
An adaptive framework for
classification of concept drift with

limited supervision

Piero Conca

PhD

The University of York
Department of Electronics

October 2012



Abstract

This thesis deals with the problem of classification of data affected by concept drift.

In particular, it investigates the area of unsupervised model updating in which

a classification model is updated without using information about the changing

distributions of the classes.

An adaptive framework that contains an ensemble of classifiers is developed.

These can be mature or näıve. In particular, only mature classifiers generate

decisions, through majority voting, while näıve classifiers are candidate to become

mature.

The first novelty of the proposed framework is a technique of feedback that

combines concepts from ensemble-learning with concepts from self-training. In

particular, näıve classifiers are trained using unlabelled data and labels generated by

mature classifiers over that data, by means of voting. This technique allows updates

of the model of the framework in absence of supervision, namely, without using the

true classes of the data. The second novelty is a technique that infers the presence of

concept drift by measuring the similarity between the decisions of mature classifiers

and the decisions of näıve classifiers. When concept drift is inferred, a näıve classifier

is selected to become mature, and a mature classifier is deleted.

A series of experiments are performed. They show that the framework can

classify data with Gaussian distribution, and that this capability regards different

classification techniques. The experiments also reveal that the framework cannot

deal with the concept drift of a uniformly distributed dataset. Moreover, further

experiments show that the inference of drift combines quick adapation with low

false detections, thus leading to higher classification performance than comparative

methods. However, this technique is not able to detect concept drift if the classes

are separable.



Contents

Contents 2

List of Tables 7

List of Figures 9

List of Algorithms 17

Acknowledgements 18

Declaration 19

1 Introduction 20

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.2 Concept drift . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Novelties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Literature review 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Bayesian decision theory . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Supervised learning: classification . . . . . . . . . . . . . . . . 32

2.2.2.1 Design cycle for classification systems . . . . . . . . . 34

2.2.2.2 Classification techniques . . . . . . . . . . . . . . . . 36

Support vector machines. . . . . . . . . . . . . . . . . . 39

AISEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Ph.D. Thesis 2 Piero Conca



Contents

Näıve Bayes. . . . . . . . . . . . . . . . . . . . . . . . . 44

Multilayer perceptron. . . . . . . . . . . . . . . . . . . 45

C4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.3 Ensemble classification . . . . . . . . . . . . . . . . . . . . . . 46

Bagging. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Boosting. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.4 Semi-supervised classification . . . . . . . . . . . . . . . . . . 49

2.3 Concept drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.2.1 Examples of Datasets . . . . . . . . . . . . . . . . . 54

2.4 Classification of data with concept drift . . . . . . . . . . . . . . . . . 57

2.4.1 Supervised model updating . . . . . . . . . . . . . . . . . . . 57

2.4.1.1 Assumptions about the future distribution . . . . . . 58

2.4.1.2 Adaptivity . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.1.3 Strategies for concept drift . . . . . . . . . . . . . . . 60

2.4.1.4 Evolving techniques . . . . . . . . . . . . . . . . . . 61

Ensemble-based. . . . . . . . . . . . . . . . . . . . . . . 61

Instance weighting and instance selection. . . . . . . . . 63

Feature space. . . . . . . . . . . . . . . . . . . . . . . . 65

Density-adaptive forgetting. . . . . . . . . . . . . . . . 66

2.4.1.5 Triggering methods . . . . . . . . . . . . . . . . . . . 67

Change detection. . . . . . . . . . . . . . . . . . . . . . 67

Training windows. . . . . . . . . . . . . . . . . . . . . . 68

2.4.1.6 Other approaches . . . . . . . . . . . . . . . . . . . . 69

2.4.2 Semi-supervised model updating . . . . . . . . . . . . . . . . . 71

2.4.3 Unsupervised model updating . . . . . . . . . . . . . . . . . . 73

2.5 Clustering of data with concept drift . . . . . . . . . . . . . . . . . . 73

2.5.1 Introduction: clustering approaches . . . . . . . . . . . . . . . 73

2.5.2 Online clustering . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.2.1 Prototype-based online clustering: CluStream . . . . 75

2.5.2.2 Distance-based online clustering: DenStream . . . . 76

2.5.3 Semi-supervised clustering . . . . . . . . . . . . . . . . . . . . 77

2.6 Unsupervised drift detection . . . . . . . . . . . . . . . . . . . . . . . 78

Ph.D. Thesis 3 Piero Conca



Contents

2.7 Adaptive frameworks for classification . . . . . . . . . . . . . . . . . . 80

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Adaptive framework 85

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Framework implementation for classification . . . . . . . . . . . . . . 89

3.3.1 Ensemble classifier . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.2 Decision feedback . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.3 Inference of drift . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Experiments 102

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Investigation of data requirements for unsupervised model updating . 103

4.2.1 Classification of Gaussian data with the SVM . . . . . . . . . 103

4.2.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . 103

Gaussian data distribution. . . . . . . . . . . . . . . . . 104

Parametric settings. . . . . . . . . . . . . . . . . . . . . 105

Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . 107

Determining the number of runs. . . . . . . . . . . . . . 110

4.2.1.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . 111

Correlation table and plots. . . . . . . . . . . . . . . . 112

Interpretation of the sensitivity analysis. . . . . . . . . 115

4.2.1.3 Comparison with supervised techniques . . . . . . . 118

4.2.1.4 Interpretation of the results . . . . . . . . . . . . . . 121

Training with supervised data. . . . . . . . . . . . . . . 121

Model updating using labels from the voting. . . . . . . 122

Effect of the replacement of the different classifiers of

the ensemble. . . . . . . . . . . . . . . . . . 122

Effect of the gradient on the training of new classifiers. 126

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.2 Uniformly distributed data . . . . . . . . . . . . . . . . . . . . 127

4.2.2.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . 130

4.2.2.2 Comparison with supervised techniques . . . . . . . 131

Ph.D. Thesis 4 Piero Conca



Contents

4.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 Different classification techniques . . . . . . . . . . . . . . . . . . . . 134

4.3.1 Classification of Gaussian data with AISEC . . . . . . . . . . 134

4.3.1.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . 138

4.3.1.2 Interpretation of the sensitivity analysis . . . . . . . 144

4.3.1.3 Interpretation of the results . . . . . . . . . . . . . . 147

4.3.2 Classification of Gaussian data with näıve Bayes . . . . . . . . 148

4.3.2.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . 150

4.3.3 Classification of Gaussian data with the multilayer perceptron

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.3.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 154

4.3.5 Classification of Gaussian data with C4.5 . . . . . . . . . . . . 156

4.3.6 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 157

4.4 Comparison of the framework with unsupervised model updating

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.5 Data with multiple Gaussians with changing positions and character-

istics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.5.1 Comparison with unsupervised techniques . . . . . . . . . . . 169

4.5.2 Preliminary investigation on the numbers of instances that are

maintained in memory . . . . . . . . . . . . . . . . . . . . . . 173

4.6 Analysis of the inference of drift . . . . . . . . . . . . . . . . . . . . . 174

4.6.1 Dataset with Gaussian data . . . . . . . . . . . . . . . . . . . 175

4.6.2 Comparison of the mechanism of drift inference with alterna-

tive drift detection techniques . . . . . . . . . . . . . . . . . . 176

4.6.3 Dataset with separable classes and uniform distributions . . . 182

4.6.4 Comparison of the mechanism of drift inference with the un-

supervised drift detection techniques . . . . . . . . . . . . . . 184

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5 Conclusions 196

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.2 Review of the research problem and the solution . . . . . . . . . . . . 196

5.3 Evaluation of the work . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Ph.D. Thesis 5 Piero Conca



Contents

5.4.1 Inference of drift . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.4.2 Parametric adaptivity . . . . . . . . . . . . . . . . . . . . . . 201

5.4.3 Structural adaptivity . . . . . . . . . . . . . . . . . . . . . . . 202

5.4.4 Different forms of feedback . . . . . . . . . . . . . . . . . . . . 203

5.4.5 Multiple techniques . . . . . . . . . . . . . . . . . . . . . . . . 203

5.5 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendices 205

A Interpretation of the sensitivity analysis of the framework with

SVM: additional plots 206

A.1 Plots of the instance of the framework with the first parametric setting207

A.2 Plots of an instance of the framework associated with the second

parametric setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

B Interpretation of the sensitivity analysis of the framework with

AISEC: additional plots 217

B.1 Plots of the instances of the framework of the first cluster of samples 217

B.2 Plots of the instances of the framework of the second cluster of samples221

C Sensitivity analyses: additional plots 226

C.1 Sensitivity Analysis plots of the framework with SVM and Gaussian

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.2 Sensitivity Analysis plots of the framework with AISEC and Gaussian

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

C.3 Sensitivity Analysis plots of the framework with SVM and uniform

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

D Data plots 239

Acronyms 241

Bibliography 242

Ph.D. Thesis 6 Piero Conca



List of Tables

1 Concept drift of the dataset presented in [24]. The positions (µx, µy)

and the standard deviations (σx, σy) of four Gaussian distributions

(C1, C2, C3 and C4) data vary according to three patterns, described

by the linear equations of, respectively, the top, the middle and the

bottom sections of the table, in a temporal sequence. . . . . . . . . . 55

2 Parametric configuration of the framework for the experiment involv-

ing the SVM and Gaussian data. . . . . . . . . . . . . . . . . . . . . 106

3 Intervals of the parameters for the sensitivity analysis. . . . . . . . . 112

4 Correlation coefficients between parameters and output measures. . . 112

5 Parametric configurations of DWM and bagging+ADWIN for the

experiment involving SVM and Gaussian data. . . . . . . . . . . . . . 119

6 Configuration of the parameters of AISEC. . . . . . . . . . . . . . . . 135

7 p-values at different stages of completion of a run. . . . . . . . . . . . 138

8 Intervals of the paramaters for the sensitivity analysis. . . . . . . . . 139

9 Correlation coefficients between parameters and output measures. . . 140

10 Intervals of the parameters for the sensitivity analysis of the Frame-

work with näıve Bayes as a base learner. . . . . . . . . . . . . . . . . 150

11 Correlation coefficients between parameters and output measures. . . 151

12 Correlation coefficients between parameters and output measures. . . 155

13 Correlation coefficients between parameters and output measures. . . 158

14 Parametric configurations of the of the unsupervised comparisons of

the framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

15 p-values of the framework with näıve Bayes and the comparative for

the measures of accuracy, precision and recall (the single-classifier

variants also use näıve Bayes). The p-values that are responsible for

the rejection of the hypothesis are highlighted in bold type. . . . . . . 161

Ph.D. Thesis 7 Piero Conca



List of Tables

16 p-values of the framework with the SVM and the comparative for

the measures of accuracy, precision and recall (the single-classifier

variants also use the SVM). The p-values that are responsible for the

rejection of the hypothesis are highlighted in bold type. . . . . . . . . 162

17 Parametric configuration of the framework for the experiment involv-

ing the SVM and Gaussian data. . . . . . . . . . . . . . . . . . . . . 166

18 Parametric configurations of the unsupervised comparisons of the

framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

19 p-values of the framework with näıve Bayes and the comparative for

the measures of accuracy, precision and recall (the single-classifier

variant also uses näıve Bayes). . . . . . . . . . . . . . . . . . . . . . 171

20 p-values of the framework with the SVM and the comparative for the

measures of accuracy, precision and recall (the single-classifier variant

also uses the SVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

21 Parameters of the configurations of the framework for the different

mechanisms of drift detection. . . . . . . . . . . . . . . . . . . . . . . 176

22 p-values of the framework with the SVM and the comparative for

the measures of accuracy, precision and recall (the single-classifier

variants also use näıve Bayes). . . . . . . . . . . . . . . . . . . . . . 177

23 p-values of the framework and the comparative with the SVM for the

measures of accuracy, precision and recall. . . . . . . . . . . . . . . . 178

24 Parameters of the configurations of the framework for the different

mechanisms of drift detection. . . . . . . . . . . . . . . . . . . . . . . 182

25 p-values of the framework with the SVM and the comparative for

the measures of accuracy, precision and recall (the single-classifier

variants also use näıve Bayes). . . . . . . . . . . . . . . . . . . . . . 185

26 p-values of the framework and the comparative with the SVM for the

measures of accuracy, precision and recall. . . . . . . . . . . . . . . . 185

Ph.D. Thesis 8 Piero Conca



List of Figures

1 Visual representation of the probabilities involved in the Bayes the-

orem. From the top-left corner in clockwise order. Prior probabil-

ities of class ω1 and class ω2. Class-conditional pdfs, they reflect

the distributions of the classes. Notice that these are both normal

distributions with the same standard deviation but different mean

values. Joint pdfs p(x|ωi) (green and red curves) are the product

between prior probabilities and class-conditional pdfs; their sum is

the class-unconditional pdf p(x) (blue line). Posterior probabilites

P (ωi|x), that reflect the probability of a value belonging to a class

are depicted in the bottom-left plot. Posterior probabilites are used

to determine the decision boundary β (grey line). . . . . . . . . . . . 31

2 The areas highlighted in red represent the error of assigning class ω1

to instances of class ω2. Alternately, the areas highlighted in green

reflect the error of assigning class ω2 to instances of class ω1. The

boundary in the plot of case 1 of the figure maximises the posterior

probabilites and, as a consequence, minimises the risk of assigning an

instance to the wrong class. In fact, if a different decision boundary

is chosen, this error increases, as shown for case 2. . . . . . . . . . . . 33

3 Flowchart of the design of a classification system (adapted from [27, 54]). 34

4 The linear classifier perceptron (a) combines the inputs x1, . . . , xn

linearly by means of a set of weights w1, . . . , wn and a bias factor b.

The output y is generated by discretising the linear function through

a step function. Artificial neural networks (b) combine multiple

perceptrons to solve nonlinear problems. The function applied to

the nodes of the network is normally a sigmoid function, with the

exception of the output node. . . . . . . . . . . . . . . . . . . . . . . 37

Ph.D. Thesis 9 Piero Conca



List of Figures

5 Example of a decision tree. In order to classify fruits the features

color, shape, size, taste are used. At each node, the feature associated

with the node is questioned, its value determines what node should

be visited next. In this example, the root of the node is associated

with the feature color (image from [27]). . . . . . . . . . . . . . . . . 38

6 Example of an ensemble classifier. Since the three base classifiers are

linear, none of them is able to classify correctly the blue and the red

instances. However their combination through majority voting (bold

line) allows to discriminate with the highest accuracy the instances

of the blue class from the instances of the red class. . . . . . . . . . . 48

7 Visual representation of the dataset proposed in [24]. . . . . . . . . . 56

8 Model of the adaptive framework (left) and a possible instantiation

(right) [51]. In the model of the framework (left), the input informa-

tion vector IVinput is processed by a set of stovepipes. Their output

is combined by the data fusion module to produce the ouput vector

IVoutput, which can also be fed-back to the input. The diagram on the

left shows a possible instantiation of the framework. . . . . . . . . . . 82

9 UML class diagram of the framework. . . . . . . . . . . . . . . . . . . 91

10 Feedback of the decisions of the framework. . . . . . . . . . . . . . . 98

11 Example of the matrix of the distances M for an ensemble consisting

of four mature and four näıve stovepipes. The matrix is square and

symmetrical. The first four lines and columns are associated with

mature stovepipes, while the remaining are associated with näıve

stovepipes. The distances among mature stovepipes, näıve stovepipes,

mature and näıve stovepipes are calculated by averaging the values

in the areas highlighed using respectively the colors red, green and

blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

12 Representation of the Gaussian data. Distribution at the beginning

of the experiment (a) and at the end (b). Notice that the position of

the clusters moves along the x axis, but their relative position does

not change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Ph.D. Thesis 10 Piero Conca



List of Figures

13 Comparisons of the values of accuracy, precision and recall of the

adaptive framework and the static framework. Notice that different

scales are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

14 A-test results. Despite the lowest scores are obtained for 200 runs, we

considered that repeating the same experiment 50 times is sufficient,

given that all the median accuracy values fall in a very narrow interval.111

15 Latin hypercube sensitivity analysis plot of thonline against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

16 Representation of the model of the framework featuring the SVM at

the beggining of a run(a), at the end of a successful run (b) and in

case of failure (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

17 Distributions of the values of accuracy, precision and recall of the

framework, of bagging+ADWIN, and of DWM over the Gaussian

data stream. Notice that different scales are used. . . . . . . . . . . . 120

18 Data distribution of the supervised training phase. The green line

and the red line represent respectively the distributions of the nega-

tive class and the positive class. Their sum, the class-unconditional

distribution, is represented by the dotted line. . . . . . . . . . . . . . 121

19 In the online phase, new näıve classifiers are trained using labels from

the voting. Therefore, the distribution of the data and their labels

can be described by p′(x, “ + 1”) and p′(x, “− 1”)”. . . . . . . . . . . 122

20 Probability density distributions of class “+1” (red line), “−1” (green

line) in the online phase. The grey lines and the black line represent

the boundaries of the three classifiers α, β, γ, while the blue line is

the boundary of the näıve classifier ν. In particular, the boundary of

β conincides with the boundary of the model of the framework. . . . 123

21 Effect of the replacement of the näıve classifier ν with the mature

classifiers α (top), β (middle), γ (bottom) on the boundary of the

model of the framework (black line). The dotted grey line indicates

a classifier that has been deleted. . . . . . . . . . . . . . . . . . . . . 125

Ph.D. Thesis 11 Piero Conca



List of Figures

22 Probability of points to lie within a distance “d” from the boundary

β is higher for points classified as “ + 1” (top). The diagram at the

bottom shows that, when enough data has been classified, the same

data is used to train a new näıve classifier ν ′, which is shifted to the

left with respect to β. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

23 Representation of the uniform distribution at the beginning of the

experiment (a) and at the end (b). The position of the positive class

has shifted along the x axis. . . . . . . . . . . . . . . . . . . . . . . . 128

24 A-test results. Small scores are obtained for 100 runs. However

precision and recall, which are more significant than accuracy in this

concetxt, are sufficiently low for 50 runs. . . . . . . . . . . . . . . . . 129

25 Comparison of the values of accuracy of the adaptive implementation

and the static implentation of the framework using the SVM on the

dataset with uniform distribution. . . . . . . . . . . . . . . . . . . . . 130

26 Latin hypercube sensitivity analysis plot of thtraining against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

27 Distributions of the values of accuracy, precision and recall of the

framework, of bagging+ADWIN, and of DWM over the data with

uniform distribution. The values of recall and precision of the frame-

work indicate that it is not able to deal with the concept drift of this

dataset. Notice that different scales are used. . . . . . . . . . . . . . . 133

28 A-test scores for the AISEC algorithm. The graph shows that for 30

runs, the A-test score is sufficiently small. . . . . . . . . . . . . . . . 136

29 Values of accuracy in function of the percentage of completion of a

run, for the dynamic implementation (top) and the static one (bot-

tom). In correspondence of 50%, the distributions are very similar. . . 137

30 Latin hypercube sensitivity analysis plot of rationaiveMature against

accuracy, precision and recall. . . . . . . . . . . . . . . . . . . . . . . 141

31 Latin hypercube sensitivity analysis plot of thtraining against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

32 Latin hypercube sensitivity analysis plot of thID against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Ph.D. Thesis 12 Piero Conca



List of Figures

33 Representation of the model of the framework featuring AISEC at the

beggining of an experiment (a), at the end of a successful experiment

(b) and in case of failure (c). . . . . . . . . . . . . . . . . . . . . . . . 146

34 A-test results for the framework with näıve Bayes. The test deter-

mines that low difference between two different sets of output values

is reached when 200 runs are performed. . . . . . . . . . . . . . . . . 148

35 Values of accuracy, precision and recall of the adaptive framework

with näıve Bayes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

36 Latin hypercube sensitivity analysis plot of rationaiveMature against

accuracy, precision and recall. . . . . . . . . . . . . . . . . . . . . . . 152

37 A-test results for the framework with MLP. The test determines

performing 200 runs is sufficient. . . . . . . . . . . . . . . . . . . . . . 153

38 The overlap between the values of accuracy (top plot) and precision

(bottom plot) of the adaptive of the static and the adaptive framework

is limited. However the different sets of values lie is small intervals of

the spaces of the parameters. . . . . . . . . . . . . . . . . . . . . . . 154

39 Plot of the sensitivity analysis of thonline against accuracy, precision

and recall when the MLP is used. . . . . . . . . . . . . . . . . . . . . 156

40 A-test results for the framework with the algorithm C4.5. The test

determines performing 200 runs is sufficient. . . . . . . . . . . . . . . 157

41 Latin hypercube sensitivity analysis plot of thonline against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

42 Box and whisker plots of the values of accuracy of the techniques for

unsupervised model updating. . . . . . . . . . . . . . . . . . . . . . . 163

43 Box and whisker plots of the values of precision of the techniques for

unsupervised model updating. . . . . . . . . . . . . . . . . . . . . . . 164

44 Box and whisker plots of the values of recall of the techniques for

unsupervised model updating. . . . . . . . . . . . . . . . . . . . . . . 165

45 A-test results of the framework using näıve Bayes. . . . . . . . . . . . 167

46 Distributions of the values of accuracy of the static instance and the

dynamic instance of the framework using näıve Bayes. . . . . . . . . . 168

47 Values of accuracy of the static instance and the dynamic instance of

the framework using the SVM. . . . . . . . . . . . . . . . . . . . . . . 169

Ph.D. Thesis 13 Piero Conca



List of Figures

48 Distributions of the values of accuracy, precision and recall of the

unsupervised techniques. . . . . . . . . . . . . . . . . . . . . . . . . 172

49 Distributions of the values of accuracy of several instances of the

single-classifier technique (with different window sizes) and the frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

50 A-test results of the framework using näıve Bayes. . . . . . . . . . . . 177

51 Distributions of the values of sensitivity, specificity and delay of de-

tection of the unsupervised techniques. . . . . . . . . . . . . . . . . 179

52 Distributions of the values of accuracy, precision and recall of the

unsupervised techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 181

53 Concept drift of the dataset with uniformly distributed classes. Red

is used to indicate the distribution of the class of positive instances,

while blue is used for the negative class. The data distribution does

not change for the first quarter of the number of instances, as shown

in the diagram (a). After that, the center of the negative distribution

moves to position (4,1), as shown in diagram (b). The center of

negative instances changes direction in the second half of the concept

drift (diagram (c)), and reaches the final position depicted by diagram

(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

54 A-test results of the framework using näıve Bayes. . . . . . . . . . . . 184

55 Distributions of the values of sensitivity, specificity and delay of de-

tection of the unsupervised techniques. . . . . . . . . . . . . . . . . 186

56 Distributions of the values of accuracy, precision and recall of the

unsupervised techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 188

57 Plots of the accuracy and plots of the detection of drift of the version

of the framework with the mechanism of drift inference (top), of the

framework with the test by Hido et al. (center) and of the framework

with the Friedman-Rafsky test (bottom). . . . . . . . . . . . . . . . . 191

58 Plots of actual data and boundaries of the classifiers. The red points

represent the positive instances, blue is used for the negative instance.

The red lines represents the boundaries of the mature classifiers and

the green lines represent the näıve classifiers. . . . . . . . . . . . . . . 192

Ph.D. Thesis 14 Piero Conca



List of Figures

59 First detection of drift. The two plots at the top are enlargements

of the plots at the top of Figure 57. The plot at the bottom shows

the mean distances between the mature classifiers dM , between the

na”ive classifiers dM , and those between the mature and the näıve

classifiers. The arrow highlights a spike of dMN that is higher than

dM and dN . That triggers the updating of the classification model,

and the subsequent increment of the accuracy. . . . . . . . . . . . . . 193

60 TP and TN in function of the percentage of completion of a run. . . 208

61 FP and FN in function of the percentage of completion of a run of

the first parametric setting. After the start of a run, the number of

FP decreases and that of FN increases with respect to their initial

values (that correspond to 0% of completion of a run). . . . . . . . . 209

62 Accuracy, precision and recall in function of the percentage of com-

pletion of a run. While the the accuracy does not seem to vary

consistently across a run, precision increase and recall decreases. . . . 210

63 TP and TN in function of the percentage of completion of a run.

Their normalised values tend respectively to 0 and to 0.5. . . . . . . . 212

64 FP and FN in function of the percentage of completion of a run.

Their normalised values tend respectively to 0 and to 0.5. . . . . . . . 213

65 Error rate against percentage of completion of a run for sample 2. Its

values is complementary to the value of accuracy. . . . . . . . . . . . 214

66 Accuracy, precision and recall in function of the percentage of com-

pletion of a run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

67 TP and TN in function of the percentage of completion of a run. A

small decrement of TP and a small increment of TN are observed. . . 218

68 FP and FN in function of the percentage of completion of a run. . . 219

69 Accuracy, precision and recall in function of the percentage of com-

pletion of a run. Accuracy slightly decreases as soon as drift starts,

precision increases and recall decreases. . . . . . . . . . . . . . . . . . 220

70 TP and TN in function of the percentage of completion of a run.

Their normalised values tend respectively to 0 and to 0.5. . . . . . . . 222

71 FP and FN in function of the percentage of completion of a run.

Their normalised values tend respectively to 0 and to 0.5. . . . . . . . 223

Ph.D. Thesis 15 Piero Conca



List of Figures

72 Error rate against percentage of completion of a run for sample 2. Its

values is complementary to the value of accuracy. . . . . . . . . . . . 224

73 Accuracy, precision and recall in function of the percentage of com-

pletion of a run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

74 Latin hypercube sensitivity analysis plot of thtraining against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

75 Latin hypercube sensitivity analysis plots of thID against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

76 Latin hypercube sensitivity analysis plot of rationaiveMature against

accuracy, precision and recall. . . . . . . . . . . . . . . . . . . . . . . 229

77 Latin hypercube sensitivity analysis plot of FIFOsizeID against ac-

curacy, precision and recall. . . . . . . . . . . . . . . . . . . . . . . . 230

78 Latin hypercube sensitivity analysis plot of thonline against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

79 Latin hypercube sensitivity analysis plot of FIFOsizeID against ac-

curacy, precision and recall. . . . . . . . . . . . . . . . . . . . . . . . 233

80 Latin hypercube sensitivity analysis plot of thonline against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

81 Latin hypercube sensitivity analysis plot of rationaiveMature against

accuracy, precision and recall. . . . . . . . . . . . . . . . . . . . . . . 236

82 Latin hypercube sensitivity analysis plot of FIFOsizeID against ac-

curacy, precision and recall. . . . . . . . . . . . . . . . . . . . . . . . 237

83 Latin hypercube sensitivity analysis plot of thID against accuracy,

precision and recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

84 Example of data and boundaries. Red points indicate positive in-

stances, while blue points are used for negative instances. The black

lines represent the boundaries of the mature classifiers, while the

orange dotted line maximises the distance between the center of the

Gaussian distributions. At the start of the run (a) the black lines

and the orange line have a similar position. After concept drift has

started, the black lines are on the right of the orange one. . . . . . . . 240

Ph.D. Thesis 16 Piero Conca



List of Algorithms

1 Pseudo-code of the training phase of the AISEC . . . . . . . . . . . . 42

2 Pseudo-code of the classfication phase of the AISEC . . . . . . . . . . 43

3 Pseudo-code of the updating of the detectors of AISEC . . . . . . . . 43

4 Pseudo-code of the clone-mutate phase of AISEC . . . . . . . . . . . 44

5 Pseudo-code of the training phase of the framework . . . . . . . . . . 94

6 Pseudo-code of the on-line phase of the framework . . . . . . . . . . . 97

7 Pseudo-code of the mechanism of drift inference . . . . . . . . . . . . 99

Ph.D. Thesis 17 Piero Conca



Acknowledgements

I would like to thank:

• my family and especially my parents who were always there when I needed

help;

• my closest friends: Paolo, Angelo, Gaetano, Annarita, Ilaria, Barbara, Brigid,

Joan, Lorenzo, Silvana, Antonio and Francesco;

• the NCR corporation and the University of York, for sponsoring my PhD. In

particular, i wish to thank Simon Forrest and Heather McCracken for their

help;

• my supervisors: Jon Timmis and Rogerio de Lémos;

Ph.D. Thesis 18 Piero Conca



Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of the university or other institute of higher

learning, except where due acknowledgment has been made in the text.

26 Mar 2014

Ph.D. Thesis 19 Piero Conca



Chapter 1
Introduction

This thesis investigates the reduction of supervision for classification of data affected

by concept drift, by proposing an adaptive framework that can update its model in

absence of supervision. This chapter scopes the problem to be solved, outlines the

solution, and identifies what is the novelty of this work and its contribution to the

field. This chapter also presents an outline of the rest of the thesis.

1.1 Scope

1.1.1 Classification

Machine learning is the discipline that is concerned with the development of com-

puter programs that are capable of learning [61]. Classification, also known as

pattern recognition, is amongst the most studied areas of machine learning. The

problem of classification consists of recording observations from a system along

with information about what those observations represent. This information is

analysed to identify patterns that can be used later on to discriminate between

new observations [11, 27].

More precisely, the system under examination is probed by a set of vectors of

features or attributes. Features can contain different types of data, and a vector

may contain mixed types. An additional attribute, known as the “class” attribute,

is attached to feature vectors. It contains values from a discrete set that provide

information about what a vector represents.

Starting from a set of vectors of attributes and their relative classes, the problem

of classification consists of generating, or “training”, a model from that data. A

model is a function that associates vectors of features with classes. Once it is

established, it can be used to determine the class of unlabelled instances, namely,

Ph.D. Thesis 20 Piero Conca



Chapter 1 - Introduction

instances consisting solely of vectors of attributes.

A way to perform classification is by using ensemble classifiers. They combine

multiple classifiers and a technique to fuse their decisions. Ensemble classifiers can

offer a series of advantages over single classifiers, such as increased generalisation,

incremental learning (e.g., from large datasets), combination of different techniques

and therefore heterogeneous data types, and the possibility of parallelisation [72].

1.1.2 Concept drift

Traditionally, classification assumes that the distribution of the data does not change.

That means that the data used to train a model and the data used to test it are

generated from the same distribution. This is not always the case, as in many

applications, especially real-world ones, the system being examined might change, or

perhaps the instruments used to collect data might be affected, for instance because

of wear and tear. As a result, the data distribution should be expected to change.

This problem is known as concept drift, and when it affects the data it causes static

models to undergo performance degradation [84, 91]. A new model may be trained

or the existing model may be updated if the true classes of the instances are released

after these have been classified. However, this information, which is referred to as

supervision, is not always provided.

The techniques that deal with concept drift can be categorised based on the

amount of supervision they use. In particular, the categories of supervised tech-

niques, semi-supervised techniques and unsupervised techniques can be distinguished.

In order to update their models over time, supervised techniques require the true

classes of the instances to be provided after classification. That could be problematic

in some cases, as it requires the existence of an entity, the oracle, capable of

determining the true class of each instance. Whether the oracle is a human or

a machine (for example, an algorithm), supervision entails costs and its ability to

provide supervision may depend on the data rate.

In order to overcome the difficulties associated with the provision of labels, some

methods have considered the possibility of reducing the amount of supervision

they use. In particular, semi-supervised techniques combine labelled data (for

which supervision is provided) with unlabelled data (for which supervision is not

provided) to update the model of a classifier. They exploit the information about the

distributions of the single classes (class-conditional distributions) that is conveyed

Ph.D. Thesis 21 Piero Conca



Chapter 1 - Introduction

by the labelled data, along with the information about the distribution of the data

without considering the classes (class-unconditional distribution) that is conveyed

by the unlabelled instances.

This issue needs to be examined carefully to comprehend whether supervision is

a prerequisite for classification of data with concept drift, or if, in some cases, it can

be avoided or substantially reduced without affecting the classification performance.

For this reason, we need to distinguish between different scenarios. Let us consider

classification in terms of the transformation of information. Every dataset has an

underlying data distribution which determines the density of its data across the

space of the attributes. Although a group of datasets that are generated from a

common distribution are likely to be different, they should maintain information

about their underlying distribution with a certain fidelity. The higher the number

of instances that are sampled, the higher the information about the distribution

is. In such a way, a model that is trained from a dataset also contains information

concerning the distribution that generated the data. In fact, a model is a function

that associates different classes to different regions of the space of the attributes.

In the light of these considerations, let us reinterpret how supervised algorithms

for concept drift operate. Supervised techniques receive labelled data which conveys

explicit information about the changing distributions of the classes. This data can

be used to train a new model from scratch or to update an existing model on the

basis of the instances that are misclassified. That information is not available to

unsupervised techniques. However, there are scenarios in which the data instances

without their classes carry information about the changing distribution. This infor-

mation could be combined with “memory” about a previously observed distribution,

that is conveyed by the current model, in order to generate an updated model of

the changing distribution. The research literature shows that, in some cases, it is

possible to update the model of a classifier without using supervision. In particular,

a classifier that uses the prediction of its model at time t to train a model that will

be used at time t′ > t is described in [78].

1.2 Contributions

We believe that a classifier should extract as much information as possible from the

available training data regarding the classes. When the distribution changes, the

Ph.D. Thesis 22 Piero Conca



Chapter 1 - Introduction

classifier should update the information of its model to classify incoming instances.

In this way, a classifier should be able to adapt to concept drift without depending

on an external entity that provides the true classes. The advantantages that could

derive from the reduction of supervision would be multiple. For instance, the costs

associated with labelling could be avoided or substantially reduced. Morevoer, a

classifier would be promptly updated as soon as concept drift starts, while supervised

techniques are affected by potential delay in the provision of labels.

This thesis further investigates the area of unsupervised model updating. For

this purpose, we propose the implementation of an adaptive framework that is based

on ensemble classification [51]. In addition, this thesis explores alternative ways to

infer the presence of concept drift without making use of labels.

A set of experiments have been designed with the purpose of evaluating the

framework. They account for an initial set of data with a stationary distribution,

for which labels are provided. The testing phase is affected by concept drift and

labels are not provided. In particular, the purpose of the experiments is to answer

the following research questions:

1. Is it possible to maintain high classification performance on different types of

data distributions?

2. Is the framework able to operate with different types of classification tech-

niques?

3. Does the framework offer any advantage in terms of performance with respect

to comparative techniques?

4. Is the mechanism of drift inference of the framework able to reveal the presence

of drift?

5. Is the mechanism of drift inference of the framework capable of operating with

different classification techniques and on different types of distributions?

6. Does the mechanism of inference of drift offer any advantage in terms of

performance with respect to comparative techniques?

Ph.D. Thesis 23 Piero Conca



Chapter 1 - Introduction

1.3 Novelties

The adaptive framework introduces two major novelties. Firstly, a mechanism of

feedback of its decisions, which combines unlabelled data and the decisions generated

by the classification model of the framework that are used for updating the model

itself. After an initial training with supervised data, the technique of feedback

updates the model of the framework without using supervision. The framework

is in fact composed of multiple classifiers and can therefore be considered as an

ensemble classifier. At each iteration, testing instances and the result of the voting

of the classifiers are collected to train a new classifier. The model is then updated

by adding the new classifier to the framework. The principle of feedback is similar

to that proposed in [78]. However, the framework uses decisions generated by an

ensemble of classifiers, rather than a single classifier.

Secondly, this thesis also introduces a mechanism of drift inference that monitors

the similarity between the different streams of decisions generated by the classifiers.

This mechanism drives the adaptability of the model of the framework. In fact, only

when drift is inferred the model of the framework is actually updated.

1.4 Thesis structure

The rest of the thesis is structured as follows.

Chapter 2 presents an overview of the concepts that are required to understand

the problem, namely, classification of data affected by concept drift with only

initial provision of supervision, as well as our solution to the problem: an adaptive

framework. The chapter begins with a definition of the problem of classification,

which is revised later on to take into account changing distributions. The chapter

also describes the different categories of concept drift and outlines the key solutions

for handling concept drift. Moreover, it describes a selection of techniques that have

been developed for dealing with concept drift. These are classed according to the

amount of supervision they use. The chapter also describes the ideas presented in

[51], which outlines a diagnostic framework that bases its adaptivity on the concepts

of modularity and feedback. This has represented a solid source of inspiration for

the implementation proposed in this thesis.

Chapter 3 outlines the major steps in the development of this implementation.

Ph.D. Thesis 24 Piero Conca



Chapter 1 - Introduction

It describes the characteristics of the ensemble classifier and the two major novel-

ties being introduced in this implementation of the framework: the mechanims of

feedback of its decision and the inference of drift. It does so by analysing the code

of the different procedures step by step.

Chapter 4 introduces a set experiments aimed at assessing the ability of the

framework at dealing with concept drift under different conditions. They involve

different classification techniques and different data distributions.

Chapter 5 presents the conclusions of this thesis.

Ph.D. Thesis 25 Piero Conca



Chapter 2

Literature review

2.1 Introduction

This chapter introduces the concepts related to the problem of classification of data

streams affected by concept drift with limited supervision.

Machine learning is the discipline which is concerned with the development of

programs that allow computers to learn, and one of its most studied problems is

classification [54]. This is the problem of using data collected from a system and

labels that determine what the data represent to generate a function or model,

which is then used to associate labels with unlabelled data [11]. The applications of

classification are numerous. Among these, a classifier can be trained to detect fraud-

ulent bank transactions, natural language processing, anomalous internet activity or

identify people from visual images [54, 63]. An assumption that is commonly made in

classification is that the data is independently and identically distributed. However,

when data is collected from a changing environment, and this is common in real-

world systems, its distribution is likely to change. This problem is known as concept

drift and it requires the model to be updated in order to avoid the degradation

of classification performance [91]. The majority of classification techniques are not

designed to deal with concept drift, and a variety of solutions have been developed.

Generally, they require supervision. That is, information about the true class of a

data instance is provided after the instance has been classified. This information

drives model updates. A set of solutions have been developed to reduce the amount

of supervision. Semi-supervised techniques compensate the scarcity of supervision

with unlabelled data. Moreover, some techniques are able to update their model

without supervision.

The rest of the chapter is structured as follows. Section 2.2 begins with an

Ph.D. Thesis 26 Piero Conca



Chapter 2 - Literature review

overview of the field of machine learning. Attention will then move to the more

specific problem of classification. A description of some of the most used classifica-

tion techniques is given in Section 2.2.2.2. They include, among others, discriminant

functions, decision trees and statistical methods. Section 2.3 defines concept drift, an

artefact of data that is responsible for performance degradation in classifiers. It also

describes the characteristics of the different types of drift. Section 2.4 reformulates

the problem of classification to take into account concept drift and gives an overview

of some of the supervised strategies that have been proposed in the literature to cope

with this problem. The Sections 2.4.2 and 2.4.3 describe techniques that reduce the

amount of supervision they require. Section 2.5 analyses the problem of clustering

data streams. It concerns the generation of a model of a stream of drifting data

without any knowledge about the labels of its instances. Section 2.5.3 describes

semi-supervised clustering, a variant of clustering which use limited supervision to

support the formation of clusters. Section 2.6 presents a selection of techniques

for unsupervised detection of concept drift. A selection of frameworks that perform

adaptive learning is presented in 2.7. Section 2.8 provides a summary of the chapter.

2.2 Machine learning

Machine learning can be defined as the discipline which is concerned with the

development of computer programs that are able to learn. In [61], the following

definition of learning for machines is given:

A computer is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at task

T, as measured by P, improves with experience E.

Machine learning is a very broad discipline, which includes the three major areas

of supervised learning, unsupervised learning and reinforcement learning. These

differ in the type of information computers are provided with and therefore in the

mechanisms that they use to convert information into a representation of the world.

In supervised learning, experience is expressed by means of a set of observations

of the world. Observations consist of input vectors of attributes or features, along

with additional information in the form of output labels which state what those

observations represent, for example what their class is. Based on this information

Ph.D. Thesis 27 Piero Conca



Chapter 2 - Literature review

(feature vectors and respective labels), a supervised learning algorithm builds an

internal representation of the world, which is used to associate labels to unseen

instances. As an example, consider the problem of medical diagnosis [56, 67]. Let

us assume that a hospital keeps records of a series of attributes about patients, such

as age, sex, symptoms and results of clinical analysis. The database also contains

details about the disease each patient is diagnosed with. These pieces of information

can be used to train a classifier with the aim to discover combinations of values which

can be indicative of a disease. Once trained, a model can be used to assist doctors

in the diagnosis of patients.

Unsupervised learning differs from supervised learning in the fact that no in-

formation is provided about labels of vectors of attributes. Unsupervised learning

is concerned with revealing how data is organized, for example, by assessing the

importance of the attributes with regard to a particular task or by identifying

groups or clusters of instances with similar characteristics. These problems are,

respectively, studied by the areas known as dimensionality reduction and clustering

[32]. More precisely, the goal of dimensionality reduction is to reduce complexity and

improve readability of data without discarding data that could help maximise the

performance in the task being considered. This can be achieved by simply ignoring

redundant or irrelevant attributes, or by combination of the original attributes into

a new set of attributes. As the name suggests, clustering is concerned with the

identification of groups or clusters of observations which present similarities [6].

According to a distance measure, clusters are formed by grouping instances that

are close together but far from other instances or clusters. Genomics is one of the

applications of clustering, in which it is used to identify groups of genes that are

co-expressed and, therefore, are likely to be related [33].

Semi-supervised learning is similar to supervised learning, with the difference

that only part of the observations are associated with a label. The problem is to

build a representation of the world by combining the information in labelled data

with the information in unlabelled data.

It is not always possible to teach what decision should be taken given an ob-

servation, as in supervised learning; often because it is not known what is the best

decision. However, rewards or punishments can be used to guide the learning process

as in the case of reinforcement learning. Different from the other areas of machine

learning, reinforcement learning is not only about gathering and analysing informa-

Ph.D. Thesis 28 Piero Conca



Chapter 2 - Literature review

tion from the system under examination. The interaction is in fact bidirectional

since the computer is able to modify the system itself. As a matter of fact, decisions

take the form of actions, that cause the transition of the system from a state to

another. Reinforcement learning has been applied fruitfully, for example, to game

theory and robot control problems. In the game of checkers, algorithms based on

reinforcement learning can play at the same level as good players [82, 81], while in

the game of backgammon, programs compete or even outperform the top human

players [77, 89, 90]. In this context, an effective way to “train” a program consists

of making it play games against itself repeatedly. In robot control, this approach is

used to drive the learning of robots in specific environments to find strategies that

increase their chance of “survival”.

The rest of this section is dedicated to supervised learning. This will define the

problem and describe some of the strategies that have been developed to tackle it.

Moreover, it also describes the steps that are involved in the design of a learning

system. However, these are preceded by an introduction on Bayesian theory for

decision making. The concepts it presents will be useful to frame the problem that

is dealt with by this thesis.

2.2.1 Bayesian decision theory

Bayesian theory is a probabilistic theory which, among other things, is used to

derive the probability of an event being true based on a set of obervations [11, 27].

This property makes the theory suitable to the problem of deciding what class to

associate with an observation. In fact, provided that the underlying data distribution

is known, Bayesian theory can minimise the probability of an observation being

assigned to the wrong class. For simplicity, let us assume that the number of classes

is limited to two, say ω1 and ω2.

The probability of an instance belonging to class ωi can be derived using Bayes

theorem:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(2.1)

P (ωi|x) is called the posterior probability because it indicates the probability of ωi

being assigned to the right class after x has been observed. Intuitively, posterior

probabilities can be used to assign a class to an instance, for example by choosing the

class which maximises this probability. Later on, it will be shown that this choice is

Ph.D. Thesis 29 Piero Conca



Chapter 2 - Literature review

well grounded since it minimises decision errors. The term P (ωi) refers to the prior

probability, which reflects the probability of a sample belonging to a class prior to any

knowledge about that sample. If, for example, 60% of the samples that are generated

have class ω1, and the remaining ones have class ω2, it follows that P (ω1) = 0.6

and P (ω2) = 0.4. The likelihood function or class-conditional probability density

function (pdf) P (x|ωi) indicates the distribution of samples from class ωi across the

input space. Finally, the pdf p(x) is the evidence or unconditional pdf and it reflects

the distribution of x independently of a particular class. The term p(x) can be seen

as a normalisation factor since it assures that the sum of the posterior probabilites

of the classes is always 1. In fact, it can be expressed as:

p(x) = p(x|ω1)P (ω1) + p(x|ω2)P (ω2) (2.2)

Substituting Equation (2.2) into Equation (2.1), posterior probabilites can be re-

written in terms of only prior probabilites and class-conditional probabilites:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x|ω1)P (ω1) + p(x|ω2)P (ω2)
(2.3)

Figure 1 provides a graphical representation of the probabilites that have been

described. The top-left plot displays the prior probabilites. In this case, the classes

are unbalanced, as the majority of instances belong to class ω1. The plot on the

top-right shows the class-conditional pdfs, that represent the distributions of the

classes. In the bottom-right plot we can see the joint pdfs p(x, ω1) and p(x, ω2)

(respectively, red line and green line), such that p(x, ωi) = p(x|ωi)P (ωi). They

reflect the probability of instances of a class being selected when samples from

both classes are drawn. Their sum (blue line) is the class-unconditional pdf. The

bottom-left plot depicts how the posterior probabilites vary along the x axis. As

stated above, intuitively, an instance should be labelled according to the class with

the highest posterior probability. If we refer to the example depicted in Figure 1

(bottom left plot) the decision boundary corresponds to x = β. Therefore, values of

x smaller than β are assigned to class ω1, the remaining values to class ω2.

Ph.D. Thesis 30 Piero Conca



Chapter 2 - Literature review

0

0.2

0.4

0.6

0.8

1

ω1 ω2

p
ro
b
a
b
il
it
y

class

Prior Probabilities

P (ω1)

P (ω2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

d
en

si
ty

o
f
p
ro
b
a
b
il
it
y

x

Class-conditional pdfs

p(x | ω1)
p(x | ω2)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

p
ro
b
ab

il
it
y

x

Posterior probabilities

β
p(ω1 | x)
p(ω2 | x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

d
en

si
ty

of
p
ro
b
ab

il
it
y

x

Joint pdfs and class-unconditional pdf

p(x, ω1) = p(x | ω1)P (ω1)
p(x, ω2) = p(x | ω2)P (ω2)
p(x) = p(x, ω1) + p(x, ω2)

Figure 1: Visual representation of the probabilities involved in the Bayes theorem.
From the top-left corner in clockwise order. Prior probabilities of class ω1 and class
ω2. Class-conditional pdfs, they reflect the distributions of the classes. Notice that
these are both normal distributions with the same standard deviation but different
mean values. Joint pdfs p(x|ωi) (green and red curves) are the product between
prior probabilities and class-conditional pdfs; their sum is the class-unconditional
pdf p(x) (blue line). Posterior probabilites P (ωi|x), that reflect the probability of a
value belonging to a class are depicted in the bottom-left plot. Posterior probabilites
are used to determine the decision boundary β (grey line).

Let us denote with R1 the subset of the input space in which instances are

classified as ω1, and R2 the remaining part in which the class associated with the

instances is ω2. The probability of an instance being associated with the wrong class

can be expressed as:

P (error) = P (x ∈ R1, ω2) + P (x ∈ R2, ω1) =

∫

R1

p(x, ω2) dx+

∫

R2

p(x, ω1) dx (2.4)

The plot at the top of Figure 2 shows the errors in the case in which R1 and R2

are chosen in order to maximise the posterior probabilities. The area highlighted in

Ph.D. Thesis 31 Piero Conca



Chapter 2 - Literature review

red represents
∫
R1
p(x, ω2) dx, that is, the probability of instances of class ω2 being

assigned to class ω1. Similarly, the green area represents
∫
R2
p(x, ω1) dx, that is, the

probability of instances of class ω1 being assigned to class ω2. If a different decision

boundary is chosen, the probability of error increases, as it can be seen in the second

case (bottom plot of Figure 2). In fact, in that case, the sum of the highlighted areas

(which is proportional to the error) is higher than the sum of the areas of the first

case (top plot of Figure 2). This implies that an instance should be assigned the

class with the highest posterior probability in order to minimise decision errors.

2.2.2 Supervised learning: classification

Although Bayesian theory states how to minimise the error in assigning the wrong

class to an observation, in most practical problems the underlying data distribution

is unknown, and therefore the theory is not applicable.

However, if it is possible to collect information from a system in the form of

instances coupled with labels, this information can then be used to label unseen

instances. Supervised learning deals with this problem. In a formal way, given a

dataset containing couples in the form (xi, yi) generated from an unknown proba-

bility distribution D, where xi ∈ X is a vector of input features and yi ∈ Y is an

output label, supervised learning is concerned with finding a function h : X → Y ,

which maps inputs into outputs. The function h is called the hypothesis or the

model. If the set Y contains a discrete number of elements, the problem is called

classification. If the set Y is continuous, the problem is called regression.

Supervised learning is traditionally divided into two phases. The purpose of

the training phase is to generate a model from the couples (xi, yi). The criteria

to generate a model depend on the classification technique (or learner) being used.

Section 2.2.2.2 discusses some of the major categories of techniques. In the testing

phase, unlabelled instances xi, are presented to the classifier, which uses the model

to associate a class yi to xi. However, the distinction between training phase and

testing phase is not strict. In fact, there are classifiers which are able to modify their

model if new training data are available. Given an hypothesis and a batch of training

data, these classifiers output an updated hypothesis. We can distinguish incremental

learning, which builds an hypothesis incrementally, from adaptive learning which,

in addition, can cope with changes of the data distribution [60, 106]. Incremental

classifiers that can learn a single labelled instance are called online classifiers [60, 70].

Ph.D. Thesis 32 Piero Conca



Chapter 2 - Literature review

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

d
en

si
ty

of
p
ro
b
a
b
il
it
y

x

Error: case 1

β
R1 R2

∫
R2
p(x, ω1) dx

∫
R1
p(x, ω2) dx
p(x, ω2)
p(x, ω1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

d
en

si
ty

of
p
ro
b
ab

il
it
y

x

Error: case 2

β
R1 R2

∫
R2
p(x, ω1) dx

∫
R1
p(x, ω2) dx
p(x, ω2)
p(x, ω1)

Figure 2: The areas highlighted in red represent the error of assigning class ω1 to
instances of class ω2. Alternately, the areas highlighted in green reflect the error
of assigning class ω2 to instances of class ω1. The boundary in the plot of case 1
of the figure maximises the posterior probabilites and, as a consequence, minimises
the risk of assigning an instance to the wrong class. In fact, if a different decision
boundary is chosen, this error increases, as shown for case 2.

Ph.D. Thesis 33 Piero Conca



Chapter 2 - Literature review

Ideally, the higher the amount and quality of data to train a classifier is, the

better. In practice, collecting or labelling sufficiently large volumes of data is not

always feasible. Moreover, other factors such as noise or missing attributes might

complicate the situation. This issue need to be taken into account during training. A

model should abstract the right level of information from the data in order to provide

sastisfactory classification performance over unseen instances. Two major problems

can affect the ability of a classifier to “generalise” the training data. Underfitting

occurs when the complexity of a model does not match that of the data. Overfitting

occurs when a model is tailored to the training data so that it has low error over its

instances but it misclassifies novel data. More precisely, a model h is said to overfit

the data, when it is possible to find another model h′ that has lower classification

performance over the training data and higher performance over testing data [54].

Underfitting occurs when the complexity of a model does not match that of the

data.

2.2.2.1 Design cycle for classification systems

After a general introduction to classification, we describe the process of tailoring a

classification system to a specific problem. Although classification deals with a large

diversity of problems and the design of a classification system is strongly dependent

on the task in hand, it is possible to abstract a set of general, high-level steps which

are common to different classification problems.

  

collect data

choose feature

choose classification
technique

train classifier

evaluate classifier

start

end

Figure 3: Flowchart of the design of a classification system (adapted from [27, 54]).

Ph.D. Thesis 34 Piero Conca



Chapter 2 - Literature review

The first phase of the design cycle is data collection. This has the purpose

of delivering a dataset which contains a proper level of information about the

observed system to the following stage(s). The support of an expert in the field

being considered may be required [54]. This phase can represent a large part of the

cost of the final system [27]. Therefore a trade-off between cost, time, amount of

data collected and number and type of features is often needed. In some cases the

data is available, but it may be necessary to gather it. For example, consider the

medical diagnosis system outlined earlier. Different hospitals might contain records

about a specific disease, this data needs to be retrieved. In other cases data might

not be available and therefore needs to be collected. On one hand, this could be

problematic and it could increase costs. On the other hand, it gives more freedom

over the choice of a set of features. As an example, let us consider the diagnosis

again, but this time of an electro-mechanical device. In this scenario, the types and

the positioning of the data sources are decided by the designer of the monitoring

system.

In some cases, pre-processing is needed to “prepare” data for the following stage.

Preprocessing may involve filling missing fields in the patients’ records or reducing

noise if microphone and/or cameras are used in the second scenario. In some cases

large amounts of data are collected, and it is necessary to reduce the number of

instances, for example by eliminating duplicates and/or by selecting a subset of

instances that are highly representative of the initial set.

After collection, raw data is not always ready to be used. In particular, a

new set of features might be extracted from the original set of features in order

to filter out irrelevant information and make data readable to a classifier. In this

process we can distinguish between feature selection, which eliminates irrelevant

and redundant features, and feature construction, which is concerned with the

combination of existing features to produce new features [51, 54]. By decreasing the

size of the feature set and/or combining features it may possible to improve data

readability, reduce the amount of computation and increase the performance of the

classification process [54]. Unsupervised learning and in particular dimensionality

reduction are often used to perform feature extraction, this is a case of principal

component analysis (PCA) which extracts a set of features with low correlation

from the original set [87].

Generally, a specific classification problem poses a series of design constraints

Ph.D. Thesis 35 Piero Conca



Chapter 2 - Literature review

on the choice of a classification technique. For example, the available hardware

might limit the choice to techniques with low computational requirements, or for

example some problems might require the model to be easily inspectable by a user

(transparency). An interesting taxonomy of classification techniques based on their

properties is presented in [54]. Amongst others, the criteria used for assessment are:

accuracy, training and classification speed, tolerance to noise, risk of overfitting,

incremental learning.

The following steps deal with the creation of a classifier. Training involves the

choice of a set of parameters and the selection of a training dataset to generate

a classifier. Validation deals with the evaluation of its performance. If enough

data is available, this can be split so that part of the data trains a classifier and

the remaining instances are used to validate the classification performance of the

classifier. When data is scarce and, therefore, using separate data for evaluation is

unfeasible, it is still possible to estimate the generalisation capability of a classifier,

for example by means of cross-validation. Training data is divided into N equally-

sized and separate data partitions. These are used to generate N classifiers as

follows, the ith classifier is trained using all the data but the ith partition, and

the instances of that partition serve to test the performance of the classifier. The

average of the errors of the classifiers gives an estimate of the performance of the

selected technique and parametric setting. Leave-one-out validation is a particular

case of cross-validation in which data partitions contain a single instance. Although

cross-validation is very useful when data is scarce, it is computationally expensive.

2.2.2.2 Classification techniques

Classification techniques differ in the mechanisms of model construction and inter-

rogation. This section gives an overview of some of the major approaches.

The techniques that are based on discriminant functions rely on a function which

divides the input space into two regions (for a binary classification problem), each

of which is assigned to a class. Unlabelled instances are classified by checking to

which region they belong. The choice of a discriminant function depends on the

problem at hand. Discriminant functions can be divided into linear and nonlinear.

The perceptron (Figure 4 (a)), a technique (loosely) inspired by the functioning

of neurons, is a typical example of the first category [27]. The model consists of

a linear function “wrapped” by a step function. Weights and bias of the linear

Ph.D. Thesis 36 Piero Conca



Chapter 2 - Literature review

function determine the model and are set by performing multiple passes over the

training data, where at each iteration the weights are adjusted to reduce the errors of

the classifier. When data is not linearly separable, that is, when no line or hyperplane

Figure 4: The linear classifier perceptron (a) combines the inputs x1, . . . , xn linearly
by means of a set of weights w1, . . . , wn and a bias factor b. The output y is generated
by discretising the linear function through a step function. Artificial neural networks
(b) combine multiple perceptrons to solve nonlinear problems. The function applied
to the nodes of the network is normally a sigmoid function, with the exception of
the output node.

which neatly separates the classes exists, a nonlinear function is needed. The

multilayer perceptron algorithm (MLP), also known as an artificial neural network

(ANN), relies on a network of perceptrons that generates a nonlinear discriminant

function, as depicted in Figure 4 (a). Support vector machines (SVM) are a linear

technique that can also be used to classify nonlinear data [93]. Given a set of labelled

data, the technique of SVM searches for the hyperplane with maximum distance from

the points of the different classes. SVM resolve the problem of classifying nonlinearly

separable data by mapping input instances into a higher dimensional space where

the problem can be reduced to the linear case.

Decision trees classify data instances by considering one feature at a time. Using

this sequential interrogation, priority is given to the features that can help classifying

an instance as effectively and quickly as possible. Decision trees are hierarchical

structures, in which nodes are associated with features. Branches coming out of a

node are values that the feature of the node can assume and each terminal node or

leaf is labelled with a class. Decisions are made in a top-down fashion. Given a

feature vector, starting from the root of the tree, for each node, the feature associated

with the node is selected from the input vector. Its value dictates which branch

Ph.D. Thesis 37 Piero Conca



Chapter 2 - Literature review

  

Color

Shape

Size

Size Size

Tastewatermelon apple grape banana apple

watermelon apple cherry grape

green yellow red

big medium small big medium smallthin

big smallbig small sweet sour

Figure 5: Example of a decision tree. In order to classify fruits the features color,
shape, size, taste are used. At each node, the feature associated with the node is
questioned, its value determines what node should be visited next. In this example,
the root of the node is associated with the feature color (image from [27]).

(and therefore node) will be considered next. This process is iterated until a leaf

is reached, the label of the leaf determines the class of the input vector. Decision

trees are also nonmetric methods, which means they do not necessarily rely on the

concept of distance and can therefore classify instances that do not contain numbers

[11]. For example, the decision tree of Figure 5 handles attributes such as shape and

taste, which can respectively assume the values round and thin or sweet and sour.

One point in common in all these strategies is that, after generating a model,

training data is discarded. A different case is represented by instance-based tech-

niques. These techniques do not process training data: they simply store it. There-

fore training data becomes part of the model, and it is used to classify unlabelled

instances. An immediate consequence is that there is no training time. However,

since the computational burden is postponed to the testing phase, time and space

complexities of this type of algorithm are strongly affected [54]. For this reason,

instance-based classifiers are also called lazy classifiers, in contrast to eager tech-

Ph.D. Thesis 38 Piero Conca



Chapter 2 - Literature review

niques [54, 61].

After this brief introduction to classification methods, a closer look will be taken

at some specific techniques. In particular, attention will be given to SVM [93]

and the instance-based techniques AISEC [85], näıve Bayes [62], the multilayer

perceptron [76] and the incremental decision tree C4.5 [75].

Support vector machines. The support vector machine (SVM) is one of the

most studied techniques for classification [54]. For the sake of clarity, explanation

of the principles which govern the functioning of this technique will be divided into

three phases. Firstly, SVM for linearly separable classes will be described. This

is followed by an introduction to SVM for nonseparable data and then the kernel

trick which allows SVM to classify nonlinear data. SVM were initially developed

for classification of datasets with two linearly separable classes [92]. A dataset of

l couples (xi, yi) with xi ∈ Rn and yi ∈ {1,−1}, in which the subsets of points

of different classes are denoted with I = {xi|yi = +1} and II = {xi|yi = −1}, is

linearly separable if it is possible to find a hyperplane defined by the linear equation

with coefficients w ∈ Rn and b ∈ R:

(x ·w) = b (2.5)

such that:

(x ·w) > b if xi ∈ I and (x ·w) < b if xi ∈ II (2.6)

Among all the possible separating hyperplanes SVM look for the hyperplane which

maximizes the margins, defined as the distances of the hyperplane from the support

vectors, which are the points of I that lie on the hyperplane xi ·w + b = +1 and the

points of II that lie on the hyperplane xi ·w + b = −1 [16]. The distance of the first

hyperplane from the origin is |1 − b|/||w||, the distance of the second hyperplane

from the origin is | − 1 − b|/||w||, so that the size of each margin is 1/||w|| and,

therefore, the distance between every side-hyperplane is 2/||w||. The problem of

finding the best separating hyperplane is reformulated into the problem of finding

a hyperplane which maximises the margins by minimising ||w||2 and satisfies the

constraints:

xi ·w + b ≥ +1 for yi = +1 (2.7)

xi ·w + b ≤ −1 for yi = −1 (2.8)

Ph.D. Thesis 39 Piero Conca



Chapter 2 - Literature review

which can be combined in a single expression:

yi(xi ·w + b)− 1 ≥ 0 ∀i (2.9)

When an unlabelled instance xi is presented, it is classified depending on sign(w·xi).
If this is positive, the instance will be associated with the class “+1”, otherwise with

the class “−1”. The problem can also rewritten by means of Lagrangian multiplers.

In this case the function to minimise is:

W (α) = −
n∑

i=1

αi +
n∑

i=1

n∑

j=1

yiyjαiαj (xi · xj) (2.10)

subject to the constraints:
n∑

i=1

yiαi = 0 (2.11)

0 ≤ αi ≤ C ∀i (2.12)

the separating hyperplane is derived through:

w · x =
l∑

i=1

αiyi and b = ysv −w · xsv (2.13)

where (xsv, ysv) is a support vector such that αsv < C.

There are cases in which it is not possible to find a hyperplane that neatly

separates the instances of different classes. To overcome this limitation, the use of

slack variables ξi, with i = 1, . . . , n was proposed in [22]. These are subtracted from

the distance of the instances responsible for nonseparability from the hyperplane.

This technique, which is known as soft-margins SVM, reduces the problem to the

separable case. For soft-margins SVM, the problem of finding the best separating

hyperplane can be reformulated as the minimisation of:

1

2
||w2||+ C

n∑

i=1

ξi (2.14)

subject to the constraints:

yi (xi ·w + b) ≥ 1− ξi ∀i (2.15)

ξi > 0 ∀i (2.16)

In either case (linearly separable or soft-margins SVM), the discrimination function

is a linear combination of the input variables (it is a hyperplane). Some data distri-

butions require non-linear functions in order to effectively classify their instances.

Ph.D. Thesis 40 Piero Conca



Chapter 2 - Literature review

A solution to this problem is proposed in [13]. The data points are mapped into a

higher dimensional space where they can be separated by means of a hyperplane.

Technically, this is achieved by simply replacing the dot product in the Expression

2.7 with a kernel function. Some of the most used types of kernel functions are:

polynomial, radial-basis, sigmoid and hyperbole [16].

The technique of transductive SVM deals with data that is only partially labelled.

The problem is solved by finding a set of labels for the unlabelled training instances,

along with w and b, to maximise the margins of the hyperplane [93].

The limited classification time and the high scalability are the main advantages

of SVM. The main disadvantage is the time required for training [54, 73].

AISEC. (Artificial Immune System for Email Classification) [85] is an instance-

based classification algorithm inspired by the clonal selection principle of the immune

system of vertebrates [17]. This technique was originally created to tackle the

problem of classification of incoming emails to a mailbox based on the interests of

the user. However, the version that will be considered here was specifically modified

to handle real numbers. The model consists of a set of detectors, a detector is a point

in a multi-dimensional space and a threshold, which is the same for all the detectors.

There are two sets of detectors, memory and näıve. Memory detectors are those

which have shown better performance and therefore have a longer lifespan. Näıve

detectors can become memory detectors if they classify instance with high affinity.

The measure of affinity denotes how close a detector and an instance are in the

feature space. It is inversely proportional to the Euclidean distance. During the

training phase IMC elements of the training set are randomly selected to populate

the pool of memory detectors. Such detectors are also assigned a stimulation

count MCS which determines their lifetime. If the affinity between a memory

detector and training instance is higher than the affinity threshold AT, then a set of

clones is created using cloneMutate(mem detector, testing instance). The procedure

cloneMutate(detector, instance), in fact, generates a set mutated clones, number and

mutation rate of the clones are respectively directly and inversely proportional to

the affinity between detector and instance. If the affinity of a clone is higher than

the affinity of the memory detector which generated it, then the clone is added to

the näıve pool and its stimulation count is set to NCS.

Unseen instances are compared with both memory and näıve detectors in a

Ph.D. Thesis 41 Piero Conca



Chapter 2 - Literature review

sequential way. If the distance of the instance from the center of the detector is

less than the threshold CT , then the instance is classified accordingly, otherwise the

instance is assigned to the other class.

AISEC also accounts for adaptivity. In this case an oracle intermittently provides

the true classes of the instances and this information is used to update the set of

detectors by deleting those ones which fail to classify correctly and creating new

ones to classify unseen instances. In particular, if an instance is classified correctly,

after incrementing the stimulation count of the näıve detectors, a set of clones of the

best näıve detector (that with the highest affinity to the instance) is added to the

näıve pool and the best näıve detector is recomputed. If its affinity is higher than

the affinity of the “best” memory detector with the instance, then the best näıve

detector becomes a memory detector and its stimulation count is updated to MCS.

In addition, the size of the memory pool is reduced by eliminating the detectors that

are similar to the new entry.

If, instead, the instance is misclassified, all the detectors that are “close” to the

instance are removed. Regardless of whether an instance has been classified correctly

or not, the stimulation count of the näıve detectors is decremented, and if this reaches

0 the detector is deleted.

Algorithm 1 Pseudo-code of the training phase of the AISEC

1: procedure Train(Dtrain, CT,AT,CC,MC,NCS,MCS, IMC) . inputs
2: memory pool← ∅
3: naive pool← ∅
4: initialise memory pool with IMC random elements from Dtrain

5: for mem detector in memory pool do
6: mem detector’s stimulation count ←MCS
7: for instance training instance in Dtrain do
8: for mem detector in memory pool do
9: if affinity(mem detector, training instance) > AT then
10: clones← cloneMutate(mem detector, ti)
11: for clone in clones do
12: if affinity(clone, training instance) ≥affinity(mem detector, training instance)

then
13: naive pool← naive pool ∪ {clone}
14: return memory detector, naive detector

Ph.D. Thesis 42 Piero Conca



Chapter 2 - Literature review

Algorithm 2 Pseudo-code of the classfication phase of the AISEC

1: procedure Classify(testing instance)
2: for detector in memory pool ∪ naive pool do
3: if affinity(detector, testing instance) > CT then
4: return 1
5: return -1

Algorithm 3 Pseudo-code of the updating of the detectors of AISEC

1: procedure updatePopulation(testing instance)
2: if classification was correct then
3: for naive detector in naive pool do
4: if affinity(testing instance, naive detector) > AT then
5: increment naive detector ’s stimulation count by 1

6: naive best ← naive detector with highest affinity to testing instance
7: naive pool ← naive pool ∪ cloneMutate(naive best, testing instance)
8: memory best ← memory detector with highest affinity to testing instance
9: if affinity(naive best, testing instance) > affinity(memory best, test-

ing instance) then
10: remove naive best from naive pool
11: naive best ’s stimulation count ←MCS
12: memory pool ← memory pool ∪ {naive best}
13: for memory detector ∈ memory pool do
14: if affinity(naive best, memory detector) > AT then
15: decrement memory detector’s stimulation count

16: else
17: for detector in memory pool ∪ naive pool do
18: if affinity(detector, testing instance) > AT then
19: delete detector from system

20: for naive detector in naive detector do
21: decrement naive detector ’s stimulation count
22: for detector ∈ memory pool ∪ naive pool do
23: if detector ’s stimulation count = 0 then
24: delete detector

Ph.D. Thesis 43 Piero Conca



Chapter 2 - Literature review

Algorithm 4 Pseudo-code of the clone-mutate phase of AISEC

1: procedure cloneMutate(detector, instance)
2: clones = ∅
3: aff = affinity(detector, instance)
4: num clones = int(aff ∗CC) . number of clones to generate
5: mutate size = float((1−aff ) ∗MC) . mutations for each clone
6: for i in num clones do
7: new clone← detector
8: for j in [1, . . . , |new clone|] do . for each feature j of new clone
9: new clone[j] = new clone[j] + random.gauss(0,mutatesize)
10: clones = clones ∪ {new clone}
11: return clones

Näıve Bayes. Section 2.2.1 introduced Bayesian theory, a probabilistic theory

that states how to perform optimal decisions about the class of an instance, assuming

that the distributions of the classes are known. Näıve Bayes is a classification

technique that draws upon Bayesian theory.

For the sake of this explanation, let us consider a multidimensional formulation

of Bayesian theory, where xi indicates the ith attribute of a vector x ∈ Rn. In

particular, Equation 2.1 can be rewritten as:

P (ωj|x1, x2, . . . , xn) =
p(x1, x2, . . . , xn|ωj)P (ωj)

p(x1, x2, . . . , xn)
(2.17)

The technique of näıve Bayes works under the assumption that the attributes are

independent, that means that the probability of an instance belonging to a class

does not depend on the values assumed by the other attributes, for example:

p(xi | ωj, x1, x2, . . . , xi−1, xi+1, . . . , xn−1) = p(xi | ωj). (2.18)

Applying iteratively the following rule, also known as the “chain” rule:

p(x1, x2, . . . , xn|ωj) = p(x1|ωj)p(x2, . . . , xn|ωj, x1) = . . .

· · · = p(x1|ωj)p(x2|ωj, x1) . . . p(xn | ωj, x1, x2, . . . , xn−1),
(2.19)

and assuming that the attributes are independent (Equation 2.18), the Bayesian

formula (2.17) can be rewritten as:

P (ωj|x1, x2, . . . , xn) =

∏n
i=1 p(xi|ωj)P (ωj)

p(x1, x2, . . . , xn)
(2.20)

In order to identify the class ω̂ with the highest posterior probability, it is sufficient

to choose the class with the highest numerator of Equation 2.20, as the denominator

Ph.D. Thesis 44 Piero Conca



Chapter 2 - Literature review

is the same for all classes:

ω̂ = argmax
ωj

n∏

i=1

p(xi|ωj)P (ωj) (2.21)

The probability
∏n

i=1 p(xi|ωj) can be estimated by assuming that that each attribute

has a normal distribution. In this way, the distribution of an attribute is estimated

by measuring its mean value and its standard deviation from the data [62]. Prior

probabilities P (ωj) are estimated by counting the number of instances of the classes,

and by dividing them by the number of instances in the training set.

Multilayer perceptron. The multilayer perceptron (MLP) is a technique that

uses a discriminant function to classify data. The functional unit of a MLP is the

node. Basically, a node is similar to the perceptron, an algorithm that was briefly

introduced earlier in this section. It consists of a set of input connections, a set

of output connections and an activation function. A MLP is organised in layers

of nodes: the input layer, one or more hidden layers and the output layer. Each

node of the input layer provides a signal to the nodes of the first hidden layer. A

node of the ith hidden layer computes the sum of its inputs, which is applied to the

activation function in order to generate an output signal. This is distributed to each

node of the subsequent layer, after multiplying it by a weight wij, where j indicates

the jth node of that layer. The signals propagate through the network and reach

the output layer. Each of its nodes generates a discrete output by applying a step

function.

The weights of a network determine the function that is computed by that

network. The back-propagation algorithm is a well-known method for calculating

the weights of a MLP [54, 97]. The weights are initialised with random values.

Training instances are applied sequentially to the (input nodes of the) network in

order to generate a prediction. Then, the delta values of the nodes are calculated

starting from the last hidden layer. The delta value of a node is the sum of the

differences between the expected values of the output nodes and their predictions

(the errors), multiplied by their respective weights. The delta value of each node of

the second to last layer is computed in a similar way. However, the delta values (of

the nodes of the last hidden layer) are used, rather than their errors. This step is

repeated until the delta values of all the hidden nodes have been determined. Then,

the weights of the network are calculated. Starting from the first layer, the weight

Ph.D. Thesis 45 Piero Conca



Chapter 2 - Literature review

of an input connection of a node is multiplied by the input signal, the gradient

of the activation function, the delta value of that node and a parameter, called

learning rate, in order to recompute its new weight. This process is repeated for all

the training instances and for a number of epochs. In particular, the learning rate

controls the speed of convergence and high values may obstacle the convergence to

a solution. An additional parameter called momentum can be used to control the

rate of learning of a network across the training phase in order to increase speed of

convergence and performance of the model [54].

C4.5. C4.5 is a very well-known algorithm for building decision trees [54, 75]. The

algorithm is divided into two phases. Firstly, a tree is created, then it is pruned

to avoid overfitting. The information gain is a measure of the capability of an

attribute to distinguish among different classes. Starting from the top of the tree,

the attribute with the highest information gain is associated with a node. The

information gain of an attribute is computed from the entropy of the dataset and

that of the dataset considering only that attribute. In order to reduce the risk of

overfitting, C4.5 prunes branches of the tree after this has been generated [52].

2.2.3 Ensemble classification

In many hard problems, such as the diagnosis of a rare disease, it is common to

consult multiple experts, potentially with different backgrounds, before making an

important decision. Taking into account multiple opinions can help having a more

thorough understanding of the problem, which makes clearer what the best solution

to take is. The same principle has been applied to classification problems, and

between the end of the 80’s and the beginning of the 90’s a series seminal works

started investigating the possibility to combine more classifiers [15, 83]. The term

used to identify these systems is “ensemble classifiers” and they consist of a group

of classifier and a technique to fuse their decisions. The classification technique that

is adopted is known as the “base learner” and it can be any classification technique,

in some cases more than a base learner can be used.

There are different reasons to combine classifiers. The first reason is statistical.

In fact, consulting a single classifier could be hazardous, as it might overfit the

training set. However, if multiple classifiers are trained on, for example, subsets

of the training dataset (bootstrapping), the probability of the classifiers of misclas-

Ph.D. Thesis 46 Piero Conca



Chapter 2 - Literature review

sifying the same instances decreases. As a consequence, the generalisation of the

ensemble increases with respect to using a single classifier. The techniques that

take most advantage from ensemble learning are unstable classifiers, such as neural

networks and decision trees [72]. A classification technique is said to be unstable

if small differences between training datasets cause large variances in the models of

the classifiers trained from those datasets [27]. Moreover, ensemble classifiers are

particularly useful when the training set does not reflect accurately the underlying

data distributions [72].

Another key characteristic of ensemble classifiers is the capability to handle very

large datasets. When the amount of data collected is of the orders of gigabytes

or terabytes it could impractical if not unfeasible to train a single classifier. A

solution consists of dividing the data in smaller batches, each of which will train a

classifier, and then fuse the decisions of the classifiers. Moreover, in some cases the

whole dataset might not even be immediately available and therefore data should

be learned incrementally. Also in this case, ensembles might come into hand. As

soon as each batch of data is available, a new classifier might be trained and added

to the ensemble.

Given a technique, the complexity of certain data distributions might be in-

tractable by a single classifier. Figure 6 depicts a dataset containing two different

classes (blue and red) for which no single linear classifier that perfectly separates

the instances can be found. However, the problem can be overcome by combining

three linear classifiers (grey lines) into an ensemble. The classifiers divided the input

space into the regions A1, A2, . . . , A6, the use of majority voting ensures that in each

of these regions the decisions of the ensemble match the true classes of the instances.

The decision boundary of the ensemble is highlighted in Figure 6 by using a black

bold line, it can be seen that the boundary perfectly separates the two classes.

It is very common to use heterogeneous data sources in data fusion. While data

diversity increases the information that is extracted from the observed system, it

can also increase its complexity. As a consequence, it could happen that there is no

classification technique that is able to process all the different data formats together

[72]. This problem is often solved by using ensemble classification, in which, for

example, each classifiers is applied to a data source. As an example, let us consider

again the medical diagnosis scenario, data sources might be blood tests, magnetic

resonance imaging (MRI), electrocardiography (ECG) [72]. The diversity of these

Ph.D. Thesis 47 Piero Conca



Chapter 2 - Literature review

Figure 6: Example of an ensemble classifier. Since the three base classifiers are linear,
none of them is able to classify correctly the blue and the red instances. However
their combination through majority voting (bold line) allows to discriminate with
the highest accuracy the instances of the blue class from the instances of the red
class.

types of data makes the problem intractable by a single classifier. However, this

problem can be dealt with by using an ensemble classifier, and training each classifier

on a single data type or on combinations of a subset of the types.

In order to provide examples of ensemble classifiers, a description of two of the

well-known classification techniques is presented. These are: bagging and boosting.

Bagging. The bootstrap aggregating algorithm, commonly known as bagging, is

one of the simplest ensemble classifiers. Given a dataset Dtrain, the algorithm creates

a set of M bootstrap training sets from the original training set [15]. Each bootstrap

training set is created by randomly sampling N instances from the original training

set. The ensemble contains classifiers that are trained on different bootstrap training

sets. Random sampling increases the diversity of the classifiers of the ensemble and,

as a consequence, the correlation between their errors decreases. In order to classify

unseen instances, the decisions of the single classifiers are fused by means of majority

voting. The bagging ensemble method suits particularly well to unstable classifiers

and it is not very sensitive to noisy data [15].

Ph.D. Thesis 48 Piero Conca



Chapter 2 - Literature review

Boosting. This technique represents one of the first ensemble learning techniques

[83]. It was presented as a proof that a weak classifier, that is a classifier that

performs slightly better than random guessing, can perform as well as a strong

classifier, or a classifier that has low error on unseen instances. This result is

achieved by combining three weak classifiers in a ensemble in [83]. The version of

boosting we will consider is Adaboost, which allows to use an arbitrary size for the

ensemble. AdaBoost works under the assumption that every classifier that is added

to the ensemble should reduce the classification error generated by existing classifiers.

Different from bagging, for which data instances have the same probability of being

sampled, every instance is associated with a weight which controls that probability.

Initially all the samples have the same chance of being selected. At every iteration,

the weights are recomputed based on the errors of the ensemble. In this way, the

instances that are misclassified have higher probability of being selected in the next

iterations.

2.2.4 Semi-supervised classification

For certain applications, providing labels for all the instances is not possible. Semi-

supervised classification techniques create a model from labelled data and (generally

larger amounts of) unlabelled data [104].

One of the earliest ideas in the field of semi-supervised classification is self-

learning, also known as self-training or self-teaching. Initially, a classifier is trained

only on labelled data. Then, an unlabelled instance is selected and a label is

associated with it by means of the model previously established. The instance

and its label become part of the training data, and a new classifier is trained on

that data. This process is repeated until the pool of unlabelled data is empty.

Self-training is a wrapper algorithm and, therefore, it can be used with different

classification techniques. Its performance depends on the classification algorithm

and the data being employed [104].

The generative approach is an alternative to the discriminative approach to

classification described in Section 2.2.2. Generative models firstly use training data

to estimate the distributions of the classes, then Bayesian theory is applied to classify

new instances [69]. In the context of semi-supervised learning, an estimation of

the class-conditional distributions p(x|y) is generated from the class-unconditional

distribution p(x) of labelled and unlabelled data by using the available labels [19].

Ph.D. Thesis 49 Piero Conca



Chapter 2 - Literature review

This approach assumes that the type of distribution (e.g., Gaussian or a mixture

of Gaussians) of the data is known, and its parameters are fitted using a technique

such as the Expectation Maximisation (EM) algorithm [23]. The choice of a model

that suits the data is key to the classification performance. In fact, while choosing

an appropriate model can improve the performance with respect to the case in which

only labelled data is used, choosing an unsuitable model could potentially worsen

the performance with respect to the same case [104].

For certain problems, it could be reasonable to expect the instances of a class

to have similar characteristics. Since the goal of clustering is to identify groups of

instances with “similarities”, for those problems, clustering could be used to perform

semi-supervised classification. As a first step, labelled and unlabelled instances are

grouped into a set of clusters. Then, each cluster is assigned the majority label of its

instances. When an unlabelled instance is presented, it is classified with the label

of the cluster to which it is more likely to belong.

Co-training can be used in those cases in which the features of a dataset can

be divided into two separate subsets of features, and the performances of classifiers

trained on those separate datasets are high [104]. Initially, two classifiers are trained

on the subsets of features using labelled data. Then, each classifier starts classifying

the unlabelled instances. Those instances that are classified with high confidence

are made available to the other classifier for retraining. This is repeated until all

the unlabelled instances have been processed.

Some semi-supervised methods are specific to a classification technique. For

instance, transductive support vector machines (T-SVM), illustrated in Section

2.2.2.2, use the properties of this technique to assign labels to instances. In this case,

the term “transductive” maybe misleading. In fact, the purpose of transductive

learners is to assign labels only to the unlabelled instances of the training set.

However, T-SVM are an inductive learner, as their objective is to classify unseen

data.

The transductive, discriminative graph-based methods represent a training dataset

by means of a graph. Each node is related to an instance, and the weight of an

edge represents the “similarity” between the instances associated with the nodes it

connects [104]. Several different methods related to graph-based semi-supervised

learning have been proposed. For a binary classification problem, the algorithm

presented in [12] considers points with label “ + 1” as “sources” and points with

Ph.D. Thesis 50 Piero Conca



Chapter 2 - Literature review

label “− 1” as “sinks”. Then, it finds the minimum set of cuts of edges that isolate

sources from sinks. The labelled instances assign their classes to the unlabelled

instances with which they are connected.

2.3 Concept drift

When the problem of classification was described in Section 2.2.2, it was assumed

that the distribution from which training and testing data are generated is the same

and, in particular, such distribution does not change. However, this is not always

the case. In fact, there are many scenarios in which the observed system changes

and this may affect the distribution of data collected from it. This problem is known

as concept drift [84, 91]. The problem of concept drift potentially occurs in every

application which involves data streams. Unless the characteristics of the system

being examined are very constrained, it is reasonable to expect that at some point

factors will intervene to modify the distribution of the data.

Consider the medical diagnosis example presented in the introduction. Concept

drift may be caused, for instance, by the introduction of an innovative analysis

technique that replaces an old one, by wear and tear of devices (instrument for

analysis such as ECG), by new variants of some diseases (such as new flu strains)

or even new diseases. Any of these circumstances would require retraining of the

model of the classifier.

Regardless of a particular type of change, as seen in 2.2.1 (Equation 2.3), a classi-

fication problem is described by prior probabilities and class-conditional probability

distributions of the data that is collected from it. When data is affected by concept

drift, prior probabilities and class-conditional probabilites are also function of time,

so they can be re-expressed as P (ωj, t) p(x|ωj, t) [66].

2.3.1 Categories

Although concept drift regards data with very diverse characteristics, it is possible

to identify four major types of drift: abrupt, gradual, incremental and recurring

[106]. These categories are not necessarily distinct as there can be concept drifts

that present combined characteristics.

Drift is abrupt when change occurs in a sudden way, or alternatively, it is

possible to identify a precise time in which the distribution changes. Suppose that

Ph.D. Thesis 51 Piero Conca



Chapter 2 - Literature review

a supermarket collects data about the preferences of its costumers, for example via

online shopping. Let us also suppose that a user buys the same products over a

period of time and therefore his basket does not change much over the weeks. At

some point, the supermarket advertises the launch of a new product. The customer

decides to try it and, becoming quite satisfied with the new product, the customer

stops buying the previously preferred product. Notice that there is a precise time

in which the new product replaces the previous one, this causes an abrupt change

of the data collected from the supermarket.

There are cases in which concept drift is distributed over a timespan. The

literature often uses the same term to refer to conceptually similar but practically

different variant of this type of drift [106]. We can distinguish between gradual drift

and incremental drift [106].

Gradual drift occurs when a new concept gradually takes over another concept.

In order to provide an example of gradual drift, let us reconsider the supermarket

scenario presented before. Suppose that the customer tries the new product, but

at first he considers the price too high. Initially, he might buy a small amount of

the new product along with some stocks of the similar product normally preferred.

After a few weeks, the costumer decides that the new product is definitely worth its

price and from that time on that will become his preference. In a different scenario,

for example the malfunctioning of a cash machine, let us suppose that the machine

log files only contain “normal-state” codes. At some point, one component of the

cash machine starts malfunctioning. Initially, this generates a few errors, however

as the problem worsens, the number of errors increases. After some time, only errors

are raised and the functioning of the machine is compromised. For both examples

three phases can be distinguished. Initially, only a concept is observed, whether it is

a product or a machine state. When drift starts a new concept is introduced, which

could be a new product or a faulty machine state depending on the scenario (in this

phase both concepts coexist). However, the newly introduced concept will gradually

become predominant, so that in the third phase it will be the only concept to be

observed.

There is another way in which concept drift can be gradual. In incremental

drift, the change from a distribution to another is smooth, in the sense that the

change is continuous. Suppose that the cash machine of the previous example

contains sensors which monitor its functioning. Sensors might be used to measure

Ph.D. Thesis 52 Piero Conca



Chapter 2 - Literature review

physical quantities, such as, temperature, light and vibration. Since cash machines

are deployed in changing and diverse environments (day and night, seasonal changes,

different user interactions), the distribution of the data that is collected from them

is expected to change. For example, temperature, which is low at night, grows

increamentally as the sun raises. This is different from incremental drift, which

accounts for two distinct concepts (old/new product, normal state/error) and on

the fact that one concept gradually takes over another concept. In incremental

drift, the data distribution changes through a series of intermediate states in which

the concept itself changes, but new concepts are not introduced.

Recurring drift is a concept drift in which a previously observed concept is

presented again. The ways in which the distribution varies can have different

characteristics (abrupt, gradual or incremental).

2.3.2 Datasets

The problem of classification embraces fields with different characteristics: from text

mining to network security, from detection of fraudulent transactions to biomedical

applications [54, 63, 86]. Such a variety of applications means that the data that is

sampled can have very diverse features. For instance, data might embody continu-

ous features (such as real-valued ones), discrete (boolean for example) or nominal

features (text documents). Some problems account for data with missing attributes

[54]. In some cases the sampling probability can vary depending on the class, in

which case we say there is a class imbalance [91, 24]. In addition, several types of

drift can determine how the distribution changes. They are: abrupt, incremental,

gradual and recurring drift as it was shown in Section 2.2.2.

There are several datasets with concept drift that feature real-world data, al-

though their number represents a small fraction of the machine learning repositories

[9]. Using synthetic data is the most common choice in the literature, since it

leaves to the designer the decision of which characteristics to include in the data [9].

Testing an algorithm on real-world data, however, allows to assess its effectiveness

on a practical problem rather than a constrained testbed with “dry” characteristics

[29]. Probably the major limitation of this data is that, since information is collected

from a real-world system, it is not always possible to determine when concept drift is

ongoing, as noted in [4]. This can be a problem if the properties of a drift detection

algorithm need to be tested. On the contrary, this problem does not affect synthetic

Ph.D. Thesis 53 Piero Conca



Chapter 2 - Literature review

datasets, for which it is possible to decide when and how frequently drift starts and

the types of drift the data has to embody [60].

2.3.2.1 Examples of Datasets

In order to give an idea of concept-drifting data, we present the description of some

of the datasets used to test the algorithms in Section 2.4. These datasets contain

real-world or synthetic data and they represent the four different types of drift

described in Section 2.3: abrupt, gradual, incremental and recurring.

One of the most used testbeds for adaptive algorithms is the learning problem

defined in [84], also known as STAGGER dataset. In particular, data instances

consist of three nominal features, each of which can assume three distinct values.

More precisely, size ∈ {small,medium, large}, colour ∈ {red, green, blue} and

shape ∈ {square, circular, triangular}. The type of drift of this dataset is abrupt

and the target concept changes after, respectively, one third and two thirds of the

total number of instances have been processed.

A variety of datasets containing real numbers has been developed to test algo-

rithms for concept drift [24, 60, 64, 66, 88]. A common method consists of generating

points uniformly in a multidimensional space and then assigning a class to every

instance according to a function which changes over time. For instance, the function

might be a moving hyperplane, that is a hyperplane whose inclination and position

vary. These are determined by the variables < w0, . . . , wd >, where the equation of

the hyperplane is:
d∑

i=1

wixi = w0 (2.22)

The class of an instance is decided according to its position with respect to the

hyperplane, in this way, intances for which
∑d

i=1wixi ≥ w0 are assigned, for example,

a positive class, while instance such that
∑d

i=1wixi < w0 would receive negative

class. Different types of concept drift are obtained by changing the orientation of the

hyperplane, which is performed through the change of its weights < w0, . . . , wd >

[60]. Although using an hyperplane is the simplest and probably most diffused

option, in a similar manner, other functions can also be used. Among these, there

are examples of moving circles and sine functions [60].

Other real-valued datasets use combinations of Gaussian distributions [24, 64,

78]. In particular, the dataset defined in [24] contains “clusters” of instances gen-

Ph.D. Thesis 54 Piero Conca



Chapter 2 - Literature review

erated by Gaussian distributions with different characteristics. Concept drift is

obtained by varying the characteristics of the Gaussian distributions. In particular,

their mean values and their standard deviations are changed based on different

patterns across the length of the dataset. The type of drift is incremental, since

positions and the standard deviations of the clusters change gradually according to

linear functions. An instance can belong to one of four Gaussian clusters C1, C2, C3

and C4. C1 is the only cluster associated with class “+1”, the remaining clusters are

associated with class “−1”. The dataset consists of |Donline| = 1, 550 instances. The

prior probabilities of the classes generate a high imbalance of the classes. In fact,

only 3% of the instances belong to class “ + 1′′. The concept drift of this dataset

is divided into three parts, as illustrated in Table 1. For the first b|Donline|/3c
instances, the clusters do not change their positions. In fact their centers, identified

by the coordinates µx and µy, do not change. However, the standard deviations

(σx and σy) of the clusters C2, C3, C4, are modified according to the linear functions

defined in the top part of Table 1.

1 ≤ t < |Donline|/3
µx µy σx σy

C1 8 5 1 1
C2 2 5 1 1+6t
C3 5 8 3-6t 1
C4 5 2 3-6t 1

|Donline|/3 ≤ i < 2|Donline|/3
µx µy σx σy

C1 8− 9(t− 1/3) 5 1 1
C2 2 5 1 3
C3 5+9(t-1/3) 8 1 1
C4 5+9(t-1/3) 2 1 1

2|Donline|/3 ≤ t ≤ |Donline|
µx µy σx σy

C1 5− 9(t− 2/3) 5+9(t-2/3) 1 1
C2 5-9(t-2/3) 2 1 3-6(t-2/3)
C3 8 8 1 1
C4 8 2 1 1

Table 1: Concept drift of the dataset presented in [24]. The positions (µx, µy)
and the standard deviations (σx, σy) of four Gaussian distributions (C1, C2, C3 and
C4) data vary according to three patterns, described by the linear equations of,
respectively, the top, the middle and the bottom sections of the table, in a temporal
sequence.

Ph.D. Thesis 55 Piero Conca



Chapter 2 - Literature review

The drift of the intermediate portion of the dataset, defined in the central part of

the same table, causes the centers of C1, C3 and C4 to move along the x-axis. In the

third section of the concept drift (bottom of Table 1), the positions of the clusters

C1 and C2 change, as well as the shape of C2, while the characteristics of C3 and C4

are not affected. Figure 7 gives a graphic representation of this distribution.

1 2 3 40

x

y

1

2

5 6 7 8 9 10

3

4

5

6

7

8

10
i=1

9

C1C2

C4

C3

1 2 3 40

1

2

5 6 7 8 9 10

3

4

5

6

7

8

10
instance  |Donline| / 3

9

C1C2

C4

C3

x

y

j k

1 2 3 40

1

2

5 6 7 8 9 10

3

4

5

6

7

8

10

9

C1C2

C4

C3

instance  2|Donline| / 3

x

y

j k

1 2 3 40

1

2

5 6 7 8 9 10

3

4

5

6

7

8

10

9

C1

C4

C3

C2

instance  |Donline|   

x

y

j k

Figure 7: Visual representation of the dataset proposed in [24].

One of the problems of machine learning is the classification of items such as

documents, scientific articles, books, commercial products or emails according to

the interest of a user [96]. This task presents a series of difficulties. For instance, a

Ph.D. Thesis 56 Piero Conca



Chapter 2 - Literature review

common way to represent a document consists of counting the number of occurences

of the words that are contained in it or, more simply, recording the presence of a

specific word. In this way, each word is regarded as a feature, and considering the

number of words that can appear in vocabulary (in fact, all the documents have to

refer to the a common vocabulary in order to be classified), the number of features is

of the order of several tens of thousands. Moreover, since new words can be added to

the vocabulary, the size of the feature set is not fixed as in many other classification

problems.

As an example of a real-world dataset, we describe the Electricity Market dataset

[31]. It contains data collected from the Australian New South Wales electricity

market with the aim to predict its future fluctuations. With that purpose, several

attributes are recorded, such as, day of week, time stamp, electricity demand. The

purpose of training a classifier with this data is to use past observations to predict

the price of electricity. Other real-world datasets contain data of internet traffic,

poker tournament hands, credit card fraud detections [4, 9].

2.4 Classification of data with concept drift

After providing several examples of datasets, we present a selection of classification

algorithms designed to handle data with concept drift. The descriptions will take

into account the different amounts of supervision that these algorithms require in

order to train or update their models. In particular, we distinguish among supervised

updating, unsupervised updating and semi-supervised updating of the model of a

classifier.

2.4.1 Supervised model updating

This section and the following sections are based on [105] and [48]. Many environ-

ments are dynamic and so is the distribution of data that is collected from them.

This clashes with the assumption that is traditionally made in classification that the

data distribution is stationary. The definition of the problem of classification given

in Section 2.2.2 needs to be reformulated to take into account concept drift.

Similar to the static case, the problem consists of determining a function h (the

model) from a set of observations {(x1, y1) , . . . , (xt, yt)} to classify unseen instances

xt+1. However, because of changes in the data distribution, the classification per-

Ph.D. Thesis 57 Piero Conca



Chapter 2 - Literature review

formance of a model may degrade if it is not updated. After classification, the

true class of an instance becomes available. This information is used to update the

model. In this way, data is provided in the form of a stream of instances, in which the

unlabelled instances that are used to test the algorithm serve also as training data

when their true classes are provided. Differently from the static case, in which all

the training data is generally used to build the model, the presence of concept drift

entails that different data instances might be representative of different snapshots

of the changing distribution. In this scenario, a classifier should use the data that

is representative of the current distribution, in order to classify unseen instances.

2.4.1.1 Assumptions about the future distribution

One of the problems of using data with concept drift is that the way the distribution

changes is assumed to be unpredictable. In order to simplify the classification

system, a vast majority of approaches assume that the future distribution is the

same as the current [106]. This choice is reasonable if the amount of change is

small, changes are not frequent and the consequences of a misclassication are not

critical. However if concept drift is severe and frequent, such a strategy would

provide poor performance.

Some techniques, however, try to predict rather than simply classify. By analysing

past history, they extract patterns of shifts among concepts, if these patterns occur

again in the future then such techniques attempt to predict the future concept [102].

This, however, requires that the type of concept drift is recurring.

2.4.1.2 Adaptivity

When dealing with concept drift adaptivity is key. For instance, a classifier should

be able to react quickly to change, and if it fails at doing so the consequences would

be catastrophic for some applications. Adaptivity is not measured only in terms

of speed, adaptivity is also about extracting as much information as possible from

the data and using it in the best way to reduce misclassification. That is, a model

should show plasticity, which is the ability to embody new information, and stability,

that is the ability to retain relevant information and discard information that is no

longer needed [35, 64].

There are several ways to achieve adaptivity, for example, by using adaptive

Ph.D. Thesis 58 Piero Conca



Chapter 2 - Literature review

classification techniques. Apart from being able to learn data incrementally, they

also implement mechanisms to forget outdated information, which allow them to

cope with concept drift. These techniques perform adaptation by rearranging the

whole model or a portion of it. This is, for example, the case of AISEC that uses

the supervision of a user to delete those detectors that fail at classifying correctly

[85]. Decision trees can also be adaptive, by pruning those branches that do not

reflect the current distribution [39].

Another way to achieve adaptivity concentrates on formation of training data.

This entails the selection of a subset of the labelled data that have been observed to

date to create a training set, which is then used to create a classifier. Notice that the

classification technique need not be adaptive. Training set formation strategies can

adopt different criteria to decide whether an instance should stored in memory or it

should be discarded. Instances can be consecutive in time, in the case of windowing,

or nonconsecutive in the case of instance selection [106]. Windowing works under

the assumption that recent instances are the most representative of the current

distribution, which is reasonable if the whole distribution changes. A small window

size provides quick adaptation when the distribution changes rapidly. However, if

concept drift is rather slow, a larger window is a more sensible choice since the

higher amount of data collected affords better generalisation. When the size of a

window is fixed, very strong assumptions need to be made over the speed of drift.

By contrast, variable-width windows are more flexible, since they avoid the trade-off

between generalisation capability and speed of adaptation. The decision whether to

stretch or enlarge the window is generally based on the detection of concept drift [7].

The advantages of a variable window come at the cost of an increased complexity,

that can be computational and/or related to parametric tuning.

Instance selection, which assumes instances need not be consecutive in time, is

effective when concept drift does not regard the entire distribution. As a matter of

fact, data generated from the part of a distribution that has not changed are equally

important, no matter how old they are. While, instances drawn from the part of

the distribution affected by concept drift should be recent.

Recall from Section 2.2.3 that ensemble classifiers exploit the diversity of a set

of classifiers by fusing their decisions. Besides improving performance for stationary

distributions, ensemble classifiers are also used for concept drift. In this case

adaptivity is obtained by modifying the way classifiers are combined, which reflects

Ph.D. Thesis 59 Piero Conca



Chapter 2 - Literature review

in a change of the model, even when batch techniques are used. For instance, if

a classifier performs better than others on recent data, then its influence in the

decision making is increased by increasing its weight, or perhaps, its decision can

be selected to be the decision of the ensemble. Ensemble classifiers fits particularly

well to recurring concepts. Classifiers are trained on different concepts, new data is

labelled by selecting the classifiers that are specific for the concept of the data.

2.4.1.3 Strategies for concept drift

Algorithms for concept drift can be divided into trigger-based and evolving [106].

Trigger based approaches rely on a signal that indicates when drift has occurred.

This is handled by the classifier that reacts to the change by modifying or retraining

the model. In evolving classifiers, by contrast, there is no explicit signal to trigger

adaptivity. Evolution is simply driven by the goal to minimise classification errors

over incoming instances [106].

A large number of evolving classifiers use ensemble classification. Base classifiers

of an ensemble are normally trained over different data batches. There is no fixed

rule, but commonly evolution is an iterative process that consists of the following

steps: collect data plus labels, train a classifier, add the classifier to the ensemble,

re-compute the weights of the classifiers according to their performance, classifiy

unlabelled instances, and so on. Another strategy consists of using overlapped

windows of different length, which contain respectively the last n examples, the

last 2 ∗ n examples, and so on. Base classifiers are trained on the windows, and the

classifier with the lowest error is selected to classifiy unseen instances. The criteria

to assign weights to classifiers or to select the output of a specific classifier try to

maximise the performance of the ensemble over future data. For example, weights

can be a function of the performance over past iterations, or they can be based on

selective cross validation, or again they can be based on performance estimates that

are generally specific to a classification technique. Ensemble classifiers are suitable

to gradual drift and incremental drift, in fact they adapt gradually by weighting the

classifiers of the ensemble [49]. Instance selection is another option, the probability

of an instance being selected for training is generally dictated by a weight. Higher

weights are assigned to instances that have been misclassified. This approach is

similar to boosting. Weights can also be used in a different way, weights can in

fact dictate the degree to which instances influence the construction of a model.

Ph.D. Thesis 60 Piero Conca



Chapter 2 - Literature review

Different from instance selection, in instance weighting all the training data is used,

but they give different contributions to the model construction. In Feature-space

methods adaptivity is achieved by operating on the set of features. For example,

this is common in classification of text documents.

Concept drift detection is the most used method to trigger adaptivity. Detection

can be pursued at different levels of a classification system: directly on its features

(input level), on the parameters of its model (internal level), or on the errors of

the decisions (output level). When concept drift is detected, the model is generally

retrained on new data and history about previous distributions is deleted. Training

windows, another triggering strategy, counts on the comparison of the performance

of classifiers trained on windows of different length. If they perform differently,

then drift might be occurring and the model should be modified. The ability of

triggering techniques to forget old information makes them particularly suitable to

abrupt drift.

2.4.1.4 Evolving techniques

The distinctive characteristic of evolving methods is that they do not use explicit

information whether concept drift is occurring. They simply evolve over time

to minimise some performance measures. Here we present a review of evolving

algorithms, this is divided into ensemble methods, instance weighting methods and

feature extraction methods, according to [106].

Ensemble-based. Ensemble classifiers are based on the principle that in certain

conditions a set of classifiers can outperform a single classifier. Although they

were initially developed for static distributions (Section 2.2.3), ensemble methods

have also found a successful employment for concept drift [53, 88]. Different from

the stationary distribution case, the models of the classifiers of the ensemble are

created from data collected at different times or perhaps data that are representative

of separate concepts. The reason of such a large diffusion probabily lies in the

modularity of ensemble classifiers which brings several advantages such as reduced

storage requirements (that follows from the fact that the information of the data

is converted into a model) or the possibility to parallelize the decision making, as

well as, the updating of the model of the ensemble if an incremental or an adaptive

classification technique is used.

Ph.D. Thesis 61 Piero Conca



Chapter 2 - Literature review

There are two major ways ensembles can be used to deal handle concept drift.

In the first type, new classifiers are periodically trained by a data stream of labelled

data. In this way this strategy maintains “memory” about past data observed in

the form of models, by combining these models by means of weights it is possible

to obtain more detailed information about the current distribution and, assuming

this does not differ considerably from the distribution to observe, this information

can be used to predict the class of new instances. For this reason, this ensemble

strategy is better suited to gradual or incremental concept drift. The second strategy

consists of mantaining an ensemble of classifiers, where each classifier is specific to a

particular concept and can be selected when the corresponding concept is observed

[7]. For this reason, the second type is better suited to recurring concept drift as

it presumes that the same concept will occur repeatedly over time. The techniques

that are considered in this section belong to the first type.

A large variety of algorithms have been presented, they differ in the way data

is sampled, in the way classifier performance is evaluated, in the number and type

of classification techniques that are used or that can be used. Two ensemble-based

classification algorithms are used: one with fixed size and one with variable size of

the ensemble.

One of the earliest examples of ensemble methods is the Streaming Ensemble

Algorithm (SEA) [88]. Initially, the ensemble classifier of SEA is empty. When

enough training data is available a new classifier is created and added to the ensemble

until this reaches its maximum size. When the ensemble is full, the classifier created

at iteration i−1 is added to the ensemble only if it outperforms an existing classifier,

which would then be deleted. The performances of the classifiers are assessed using

the dataset of iteration i. Experiments were performed to test different decision

fusion techniques such as a weighted majority voting based on the accuracy of the

classifiers or a gating mechanism to exclude from the voting the classifiers that are

expected to perform badly. However, these techniques do not provide a consistent

improvement over the simpler majority voting. Although the SEA algorithm is a

generic algorithm in the sense that it is not designed for a specific classification

technique, the experiment in [88] only covers the decision tree technique C4.5 [74].

Another example of an evolving ensemble method is the algorithm dynamic

weighted majority (DWM) [53]. It consists of an ensemble classifier of variable size

which makes use of weighted majority voting. The algorithm copes with concept

Ph.D. Thesis 62 Piero Conca



Chapter 2 - Literature review

drift by reacting every time an error occurs. In this way, the higher the number

errors, the more frequently the model is modified. For example, if a classifiers fails

at predicting the class of an instance its weight is reduced or if it is the ensemble

that misclassifies an instance then a new member will be added to it. DMW starts

by creating an ensemble containing a single classifier, with an initial weight of 1.

When an instance is presented, if it is misclassified then the classifier’s weight is

reduced by a factor β < 1. Since initially the decision of the only classifier is also

the decision of the ensemble, a new classifier is added and its weight is set to 1. To

prevent the size of the ensemble from growing, classifiers whose weight is under a

threshold θ are removed. However, this does not affect recent classifiers. In order

not to penalise older classifiers, at each iteration, all the weights are normalised so

that the maximum weight is 1. This algorithm represents an intuitive example of

evolving methods for concept drift. For instance, the contribution of a classifier into

the ensemble and the decision whether to remove it are determined by the same

variable, that is its weight.

Ensemble classifiers exploit the combination of diverse classifiers. Altough there

many versions have been proposed, a general strategy consists of using weights

to modulate the contribute of each classifier. New classifiers are generated using

the streaming data and uneffective classifiers are normally deleted. The use of

multiple classifiers brings several advantages over single classifiers. They afford

better generalisation and tolerance to noise, while the availability of different models

helps mitigate the influence of models with poor performance. Moreover, ensembles

are easy to parallelise to reduce the interrogation time. Parallelisation can also be

applied to the training if adaptive techniques are used. Moreover, if the character-

istics of drift change over time, by using ensemble methods it is possible to include

techniques that are effective for those types of drift. All these characteristics make

ensemble classifiers particularly suitable for gradual types of drift such as incremental

ones, However they can also be used to deal with recurrent drift [7].

Instance weighting and instance selection. The majority of approaches that

deal with concept drift handle instances in the same way when these are processed.

In fact, it is common to assume that the training data, in a window for instance, have

all the same importance. However, this is not necessarily the case, and considering

factors, such as age or region of the input space of the instances, might help increase

Ph.D. Thesis 63 Piero Conca



Chapter 2 - Literature review

the performance of classification. Nonetheless, two categories of algorithms, instance

weighting and instance selection, exploit different strategies.

Similar to the way weights are used to control the influence of the classifiers in an

ensemble, weights can also be associated with training instances. In this way, it is

possible to regulate the contribution of each instance to the construction of a model.

The data instances to be weighted can appear in a window (this entails that older

instances are discarded) or all the instances that are observed can be used. One of

the limitations of data weighting lies in the fact that it requires the classification

technique being used to be able to process weights along with data instances. This

restricts its applicability only to a small number of techniques such as SVM and

decision trees, for which ad-hoc versions have been developed. While in instance

weighting all the training instances are actually maintained and their contribution

to the construction of a model is regulated by their weights, in instance selection

only a subset of instances is actually sampled from the original dataset. This entails

that instance selection does not require ad-hoc techniques to process the data. In

a similar way to instance weighting, instances can be drawn from a window of a

certain size or alternatively any of the instances observed so far can be selected.

Although, in some cases instance selection makes use of weights (for example in

boosting-like techniques), these are not directly used by the learning algorithm to

build the model. They only serve to select a subset of instances from the original

set.

Weighting is often used to give different importance to instances depending on

their age. This is based on the assumption that data becomes gradually less represen-

tative of the recent distribution as it ages. For this reason, higher importance should

be given to recent instances, for example by assigning them higher weights than older

instances. For example, [55] utilises a linear function to weigh the instances of a

window in order to avoid the abrupt forgetting of training windows. In this way

the contribution of an instance decreases linearly with its age. This requires that

instances are forgotten after some time, but the forgetting is gradual.

The principle of weighting instances according to their age is also used in [48].

In this case, however, the weighting process regards all the instances that have been

observed, not only the most recent ones as in [55]. The function that is used to weigh

the classifiers is nonlinear. It is in fact the exponential function w(x) = e−λtx , where

tx is the time in which x was observed. By tuning the parameter λ it is possible

Ph.D. Thesis 64 Piero Conca



Chapter 2 - Literature review

to control the rate at which the algorithm forgets data. When λ = 0 the same

importance is given to all instances regardless of their age, while for positive values

of λ, the higher its value the lower the weight an old instance is given. For all those

cases in which the characteristics of drift change over time, using a fixed value for

λ might limit classification performance. Allowing λ to vary would be much more

effective to contrast drift.

Boosting is a technique of ensemble construction, which consists of adding classi-

fiers to an ensemble in order to correct the errors generated by the existing classifiers.

A description of boosting was given in Section 2.2.3. The ideas of boosting ensemble

construction have also been applied to problems with different data specifications.

For example, [70] presents a version of AdaBoost capable of incremental learning

when used in combination with online techniques. In this algorithm, the probability

of a training example being selected to be part of the training set of a new classifier

is dictated by the Poisson distribution. This mechanism guarantees diversity within

the ensemble. More precisely, assuming that the ensemble has fixed size, when a

new instance is presented to each classifier, the probability that a classifier will be

updated using the instance is ruled by the Poisson distribution. This algorithm,

however, is only capable of incremental learning, since it is not specifically designed

to cope with concept drift. Therefore it might not be able to react effectively to

a changing distribution. A modified version of [70] to cope with the problem of

concept drift is proposed in [71], which is given the name Online Nonstationary

Boosting (ONSBoost). The baseline of the algorithms is the online boosting algo-

rithm [70]. The major addition consists of the replacement of the classifiers that do

not contribute positively to the performance of the ensemble. This happens when

the perfomance of the ensemble increases if a classifier is not considered by the

decision making. This mechanism allows the algorithm to drop uneffective classifiers

and therefore update its model. Similar to other ensemble methods, since “young”

classifiers normally show poorer performance compared to older classifiers, initially

they are given immunity from deletion in order to mature. More precisely, a classifier

must have been trained with at least a minimum number of instances before it can be

deleted. This number is dictated by a parameter of the algorithm. The algorithm

ONSBoost performs slightly better than simple online boosting [70] (the version

boosting for incremental learning) on different data sets, including STAGGER.

Ph.D. Thesis 65 Piero Conca



Chapter 2 - Literature review

Feature space. In addition to using past data or combining existing models, it is

also possible to tackle concept drift by operating on the set of features. This is the

case of text mining applications, of which classification of streams of documents is

one of the biggest problems.

An example of an algorithm that deals with classification of a stream of doc-

uments is described in [44]. The algorihtm possesses a vocabulary of words that,

when a new labelled document is presented, is checked to verify if the words in the

document had been observed before. If this is not the case, those words are added

to the vocabulary. Then, the algorithm updates the statistics of each word, by

modifying two counters that, for each word, keep track of the number of documents

which contain the word and the number of documents which do not. Separate

counters are kept for each class. These statistics are used to evaluate the relevance

of each word. This information is used to associate a class with a new document.

More precisely, only the top N features are used to classify incoming documents.

This feature selection method can be used only with classification techniques that

can handle dynamic spaces of features, such as k-NN and näıve Bayes. However, [44]

suggests that using k-NN should be avoided, since it cannot deal effectively with the

large amounts of training data that are normally observed for this problem. Another

examples of feature space classification for concept drift is described in [29].

Density-adaptive forgetting. An alternative approach to maintaining instances

in memory is based on the idea that these should be forgotten at a rate proportional

to the rate of arrival of new instances in their locality [79]. In this way, if a region

receives new instances, older instances of that region should be discarded. On the

contrary, if no instances are added to a region of the input space, then existing

instances should be maintained. This is different from using fixed-size or adaptive-

size windows, as, in that case, the entire set of instances is affected by the forgetting

mechanisms.

Density-based forgetting in [79] is implemented through a mechanism of weight-

ing of instances that considers the number of neighbouring instances, as well as

their proximity. When a new instance xnew is provided, it is assigned a unitary

weight. After that, the weights of the k nearest instances x{1} . . .x{k}, are decreased

by a factor γ that depends on the parameters τ and m, according to the following

Ph.D. Thesis 66 Piero Conca



Chapter 2 - Literature review

espression:

γ(xnew,x{i}) = τ + (1− τ)
d(xnew,x{i})2

d(xnew,x{m})2
, i = 1, . . . k (2.23)

where xm is the mth nearest instance, with m ≥ k. The weights of the other

instances are not affected. An instance is deleted when its weight decreases under

a threshold θ. The notion of density is also used for learning [79]. In fact, density-

adaptive learning uses trees to generate partitions of an input space with different

resolutions. In particular, this algorithm is applied to the problem of reinforcement

learning [79].

2.4.1.5 Triggering methods

The particularity of triggering methods is that changes in the model are determined

by a signal indicating the presence of concept. Triggering method are generally used

to deal with abrupt concept drift. If drift is detected the actual model is discarded

and a new one is built from scratch. We can distinguish between change detection

and training windows.

Change detection. One of the most used triggering approaches entails the use

of concept drift detection mechanisms. Detection can be based on the different

levels of a classification system, that is: inputs, internal parameters of the classifiers

or their outputs, as highlighted in [50]. Concept drift can be detected by looking

at raw input data, if for example the estimated distribution of a class changes.

Concept drift detection at the intermediate level is based on anomalous change

of internal parameters of the model, such as complexity of the set of rules or the

decision tree. Drift detection that is based on the output, generally monitors change

in performance indicators such as accuracy. It should be noticed that, while drift

detection mechanisms based on input data or output performance are general and

can, therefore, be applied to any classification technique, drift detection at the

intermediate level is tied to the particular technique being used.

Let us consider a static classifier that processes a stream of instances gen-

erated by a static distribution. Under these conditions, the probability that n

misclassifications occurred after i instances have been processed, is dictated by

the binomial distribution. The probability of misclassifying an instance p(error),

a central parameter of the binomial distribution, is very unlikely to be known in

Ph.D. Thesis 67 Piero Conca



Chapter 2 - Literature review

practical applications. However, an estimate is provided by the error rate ρi at

instance i. The higher the number of instances that have been observed, the lower

is the standard deviation σ of the error rate, which is given by the formula σi =
√
ρi(1− ρi)/i [31]. This means that, for static distributions and static classifiers,

the error rate tends to converge to a certain value. A large variation of the error

rate would be suspicious, since it might conceal a change in the distribution. The

detection method presented in [31] is based on this assumption. In order to monitor

variations from the expected error rate, the algorithm uses the variables ρmin and

σmin to keep memory of the lowest error rate observed so far and its variance. In

fact, the error rate is expected to diminish as the classifier learns new instances.

The detection mechanism works as follows: suppose that when the instance i = kw

is presented, then if ρi + σi ≥ ρmin + 2σmin then a warning is raised. If after a

few iterations, let us say when the instance i = kd is presented, it happens that

ρi + σi ≥ ρmin + 3σmin then the window is reset and a new window collecting the

most recent instances starting from kw is used to re-train the classifier.

As noted by [8], one of the problems of the method described in [31] is that there

might be a significant delay before drift is detected. For this reason, the paper intro-

duces ADWIN (ADaptive WINdowing), an algorithm that automatically determines

the length of the training windows by exploting the concept of Hoeffding bounds

[38]. The authors argue that the ADWIN increases considerably the reactivity of

drift detection. When a new data instance arrives, it is automatically added to

the window, then the length of the window W is recalculated. In order to do so,

the algorithm considers every possible couple of separate subwindows of W , and

it calculates the mean values of each subwindow. If the difference between the

two values obtained does not satisfy the Hoeffding bounds, that is, the difference

is too large according to the number of instances in the windows, then the oldest

element of the window is dropped. This process is repeated until a suitable window

size is obtained. Given a window, calculating the average of every possible couple

of nonoverlapped subwindows is computationally expensive. For this reason [8]

proposes ADWIN2, an evolution of ADWIN, which reduces the cost to optimise the

window size. An interesting point of ADWIN is the fact that, differently from other

algorithms, rigorous guarantees of performance are provided.

Ph.D. Thesis 68 Piero Conca



Chapter 2 - Literature review

Training windows. In training windows methods, adaptivity is triggered by

the comparison of different windows with different characteristics. An example of

triggering method based on training windows is presented in [4]. The algorithm

introduces a fairly simple but effective solution to detect concept drift. This relies

on two online classifiers, a “reactive” classifier is trained on a window of fixed size

containing only recent data, while a “stable” classifier is trained incrementally on

a larger window of variable size. The algorithm monitors the performance of the

classifiers over the most recent instances by means of a circular list of binary values

C. If the class assigned to a novel instance by the reactive classifiers is correct, but

the classification of the stable classifier is not, then the current entry of the list is

set to 1, otherwise it is set to 0. Then the pointer is moved to the next position. If

the number of 1s in C is higher than a threshold θ this is interpreted as a change in

the data distribution. This triggers the copy of the model of the reactive classifier

into the stable one, thus discarding the old model and the setting of all the bits of

C to 0. Although it contains multiple classifiers, the system cannot be considered

an ensemble since only the stable classifier is actually used to predict the class of

unseen instances, while the reactive learner is merely used to detect drift.

2.4.1.6 Other approaches

Adaptive techniques are designed to modify their models based on the supervision

they receive. As a consequence, they do no need meta-algorithms such as ensembles

or concept drift detection mechanisms.

Decision trees represent a very intuitive classification technique that can be used

for real-valued data and nominal data. Conventional decision trees require the entire

training dataset in order to be built. That is a problem when the entire dataset is

not immediately available, for example, if it is presented under the form of a stream.

In order to address the problem, [25] proposes Very Fast Decision Tree (VFDT), an

algorithm capable of incremental learning. The tree, initially composed of a single

leaf, processes labelled data instances one by one. The label that is associated with a

leaf is the one with the highest number of occurrences. If a leaf processes instances

of different types this means that the leaf need to be converted into an internal

node. The Hoeffding bounds [38] are used to identify the attribute to be associated

with the newly generated node. In order to cope with the drifting data a modified

version of the algorithm was proposed in [39], it was given the name Concept-

Ph.D. Thesis 69 Piero Conca



Chapter 2 - Literature review

Adapting VFDT (CVFDT). The algorithm CVFDT keeps its model consistent with

a sliding window. If, because of a change in the distribution, an internal node

precedently established stops satisfying the Hoeffding test, new subtrees are grown

and eventually one of them will replace the subtree starting from the selected node.

The algorithm CVFDT also embodies a mechanism to vary the size of the window

and check the consistence of the tree if drift is suspected. A change in the window size

can be triggered, for example, by a sudden increment in the rate at which data are

provided or an increment in the number of nodes having their associated attribute

reconsidered. According to [20], the CVFDT algorithm requires large amounts of

data in order to update the tree, as well as, large training time.

Another adaptive classification technique is AISEC. In particular, AISEC con-

tains procedures to update its set of detectors as soon as supervision is provided.

In fact, the earliest implementation of that algorithm was designed to deal with the

problem of classifying emails according to the interest of a user. That is a problem

that require frequent updates of a model.

As discussed in Section 2.4.1.1, there are approaches to dealing with concept

drift, evolving and trigger-based. The algorithms presented in [102] propose an

alternative approach. Rather than simply reacting by retraining, or using a history

of previous observations, the algorithm attempts to predict what concept is likely

to be observed next. This approach, of course, suits particularly well scenarios in

which concepts are likely to reoccur. The algorithms maintains a history of the

concepts that have been observed, which is used to build a prediction matrix. Upon

the detection of concept drift, the prediction matrix is queried to find the concept

that has the highest probability of being observed next, so that to chose a model. If,

according to the history, two or more concepts have similar probabilities to occur, the

algorithm searches a model among the available ones with satisfactory classification

performance over the new data. If no such model can be found, this could mean

that the current concept has not been observed before, therefore a new classifier is

trained. The detection method uses a window with variable but limited size and a

threshold over the number errors. If the window has reached its maximum size and

the error has trespassed the threshold, the first instance of the window is identified

as the point in which drift started. Otherwise, the beginning of the window is shifted

to the first misclassified instance. The algorithm also exploits a method to evaluate

the correlation of two models. When concept drift is detected and a new classifier

Ph.D. Thesis 70 Piero Conca



Chapter 2 - Literature review

is being trained on the new distribution, this mechanism compares the new model

with the past ones. If the correlation between the currently trained model and an

existing model is above a threshold then the concept is considered as recurring and

the old model is used for classification of following instances.

2.4.2 Semi-supervised model updating

One of the problems that afflicts classification of drifting data is that for large data

streams it is not always possible to label all the instances after these have been

classified, especially when the labelling is done manually. For this reason, recent

research on concept drift has seen a growing interest in semi-supervised strategies,

which require labels only for a small subset of the instances in order to update

the model [47]. To classify new instances, semi-supervised techniques exploit the

information of labelled data along with the information carried by unlabelled data.

The algorithm introduced in [59, 103] is based on an ensemble in which every

member combines clustering and classification to label unseen instances. Different

from the problem we presented in Section 2.4, a batch containing labelled and

unlabelled instanced is provided. Labelled instances and part of the unlabelled

instances form the training set, while the remaining (unlabelled) data is used for

testing. Training data is processed in two stages. Initially, clustering is used to

extract statistics about the data, which constitute the model of a nearest-neighbor

classifier. A modified version of k-means is applied to the data. In addition to

intra-cluster connectivity and inter-clusters distance, the algorithm also maximises

the purity of a cluster. A cluster is considered pure when the labelled instances it

embodies belong to only one class. Information extracted from each class regards,

size of the cluster, ratio between between labelled and unlabelled of points, number

of points for each class, centroid, and a vector of sums of the values of each dimension

of the points. These statistics represent the model of a k-nearest neighbor classifier.

More precisely, the nearest neighbor algorithm also considers the percentage of

labelled instances in the cluster rather than just distance. The new classifier is

added to the ensemble to replace a classifier with low accuracy.

Experiments show that the algorithm performs comparably with supervised

techniques, but it requires only 5% of labelled instances. The idea of combining

clustering and classification is interesting. However, the way it is implemented

does not allow the use of classification techniques other than k-nearest neighbors.

Ph.D. Thesis 71 Piero Conca



Chapter 2 - Literature review

This entails that the algorithm is affected by the typical limitations of k-nearest-

neighbor, namely, the curse of dimensionality, time and space complexity, sensitivity

to irrelevant attributes.

Assuming that a data stream is divided into contiguous batches, the algorithm in

[103] proposes to divide the points in a window of a data stream into four categories:

I) labelled points for which the distribution does not change with respect to the

previous batch, II) labelled points with a similar distribution to the previous batch,

the categories III) and IV) are respectively similar to I and II, with the difference

that the class of a point is not provided. A set of solutions for classifying mixtures

of points of different categories is proposed. Points from categories I and II, which

are labelled and have with slightly different distributions, can be processed using

a variant of SVM. Two weights determine the contribution of each category to the

construction of the model. Moreover, by using transductive SVM, it is also possible

to exploit points of the third category (nondrifting and unlabelled). In order to

embody information from unlabelled drifting points into the model, a variant of

k-means is combined with the variant of SVM for the categories I, II and III.

Along with the problems of concept drift and partially-labelled data, the al-

gorithm described in [57] also deals with the problem of recurrent concepts. The

algorithm features an incremental decision tree. When an instance, labelled or

unlabelled, is processed, it is associated with a leaf of the tree. If a sufficiently high

number of instances are associated with a leaf, k-means is used to assign a class to

the unlabelled ones. The unlabelled instances in each cluster receive the majority

class of the cluster. The algorithm features a mechanism to distinguish between noise

and concept drift. When a leaf receives new instances, it measures the radius of the

cluster that is generated. By means of this value, the radius of the precedentedly

observed cluster (whose statistics are kept in memory) and the distance between

the centroids of the clusters, the algorithm distinguishes concept drift from noise.

These statistics are saved at different times over the computation, thus allowing

for detection of recurrent concepts. A pruning mechanism avoids overfitting of the

decision tree to training data.

Another hybrid approach (classification and clustering) is proposed in [1]. Differ-

ent from other algorithms in which a classification algorithm is aided by clustering,

the algorithm in [1] is developed around the online clustering algorithm presented in

[2] (described in Section 2.5.2). The algorithm maintains a set of micro-clusters, and

Ph.D. Thesis 72 Piero Conca



Chapter 2 - Literature review

it is possible to select a time horizon of the micro-clusters to observe. A classification

step based on k-nearest-neighbour is used to assign a class to the points of the

clusters.

2.4.3 Unsupervised model updating

Even in absence of supervision it is possible to update the model of a classifier. The

algorithm described in [78] uses supervision only in the initial phase of training of

a classifier. A dataset D of instances with labels is used to generate the model h.

After that, an unlabelled instance is presented and the model associates a class with

it. The instance and its predicted class are added to the dataset D and the oldest

instance of the dataset is discarded, thus generating a dataset D′. A new model

h′ is then trained on D′. The process is repeated for every new instance that is

presented.

This method can be used to update the model of classifiers that are not designed

to handle data streams, even with concept drift. In particular, the algorithm in

combination with nonadaptive classification techniques managed to classify data

streams with concept drift [78].

2.5 Clustering of data with concept drift

This section is concerned with the definition of the problem of clustering for data

streams with concept drift, along with the presentation of some of the related

techniques. In order to prepare the discussion, an introduction of the more gen-

eral problem of clustering is given. This section also covers the problem of semi-

supervised clustering that concerns the use of labelled data to aid the formation of

clusters [34].

2.5.1 Introduction: clustering approaches

Clustering is concerned with identifying groups of observations with similar char-

acteristics. In order to do this, distance is used to measure the similarity between

couples of observations. Clusters of observations are formed by grouping together

instances that are close to each other and far from the instances of other clusters

[40].

The result of a clustering can have different forms. For instance, partitional

Ph.D. Thesis 73 Piero Conca



Chapter 2 - Literature review

clustering techniques deliver a single partition of the set of observations, while

hierarchical clustering techniques generate a hierarchy, which gives more flexibility

as multiple solutions can be derived from the hierarchy [34]. The types of data

that are processed by a clustering technique can also be different. These include

numerical data and categorical data. While some methods make use of represen-

tations of the data, such as centroids or distribution estimates, in order to define

clusters, others merely rely on pairwise comparisons between observations. The

use of representations generally reduces computational costs [34]. There can also

differences in the membership of an instance to a cluster. Fuzzy techniques account

for instances that belong to multiple clusters at the same time, with continuous

degrees of membership, while for crisp techniques, an instance cannot be associated

with more than one cluster [40].

A first category of partitional clustering techniques uses prototypes to represent

clusters. In particular, it is common to use centroids as prototypes. These techniques

search for the prototypes that minimise the overall sum of the squared distances of

the instances from their respective prototypes [34]. The algorithm k-means belongs

to this category [36]. This algorithm works under the assumption that the number

of clusters k is known in advance. k-means generates an initial set of centroids

randomly. Then, each point is assigned to its closest centroid, thus generating a set

of clusters. These are gradually refined by recomputing the centroids and repeating

this process iteratively, until a stopping criterion is met.

Density-based techniques use a different approach. In fact, they follow the

principle that a cluster should be formed by points from a region of the space

of the attributes with high density, while different clusters should be separated

by low-density regions. The algorithm DBSCAN represents a typical example of

density-based clustering [28]. This technique is based on the concept of density-

connectivity. A data point p2 is directly-density-connected with another point p1

if their distance is not higher than a predefined maximum distance ε, and p1 is

surrounded by at least a certain number of points. The concept of connectivity can

also be extended to distant points. In particular, two points p1 and pn are density-

connected if is possible to identify a sequence of points p1, . . . , pn such that, pi+1 is

directly-density-connected with pi, where i = 1, . . . , n − 1. DBSCAN considers a

subset of points that are density-reachable as a cluster.

Mixture-resolving techniques assume that the clusters have a certain distribution

Ph.D. Thesis 74 Piero Conca



Chapter 2 - Literature review

(for example Gaussian) of which they estimate the parameters in order to fit the

data. Hierarchical clustering techniques generate a hierarchy or dendogram. That

allows choice from a set multiple solutions by simply pruning the dendogram in

different ways [34]. This gives high flexibility in the choice of a suitable clustering

solution. An approach to hierarchical clustering, known as agglomerative clustering,

intitially considers each instance as a cluster and then merges clusters together until

some desired properties are reached. Another approach, called divisive clustering,

considers all the data as a single cluster, that is split repeatedly into subclusters

[65].

2.5.2 Online clustering

This section provides a brief overview of online clustering techniques. In particular,

it focusses on two different approaches to clustering data streams: the prototype-

based approach and the density-based approach. The former assumes that the data

is clustered around a predefined number of centroids, the latter identifies clusters of

points with sufficiently high density.

2.5.2.1 Prototype-based online clustering: CluStream

A first category of techniques uses prototypes to represent clusters. It is common to

use centroids as prototypes. These techniques search for the prototypes that min-

imise the overall sum of the squared distances of the instances from their respective

prototypes [34].

The algorithm CluStream is a prototype-based technique for data streams [2]. It

is based on the principle that retaining in memory all the instances observed up to

a time point is unfeasible for data streams. For that reason, CluStream introduces

micro-clusters. These are data structures that maintain statistics about a set of

data points. When a point is represented by a micro-cluster, the statistics of this

are updated and the point is discarded. In this way, the amount of information that

is stored can be reduced drastically [2]. Micro-clusters, which are updated online

when new instances are provided, act as points to an offline clustering algorithm

that is run by a user when needed. More precisely, a micro-cluster is a tuple of five

elements (n,CF1x, CF2x, CF1t, CF2t), where n is the number instances added to

the microcluster, CF2x is a vector containing the sums of the values of the instances

Ph.D. Thesis 75 Piero Conca



Chapter 2 - Literature review

for each attribute, CF1x is a vector of the sums of the squared values of the instances

for each attribute, CF1t is the sum of the time-stamps at which the instances were

added and the sum of the squares of the same time-stamps CF2t .

When a new instance is presented, it can be added to an existing micro-cluster,

if the instance is sufficiently close to the micro-cluster (within a radius r from its

center), or it can generate a cluster of its own. The statistics CF1x and CF2x

are used to make this decision. As the number of micro-clusters is fixed, if a new

cluster is formed, an existing cluster must be deleted, for example if if this is too

old. Otherwise the closest two clusters are merged. The updating of the set of

micro-clusters is performed in an online fashion.

The higher level clustering is performed offline. The centers of the micro-clusters

are processed as points by a clustering algorithm in order to identify a set of high-

level clusters. A modified version of k-means, is used for the offline step. This

takes into account the number of points into a micro-cluster in order to initialise the

algorithm.

The time-based statistics CF1t and CF2t allow for the selection of potentially

different time horizons. This is implemented through a pyramidal time frame that

stores snapshots of the micro-clusters at different times. The granularity of the

snapshots varies according to the time at which these were recorded. The algorithm

uses the subtractive properties of micro-clusters to generate a set of micro-clusters

representative of a specified time interval [2].

2.5.2.2 Distance-based online clustering: DenStream

According to [18], CluStream suffers from several limitations. Since it uses a variant

of k-means as an offline clustering technique, CluStream is only able to identify

spheric or ellipsoidal clusters. For the same reason, as k is pre-defined, CluStream

cannot deal with data whose number of clusters changes over time. The use of a

fixed number of clusters also makes CluStream not suitable to handle outliers [18].

In order to overcome these limitations, a density-based algorithm called Den-

Stream is proposed in [18]. The algorithm features a two-level clustering similar to

that proposed in [2], comprising an online stage and an offline stage. DenStream also

implements micro-clusters, however, these are different from those observed in [2].

In fact, they are divided into potential micro-clusters (p-micro-clusters) and outlier

micro-clusters (o-micro-clusters). The former ones are meant to be representive of

Ph.D. Thesis 76 Piero Conca



Chapter 2 - Literature review

groups of points with high density, while the latter represent outliers or newly-formed

groups of points that could potentially grow into p-micro-clusters. More precisely, a

p-micro-cluster is a triple (w,CF1x, CF2x), where CF1x and CF2x are the vectors

used by CluStream, while w is a weight. A p-micro-clusters that does not receive

new points for several iterations is deleted if its weight decreases under βµ. Where

µ is a variable that determines the magnitude of the weights of p-micro-clusters,

while β is a multiplying factor for µ, with 0 < β ≤ 1. The weight of a micro-cluster

depends on the weights of the points it represents. The weight of a point decreases

with time according to the formula weight(pi) = e−λt, where t is the time elapsed

since the point was presented, while λ tunes the rate of forgetting. In this way,

points with different weights give different contributions to the construction of the

center and the radius of the cluster they belong to. The set of p-micro-clusters is

initialised with an run of DBSCAN over the first instances that are presented. An

outlier micro-cluster, has the same fields as a p-micro-cluster, plus an additional

field t0. That is the time at which the cluster is created and is used to distinguish

outliers from potentially-growing clusters.

When a new point is presented, it can be added to the closest p-micro-cluster if

the new radius is below a threshold ε. Else, it is added to the closest o-micro-cluster,

subject to the same check of the radius. In this case, if the weight of the o-micro-

cluster becomes higher than βµ, it is promoted to p-micro-cluster. Otherwise, the

point will generate a new o-micro-cluster.

A modified version of DBSCAN is used for the offline clustering process. In

this case, the concept of density-reachability is used in place of that of density-

connectivity. In particular, two micro-clusters are directly-density-reachable if their

radiuses are tangent or overlapped. A set of density-reachable points forms a cluster.

2.5.3 Semi-supervised clustering

Section 2.4.2 showed that semi-supervision could help increase the performance

and reduce the amount of supervision of a classifier. In particular, it was shown

that semi-supervised classifiers use large amounts of unlabelled data to build better

classification models.

Semi-supervision is not only limited to supervised techniques. As a matter of

fact, additional information can be used to guide the formation of clusters [21]. For

example, there could be contraints dictating that two points must belong to the

Ph.D. Thesis 77 Piero Conca



Chapter 2 - Literature review

same clusters (must-link) or that they must belong to different clusters (cannot-

link). Alternatively, labelled data can be used to generate clusters. In this case,

points with different classes should belong to different clusters.

In this context, two types of semi-supervision can be distinguished. In similarity-

adapting methods the measure of similarity takes into account the constraints dic-

tated by the additional information that is pro1vided [10, 21, 34]. In search-based

methods, it is the algorithm that utilises constraints or labelled data in order to

search for a solution [34].

The variants of k-means described in [5] represent an interesting example of

search-based semi-supervised clustering. The techniques is called seeding and con-

sists of using a small amount of labelled data to guide a clustering. While in the

original version of k-means the initial set of centroids is generated randomly, both

of the variants presented in [5] use the centroids of the points of each class are used

as “seeds” for the clusters. In such a way, the information contained in the labelled

data helps forming better clusterings when compared with standard k-means [5]. In

addition, the second variant at each “refinement” step checks that points of different

classes belong to different clusters.

2.6 Unsupervised drift detection

The methods presented in Section 2.4.1.5 require supervision in order to detect drift,

as they measure the error of a classifier. There are other methods that do not make

use of supervision to deal with this problem. These methods are related to the areas

of signal processing, comparison of density estimations, statistical analysis, among

others [26]. The descriptions of two of these methods are presented. They operate

on the input features rather than the decisions of a classifier.

The algorithm in [37] exploits supervised techniques to perform unsupervised

drift detection. The true classes of the instances, however, are not used. In fact,

given two different datasets, the algorithm assigns positive class to the instances of a

dataset, and negative class to the instances of the other dataset. Then, a classifier is

trained on the modified datasets. If these are generated from the same distribution,

the expected value of accuracy pbin should follow a Bernoulli distribution. Hence, if

a dataset has size m, the other has size n, and N = m + n, the expected accuracy

Ph.D. Thesis 78 Piero Conca



Chapter 2 - Literature review

of that classifier is:

pbin =
max{m,n}

N
(2.24)

Given a confidence level α and a value of accuracy p, the null hypothesis, that states

that the datasets are generated from the same distribution, is rejected according to

the result of the following inequality:

N∑

i=Np

N !

i!(N − i)!p
i
bin(1− pbin)N−i ≤ α (2.25)

The Wald-Wolfovitz test is a nonparametric test that measures the similarity of

two sets of univariate values [95]. After assigning ranks to the values of the datasets,

it counts the number of runs R, where a run is a sequence of consecutive values from

the same dataset within the ranking. When the distributions of two datasets are

different, small values of R are likely to observed. For instance, if the two sets

of values lie in distinct parts of the domain of the variable, all the values of each

dataset will be contiguous within the ranking and, therefore, R = 2. By contrast,

if two datasets are similarly distributed, after ranking, observing a long sequence

of ranks associated with values from a single dataset is unlikely, and the value of

R will be high. An extension of this method to problems that use multivariate

data is proposed in [30]. The algorithm firstly creates a graph that connects nodes

representing the instances. An edge is weigthed with the euclidean distance between

the instances associated with the nodes it connects. Then, the algorithm finds the

minimum spanning tree (mst) of the graph. Among the trees that connect all the

nodes of a graph, the minimum spanning tree is the tree that minimises the sum

of the weights of its edges. Subsequently, the edges that connect nodes related to

instances of different sets are removed. The number of subtrees that is generated is

equivalent to the number of runs for the univariate case. Therefore, that number

is also referred to as “number of runs” and it is indicated with R. Let us consider

two datasets, containing respectively m instances and n instances. If the datasets

are generated from a common distribution, the mean value of R is calculated by the

following:

µ =
2mn

N
+ 1 (2.26)

where N = m+ n. The variance of R is expressed as:

σ2 =
2mn

N(N − 1)
×
(

2mn−N
N

+
C −N + 2

(N − 2)(N − 3)
× (N(N − 1)− 4mn+ 2)

)
(2.27)

Ph.D. Thesis 79 Piero Conca



Chapter 2 - Literature review

C is defined as
(∑N

i=1 di(di− 1)
)
/2, where the degree di of the node i is the number

of edges that are connected with it. According to the central limit theorem, the

quantity:

W =
R− µ
σ

(2.28)

is normally distributed [30]. Therefore, according to a confidence level α, if R lies

outside the interval defined by α, the null hypothesis is rejected.

2.7 Adaptive frameworks for classification

Researchers are looking at ways to increase the level of adaptivity of classification,

in order to develop systems that are able to adapt to environments with different

and potentially unexpected characteristics. For that purpose, solutions have been

proposed. They present different solutions that implement the principles of modu-

larility, reconfigurability and interconnection, among others.

An example of an adaptive architecture is proposed in [41]. That architecture

distinguishes three levels of information processing: computational path level, path

combination and meta level. The computational level is concerned with the creation,

modification and deletion of computational paths. These are sequences of informa-

tion processing stages that transform input data into decisions. Computational

paths combine components selected from a library of pre-processing techniques

(e.g., for feature selection or feature extraction) and a library of computational

techniques (e.g., SVM and multilayer perceptrons). Different computational paths

can be trained on different regions of the input space. In fact, an input space may

have regions with diverse characteristics that may require different classification

techniques. Given the variety of components that can be used, this is the level

with the largest diversity. The different channels of information generated at the

computational path level are merged at the combination level. That level exploits

the diversity of the computational paths by combining them in different ways in

order to generate more accurate predictions. The meta level has the purpose of

optimising the performances of the components (local), as well as the performance

of the architecture (global). Actions taken at the meta level may involve the change

of the parameters of a technique, the creation of new computational paths or the

choice of an alternative combination method. The meta level requires measurements

of the performance of the components within the architecture.

Ph.D. Thesis 80 Piero Conca



Chapter 2 - Literature review

This architecture can operate in the traditional batch mode, which comprises

training, evaluation and testing performed over predefined datasets. Alternatively,

it can operate in incremental mode, that accounts for data provided in the form of a

stream. This architecture provides perfomance evaluators such as the mean square

error (that makes use of the target values of the data that are occasionally pro-

vided). However, additional performance evaluators (potentially based on different

principles of operation) can be included by an external user. The architecture has

been applied to real datasets, on which it outperforms state-of-the-art techniques

[42].

Evolving connectionist systems (ECOS) are systems that adapt to deal with

different and potentially unexpected conditions provided by the environment in

which they operated [42]. The ECOS framework defines a set of modules that

perform different tasks such as feature selection, representation of information, high-

level decision making, knowledge storage, action and adaptation. In particular,

modules are implemented trough the paradigm of fuzzy neural networks [43]. A

characteristic of the framework is the bidirectional interaction with the environment

in which they operate. In fact, besides collecting information from an environment,

ECOS systems can also act on it. In particular, the evolving fuzzy neural network

model (EFuNN), that performs both supervised and unsupervised learning, has

shown to be effective at including new input attributes at runtime.

Although the framework presented in [51] is only outlined, it proposes several

interesting ideas with the intention to increase adaptivity of classification systems.

For example, the concept of an “ensemble”, which is normally associated with

classification, here is extended to the lower level of feature extraction and higher

level of decision making. Figure 8 (a) shows the model of the framework. The term

“information vector” refers is used to indicate vectors that can convey different types

of information (signal, feature or decision). Input information vectors are processed

in a parallel way by a set of stovepipes. Depending on the level, a stovepipe can

be a feature extraction technique, such as PCA, mean or kurtosis; a classifier such

as a MLP or SVM ; or a technique to fuse decisions, for example voting. The

outputs of the stovepipes are combined by the “Data Fusion” module to generate

the output information vectors IVoutput. In the simplest case the data generated

by the stovepipes can be simply collected into the output vector IVoutput without

any processing, alternatively, the data can be combined, for example, by means of

Ph.D. Thesis 81 Piero Conca



Chapter 2 - Literature review

voting, averaging or analogous technique. The model of the adaptive framework

also introduces the concept of feedback. Besides considering feedback as generated

by an external entity or connecting internal components of the framework, feedback

is also considered as the reuse of the output of a component as an input to another

component. For example, the prediction of a classifier can be used to train another

classifier.

IV
input

Stove
pipe
1

...
Stove
pipe
n

Data Fusion

Stove
pipe
2

IV
output

IV1

      signal
IV2

      signal
IV3

      signal

IV1
      feature IV2

      feature

IV2 
      decision

N
N
3

N
N
1

IV3
      feature

IV2 
      decision

IVout 
      decision

Data fusion

Weight. votingMaj. Voting

Select
best

Weight.
voting

Major.
Voting

Skew
ness

P
C
A

D
E
C
I
S
I
O
N

M
A
K
I
N
G

C
L
A
S
S
I
F
I

F
E
A
T
U
R
E

E
X
T
R
A
C
T
I
O
N

C
A
T
I
O
N

Framework instantiation 

Mean
Kurt
osis

Std.
dev.

Skew
ness

Std.
dev.

Skew
ness

F
u
z
z
y

Data fusionData fusionData fusion

Framework model 

A
I
S
E
C

S
V
M

N
N
2

F
A

Figure 8: Model of the adaptive framework (left) and a possible instantiation (right)
[51]. In the model of the framework (left), the input information vector IVinput is
processed by a set of stovepipes. Their output is combined by the data fusion module
to produce the ouput vector IVoutput, which can also be fed-back to the input. The
diagram on the left shows a possible instantiation of the framework.

When it is instantied, the framework may look like the example shown in Figure

8 (right). Starting from the bottom, signal data generated by sensors is provided to a

set of feature extraction “boxes” or ensembles, where feature extraction techniques,

acting as stovepipes, process the inputs in parallel. The outputs from the stovepipes

are combined into a single output vector of features per box. The three features

vectors generated IV feature
1 , IV feature

2 and IV feature
3 constitutes the inputs to the

classification boxes, that are substantially ensemble classifiers. These can contain

classifiers of the same type, as shown in the ensemble on the left, or they can mix

Ph.D. Thesis 82 Piero Conca



Chapter 2 - Literature review

different techniques as shown in the ensemble classifier on the right. The top level,

fuses the decision vectors produced by the ensemble classifiers to generate a single

label to associate to the inputs.

The framework affords adaptivity by changing its structure or the parameters

of its components, we refer to them using the terms structural adaptivity and

parametric adaptivity. Structural adaptivity concerns the creation or the deletion

of an component of the framework, such as a stovepipe, a data fusion module or

an entire box, but it can also regard a change in the connections between existing

elements. Parametric adaptivity does not affect the structure of a system, only its

parameters. For example, a stovepipe which with low performance might require

tuning of its parameters or, for example, the weights of a data fusion module may

be revisited. Structural adaptivity could be used to delete or replace uneffective

components.

The way information is processed by the adaptive framework is similar to that

of the adaptive architecture. In fact, both use different channels of information

processing and can use different techniques to combine predictions. However, the

development of the adaptive architecture is at an advanced stage, as implementions

have been tested on real-world problems. By contrast, the framework was only

outlined in [51]. However, that gave us freedom to develop new ideas. In particular,

we investigated the concept of feedback it presents, with the aim to increase the

adaptivity of a classifier. Despite its versatility (related to its wide range of adaptive

modules and their high interconnection), the ECOS framework is centred around

the technique of neural network. That can be a limitation if other techniques need

to be used. On the contrary, the adaptive framework and the adaptive architecture

do not limit the types of techniques that can be used.

2.8 Summary

Classification is concerned with extracting patterns from a dataset, and use those

patterns to classify unseen instances (Section 2.2). Traditionally, the problem of

classification assumes that the data distribution does not change. This is not the case

of numerous applications, in which concept drift affects the data. In order to avoid a

model to become obsolete, this is updated with new data over time. Different levels

of supervision can be provided with such data. For supervised techniques ((Section

Ph.D. Thesis 83 Piero Conca



Chapter 2 - Literature review

2.4.1)), receive the true class of each instance that they process. In this way, they

can measure the error rate of their models. Among the supervised techniques,

we can distinguish between triggering techniques, that use explicit detection of

drift to trigger adaptation and evolving techniques, in which adaption is driven

by the goal of maximing classification performance. In particular, ensemble-based

techniques evolve a set of classifiers. Using multiple classifiers, in general, affords

better generalisation and is an effective approach to incremental learning (Section

2.2.3). Semi-supervised techniques use large amounts of unlabelled data to improve

their performance when little supervision is available (Section 2.4.2). Unsupervised

techniques do not use supervision to update a model (Section 2.4.3).

The problem of concept drift also concerns the area of clustering, for which

several solutions have been proposed (Section 2.5). In addition, semi-supervision is

also related to clustering. In this case, labelled data is provided to improve clustering

performance. Unsupervised drift detection methods use raw data to reaveal the

presence of drift. They are different from the methods proposed in (Section 2.5.3),

for which supervision is necessary in order to detect drift.

In particular, the solution that is presented in this thesis draws from the areas of

unsupervised model updating and ensemble classfiers. The techniques of online clus-

tering and semi-supervised clustering could also be used to deal with this problem.

Unsupervised drift detection techniques will be compared with the inference of drift

of the implementation of the framework that is ollustrated in the next chapter.

Ph.D. Thesis 84 Piero Conca



Chapter 3

Adaptive framework

3.1 Introduction

The previous chapter presented an overview of the techniques that have been devel-

oped to deal with data containing concept drift. These can be categorised on the

basis of to the amount of supervision they employ. Some maintain their classification

performance over time by means of intermittent supervision that is used to update

the model of a classifier. This can be a problem for those applications in which

providing supervision is not practical because of cost or time reasons [59]. In

this case, semi-supervised techniques provide for the scarcity of labelled data by

making use of unlabelled data, which is easier to collect for several applications.

Other techniques make use of no supervision altogether. After generating a model,

they update it only by means of the information extracted from unlabelled data.

The goal of this thesis is to contribute to the reseach in this field by presenting a

framework that does not require supervision to update the model of a classifier. In

particular, it presents an implementation of the ideas of the adaptive classification

framework outlined in [51]. The framework makes use of multiple and diverse

techniques at the different levels of feature extraction, classification and decision

fusion. Moreover, it also suggests the use of feedback to increase the adaptivity

of classification systems. The implementation of the framework being proposed

introduces two major novelties. The first novelty is the combination of ensemble

classification and a mechanism of training of classifiers that reuses the decisions of a

model that, under particular concept drift conditions, allows supervision to become

unnecessary. This mechanism, which draws upon the concepts of self-training, is

similar to the method proposed in [78]. The second novelty consists of a mechanism

for comparison of the decisions of the classifiers of an ensemble. This mechanism

Ph.D. Thesis 85 Piero Conca



Chapter 3 - Adaptive framework

has the purpose of inferring the presence of drift and is responsible for the updating

of the model of the framework.

The rest of the chapter is structured as follows. Section 3.2 defines the problem

and motivates the need for further investigation in this direction. Section 3.3

illustrates our implementation of the framework. The description of the algorithm

starts with the ensemble of classifiers which represents the base of the framework.

Then, a mechanism that reuses the decisions of generated by the framework is

illustrated. It allows the framework to adapt to concept drift. Finally, a method to

infer concept drift is described. Section 3.4 presents a summary of the chapter.

3.2 Motivation

This thesis focusses on the problem of classification of streams of data affected by

concept drift. The problem of concept drift, described in Section 2.3, affects the

performance of a classifier as it changes the distribution of the data on which the

classifier operates. Several approaches have been proposed to deal with this problem.

They can be classified according to the amount of supervision that they require.

Supervised learning algorithms, presented in Section 2.4.1 update the model of

a classifier with the true class of an instance, which is provided after that that

instance has been classified. This allows for measurement of the error rate of a

classifier, and, if it increases, update its model. Since providing supervision may be

expensive, impractical or even not feasible in some cases, several approaches have

been developed to reduce the amount of labelled data required by a classifier. Similar

to supervised classifiers, semi-supervised classifiers (Section 2.4.2) are also updated

by providing the class of an instance after classification. However, that information

is not available for every instance. On several testbeds, these algorithms perform

comparably with supervised techniques, although semi-supervised techniques use

only small fractions of the labelled data that supervised classifiers require. The

possibility of updating a model without supervision has also been considered in the

literature, as shown in Section 2.4.3.

Although this area of research has a lot of potential applications, and increasing

attention is being placed on the reduction of supervision for classification, more

effort has been spent on the investigation of supervised and semi-supervised learning

rather than unsupervised model updating. We believe that, for certain problems,

Ph.D. Thesis 86 Piero Conca



Chapter 3 - Adaptive framework

learning algorithms should gradually become less demanding of supervision. For

that reason, the goal of this thesis is to gain a better understanding of the problem

of unsupervised model updating. In particular, this investigation is characterised

by an analysis of the conditions that are required in order to perform unsupervised

model updating. This thesis also proposes a framework for unsupervised model

updating over concept drifting data. The proposed approach is compared against

alternative methods that deal with the same problem. This comparison has the

purpose of identifying the advantages and the limitations of each method under

different conditions, and therefore getting a better insight into the more general

problem.

We now reconsider the problem of updating a model of data with concept

drift through the lens of Bayesian theory and of the different probabilites that it

involves (Section 2.2.1), in the different scenarios of supervised, semi-supervised and

unsupervised model updating. Let us start from the supervised case. If the time

interval over which data is collected is sufficiently small with respect to the rate

of drift, we could assume that the instances have the same distribution. The data

collected from the stream is representative of the joint distributions that generated

the data, one per class. Joint distributions carry information about the class-

conditional distributions, the prior probabilities of the classes and, as a consequence,

also the class-unconditional distribution. This information could potentially be used

to deal with several types of drift. In fact, for example, that information could be

used to estimate the posterior probabilites by using generative models. In this way,

even if the classes are highly unbalanced or “overlapped”, if classes are deleted,

swapped or new classes are introduced, or if the rate of drift is high it should in

theory be possible to maintain a relatively high classification performance. This

reasoning also applies to the semi-supervised case. In fact, although the smaller

number of labelled instances conveys less information about the joint distributions,

this information can be reconstructed using unlabelled data. This, of course, is not

possible for every scenario.

The context of unsupervised model updating is different from the supervised case

and the semi-supervised case. The method described in Section 2.4.3 showed that

it is possible to update a model without using supervision if the data has simple

characteristics (e.g., separable classes). Let us interpret those results by analysing

the probabilites that are involved. We suggest that training data is used to build

Ph.D. Thesis 87 Piero Conca



Chapter 3 - Adaptive framework

a representation (the model) of the classes and their joint distributions. After the

training phase, only unlabelled data is provided. This data conveys information

about the class-unconditional distribution. In this context, an unsupervised learning

algorithm should update the information about the classes (extracted from the

labelled data during the training phase) by means of the information of the class-

unconditional distribution that is conveyed by the unlabelled data. In order to

cope with concept drift, this information is updated as new unlabelled data is

processed. According to this interpretation, if the class-unconditional distribution is

not affected by concept drift, we would not be expect the updating of a model to be

possible without supervision. An investigation of these considerations in presented

in Chapter 4.

We now present a selection of unsupervised techniques that are used or that

could potentially be used to deal with concept drift. The technique described in

Section 2.4.3 uses a sliding window of fixed size. Initially the window only contains

labelled instances. When an unlabelled instances is presented, it is classified by

an existing model. Then, the instance with its associated prediction is added to

the window and the oldest instance in the window is discarded. After that, a

new model is generated from the data in the window. This technique was able

to classify that data affected by concept drift. Another potential way to tackle the

problem of unsupervised model updating of drifting data could draw upon the area

of unsupervised learning. Section 2.2.4 showed that clustering can also be used to

perform semi-supervised classification. After clustering of a dataset, the majority

label contained in a cluster is assigned to it. When a point is presented, it is classified

with the label of the cluster that is closest to it. This idea could be extended to the

classification of data with concept drift by using online clustering techniques. As

a matter of fact, initially, an online clusterer could be “trained” on some labelled

data, in order to identify a group of clusters and associate labels to them. When,

supervision is no longer provided, the clusters could be used to classify unlabelled

instances. Moreover, after classification, the same instances could be used to update

the clusters to the changing distribution. A similar result can be achieved using a

different approach. Section 2.5.3 shows that labelled data can be a support to the

generation of clusters. This is known as semi-supervised clustering. Semi-supervised

clustering also accounts for the assignment of labels to clusters. In an online context,

training labelled data could be used to seed and label a set of clusters of an online

Ph.D. Thesis 88 Piero Conca



Chapter 3 - Adaptive framework

clustering technique. Afterwards, the model that is established could be used to

classify incoming unlabelled instances.

The aim of this thesis is to further investigate the problem of classification of

drifting data without information about the classes of the instances for updating a

model. Section 2.2.3 described the advantages brought by ensemble classifiers to the

field of classification. Among these, increased generalisation capability, possibility

of combining different techniques, incremental learning of large datasets, robustness

to noise. A large number of methods that make use of ensemble learning have been

developed to deal with data affected by concept drift. A selection of these methods

was presented in Section 2.4.1.4. This thesis intends to investigate whether ensemble

learning could bring advantages to the area of unsupervised model updating. For

instance, we aim at determining whether the use of ensembles could lead to better

generalisation, higher performance, reduced memory requirements. Another goal is

to investigate new methods of drift detection. In a context in which it is not possible

to use the reference of labelled data, a solution to this problem may come from the

comparison of the different characteristics of the classifiers within an ensemble. In

this context, the term “inference” is preferred to the term “detection”. In fact,

while using statistical tests or using labelled data is absolute as it allows to measure

an error, the information available that comes from the pairwise comparison of the

classifiers is only relative.

3.3 Framework implementation for classifica-
tion

This section proposes an adaptive framework to deal with the problem of unsu-

pervised classification of concept drifting data. This includes a mechanism that

reuses its output decisions, thus not requiring knowledge about the true classes of

the instances. This principle is similar to the retraining of classifiers described in

[78]. We refer to this mechanism of retraining as feedback. This is different from

updating the model with the true classes of the instances, which here is referred to

as supervision. Moreover, the updating of the classification model of the framework

is driven by a mechanism of drift detection, which is based on the comparison of the

outputs of different classifiers.

As mentioned in Section 2.7, the model of the framework accounts for two types

Ph.D. Thesis 89 Piero Conca



Chapter 3 - Adaptive framework

of components: stovepipes, which process input data in parallel, and a data fusion

module, that combines the outputs of the stovepipes into a single vector as shown

in Figure 8. Although the model can be instantiated at different levels, this thesis

focusses on the intermediate level of classification. A box (that consists of a set of

stovepipes and a data fusion module) instantiated at that level resembles in many

aspects an ensemble classifier. In particular, central attention was put given to

the shaping of the concept of feedback suggested in [51]. Despite the definition

of feedback provided in [51] is intentionally generic, as at that time it was only

outlined and not implemented. It was suggested that the output of a box (or a

measure derived from it) could be used as an input or, more generally, to affect the

internal state of a box.

Special attention has been paid to the analysis and the definition of the roles

of the components and to the shaping of their relationships. This process has been

facilitated by the use of modelling techniques. In particular, UML class diagrams

have been used to define the relationships between the components, while activity

diagrams were used to generate prototypes for the structural and the parametric

adaptivity, as they help identifying drawbacks and benefits of the potential solu-

tions. The diagrams that were developed also served as a preparatory phase for the

subsequent implementation of the framework.

Figure 9 depicts the UML class diagrams of the model of the framework. As

shown in the top of the figure, the framework model accounts for an arbitrary number

of boxes. An instantiation of the framework can, in fact, contain multiple boxes at

different levels (for example, feature extraction, classification, decision level) as well

as multiple boxes at the same level. In such a way, an instantiation can be expanded

vertically as well as horizontally. The diagram also states that a box must contain

at least one stovepipe. Each box can contain multiple data fusion modules, although

only one is actually used, the diagram however also considers the possibility of the

data fusion module missing from a box to allow boxes made of a single stovepipe.

The diagram accounts for two different types of connections. Internal connections

only regard a single box, their purpose is to represent feedback, for example by

linking the output of a data fusion module to the input of a stovepipe of the box

itself. External connections regard distinct boxes, more precisely, the output of a

box “feeds” another box. It should be noticed that in the definition of external

connections there is no constraint that prevents the output of a box from being used

Ph.D. Thesis 90 Piero Conca



Chapter 3 - Adaptive framework

Figure 9: UML class diagram of the framework.

Ph.D. Thesis 91 Piero Conca



Chapter 3 - Adaptive framework

at a lower level. This type of connection could as well be considered as a form of

feedback which involves different boxes, if this establishes a closed loop.

The central motivation for the framework is adaptivity, namely, the ability to

react to changing conditions [3]. Adaptation can be driven by a number of reasons

such as varied type and number of data inputs, concept drift, changing data rates

or computational requirements. Attention has been dedicated to the analysis of

the different forms of adaptivity the framework should be able to perform. This

has brought to the identification of two general forms. Adaptation can regard the

parameters of a component, in this case we talk about parametric adaptivity. For

instance, a stovepipe for feature extraction can have its parameters modified or a

data fusion module, such as a voting mechanism, might reconsider its weight to react

more effectively to drift. Adaptation can also regard the structure of an instance

of the framework, we refer to it as structural adaptivity. If the performance of a

component degrades it might be a sensible choice to delete it, remove it, or perhaps

replace it with a new component. Creation, deletion and therefore replacement can

happen to any type of component: a stovepipe, a data fusion module and even

an entire box. Structural adaptivity can also operate on the connections of an

instantiation of the framework. For instance, if the combination of a classification

technique with a feature extraction technique becomes ineffective, the classification

technique can be associated with a different feature extraction technique. Both

types of adaptivity should collaborate to guarantee the best performance in different

conditions. For instance, parametric adaptivity could be used to optimise contin-

uously the performance of a component, if parametric adaptivity is unsuccessful,

then structural adaptivity can intervene, for example, by replacing the uneffective

component with a new one.

The presentation of the implementation the framework is divided into three parts.

It starts with the backbone of the framework: the box (an ensemble classifier), of

which we delineate the characteristics of stovepipes and data fusion module. The

second part introduces the mechanism of feedback of its decisions. This mechanism

of structural adaptivity allows for replacement of uneffective stovepipes (classifiers

in this case) with new ones, and therefore affords the updating of the classification

model of the framework. Then, a mechanism of drift inference which drives the

replacement of stovepipes is illustrated in Section 3.3.3.

Ph.D. Thesis 92 Piero Conca



Chapter 3 - Adaptive framework

3.3.1 Ensemble classifier

The box containing stovepipes and data fusion modules constitutes the base of

the framework. Its composition is not dissimilar from many other approaches that

handle concept drift and it can, in fact, be assimilated to an ensemble classifiers. For

this reason the terms “box” and “ensemble classifier” will be used interchangeably.

Moreover, considering that this thesis deals with the problem of classification, we

take the freedom to use the more specific term classifier, along with the more general

term stovepipe.

From the review of the literature it is possible to distinguish different strategies

to maintain the population of the ensemble as well as different mechanism to fuse the

decisions of the classifiers. Concerning the size of an ensemble, three options have

been explored: constantly growing, fixed size and variable size, while the most used

techniques to fuse decisions are averaging, majority voting and weighted voting. For

this implementation of the framework we opted for a basic configuration. In fact,

the ensemble has fixed size and simple majority voting is used to fuse the decisions

of the classifiers. In this way, it should be easier to analyse the mechanism that are

behind the functioning of the implementation.

The ensemble is divided into the pools of mature classifiers EM and näıve

classifiers EN . Mature classifiers generate decisions that train new näıve classifiers.

Moreover, näıve classifiers do not participate in the decision making. They are

continuously replaced within their pool and therefore contain up-to-date information

about the data distribution. The purpose of the training phase is to populate the

pool of mature classifiers EM .

The pseudo-code 5 illustrates the training of mature classifiers. We are assuming

that the ensemble processes a stream of data instances, and that, only for this phase,

their classes are provided. After the training phase, only unlabelled instances are

generated. Since data is presented in the form of a stream (one instance at a time)

and considering also that batch techniques are being used, a variable thtraining divides

the stream in a sequence of batches, each of which trains a mature classifier. That

parameter guarantees that each batch should contain at least thtraining instances of

each class. This has the purpose of avoiding the generation of batches that contain

predominantly instances from one class. For simplicity, we refer to the stream of

labelled instance as Dtrain. The mature pool EM is initially empty (line 2). The

Ph.D. Thesis 93 Piero Conca



Chapter 3 - Adaptive framework

variable i maintains a count of the number of instances that have been observed,

while j represents the ensemble size (lines 3-4). Dtemp is a temporary storage for

the instances of the stream Dtrain (line 5). It contains data for the training of a

classifier, after which it is emptied. The training of new classifiers continues until

labelled data is provided (line 6).

Algorithm 5 Pseudo-code of the training phase of the framework

1: procedure Train(Dtrain, thtraining)
2: EM ← ∅ . the mature pool
3: i← 1 . pointer for data instances
4: j ← 1 . pointer for classifiers
5: Dtemp ← ∅ . temporary storage
6: while i ≤ |Dtrain| do
7: Dtemp ← Dtemp ∪ {Di}
8: i← i+ 1
9: if (|{Dk ∈ Dtemp|class(Dk) = +1}| ≥ thtraining) ∨

({Dk ∈ Dtemp|class(Dk) = −1}| ≥ thtraining) then
10: train(EMj

, Dtemp)
11: EM ← EM ∪ {EMj

}
12: j ← j + 1
13: Dtemp ← ∅
14: end while
15: return EM

The inputs to the training procedure are the data stream Dtrain and the threshold

thtraining. The first lines (2-5) of the pseudo-code have the purpose of initialising

EM , i, j and Dtemp. In particular, the pool EM and the temporary storage Dtemp are

initially empty, while i and j are initialised with the value 1. Every new instance

that is presented is added to Dtemp and the counter i is incremented (line 6-8).

When Dtemp contains at least thtraining of class ω1 and at least thtraining instances

of class ω2 (Line 9), a classifier EMj
is trained from the data it contains (line 10).

EMj
is added to the mature pool (line 11). Then, the counter j (it represents the

size of EM) is incremented (line 12) and Dtemp is emptied (line 13). In this way,

thtraining and the length of the stream of labelled instances determine the number

of mature classifiers in the ensemble. When the stream of labelled instances ceases,

the ensemble is returned (line 14) and the classification phase begins.

Ph.D. Thesis 94 Piero Conca



Chapter 3 - Adaptive framework

3.3.2 Decision feedback

We now present the mechanism of feedback of the decisions of the ensemble, which

is responsible for the updating of a classification model.

Updating the model of a classifier can be achieved in two ways. The first option

involves revisiting the internal parameters of a classifier, such as the weights of

the hyperplane of a SVM, the structure of a decision tree or the set of rules of

a fuzzy classifier. This implies that knowledge about how a particular technique

structures the models of its classifiers is required (this knowledge would be used to

develop strategies to change the model). This option therefore contrasts with the

requirement that the framework has to be technique-independent, since it would

entail that a classifier is not treated as a black box. The second option implicates

the retraining of a model or part of it. A common strategy in ensemble methods for

concept drift involves the deletion of a classifier and the training of a new classifier.

However, labels are needed in order to train a classifier. This contrasts with the

assumption that our implementation of the framework processes only unlabelled

data. For that reason, the framework implementation features a mechanism that

combines a prediction and the input vector that generated it, in order to train a

classifier. Notice that supervision is not required. In fact, the labels that are used

are the result of the classification of the instances, they do not represent the true

classes of the instances, which are unknown. This mechanism is similar to that

described in Section 2.4.3. However, for that algorithm, the decisions are generated

by a single classifier, while we propose the generation of decisions by means of an

ensemble of classifiers through voting. More precisely decisions are generated by

mature classifiers, since näıve classifiers do not participate in the voting. Processed

instances and labels are combined to train a new model that is added to the pool of

näıve stovepipes.

The way data is processed is similar, for some aspects, to the supervised phase

described in Section 3.3.1 and, for this reason, the two pseudo-codes share some

variables. EM and EN represent, respectively, the pools of mature and näıve

stovepipes. We are assuming that the training phase is finished, and therefore EM is

already formed, while EN is empty. The stream of unlabelled instances is represented

by Dtest. The variable i counts the number of instances that have been processed,

while j counts the number of stovepipes generated during the unsupervised phase.

Ph.D. Thesis 95 Piero Conca



Chapter 3 - Adaptive framework

The variable thonline is similar to thtraining. In fact, it has the purpose of avoiding

the collection predominantly instances from one predicted class. Dtemp has the same

function as in the training phase (Section 3.3.1): it is a temporary storage for new

instances and it is emptied after a new classifier has been generated from its data.

The variable rationaiveMature determines the maximum size of the näıve pool of the

ensemble.

The first lines (2-5) of the pseudo-code 6 have the purpose of initialising the

variables i, j, Dtemp and EN . Then, the algorithm starts processing the instances

of the stream one at a time (while loop, line 6). The unlabelled instance xi is then

classified by the mature classifiers through voting. Then, the instance xi and its

prediction are combined into di (line 7). After that, di is added to the temporary

storage Dtemp (line 8). This is the core of the feedback mechanism, in fact, every

prediction is fed back and combined with the unlabelled vector that generated it.

Then, the matrix used for the inference of drift is updated (line 9) and the i is

incremented (line 10). When at least thonline instances of each class have been

collected (line 11), a new näıve classifier Ej is trained with the data contained in

Dtemp (line 12). After that, the mechanism of drift inference is tested (line 13), j is

incremented and Ej (line 14) is added to the näıve pool (line 15). That is added to

the näıve pool and therefore becomes a candidate for replacing a mature classifier

(lines 10-12). The first brationaiveMature ∗ |EM |c iterations of the online phase have

the purpose of populating the näıve pool until its size reaches a fraction of the size

of the mature set, dictated by the parameter rationaiveMature (line 16). These steps

are required to initialise the mechanism of drift inference, and more generally, the

structural adaptivity of the framework. After that, if concept drift is inferred, a

mature classifier is deleted (line 18) and a classifier is selected from the näıve pool

(line 19) to replace a mature classifier (line 20). The näıve classifier that is selected

is the one which best “generalises” the näıve pool. In particular, it is the one with

the minimum distance from the other näıve classifiers. The mature classifier to be

deleted is the most “distant” from the näıve classifiers. In this context, the distance

between two classifier represents the number of instances in a window on which

two classifiers generate different decisions. A more detailed description of distance

is given in Section 3.3.3, where the mechanism of drift inference is illustrated.

Alternately, if no drift is inferred, the newly trained classifier Ej is added to the

näıve pool (line 22). Then, Dtemp is emptied (line 23).

Ph.D. Thesis 96 Piero Conca



Chapter 3 - Adaptive framework

Algorithm 6 Pseudo-code of the on-line phase of the framework

1: procedure Test(EM , EN , Dtest, thonline)
2: EN ← ∅ . pool of näıve classifiers
3: i← 1 . pointer for data instances
4: j ← 1 . pointer for classifiers
5: Dtemp ← ∅ . temporary storage
6: while (more instances available) do
7: di ← (xi, voting(EM ,xi))
8: Dtemp ← Dtemp ∪ {di}
9: updateHammingMatrix(M,xi, EM , EN)
10: i← i+ 1
11: if (|{di ∈ Dtemp|label(di) = +1}| ≤ thonline) ∨

({di ∈ Dtemp|label(di) = −1}| ≤ thonline) then
12: train(Ej, Dtemp)
13: drift← InferDrift(H,FIFOID, thID)
14: j ← j + 1
15: EN ← EN ∪ {Ej}
16: if |EN | = brationaiveMature ∗ |EM |c then
17: if drift = true then
18: deleteClassifier(EM)
19: El ← select (EN)
20: EM ← EM ∪ {El}
21: else
22: removeClassifier(EN)

23: Dtemp ← ∅
24: end while
25: return

Ph.D. Thesis 97 Piero Conca



Chapter 3 - Adaptive framework

Figure 10: Feedback of the decisions of the framework.

3.3.3 Inference of drift

Some of the existing mechanisms that use the output of a classifier for detecting

concept drift, use true classes and predicted classes to calculate an error. If such

error is higher than a threshold, this is interpreted as concept drift occurring Section

2.4.1.5. More refined drift detection methods estimate the generalisation error

through cross validation, also in this case knowledge about the true classes of the

instances is required. While calculating an error is only possible when supervision

is provided, if the true classes are unknown, different strategies can be used. As

explained in the paragraph of Section 2.6 (concerning unsupervised drift detection),

it is possible to analyse input data to detect concept drift.

A different avenue was pursued for the framework. In particular, the mechanism

being proposed infers the presence of drift based on the analysis of the output deci-

sions of the framework. The criterion that is adopted is based on the consideration

that, since näıve classifiers are trained with data whose features are representative

of p(x) and the labels are generated from the mature pool, if the distribution is

stationary, mature and näıve classifier should similar. By contrast, if the distribution

changes in such a way that affects p(x), näıve classifiers should embody that change

and, consequently, they should differ from mature classifiers. We used the term

“difference”. However, what does difference exactly mean in this context, and how

Ph.D. Thesis 98 Piero Conca



Chapter 3 - Adaptive framework

can it be measured? Under the hypotheses that concept drift is ongoing and it

affects p(x), the models of näıve classifiers should start making different decisions

on some of the input instances, therefore the Hamming distance between näıve and

mature classifiers should increase over time.

The mechanism of inference of drift makes use of a matrixM of size (|EM |+ |EN |)×
(|EM |+ |EN |), to monitor the Hamming distance between every pair of classifiers.

In particular, the element Mij of the matrix contains the distance between the

classifiers i and j over the data in Dtemp.

Algorithm 7 Pseudo-code of the mechanism of drift inference

1: procedure InferDrift(H,FIFOID, thID)
2: temp← 0 . temporary variable
3: for j in [1, . . . , |EM |] do
4: for i in [1, . . . , i] do
5: temp← temp+Mij

6: dM ← 2 ∗ temp/(|EM | ∗ (|EM |+ 1)) . determine DM

7: for j in [|EM |+ 1, . . . , |EM |+ |EN |] do
8: for i in [|EM |+ 1, . . . , i] do
9: temp← temp+Mij

10: dN ← 2 ∗ temp/(|EN | ∗ (|EN |+ 1)) . determine DN

11: for i in [|EM |+ 1, . . . , |EM |+ |EN |] do
12: for j in [|EM |+ 1, . . . , |EM |+ |EN |] do
13: temp← temp+Mij

14: dMN ← temp/(|EN | ∗ (|EM |)) . determine DMN

15: pop(FIFOID)
16: if dMN > dN AND dMN > dM then
17: attach(FIFOID, 1)
18: else
19: attach(FIFOID, 0)

20: return sum(FIFOID) > bthID ∗ FIFOsizeIDc

In fact, during the construction of Dtemp, the matrix M is updated based on

the discordancies among the classifiers over each unlabelled instance xi by means

of the function updateHammingMatrix(M,xi, EM , EN) (line 8 of the pseudo-code

6). If two classifiers i and j assign different classes to an instance xi, then the

element Mij of the matrix is incremented by 1. When enough data is collected in

Dtemp and therefore a new classifier is trained from it, the matrix M is queried to

infer the presence of concept drift. In order to infer drift, the framework calculates

the mean distance among mature classifiers DM , among näıve classifiers DN , and

Ph.D. Thesis 99 Piero Conca



Chapter 3 - Adaptive framework

the mean distance between mature and naive classifiers DMN . The distances are

represented in Figure 11, which depicts an example of the matrix M . According

to that example, both pools contain four classifiers. The areas highlighted in red,

green and blue indicate respectively the regions of the matrix used to calculate,

respectively, DM , DN , DMN , corresponding to the lines 3-6, 7-10 and 11-14 of the

pseudo-code 7. If DMN is higher than DM and DN a 1 is added to the FIFO queue

FIFOID (line 17), otherwise a 0 is added to it (line 19). If the sum of the elements

of FIFOID is higher than bthID ∗ FIFOsizeIDc drift is inferred.

Figure 11: Example of the matrix of the distances M for an ensemble consisting
of four mature and four näıve stovepipes. The matrix is square and symmetrical.
The first four lines and columns are associated with mature stovepipes, while the
remaining are associated with näıve stovepipes. The distances among mature
stovepipes, näıve stovepipes, mature and näıve stovepipes are calculated by
averaging the values in the areas highlighed using respectively the colors red, green
and blue.

3.4 Summary

This chapter has presented an implementation of the ideas of the adaptive framework

outlined in [51], with aim of reducing the amount of supervision utilised by classifiers.

This investigation led to the development of an ensemble of classifiers that uses a

mechanism of feedback of its decision to update its classification model. By means

Ph.D. Thesis 100 Piero Conca



Chapter 3 - Adaptive framework

of feedback, the system gradually retrains its model by adapting information about

the classes, that is provided in the initial training phase, according to changes in the

distribution revealed by the class-unconditional pdf. The members of the ensemble

are divided into mature and näıve classifier. In particular, mature classifiers generate

decisions that train näıve classifiers.

A mechanism for inferring concept drift is also proposed. It monitors the sim-

ilarity between the classifiers of the ensemble in order to infer concept drift. This

mechanism is based on the observation that, when concept drift is changing the data

distribution, näıve classifiers should be affected by that change and therefore should

differ from mature classifiers.

The next chapter evaluates the implementation of the framework, and place it in

the context of the existing techniques. Several experiments are presented, they assess

the performance of the framework over different distributions and classification

techniques.

Ph.D. Thesis 101 Piero Conca



Chapter 4

Experiments

4.1 Introduction

This chapter describes the experiments that have been performed to evaluate the

implementation of the framework being proposed. The goal of these experiments is

to assess the effectiveness of the implemented framework at classifying drifting data

without using supervision.

In particular the experiments evaluate the classification performance and the

drift detection performance of the framework with different classification techniques

and data distributions. Moreover, a set of comparative studies are performed in order

to determine potential advantages or limitations of the framework with respect to

existing techniques. For such comparisons, a selection of techniques for unsupervised

classification and unsupervised concept drift detection methods are used.

Section 4.2 evaluates the framework on a dataset with changing p(x) and on

a dataset with changing distribution but fixed p(x), in order to show potential

differences in its ability to deal with these distributions. The experiments of Section

4.3 measures the performance of the framework on different classification techniques.

Those experiments include analyses of the sensitivity to reveal the effects of varia-

tions of the parameters of the framework on its performance and rationales for the

results. In order to identify potential benefits and limitations of the framework, a

comparison with a set of unsupervised learners is provided in Section 4.4. Section

4.5 evaluates the framework and its unsupervised comparative techniques on a

dataset containing multiple clusters with changing shapes and high overlapping

of the distributions of the classes. The experiments of Section 4.6 evaluate the

mechanism of drift inference. They use data with separable classes and data with

Ph.D. Thesis 102 Piero Conca



Chapter 4 - Experiments

overlapped classes. The inference of drift is also compared with two methods that

use different principles of detection. The conclusions are presented in Section 4.7.

4.2 Investigation of data requirements for un-
supervised model updating

The aim of this section is to study the performance of the framework on data with

different characteristics. In particular, we intend to verify the statements made

Section 3.2, which hypothesised that the class-unconditional distribution p(x) of a

dataset must be affected by concept drift in order for a classifier that does not use

supervision to correctly classify its data. For this purpose, we test the framework

on a dataset whose concept drift causes a change of p(x), and on a dataset with

concept drift but fixed p(x). An experiment involving the use of Gaussian data

is presented in Section 4.2.1, while Section 4.2.2 presents an experiment with a

uniformly distributed dataset. Section 4.7 presents a summary of results of the

experiments.

4.2.1 Classification of Gaussian data with the SVM

The goal of this experiment is to establish whether it is possible to update a

classification model over data with concept drift and changing p(x). For this purpose,

an instance of the framework with the SVM as a base learner is tested on a dataset

with nonseparable classes and Gaussian distribution.

Section 4.2.1.1 describes the experimental setup of the framework: the character-

istics of the data distribution, the parameters of the framework, the parameters of

the SVM and the performance measures. It also defines the hypothesis and explains

how to determine the number of runs that are needed to test the hypothesis. Section

4.2.1.2 presents the analysis of the sensitivity of the parameters of the framework.

Section 4.2.1.3 provides a comparison between the framework and a collection of

supervised techniques, while Section 4.2.1.4 provides a rationale for the results.

4.2.1.1 Experimental setup

This section describes the characteristics of the data, the parametric setting of

the framework and that of the SVM, the measures that are used to assess the

performance of the framework.

Ph.D. Thesis 103 Piero Conca



Chapter 4 - Experiments

Gaussian data distribution. The distribution of the data has simple character-

istics: its number of classes is fixed and its concept drift is incremental. The data

distribution is bi-dimensional and it contains the classes “ + 1” and “ − 1”. Each

class is defined by a Gaussian bivariate pdf. Initially, the position of the Gaussian

distribution of class “ + 1” is given by the coordinates (1, 1), while the center of

the distribution of class “ − 1” is identified by the coordinates (1.7, 1). The same

standard deviation is used for both Gaussian distributions and both features. In

particular, σ = 0.2.

The first 3000 instances of the data stream are labelled and are not affected

by concept drift. This information is used by the framework to establish a model,

through the training procedure 5 described in the Section 3.3.1. After the training

phase, the stream only generates unlabelled instances that are affected by concept

drift. Unlabelled instances are classified using the Procedure 6 described in Section

3.3.2. Concept drift is simulated by changing the position of the centers when a new

instance is generated. In particular, the number of testing instances that is generated

is 2, 000, 000, and the positions of the Gaussian clusters are shifted by two units

along the x axis at the end of a run, with respect to their initial positions. Figure

12 shows the position of the classes before concept drift starts (a) and at the end

of the experiment (b). Notice that the relative position of a Gaussian cluster with

respect to the other cluster does not change along the experiment. Different data

streams are generated by initialising the data generator with different seed numbers.

There are multiple reasons for such a design of the distribution. The distributions

of the classes change, as their centers move. However, since the relative position

of a Gaussian cluster with respect to the other does not vary, we can assume that

an ideal classifier should maintain its performance unvaried along the experiment.

This allows to measure a performance decrement caused by concept drift. Moreover,

the fact that the Gaussian clusters move by two units along the x-axis, causes the

distribution at the end of the experiments to differ considerably from the initial

distribution. In this way, we expect the performance of a static classifier to drop

over such a prolonged drift. By contrast, testing the framework on a less extended

drift might not reveal the magnitude of the degradation of its performance.

In addition, the two million instances that are generated during concept drift

should provide sufficient information to a classifier in order to update its model. If

Ph.D. Thesis 104 Piero Conca



Chapter 4 - Experiments

a small number of instances is used, a classifier might not have enough data in order

to generate accurate models across a run.

1 2 3 40
feature 1

fea
tu

re
 2

(a)

1 2 3 4

1

0
feature 1

fea
tu

re
 2

(b)

2

1

2

Figure 12: Representation of the Gaussian data. Distribution at the beginning of
the experiment (a) and at the end (b). Notice that the position of the clusters moves
along the x axis, but their relative position does not change.

Parametric settings. The configurations of the parameters of the framework and

the parameters of the SVM are shown in Table 2.

The type of kernel is a radial basis function, while the cost function, that tunes the

fitness of a model to the data, has a value of 10.

Concerning the framework, the parameter thtraining dictates how many instances

of each class have to be collected from the initial stream of supervised data in

order to train a mature classifier and add it to the ensemble. Considering that

3000 is the number of labelled instances and thtraining = 250, generally a mature

classifier is trained with at least 500 instances (at least 250 instances of each class).

Ph.D. Thesis 105 Piero Conca



Chapter 4 - Experiments

Parameter Value

framework

thtraining 250
thonline 200
ratioNaiveMature 1.0
FIFOsizeID 7
thID 0.3

SVM
-s (problem) 0 (classification)
-t (kernel function) 2 (radial basis)
-c (cost) 10

Table 2: Parametric configuration of the framework for the experiment involving
the SVM and Gaussian data.

Therefore, the number of mature classifiers the framework will contain is 5, on

average. Similarly, the value of thonline determines that at least 200 instances

classified as “+1” and at least 200 instances classified as “−1” need to be collected

in order to train a new näıve classifier. The value of the parameter ratioNaiveMature,

in this case, dictates that the number of näıve classifiers equals the number of mature

ones. The values of the parameters FIFOsizeID and thID imply that the distance

between mature and näıve classifiers dMN must be higher than the distance between

mature classifiers dM and the distance between näıve stovepipes dN in at least than

3 of the last 7 iterations, where an iteration involves the training of a näıve classifier

(based on the description that of Section 3.3.3). In fact, the activation threshold is

bFIFOsizeID ∗ thIDc = b0.3 ∗ 7c = 2 (according to the pseudo-code 7 of Section

3.3.3).

In order to evaluate the performance of the framework, accuracy, precision and

recall are measured. Accuracy represents the percentage of instances that are

correctly classified and is calculated by the formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

A true positive TP is an instance with label “ + 1” that is classified correctly, a

misclassification of the same instance would generate a false negative FN . In a

similar way, a true negative TN is a instance with class “ − 1” that is classified

correctly, while a false positive FP is recorded when a negative instance is classified

as positive. Precision, which represents the percentage of true positives among the

instances that are classified as positive, is calculated by the formula:

Precision =
TP

TP + FP
(4.2)

Ph.D. Thesis 106 Piero Conca



Chapter 4 - Experiments

Recall represents the ratio of positive instances that are classified correctly among

all the positive instances:

Recall =
TP

TP + FN
(4.3)

Hypothesis. This experiment evaluates the ability of the instance of the frame-

work with the parameters of Table 2 to classify the Gaussian distribution. The null

hypothesis is formulated as:

The performance of an instance of the adaptive framework featuring

the SVM, when tested on the Gaussian dataset, is not statistically dif-

fererent from the performance of an instance of the framework without

adaptivity, that is with a static model.

In order to test the hypothesis, the framework was run 50 times over different

datasets generated by the Gaussian distribution, and the median values of accuracy,

precision and recall were recorded. An instance of the framework without adaptivity,

and therefore with a static model, was tested on the same data. Then the two sets

of results were compared by means of the Mann-Whitney test [58, 98]. Given two

sets of values, the test evaluates the likelihood that values drawn from one set are

larger than values drawn from the other sets. Since it is a nonparametric test, no

assumption is made about the distribution of the data.

The test reveals that the hypothesis can be rejected with a confidence of 0.995.

In fact, the probabilities that the values of accuracy, precision and recall of the static

instance and those of the adaptive instance are generated from the same distribution

are respectively 7.79E − 10, 7.813E − 4 and 7.79E − 10.

The box and whisker plots in Figure 13 display the spreads of the median values

of accuracy, precision and recall across the 50 runs. The plot at the top shows

the performance of the adaptive instance of the framework, while the results of its

static counterpart are shown by the plot at the bottom. Notice that the plots adopt

different scales. In fact, while for the adaptive instance of the framework the median

values lie in a small interval, for the static instance that interval is considerably

larger. For the adaptive instance, the spread of the values of accuracy, precision and

recall around the 50th percentile is limited. This suggests that the adaptive instance

of the framework performs similarly over the 50 runs. Although the majority of the

values for the static instance are distributed around their respective 50th percentile

Ph.D. Thesis 107 Piero Conca



Chapter 4 - Experiments

(bottom plot), the 0th percentile of the values is much smaller.

The intervals of the values of accuracy of the two implementations do not overlap,

this implies that the two implementations perform differently on this distribution.

The same is observed for recall, but not for precision. An explanation for this is

given in Section 4.2.1.4, along with an explanation of the reason why the values

of accuracy lie inbetween those of precision, which are higher, and those of recall,

which are smaller.

Ph.D. Thesis 108 Piero Conca



Chapter 4 - Experiments

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

adaptive static

A
cc

ur
ac

y

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

adaptive static

P
re

ci
si

on

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

adaptive static

R
ec

al
l

Figure 13: Comparisons of the values of accuracy, precision and recall of the adaptive
framework and the static framework. Notice that different scales are used.

Ph.D. Thesis 109 Piero Conca



Chapter 4 - Experiments

Determining the number of runs. The A-test was used to determine how many

runs are needed for each experiment [45, 94]. That test is a statistical instrument

that estimates the difference between two different sets of values by assigning ranks

to their values. The A-test returns a score in the interval [0.5, 1]. It represents the

probability of a randomly selected value from one set being greater than a randomly

selected values from the other set. In [45], three different interval are defined, in

particular if the score lies within the interval [0.5, 0.56] the difference between the two

distributions is considered small, the difference is medium in the interval [0.56, 0.66],

it is large for values within [0.66, 0.73], while the difference is very large for A-test

scores higher than 0.73.

In the case of the framework, the A-test was used to determine how many times

the same experiment needs to be repeated in order for the distribution of an output

measure to be considered “stable”, in the sense that it does not change significantly if

the same number of runs are repeated. In order to do this, we considered the median

accuracy value of each run, and we compared sets having sizes of respectively 1, 5,

10, 20, 50, 100 and 200 runs. To achieve a greater confidence about the result, it

was decided to compare ten rather than only two sets of values. In particular, a

set of values that is used as a reference is compared against the remaining nine sets

and the highest A-test score is recorded. Figure 14 shows the results the A-test

scores in correspondence of different numbers of runs. For the values 5 and 10 the

difference between the distributions of the median values of accuracy, precision and

recall is large or very large, starting from 20 runs the difference can be considered

medium. Only when 200 runs are performed the maximum difference between the

ten distributions becomes small.

Although performing 200 runs would provide smaller statistical difference be-

tween the sets of values, the observation of the plots of the median value of each

run convinced us that repeating the experiment 50 times is sufficient. This decision

was taken in the light of the fact that all the median accuracy values lie within the

interval [0.949, 0.956], a very small subset of the set of values of accuracy. However,

time also played a role in this decision. Since a single run requires about 20 minutes

to complete, performing 200 runs would have been impractical.

Ph.D. Thesis 110 Piero Conca



Chapter 4 - Experiments

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 10 50 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Accuracy
Precision
Recall

20

SMALL effect

LARGE effect

MEDIUM effect

Figure 14: A-test results. Despite the lowest scores are obtained for 200 runs, we
considered that repeating the same experiment 50 times is sufficient, given that all
the median accuracy values fall in a very narrow interval.

4.2.1.2 Sensitivity Analysis

The analysis of the sensitivity of a system examines the influence of the input

parameters on the output variables of the system. It involves the variation of the

values of the input parameters and the measurement of the outputs, in order to study

how the system reacts to such variation. Two distinct strategies can be identified.

One-at-a-time techniques vary each parameter in turn with respect to a reference

value, while keeping the other parameters unchanged. Although this strategy is

generally easy to implement, it suffers the limitation that large regions of the space

of the parameters are not covered by the sampling process. In this way it is not

known how the system (the framework, for example) performs in those regions [80].

A much clearer view of the relationships between inputs and outputs is obtained if

the parameters are varied simultaneously, this is known as global sensitivity analysis

[80]. One of these techniques is the Latin hypercube sampling method. It consists

of dividing the input space into a grid of cells across which a group of samples is

generated [80]. For a bidimensional case, samples are generated in such a way that

each row and each column do not contain more than a single instance. Plots are

generated to show how different values of a parameter affect a performance measures.

Ph.D. Thesis 111 Piero Conca



Chapter 4 - Experiments

In order to analyse the framework we opted for the Latin hypercube implemen-

tation in [45]. The input space is defined by the intervals of the parameters in

Table 3, while the number of points that are sampled from the input space is 200.

Concerning the outputs, the values at the end of a run are considered, rather than

the medians. In fact, the measures at the end of a run show more clearly the ability

of an instance to cope with drift. 4.

Parameter Interval
thtraining [95, 480]
Thonline [50, 500]

ratioNaiveMature [0, 1.0]
FIFOsizeID [2,20]

thID [0, 1.0]

Table 3: Intervals of the parameters for the sensitivity analysis.

Correlation table and plots. The Latin hypercube implementation in [45] gen-

erates a table of the values of correlation between inputs and outputs, as well as, a

series of plots. The correlation values that are produced by the sensitivity analysis

are shown in Table 4.

Parameter Accuracy Precision Recall
thtraining 0.344 -0.469 0.351
thonline -0.00535 0.47 -0.00139
ratioNaiveMature -0.285 0.302 -0.291
FIFOsizeID -0.124 0.102 -0.122
thID -0.602 0.599 -0.598

Table 4: Correlation coefficients between parameters and output measures.

The values in the table suggests that the parameters that most largely affect the

performance of this implementation of the framework are thID and thtraining. The

influence of ratioNaiveMature is lower, while the effect of the variation of FIFOsizeID

seems to be irrelevant. Concerning thonline, it is not clear whether this parameter

affects the performance of the framework, as different correlation values are produced

for the output measures.

Ph.D. Thesis 112 Piero Conca



Chapter 4 - Experiments

The correlation table also shows that accuracy and recall have always the same

sign and therefore are positively correlated between each other, while precision has

always opposite sign with respect to the other two measures. An explanation of this

phenomenon is presented in Section 4.2.1.2. That section shows that high values

of accuracy and recall and low values of precision are associated with instances of

the framework that can classify data with concept drift correctly. By contrast, an

instance of the framework that cannot cope with the drift of the dataset would show

high precision, but low accuracy and recall.

Each plot generated by the Latin hypercube sensitivity analysis depicts the two

hundred samples in function of an input parameter and an output measure. In all

the plots it is possible to identify two distinct clusters of points, one at the top

and one at the bottom, as shown for the plots of thonline of Figure 15. The plots

of the other variables are described in the Appendix C.1. This indicates that the

framework can handle concept drift or it can fail, intermediate values are a minority.

Such a characteristic can be explained by the fact that as long as the updating of the

framework model is able to keep track of the concepts (the clusters) the performance

remains high. However, if the updating of the model cannot keep the pace of the

drifting data, the performance of the framework drops.

The sensitivity analysis reveals that the most influential parameters are the

threshold of the FIFO queue, thID, that is used to infer drift, and the training

threshold thtraining. The first result is not surprising. In fact, the threshold thID

determines the number of times in which the distance dMN has to be higher than

both dM and dN in the last FIFOsizeID iterations in order to infer drift, as described

in Section 3.3.3. Therefore, the higher the value of thID, the stricter is the condition

that is needed to infer drift.

We interpret the positive correlation between thtraining and accuracy and recall

(negative in the case of precision) with the fact that higher values of thtraining

correspond to smaller numbers of classifiers. An ensemble with fewer classifiers has

a smaller “inertia” than one with many classifiers. In the sense that the replacement

of a classifier has a larger effect on the model of the ensemble if the ensemble has

a small size, therefore it takes fewer replacements to change the model with respect

to a larger ensemble.

Although the correlations between thonline and accuracy and recall does not seem

Ph.D. Thesis 113 Piero Conca



Chapter 4 - Experiments

significant, the correlation between the same measure and precision reveals that

thonline may indeed affect the performance of the framework.

100 200 300 400 500

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_online
Measure: Accuracy

Correlation Coefficient: −0.00535

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
96

0.
97

0.
98

0.
99

1.
00

LHC Analysis for Parameter: th_online
Measure: Precision

Correlation Coefficient: 0.47

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_online
Measure: Recall

Correlation Coefficient: −0.00139

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 15: Latin hypercube sensitivity analysis plot of thonline against accuracy,
precision and recall.

A second look at the plot of accuracy and recall, highlights that the cluster of

points at the bottom has a linear trend as it can be seen in Figure 15. We believe

this gives a positive contribute to the correlation between accuracy and the output

variable thonline, as well as the correlation between recall and the same variable.

However, this phenomenon is probably caused by the fact that higher values of

thonline cause the framework to stop before than it would do for smaller values. For

this reason, the last accuracy (or recall) value that is recorded is higher for high

Ph.D. Thesis 114 Piero Conca



Chapter 4 - Experiments

values of thonline, but that does not mean that the framework can deal with drift.

The parameter rationaiveMature seems to have little influence on the performance

of the framework, however it appears that small values cause higher performance. In

addition, the low correlation between the parameter FIFOsizeID and the outputs

indicates that that parameter does not have a significant influence on the framework

performance. Therefore, varying the length of the FIFO queue does not affect the

performance significantly.

The plots for the parameters thtraining, rationaiveMature, FIFOsizeID and rationaiveMature

are shown in the Appendix C.1.

Interpretation of the sensitivity analysis. This section provides and explana-

tion of the fact that precision is negatively correlated to accuracy and recall. For

this purpose, we show that high values of accuracy and recall are associated with

the framework being able to deal with concept drift, while high values of precision

indicate that the framework cannot classify the data correctly.

In particular, we consider two samples, each associated with a configuration of

the parameters of the framework, amongst the two hundred that were generated

for the analysis of the sensitivity. When these are displayed in the plots of Figure

15, they belong to different clusters. Firstly, we examine a sample for which the

framework maintains high performance in terms of accuracy and precision. Then,

we consider a sample that generates higher precision than the first sample, but lower

accuracy and recall. In order to explain this result we will show how TP , TN , FP

and FN vary across a run.

For the first sample, the normalised number of TP and that of TN do not

vary considerably across the iterations. Their values are respectively around 0.47

and 0.49. By contrast, the variations of FP and FN are more pronounced. In

particular, the normalised number of FP , that right after the training phase has

the median value of 0.02166, at as early as 10% of completion of a run is almost

halved, as its median value is 0.01092. The number of FP remains low for the rest

of the computation, and its value at the end of a run is 0.01189. The median value of

FN after training of the model is 0.02017, which is comparable with the initial value

of FP . However, FN and FP have different trends. In fact, the median value of

FN increases right after training and reaches the value of 0.03521 at the end of the

computation. The fluctuation of the values of FP and FN reflects on the measures

Ph.D. Thesis 115 Piero Conca



Chapter 4 - Experiments

of precision and recall. To be more precise, the median values of recall decrease

from the initial value of 0.96146, and they stabilise at around 0.93. By contrast, the

precision increases from 0.95648 to 0.97. The values of accuracy, which are between

0.95 and 0.96, do not seem to vary much across a run.

We now consider a second set of parameters that generates lower accuracy and

recall, but higher precision with respect to the first set. The initial values of TP , TN ,

FP and FN are similar to those observed for first sample. This means that both

configurations perform well at the beginning of the testing phase. The situation

changes as more unlabelled data is classified. In fact, we observed a noticeable

decrement of the TP towards 0, and an increment of the normalised number of TN

to about 0.5. Similarly, the number of FP , that is initially low, furthely decreases

and tends to 0, while the FN tend to 0.5. These variations cause the value of

accuracy to decrease to 0.5 and that of recall to decrease to 0. However, in this case,

precision contrasts with the other two measures. In fact, its value at the end of the

runs is around 1. This is similar to what was observed for the other configuration

of the parameters.

Figure 16 provides an interpretation of why recall and accuracy decrease while

precision increases, and therefore these measures are negatively correlated. The

top of the figure, case (a), shows the Gaussian clusters at the beginning or a run

(overlapped grey circles), the black line represents the boundary of the model of the

framework.

Ph.D. Thesis 116 Piero Conca



Chapter 4 - Experiments

feature 1

feature 1

feature 1

fe
at

ur
e 

2
fe

at
ur

e 
2

fe
at

ur
e 

2

Gaussian 
clusters

model
boundary

TP

TN

FP

FN

(a)

(b)

(c)

1 2 3 4

1

1 2 3 4

1

0

0 1 2 3 4

1

0

Figure 16: Representation of the model of the framework featuring the SVM at the
beggining of a run(a), at the end of a successful run (b) and in case of failure (c).

The points which lie on the righthand side of the boundary are classified as

positive, the points on the left are classified as negative. The boundary in this case

is in an optimal position as it generates a minimal number of misclassified instances

(the sum of FP and FN). Section 2.2.1 gave an explanation as to why this happens

for univariate normal distributions. When concept drift is ongoing, the boundary

of the model should be slightly shifted towards the left, as shown in the part (b)

Ph.D. Thesis 117 Piero Conca



Chapter 4 - Experiments

of Figure 16. This might be due to a delay between the start of concept drift and

this being inferred, and therefore the model being updated. This would explain the

decrement of FP and the increment of FN that causes precision to increase and

recall to decrease.

Part (c) of Figure 16 gives an interpretation of the performance of the framework

with the second set of parameters. The figure depicts a run in which the shift of

the boundary with respect to the center of the clusters is much larger than case

(b). This would reduce the number of TP and increases the number of FN , while

the number of TN is maximum as negative instances are all classified correctly and

therefore there are no FP . This interpretation is compatible with the results of the

second parametric configuration.

Some conclusions can be drawn from this analysis. The framework with the

SVM is able to deal with the concept drift of this dataset if the values of the output

measures do not disclose significantly with respect to their initial values. In fact, the

position of the boundary of the model inbetween the two classes is optimal, which

is also the initial position.

When the values of the parameters are varied, the ability of the framework

to update its model changes, and this reflects on its performance. In particular,

decrements of the accuracy and the recall are associated with increments of the

precision, and viceversa. In addition, in this context, precision does not denote the

ability of the framework to deal with concept drift as clearly as recall and accuracy

do. In fact, there is little difference between the values of precision of a sample that

is able to deal with drift and the values of precision of a sample that is not. This

interpretation is confirmed by the plots of actual data shown in the Appendix D.

4.2.1.3 Comparison with supervised techniques

This section presents a comparison of the framework with a selection of supervised

techniques. The purpose of this comparison is to highlight the consequences of not

using supervision to update the model of a classifier. The supervised techniques

are the Dynamic Weighted Majority (DWM) algorithm and bagging with ADWIN

[8, 9, 53]. DWM was described in Section 2.4.1.4, bagging in Section 2.2.3 and

ADWIN in Section 2.4.1.5.

Table 5 illustrates the parameters of the comparisons, while those of the frame-

work and the SVM are determined by Table 2. The only parameter of bagging

Ph.D. Thesis 118 Piero Conca



Chapter 4 - Experiments

with ADWIN is the size of the ensemble. In the case of DWM, β controls the

penalisation that a classifier undergoes if it misclassifies an instance, γ avoids the

size of the ensemble to grow. The third parameter of DWM dictates that every 1000

instances uneffective classifiers are deleted, potentially new classifiers are created

and the weights of the classifiers are recomputed. The dataset is that with two

Gaussian clusters illustrated in Section 4.2.1.1.

Technique Parameter Value

DWM
β 0.5
γ 0.2
period 1000

bagging + ADWIN ensemble size 10

Table 5: Parametric configurations of DWM and bagging+ADWIN for the experi-
ment involving SVM and Gaussian data.

This comparison reveals that there are little differences between the performances

of the three techniques. Figure 17 compares the performances of the techniques.

The values of accuracy are similar for the three techniques. The framework has

the highest precision between the three, while bagging+ADWIN has the lowest one.

Bagging with ADWIN has the best performance in terms of recall, while the recall of

the framework is smaller than the other techniques. We presume that this is caused

by a delay that affects the mechanism of drift inference.

Ph.D. Thesis 119 Piero Conca



Chapter 4 - Experiments

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

Framework bagging + ADWIN DWM

A
cc

ur
ac

y

Techniques

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Framework bagging + ADWIN DWM

P
re

ci
si

on

Techniques

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Framework bagging + ADWIN DWM

R
ec

al
l

Techniques

Figure 17: Distributions of the values of accuracy, precision and recall of the
framework, of bagging+ADWIN, and of DWM over the Gaussian data stream.
Notice that different scales are used.

Ph.D. Thesis 120 Piero Conca



Chapter 4 - Experiments

4.2.1.4 Interpretation of the results

This experiment showed that it is possible to classify the Gaussian dataset without

the need of supervision. However, it is to be understood what mechanism causes

the framework to react to the concept drift. We propose an interpretation of the

results. In order to simplify the explanation, let us suppose that the data contains

only a single feature rather than two, while the number of classes and the type of

distribution are left unvaried.

The explanation begins with the training of a model by means of the true classes

of the data. An analysis of the outcomes of using labels from the voting to train

new classifiers follows. Then, assuming that the ensemble contains three classifiers,

the effect of the replacement of each of those is examined. Finally, the importance

of the gradient of the distribution for the training of new classifiers is highlighted.

Training with supervised data. Figure 18 depicts p(x, “+1”) (red line), p(x, “−
1”) (green line), and their sum p(x) (dotted line). The supervised data that is

initially provided is generated from p(x, “ + 1”) and p(x, “− 1”). This data is used

to establish the model.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en

si
ty

of
p
ro
b
ab

il
it
y

x

β

p(x)
p(x, “− 1”)
p(x, “ + 1”)

Figure 18: Data distribution of the supervised training phase. The green line and
the red line represent respectively the distributions of the negative class and the
positive class. Their sum, the class-unconditional distribution, is represented by the
dotted line.

Ph.D. Thesis 121 Piero Conca



Chapter 4 - Experiments

In Figure 18, the boundary of the model is represented as a continuous black

line between the classes. The boundary is an optimal position, as it minimises the

classification error according to the explanation given in Section 2.2.1.

Model updating using labels from the voting. When the online phase starts,

the information conveyed by the unlabelled data only concerns the p(x) of the data.

In fact, since there is no supervision, information about the distributions of the

single classes is no longer provided. According to the classification model, points on

the left of the boundary are classified as “+1”, while points on the right are classified

as “ − 1”, as shown in Figure 19. Unlabelled instances and the labels associated

with them through voting are used to train a new classifier. We might consider this

data as if it was generated from the distribution p(x) = p′(x, “ + 1”) + p′(x, “− 1”),

where p′(x, “ + 1”) and p′(x, “− 1”)” are as depicted in Figure 19.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en

si
ty

of
p
ro
b
ab

il
it
y

x

β

p′(x, “− 1”)
p′(x, “ + 1”)

Figure 19: In the online phase, new näıve classifiers are trained using labels from
the voting. Therefore, the distribution of the data and their labels can be described
by p′(x, “ + 1”) and p′(x, “− 1”)”.

Effect of the replacement of the different classifiers of the ensemble. Let

us now suppose that, after several iterations, the distribution has drifted but the

model has not changed so that its boundary is still in the same position as when

the online phase started. Figure 20 depicts this scenario.

Ph.D. Thesis 122 Piero Conca



Chapter 4 - Experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en

si
ty

of
p
ro
b
ab

il
it
y

x

βα γν

a b c d

p′(x, “− 1”)
p′(x, “ + 1”)

Figure 20: Probability density distributions of class “ + 1” (red line), “− 1” (green
line) in the online phase. The grey lines and the black line represent the boundaries
of the three classifiers α, β, γ, while the blue line is the boundary of the näıve
classifier ν. In particular, the boundary of β conincides with the boundary of the
model of the framework.

Let us also suppose that the framework contains three mature classifiers α, β,

γ (grey lines and black line), a näıve classifier ν (blue line) and the mechanism of

drift inference has been triggered. The boundaries of the three classifiers divide the

input space into four regions, in the diagram they are labelled as “a”, “b”, “c” and

“d”.

The points lying in the region “a” are classified unanimously by the classifiers

as belonging to class “ + 1”. The points that fall into the region “b” are classified as

“− 1” by the classifier α, while the classifiers β and γ disagree with α by assigning

the class “ + 1” to those points, and so does the majority voting. Similarly, in the

region “c” two classifiers out of three (α and β) label incoming points as “−1”, and

all the classifiers agree that points in region “d” belong to class “ − 1”. Therefore,

we can say that the boundary of the model of the framework corresponds to the

central boundary (of classifier) β, for this reason it is highlighted using a black line.

We now analyse how the boundary of the framework model is affected when the

näıve classifier ν replaces one of the mature classifiers. Figure 21 despicts these three

possibilities, whether it is α, β or γ the classifier to be replaced. If the classifier ν

Ph.D. Thesis 123 Piero Conca



Chapter 4 - Experiments

replaces α, its boundary will be in a central position and the boundary of the (model

of the) framework will coincide with it, as shown in Figure 21 (top plot). The same

result is obtained if ν replaces β, in fact, also in this case ν becomes the “central”

classifier, Figure 21 (central plot). If ν replaces γ, the boundary of the model of the

framework does not change with respect to the initial case, since the boundary of β

continues to be in a central position (bottom plot of Figure 21). In two cases out

of three the boundary of the framework has shifted to the right, which is also the

direction of drift. In one case the boundary has not changed.

Ph.D. Thesis 124 Piero Conca



Chapter 4 - Experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en
si
ty

of
p
ro
b
ab

il
it
y

x

βα γν

p′(x, “− 1”)
p′(x, “ + 1”)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en
si
ty

of
p
ro
b
ab

il
it
y

x

βα γν

p′(x, “− 1”)
p′(x, “ + 1”)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en
si
ty

o
f
p
ro
b
a
b
il
it
y

x

βα γν

p′(x, “− 1”)
p′(x, “ + 1”)

Figure 21: Effect of the replacement of the näıve classifier ν with the mature
classifiers α (top), β (middle), γ (bottom) on the boundary of the model of the
framework (black line). The dotted grey line indicates a classifier that has been
deleted.

Ph.D. Thesis 125 Piero Conca



Chapter 4 - Experiments

Effect of the gradient on the training of new classifiers. In order to describe

this example, we have implicitely assumed that the boundary of the näıve model ν

is on right with respect to the boundary of the model of the framework.

If the boundary of the framework model is in a position where p(x) has a gradient,

this is more likely to happen than the opposite case, in which the boundary of ν is

on the right of the boundary β.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en

si
ty

of
p
ro
b
a
b
il
it
y

x

β

Pa Pb

d d

P+1 P-1

p′(x, “− 1”)
p′(x, “ + 1”)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

d
en

si
ty

of
p
ro
b
ab

il
it
y

x

β ν

p′(x, “− 1”)
p′(x, “ + 1”)

Figure 22: Probability of points to lie within a distance “d” from the boundary β is
higher for points classified as “ + 1” (top). The diagram at the bottom shows that,
when enough data has been classified, the same data is used to train a new näıve
classifier ν ′, which is shifted to the left with respect to β.

In fact, if we consider an interval [β − d, β + d] around the boundary of the

framework β, the probability P+1 of a point being sampled from [β − d, β] is higher

Ph.D. Thesis 126 Piero Conca



Chapter 4 - Experiments

than the probability P−1 of a point being sampled from [β, β+ d]. The probabilities

P+1 and P−1 are the areas under the curve p(x). They are highlighted in top plot

Figure 22, which shows that P+1 is greater than P−1. This means that when a batch

of data is collected during the online phase, with high probability the distance of

the closest point labelled as “ + 1” from the boundary of the framework β is smaller

than the distance of the point labelled as “− 1” that is closest to β. This is shown

in Figure bottom plot 22. The same data and the labels from the voting process are

used to train a new classifier ν ′. The points indicated by the arrows are the support

vectors, notice that the one on the “ + 1” side is closer to β than the one on the

“ − 1” side. Since the SVM maximise the distance from the support vectors, the

new classifier that is trained on these data will be shifted to the right with respect

to β.

Summary. Initially the model is trained using information from p(x, “ + 1”) and

p(x, “ − 1”). After that, the only information about the changing distribution is

provided by p(x). The replacement of a classifier of the ensemble is likely to cause

the shift of the boundary of the framework towards the local minimum of p(x),

inbetween its two maxima. This is based on the assumption that the näıve classifier

that replaces a mature classifier is closer to that region than the boundary of the

model is. Although that is not always the case, it is more likely to happen than

the opposite case. This is due to the gradient of the distribution p(x), which causes

points on the side with higher density to be closer to the boundary of the model

than the points on the less dense side. Since the SVM classifier base their operation

on the maximisation the distance between points of different classes, as a result new

näıve classifiers will be shifted towards the local minimum of p(x) with respect to

the original boundary. In this context, the local minimum is also the point that

provides maximum separation and therefore highest classification performance.

4.2.2 Uniformly distributed data

The experiment that is described in this section involves the use of uniformly

distributed data. According to the considerations that were expressed in Section

3.2, we would not expect the framework to be able to perform well on this type of

data. The distribution accounts for bivariate uniform data within the interval [0, 4]

of the first feature and the interval [0, 2] of the second feature. Points that lie within

Ph.D. Thesis 127 Piero Conca



Chapter 4 - Experiments

a circle whose center is initially in the point (1, 1) and diameter equal to 1, belong to

the class “+1”. Points that lie outside of that circle belong to class “−1”. Concept

drift is simulated by changing the position of the circle from the initial coordinates

of (1, 1) to the final position of (3, 1). Similar to the dataset containing Gaussian

data, the number of training instances is 3, 000, while the number of unlabelled

instances is 2, 000, 000. A representation of the data distribution at the beginning

of the experiment (a) and at the end (b) is depicted in Figure 23.

The classification technique that is used is the SVM and the parametric setting

is described in Table 2.

1 2 3 40
feature 1

fea
tu

re
 2

(a)

1 2 3 4

1

0
feature 1

fea
tu

re
 2

(b)

2

1

2

Figure 23: Representation of the uniform distribution at the beginning of the
experiment (a) and at the end (b). The position of the positive class has shifted
along the x axis.

The results of the A-test shows that repeating the experiment 50 times is suffi-

cient, these are shown in Figure 24. In fact, although the A-test score for accuracy

is still large for fifty runs, accuracy shows only marginally how the framework is

actually performing on this distribution.

Ph.D. Thesis 128 Piero Conca



Chapter 4 - Experiments

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 10 50 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Accuracy
Precision
Recall

20

SMALL effect

LARGE effect

MEDIUM effect

Figure 24: A-test results. Small scores are obtained for 100 runs. However precision
and recall, which are more significant than accuracy in this concetxt, are sufficiently
low for 50 runs.

The null hypothesis is formulated as:

The performance of an instance of the adaptive framework featuring

the SVM, when tested on the uniform dataset, is not statistically different

from the performance of an instance of the framework without adaptivity,

that is, with a static model.

The Mann-Whitney nonparametric test determined that the probabilities of the

values of the adaptive instance and the values of the static instance being generated

from the same distribution are: 7.803E-12 for accuracy, 1 for precision and 1 for

recall. Therefore the null hypothesis cannot be rejected with confidence higher than

0.995. As a matter of fact, all the final values of precision for the adaptive and the

static instance of the framework equal 0. The same is observed for the values of

recall.

In particular, Figure 25 shows the plot of the values of accuracy of the adaptive

instance and the static instance of the framework. Although the two distributions

of values are different, the values of the adaptive framework are not higher than 0.85

for any of the runs.

Ph.D. Thesis 129 Piero Conca



Chapter 4 - Experiments

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

Adaptive Static

A
cc

ur
ac

y

Techniques

Figure 25: Comparison of the values of accuracy of the adaptive implementation
and the static implentation of the framework using the SVM on the dataset with
uniform distribution.

4.2.2.1 Sensitivity Analysis

Perhaps, the rejection of the hypothesis was caused by the parametric configuration

that was used. A sensitivity analysis would clarify if alternative configurations allow

the framework to deal with the concept drift of this dataset. The number of sampling

points that were generated is 200, and 50 runs were performed for each sample. The

plot of the parameter thonline shows that no sample combines high values of precision

and recall. Therefore, we can draw the conclusion that the framework cannot deal

with the concept drift of the uniformly distributed dataset. Additional plots are

provided in the Appendix C.3.

Ph.D. Thesis 130 Piero Conca



Chapter 4 - Experiments

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_train
Measure: Accuracy

Correlation Coefficient: 0.571

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_train
Measure: Precision

Correlation Coefficient: 0.247

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_train
Measure: Recall

Correlation Coefficient: 0.252

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 26: Latin hypercube sensitivity analysis plot of thtraining against accuracy,
precision and recall.

4.2.2.2 Comparison with supervised techniques

A comparison with supervised techniques reveals the importance of supervision

for this type of distributions. A selection of supervised algorithms was tested on

exactly the same data that was used to test the framework. These are DWM and

Bagging+ADWIN, the same techniques tested on the Gaussian data. The same

data that was used to test the hypothesis is used for this comparison.

The values of the measures at the end of the runs are considered, rather than

the median values. From the results, shown in the Figure 27, the difference between

the performances of the supervised technique and the performance of the framework

Ph.D. Thesis 131 Piero Conca



Chapter 4 - Experiments

is evident. The box and whisker plots show the distribution of the median values

of accuracy, precision and recall across 50 runs. Although the accuracy of the

framework may look high (around 0.85), because of the imbalance of the classes,

even a classifier that assigns negative class to all the instance would perform with

high accuracy on this dataset. By contrast, the three output measures of the

supervised techniques of DWM and baggin+ADWIN are close to 1. In particular,

baggin+ADWIN performs slightly better than DWM on this dataset.

Ph.D. Thesis 132 Piero Conca



Chapter 4 - Experiments

 0.8

 0.85

 0.9

 0.95

 1

Framework bagging + ADWIN DWM

A
cc

ur
ac

y

Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

Framework bagging + ADWIN DWM

P
re

ci
si

on

Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

Framework bagging + ADWIN DWM

R
ec

al
l

Techniques

Figure 27: Distributions of the values of accuracy, precision and recall of the frame-
work, of bagging+ADWIN, and of DWM over the data with uniform distribution.
The values of recall and precision of the framework indicate that it is not able to
deal with the concept drift of this dataset. Notice that different scales are used.

Ph.D. Thesis 133 Piero Conca



Chapter 4 - Experiments

4.2.3 Conclusions

The objective of this investigation was to highlight potential differences in the

capability of the framework of dealing with datasets with different distributions.

In particular, the p(x) of the dataset presented in Section 4.2.1 changes when drift

starts, while the p(x) of the dataset of Section 4.2.2 is not affected by concept

drift. Although it is not possible to try every possible dataset, the results that

were obtained seem to confirm the considerations expressed in Section 3.2. In fact,

while the framework is able to classify the data with a changing p(x) with good

performance, it is not able to deal with the uniform distribution and fixed p(x) of

the second dataset.

4.3 Different classification techniques

The experiments in Section 4.2.1 showed that, under certain conditions, it is possible

to classify drifting data without supervision. It is to be verified if this ability is

maintained if such conditions change. For instance, it might be the case that the

mechanisms of the implementation of the framework are effective only on SVM

classifiers. For this reason, this section shows the results of running the framework

on techniques with different characteristics from the SVM. The techniques on which

the framework is tested are AISEC, Naive Bayes, the MLP and C4.5. They were

described in Section 2.2.2.2. Although AISEC is a continuous learning techniques, in

this context the model will not be updated after an initial training. The characteris-

tic that makes AISEC an interesting testbed for the framework lies in in the way the

model is structured. In fact, this consists of a set of detectors, a very different strat-

egy with respect to the SVM, which uses a discriminant function. Näıve Bayes uses

a generative approach to classification, different from the discriminative approach of

the other techniques. The MLP is a classification technique that generates nonlinear

discriminant function by combining linear functions. Our experiments utilise MLP

classifiers with a single internal node, which generate linear discriminant functions.

C4.5 is an algorithm that trains incremental decision trees.

4.3.1 Classification of Gaussian data with AISEC

This experiment assesses the performance of the framework with AISEC. A descrip-

tion of AISEC was given in Section 2.2.2.2. The data has the Gaussian distribution

Ph.D. Thesis 134 Piero Conca



Chapter 4 - Experiments

described in Section 4.2.1.

The parameters of AISEC are configured according to Table 6. An explanation

of the role of the parameters in the AISEC algorithm is contained in Section 2.2.2.2.

Parameter Value

framework

thtraining 100
thonline 400
ratioNaiveMature 1.0
FIFOsizeID 10
thID 0.4

AISEC

CT 0.95
AT 0.95
CC 10.0
MC 0.5
NCS 125
MCS 25
IMC 100

Table 6: Configuration of the parameters of AISEC.

Based on the parameters of Table 6, the A-test was used to determine how many

times an experiment has to be repeated in order for the distribution of the results

not to vary significantly. The A-test was described in Section 4.2.1.1. However, since

completing a single run takes from several hours to up to more than a day (while

for the SVM the execution time was of the order of a few dozens of minutes), the

test could not be extended to populations larger than 30 runs. However, for such

value the A-test score seems to start converging. In fact, the scores for accuracy,

precision and recall lie in the regions of medium effect and small effect, as shown in

Figure 28.

Ph.D. Thesis 135 Piero Conca



Chapter 4 - Experiments

●

● ●

●

●

Sample Size

A
 T

es
t S

co
re

Maximum A−Test Scores for each Sample Size

1 5 10 20 30

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Accuracy
Precision
Recall

SMALL effect

LARGE effect

MEDIUM effect

Figure 28: A-test scores for the AISEC algorithm. The graph shows that for 30
runs, the A-test score is sufficiently small.

The ability of the framework to classify concept drift is verified by comparing

the values of accuracy, precision, recall generated by an adaptive instance of the

framework with those of a static implementation, in which the model cannot be

updated. The null hypothesis is formulated as:

The performance of an instance of the adaptive framework featuring

AISEC, when tested on the Gaussian dataset, is not statistically different

from the performance of an instance of the framework without adaptivity.

When the median values are used, the value of accuracy and recall do not allow for

the rejection of the hypothesis with a confidence level of 0.995. Figure 29 shows

the distribution of the values of accuracy of the two implementations across a run.

The top plot is generated using the runs of the adaptive implementation, while the

bottom plot using the runs of the static implementation. The figure shows that the

values of accuracy of the two implementations at 50% of completion of a run are

very similar.

Ph.D. Thesis 136 Piero Conca



Chapter 4 - Experiments

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

percentage of processed instances

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

percentage of processed instances

Figure 29: Values of accuracy in function of the percentage of completion of a run, for
the dynamic implementation (top) and the static one (bottom). In correspondence
of 50%, the distributions are very similar.

Ph.D. Thesis 137 Piero Conca



Chapter 4 - Experiments

In fact, the median values of the static runs are quite high (around 0.85).

However, this does not mean that the static instance is able to classify concept

drift. The problem is that a static instance stops processing the data stream, before

this is finished, and may be related to the parameter thonline, that dictates that a

certain number of instances classified as “ + 1” and the same number of instaces

classified as “− 1” need to be collected in order to train a new classifier. Since the

distribution drifts, at some point, only instances classified as “ + 1” will be available

and the framework will stop updating its model. The performance degrades quite

quickly, however the median remains high.

For this reason we decided to tested the hypothesis with value recorded at

different stages of a run. The results are shown in Table 7.

Percentage p-value p-value p-value
of completion of accuracy of precision of recall

0 1.72941E-07 0.01998 4.61336E-10
30 5.57265E-10 1.72087E-05 6.68742E-11
50 0.44201 0.38256 0.40768
70 3.01986E-11 0.00026 3.01607E-11
100 3.01986E-11 4.81892E-09 3.01230E-11

Table 7: p-values at different stages of completion of a run.

When the initial values are considered, the probability of the two sets of values

being generated from the same distribution is low for accuracy and recall, but not

for precision. The three probabilities decrease at 30% of completion of a run, while

at 50%, these probabilities reach their highest values high. The lowest p-values are

obtained at the end of a run. As a matter of fact, in Figure 29, the accuracies of

the adaptive and the static implementation clearly tend to different values. Around

0.85, for the adaptive implementation and around 0.5 for the static one. We suggest

that the values at the end of a run indicate more clearly the ability of the framework

to deal with drift. In correspondence of those values, the hypothesis can be rejected

with a confidence level of 0.995.

4.3.1.1 Sensitivity analysis

The analysis of the sensitivity of a system requires large numbers of runs to be

performed. In fact, for each sampling point, multiple runs are needed. This number

Ph.D. Thesis 138 Piero Conca



Chapter 4 - Experiments

is dictated by the A-test. For example, for the sensitivity analysis of the framework

with the SVM (Section 4.2.1), ten thousand runs were performed.

Running thousands or tens of thousands of runs, as it was done for the SVM, is

not feasible in the case of AISEC. This encouraged us to find an alternative solution.

In particular, a single run per sample was performed and a dummy variable is added

to the existing parameters of the framework. Since the dummy parameter does not

affect the performance of the framework, if enough sampling points are generated,

we would expect the correlation between the dummy parameter and the output

measures to be low. The number of points that are generated through the Latin

hypercube sampling is 300, which is higher than the number of samples that were

generated to test the framework with SVM classifiers. This is to compensate for the

fewer runs performed for each sample. The parameters of AISEC are listed in Table

6, while the ranges of the parameters of the framework are listed in Table 8. There

are some differences with respect to the ranges used for the SVM, the parameter

IMC of AISEC poses in fact constraints to the values of the parameters thtraining

and Thonline of the framework.

Parameter Interval
thtraining [100, 480]
Thonline [100, 500]

ratioNaiveMature [0, 1.0]
FIFOsizeID [2,20]

thID [0, 1.0]

Table 8: Intervals of the paramaters for the sensitivity analysis.

Table 9 shows the correlation values of the framework embodying AISEC. The

number of 300 samples that was chosen for this sensitivity analysis seems to be

sufficient. As a matter of fact, the correlation between the dummy parameter and

the outputs is sufficiently low, as it is always smaller than 0.15. Recall generates

the highest correlation value. That table clearly indicates that the framework with

AISEC performs in a very different way than it does when the SVM are used. A

characteristic that catches the eye is that accuracy, precision and recall always have

the same sign. In fact, except for thID, a variation of one of these input variables

causes a similar response of the three output measures. By contrast, precision had

always a different trend than accuracy and recall for the framework with the SVM.

Ph.D. Thesis 139 Piero Conca



Chapter 4 - Experiments

Parameter Accuracy Precision Recall
thtraining -0.593 -0.59 -0.411
Thonline 0.238 0.118 0.264

ratioNaiveMature 0.645 0.651 0.464
FIFOsizeID -0.0507 -0.0147 -0.03

thID 0.0516 0.378 -0.222
dummy parameter -0.0952 -0.0194 -0.144

Table 9: Correlation coefficients between parameters and output measures.

The parameters that affect most largely the performance of the framework are

thtraining and rationaiveMature. In particular, the higher the number of näıve clas-

sifiers, the better is the performance. This contrasts with the results for the SVM

classifiers, for which low numbers of näıve classifiers provided better results. In

Figure 30, the plots of accuracy and recall contain clusters on the top right corners

and the bottom left corners. The fact that the clusters are so neatly distinct may be

related to the fact that a higher number of näıve classifiers improves the mechanism

of drift inference. In fact, this is based on the measurement of the discordances

between mature and näıve classifiers. The plot of recall, highlights how narrow the

range of values is. In fact, while in all the accuracy and precision plots it is possible

to distinguish clearly two distinct clusters, one at the bottom and one at the top,

the recall plots display a single homogeneous cluster.

Ph.D. Thesis 140 Piero Conca



Chapter 4 - Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: ratioNaiveMature
Measure: Accuracy

Correlation Coefficient: 0.645

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: ratioNaiveMature
Measure: Precision

Correlation Coefficient: 0.651

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

LHC Analysis for Parameter: ratioNaiveMature
Measure: Recall

Correlation Coefficient: 0.464

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 30: Latin hypercube sensitivity analysis plot of rationaiveMature against
accuracy, precision and recall.

Another parameter that influences the performance of the framework is thtraining.

Its correlation values and the plots shown of Figure 31 indicate that small values

of thtraining are related to high performance. This means that large numbers of

classifiers are associated with high values of accuracy, precision and recall. This

contrasts with the results about the SVM classifiers, in which the low “inertia” of

small ensembles was responsible for high performance. In this case, large ensembles

provide a higher detection of positive instances probably because of the higher

number of AISEC detectors and therefore better “coverage” of the model.

Ph.D. Thesis 141 Piero Conca



Chapter 4 - Experiments

100 200 300 400

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_train
Measure: Accuracy

Correlation Coefficient: −0.593

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_train
Measure: Precision

Correlation Coefficient: −0.59

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400

0.
4

0.
5

0.
6

0.
7

0.
8

LHC Analysis for Parameter: th_train
Measure: Recall

Correlation Coefficient: −0.411

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 31: Latin hypercube sensitivity analysis plot of thtraining against accuracy,
precision and recall.

The variable thID generated apparently contradictory results. Provided that

this variable controls the sensitivity of the mechanism of concept drift inference, we

would expect small values of the threshold to be associated with high performance.

In fact, a low threshold should facilitate the replacement of mature classifiers with

näıve ones, thus keeping the model updated. For this reason, we were expecting to

observe negative values of correlation. Table 9 contradicts our expectations as the

correlation of thID with accuracy does not seem to be significant, the correlation

with precision is positive and that with recall is negative but small. The plots of

Figure 32 confirm this counterintuitive result. The clusters in the accuracy plots

are quite homogeneous. The negative trend in the top cluster of the accuracy plot

Ph.D. Thesis 142 Piero Conca



Chapter 4 - Experiments

is probably generated by intermittent activation of the drift inference mechanism,

which is responsible for the delay of the detectors with respect to the drifting data.

This causes smaller accuray values as thID increases. Presumably, this delay is also

responsible for the top right cluster in the precision plot. That plot is similar to the

SVM plot of Figure ??. This enforces our belief that both situations are caused by

the low rates at which the model is updated.

Variations of the parameter FIFOsizeID do not seem to have effect on the

performance of the framework. This in line with the results for the SVM. Although

the parameters thonline has a limited influence on the performance of the framework,

the way it affects the performance differs from the SVM case, for which it seemed

to generate better performance. For AISEC, although the values of correlation are

low, it seems that the higher amount of data to train a näıve classifier is collected,

the higher is the performance. This result is probably due to the fact that a large

amount of data is needed in order to build an effective model in AISEC. This is

due to the nature of AISEC, which converts data into a model consisting of a set of

detectors.

Ph.D. Thesis 143 Piero Conca



Chapter 4 - Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_ID
Measure: Accuracy

Correlation Coefficient: 0.0516

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_ID
Measure: Precision

Correlation Coefficient: 0.378

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

LHC Analysis for Parameter: th_ID
Measure: Recall

Correlation Coefficient: −0.222

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 32: Latin hypercube sensitivity analysis plot of thID against accuracy,
precision and recall.

4.3.1.2 Interpretation of the sensitivity analysis

Similar to the analysis that was performed for the SVM, we show the trends of TP ,

TN , FP and FN at different stages of a run. However, for the SVM implementation

only two samples of the overall two hundred were selected.

In the case of AISEC, only one run per sample is performed because of time

constraints. Showing the results of a single run may not provide sufficient informa-

tion to explain why the framework reacts in a certain way. For this reason, all the

samples from each cluster are used.

Firstly, the cluster of samples for which the framework shows high accuracy and

Ph.D. Thesis 144 Piero Conca



Chapter 4 - Experiments

precision is considered. The behaviour of the framework is analysed by observing

the magnitudes and the variations of the normalised number of TP , TP , TP and

TP . The number of TP and that of TN do not vary much across drift. Their

median values are respectively: 0.36815 and 0.50586. Notice that the number of TP

is smaller than that of TN , while for the SVM the two measures had similar values.

Initially, the number of FP is 0.01614, while the same number at the end of a run

is 0.00283. This reflects on the measure of precision which increases from 0.96028

to 0.99171. The number of FN , higher than that of FP , increases from 0.10541

to 0.15157, causing a decrement of recall from 0.79065 to 0.69538. The accuracy of

the framework does not undergo evident variations. The median values of accuracy

across a run is 0.85967.

The second set of samples are generated from the cluster of associated with low

values of accuracy and precision. The number of TP is similar to that of the other

cluster. Across a run, it varies from 0.40123 to 0.32128. The TN undergo a larger

decrease as soon as drift starts, from 0.47924 to 0.19606. The increase of the FP

from the initial value of 0.01964 to 0.30398, causes a drop of the precision from

0.95349 to 0.51231. The variation of the number of FN is smaller than that of FP .

Its median values vary from 0.09776 to 0.18049. As consequence, also the variation

of recall are not as large as those of precision. This measure, from the initial value

of 0.80111, reaches the final value of 0.64039. The increments of the FP and the

FN and the decrements of the TP and the TN are responsible for the variation of

the accuracy from 0.88017 to 0.51358.

The diagram in Figure 33 proposes an interpretation of the functioning of the

framework when AISEC is used as a base learner.

Ph.D. Thesis 145 Piero Conca



Chapter 4 - Experiments

feature 1

feature 1

feature 1

fe
at

ur
e 

2
fe

at
ur

e 
2

fe
at

ur
e 

2

Gaussian 
clusters

model
boundary

TP

TN

FP

FN

(a)

(b)(b)

(c)

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

0

0

0

Figure 33: Representation of the model of the framework featuring AISEC at the
beggining of an experiment (a), at the end of a successful experiment (b) and in
case of failure (c).

It shows the boundary of the model of the framework after training (a), when a

run ends with high classification performance (b) and when the framework cannot at

classifying the data correctly (c). Similar to Figure 16, the grey circles indicate that

the Gaussian cluster, from the initial position in (a), shift towards the final position

of (b) or (c). The black line represents the boundary of the model of the framework.

It has a circular shape in this case. An explanation of the reason why the boundary

has this shape is given in Section 4.3.1.3. After training, the framework exhibits

Ph.D. Thesis 146 Piero Conca



Chapter 4 - Experiments

the highest classification performance, however, as soon as drift starts the boundary

“stretches” slightly as shown in (b). That causes a slight decrement of TP and an

increment of FN (as shown in the Figures 67 and 68), as a consequence recall and

accuracy decrease (Figure 69).

Concerning the samples that cannot handle the concept drift of the data stream,

the boundary of the model “expands” to the “− 1” Gaussian cluster as in (c), thus

causing a drop of the performance. When this happens, the accuracy decreases since

the number of TN drops, while the number of FP increases (Figure 71, that also

affects precision. In such a way, the rates of TP and FN also vary but to a minor

extent, so that recall is affected marginally.

The reason why accuracy, recall and precision seem positively correlated between

each other is also explained by Figure 33. Variations of the parameter of framework

affect its capability to deal with concept drift, and cause large variations of its

accuracy and its precision. Precision is less affected by these variations, in fact the

values of precision of an instance of the framework that deals with concept drift

and the values of an instance that does not are similar. This explains the smaller

magnitude of the correlation values of precision when compared to those of the other

two measures.

4.3.1.3 Interpretation of the results

The rationale that was introduced to interpret the results from the SVM does not

seem to applicable to explain the results from AISEC. As a matter of fact, that

rationale assumes that the model maximises the separation between the classes.

While this holds for the SVM, it does not for AISEC. The model in AISEC is in fact

made of a set of detectors for positive instances. A detector can be generated by a

training instance with positive class or by clonation of an existing detectors. The

regions of the input space with high density of positive training points are covered

by a higher number of detectors than sparse regions. When supervision ceases and

labels from the voting, rather than the true classes are used, what causes the model

to adapt seems to be the density of points. After the training phase, the model

classifies a certain number of points as positives. Even though the true class of part

of these points is negative, in the following iteration, these points will generate new

detectors. The information following from the initial supervision about the true

classes is partially lost, and from this point on density becomes the driving force

Ph.D. Thesis 147 Piero Conca



Chapter 4 - Experiments

for adaptation. This means that detectors will proliferate only in regions where

the density of points is high. As the distribution is Gaussian, detectors will tend

to concentrate in the center of the postive cluster, this causes the boundary of

the model to stretch starting from the initial iterations as shown in Figure 33 (b).

The same mechanism is also reponsible for performance drop. This occurs when

detectors, attracted by density, migrate towards the negative cluster thus causing

the boundary of the model to appear as in Figure 33 (c).

4.3.2 Classification of Gaussian data with näıve Bayes

Although the SVM represent a very effective technique for many applications, one of

the drawbacks of the SVM is the long training time [54]. Section 4.3.1 highlighted

that, with AISEC, the framework proved to be even slower than when the SVM

are used. In order to increase the execution time of the experiments, the framework

should be tested on quicker techniques. Näıve Bayes seems to fit to our requirements.

In fact, according to [54], this technique combines very fast training with short

classification time. A description of this techniques is given in Section 2.2.2.2.

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 10 50 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Accuracy
Precision
Recall

20

SMALL effect

LARGE effect

MEDIUM effect

Figure 34: A-test results for the framework with näıve Bayes. The test determines
that low difference between two different sets of output values is reached when 200
runs are performed.

Similar to the experiments of Section 4.3.1 and Section 4.2.1, we want to test

Ph.D. Thesis 148 Piero Conca



Chapter 4 - Experiments

whether the use of adaptivity of the framework, with näıve Bayes in this case, brings

any advantage in terms of performance with respect to a framework that does not

update its model. The distribution of the data is the same as that used to test the

framework with the SVM and AISEC, and it is described in Section 4.2.1.

The version of näıve Bayes being employed in this experiment, makes use of a

Gaussian model to fit the data (as described in Section 2.2.2.2). While this version

does not require parameters to be set, the parametric configuration of the framework

is the same as that of the experiment with the SVM (Table 2). The null hypothesis,

that assumes that there is no difference between the performance of the adaptive

framework and that of the static framework, is tested by performing 200 runs with

different datasets generated from a common distribution. The number of runs was

determined by means of the A-test (Section 4.2.1.1), which results are shown in

Figure 34. The null hypothesis is formulated as:

The performance of an instance of the adaptive framework featuring

näıve Bayes, when tested on the Gaussian dataset, is not statistically

different from the performance of an instance of the framework with a

static model.

In order to compare the static and the adaptive framework, the performance at the

end of a run are used rather than the median values. This decision was taken on

the base of the considerations of Section 4.3.1, which assert that the performance

measured at the end of a run denotes more clearly the ability to deal with the

drift of this dataset. On those values, the Mann-Whitney test reveals that the

all probabilities of the values of accuracy, precision and recall of the static and

the dynamic framework being generated from the same distribution equal 2.2E −
16. Therefore the null hypothesis can be rejected with a confidence level of 0.995.

the same distribution. In particular, the time required to complete a run with

näıve Bayes is about an order of magnitude smaller than the time required by the

SVM. Figure 35 shows the values of accuracy, precision and recall of the adaptive

framework.

Ph.D. Thesis 149 Piero Conca



Chapter 4 - Experiments

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

Accuracy Precision Recall

A
cc

ur
ac

y,
 P

re
ci

si
on

, R
ec

al
l

adaptive framework

Figure 35: Values of accuracy, precision and recall of the adaptive framework with
näıve Bayes.

4.3.2.1 Sensitivity analysis

An analysis of the sensitivity was performed to determine the effect of the parameters

of the framework on its functioning. The ranges of the parameters are shown in Table

10.

Parameter Interval
thtraining [20, 200]
Thonline [20, 500]

ratioNaiveMature [0, 1.0]
FIFOsizeID [2,30]

thID [0, 1.0]

Table 10: Intervals of the parameters for the sensitivity analysis of the Framework
with näıve Bayes as a base learner.

Table 11 displays the values of correlation between input parameters and output

measures. From that table it is evident that, apart from thID, the parameters seem

Ph.D. Thesis 150 Piero Conca



Chapter 4 - Experiments

to have little or no influence on the performance. This indicates that the framework

with näıve Bayes performs well with different numbers of mature classifiers, large or

small testing windows, different values of FIFOsizeID.

Parameter Accuracy Precision Recall
thtraining 0.337 -0.506 0.363
thonline -0.207 0.0128 -0.202
ratioNaiveMature 0.21 0.398 0.19
FIFOsizeID 0.121 0.102 -0.184
thID -0.643 0.633 -0.644

Table 11: Correlation coefficients between parameters and output measures.

The parameter ratioNaiveMature, however, has some effect on the performance. Figure

36 suggests that when the number of näıve classifiers is notably smaller than the

number of mature classifiers, accuracy, precision and recall drop. In fact, a cluster

of dense points is identifiable in the bottom left corner of each plot.

A characteristic of these plots caught our attention. For each plot, the cluster

at the top is much denser than the cluster at the bottom. This means that the

number of points, and therefore parametric configurations, for which the framework

has high performance is much larger than the number of points associated with low

performance. An explanation to this observation may be related to the fact that the

technique of näıve Bayes suits particularly well to the dataset being used. In fact,

the data has Gaussian distribution and the implementation of näıve Bayes that is

employed fits data to a Gaussian model. Therefore, despite the different parametric

configurations of the framework, in this context, the technique of näıve Bayes may

be responsible for the high performance.

4.3.3 Classification of Gaussian data with the multilayer percep-
tron algorithm

This section shows the performance of the framework with the multilayer perceptron

algorithm (MLP). This classification technique, described in Section 2.2.2.2, gener-

ates a discriminant function in order to classify instances. For our experiments,

we use MLP classifiers with a single internal node to reduce the time required to

complete a run. In this way, the models that are generated have linear models. The

Ph.D. Thesis 151 Piero Conca



Chapter 4 - Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Accuracy

Correlation Coefficient: 0.21

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Precision

Correlation Coefficient: 0.398

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Recall

Correlation Coefficient: 0.19

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 36: Latin hypercube sensitivity analysis plot of rationaiveMature against
accuracy, precision and recall.

learning rate is 0.7, the momentum is 0.1 and the number of epochs is 30. The

framework uses the same parameters of experiment with the SVM of Section 4.2.1,

they are listed in Table 2. The distribution is the two-Gaussians dataset defined in

Section 4.2.1. Similar to the previous experiments, the null hypothesis is formulated

as:

The performance of an instance of the adaptive framework featuring

the MLP algorithm, when tested on the Gaussian dataset, is not statis-

tically different from the performance of an instance of the framework

with a static model.

Ph.D. Thesis 152 Piero Conca



Chapter 4 - Experiments

Following from the results of the A-test of Figure 37, the null hypothesis is tested on

200 runs. Different runs use different datasets generated from The Mann-Whitney

test determines that the probabilities that the values of accuracy, precision and recall

of the two instances of the framework are generated from the same distribution are

respectively: 2.2E-6, 1 and 2.2E-6. Therefore, the null hypothesis cannot be rejected.

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Accuracy
Precision
Recall

SMALL effect

LARGE effect

MEDIUM effect

10 50 100 20020

Figure 37: A-test results for the framework with MLP. The test determines
performing 200 runs is sufficient.

Although the distributions of the values of accuracy and precision are different

according to the Mann-Whitney test, the values of these measures lie in a small

subset of the input space, as shown in Figure 38. The low values of accuracy and

recall entail that the framework with this technique and this configuration is not

able to deal with the concept drift of the Gaussian distribution.

Ph.D. Thesis 153 Piero Conca



Chapter 4 - Experiments

 0.5

 0.505

 0.51

 0.515

 0.52

 0.525

 0.53

 0.535

 0.54

Adaptive Static

A
cc

ur
ac

y

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

Adaptive Static

R
ec

al
l

Figure 38: The overlap between the values of accuracy (top plot) and precision
(bottom plot) of the adaptive of the static and the adaptive framework is limited.
However the different sets of values lie is small intervals of the spaces of the
parameters.

4.3.4 Sensitivity analysis

A sensitivity analysis would clarify if there are sets of parameters for which the

framework is able to classify the drift of the data. Table 12 shows the correlations

between input parameters and output measures. The table highlights that accuracy

and recall are negatively correlated to precision, as for the framework with the SVM.

Ph.D. Thesis 154 Piero Conca



Chapter 4 - Experiments

Parameter Accuracy Precision Recall
thtraining 0.21 0.333 -0.0857
thonline 0.557 0.197 0.463
ratioNaiveMature 0.038 -0.0624 0.0391
FIFOsizeID -0.0485 0.0912 -0.147
thID 0.0706 -0.0468 0.117

Table 12: Correlation coefficients between parameters and output measures.

This may be explained by the fact that both the SVM and the MLP use discrim-

inant functions. The values of correlation are low for all the parameters, except

thonline. However, Figure 39 shows that the samples of the dense clusters of the

plots of accuracy and recall have an increasing trend that could affect the values of

correlation. The plot of the accuracy of the framework are slightly higher than 0.6.

That indicates that there are no settings of the parameters for which the framework

is able to deal with the drift of this dataset.

Ph.D. Thesis 155 Piero Conca



Chapter 4 - Experiments

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_online
Measure: Accuracy

Correlation Coefficient: 0.557

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_online
Measure: Precision

Correlation Coefficient: 0.197

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_online
Measure: Recall

Correlation Coefficient: 0.463

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 39: Plot of the sensitivity analysis of thonline against accuracy, precision and
recall when the MLP is used.

4.3.5 Classification of Gaussian data with C4.5

This section analyses the performance of the framework with the algorithm C4.5,

described in Section 2.2.2.2. This algorithm generates decision trees. We intend

to determine whether the use of C4.5 allows the framework to deal with concept

drift. The parameters of the framework for this experiment are the same of of those

used for the SVM, näıve Bayes and MLP, and they are defined in Table 2. The

distribution is the two-Gaussians dataset used for the other experiments. The null

hypothesis, is tested over 200 datasets having the same distribution. It states that:

The performance of an instance of the adaptive framework featuring

Ph.D. Thesis 156 Piero Conca



Chapter 4 - Experiments

the C4.5 algorithm, when tested on the Gaussian dataset, is not statis-

tically different from the performance of an instance of the framework

with a static model.

The number of runs is determined using the A-test, whose results are plotted in

Figure 40. The A-test score of accuracy has value 0.55835, and therefore is below

the threshold of the lowest region, which has value 0.56.

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 10 50 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Accuracy
Precision
Recall

20

SMALL effect

LARGE effect

MEDIUM effect

Figure 40: A-test results for the framework with the algorithm C4.5. The test
determines performing 200 runs is sufficient.

The p-values of he measures of accuracy, precision and recall are respectively:

0.8039, 1 and 0.02247. These values cause the rejection of the null hypothesis with

a confidence level higher than 0.995.

4.3.6 Sensitivity analysis

Table 13 shows that varying the parameters of the framework does not seem to

produce any effect on its performance. An explanation of the high correlation values

observed for thonline was given in Section 4.3.3. Figure 41 displays the plots of the

sensitivity analysis of the parameter thtraining. Those plots clarify that there is no

setting of the parameters that allows the framework to deal with the drift of this

dataset.

Ph.D. Thesis 157 Piero Conca



Chapter 4 - Experiments

Parameter Accuracy Precision Recall
thtraining -0.127 0 -0.165
thonline 1 0 1
ratioNaiveMature 0.0249 0 -0.041
FIFOsizeID -0.0642 0 -0.14
thID -0.0829 -0 0.264

Table 13: Correlation coefficients between parameters and output measures.

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_training
Measure: Accuracy

Correlation Coefficient: −0.127

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_training
Measure: Precision

Correlation Coefficient: 0

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_training
Measure: Recall

Correlation Coefficient: −0.165

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 41: Latin hypercube sensitivity analysis plot of thonline against accuracy,
precision and recall.

Ph.D. Thesis 158 Piero Conca



Chapter 4 - Experiments

4.4 Comparison of the framework with unsu-
pervised model updating techniques

This section compares the framework with a set of techniques that are able to update

their models without supervision. They are: the single-classifier approach of Section

2.4.3, and the online clustering algorithms CluStream and DenStream, presented in

Section 2.5.2. The aim of this comparison is to highlight the differences between

these approaches.

The single-classifier technique (SC) uses a moving window of fixed size. Two

variants of this algorithm are also used. The first variant (SC-NO) uses a nonover-

lapping window in order to reduce the amount of computation. In this way, if the

window has size 1000, the model is updated every 1000 instances rather than for

every instance that is presented. The second variant (SC-DAF) uses the density-

adaptive forgetting mechanism described in Section 2.4.1.4. Density-based forgetting

proposes that an instance should be forgotten if a high number of more recent

instances lie in its neighborhood. The classification techniques that are used by the

variants of the single-classifier techniques and by the framework are näıve Bayes

and the SVM. CluStream (CS) and DenStream (DS) use a two-level clustering

approach. The online level updates a set of micro-clusters. Micro-clusters reduce

the memory consumption and the amount of computation by maintaining statistics

about incoming instances, that are discarded. High-level clustering is applied to

micro-clusters, rather than raw data. The technique of “seeding”, which is illustrated

in Section 2.5.2, is used to associate clusters with the classes. It uses training data

to initialise two centers. Each of these represents an estimate of the center of the

distribution of a class. Initially, a center is associated with the centroid of the

training instances with positive class, the other center is initialised with the centroid

of the training instances with negative class.

The integration between seeding and CluStream is straightforward for this data

distribution. Initially, the set of centers generated by the seeding (from training

data) serve to initialise the high-level k-means of CluStream. Since the number of

centers is two, the k-means implementation for high-level clustering is initialised

with k = 2. When CluStream has collected at least horizon unlabelled instances

and it has identified the first two clusters, each cluster is labelled with the class of

the center that is closest to its centroid. The coordinates of the centroids of the

Ph.D. Thesis 159 Piero Conca



Chapter 4 - Experiments

clusters become the new centers. This process is repeated until streaming data is

provided. In order to label an instance, the closest micro-cluster to the instance

is identified. Then, the instance being processed is labelled with the label of the

cluster that micro-cluster belongs to. Only for the first horizon instances, since the

first set of clusters has not been generated yet, random labels are assigned to those

instances.

Technique Parameter Value
single-classifier window size 1000

single-classifier (nonoverlapping window) window size 1000

single-classifier (adaptive forgetting)

window size 1000
θ 0.2
m 5
τ 0.7

CluStream

horizon 1000
# of micro-clusters 100
micro-cluster radius 2
k 2

DenStream

λ 0.006643856
µ 1
β 0.001
initial # of micro-clusters 1000
DBSCAN ε 0.01
DBSCAN θ 11
high-level DBSCAN ε 0.07
high-level DBSCAN θ 6

Table 14: Parametric configurations of the of the unsupervised comparisons of the
framework.

The classification process is similar for DenStream. A difference is that DenStream

does not generate a fixed number of clusters. Therefore, it may identify more or

less than two clusters. For that reason, the clusters formed by DenStream are

associated with the classes (and the centers are updated) only when the number of

clusters equals the number of centers.

The values of the parameters of these techniques are listed in Table 14. The

effect of these parameters on their respective techniques are described in Section

2.4.1.4, Section 2.4.3 and Section 2.5.2. The parameters of the framework and the

parameters of the SVM have the values of Table 2.

Ph.D. Thesis 160 Piero Conca



Chapter 4 - Experiments

The dataset with two Gaussian classes is used for this comparison. In fact, after

having proved that the framework is able to deal with this distribution, it would be

interesting to observe how the other unsupervised techniques perform on the same

data. In order to provide a fair comparison, the smae classification technique is used

in order to compare the framework and the methods with a single classifier. We

assume that the framework does not bring any advantage in terms of performance

with respect to the comparative methods. When the technique of näıve Bayes (NB)

is used, the null hypothesis is stated as:

The performance of an instance of the adaptive framework using näıve

Bayes, when tested on the dataset with Gaussian distribution, is not

statistically different from the performances of the comparative methods.

The Mann-Whitney test applied to the values of accuracy, precision and recall of

the techniques generates the the p-values of Table 15.

SC + NB SC-NO + NB SC-DAF + NB CS DS
Accuracy 0.0673 0.00158 2.2E-16 2.2E-16 2.2E-16
Precision 2.2E-16 2.94E-12 2.2E-16 2.2E-16 2.2E-16
Recall 2.2E-16 0.00019 2.2E-16 2.2E-16 7.5E-9

Table 15: p-values of the framework with näıve Bayes and the comparative for
the measures of accuracy, precision and recall (the single-classifier variants also use
näıve Bayes). The p-values that are responsible for the rejection of the hypothesis
are highlighted in bold type.

The rejection of the hypothesis with a confidence level alpha of 0.995 denotes that

there are differences between the framework and the other methods. Concerning

precision and recall, the differences are evident. Concerning accuracy, the rejection

occurs for the clustering methods CS and DS, for SC-DAF and for SC-NO. However,

the p-value of SC-NO is only marginally below the threshold. The framework and

SC have similar values of accuracy.

The same hypothesis, with the difference that the SVM are used instead of näıve

Bayes is also tested. In this case, the Mann-Whitney test generates the p-values of

Table 16. The hypothesis can be rejected for all the techniques that are compared

with the framework, with some differences. In particular, the performance of the

Ph.D. Thesis 161 Piero Conca



Chapter 4 - Experiments

framework is different from those of CS and DS for all the measures. The accuracy of

the framework and the three single-classifier methods have similar values of accuracy,

but not precision and recall.

SC + SVM SC-NO + SVM SC-DAF + NB CS DS
Accuracy 0.0925 0.0578 0.1374 2.2E-16 2.2E-16
Precision 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16
Recall 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16

Table 16: p-values of the framework with the SVM and the comparative for the
measures of accuracy, precision and recall (the single-classifier variants also use the
SVM). The p-values that are responsible for the rejection of the hypothesis are
highlighted in bold type.

The plots of Figure 42 show the distributions of the accuracy values of the un-

supervised techniques across the 200 runs. They indicate that, apart from the

single-classifier with naive Bayes (SC-DAF+NB) and DenStream (DS), all the other

techniques have similar performances. However, the accuracy of CluStream (CS) is

slightly smaller than the others. Moreover, the instance of the framework with näıve

Bayes and that with the SVM perform similarly on this data. The higher values

of precision of the framework with respect to the comparative techniques, that can

be observed in Figure 43, may be caused by small delays of the mechanism of drift

inference. In fact, the framework is the only technique of this comparison that is

triggered by such a mechanism, while the other techniques evolve over time. That

could also be the reason for the values of recall of the Framework being marginally

smaller than the values of recall of the other techniques, as displayed by Figure 44.

Ph.D. Thesis 162 Piero Conca



Chapter 4 - Experiments

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

FW
NB

FW
SVM

SC
NB

SC
SVM

SC-NO
NB

SC-NO
SVM

SC-DAF
SVM

CS

A
cc

ur
ac

y

Techniques

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SC-DAF
NB

DS

A
cc

ur
ac

y

Techniques

Figure 42: Box and whisker plots of the values of accuracy of the techniques for
unsupervised model updating.

Ph.D. Thesis 163 Piero Conca



Chapter 4 - Experiments

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

FW
NB

FW
SVM

SC
NB

SC
SVM

SC-NO
NB

SC-NO
SVM

SC-DAF
SVM

CS

P
re

ci
si

on

Techniques

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

SC-DAF
NB

DS

P
re

ci
si

on

Techniques

Figure 43: Box and whisker plots of the values of precision of the techniques for
unsupervised model updating.

Ph.D. Thesis 164 Piero Conca



Chapter 4 - Experiments

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

FW
NB

FW
SVM

SC
NB

SC
SVM

SC-NO
NB

SC-NO
SVM

SC-DAF
SVM

CS

R
ec

al
l

Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

SC-DAF
NB

DS

R
ec

al
l

Techniques

Figure 44: Box and whisker plots of the values of recall of the techniques for
unsupervised model updating.

Ph.D. Thesis 165 Piero Conca



Chapter 4 - Experiments

4.5 Data with multiple Gaussians with chang-
ing positions and characteristics

The experiment presented in this section has the purpose of evaluating the perfor-

mance of the framework on a dataset with different characteristics. In particular, a

modified version of the four-Gaussian dataset described in Section 2.3.2.1 is used.

The class imbalance has been reduced with respect to the original dataset. To be

more precise, the prior probabilities of the classes now have the values P (“ + 1”) =

0.25 and P (“−1”) = 0.75. The distribution generates 500 training instances without

with fixed distribution and 106 unlabelled instances with concept drift.

Similar to the previous experiments, we test the ability of the framework to

classify this drifting distribution by comparing its performance against a static

version of the framework. The techniques on which the framework is tested are

näıve Bayes and the SVM. On one side, näıve Bayes affords very fast classification,

on the other side, this techniques may perform poorly on some distributions. For

that reason, the SVM are also used. The parameters of the SVM are described in

Table 2. For both classification techniques, the same parameters of the framework

are used, they are illustrated in Table 17.

Parameter Value
thtraining 23
thonline 25
ratioNaiveMature 0.4
FIFOsizeID 10
thID 0.1

Table 17: Parametric configuration of the framework for the experiment involving
the SVM and Gaussian data.

These parameters generate, on average, instances of the framework with five mature

classifiers and two näıve classifiers. The inference of drift mechanism is set up to

be sensitive, in order to provide quick detection and an high rate of replacement

of mature classifiers. The value of the parameter thonline determines that näıve

classifiers are trained with a relatively low number of instances.

The performance of an instance of the adaptive framework, when

tested on the dataset with four clusters with Gaussian distributions, is

Ph.D. Thesis 166 Piero Conca



Chapter 4 - Experiments

not statistically different from the performance of an instance of the

framework without adaptivity, that is, with a static model.

The Atest, performed using näıve Bayes determined that performing 200 runs is

sufficient, as shown in Figure 45. Concerning the instance of the framework with

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Accuracy
Precision
Recall

SMALL effect

LARGE effect

MEDIUM effect

502010

Figure 45: A-test results of the framework using näıve Bayes.

näıve Bayes, the results of the Mann-Whitney test determines that the probabilities

of the values of accuracy, precision and recall of the two different instances of the

framework being generated from the same distributions are respectively: 2.2E-

12, 3.7008E-08 and 3.534E-08. Therefore, the null hypothesis is rejected with a

confidence level of 0.995. Concerning the instance of the framework that uses the

SVM, the same probabilities have the value 2.2E-12. As a consequence, also in this

case the null hypothesis is rejected with the same level of confidence.

The rejection of the null hypothesis implies that, for both classification tech-

niques, the adaptive instance of the framework generates values of accuracy, precision

and recall that are different from the same values of the static instance of the

framework. However, this does not necessarily mean that the adaptive instances

of the framework are able to deal with the drift of this dataset. Figure 46 compares

the accuracy of the adaptive instance and that of the static instance when näıve

Bayes is used. Even if the two distributions of values are different, all the values of

Ph.D. Thesis 167 Piero Conca



Chapter 4 - Experiments

the adaptive instance are around 0.75. Given that 25% of the instances have class

“+1” and the remaning instances have class “−1”, a classifier that assigns negative

class to every instance would have the same performance as the adaptive framework

with näıve Bayes. Figure 47 shows the values of accuracy of the instances of the

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

Adaptive Static

A
cc

ur
ac

y

Figure 46: Distributions of the values of accuracy of the static instance and the
dynamic instance of the framework using näıve Bayes.

framework that use the SVM. The values of the static framework are smaller than

those of the adaptive counterpart. The values generated by the adaptive framework

form two separate groups. A group has values around between 0.7 and 0.9, while

the other group contains values around 1 or slightly smaller. The neat distinction

between the two groups suggests that the framework is able to deal with the concept

drift of this dataset only for the runs of the group with higher values. That group

contains 93 runs, therefore the other group contains the remaining 107 runs.

Finally, although the hypothesis is rejected for both instances of the framework,

only the instance with the SVM is actually able to classify this distribution with

high performance. That occurs for part of the runs. The instance with näıve Bayes

is not able to deal with the concept drift of this distribution.

Ph.D. Thesis 168 Piero Conca



Chapter 4 - Experiments

 0.6

 0.7

 0.8

 0.9

 1

Adaptive Static

A
cc

ur
ac

y

Figure 47: Values of accuracy of the static instance and the dynamic instance of the
framework using the SVM.

4.5.1 Comparison with unsupervised techniques

The performance of the framework is measured against a selection of the unsuper-

vised techniques analysed in Section 4.4. The goal of this experiment is to check the

performances of the different techniques over this dataset.

For this experiment, the implementation of DenStream and that of CluStream

are different with respect to their implementations of Section 4.4. At each iteration,

the entire clusters of micro-clusters of the previous iteration are maintained, instead

of the estimates of the centers. The label of a cluster is “transferred” to the newly

generated cluster whose micro-clusters have the closest mean distance from the older

micro-clusters.

Also the implementation of CluStream is slightly different. In particular, the

initialisation of the centers of CluStream is performed by using k-means. To be

more precise, k-means with k = 4 clusters the set of training instances, in order to

identify four centroids and associate labels to them based on the majority labels of

their respective clusters.

Ph.D. Thesis 169 Piero Conca



Chapter 4 - Experiments

Among the three variants of the single-classifier algorithm defined in Section 4.4,

only the one with nonoverlapping windows is maintained. This decision is motivated

by the good performance of that variant and by its higher speed of classification with

respect to the other two variants.

Table 18 presents the values of the parameters of the techniques. The configu-

ration of the framework was performed via a global sensitivity analysis. Similarly,

the length of the window of the single classifier is the result of a large set of trials

with different values. Concerning the clustering algorithms, firstly, the parameters

that control the number, the forgetting rate and the coverage of the micro-clusters

were set. Secondly, the parameters of the higher-level clusterers were set.

Technique Parameter Value
single-classifier window size 500

CluStream

horizon 1000
# of micro-clusters 1000
micro-cluster radius 2
k 4

DenStream

λ 0.004643856
µ 4
β 0.03
initial # of micro-clusters 500
DBSCAN ε 0.5
DBSCAN θ 3
high-level DBSCAN ε 1.2
high-level DBSCAN θ 1

Table 18: Parametric configurations of the unsupervised comparisons of the
framework.

In order to evaluate the similarity between the techniques being analysed, the

following hypothesis is stated:

The performance of an instance of the framework using näıve Bayes,

when tested on the dataset with multiple Gaussian clusters, is not statis-

tically different from the performances of the comparative methods.

Table presents the p-values generated by the Mann-Whitney test over the values

of accuracy, precision and recall of the techniques, when näıve Bayes is used. The

values in the table show that the hypothesis can be rejected.

Ph.D. Thesis 170 Piero Conca



Chapter 4 - Experiments

SC + NB CS DS
Accuracy 0.01341 2.2E-16 2.2E-16
Precision 3.7E-8 0.18 2.603E-8
Recall 3.7E-8 0.3965 0.0025

Table 19: p-values of the framework with näıve Bayes and the comparative for the
measures of accuracy, precision and recall (the single-classifier variant also uses näıve
Bayes).

The results of the Mann-Whitney test of the hypothesis related to the näıve Bayes

implementations, shows that the framework and the single classifier perform similary

in terms of accuracy and recall, but their values of precision are different. The

accuracy of the single classifier (SC-NO) is similar to that of the the framework,

as well as the precision of CluStream. Concerning the clustering techniques, the

hypothesis can be rejected for all the performance measures.

SC + SVM CS DS
Accuracy 0.03534 2.2E-16 2.2E-16
Precision 7.82E-9 2.2E-16 2.2E-16
Recall 0.6207 2.2E-16 2.2E-16

Table 20: p-values of the framework with the SVM and the comparative for the
measures of accuracy, precision and recall (the single-classifier variant also uses the
SVM).

Figure 48 compares the performances of the techniques being analysed. The plot of

the accuracy shows that the techniques that are able to classify the drifting data with

high performance are the framework with the SVM (FW SVM), the single-classifier

with the SVM (SC-NO SVM) and CluStream (CS). In fact, the 100th percentiles

of the distributions of these techniques equal 1. The number of runs of CluStream

that end “successfully” are 13 out of 200. The framework and the single-classifier

approach both show high accuracy in 93 runs. DenStream (DS), the framework

(FW NB) and the single classifier that use näıve Bayes (SC NB) are not able to deal

with the drift of this dataset in any of the runs. The plots of precision and recall

highlight that the framework has higher precision, but a slightly lower recall than

the single classifier. The other techniques have low performance for these measures.

Ph.D. Thesis 171 Piero Conca



Chapter 4 - Experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

FW
NB

FW
SVM

SC-NO
NB

SC-NO
SVM

CS DS

A
cc

ur
ac

y

Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

FW
NB

FW
SVM

SC-NO
NB

SC-NO
SVM

CS DS

P
re

ci
si

on

Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

FW
NB

FW
SVM

SC-NO
NB

SC-NO
SVM

CS DS

R
ec

al
l

Techniques

Figure 48: Distributions of the values of accuracy, precision and recall of the
unsupervised techniques.

Ph.D. Thesis 172 Piero Conca



Chapter 4 - Experiments

4.5.2 Preliminary investigation on the numbers of instances that
are maintained in memory

This section presents a preliminary analysis of the memory requirements of the

framework in terms of the number of instances it uses. In particular, the instance of

the framework with the parameters of Table 17 is compared against an instance of

the single-classifier technique. The analysis of the runs that were performed to test

the hypothesis of Section 4.5 revealed that the framework maintains in memory, on

average, 103 instances and the maximum number of instances that are stored is 310

(over the 200 runs). In fact, the number of instances processed by the framework

varies across a run (it is determined by the parameter thonline). We want to verify if

the single classifier can operate on the dataset with four Gaussian clusters without

storing more than 310 instances for iteration. The comparison of the value of

accuracy of the framework and those the single classifier with a window of size of 310

shows that the null hypothesis that these values of the two techniques are generated

from the same distribution can be rejected with a confidence level of 0.995, with a

p-value of 2.2E-16. Figure 49 shows the comparison of the performance in terms of

accuracy of the single-classifier approach (using windows of different sizes) and the

performance of the framework. That figure shows that single classifier technique

cannot maintain high performance for window sizes smaller than 400. By contrast,

the framework uses a smaller number of instances. This result could be explained by

the fact that ensemble classifiers are able to learn a dataset incrementally. In fact,

they can be used to learn large datasets, as described in Section 2.2.3). However,

it should be noticed that the framework maintains multiple classifiers in memory,

rather than a single one.

Ph.D. Thesis 173 Piero Conca



Chapter 4 - Experiments

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SC-NO
50

SC-NO
100

SC-NO
200

SC-NO
310

SC-NO
400

SC-NO
500

FW

A
cc

ur
ac

y

Techniques

Figure 49: Distributions of the values of accuracy of several instances of the single-
classifier technique (with different window sizes) and the framework.

4.6 Analysis of the inference of drift

This section presents a comparison between the mechanism of inference of drift being

proposed, which is illustrated in Section 3.3.3, and two of the unsupervised methods

presented in Section 2.4.1.5. Those are statistical tools that compare the similarity

between two pools of data. They are: the Friedman-Rafsky test and a technique

that makes use of supervised classification to detect change by Hido et al. [30, 37].

In order to provide a fair comparison, the two statistical methods have been

integrated within the framework. In this context, the framework still uses the queue

(FIFOID) to detect concept drift (the description of the drift inference scheme is

provided in Section 3.3.3). In particular, a 1 is added to the (FIFOID) queue only

if these techniques detect a change between the distribution of two pools of data. Of

these pools, one is not updated unless drift is detected, the other is refreshed with

new data at each iteration. When the computation starts, both pools contain the

same instances from the training phase. At the end of the first iteration, the new

data that is collected is copied into the second pool. At each iteration, the similarity

of the two pools is tested. If they are different, according to the test being used,

the first pool is updated with the instances of the second pool and a 1 is added to

the FIFO queue. If the rate of 1s is higher than thID, the mature classifiers of the

Ph.D. Thesis 174 Piero Conca



Chapter 4 - Experiments

framework are replaced with the näıve classifiers. If the pools are not different, the

first pool does not change, while the other pool awaits for new data to replace the

data it contains.

We measure the sensitivity and the specificity of the drift detection techniques

being compared. A true positive (TP) is recorded when drift is ongoing and it is

detected. If drift is not detected, a false negative (FN) is generated. In absence of

drift, if the mechanism of detection is not triggered, a true negative (TN) is recorded.

Otherwise, a false positive (FP) is recorded. We want to measure how sensitive and

how specific the three detection mechanisms are. Sensitivity measures the ability to

detect drift. It is expressed by the following formula:

Sensitivity =
TP

TP + FN
(4.4)

The denominator represents the total number of positives (drift is ongoing), ex-

pressed as the sum of those that are detected (TP) and those that are not (FN).

Notice that the measure of sensitivity is equivalent to the measure of recall, defined

in the Expression 4.3.

The specificity of a detection technique measures the number of false alarms in

absence of drift. It is expressed as the fraction between the number of TN and the

total number of negatives:

Specificity =
TN

TN + FP
(4.5)

The delay between the start of a concept drift and its detection is also measured. It

is expressed as the number of instances that are processed before drift is detected,

divided by the total number of instances.

Separate tests with the techniques of näıve Bayes and the SVM are performed

to evaluate the detection performances of the mechanism. In fact, different combi-

nations of detection techniques and learners may affect the detection capabilities,

as well as, the performance of the framework and the comparisons.

4.6.1 Dataset with Gaussian data

We test the framework on a variant of the two-Gaussians dataset of Section 4.2.1.

For this experiment, the stream generates 1, 000 training instances, followed by

1, 000, 000 unlabelled instances. Of these, only the second half (from instance

500, 001 to instance 1, 000, 000) is affected by concept drift. At the end of a run,

Ph.D. Thesis 175 Piero Conca



Chapter 4 - Experiments

the centers of the clusters are shifted by 0.5 units along the x-axis with respect to

their initial positions, defined in Section 4.2.1. Table 21 shows the parameters of the

framework for the different combinations of detection techniques and classification

techniques. In fact, different techniques may require different configurations of the

parameters of the framework in order to improve their detection performances.

Parameter Framework Friedman-Rafsky Hido et al.
NB SVM NB SVM NB SVM

thtraining 90 65 90 90 90 90
thonline 100 100 200 100 200 100
ratioNaiveMature 1.0 1.0 1.0 1.0 1.0 1.0
FIFOsizeID 10 10 60 60 60 60
thID 0.5 0.4 0 0 0 0

Table 21: Parameters of the configurations of the framework for the different
mechanisms of drift detection.

The inference of drift of the framework is tested against a framework that is not

able to detect drift. The null hypothesis, in this case, is stated as:

The values of sensitivity, specificity and delay of detection of the

mechanism of drift inference of the framework, when tested on the Gaus-

sian dataset, are not statistically differerent from the values of the same

measures generated by a framework that is not able to detect drift.

The A-test, performed using näıve Bayes determined that performing 200 runs is

sufficient for the measures of sensitivity and specificity, but not for delay. However,

as shown in Figure 50 the A-test score of delay is in the medium region. Also because

of time reasons, 200 runs are performed to test the hypothesis. The probabilities of

the values of sensitivity, specificity and the detection delay of the mechanism of drift

inference and those of its comparison being generated from the same distribution

are respectively: 2.2E-16, 0.00293 and 2.2E-16. The null hypothesis can be rejected

with a confidence level of 0.995. This indicates that drift is inferred.

4.6.2 Comparison of the mechanism of drift inference with alter-
native drift detection techniques

This Section evaluates the detection capabilites of the framework against the com-

parative methods. The parameters of the framework for the different techniques are

Ph.D. Thesis 176 Piero Conca



Chapter 4 - Experiments

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 10 50 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Sensitivity
Specificity
Delay

20

SMALL effect

LARGE effect

MEDIUM effect

Figure 50: A-test results of the framework using näıve Bayes.

presented in Table 21. The parameter α of the method Friedman-Riefsky has value

0.998, while the parameter α of the method by Hido et al. has value 0.95. In order

to evaluate the similarity between the techniques, the following hypothesis is stated:

The values of sensitivity, specificity and delay of detection of the

mechanism of drift inference of the framework that uses näıve Bayes,

when tested on the dataset with Gaussian distribution, are not statis-

tically different from the values of the same measures generated by the

instances of the framework that use the comparative detection techniques.

Table 22 presents the p-values of the frameworks that use näıve Bayes, while Table

23 shows those of the instances that use the SVM:

H + NB FR + NB
Sensitivity 2.2E-16 2.2E-16
Specificity 0.0946 2.2E-16
Delay 2.2E-16 7.196E-16

Table 22: p-values of the framework with the SVM and the comparative for the
measures of accuracy, precision and recall (the single-classifier variants also use
näıve Bayes).

Ph.D. Thesis 177 Piero Conca



Chapter 4 - Experiments

H + SVM FR + SVM
Sensitivity 2.2E-16 2.2E-16
Specificity 4.76E-5 2.2E-16
Delay 2.2E-16 8.939E-16

Table 23: p-values of the framework and the comparative with the SVM for the
measures of accuracy, precision and recall.

The tables show that, apart from the similarity of the values of specificity generated

by the inference of drift and the the method Friedman-Rafsky, all the other p-values

are under the level of significance that was set. Figure 51 depicts the performances

of the techniques being tested. The plot of the sensitivity shows that the framework

with the SVM (FW SVM) and the technique by Hido et al. with näıve Bayes (H NB)

have lower values of sensitivity than the other techniques. A low sensitivity may

be acceptable as long as it guarantees a sufficient rate of updating of the model.

The specificity plot indicates that the framework with the SVM, Hido with the

SVM and Friedman-Rafsky with NB (FR NB) are the techniques that generate the

lowest numbers of false positives. Moreover, the inference of drift of the framework

is the mechanism with the lowest median delays of activation. However, the 100th

percentile of the framwork with the SVM shows that the drift is not detected in a

few cases.

Ph.D. Thesis 178 Piero Conca



Chapter 4 - Experiments

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

S
en

si
tiv

ity

Techniques

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

S
pe

ci
fic

ity

Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

D
el

ay

Techniques

Figure 51: Distributions of the values of sensitivity, specificity and delay of detection
of the unsupervised techniques.

Ph.D. Thesis 179 Piero Conca



Chapter 4 - Experiments

Figure 52 shows the classification performances of the techniques. When Naive

Bayes is used, the instances of the framework have high performance on this dataset.

This, may be related to that particular classification technique, as hypothesised

in Section 4.3.2. Concerning the instances of the framework with the SVM, the

inference of drift provides better classification accuracy than the other frameworks,

on average. However, the distributions of the performance measures indicate that

all the techniques using the SVM are not able to deal with the concept drift of this

dataset for part of their runs (two out of two hundred runs).

Ph.D. Thesis 180 Piero Conca



Chapter 4 - Experiments

 0.5

 0.6

 0.7

 0.8

 0.9

 1

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

A
cc

ur
ac

y

Techniques

 0.95

 0.96

 0.97

 0.98

 0.99

 1

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

P
re

ci
si

on

Techniques

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

R
ec

al
l

Techniques

Figure 52: Distributions of the values of accuracy, precision and recall of the
unsupervised techniques.

Ph.D. Thesis 181 Piero Conca



Chapter 4 - Experiments

4.6.3 Dataset with separable classes and uniform distributions

This experiment tests the framework on data consisting of two classes with uniform

distributions. In particular, each class has the shape of a square with an edge of 1.0.

The number of training instances is 500, while the number of unlabelled instances

is 1,000,000. The center of the distribution of class “ + 1”, which is fixed, has

coordinates (2, 1). The initial position of the center of the distribution of the other

class is determined by the coordinates (3, 1). The first quarter of the dataset (250,000

instances) is not affected by concept drift. The second quarter of the dataset (from

instances 250,001 to 500,000) is affected by a concept drift that moves the center

of the distribution of class “ − 1” to the position (4, 1). Starting from instance

500,001 the same distribution moves in the opposite direction, and it reaches the

final position of (2, 1) at the end of a run. Figure 53 illustrates the stages of the

concept drift of this dataset. The values of the parameters of the framework are

shown in Table 24.

Parameter Framework Friedman-Rafsky Hido et al.
NB SVM NB SVM NB SVM

thtraining 45 45 45 45 45 45
thonline 400 100 100 100 100 100
ratioNaiveMature 1.0 1.0 1.0 1.0 1.0 1.0
FIFOsizeID 40 40 60 60 60 60
thID 0 0 0 0 0 0

Table 24: Parameters of the configurations of the framework for the different
mechanisms of drift detection.

Ph.D. Thesis 182 Piero Conca



Chapter 4 - Experiments

1 2 3 40

x

y 1

2

5

(a)

distribution from instance 1 

to instance 250,000 (no drift)

1 2 3 40

x

y 1

2

5

(b)

distribution at instance 500,000

1 2 3 40

x

y 1

2

5

(c)

distribution at instance 750,000

1 2 3 40

x

y 1

2

5

(d)

distribution at instance 1,000,000

Figure 53: Concept drift of the dataset with uniformly distributed classes. Red is
used to indicate the distribution of the class of positive instances, while blue is used
for the negative class. The data distribution does not change for the first quarter
of the number of instances, as shown in the diagram (a). After that, the center
of the negative distribution moves to position (4,1), as shown in diagram (b). The
center of negative instances changes direction in the second half of the concept drift
(diagram (c)), and reaches the final position depicted by diagram (d).

The inference of drift of the framework is tested against an instance of the framework

that does not infer concept drift. The null hypothesis, in this case, is stated as:

The performance of the mechanism of drift inference, when tested on

the Gaussian dataset, is not statistically differerent from the performance

of an instance of the framework that is not able to detect drift.

The A-test, performed using näıve Bayes determined that performing 200 runs is

sufficient for all the measures, as shown in Figure 54. The probabilities of the values

of sensitivity, specificity and detection delay of the mechanism of drift inference and

Ph.D. Thesis 183 Piero Conca



Chapter 4 - Experiments

those of its comparison being generated from a common distribution are respectively:

2.2E-16, 2.2E-16 and 2.2E-16. The null hypothesis can be rejected with a confidence

level of 0.995. This shows that the performance of the inference of drift differs from

the performance of a framework that cannot detect drift.

Sample Size

A
Te
st
S
co
re

Maximum A−Test Scores for each Sample Size

1 10 50 100 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

MEASURES

Sensitivity
Specificity
Delay

20

SMALL effect

LARGE effect

MEDIUM effect

Figure 54: A-test results of the framework using näıve Bayes.

4.6.4 Comparison of the mechanism of drift inference with the
unsupervised drift detection techniques

The performance of the inference of drift is compared against the performances of

the other unsupervised methods. In order to evaluate the similarity between the

techniques, the hypothesis is stated as:

The values of sensitivity, specificity and delay of detection of the

mechanism of drift inference of the framework that uses näıve Bayes,

when tested on the dataset with separable classes, are not statistically

different from the same values generated by the instances of the frame-

work that use the comparative detection techniques.

The values of the parameters of the framework and the comparative methods are

shown in Table 24. Table 25 shows the p-values measuring the similarity between

the performance values generated by the techniques when näıve Bayes is used. The

Ph.D. Thesis 184 Piero Conca



Chapter 4 - Experiments

same values when the SVM are used are displayed in Table 26. According to the

p-values of both tables, the null hypothesis can be rejected with a confidence level

of 0.995 for all the comparative methods and for both classification techniques. In

addition, the magnitudes of the p-values denote that the way in which the inference

of drift operates differs considerably from the other techniques.

H + NB FR + NB
Sensitivity 2.2E-16 2.2E-16
Specificity 1.41E-12 5.709E-6
Delay 2.2E-16 2.2E-16

Table 25: p-values of the framework with the SVM and the comparative for the
measures of accuracy, precision and recall (the single-classifier variants also use
näıve Bayes).

H + SVM FR + SVM
Sensitivity 2.2E-16 2.2E-16
Specificity 5.709E-6 5.709E-6
Delay 2.2E-16 2.2E-16

Table 26: p-values of the framework and the comparative with the SVM for the
measures of accuracy, precision and recall.

Figure 55 shows the performance of the techniques being tested. The plot at the

top of the figure highlights that sensitivity of the inference of drift of the framework

(FW NB and FW SVM) is lower that those of the other drift detection methods.

That is caused by the fact that the mechanism of drift inference starts detecting

drift after that 85% of the instances have been processed. However, drift starts at

25% of the total number of instances. The other techniques detect drift at about

30% of the number of instances. Therefore, for a good part of the duration of the

concept drift, the inference of drift is not activated. This causes the low sensitivity

observed in the plot at the top of Figure 55. By contrast, the specificity of the same

mechanism is higher than the values of the specificity of the other techniques, as

it equals 1 for both classification techniques. That means that mechanism of drift

inference does not generate false detections.

Ph.D. Thesis 185 Piero Conca



Chapter 4 - Experiments

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

S
en

si
tiv

ity

Techniques

 0.5

 0.6

 0.7

 0.8

 0.9

 1

FW
NB

FW
SVM

H
NB

H
SVM

FR
NB

FR
SVM

S
pe

ci
fic

ity

Techniques

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

D
el

ay

Techniques

Figure 55: Distributions of the values of sensitivity, specificity and delay of detection
of the unsupervised techniques.

Ph.D. Thesis 186 Piero Conca



Chapter 4 - Experiments

Figure 56 shows the classification performances of the techniques. In particular,

the distributions of values depicted by the plots of Figure 56, highlights that the

instances of the framework with näıve Bayes and the SVM perform better than the

other techniques for the measures of accuracy and precision. The majority of the

values of accuracy generated by the techniques equal 1, as shown in Figure 56 (top

plot).

Ph.D. Thesis 187 Piero Conca



Chapter 4 - Experiments

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

A
cc

ur
ac

y

Techniques

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

P
re

ci
si

on

Techniques

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

FW
NB

H
NB

FR
NB

FW
SVM

H
SVM

FR
SVM

R
ec

al
l

Techniques

Figure 56: Distributions of the values of accuracy, precision and recall of the
unsupervised techniques.

Ph.D. Thesis 188 Piero Conca



Chapter 4 - Experiments

The plots of Figure 57 show the values of accuracy and the detection of drift

of the three techniques for one of the runs that uses the SVM. Drift starts at 25%

of completion of a run. The method Friedman-Rafsky detects drift at about 35%

of the dataset. At that point mature classifiers are replaced with näıve classifiers.

However, the accuracy of the framework with the Friedman-Rafsky technique does

not change. In fact, the updated model is able to classify the instances correctly,

as well as the older model did before it was replaced. The method by Hido et al.

performs similarly. However, for this run, it is triggered before drift starts, thus

generating a value of specificity smaller than 1 (it equals 0.82233). By contrast,

the inference of drift of the standard framework is not activated. In fact, in the

part without drift, the boundaries of its models lie in a region with a null density

of instances, as shown in Figure 58, case (a). In that figure, the boundaries of the

mature models are represented using red lines, while the green lines represent the

boundaries of the näıve classifiers. The classes are separable and, as a consequence,

the classifiers generate the same decisions. Since the are no discordancies among the

classifiers, the Hamming distances between their decisions dM , dN and dMN should

equal 0. When 50% of the instances have been processed, the distribution of the

negative class has drifted to the position (1,3). At that point, the boundaries of

the mature classifiers have not changed, while the boundaries of the näıve classifiers

lie between the two classes, as shown in the part (b) of Figure 58. This implies

that, given an instance, all the classifiers generate the same decisions. Then, the

distribution of the negative class starts moving in the opposite direction, until it

reaches the position that is depicted in part (c) of the same figure. Some points of

class “ − 1” cause discordancies between the mature classifiers, as highlighted by

the plot at the bottom of Figure 59. As a consequence, the distances dM and dMN

increase, while dN does not change. Notice that, at that point, the accuracy of the

framework has not started decreasing yet. The arrow points at a spike of dMN that

is higher than both dM and dN . That triggers the replacement of mature classifiers

with näıve classifiers, which is followed by an increase of the accuracy. Figure 58

shows the boundaries of the models and the data at the end of the run.

Finally, the framework processes information generated by the models (their

decisions) to infer the presence of drift. The framework is able to detect quickly

a change in that information and take actions to avoid performance degradation,

as shown in Figure 59. That generates higher classification performances for this

Ph.D. Thesis 189 Piero Conca



Chapter 4 - Experiments

dataset according to Figure 56. On the contrary, the two comparisons use the input

vector, representative of p(x), to detect concept drift. In this comparison, suffered

worse performance degradations with respect to the framework with the inference

of drift, according to Figure 57. The intermittent replacement of classifiers that can

be observed in that figure, is responsible for not optimal classification performance

(Figure 56). However, the two statistical tests are able to detect changes in the

distribution that the mechanism of drift inference is not able to detect. To be more

precise, drift cannot be inferred by the framework if the distributions of the classes

are separable. However, for this dataset, those type of concept drift do not cause

performance degradation of the framework, as it can be observed in Figure 57.

Ph.D. Thesis 190 Piero Conca



Chapter 4 - Experiments

0.88
0.9

0.92
0.94
0.96
0.98

1

0 0.25 0.5 0.75 1

ac
cu

ra
cy

percentage of completion of the run

mechanism of drift inference

0

1

0 0.25 0.5 0.75 1

dr
ift

de
te

ct
io

n

percentage of completion of the run

0.88
0.9

0.92
0.94
0.96
0.98

1

0 0.25 0.5 0.75 1

ac
cu

ra
cy

percentage of completion of the run

Hido et al.

0

1

0 0.25 0.5 0.75 1

dr
ift

de
te

ct
io

n

percentage of completion of the run

0.88
0.9

0.92
0.94
0.96
0.98

1

0 0.25 0.5 0.75 1

ac
cu

ra
cy

percentage of completion of the run

Friedman-Rafsky

0
0.2
0.4
0.6
0.8
1

0 0.25 0.5 0.75 1

dr
ift

de
te
ct
io
n

percentage of completion of the run

Figure 57: Plots of the accuracy and plots of the detection of drift of the version of
the framework with the mechanism of drift inference (top), of the framework with
the test by Hido et al. (center) and of the framework with the Friedman-Rafsky test
(bottom).

Ph.D. Thesis 191 Piero Conca



Chapter 4 - Experiments

Figure 58: Plots of actual data and boundaries of the classifiers. The red points
represent the positive instances, blue is used for the negative instance. The red lines
represents the boundaries of the mature classifiers and the green lines represent the
näıve classifiers.

Ph.D. Thesis 192 Piero Conca



Chapter 4 - Experiments

0.99
0.992
0.994
0.996
0.998

1
1.002

0.83 0.835 0.84 0.845 0.85 0.855 0.86 0.865 0.87

ac
cu

ra
cy

percentage of completion of the run

mechanism of drift inference

0

1

0.83 0.835 0.84 0.845 0.85 0.855 0.86 0.865 0.87

dr
ift

de
te

ct
io

n

percentage of completion of the run

-0.5

0

0.5

1

1.5

2

0.83 0.835 0.84 0.845 0.85 0.855 0.86 0.865 0.87

d M
,d

N
,d

M
N

percentage of completion of the run

dMN

dM

dN

Figure 59: First detection of drift. The two plots at the top are enlargements of
the plots at the top of Figure 57. The plot at the bottom shows the mean distances
between the mature classifiers dM , between the na”ive classifiers dM , and those
between the mature and the näıve classifiers. The arrow highlights a spike of dMN

that is higher than dM and dN . That triggers the updating of the classification
model, and the subsequent increment of the accuracy.

Ph.D. Thesis 193 Piero Conca



Chapter 4 - Experiments

4.7 Summary

This chapter presented the experiments that have been performed to evaluate the

capability of the framework of dealing with different data distribution, different

classification techniques.

The experiments of Section 4.2 revealed that the framework is able to maintain

high classification performance on data affected by concept drift. However, as it

was hypothesised in Section 3.2, the same results were not observed when a dataset

with concept drift but fixed p(x) was used.

Further experiments highlighted that the capability of dealing with drift is main-

tained when different classification techniques are used. They were presented in

Section 4.3. In particular, the framework is able to operate with näıve Bayes, the

SVM and AISEC. However, the results are different when it uses the algorithm C4.5

and the MLP with a single internal node.

The framework was tested on a large selection of classification techniques. The

experiment involving näıve Bayes (Section 4.3.2) and AISEC (Section 4.3.1) showed

that the framework is able to operate with classification techniques with very dif-

ferent characteristics. The interpretation of the results and the sensitivity analysis

highlighted that the mechanisms that allow the framework to classify drifting data

depend on the classification technique that is used. In particular, the interpretation

of Section 4.2.1.2 presumes that the gradient of the data plays an important role in

the updating of the model of the framework when the SVM are used. Concerning

AISEC, its detectors tend to concentrate in the regions with high density of in-

stances. Further experiments revealed that, with näıve Bayes, the framework shows

high performance regardless of the parameters that are used. That is probably due

to this classification technique being particularly suited to the distribution of this

dataset. Further experiments showed that the framework is not able to deal with

the algorithm C4.5 (Section 4.3.5), or with the algorithm MLP with a single internal

node (Section 4.3.3).

Section 4.4 compared the framework with a selection of unsupervised techniques

on a dataset with Gaussian distribution. The comparative techniques are a sin-

gle classifier that retrains its model and two clustering methods. The techniques

showed similar performances on that dataset, apart from the clustering algorithm

DenStream and the single classifier with density adaptive-forgetting did not manage

Ph.D. Thesis 194 Piero Conca



Chapter 4 - Experiments

to provide high performance on all the runs.

The experiment of Section 4.5 analyses the framework on a data with multiple

patterns of concept drift. In particular, this is a hard test for unsupervised model

updating because of the high overlap and the changing characteristics of the classes.

The framework and the single-classifier algorithm are the only techniques that are

able to classify correctly the data of this dataset. That happens in about half of

the runs and only when the SVM are used. In addition, the framework stores and

processes a quantity of instances that is smaller than that of the algorithm with

a single classifier, that was shown in Section 4.5.2. However, the computational

cost associated with the framework is higher since it uses multiple classifiers. Both

clustering algorithms have low performance on this dataset.

The experiments of Section 4.6 evaluated the mechanism of inference of drift of

the framework, and compared it against two techniques that use different principles

of detection. The first experiment employed nonseparable data, while the second

dataset used separable classes. Concerning the first experiment (Section 4.6.1), the

framework shows a smaller detection time and, when the SVM are used, also a higher

specificity then its comparisons. In addition, on average, the use of the framework

leads to higher classification performance with respect to the other techniques.

However, for two of the runs involving the SVM, the framework was not able to reveal

the presence of drift. That may be related to the set of parameters that were used.

Concerning the experiment with separable classes (Section 4.6.3), the mechanism

of drift inference was not triggered for part of the concept drift of that dataset,

while the comparatives methods were able to detect it. However, that did not cause

a decrease of the classification performance of the framework. On the contrary,

the general classification performance of the framework over that distribution are

higher than those provided by the other detection techniques. In particular, since

the framework compares the output decisions of its classifiers, if there is a change in

the patterns of information that are extracted, it is able to detect it and that allows

for quick adaptation and, as a consequence, higher performance. The comparative

methods do not use information about the output as they operate on the input

features.

Ph.D. Thesis 195 Piero Conca



Chapter 5
Conclusions

5.1 Introduction

This chapter provides a summary of the thesis, by giving an outline of the problem

and our contribution to the problem, an adaptive framework. It briefly describes the

two novelties of the implementation of the framework we propose, feedback of the

decisions and the mechanism of drift inference. Moreover, it proposes an overview

and an interpretation of the results of the experiments.

This chapter also suggests some ideas on how to develop the framework. These

regard parametric adaptivity, which is noted as future work, and the extension of

structural adaptivity to the other components of the framework, especially towards

the feature extraction level. Moreover, it highlights the need to revisit the inference

of drift mechanism, investigate the co-existence of different techniques and extend

the concept of feedback also to the other components of the framework.

5.2 Review of the research problem and the
solution

The problem of classification consists of establishing a model by combining data

potentially from multiple and different sources and labels that state the classes the

data belong to. A model is a function that associates labels to unlabelled data, and

is used to classify instances for which the true classes are unknown.

A problem that affects many applications, in particular real-world ones, is that

the distribution of the data can vary. This might be caused by a change in the

system being observed, or for example by a change in the data collection process.

This problem is known as concept drift and requires the model to be updated to

Ph.D. Thesis 196 Piero Conca



Chapter 5 - Conclusions

avoid performance degradation. The classification algorithms that deal with concept

drift employ the same mechanism to classify drifting data. They use information

about the true class of an instance, which is provided after this has been classified,

to modify the model and minimise performance loss.

Due to the large amounts of data that are collected nowadays, the problem of

generating the correct labels is becoming a bottleneck for many applications [59]. In

fact, labelling is generally costly and time consuming as, often, it is done manually.

In many cases, providing labels at the rate at which data is presented is not feasible

and researchers have started facing the problem by proposing algorithms that require

a limited amount of labelling [47, 59, 103] or no labelled data altogether [78].

We suggest that classification algorithms should become more autonomous, and

the amount of supervision they require should decrease. With that pupose we

analysed the conditions that are required in order to perform unsupervised model

updating. As part of our research, we investigated the ideas of the adaptive frame-

work [51]. That framework proposes a modular structure which can be instantiated

at different levels: feature extraction, classification or decision fusion. It consists

of a set of stovepipes and a data fusion module. A stovepipe contains a technique,

depending on the level, that can be a feature extraction technique, a classifier or a

technique to fuse decisions. Multiple stovepipes process the input data in parallel.

The function of a data fusion module is to combine the data generated from the

stovepipes to produce a single output. For instance, data fusion may involve the

selection of the output of a particular stovepipe, the combination of the outputs of

the stovepipes (e.g., through voting or averaging). When instantiated, stovepipes

and a data fusion module form a box. This framework also accounts for the reuse

of the output of a box as an input to the box itself or another box at a lower level.

This idea of feedback as well as the whole framework had not been implemented at

that time.

Starting from the ideas outlined in [51], we analysed the forms of adaptivity the

framework should perform. This lead to the identification of two different types of

adaptivity: structural and parametric. Parametric adaptivity concerns the optimi-

sation of the parameters of a stovepipe of a data fusion module, while structural

adaptivity is concerned with the creation, the deletion and the replacement of a

component of the framework.

In particular, our investigation of these concepts is limited to the structural

Ph.D. Thesis 197 Piero Conca



Chapter 5 - Conclusions

adaptivity of the classification level of the framework. More precisely, we developed

our own implementation of a classification box in order to handle concept drift. This

has a fixed number of classifiers and majority voting is the technique used to fuse

their decisions. This is not different from any other ensemble classifier for concept

drift. However, in our implementation the classifiers are divided into mature and

naive, where only mature classifiers participate in the voting, while näıve classifiers

are candidate to become mature. The box represents the basis on which the two

novelties of this thesis were developed. They are: a mechanism of feedback of the

decisions of the box and a mechanism of drift inference.

Our implementation of feedback consists of combining unlabelled testing in-

stances and labels from the voting to train a new näıve stovepipe. Notice that,

thanks to this technique, supervision is not required as the labels to update the

model are generated by the voting.

Many drift detection mechanisms monitor the error rate, which requires the true

classes of the data to be known. They could not be used in our case, as the framework

does not make use of supervision. Other techniques use the input data without

labels to detect drift. We pursued a different approach to drift detection. In fact,

the mechanism of drift inference compares the similarity between the decisions taken

by the mature classifiers and those by the näıve ones. In fact, if the distribution is

stationary, as näıve classifiers are trained from labels generated by mature classifiers,

the decisions of the two different types of classifiers tend to be similar. If a change

of the distribution modifies the class-unconditional pdf, it will affect the model of

näıve classifiers. Therefore, these will differ from mature ones. This is the signal

that triggers the inference of drift.

5.3 Evaluation of the work

Several experiments were designed to test the capability of the implementation

of the framework in dealing with concept drift. In particular, the experiments

were aimed at identifying the distributions and the classification techniques on

which the framework can operate. Furthermore, the performance of the framework

was measured against those of a set of comparative methods in order to highlight

potential benefits and limitations of the framework. Although a small amount of

supervised data is provided to establish the model of the framework, no supervision

Ph.D. Thesis 198 Piero Conca



Chapter 5 - Conclusions

is used to update its model.

The experiments revealed that the framework is able to maintain high classifi-

cation performance on data affected by concept drift. This capability is observed

for datasets with concept drift and changing class-unconditional distributions, even

though for some datasets the framework did not show high performance on all

runs. According to our observations, this ability is lost when the class-unconditional

distribution is not affected by concept drift. On the contrary, supervised techniques

are able to classify the same data. Although, more experiments should be performed,

the results we have obtained provide a positive answer to the question ”is it possible

to maintain high classification performance on different types of data distributions?”.

Further experiments highlighted that the capability of dealing with drift is main-

tained when different classification techniques are used. In particular, the framework

is able to operate with näıve Bayes, SVM and AISEC. However, different results

were noted for the technique C4.5 and the MLP with a single internal node. The

analysis and the interpretation of the results seem to reveal that the principle of

operation of the framework is related to the classification technique that is used. As

a matter of fact, we were unable to develop a rationale that was valid for different

classification techniques. This provides a positive answers to the research question

“is the framework able to operate with different types of classification techniques?”.

However, this ability is not maintained for all techniques that were used.

Unsupervised comparative methods were employed with the purpose of deter-

mining if the framework offers advantages in respect of those techniques. On

the tests that were performed, the framework and a method that uses a single

classifier provided higher performances than the other techniques. Although, it is not

possible to give a positive answer to the research question “does the framework offer

any advantage in terms of performance with respect to comparative techniques?”,

the results of our experiments showed that its performance is equivalent to the

performance of the single-classifier technique. However, preliminary results revealed

that the framework seem to use less memory that the comparative techniques.

The mechanism of drift inference was evaluated on datasets with different charac-

teristics and different learners, in order provide an answer to the research questions:

“is the mechanism of drift inference of the framework able to reveal the presence of

drift?”, ”is the mechanism of drift inference of the framework capable of operating

with different classification techniques and on different types of distributions?” and

Ph.D. Thesis 199 Piero Conca



Chapter 5 - Conclusions

“does the mechanism of inference of drift offer any advantage in terms of perfor-

mance with respect to comparative techniques?”. Based on the experiments that were

performed, a distinction should be made. When the classes were nonseparable, the

framework was able to detect drift with different classification techniques. However,

when the distributions of the classes are separable, the mechanism of drift inference

was not able to detect the presence of drift. However, it reacted to react to

performance degradation. This gives a positive answer to the first question, but the

ability of the mechanism of drift inference to reveal the presence of drift depends on

the characteristics of the data that is used. Moreover, a positive answer can be given

to the second question concerning the types of classification techniques it can operate

with. Concerning the datasets, more tests should be performed. The inference of

drift was compared with a set of unsupervised techniques for drift detection. The

results show that, when the data is nonseparable, the framework is able to detect

drift more quickly and with lower false detections than the comparative methods.

When the classes are separable, although the inference of drift is not able to detect

the start of concept drift, it is able to reveal the start of performance degradation

quickly and with high sensitivity. That allows prompt update of the model of a

classifier, thus leading to higher classification performance than the performances

observed for the comparative methods. This gives a positive answer to the third

question. However, it also suffers from the limitation of not being able to operate

on separable classes.

5.4 Future directions

Although the implementation of the proposed framework shows that supervision is

not a prerequisite for the classification of drifting data, we believe that the true

potential of the architecture of the framework has not been expressed yet. We hope

that the solutions proposed so far represent only an early stage of the development

of the framework. For this reason, we suggest some research directions that would

be interesting to investigate.

5.4.1 Inference of drift

The mechanism of drift inference monitors the discordancies between each pair of

classifiers. It does so by maintaining a matrix M , whose rows and columns represent

Ph.D. Thesis 200 Piero Conca



Chapter 5 - Conclusions

classifiers. The cell Mij contains the Hamming distance between the decision of the

classifiers i and j in the current iteration. The inference of drift mechanism uses

the matrix to calculate the average distance between näıve and mature classifiers,

the average distance between mature classifiers and the average distance between

näıve classifiers. If the first distance is higher than the other two for a certain

number of nonconsecutive iterations then drift is inferred. We believe that much

more information can be extracted from the matrix in order to infer drift.

The information in the matrix can be represented as a network, in which nodes

are associated with classifiers and the edges that connect them are labelled with the

Hamming distance between the decisions of the classifiers. From this perspective, by

analysing characteristics of the network such as dispersion and internal connectivity

it should be possible to gain a better understanding of the inference of drift. In such

a way, notions from network theory could be used [68], for example, to distinguish

between the different types of drift, or reduce the delay between when the start of

a drift and its inference.

The triggering nature of the mechanism, could also be reconsidered. We believe

in fact that the mechanism should not behave like an “on-off” switch for updates of

the model. Instead, the updating of the model should be a continuous function of

the rate at which drift is occurring.

The distinction between näıve and mature classifiers which is required by the

mechanism of drift inference may as well be reconsidered. Instead of maintaing

two pools with diverse functions, the framework could have a single pool, perhaps

of variable size. Drift would be inferred by comparing the behaviour of recent

stovepipes with older ones. If recent stovepipes tend to form a cluster within the

network, this could be interpreted as ongoing concept drift. In fact, if the distance

between recent classifiers decreases and their distance from the other stovepipes

increases, this could potentially mean that they are embodying information about

concept drift. Moreover, every stovepipe would contribute to the output, even the

newest ones, but with different weights.

5.4.2 Parametric adaptivity

The current implementation of the framework is not capable of parametric adap-

tivity. In fact, the parameters are set at training time and cannot be changed

afterwards. However, replacing an ineffective classifier (or stovepipe) is useless if

Ph.D. Thesis 201 Piero Conca



Chapter 5 - Conclusions

the new one uses the same parameters. We envisage two solutions. The simplest

one consists of selecting a set of values from a look-up table, according to the

actual scenario. Another solution consists of applying dynamic optimisation to the

parameters [14, 101]. Among the available techniques there are genetic algorithms

and particle swarm optimisation [99, 100]. In this way, if the current parameters

are no longer effective, it should be possible to modify them and therefore deal

with situations not foreseeable at design time. Parametric adaptivity, however,

should bebased on the estimation of the performance of its components. We believe

the mechanism of drift inference, and perhaps the ideas about network theory

previously introduced, represents a solid basis on which to develop an estimator

for the performance of a component of the framework.

Adaptivity should consider the parameters of components such as stovepipes

and data fusion modules. For example, classifiers or feature extraction techniques

might have their parameters changed, even online where possible, or in the case of

data fusion, a voting module might have its weights reconsidered. Adaptivity might

as well consider the parameters of the framework itself. By comparing sensitivity

analysis plots for SVM and AISEC, it is clear that the two techniques respond very

differently to the variations of some parameters. Let us assume that an instance of

the framework contains only classifiers of a certain technique. At some point, the

structural adaptivity replaces all the classifiers with new ones of a different technique.

This change might require the parameters of the framework to be optimized for the

new technique.

5.4.3 Structural adaptivity

Similar to the way stovepipes are replaced at the classification levels, creation,

deletion and replacement should also be considered for other components of the

framework: data fusion modules and boxes. In this way, an instantiation of the

framework might switch between majority and weighting voting to optimise the

performance. Similarly, assuming that the same instantiation includes multiple

boxes, if one of these becomes ineffective, it should be replaced with a new one.

Structural adaptivity should also be extended to the levels of decision fusion

and feature extraction. In particular, we believe that feature extraction has a vast

and unexplored potential. In a near future, classifiers will be entrusted to select

or extract the most suitable features starting from raw data, rather than being

Ph.D. Thesis 202 Piero Conca



Chapter 5 - Conclusions

dictated which features to use. Some research initiatives have started investigating

this possibility [46]. In such a way, the features that are used across the lifetime of

a classification system become likely to vary. Starting from a set of features that

provides suboptimal performance, the framework should be able to find new features

that increase the separation between the classes.

5.4.4 Different forms of feedback

Despite its simplicity, the mechanism of feedback proposed in this thesis can handle

concept drift without supervision, although some constraints are necessary. This

raises the question of what benefits could derive from the extension of the concept

of feedback to a larger scale. Rather than being limited to a single level in depth,

feedback might in fact extended to multiple lower levels. This is valid for every level.

Moreover, the output of a box might be fed to the lower level of another box. This

horizontal expansion would increase the internal connectivity of the framework. It

would be interesting to investigate the outcomes of such an architecture.

5.4.5 Multiple techniques

The possibility of using multiple boxes implicitly assumes the co-existence of differ-

ent techniques in different boxes. However, different techniques might reside in the

same box thus working in symbiosis at a closer level than they would do if they were

included in separate boxes.

Preliminary experiments in this direction have already been performed. However,

the mechanism of drift inference is not designed to consider diverse techniques.

In fact, when the distribution is stationary, it assumes that the average distance

between näıve stovepipes, between mature stovepipes and between mature and

näıve stovepipes have similar values. If the mature pool contains predominantly

stovepipes of a technique, and the näıve pool contains techniques of a different type,

the assumption may not hold any more. Since the average distances could be very

different, when concept drift starts the average distance between mature and näıve

stovepipes could not be higher than the other two distances and drift would not be

inferred. This suggests that the inference of drift mechanism needs to be modified

to account for different techniques.

Ph.D. Thesis 203 Piero Conca



Chapter 5 - Conclusions

5.5 Final comments

The adaptive framework that is proposed has very interesting characteristics. In

fact, it allows for quick adaptation, detection of drift, limited memory requirements.

We suggest that the ideas of the adaptive framework of modularity, comparison

between different modules and feedback should be investigated to increase the level

of adaptation of classifiers.

Ph.D. Thesis 204 Piero Conca



Appendices

Ph.D. Thesis 205 Piero Conca



Appendix A

Interpretation of the sensitivity analy-
sis of the framework with SVM: addi-
tional plots

This appendix extends the interpretation of the sensitivity analysis of Section 4.2.1.4

with a set of plots. In particular, that section analysed the performance of two

instances of the framework, each associated with a different setting of its parameters.

In correspondence of the first setting, the instance of the framework maintains high

accuracy and recall. Only precision has slightly smaller values with respect to the

other two measures. For the second setting, the values of precision tend to 1, while

accuracy and recall have low values. Section 4.2.1.4 presented the conclusion that

an instance of the framework with the first set of parameters is able classify the

data correctly (as suggested by its values of accuracy), while the instance with the

second set of parameters is not able to cope with the drift of the data. Moreover, a

rationale of the operation of the framework with SVM was developed based on that

analysis.

All the plots are generated from the 50 runs that were performed for each sample.

Each plot shows the distributions of the values of the measure being considered

at different percentages of completion of a run. The plots associated with the

first setting are presented in Section A.1, while the plots of the second setting are

explained in Section A.2

Ph.D. Thesis 206 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

A.1 Plots of the instance of the framework
with the first parametric setting

The plots of TP , TN , FP and FN , in Figure 60 and Figure 61 regard the first

sample. The number of TP and that of TN (Figure 60) do not vary considerably

across the iterations. However, a slight decrease of the number of TP and a slight

increase of the number of TN are observed. In fact, the median value of TP at the

beginning of the classification (0% of completion of a run) is higher than the median

values from 10% to 100% of completion of a run. On the contrary, the median

value of the TN at the beginning of a run is higher than the subsequent values.

The variations of FP and FN are larger, as shown in Figure 61. In particular, the

number of FP decreases while the number of FN increases with respect to their

initial values, which cause, respectively, the increase of precision and the decrease

of recall that are observed in Figure 62. The same figure shows that the values of

accuracy do not vary much across a run.

Ph.D. Thesis 207 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 60: TP and TN in function of the percentage of completion of a run.

Ph.D. Thesis 208 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 61: FP and FN in function of the percentage of completion of a run of the
first parametric setting. After the start of a run, the number of FP decreases and
that of FN increases with respect to their initial values (that correspond to 0% of
completion of a run).

Ph.D. Thesis 209 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

percentage of processed instances

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

percentage of processed instances

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

percentage of processed instances

Figure 62: Accuracy, precision and recall in function of the percentage of completion
of a run. While the the accuracy does not seem to vary consistently across a run,
precision increase and recall decreases.

Ph.D. Thesis 210 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

A.2 Plots of an instance of the framework as-
sociated with the second parametric set-
ting

We now analyse the plots of TP , TN , FP and FN of the second parametric setup.

In particular, accuracy and recall are smaller with respect to the first setup, but

precision is higher.

Figure 63 and 64 show, respectively, the normalised numbers of TP , TN and the

normalised numbers of FP , FN across different fractions of a run. In particular, the

number of TP decreases towards 0, while the rate of FN tends to 0.5. These results

are different from those displayed in Figure 60 and 61, in which both measures

underwent only small variations. In a similar way, the number of FP tends to 0,

while the fraction of FN tend to 0.5. The increment of the the sum of FP and

FN for the second setting, as shown in Figure 65, causes a decrease of the values

of accuracy (Figure 66). Moreover, because of the variations of TP , FP and FN ,

precision tends to 1, and recall tends to 0, as shown in Figure 66.

Ph.D. Thesis 211 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 63: TP and TN in function of the percentage of completion of a run. Their
normalised values tend respectively to 0 and to 0.5.

Ph.D. Thesis 212 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 64: FP and FN in function of the percentage of completion of a run. Their
normalised values tend respectively to 0 and to 0.5.

Ph.D. Thesis 213 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

F
P

+
F

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 65: Error rate against percentage of completion of a run for sample 2. Its
values is complementary to the value of accuracy.

Ph.D. Thesis 214 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

percentage of processed instances

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

percentage of processed instances

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

percentage of processed instances

Figure 66: Accuracy, precision and recall in function of the percentage of completion
of a run.

Ph.D. Thesis 215 Piero Conca



Appendix A - Interpretation of the sensitivity analysis of the framework with
SVM: additional plots

A.3 Conclusions

The interpretation of the results given in Section ?? clarifies higher precision are

not associated with is the capability of an instance of the framework of dealing with

concept drift.

Ph.D. Thesis 216 Piero Conca



Appendix B
Interpretation of the sensitivity analy-
sis of the framework with AISEC: ad-
ditional plots

This appendix presents additional plots of the interpretation of the sensitivity anal-

ysis of Section 4.3.1.2. Two sets of instances of the framework are analysed. The

first set contains the samples (associated with parametric settings of the framework)

that form the top clusters of the accuracy plots and the recall plots of the sensitivity

analysis of AISEC of Figures 30-32. The second set of instances of the framework

contains the samples of the bottom clusters of the same plots. In particular, the first

set of samples represent parametric settings that allow the framework to deal with

the drift of the Gaussian data, while the second set of samples contains parameter

for which the framework cannot deal with the drift of the data. The plots of the

first set of samples are descrbed in Section B.1, while those of the second set are

presented in Section B.2.

B.1 Plots of the instances of the framework
of the first cluster of samples

The figures 67, 68, 68 and 69 are generated from a set of samples with high accuracy

and precision according to the figures (Figures 30-32). The measures of TP , TN ,

FP and FN are normalised. The first figure shows that the number of TP is smaller

than that of TN , while for SVM the two measures have similar values. Moreover,

the number of TP undergoes a small decrease, while that of TN does not seem to

change. The plots of FP and FN are shown in Figure 68. The number of FP tends

to 0 from a small initial value. This causes an increase of precision as shown in

Ph.D. Thesis 217 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

Figure 69, for which the values tend to 1. The number of FN is higher than that

of FP , and it increases after that drift starts. As a consequence, recall undergoes a

decrement as depicted in Figure 69.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 67: TP and TN in function of the percentage of completion of a run. A
small decrement of TP and a small increment of TN are observed.

Ph.D. Thesis 218 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 68: FP and FN in function of the percentage of completion of a run.

Ph.D. Thesis 219 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

percentage of processed instances

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

percentage of processed instances

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

percentage of processed instances

Figure 69: Accuracy, precision and recall in function of the percentage of completion
of a run. Accuracy slightly decreases as soon as drift starts, precision increases and
recall decreases.

Ph.D. Thesis 220 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

B.2 Plots of the instances of the framework
of the second cluster of samples

The Figures 70, 71, 72 and 73 are generated from the cluster of samples associated

with low values of accuracy and precision. This suggests that the samples are not

able to deal with the concept drift of the Gaussian dataset. The plots of accuracy

and precision of the previous section show two distinct clusters. The number of TP

is similar to that displayed in Figure 68, which depicts samples that are able to deal

with concept drift. Instead, the number of TN drops as soon as drift starts, while for

the other cluster of samples it increases. The number of FP increases considerably,

so that precision drops as shown in Figure 66. By contrast, the number of FN does

not seem to be affected, as the Figures 71 and 68 display similar values of FN . This

is the reason why, recall does not vary much between Figure 73 and 69 and therefore

the recall plots of the previous do not present distinct clusters as those of precision

and accuracy do. However, recall undergoes a slight decrement after drift starts.

Ph.D. Thesis 221 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 T

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 70: TP and TN in function of the percentage of completion of a run. Their
normalised values tend respectively to 0 and to 0.5.

Ph.D. Thesis 222 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

P
 (

no
rm

al
is

ed
)

percentage of processed instances

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 F

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 71: FP and FN in function of the percentage of completion of a run. Their
normalised values tend respectively to 0 and to 0.5.

Ph.D. Thesis 223 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70 80 90 100

F
P

+
F

N
 (

no
rm

al
is

ed
)

percentage of processed instances

Figure 72: Error rate against percentage of completion of a run for sample 2. Its
values is complementary to the value of accuracy.

Ph.D. Thesis 224 Piero Conca



Appendix B - Interpretation of the sensitivity analysis of the framework with
AISEC: additional plots

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

percentage of processed instances

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

percentage of processed instances

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

percentage of processed instances

Figure 73: Accuracy, precision and recall in function of the percentage of completion
of a run.

Ph.D. Thesis 225 Piero Conca



Appendix C

Sensitivity analyses: additional plots

This Appendix presents additional plots of the analyses of the sensitivity of the

framework with SVM (C.1) on the Gaussian distribution, with AISEC on the same

data (C.2) and with SVM on the uniform distribution (C.3).

C.1 Sensitivity Analysis plots of the frame-
work with SVM and Gaussian data

This section presents some of the plots of the sensitivity analysis that was presented

in Section 4.2.1. Figure 74 displays the plots related to the parameter thtraining. The

density of the top clusters of the accuracy plot (and the recall plot), which is higher

on the right side of the plot, suggests that higher values of thtraining (that produce

ensembles with few classifiers) generate better models. The density of the top cluster

of the accuracy plot in Figure 75 entails that higher values of thID generate lower

performance. In fact, high values of that threshold affect the activation of the

mechanism of drift inference. The Figures 76 (parameter rationaiveMature) and 77

(parameter FIFOsizeID) display homogeneous clusters. This indicates that these

parameters do not affect much the performance of the framework.

Ph.D. Thesis 226 Piero Conca



Appendix C - Sensitivity analyses: additional plots

100 200 300 400

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_train
Measure: Accuracy

Correlation Coefficient: 0.344

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400

0.
96

0.
97

0.
98

0.
99

1.
00

LHC Analysis for Parameter: th_train
Measure: Precision

Correlation Coefficient: −0.469

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_train
Measure: Recall

Correlation Coefficient: 0.351

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 74: Latin hypercube sensitivity analysis plot of thtraining against accuracy,
precision and recall.

Ph.D. Thesis 227 Piero Conca



Appendix C - Sensitivity analyses: additional plots

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_ID
Measure: Accuracy

Correlation Coefficient: −0.602

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
96

0.
97

0.
98

0.
99

1.
00

LHC Analysis for Parameter: th_ID
Measure: Precision

Correlation Coefficient: 0.599

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_ID
Measure: Recall

Correlation Coefficient: −0.598

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 75: Latin hypercube sensitivity analysis plots of thID against accuracy,
precision and recall.

Ph.D. Thesis 228 Piero Conca



Appendix C - Sensitivity analyses: additional plots

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Accuracy

Correlation Coefficient: −0.285

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
96

0.
97

0.
98

0.
99

1.
00

LHC Analysis for Parameter: ratio_naiveMature
Measure: Precision

Correlation Coefficient: 0.302

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Recall

Correlation Coefficient: −0.291

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 76: Latin hypercube sensitivity analysis plot of rationaiveMature against
accuracy, precision and recall.

Ph.D. Thesis 229 Piero Conca



Appendix C - Sensitivity analyses: additional plots

5 10 15 20

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: FIFO_ID
Measure: Accuracy

Correlation Coefficient: −0.124

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

5 10 15 20

0.
96

0.
97

0.
98

0.
99

1.
00

LHC Analysis for Parameter: FIFO_ID
Measure: Precision

Correlation Coefficient: 0.102

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: FIFO_ID
Measure: Recall

Correlation Coefficient: −0.122

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 77: Latin hypercube sensitivity analysis plot of FIFOsizeID against
accuracy, precision and recall.

Ph.D. Thesis 230 Piero Conca



Appendix C - Sensitivity analyses: additional plots

C.2 Sensitivity Analysis plots of the frame-
work with AISEC and Gaussian data

Sensitivity analysis plots of the experiment in Section 4.3.1. In that experiment, the

framework uses AISEC as a classification technique, while the data has Gaussian

distribution. Figure 78 and Figure 79 show the response of the output measures to

variations of, respectively, thonline and FIFOsizeID. The fact that the top and the

bottom clusters of the plots are homogeneous indicates that these parameters do

not have a significant influence on the performance of the framework.

Ph.D. Thesis 231 Piero Conca



Appendix C - Sensitivity analyses: additional plots

100 200 300 400 500

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_online
Measure: Accuracy

Correlation Coefficient: 0.238

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: th_online
Measure: Precision

Correlation Coefficient: 0.118

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
4

0.
5

0.
6

0.
7

0.
8

LHC Analysis for Parameter: th_online
Measure: Recall

Correlation Coefficient: 0.264

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 78: Latin hypercube sensitivity analysis plot of thonline against accuracy,
precision and recall.

Ph.D. Thesis 232 Piero Conca



Appendix C - Sensitivity analyses: additional plots

5 10 15 20

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: FIFO_ID
Measure: Accuracy

Correlation Coefficient: −0.0507

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

5 10 15 20

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LHC Analysis for Parameter: FIFO_ID
Measure: Precision

Correlation Coefficient: −0.0147

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

5 10 15 20

0.
4

0.
5

0.
6

0.
7

0.
8

LHC Analysis for Parameter: FIFO_ID
Measure: Recall

Correlation Coefficient: −0.03

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 79: Latin hypercube sensitivity analysis plot of FIFOsizeID against
accuracy, precision and recall.

Ph.D. Thesis 233 Piero Conca



Appendix C - Sensitivity analyses: additional plots

C.3 Sensitivity Analysis plots of the frame-
work with SVM and uniform data

Sensitivity analysis plots of the experiment with uniformly distributed data (Section

4.2.2.1). The experiment is presented in Section 4.2.2. The plots displayed in the

Figures 26-83 show accuracy, precision and recall in function of the parameters of

the framework. In particular, the majority of the values of precision and recall are

equal to zero. The fact that some values of precision are high, is due ot the fact that

the median values were considered for the analyssi of the sensitivity. The values

at the end of the runs are low, as shown in Figure 17. Moreover, the values of

accuracy are higher than the values of the other two measures. However, since the

imbalance between the number of positive instances and the number of negative

instances is high for the uniform dataset, such values of accuracy do not imply that

the framework is able to deal with the concept drift of the data.

Ph.D. Thesis 234 Piero Conca



Appendix C - Sensitivity analyses: additional plots

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_online
Measure: Accuracy

Correlation Coefficient: −0.477

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_online
Measure: Precision

Correlation Coefficient: −0.496

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_online
Measure: Recall

Correlation Coefficient: −0.5

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 80: Latin hypercube sensitivity analysis plot of thonline against accuracy,
precision and recall.

Ph.D. Thesis 235 Piero Conca



Appendix C - Sensitivity analyses: additional plots

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Accuracy

Correlation Coefficient: −0.197

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Precision

Correlation Coefficient: −0.0663

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: ratio_naiveMature
Measure: Recall

Correlation Coefficient: −0.0687

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 81: Latin hypercube sensitivity analysis plot of rationaiveMature against
accuracy, precision and recall.

Ph.D. Thesis 236 Piero Conca



Appendix C - Sensitivity analyses: additional plots

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: FIFO_ID
Measure: Accuracy

Correlation Coefficient: −0.147

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: FIFO_ID
Measure: Precision

Correlation Coefficient: 0.00383

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: FIFO_ID
Measure: Recall

Correlation Coefficient: −0.000146

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 82: Latin hypercube sensitivity analysis plot of FIFOsizeID against
accuracy, precision and recall.

Ph.D. Thesis 237 Piero Conca



Appendix C - Sensitivity analyses: additional plots

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_ID
Measure: Accuracy

Correlation Coefficient: −0.0955

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_ID
Measure: Precision

Correlation Coefficient: −0.0176

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LHC Analysis for Parameter: th_ID
Measure: Recall

Correlation Coefficient: −0.0185

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

Figure 83: Latin hypercube sensitivity analysis plot of thID against accuracy,
precision and recall.

Ph.D. Thesis 238 Piero Conca



Appendix D
Data plots

Figure 84 shows the data points (red is used for the positive points, blue for the

negative ones) and the boundaries of the mature stovepipes (black lines) of a specific

run, as soon as drift starts (a), after several iterations of an instance of the framework

that can deal with drift (b), and after several iterations of an instance of the

framework that cannot deal with drift (c). The orange dotted line represents the

boundary with maximum distance from the centers of the Gaussian clusters. At the

start of a run (a), the boundaries of the mature stovepipes are “close” to the orange

line, after several iterations (b), the boundaries are on the left of the orange line.

If an instance of the framework is not able to deal with the drift of the data, the

boundaries are much more shifted towards the left. This was anticipated in Figure

16.

Ph.D. Thesis 239 Piero Conca



Appendix D - Data plots

Figure 84: Example of data and boundaries. Red points indicate positive instances,
while blue points are used for negative instances. The black lines represent the
boundaries of the mature classifiers, while the orange dotted line maximises the
distance between the center of the Gaussian distributions. At the start of the run
(a) the black lines and the orange line have a similar position. After concept drift
has started, the black lines are on the right of the orange one.

Ph.D. Thesis 240 Piero Conca



Acronyms

SVM Support Vector Machines

AISEC Artificial Immune System for Email Classification

ANN Artificial Neural Network

OWA Optimal Weight Adjustment

O-LDC Online Linear Discriminant Function

VFDT Very Fast Decision Tree

CVFDT Concept-adapting Very Fast Decision Tree

TP True Positive

TP True Positive

TN True Negative

FP False Positive

FN False Negative

DWM Dynamic Weighted Majority

ADWIN ADaptive WINdowing

MOA Massive Online Analysis

EA Evolutionary algorithm

PSO Particle Swarm Optimization

pdf probability density function

Ph.D. Thesis 241 Piero Conca



Bibliography

[1] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. On demand

classification of data streams. In Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD

’04, pages 503–508, New York, USA, 2004. ACM.

[2] Charu C. Aggarwal, T. J. Watson, Resch Ctr, Jiawei Han, Jianyong Wang,

and Philip S. Yu. A framework for clustering evolving data streams. In

Proceedings of the Twenty-nineth International Conference on Very Large

Data Bases, volume 29 of VLDB ’03, pages 81–92, Berlin, Germany, 2003.

VLDB Endowment.

[3] Jesper Andersson, Rogério Lemos, Sam Malek, and Danny Weyns. Software

engineering for self-adaptive systems. In Betty H. Cheng, Rogério Lemos,

Holger Giese, Paola Inverardi, and Jeff Magee, editors, Lecture Notes in

Computer Science, volume 5525, chapter Modeling Dimensions of Self-

Adaptive Software Systems, pages 27–47. Springer-Verlag, Berlin, Heidelberg,

2009.

[4] Stephen H. Bach and Marcus A. Maloof. Paired learners for concept drift.

In Proceedings of the Eighth IEEE International Conference on Data Mining,

ICDM ’08, pages 23–32, Washington, DC, USA, 2008. IEEE Computer Society.

[5] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Semi-supervised

clustering by seeding. In Proceedings of the Nineteenth International Confer-

ence on Machine Learning, ICML ’02, pages 27–34, San Francisco, CA, USA,

2002. Morgan Kaufmann Publishers Inc.

[6] P. Berkhin. A survey of clustering data mining techniques. In Jacob Kogan,

Charles Nicholas, and Marc Teboulle, editors, Grouping Multidimensional

Data, pages 25–71. Springer Berlin Heidelberg, 2006.

Ph.D. Thesis 242 Piero Conca



Bibliography

[7] Albert Bifet, Joao Gama, Mykola Pechenizkiy, and Indre Zliobaite. Handling

concept drift: Importance, challenges & solutions. Tutorial at Pacific-Asia

Conference on Knowledge Discovery and Data Mining, 2011.

[8] Albert Bifet and Ricard Gavaldà. Adaptive learning from evolving data

streams. In Proceedings of the Eighth International Symposium on Intelligent

Data Analysis: Advances in Intelligent Data Analysis, volume 8 of IDA ’09,

pages 249–260, Berlin, Heidelberg, 2009. Springer-Verlag.

[9] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard

Gavaldà. New ensemble methods for evolving data streams. In Proceedings

of the Fifteenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’09, pages 139–148, New York, NY, USA,

2009. ACM.

[10] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection

using learnable string similarity measures. In Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’03, pages 39–48, New York, NY, USA, 2003. ACM.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2006.

[12] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled

data using graph mincuts. In Proceedings of the Eighteenth International

Conference on Machine Learning, ICML ’01, pages 19–26, San Francisco, CA,

USA, 2001. Morgan Kaufmann Publishers Inc.

[13] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training

algorithm for optimal margin classifiers. In Proceedings of the 5th Annual

ACM Workshop on Computational Learning Theory, pages 144–152. ACM

Press, 1992.

[14] Jurgen Branke. Evolutionary Optimization in Dynamic Environments. Kluwer

Academic Publishers, Norwell, MA, USA, 2001.

[15] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August

1996.

Ph.D. Thesis 243 Piero Conca



Bibliography

[16] Christopher J. C. Burges. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2(2):121–167, June 1998.

[17] F. M. Burnet. The clonal selection theory of acquired immunity. Vanderbilt

University Press, 1959.

[18] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based

clustering over an evolving data stream with noise. In Proceedings of the Sixth

SIAM International Conference on Data Mining, SDM ’06, pages 328–339.

SIAM, 2006.

[19] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised

Learning. The MIT Press, Cambridge, USA, 1st edition, 2010.

[20] Fang Chu and Carlo Zaniolo. Fast and light boosting for adaptive mining

of data streams. In Honghua Dai, Ramakrishnan Srikant, and Chengqi

Zhang, editors, Advances in Knowledge Discovery and Data Mining, volume

3056 of Lecture Notes in Computer Science, pages 282–292. Springer Berlin

Heidelberg, 2004.

[21] David Cohn, Rich Caruana, and Andrew Mccallum. Semi-supervised cluster-

ing with user feedback. Technical report, The University of Texas at Austin,

2003.

[22] Corinna Cortes and Vladimir N. Vapnik. Support-vector networks. Machine

Learning, 20(3):273–297, 1995.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical

Society. Series B (Methodological), 39(1):1–38, 1977.

[24] Gregory Ditzler and Robi Polikar. An ensemble based incremental learning

framework for concept drift and class imbalance. In Proceedings of the 2010

International Joint Conference on Neural Networks, IJCNN ’10, pages 1 –8,

2010.

[25] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Pro-

ceedings of the Sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’00, pages 71–80. ACM, 2000.

Ph.D. Thesis 244 Piero Conca



Bibliography

[26] Anton Dries and Ulrich Rückert. Adaptive concept drift detection. Statistical

Analysis and Data Mining, 2(5-6):311–327, December 2009.

[27] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification

(2nd Edition). Wiley-Interscience, 2001.

[28] Martin Ester, Hans peter Kriegel, Jrg S, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In

Evangelos Simoudis, Jiawei Han, and Usama M. Fayyad, editors, Proceedings

of the Second International Conference on Knowledge Discovery and Data

Mining, KDD ’96, pages 226–231. AAAI Press, 1996.

[29] George Forman. Tackling concept drift by temporal inductive transfer. In

Proceedings of the Twenty-ninth annual international ACM SIGIR conference

on Research and development in information retrieval, SIGIR ’06, pages 252–

259, New York, USA, 2006. ACM.

[30] Jerome H. Friedman and Lawrence C. Rafsky. Multivariate generalizations

of the Wald-Wolfowitz and smirnov two-sample tests. Annals of Statistics,

7:697–717, 1979.

[31] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning

with drift detection. In AnaL.C. Bazzan and Sofiane Labidi, editors, Advances

in Artificial Intelligence SBIA 2004, volume 3171 of Lecture Notes in

Computer Science, pages 286–295. Springer Berlin Heidelberg, 2004.

[32] Zoubin Ghahramani. Unsupervised learning. In Olivier Bousquet, Ulrike

Luxburg, and Gunnar Rtsch, editors, Advanced Lectures on Machine Learning,

volume 3176 of Lecture Notes in Computer Science, pages 72–112. Springer

Berlin Heidelberg, 2004.

[33] Hinco J Gierman and Rogier Versteeg. Clustering of Highly Expressed Genes

in the Human Genome. John Wiley & Sons, Ltd, 2001.

[34] Nizar Grira, Michel Crucianu, and Nozha Boujemaa. Unsupervised and semi-

supervised clustering: a brief survey. A review of machine learning techniques

for processing multimedia content, Report of the MUSCLE European Network

of Excellence (FP6), 2004.

Ph.D. Thesis 245 Piero Conca



Bibliography

[35] Stephen Grossberg. Nonlinear neural networks: Principles, mechanisms, and

architectures. Neural Networks, 1(1):17–61, 1988.

[36] John A. Hartigan. Clustering algorithms. Wiley series in probability and

mathematical statistics: Applied probability and statistics. John Wiley &

Sons, Inc., New York, NY, USA, 1975.

[37] Shohei Hido, Tsuyoshi Ide, Hisashi Kashima, Harunobu Kubo, and Hirofumi

Matsuzawa. Unsupervised change analysis using supervised learning. In

Takashi Washio, Einoshin Suzuki, KaiMing Ting, and Akihiro Inokuchi,

editors, Advances in Knowledge Discovery and Data Mining, volume 5012

of Lecture Notes in Computer Science, pages 148–159. Springer Berlin

Heidelberg, 2008.

[38] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random

Variables. Journal of the American Statistical Association, 58(301):13–30,

1963.

[39] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing

data streams. In Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and data mining, KDD ’01, pages 97–

106. ACM, 2001.

[40] Anil K. Jain and Dubes Richard C. Algorithms for clustering data. Prentice

Hall, Inc., 1988.

[41] Petr Kadlec and Bogdan Gabrys. Architecture for development of adaptive

on-line prediction models. Memetic Computing, 1(4):241–269, 2009.

[42] N. Kasabov. Evolving fuzzy neural networks for supervised/unsupervised

online knowledge-based learning. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 31(6):902–918, 2001.

[43] Nikola Kasabov. Evolving fuzzy neural networks for supervised/unsupervised

online knowledge-based learning. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 31(6):902–918, 2001.

[44] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Dynamic

feature space and incremental feature selection for the classification of textual

Ph.D. Thesis 246 Piero Conca



Bibliography

data streams. In ECML/PKDD-2006 International Workshop on Knowledge

Discovery from Data Streams. 2006, page 107. Springer Verlag, 2006.

[45] Alden Kieran, Read Mark, Andrews Paul, Timmis Jon, Veiga-Fernandes

Henrique, and Coles Mark. spartan: A comprehensive tool for understanding

uncertainty in computer simulation results. PLoS Computational Biology, 2:1–

9, 2012.

[46] YongSeog Kim, W. Nick Street, and Filippo Menczer. Optimal ensemble con-

struction via meta-evolutionary ensembles. Expert Systems with Applications,

30(4):705 – 714, 2006.

[47] Ralf Klinkenberg. Using labeled and unlabeled data to learn drifting concepts.

In Workshop notes of the IJCAI-01 Workshop on Learning from Temporal and

Spatial Data, pages 16–24. AAAI Press, 2001.

[48] Ralf Klinkenberg. Learning drifting concepts: Example selection vs. example

weighting. Intelligent Data Analysis, 8(3):281–300, 2004.

[49] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with support

vector machines. In Proceedings of the Seventeenth International Conference

on Machine Learning, ICML ’00, pages 487–494, San Francisco, CA, USA,

2000. Morgan Kaufmann Publishers Inc.

[50] Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learning

drifting concepts. In Proceedings of AAAI-98/ICML-98 workshop Learning

for Text Categorization, pages 33–40, 1998.

[51] Adam Knowles. Immunologically Inspired Data Fusion for Anomaly Detection

in Electromechanical Devices. PhD thesis, University of York, 2009.

[52] Ron Kohavi and Ross Quinlan. Decision-tree discovery. In Handbook Of

Data Mininig And Knowledge Discovery, chapter 16, pages 267–276. Oxford

University Press, 2002.

[53] Jeremy Z. Kolter and Marcus A. Maloof. Dynamic weighted majority: A new

ensemble method for tracking concept drift. In Proceedings of the Third IEEE

International Conference on Data Mining, ICDM ’03, pages 123–, Washington,

DC, USA, 2003. IEEE Computer Society.

Ph.D. Thesis 247 Piero Conca



Bibliography

[54] S. B. Kotsiantis. Supervised machine learning: A review of classification

techniques. Informatica, 31:249–268, 2007.

[55] Ivan Koychev. Gradual forgetting for adaptation to concept drift. In

Proceedings of ECAI 2000 Workshop on Current Issues in Spatio-Temporal

Reasoning, pages 101–106, 2000.

[56] Ludmila I. Kuncheva and Friedrich Steimann. Fuzzy diagnosis. Artificial

Intelligence in Medicine, 16(2):121 – 128, 1999.

[57] Peipei Li, Xindong Wu, and Xuegang Hu. Mining recurring concept drifts with

limited labeled streaming data. ACM Transsactions in Intelligent Systems

Technology, 3(2):29:1–29:32, February 2012.

[58] H. B. Mann and D. R. Whitney. On a test of whether one of two random

variables is stochastically larger than the other. Annals of Mathematical

Statistics, 1947.

[59] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani

Thuraisingham. A practical approach to classify evolving data streams:

Training with limited amount of labeled data. In Proccedings of the Eighth

IEEE International Conference on Data Mining, ICDM ’08, pages 929–934,

2008.

[60] Leandro L. Minku, Allan P. White, and Xin Yao. The Impact of Diversity

on Online Ensemble Learning in the Presence of Concept Drift. IEEE

Transactions on Knowledge and Data Engineering, 22(5):730–742, May 2010.

[61] T. Mitchell. Machine Learning (Mcgraw-Hill International Edit). McGraw-Hill

Education (ISE Editions), 1997.

[62] Tom Mitchell. Generative and discriminative classifiers: Naive bayes and

logistic regression, 2005.

[63] Tom Mitchell. The discipline of machine learning. Technical Report CMU

ML-06 108, Carnegie Mellon University, 2006.

[64] Michael D. Muhlbaier and Robi Polikar. An ensemble approach for incremental

learning in nonstationary environments. In Proceedings of the Seventh

Ph.D. Thesis 248 Piero Conca



Bibliography

International Conference on Multiple Classifier Systems, MCS’07, pages 490–

500, Berlin, Heidelberg, 2007. Springer-Verlag.

[65] Fionn Murtagh and Pedro Contreras. Methods of hierarchical clustering. Data

Mining and Knowledge Discovery, 2(1):86–97, 2012.

[66] Anand Narasimhamurthy and Ludmila I. Kuncheva. A framework for

generating data to simulate changing environments. In Proceedings of the

25th conference on Proceedings of the 25th IASTED International Multi-

Conference: artificial intelligence and applications, pages 384–389, Anaheim,

CA, USA, 2007. ACTA Press.

[67] Detlef Nauck and Rudolf Kruse. Obtaining interpretable fuzzy classification

rules from medical data. Artificial Intelligence in Medicine, 16(2):149 – 169,

1999.

[68] Mark Newman. Networks: An Introduction. Oxford University Press, Inc.,

New York, NY, USA, 2010.

[69] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative

classifiers: A comparison of logistic regression and naive bayes. In Thomas G.

Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, NIPS: Advances

in Neural Information Processing Systems, pages 841–848. MIT Press, 2001.

[70] Nikunj Chandrakant Oza. Online ensemble learning. Technical report,

Massachussetts Institute of Technology, 2001.

[71] A. Pocock, P. Yiapanis, J. Singer, M. Luján, and G. Brown. Online non-

stationary boosting. Lecture Notes in Computer Science, 5997:205–214, 2010.

[72] R. Polikar. Ensemble Based Systems in Decision Making. IEEE Circuits and

Systems Magazine, 6(3):21–45, 2006.

[73] Massimiliano Pontil and Ro Verri. Properties of support vector machines.

Neural Computation, 1998.

[74] J. R. Quinlan. Bagging, boosting, and c4.5. In In Proceedings of the Thirteenth

National Conference on Artificial Intelligence, pages 725–730. AAAI Press,

1996.

Ph.D. Thesis 249 Piero Conca



Bibliography

[75] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, USA, 1993.

[76] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations

by back- propagating errors. Nature, 323:533–536, 1986.

[77] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Pearson Education, 2003.

[78] Zoheir Sahel, Abdelhamid Bouchachia, Bogdan Gabrys, and Paul Rogers.

Adaptive mechanisms for classification problems with drifting data. In

Proceedings of the Eleventh International Conference on Knowledge-Based

Intelligent Information and Engineering Systems and the XVII Italian Work-

shop on Neural Networks, KES ’07, pages 419–426, Berlin, Heidelberg, 2007.

Springer-Verlag.

[79] Marcos Salganicoff. Density-adaptive learning and forgetting. In In Pro-

ceedings of the Tenth International Conference on Machine Learning, pages

276–283. Morgan Kaufmann, 1993.

[80] A. Saltelli, K. Chan, and Scott. Sensitivity analysis. Wiley series in probability

and statistics. Wiley, 2000.

[81] A. L. Samuel. Some studies in machine learning using the game of checkers. II

Recent progress. IBM Journal of Research and Development, 11(6):601–617,

1967.

[82] Arthur L. Samuel. Some studies in machine learning using the game of

checkers. IBM Journal of Research and Development, 3(3):210–229, July 1959.

[83] Robert E. Schapire. The strength of weak learnability. Machine Learning,

5(2):197–227, July 1990.

[84] Jeffrey C. Schlimmer and Jr. Granger, RichardH. Incremental learning from

noisy data. Machine Learning, 1(3):317–354, 1986.

[85] A. Secker, A Freitas, and J. Timmis. AISEC: An Artificial Immune System

for E-mail Classification. In R. Sarker, R. Reynolds, H. Abbass, T. Kay-Chen,

R. McKay, D Essam, and T. Gedeon, editors, Proceedings of the Congress

Ph.D. Thesis 250 Piero Conca



Bibliography

on Evolutionary Computation, pages 131–139, Canberra. Australia, December

2003. IEEE.

[86] Aihua Shen, Rencheng Tong, and Yaochen Deng. Application of classification

models on credit card fraud detection. In Proceedings of 2007 International

Conference on Service Systems and Service Management, pages 1–4, 2007.

[87] Lindsay I. Smith. A tutorial on Principal Components Analysis. Technical

report, Cornell University, USA, 2002.

[88] W. Nick Street and Yongseog Kim. A streaming ensemble algorithm (SEA)

for large-scale classification. In Proceedings of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages

377–382. ACM Press, 2001.

[89] Gerald Tesauro. Practical issues in temporal difference learning. Mach. Learn.,

8(3-4):257–277, May 1992.

[90] Gerald Tesauro. Temporal difference learning and TD-gammon. Commununi-

cations of the ACM, 38(3):58–68, March 1995.

[91] Alexey Tsymbal. The problem of concept drift: Definitions and related work.

Technical report, Trinity College Dublin, Ireland, 2004.

[92] Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data.

Springer, 1982.

[93] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[94] Andras Vargha and Harold D. Delaney. A critique and improvement of the

“CL” common language effect size statistics of McGraw and Wong. Journal

of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[95] A. Wald and J. Wolfowitz. On a test whether two samples are from the same

population. The Annals of Mathematical Statistics, 11(2):147–162, 1940.

[96] SholomM. Weiss, Nitin Indurkhya, and Tong Zhang. Overview of text mining.

In Fundamentals of Predictive Text Mining, volume 41 of Texts in Computer

Science, pages 1–12. Springer London, 2010.

Ph.D. Thesis 251 Piero Conca



Bibliography

[97] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in

the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[98] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics

Bulletin, 1(6):80–83, 1945.

[99] S. Yang. Genetic algorithms with memory-and elitism-based immigrants in

dynamic environments. Evolutionary Computation, 16(3):385–416, 2008.

[100] S. Yang and C. Li. A clustering particle swarm optimizer for locating and

tracking multiple optima in dynamic environments. Evolutionary Computa-

tion, IEEE Transactions on, 14(6):959–974, 2010.

[101] S. Yang, Y.S. Ong, and Y. Jin. Evolutionary computation in dynamic and

uncertain environments. Springer Verlag, 2007.

[102] Ying Yang, Xindong Wu, and Xingquan Zhu. Mining in anticipation for

concept change: Proactive-reactive prediction in data streams. Data Mining

and Knowledge Discovery, 13(3):261–289, 2006.

[103] Peng Zhang, Xingquan Zhu, and Li Guo. Mining data streams with labeled and

unlabeled training examples. In Proceedings of the Ninth IEEE International

Conference on Data Mining, ICDM ’09, pages 627–636, Washington, DC,

USA, 2009. IEEE Computer Society.

[104] Xiaojin Zhu. Semi-Supervised Learning Literature Survey. Technical report,

Computer Sciences, University of Wisconsin-Madison, 2005.

[105] I. Zliobaite. Learning under concept drift: an overview. Technical report,

Overview, Technical report, Vilnius University, 2009 techniques, related areas,

applications Subjects: Artificial Intelligence, 2009.

[106] Indre Zliobaite. Adaptive Training Set Formation. PhD thesis, Vilnius

University, Lithuania, 2010.

Ph.D. Thesis 252 Piero Conca


