 and passage 21 (Δ generations ~100). 
Cells at passage 1 and 21 were transfected according to protocol A. SEAP (A), 
viable cell density (black bars) and culture % viability (grey bars) (B) were 

measured at 24 h post transfection (B) or at 24 h post sub-culture (C). The 

mean value ± standard deviation from triplicate transfections or cultures is 

shown. 
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4.3.3 Transfection kinetics: polyplex-cell surface association and cyto-

internalization 

Given the dynamic nature of the cell surface and the transfection process, 

kinetic measurements were taken to characterize the experimental platform 

(Figure 4.5). Polyplex cell surface attachment and internalization were assessed 

by transfecting cells using PEI and fluoro-labelled plasmid DNA. By washing 

cells with CellScrub, cell surface attached polyplex was removed (Zuhorn et al., 

2002; Mckeon and Khaledi, 2003; Moriguchi et al., 2005; Thompson et al., 

2012). A sample of cells was washed with PBS, to obtain a value for total cell 

associated fluorescence 

Confocal micrographs (Figure 4.6) illustrate cyto-internalized polyplexes 

(CellScrub washed) and cell associated polyplexes (PBS washes). Images were 

taken through the cell to establish whether polyplex was located intracellularly 

or on the surface of the cell. The images are similar to those obtained by 

Godbey et al., (1999c) using confocal microscopy and Mishra et al., (2004) 

using electron microscopy, showing polyplexes to enter the cells as relatively 

large complexes.  

Using flow cytometry, polyplex–cell association was found to occur rapidly, 

within the first 15 min post transfection and then increase until saturation at 

approximately 240 min post transfection (Figure 4.4, squares). At 14 min post 

transfection, total cell associated polyplex reached 41% its maximum level 

(measured at 240 min post transfection). 

Internalized polyplex was also measured at 14 min post transfection and 

saturated at approximately 240 min post transfection (Figure 4.5, circles). At 14 

min post transfection, internalized polyplex reached 24% its maximum level 

(measured at 480 min post transfection). Thus between 14 and 480 min post 

transfection, the remaining 76% of polyplex was internalized. 

As a percentage of total associated polyplex, internalized polyplex increased 

from 47% at 14 min post transfection to 81% at 480 min post transfection. Thus 

polyplex gradually translocated from the cell surface to within the plasma 

membrane at a rate faster than the rate of extracellular polyplexes binding to 

the cell surface. 



 

Chapter 4 Transfection Parameters and Kinetics 47 

Polyplex attached to the cell surface was calculated by subtracting internalized 

polyplex from total cell associated polyplex (Figure 4.5 dotted line, triangles). 

Cell-surface-attached polyplex increased rapidly immediately post tranfection 

and then gradually, between 14 and 240 min post transfection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.5 Kinetics of cell-association and cyto-internalization of 

PEI:DNA polyplexes by CHO-S cells.  

Cells were transfected with PEI and fluorescently labelled plasmid DNA ac-
cording to protocol A. Total cell associated (squares) and cyto-internalized 

polyplex (circles)  was measured by flow cytometry, at the indicated times post 
transfection, following washing with PBS or CellScrub, respectively. Levels of 

cell surface-attached polyplex (triangle) were obtained by subtracting cyto-
internalized (CellScrub washed) from total cell associated (PBS washed) fluo-
rescence levels. The mean value ± standard deviation from triplicate transfec-

tions is shown. 
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Figure 4.6 Cyto-associated and cyto-internalized polyplexes.  

CHO-S cells were transfected with PEI and fluoroscein labelled DNA. At the 
indicated times post transfection cells were removed from the transfection, 
treated with or without CellScrub and incubated on ice. Cells were imaged with 

an upright Zeiss LSM microscope with a 40x/0.8 dipping lens and 488 nm la-
ser. Bar = 10µm. 
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The rate of polyplex-cell association, cyto-internalization and cell-attachment 

were also calculated according to equations 4.1, 4.2 and 4.3. The rate of 

polyplex-cell association, calculated according to equation 4.1, decreased from 

15.8 FU cell-1min-1 between 0 and 14 min post transfection, to 1.0  FU cell-1min-1 

between 120 and 240 min post transfection (Figure 4.7, squares). The rate of 

polyplex internalization, calculated according to equation 4.2, decreased from 

7.4 FU cell-1min-1 between 0 and 14 min post transfection, to 0.9  FU cell-1min-1 

between 120 and 240 min post transfection (Figure 4.7, circles). The rate of 

polyplex cell-surface attachment, calculated according to equation 4.3, 

decreased from 8.4 FU cell-1min-1 between 0 and 14 min post transfection, to 

0.2 FU cell-1min-1 between 120 and 240 min post transfection (Figure 4.5, dotted 

line, triangles). A biphasic process was measured, whereby the rate of polyplex-

cell association and cyto-internalization was >5 fold and >2 fold  greater during 

the first 14 min post transfection, then at subsequent time points, respectively. 

The rate of polyplex-cell surface attachment was >10 fold greater during the first 

14 min post transfection than at subsequent time points. 

The data presented in Figures 4.5, 4.7 and 4.8, combined with data presented 

in Figures 6.4, 6.5 and 6.6, is used to form the biphasic model of polyplex 

uptake, described in Chapter 9 and Figure 9.1. 
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Figure 4.7 Rate of polyplex cell-association and cyto-internalization. 

Rate of change of total cell-associated polyplex at time t (squares), rate of 
change of cyto-internalized polyplex at time t (circles), rate of change of cell-
surface attached polyplex at time t (triangles). Rates were calculated using 

equations 4.1, 4.2 and 4.3 and data presented in Figure 4.5. 
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         –            

      –         
 

          –             

      –         
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Equation 4.1 describes the rate of change of polyplex-cell association, equation 

4.2, the rate of change of polyplex-cyto-internalization and equation 4.3, the rate 

of change of polyplex-cell attachment, where F(as) represents median cell 

fluorescence attributed to total cell associated polyplex (following a PBS wash), 

F(int) represents median cell fluorescence attributed to cyto-internalized 

polyplex (following a CellScrub wash) and m is minutes. 

Polyplex cyto-internalization data was transformed and lines of best fit added 

(Figure 4.8). Interestingly, a single equation could not be fitted to the entire 

series accurately, but a power law function provided good fit to the data 

between 14 and 480 min post transfection. An exponential function was added 

between 0 and 14 min post transfection (Figure 4.8). The two lines of best fit 

were solved using WolframAlpha software; at 16.8 min post transfection, 

polyplex cyto-internalization began to be best described by a power law 

function. 
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Figure 4.8  

Equations fitted to kinetic data for cyto-internalization of polyplexes. 

Polyplex cyto-internalization kinetic was transformed according to 1-y. Be-
tween t=14 and t=240 polyplex cyto-internalization was found to follow a poly-

nomial function. Between t=0 and t=14, an exponential function was fitted to 
the data set. 
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4.3.4 Cyto-toxicity of PEI and PEI mediated transfection 

To investigate the toxicity of free PEI relative to PEI:DNA polyplexes, cells were 

cultured with a range of PEI concentrations, both free and complexed with DNA. 

Furthermore, to investigate the cause of PEI or PEI:DNA polyplex mediated 

toxicity, cells were cultured at hypothermic conditions (4°C) to establish whether 

toxicity was attributed to physical damage to the cells. In addition, ROS/ RNS 

levels in the supernatant were assayed. 

At hypothermic incubation temperature (4°C), PEI:DNA polyplexes had minimal 

effect on viable cell density and culture percentage viability at 4 h post addition 

of polyplexes (Figure 4.9). At a PEI:DNA ratio of 3 (12 µg :4 µg) there was a 

reduction in viable cell density to 0.9x106 cells mL-1 relative to 1x106 cells mL-1 

in control conditions. At a PEI:DNA ratio of 3  there was also a decrease in 

culture viability from 97% in control conditions to 86%.  

In its free form, however, PEI dramatically reduced viable cell density and 

culture percentage viability at higher concentrations, at hypothermic culture 

temperatures (Figure 4.9). At a PEI concentration of 8 µg 106 cells-1 and 12 µg 

106 cells-1, viable cell density reduced to 0.7x106 cells mL-1 and 0.5x106 cells mL-

1 relative to 1x106 cellsmL-1 in control conditions; cell culture viability also 

decreased to 67% and 47% relative to 96% in control conditions, respectively.  

At hypothermic incubation temperature, as PEI concentration increased, PEI 

was relatively more toxic to cells in its free form, compared to when complexed 

with plasmid DNA, as shown in Table 4.1. At a concentration of 8 µg 106 cells-1, 

following addition of the free form of PEI to cells, culture viability reduced to 

67%, whereas following addition of PEI:DNA polyplexes, culture viability 

reduced to only 96%. At 12 µg 106 cells-1 PEI, following addition of the free form 

of PEI to cells, culture viability reduced to 45%, whereas following addition of 

PEI:DNA polyplexes, culture viability reduced to only 86%.  

Reactive oxygen and nitrogen species (ROS and RNS) were measured in the 

culture supernatant. At hypothermic culture temperatures (4°C), addition of free 

PEI and PEI:DNA polyplexes, at difference concentrations, had no effect on 

ROS/RNS levels in the supernatant at 4 hours post sub-culture (Figure 4.9B).  
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Figure 4.9 Cytotoxicity of polyethylenimine and PEI:DNA polyplexes at 

hypothermic culture temperature. 

The indicated amount of free PEI (dark grey bars) or PEI:DNA polyplexes (light 
grey bars) were added to cells, and following incubation at  4°C for 4 h, the vi-

able cell density (open bars) and culture % viability (hatched bars) measured 
(A). Total reactive oxygen species or reactive nitrogen species level in the cul-

ture supernatant was also measured (B). The mean value ± standard deviation 

from triplicate transfections or cultures is shown. 
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Figure 4.10 Cytotoxicity of polyethylenimine and PEI:DNA polyplexes at 

physiological culture conditions. 

The indicated amount of free PEI (dark grey bars) or PEI:DNA polyplexes (light 
grey bars) were added to cells, and following incubation at  37°C for 24 h, the 

viable cell density (open bars) and culture % viability (hatched bars) measured 
(A). Total reactive oxygen species or reactive nitrogen species level in the cul-

ture supernatant was also measured (B). The mean value ± standard deviation 

from triplicate transfections or cultures is shown. 
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At physiological incubation temperature (37°C, 5% CO2, with humidification), 

addition of PEI:DNA polyplexes significantly reduced viable cell density (Figure 

4.10A). At 24 h post transfection, using standard conditions (protocol A), viable 

cell density was 1.5x106 cells mL-1 relative to 2.8x106 cells mL-1 for un-

transfected cells. Higher PEI:DNA ratios lead to a further decrease in viable cell 

density at 24 h post transfection. At a PEI:DNA ratio of 2 (8:4 µg 106 cells-1), 

viable cell density was 1.2x106 cells mL-1 and at a PEI:DNA ratio of 3 (w/w) 

(12:4 µg 106 cells-1) viable cell density was 0.8x106 cells mL-1. Culture 

percentage viability reduced from 99% in un-transfected conditions, to 91, 78 

and 56% at 24 h post transfection at PEI:DNA ratios of 1.2 (protocol A), 2 and 3 

respectively.  

Viable cell density and culture viability was also reduced by addition of free PEI 

(Figure 4.10A). With increasing concentrations of PEI culture percentage 

viability decreased. Culture percentage viability decreased as free PEI 

concentration increased, falling to 47% at a concentration of 12 µg 106 cells-1 

relative to 99% in control conditions. Similarly viable cell density decreased with 

increasing concentrations of free PEI, falling to 0.7x106 cells mL-1  at a 

concentration of 12 µg 106 cells-1  free PEI relative to 2.8 x106 cells mL-1 in 

control conditions.  

There were significant differences between the viable cell density following 

addition of free PEI and an equivalent amount of PEI complexed with plasmid 

DNA, as shown in Table 4.1. For example, viable cell density following addition 

of 4 µg 106 cells-1 free PEI was 2x106 cells mL-1, significantly higher than 

following addition of 4 µg 106 cells-1 PEI complexed with plasmid DNA, which 

was 1.6x106 cellsmL-1. Addition of  4.7 µg 106 cells-1 free PEI resulted in a viable 

cell density of 1.7x106 cells mL-1, whereas the equivalent PEI:DNA polyplex 

resulted in a viable cell density of 1.5x106 cells mL-1. At a concentration of 8 µg 

106 cells-1, there was no significant difference between the viable cell density 

following addition of free PEI or the equivalent PEI:DNA polyplex. At a 

concentration of 12 µg 106 cells-1, opposite to the pattern observed at lower 

concentrations, viable cell density was significantly lower following addition of 

free PEI than PEI:DNA polyplexes, with viable cell densities of 0.7 and 0.8x106 

cells mL-1, respectively. At higher PEI concentrations, culture percentage 
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viability was lower following addition of equivalent amounts of free PEI. At 

concentrations of 8 and 12 µg 106 cells-1 free PEI, culture percentage viability 

was 70% and 47% following addition of free PEI, compared to 78% and 56% 

following addition of PEI:DNA polyplexes, respectively. 

Reactive oxygen and nitrogen species were measured at 24 hours post 

incubation at 37°C (Figure 4.10B). ROS/ RNS levels, following addition of free 

PEI, were between approximately 25% and 40% higher relative to control levels 

(cells incubated without additional free or DNA-complexed PEI). Addition of 

PEI:DNA polyplexes to the culture, increased ROS/RNS to between 

approximately 50% and 80% above control levels. At each concentration of PEI 

tested, higher ROS/RNS levels were measured for cultures with added 

PEI:DNA polyplexes relative to the respective concentration of free PEI. 

 

 

 4°C 4 hr incubation  37°C 24 hr incubation  
 

X VCD1 

  
CPV2 

  
VCD1 

  
CPV2  
 

1 106 103* 81* 98 
1.175 115* 107* 84* 102 
2 134* 144* 108 112* 
3 187* 193* 120* 118* 
 

 

 

 

 

 

 

 

Table 4.1 Index of PEI:DNA polyplex toxicity relative to free PEI mediated 

cytotoxicity 

1)  
                    

          
 

2) 
                    

          
 

Free PEI or PEI complexed with DNA (polyplexes) were added to CHO-S cells 

and incubated at 4°C for 4 h or 37°C for 24 h. Viable cell density and culture 

percentage viability were measured following the incubation period. Plasmid DNA 

concentration was kept constant at 4 µgmL-1 and thus PEI concentration is a 

multiple of 4, i.e. for x=2, PEI concentration = 8 µgmL-1. An index value of >100 

indicates that PEI is relatively more toxic in its free form (in decreasing VCD or 

CPV) than in its complexed form with DNA (as a polyplex). 

* Delta VCDxPEI  and VCDxPEI:DNA and delta CPVxPEI and CPVxPEI:DNA significant to 

the 95% confidence level. 
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4.4 Discussion 

4.4.1 DoE-RSM optimization 

Response surface models for the DoE optimization of PEI mediated 

transfection, with respect to DNA amount and PEI:DNA ratio were presented in 

Figure 4.2. For industrial TGE, utilizing PEI mediated transfection, numerous 

additional factors would be optimized, such as temperature shift, use of yield 

enhancing additives etc. (as detailed in Chapter 1). Furthermore, for maximum 

production, a cell line/ vector system enabling plasmid maintenance would be 

used. However, for the purpose of the research presented in this thesis, a 

simple, micro-scale, optimized method was required for transfection of CHO-S 

cells and subsequent TGE, with high post-transfection culture viabilities.  

We have previously used DoE to optimize transfection conditions in three 

variant CHO cell lines (Thompson et al., 2012) and CHO-S cells. For CHO-S 

cells, the DOE-RSM predicted optimum was 9 mg L-1 DNA and 16.3 mg L-1 PEI, 

however this was accompanied by a cell density of 2.5x106 cells mL-1. A wide 

range of optimized PEI and DNA amounts have been reported within the 

literature, using a range of media types, additives, cell lines, vectors etc. Thus, 

whilst reported transfection optima can be used to build a design space for 

transfection optimization, optimization, in most cases, cannot be avoided 

Work within the group has explored the heritability of TGE across a panel of 199 

CHO-K1Sv clones (Davies et al., 2012). For the majority of clones, transient 

mAb production was not heritable (Davies et al., 2012). However, clones were 

isolated which displayed heritable traits with respect to transient mAb 

production. In this chapter, transient SEAP production by parental CHO-S cells, 

following PEI mediated transfection, was compared at culture points 

approximately 100 generations apart (20 passages) (Figure 4.4). There was 

found to be no significant difference in SEAP production at these two points, 

and thus the parental CHO-S cell line, used throughout this thesis, was found to 

display heritability in TGE. Interestingly, in the Davies et al. study, clones that 

displayed heritable traits in transient mAb production, did so close to the 

parental average, and a parental cell line was used in the work presented here.  
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4.4.2 Transfection Kinetics 

An understanding of transfection kinetics, with respect to polyplex-cell 

association and cyto-internalization, is relevant to industrial TGE platforms as 

follows. Typical industrial TGE platforms employ a biphasic strategy, separating 

transfection and production. Data describing transfection kinetics, enables 

knowledge based decision making regarding the cut-off point for the biphasic 

production process, i.e. when to shift to mild-hypothermic culture temperatures 

(Galbraith et al., 2006).  

Previously, polyplex-cell surface binding and uptake was measured by Godbey 

et al. (1999c), using confocal microscopy, who reported fluorescent polyplexes 

attached to the cell surface to appear at 30 min post transfection. Data 

presented in this chapter has expanded on this knowledge. The data presented 

in Figure 4.5 and Figure 4.7 show polyplex-cell association and cyto-

internalization to be a biphasic, process. Within the first ~15 min post 

transfection, the rate of cyto-association and cyto-internalization of polyplex was 

significantly higher than at later time points, indicating a relatively fast phase of 

binding/ uptake followed by a slower phase. The biphasic model for polyplex 

uptake is described in Chapter 9.  

Polyplex-cell association and uptake saturated at approximately 240 min post 

transfection (Figure 4.5). It is possible that by this point, polyplexes had 

aggregated (Sharma et al., 2005) to a degree, whereby they were too large to 

be endocytosed. The presence of cell surface-attached polyplex throughout the 

measured period is indicative of a trafficking process in which endosomal 

recycling is a bottleneck for gene delivery (Nichols et al., 2001; Maxfield and 

McGraw, 2004).  

The fast polyplex cyto-internalization kinetics in the first 15 min post 

transfection, are consistent with time-scales reported for endocytosis (Fujimoto 

et al., 2000). Slower internalization of polyplex is well described as bulk, non-

specific uptake (Simons and Gerl, 2010).  
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4.4.3 Cytotoxicity of free PEI and PEI mediated transfection 

At hypothermic culture conditions, free PEI displayed significant cyto-toxicity, 

especially at higher concentrations (Figure 4.9A). At hypothermic conditions, 

reduction in cell viability is more likely to be attributed to necrosis than 

apoptosis. It is unlikely that PEI would be trafficked into the cell at hypothermic 

culture temperatures. Thus, the data is consistent with the early, “necrotic like 

changes at the plasma membrane” reported by Moghimi et al. (2005). 

Moreover, at hypothermic culture temperatures, toxicity could be attributed to 

physical damage of the plasma membrane.  

Interestingly, the same concentrations of PEI, when complexed with plasmid 

DNA, lead to much lower reductions in cell viabilities (less toxicity) (at 4°C) 

(Figure 4.9A, Table 4.1). When complexed with DNA, PEI has a different 

physical entity (explored in Chapter 5). At hypothermic culture temperatures, it 

is unlikely that PEI:DNA polyplexes would be internalized by the cells, through 

an endocytic mechanism. Thus, the data indicate that PEI:DNA polyplexes, in 

CD CHO media at 4°C, confer relatively low level physical toxicity at the plasma 

membrane (Frohlich, 2012), whereas, in its free form, PEI causes significant 

physical damage to the cell. The increase in toxicity at higher amounts and 

PEI:DNA ratios could be attributed to free, uncomplexed PEI or the positive 

charge of the polyplexes at higher PEI:DNA ratios (Boeckle et al., 2004; 

Frohlich et al., 2012). At hypothermic culture temperatures, no ROS in the 

supernatant could be measured (Figure 4.9B). This is indicative of 

mitochondrially mediated ROS (Murphy, 2009), following internalization of PEI 

or PEI:DNA polyplexes, which was inhibited by hypothermic culture conditions. 

At physiological culture conditions, reduction in cell growth, following addition of 

PEI:DNA polyplexes (transfection) could be attributed to the stress on the cell 

caused by transgene expression (Figure 4.10A). Toxicity could be caused by 

the PEI:DNA polyplex particles, or by free PEI following dissociation from DNA, 

intracellularly. At higher concentrations of PEI (8 and 12 µg mL-1) free PEI was 

significantly more toxic to cells than PEI:DNA polyplexes at hypothermic culture 

conditions than at physiological culture conditions (Table 4.1); it is possible that 

at physiological conditions, PEI had dissociated from PEI:DNA polyplexes, 



 

Chapter 4 Transfection Parameters and Kinetics 59 

intracellularly, thus PEI:DNA polyplexes provided significant free PEI and free 

PEI mediated toxicity.   

At physiological culture conditions, at optimal PEI:DNA ratio/ PEI amount (4 and 

4.7 µg mL-1 PEI), PEI:DNA polyplexes reduced cell growth relatively more than 

respective quantities of free PEI (Table 4.1); gene expression caused cell 

growth inhibition more than the undesirable ‘side effect’ of toxicity from the 

transfection vehicle itself. However, at high, sub-optimal, PEI:DNA ratios/ PEI 

amount (12 µg mL-1), free PEI lead to higher toxicity than PEI:DNA polyplexes 

(Figure 4.9A, Table 4.1). The data indicate that the sweet spot for PEI:DNA ratio 

and PEI amount lie where PEI:DNA polyplexes and gene expression are 

relatively less toxic to cells than the transfection vehicle itself, PEI.  

At 37°C, free PEI and PEI:DNA polyplexes lead to ROS production (Figure 

4.10B). However, at all concentrations tested, ROS levels were higher following 

addition of PEI:DNA polyplexes, rather than free PEI. It could be that gene 

expression lead to enhanced levels of ROS production. Alternatively, the 

physical properties of PEI:DNA polyplexes, within the cytosolic environment, 

lead to mitochondrial stress and ROS generation (Grandinetti et al., 2011; Lee 

et al., 2013).  

The data presented here, combined with that presented by other authors, (Lee 

et al., 2013; Calarco et al., 2013, Grandinetti et al., 2011, Moghimi et al., 2005), 

provides a basis for further work regarding oxidative stress caused by PEI 

mediated transfection. Anti-oxidant supplements, such as ascorbic acid, uric 

acid, tocopherols, tocotrienols or small molecule iron chelators (Yun et al., 

2003) could be added to cultures to reduce intracellular oxidative damage. A 

DoE-RSM approach could be applied to the relative quantities of anti-oxidants 

added to culture. Alternatively, expression vectors containing superoxide 

dismutase or catalase genes could be co-transfected into the cells.  
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4.5 Chapter Conclusions 

Data presented in this chapter show that polyplex binding to the cell surface and 

uptake follows a biphasic, saturable kinetic pathway. Approximately 25% of total 

polyplex was internalized within the first ~15 min post transfection, via a rapid 

uptake pathway, and the remaining 75% of polyplex internalized between ~15 

and 240 min post transfection, via a slower internalization mechanism. Over a 

period of 480 min post transfection, polyplex was found localized to the cell 

surface, showing the cell surface to be a bottleneck for transgene delivery. 

Experiments conducted at hypothermic culture temperatures highlighted the 

different mechanisms of toxicity attributed to free PEI as opposed to PEI 

complexed with DNA (PEI:DNA polyplexes). Free PEI was found to mediate 

significant physical damage to cells at higher concentrations (≥8 µg mL-1 ). At 

physiological culture conditions, PEI and PEI:DNA polyplexes mediated 

significant levels of ROS/RNS within culture supernatant; these data indicates 

that measures to ameliorate levels of cellular oxidative stress may improve the 

TGE process. 
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CHAPTER 5 

Bio-Physical Interactions 
Governing Polyplex Binding to 

the Cell Surface 
 

Chapter Overview 

Biophysical interactions surrounding the PEI mediated transfection process, 

such as those governing polyplex-cell surface binding, are explored in this 

chapter. The mechanism behind the inhibitory effect of ferric (III) citrate on PEI 

mediated TGE is investigated. The aims of this chapter are to: 

 Investigate the effect of PEI:DNA polyplex ratio on polyplex cell surface 

binding. 

 Investigate the effect of PEI:DNA ratio and culture media on the zeta 

potential of PEI:DNA polyplexes. 

 Test the hypothesis that hydrophobic interactions contribute to polyplex 

binding to the cell surface. 

 Explore the inhibitory effect of media additives, ferric (III) citrate and anti-

clumping agent on PEI mediated transfection. 

 

5.1 Introduction 

5.1.1 Polyplex surface properties  

Given that it is the surface of the PEI:DNA polyplex that interacts with the 

surface of the cell, its properties are fundamental for transfection and 

endocytosis (Adler and Leong, 2010). The zeta potential of polyplexes has been 

measured previously by several groups (Godbey et al., 1999d; 

Choosakoonkriang et al., 2003; Ikonen et al., 2008, Wu, 2009; Rajendra et al., 

2012; Fortier et al., 2013). PEI:DNA polyplexes have been reported to have a 

positive zeta potential at N/P ratios used for transfection. At low NP ratios, 

N/P≤4 (Choosakoonkriang et al., 2003) and N/P<1.5 (Ikonen et al., 2008) 
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PEI:DNA polyplexes with a negative zeta potential have been reported. 

However, Pollard et al., (1998) reported PEI:DNA polyplexes, at an N/P ratio of 

3.5, to have a neutral zeta potential.  

In the context of exploring the aggregation of polyplexes, Sharma et al., (2005) 

studied the zeta potential of polyplexes. At an N/P ratio of 10, in a PBS 5% 

glucose solution, polyplexes were measured to have a zeta potential of +5.1 mV 

and were described as having patches of neutral, positively and negatively 

charged regions. Aggregation of polyplexes was found to occur through 

hydrophobic interactions and ameliorated by the use of non-ionic surfactants; 

whereby the hydrophobic tail of the non-ionic surfactant binds to the surfaces of 

the polyplexes and the hydrophilic head group of the non-ionic surfactant 

provides steric hindrance of polyplex-polyplex interactions (Sharma et al., 

2005). Polyplex aggregation was not characterized in this study and is 

discussed in more detail in section 9.5. 

For particles with diameters between 1 nm and 1 µm (colloids), adsorbed ions 

determine the surface properties of the particle (Shaw, 1993). An electric double 

layer exists, consisting of ions directly adsorbed onto the surface of the particle 

(stern layer) and a second, consisting of ions loosely associated with the 

particle (ion diffuse layer) (Figure 5.10). The diffuse layer can move upon 

tangential stress, thus the zeta (ζ) potential is measured at the point which 

separates the particle-associated fluid from mobile fluid (the slipping/shear 

plane). Thus, whether the polyplex is used in vitro or in vivo transfection, 

immersion solution will determine the zeta potential of the polyplex.  

The use of serum for in vitro cultivation of mammalian cells provides a growth 

environment with similarities to that in vivo. However, for biomanufacturing, as 

described in Chapter 1, serum is not used. 

5.1.2 Polyplex surface properties, in vitro 

Little work has focussed on the effect of culture medium on the zeta potential of 

PEI:DNA polyplexes. However, Wu (2009), reported that the zeta potential of 

PEI:DNA polyplexes was dramatically influenced by immersion in culture media. 

Polyplexes formed in 150 mM NaCl solution, DMEM or CHO-S-SFM II had a 

zeta potential of +30 mV, -20 mV and +2 mV, respectively. Following 
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subsequent dilution in CHO-S-SFM II culture media, however, the surface 

charge of the polyplexes, in all cases, was approximately -5 mV.    

Petri-Fink et al., (2008) measured the effect of medium and serum on the 

colloidal stability, cytotoxity and cyto-uptake of a range of polymer coated 

super-paramagnetic iron oxide nanoparticles (SPIONs), including 

PEI:DNA:SPIONs. Viability of HeLa cells following exposure to 

PEI:DNA:SPIONs was dramatically affected by culture media (RPMI, DMEM, 

with or without 10% foetal calf serum). In addition Ye et al., (2009) reported 

dramatically different TGE following transfection of CHO cells with PEI, in a 

range of commercially available culture media.  In both studies, it is difficult to 

distinguish between the superior properties of certain media types in supporting 

production post transfection as opposed to the transfection step itself.  

5.1.3 Polyplex surface properties, in vivo 

For in vivo applications, polyplexes must avoid opsonization and clearance by 

the immune system and thus, covalently coupled PEI and poly(ethylene glycol) 

(PEG) complexed with DNA (PEGylated PEI:DNA complexes) are widely used. 

PEGylation of polyplexes was found to provide resistance to binding of human 

or murine serum proteins, including IgM, fibronectin, fibrinogen, albumin and 

complement C3 (Ogris et al., 1999). PEGylated transferrin PEI:DNA complexes 

displayed longevity in blood and plasma compared to non PEGylated transferrin 

PEI:DNA polyplexes. In addition, PEGylation was found to reduce the zeta 

potential of the polyplexes and reduce plasma mediated aggregation of 

polyplexes (Ogris et al., 1999). 

PEG shielding of the PEI:DNA polyplex positive charge was also reported by 

Merdan et al., (2005), who reported, at an N/P ratio of 6, PEI:DNA polyplexes to 

have a zeta potential of +26 mV (±2 mV) and PEG-PEI:DNA polyplexes to have 

a zeta potential of 0.5 mV (±0.9 mV). 

5.1.4 Bio-physical interactions governing polyplex cell-surface binding: 

the electrostatic theory 

The electrostatic theory of polyplex binding to the cell surface is based on the 

following logic: that positively charged regions of polyplexes bind to anionic 
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heparan sulphate proteoglycans (Elouahabi and Ruysschaert, 2005; Biri et al., 

2007; Tros de Ilarduya et al., 2010). There is evidence within the literature, that 

depletion of HSPGs is detrimental to PEI mediated transfection and TGE 

(discussed in Chapter 6). The theory of polyplex cell surface binding is wide-

spread and a generally accepted paradigm.  

5.1.5 Implications for bioprocessing: inhibitory media components of PEI 

mediated TGE 

Iron is an essential nutrient, required for basic cellular function. Under normal 

physiology and in the majority of cases, it is delivered to cells via the plasma 

protein iron carrier, transferrin (Anderson and Vulpe, 2009). For 

biomanufacturing, given the requirement for chemically defined culture medium, 

free of animal-derived products, small molecule iron delivery systems are used 

(Bai et al., 2010). Small molecule iron carriers, such as selenite tropolone (2-

hydroxy-2, 4, 6-cycloheptarin-1-one), ferric ammonium citrate and ferric citrate 

are frequently used in biomanufacturing (Zhang et al., 2006; Bai et al., 2010). In 

fact, culture supplementation with iron and citrate, when added in concert, has 

been found to significantly enhance recombinant mAb production (Bai et al., 

2010). 

However, ferric (III) citrate is known to inhibit TGE following transfection 

mediated by PEI (Eberhardy et al., 2009). Culture supplementation with EDTA 

or serum was found to have a protective effect against the reduced titres 

reported in the presence of ferric citrate, explainable by the higher affinity that 

both EDTA and transferrin have for iron, relative to citrate. Ferric (III) citrate was 

found to inhibit TGE at an early stage in the transfection process and its 

mechanism of inhibition was hypothesized to be at the stage of PEI:DNA 

polyplex formation, polyplex binding to the cell surface or intracellular trafficking 

(endosomal release or nuclear entry) (Eberhardy et al., 2009). 
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5.2 Materials and Methods  

5.2.1 Chemical treatments prior to transfection 

Ferric (III) citrate, polyoxyethylene40 stearate (POES 40) and Pluronic F-68, 

were purchased from Sigma-Aldrich (Dorset, UK) and Anti-Clumping Agent from 

Life Technologies (Paisley, UK). Ferric (III) citrate were dissolved in de-ionised 

water and polyoxyethylene (40) was dissolved in PBS, before 0.22 µm filter 

sterilization. Pluronic F68 was dissolved in CD CHO medium. For ferric (III) 

citrate, POES40, final concentrations were obtained by diluting 1:100 to the 

cells in medium. An equal volume of the reconstitution solution was added to 

control wells. At 1 or 2 h prior to transfection and at 4°C or 37°C, as indicated, 

chemicals were added to cells in 24 well plates. 

5.2.2 Micro-beads 

Mono-disperse micro-beads based on polystyrene, in aqueous suspension, of 

diameter 15 µm, were purchased from Sigma-Aldrich. Micro-beads (5x105) in a 

total volume of 500 µL in a 24 multi well plate were immersed in CD CHO 

medium supplemented with 8 mM L-glutamine or phosphate buffered saline 

solution. Fluorescently labelled PEI:DNA polyplexes were formed according to 

protocol A, added to micro-beads in suspension and incubated for 4 h at rt. 

Microbeads were washed with either CD CHO or PBS, prior to flow cytometric 

analysis. 
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5.3  Results 

5.3.1 Effect of PEI:DNA ratio on polyplex-cell surface binding  

It was hypothesized that PEI:DNA ratio would affect the binding to the cell 

surface and the zeta potential of polyplexes in CD CHO medium. PEI:DNA ratio 

was altered, by changing PEI concentration and keeping the DNA concentration 

constant. At a PEI:DNA ratio of 2 and 3, polyplex-cell surface binding was 8% 

and 20% above binding using standard PEI:DNA ratios (protocol A) (Figure 

5.1A and B). However, the percentage of intact cells (in gate 1) reduced from 

92% in standard conditions, to 84% and 66% of cells at PEI:DNA ratios of 2 and 

3 respectively (Figure 5.1 C, E and E).  

5.3.2 Effect of immersion solution and PEI:DNA ratio on polyplex zeta-

potential 

It was hypothesized that immersion solution (CD CHO medium or deionized 

water) would affect the zeta-potential of PEI:DNA polyplexes, in addition to the 

PEI:DNA ratio. Across a range of PEI:DNA ratios, the zeta potential of the 

polyplexes was approximately +40 mV in deionized water, with no significant 

difference in the zeta potential between polyplexes formed at different PEI:DNA 

ratios (Fig 5.2), similar to data reported by Godbey et al., (1999d) and Rajendra 

et al., (2012). In CD CHO medium, PEI:DNA polyplexes had a dramatically 

different zeta potential compared to the zeta potential in deionized water. At 

PEI:DNA ratios of 1, 1.2, 2 and 3, the average zeta potential was -0.7, 0.7, 3.4 

and 11.5 respectively (Figure 5.2). Thus, at DoE-RSM optimized PEI:DNA ratio 

(section 4.3.1), the polyplex zeta-potential in CD CHO medium was 

approximately neutral.   
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Figure 5.1  

PEI:DNA polyplex cell-surface binding at varying PEI:DNA ratios  

PEI:DNA polyplexes were formed at the indicated PEI:DNA ratios. The quan-
tity of plasmid DNA was kept constant, varying only PEI quantity. Polyplex-cell 
surface binding (A and B) was measured by using fluoroscein labelled plasmid 

DNA, incubating the transfection at 4°C and at 4 h post transfection measuring 
cellular fluorescence using flow cytometry. (─) indicates control cells, without 

added polyplex. 
Cytotoxicity at different PEI:DNA ratios. The percentage of intact cells, fol-

lowing transfection with polyplexes, at the indicated PEI:DNA ratios, and incu-
bation at  4°C for 4 h (C). Side scatter/ forward scatter plots for cells treated 

with polyplexes at a 1.2 PEI:DNA ratio (D) and a 3 PEI:DNA ratio (E). The 

mean value ± standard deviation from triplicate cultures is shown. 
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Figure 5.2 Zeta potential of polyplexes, at  different PEI:DNA ratios, in  

deionised water and CD-CHO culture medium. 

PEI:DNA polyplexes were formed at the indicated PEI:DNA ratios. The quan-
tity of plasmid DNA was kept constant, varying only PEI quantity. PEI:DNA 

polyplexes were added to deionised water (black bars) or CD CHO medium 
(grey bars) and incubated for 5 min prior to analysis of electrophoretic mobility. 

The mean value ± standard deviation from five technical replicates, of 20 cy-
cles each, is shown. 
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5.3.3 Effect of immersion solution on polyplex binding to micro-beads 

The effect of immersion solution on binding of polyplexes to micro-beads was 

assessed. Mono-disperse polystyrene beads with a sulphate derivatized 

surface, 15 µm in diameter, were used due to being of a similar size to CHO-S 

cells and immersed in either CD CHO medium or PBS solution. Polyplex 

binding to microparticles was only observed when they were incubated in PBS 

and not CD CHO medium (Figure 5.3A and B). When incubated in PBS, 

polyplex-microparticle binding was measured for 38% of the microbeads, with a 

geometric mean fluorescence of 344, dramatically higher than basal 

fluorescence. Thus, immersion solution had a dramatic effect on binding of 

PEI:DNA polyplexes to micro-beads. 

 

  

- 

Figure 5.3  

Effect of immersion solution on polyplex binding to micro-beads 

Micro-beads, based on polystyrene, with a sulphate derivatized surface, were 
incubated in CD CHO or phosphate buffered saline solution (PBS) and incu-

bated with FITC labelled PEI:DNA polyplexes (formed according to protocol A) 
for 4 h at room temperature, prior to flow cytometric analysis. A: flow cytomet-

ric analysis of PEI:DNA polyplex-micro-bead binding; black lines: micro-beads 
immersed in PBS; grey lines: micro-beads immersed in CD CHO; dotted lines: 
micro-bead auto-fluorescence (no FITC labelled polyplex added); solid lines: 
FITC labelled polyplexes added to micro-bead suspension. B: % of beads in 

gate FL1-H+ (black bars) and median geometric fluorescence (grey bars).  The 

mean value ± standard deviation from triplicate samples of beads is shown. 
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5.3.4 Inhibition of polyplex-cell surface hydrophobic interactions using 

non-ionic surfactant 

The hypothesis was tested that hydrophobic interactions contribute to polyplex 

binding to the cell surface. In order to inhibit hydrophobic interactions between 

polyplexes and the cell surface, the non-ionic surfactant, polyoxyethylene 40 

stearate (POES40), was added to the culture, as previously used to inhibit 

polyplex-polyplex hydrophobic interactions (Sharma et al., 2005).  

Addition of POES40 reduced SEAP activity (Figure 5.4A) at 24 h post 

transfection to 27% and polyplex binding to the cell surface (Figure 5.4D and E) 

to 11% of control levels, at a concentration of 0.1% w/v POES40. At 24 h post 

transfection, viable cell density and culture percentage viability reduced 

somewhat, from 1.4x106 cells mL-1 and 88% in control conditions to 1.1x106 

cells mL-1 and 80% at 0.1% (w/v) POES40, respectively (Figure 5.4B).  

For untransfected cells (Figure 5.4C), at 24 h post sub-culture, viable cell 

density decreased to 1.7x106 cells mL-1 at 0.1% (w/v) POES40 relative to 

2.9x106 cells mL-1 in control conditions. The presence of POES40 reduced 

culture percentage viability incrementally in untransfected cells.  

The inhibitory effect of the non-ionic surfactant, POES40 on PEI mediated 

tranfection of CHO cells, is similar to that reported by Thompson, 2011. 
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Figure 5.4 Non-ionic surfactant, polyoxyethylene (40) stearate (POES40), 

reduces polyplex-cell surface binding and SEAP production. 

One hour prior to transfection with PEI, the indicated concentration of POES40 
was added to CHO-S cells. SEAP (A), viable cell density (black bars) and cell 

culture % viability (grey bars) were measured at 24 h post transfection (B) or 
24 h post sub-culture (C). Polyplex-cell surface binding (D and E) was meas-

ured by using fluoroscein labelled plasmid DNA, incubating the transfection at 
4°C and at 4 h post transfection and measuring cellular fluorescence using 
flow cytometry. E: black dashed line: 0% POES40, grey line: 0.1 % POES40, 

dotted line: auto-fluorescence. The mean value ± standard deviation from tripli-
cate transfections or cultures is shown. 
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5.3.5 Effect of Pluronic F68 on PEI mediated TGE 

Box 5.1 Pluronic F68 and bioprocessing 

 

 

 

 

 

 

 

 

 

 

Given that the non-ionic surfactant, POES40, was found to inhibit polyplex 

binding to the cell surface and SEAP levels, the effect of Pluronic F-68 on TGE 

following PEI mediated transfection was tested, due to its amphiphilic structure.  

At concentrations of approximately ten-fold higher than would be used in 

bioreactors, at 1%, 2% and 4% w/v, a reduction in SEAP activity was observed 

(Figure 5.5A). At 4% w/v Pluronic F68, SEAP activity reduced to 74% of control 

levels. In transfected and untransfected conditions, Pluronic F68 had an 

incremental effect on viable cell density and culture percentage viability at 24 h 

post transfection or sub-culture. At 24 hours post transfection, at 4% w/v 

Pluronic F-68, viable cell density reduced to 1.3x106 cells mL-1 compared to 

1.5x106 cells mL-1 without Pluronic and culture percentage viability was 79% 

compared to 89% without Pluronic (Figure 5.5B). 

In untransfected conditions, at 24 h post sub-culture, at 4% w/v Pluronic F-68, 

viable cell density reduced to 2.6x106cells mL-1 compared to 3.3x106 cells mL-1 

in control conditions but Pluronic had little effect on culture percentage viability 

(Figure 5.5C). 

Cell surface hydrophobicity leads to cell clumping and cell-bubble interactions 

during bioreactor sparging, both detrimental to biomanufacturing processes 

(Ghebeh et al., 2002).  

To alleviate the effect of sheer stress on cells in bioreactors, caused by 

sparging and stirring, non ionic polymers, such as Pluronic F-68, are 

frequently added (Tharmalingam et al., 2008). Pluronic is a tri-block 

copolymer based on hydrophilic ethylene oxide and hydrophobic propylene 

oxide (Batrakova and Kabanov, 2008; Hillmyer et al., 1996). Pluronic F-68 

(and other similar molecules) are thought to alleviated sheer stress by 1) 

stabilizing the foam layer on the surface of sparged cultures and/or 2) 

increasing the resistance of cells to sheer stress through physical 

incorporation into the plasma membrane (Gigout et al., 2008; Clincke et al., 

2011). 
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It is possible that due to the higher molecular weight of Pluronic F68 compared 

to polyoxyethylene 40 stearate (8350 compared to 328.5, respectively), that a 

higher concentration of Pluronic F68 (w/v) compared to POES40 was required 

to inhibit polyplex binding to the cell surface and subsequent SEAP production. 

Alternately, the different chemical properties of the non-ionic surfactant and tri-

block co-polymer (Box 5.1) may have different physico-chemical interactions 

with polyplexes and the cell surface. 
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Figure 5.5 Effect of non-ionic block copolymer, Pluronic F68, on transient 

SEAP production 

One hour prior to transfection with PEI, the indicated concentration of Pluronic 
F68 was added to CHO-S cells. SEAP (A), viable cell density (black bars) and 

culture % percentage viability (grey bars) were measured at 24 h post trans-
fection (B) or 24 h post sub-culture (C). The mean value ± standard deviation 

from duplicate transfections or cultures is shown. 
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5.3.6 On the mechanism of the inhibitory effect of media additives, ferric 

(III) citrate and anti-clumping agent, on PEI mediated TGE 

Expanding on work presented by Eberhardy et al., (2009), it was hypothesized 

that addition of ferric (III) citrate (FC) to media would reduce binding of 

polyplexes to the cell surface and alter the zeta potential of polyplexes in CD 

CHO medium. As expected, FC inhibited transient SEAP production in a 

concentration dependent manner, abrogating SEAP activity at a concentration  

of 50 µM (Figure 5.6A). At the same concentration (50 µM) of FC, polyplex-cell 

surface binding was reduced to 20% of control levels (Figure 5.6D and E). 

 At 24 h post transfection, viable cell density and culture percentage viability 

increased with increasing concentrations of FC (Figure 5.6B). At a 

concentration of 50 µM FC, viable cell density was 2.5x106 cells mL-1 relative to 

1.3x106 cellsmL-1 following transfection in the absence of FC. Culture 

percentage viability was 98% at a concentration of 50 µM FC, relative to 87% in 

the absence of FC (Figure 5.6B). 

In untransfected conditions, FC had no effect on culture percentage viability and 

slightly enhanced viable cell density (Figure 5.6C). 

It was hypothesized that Gibco Anti-Clumping Agent (ACA), known to inhibit PEI 

mediated transfection, similarly to FC, would inhibit polyplex binding to the cell 

surface and effect the zeta potential of polyplexes in CD CHO medium. As 

expected, transient SEAP production was abrogated by the presence of ACA 

(Figure 5.7A). In addition, polyplex-cell surface binding decreased by >98% in 

the presence of 0.1% (v/v) ACA (Figure 5.7D and E). In the presence of ACA, 

viable cell density and culture percentage viability increased to 2.8x106 cells 

mL-1 and 98% relative to 1.7x106 viable cells mL-1 and 90.7% following 

transfection in the absence of ACA (Figure 5.7B). In untransfected conditions, 

ACA had no significant effect on viable cell density and culture percentage 

viability at 24 h post sub-culture (Figure 5.7C).  

When FC and ACA were added to CD CHO, culture viabilities were equivalent 

to those in untransfected conditions. These data, combined with binding data, 

suggest that PEI:DNA interactions with the cell surface, were significantly 

minimized in the presence of FC and ACA. 
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Figure 5.6 Ferric (III) citrate reduces polyplex-cell surface binding and  

transient SEAP production. 

One hour prior to transfection with PEI, the indicated concentration of ferric (III) 
citrate was added to CHO-S cells. SEAP (A), viable cell density (black bars) 

and culture % viability (grey bars) were measured at 24 h post transfection (B) 
or 24 h post sub-culture (C). Polyplex-cell surface binding (D and E) was 

measured by using fluoroscein labelled plasmid DNA, incubating the transfec-
tion at 4°C and at 4 h post transfection measuring cellular fluorescence using 
flow cytometry. E: dashed line: 0 µM ferric citrate; solid line: 50 µM ferric cit-

rate; dotted line: auto-fluorescence. The mean value ± standard deviation from 
triplicate transfections or cultures is shown. 
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Figure 5.7 Anti-clumping agent reduces polyplex-cell surface binding and 

transient SEAP production. 

One hour prior to transfection with PEI, the indicated concentration of anti-
clumping agent was added to CHO-S cells. SEAP (A), viable cell density 

(black bars) and culture % viability (grey bars) were measured at 24 h post 
transfection (B) or 24 h post sub-culture (C). Polyplex-cell surface binding (B 

and D) was measured by using fluoroscein labelled plasmid DNA, incubating 

the transfection at 4°C and at 4 h post transfection measuring cellular fluores-
cence using flow cytometry. E: dashed line: 0 anti-clumping agent; solid line: 

0.1 %(v/v) anti-clumping agent; dotted line: auto-fluorescence. The mean value 
± standard deviation from triplicate transfections or cultures is shown. 
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Expanding on data presented in Figure 5.2, immersion solution was found to 

have a dramatic effect on the zeta potential of polyplexes (formed at standard 

PEI:DNA ratio) (5.8). The zeta potential of polyplexes immersed in CD CHO and 

50 µM ferric citrate or 0.1% (v/v) anti clumping agent were found to have a 

negative zeta potential, of -17 mV and -28 mV respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Immersion solution determines the cell surface charge of  

polyplexes 

PEI:DNA polyplexes were formed, according to protocol A, and added to the 
indicated aqueous solutions and incubated for 5 min at rt prior to measure-

ment. Polyplexes were immersed, from left to right, de-ionised water, 150mM 
sodium chloride solution, phosphate buffered saline solution, CD CHO me-

dium, CD CHO medium supplemented with 50 µM ferric III citrate, CD CHO 
medium supplemented with 0.1% (v/v) anti-clumping agent and CD CHO me-
dium supplemented with (0.1% w/v) POES 40. Electrophoretic mobility was 

measured on a ZetaPals. The mean value ± standard deviation from five tech-
nical replicates, of 20 cycles each, is shown. 
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5.3.7 The effect of PEI:DNA complex solution on TGE 

It was hypothesized that the solution used to mix PEI and DNA could impact on 

the formation of polyplexes, with respect to condensation of DNA, and thus 

gene expression post transfection. However, none of the aqueous solutions 

tested, deionised water, 150 mM sodium chloride solution, phosphate buffered 

saline solution and CD-CHO medium, for PEI:DNA complexation, had any effect 

on subsequent TGE, at 24 or 48 h post transfection (Figure 5.9). Thus 

immersion solution affected the surface of polyplexes and interactions 

dependent on the polyplex surface, but not PEI:DNA polyplex formation. 
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Figure 5.9 Effect of PEI:DNA complex solution on transient SEAP produc-

tion and culture viabilities post transfection.  

Polyethylenimine and plasmid DNA solutions, according to standard transfec-
tion conditions, were mixed in a total volume of 33.4ul made up with the indi-

cated solutions (90% total volume), de-ionized water, 150mM sodium chloride 
solution, phosphate buffered saline solution or CD CHO medium. Samples 

were taken at 24 (black bars) and 48 (grey bars) h post transfection. SEAP 
(A), viable cell density (B) and culture percentage viability (C) were measured. 

The mean value ± standard deviation from triplicate transfections or cultures is 

shown. 
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5.4 Discussion 

The mammalian cell surface or plasma membrane consists of a lipid bilayer, 

containing numerous lipid moieties (Van Meer, 2005) and interspersed 

membrane proteins. Glycerophospholipids of the plasma membrane are 

amphiphatic, possessing a hydrophilic head (phosphate and choline) and 

hydrophobic fatty acid tail (Cooper, 2000). The glycerophospholipids align, in an 

energetically favourable order, whereby the hydrophilic head group faces 

towards the cytosol and extracellular space and the fatty acid chains are 

protected within the leaflets. In addition, the extracellular leaflet possesses 

negatively charged molecules, for example sialic acid and sulphate groups, on 

membrane gangliosides and heparan sulphate proteoglycans, respectively 

(Byrne et al., 2007; Taube et al., 2009, Bishop et al., 2007). Nonetheless, unlike 

the surrounding media, the surface of the cell is not an aqueous solution and to 

minimize disruption of hydrogen bonds between H2O molecules, cells 

aggregate and particles bind to the cell surface through hydrophobic 

interactions, improving the entropy of the system (Chandler, 2005). 

PEI:DNA polyplexes are positively charged entities (Choosokoonkriang et al., 

2003; Rajendra et al., 2012). However, as reported by Sharma et al., (2005) 

they possess charge-neutral regions (in addition to positively and negatively 

charged regions) and aggregate through hydrophobic interactions.  

Given that polyplexes have a diameter in the 1-1000 nm range, they are classic 

colloids (Shaw, 1992), whose surface properties are determined by the 

adsorbed ions (Shaw, 1993; Petri-Fink et al., 2008). When immersed in an ionic 

solution, it is relevant to consider the surface properties of the electrokinetic unit 

(Figure 5.10), rather than PEI:DNA polyplex, denuded of adsorbed ions, similar 

to the approach taken by Ogris et al. (1999) for studying the effect of serum on 

the PEI:DNA polyplex electrokinetic unit. At DoE-RSM optimized PEI:DNA ratio, 

in CD CHO medium, polyplexes were found to have a net charge of 

approximately zero, a  result similar to one obtained by Wu (2009).  

The net charge of the PEI:DNA polyplex electrokinetic unit (in CD CHO) was 

altered by increasing PEI:DNA ratio or using media additives (e.g. ferric (III) 

citrate) (Figure 5.2 and 5.8 respectively). A net positive charge (achieved  
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through increasing PEI:DNA ratio) was found to increase polyplex-cell surface 

binding (Figure 5.1A) and a net negative charge (achieved through 

supplementation with FC), was found to decrease polyplex-cell surface binding 

(Figure 5.6A). The non-ionic surfactant POES40 was used to physically inhibit 

polyplex-cell surface binding (Figure 5.4D and E); through binding of the 

hydrophobic tail to the cell surface and hydrophobic patches on the polyplex 

and the hydrophilic head group providing steric hindrance between polyplexes 

and the cell surface. (Incidentally, the effect of  an ionic surfactant on polyplex-

cell surface binding was not tested, because it was predicted to disrupt the 

PEI:DNA complex.) Taken together, it is likely that both electrostatic and 

hydrophobic interactions contribute to polyplex binding to the cell surface.  

The involvement of hydrophobicity in polyplex binding to the cell surface, is 

consistent with the wide-spread reported efficacy of PEGylated PEI:DNA 

polyplexes for gene delivery in vivo. If polyplex binding to the cell surface was 

solely mediated by electrostatic interactions, it would follow that a decrease in 

zeta potential, as reported for PEGylated polyplexes (Ogris et al., 1999; Merdan 

et al., 2005), would  substantially decrease transgene expression, by decreased 

Bulk solution 

Ion diffuse layer 

Stern layer 

PEI:DNA polyplex 

Slipping / shear 

plane 

Figure 5.10  

Schematic representation of the zeta potential of a PEI:DNA polyplex  

The zeta-potential is measured at the slipping plane. Thus, the zeta potential 
and surface charge of the polyplex is dependent on the dispersion solution i.e. 

culture medium. 
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association of polyplexes with the cell surface. Despite the benefits of 

PEGylation by reducing polyplex clearance, if polyplex-binding to the cell 

surface was significantly inhibited, so too would transgene expression. 

Furthermore, the influence of hydrophobicity in polyplex binding to the cell 

surface is in accordance with the reported efficacy of alkylated PEIs for 

transfection (Thomas and Klibanov, 2002; Fortune et al., 2011). Another note 

worthy point, is that the inclusion of neutral lipids (e.g. cholesterol) in cationic 

lipid transfection formulations increased lipoplex binding to the cell surface 

(Crook et al., 1998), indicating the role of hydrophobicity in transfection complex 

binding to the surface of mammalian cells. 

The application of the work presented in this chapter, is that it is not necessary 

or even desirable for transfection to increase the zeta potential of the polyplex 

through increasing PEI:DNA ratio. Whilst electrostatic interactions are involved 

in polyplex-binding to the cell surface, they are not the sole force mediating the 

process, hydrophobia plays a role also. Polyplexes formed at higher PEI:DNA 

ratios were found to result in increased toxicity and reduced reporter protein titre 

(section 4.3.1) and whilst polyplex binding to the cell surface increased at higher 

PEI:DNA ratios (Figure 5.1A) it did so by only 20%. Thus, it seems that for 

optimal transfection, a sweet-spot exists between polyplex-cell surface binding 

and PEI / polyplex mediated toxicity to achieve maximum transgene expression.  

The data indicate the importance of medium in transfection optimization and 

that transfection optimization, in addition to being cell-line specific, is possibly 

also medium-type specific. The data presented in this chapter also offer a facile 

method for predicting the effect of medium additives on transfection and of 

screening additives prior to bioreactor production. For example, a culture 

additive that confers a negative charge on the polyplex, such as ferric (III) 

citrate, is likely to be detrimental, or indeed abrogate, PEI mediated TGE. 

 

 

 

 



 

Chapter 5 Polyplex-cell surface bio-physical interactions 82 

5.5 Chapter Conclusions 

In this chapter data is presented supporting the hypothesis that hydrophobic, in 

addition to electrostatic interactions, contribute to polyplex binding to the cell 

surface. Data is presented demonstrating the fundamental role of culture 

medium in the properties of the PEI:DNA polyplex electro-kinetic unit. Data 

elucidating the inhibitory effect of ferric (III) citrate on PEI mediated transfection 

is also presented; showing that ferric (III) citrate, not only dramatically reduces 

polyplex binding to the cell surface, but also confers a negative charge on the 

electrokinetic unit of the PEI:DNA polyplex in CD CHO medium.  
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CHAPTER 6 

Polyplex-cell surface  
bio-molecular interactions 
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Chapter Overview 

In this chapter, the role of bio-molecular plasma membrane moieties in PEI 

mediated transfection are explored through biochemical manipulations. The 

aims of the chapter are to: 

 Explore the role of lipid rafts in PEI mediated transfection. 

 Explore the role of lipid raft constituents, such as heparan sulphate 

proteoglycans, in PEI mediated transfection. 

 

6.1 Introduction: Putative bio-molecular plasma membrane targets for 

polyplex binding 

6.1.1 Lipid Rafts 

The concept of lipid rafts was first presented by Simons and Ikonen, (1997), 

expanding on the fluid mosaic model of the plasma membrane, presented by 

Singer and Nicolson in 1972 (Vereb et al., 2003). Before the lipid raft model, 

membrane functionality was completely attributed to membrane proteins, 

whereby membrane lipids solely provided a fluid mosaic for the proteins to 

reside in. Although controversial (Munro, 2003), the functional role of lipids in 

membrane function is well established.   

Lipid rafts are nano-scale assemblies of sphingolipids, cholesterol and certain 

membrane proteins, which coalesce to form up to micron scale assemblies 

upon activation by a ligand, which function in plasma membrane signaling, 
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trafficking and pathogen entry (Simons and Ikonen, 1997; Harder et al., 1998;  

Del Pozo et al., 2004; Lingwood and Simons, 2010). Originally, defined by 

insolubility in detergent (Triton X-100 etc.), the definition is now considered 

inaccurate (Brown, 2006). Notable lipid rafts associated proteins, glycolipids 

and glycoproteins include, GPI anchored proteins (Brown and Rose, 1992; 

Friedrichson and Kurzchalia, 1998), gangliosides (Fujinaga et al., 2003) and 

heparan sulphate proteoglycans (Chu et al., 2004).    

Raft biochemistry is attributed to the properties of sphingolipids alone and in 

concert with cholesterol. Saturated hydrocarbon chains of sphingolipids results 

in reduced fluidity compared to the rest of the lipid bilayer, which consists of un-

saturated phospholipids (Simons and Ehehalt, 2002). In addition, the 

“condensing” effect of cholesterol has been reported, whereby a cholesterol-

phospholipid mixture constitutes a smaller surface area than the sum of its parts 

(McConnell and Radharkrishnan, 2003; Xu et al., 2005; Hancock, 2006). 

Additionally, a model has been proposed whereby hydrophobic cholesterol is 

shielded from the extra-cellular milieu by polar sphingolipid head groups: the 

“umbrella effect” (Huang and Feigenson, 1999). Cholesterol is so fundamental 

to lipid raft functionality that its sequestration from the cell surface, using methyl 

beta cyclodextrin (MβCD) is a well established method for disturbing and 

studying lipid raft functionality (Christian et al., 1997; Ilangumaran and Hoessli, 

1998; Simons and Toomre, 2000; Zidovetzki and Levitan., 2007). 

Coalescence of nano-scale raft components is dependent on lipid-lipid, lipid-

protein and protein-protein oligomerizing reactions (Simons and Gerl, 2010). 

Following coalescence, Simons and Ehehalt (2002) present three, non mutually 

exclusive models for signal induction by lipid rafts. The first is that lipid raft 

proteins are activated by ligand binding. The second, that receptors with weak 

affinity for lipid rafts, on ligand activation, oligomerize and remain resident in 

rafts for an increased length of time. Third, that activated receptors recruit 

cross-linking proteins that bind to proteins in other rafts, resulting in 

coalescence of rafts. Raft clustering exposes proteins to a new membrane 

environment, enriched in specific enzymes, such as kinases, phosphatises, 

palmitoylases and depalmitoylases: crucial for signal transduction pathways 

(Simons and Toomre, 2000). 
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Numerous pathogenic agents have been shown to gain entry into the cell 

through binding to lipid rafts constituents and subsequent lipid raft clustering 

(Manes et al., 2003; Rajendran et al., 2010). Plasmodium uses lipid rafts 

domains of erythrocytes for their entry (Murphy et al., 2006). Lipid raft 

associated GPI anchored proteins are used by the protective antigen of anthrax 

toxin to gain entry into the cell (Gruenberg and van der Goot, 2006). 

Gangliosides are used by cholera and Shiga toxins (Kovbasnjuk et al., 2001; 

Fujinaga et al., 2003). The T cell receptor, CD4, which locate in lipid rafts, is 

used by HIV to gain entry into the cell and lipid rafts are also used by the virus 

for subsequent assembly and release steps (Manes et al., 2000; Popik et al, 

2002).  

The role of lipid rafts functionality in ligand-HSPG interactions, for example, 

fibroblast growth factor (FGF) and HIV-1 Tat protein transduction domain (TatP) 

ligands, has been reported (Chu et al., 2004; Imamura et al., 2011). 

Perturbation of lipid rafts with MβCD and filipin reduced fibroblast growth factor-

2 (FGF-2) binding to HSPGs by 2-5 fold, although cell surface HSPG level was 

not affected (Chu et al., 2004). Imamura et al., (2011), described multi valent 

(≥8) TatP induced HSPG clustering at the cell surface, recruitment of activated 

Rac1 to adjacent lipid rafts and TatP/HSPG localization in actin associated 

micro-domains and subsequent internalization. 

Lipid rafts have previously been implicated in PEI mediated transfection (Kopatz 

et al., 2004; Paris et al., 2008). Previously, sequestration of cholesterol using 

MβCD has been shown to reduce TGE following PEI mediated transfection 

(Kopatz et al., 2004) and inhibit polyplex induced clustering of syndecans (Paris 

et al., 2008).  

6.1.2 Heparan sulphate proteoglycans 

Heparan sulphate belongs to the family of glycosaminoglycans (GAGs), also 

home to heparin, chondroitin sulphate and hyaluronic acid (and tissue type 

specific GAGs, dermatan sulphate and keratan sulphate) (Jackson et al., 1991; 

Hardingham and Fosang, 1992). The proteoglycan chains of the GAG family 

are either carboxylated or sulphated (or both), and thus GAGs are anionic 

species (although this depends on the cell line specific expression of enzymes 

such as sulphotransferases).  
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Figure 6.2 Addition of water soluble cholesterol to cells prior to transfec-

tion with PEI 

CHO S cells, in CD CHO media and 8mM ˪-glutamine, were incubated with the 
indicated concentration of cholesterol (dissolved in water) at 37°C, 5% CO2 , 
180rpm for one hour.  Cells were then directly transfected (A, B, C) or pelleted 
and resuspended in fresh CD CHO and ˪-glutamine prior to transfection (D, E, 

F). Transfections were performed according to protocol A. At 24 hours post 
transfection SEAP was measured (A and D). Viable cell density (black bars) 

and culture percentage viability (grey bars) was measured at 24 hours post 
transfection (B and E) or 24 hours post sub-culture (C and F).  
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GAGs have a repeating disaccharide structure. Heparan sulphate consists  of 

alternating N-acetyl-glucosamine (GlcNAc) or N-acetyl-galactosamine (GalNAc) 

and uronic acids (glucuronic acid (GlcA) or iduronic acid (IdoA)) (Hardingham 

and Fosang, 1992). Heparan sulphate is assembled in the Golgi and due to its 

enzyme-catalyzed assembly (Bishop et al., 2007), the product is highly diverse 

and also cell type specific (Perrimon and Bernfield, 2000; Park et al., 2000; 

Esko and Selleck, 2002; Belting, 2003). 

Key enzymes that mediate HSPG biosynthesis (Bishop, 2007) within the Golgi 

body include xylosyltransferase (XYLT1, XYLT2), which catalyses attachment of 

the GAG chain to specific serine residues of the core protein domain (Schon et 

al., 2006; Cuellar et al., 2007). The tetrasaccharide primer (GlcA-Gal-Gal-

Xylose) is assembled by galactosyltransferases (GALT1, GALT2) and 

glucuronyltransferase (GLCAT1) (Bishop, 2007). Exostosin glycosyltransferases 

(EXT1, EXT2) catalyses GlcA–GlcNAc polymerization/ chain elongation within 

the Golgi (Wei et al., 2000; Busse et al., 2007).  

N-sulphation of N-acetyl-glucosamine is catalyzed by N-sulphotransferases 

(NDST1-4) whereas the sulphation of glucuronic acid and iduronic acid is 

catalyzed by heparan sulphate n-O-sulphotransferases (HSnST) (n=1-6) 

(Bishop et al., 2007). Interestingly, although CHO-K1 cells possess homologues 

to the majority of human sulphotransferases, the majority are not expressed (Xu 

et al., 2011). HS6ST and HS2ST expression was reported in CHO-K1 cells, but 

not that of HS3ST (Xu et al., 2011).  

Heparan sulphate proteoglycans consist of a heparan sulphate GAG chain and 

a core protein, which is either transmembrane (the syndecans) or 

glycosylphosphatidylinositol (GPI) linked (the glypicans) (Couchman, 2003; 

Lander and Selleck, 2000; Sarrazin et al., 2011). The core protein, either 

syndecan (the family consisting of four gene products) or glypican (six gene 

products) (Park et al., 2000), determines the biological function of the 

proteoglycan (Belting, 2003). The GAG chain is anchored through the 

attachment of xylose to serine residues in the core protein (for syndecans and 

glypicans) (Sarrazin et al., 2011). 
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HSPGs have been associated with the binding and cyto-internalization of 

multiple ligands (Park et al., 2000; Esko and Selleck, 2002, Sarrazin et al., 

2011). HSPGs are involved in ligand interactions in normal cell functioning and 

in infection (bacterial and viral). Two well characterized interactions are those of 

FGF and the HIV-1 TatP with cell surface HSPGs (Chu et al., 2004; Bishop, 

2007; Imamura et al., 2011). Interestingly, cells of the CHO lineage are 

relatively resistant to viral infection (a desirable trait for biomanufacturing). For 

example, CHOK1 cells are resistant to Herpes Simplex Virus 1 (HSV-1) 

infection (Shukla et al., 1999), a virus which relies on HSPGs for entry into the 

cell (Shieh et al., 1992). Data obtained through the CHO genome project (Xu et 

al., 2011), highlighting the lack of expression of enzymes involved with HSPG 

biosynthesis (see above) is consistent CHO-K1 resistance to HSV-1. 

The role of cell surface proteoglycans in polylysine (cationic polymer) and 

cationic lipid mediated transfection has been demonstrated (Mislick and 

Baldeschwieer, 1996). Treatment of HeLa cells with chlorate (Baeuerle and 

Huttner, 1986) resulted in reduced PLL:DNA complex binding to the cell surface 

and TGE. Addition of exogenous heparin and HSPG resulted in reduced gene 

expression following PLL mediated transfection. Enzymatic cleavage of cell 

surface HSPGs using heparitinase resulted in ~80% lower gene expression 

following PLL mediated transfection (Mislick and Baldeschwieer, 1996). 

Similarly transfection of proteoglycan deficient CHO cell line (CHO-pgs745) 

resulted in dramatically lower TGE compared to transfection of wild type CHO 

cells with PLL and a range of cationic lipids. Although, interestingly, the lipid 

based transfection complexes with the highest dependence on cell surface 

proteoglycans, were those consisting of two cationic lipids; TGE following 

transfection with lipid formulations consisting of a cationic lipid/ neutral lipid 

combination or single cationic lipid showed relatively less dependence on cell 

surface glycosaminoglycans (Mislick and Baldeschweiler, 1996). The role of 

proteoglycans in cationic lipid mediated gene expression was further 

demonstrated by Mounkes et al., (1998) and Belting and Petersson, (1999). 

The role of proteoglycans and specifically HSPG in transfection mediated by 

polyethylenimine is contentious, with conflicting reports of the role of cell 

surface HSPGs in PEI mediated transfection provided. The literature is 
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summarized in Table 6.1. From the same group, several papers have 

demonstrated that cell surface GAGs inhibit TGE, with higher transfection 

efficiencies reported in GAG deficient CHO relative to wild type CHO cell lines 

(Ruponen et al., 2004; Lampela et al., 2004; Hanzlikova et al., 2011). However, 

given that the GAG deficient cell lines used in these papers were obtained by 

clonal isolation, an explanation for the results could be the inherent variability in 

transfectability/ TGE capacity exhibited by clones of the same cell line (Davies 

et al., 2012).  

Numerous other groups have provided evidence that HSPGs are necessary for 

successful TGE and PEI:DNA polyplex cyto-internalization, both directly and 

indirectly (Payne et al., 2007; Paris et al., 2008; Wong et al., 2010, Thompson 

et al., 2012). Payne et al., (2007) demonstrated co-localization of PEI:DNA 

polyplexes with fluorescently labeled anti-HSPG antibody, and reduced 

transfection efficiency in proteoglycan deficient CHO cells and following chlorate 

treatment of BS-C-1 cells. Wong et al., (2010) reported significantly reduced 

PEI:DNA polyplex uptake and subsequent TGE following enzymatic removal of 

cell surface HSPGs. Paris et al., (2008) demonstrated the opposing roles of 

syndecan 1 and syndecan 2 in transfection efficiency with PEI of HEK-EBNA1 

cells. The inhibitory role of extracellular glycosaminoglycans on TGE mediated 

by PEI has been demonstrated (Ruponen et al., 2001).  However, it was not 

possible to find within the literature, data describing the role of HSPGs in 

PEI:DNA polyplex cell surface binding (as opposed to cyto-internalization or 

TGE). 

The surface of CHO cells has been previously engineered to aid transfection 

mediated by PEI (Wong et al., 2010). Human IgG1 antibodies, deficient in 

fucose of the Asn297 linked carbohydrate, were found to improve binding to the 

receptor, human FcγRIII and improve antibody dependent cellular toxicity 

(ADCC) (Shields et al., 2002). However, production of afucosylated antibodies 

posed challenges to biomanufacturing, especially through PEI mediated TGE. 

Afucosylated cell lines also displayed low levels of cell surface HSPGs, relative 

to wild type CHO cells (Wong et al., 2010). Exostosin 1 (EXT1), an enzyme that 

catalyses HS GAG polymerization/ chain elongation (Busse et al., 2003; Busse 

et al., 2007; Okada et al., 2010); generation of a stably expressing FUT-8 KO 
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cell line stably expressing EXT1 was found to have equivalent levels of cell 

surface HSPGs and to yield equivalent protein expression relative to CHO WT 

cells following PEI mediated transfection (Wong et al., 2010). Interestingly, 

EXT1 and EXT2 enzymes were also found to affect NDST1 expression and 

thus HSPG sulphation (Presto et al., 2008). 
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6.1.3 Gangliosides 

Gangliosides are glycolipids, which contain an oligosaccharide with one or more 

sialic acid residue, giving the molecule an anionic charge. The sialic acids 

(Byrne et al. 2007) are a diverse family of 9-carbon carboxylated sugars, of 

which N-acetyl neuraminic acid (Neu5Ac) is the most commonly occurring and 

is believed to be the biosynthetic precursor of all the other sialic acid family 

members (Varki, 1992).   

The cell surface gangliosides play crucial roles in disease pathogenesis. The 

GM1 ganglioside is the cell surface receptor for cholera toxin B sub-unit, the 

primary enterotoxin produced by the bacterium Vibrio cholerae (Holmgren et al., 

1993). Gangliosides have also been identified as the cell surface receptors for 

the Human Influenza A Virus (Suzuki et al., 1986) and sialic acid was identified 

as the cell surface receptor for Adenovirus Type 37 (Arnberg et al. 2000). 

Cholera toxin subunit B is widely reported to bind to lipid rafts (Harder et al., 

1998, Janes et al., 1999) although their ganglioside-specific binding has been 

disputed (Cuatrecasas, 1973; Fujinaga et al., 2003; Harder et al., 1998; Rusnati 

et al., 2002; Blank et al., 2007). Blank et al. (2007) specifically reported CTB 

binding to cells treated with a chemical inhibitor of ganglioside synthesis and the 

enzyme glucosidase. Nonetheless, fluorescently labelled recombinant cholera 

toxin B is a canonical ganglioside/ lipid raft marker (Palmer et al., 2007; Zhu et 

al., 2008; Simons and Gerl, 2010). 
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6.2 Materials and Methods 

For all experiments described in this chapter, CHO-S cells were used, using the 

culture conditions described in Chapter 3. Cells were transfected with 25 kDa 

linear polyethylenimine according to protocol A, described in Chapter 3, Tables 

3.1 and 3.2.  

6.2.1 Chemical and enzymatic treatments prior to transfection 

Methyl-beta-cyclodextrin (MβCD), water soluble cholesterol and phospholipase-

C, were purchased from Sigma-Aldrich (Dorset, UK). MβCD and phospholipase-

C were dissolved in de-ionized water. The HSPG lyase, heparitinase, was 

purchased from AMS Biotechnology (Abingdon, UK) and resuspended in 0.1 % 

BSA in PBS. For phospholipase-C and heparitinase, final concentrations were 

obtained by diluting 1:100 to the cells in media and 1:50 for MβCD. Chemical 

solutions were filter sterilized (0.22 µm). An equal volume of the reconstitution 

solution was added to control wells. At 1 or 2 h prior to transfection and at 4°C 

or 37°C, as indicated, chemicals or enzymes were added to cells. 

Trypsin (0.05%) in EDTA and dialyzed fetal bovine serum (FBS) were 

purchased from Life Technologies (Paisley, UK). For trypsinization of cell 

surface proteins, 85 µl 0.05% trypsin in EDTA was added to 1x106 cells at a 

concentrations of 2.5x106 cells mL-1 in CD CHO media. Cells were incubated 

with trypsin (or control cells with EDTA) for 10 min, 37°C and 170 rpm. Cells 

were then pelletted and then incubated with CD CHO 10% dialyzed FBS for 2 

min, 37°C and 170 rpm, washed with CD CHO and resuspended at a 

concentration of 1x106 cells mL-1 in CD CHO media. 

Cells were enriched with monosialoganglioside (GM1) from bovine brain 

(lyophilized gamma irradiated) (Life Technologies) by seeding cells at 2x105 

cells mL-1 in culti-flaks, with 100 µM ganglioside. At three days post sub-culture, 

cells were washed with media and transfected according to protocol A. 

6.2.2 Heparan sulphate proteoglycan immunostaining 

For anti-heparan sulphate immunostaining, 5x106 cells mL-1 were fixed in 4% 

PFA (w/v) solution and stained as previously described (Wong et al., 2010). 

Fixed cells were washed with PBS 1% BSA and incubated with anti-HS 
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antibodies 10E4 or HepSS1 (Seikagaku, AMS Biotechnology) at 1:100 for 30 

min at 4°C. Cells were washed twice in PBS 1% BSA and stained with anti-

mouse IgM FITC antibody (Life Technologies, Paisley, UK) or anti-mouse IgM 

Alexa 633 antibody (Life Technologies) at 1:500 for 30 min at 4°C. After thee 

washes in PBS 1% BSA, cells were analyzed by flow cytometry 

(FACSCalibur™) or confocal microscopy. For HSPG micrographs, Vectashield 

HardSet™ (Vector Laboratories, Peterborough, UK) mounting solution 

containing DAPI was used on the coverslips and glass slides. 

6.2.3 Staining with Nile red 

Microscopy grade Nile red was purchased from Sigma-Aldrich and diluted in 

acetone to 20 µg mL-1 and added to 1x106 mL-1 live cells at a concentration 100 

ng mL-1. Cells were incubated at 4°C for 20 min and washed once with ice cold 

PBS. For single Nile red staining, cells were kept on ice before fixing. For 

polyplex staining, 5x105 Nile red treated cells in 500 µl chilled CD CHO media, 

were added to a 24 well plate (Corning®, ultra low bind) and transfected, 

according to protocol A, with Mirus Label IT® Cy5 (Cambridge Bioscience, 

Cambridge, UK) plasmid DNA . Cells were incubated for 30 min at 4°C and 

washed once with cold PBS. Cells were fixed with 4% (w/v) PFA in PBS for 15 

min and resuspended in PBS at a concentration of 1x106 cells mL-1. Slides were 

prepared by centrifuging cells and resuspending in ProLong® Gold Antifade 

Reagent (Life Technologies), pipetting gently onto slides, adding coverslip and 

leaving to cure for 24 h at rt in darkness, before sealing the edges with nail 

varnish. 

Images were obtained using a Zeiss LSM 510Meta inverted confocal 

microscope and 63x/1.4 Oil DIC with a pixel dwell time of 2.4 µs. Nile red was 

excited using a 543 nm laser (47% transmission) and emission detected 

between 560 and 615nm. Cy5 was excited using a 633 nm laser (31% 

transmission) and emission detected between 650 and 710 nm. All image 

analysis was performed using LSM Image Examiner software.  
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6.2.4 Staining with fluorescent aerolysin (FLAER) 

Cells (4x105) were fixed in 4% PFA (w/v) and then resuspended in 2.5% 

fluorescent aerolysin (FLAER) (Pinewood Scientific Services, Victoria, BC, 

Canada) in PBS at a concentration of 8x106 mL-1. Cells were incubated on ice 

for 1 h in the dark, washed twice in PBS and the cell-specific fluorescence 

measured by flow cytometry. 

6.2.5 Staining with alexa555 cholera toxin B 

Recombinant alexa555 cholera toxin B (Life Technologies) was added to live 

cells at a 1:500 ratio (5x105 cells in 500 µL PBS), which were incubated for 10 

min at 4°C in darkness and washed twice in PBS before fixing in PFA. 
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6.3 Results 

6.3.1 Reduction in cell surface cholesterol, using methyl-beta 

cyclodextrin (MβCD), reduces polyplex binding to the cell surface and 

TGE 

It was hypothesized that sequestration of membrane cholesterol with MβCD, 

thus reducing membrane fluidity, would reduce TGE following transfection 

mediated by PEI and polyplex binding to the surface.   

Sequestration of cholesterol with MβCD was found to reduce SEAP activity, at 

24 h post transfection with PEI in a concentration dependent manner (Figure 

6.1A). At a concentration of 2.5 mM, MβCD  abrogated SEAP production 

(Figure 6.1A). At a concentration of 1.9 mM MβCD, SEAP activity decreased to 

10% of control levels and polyplex-cell surface binding decreased to 3% of 

control levels (Figure 6.1A and D).  

Treatment with MβCD reduced viable cell density of PEI transfected cells in a 

concentration dependent manner (Figure 6.1B). At 1.9 mM MβCD, viable cell 

denisty reduced to 1.2x106 cells mL-1  and culture viability to 78% relative to 

1.5x106 cells mL-1  and 89% in control conditions.  

Treatment with MβCD also reduced the viable cell density and culture viability of 

untransfected cells (Figure 6.1C). Viable cell density reduced by over 50% at 

2.5 mM for untransfected cells but culture percentage viability to only 87%, 

relative to 96% in control conditions.  

To test whether reduced polyplex-cell surface binding in the presence of MβCD 

was due to polyplexes binding to extracellular MβCD-cholesterol clumps, 

following MβCD treatment and prior to transfection, media was replaced and 

polyplex-cell surface binding measured as normal (Figure 6.1E). Polyplex-cell 

surface binding was found to decrease with increasing concentrations of MβCD. 

At a concentraion of 2.5 mM MβCD, polyplex-cell surface binding reduced to 

13% of control levels. The pattern observed was the same as without a media 

replacement prior to transfection, but a higher concentration of MβCD was 

required to achieve a similar reduction in polyplex-cell surface binding. The data 

indicates that depletion of plasma membrane cholesterol, reducing membrane 
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fluidity, reduces polyplex-binding to the cell surface. The data also indicates, 

that polyplexes may bind to extracellular MβCD-cholesterol clumps.  

 

 

 

 

 

 

 

Figure 6.1 Sequestration of cholesterol by methyl beta cyclodextrin  

reduces polyplex-cell surface binding and SEAP production. 

One hour prior to transfection with PEI, the indicated concentration of MβCD 
was added to CHO-S cells. SEAP (A), viable cell density (black bars) (B) and 

cell culture percentage viability (grey bars) (C) were measured at 24 h post 

transfection. Viable cell density (black bars) and culture % viability (grey bars) 
(E) were measured at 24 h post sub-culture. Polyplex-cell surface binding (D 
and E) was measured by using fluoroscein labelled plasmid DNA, incubating 

the transfection at 4°C and at 4 h post transfection measuring cellular fluores-
cence using flow cytometry. E: Media was replaced post treatment with MβCD 

and pre-transfection: polyplex-cell surface binding was measured as above. 

The mean value ± standard deviation from triplicate transfections or cultures is 
shown. 
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Box 6.1 Methyl β-cyclodextrin 

 

 

 

 

 

 

 

 

 

 

 

6.3.2 Effect of addition of water soluble cholesterol to TGE and culture 

viabilities  

Converse to addition of MβCD, water soluble cholesterol (carried by MβCD) 

was added to cells. Addition of water soluble cholesterol to cells has previously 

been provided as a method for enhancing membrane cholesterol content 

(Christian et al., 1997) and it was hypothesized that by increasing membrane 

cholesterol content, PEI mediated TGE would increase (by increased polyplex 

binding to the cell surface). 

Water soluble cholesterol was added to cells prior to transfection with PEI, with 

and without medium replacement following cholesterol treatment and prior to 

transfection. Without media replacement pre-transfection, addition of cholesterol 

at 25 µM resulted in SEAP activity at 95% of control levels and at 

concentrations of 50 and 100 µM, SEAP activity was abrogated (Figure 6.2A). 

However, at 50 and 100 µM cholesterol, a signiciant reduction in viable cell 

density and culture percentage viability was observed (Figure 6.2B). For 

example, at 50 µM cholesterol, viable cell density was 0.9x106 cells mL-1  

Methyl β-cyclodextrin is a cyclic heptasaccharide, belonging to the 

cyclodextrin family of cyclic oligosaccharides. It is used to sequester 

cholesterol from natural and model cell membrane. Of all the cyclodextrins, it 

has the highest affinity for cholesterol (Zidovetzki and Levitan, 2007).  

In addition to the role of MβCD in disrupting lipid raft functionality, described 

in section 6.1, it has also been used as an inhibitor of numerous endocytic 

pathways (Ivanov, 2008). However, the role of cholesterol in clathrin and 

caveolin dependent endocytosis and macropinocytosis has been 

demonstrated (Grimmer et al., 2002), thus its use at physiological conditions 

is likely to disrupt numerous endocytic pathways. Specifically, MβCD has 

been shown to cause flattening of caveolae, mislocalization of caveolin-1,  to 

inhibit uptake of cholera toxin B (a marker of caveolae mediated 

endocytosis) and at high concentrations, to inhibit uptake of transferrin (a 

marker of clathrin mediated endocytosis) (Ivanov, 2008).  
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relative to 1.5x106 cells mL-1 in control conditions and culture percentage 

viability reduced to 69%. Addition of cholesterol to untransfected cells also 

resulted in a significant reduction in cell growth and culture viabilty (Figure 

6.2C). 

With media replacement prior to transfection and following incubation of cells 

supplemented with water soluble cholesterol, at 24 h post transfection, 

cholesterol treatment at a concentration of 50 µM and 100 µM resulted in SEAP 

activity at 34% and 10% of control levels (Figure 6.2D). In the presence of 

cholesterol the viable cell density of transfected cells also decreased, but only 

at a concentration of 100 µM cholesterol (Figure 6.2E). Similarly, a significant 

reduction in culture percentage viability to 74% relative to 88% for control, was 

observed at 100 µM cholesterol. For untransfected cells, treatment with one 

hour prior to media replacement, resulted in a concentration dependent 

reduction in viable cell density but had minimal effect on culture percentage 

viability, at 100 µM cholesterol, decreasing viability to 92% (Figure 6.2F). 

Membrane cholesterol trafficking is thought to be a highly sensitive process 

(Leyt et al., 2007) and it is possible that addition of water soluble cholesterol 

disrupted membrane cholesterol in a similar fashion to that achieved by MβCD. 

Furthermore, as indicated by the difference in SEAP output at a concentration 

of 50 µM cholesterol, with and without media replacement prior to transfection, it 

is possible that polyplexes bound to extracellular cholesterol dispersed in the 

media, reducing polyplex binding to the cell surface.  

6.3.3 Localization of cellular hydrophobic regions and polyplexes 

It was hypothesized that PEI:DNA polyplexes would alter the distribution of 

hydrophobic lipids at the cell surface and in the cytoplasm. Nile red (9-

diethylamino-5-benzo(α)phenoxazinone) is selectively fluorescent in a 

hydrophobic environment (i.e. intracellular lipid droplets) (Greenspan et al., 

1985). Thus, cells were stained with Nile red and subsequently, fluorescently 

labelled PEI:DNA polyplexes were added to cells on ice (Figure 6.3). Patches 

stained with Nile red were seen in the peri-nuclear area, consistent with 

previously published micrographs of Nile red stained CHO cells (Listenberger et 

al., 2003). Polyplexes were seen in distinct patches on the cell membrane, 
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consistent with data presented in Figure 4.6 and in Godbey et al., (1999c). 

However, comparing micrographs Figure 6.3B and C, no difference in the 

distribution of lipid droplets was observed between transfected and 

untransfected cells and furthermore, no co-localization between cy5 

(polyplexes) and Nile red (lipid droplets) was observed. 

 

 

 

 

 

  

Cholesterol (µM) 

Figure 6.2 Addition of water soluble cholesterol to cells prior to transfec-

tion with PEI. 

CHO-S cells, in CD CHO medium, were incubated with the indicated concen-
tration of cholesterol (dissolved in water) at 37°C, 5% CO2 , 180rpm for 1 h.  
Cells were then directly transfected (A, B, C) or pelleted and resuspended in 
fresh CD CHO prior to transfection (D, E, F). Transfections were performed 

according to protocol A. At 24 h post transfection SEAP was measured (A and 
D). Viable cell density (black bars) and culture % viability (grey bars) was 
measured at 24 hours post transfection (B and E) or 24 h post sub-culture (C 

and F). The mean value ± standard deviation from triplicate transfections or 

cultures is shown. 
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Figure 6.3 Cells labelled with Nile red and cy5 polyplexes. 

Live cells (CHO-S) were incubated at a concentration of 106 mL-1 in PBS and 
Nile red (20 µg mL-1) at 4°C for 20 min in the dark. For single Nile red staining, 
cells were kept on ice before fixing in 4% (w/v) PFA. Cy5 labelled PEI:DNA 

polyplexes were formed according to protocol A and incubated with cells at 4°
C for 30 min, prior to fixing. Cells were resuspended in ProLong® Gold Anti-
fade reagent mounting agent.  A-cells with cy5 labelled polyplex only; B-cells 
stained with Nile red only; C-cells stained/ labelled with Nile red and cy5 poly-

plexes. Column one (560—615 nm filter). Column two (650-710 nm filter). Col-
umn three-combined images. Bar = 10µm. 

A 

B 

C 



 

Chapter 6 Polyplex-cell surface bio-molecular interactions 102 

6.3.4 Cell surface heparan sulphate proteoglycans (HSPGs) deplete from 

the cell surface following transfection but regenerate rapidly following 

enzymatic cleavage. 

Given the plethora of data demonstrating HSPG involvement in PEI mediated 

transfection (Table 6.1) and specifically that PEI:DNA polyplexes and anti-

HSPG antibodies co-localize intra-cellularly (Payne et al., 2007) the hypothesis 

was tested that cell surface HSPGs would deplete following transfection with 

PEI. Cells were fixed at set times pre and post transfection or trypsinization and 

immunostained using anti-HSPG mAbs (Figure 6.4). At 7.5 min post 

transfection, cell surface HSPGs reduced to 25% of the level pre transfection. 

At 30 min post transfection, the level dropped further to 14% and remained at 

this level at 8 h post transfection. In contrast, in un-transfected conditions, 

following enzymatic cleavage of HSPGs using trypsin, cell surface HSPGs fell 

to 16% of pre trypsinization levels but gradually regenerated on the cell surface. 

At two and eight hours post trypsinization, HSPGs had regenerated to 47% and 

73% of pre-trypsin levels, respectively (Figure 6.4).  

The data describing HSPG depletion post transfection was transformed 

according to y(t, 480)=0, and an exponential function fitted to the data (Figure 

6.5A). Using calculus, the point where the time point where the rate of change 

in fluorescence was less than or equal to 1% was calculated:  

α=c+0 8691e-0.266x 

Find time at which change in fluorescence is <1% 

  

  
 ≥ -1% 

-1% ≤ -0.2311806 e-0.266x 

X=11.8 min 

The time point where HSPG depletion was ≤1% was calculated to occur at 11.8 

min post transfection. 

A linear function was found to provide good fit to HSPG regeneration post 

trypsinization between 1 and 240 min post trypsinization (Figure 6.5B) 
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Figure 6.4 Heparan sulphate proteoglycans deplete from the cell surface 

following transfection but regenerate rapidly following enzymatic  
cleavage. 

CHO-S cells were transfected with PEI or trypsinized and at the indicated 

times post or prior to transfection/ trypsinization, washed with PBS and fixed. 
Fixed cells were then immunostained for HSPGs and the fluorescence meas-

ured by flow cytometry or confocal microscopy. Diamonds: HSPGs regenerate 
over time following trypsinization. Triangles: HSPGs deplete from the cell sur-
face following transfection. The mean value ± standard deviation from triplicate 

transfections or cultures is shown. 
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 Time post transfection (min) 

Figure 6.5  Equations fitted to kinetic data for HSPG depletion post trans-

fection or trypsinization. 
A: HSPGs post transfection. Data was transformed whereby y(t,480)=0. The ex-

ponential function was found to provide good fit to the data. 
B: HSPGs post trypsinization. A linear function provided good fit to the data 

between 0 and 240 min post transfection 
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Rate of change of cell surface HSPGs was also calculated, according to 

equation 6.1. Following trypsinization, the rate of regeneration of cell surface 

HSPGs was calculated to be approximately constant, over 8 h post transfection 

(Figure 6.6). Following transfection, the rate of change in cell surface HSPGs 

fell >10 fold between 7.5 and 30 min post transfection. Between 60 and 480 min 

post transfection, the rate of change of cell surface HSPGs was approximately 

constant (Figure 6.6).  

Rate of change in cell surface HSPGs = 
      –         

      –         
 

Where FU is fluorescence unit, t is time and m is minutes. 
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Figure 6.6 Rate of change in cell surface HSPG complement, post trans-

fection or trypsinization. 

Diamonds: rate of cell surface HSPG regeneration following trypsinization.   
Triangles: rate of cell surface HSPG depletion following transfection. Rates of 

change of cell surface HSPG complement were calculated using equation 6.1 
and data presented in Figure 6.4.  
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The data presented in Figures 6.4, 6.5 and 6.6, combined with data presented 

in Figures 4.4, 4.5 and 4.6, is used to form the biphasic model of polyplex 

uptake, described in Chapter 9 and Figure 9.1. 

6.3.5 Immunostaining and confocal microscopy shows cell surface 

HSPGs located in distinct rafts on the cell surface 

To illustrate the data on HSPG depletion post transfection, confocal 

micrographs were taken. In addition, it was hypothesized that HSPGs would 

appear at distinct patches around the plasma membrane, indicative of lipid-raft 

localization. Confocal micrographs of cell surface HSPG complement, pre and 

post transfection with PEI, supported the data obtained by flow cytometry, 

illustrating a substantial reduction in cell surface HSPGs post transfection 

(Figure 6.7). Furthermore, confocal micrographs showed HSPGs in distinct, 

localized patches on the cell surface, both pre and post transfection with PEI.  
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CONTROL POST TRANSFECTION  

Figure 6.7 HSPG clusters pre- and post transfection with PEI. 

Cell were fixed, without prior treatment or 10 min post transfection with PEI. 
Cells were immunostained for HSPG with the primary murine IgM monoclonal 
antibody (10E4) and the secondary  alexa-633 anti mouse IgM antibody. Cells 

were mounted on cover-slips with DAPI containing medium. An inverted 
LSM510 meta confocal microscope with a  63x/1.4 oil DIC and 633 and 800 

nm lasers was used. Bar = 10µm. 
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6.3.6 Cell surface HSPGs are not absolutely required for polyplex binding 

to the cell surface but HSPG depletion reduces TGE by 25 percent 

To test the hypothesis that HSPGs mediate polyplex-cell surface binding and 

PEI mediated TGE, HSPGs were enzymatically cleaved using heparitinase and 

the HSPG reduction validated by anti-HSPG immunostaining. Treatment with 

heparitinase resulted in a 90% reduction in cell surface HSPGs, validated by  

immunostaining at the point of transfection (and a validated >85% reduction at 

24 h post transfection, data not shown) (Figure 6.8F). However, there was no 

significant difference in polyplex-cell surface binding (Figure 6.8D), between 

heparitinase treated or control cells, measured at 4 h post transfection. 

Although heparitinase treatment resulted in a ~25% reduction in SEAP activity 

at 24 h post transfection (Figure 6.8A). Treatment with heparitinase had no 

significant effect on viable cell density or culture % viability at 24 h post 

transfection (Figure 6.8B).  
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Figure 6.8 Depletion of HSPGs has no effect on polyplex-cell surface 

binding at 4 h post transfection, but reduces SEAP activity by 25% at 24 
h post transfection. 

Prior to transfection with PEI (2 h), heparitinase was added to CHO-S cells. 
SEAP (A), viable cell density (black bars) and culture % viability (grey bars) 
(B) were measured at 24 h post transfection. Polyplex-cell surface binding (C 

and D) was measured by using fluoroscein labelled plasmid DNA, incubating 

the transfection at 4°C and at 4 h post transfection measuring cellular fluores-
cence using flow cytometry. C: dashed line: 0 mU heparitinase; solid line: 5 

mU heparitinase; dotted line: auto-fluorescence. At the point of transfection, 
cells were fixed and immunostained for cell surface HSPGs (E and F) and the 

fluorescence measured by flow cytometry. E: dashed line: 0 mU heparitinase, 

solid line: 5 mU heparitinase, light grey line: secondary antibody control, dotted 
line: auto-fluorescence. The mean value ± standard deviation from triplicate 

transfections or samples is shown. 
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6.3.7 Trypsinization, removing cell surface proteins, reduces PEI 

mediated TGE by 23 percent 

The role of the cell surface proteome in PEI mediated transfection was tested, 

by enzymatically depleting cell surface proteins, using trypsin, which cuts at 

arginine and lysine (Olsen et al., 2004) and sometimes before proline 

(Rodriguez et al., 2008). In addition, the regeneration of cell surface proteins 

was considered, by transfecting cells at set times post trypsinization. At set 

times post trypsinization, cells were transfected with PEI and at exactly 24 h 

post transfection, samples were taken for SEAP and cell viability analysis 

(Figure 6.9). For cells transfected at 10 min post trypsinization, SEAP activity 

was at 77% that of control levels (Figure 6.9A). Cells transfected at 60, 120 and 

240 min post trypsinization had SEAP activity at 85, 88 and 85% of control 

levels, respectively. It is possible that regeneration of cell surface proteins/ 

glycoproteins facilitated the incremental increase in TGE when cells were 

transfected at 60/ 120/ 240 min post trpsinization, rather than at 10 min post 

trypsinization, when cell surface protein levels would be expected to be minimal. 

The process of trypsinization had no significant effect on culture viability. 

Neither viable cell density or culture percentage viability at 24 h post sub-culture 

or transfection was significantly different  for cells with or without prior 

trypsinization (Figure 6.9 B and C). 
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Figure 6.9 Transfection of cells at set times post trypsinization.  

Cells were transfected, at the indicated times post trypsinization, with PEI. At 
24 h post transfection, SEAP (A), viable cell density (B), and culture % viability 
(C) of trypsinized (dark grey bars) and non trypsinized (light grey bars) were 

measured. The mean value ± standard deviation from triplicate transfections or 
cultures is shown. 
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Box 6.2 Anti-heparan sulphate proteoglycan mAbs, HepSS1 and 10E4: 

Epitope Specificity 

 

 

 

 

 

 

 

6.3.8 Total cell surface HSPG level varies across CHO cell lines. 

As presented by Thompson et al., (2012) three CHO cell lines, CHO-L, CHO-M 

and CHO-S, following transfection optimization, were found to vary in SEAP 

output, polyplex binding and polyplex cyto-internalization capacity. It was 

hypothesized that the cell surface HSPG level would also vary across the three 

variant CHO cell lines. Thus, CHO-S, CHO-L and CHO-M cells, were stained 

with anti-HSPG murine monoclonal antibodies (10E4 and HepSS1) and a 

secondary anti-mouse IgM FITC-labelled mAb. The CHO-S cells were more 

heavily stained with both 10E4 and HepSS1 mAbs, relative to CHO-L and CHO-

M (Thompson et al., 2012). With anti-HSPG 10E4, staining of CHO-L and CHO-

M was 24% and 19% the level for CHO-S, respectively (Figure 6.10). With 

HepSS1, staining of CHO L and CHO M was 35% and 24% the level for CHO-

S, respectively (Figure 6.10).  

For each cell line, the level of staining with the HepSS1 was lower compared to 

staining with 10E4, as expected (Van den Born et al., 2005). Staining of CHO-S, 

CHO-L and CHO-M using HepSS1 was 24%, 37% and 31% the level of 10E4 

staining, for each respective cell line (Figure 6.10).   

Interestingly, CHO cell lines stained with the same mAbs, HepSS1 and 10E4, 

DG44, DG44 fut8 -/-, CHO WT and FUT 8 KO (Wong et al., 2010), were stained 

by HepSS1 at >70% the level of 10E4 staining (estimated), much higher than 

Anti-HSPG murine mono-clonal antibodies 10E4 and HepSS1 were 

produced through hybridoma technology (David et al., 1992; Kure and 

Yoshie, 1986). The saccharide epitopes of the  mAbs was identified by 

inhibition ELISA, using heparin like polysaccharides (Van den Born et al., 

2005). The epitope of the 10E4 mAb was found to occur commonly in 

heparan sulphate and is distinguished by a N-acetylated and N-sulphated 

glucosamine sequence (GlcNAc and GlcNS). In contrast, the epitope of 

HepSS1 was found to be rare in heparan sulphate, characterized sequences 

rich in N-sulphated glucuronic acid (Van den Born et al., 2005). 
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the ratio of HepSS1/10E4 staining reported here. These data indicate the 

diversity in HSPGs micro-structure amongst variant CHO cell lines.  
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Figure 6.10 Variable heparan sulphate proteoglycan level across three 

CHO cell lines. 

Host CHO cells (1x106 cell mL-1) were fixed in 4% (w/v) paraformaldehye then 
labelled with murine anti-HSPG monoclonal antibodies (HepSS1-grey bars and 

10E4-black bars) and a secondary FITC labelled goat anti-mouse secondary 
antibody, prior to flow cytometric analysis (A and B). The mean value ± stan-

dard deviation from triplicate biological samples is shown. 
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6.3.9 GPI anchored cell surface proteins do not mediate polyplex-cell 

surface binding or PEI mediated TGE  

The involvement of GPI anchored proteins, in polyplex cell surface binding and 

TGE were investigated. The core protein domain of HSPGs is either a 

transmembrane, syndecan, or GPI anchored, glypican. The involvement of 

syndecans in PEI:DNA polyplex cyto-internalization and TGE has been 

previously reported (Paris et al., 2008). However, it was not possible to find data 

describing the role of GPI anchored proteins in PEI mediated transfection. It 

was hypothesized that enzymatic depletion of GPI anchored proteins would 

affect PEI mediated TGE and polyplex binding to the cell surface. 

GPI anchored proteins were enzymatically depleted using phospholipase-C, 

which has been used previously to cleave GPI anchored proteins from the 

surface of CHO cells (Jarousse and Coscoy, 2008). Depletion of GPI anchored 

proteins was validated using and fluorescent aerolysin (FLAER), which has 

been used to stain for GPI anchored proteins (Brodsky et al., 2000). 

Treatment of CHO-S cells with phospholipase-C, resulted in a 78% reduction 

cell surface GPI anchored proteins, measured by staining with fluorescent 

aerolysin (Figure 6.11 E and F). However, treatment with phospholipase-C did 

not affect SEAP production (Figure 6.11A) or polyplex-cell surface binding 

(Figure 6.11 C and D). Viable cell density and culture percentage viability at 24 

h post transfection was not affected by treatment with phospholipase-C (Figure 

6.11B).  
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Figure 6.11 Depletion of GPI anchored proteins on the cell surface using 

phospholipase c does not significantly reduce polyplex-cell surface bind-
ing or SEAP production after transfection with PEI.  

One hour prior to transfection with PEI, phospholipase C was added to CHO-S 
cells. SEAP (A), viable cell density (black bars) and culture % viability (grey 
bars) (B) were measured at 24 h post transfection. Polyplex-cell surface bind-

ing (C and D) was measured by using fluoroscein labelled plasmid DNA, incu-

bating the transfection at 4°C and at 4 h post transfection measuring cellular 
fluorescence using flow cytometry. At the point of transfection, cells were fixed 

and stained for cells surface GPI anchored proteins using fluorescent aerolysin 
(FLAER) (E  and F). C and E: dashed line: 0 mU phospholipase C; solid line: 1 

U phospholipase C; dotted line: auto-fluorescence. The mean value ± standard 
deviation from triplicate transfections or samples is shown. 
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6.3.10  Gangliosides are not exogenously expressed by CHO-S cells. 

Enrichment of the cell surface with ganglioside (GM1) does not affect 

polyplex-cell surface binding or PEI mediated TGE 

The CHO-K1 cell line has been shown to be deficient in gangliosides (Rusnati 

et al., 2002). It was hypothesized that increasing levels of cell surface 

gangliosides would enhance polyplex binding to the cell surface.  

Lipid raft associated gangliosides have previously been enriched in ganglioside-

deficient CHO-K1-pgsA745 cells, through addition of exogenous bovine 

ganglioside (GM1) (Rusnati et al., 2002). Thus, bovine ganglioside was added 

to CHO-S cells, three days prior to transfection. Since the CHO-S cell line is 

derived from CHO-K1, it was not surprising that CHO-S stained with cholera 

toxin B were not fluorescent above back-ground levels. Following enrichment 

with gangliosides, however, staining with fluorescently labelled CTB was 

dramatically above background fluorescence (Figure 6.12 E and F). However, 

enrichment with gangliosides did not affect polyplex cell-surface binding (Figure 

6.12 C and D). SEAP production was 21% lower in ganglioside enriched cells 

compared to control (Figure 6.12A). Viable cell density, at 24 h post 

transfection, was slightly higher for ganglioside enriched cells, 1.8 x106 cells 

mL-1 compared to 1.2 1.8x106 cells mL-1 in control conditions (Figure 6.12B). 

Culture percentage viability was 89% for ganglioside enriched cells compared to 

84% for control cells at 24 h post transfection (Figure 6.12B). 

It is possible that the process of ganglioside enrichment, as described above, 

caused stress to the cells (e.g. through the trafficking of gangliosides)  that was 

detrimental to PEI mediated transfection and SEAP production. Thus a cell line 

engineering approach to increase cell surface ganglioside complement might be 

a more lengthy, but unavoidable step to accurately test whether gangliosides 

improve PEI mediated transfection and TGE. 
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Figure 6.12 Enrichment of CHO cells with ganglioside (GM1) has no  

significant effect on polyplex-cell surface binding. 

Cells (CHO-S) were cultured with or without 100 µM GM1 for 72 h prior to 
transfection with PEI. SEAP (A), viable cell density (black bars) and culture % 

viability (grey bars) (B) were measured at 24 h post transfection. Polyplex-cell 
surface binding (C and D) was measured by using fluoroscein labelled plasmid 

DNA, incubating the transfection at 4°C and at 4 h post transfection measuring 
cellular fluorescence using flow cytometry. Enrichment with ganglioside GM1 
was validated by fixing cells with PFA and staining using alexa-555 labelled 
cholera toxin B (CTB) (E and F). C and E: dashed line: control cells; solid line: 

ganglioside enriched cells; dotted line: auto-fluorescence. The mean value ± 

standard deviation from triplicate transfections or samples is shown. 
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6.4 Discussion 

Several groups have demonstrated the role of HSPGs in polyplex internalization 

and subsequent TGE (Payne et al., 2007; Paris et al., 2008; Wong et al., 2010), 

as described in detail in section 6.1 and Table 6.1. Thus, it was not surprising 

that heparitinase treatment was found to reduce TGE (Figure 6.7). However, it 

was expected that heparitinase treatment would completely oblate TGE, rather 

than the observed 25% reduction in TGE, in accordance with the theory that 

HSPGs are the cell surface receptors for polyplexes and that HSPGs are 

absolutely necessary for polyplex binding to the cell surface. In contrast to the 

limited reduction in TGE following heparitinase treatment, MβCD ablated TGE 

at the highest concentration tested, similar to data presented by Kopatz et al., 

(2004). These data can be explained by using the biphasic model of polyplex 

uptake, described in Chapter 9 and Figure 9.1. According to the model, 

heparitinase treatment would oblate phase 1 uptake (HSPG endocytosis, Payne 

et al., 2007), but have no effect on phase 2 uptake. MβCD treatment would 

reduce polyplex internalization via both pathways, membrane fluidity being 

fundamental for almost all forms of endocytosis reported (Grimmer et al., 2002) 

(Box 6.1) (Table 6.2). Approximately 25% of polyplex was found to be 

internalized in phase 1 (within approximately 15 min post transfection) (Figure 

4.5), equal to the reduction in reporter protein expression caused by 

heparitinase treatment. 

Table 6.2 Putative effects of biochemical manipulation on transfection 

using the biphasic model for the uptake of PEI:DNA polyplexes 

 Uptake 

Treatment Phase 1 Phase 2 

Heparitinase x ── 
MβCD ↓ ↓ 

 

Heparitinase treatment abrogates uptake via phase 1 (HSPG-endocytosis) but 
has no effect on phase 2 uptake. Treatment with MβCD reduces phase 1 and 
phase 2 uptake. 

 

In addition to heparitinase treatment, trypsinization of the cell surface was found 

to only reduce PEI mediate TGE by ~25% (Figure 6.9). Since HSPGs consist of 
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a protein core domain, it is possible that the reduction in TGE could be 

explained by reduced cell surface HSPGs, as described above. However, the 

trypsinization data indicate that other protein based membrane moieties are not 

absolutely necessary for transfection, but as with HSPGs, are necessary for 

TGE at maximum levels.  

Interestingly, MβCD, but not heparitinase treatment, reduced polyplex binding to 

the cell surface, at 4 h post transfection (Figures 6.1 and 6.8). The data indicate 

that membrane fluidity/ lipid raft functionality is necessary for polyplex-cell 

surface binding. It is possible that had polyplex-cell surface binding been 

measured at earlier time points (i.e. <10 min post transfection), heparitinase 

treated cells may have displayed lower polyplex binding than control cells and 

that by 4 h post transfection, cell-surface binding may have saturated. 

Nonetheless, the data indicate that polyplexes bind to the cell surface in the 

absence of HSPGs.  

The data presented in Figures 6.1 and 6.7 fit with data presented in Chapter 5 

and support the theory that hydrophobic interactions contribute to polyplex-cell 

surface binding as follows: hydrophobic cholesterol assemblies are absolutely 

necessary for polyplex binding to the cell surface whereas HSPGs (generally 

anionic species) are not absolutely required for polyplex-cell surface binding. 

Furthermore, since there was no change of medium following heparitinase 

treatment, the data also demonstrate that extracellular HSPGs do not inhibit 

polyplex cell surface binding, opposite to the findings reported by Ruponen et a 

l., (2001) (Table 6.1).  

HSPGs have been demonstrated as lipid raft associated (Fuki et al., 2000; Chu 

et al., 2004) and confocal micrographs (Figure 6.7) indicate HSPG localization 

in distinct regions on the cell membrane, with and without addition of 

polyplexes, as described in section 6.1 (Chu et al., 2004; Imamura et al., 2011). 

Putatively, HSPGs provide a secondary layer of order, in addition to the 

PEI:DNA polyplex ligand, i.e. HSPGs aid the clustering of lipid rafts, following 

addition of PEI:DNA polyplexes, and subsequent lipid raft endocytosis. 

Alternatively, HSPGs, on co-internalization with polyplexes, may act as buffers 

within endosomes/ lysosomes, supporting the proton sponge capacity of PEI.  
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In summary, the reduction in PEI mediated TGE following cell surface HSPG 

depletion could stem from numerous bio-molecular scenarios, the most likely 

listed below: 

1) Cell surface HSPGs mediate polyplex-cell surface binding immediately 

post transfection. 

2) Polyplexes are endocytosed via HSPG-dependent endocytosis. 

3) HSPGs aid polyplex induced lipid raft clustering and subsequent 

endocytosis. 

4) HSPGs co-internalized with polyplexes act as an additional buffer to PEI, 

aiding lysosomal protection and escape, according to the “proton sponge 

hypothesis”. 

 

Data presented in this chapters indicates that cell surface HSPGs do not 

mediate polyplex-cell surface binding, absolutely i.e. that HSPGS are not the 

sole cell surface receptor for polyplexes.  

6.5 Chapter Conclusions 

Following transfection, HSPGs were found to rapidly deplete from the cell 

surface, residing at 15% pre-transfection levels, between 30 min and 480 min 

post transfection; the data are indicative rapid HSPG endocytosis of polyplexes. 

Cell surface HSPGs are not absolutely required for PEI mediated TGE, HSPG 

lyase treatment reducing SEAP by ~25 % and having no effect on polyplex 

binding to the cell surface, at 4 hours post transfection. On the other hand, 

membrane fluidity and lipid raft functionality, assessed by MβCD treatment, was 

found to be fundamental for polyplex binding to the cell surface and subsequent 

TGE. These data support the data presented in Figure 5.4, demonstrating the 

role of hydrophobicity in polyplex-cell surface binding. 
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CHAPTER 7 

Impact of canonical chemical 
inhibitors of endocytosis on PEI 

mediated TGE 
Chapter Overview 

The effect of canonical chemical inhibitors of endocytosis on PEI mediated TGE 

are explored in this chapter. The efficacy of the chemical inhibitors is explored 

through assessment of their toxicity to transfected and untransfected cells. The 

aims of this chapter are to: 

 Determine the effect of a selection of canonical endocytic inhibitors on 

PEI mediated TGE. 

 Assess the cytotoxicity of the same endocytic inhibitors on CHO cells. 

 

7.1 Introduction. Endocytosis. 

Doherty and McMahon (2009) describe endocytosis as “the de novo production 

of internal membranes from the plasma membrane lipid bilayer” by which 

“plasma membrane lipids and integral proteins and extracellular fluid become 

fully internalized into the cell” (Doherty and McMahon 2009:858).  

Endocytosis is required for the uptake of polar molecules into the cell, that 

cannot pass through the hydrophobic cell membrane. It can be divided into 

phagocytosis (cell eating) or pinocytosis or (cell drinking). Phagocytosis only 

occurs in specialised macrophage cells and describes the process by which 

cells take up large particles, such as a bacterium. Pinocytosis (also known as 

fluid phase endocytosis) describes the process by which cells take up fluids and 

solutes. Efficiency of pinocytosis is largely dependent on the concentration of 

solutes in the medium. The efficiency of endocytosis is increased by non-

specific binding of solutes to the cell membrane (adsorptive pinocytosis). 

Solutes are most efficiently endocytosed by cells through uptake by high affinity 
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receptors (receptor mediated endocytosis) which are themselves co-transported 

into endocytic vesicles (Conner and Schmid, 2003). 
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Pinocytic pathways can be further divided into those which require the GTPase, 

dynamin, for vesicle fission (Macia et al., 2006; Ferguson and Camilli, 2012). As 

illustrated in Figure 7.1, caveolar and clathrin mediated pathways are dynamin 

dependent. Macropinocytosis, lipid raft mediated endocytosis and numerous 

other pathways (non clathrin/ non caveolar) are dynamin independent (Mercer 

and Helenius, 2009). However, Payne et al. (2007) reported a clathrin and 

caveolin independent but dynamin dependent pathway for  internalization of 

proteoglycan bound ligands, so the definition used here is not universally 

applied. The level of endocytosis by a specific pathway is likely to be cell line or 

cell type specific, although clathrin and caveolae mediated endocytosis are 

thought to be equi-prevalent in fibroblasts (Doherty and McMahon, 2009). 

Recently, systems levels surveys of endocytosis have been undertaken through 

measurement of multiple key parameters (Collinet et al., 2010), adding greatly 

to the detailed but fragmented knowledge of endocytosis. 

7.1.1 Dynamin dependent: Clathrin 

The clathrin protein has a three legged, triskelion structure, with three clathrin 

heavy chains each with an associated clathrin light chain (Conner and Schmid, 

2003). The formation of clathrin polygonal cages, by the self-association of 

clathrin proteins, requires additional coat assembly proteins (APs) in 

physiological conditions (under non physiological conditions, of low salt and 

high calcium concentrations, formation of clathrin cages requires no additional 

proteins) (Conner and Schmid, 2003). The AP2 complexes are targeted to the 

plasma membrane by the α-adaptin subunit, its β2 subunit mediates clathrin 

assembly and the µ2 subunit interacts directly with motifs on the cargo molecule 

(Motley et al., 2003). Dynamin, a multidomain GTPase acts at the neck of the 

clathrin coated pit and acts as a collar, to control membrane fission and the 

release of the clathrin coated pits (Conner and Schmid, 2003). 

7.1.2 Dynamin dependent: Caveolar 

Caveolae are flask shaped invaginations, present in cholesterol and 

sphingolipid rich micro-domains of the plasma membrane (Conner and Schmid, 

2003; Midoux et al., 2008). There are approximately 100-200 molecules of the 

dimeric protein, caveolin-1, in caveolae; they bind to cholesterol and confer a 
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loop like formation into the plasma membrane and self-associate to form a 

striated caveolin coat on the surface of the invaginations (Conner and Schmid, 

2003). Mundy et al., (2002) reported three types of caveolin compartments in 

CHO cells: caveolae at the cell surface kept in place by cortical actin filaments, 

intracellular caveosomes and caveolar vesicles, which move bi-directionally 

along microtubules between the cell surface and caveosomes. 

Caveolae are slowly internalized, with a half time >20 min and the process is 

unlikely to significantly contribute to bulk endocytosis into the cell (Conner and 

Schmid, 2003). The SV40, Ebola Zaire, Marburg and echoviruses have been 

found to gain entry into cells through caveolae mediated endocytosis (Midoux et 

al., 2008).  

7.1.3 Dynamin independent: macropinocytosis 

Macropinocytosis is non-selective and allows relatively large volumes to be 

taken up by the cell. A signalling cascade, involving Rho-family GTPases, as in 

phagocytosis, trigger actin driven membrane protrusions that then collapse and 

fuse with the plasma membrane, encapturing a volume of extracellular milieu; a 

process which accompanies membrane ruffling stimulated by growth factors 

amongst other things (Conner and Schmid, 2003; Doherty and McMahon, 

2009). The role of macropinocytosis in amino acid supply to oncogenic Ras 

transformed cells has recently been reported (Commisso et al., 2013). 

7.1.4 Dynamin independent: lipid raft mediated 

As described in section 6.1, the role of lipid rafts in the cyto-internalization of 

numerous agents (viruses etc.) has been reported (Simons and Gerl, 2010). 

The process relies on ligand-induced clustering of lipid rafts and subsequent 

formation of invaginations, which are cyto-internalized. A steric specific model 

for lipid raft endocytosis has been proposed (Bhagatji et al., 2009), describing a 

bulk, non specific mechanism for lipid raft mediated endocytosis (Simons and 

Gerl, 2010). 

The pentavalent Shiga toxin B gains entry into the cell via lipid raft endocytosis, 

following binding to their lipid raft glycosphingolipid receptor (Roemer et al., 

2007). 
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 A noteworthy point is that caveolar caveosomes are a subset of membrane 

assemblies, defined by the presence of caveolin 1, and not synonymous with 

lipid rafts (Nabi and Le, 2003; Parton and Simons, 2007).  

7.1.5 Dynamin independent: non-clathrin/ non-caveolar 

In recent years other pinocytic pathways have been described; these include 

the CLIC/ GEEC, IL2Rβ, Arf6 dependent, flotillin dependent  and circular dorsal 

ruffle pathways (Glebov et al., 2005; Doherty and McMahon, 2009; Hansen and 

Nichols, 2009; Sandvig et al., 2008) 

Box 7.1 Chemical Inhibitors of Endocytosis  

 

 

 

 

 

 

 

 

 

 

 

  

Genistein is a tyrosine kinase inhibitor that causes disruption of the actin 

cytoskeleton (Nabi et al., 2003; Parton et al. 1994). Genistein has been 

widely used as inhibitor of caveolae mediated endocytosis (Rejman et al., 

2005; Van der Aa et al., 2007), but given that it disrupts actin, it is likely to 

inhibit additional endocytic pathways, such as clathrin mediated and 

macropinocytosis (Robertson et al., 2009). 

Filipin belongs to the class of polyene antibiotics. Filipin has been found to 

cause aberrations in caveolar shape, dispersion of GPI anchored proteins, 

inhibition of lipid raft ligand internalization and to interact with membrane 

phospholipids (leading to membrane permeabilization at concentrations of 10 

µM or above). In addition, it has been found to disrupt linkages between 

cortical actin and the plasma membrane (Ivanov, 2008). 

Rottlerin was originally described as an inhibitor of protein kinase c 

(Gschwendt et al. 1994) but has since been described as ineffective for this 

use (Soltoff, 2007). Its non specific effects include mitochondrial uncoupling 

and protein phosphorylation (Soltoff, 2007). Rottlerin has also been 

described as an inhibitor of macropinocytosis by Sarkar et al. (2005), in 

monocyte derived dendritic cells. The tentative inhibitory properties of 

rottlerin against protein kinase c were not attributed to its inhibitory effect on 

macropinocytosis, since other PKC inhibitors did not have the same effect on 

macropinocytosis. Rottlerin’s given IC50 value of 400 nM for fluid phase 

endocytosis inhibitor was approximately 7 fold lower than any value for PKC  
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7.1.7 Endocytosis of polyplexes 

Rejman et al., (2005) reported that treatment with filipin, genistein and 

chlorpromazine resulted in reduced polyplex uptake, but only filipin and 

genistein reduced transfection efficiency, in A459 and HeLa cells. Similarly, von 

inhibition and a 10 fold lower concentration than that required to inhibit 

uptake of transferrin by clathrin mediated endocytosis (Sarkar et al. 2005). 

Hufnagel et al. (2009) used rottlerin to inhibit fluid phase endocytosis. 

Chlorpromazine hydrochloride, a cationic amphiphile, is a canonical 

inhibitor of clathrin mediated endocytosis. In the micro molar range, its 

inhibitory affect on clathrin mediated endocytosis is thought to be due to the 

loss of clathrin and adaptor protein (AP2) complexes from the cell surface 

(Ivanov, 2008). The chemical can be used to discriminate between clathrin 

and caveolae mediated endocytosis but it has been shown to block the 

uptake of fluid phase markers and to inhibit phagocytosis in cells of the 

immune system (Ivanov, 2008). Other associated non-specific effects 

include, reorganization of the cortical actin cytoskeleton and fluidization of 

the plasma membrane (due to its amphiphatic structure). 

Phorbol 12-myristate 13-acetate (PMA) or Phorbol ester 12-O-

tetradecanoylphorbol 13 acetate (TPA). Macropinocytosis was induced in 

A431 cells by PMA (Grimmer et al, 2002). PMA was shown to markedly 

increase syndecan shedding in SVEC4-10 endothelial cell by Subramanian 

et al. (1997) and the finding exploited by Jarousse and Coscoy (2008) to 

study the cell surface attachment of the murine gammaherpesvirus 68 to 

CHO cells. PMA is also used to stimulate cell proliferation (Rusnati et al., 

2002). 

DMSO has been shown to enhance recombinant protein production in stably 

transfected CHO cells and to reduce growth rate (Liu et al., 2001). In 

addition, DMSO was found to enhance transient protein production in CHO 

cells following transfection by PEI and to reduce viable cell density 

(Thompson, 2011). 
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Gersdorff et al., (2006) reported a reduction in transfection efficiency following 

treatment with chlorpromazine hydrochloride or fillipin, but that the effects were 

highly dependent on the cell line used and PEI type (e.g. branched or linear) 

used for polyplex formation. Hufnagel et al. (2009) reported that rottlerin (an 

inhibitor of fluid phase endocytosis) reduced polyplex uptake and gene 

expression following transfection with PEI in CHO cells. Conversely, Payne et 

al. (2007) reported that neither chlorpromazine or filipin reduced polyplex 

internalization by BS-C-1 cells, indicating clathrin and caveolin independent 

uptake. However, dynasore and Dyn-2 siRNA treatment indicated dynamin 

dependent uptake. In addition, internalization was found to be flotillin-1 

dependent, since Flot-1 siRNA treatment reduced polyplex uptake (Payne et al., 

2007). Van der Aa et al. (2007) used a range of chemical inhibitors: nocodazol, 

wortmannin, LY239004, MβCD, chlorpromazine hydrochloride and genistein, in 

COS-7 cells prior to transfection with PEI. Only nocodazol, MβCD and genistein 

reduced polyplex uptake and gene expression, indicative of a caveolin mediated 

endocytic pathway. 

The endocytosis of PEI:DNA polyplexes in CHO-K1 and CHO-DKO cells (Bax 

and Bak double knock out) was investigated using canonical chemical inhibitors 

of endocytosis (Macaraeg et al., 2013). In both cell lines, clathrin, caveolae and 

macropinocytosis were found to mediate polyplex cyto-internalization, as a 

reduction in polyplex associated fluorescence was reported following incubation 

with chlorpromazine hydrochloride, genistein, MβCD, filipin and amiloride. 

Internalization of PEI:DNA polyplexes is a fundamental step in TGE. It has been 

hypothesized that polyplexes are internalized via a specific endocytic pathway, 

clathrin, caveolin or via macropinocytosis (or fluid phase endocytosis). Much of 

the evidence surrounding PEI:DNA polyplex endocytic internalization pathways 

is rested on the use of chemical inhibitors of endocytosis.  

7.2 Materials and Methods 

For all experiments described in this chapter, CHO-S cells were used, using the 

culture conditions described in Chapter 3. Cells were transfected with 25 kDa 

linear polyethylenimine according to protocol A, in Nunc 24 well plates (Sigma-

Aldrich, Dorset, UK) as described in Chapter 3, Tables 3.1 and 3.2.  
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7.2.1 Chemical treatmeents prior to transfection 

Chlorpromazine hydrochloride, filipin, genistein, rottlerin, PMA and DMSO were 

all purchased from Sigma Aldrich. Genistein and rottlerin were dissolved in 

DMSO (Sigma Aldrich) and the other chemicals in water. Cells were transfected 

one hour post addition of chemical inhibitor.  

7.2.2 Confocal microscopy 

Alexa-555 dextran (Life Technologies, Paisley, UK) and PEI:DNA polyplexes 

were added to cells simultaneously. Cells were incubated at 37°C, 5% CO2 for 

90 min, prior to washing with CellScrub and resuspension in ice cold PBS, prior 

to live confocal microscopy analysis. Cells were transfected and dextran added 

at the same time. At 90 min following transfection, the cells were washed with 

CellScrub, to removed cell surface associated molecules, and resuspended in 

ice cold PBS. Cells were imaged using a Zeiss upright LSM510 confocal 

microscope using a 40x/ 0.8 objective, dipping lens and 488 and 543 nm lasers. 
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Figure 7.2 

Effect of genistein on transient SEAP production and culture viability.  

One hour prior to transfection with PEI, the indicated concentration of genistein 
was added to CHO-S cells. SEAP (A), viable cell density (black bars) and cul-

ture % viability (grey bars) were measured at 24 h post transfection (B) or 24 h 
post sub-culture (C). The mean value ± standard deviation from triplicate trans-

fections or cultures is shown. 
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7.3 Results 

7.3.1 Genistein 

Addition of genistein resulted in a concentration dependent reduction in SEAP 

activity, at 24 h post transfection (Figure 7.2). At concentrations of  46.3, 92.5 

and 185 µM genistein, SEAP activity was 41%, 24% and 10% relative to control, 

respectively (Figure 7.2A).  

In transfected conditions, viable cell density decreased from 1.6x106 cells mL-1 

to 0.9, 0.8 and 0.6 x106 cells mL-1 at concentrations of 0, 46.3, 92.5 and 185 µM 

genistein (Figure 7.2B).  Culture percentage viability reduced from 89% in 

control conditions to 83%, 69% and 62% at concentrations of 46.3, 92.5 and 

185 µM respectively (Figure 7.2B). 

 Genistein significantly inhibited cell division in untransfected cells; reducing 

viable cell density from 3x106 cells mL-1  in control conditions to approximately 

1x106 cells mL-1 in the presence of genistein (Figure 7.2C). Similarly, culture 

viability reduced from 98% in control conditions to 93% in the presence of 185 

µM genistein (Figure 7.2C). The drop in viable cell density between genistein 

treated and control cells was greater for untransfected than transfected cells. 

Given the loss in viable cell density due to genistein treatment, SEAP activity 

per cell was calculated. Based on this calculation, a step-wise, significant 

reduction in SEAP per cell relative to the control was seen at each tested 

concentration.  

7.3.2 Filipin 

Treatment with filipin resulted in a concentration dependent reduction in SEAP 

activity, at 24 h post transfection (Figure 7.3). Higher concentrations of filipin, 

1.8 µM and above, abrogated SEAP production (Figure 7.3A). At a 

concentration of 0.9 µM filipin, SEAP activity was at 75% of control levels. 

 In transfected conditions, viable cell density decreased from 1.5x106 cells mL-1 

to 1.4 x106 cells mL-1  and 1x106 cells mL-1 at concentrations of 0, 0.9 and 1.8 

µM filipin, respectively (Figure 7.2B). Culture percentage viability was 87, 87 

and 74% at concentrations of 0, 0.9 and 1.8 µM filipin, respectively (Figure  
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7.2B). At a concentration of 3.5 µM filipin, with and without transfection, the cells 

were almost completely non-viable. 

 In untransfected cells, addition of filipin, at a concentration of 1.8 µM, reduced 

viable cell density to 1x106 cells mL-1 compared to 3.2 106 cells mL-1 in control 

conditions (Figure 7.2C). For untransfected cells, culture percentage viability 

reduced from 98% to 71% at a concentration of 1.8 µM filipin (Figure 7.2C).  

Given the loss in viable cell density due to filipin treatment, SEAP per cell was 

calculated. Based on this calculation, a step-wise, significant reduction in SEAP 

per cell relative to the control was seen up to a concentration of 1.8 µM filipin.  

7.3.3 Rottlerin 

Rottlerin significantly reduced transient SEAP production at 24 h post 

transfection, reducing SEAP activity to 16% relative to the control at a 
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Figure 7.3 Effect of filipin on transient SEAP production and culture  

Viability.  

One hour prior to transfection with PEI, the indicated concentration of fi lipin 
was added to CHO-S cells. SEAP (A), viable cell density (black bars) and cul-

ture % viability (grey bars) were measured at 24 h post transfection (B) or 24 h 
post sub-culture (C). The mean value ± standard deviation from triplicate trans-

fections or cultures is shown. 
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concentration of 100 nM and obliterating SEAP activity at a 500 nM and 1 µM 

concentrations, respectively (Figure 7.4A).  

Treatment with rottlerin reduced the division of transfected cells and culture 

percentage viability (Figure 7.4B). At a concentration of 100 nM rottlerin, viable 

cell density reduced to 1.1x106 cells mL-1  relative to 1.4x106 cells mL-1  but 

there was little change in culture percentage viability.  

Rottlerin significantly inhibited division of untransfected cells and culture 

percentage viability (Figure 7.4C). The drop in viable cell density between 

rottlerin treated and control cells was greater for untransfected than transfected 

cells. 

Given some loss in viable cell density due to rottlerin treatment, SEAP per cell 

was calculated. Based on this calculation, 100 nM rottlerin reduced SEAP 

activity to 20% of the control level and higher concentrations almost completely 

obliterated SEAP activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

0

1

2

3

4

0 0.1 0.5 1

0

0.5

1

1.5

0 0.1 0.5 1

V
ia

b
le

 c
e

ll
 d

e
n

s
it

y
 (

1
0

6
 c

e
ll
s

 m
L

-1
) 

 

Rottlerin (µM) 

0

20

40

60

80

100

0

1

2

3

4

0 0.1 0.5 1

Figure 7.4  

Effect of rottlerin on transient SEAP production and culture viability. 

One hour prior to transfection with PEI, the indicated concentration of rottlerin 
was added to CHO-S cells. SEAP (A), viable cell density (black bars) and cul-

ture % viability (grey bars) were measured at 24 h post transfection (B) or 24 h 
post sub-culture (C). The mean value ± standard deviation from triplicate trans-

fections or cultures is shown. 
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7.3.4 Chlorpromazine hydrochloride 

Treatment with chlorpromazine significantly reduced transient SEAP production 

at 24 h post transfection, halving SEAP activity at a concentration 12.5 µM and 

abrogating SEAP activity at a concentration of 25 µM (Figure 7.5A).  

Treatment with  chlorpromazine, at a concentration of 12.5 µM had no 

significant effect on viable cell density, however, at a concentration of 25 µM, 

viable cell density reduced to 0.5x106 cells mL-1 compared to 1.3x106 cells mL-1 

in control conditions (Figure 7.5B). At a concentration of 25 µM chlorpromazine, 

culture percentage viability also reduced to 74% relative to 88% in the absence 

of drug treatment. 

Chlorpromazine significantly inhibited division of untransfected cells, at a 

concentration of 12.5 µM and 25 µM, reducing viable cell density to 2x106 cells 

mL-1 and 1x106 cells mL-1, respectively, relative to 2.6x106 cells mL-1 in the 

absence of chlorpromazine (Figure 7.5C). Culture percentage viability 

decreased to 89% at a concentration of 25 µM chlorpromazine, relative to 98% 

in control conditions. 

Given some loss of viable cell density due to chlorpromazine treatment, SEAP 

per cell was calculated. Based on this calculation, 12.5 µM chlorpromazine 

almost halved SEAP activity relative to control and at a concentration of 25 µM 

chlorpromazine, SEAP activity was abrogated.  

 

  



 

Chapter 7 Chemical Inhibitors of Endocytosis 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.5 Phorbol 12-myristate 13 

 Phorbol 12-myristate 13 (PMA), at all concentrations tested, resulted in an 

incremental but significant reduction in transient SEAP production, of ~10% 

(Figure 7.6A). PMA had no effect on viable cell density or culture percentage 

viability of transfected cells, at any of the concentrations tested (Figure 7.6 B). 

Since PMA has also been found to trigger syndecan shedding, cells were 

stained for HSPGs, using anti-HSPG mAb HepSS1, but there was found to be 

no difference in cell surface HSPG level between PMA treated and control cells 

(Figure 7.6D). In addition, PMA had no effect on the culture percentage viability 

of untransfected cells but viable cell density reduced from 3.1x106 cells mL-1 to 

2.1x106 cells mL-1 at a concentration of 2 µM PMA (Figure 7.6C). 
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Figure 7.5  

Effect of chlorpromazine hydrochloride on transient SEAP production 
and culture viability.  

One hour prior to transfection with PEI, the indicated concentration of chlorpro-
mazine hydrochloride was added to CHO-S cells. SEAP (A), viable cell density 

(black bars) and culture % viability (grey bars) were measured at 24 h post 
transfection (B) or 24 h post sub-culture (C). The mean value ± standard de-

viation from triplicate transfections or cultures is shown. 
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Figure 7.6  

Effect of Phorbol 12-myristate 13-acetate (PMA) on transient SEAP pro-
duction and culture viability.  

One hour prior to transfection with PEI, the indicated concentration of PMA 
was added to CHO-S cells. SEAP (A), viable cell density (black bars) and cul-
ture % viability (grey bars) were measured at 24 h post transfection (B) or 24 h 

post sub-culture (C). Cells fixed were stained with anti-HSPG antibody, 

HepSS1 and secondary anti-mouse IgM FITC secondary antibody and cellular 
fluorescence measured by flow cytometry.  The mean value ± standard devia-

tion from triplicate transfections or cultures is shown. 
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7.3.6 DMSO 

The positive effect of DMSO on TGE has been previously reported (Thompson, 

2011; Ye et al., 2009). Since it was used to dissolve genistein and rottlerin, the 

effect of the vehicle was tested at a range of concentrations (Figure 7.7). At the 

concentrations tested, below those reported to have an effect on TGE, it was 

indeed found to have no effect on transient SEAP production (Figure 7.7A) or 

the viable cell density or culture percentage viability of transfected or 

untransfected cells (Figure 7.7B and C). 
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Figure 7.7  

Effect of DMSO on transient SEAP production and culture viability.  

One hour prior to transfection with PEI, the indicated concentration of DMSO 
was added to CHO-S cells. SEAP (A), viable cell density (black bars) and cul-

ture % viability (grey bars) were measured at 24 h post transfection (B) or 24 h 
post sub-culture (C). The mean value ± standard deviation from triplicate trans-

fections or cultures is shown. 
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7.3.7 Effect of chemical inhibitors on polyplex internalization 

It was found that CellScrub wash reagent could not be used alongside chemical 

inhibitors. Cells were treated with chemical inhibitors of endocytosis, rottlerin, 

genistein and chlorpromazine hydrochloride and transfected with PEI and fluoro 

labelled plasmid DNA. At one hour post transfection, the cells were pelleted and 

resuspended in CellScrub or PBS solution. However, following flow cytometric 

analysis, CellScrub treated cells had higher fluorescent readings than 

phosphate buffered saline treated cells. The antagonistic chemical interactions 

between CellScrub and the endocytic chemical inhibitors made it impossible to 

distinguish between cell surface-attached and polyplex internalized by the cell. 

Within the literature, uptake of fluoro-labelled lipo-/ poly-plexes has been used 

only following washing cells with PBS solution, not CellScrub (Van der Aa et al., 

2007, Payne et al., 2007, Rejman et al., 2005).  

7.3.8 PEI:DNA polylexes and dextran to not co-localize 

Dextran is a canonical marker of macropinocytosis (Ivanov, 2008). Confocal 

microscopy was used to test the localization of fluorescently labelled dextran 

and polyplexes. It was hypothesized that PEI:DNA polyplexes are internalized 

via a macropinocytic pathway (or one defined by the uptake of dextran) and that 

co-localization between dextran and polyplexes would be observed upon 

examination by confocal microscopy. Using confocal microscopy, alexa-555-

dextran and fluorescein labelled polyplexes were found not to colocalize and 

dextran and polyplexes were found to localize in distinct regions (Figure 7.8).  

7.4 Discussion 

The chemical inhibitors, chlorpromazine hydrochloride, genistein, rottlerin and 

filipin were all found to reduce TGE in a concentration dependent manner. 

Traditionally, the chemicals have been described as inhibitors of clathrin, 

caveolin, macropinocytosis or caveolin mediated endocytosis respectively. By 

this definition, the data suggest that all three endocytic pathways contribute to 

PEI:DNA polyplex delivery in CHO-S cells and subsequent TGE. However, as 

described in Box 7.1, non-specific inhibitory effects of chemical inhibitors of 

endocytosis have been reported (Ivanov, 2008).  
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Figure 7.8 Dextran and polyplex do not co-localize.  

A: Fluoroscein labelled polyplexes and alexa555 dextran do not colocalize. 
Single stain controls: B: Alexa555 dextran, C: fluoroscein labelled polyplex. 

Cells were transfected with PEI and FITC-labelled plasmid DNA and 50 µg mL -

1 alexa 555 dextran and incubated for 1.5 h at 37°C and 5% CO2. Cells were 
washed with CellScrub™ and immersed in PBS before live cell imaging using 

an upright  LSM510 meta confocal microscope with a achroplan 40x/0.8 objec-
tive and 488 and 543nm lasers. Bar = 10 µm. 

C 

B 

A 



 

Chapter 7 Chemical Inhibitors of Endocytosis 138 

The data presented here is similar to that obtained at Genentech on CHO-K1 

and their engineered CHO-DKO cell line (Macaraeg et al., 2013), who reported 

that chlorpromazine, filipin and genistein reduced polyplex uptake and further 

concluded that caveolae and clathrin mediated endocytosis were utilized for 

polyplex uptake.  

For untransfected cells, chlorpromazine hydrochloride, genistein, rottlerin and 

filipin all caused significant cytotoxicity, in terms of reduced cell doubling time. 

Although, for all inhibitors tested, reduction in viable cell density, did not account 

for reduced reporter protein output, the observation is an indicator of numerous 

non-specific drug side-effects. Thus, as described by Ivanov, (2008) and 

Vercauteren et al., (2010), linking data obtained from use of a chemical inhibitor 

of endocytosis to a specifically defined endocytic pathway should be 

approached with caution. 

Alternative methods for measuring endocytic pathways include the use of CHO 

knock-out cell lines (lacking caveolin 1 or clathrin for example) (Vercauteren et 

al., 2010) or silencing RNAs against caveolin 1 or clathrin proteins (Payne 

2007).  

7.5 Chapter Conclusions 

From the data presented in this chapter, measuring the effect of canonical 

chemical inhibitors on PEI mediated TGE, it can be concluded that several 

endocytic pathways mediate efficient transgene delivery for maximal TGE. 

However, this is a tentative conclusion, given the observed reduction in cell 

division caused by each of the inhibitors, on untrasfected and transfected cells 

alike. 
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CHAPTER 8 
 

Engineering Strategies to  
enhance TGE  

Clone screening and derivatized PEIs 
with enhanced hydrophobicity 

 

Acknowledgements 

Cloning of the CHO-S parental cell line and maintenance of clones was 

performed by Alejandro Fernandez-Martell. 

Chapter Overview 

Built on data presented in previous chapters and within the literature, explored 

within this chapter are engineering strategies to improve the TGE process, with 

respect to total recombinant protein titre, cytotoxicity and efficiency of 

production with respect to plasmid DNA. Engineering strategies focus on a) the 

gene delivery vehicle and b) the host cell line. The aims of this chapter are to: 

 Explore the effectiveness of alkylated PEIs for transfection and gene 

expression in CHO-S cells. 

 Explore the use of clonal derivatives of the parental CHO-S cell line for 

TGE mediated by PEI.  

8.1Introduction 

8.1.1 Polyethylenimines with enhanced hydrophobicity 

The hydrophobicity of PEI:DNA polyplexes has been enhanced through 

chemical derivatization of the PEI polymer itself or though inclusion of a 

secondary hydrophobic (often lipid based) moiety (Incani et al., 2010; Liu et al., 

2010).  
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PEIs have been chemically derivatized within the Klibanov group, with the aim 

of enhancing PEI mediated gene delivery, by modifying the proton sponge 

capacity, hydrophobicity and lipophilicity of the polymers (Thomas and Klibanov, 

2002). Moderate enhancement of hydrophobicity, by N-acylation with alanine, 

increased transgene expression in COS-7 cells, relative to unmodified 25 kDa 

branched PEI, in the absence of serum. In the presence of serum, N-acylation 

with alanine and dodecylation of PEI tertiary amines, lead to enhanced 

transgene expression, relative to unmodified 25 kDa linear PEI. Hydrophobic 

modifications to 2 kDa PEI, through derivatization with dodecyl- or hexadecyl- 

groups, increased transgene expression by 400 and 550 fold respectively in the 

presence of serum, exceeding the level mediated by 25 kDa branched PEI 

(Thomas and Klibanov, 2002).  

More recently, Fortune et al., (2011) increased the hydrophobicity of linear 22 

kDa PEI by synthesising methyl-, ethyl-, propyl-, butyl- and octyl- PEIs and 

explored gene delivery in vivo. Increased hydrocarbon chain length increased 

gene expression in the kidney, stepwise from methyl- to octyl- PEIs. In the liver 

and heart, increased chain length increased gene expression, although in both 

cases propyl-PEI lead to the highest gene expression, with butyl- and octyl- 

PEIs leading to relatively lower gene expression. In the lung, ethyl-PEI lead to a 

26 fold enhanced expression relative to unmodified PEI. Using radio-active 

tracing, alkylated PEIs were found to localize in organs to a similar extent as 

unmodified PEI, indicating that alkylation of PEIs did not enhance cell-surface 

binding. 

Primary and secondary amines of branched PEI were acylated to form primary 

and secondary amides respectively (Forrest et al., 2004). Partial acetylation of 

branched PEI was found to enhance transgene expression in C2C12 and MDA-

MB-231 cells, with and without serum, with negligible effects on cytotoxicity. 

Acylation was found to reduce the buffering capacity of the polymer at 

physiological conditions, reduce the zeta potential of polyplexes (14 mV to 8-11 

mV), increase the particle diameter (2-3 fold) (Forrest et al., 2004) and reduce 

binding affinity with DNA (Garbrielson and Pack, 2006). Aravindan et al., (2009) 

increased the hydrophobicity of acyl-PEI, by increasing carbon chain length, 
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and found PEIs acylated with propionic anhydride to result in better transgene 

expression than PEIs acylated with acetic anhydride.  

Lee CH et al., (2003) reported PEI:DNA–DOTAP-Cholesterol complexes to 

result in increased transgene expression in a range of human cancer cell lines 

(HeLa, HepG2, 2.2.15 cells) relative to PEI or cationic lipid mediated gene 

delivery. Similarly, Garcia et al., (2007) reported enhanced transgene 

expression using PEI:DNA-DOTAP-Cholesterol complexes, in HepG2 cells, at 

high serum concentrations, relative to PEI or DOTAP-Cholesterol mediated 

gene delivery. Matsumoto et al., (2008) found PEI-DOTMA mediated 

transfection to result in higher transgene expression in vivo following 

intravenous injection in mice, relative to transfection with just PEI. Recently, the 

efficacy of cationic lipid coated PEI:DNA polyplexes for the transfection of 

mesenchymal stem cells has been reported (Song et al., 2012). Putatively, lipid 

shells provide enhanced targeting to cell surface lipid rafts (Anderson and 

Jacobson, 2002).  

Cyclodextrin (CD), which can encase small hydrophobic molecules, was 

covalently coupled to PEI (Forrest et al., 2005). CD-PEI:DNA complexes were 

found to have an increased particle diameter than PEI:DNA complexes and 

cyclodextrin-PEI was found to mediated higher transgene expression in 

HEK293 cells than unmodified PEI. In addition, CD-PEI was found to be less 

toxic (to decrease metabolic activity to a lesser extent) than unmodified PEI, in 

HEK-293 cells.   

8.1.2 Cell line selection from clonal derivatives of the parental 

Chinese hamster ovary cell lines display functional heterogeneity (Yoon et al., 

2004; Barnes et al., 2006; Davies et al., 2012). The heterogeneity stems from 

genomic, at the level of single bases to the entire karyotype (Derouazi et al., 

2006b; Wurm and Hacker, 2011) and epigenetic instability (Yang et al., 2010; 

Kim et al., 2011). Derived from normal (non-cancerous) tissue from the ovary of 

a Chinese hamster (Tjio et al., 1958; Puck et al., 1958) , the karyotype of CHO 

cell lines differs considerably from that of the animal (Deaven and Petersen, 

1973; Derouazi et al., 2006b). Thus, whilst the recently published sequence of 

the CHO-K1 cell line (Xu et al., 2011) provides a plethora of tools for cell line 
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engineering and development, its use has limitations due to the heterogeneity 

between the thousands of CHO cell lines, both “parents” and therapeutic 

protein-producing (Wurm and Hacker, 2011). 

Measured functional heterogeneity between cell lines is based on population 

averages (Altschuler and Wu, 2010). Within clonal cell lines heterogeneity also 

exists (Pilbrough et al., 2009; Davies et al., 2012). In this case, the 

heterogeneity has also been attributed to chromosomal instability (Deaven and 

Petersen, 1973) and to stochastic gene expression (Elowitz et al., 2002; Sigal et 

al., 2006; Raj and Oudenaarden, 2008). 

The exploitation of cell line clonal heterogeneity is well established for the 

generation of stable recombinant cell lines (Chapter 1) (Wurm, 2004), not just 

with respect to r-protein production (O’Callaghan et al., 2010; Porter et al., 

2010), but also with respect to secondary traits required for biomanufacturing, 

such as ability to grow in bioreactors/ synthetic culture environments (Sinacore 

et al., 2000).  

Recently, cell heterogeneity has been exploited for biomanufacturing, to yield 

host cells lines with superior phenotypes for given biomanufacturing processes 

(Pichler et al., 2010; Davies et al., 2012). Pichler et al., (2010) transiently 

transfected CHO-K1 and CHO-S cells by electroporation with an IgG coding 

vector and FACS sorted the cells according to anti-human IgG R-phycoerythrin 

staining. The highest 1% of producers were sorted three times, each at 2 days 

post transient transfection. The sorted population, of both CHO-S and CHO-

K1SV, displayed a threefold improvement in cell specific production rate (qP) 

relative to the respective original parental cell lines, immediately post sorting 

and at three months post sorting, displaying the heritability of the process. 

The heterogeneity within the CHOK1SV cell line was explored in detail by 

Davies et al., (2012), who isolated (by limited dilution cloning) and maintained 

199 clones from the parental CHOK1SV population. The clones were found to 

vary significantly in specific proliferation rate during micro-plate suspension 

culture and transient mAb and GFP production, following electroporation or 

lipofection. Transient mAb and GFP expression, following gene delivery by 

electroporation, varied 3.7 and 7.6 fold between clones, respectively. Following 
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gene delivery by lipofection (lipofectamine 2000) clones exhibited a 42.5 and 

139 fold variation in mAb and GFP production, respectively. A subset of 23 

clones were subjected to extended sub-culture and freeze-thawing regimes and 

although transient mAb production was not heritable per se, clones were 

identified with heritable properties, with respect to specific proliferation rate, 

endocytic transfectability and N-glycan processing.  

8.2 Materials and Methods 

8.2.1 Limited dilution cloning of parental CHO-S cell line 

The suspension-adapted parental cell line CHO-S (Life Technologies, Paisley, 

UK) and cultivated in CD-CHO medium (Life Technologies) supplemented with 

8 mM L-glutamine (Life Technologies). Clonally derived CHO-S cell lines were 

isolated by two rounds of limiting dilution cloning (LCD). Cells were plated at a 

cell density of 0.5 cells well-1 in 96-well plates and incubated at 37oC, 5% (v/v) 

CO2 for 21 days in a static incubator (Thermo Scientific Heraeus). At day 2 

post-seeding, wells containing single colonies were identified by microscopic 

examination. After 21 days, cultures were subject to a second round of LCD, as 

described above. Clones were expanded to 24-well plates, 6-well plates, T-25 

static flasks and finally 125 mL Erlenmeyer shake flasks (Corning) (Sigma-

Aldrich, Dorset, UK). Clones were maintained and banked in liquid nitrogen as 

described in Chapter 3. 

8.2.2 Alkylation of polyethylenimine 

Polyethylenimine (25 kDa linear) (Polysciences – Park Scientific, Northampton, 

UK) (1 g) in absolute ethanol (10 mL) was treated with the appropriate alkylating 

agent (ethyl, propyl, octyl 10 mol%) (Figure 8.1) (Farapack Polymers, Sheffield, 

UK). The reaction mixture was heated overnight at 50°C, concentrated in vacuo, 

dissolved in water, treated with a drop of 10 M NaOH, dialyzed and then 

lyophilized to yield the various alkylated PEIs. The percentage alkylation was 

10%, 7% and 10% for ethyl-, propyl- and octyl-PEI, respectively. 
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Figure 8.1 Schematic of polyethylenimine alkylation 

PEI (25 kDa) linear (Polysciences) was alkylated with ethyl-, propyl and octyl 
iodoalkanes (Farapack polymers, Sheffield, UK).  
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Figure 8.2 Schematic of polyethylenimine acetylation  

PEI (25 kDa) linear (Polysciences) was acylated with ethanoic anhydride
(Farapack polymers, Sheffield, UK).  
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8.2.3 Acetylation of polyethylenimine 

Polyethylenimine (25kDa linear) (Polysciences) (1 g) in methanol (10 mL) was 

acetylated with ethanoic anhydride (10 mol%) (Figure 8.2) (Farapack Polymers, 

Sheffield, UK). The reaction mixture was heated overnight at 50°C, 

concentrated in vacuo, dissolved in water, treated with a drop of 10 M NaOH, 

dialyzed and then lyophilized to yield the amidated PEI. 

8.3 Results 

8.3.1 Screening of derivatized polyethylenimines 

The hypothesis was tested that PEIs chemically derivatized for enhanced 

hydrophobicity (e.g. ethyl-, propyl- and octyl-PEI) would enhance TGE, through 

increased binding to the cell surface. Acetylated PEI, having a polar acetyl 

group, was included as a control. Ethyl-, propyl-, octyl- and acetyl- PEIs were 

screened by transfecting according to protocol A (Figure 8.3). At 48 h post 

transfection, TGE following transfection with ethyl PEI was <50% the level 

obtained following transfection with unmodified PEI. Both octyl-PEI and acetyl-

PEI resulted in gene expression at <2% of levels obtained using unmodified 

PEI. TGE following transfection with propyl PEI was at 89% the level obtained 

following transfection with unmodified PEI (Figure 8.3A).  

Transfection with unmodified and propyl-PEI resulted in similar cell growth and 

culture viability (Figure 8.3B). Viable cell density was slightly higher following 

transfection with ethyl-PEI, relative to unmodified or propyl-PEI. Transfection 

with octyl-PEI resulted in significantly lower viable cell density and culture 

viability, relative to unmodified PEI, at 1.3x106 cells mL-1 and 68% compared to 

2.1x106cells mL-1 and 91% respectively. Transfection with acetyl-PEI resulted in 

higher growth and culture viability, relative to transfection with unmodified PEI, 

at 2.9 x106 cells mL-1 and 95%, respectively (Figure 8.3B). 

Formation of PEI:DNA polyplexes with unmodified-, ethyl- or propyl- PEI had no 

significant effect on polyplex cell surface binding (Figure 8.3C). However, octyl-

PEI:DNA polyplex binding to the cell surface was significantly lower than for 

polyplexes formed with unmodified PEI. No cellular fluorescence attributed to 
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polyplex-cell surface binding could be measured for polyplexes formed with 

acetyl-PEI (Figure 8.3C). Given that acetyl-PEI polyplexes did not bind to the 

cell surface, it was not surprising that they displayed low cyto-toxicity.  

 

 

 

 

  

Figure 8.3 Alkylated and Acetylated PEI screening 

CHO-S cells were transfected according to standard conditions (protocol A), 
using the indicated PEI based polymer. SEAP (A), viable cell density (black 
bars) and culture % viability (grey bars) (B) were measured at 48 h post trans-

fection. Polyplex-cell surface binding was measured by using fluoroscein la-
belled plasmid DNA, incubating the transfection at 4°C for 4 h and measuring 
cellular fluorescence using flow cytometry (C). The mean value ± standard de-

viation from triplicate transfections or biological samples is shown. 
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The cyto-toxicity of ethyl-, propyl-, octyl- and acetyl- PEI was compared to 

unmodified 25 kDa linear PEI (Figure 8.4). Cells (CHO-S) were sub-cultured at 

a density of 1x106 cells mL-1 in a total volume of 5 mL in culti-flasks. At a 

concentration of 3.75 µg 106 cells-1, acetyl PEI had no significant effect on 

viable cell density, compared to control, untreated cells. Other than acetyl-PEI, 

unmodified PEI was the least cytotoxic, measured by reduced cell division 

(viable cell density), followed by propyl-, ethyl- and octyl- PEI (Figure 8.4A).  
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Figure 8.4 Cyto-toxicity profile of derivatized 25 kDa PEI: ethyl, propyl,  

octyl, acetyl (and unmodified). 

Cells (CHO S) were cultured in a TubeSpin® bioreactor 50 at a density of 
1x106 cells mL -1 in CD CHO, 8mM L-glutamine, in a total volume of 5 mL. The 

indicated concentration of PEI (dissolved to 1mg mL-1 in deionised water) was 
added to cells, at a ratio of 3:100. Cells were in incubated at 37°C, 170 rpm for 

5 days prior to measurement of culture % viability and viable cell density. The 
mean value ± standard deviation from triplicate cultures is shown. 

 

[-PEI] µg 106 cells–1 

V
ia

b
le

 c
e

ll
 d

e
n

s
it

y
  

(1
0

6
 c

e
ll
s

 m
L

-1
) 

 
C

u
lt

u
re

 %
 v

ia
b

il
it

y
 

A 

B 



 

Chapter 8 Engineering Strategies 149 

8.3.2 DoE-RSM optimization of propyl-PEI and unmodified-PEI mediated 

transfection 

Given that transfection mediated by propyl-PEI yielded TGE similar to that 

obtained by unmodified PEI, both unmodified PEI and propyl-PEI were 

optimized using DoE-RSM, varying DNA concentration and PEI:DNA ratio 

(Figure 8.5). Transfections were conducted in cultiflasks, in a total volume of 5 

mL and incubated for a 5 day period, at 37°C, 170 rpm, 5% CO2. Cell seeding 

density was kept constant at 106 cells mL-1. Propyl-PEI and unmodified PEI 

were optimized for two host cell lines, the parental CHO-S and Clone 4 of CHO-

S. SEAP, viable cell density and culture percentage viability were measured at 

5 days post transfection. The model was used to predict optimal transfection 

conditions. Interestingly, although maximum SEAP activity was not significantly 

higher following transfection mediated by propyl-PEI relative to unmodified PEI, 

as observed via facile screening (Figure 8.3), propyl-PEI had a lower optimal 

carrying capacity for DNA, relative to unmodified PEI (Figure 8.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5 DoE RSM for transient SEAP production following transfection 

of parental CHO-S cells with unmodified PEI (A) and propyl PEI (B) 

Transfection was optimized using response surface modelling, a central com-
posite design. DNA quantity was varied between 1.4 and 5.7 mgL -1 and 

PEI:DNA ratio, between 0.5 and 1.9. Cell seeding density was kept constant at 
106 cells mL-1 .  Transfections were conducted in cultiflasks, in a volume of 5mL 

and cultured at 37°C, 170 rpm.  SEAP was measured at 5 days post transfec-
tion. 
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8.3.3 Mechanistic exploration of propyl-PEI mediated transfection 

The mechanistic differences between propyl-PEI and unmodified PEI, were 

explored. At the optimal transfection conditions for propyl-PEI, 2.8 mgL-1 DNA, 

PEI:DNA ratio 1.2, propyl PEI was found to deliver increased levels of plasmid 

DNA to the cells than unmodified PEI (Figure 8.6A and B). Cells were 

transfected with fluorescently labelled plasmid DNA and at 4 hours post 

transfection, cells were washed with CellScrub and PBS, and cellular 

fluorescence measured by flow cytometry. At a DNA concentration of 2.8 mgL-1 

and PEI:DNA ratio 1.2, cyto-internalized DNA transfected with propyl-PEI was 

1.7 fold that of cyto-internalized DNA transfected with unmodified PEI (Figure  

  

Figure 8.6 Transfection with propyl-PEI mediates increased uptake of 

plasmid DNA relative to unmodified PEI, but has no effect on polyplex 
binding to the cell surface 

Cells were transfected with 2.8 mgL -1 FITC labelled plasmid DNA and unmodi-

fied or propyl-PEI (as indicated) at a ratio of 1.2 with respect to DNA. All other 
transfection conditions are as protocol A. Polyplex cyto-internalization was 

measured by incubating cells for 4 h post transfection at 37°C prior to washing 
with CellScrub to remove cell surface attached polyplex; cellular fluorescence 
was measured by flow cytometry (A and B). Polyplex-cell surface binding was 

measured by incubating cells for 4 h post transfection at 4°C prior to washing 
with PBS;  cellular fluorescence was measured by flow cytometry (C and D). B 

and D: dashed line: unmodified PEI; solid line: propyl-PEI; dotted line: auto-

fluorescence. The mean value ± standard deviation from triplicate transfections 
or biological samples is shown. 
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8.6A and B). At a concentration of 4 mgL-1, PEI:DNA ratio 1.3, cyto internalized 

DNA was 1.2 fold the level of cyto-internalized DNA following transfection with 

unmodified PEI (p<0.05) (data not shown). Polyplex-binding to the cell surface 

was again assayed, for propyl-PEI formed polyplexes and unmodified PEI 

formed polyplexes. As observed via facile screening (Figure 8.3C), under 

optimized DoE-RSM conditions, again no significant difference was observed 

between propyl-PEI:DNA and unmodified PEI:DNA polyplex binding to the cell 

surface (Figure 8.6C and D). 

The DoE-RSM predicted optima for parental CHO-S cells and Clone 4, 

transfecting with unmodified and propyl-PEI, were compared directly (Table 

8.1).  At optimized conditions for the parental CHO-S cell line, SEAP production 

was significantly lower following transfection with propyl-PEI relative to 

transfection with unmodified PEI. However, a higher production efficiency 

(SEAP/DNA) was achieved through propyl-PEI mediated transfection (6.2 

compared to 5.1 for unmodified PEI). SEAP production was higher for CHO-S 

Clone 4 using propyl-PEI relative to unmodified PEI for gene delivery (29.6 mgL-

1 and 27.5 mgL-1 respectively). As with the parental CHO-S cell line, transfection 

with propyl-PEI provided a more efficient TGE platform with respect to plasmid 

DNA, relative to transfection mediated by unmodified PEI. For both cell lines, 

CHO-S parental and CHO-S Clone 4, transfection with propyl-PEI resulted in 

decreased culture viabilities compared to transfection mediated by unmodified 

PEI. For the parental cell line, average culture viability at 5 days post 

transfection with unmodified PEI was 66% and 61% following transfection 

mediated by propyl PEI. For CHO-S clone 4, culture viability at 5 days post 

transfection mediated by unmodified PEI was 85% relative to 78% following 

transfection mediated by propyl-PEI (Table 8.1).  
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8.3.4 LDC to generate “parental” cell lines with superior phenotypes for 

PEI mediated TGE 

Eleven clones of the parental CHO-S cell line were produced by limited dilution 

cloning, as described in section 8.2. At approximate generation number 1, 80 

and 120, clones were transfected with PEI and transient SEAP production 

measured at 24 hours post transfection (Figures 8.7, 8.8 and 8.9). As reported 

by Davies et al., (2013), although transient, clone-specific, SEAP expression 

was not heritable across the panel, a clone was identified (Clone 4) which was 

the highest producer at each generation measured, a clone with putatively 

heritable superior characteristics with respect to transient SEAP production 

following transfection with PEI. At generation 80 (Figure 8.9A) and 120 (Figure 

8.8A), SEAP activity was 1.4 and 2 fold that of the parental, respectively. At 

generation 1, there was no significant difference in SEAP activity for the 

parental cell line or clone 4 (Figure 8.7A).  

 

 

 

 

Cell line PEI DNA  

(mgL-1) 

PEI:DNA  

Ratio (w/w) 

SEAP  

(mgL-1) 

Culture 

 viability 
(%) 

Efficiency 

(SEAP/
DNA) 

 

Parental 
CHO-S 

Unmodified-PEI 4.0 1.3 20.2 (±1.1) 66 (±3.3) 5.1 

Propyl-PEI (7%) 2.8 1.2 17.3(±0.0) 61 (±1.5) 6.2 

 

CHO-S 
Clone 4   

Unmodified-PEI 3.6 1.2 27.5(±0.5) 85 (±0.3) 7.7 

Propyl-PEI (7%) 3.1 1.3 29.6(±0.7) 78 (±0.) 9.7 

Table 8.1 DoE RSM predicted optima, for parental CHO-S and CHO-S  

clone 4 cell lines and measured output at 5 days post transfection.  
Transfections were performed in duplicate. 
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With respect to SEAP activity, the order of clone specific productivity did not 

correlate between 1 and 120 generations (r2=0.188) (Figures 8.7A and 8.8A). A 

sub-set of four clones, 4, 6, 7 and the parental CHO-S cell line, were used for 

uptake, binding and staining experiments at generation 80, due to the practical 

necessity of a small sample size for experimentation (Figure 8.10). The four cell 

lines were chosen because they displayed a range of SEAP productivities 

across the panel of 11. Using the four cell line sub set, the correlation was still 

weak with respect to SEAP production between generation 1 and 120, r2=0.48. 

Between generations 80 and 120 there was excellent correlation in the order of 

clone specific productivity (r2=0.99, p<0.0001). It is possibly, that once adapted 

to the culture environment, i.e. in 125mL shake Erlenmeyers, achieved by 
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Figure 8.7 CHO-S clones display variation in transient SEAP production 

following transfection with PEI at generation~1 

Cells were transfected with PEI in 24 well plates, at a seeding density of 106 
cells mL-1. At 24 h post transfection, SEAP (A), viable cell density (black bars) 

and culture % viability (grey bars) (B) were measured. The mean value ± stan-

dard deviation from triplicate transfections is shown. 
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generation 80 and 120, the functional phenotypes of the cell lines (with respect 

to SEAP production etc.) has stabilized.  
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Figure 8.8 CHO-S clones display variation in transient SEAP production 

following transfection with PEI at generation ~120 

Cells were transfected with PEI in 24 well plates, at a seeding density of 1x106 
cells ml-1). At 24 h post transfection, SEAP (A), viable cell density (black bars) 

and culture % viability (grey bars) (B) were measured. The mean value ± stan-

dard deviation from triplicate transfections is shown. 



 

Chapter 8 Engineering Strategies 155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We previously observed that across three variant CHO cell lines, transient 

SEAP production co-varied with polyplex uptake, whereby the cell line that 

transiently produced the highest level of SEAP, also displayed the highest 

polyplex internalization capacity (CHO-S) (Thompson et al., 2012). In addition, 

cell surface HSPG level was found to co-vary with transient SEAP production 

and polyplex cyto-internalization (Thompson et al., 2012). It was therefore 

hypothesized that across four cell lines, varying in transient SEAP production, 

cell surface HSPGs and polyplex uptake would co-vary.  

Polyplex cyto-association (Figure 8.10A) and uptake (Figure 8.10B) was higher 

for clone 4 than clone 7 and the parental, but polyplex cyto-association and 

uptake was also significantly higher for clone 6 than the parental. A similar 

pattern was observed for polyplex binding to the cell surface (Figure 8.10C); 

0

0.5

1

1.5

2

2.5

6 7 pa 4
 S

E
A

P
 A

c
ti

v
it
y

 

Figure 8.9 CHO-S clones display variation in transient SEAP production 

following transfection with PEI at generation ~80  

Cells were transfected with PEI in 24 well plates, at a seeding density of 10 6 
cells mL -1). At 24 h post transfection, SEAP ( A ), viable cell density (black 

bars) and culture % viability (grey bars) ( B) were measured. The mean value ± 

standard deviation from triplicate transfections is shown.  
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clones 6 and 4 had higher binding than clone 7 and the parental cell line. There 

was no significant difference between the anti-HSPG staining observed for 

clones 6, clone 4 and the parental cell line (Figure 8.10D). Only clone 7 was 

stained more lightly for HSPGs, at approximately 70% the level of the parental.  

Interestingly, for clone 6, in addition to SEAP activity being 64% that of the 

parental cell line, viable cell density at 24 h post transfection was only 1.1x106 

cells mL-1 compared to 1.2x106 cells mL-1 for the parental cell line and 1.5x106 

cells mL-1 for high producing clone 4. The data indicate that the highest 

producer cell line, clone 4, displayed the highest polyplex internalization 

capacity combined with high, post transfection, culture viabilities. 
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Figure 8.10 CHO-S clones exhibit variation in polyplex cyto-

internalization and binding following transfection with PEI and cell sur-
face HSPG content 

Cells were transfected with PEI according to protocol A. At 4 h post transfec-

tion with fluorescently labelled plasmid DNA and PEI, polyplex cyto-association 
(PBS washed) (A), cyto-internalization (CellScrub washed) (B) were measured 

by flow cytometry. Polyplex-cell surface binding was measured using flow cy-
tometry, at 4 h post transfection with fluorescently labelled plasmid DNA and 
PEI and following incubation at 4°C (C). Cells were fixed and immunostained 

with mouse anti-HSPG mAbs and secondary FITC conjugated anti-mouse IgM 
mAbs and fluorescence measured by flow cytometry (D). The mean value ± 

standard deviation from triplicate transfections or biological samples is shown. 
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8.4 Discussion 

Data presented in this chapter display the promise that derivatized PEIs hold for 

TGE using CHO cell platforms. Using a relatively small panel of derivatized 

PEIs, propyl-PEI was found to display superior properties relative to unmodified 

PEI. In light of data presented in previous chapters, it was hypothesized 

alkylated PEIs (with enhanced hydrophobicity relative to unmodified PEI) would 

display superior binding to the cell surface, through hydrophobic interactions. 

However, this was not the case (Figure 8.3C and 8.6C) and is similar to the in 

vivo radio-active trace data obtained by Fortune et al., (2011), indicating 

alkylated PEIs did not enhance cell-surface binding. It may be that the 

hydrophobic binding between the cell surface and unmodified PEI:DNA 

polyplexes are at a maximum/ saturated level. It is possible that if cell surface 

binding of polyplexes had been measured at an earlier time point, propyl-

PEI:DNA and unmodified PEI:DNA polyplexes may have displayed different 

properties. 

Interestingly, acetylated-PEI:DNA polyplexes showed no binding to the cell 

surface (Figure 8.3C). There are two explanations for this; firstly, that the acetyl 

group (due to its polarity perhaps) was detrimental to polyplex-cell surface 

binding or simply that DNA was not condensed by the acetyl-PEI, which could 

be tested by gel electrophoresis of polyplexes. Transfection with PEI is a multi-

step process, involving numerous cell trafficking steps (Chapter 2). Two 

fundamental steps are DNA condensation and polyplex-binding to the cell 

surface. Useful data in screening derivatized PEIs could be obtained by gel 

electrophoresis, to obtain DNA condensation capacity, in addition to polyplex-

cell surface binding capacity, TGE and culture viability post transfection etc.  

As demonstrated in Chapter 4, cyto-toxicity caused by free PEI is not identical 

to that caused by PEI:DNA polyplexes and transgene expression, but can be 

used as an approximate guide for toxicity. At a concentration of 4 mg L-1 PEI, 

alkylated PEIs did not improved culture densities or viabilities relative to 

unmodified PEI (Figure 8.4). This could be explained several ways. Putatively, 

at a given concentration, alkylated PEIs are taken up by the cells more 

efficiently and thus display higher toxicity. Alternatively, the alkyl chain moiety 

might be itself cytotoxic. Alternatively, alkylated PEIs might enhance cell-cell 
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clumping, thus artificially reducing the cell density count by the Vi-Cell. CHO-S 

cells are known to be a “clumpy” cell line and PEI and PEI:DNA polyplexes 

increase cell-cell clumping. An extension of this experiment would be to use 

anti-clumping agent prior to running samples on the vi-cell. 

The enhanced cyto-internalization displayed following transfection by propyl-PEI 

relative to unmodified PEI (Figure 8.6A), could be attributed to uptake of propyl-

PEI:DNA polyplexes by a more efficient endocytic pathways compared to the 

pathway facilitating PEI:DNA polyplex uptake. Given that propyl-PEI was found 

to facilitate higher plasmid uptake relative to unmodified PEI, it was not 

surprising that its optimized DNA load was found be lower than that of 

unmodified PEI (Figure 8.5), with respect to reporter SEAP output. Taken 

together, propyl-PEI may facilitate more efficient uptake into the cell and thus 

require a lower plasmid DNA load for TGE relative to unmodified PEI.  

Propyl-PEI was found to mediate higher TGE relative to unmodified PEI using 

clone 4 (not the case in the parental cell line (Table 8.1). Post transfection 

culture viabilities were also significantly higher for clone 4 relative to the 

parental cell line (Table 8.1). Clone 4 may have a phenotype with superior 

resistance to PEI/ PEI:DNA polyplex induced toxicity; it may have reduced 

sensitivity for apoptotic induction for example. To test this hypothesis, the 

expression of a selection of apoptotic genes could be tested through analysis of 

respective transcript levels, e.g. caspases. 

For engineering targets such as transfection, multi-gene modulation is likely to 

be necessary, rather than a gene by gene approach. Unlike typical cell line 

engineering strategies, whereby a single or a hand-full of target genes are 

up/down regulated, selection of cell lines through clone screening is likely to 

result in a multi-gene up/down regulation. However, the approach relies on 

chance, that a cell line will be isolated with a superior phenotype for the 

required biomanufacturing process. Selective evolution strategies could be 

employed to render a clone more suitable to transfection. Alternatively, the 

larger the panel of clones screened, the higher the chance of isolating a cell line 

with superior properties for transfection and/ or TGE. 
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Future work could focus on screening a larger panel of alkylated PEIs, at a 

range of percentage alkylation. In addition, it would be interesting to test the 

efficacy of reversibly PEGylated PEI for CHO based TGE (Walker et al., 2005). 

Walker et al., (2005) addressed the hypothesis that PEG shielding of PEI:DNA 

polyplexes could hinder acceptance of protons by PEI and endosomal escape. 

PEIs linked to PEG via acyl-hydrazides or pyridyl-hydrazines were synthesized, 

which would hydrolyse at pH 5, within lysosomes, thus separating PEG from 

PEI. The reversibly PEGylated polyplexes provided a 100x increase in 

transgene expression in vivo and a 10x increase in vitro, relative to stably 

PEGylated polyplexes. Such reversibly PEGylated PEI:DNA polyplexes might 

provide superior properties for cell surface binding (Chapter 5), whilst 

maintaining maximum capacity for lysosomal escape. 

8.5 Chapter Conclusions 

In this chapter, for the first time, a PEI derivative (propyl-PEI) has been 

demonstrated to have superior properties in vitro to unmodified PEI, with 

respect to the efficiency of TGE with respect to plasmid DNA utilization (SEAP/ 

DNA). Furthermore, propyl-PEI was found to mediate enhanced uptake of 

plasmid DNA relative to unmodified PEI. Clone screening was found to be a 

successful strategy for cell line development for TGE mediated by PEI. 
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CHAPTER 9 
 

Final Discussion 

 
9.1 A biphasic model for the uptake of PEI:DNA polyplexes by CHO-S cells 

“...dynamical problems lie behind the morphological problems of the cell.” 

Thompson, DA. 1917. 

The model is based on data presented in Figures 4.5, 4.7, 4.8, 6.4,6.5,6.6 and 

key data represented below in Figure 9.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Two phases for polyplex uptake exist (Figure 9.2). Phase 1 uptake is relatively 

rapid, mediated by HSPGs (Payne et al., 2007), occurring within, approximately, 
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Figure 9.1  

Rapid polyplex-cell association and uptake is mirrored by the decrease 
in cell surface HSPGs. Polyplex-cell association and uptake continues 
after HSPGs have depleted from the cell surface. 

Squares: polyplex-cell association. Circles: polyplex cyto-internalization. Trian-
gles: cell surface HSPGs deplete post transfection.  
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the first 15 min post transfection. Phase 2 (between -15 and 240 min post 

transfection) is slower and occurs at diminished levels of cell surface HSPGs. 

Both pathways are dependent on membrane fluidity/ lipid raft clustering. It is 

possible that Phase 2 uptake is dependent on lipid raft regeneration and limited 

by the rate of regeneration.  

Approximately 25% of polyplex was taken up in phase 1, in the transfection 

system used throughout this thesis, the remaining 75% taken up by phase 2. 

Similarly, 25% of TGE was mediated by phase 1 uptake and 75% via phase 2 

uptake, based on data presented in Figure 6.8, where enzymatic depletion of 

HSPGs reduced SEAP by 25%. 

In other systems, utilising different cell lines, derivatized PEIs or culture 

modality, it is likely that the proportion of polyplex taken up by each pathway 

may vary. The PEI:DNA ratio of polyplexes may also impact on pathway 

utilization. 

The model shares some similarities with the conclusions drawn by von 

Gersdorff et al., (2006) who reported the involvement of several endocytic 

pathways in polyplex uptake. Maximal transgene expression was reported to 

occur only if the final endocytic pathway (for polyplexes ≥1 µm in diameter) was 

accomanied by endocytic pathways that mediated the uptake of smaller 

polyplexes (Rejman et al., 2004), such as clathrin mediated endocytosis. 
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~0-15 min post transfection 

 
Adsorption 

Lipid raft  

coalescence 

Internalization 

Phase 2 

~15-240 min post transfection 

 

* 

PEI:DNA polyplex 

 

Heparan sulphate proteoglycan 

Lipid raft moiety, e.g. cholesterol, sphingolipid 

Cell surface/ plasma membrane (lipid bilayer)  

Figure 9.2 

A biphasic model for the uptake of PEI:DNA polyplexes by CHO-S cells 

Polyplex uptake occurs rapidly via HSPG-endocytosis (Payne et al., 2007), 
within approximately 15 min post transfection (Phase 1). Subsequent uptake of 

polyplexes occurs at depleted HSPG levels (Phase 2). 
*Regeneration of lipid raft moieties and HSPGs. 
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Aggregation of polyplexes is a well reported phenomenon  

(Sharma et al., 2005) (Figure 9.3). At a certain level of aggregation it is likely 

that polyplexes would be too large to be internalized by the cell (Rejman et al., 

2004). On the other hand, aggregated polyplexes bound to the cell surface, 

could maintain an equilibrium with extra-cellular polyplexes, suspended in the 

culture milieu. Thus, the kinetics of transfection may determine total cyto-

internalization of polyplexes, in that polyplexes must be taken up by the cell 

before they have aggregated to a point where they are too large to be 

endocytosed.  

In our virgin system, using unmodified PEI for polyplex formation and untreated 

CHO-S cells, cyto-internalization saturated at approximately 240 min post 

transfection and it is possible that polyplexes had aggregated to an extent, by 

this point, whereby further cyto-internalization was impossible. A working theory 

to improve TGE, with respect to the efficiency of DNA utilization, is that 

increased rate of binding/ internalization reduces plasmid DNA attrition by 

extracellular aggregation of polyplexes.  

 

 

 

 

Phase 3 

Figure 9.3 Extra-cellular attrition of transgene:  

PEI:DNA polyplex aggregation 

PEI:DNA polyplexes aggregate (Sharma et al., 2005) to an extent whereby 
they cannot be internalized by the cell. 
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9.2 Polyplex binding to the cell surface 

“the things which we see in the cell are less important than the actions which we 

recognise in the cell...” Thompson, DA. 1917. 

Binding experiments were performed by incubating transfections at 4°C, thus 

inhibiting cell trafficking processes, including polyplex internalization and HSPG 

depletion from the cell surface. Thus, binding experiments were likely to 

maintain cell surface HSPGs at an undepleted level, representative of an 

untransfected cell but artificial for a transfected cell, at approximately ≥7.5 min 

post transfection. Under normal transfection conditions (i.e. incubation at 37°C 

rather than 4°C), polyplexes in contact with the cell, at time points 

approximately greater than or equal to 7.5 min post transfection, would bind to a 

plasma membrane with a reduced complement of cell surface HSPGs (≤25% 

untransfected levels) relative to that of a de novo transfected cell.  

Hydrophobia has been described as an entropic process, due to the increase in 

hydrophobic interactions at higher temperatures (Chandler 2005); thus 

hydrophobic interactions at 4°C would be less strong than those occurring 

under normal physiological conditions. Also, as temperature decreases 

hydrogen bonds become shorter and the viscosity of water increases. 

Therefore, whilst, incubation at hypothermic culture temperatures, allows an 

almost physical approach to the biological question of polyplex-cell surface 

binding, this, by definition, has its limitations. 

Data presented in Chapter 5 support the hypothesis that hydrophobia is a 

mediatory force in polyplex binding to the cell surface. Both PEI:DNA polyplexes 

in medium and CHO-S cells in suspension are dynamic and heterogeneous 

entities. The dynamic cell is well documented as is heterogeneity within 

individual cells (Altschuler and Wu, 2010); intra-cellular heterogeneity within 

“clonal” cell populations has been recently described (Davies et al., 2012). 

PEI:DNA polyplex heterogeneity has also been described (Han et al., 2009). It 

is likely that both electrostatic and hydrophobic interactions contribute to 

polyplex binding to the cell surface. Attribution of the binding mechanism solely 

to polar or apolar interactions is simplistic. It seems more likely that both would 

contribute. At the molecular level, a multitude of physical interactions take 



 

Chapter 9 Discussion 165 

place, at different patches of the same polyplex and at different locations of a 

lipid raft molecule.  

On a systems level, it is possible that the relative proportion of electrostatic and 

hydrophobic interactions changes over time. That is, within the first few min post 

transfection, the cell surface possessing a full complement of HSPGs, 

electrostatic interactions might be relatively more predominant. As HSPGs 

deplete from the cell surface, hydrophobic interactions may then predominate. 

However, binding data presented in Chapter 5 using non-ionic surfactant was 

performed at hypothermic culture temperature; a condition (as described above) 

that would maintain cell surface HSPGs at an undepleted level on the cell 

surface. Thus, even possessing a full complement of cell surface HSPGs, 

unsurprisingly, the CHO-S cells is a hydrophobic entity. 

  

Figure 9.4 Intracellular attrition of transgene 

Transgene is lost at cellular defences, such as the plasma membrane, en-
dosomes or the nuclear membrane. The arrows (          ) indicate transgene 
and the relative size of the arrow is an indication of transgene quantity.  
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9.3 The attrition-based paradigm for intracellular transgene trafficking 

Within the literature, and presented in this thesis, are examples of the inefficient 

trafficking of plasmid DNA (complexed with a transfection reagent) within the 

mammalian cell (Figure 9.4). Cellular structure and biochemistry, in addition to 

providing the framework and functioning of the cell, provides an intrinsic barrier 

against foreign DNA. Bottlenecks for efficient gene delivery exist at the cell 

surface plasma membrane, endosomes/ lysosomes and nuclear membrane. 

One of the key (all be it accidental) design features of PEI, is its ability to accept 

protons within lysosomes, leading to osmotic swelling and subsequent rupture 

of lysosomes, allowing polyplexes to escape into the cytosol, avoiding 

lysosomal degradation (Akinc et al., 2005).  

In all cases, transfection is optimized (e.g. DNA amount, and transfection 

reagent to DNA ratio) with respect to TGE output, culture viabilities and 

sometimes transfection efficiency (% cells GFP positive). A system is achieved 

whereby the cell is flooded with transgene, so that despite attrition of transgene 

at various cellular bottlenecks (plasma membrane, nuclear membrane etc.) 

sufficient transgene is available for transcription to enable maximum TGE.  

However, barriers may exist preventing transcriptionally available transgene 

reaching saturation level. For example, by media additives such as ferric (III) 

citrate preventing polyplex binding to the cell surface or HSPG depletion, 

preventing HSPG endocytosis of polyplexes into the cell. 

With regard to HSPG endocytosis, it appears to be a rapidly saturable process. 

Where a cell line is HSPG deficient, HSPG over-expression may enable a 

further endocytic trafficking pathway for polyplex uptake into the cell (Wong et 

al., 2010). However, given the saturability of the process, HSPG over-

expression per se, in a cell line possessing a full complement of HSPGs, seems 

an unlikely method to increase r-protein titres. A more logical strategy would be 

to increase the regeneration/ cycling of HSPGs or lipid raft constituents to the 

cell surface, following polyplex induced endocytosis; however, this would 

require a genomics scale engineering approach, with limited feasibility (Maxfield 

and McGraw, 2004).  
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Engineering strategies, used to increase r-protein through TGE (described in 

more detail Chapter 1) have focussed on enhanced protein secretion or 

reduced cellular susceptibility to apoptosis or choice of cell line/ system. Given 

that PEI delivered nuclear-localized plasmid DNA can be close to the level 

required for gene expression saturation (Cohen et al., 2009), mechanistic 

engineering of transfection (i.e. gene delivery and trafficking to the nucleus) is 

likely to yield improvements in efficiency of plasmid DNA utilization, rather than 

improvements in r-protein titres.  

9.4 Engineering Transfection  

Two methods could be employed to enhance the efficiency of transgene 

delivery; the first; by engineering the cell itself and the second by engineering 

the transgene delivery complex. 

Regardless of engineering strategy, optimization of TGE with respect to the 

efficiency of plasmid DNA utilization, as illustrated in Chapter 8, requires varying 

DNA concentration and PEI:DNA ratio; side by side comparison at one set of 

conditions (DNA concentration and PEI:DNA ratio) is inadequate. Depending on 

process requirements, algorithms designed to maximise efficiency of TGE 

production with respect to plasmid DNA utilization or to maximise overall cost 

efficiency, could be employed when optimizing transfection conditions (DNA 

load etc.), rather than simply using recombinant protein titre or culture viability 

as a process output. 

It seems that cell line engineering for transfection is fundamentally influenced by 

whether the original/ parental cell line is deficient in cellular machinery that 

facilitates a trafficking step of the polyplex or whether it is a relatively “fit-for-

purpose”, transfection competent host cell line. For example, HPSG over-

expression, enhanced PEI mediated TGE, in a CHO-K1 derived cell line, 

deficient in cell surface HSPGs (a sub-standard cell line for PEI mediated TGE) 

(Wong et al., 2010). On the other hand, cell cycle control (using nocodazole or 

p18 or p21 regulators) was effective in fit-for purpose cell lines (Tait et al., 2004; 

Backliwal et al., 2008a).   

Cell line engineering for enhanced transfection is likely to require multi-gene 

modulation. Hence, clone generation (Chapter 8), successive rounds of cell 
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sorting following transfection (Pichler et al., 2010) or selective evolution 

strategies might be more appropriate to achieve the required goal, at this stage, 

than gene by gene cell line engineering methods. Transcriptomics of isolated 

(evolved) clones with superior transfection phenotypes (reverse engineering), 

would enable future employment of direct cell line engineering strategies. 

As described in the introduction to Chapter 8, PEIs with enhanced 

hydrophobicity, developed by various methods, have been demonstrated as 

efficacious for transgene delivery and expression, in a range of platforms (in 

vivo and in vitro), by several groups. We tested the efficacy of a selection of N-

alkylated PEIs, for two reasons: to build on data indicative of the role of 

hydrophobia in polyplex-cell surface binding (Chapter 5) and to build on data 

showing polyplex cell-surface binding to occur following cell surface HSPG 

depletion (Chapter 6). We hypothesized that alkyl PEIs would enhance the 

efficiency of TGE with respect to plasmid DNA by enhancing polyplex-binding to 

the cell surface. In fact, propyl-PEI was found to provide better uptake 

properties and more efficient TGE with respect to plasmid DNA, relative to 

unmodified PEI. 

9.5  Limitations of the Study 

In this study of PEI:DNA polyplexes, only DNA was fluorescently labelled, not 

PEI. In a study by Derouazi et al., (2004) free DNA was found to be completely 

removed from solution following addition of 25 kDa linear PEI, at PEI:DNA ratios 

(w/w) of 0.4:1 and above. It was thus assumed that fluorescent readings 

associated with the cell (intracellular or cell surface attached), obtained by flow 

cytometry or confocal microscopy, were attributed to PEI:DNA polyplexes and 

not DNA alone. An alternate method would be to fluorescently label both PEI 

and DNA (Godbey et al., 1999; Hufnagel et al., 2009).  

Transient gene expression or SEAP reporter production was used as an indirect 

measure of polyplex uptake, under the assumption that polyplex uptake and 

transient gene expression correlate (Bertschinger et al., 2008). It was not 

always possible to measure polyplex uptake, as described in section 7.3.7.  

DNA topology has previously been shown to have a significant effect on 

polyplex uptake (polylysine formed polyplexes) in CHO cells (Dhanoya et al., 
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2011) and dendritic cells (Dhanoya et al., 2012). Whether the DNA was 

supercoiled, open circular or linear affected the uptake kinetics of DNA 

delivered as polylysine polyplexes. For example, at 1 h post transfection of 

dendritic cells, 61% of supercoiled pDNA polyplexes were localized to the 

nucleus whereas only 24.3% and 3.5% of open circular or linear pDNA 

polyplexes, respectively, were localized to the nucleus of CHO cells (Dhanoya 

et al., 2012). Supercoiled pDNA-polylysine polyplexes also displayed the 

highest transfection efficiency, compared to open circular and linear pDNA-

polylysine polyplexes, putatively due to their increased resistance to nucleases. 

In this thesis, the topology of the DNA was not addressed but it would be an 

interesting area of future research. 

The aggregation of polyplexes in solution has previously been explored by 

Shama et al., (2005), who reported polyplexes to rapidly aggregate in solution 

and within a 4 h time period, <10% of total DNA to remain in non-aggregated 

polyplexes. Polyplex aggregation was not characterized in this study but an 

interesting area of future investigaion would be to investigate any relationship 

between polyplex size and endocytic uptake pathways. Previously, the effect of 

chemical treatments, including MβCD and chlorpromazine, on the uptake of 

microsphere of different sizes by murine myeloma B16-F10 cells was 

characterized (Rejman et al., 2004). interestingly, cholesterol depletion using 

MβCD and chemical treatments with genistein and filipin were found to inhibit 

uptake of microsphere of 500 nm in diameter to a greater extent than smaller 

microspheres; inhibition of clathrin mediated endocytosis using chlorpromazine 

hydrochloride was found to have the opposite effect, inhibiting the uptake of 

smaller microspheres (50 nm diameter) more than larger microspheres (500 nm 

diameter) (Rejman et al., 2004). The topology of DNA has been shown to 

strongly influence polylysine-DNA polyplex size and therefore the topology of 

the DNA may affect the uptake of polyplexes (Dhanoya et al., 2011; Dhanyoya 

et al., 2012). Future work could focus on characterizing the topology of the DNA 

and its effect on PEI mediated transfection of CHO cells. 
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9.6 Future Work 

Future work, building on work presented in this thesis, could follow several 

branches. One avenue to explore would be the mechanism of propyl-PEI 

mediated transfection, e.g. the transfection kinetics or dependence of cell 

surface HSPGs of propyl-PEI polyplexes relative to unmodified PEI-polyplexes. 

Given that propyl-PEI was found to facilitate increased uptake of polyplexes, 

relative to unmodified PEI, the mechanisms of endocytosis could be explored, 

using siRNAs. Alternatively, fluorescent labelling of the respective polymers 

could be employed for live microscopy imaging, combined with fluorescent 

labelling of endocytic vesicles. 

Building on data presented in Chapter 5 indicating the role of hydrophobia in 

polyplex-cell surface interactions, an increased panel of hydrophobically 

derivatized PEIs could be screened (Lynn et al., 2001). The efficacy of methyl- 

butyl-, pentyl-, hexyl- or heptyl- PEIs could be tested, at varying alkylation 

percentages (Fortune et al., 2011). In addition, reversibly PEGylated PEIs 

(Walker et al., 2005) or cyclodextrin PEIs could be tested for bioprocessing 

(Forrest et al., 2005). 

Lipid encasement has been employed to enhance  the hydrophobicity of 

polyplexes (Liu et al., 2010). For large scale gene delivery TGE applications, 

lipid coated polyplexes are less likely to be suitable for scaled-up production 

than chemically derivatized PEIs (as described above), due to the cost of 

manufacture. 

It would be desirable to screen derivatized PEIs for the respective rate of 

polyplex uptake by the cell, working on the hypothesis that PEIs which enable 

faster polyplex uptake offer superior transfection properties, due to the 

increased level of cellular transgene uptake prior to extracellular attrition of 

transgene by polyplex aggregation. Equally, it would be relevant to screen the 

aggregation (Sharma et al., 2005) rate of polyplexes formed from a range of 

PEIs. 

As described in Chapter 1 and 2, a plethora of strategies are employed to 

achieve maximum transient recombinant protein titres. Derivatized PEIs could 

be tested on an industry standard TGE platform, for example, a system 
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enabling episomal maintenance and replication with a shift to mild-hypothermic 

culture temperatures. The effectiveness of derivatized PEIs on such as system 

could be screened in micro-scale bioreactors.  

Transient recombinant protein production, following PEI mediated transfection, 

was found to be strongly influenced by culture media (Ye et al., 2009). A future 

line of experimentation could test for correlation between the zeta potential of 

polyplexes in media and the level of polyplex-binding to the cell surface in the 

same media. A hypothesis being that culture medium conferring a negative zeta 

potential on the polyplex would lead to relatively low polyplex-cell surface 

binding levels. 

As described in Chapter 4, to manage the oxidative stress of the system, 

multiple strategies could be employed. For example, the parental cell line could 

be engineered with enhanced anti-oxidant defences, such as superoxide 

dismutases or catalases. Alternatively, genes for such enzymes could be 

included on the transient expression vector. Alternatively anti-oxidants could be 

added to the culture, such as ascorbic acid or alpha-toco-pherols or the redox 

potential of the medium itself could be engineered. The relative proportion of 

anti-oxidant supplements/ media additives could be optimized by DoE-RSM 

methodology (Grainger and James, 2013). 

Other than direct engineering of the system, the mechanism of PEI and 

PEI:DNA mediated oxidative stress could be mechanistically explored. Future 

work could include comparison of cellular ROS levels following addition of PEI 

or PEI:DNA polyplexes, as opposed to ROS in the supernatant (Figure 4.9 and 

4.10), to characterize the relationship between PEI or PEI:DNA polyplex 

addition, cellular ROS, cell viability and recombinant protein output.   
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9.7 Other applications: gene therapy, DNA vaccines and RNA 

interference. 

Other applications for PEI mediated DNA delivery include gene therapy, DNA 

vaccines and RNA interference (Thomas and Klibanov, 2003; Aigner, 2006; 

Schaffert and Wagner, 2008; Grant et al., 2012; Wegmann et al., 2012). In vivo 

experimental systems are commonly used for exploring transgene delivery for 

such applications (Fortune, 2010) due, in no small part, to the differing colloidal 

properties of the transgene complexes in synthetic culture media or blood/ 

tissue. However, cell culture based experimentation offers numerous 

advantages over in vivo systems, for one, by allowing a higher degree of 

biochemical manipulation. For example, comparing cell surface-attached 

polyplex versus cyto-internalized polyplex in vivo would be extremely difficult. 

Thus, whilst the data presented in this thesis, has limits in its applicability to in 

vivo systems, it may also provide insight in areas that in vivo experimentation 

does not allow. 
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