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This project explores the uncertainty factors in drought planning for a water resource zone in 

Sussex. Nine planning options from the 2009 Sussex Water Resource Management Plan were 

assessed using four climate products: the 2009 UK Climate Projections Change Factors, the 

Spatial Coherent Projections, the 11 runs of the HadRM3 regional climate model and their 

subsequent downscaling by the Future Flows Project. The varying drought statistics from these 

four climate products reflect post-processing uncertainty - the uncertainty stemming from the 

process of converting original climate model outputs into products of different formats, variables 

and temporal/spatial scales. Overall, the study has integrated a cascade analysis of climate 

uncertainty, climate post-processing uncertainty, hydrological uncertainty, water resource model 

uncertainty and demand uncertainty on water resource planning. The study combines Robust 

Optimisation, Decision-Scaling and Robust Decision Making into Robust Decision Analysis, a 

decision making framework for dynamic adaptation pathways in response to different levels of 

uncertainty and risk averseness. Post-processing uncertainty is the dominate uncertainty until 

2030s; 2050s is then dominated by demand and socio-economic uncertainty. The most severe 

droughts within the Spatial Coherent Projections and the 2009 UK Climate Projection products 

are variations of the 1975-1976 and the 1988-1989 droughts, two of the worst historic droughts 

currently used as the design events for drought planning in Sussex. The system appears to be 

robust to variations of these past droughts. Yet, under different sequences of droughts from the 

HadRM3 and Future Flows products, the system demonstrated frequent supply failures in the 

2050s, unless water demand is maintained at the 2007 level or lower. While operational costs in 

the 2030s are generally within the region of 4 to 5 million GBP per year, those in the 2050s 

Market Forces jumped to the region of 5 to 15 million GBP per year and with supply deficit 

from 0 to 1100 Ml/year. When demand grows by 35% from the 2007 baseline level, universal 

metering becomes a key option. Despite climate post-processing uncertainty, the main hotspots 

of water deficits remains similar across the climate products and are driven by network bottle-

necks and the continually high dependence of the system on water sources around the Hardham 

area. The study also indicates that inter-regional transfers might not be as reliable as assumed. 

 

Keywords: water resource planning, robust decision analysis, multi-criteria, adaptation, climate 

products 
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Chapter 1. INTRODUCTION 

 

Climate change and its subsequent impacts on water resources can affect many 

aspects of society and the environment. This is not new. Many early human 

civilisations started and revolved around rivers such as the Nile, the Tigris-

Euphrates, the Indus and the Yellow River; many more flourished or failed due to 

their capacity to manage and share these water resources (Sadoff and Grey, 2002). 

The potential changes in water availability have become a problem for water 

management and decision making across both spatial and temporal scales.  

 

Adaptation has become one of the major strategies to cope with climate change. 

While adapting to natural changes has been an integral part of the human activities, 

the advent of climate change and its impacts can potentially require unprecedented 

and widespread adjustments. The last three decades have witnessed a remarkable but 

gradual shift in our attitude to the risks of climate change and their subsequent 

impacts. Back in 1977, the US Panel on Water and Climate (1977) asserted only a 

“small probability of a change in regional climate so abrupt, widespread, severe, 

and statistically unambiguous that current water resource design practices need or 

should be radically altered...”. Mitigation was viewed as the main response and the 

risk was not considered to be pressing for immediate actions. Thirty years later, 

numerous studies indicated that we are indeed living in a changing climate (Parry et 

al., 2007; Bellard et al., 2012; Doney et al., 2012; Arnell and Gosling, 2013). 

Adaptation appears to be an inevitable option due to the level of uncertainty 

surrounding the change (Salinger, 2005; Moreira et al., 2007). Hallegatte et al. 

(2012) described this level of uncertainty as deep uncertainty, “a situation in which 

analysts do not know or cannot agree on (1) models that relate key forces that shape 

the future, (2) probability distributions of key variables and parameters in these 

models, and/or (3) the value of alternative outcomes” [p.2].  

 

Uncertainty persists from climate projections to subsequent ‘knock-on’ effects on 

the ecosystem, the hydrosphere, biosphere and the human societies. In the face of 
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such explosion of uncertainty (Wilby and Dessai), there have been concerns about 

the inadequacy of the current water management practices regarding water supply 

reliability, flood risk, health, energy and aquatic ecosystems (Kundzewicz et al., 

2008; Minville et al., 2010). The need to move away from the status quo, to adapt 

and revisit management policies, as such, is urgent and challenging (Fankhauser et 

al., 1999; Adger, 2003; Stern, 2007).   

 

1.1.WHAT ARE THE KEY FACTORS TO ADAPTATION SUCCESS? 

 

1.1.1. Why adapt and what is adaptation success? 

Yet, what constitutes adaptation and the factors of adaptation success are still far 

from clear. In the context of the water industry, these issues represent major 

challenges in current and future planning. Smithers and Smit (1997) have shown 

several conceptual foundations of adaptation. Ecological adaptation refers to the 

reactive responses and genetic evolution of a species. On the contrary, adaptation in 

social sciences emphasises planning and decision making that go beyond species 

survival. This study follows the adaptation definition of The Intergovernmental 

Panel for Climate Change (IPCC)’s Special Report on Managing the Risks of 

Extreme Events and Disasters  (SREX), which defines adaptation as adjustments in 

human systems to changes in climatic stimuli (Field et al., 2012). Translating these 

types of adaptation into the climate change context, adaptation has been classified 

into three categories: autonomous (passive and spontaneous adaptation to existing 

changes), planned (based on an awareness of historic or near-future changes), 

anticipatory (actions before observed impacts of changes) (proactive adaptation) 

(McCarthy, 2001). Adaptation can further be described as a process of moving from 

sustaining status quo (resilience) to incremental change (transition) and paradigm 

shift (transformation) (Pelling, 2011). Smit et al. (2000), meanwhile, characterised 

adaptation by the goals (adapt to what?), the actors (who or what adapts) and the 

process (how it occurs).  

 

The focus of adaptation is also increasingly placed on enhancing adaptive capacity 

instead of specific adaptation measures (Smit and Pilifosova, 2003). Adaptation 
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success has been linked to various criteria, including the absence of vulnerability, 

robustness, resilience (Smit et al., 2000; Füssel and Klein, 2006), flexibility 

(Fankhauser et al., 1999), effectiveness, efficiency, equity and legitimacy (Adger et 

al., 2005; Paavola and Adger, 2006) (Table 1-1). Adaptation success, however, may 

not transmit across scales and criteria and therefore should be assessed at different 

scales (Adger et al., 2005).  

 

Table 1-1 Definitions of adaptation characteristics in  Adger et al. (2005), Smit et 
al. (2000) 

 

Characteristics Description 

Sensitivity Degree to which a system is affected by, or responsive to, 
climate stimuli 

Susceptibility Degree to which a system is open, liable or sensitive to 
climate stimuli (similar to sensitivity, with some connotations 
toward damage) 

Vulnerability Degree to which a system is susceptible to injury, damage, or 
harm (one part-detrimental-of sensitivity) 

Impact 
Potential 

Degree to which a system is sensitive or susceptible to 
climate stimuli 

Stability Degree to which a system is not easily moved or modified 

Robustness Strength; degree to which a system is not given to influence 

Resilience Degree to which a system rebounds, recoups or recovers from 
a stimulus 

Resistance Degree to which a system opposes or prevents an effect of a 
stimulus 

Flexibility Degree to which a system is pliable or compliant (similar to 
adaptability, but more absolute than relative) 

Coping Ability Degree to which a system can successfully grapple with a 
stimulus (similar to adaptability, but includes more than 
adaptive means of “grappling”) 

Responsiveness Degree to which a system reacts to stimuli (broader than 
coping ability because responses need not be “successful”) 

Adaptive 
Capacity 

The potential or capability of a system to adapt to (to alter to 
better suit) climatic stimuli 

Adaptability The ability, competency or capacity of a system to adapt to 
(to alter to better suit) climatic stimuli 

Effectiveness The capacity of an adaptation action to achieve its expressed 
objectives 

Efficiency Consideration of the distribution of the costs and benefits of 
the actions; the costs and benefits of changes in those goods 
that cannot be expressed in market values; and the timing on 
adaptation actions 
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Equity Identifying who gains and who loses from any impact or 
adaptation policy decision 

Legitimacy The extent to which decisions are acceptable to participants 
and non-participants that are affected by those decisions 

 

1.1.2. Robustness, resilience and vulnerability: why are they relevant to the 

issue of adaptation   

In characterising adaptation success, the concepts of robustness (Wilby and 

Dessai; Lempert and Schlesinger, 2000; Dessai, 2005), resilience (Fowler et al., 

2003; Hughes et al., 2003; Tompkins and Adger, 2004; Adger et al., 2007; Pahl-

Wostl et al., 2007) and vulnerability (Vörösmarty et al., 2000; Füssel and Klein, 

2006; Williamson et al., 2012) have been frequently mentioned. Robustness, 

reliability, resilience and vulnerability appear to be the key characterising 

elements of water resource planning performance (Hashimoto, 1980). Similar to 

the concept of adaptation, there is also a conceptual dichotomy between the 

natural sciences and socio-ecological definitions of these terms. In particular, 

engineering robustness (Hashimoto, 1980) refers to the sustenance of system 

performance amidst perturbation and uncertainty (Anderies et al., 2004) while 

planning robustness indicates the flexibility to switch plan (Rosenhead et al., 

1972). Meanwhile, engineering resilience (Hashimoto, 1980) is the recovery 

time to the prior-collapse state and ecological resilience is the amount of 

disturbance that a system can absorb without losing its core processes and 

structures (Holling, 1996; Folke, 2006). Similarly, vulnerability could either be 

viewed as the ‘end point’ in a ‘top down’ climate impact assessment approach, 

or the starting point determining local adaptive capacity in a ‘bottom up’ 

approach (O'Brien et al., 2009). The dichotomy of these concepts reflects two 

alternative views on adaptation: as actions to preserve the current state and as a 

process of transformation in response to internal stress and climatic stimuli. 

Furthermore, the engineering approach assumes a single equilibrium that the 

system should revert to, while the socio-ecological approach allows multiple 

stable system states. Nevertheless, both of these approaches are relevant in the 

adaptation context: within a certain coping range, a system should be able to 

resist disturbances and recover to its normal functional state; however, a system 

should also accommodate system transformation in response to changes. As 

such, there is a need to integrate the socio-ecological aspects of adaptation and 
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its characteristics into the engineering approach. This study acknowledges both 

sides of these concepts and defines the overall robustness as the system capacity 

to resist disturbances while maintaining planning flexibility amidst uncertainty. 

Resilience is defined as the capacity to regain system functions after disturbance 

and vulnerability is the risk of system collapses due to both climatic stimuli and 

internal system attributes. 

 

In the face of uncertainty, robustness is a highly relevant concept to adaptation 

in water resource planning. The practice of water resource planning has long 

relied on the natural water balance and the seasonal cycle of water supply. Yet, a 

non-stationary climate requires fundamental revision and renovation of such 

practice (Milly et al., 2008). Climate uncertainty appears to be the dominant 

uncertainty factor on hydrological response (Arnell, 1999b; Wilby, 2005; Kay et 

al., 2009), although the effects are likely to be catchment-dependent (Boorman 

and Sefton, 1997).The effects of climate change on water resources are evident 

in various catchments and water systems (Leavesley, 1994; Vörösmarty et al., 

2000; Werritty, 2002; Brekke et al., 2004; Wilby et al., 2006; Dessai and Hulme, 

2007; Fowler et al., 2007). Water resource systems are sensitive to changes in 

both moderate and extreme climate variation (Němec and Schaake, 1982). 

Therefore the impacts of these changes on the systems and the decision making 

process should be considered.  

 

Nevertheless, integrated studies on how climate uncertainty propagates from the 

climate projections to the decision making scale, especially when coupled with 

hydrological and socio-economic uncertainty, are sparse. Some examples of 

studies within that stream include Dessai and Hulme (2007), Lopez et al. 

(2009a), Ranger et al. (2010) , Darch et al. (2011) and Matrosov et al. (2012). To 

date, there have been few studies that demonstrate the uncertainty the decision 

makers face, in particular with regards to different climate information from 

different sources and how selecting the information might affect their decisions. 

This issue is vital and relevant to decision making in practice. Furthermore, 

water resource planning also needs to consider other stressors such as demand 

growth and its associating potential risks. The direct effects of climate change 



Page 6  
 

such as the exacerbation of droughts and floods could further interact with 

existing demand pressure and lead to other indirect effects of excessive 

groundwater abstraction and extra demand pressure (IPCC, 2007). As such, there 

is a need for an integrated assessment that includes the relevant uncertainty 

factors, analyses their influences on the planning process and identifies potential 

robust strategies under such uncertainty. 

 

1.2. RESEARCH QUESTIONS, AIMS AND OBJECTIVES 

 

Further research into how climate uncertainty could affect adaptation decisions 

is important and essential. Practitioners such as water managers are currently 

incorporating complex climate projections into decision making and need to 

consider the role of uncertainty in robust adaptation decisions. Yet climate 

projections are subject to deep uncertainties and such uncertainties could cascade 

into water resource planning. Furthermore, the overall implications of climate 

changes are intertwined with intricate socio-economic changes, leading to even 

more uncertain conditions. The research therefore addresses two key questions: 

i)  How does climate uncertainty in conjunction with impact modelling and 

socio-economic uncertainty affect drought planning decisions in water resource 

systems? 

ii) Can the different criteria to robustness in adaptation decision be integrated 

and analysed to inform robust adaptation planning? 

The study aims to explore the components in the uncertainty cascade from 

climate projections, hydrological modelling, water resource modelling and 

option identification. It limits its scope to climate change impacts on surface 

water and focuses on the water quantity aspect of drought planning. The 

objectives of the research are to: 

i) Review different definitions and approaches of the concept of robustness 

in water resource planning: different approaches and definitions of robustness 

can guide the adaptation decisions towards different goals. This objective 

addresses the different underlying ideology of each approach and constructs a 

framework that engages the role of each approach. 
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ii) Construct a methodology and water resource models for a case study in 

south-east England that incorporates the main aspects of the robustness 

concept: The case study serves as an example of how robust adaptation 

decisions can be identified in practice. Furthermore it demonstrates how real-life 

decision making could incorporate climate change uncertainty along with socio-

economic uncertainty. 

iii) Use robust decision making to demonstrate how the uncertainty 

components could affect the performance of adaptation options: While being 

designed under the robustness framework, adaptation options could still be 

susceptible to changes in assumptions and uncertainty bounds. This explores the 

varying robustness of adaptation options under different factors and levels of 

uncertainty. 

 

1.3.THESIS OUTLINE  

 

Chapter 2 Literature Review reviews the key approaches to robustness and 

their associated criteria. It compares and contrasts Robust Optimisation, Real 

Option analysis, Info-gap Decision Theory and Robust Decision Making. It also 

presents a linking decision framework that emphasises the utility of these 

methodologies in reiterative planning cycles. 

Chapter 3 Methodology describes the study framework to analyse uncertainty 

propagation and potential adaptation pathways that balance vulnerability and 

financial costs. It links elements of the uncertainty cascade and combines multi-

criteria analysis with scenario planning to assess the overall impacts of 

uncertainty on drought planning options. 

Chapter 4 Study Area describes the study area and adaptation context in 

details. It highlights the local relevant features to adaptation and outlines the 

steps of the subsequent assessments in Chapter 5 to Chapter 8. 

Chapter 5 Climate Uncertainty explains the key characteristics of four climate 

products: the original Regional Climate Model HadRM3 ensembles, their 

downscaled projections produced by the Future Flows project, the UK Climate 

Program Spatial Coherent Projections (SCP) and the 2009 UK Climate 
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Projections (UKCP09) full set of 10,000 realisations. It analyses two uncertainty 

factors: the climate uncertainty represented by each of these products, and the 

uncertainty from the post-processing procedure that produces these products. 

Chapter 6 Hydrological Uncertainty compares the climate uncertainty with the 

Generalised Likelihood Uncertainty Estimation (GLUE) of hydrological 

uncertainty. The chapter also employs Sobol-sensitivity analysis to explore 

parameter interaction under different flow conditions. 

Chapter 7 Vulnerability Analysis examines the capacity of the current water 

resource system to cope with projected future changes in the 2020s, 2030s and 

2050s. Considered uncertainty factors include climate uncertainty, post-

processing uncertainty and socio-economic uncertainty. The chapter uses a 

simulation model and an optimisation model to produce vulnerability results as 

well as identify the severe drought years in each climate product. 

Chapter 8 Option Analysis continues to assess the coping capacity of the 

system and potential options under deep uncertainty. The Chapter uses the 

Optimisation Model to identify packages of robust measures and the Simulation 

Model to test their performance under all planning scenarios. It also explores the 

cascaded uncertainty from the climate component and the different impacts 

projections due to using different climate products. 

Chapter 9 Robust Adaptation Pathway Discussion revisits the aspects of 

robustness discussed in Chapter 2 and connects the findings with that theoretical 

framework. It analyses the robustness of the case study system to climate 

uncertainty, post-processing uncertainty, changing inflows, varying supply 

reliability and alternative socio-economic scenarios. It also assesses the system 

under the lens of planning robustness and plan switches. Finally it examines the 

assumptions and social uncertainty that could not be included in the modelling 

process. 

Chapter 10 Conclusion summarises the all findings in views of the objectives 

laid out at the onset of the thesis. It reviews remaining limitations and presents 

recommendations for further research.  
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2.1.INTRODUCTION 

 

A certain amount of climate change is now unavoidable and requires timely 

adaptation decisions in water resource planning. Yet, projections of local climate 

change impacts are plagued with substantial unknowns, which make anticipatory 

adaptation difficult. As the climate is shifting, so are stream flows, occurrence of 

extreme events, and subsequently, the practice of water modelling and management 

(Arnell et al., 2001; Milly et al., 2008; Hirschboeck, 2009; Lins and Cohn, 2011; 

Peel and Blöschl, 2011). While non-stationarity in the climate and particularly the 

hydrological cycle is not essentially a new issue, climate change impacts emphasise 

the need to reconsider and incorporate principles of risk aversion and adaptation into 

water resources systems (Lins and Cohn, 2011). The risk introduced by climate 

change impacts has a wide range and high level of uncertainty, which frequently 

prompts the term “deep uncertainty” (Lempert and Groves, 2010). By definition, 

uncertainty is imprecise knowledge about the probability, distribution of events and 

the magnitude of their consequences on vulnerable receptors (Knight, 1921). Deep 

uncertainty, a subcategory, lies at the fuzzier end of uncertainty, where the direction 

and magnitude of changes are completely unknown (Bammer and Smithson, 2008). 

The capacity to maintain performance amidst uncertainty (also known as robustness) 

(Lempert and Schlesinger, 2000; Dessai, 2005) and the ability to absorb such 

disturbance (resilience) (Janssen and Anderies, 2007; Ben-Tal et al., 2009) has thus 

been increasingly used to assess water-resource systems.  

 

Despite its analytical importance, robustness and its attributes have not been 

consistently defined in the literature of water resource planning. This ambiguity in 

terminology has been noticed in various documents concerning climate change 

impacts. For instance, in response to the 2006 draft report on climate decision 

making by the US Climate Change Science Program (Bertsimas et al., 2010), the 

Chapter 2. LITERATURE REVIEW
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review committee of the US National Research Council found the concept of 

robustness “insufficiently defined” (Ben-Tal and Nemirovski, 2002). Similarly, the 

Water Resources Planning Guideline by the Environment Agency for England and 

Wales (Environment Agency, 2012)  stated robustness as a key requirement, yet, 

without any formal definition of the term.  

 

The various definitions of “robustness” in current water resources planning can 

often be traced back to operational research, managerial science, statistics and 

control theory. These alternative paradigms underline various aspects and 

underlying philosophies which may or may not have been translated into water 

resource planning. In order to conceptualise the linkages and contrasts of these 

paradigms, this chapter presents a framework linking and highlighting the utility of 

these concepts for adaptation to climate change. 

 

2.2.WHY ROBUST WATER RESOURCES SYSTEMS ARE NEEDED IN A 

CHANGING CLIMATE? 

 

2.2.1. Water resources planning as a decision analysis problem 

Water resource planning relies on the knowledge of water allocation over space and 

time. Water plans are often formulated as an optimisation problem, constrained by 

water availability and cost (Fiering, 1976). This approach maps the field into the 

domain of linear and dynamic programming, similar to what Bellman (1956) 

described as a decision under uncertainty. Most often, options are characterised as 

discrete solutions that entail one single action, such as to build a reservoir, to reduce 

leakage or to enhance the capacity of the water distribution network. When several 

options are employed in a plan, they are termed a portfolio of options, which also 

details the sequence of option implementation. Decision options in water resource 

planning largely reflect optimisation strategies toward designed conditions. For 

instance, the water system might be designed to cope with the worst historic 

droughts or floods (worst-case scenarios), on average flow conditions, or so that 

systems regain their pre-disaster performance within a certain period.  
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Whilst decision theories have been of assistance to water resources planning, 

particularly in the face of uncertainty, many of their key assumptions are not 

necessarily applicable in the context of deep uncertainty. Many traditional decision 

theories originated from betting games and function with the ideology of finding an 

optimal solution (Pahl-Wostl, 2002). Meanwhile, adaptation often emphasizes 

flexibility and a satisfactory level of system performance rather than solely an 

optimal behaviour of the system (Fankhauser et al., 1999). In some cases, water 

managers might apply hedging rules and devise the reservoir operation rules based 

on optimisation search techniques and assumptions of shortage probability (Shiau 

and Lee, 2005; Tu et al., 2008).  

 

However, water resource planning is fundamentally a risk-averse industry, 

particularly when such hedging strategies may be prone to failure if the operating 

conditions deviate from the design conditions.  Risk averse behaviour is typically 

the case when rewards for correct decisions are far less than punishment for system 

failures, similar to what Bell (1982) explained in his “regret theory” or minimax 

principle, in which people minimise the potential for loss (Morgenstern and Von 

Neumann, 1947; Parmigiani and Inoue, 2009). It appears that with highly risky 

activities, decision-making gravitates towards reducing the risk of wrong decision 

rather than outcome optimisation (Maguire and Albright, 2005). Various studies in 

decision theory and behavioural research have examined and attempted to 

prescriptively correct this “bias” (Von Winterfeldt and Edwards, 1986; Bell et al., 

1988).  

 

On the other hand, other decision theories stem from the recognition that such risk-

averse behaviour in order to be safeguarded against risks and uncertainty is a 

legitimate choice.  One of the earliest theories proposed was from Herbert Simon 

(1979), who uses “satisficing”, the notion of non-optimal but acceptable solutions, 

as an objective instead of utility functions and the “prospect theory” of Kahneman 

and Tversky (1979), who argue that decision makers base their decision on marginal 

gains and losses of each decision implementation to reach an acceptable level of 

utility. Alternatively, Rosenhead et al. (1972) constructed an approach that values 

the number of choices remaining after each decision compared with the number 
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available at the prior-decision stage as a robustness criteria. Such an approach is 

often termed a “robust option”, or a safe option under most circumstances being 

considered. The utility optimisation literature also uses this term to refer to an 

optimal option, such as one selected from Monte-Carlo sampling.  

 

2.2.2. Towards robust water resources system in a changing climate: What is 

lacking? 

Yet, as the climate is shifting, these future conditions become dynamic and 

uncertain. In most cases, there are uncertainties involved in the decision making 

process, not only in climate projections but also within hydrological and socio-

economic ones (Kjeldsen and Rosbjerg, 2004; New et al., 2007; Stainforth et al., 

2007b). The practice of option appraisal based on the status quo is now required to 

evolve with the system and its operating conditions. Adaptation responses in the 

face of uncertainty are grouped by Walker et al. (2013) into resistance (worst-case 

planning), resilience (recovery-based planning), static robustness (wide-range 

planning) and dynamic robustness (flexibility-based planning). The concept of 

robustness, as an enhancement to existing decision analysis, is important in 

formulating option selections and adaptation scenarios. Furthermore, it is also a key 

concept to systems under multiple types of disturbance and uncertainty, as robust 

options for particular types of disturbances may leave the system vulnerable to other 

types of disturbances, thus exacerbating these vulnerabilities (Janssen and Anderies, 

2007). 

 

Hitherto, current guidelines and requirements of robust adaptation options in water 

planning often stress static robustness; for instance, the guideline on water 

management plans in England and Wales (Environment Agency, 2012) requires 

water companies to demonstrate the feasibility and performance of their plans and 

options over the period of next 25-years without the need to analyse system 

flexibility via option switching. Consequently, legislation and institutional changes 

are needed to facilitate the adoption of criteria concerning option flexibility. The 

current literature on water resources planning also displays an emphasis on static 

robustness, namely by ensuring the option is sound cost and performance wise 

(Lempert et al., 2003; Hine and Hall, 2010).  
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On the other hand, adaptation revolving around flexible pathways and diversifying 

strategies prevails in managerial and adaptation-based literature (Smit and 

Pilifosova, 2003) which recognises the importance of enhancing choices and general 

societal resistance to climate change. Concerning climate risk in water resources 

planning, soft strategies, which are flexible and reversible, rank high in the 

adaptation agenda (Hallegatte, 2009). These soft solutions enhance the complete 

supply/demand integrated system capacity to absorb and to cope with socio-

economic shock cascading from climatic disturbance (Nowotny, 1999; Nowotny, 

2003). While traditional emphasis has been on the supply and engineering side, there 

has been a gradual recognition of the need to include cultural and socioeconomic 

interactions. These interactions can be powerful in driving the demand side and 

dictating the efficiency of supply options. Given the current level of uncertainties, 

adaptation strategies have moved toward capacity strengthening rather than optimal 

decision making (Smit and Pilifosova, 2003; Wilby et al., 2009). This paradigm shift 

leads to a move from top-down to more adaptive management approaches in the 

planning process (Ingram et al., 1984; Gleick, 2000; Pahl-Wostl, 2007; Van der 

Brugge and Van Raak, 2007). Combining both of these stances, Wilby and Dessai () 

emphasised options improving scientific and climate risk information as well as 

other water management practices; they further proposed a framework of robust and 

‘low regret’ adaptation by testing both hard engineering solutions and soft solutions 

against climate impact models, technical feasibility and socio-economic 

acceptability.  

 

In the context of water resources planning in England and Wales there are several 

aspects hampering robust planning. As an adaptation decision is shaped by risk 

information and management responses, the constraints exist at both sides. 

Regarding the former, risk of source shortages and outages from extreme events and 

climate change remain highly uncertain; many water companies still have to rely on 

the observed historic time series rather than climate projections. While climatic 

uncertainty is significant and largely dominates other factors (Wilby and Harris, 

2006), much climate impact information is not provided on a relevant spatial and 

temporal scale. Furthermore, there is institutional hindrance to incorporate the 
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information in the decision making process (Rayner et al., 2006). Regarding water 

demand information, there is insufficient water demand data due to the low 

percentage of households being metered; this leads to coarse resolution in demand 

projections, and subsequently, the tendency to instead rely on supply management. 

Moreover, modern water managers are often required to accommodate a wide and 

often competing range of needs and requirements from stakeholders (Naiman et al., 

2002; Poff et al., 2003). Recent implementations of legislation further increase the 

complexity of the picture. For instance, enhancing environmental standards for 

water and wastewater can potentially lead to higher carbon emissions, both of which 

have compliance requirements (Chartered Institution of Water and Environmental 

Management, 2010). Planned water resource management strategies are often 

vulnerable to uncertainties in the hydro-climatic cycle and socio-economic changes. 

While policy guidelines have started to introduce and require the inclusion of 

uncertainty analysis in the decision making process (Commission, 2000; Water 

Framework Directive, 2000; Environment Agency, 2008), such implementation is 

still at an early stage. These contexts call for a change in institutional setting and 

water management practice that can facilitate adaptation planning regarding climate 

change impacts. In terms of methodology, these impediments highlight the need of 

new or combined methodologies that can implement key aspects of the robustness 

concept and address the multi-faceted, multi-attribute decision making process in 

selecting robust water resources strategies. 

 

2.3.UNCERTAINTY MANAGEMENT IN WATER RESOURCES 

PLANNING AND RELATED FIELD 

 

2.3.1. Robustness in adaptation decisions 

 

The idea of robustness is not new. Two parallel interpretations of the concept, 

robustness to evidence and robustness to future change, have long been used in 

statistical analysis and managerial science as criteria for sound decisions. In an 

adaptation context, they can subsequently be translated into two definitions of 

adaptation robustness i) given the current evidence and its likely changes in the 

future, the option will remain sound and feasible (Fiering, 1976; Kadane, 1984; 
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Stainforth et al., 2007a; Fox et al., 2009), or ii) the option is kept flexible to enables 

subsequent switching in the next decision sequence (Rosenhead et al., 1972; 

Nowotny, 2003; Hirschboeck, 2009; Peel and Blöschl, 2011). Paradoxically, these 

two criteria propose opposing definitions of a robust decision: the former requires a 

static option that can withstand uncertainty while the latter keeps changing options 

to accommodate new conditions.  

 

With time, robustness has constantly been reinvented to incorporate new approaches 

and thus, frequently merged with the concept of resilience and flexibility 

(Kundzewicz and Kindler, 1995; Srdjevic et al., 2004). Yet, the dichotomy of the 

term remains: in robust control theory, a system is robust if system components are 

unchanged despite model uncertainty (Roseta-Palma and Xepapadeas, 2004; Funke 

and Paetz, 2011); meanwhile, a social-ecological systems perspective (Anderies et 

al., 2004; Janssen and Anderies, 2007) emphasises adaptation, in which the system 

may shifts to a new state of equilibrium after disturbances. With regards to water 

resource planning, both are useful concepts that reflect different approaches to 

enhance system resistance to uncertainty. The former appears to be more relevant to 

the physical side of water resource systems and the latter more aligned with social 

and ecological responses. For instance, a robust supply system should operate close 

to its designed performance, but robust demand management policies should 

promote sustainable water consumption behaviour that is adaptive to different levels 

of risks.  

 

An application of the robustness concept in a climate change adaptation context 

highlights the need to expand and enhance the concept, in terms of ensuring the 

performance of the system against multiple sources of disturbances that may arise 

from multiple plausible scenarios. Classical decision analysis is largely based on a 

single probabilistic description of the system while climate sciences and subsequent 

adaptation plans often need to consider multiple scenarios and ensembles of climate 

change projections. This wider range of possible futures prompts the scenario-based 

approach of system and option robustness under multiple plausible futures (Lempert 

and Collins, 2007).  
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In practice, robustness has acquired another dimension: economic feasibility and 

environmental concern. A robust system should not only maintain system 

performance but should do so within constrained budgets. To take into account the 

cost factor, the concept of Hashimoto et al. (1982a) introduces the idea of trade-offs 

between system flexibility and cost. It compares the final cost to the minimum one 

(only possible if future outcomes are known with absolute certainty at the time of 

the decision). As the former is often higher than the latter, their differences are 

considered extra investments to safeguard against uncertainty, or, the cost of 

flexibility. The system is considered robust if these differences in cost do not exceed 

a threshold, pre-defined by the decision maker (Jinno, 1995; Kundzewicz and 

Kindler, 1995; Fowler et al., 2003). Nevertheless, such a comparative approach 

tends to identify economically acceptable options amongst the  sets, all of which 

might be below the robust threshold, instead of specifying the robust ones (Allam 

and Abu-Riziaiza, 1988). The approach of Hashimoto et al. (1982a) has hence been 

expanded and applied in a broader context, including metric combination, multi-

criteria decision analysis and scenario-based approaches which consider multiple 

sources of uncertainty (Fowler et al., 2003; Kjeldsen and Rosbjerg, 2004; Srdjevic et 

al., 2004; Ajami et al., 2008). 

 

Due to its intricate nature, the multifaceted concept of robustness is not readily 

quantifiable. Uncertainty can be characterised using numerous indices including 

crisp sets, single probability functions, and as recently suggested, fuzzy sets (Milly 

et al., 2008). Robustness criteria mirror such characterisation, and subsequently, can 

be categorised into statistical robustness (Fiering, 1976), set-based robustness 

(Rosenhead et al., 1972)   and fuzzy robustness (Simonovic and Verma, 2008). 

 The statistical approach (Fiering, 1976) has a strong link to hypothesis 

testing and indexes robustness as the possibility of an option being optimal 

over all other options. Uncertainties considered are statistical sample errors 

and alternative assumptions in the modelling process such as the number of 

variables, conditions of constraints and the preferences of decision makers 

(Fiering, 1976).  

 The crisp set-based approach (Rosenhead et al., 1972) is the ratio between 

the number of acceptable choices after and before a decision. 
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  The fuzzy set approach (El-Baroudy and Simonovic, 2004) compares the risk 

of system failure after and before a decision by examining the overlapping 

region between the operating system state (e.g. water supplies) and the 

failure region (or region of high risks) (El-Baroudy and Simonovic, 2004). 

 

 

True to their predecessors, the current interpretations of robustness emphasise the 

reliability of options and flexibility of the whole system. The following section 

outlines several approaches that follow this chain of thought. 

This approach arguably dominates the water resource research literature (Ray et al.; 

Watkins and McKinney, 1995; Goodwin and Wright, 2001; Chung et al., 2009) and 

combines the approaches of robust statistics, robust control theory, machine learning 

and robust linear and convex optimisation (Ben-Tal et al., 2009). This set-based and 

deterministic approach mainly deals with bounded uncertainty, that is, unknown 

distributions of uncertainty but (assumed to be) known intervals containing the value 

of interest (Olston and Mackinlay, 2002). Water planning issues are formulated as 

linear or dynamic programming (LP/DP) optimisation problems under sets of soft 

and hard constraints. The optimisation model has to satisfy all hard constraints; it 

can violate soft constraints but would be penalised in the objective function. The 

solutions selected can either be feasible or optimal, meaning they satisfy the 

constraints or are the best option within the considered uncertainty domain (Ben-Tal 

et al., 2009). Robust optimisation explicitly explores the link between the geometry 

of uncertainty and robust options. In order for the optimisation to be meaningful, the 

set of feasible solutions is often required to be convex. The characterisation of the 

uncertainty set U can be further specified to encompass specific uncertainty of 

perturbation, probabilistic distributions, or relaxed-representation of normal 

distributions (the ellipsoidal set) of the coefficient sets.  

 

In the context of water resources research, this methodology has been applied on 

both investment and operational decisions (Ray et al.; Watkins and McKinney, 

2.3.2. Robustness in water resources planning

 

2.3.2.1.Robust optimisation 
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1995; Watkins Jr, 1997). Robust options contain robust optimal and robust feasible 

options, selected by specifying constraints such as minimal cost and feasible system 

reliability (Watkins Jr, 1997). The method offers flexibility in incorporating multi-

criteria analysis but can potentially be computationally demanding, due to its highly 

structured and detailed uncertainty characterisations (Ben-Tal and Nemirovski, 

2002). The method is most employed to explore alternative input data and model 

parameters, uncertainties of which arise from system disturbance and future 

changes. 

 

 

Real options analysis is a decision technique that focuses explicitly on the sequential 

nature of decision making. It concerns future options and actively plans for the 

prospect of new options. While not referring directly to the concept of robustness, 

the method relies on analysis of flexibility and costs of options, and thus can be seen 

as a more extended and comprehensive analysis compared to the approach of 

Hashimoto et al. (1982a). In more recent studies, the approach has been analysed in 

the context of robust decision analysis (Mahnovski, 2006) and climate risk 

management (Beare, 2007). The methodology quantifies the cost and added value of 

flexibility based on net present values (NPVs). Originally coined by Myer (1984), 

the term “real option” was used in finance theory to include the opportunity cost of 

options and to value the cost of flexibility (Watkins Jr, 1997; Wang and De 

Neufville, 2004). In its original form, the method was used to determine whether to 

invest now or wait. When translated into a water resource-planning context, the 

method is used to select discrete decisions and the time of action. For instance, 

Gersonius et al. (2010) employ real option analysis to decide a feasible option for 

sequential levee enhancement. Assuming that option effectiveness will decline with 

time, the study investigated various scenarios of option implementation and their 

associating cost and performance. As a result, the design was kept flexible to allow 

switching to new options when new information becomes available in the next 

planning window (Figure 2.1).   

2.3.2.2.Real Options Analysis 
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Figure 2.1 Real Option of managed flood probability with time. The effectiveness 

of each intervention is assumed to deteriorate over time. Design A1, A2 and A3 are 

three levee options in increasing order of protection. To maintain the flood 

probability below the threshold for flood protection, there are various possible 

sequences of implementations, such as gradual enhancement every 20 years or one 

single implementation with no subsequent adjustment. It was found that for the case 

of Gersonius et al.  (2010), frequent interventions based on newly-updated 

information appear to be the most effective.While a Real Options approach 

highlights the flexibility cost of options, it relies on probabilistic approximation of 

success and failure. The methodology is therefore not readily applicable in the case 

of deep uncertainty, which by definition offers no reliable probabilistic estimation of 

risks. The major issues with real option applications in physical systems, as Wang 

and de Neufviller (2004) have pointed out, mainly concern the lack of clear decision 

pathways. In its original financial form, options are clearly defined and agreed under 

contracts; the optimal action is then calculated based on that set of options and their 

associating probability of profit loss or gain. Meanwhile, real options in the physical 

systems are highly dynamic and evolve in response to new climate scenarios, 

demand level or alternative technology. As such, the Real Options approach is a 

useful methodology to compare the cost of adopting options at different times, if 

there is sufficient probabilistic information on clearly-defined adaptation pathways, 

their expected risks and rewards. 
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2.3.2.3.Info-gap decision theory 

The info-gap approach iteratively investigates system performance as system 

parameters or descriptions deviate from “best estimates”, provided by expert 

judgment or nominal description (Ben-Haim, 2001; Hall, 2003). This reliance on 

central tendency is in line with certain practice observed in various decision makers 

(Keeney and Raiffa, 1993), who may be more experienced and ready to start the 

analysis with central tendency rather than with uncertainty boundaries (Ben-Haim, 

2001; Kriegler et al., 2009). The procedure of info-gap starts by determining the 

system equation, which describes the linkage among major system components. This 

nominal model  is an approximation of an actual function of system state 

r(x,t,w), which remains unknown. An info-gap uncertainty model:  

࣯ሺߙ, ሻݎ̌ ൌ ሼݎሺݔ, ,ݐ :ሻݓ ,ݔሺݎ| ,ݐ ሻݓ െ ,ݔሺݎ̃ ,ݐ |ሻݓ  ,ሽߙ ߙ  0 

Equation 2.1 

is developed as a set of function values around the nominal function with α being the 

uncertainty parameter. This set is then expanded to explore the ability of 

management options that govern the system to meet a certain performance criteria as 

uncertainty grows. In info-gap decision theory, “robustness” (the ability to withstand 

pernicious change-as defined by the theory) and “opportuness” (the potential for 

propitious outcomes) are assessed in reference to the potential deviation from the 

“best estimates”. Robustness is displayed and analysed in the form of a robustness 

function, which indicates “the greatest level of uncertainty at which failure cannot 

occur” (Ben-Haim, 2006). Opportuneness is displayed and analysed in an opposite 

function that reveals the lowest level of uncertainty that offers windfall gain. Thus, 

the robustness and opportunity of each option can be evaluated and ranked based on 

the preference of decision makers, with the general aims being options with high 

robustness and low opportuness: 

ሻݍොሺߙ ൌ maxሼ݈ܽ݉݅݊݅݉:ߙ	ݏݐ݊݉݁ݎ݅ݑݍ݁ݎ	݁ݎܽ	ݏݕܽݓ݈ܽ	݂݀݁݅ݏ݅ݐܽݏሽ 

 (robustness)  

Equation 2.2 

ሻݍመሺߚ ൌ minሼߙ:  ሽ݈ܾ݁݅ݏݏ	ݏ݅	ݏݏ݁ܿܿݑݏ	݃݊݅݁݁ݓݏ

(opportuneness) 

Equation 2.3 
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As the method uses an uncertainty threshold α to define the domain in which an 

option is robust, the uncertainty model used in Info-Gap has to be convex, that is, 

the set of models with a smaller deviation α1 should be contained within that of 

deviation α2 if α1<α2. While such an assumption might be self-evident in certain 

systems (Beven, 2008), there is a need to investigate further specific behaviours of 

water planning systems and options, particularly in the case of interactions within 

sets of options. 

 

 In practice, Hine and Hall (2010) applied Info-gap decision theory on flood 

mitigation options to consider the timing, value and uncertainty robustness of each 

option (Figure 2.2). If a preference reversal occurs, decision-makers may trade 

higher performance for resistance to uncertainty. This graphic portrayal allows 

decision makers to adjust their performance criteria and in this sense Info-Gap 

theory dispels two forms of determinacy: a pre-determined probability distribution 

of potential outcomes and pre-determined performance criteria to be met. In climate 

change adaptation studies, Info-Gap theory can assess the varying outcomes due to 

changes of model parameters, structures or future scenarios that deviate from the 

current state or the “best estimate” scenario of the future (Milly et al., 2008).  
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Figure 2.2 Robustness and Opportuneness Curve (Ben-Haim) and robustness 

curve of a case study of levee raise (Hine and Hall, 2010).  The ability of 

different management options to deliver a desired performance criteria are 

compared on the same graph with the performance value represented on the x-

axis and increasing uncertainty represented on the y-axis. Decision makers can 

see the amount of uncertainty each management option can accommodate at each 

incremental measure of performance. In the robustness curves related to the levee 

raise in Figure 2.2, there is a preference reversal just before the £200M NPV 

mark. At this point, the ability of option 3 to handle higher uncertainty is 

surpassed by both options 1 and 2. Beyond this point, options 1 and 2 deliver the 

same performance as option 3 over higher levels of uncertainty.  
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Robust Decision Making (RDM) uses sets of scenarios to explore plausible futures, 

emphasise adaptability as a central attribute, and search iteratively for vulnerable 

conditions (Lempert et al., 2003). Results from robust decision analysis are not 

fixed: they are kept adaptive to the users and scenarios. This approach does not 

provide the best rank option and considers that different users might have highly 

diverse priorities. Robustness is used as the main criterion, along with other sets of 

flexibility, adaptability and system performance. The approach implements a 

vulnerability-and-response-option, in contrast to the predict-then-act approach, 

which is adaptation based on a single projected future (Lempert and Groves, 2010). 

The common steps in a robust decision making (RDM) framework can be 

summarised into five main steps (Figure 2.3). In particular, the method formulates 

the problem and chooses candidate strategies by consulting the relevant 

stakeholders. It then proceeds to evaluate the identified options and the factors 

causing vulnerabilities to system performance. Finally, it revisits the initial 

assumptions and options to explore further the vulnerabilities.   

 

Figure 2.3 Steps in a robust decision making analysis. Source: (Lempert and 

Groves, 2010). The problem is first characterised. Then candidate strategy, which 

might be single option or a portfolio of options are identified and evaluated under a 

large ensemble of scenarios. The simulation results are then further evaluated using 

data mining techniques to identify explanatory factors that lead to system 

vulnerabilities. RDM can be applied reiteratively to further characterize and identify 

alternative options or adjusted options, which can mitigate system vulnerabilities.  

 

An example of the method in action is given by Lempert and Groves (2010), in 

which water planners are interviewed about uncertain key factors in their decision 

making. The answers are used to construct a model inclusive of the factors, namely 

climatic changes, future water demand, subsequent changes in imported supplies, 

2.3.2.4.Robust Decision Making
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groundwater shift, managerial effects and future costs. Decision-makers identified 

climate change as the key variable for multiple plausible scenarios and consider the 

candidate strategies on the basis of climate scenarios. Adaptive strategies such as 

water-use efficiency, recycled-water system, and groundwater policy were then built 

into the system and activated once supply deficits occur (Figure 2.4). A satisficing 

criterion was defined as a threshold to identify vulnerable scenarios: if the supply 

cost is 20% higher than the shortage cost, the uncertain factors are making the 

system vulnerable and strategies ineffective (Figure 2.5). It then allows Lempert and 

Groves (2010) to concentrate on these scenarios and further assess the options and 

their alternatives. 

 

 

Figure 2.4 Framework of adaptive strategy as implemented iteratively in the 
model. UWMP stands for Urban Water Management Plan (Lempert and Groves, 
2010) 
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Figure 2.5 Analysis of scenarios, in which the open diamond ones are vulnerable 
circumstances (Lempert and Groves, 2010) 

 

Robust Decision Making emphasises factors causing system vulnerabilities and 

options that can reduce such vulnerabilities in the context of deep uncertainty. It 

stresses the participatory nature of the decision making process by facilitating 

stakeholders’ discussion and visualisation of uncertainties. However, robust decision 

analysis might be computationally intensive due to its thorough search within the 

uncertainty space. Lempert et al. (2003) emphasised that the scenarios need to be 

distinctively different so that the options can be comprehensively analysed and 

sampled. Similar to other classical approaches, it is also sensitive to the bounded 

estimation of the sampling space.  

 

2.4.ROBUST DECISION ANALYSIS IN A COMPLEMENTARY 

FRAMEWORK 

 

2.4.1. Adaptation decision: option robustness and system robustness  

As previously discussed, robustness criteria may refer to the selection of a fixed set 

of options over various possible futures or the ability to switch options should it be 

beneficial to do so. To some extent, these criteria are tantamount to option 

robustness and system robustness (Fiering, 1976). Both of these criteria have 

applicability in water resource planning. As each decision in water resource 

planning represents an investment, water managers are keen to prove that such 
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investment is worthwhile and the option is robust, particularly when the capital and 

operation cost are high. Infrastructure options such as reservoir, nevertheless, 

require a significant amount of time and effort in preparing proposals, impact 

assessments and preparation. A reservoir’s capacity, operation rules and expected 

operation duration are largely determined by initial infrastructure design; switching 

away from initial designs at a later stage may become costly. While option 

robustness ensures that the decision remains correct within a wide range of futures, 

there is a risk of mal-adaptation due to possible lack of system flexibility. In that 

context, system robustness becomes relevant. Climate change scenarios introduce a 

wide and complex range of possible futures for water systems to adapt to, 

subsequently make adaptive and robust options difficult to achieve. If adaptation 

methods are flexible and non-capital intensive, future option switching or system 

enhancement will be more readily implemented.  

 

 

 

The comparison highlights the diversity of uncertainty tackled and robustness 

criteria in various methodologies. As Table 2.1 depicts, these methods may concern 

the range of options before and after a decision (fuzzy robustness), trade-offs 

between performance, flexibility and cost (classical robustness and real options), 

likelihood of option optimality (statistical robustness, robust optimisation), overall 

vulnerabilities to changes in system estimates/characterisation (info-gap decision 

theory), or inherent vulnerable components of the system itself. These methods 

differ significantly in uncertainty characterisation: the group of Classical 

Robustness, Statistical Robustness, and Real Options use a single probabilistic 

description; Fuzzy Robustness use fuzzy logic while Info-gap Decision Theory and 

RDM are scenario-based. 

 

The main objectives of the methodologies are one of the main foci of this chapter. 

Classical robustness and statistical robustness both emphasise the low possibility of 

the conclusion being wrong based on reliable probability estimations of the system 

and system responses. Meanwhile, fuzzy robustness relaxes the requirement for 

probability estimations and allows buffer conditions between system failure and 

2.4.2. Comparison of methodologies
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non-failure definition. Real options, on the contrary, requires probabilistic outcomes 

and a clear decision tree of possible option switches. Info-Gap decision theory, 

largely scenario-based, explores acceptable deviations from the “best-estimate” of 

system description. It also uses robustness curves to perform sensitivity analysis of a 

system to each uncertain parameter. RDM is scenario-based and uses multiple 

plausible futures to explore factors causing system vulnerabilities. Management 

emphasis and more detailed studies could then be directed towards areas of 

uncertainty that are the most influential to system performance.  

 

Table 2-1 Comparative analysis of robustness measure and approaches (the classical 

robustness refers to Hashimoto et al., 1982) 

Method Uncertainty tackled Robustness Criteria Uncertainty 
characterisation 

 

Classical robustness Model uncertainty Acceptable trade off 
between cost and 
system performance 

Single characterization 
of the system and 
uncertainty 

Statistical robustness Input data uncertainty High possibility of the 
chosen option being 
optimal 

Statistical 
characterisation of the 
system and uncertainty 

Fuzzy robustness Uncertainty of 
acceptable       
performance 

Change in system 
compatibility before 
and after the decision 

Fuzzy description of 
uncertainty 

Robust Optimisation Uncertainty of model 
parameters and input 
data 

Optimal solution, 
selected by 
optimisation from the 
set of all feasible 
solutions 

Can be probabilistic or 
set-based 

Real Option Uncertainty in time of 
action and associated 
cost of flexibility 

Low cost of option 
implementation, 
switching and 
adjustment 

Option success and 
failures can be described  
probabilistically  

Info-gap decision 
theory 

The extent to which 
the system state can 
deviate and still 
maintain performance 

The management 
option that satisfies a 
critical reward at the 
greatest level of 
uncertainty  

The set of system state 
clusters around a 
nominal estimation and 
form a convex set  

Robust Decision 
Making 

Existing 
vulnerabilities and 
uncertainty that 
exacerbates these 
vulnerabilities 

Low-regret strategies 
that offer acceptable 
performance amongst 
all scenarios being 
considered 

The ranges of 
uncertainty and their 
interactions can be 
described in multiple 
plausible scenarios 
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To date, uncertainty characterisation has been one of the major factors in selecting a 

robustness approach. This study proposes that adaptation planning should instead 

focus on the research question and the level of confidence in data as the starting 

point of the selection. The argument rests on three main points as follows.  

 While the differences among robustness criteria are emphasised in this 

analysis, they do not exclude complementary usage of these criteria. 

 Provided that there is sufficient information that each methodology requires, 

these robust decision analysis can be simultaneously employed to give a 

richer picture and understanding of the system in question and their 

uncertainty components.  

 Yet, care should be taken considering whether their assumptions apply. In 

essence, the sampling domain and types of uncertainty to be dealt with are 

important.  

 

2.4.3. A framework linking the robustness concepts 

The discussion in the previous section has demonstrated that robustness 

methodologies often exist as a continuum rather than as discrete methods. The 

uncertainty that they tackle also ranges from total ignorance to knowledge, 

according to the delineations of uncertainty by Knight (1921) and Beven (2008).  

These uncertainty domains can be further broken down into set-base knowledge, 

fuzzy, and probability (Beven, 2008). In Figure 2.6, these degrees of certainty, or 

better described as level of confidence, are displayed orderly. The figure represents 

various ways to characterise values of an uncertain variable or model results, all of 

those reflect the range of uncertainty. Consider the case when X is different system 

states under climate change impacts.  

 If there are multiple equally probable scenarios, the system states under these 

scenarios can be treated as discrete system states of equal likelihood. They 

can be further grouped into sets of outcomes, along with their frequency.  

 If there is sufficient knowledge to further classify the input scenarios into 

groups of different likelihoods, these scenarios can then be described under 

fuzzy sets.  
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 When there is a high confidence in the information, probabilistic distribution 

can be used to describe the likelihood, such as, there is a 0.5 chance 

occurrence of the system state value X 

 

    

    Low confidence                                                                              High confidence            

Figure 2.6 Information representation based on level of confidence 

 

As discussed earlier, analysis methodologies vary in terms of uncertainty 

characterisation and therefore can be mapped along this confidence axis. If the same 

axis of knowledge confidence is used, the methodologies can be displayed along the 

axis as depicted in 

Figure 2.7.  

 

 

 

 

       Deep Uncertainty                                                                      Low Uncertainty            

 

Figure 2.7 Map of methodologies along the uncertainty axis of modelling inputs 

 

This framework proposes that methodologies should not be restricted to their 

classical confidence domain if the amount of data and the level of confidence 

change accordingly. Instead, it acknowledges the evolvement of information and 

knowledge with time and that the decision might be one of multiple iterative 

decision points. The framework emphasises that the analysis should start with the 

objectives of robustness and then consider available information (Figure 2.8). 
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Figure 2.8 Framework for selecting a robust decision method 

 

Furthermore, these switches in uncertainty characterisation can be executed in 

different decision points. As time proceeds, the domain of knowledge expands while 

that of uncertainty and ignorance shrinks. These conditions enable method iteration 

or switching based on the new level of information. For instance, Real Options can 

first be used as set-based, and subsequently moved towards fuzzy-based and 

probabilistic as available information allows a more detailed structuring of the 

outcomes. Similarly, while info-gap, robust optimisation and robust decision making 

originated as scenario-based approaches, they can be further characterised as fuzzy 

and probabilistic as newly available information shifts the decision into the domain 
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of less deep uncertainty. As such, at each new decision point, the user can choose to 

reiterate their previous methodology or adopt a new method to suit their current 

level of uncertainty. The shift will also reflect their priority of which kind of 

uncertainty to explore (refer to Table 2-1).  

 

2.5.CONCLUSION 

 

This chapter has reviewed various robust decision methodologies and their 

associated criteria. It demonstrates that each of these methods follows different 

underlying assumptions and characterizes different uncertainty types and levels. 

Recent robustness criteria stem from classical groups of statistical-base, rough set-

base or fuzzy-based concept. Such diversion in uncertainty descriptions have been 

captured in Table 2-1 and Figure 2.4, in which the type of uncertainty 

characterisation and the evolution of uncertainty level are illustrated. The classical 

robustness emphasises trade-offs between cost and system performance, and at the 

same time requires low-regret for the selected decision. Fuzzy robustness is an 

extension of classical set-based robustness, with the improvements being the usage 

of likelihood/membership function and a more flexible definition of system failures. 

Robust optimisation formulates the issue as an optimisation problem under set of 

hard and soft constraints, the solutions of which are deemed robust feasible and 

robust optimal solutions. Real option analysis offers a comprehensive analysis of the 

cost of flexibility, with the limitation being its adherence to probabilistic 

assumptions. Info-gap Decision Theory focuses on strategies that can achieve the 

lowest critical performance over the highest level of deviation from the central 

tendency, or “best-estimate”, while RDM targets factors causing vulnerabilities in 

the system in question. Overall, the differences in assumptions and methods of these 

approaches do not exclude their complementary deployment. Furthermore, such 

deployment can be beneficial as it allows deeper understanding of the system and 

adaptation options. 

 

It is also recognised that robustness can refer to option robustness or system 

robustness. The former emphasises the superiority of the chosen option across a 
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wide range of scenarios while the latter puts more weight on option switching. It 

might be possible to have a robust option that does not reduce the possibility of 

option switching or retrofitting. However, in long-term decisions, system robustness 

should be prioritised to avoid to mal-adaptation and costly lock-in. It is thus 

suggested that legislation frameworks and guidelines to the water industry should 

place more emphasis on system robustness and flexibility. The paper illustrates that 

water planning should select acceptable options that satisfy the robustness criteria 

rather than optimal options which might be susceptible to greater uncertainty. 

 

Finally, the chapter presents a decision framework linking robustness methodologies 

based on their classical definition and uncertainty characterisation. The framework 

emphasises the utility of methodologies by choosing their objectives as the starting 

point. It also expands the methodologies into uncertainty domains that are not 

covered in the original methodology description, thus enhances their usage under 

other levels of uncertainty. The framework considers decision making as a dynamic 

process, in which knowledge changes with time and decisions can be revisited in 

future planning cycles. Overall, the framework helps to clearly define the objective 

of various robust decision methodologies and structurally tackle uncertainty attached 

in planning decisions. This framework helps compare and contrast the related 

methodologies to distinguish existing robustness approaches. This literature review-

based framework therefore highlights the principles of robustness that will be the 

basis for the Methodology chapter, which targets key features of the robustness 

concept in a multi-criteria robust decision making context. 
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Chapter 3. METHODOLOGY 

 

This chapter presents the analysis framework used in this study.  The framework is a 

systematic process that links and analyses component uncertainty of climate-related 

planning decisions. The chapter focuses on the main structure and linking logic amongst 

the components; Chapters 5, 6, 7 and 8 will further explain specific treatments of each 

uncertainty component. Section 3.1 first starts with a brief overview of current 

uncertainty assessment frameworks and their drawbacks. Section 3.2 then proceeds to 

describe the aims, structure and key points of the framework proposed and used in this 

study. The chapter concludes with  the specific structure and a flow chart of the 

methodology, which are summarised in Section 3.3 that also serves as a roadmap of 

subsequent chapters.  

 

3.1.LINKING AND INTEGRATING UNCERTAINTY 

 

3.1.1.  ‘Top-down’ and ‘bottom-up’ approaches 

As Chapter 2 illustrates, methodologies of uncertainty assessment are scattered in 

various research literatures, from mathematics and operational research to climate 

impact studies. In climate adaptation policy, frameworks linking these methodologies 

often either starts from the climate end or the decision end, described as the ‘top-down’ 

and ‘bottom-up’ approaches (Dessai and Hulme, 2004). The ‘top-down’ approach, as 

suggested by the Intergovernmental Panel for Climate Change (IPCC), designs 

adaptation policy to alleviate the vulnerabilities exposed by climate uncertainty (Wilby 

and Dessai). Meanwhile, the ‘bottom-up’ approach constructs policy based on the 

available adaptive capacity and resources- the limiting factors of possible adaptation 

actions (Smit and Wandel, 2006). These two complementary approaches answer two 
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different questions: the former targets the climate uncertainty envelope while the latter 

tackles the social adaptive boundary.  

 

Tying together the impact and response end, both of these approaches provide the 

context and scenarios for adaptation policy analysis. While traditionally, policy analysis 

has considered multiple scenarios and contexts, the inherent uncertainty in climate 

change impacts rapidly expands future projections into thousands of scenarios and 

possibilities. This high level of uncertainty requires a move from scenario-based to risk-

based approaches (Jones, 2001; Klinke and Renn, 2002; Keller et al., 2005; Cowell et 

al., 2006). These risk-based approaches are naturally closer to the ‘bottom-up’ approach 

than the ‘top-down’ one, as vulnerability is context and system-dependent. They focus 

on impact-scale vulnerabilities and decision-relevant conditions, for instance rainfall 

and temperature patterns that lead to crop failures, water deficit or ecosystem damages 

(Risbey, 1998; Liverman, 1999; Lempert and Groves, 2010; Prudhomme et al., 2010; 

Brown et al., 2011; Brown et al., 2012). These conditions are then used to analyse either 

key risks projected in the climate model outputs (Brown et al., 2012), or possible 

enhancements of the area’s current coping capacity (Yohe and Tol, 2002; Füssel and 

Klein, 2006; Thomalla et al., 2006; Füssel, 2007).  

 

The basic structures of selected methodologies are depicted in Figure 3.1. The 

traditional ‘top-down’ starts from the global or regional climate models, which output 

data spatially as square grid boxes of 50x50 to 300x300 km2. Since this scale is too 

coarse for most study areas, the data often require further modelling or statistical 

analysis. These ‘downscaled’ climate projections then provide input data for the impact 

models, which generate scenarios for vulnerability analysis. In contrast, the ‘bottom-up’ 

Robust Decision Making (RDM) and Decision-Scaling start from the options (Lempert 

and Groves, 2010).  
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Figure 3.1 Comparative diagrams of traditional ‘top-down’ and two ‘bottom-up’ approaches- adapted and combined from Brown et al. 
(2011) and Lempert and Groves (2010) 
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In RDM, option performances are iteratively analysed under various scenarios of 

uncertainty, using user-defined criteria and corresponding thresholds of acceptable 

performances. The analysts can then change the testing options and repeat the process if 

various scenarios demonstrate underperformances. Meanwhile, Decision-Scaling 

constructs a climate response function of vulnerability thresholds, determines the key 

climate risks in climate model outputs and then uses a decision model to minimise the 

risks (Brown et al., 2011; Brown et al., 2012).  

 

Besides these decision frameworks, some alternative ‘bottom-up’ methodologies use the 

social and ecological resilience lens. In essence, they analyse adaptation as a transition 

pathway involving state changes and social learning (Pahl-Wostl, 2002; Folke, 2006; 

Nelson et al., 2007; Pahl-Wostl, 2007). These approaches consider various states of 

equilibrium that an aftershock society can shift to, as well as major stimuli of these 

transitions (Geels and Schot, 2007; Vogel et al., 2007; Foxon, 2012). The scope of these 

approaches often expands to livelihood, governance and policy making as non-climate-

based stimuli from the social side (Foxon et al., 2010; Bussey et al., 2012) (Figure 3.2). 

As such, these approaches play an important role in exploring interactions and 

responses of social uncertainty that are not explicitly considered in other methodologies. 

 

Figure 3.2 Factors influencing water transition pathways. Adapted from Foxon et al. 
(2010)  
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3.1.2. Bridging approaches: the challenge 

Using only the ‘top-down’ or ‘bottom-up’ approach poses problems but bridging these 

two approaches is challenging. Focus on either the former or the latter can distract or 

misinform decision makers. ‘Top-down’ presents an overwhelming level of uncertainty 

in climate projections, many of which are not decision-relevant or highly uncertain on 

the impact scale. Meanwhile, ‘bottom-up’ presents a danger of exclusively relying and 

focusing on ‘known’ or experienced risks. There exist very few frameworks that can 

comprehensively and integrate risk analysis from both ends (Brown et al., 2012) 

because of four characteristics of the current approaches.  

 

Firstly, uncertainty at either end is essentially different in forms and governing regimes. 

The top-down uncertainty, coming from physical climate models, is often quantified 

and shown as projections; meanwhile, adaptation responses are qualitative, fluid and 

context-dependent. In linking climate and social impacts, qualitative uncertainty is often 

considered in a separate framework, thus impedes the integrated nature of the 

uncertainty assessment.  

 

Secondly, both physical and social vulnerability often revolve around the concept of 

limits and thresholds, a degree of changes that leads to critical transitions or state shifts 

(Pittock and Jones, 2000; Brown et al., 2011). Yet, crossing a threshold does not 

automatically prompt adaptation and such thresholds are often hard to determine (Adger 

et al., 2009). Responses can also vary widely from a behavioural basis (Grothmann and 

Patt, 2005), as risk tolerance differs from individual to individual due to attitudes, 

perceptions and decision-making positions (Thompson et al., 1990; Thompson, 2003). 

Communication of risk is also a key issue: individuals not only react differently to risks 

but also to different visualisation of the same risk (Gettinger et al., 2012).  

 

Thirdly, adaptation responses exhibit non-linear patterns and may evolve to new 

information, risks, shocks and surprises. Yet the current approaches largely lack 

analysis of multi-state shifts and responses to climate change. This missing aspect is 
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important, as adaptation is a process that dynamically balances risks and preparedness. 

Thresholds and vulnerability of future society are thus different from those of current or 

historic society. A robust system of today does not necessarily remain so in the future. 

As such, a robust system has to consider dynamic equilibria, including positive and 

negative social responses under increased risks such as higher preparedness versus 

inaction due increased tolerance (Bryan et al., 2009; Foxon et al., 2009; Lindner and 

Kolström, 2009).  

 

Finally, there is indeed no clear ‘bottom-up’ and ‘top-down’ vulnerability, as 

uncertainty interacts and grows. The cascade of uncertainty, or the explosion of 

uncertainty along the layers of analysis (Wilby and Dessai), is likely to expand 

regardless of the starting point of analysis (Figure 3.3). The process of uncertainty 

influence is thus not a one-way trickle from the climate end to the decision end or vice 

versa. Responses to climate and social risks, as such, pose a high degree of uncertainty, 

as it is highly complex as well as context and path dependent. 

  

Figure 3.3 The uncertainty cascade (Wilby and Dessai, 2010) 
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These methodological difficulties translate to the applied side of the decision making 

process. In the face of uncertainty, responses to risks include delaying action until 

uncertainty is reduced and mal-adaptation- where actions further weaken the coping 

capacity (Adger, 2000; Barnett and O’Neill, 2010). Initial adaptive responses might 

shift to mal-adaptation and disintegrating trust when the climate risks increase 

(Niemeyer et al., 2005). Yet , water planning in practice still shows a high dependency 

on historic trends and extreme events (Subak, 2000). Complex decision making tools do 

not necessarily help alleviate this state: decision makers may respond sceptically or 

become unsure of how to interpret options and projections (Lempert et al., 2003). An 

integrated framework of adaptation thus has to efficiently connect uncertainty factors 

while additionally informing and interacting with the decision makers on key 

information (Jones, 2001).  

 

To sum up, the current lack of an integrated approach in climate impact research results 

from inherent differences of uncertainty from the decision and the impact end, problems 

in defining adaptation thresholds, and the lack of multistate response analysis. Yet, 

‘bottom-up’ and ‘top-down’ uncertainties are linked and a truly connected approach 

should include the same key uncertainty regardless of its starting point.  These 

challenges thus call for an integrated methodology that recognises the changing nature 

of adaptation decision making and with less emphasis on the ‘top-down’-‘bottom-up’ 

diversion. 

 

3.2.THE ROBUST DECISION ANALYSIS FRAMEWORK 

 

3.2.1. Aims and objectives 

In dealing with the challenges mentioned above, this study puts forward a framework 

that blends relevant uncertainty managements and embraces the changing nature of 

adaptation decisions. The scope of the framework is to tackle integrated uncertainty in 

drought planning decisions under a changing climate. This framework assists decision 
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makers in identifying potential pathways that can reduce financial costs and 

vulnerability to climate risks. The main objectives of the framework is therefore 

 To improve computational efficiency of RDM by combining with Robust 

Optimisation.  

 To make decision makers aware of potential trade-offs and uncertainty in 

adaptation decisions 

 To facilitate decision making via multi-criteria risk visualisation, so that 

decision makers can choose options that match their initial criteria or accept a 

certain risk level given the uncertainty  

 To analyse temporal adaptation pathways that prepare the present water system 

for climate risks in 2020s, 2030s and 2050s  

The uncertainty considered includes climatic, hydrological and water resources 

uncertainty. Main methodologies in this study include scenario planning, multi-criteria 

analysis and robust decision making. Three main features characterise the framework. 

Firstly, the framework integrates various uncertainty factors that are linked by the 

‘knock-on’ effects of climate change impacts. Secondly, it couples multi-criteria 

analysis and scenario planning to explore the potential impacts of combined uncertainty. 

The framework combines Robust Optimisation and RDM. It  improves the 

computational effort compared to RDM and provides comparison on sub-optimal 

options compared to Robust Optimisation. Thirdly, the framework allows decision-

makers to change their criteria and criteria priorities in response to updated information 

or interactions with impact projections. The framework, in support of the study 

objectives, aims to transform adaptation decision making from being solution and 

problem-oriented into option-oriented. In doing so, it acknowledges that problem 

definition and solution selection rest with the decision makers, thus changing in time 

and from stakeholder to stakeholder. To facilitate changing objectives and perspectives, 

options are interactively displayed for analysis. Through the framework, decision 

makers can rethink their adaptation decisions in light of updated information or changes 

in their adaptation preferences. The framework, however, does not indicate which 

options the decision maker should choose. Its objective is to help the decision makers 

analyse and possibly revise choices with an awareness of probable consequences. 
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3.2.2. Structure  

This study proposes a study framework that does not revolve around the ‘top-down’ and 

‘bottom-up’ debate. It combines simulation with optimisation to improve the efficiency 

of option selection. Figure 3.4 presents the steps and characteristics of this framework. 

As discussed, it is difficult, even unattainable to comprehensively bridge the physical 

and social uncertainty. The proposed framework instead focuses on adaptation 

decisions, the outcome of both ‘top-down’ and ‘bottom-up’ vulnerabilities. A robust 

decision needs to link physical components and possible patterns of social responses to 

climate change, thus has to compromise the vast uncertainties in climate projections and 

the specific focus of adaptation at the local scale. In the framework, vulnerabilities are 

not characterised as black-or-white boundaries that either trigger failures or require 

adaptation. Rather, it is framed as areas of unsatisfactory states or deep uncertainty, 

two conditions that the decision makers may want to avoid. The unsatisfactory state 

occurs when the system displays characteristics outside of the decision makers’ desired 

range; meanwhile, deeply uncertain system is a configuration that might work for only a 

few amongst the wide range of possible scenarios.  

 

More importantly, the framework revolves around the interactive and shifting 

adaptation preferences, thus makes space for risk negotiation, in which decision makers 

either seek additional option(s) to achieve their current risk preference, or accept 

another level of risk. This risk acceptance is not tantamount to inaction or non-

adaptation. In many cases, the marginal cost of being insured for a high risk level is 

much higher than the marginal benefits; in other cases, there is no option that can 

achieve the desired safety level. By being aware of the risk and taking alternative 

actions to deal with the risk, decision makers are arguably better informed and more 

active in the decision-making process. Furthermore, this interactive step enhances 

decision makers’ involvement in choosing the level of risk and adaptation actions. The 

framework stresses that decision makers should not feel overwhelmed, outsmarted or 

deluded by the complex models in the analysis. Making the decision makers central also 

motivates them to feedback on the model performance or explore ‘top-down’ risk 
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outside of their experience. As the decision makers match model results with their own 

experience, they can deduce missing factors in the model structure, as well as learning 

possible inherent risks in their current decision practice. Therefore such practice will 

lead to the co-development of knowledge between the modellers and the decision 

makers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Proposed Robust Decision Analysis framework 
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In order to address these key points, the proposed framework utilises relevant features 

of decision support frameworks mentioned in Section 3.1. In particular, it inherits the 

iterative approach of RDM and the efficient and decision-oriented aspects of Decision-

Scaling. The framework differs from Robust Decision Making in two aspects: 

 Capacity to change criteria and risk acceptance range: In RDM, if the 

decision makers are not satisfied with the option performance, they could 

further explore other options but could not change their stated decision 

thresholds. Robust Decision Analysis instead offers the decision makers two 

choices of changing options or their acceptable risk levels. The decision makers 

could then investigate the performance of the new options and/or the 

consequence of changing the acceptable risk levels.  

 The optimisation step which preselects potential options: RDM presents a 

framework that engages decision makers to iteratively analyse option by option. 

Meanwhile, Robust Decision Analysis analyses all available options and their 

combinations, therefore could present each option performance in reference to 

other options. This process of identifying potential robust options is useful 

when the number of options is large and option performance varies greatly 

under different climate and water demand scenarios. 

Furthermore, it has also improved the Decision-Scaling method in two aspects: 

 Dynamic sensitive conditions: The iterative structure of Robust Decision 

Analysis allows revisiting and adjusting the thresholds of sensitive conditions 

(the critical climate conditions influencing planning decisions). Therefore, in 

contrast to the static sensitive conditions of Decision-Scaling, the sensitive 

conditions of Robust Decision Analysis can be changed in response to new 

information from each of the iterations. In essence, the decision makers can 

assess whether their planning options and response thresholds have sufficiently 

mitigated the risks, and explore other options or thresholds for planning 

decisions. Moreover, the discussion regarding threshold and option adjustments 

can potentially facilitate communication amongst stakeholders and expose their 

different risk averseness. This participatory agreement on the acceptable risk 

level is important, as it may lead to further understanding of potential risks each 
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threshold poses for different stakeholders and their acceptability of these risk 

levels. 

 Analysis of option capacity both under perfect information and deep 

uncertainty: Decision-Scaling provides the decision makers with the optimal 

decisions in different climate conditions. However, it does not identify the 

overall risks to the system, given the full set of climate projections. Meanwhile, 

Robust Decision Analysis presents individual and overall option performance 

under no uncertainty (optimisation mode) and deep uncertainty (simulation 

mode). The former mode, similar to Decision-Scaling, identifies the optimal 

decision in each scenario and reduces the computational effort compared to 

brute force option analysis. The simulation results additionally provide option 

performance under uncertainty. It therefore compares not only option capacity, 

but also the level of uncertainty at which an option can operate. Under 

uncertainty, option performance is determined by various factors, such as 

proximity to the shortage hotspots and the lead time for an option to take effect. 

Therefore an optimal option for forecasted droughts might be different from 

optimal options for sudden drought onset. With Robust Decision Analysis, 

decision makers can further consider trade-offs between the general capacity of 

options and their ability to perform under uncertainty.  

 

Compared to both Robust Decision Making and Decision-Scaling, the framework also 

bears several other minor differences. Firstly, the framework differs in its vulnerability 

representation.  Both RDM and Decision-Scaling use discrete thresholds, which imply 

abrupt decision switches once the thresholds are crossed. Meanwhile, the framework, as 

discussed above, considers decisions driven by a continuous range of conditions. It 

therefore does not automatically assess the appropriateness of options in the adaptation 

plans; but instead let the decision makers compare option costs and performance and 

decide on options that match their risk tolerance. Secondly the framework explicitly 

emphasises the multi-criteria aspect in its analysis and visualisation. While various 

methodologies rely on the aggregated weighted sum of normalised criteria, the 

framework utilises an integrated methodology that analyse criteria as independent 
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functions. Finally, the framework employs both simulation and optimisation algorithms: 

the former assisting vulnerability analysis and the latter optimal decision analysis. 

Additionally, a combined simulation-optimisation approach can include sub-optimal 

options for trade-off analysis. For instance, option A is optimal for 40 out of 50 cases 

and option B 10 out of 50 cases. In the sub-optimal cases, the performance measures of 

option B are still within the acceptable ranges. If overall option B requires much less 

capital and labour investment, decision makers can opt for B. The optimisation process 

can identify A and B when they are optimal for the cases and simulation can calculate 

performances of other sub-optimal candidates. There possibly exists an option C that is 

not optimal for any cases but performs adequately at low costs. In this case, decision 

makers can explicitly switch to the simulation mode. However, computational time, cost 

and analysis effort grow rapidly when the number of options increases. It is thus 

preferable that the decision makers carefully assess their criteria and the preferred 

range. For the example above, option C can still be identified via optimisation if 

investment cost is included. The approach of coupling simulation-optimisation for this 

study will be further discussed in Chapter 7. 

 

3.2.3. Data structure  

Figure 3.5 presents the specific structure of the framework used in this study. As 

discussed, the framework retains the interactive element of robust decision making by 

using inversed optimisation-simulation method (refer to Section 3.2.2 and Figure 3.4). 

The model first optimises and displays all scenarios and their corresponding optimal 

options for each scenario. The model then switches to the simulation mode and run the 

selected options for a subsample or all scenarios. It then outputs the performances of 

these reference options for those scenarios. The user can then select their preferred 

options to construct an adaptation pathway. As such, the user can explore whether these 

preferred options perform acceptably well compared to the optimal option of each 

scenario. The user can change their acceptable ranges of performance measures by 

choosing other options that perform less well but still within their risk tolerance.  
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The framework follows the triggering of climate impacts on the natural system, from 

changes in rainfall and evapotranspiration to changes in flow regimes and extreme 

events. It then explores how changing surface water resources will affect possible water 

management via a water resource model, which generate the water supply and demand 

balance. Deep uncertainties in climate projections and hydrological model 

parameterisation are represented in different climatic inputs and hydrological model 

structures. Furthermore, probable climate effects on demand are also considered, along 

with demand trends based on socio-economic projections. The process is repeated for 

each time period of 2020s, 2030s and 2050s (Figure 3.6), so that for each of these time 

slices, decision makers have several options that they can use to construct alternative 

adaptation pathways. The study analyses the necessity and performance of options in 

three time periods (2020s, 2030s, and 2050s). It uses a three-step process of 

vulnerability identification, robust optimisation to identify potential robust options and 

cross-checking the results on a larger set of scenarios using the simulation model. In 

each of these time periods, multi-criteria optimization is used to measure how portfolios 

of options help keep water deficit, adverse environmental impacts and financial cost at 

an acceptably low level. These option sets, when being considered along with their 

capital investment cost, provide useful information on  possible adaptation pathways 

that the decision makers can choose. In essence, the decision makers may first decide on 

their acceptable level of risk and their financial budget; they then select planning 

options that satisfy their acceptable risks and costs, and finally construct a pathway of 

how such options will be implemented in the planning cycles. As such, the framework 

could assist the decision makers in exploring possible portfolios of options and option 

performance under uncertainty, and subsequently identifying potential adaptation 

pathways that suit the users’ risk averseness.  



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Schematic of the framework 
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Figure 3.6 Schematic of how the adaptation pathway is constructed based on 
modelling results 
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from policy drivers. However, it is outside the scope of this study to deal explicitly 

with this uncertainty factor. The framework does not deal with un-quantified risks, 

but can potentially use qualitative risks as an extra context for analysing governance 

and policy influences.  
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Chapter 4. CASE STUDY DESCRIPTION 

 

This chapter describes the chosen study area and how the methodology in Chapter 3 

is applied to the case study. The study area is located in the southeast of England, an 

area that has been susceptible to the past droughts of 1975-1976, 1995 and the recent 

2010-2012 drought (Wigley and Atkinson, 1977; Hopkins, 1978; Marsh and Turton, 

1996; Subak, 2000; Marsh et al., 2007; Kendon et al., 2013). Using a spatially 

coherent stochastic model of monthly rainfall for the southeast, Duan et al. (2012) 

has shown that some of these past droughts may recur in this region. Another study 

also demonstrated that the region would require a net water supply increase of 441 

Ml/day by 2035, 188 Ml/d of which due to potential climate change impacts (Water 

Resources in the South East Group, 2010). Medd and Chappells (2007) further 

asserted that such risk posed a key challenge in building resilience in water 

management, since the current approach is fragmented and mainly employs 

engineering measures to ensure supply. To highlight the main challenges in drought 

planning and the requirements of adaptation decisions, Section 4.1 first describes 

how water resource management in England and Wales operates; this description 

helps identify the key decision makers and the major considerations of planning 

decisions. This decision making process sets the scene for adaptation planning. 

Based on analyses of the adaptation needs, Section 4.2 and 4.3 then explains how 

the framework in Chapter 3 will be applied specifically for the study area, with 

regard to climate uncertainty, hydrological uncertainty, demand uncertainty and 

water resource uncertainty.   

 

4.1.WATER RESOURCE MANAGEMENT IN ENGLAND AND WALES 

 

 

Water management in England and Wales is a combination of private operation and 

central regulation. On an operational level, the companies are privately owned and 

largely responsible for their day-to-day business. On a planning level, water 

4.1.1. A brief description
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companies are under the auspice of major regulating authorities: the Department for 

Environment, Food and Rural Affairs (DEFRA), the Water Services Regulation 

Authority (OFWAT) and the Environment Agency for England and Wales (EA) 

(Arnell and Charlton, 2009). The EA and OFWAT evaluate the planning of the 

water companies every five years via two planning reports (Southern Water, 2009b; 

Southern Water, 2009a; Environment Agency, 2012). The first report is the water 

resource management plan, which details how the companies will maintain a healthy 

water supply-demand balance during the next 25 years. The second one, the business 

plan, outlines how the companies will manage their revenue in the next five years. 

Additionally the company annually reports its supply and financial performance, 

along with an environmental impact assessment, to the Water Service Regulation 

Authority. The business plan, the water resource management plan and monitoring 

data are assessed in conjunction. In essence, the water resource management plan 

details the need of infrastructure investments; this need then justifies the changes of 

water price in the business plan. If the regulating authority does not approve the 

proposed strategies in the water resource management plan, they can require the 

company to either revise the plan or adjust the business plan accordingly. These 

plans also form an important basis to assess the annual monitoring data, as the water 

companies often use the demand projections in the water management plan as the 

real demand in water shortage analysis.  

 

Aside from these general planning documents, the companies have to consider other 

risk-specific planning and relevant authorities. For instance, the Climate Change Act 

2008 addresses climate change risks and the adaptation options (Planning & Climate 

Change Coalition, 2010); the Flood and Water Management Act 2010 requires local 

authorities to prepare flood risk management strategy and options to alter risks. 

Drought wise, the company is required to maintain a Drought Contingency Plan, 

which stipulates drought triggers and actions in the event of droughts. This plan does 

not have a periodic review; it is amended every time the national policies are 

revised. The Drought Plan and the Drought Direction 2011 also specifies several 

types of emergency drought responses such as restrictions on water use and extra 

supply options (Environment Agency, 2011). Water restrictions at the lowest level 

are often termed as ‘hosepipe bans’ due to its restriction on 11 hosepipe-related uses. 
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The Water Resources Act 1991, and later the Environment Act 1995 and the Water 

Act 2003 set out three additional responses of water companies or Environment 

Agency in the event of droughts (Department of Environment, 2011).  

 

These three measures are described in Table 4-1 and include drought permit, 

ordinary drought order and emergency drought order. Drought permits allow water 

companies to take additional water from specified sources and place restriction on 

their current sources. Ordinary drought orders let water companies restrict the non-

essential use of water while emergency drought orders, also termed ‘standpipes’, 

further restrict water uses and let water companies provide water to the users via 

standpipes or water tanks. The water companies use the frequency of these hosepipe 

bans, such as 1 in 10 or 20 years, as a measure of their ‘level of service’. This level 

of service is also mentioned in the corresponding water resource management plan, 

as most water companies aim to maintain a certain level of service. 

 

As such, water management in a water resource zone consists of four main actors, 

three of them are: the water company that operates in the region, the environmental 

regulator (the Environment Agency for England and Wales) and an economic 

regulator (the Water Service Regulation Authority; Oftwat) (Arnell and Delaney, 

2006; Sharp, 2006). The planning strategies are also subject to public consultation, 

which engages the customers, arguably the fourth main actor. Figure 4.1 

demonstrates the dynamics of decision making at such scale. The water company 

interacts with the regulators regarding complying with legislation requirements, 

preparing their long term plans as well as seeking approvals for drought responses. 

Additionally neighbouring companies are also an important actor regarding water 

transfer agreements. Furthermore, the company maintains relations with other 

groups such as Natural England, river trusts, and other stakeholder groups. 
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Table 4-1 Descriptions of drought permits and drought orders. Modified from: Department of Environment (2011) 

 Drought Permit Ordinary Drought Order Emergency Drought Order 

Legislation Water Resources Act 
1991 Section 79a (as 
amended by EA 1995) 

Water Resources Act 1991 Section 74 Water Resources Act 1991 Section 75 

Who can apply? Water company Water company or Environment Agency Water company or Environment Agency 

Who authorises them? Environment Agency Secretary of State or Ministers Secretary of State or Ministers 

Available actions 
(subject to conditions 

or restrictions 
specified on the 
permit or order) 

Water Company 

To take water from 
specified sources; 

To modify or suspend 
conditions on an 
abstraction licence held 
by the water company 

Water Company 

Same as drought permits but also: 

To discharge water to specified places; 

To modify or suspend discharges or filtering/treating of water held by water 
company; 

To modify or suspend restrictions or obligations to taking, discharging, 
supply or filtering/treating of water held by others (including Environment 
Agency); 

To authorise the EA to stop or limit the taking or discharging of water 
from/to specified sources or places; 

To prohibit or limit particular uses of water under Drought Direction 2011 
(these provisions do not apply for emergency drought orders) 

Environment Agency 

To take water from specified sources 

To discharge water to specified places; 

To stop or limit the taking of water from specified sources; 

To modify or suspend restrictions or obligations to taking, discharging , 
supply or filtering/treating of water held by anyone 

Water Company 

Same as ordinary drought order 

Additionally: 

To prohibit or limit uses specified by 
water company; 

To set up and supply water by means of 
stand pipes or water tanks in a water 
company area. 

 

 

 

Environment Agency 

Same as for ordinary drought orders 
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Figure 4.1 Water management framework in England and Wales 

 

4.1.2. Planning decision cycles and decision variables 

The structure of water management in England and Wales greatly affects the 

decision making process of water companies (Cashman and Lewis, 2007). Overall, a 

water company often focuses on strategic decisions proposed in the water resource 

management and the business plan. There are two reasons for this focus: firstly, 

most operational rules are determined at this level; secondly, regulators’ approvals 

or objections at this level may determine the available planning options and the 

implementation timeline, subsequently affect everyday operations and long-term 

options. Indeed, the company controls and may vary its operations, but often follows 

the strategies laid out in the two plans, particularly the short-term business plan. 

 

As water companies are private but heavily regulated firms, their planning decisions 

have to balance profit making and the quality of their water services (Helm and 

Rajah, 1994; Ogden and Watson, 1999; Parker, 1999). While this balancing 

requirement also exists for other industries, for the water industry the requirement is 

implemented via the close supervision from the regulators (Saal and Parker, 2000). 

This supervision ensures that the company does not abuse its position to make profit 

at the expenses of the customers and the environment. Often, a private firm can 

make money via selling a sufficient number of products and/or setting the price 

higher than the cost. Since the water companies operate on water, a limited resource, 
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they cannot sell beyond the abstraction capacity. Meanwhile, the water company has 

a great power in setting the price as the water market is segregated and customers 

cannot switch to alternative water companies unless they consume more than 5 

Ml/day (Cowan, 1997; Southern Water, 2009b). This regulated setting thus can 

potentially lead to over-exploitation of water resources or high water price. As these 

possibilities are ruled out under the regulation of the EA and OFWAT, it is then 

essential that the water companies plan their operation in a cost-efficient manner 

while satisfying the performance and ecological requirements.  

 

Maintaining these criteria is not easy under the high uncertainty of demand growth 

and climate change impacts. O'Neill et al. (1998) argued that this higher 

environmental uncertainty can lead to higher adoption rates of innovations. Marvin 

et al. (1999) further illustrated such environmental innovations via four pathways of 

smart metering development that also define the water company and water user 

relationship. These pathways are termed Monitoring, Gatekeeper, Producer-led and 

User-led. The first three pathways employs the meters to record consumption and 

provide the water companies with information for water tariff and supply; 

meanwhile, the User-led pathway, which Marvin et al. (1999) asserted that was still 

largely lacking in UK water management, promotes information sharing with water 

users, so that the users can be more aware of their consumption patterns and 

efficiency. Nevertheless, demand forecasting is still highly uncertain due to the lack 

of household demand monitoring (Butler and Memon, 2006; New et al., 2007). As 

such, management options are still mainly supply augmentation options (Guy, 1996; 

Medd and Chappells, 2007) and the company is partially facing the classical 

capacity-expansion under uncertainty problem in operational research (Luss, 1982). 

In these types of problems, the decision makers have to plan water supply 

augmentation in a sequence of stages so that water demand can be satisfied with 

minimum cost (Figure 4.2).  
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Figure 4.2 Schematic of a capacity-expansion problem. Source:Luss (1982)  

 

To include uncertainty and unplanned risks, the water companies are allowed to 

invest in extra supply capacity. This extra capacity, termed “the headroom”, can 

account for uncertainty in the supply and demand projections as well as incidences 

of supply outages (Figure 4.3). It is a formal requirement for water companies to 

analyse the potential impacts of climate change on demand and supply 

(Environment Agency, 2012). In particular, the EA allows two approaches to 

climate change assessment, either by considering climate change uncertainty within 

the target headroom, or, preferably as a direct assessment on supply sources and 

demand. In the first approach, the headroom acts as a safety buffer zone where 

climate change impacts could be accounted for. The second approach represents a 

more computationally intensive route in which uncertainties are assessed as several 

components instead of being lumped into a single term of uncertainty. For risk 

assessment, the companies can further test their water systems against an extreme 

event, termed ‘the design event’. If the system can withhold against this event, it is 

assumed to be able to cope with events of equal or smaller magnitude. The return 

period of the event is also used to describe the system coping capacity to that risk.  
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Figure 4.3 The relationship between headroom, demand and supply in the supply 
demand balance (Environment Agency, 2012). SDB stands for Supply-Demand 
Balance 

  

Yet, in the capacity expansion problem of the water companies, the planning options 

expand not only to supply augmentation but also demand reduction and adjustment 

of current operating rules. Decision variables, the set of strategic decisions that the 

water company may choose to implement, therefore are divided into three groups 

 Operational decisions: in which system composition is reassessed. 

Operational rules such as the minimum environmental flows, the reservoir 

operational curve, or the drought triggers are adjusted without any further 

intervention to the water system structure.   

 Supply management decisions: in which the water company seeks extra 

supply sources via new constructions of water storage/abstraction 

infrastructure or other transfer contracts with neighbouring water companies. 

 Demand management decisions: in which the company uses short and long-

term strategies to increase water use efficiency and reduce water 

consumption. 

Table 4-2 demonstrates the sources of uncertainty for headroom calculation from 

both the supply and demand side. In general the supply factors include source 

reliability, vulnerability and reduction due to pollution or climate change impacts; 
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on the demand side, the headroom accounts for errors in demand data and 

projections, as well as climate change effect on demand. 

Table 4-2 Sources of uncertainty for headroom calculation.  Source: UK Water 
Industry Research (1998)  

Supply-side Demand-side 

Vulnerable surface water licences 

Vulnerable groundwater licences 

Time limited licences 

Reliability of inter-basin imports 

Gradual pollution of source 

Accuracy of supply-side data 

Reliance on single source 

Climate change effect on yield 

Accuracy of demand data 

Accuracy of demand forecasts 

Climate change effect on demand 

 

4.1.3. Drought planning approaches 

The Environment Agency and the water companies follow a ‘twin-track approach’, 

which emphasises both supply and demand management (Southern Water, 2009b; 

Environment Agency, 2012). However, the effectiveness of demand management 

appears uncertain to many water managers (Subak, 2000). Risk-averse water 

companies are therefore willing to maintain extra infrastructure to avoid reservoir 

deficits and subsequent supply failure, since the companies are liable for failing their 

target level of service. Risk aversion can also be seen in their approach to drought 

yield estimation, in that they prefer to use the driest scenario from a longer record 

rather than the required thirty-year historical database (Table 4-3) (Subak, 2000).  

 

Nevertheless, the drought planning trend in England and Wales exhibits a gradual 

shift from structural measures to non-structural measures. This paradigm shift in 

drought management can be explained by the changing requirements of drought 

coping. In the 1970s, droughts were largely due to infrastructure problems (Gibb and 

Richards, 1978). The 1975-1976 historic drought in the south-east was largely an 

engineering issue, later solved by inter-area water transfer and additional water 

resources (Gibb and Richards, 1978). During the 1970s-1980s the supply capacity 

was further strengthened with leakage reduction and infrastructure enhancement. 
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Most current water systems have improved their water supply infrastructure and 

build on multi-source supplies, which helps to alleviate deficits of local sources 

(Cole et al., 2006). These improvements led to a stronger water system that can cope 

with the manifestations of past drought patterns. Yet, they are counteracted by three 

factors: the post-1970s lower public tolerance to water restriction, the growing water 

demand accompanying rapid population growths and the lack of a national guidance 

on demand management (Subak, 2000). Therefore, post-1976 droughts such as the 

2006 drought have become closely related to the issue of balancing supply, demand 

and environmental values (Medd and Chappells, 2007). Droughts thus transcend 

from a purely meteorological and hydrological phenomenon into the social sphere.  

Table 4-3 Extracted survey results on managers’ perceptions of global warming 
scenarios by Subak (2000) 

 

Similar to climate change adaptation, drought coping has also moved into a risk-

based approach. Current drought approaches subsequently emphasise the use of 

contingency plans and insurance policies (Wade et al., 2006). Regarding climate 

risk, the Environment Agency requires the water companies to consider results from 

the UK Climate Projections 2009 (UKCP09). Studies based on these projections 

have already indicated pending risks of higher winter flows and lower summer flows 

in response to intensified winter rain and less frequent summer storms (Prudhomme 

et al., 2010; Christierson et al., 2011). Nevertheless, incorporating UKCIP09 results 

into water resources plans proves to be challenging due to their probabilistic nature 

and wide uncertainty ranges. There is an urgent need to incorporate climate 
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projections into water supply planning in a practical and timely manner; yet it is 

equally vital to analyse system robustness given the deep uncertainty of climate 

projections and other important socio-economic drivers. Amongst these concerns, 

projected changes in the demand that can be met without violating constraints and 

causing the system to fail, termed Deployable Outputs (DOs), and headroom 

assessment constitute prime considerations to water companies (Environment 

Agency, 2012). 

 

4.2.THE CASE STUDY AREA 

 

4.2.1. Water resources and water management of Sussex 

The chosen study area of this study is the Sussex area in southeast England (Figure 

4.4). The area is under great pressure to adapt. Population growth and climate 

change have become two major new challenges for the area and the south-east of 

England- a region with 15% of its water resource zones seriously water-stressed 

(Cave, 2009). These pressures may further exacerbate if coupled with a diminishing 

supply of water, excessive groundwater abstraction and extra demand pressure 

(Houghton, 2005). Moreover, the region has to rely heavily on groundwater to 

support the fastest growing population in the UK (Cave, 2009). Climate change, a 

deep uncertainty in planning, is a big driver for changes in the water supplies (Arnell 

and Charlton, 2009). Various studies indicate that the UK climate has increased in 

seasonality over the last 30 years (C.G.Kilsby, 2004; Marsh, 2004; Fowler and 

Kilsby, 2007) Global climate models (GCMs) project wetter winters and drier 

summers, thus suggesting more frequent summer droughts to come (Christierson et 

al., 2011). Using the regional climate model HadRM3, C.G.Kilsby (2004) analyse 

the IPCC A2 and B2 emission scenarios (UKCIP02 medium-high and medium-low 

scenarios) for the period of 2070-2100 and find drought duration increasing in 

eastern and southern regions in both scenarios. More intense drought and an 

increasing frequency of short-term drought are therefore expected in the future.  
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Figure 4.4 Map of the study area. Data courtesy of the Ordinance Survey, Centre for 

Ecology and Hydrology (CEH) Wallingford and British Geological Survey 2012  

 

The area is divided into three sub-areas: North Sussex, Worthing and Brighton. 

North Sussex is drained by the tributaries of the Rother (often called the Western 

Rother to distinguish with the river Rother in East Sussex) the Adur and the Arun. 

Amongst these rivers, the Rother and the Arun constitute important water resources 

for North Sussex. Meanwhile, water resources in Worthing and Brighton mainly rely 

on groundwater. Geologically, the whole study area overlays the Chalk and the 

Greensand aquifers, which produce moderate to high groundwater yield (Figure 4.5 

and Figure 4.6). The water supply of the area relies on the Rother, the Arun and 

various groundwater boreholes in the Worthing and Brighton area. The water 

resources of the area are managed by Southern Water Services Ltd., a private 

company of Greensand Investments Limited. This water company originates from 

Southern Water Authority, a pre-1989 public water authority, and still retains 

various management and facilities of its predecessor. 
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Figure 4.5 Geological map of the study area. Data courtesy of the British 
Geological Survey 2012 
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Figure 4.6 Groundwater abstraction map of the study area. Source: British Geological Survey 
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In addition to the surface resources within its administrative boundary, the company 

also operates the Weir Wood reservoir. Despite its small capacity, this reservoir 

plays an important role in preserving water for the peak summer period. Southern 

Water shares the reservoir with South East Water and is obliged to provide 7.5 

Ml/day to this neighbouring company. The company also has an ongoing contract 

with Portsmouth Water, another neighbouring company that supplies up to 15 

Ml/day to Southern Water’s Sussex North. In terms of groundwater resources, the 

company is assigned abstraction limits by the Environment Agency.    

 

Similar to other areas in the UK, water consumption and demand in the area have 

not been monitored until recently. To date, customers have often been charged a 

fixed price that does not reflect the real water consumption. Water consumption 

metering started in the 1990s and has reached approximately 50-70% in the study 

area in 2009 (Southern Water, 2009) (Figure 4.7). Hitherto, this lack of household 

data is still a big impediment in efficient water planning. To address the issue, the 

water company has included various demand management options in their water 

management plan, ranging from water efficiency campaigns to variable tariff.   

 

Figure 4.7 Map of metered and un-metered area in the study area 
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From a planning decision perspective, the company plans its strategies, also viewed 

as decision variables in decision analysis, via the water resource plans. Its reservoirs 

operate based on control curves, which dictate when water is stored or released. 

These control curves are reviewed at the same time as the production plans. For 

groundwater, as it is difficult to project groundwater sources at the moment, the 

sustainable available groundwater abstraction is determined as the amount available 

under the worst drought during 1920 to 1921 in Kent. Operational rules are reviewed 

as follows: 

 Monthly for normal period 

 If there are impending droughts: fortnightly review 

 Once drought starts: weekly review 

 In extreme droughts: daily 

For strategic planning, there are the Drought Plan and Water Resource Management 

Plan. The Water Resource Management Plan makes long-term decisions that 

maintain the targeted level of service. During the drought period, as described in 

Section 4.1, response actions could include hosepipe bans, non-essential bans and 

standpipe.  

 

4.2.2. Main requirements of adaptation: perspectives of the decision makers 

Several meetings have been held between Southern Water and the researcher to 

clarify view points and address adaptation needs. The company recognises droughts 

as a serious risk in the study area and targets this issue in their adaptation planning. 

The EA made clear in their Water Resource Guideline (Environment Agency, 2012) 

that robustness and reliability are key criteria in assessing the water resource 

systems. The current approach of Southern Water emphasises a resilient and flexible 

water resource system, based on information and modelling work accumulated from 

the previous planning cycles. In addressing robustness, the company aims that their 

options are not only tested against historical droughts but also on synthetic events 

based on past droughts. In terms of resilience, it tries to maintain the targeted level 

of service of 1-in-10-year hosepipe ban against the severity of the worst historic 

drought 1921-1922. The company viewed a resilient option as an option that can 

accommodate droughts up to the design drought event. In its definitions, there is a 
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significant overlap between the concept of robustness and resilience. Its approach is 

strongly risk and frequency-based. It specifically analyses the level of service in 

conjunction with the Deployable Output, the maximum supply that does not damage 

the water sources and the environment. Via this analysis, the company can assess the 

maximum sustainable level of Deployable Output that does not affect the sources 

and worsen the targeted level of service. The company also highlighted the 

importance of an outage plan, since supply outages in stressed periods might have a 

significant impact. Compound risks are also a vital factor. For instance, a 

combination of groundwater droughts and sudden flash floods can severely affect 

water supply, as the groundwater sources are depleted and the surface water requires 

substantial turbidity treatment. While maintaining the use of hosepipe bans and the 

Drought Plan, the company tries to not rely on drought permits, or in other words 

achieving robustness based on permits, as frequent applications for permits are 

penalised by the EA. Furthermore, the average time to obtain a drought permit is 

three months and thus it is highly uncertain whether that permit is still needed once 

granted. 

 

In terms of demand management, the water company has attempted to apply data 

mining techniques, such as Artificial Neural Network, to analyse demand patterns. 

This approach is limited by data availability, since most available demand data is at 

a macro scale (bulk consumption) and the current available approach is micro-

component based. Nevertheless, the company gradually possesses more data on 

demand patterns and behaviour with roughly ten years of data since metering started 

in 2000. The current measuring regime, however, reads the meters every six months 

(and not on the same day for the whole area). Due to this lack of daily household 

demand data, the company has introduced smart meters which will facilitate more 

advanced demand modelling. Even so, research based on smart metering data is only 

feasible after three to four years when sufficient data have been accumulated. To 

date, most of the work yields limited forecasting power; demand projections are 

instead based on assumptions on per-capita consumption, the number of households 

and demographic trends. Similar to supply analysis, the company is using 

deterministic demand models but aims to shift to stochastic models. The company 

also remains cautious in demand option analysis, as water efficiency might have 
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been brought down by stealth water efficiency (more efficient white good such as 

dishwasher and washing machine) and the effect of seasonal tariff is still uncertain.  

 

4.3.APPLICATION OF THE FRAMEWORK 

 

The Sussex area is suitable for a case study because: the decision makers advocate 

the concept of robustness and resilience; they specify key requirements of their 

adaptation decision; and relevant data are available for the region. The study thus 

applies the conceptual framework described in Chapter 3 based on minimising 

operational cost, supply deficit and environmental flow deficits, the three criteria 

identified by the decision makers. As the company emphasises the need for robust, 

resilient and flexible drought planning, the robust decision making framework has 

been designed to consider the key uncertainties in climate projections and 

hydrological modelling, while addressing changing water demand. The aim of 

applying the framework on the case study was to tackle the uncertainty cascade and 

address the adaptation needs of the decision makers.  

 

This section outlines the data to be used in the framework. More details on the data 

and how they are used in each analysis component will be provided in the 

corresponding chapters. The framework, as presented in Chapter 3, addresses 

climate, hydrological and demand uncertainty and linked by the water resource-

decision analysis model. Each component of the whole framework is outlined as 

follows 

 

4.3.1. Climate uncertainty 

The chosen climate projections for the study area are based on the results of the 

Hadley Centre Regional Climate Model HadRM3 climate model (hereby also 

termed the RCM in general), a regional climate model of the Hadley Centre 

produced by the UK Meteorological Office. The chosen emission scenario is the 

Medium Emission Scenario. The model outputs exist in several forms, such as 

10,000 Change Factors of the 2009 UK Climate Projections (UKCP09), the original 
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11 HadRM3 runs and the Future Flows (FFs) downscaled data from these 11 runs. 

The UKCP09 10,000 Change Factors are based on a complex methodology that 

includes the 11 HadRM3 simulations, many simulations of the Hadley Centre GCM, 

other Global Climate Models (GCMs) and a Bayesian emulator (Murphy et al., 

2010). The UKCP09 product adopts a probabilistic approach to represent climate 

change projections; this approach encapsulates a larger range of results than in 

previous climate scenarios and is helpful for drought risk identification. Yet, these 

projections have received criticism on the lack of inter-annual variability and spatial 

correlation amongst the grids (Chun et al., 2013). By contrast, the 11 runs of the 

HadRM3 are spatially coherent and include temporal variability but lack the 

probabilistic ranges of UKCP09. Furthermore, the RCM runs might require bias 

correction before being used for hydrological models. Based on the original RCM 

data and historic gridded rainfall data, the Future Flow project has bias-corrected 

and further downscaled the RCM data. These two sets of outputs thus also have 

different resolution scales, with the UKCP09 grids being 25 km x 25 km and the 

Future Flows grids being 1 km x 1 km (Figure 4.8). Hence in this study, these two 

model outputs are used in parallel to comprehensively capture existing uncertain 

climate information and address the inter-annual linkage of drought risks. 

Figure 4.8 Example of UKCP09 and Future Flow data resolution. The Weirwood 
Catchment is located in grid 1706 while River Rother Catchment is spread 
amongst the grid 1703, 1704 and 1743. The Future Flow data include rainfall and 
evapotranspiration daily time series from 1949-2099; the UKCP09 sets contain 
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the mean change factors that can be applied on the historic 1961-1990 baseline 
time series to present future tri-decadal, such as the 2020s, 2030s and the 2050s. 
The future flow rainfall presented in this figure is the axfq0 RCM (1 of the 11 
runs) run for the 1st November 2099.  

 

4.3.2. Hydrological data and model 

The hydrological model used in this study is the Catchment Model (CATCHMOD), 

a hydrological model used by the Environment Agency and several water 

companies. The model uses rainfall and evapotranspiration (PET) inputs to simulate 

surface, subsurface flows and groundwater level. The model represents a catchment 

as one reservoir, parameters of which present geology, land use and drainage 

characteristics of the catchment. The water company has been using the model in 

various submissions of its water management plan. During previous preparation 

work for the water management plans, the parameters of the model have been 

calibrated and validated based on the 1990-2005 historic flows of the river Rother 

and the Weir Wood Reservoir. The calibration period was the 1990-1999 period and 

the validation period was the 2000-2004 period. In this study, these sets of 

parameters are used along with recalibration using other periods and calibration 

criteria. This comparison explores structural uncertainty and parameter uncertainty 

of the hydrological component.  

 

4.3.3. Demand modelling 

In the demand modelling component, the demand projections of Southern Water for 

2020s and 2030s are used. For 2050s, the study uses the four EA socio-economic 

demand scenarios, which project water demand based on different governance and 

societal structures (Environment Agency, 2008). More details about the demand 

scenarios will be provided in Chapter 7. Of these scenarios, the Uncontrolled 

Demand is the most severe scenario that includes substantial population growth and 

increasing water consumption. In other scenarios, water demand grows or slightly 

reduces due to innovation in technology and reduced water consumption per capita. 

The Southern Water and the EA water demand projections were scaled from the 

1995 demand profile using a scaling factor, the ratio between the annual average 

demand of the projected period and the annual average demand of 1995. This 

scaling process thus preserves the daily pattern of the demand fluctuation and 

mimics demand changes over the year.  
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4.3.4. Water resource modelling and option analysis 

In the current practice of Southern Water, water resource modelling and option 

appraisal are separate. The water resource modelling software the company uses, 

Aquator, is a water resource model that can simulate and optimise the water supply-

demand balance at a daily time step. At the current setting, the model is mostly run 

in the simulation mode, with optimisation being applied to certain bi-directional 

links of the network. The Sussex Aquator model presents the water system as a 

network of links and nodes. Groundwater supply is fixed and based on the EA’s 

abstraction licences. Surface water, however, is varied and based on CATCHMOD 

outputs of Rother and Weir Wood flows. The whole 1888-2005 time series, which 

include the severe 1921-1922 and 1975-1976 droughts, are used to test the system 

performance. Meanwhile, option appraisal is analysed in a separate optimisation 

model that selects options based on their average Deployable Output, investment 

cost and operational cost. 

 

In this study, the water resource modelling and option appraisal model are 

combined. This combination integrates the financial investment and performance 

indicator. Without this integration, option appraisal was based on the expected cost 

and utility, calculated as  

௧ܥ ൌ ݂௧ ∗ ሺܷሻܧ ∗ ܿ௧ 

Equation 4-1 

With Coption being the total cost of the option 

        foption being the frequency of usages 

       U being the utility, such as the Deployable Output and E(U) is the expected 

utility 

      coption being the cost per unit 

By contrast, if the two models are integrated, cost analysis can better reflect option 

cost and based on the real utility, such that 
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்



 

Equation 4-2 

With T being the total simulation time 

The latter method thus reduces the uncertainty of using the average utility and 

frequency of usages. Combining the two models will help reduce the analysis effort 

as climate projections include a large number of cases. The UKCP09 projections 

consists of 10,000 realisations for each time period; assessing the average frequency 

and usage for each cases will create 10,000 runs for water resource analysis and 

10,000 option appraisals. In comparison, a nested approach readily analyses the 

options within the runs of water resource analysis and thus eliminate the separate 

option appraisal runs. Thirdly, this setting can further facilitate changes in criteria 

preferences of the decision makers, such as using average water deficit instead of the 

most severe water deficit.  When the two models are separated, this change in 

references would require re-running the water resource model and the option 

appraisal model. Meanwhile, the integrated model requires only one rerun of the 

integrated model. 

 

4.3.5. Robust decision analysis 

The previous components allow detailed analysis of data uncertainty in climate 

modelling, parameter uncertainty in hydrological modelling, and model uncertainty 

in demand projection and water resource modelling. Robust Decision Analysis, in 

line with the description in Chapter 3, links these components for a comprehensive 

analysis. In response to Southern Water’s point on the outage plan, the framework 

also includes outage testing, in which supply sources are taken out or reduced to test 

system resilience.  

 

All the components, as the contributing factors of the water resource assessment, are 

linked. The uncertainty identified in each component is also cascaded into relevant 

components, so that their overall contribution can be analysed. The climate 

uncertainty component is linked with the hydrological component, thus the 

uncertainty in the hydrological outputs will consists of climate uncertainty and 
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hydrological uncertainty. Likewise, demand projections will include uncertainty 

from demographic and socio-economic uncertainty. The water resource model 

subsequently includes uncertainty from all these components; it further adds its own 

uncertainty in model construction and the decision making process. As such the  

framework has considered and accounted for certain types of climatic, hydrological, 

demand and water resource uncertainty (Figure 4.9). 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

Figure 4.9 Uncertainty factors in the study 

 

4.4.CONCLUSION 

 

Overall, this chapter has described the water resource planning context in the study 

area, as a region under drought risks in southeast England. The chapter highlighted 

the four main actors in drought planning at the scale of water resource zones: the 

water company, the environmental regulator, the economic regulator and the 
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customers. Main challenges in drought planning including robust planning amidst 

uncertainty, balancing between profit making and environmental services and 

constructing adaptation pathways given the drought risks. The chapter has also 

outlined the uncertainty factors to be analysed in the next chapters. In essence, 

Chapter 5 will focus on climate uncertainty, Chapter 6 on hydrological uncertainty, 

Chapter 7 on vulnerability of the Sussex water resource system, Chapter 8 on 

planning options and Chapter 9 on an integrated analysis of robust planning. The 

chapter also described the study area and its key requirements in adaptation. The 

area is divided into three water resource zones, all of which are dependent on 

groundwater. Amongst these three areas, the Sussex North has major surface water 

sources from the River Rother and the Weirwood Reservoir. The decision makers in 

the case study have identified the need to adopt robust and resilient water resource 

planning. Based on the adaptation requirements, the Robust Decision Analysis 

framework in Chapter 3 has been adapted to consider climate uncertainty, 

hydrological uncertainty, socio-economic uncertainty and water resource 

uncertainty.  
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Chapter 5. CLIMATE UNCERTAINTY 

 

5.1.INTRODUCTION 

 

The south-east of England has been subject to severe droughts in the past and still 

remains vulnerable in the future. Droughts, as a natural phenomenon, have 

cascading impacts on the water resources, the ecosystem and the socio-economic 

system (Dracup et al., 1980; Wilhite and Glantz, 1985; McKee et al., 1993). As a 

meteorological phenomenon, droughts are signified by precipitation deficiency over 

an extended period (McMahon and Arenas, 1982). This temporary deficiency may 

affect water supply for crops and river flows, thus can also manifest as agricultural 

and hydrological droughts. As droughts do not have a clear onset and ending 

symptom, it is difficult to identify droughts. Drought types are hence often 

recognised based on their impacts; classified into meteorological, agricultural and 

hydrological droughts (Dai, 2011). Traditionally, droughts are assumed to first 

appear as a meteorological event, when the precipitation does not meet the normal 

atmospheric balance. These conditions can dry up the soil (soil moisture droughts), 

lead to plant stress (agricultural droughts) and river flow deficiency (hydrological 

droughts). The impacts subsequently disrupt the normal operation of the economy 

and water management, leading to the corresponding drought types. However, with 

the current changing climate and increased natural climate variability (Arnell, 

1999b), drought impacts might occur simultaneously, affecting the most vulnerable 

system and not in the expected order of meteorological, hydrological and 

agricultural droughts. As such, drought planning requires information on how the 

risk arises, what the impending changes are, particularly with regard to changes in 

climate and local water demand.  

 

Yet, climate change projections are plagued with uncertainty. Uncertainty not only 

represents our incomplete knowledge of the climate system, but also characterizes 
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the dynamic Earth system. As climate change assessments involve a chain of general 

circulation models (GCMs), regional climate models (RCMs) to impact models, the 

uncertainty is set to propagate. The impacts of uncertainty in climate projections can 

well be traced in drought prospects (Burke and Brown, 2010; Rahiz and New, 2013), 

subsequent flow projections (Wilby, 2005; Feyen and Dankers, 2009), crop yields 

(Lobell et al., 2008) and water availability (Fowler et al., 2007; Wade et al., 2013). 

On a local scale, the added uncertainty may arise from the downscaling process, 

which adjusts the raw projections to better characterize the local climate (Chen et 

al., 2011). That wide range of uncertainty further expands when several alternative 

climate projections are considered. However, many assessments often focus on one 

climate data source.   

 

The term “climate post-processing” is often used to refer to the process of bias 

correction or downscaling (Vannitsem, 2011; Imbery et al., 2013). In this study, it is 

expanded to all general process of converting climate model outputs into products 

and information of different formats, variables and temporal/spatial scales. To date, 

studies have demonstrated that post-processing of climate model outputs can adjust 

the flood risk represented by the final product. For instance, Cloke et al. (2012) have 

shown that certain post-processing of UKCP09 RCMs can increase uncertainty and 

further modify the modelled flood risks of the Upper Severn, UK. Kay and Jones 

(2012) showed relatively consistent median changes in flood frequency amongst the 

UKCP09 change factors, the Weather Generator, and the UKCP09 RCMs data; 

nevertheless, due to the data format and the perturbation method, the change factor 

format leads to less variability than the time series format of the same climate 

information.  

 

These discrepancies may exist beyond projections of flood risk. As a recurring 

climate risk, droughts are also subject to the changes indicated in climate projections 

(Marsh, 2007). While climate information points toward increasing drought risks in 

the future, they show varying degrees of changes that may be indicative of structural 

uncertainty and post-processing uncertainty. In particular, the multi-model RCMs of 

the PRUDENCE project show an increase of short-term summer droughts and lower 
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risks of prolonged severe droughts, albeit with high uncertainty due to the RCMs’ 

poor skills in simulating severe events and other uncertainty cascaded from the 

driving GCM (Blenkinsop and Fowler, 2007). Using the RCM HadRM3 data from 

the UK Meteorological Office, Burke and Brown (2010) could recreate observed 

drought events but found that for the 1959-2002 period the model slightly 

overestimates drought area while underestimate drought frequency and severity. 

Meanwhile, the 1960-2080 UKCP09 data project a lowering mean daily river flows 

for all months in the Medway catchment and with climate signals dominating the 

hydrological uncertainty (Cloke et al., 2010b). Finally, using the UKCP09 change 

factors, (Christierson et al., 2011) show a high likelihood of declining summer flows 

in 70 UK-wide catchments in the 2020s with the main uncertainty coming from the 

spread in climate projections. These projected reductions and their variation across 

climate data sources are critical for water resources planning as they may lead to 

different adaptation plans and implementation schedules. As a potential source of 

uncertainty, there is a need to examine the post-processing uncertainty in climate 

products, particularly for those of the same source but having undergone different 

post-processing methods.   

 

As described in Chapter 1, the focus of this thesis is on water resources drought, 

defined as a precipitation deficit to the normal functioning of the water system. A 

comprehensive analysis of water resources drought requires a conjunctive 

assessment of meteorological, hydrological droughts and the demand pattern. Water 

resources droughts might originate from insufficient water supply, excessive water 

demand or a combination of both. Chapter 5 analyses potential drought patterns 

projected by certain climate models and prepare climate projection data for 

hydrological and water resource analysis in Chapter 6 and 7. The chapter compares 

four climate products to investigate the uncertainty of drought projections. Drought 

severity of each decision scenario, calculated in this chapter, will further be linked to 

river flow analysis in Chapter 6 and the threshold of decision switching in Chapter 

9.   

 

The study is divided into three stages: 



Page 77 
 

 

 

i) Analysis of suitable evapotranspiration methodologies for the study 

ii) Analysis of historic time series and projections of droughts, based on 

precipitation 

iii) Analysis of historic time series and projections of droughts, based on 

precipitation and evapotranspiration 

The study uses a baseline period of 1961-1990; time periods of interest are the pre-

1961 period (1914-1961), the 2020s (2010-2039), the 2030s (2020-2049) and the 

2050s (2040-2069).   

 

5.2.METHODOLOGY 

 

5.2.1. Emission scenarios and climate projections 

Climate projections are usually the product of climate models, which simulate the 

Earth’s climate system at various horizontal resolutions (Randall et al., 2007). On a 

global scale, the climate change signals are often assessed using Global 

Climate/Circulation Models (GCMs). These models divide the Earth into a 100-300 

km grid and simulate the climate as the interactions and feedbacks of various 

atmospheric, hydrospheric, cryospheric and biospheric processes. GCMs can 

evaluate climatic impacts in response to greenhouse gas emissions; past greenhouse 

gas emissions are based on historic data, and future emissions are often based on the 

alternative storylines and scenario families of the Special Report on Emissions 

Scenarios (SRES) (Nakicenovic et al., 2000). These storylines and scenario families 

project a probable future world, its economy and global population state; each of 

these families implies a different level of emission, and ultimately, a different level 

of climate change.  Yet, the GCM results lack the fine resolution needed in various 

climate impacts and adaptation studies. There are two methods to downscale the 

GCM results: statistical downscaling, which relates the GCM and the regional 

climate using historical observations; and dynamical downscaling, which uses 

Regional Climate Models (RCMs). In the UK, one of the main RCMs is the Hadley 

Centre’s HadRM3 regional climate model, a nested regional climate model using 
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inputs of the Hadley Centre’s GCM HadCM3 (for a visual example of the nested 

RCM approach, see Figure 5.1). Based on the HadRM3 and various international 

climate models, the UK Climate Projections 2009 produced various groups of 

climate projections for impact studies. 

 

Figure 5.1 The nesting RCM approach, in which a RCM is nested in a GCM to 

provide climate projections of higher spatial resolution. Source: Giorgi (2008) 

 

This study uses four UK Climate Projections 2009 climate products to analyse the 

mid-range forcing scenario (SRES A1B). While mainly based on the same 11 runs 

of HadRM3 Perturbed physics ensembles (PPE), these climate data have further 

undergone different post-processing to include various uncertainty factors, as 

described in Table 5-1.  

 

The first product, the HadRM3 Perturbed Physic Ensembles, is a set of transient 

climate projections for the UK for the period 1950-2100. As part of the UKCP09 

project, these runs were used to dynamically downscale a simplified and calibrated 

version of the GCM HadCM3 that does not include the full ocean processes 

(HadSM3). The dataset initially contained 17 ensemble members, all of which used 

parameter settings consistent to those of the driving GCM, but was later reduced to 

11 members due to inconsistencies with the driving HadSM3 simulations in the 

other six. Of the remaining 11, one member represents the standard HadCM3 

parameter settings while others explore the range of climate sensitivities and 

alternative parameter values (Collins et al., 2006). At a finer 25 km resolution than 
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the GCM, the RCM runs use the GCM atmospheric dynamical and physical 

processes; their boundary conditions come from the corresponding runs amongst 17 

HadSM3 members, such as using the HadSM3 simulated time series of temperature 

and wind. Therefore, they can further include regional physical processes but still 

largely inherit the uncertainty from their driving GCM. They explore uncertainties in 

the effects of varying regional physical processes, such as the effects of mountains, 

coastlines and varying land surface properties. 

 

The second product, the Spatially Coherent Projections (SCP), is close to the 11 

RCM runs but has undergone additional post-processing to include a wider set of 

uncertainties. As the HadRM3-PPE data only contains 11 members, they do not 

sufficiently sample the uncertainty space that was probabilistically explored in the 

fourth product: the UKCP09 Change Factors. In essence, the original RCMs did not 

fully explore the uncertainty in global temperature from emission scenarios, carbon 

cycle, sulphur cycle and ocean physics. In order to represent the spread that the 

UKCP09 Change Factors consider, these RCM members were linearly scaled by 

coefficients. These coefficients are representative of the global temperature changes 

in the 10,000 Simple Climate Models that produced the UKCP09 dataset. The 

results were analyzed for coefficient sets that best match UKCP09 data in terms of 

winter and summer changes in temperature and precipitation for all 25 km grid 

boxes over the UK for the period 2070–2099. Therefore, the SCPs can be considered 

modified RCM runs that expand the uncertainty ranges to resemble those of 

UKCP09, but bear the same limitations of RCMs, such as not including the 

possibility of a mild increase in summer rainfall in Southern England (Sexton  et al., 

2010). 

 

The third product, the downscaled RCMs from the Future Flows project has an 

increased spatial resolution compared to the other products. In particular, it is a 

downscaled version of the 25-km- gridded RCMs into corresponding time series of 1 

km grid boxes. Temporally, the original RCM data were statistically modified to 

match the observations of the same decades within the 1950-2000 period. Spatially, 

they are downscaled to reproduce the heterogeneity pattern of precipitation at the 1 
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km scale. The rainfall downscaling process first used a transfer function to scale the 

monthly rainfall in each 25-km RCM grid square close to the aggregated rainfall of 

the corresponding 1 km-gridded observed data. This time series is then further 

spatially downscaled to reflect the local topographic processes at the 1 km2 scale 

(Prudhomme et al., 2012).   

 

Amongst all the products, the fourth product, the UKCP09 product, contains the 

highest level of post-processing which extends beyond using the RCM-based 

dynamic downscaling. It also includes structural uncertainty sampled from other 

GCM through a Bayesian framework. The process starts from running 280 HadSM3 

runs perturbing 31 HadCM3 key parameters that control the main processes and the 

uncertainty space. These runs were then used to train an emulator, a statistical tool 

that can mimic the effects of parameter variations. To account for structural errors in 

climate models, single climate projections from 12 other climate models were also 

checked against HadSM3. From these 106 emulator runs, 25,000 runs, later reduced 

to 10000, were selected based on the likelihood of different model variants and other 

uncertainty factors. Due to the computational cost, these 10,000 runs were processed 

in two batches that simulated certain climate variables for each of the 25 km grid 

boxes. Consequently, while each box possesses 10,000 equi-probable and 

representative Change Factor sets, they bear no direct relation to the runs in the 

other grid boxes. In other words, it is unlikely that the changes projected by runs of 

the same ID in each grid box occur simultaneously over the whole grid.  
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Table 5-1 Summary of the climate products used in the study 

Product name Acronym No of 
members 

References Source Period Climate 
Scenario 

Spatial 
resolution 

Temporal 
resolution 

Grid 
Squares 

used 

Method Uncertainty 
sampled 

Hadley 
Centre 
Regional 
Climate 
Model 
HadRM3 
PPE 

RCM 11 Murphy et 
al., 2010 

The UK Met 
Office Hadley 
Centre 

1950-
2099 

Historical and 
medium (SRES 
A1B) 
emissions 
scenario 

25 km 
grid 

Daily 3 Dynamic 
downscaling of a 
GCM with 
simplified ocean 
model 

Regional 
atmospheric and 
land processes; 
different GCM 
boundary 
conditions 

Spatially 
Coherent 
Projections of 
UKCP09 

SCP 11 Sexton et 
al., 2010 

Similar to 
UKCP09 

Time 
slices of 
the 
2020s-
2080s 

4 SRES 
scenarios 

25 km 
grid 

Absolute 
daily 
values/ 
Monthly 
change 
factors  

3 Linear scaling of 
the RCM data 
based on the 
changes in global 
temperature from 
the GCM results 

Global 
temperature 
changes from 
emission scenario, 
carbon cycle, 
sulphur cycle and 
ocean physics 

Future Flows 
Project – 
Statistically 
Downscaled 
HadRM3 

FF 11 Prudhomm
e et al., 
2012 

The Centre for 
Ecology & 
Hydrology 

1950-
2069 

Historical and 
medium 
(SRESA1B) 
emissions 
scenario 

1 km grid Daily 29 Statistically 
downscaled RCM 
data based on 
historic 1km 
gridded data 

Same as RCMs, 
bias-corrected to a 
local spatial scale 

UK Climate 
Projections 
2009 (Land 
Projections) 

UKCP0
9 

10000 Murphy et 
al., 2010 

The UK Met 
Office, UK 
Climate Impacts 
Program, British 
Atmospheric 
Data Centre, 
University of 
East Anglia, 
Newcastle 
University 

Time 
slices of 
the 
2020s-
2080s 

4 SRES 
scenarios 

25 km 
grid 

Absolute/ 
Monthly 
change 
factor to be 
applied on 
the historic 
1961-1990 
baseline 

1 Bayesian 
statistical 
framework 
drawing from 
ensembles of Met 
Office climate 
models and other 
GCMs 

Structural 
uncertainty using 
alternative climate 
models; emission 
scenarios; the 
carbon cycle, 
sulphur cycle, and 
ocean physics 
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Figure 5.2 presents how these four climate products are related. Amongst these 

products, the 11 runs of HadRM3-PPE are the original and least processed 

information. The UKCP09 Change Factors capture the widest range of uncertainties 

but as a result are the most processed product. The format of the products, as used in 

this study, is also different: the original RCMs and the Future Flows downscaled 

product are available as absolute daily time series, while the SCP and UKCP09 data 

are change factors of how monthly values of the variables will shift in the future 

time slices.  

 

 

 

 

 

 

Figure 5.2 Schematic of how the climate products are related 

 

The analysis focuses on four time periods and uses the 1961-1990 period as a 

baseline for comparison (Figure 5.3). The historic 1914-1960 is termed the pre-1961 

period, which is assumed to represent a period of limited climate change signal. The 

baseline of 1961-1990 follows the Food and Agriculture Organisation convention on 

climate baseline; this baseline is suitable for The Standardised Precipitation Index 

(SPI) assessment, which requires an observation record of 30 years or more. 

Comparisons across the baseline and future periods are made within each climate 

group, for instance, between the RCM baseline and the RCM projections of each 

time period. The baseline of the UKCP09 and SCP projections are the historic 

baseline, as these climate products project future changes as monthly change factors 

of the baseline time series. 

 

HadRM3-PPE 

FF Projections 

Spatial downscaling Expand temperature 

Uncertainty 

SCPs 
Uncertainty from 

other sources of 

information e.g. 

other climate model 

UKCP09 
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Global 

temperature 
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Level of Post-
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Figure 5.3 Time periods of interest in the study 

 

5.2.2. Drought Indices 

5.2.2.1.A brief review of drought indices 

While most major drought indices recognise droughts as a prolonged period of 

abnormal dryness, they use different indicators such as rainfall, river flows and soil 

moisture deficits (Alley, 1984; Byun and Wilhite, 1999; Keyantash and Dracup, 

2002; Morid et al., 2006; Smakhtin and Hughes, 2007). Major drought indices 

include the Percent of Normal, Palmer Drought Severity Index (Palmer, 1965), 

Standardised Precipitation Index (McKee et al., 1993; McKee et al., 1995), deciles 

(Gibbons et al., 2008; Mpelasoka et al., 2008), Standardised Anomaly Index (Katz 

and Glantz, 1986), the Effective Drought Index (Byun and Wilhite, 1999) and crop 

moisture index (Palmer, 1968), as summarised by Table 5-2.  

 

These indices indicate droughts as a cumulative deviation from the baseline period; 

the deviation can be presented as an absolute value, a ratio of the standard deviation 

or its rank in the total distribution. For instance, Effective Drought Index (EDI) is 

the needed precipitation to counteract the accumulated deficit since drought onset 

(Byun and Wilhite, 1996) while Palmer Drought Severity Index (PDSI) is a soil 

moisture/water balance model that cumulatively measures surface water balance, 

thus capable of indicating meteorological and hydrological droughts (Palmer, 1965; 

Alley, 1985; Quiring and Papakryiakou, 2003). Palmer Drought Severity Index 

1914-1960 

2040-2069 

2010-2039 

1961-1990 

2020-2049 

Pre-1961 

Baseline 

The 2020s 

The 2030s 

The 2050s 
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(PDSI), Standardised Precipitation Index (SPI), and Standardised Anomaly Index 

(SAI) all standardise the baseline, thus facilitate comparison drought incidences 

amongst different locations and periods. Various comparative studies show that 

preferences and performance of drought indices vary: PDSI is popular in the US, 

where it was derived; the decile index performs well for highly variable climate like 

Australia and South Africa (Mpelasoka et al., 2008); while SPI may be comparable 

to PDSI and river flows over various sites in the world (Guttman, 1998).  

 

For the UK, Drought Severity Index (DSI) has been frequently used for studies 

concerning drought spatial pattern (Phillips and McGregor, 1998; Fowler et al., 

2003; Rahiz and New, 2013) as well as a drought trigger for drought contingency 

measures (Prudhomme et al., 2003; Southern Water, 2013). Meanwhile, SPI has 

been used to assess pan-European drought incidences (Lloyd-Hughes and Saunders, 

2002), Spain (Vicente-Serrano et al., 2010) and the UK (Vidal and Wade, 2009). 

The analyses on UK droughts have revealed that drought occurrences, particularly in 

the south-east, cluster spatially and temporally. As such, they pose great challenges 

to water resource management that has to consider the risk of regional water supply 

deficit spanning a prolonged period. Studies on future drought projections based on 

both SPI and DSI (Blenkinsop and Fowler, 2007; Vidal and Wade, 2009) generally 

indicate GCM as a major source of uncertainty, and that drought risk will gradually 

increase particularly with regards to short and intense droughts of three to six 

months. 

 

As the next chapter will analyse hydrological droughts via a hydrological model, 

this study focuses on meteorological drought analysis. The Standardised 

Precipitation Index and the Standardised Precipitation-Evapotranspiration Index are 

chosen as drought indices due to their robust capacity to identify droughts, their 

simple data requirement and their ability to indicate droughts at various timescales. 

The analysis will also link to hydrological and water management droughts assessed 

in Chapter 6 to Chapter 9.  
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Table 5-2 Characteristics of some drought indices. Source: Byun and Wilhite 

(1999)     

 

 

5.2.2.2.The Standardised Precipitation Index  

The Standardised Precipitation Index McKee et al. (1993) presents droughts as 

precipitation deficit over multiple timescales. SPI is simple to compute, able to 

represent different types of droughts, and works consistently across climatic regions 

(Hayes et al., 1999). The calculation procedure of SPI at scale i includes the 

following steps  

i) Prepare a dataset of monthly precipitation 

ii) Calculate the moving average of the previous i months 

iii) For each month, fit the data to a suitable probability density function 

such as the Gamma distribution, the Gumbel distribution and the Pearson 

III distribution (there are 12 distributions representative of the baseline 

distribution of each month)  



Page 86 
 

 

 

iv) Transform the probability density function into the standardised normal 

(Gaussian) distribution  

v) Calculate the precipitation deviation away from the baseline distribution 

 

SPI values can be further classified into events, such as floods and droughts. 

Droughts are identified in months of negative SPI values (Table 5-3). By definition, 

the proportion of droughts in each category is fixed: regardless of the baseline, the 

mild droughts, moderate droughts and severe droughts always have an event 

probability of 34.1%, 9.2% and 4.4%. Subsequently, these events have a return 

period of 1 in 3 years, 1 in 10 years and 1 in 20 years.  

 

Table 5-3 Classification of droughts according to SPI values. Source: McKee et 

al. (1993)  

SPI Values Drought 
Category 

Probabilities of 
occurrence 

Approximated 
Return Period 

0.00 to -0.99 Mild drought 34.1% 1 in 3 years 
-1.00 to -1.49 Moderate 

drought 
9.2% 1 in 10 years 

-1.50 to -1.99 Severe drought 4.4% 1 in 20 years 
≤ -2.00 Extreme 

drought 
2.3% 1 in 50 years 

 

As the SPI uses only precipitation, it is based on the assumption that precipitation 

variability is the main determinant of drought prospects; the effects of other 

variables such as temperature and potential evapotranspiration (PET) are negligible.  

 

5.2.2.3.The Standardised Precipitation Evapotranspiration Index  

The Standardised Precipitation Evapotranspiration Index (Vicente-Serrano et al., 

2010) is a modified version of the SPI, using a simplified moisture balance of 

rainfall and PET. This index is chosen to assess the potential influence of including 

PET on drought prospects, as PET is set to increase. The calculation steps are 

therefore similar to those of SPI, with the input data being the difference between 
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rainfall and PET. Drought categories are also kept the same as in Table 5-2. Similar 

to SPI, the calculation procedure of SPEI at scale i includes the following steps:  

i) Prepare a dataset of monthly precipitation subtracted by monthly PET 

ii) Calculate the moving average of the previous i months 

iii) For each month, fit the data to a suitable probability density function 

such as the Gamma distribution, the log-normal distribution, the Gumbel 

distribution and the Pearson III distribution (there are 12 distributions 

representative of the baseline distribution of each month)  

iv) Transform the probability density function into the standardised normal 

(Gaussian) distribution  

v) Calculate the precipitation deviation away from the baseline distribution 

  

To identify a suitable probability distribution for SPEI fitting, Vicente-Serrano et al. 

(2010) have used the L-moment ratio diagrams by Hosking (1990). “L” denotes 

Linear and the L-moment is linear combinations of order statistics. It is computed as 

the ratio of L skewness τ3 and L kurtosis τ4, which measures how skew to the left or 

right and how peaky the shape of the distribution is. As the ratio of these measures 

characterise different probabilistic distributions, they can be used to analyse whether 

the empirical data are close any of these distributions in terms of the L-moment ratio 

(Hosking, 1990). The diagram as such shows each group of distributions in 

conjunction to the L-moment ratio of the empirical data.  

 

Figure 5.4 demonstrates the L-moment ratio diagrams of the RCM, FF and Observed 

monthly water balance data (which is monthly rainfall subtracted by monthly PET) 

in comparison to the Generalised Logistic distributions (GLO), the Generalised 

Extreme Value distributions (GEV), the Generalised Pareto distribution (GPA), the 

Generalised Normal distribution (GNO) and the PearsonIII distribution (PE3). In 

essence, the L-moment ratios were calculated for each month of the baseline 1961-

1990 time series of the observed data, the FF and the RCM product. Each month of a 

time series is represented by an L-moment ratio, therefore becomes a point in the 
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ratio diagram. As such, a time series will have 12 points representing the L-moment 

ratios of each month. This process was reiterated for the time series of the observed 

data and each member of the FF and RCM product. Visual analysis indicated that 

the L-moment ratios of the observed data, the RCM and the FF group do not 

strongly belong to any of the distributions. In this study, the log-Normal distribution 

was chosen for SPEI data fitting. 

 

Figure 5.4 L-moment ratio diagram for the 1961-1990 baseline of Observed, 

RCM and FF time series of monthly data. The empirical values are shown against 

the theoretical L-moment ratios for Generalised Logistic (GLO), Generalised 

Extreme Value (GEV), Generalised Pareto (GPA), Generalised Normal (GNO) 

and Pearson type III.  

 

5.2.3.  Data and methods   

5.2.2.1. The study catchment  

The chosen study area is the River Rother catchment, which is a major surface water 

source of the Sussex water resource zone (Figure 5.5).  Drought frequency of the 

catchment is calculated based on SPI and SPEI index for the pre-1961 period, the 

1961-1990 baseline, the 2020s, the 2030s and the 2050s.  
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Figure 5.5 Catchments in the study area and available historic dataset 

 

5.2.4. Historic data 

There exist two available historic climatic datasets of the River Rother catchment: a 

weighted average of rain gauged data from Southern Water and a 5 km Met Office 

gridded data (Table 5-4). The former set contains daily PET and rainfall data, while 

the latter provides monthly temperature and rainfall data. PET was calculated using 

the Met Office Rainfall and Evaporation Calculation System (MORECS) 

(Thompson et al., 1981). A comparative analysis of rainfall data shows that the two 

sources are consistent (Figure 5.6). In this study, Set 1 thus was chosen as the 

Historic data set for analysis.  

 

Table 5-4 Summary of available historic data 

Historic 

data set 

Source Period Type of 

data 

PET 

available 

PET 

calculation 

method 

Rainfall 

available 

Rainfall 

calculation 

method 

Set 1 Atkins/ 

Southern 

1888-

2009 

Point 

data 

Daily MOREC/

MOSES 

Daily Weighted 

values of 
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Water rain gauges 

Set 2 Met 

Office 

1914-

2006 

5 km 

gridded 

data 

No n/a monthly Weighted 

values of 

rain gauges 

 

 

 

Figure 5.6 Comparison of two historic datasets 

 

5.2.5. Potential evapotranspiration calculation 

As the historic gridded dataset and three out of the four climate products do not 

provide PET, the study needs to deduce PET from available data of each product. 

Amongst the climate products, the historic (for the period of 1969 onwards) and 

RCM data have sufficient information for the FAO-56 reference Penman-Monteith 

equation (Allen et al., 1998). 
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Equation 5-1 

With  λ latent heat of vaporisation [MJ/ kg], 

  Rn net radiation at crop surface [MJ/ m2 day] 

y = 1.01x ‐ 1.79
R² = 0.93
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T average temperature at 2 m height [Celsius degree] 

U2 wind speed measured at 2 m height [m/s] 

es-ed vapour pressure deficit for measurement at 2m height [kPa] 

G soil heat flux [=0 MJ m2 day] 

∆ gradient of vapour pressure curve [kPa/ºC] 

γ psychrometric constant [kPa/ºC] 

900 coefficient for the reference crop in [kJ-1 kg ºK/day] 

0.34 coefficient for the reference crop [s/m] 

The historic dataset, SCPs and UKCP09 have to employ several temperature-based 

formulae to deduce monthly PET. These PET methodologies were tested against the 

historic dataset that contains PET data. Four PET methods were selected as follows 

 Hamon method (Hamon, 1961) 

	ܧܲ 
݉݉
ݕܽ݀

൨ ൌ ൬
ܰ
12
൰
ଶ

exp ൬
ܶ
16
൰ 

Equation 5-2 

With T being the average temperature (Celsius degree) 

         N the maximum possible daylight hours (h) 

 Oudin method (Oudin et al., 2005) 
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	݂݅	ܶ  െ5ܥ 

Equation 5-3 

With λ being the latent heat of vaporisation [MJ/kg] 

                    S0 being extraterrestrial radiation [MJ/m2day] 

 Guiness-Borne method (McGuinness and Bordne, 1972) 
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Equation 5-4 

 Thornthwaite method (Thornthwaite, 1948) 

ܧܲ ቂ
݉݉
݄ݐ݊݉

ቃ ൌ 16 ൬
10ܶ
ܫ
൰


 

Equation 5-5 

 With I being the annual heat index 

The Thornthwaite formula can further be corrected to take into account the variation 

due to latitude differences. 

 

5.3.RESULTS AND DISCUSSION 

 

5.3.1. Potential Evapotranspiration 

On a monthly scale, the FAO-56 PET calculation of the Met Office gridded data 

(Historic data set 2) yields similar results to the MORECS PET of historic dataset 1 

(Figure 5.7). This similarity is because both FAO-56 and MORECS are based on the 

Penmann-Monteith methodology and use similar input data, such as radiation, 

temperature and relative humidity.  

 

Figure 5.7 Graph of MORECS PET versus FAO-56 Penmann-Monteith PET 
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On the contrary, all four temperature-based methodologies exhibit systematic bias 

compared to MORECS PET (Figure 5.8). In the Rother catchment, temperature-

based methodologies such as Hamon, Oudin, Guiness-Borne and Thornthwaite 

significantly underestimate PET compared to the MORECS and FAO-56 formulae. 

The disparity amongst the methods suggests that the formulae need to be re-

calibrated for the catchment and the region. Furthermore, the Guiness-Borness 

formula produces negative PET values when the temperature drops below 5 0C and 

the Thornthwaite formula cannot calculate PET for below-zero temperature. 

 

Figure 5.8 Comparison of temperature-based PET formulae against MORECS 

PET data 

 

The study assumes that while underestimating PET, Oudin is capable of simulating 

PET changes based on the reference baseline PET. Moreover, PET comparison 

across time periods is likely to be valid if the methodology is consistent within each 

climate product, as the comparison is amongst its own PET time series across the 
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time periods. For each climate product, the PET methodologies are thus selected as 

follows 

 RCM data: The FAO-56 Penmann Monteith method was selected, since the 

projections provide sufficient input data for the method. 

 FF data: PET is readily provided in the product. This product uses the FAO-

56 Penmann Monteith to calculate PET. 

 Historic observed data, UKCP09 and SCP: Amongst the PET 

methodologies, the Oudin method was selected, since it can work over a 

wide range of temperature and has a simple mathematical form for potential 

recalibration. In this study, such calibration was not conducted due to the 

time constraints. However, potential PET underestimation was 

acknowledged and taken into consideration in the analysis. While it is 

preferable to use the Oudin method across all of the three dataset, the 

analysis on historic data shows that the Oudin equation significantly 

underestimates PET. Thus the MORECS historic PET was chosen as the 

historic baseline PET, in order to reflect the true historic balance between 

rainfall and PET. PET changes due to increased temperature was then 

simulated using the Oudin equation.  In essence, the Oudin equation assumes 

that PET changes with T as follows 

ܧܲ 
݉݉
ݕܽ݀

൨ ൌ ൝
1
ߣ
ܵ ൬

ܶ  5
100

൰

݁ݏ݅ݓݎ݄݁ݐ											0											
	݂݅	ܶ  െ5ܥ 

Equation 5-6 

With λ being the latent heat of vaporization [MJ/kg] 
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                    S0 being extraterrestrial radiation [MJ/m2day] 

Assuming that S0 and λ remain constant and all PE for temperature below -5 0C are 

0, an increased PE due to increase temperature can be written as 

ܧܲ 
݉݉
ݕܽ݀
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100

ቇ
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	݂݅	 ܶ  െ5ܥ 

Equation 5-7 

If we divide the first equation by the second equation, it follows that  

ܧܲ
ܧܲ

ൌ
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	݂݅	ܶ	ܽ݊݀	 ܶ  െ5ܥ 

As Tchange=T(1+CF) 
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Equation 5-8 

The formula does not work in the case of T< -5, as PE=0, it follows that PEchange=0 

regardless of Tchange. However, the monthly temperature time series of the Rother 

catchment does not contain any value below this threshold; the consideration of this 

case was thus avoided.  

 

5.3.2. Analysis of the climate products 

5.3.2.1.Comparison with observations 

Two of the climate products (RCM and FF) were compared with past observations 

(Figure 5.9). Within the historic period of 1961-1990, the RCM runs already exhibit 
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systematic bias. The RCM runs demonstrate drier July-November compared to the 

observations. Meanwhile, because of bias correction, the FF product has a nearly 

identical mean monthly precipitation to that of the observed data during the 1961-

1990 period. However, this starts to weaken in the later time slices (there is a greater 

diverge between the runs), particularly in the 1981-2010 period when the observed 

rainfall in October is on average higher than the simulated values of both the RCM 

and FF products. 

 

Figure 5.9 Comparison of observed rainfall with simulated rainfall from two 

climate products (RCM and FF) for different time periods (1970s, 1980s and 

1990s) for the River Rother catchment. 

 

Figure 5.10 then compares estimates of SPI for the period 1961-90 for observations 

and two climate products. Since the SPI transforms the baseline into a normal 

distribution of mean 0 for each month (which represents the climatological normal), 

the 1961-1990 observed data has become a horizontal line that overlaps the x axis. 

The average FF SPI is also very similar to the climatological normal, as this product 

has been bias corrected to match the observed data. The RCM data tend to 
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overestimate short floods of 3-6 months in the early summer and underestimate 

drought risks in the late summer. SPI analysis on longer timescale generally reflect 

the total rainfall the catchment received during that period and how severe it is 

compared to the average baseline. Analysis on the annual and two-year drought 

scale show that both the FF and particularly RCM data underestimate the rainfall 

amount falling onto the catchment and therefore overestimate the risks of long 

droughts.  

 

Figure 5.10 Standardised Precipitation Index (SPI) for multiple timescales (3, 6, 

12 and 24 months) for two climate products (RCM and FF) and observations over 

the period 1961-1990. 

 

5.3.2.2.UKCP09 and SCP: spatial coherence of climate data 

As described in Section 5.2.1, the UKCP09 and the SCP dataset are two similar 

gridded products of the UK Climate Projections. Both of these products present 

climate projections as monthly change factors (Figure 5.11). Compared to the SCP 
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dataset, the UKCP09 product samples a wider range of uncertainty, which enables 

adaptation studies to test adaptation strategies against a wider range of 

circumstances. Yet, due to the simulation design, each run of the UKCP09 grid is 

not consistent across its cells. On the contrary, the gridded results of each SCP run 

are spatially correlated and thus can be used for catchments that span more than one 

grid cell. Figure 5.11 shows that these dataset contain a wide range of possible 

changes for each month, with the SCP set having a slightly narrower band compared 

to that of the UKCP09. Due to the difference sampling strategies, the bound of these 

two set are different. While UKCP09 is considered to sample a wider range of 

uncertainty, it is acceptable that some of the SCP change factors are beyond the 

UKCP09 bound (Sexton  et al., 2010).  

 

Figure 5.11 Comparison of the monthly rainfall change factors of UKCP09 

(10,000 blue dots) and SCP (11 red dots) in the grid cell 1704 for the 2020s Mid-

Emission climate scenario 

 

 Since the Rother catchment spreads across the grid cell 1703, 1704, and 1743, using 

the UKCP09 dataset can be potentially problematic as this set was not designed for 
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cross-grid usage. Yet, an analysis of spatial correlation analysis amongst the SCP 

grid of the catchment shows that the change factors of the grids do not differ 

significantly; indeed, they even remain similar for the cell 1706, which is located 

further north and contains the Weirwood catchment (a reservoir of the water 

resource zone) (Figure 5.12). Furthermore, the historical trend and the projections of 

other climate products indicate that the area is relatively homogeneous in 

precipitation and temperature distribution: the Rother catchment and the Weirwood 

catchment historically received a similar monthly rainfall (per unit area) (Figure 

5.13) and the temperature time series of these two catchments do not diverge 

considerably.  

 

Figure 5.12 Comparison of precipitation change factors (5) in various SCP grid 

cells in 2050s 
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Figure 5.13 Correlation analysis of monthly rainfall received by the Rother 

catchment and the Weirwood catchment shows a consistent linear trend across 

time. 

 

Due to its larger catchment area, the Rother catchment receives more rainfall than 

the Weirwood, but overall rainfall per unit area of the two catchments are similar. 

Data for the assessment were drawn from the 1914-2006 period (historic data), 

1950-2099 (RCM), 1950-2069 (FF) and the 2020s, 2030s, and the 2050s (SCP). 

 

As such, it is considered acceptable to use the UKCP09 change factors of one grid 

for the whole Rother catchment and the Weirwood catchment. In this study, the 

UKCP09 change factors of grid 1704 were used to represent the UKCP09 climate 

projections for the Rother catchment grids. 
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 5.3.3. SPI and SPEI-based drought analysis  

5.3.2.3.SPI versus SPEI: a comparison of the two indices 

Overall, the L-moment analysis determines that the Gamma distribution is suitable 

for SPI fitting and the Pearson III distribution is suitable for SPEI. The study shows 

that SPI and SPEI are capable of indicating various drought events (which have 

negative SPI or SPEI values), including the severe events in 1921-1922 and 1975-

1976 (Figure 5.14). A positive SPI or SPEI value shows that the condition is wetter 

than normal, while negative SPI indicates dryness. According to McKee et al. 

(1993), the monthly SPI values between -1.00 to -1.49, -1.50 to -1.99, and of -2 or 

less are subsequently classified as moderate droughts, severe droughts and extreme 

droughts. Aside from drought classification, these indices are able to demonstrate 

dryness on multiple timescales. For instance, the 1921-1922 drought was a two-year 

extreme drought (24-month SPI <-2) while the 1975-1976 drought was similarly 

severe on the 12-month scale but did not match 1921-1922 conditions over a long 

time scale. For this historic period, there is little difference between SPI and SPEI 

values: the difference between these two indicators remains close to zero. As SPI is 

precipitation-based and SPEI is precipitation and evatransporation-based, the 

similarity between SPI and SPEI for this period shows that rainfall is the dominant 

factor in creating droughts.   
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Figure 5.14 SPI and SPEI values of the 1914-2006 historic period. The SPI time 

series are indicated by the red line and the SPEI by the black solid line. The black 

dotted line shows the difference between SPEI and SPI.  

 

Figure 5.15 shows the mean changes in 3-month SPI compared to a 1961-90 

baseline (which has been standardised to zero) for observed data prior to 1961 and 

for all climate products for the 2020s, 2030s and 2050s. In comparison to the 1961-

1990 baseline, the 3-month SPI of the 1914-1960 period shows less rainfall in the 

months of March to June and more rainfall from July to October. SPI projections for 

the 2020s, 2030s and 2050s show a gradually more pronounced seasonal pattern, 

with a drier April-to-November period. The shift in UKCP09 and SCP can be 
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directly compared against the Pre-1961 as they share the same observed baseline; 

meanwhile, the changes projected by RCM and FF are with regards to their 

corresponding run in the referenced time period. Nevertheless, the relative changes 

in the average values of monthly SPI3 compared to their corresponding reference 

1961-1990 baseline are quite consistent across the products. Changes of the RCM 

and the FF are highly similar, thus suggesting that the seasonal pattern and 

correlation were preserved in the FF downscaling process. The SCP product remains 

quite similar to the original RCM but exhibits some divergence, particularly in the 

summer of the 2050s. Compared to the other products, the UKCP09 data projects 

slightly less wet winters and less dry summers particularly in the 2050s.  

 

All products show that the seasonal pattern will gradually become more pronounced 

with rising drought risk over time. By 2050s, the norm of an August or September 

month is likely to be shifted by -0.5, thus implying that a moderately mild drought 

of the 1961-1990 period will become the norm late summer state for that period. In 

comparison with the 1961-1990 baseline (average SPI/SPEI values of which are 

standardised to 0), the 3-month SPI shows that the 1914-1960 period generally 

receives less rainfall in the months of March to June while experiences more rainfall 

from July to October. Meanwhile, SPI projections of the 2020s, 2030s and 2050s 

show a gradually more pronounced seasonal pattern, with a drier April-to-November 

period.  
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Figure 5.15 Average 3-month SPI changes across time periods based on the 

1961-1990 baseline 

 

However, when PET is taken into account, the difference between the 1914-1960 

period and the 1961-1990 baseline period becomes slightly smaller (Figure 5.16). 

The average SPEI projections show a considerable drying from June to September. 

The difference between climate products can stem from two sources of uncertainty: 

i) the climate uncertainty range sampled by these climate products, and/or ii) the 

PET calculation method (the FAO-56 versus the Oudin method). Yet, the graph 

shows that there is little difference between the group of RCM and FF (which use 

the FAO-56 method) and the group of UKCP09 and SCP (which projects PET 

changes based on the Oudin method). The change in seasonal pattern is more 

pronounced if PET is taken into consideration; this suggests that increase PET will 

become a vital factor in determining drought prospects. Overall, the analysis of the 
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2020s, 2030s, and 2050s shows an increasingly drying trend over the summer, with 

rising drought risk over time. By 2050s, the norm change in SPEI in August or 

September is -0.5, which means a normal period for the 2050s is to the 1961-1990 

period a slight drought period. 

 

Figure 5.16 Average 3-month SPEI changes across time periods based on the 

corresponding 1961-1990 baseline. The baseline is the corresponding runs for the 

RCM and FF products, and the observed historic data for the UKCP09 and SCP 

products.  

 

5.3.2.4.SPI and SPEI-based drought frequency analysis 

Figure 5.17 to Figure 5.19 demonstrate the results of SPI-based drought frequency 

analysis and Figure 5.20 to Figure 5.22 demonstrate for SPEI-based drought 

frequency analysis. As described in Table 5.3, the moderate, severe and extreme 
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drought months have a SPI or SPEI value from -1 to -1.49,  The SPI-based results 

show that the 1914-1960 period has a higher frequency of moderate and extreme 

droughts than the baseline period. The relatively lower drought frequency of the 

baseline period suggests that the baseline period could have been extended to a 

longer period. A longer baseline period would have captured a wider range of 

drought types and magnitude, as droughts are rare extreme events. Climate products 

show large ranges of uncertainty in estimates of drought frequency, ranging from 

increases to decreases compared to observations. The uncertainty ranges are smaller 

for shorter duration droughts (such as 3 months) than for longer duration droughts 

(such as 36 months). In particular, the average trend projected by RCM and FF tends 

to be similar but with different impact ranges. For instance, the 9-month SPI of FF 

and RCM indicates a reduction of moderate droughts and significant increase of 

extreme droughts over the 2020s-2050s period, while SCP results indicate an 

increasing risk of moderate drought risks and a slow growth of extreme drought risk 

in 2020s-2030s and a sudden jump in 2050s.  

 

Nevertheless, climate products generally project that the frequency of short droughts 

(3 months to 9 months) increases over time while the frequency of longer droughts 

is slightly less than that of the baseline period. The changes of drought frequency, 

however, are still relatively small with up to 5% increase in extreme droughts.  

Meanwhile, the graph shows that frequencies of the longer droughts do not increase 

compared to the baseline and the severe drought risks are even lower than the pre-

1961 period. These figures also demonstrate the systematic differences among 

groups of climate products. In particular, the trend projected by RCM and FF tends 
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to be similar, while SCP and UKCP09 results tend to agree with each other. For 

instance, the 9-month SPI of FF and RCM indicates a reduction of moderate 

droughts and significant increase of extreme droughts over the 2020s-2050s period, 

UKCP09 and SCP results indicate an increasing risk of moderate drought risks and a 

slow growth of extreme drought risk in 2020s-2030s and a sudden jump in 2050s. 

 

Figure 5.17 Average annual frequency (in percentage) of SPI-based moderate 

drought in different time periods (pre-1961, 1961-90, 2020s, 2030s and 2050s) 

according to different products (Observations, RCM, FF, SCP, UCKP09) for 

multiple drought durations (3, 6, 9, 12, 24,36) 

 

The 24-month and 36-month SPI projects that the frequency of long-term droughts 

decreases compared to both the pre-1961 and the 1961-1990 baseline. On the 

contrary, there are increases of short-term drought, particularly in the summer 

months, due to the lack of precipitation. This can be explained by the calculation 

method of the SPI. The monthly precipitation is calculated as a moving average over 

several months. Therefore, longer term-based SPI will be calculated based on a long 
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term average of precipitation. As the seasonal pattern of rainfall is set to become 

stronger, the summer months would be drier and winter months wetter than the 

baseline. The summer drought frequencies are subsequently rising. However, the 

longer term average of precipitation stays similar to that of the baseline, as increase 

winter rainfall compensates for the drying conditions over the summer.  

 

Figure 5.18 The annual frequency of SPI-based severe drought risks in different 

time periods according to different data sources 
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Figure 5.19 The annual frequency of SPI-based extreme drought risks in 

different time periods according to different data sources 

 

In terms of SPEI, the overall drought frequencies based on SPEI are often higher 

than the drought frequencies based on SPI for the same climate product and time 

slice. Compared to the UKCP09 and SCP products, the SPEI-based drought 

frequencies for the RCM and the FF products tend to be lower regarding moderate 

droughts and higher regarding severe and extreme droughts (Figure 5.20 to 5.22). 

 

Figure 5.20 Average Frequency of Moderate Droughts according to the SPEI 

index on different time scale 
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Figure 5.21 Average Frequency of Severe Droughts according to the SPEI index 

on different time scale 

 

Similar to the SPI-based figures, the uncertainty ranges of SPEI-based drought 

frequencies are generally smaller for shorter duration droughts (such as 3 months) 

than for longer duration droughts (such as 36 months). The 9-month SPEI of FF and 

RCM indicates a consistent frequency but with an increased uncertainty range of 

moderate droughts and a slight increase of extreme droughts over the 2020s-2050s 

period, while SCP results indicate an decreasing risk of moderate drought risks and a 

gradual growth of extreme drought risk from the 2020s to the 2050s. Nevertheless, 

climate products generally project that the uncertainty range of short droughts 

frequencies (3 months to 9 months) increases over time. Meanwhile, the graph 

shows that frequencies of the longer droughts do not increase compared to the 

baseline and the severe drought risks are even lower than the pre-1961 period. 

However this could be an artefact as SPI and SPEI become less reliable in drought 

indication on a timescale of more than 24 months. 
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Figure 5.22 Average Frequency of Extreme Droughts according to the SPEI 

index on different time scale 

 

As such, the drought projections of the 2020s, 2030s and 2050s show an enhancing 

role of PET, which can enforce droughts.  When the role of PET is also taken into 

the equation, droughts are projected to increase in all durations. This demonstrates 

that the PET can become a driving factor of droughts. Almost all the climate 

products (except the SCP) demonstrate a growing risk of severe and extreme 

droughts in the 2020s to 2050s. While the 2020s are comparable to the pre-1961 

period in terms of drought risks, the 2030s and the 2050s will experience a much 

higher drought risk. Compared to the precipitation-base SPI, SPEI projects a much 

stronger signal of changes. While the former projects a ±5% changes in drought 

frequencies, the latter shows up to 10% increase for the shorter droughts and 30% 

for the longer droughts. SPEI-based drought analysis shows a more considerable 

increase of drought risks, with a more pronounced intensification of extreme 

droughts due to increased PET. High PET further enforces precipitation deficiency, 

and therefore exacerbates drought risks. However, this risk could be mitigated by 

soil processes and changes in land cover.  
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The index of SPEI also demonstrates structural uncertainty amongst the climate 

products, with RCM projecting a relatively higher drought risk compared to FF, 

UKCP09 and SCP. On the contrary, FF, a bias-corrected product of RCM, shows a 

slightly lower change in drought frequencies. The risk and uncertainty envelope of 

extreme droughts appear to increase over time, with the 2020s period having similar 

drought frequencies to those of the 1914-1960 period. However, natural climate 

variability may still dominate the 2020s and 2030s, as Kendon et al. (2008) has 

shown that climate change signals can only be inferred with more than three 30-year 

projection periods. With SPEI, the systematic differences among the climate 

products persist. These differences might stem from three factors: 

 The difference in sampled uncertainty of each climate product (as described 

in Table 5.1) 

 The difference in the post-processing approach, such as bias correction, 

downscaling and resampling 

 The difference PET calculation approaches, as the PETs of RCM and FF are 

Penmann-Monteith-based while PET changes of UKCP09 and SCP are 

Oudin-based 

 Natural variability 

 

Amongst all the considered climate products, SCP seems to consistently project the 

lowest change of drought risks while RCM produces the highest. It is noted that 

while RCM was known to significantly overestimate the drying condition, such bias 

was to an extent compensated by comparing changes within the same RCM runs. As 

such, although the historic RCM baseline (1961-1990) is drier than the observation 

data, the RCM future changes of drought risks is calculated based on the RCM 

baseline.  

 

Finally, while the structural difference of the climate products are likely to cause the 

dissimilar drought projections, the results show that using different PET formulation 

within each climate product might affect the overall assessment. It should be noted 
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that the Oudin formula was empirically derived from observations, which might not 

be similar to the conditions of the future climate. PET calculation for climate change 

therefore requires careful reconsideration if used beyond the calibrated range of 

climate. This is particularly the case of climate change studies, as the physical 

processes presented by the empirical equation might change, making the formula 

unsuitable. Furthermore, performance of empirical equations might shift in an 

unexpected way if the equations are used outside their calibration range. If the 

formula is to be use, it needs readjustment and recalibration, ideally using historic 

observations similar to the projected climate.  

 

5.4.CONCLUSIONS 

 

This chapter has applied two drought indices to analyse the drought pattern of 

historic periods and drought prospects in the 2010-2069 period. The study considers 

four UKCP-related climate products, which sample various uncertainty factors. Due 

to the lack of data inputs, two of these climate products do not supply PET values; 

consequently, the study also investigates various temperature-based PET methods. 

Overall, all the PET methods being considered underestimate PET if compared to 

the Penman-Monteith-based formulation. The Oudin method was chosen due to its 

simplicity and non-intensive data requirement. The monthly projected changes in 

drought frequency across these climate products did not show any bias introduced 

by using different PET methodology, as comparisons were made within each group 

of the climate products.  

 

However, the annual statistic of drought frequencies shows a structural difference 

among the groups of climate products. This difference exists for both the 

precipitation-based SPI and the compound index SPEI. The differences in drought 

prospects according to these products are therefore due to inherent structural 

difference in the models and scaling process, although differences in SPEI statistics 

might also be the contribution of different PET equations. Drought analysis suggests 

that apart from a higher risk of rain deficiency, higher PET is increasingly an 
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additional risk that exacerbates drought situation. Both SPI and SPEI exhibits 

increased frequency of severe and extreme droughts over the 2020s, 2030s and 

2050s period.  

 

Some of the projected drought frequencies are comparable to the pre-1961 period, 

thus suggest that the 1961-1990 period perhaps does not capture a wide range of 

drought conditions. As SPI and SPEI use this baseline to represent normal 

conditions, using a longer baseline might potentially lead to a fairer assessment of 

future droughts in comparison to historic droughts, such as to the worst drought of 

1921-1922. Finally, the analysis shows that for the study area and a nearby 

catchment, the change factors of mean precipitation and temperature are highly 

spatially correlated. This correlation enables the study to use the UKCP09 product, 

which is not spatially coherent. However, the closely spatial correlation of change 

factors implies that drought risks build cumulatively not only over time but also over 

space, as droughts spread to the whole region. 
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Chapter 6. HYDROLOGICAL UNCERTAINTY 

 

6.1.INTRODUCTION 

 

Hydrological uncertainty has long been an important factor in water resource decision 

making (Wood, 1978). Coupled with climate change uncertainty, it can further widen 

the uncertain conditions for adaptation strategies. Hydrological uncertainty, including 

model structure, model parameters and natural variability, has been analysed in 

comparison with uncertainty from emission scenarios, Global Climate Model structure 

and downscaling methods (Boorman and Sefton, 1997; Fowler et al., 2007; Maurer, 

2007; Kay et al., 2009). Wilby (2005) has shown that for sub-annual flow statistics, 

hydrological parameterisation uncertainty could be a major determining factor along 

with the uncertainty of the emission scenario; however it plays a limited role in 

determining the variations in annual mean flow quantiles. Meanwhile, following a 

conventional approach of cascading from Emission Scenario and Global Circulation 

Model to different downscaling approach and bias correction to hydrological models, 

Gädeke et al. (2013) and Chen et al. (2011) found that hydrological uncertainty could 

expand the uncertainty ranges; the largest source of uncertainty, however, is the choice 

of dynamic versus statistical downscaling approaches.  

 

Regarding hydrological uncertainty, Brigode et al. (2013) demonstrated that selecting 

the optimal parameter set via a calibration period could bias the future hydrological 

projections towards flows under the climate characteristics of the calibration period. 

Yet, the relative magnitudes of climate uncertainty and hydrological uncertainty vary 

from catchment to catchment, and as such need to be analysed in the case study.  
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In the previous chapter, it has been shown that the four climate products of interest 

(UKCP09, SCP, the original runs of HadRM3 and their downscaled product done by the 

Future Flow project) project different changes in drought frequency for the 2020s, 

2030s and 2050s. As such, apart from the climate uncertainty within each product, there 

is a post-processing uncertainty of the climate products. This post-processing 

uncertainty is of importance. They imply that the decision makers not only have to deal 

with the exploding uncertainty of translating climate projections into possible impacts, 

but also face uncertainty in choosing which product to use. In that context, the aim of 

this chapter is to further assess the uncertainty of climate projections when coupled with 

hydrological uncertainty. The chapter has three specific objectives as follow: 

 To link meteorological droughts, as indicated by SPEI, with hydrological 

droughts indicated by low flows. As SPEI is a simple water balance model with 

no soil storage, a comparison between SPEI and the low flows will explore the 

role of soil storage in the catchment. 

 To employ the Generalised Likelihood Uncertainty Estimation (GLUE) 

framework to explore the uncertainty of possible model parameterisation. GLUE 

differs from the classical calibration process in that it produces an ensemble of 

acceptable model characterisation rather than a single optimal one. As such, it 

enhances the likelihood of capturing future catchment behaviours under natural 

variability and climate change impacts. 

 To use sensitivity analysis to assess the influence of parameter values on the 

calibration criteria and low flows in the calibration period and in the future time 

slices. This assessment will give more insight into inherent differences within 

the alternative parameterisation of GLUE and how these differences will project 

into the future. The knowledge of the dominant parameters under the projected 

conditions will facilitate future monitoring of changes and re-calibration of the 

hydrological model. 

Section 6.2 will present the hydrological model CATCHMOD and two methodologies 

used in the study: the Generalised Likelihood Uncertainty Estimation method and Sobol 
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Global Sensitivity Analysis. Section 6.3 then analyses the results regarding the 

influence of model parameters and the interactions of climate uncertainty, post-

processing uncertainty and hydrological uncertainty. The chapter concludes with 

Section 6.4, which summarises the key findings. 

 

6.2.METHODOLOGY 

 

6.2.1. The CATCHMOD hydrologic model 

The Catchment Modelling model CATCHMOD is a water balance model initially 

designed for the Thames Basin (Wilby et al., 1994). The schematic of the model is 

presented in Figure 6.1. In contrast to the simple PET-rainfall balance of the SPEI 

index, water balance models such as CATCHMOD take into account water storages and 

percolation capacity of the soil. These are important factors in deciding catchment 

responses to rainfall events, as water can be retained in the subsurface zone, the 

underlying aquifers and at bank side storages, which then slowly release water even 

when the rain has ceased. The catchment model can consist of one or several 

contributing zones, each having the same model structure but with a different parameter 

set representing the zone attributes. The total catchment flows are then the sum of all 

contributing flows at the same time step.  
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Figure 6.1 Schematic of the CATCHMOD model. Source: Wilby (2005) 

 

CATCHMOD simulates catchment responses as a bucket system, in which soil storages 

are presented as interconnecting buckets. When the rain falls onto the ground, one part 

of the rain becomes run-off, some part of the rain slowly permeates the soil horizon 

while some are ‘fast-tracked’ into the lower soil zones via soil factures and microspores. 

In CATCHMOD, the direct percolation (DP) is a fixed proportion of precipitation, lost 

to the underlying zone via the latter process. Meanwhile, the water content of the soil 

surface can evaporate back due to evaporation. Yet, evaporation occurs at a reduced rate 

Dc (also termed Slope of the drying curve) if soil moisture deficit exceeds a threshold. 

This process reflects the increasing difficulty to draw water out as the soil becomes 

drier. CATCHMOD represents the soil moisture store as an upper and a lower zone, of 

which the upper zone is the first zone to dry up or get recharged. If the soil zone is 

saturated, the exceed rainfall further permeates the lower zone in the form of saturation 

percolation. Along with direct percolation, it forms total percolation. If the catchment 

overlays a permeable geological formation, this percolation passes from the unsaturated 
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zone to the saturated zone and eventually becomes the base flow. This base flow is 

released at a non-linear rate back to the flows. Apart from the natural hydrological 

cycle, the water balance can be influenced by surface and groundwater abstraction, as 

well as effluent return and discharge from irrigation. These influences are directly 

subtracted or added at the relevant component, such as at the base flow or surface flow 

calculation. For more information on model equation, please refer to Greenfield (1984), 

Wilby et al. (1994) and Wilby and Harris (2006). 

 

As such, there are two main differences of CATCHMOD flows compared to the SPEI 

model. In CATCHMOD, when rainfall exceeds PET, this excess does not directly turn 

into flows but some will be absorbed into the ground. While this process reduces the 

direct runoff, it is partially offset by the subsurface and base flow contribution. 

Therefore, a water balance model like CATCHMOD will have more ‘memory’ of the 

previous catchment states than the SPEI model of the same time step resolution. For 

instance, when PET is higher than rainfall, the SPEI model will result in no flows; 

meanwhile, CATCHMOD can still simulate subsurface flows originating from the past 

rainfall events.  

 

In this study, this CATCHMOD model was chosen to represent the hydrological cycle 

of the Rother Basin, which has been described in Chapter 4. The catchment model is 

divided into six contributing areas representing the responses of different geological 

structures. This setting is based on the VBA Excel-based CATCHMOD model used by 

Southern Water and Atkins Consultants Ltd. Previous work of Southern Water and 

Atkins have identified certain parameter sets that perform well under the calibration 

period of 1990-1999 and the validation period of the 2000-2004 periods (Atkins Ltd., 

2009). Model performances were assessed using the Nash-Sutcliffe coefficient, the R2 

and the mean squared residual of errors (MRSE). The Nash-Sutcliffe criterion is 

essentially R2, but tends to -∞ when the total residual error of the observation and the 

simulated values is worse than the total residual errors of the observations and their 
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mean. Meanwhile R2 is a piecewise linear function that is identical to the Nash-Sutcliffe 

coefficient in the positive zone and becomes 0 once the calculation returns negative 

values. Hoang et al. (2012) reassessed these criteria and found that while these criteria 

can indicate good model performance, each of these criteria orientates towards a 

different model behaviour. For instance, a model with a small mean residual error tends 

to have a good agreement in the large flows at the expense of the low flow errors, as an 

error in the high flows is often much larger and affect the MSE more than a lower error 

in the low flows. Meanwhile, the R2 criterion, the square of the correlation between the 

observed flows and the simulated flows, tends to be more consistent in calibrating the 

low flow and the high flow period since each residual error is scaled proportionally to 

the observation. Nevertheless, both criteria are biased towards calibrating the high flow 

periods, as a good performance in this region can still significantly compensate poor 

performance elsewhere. In order to further enhance calibration in the low flow period, 

the study additionally employs the Nash-Sutcliffe criterion of the base-10 logarithm of 

the flows. For the purpose of the study, the VB.NET CATCHMOD model was 

translated into the Fortran90 language, which gives a faster performance as required for 

the number of runs. These VB.NET and Fortran90 versions were tested and yielded 

similar results to the 6th significant number for flows in m3/s.  

 

6.2.2. The GLUE methodology and Sobol sensitivity analysis 

Uncertainty and sensitivity analysis are two closely intertwined fields. The former field 

focuses on the uncertainty components of input data, the conceptual model and the 

parameter values; the latter provides useful methodologies to analyse how the variations 

in the model parameters can lead to changes in the outputs. In this study, two specific 

methods of uncertainty and sensitivity analysis were combined to explore the 

contribution of hydrological model parameterization to flow projections. Both of these 

methodologies are Monte Carlo-based and require many model runs; an efficient 

experimental design to conduct both of these analyses is therefore essential. 
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6.2.2.1.The GLUE methodology 

The Generalised Likelihood Uncertainty Estimation (GLUE) methodology (Beven and 

Binley, 1992) uses a Monte Carlo sample of model parameters; it assumes the 

likelihood of model acceptability to be equivalent to the goodness-of-fit measure. This 

methodology emphasises that different model structures and parameterisation can 

produce an acceptable model performance (equifinality). It thus moves away from the 

traditional model calibration and validation process of selecting one optimal parameter 

set towards a new framework. This framework uses an ensemble of model structures 

and/or parameterization of satisfactory performance. The model ensemble is often 

termed the ‘behavioural’ group and is selected based on a user-defined goodness-of-fit 

threshold.  

 

The outcome of GLUE is therefore several alternative representation of the catchment, 

instead of an optimal parameter set such as the outcome of the classical model 

validation process. The inclusion of several parameter sets thus is more likely to capture 

the process under different conditions. For hydrological models, using GLUE produces 

several parameter sets that capture the varying flow conditions, in contrast to the 

dilemma of choosing an optimal parameter set; this is particularly beneficial if the 

model parameter sets are not consistently optimal across different calibration periods or 

criteria (Freer et al., 1996). Under a changing climate and hydrological regime, using 

GLUE is valuable since the inclusion of more parameter sets might increase the 

possibility of the model being able to perform despite these changes.  

 

Yet, in such cases, the use of GLUE may also raise certain issues. Firstly, while distinct 

parameter sets may produce converging results in the calibration period; under a 

different time period and conditions, simulation results of such sets may diverge and 

thus project different possibility of changes. If in the calibration period such differences 

can be crosschecked with the observed flows, in the future there is not yet any data to 

validate the ‘goodness-of-fit’ of these projections. While the variations in the GLUE 
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projections, termed the ‘equifinality’ uncertainty (Beven and Freer, 2001; Beven, 2006), 

are often assessed as a total term, there is a need to test whether distinct trends exist 

within the overall equifinality uncertainty. Secondly, the future influence and the 

interactions of the ‘behavioural’ parameter sets on the model outputs might be different 

from the calibration period, thus affecting the overall likelihood of approximating the 

true catchment behaviour. For instance, assuming a ‘behavioural’ CATCHMOD 

parameter set was selected due to its capacity to simulate flows in intense convective 

storms; the parameter set has a small direct percolation rate that is representative of the 

soil condition in the calibration period. However if a drier condition would dominate the 

future period, the soil then develops more cracks and macropores and thus facilitates 

more direct percolation. As such, the parameter set is no longer representative of the 

catchment conditions and will produce errors in the flow projections.  

 

A closer inspection highlights a common issue of these two concerns. To date, many 

principles in hydrology studies are based on the assumption of a single stable 

equilibrium state, which the term ‘equifinality’ seems to suggest. This assumption is 

evident in the common usage of a ‘warm-up’ period, in which a model is run for a 

certain period to reduce the uncertainty due to different initial conditions. Yet, Peterson 

et al. (2012) has shown that with the same parameter set, different initial conditions can 

lead to multiple steady states in several hydrological systems. This thus demonstrates 

the sensitivity of model and possibly catchment behaviour under different starting 

conditions. In the case of the GLUE ensembles, considering that the ensemble consists 

of different parameter sets, which subsequently produce different starting conditions in 

each time step, these differences can cumulatively lead to totally different catchment 

behaviours in the future projections. Furthermore, even within the calibration period, 

their similar and ‘behavioural’ goodness-of-fit does not indicate that the sets represent 

the same catchment response. Several works on GLUE (Wilby, 2005; Cloke et al., 

2012) have demonstrated that model performance changes seasonally, thus suggest that 

some of the model is only representative of a certain condition and period. There 
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subsequently exists a need to further inspect the group of ‘behavioural’ models to 

analyse the alternative states that they represent.  

 

6.2.2.2. Sobol Sensitivity Analysis 

Consequently, it is essential to conduct sensitivity analysis in order to understand the 

interactions and influence of the parameters on model performance and outputs. In the 

calibration period, sensitivity analysis will contribute towards understanding how 

different parameter sets converge to similar outcomes. For the future period, it provides 

hints of which parameters may become more influential; additionally, knowledge of the 

sensitive parameters will allow further monitoring of the changing conditions. Such 

assessment may shed light on the possible causes and the implications of such changes. 

In this study, the Sobol’s global sensitivity analysis method (Sobol', 1990; Sobol, 1993) 

was chosen, with the scope of the analysis being the influence of a single parameter and 

the combined influence of each parameter pairs. Similar to GLUE, Sobol is a global 

sampling scheme to avoid oversampling around local minima or maxima. The Sobol 

methodology assumes that the total variance of the model output is contributed by the 

variance due to each single parameter (such as Vi, Vj, and Vk with i, j and k being the 

corresponding parameters) and the interactions amongst the parameters (denoted Vij, 

Vijk). Mathematically, if the input parameters are independent, this variance 

decomposition can be presented as 

ܸ ൌ Σୀଵ


ܸ  ΣΣ ܸ  ΣΣΣ ܸ  ⋯ ଵܸ,ଶ,…, 

Equation 6.1 

The Sobol Sensitivity indices are the ratio of the variance of each component and the 

total variance. As such, dividing both sides by V, Equation 6.1 becomes  

1 ൌ Σୀଵ


ܵ  ΣΣ ܵ  ΣΣΣ ܵ  ⋯ ଵܵ,ଶ,…, 

  Equation 6.2 

The number of the parameters considered in each sensitivity index is termed the order 

of the index. For instance, the first-order sensitivity index Si denotes the sensitivity of 
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the output to changes in input i while the second-order Sij is the sensitivity due to the 

interaction of input i and j. The total effect of a parameter i, the sum of all sensitivity 

indices concerning i, is termed the total effect Ti. Often, these indices are not 

analytically derived due to model complexity; the concerning indices are subsequently 

approximated via a Monte Carlo sample of the model runs. To date, there have been 

several proposed calculation methods, such as Saltelli (2002), Sobol et al. (2007) and 

Jansen (1999). As the formulation varies, the specific required number of samples also 

vary. The Sobol' (1990) scheme requires two equal-sized sets of independent samples 

X1 and X2 in order to calculate the first-order indices. Assume that k parameters are 

considered, each sample set will have the size of k x N with N being the sample size. 

For a parameter i, the variance that i contributes to the model output can be estimated 

by comparing model outputs of X1 and the same outputs when values of the parameter i 

are replaced by the X2 values. While Saltelli et al. (2010) have summarised and 

proposed a less computationally expensive sampling and calculation design, those 

formulae only estimate the first and total sensitivity index. Therefore, in this study, the 

classical Sobol’s method was selected. The study used the R sensitivity package (Pujol  

et al., 2013) which includes the Sobol (1993)’s method. In order to enhance the sample, 

the Latin Hypercube sampling technique was further used. This method ensures that the 

sample is more evenly distributed across the equal-probability sampling grid (Saltelli et 

al., 2000). In this study, parameter sampling and subsequent sensitivity analysis was 

conducted using R while the model ran in Fortran90.     

 

6.2.3. Experimental Design and Input Data 

 

Model parameters: The sampling parameters include five soil moisture storage 

parameters, two catchment storage parameters and two initial conditions of the 

CATCHMOD model (Table 6-1).  

 

6.2.2.3.Input data
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Table 6-1 CATCHMOD parameters and the sampling range 

Soil moisture store 
parameters 

Units  Descriptions   Denotation Sampling 
range 

Slope of Drying Curve   Usually 0.3 for most zones, 
zero for urban (paved) areas 

Slope 0-0.3 

Drying Constant (mm) Mm Finite storage of upper soil 
moisture store.  Typically 30 
to 150 (0 for urban). 

PDC 0-150 

Direct Percolation (%) % % bypassing soil moisture 
store.  Typically 15 to 25 for 
aquifers, 0 for others.  

DP 0-25 

First (linear) storage 
constant.  

Days Typically 0 to 30 Cr/Phi 0-30 

Second (non-linear) 
storage constant.  

m3.days2

/km2 
Typically 0 to 5000 Cq 0-5000 

Initial output of first 
storage 

mm/d Initial condition. R1 0-100 

Initial output of 
second storage 

m3/s Initial condition. Q1 0-5 

 

Upper Zone (one) 
Deficit 

mm Initial condition. Has a 
maximum value equal to the 
drying constant 

D1 0-100 

Lower Zone (two) 
Deficit 

mm Initial condition. Lower zone 
is effectively infinite 

D2 0-100 

 

 

The sampling ranges were based on the CATCHMOD guide included in the original 

Excel-based CATCHMOD model. In this version the catchment is divided into six 

contributing zones, labelled as Chalk, two areas of Greensand, one Clay area and two 

fast responding zones. The areas of these contributing zones are 78 km2, 80 km2, 50 

km2, 102 km2, 10 km2 and 15 km2, respectively. From now on, they will be denoted as 

sub catchment 1 to 6 as outlined in Table 6-2. As such, the largest sub catchment is the 

Clay area, followed by the Greensand 1 and Chalk zone. Table 6-2 also demonstrates 

the currently optimal parameter set calibrated by Southern Water based on the Mean 

Residual Squared Error (MRSE), which has a four sub-catchment composition. The 

record of subsequent attempts shows a further break down into six sub-catchments but 

without any calibration improvement. This study, however, will keep this six-zone 
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configuration to test whether it introduces any improvement if comprehensively 

sampled. 

 

Amongst the parameters, the contributing area of each zone is kept constant. Despite the 

different geological characteristic of these areas, there is no explicit instruction on the 

range of the parameters. Therefore, parameter samples of each contributing zone were 

taken from the full range. The sampling distribution is assumed to be a uniform 

distribution ranging from 0 to 1 and scaled to the range of the corresponding 

parameters, as conducted in Cloke et al. (2010a). As there are six contributing zones 

and nine parameters for each, there are in total 54 parameters to be sampled.   

 

Table 6-2 Original CATCHMOD parameters and contributing zone characterisation 

Sub catchment 1 2 3 4 5 6 

Area Type Chalk Greensand Clay Rapid Rapid2 Greensand 
2 

Slope of Drying Curve 0.3 0.3 0.30 0.3 0.3 0.3 

Drying Constant (mm) 130 30 20 0.5 0.5 30 

Direct Percolation (%) 25 15 0 0 0 15 

Upper Zone (one) Deficit 0 0 0 0 0 0 

Lower Zone (two) Deficit 0 0 0 0 0 0 

Area  78 80 102 10 15 50 

Cr 30 25 0 0 0 25 

Cq 2500 1500 10 0 0 1500 

R1 0 0 0 0 0 0 

Q1 1.5 0.75 0.5 0 0 0.75 

 

Rainfall and PET data: The chosen catchment of this section is the River Rother. 

Rainfall and PET data are the same data used in the previous chapter, using the outputs 

of the four climate products of the UK Climate Projections 2009, UK Spatial Coherent 

Projections, the original Regional Climate Model and the downscaled product of the 
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Future Flows Project. The assessed time periods are the historic period of 1961-1990, 

the 2020s, 2030s and the 2050s. 

 

6.2.2.4.Experimental design 

The study uses two sampling sets to investigate the parameters 

Sample 1-GLUE based analysis: 500,000 CATCHMOD runs using randomly 

generated parameters were tested against two model settings: one with only one 

contributing zone and another using the original structure of six contributing zones. The 

purpose of this sampling scheme is to identify the ‘behavioural’ group of parameters 

and conduct a preliminary assessment of parameter influences on model performance. 

Sample 2-Sobol based analysis: 148,600 CATCHMOD parameter sets were 

constructed from two Latin Hypercube sample sets X1 and X2. These 148,600 sets 

enable the estimation of Sobol sensitivity indices up to the second order. Each set 

consists of 100 sets of values for the 54 parameters. The Sobol test set was constructed 

by iteratively replacing one or two vectors of X2 by the corresponding vectors of X1. 

The comparison between model outputs of X1, X2 and the adjusted X2 can produce an 

estimation of the first and second order sensitivity indices of each parameter. It should 

be noted that this experimental design only enables an estimation of the indices. As 

such, the larger number of samples contained in X1 and X2, the more reliable the 

estimations are. Yet, due to time and computational constraints, the number of sampling 

sets in X1 and X2 were kept at 100; the weak estimation power was partly compensated 

by using the Latin hypercube sampling and 100 bootstrapping scheme. Yet, there is still 

an uncertainty in these estimations. 

 

Due to the large number of sets and computation constraints, it was not possible to run 

either the 500,000 or 148,600 set on all the climate products. The Future Flows product 

was thus chosen as the testing product of Sobol sensitivity indices. For all other sets, the 

behavioural sets of Sample 1, which are less time and computational extensive than the 

full 500,000 runs, were used.  
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6.2.2.5.The efficiency criteria 

In this study, the Nash-Sutcliffe coefficient of daily flows and the base 10 logarithm of 

the daily flows were used. Additionally, the lowest total 7-day flows and the highest one 

were also considered in order to further assess the influence of parameter values on the 

flow projections.  

 

In the historic period of both the GLUE and the Sobol experiment, the calibration 

period is the 1990-2004 period. In the future period, as there is no historic flow, only 

the lowest and the highest total 7-day flows are calculated over the whole period. 

 

6.3.RESULTS AND DISCUSSION 

 

6.3.1. The effect of soil storage on flows: Comparison of observation and SPEI 

As previously discussed, SPEI is based on a simple water balance model of 

precipitation subtracting potential evaporation. In reality, not all potential evaporation 

can become actual evaporation. The catchment also responds more slowly than the 

SPEI model, due to the effect of flow retention in soil storages. While not considering 

the effect of soil storage, SPEI can have some ‘memory’ of previous month if calculated 

on a longer period. As SPEI is calculated as a moving average over that period, the two-

month SPEI, for instance, can be affected by the rainfall-PET balance in the previous 

month. Therefore, SPEI can reflect to a certain extent the retention effect, in a similar 

manner that the autoregressive model considers the lagging effect of the past events. 

Yet, that lagging effect is not uniform over the year. Figure 6.2 demonstrates that while 

the correlation between SPEI and the actual flows are strong in the wet season, that 

correlation is much weaker during the drier months of May to August.  
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Figure 6.2 Graph of one-month, two-month, three-month and six-month SPEI versus 

Rother observed monthly flows (1990-2004) from January to December (right axis). 
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For dry months, flows are mostly retained water from the wetter period and thus do not 

directly related to the monthly SPEI. This that explains why the SPEI calculated over a 

longer period has more predicting power. Therefore in view of drier summers in the 

future, the summer flows will be increasingly dependent on winter storage. During the 

dry season, flows appear to correlate to six-month SPEI, thus suggesting that flows in 

these months are strongly controlled by rainfall input of the previous months. The figure 

also demonstrates the linkage between meteorological droughts and hydrological 

droughts, as well as the seasonal flow pattern of River Rother. Nevertheless, SPEI is 

relatively consistent in indicating low flows, for instance, a -2 SPEI in August generally 

indicates a monthly flow of 4000-5000 Ml/month.   

 

6.3.2. The ranging low flows of the ‘behavioural’ group 

Results of the GLUE analysis indicate that the number of contributing zones is an 

important factor to improve the simulation. The 500,000 parameter sets returns no 

‘behavioural’ set if the whole catchment is configured as one contributing zone; 

meanwhile the six-contributing-zone structure produces 131 parameter sets. The 

‘behavioural’ sets were model parameter sets with Nash values of 0.6 or above and log 

Nash values of 0.5 or above. Yet, within this group, there is an approximate variation of 

8 Ml/day in Q99 and higher in the high flows.  

 

Figure 6.3 shows a part of the flow duration curve, with x-axis being flipped in order to 

magnify the low flow part. As it demonstrates, the low flows of the ensemble range 

from 12 to 20 Ml/day. The higher projections of the ensemble also have a higher log 

Nash value, which indicates a better fit in the low flow part. Yet, the ensemble also 

demonstrates a certain non-converging behaviour, with two parameter sets producing a 

distinctively wetter projection than other sets. 
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Figure 6.3 The ranging low flows in the behavioural group 

 

The results of Sample 2 (the Sobol sets) further show variations in the simulated low 

flows (Figure 6.4). As the sampling set is smaller than the GLUE set, the number of the 

behavioural models is much smaller, with only one set having both Nash and log Nash 

higher than 0.6 and 54 sets higher than 0.5. The close correlation between the Nash and 

log Nash criterion is again demonstrated: the models having high Nash value also tend 

to have a high log Nash value. A comparison of the ensemble in terms of the lowest 

total 7-day flows shows that the models with higher log Nash (which means they are 

relatively better than other models in simulating low flows) usually have a smaller low 

flows than the rest of the ensemble. Overall the models with a log Nash value of over 

0.5 tend to simulate around 750-1000 Ml/ week in the driest period.  
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Figure 6.4 Graph of Nash coefficient versus log Nash of the Sample 2 

 

Within each product group, the trend of changes across the time periods is fairly 

consistent. Amongst the members of the Future Flows climate product (Figure 6.5), 

hadrm3q14 and hadrm3q8 project a wetter trend in the low flows in 2020s and 2030s, 

but with a dramatic reduction in 2050s. Meanwhile other RCMs (Figure 6.6) exhibit a 

gradual decline of low flows. Compared to the non-downscaled original RCMs, the 

trend of changes in each member remains similar; however, it appears that the 

downscaling process of FF has made the trend less extreme. The most severe drying 

trend of FF is exhibited in the 2050s in hadrm3q13 and hadrm3q14, at approximately -

75 Ml/d while in the RCM group, the most severe one is -120 Ml/d as projected by 

hadrm3q13 in the 2050s. Furthermore, Figure 6.5 and Figure 6.6 show some seemingly 

outliers in the changing trend, with certain hydrological projections are markedly 

different from the other members of the ensemble (same grid box).  
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Figure 6.5 Changes of Q90, Q95, Q99 and Q99.99 compared to the 1961-1990 period in the FF climate product. Each line is one 

hydrological run out of the 131 behavioural CATCHMOD parameter sets. The black line shows the Nash ‘optimal’ parameter set of 

the GLUE ensemble, in order to compare the results of GLUE versus the classical calibration process.  
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Figure 6.6 Changes of Q90, Q95, Q99 and Q99.99 compared to the 1961-1990 period in the RCM climate product 

Each line is one hydrological run out of the 131 behavioural CATCHMOD parameter sets.The black line shows the 

Nash ‘optimal’ parameter set of the GLUE ensemble, in order to compare the results of GLUE versus the classical 

calibration process.  
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This may be an artefact of the random sampling process, in which the sampling size is 

not sufficiently large to find a comprehensive sample of the behavioural parameter sets. 

Nevertheless, these hydrological outliers demonstrate a slightly different trend in low 

flow changes. As such, even if they belong to another behavioural group, they indicate 

that such behavioural group will also be different from the current group. Across the 

climate products, post-processing uncertainty is larger than the hydrological 

parameterisation uncertainty and the change of climate uncertainty over the time 

periods. Figure 6.7 and Figure 6.8 show that overall the changes in time are negligible 

compared to the difference amongst the climate product. For instance, the mean value 

of the RCM group in Q70 is consistently higher than that of the FF group. Yet, the 

range of RCM contains the range of FF and the range of SCP contains the range of 

UKCP09.  

 

This suggests that using these products of larger bounds will lead to planning decisions 

that include the conditions projected in the FF and UKCP09 groups. In essence, using 

the 131 ‘behavioural’ parameter sets, the CATCHMOD flow projections of the SCP and 

UKCP09 products systematically project higher flows than that of the RCM and FF 

products.  Amongst the group, the error bounds of SCP, UKCP09 and FF are 

comparable, while that of RCM is significantly wider. Low flow analysis of all the 

products show negligible changes from 2020s to 2030s, and a slight flow reduction in 

2050s. In Figure 6.8, all climate products show a mean flow reduction in 2050s and a 

slightly widening uncertainty bound in time. It also shows systematic bias in each 

climate product, which dominates the overall uncertainty. The uncertainty range 

indicated by each box plot consists of the equifinality uncertainty (due to using different 

parameterization) and climate projection uncertainty (due to using different 

realisations/projections within the product). The dominance of climate product 

uncertainty compared to the internal hydrological and climate uncertainty is important. 

It shows that there is a further need to cross validate and investigate the processing of 

these products, as they are all based on similar sources and sample different factors of 

uncertainty in the climate modelling process. Their significantly different flow 
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projections imply that such uncertainty may further cascade down the modelling 

process and may lead to different adaptation and planning decision depending on which 

climate product is employed. To date, all of these products have been used in adaptation 

studies, with the SCP and UKCP09 being used for water resource plans in England and 

Wales, the RCM being used for several climate change research studies and the FF 

projections used to assess climate risks in key catchments.  
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Figure 6.7 Box plots showing the changing trend of flow quantiles (Ml/day) from the historic period to 2020s, 2030s, and 2050s as projected by 

the four climate products. Note that for the historic period (1961-1990), the group consists of the 1961-1990 time series of the FF and the RCM 

product, as SCP and UKCP09 are based on the observed data.  
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Figure 6.8 A closer look at the different projections in low flow quantiles with the additional data of the observed 1990-2005 flows for 

comparison. 
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6.3.3. Sobol analysis of parameter influences 

Further to the GLUE analysis, a Sobol analysis was conducted. Due to time and 

computational constraints, the focus was on historic gridded data and the 1959-2069 

time series of the Future Flow climate product. As the simulated FF flows are not 

supposed to be identical to the observed flows (Prudhomme et al., 2012), a comparison 

with historic observed data was not conducted; the aim was instead to identify 

parameter influences on the range of low flows and high flows.  

 

6.3.3.1. Flow analysis of the 1959-2004 historic flows 

Table 6-3 demonstrates the Sobol sensitivity indices of the most influential parameters 

or interactions on the corresponding criterion. The low flow criterion is assumed to be a 

proxy of the worst drought case of the simulation (which expands more than just the 

calibration period); this value is not related to the actual observation flows. Meanwhile 

the log Nash and Nash value are two indicators of the simulation goodness-of-fit to the 

observation values. The log Nash criterion tends to indicate the low-flow goodness-of-

fit while Nash indicates the goodness-of-fit in the mid and high flows.  

 

Table 6-3 Sobol sensitivity indices of the 10 most influential parameters or 

interactions on the corresponding criteria. The low flow criterion is the lowest total 

7-day flows in the simulation (therefore not related to the observed flow). The Nash 

and log Nash represent how closely the simulation results to the observation of high 

and low magnitudes. The * symbol indicates the interaction between the two 

parameters. The number after the name of each parameter indicates the contributing 

zone/catchment; for parameters such as Q1, the sub-catchment index will be 

separated by an underscore.  

Low flows log Nash  Nash  

 mean std. 
Error 

 mean std. 
Error 

 mean std. 
Error

Cq3 0.95 0.68 Cq2 0.29 0.19 Cq2 0.29 0.26 
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Cq1 0.86 0.96 Cq3 0.22 0.23 Phi2*Cq2 0.23 0.46 

Cq2 0.86 0.92 Cq1 0.18 0.21 Phi1*Cq1 0.22 0.32 

Cq6 0.74 0.93 Cq6 0.08 0.20 Cq3 0.14 0.41 

Slope1 0.70 1.03 Phi1*Cq1 0.07 0.21 Cq1*Cq2 0.08 0.33 

Pdc1 0.70 1.01 Phi6 0.06 0.20 Cq1*Cq3 0.07 0.35 

Pdc6 0.69 1.03 Pdc3 0.05 0.19 Cq2*Cq6 0.07 0.35 

Pdc3 0.69 0.96 Phi1 0.05 0.19 Phi2 0.07 0.32 

Phi2 0.68 1.01 Phi2 0.04 0.20 Pdc6*Cq6 0.06 0.34 

Cq5 0.67 1.00 Cq4 0.03 0.19 Slope6*Cq6 0.06 0.33 

 

 

6.3.3.2.Low flow indicators 

Analysis on the historic flows of 1959-2004 show that both the lowest total 7-day flows 

and the log Nash value are strongly controlled by the non-linear storage constant of the 

1st, 2nd and the 3rd contributing zone, the three largest zones of the catchment (Figure 6.9 

and Figure 9.10). The figures show a positive relation between Cq and 7-day low flows 

and a negative relation between Cq and log-Nash. Therefore, the higher Cq is, the 

wetter the simulation is. As the actual driest flow in the catchment tends toward the dry 

case of approximate 700-1000 Ml/week, small Cq values lead to a better low flow fit.  

 

The dominance of Cq during the low flow periods can be explained by the soil function 

that the parameter represents: the base flow release rate. Low flows often occur in 

prolonged periods of limited rainfall and/or excessive evaporation. In such 

circumstances, the upper soil storage and the unsaturated zone are often dry and can 

contribute little to the underlying storages. This thus explains the limited role of the 

parameters representing those processes. On the contrary, base flow is a significant 

contributor to river flows when other sources wane. As the correlation analysis between 

SPEI and observed flows has shown, flows in the dry period are weakly dependent on 

the actual rainfall and PET balance of that month. During these periods, flows rely on 

soil storages, which were accumulated in the previous rainfall events. As such, a model 
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with a larger value of Cq, implying a higher releasing rate, will contribute to higher 

flows. Furthermore, Cq is the releasing rate per km2; consequently, the total release 

volume would be the product of the unit releasing rate and the area of the contributing 

zone. As such, sub catchment area and the value of Cq are two important factors 

deciding the overall flows. This influence is evident in  

Figure 6.10, in which low flows increase when the value of Cq increases, particularly in 

the large sub-catchment. The controlling role of Cq on log Nash value also indicates 

that this is an important parameter in calibrating low flows.  

 

Figure 6.9 Graph of the standardized Cq versus the lowest total 7-day flows in six 
contributing zones. As can be seen, Cq3 shows a less noisy correlation between the 
low flows and the Cq3 value.  
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Figure 6.10 Graph of the standardized Cq versus the log Nash value. As can be seen, 

the signal is noisier than compared to the case of the low flow criterion. The Sobol 

indices also reflect this weaker correlation, with indices peak at 0.29 instead of 0.95 

like in the previous case. The relation between Cq and log Nash is negative, with 

smaller Cq value seems to lead to a better fitted low-flow.  

  

6.3.3.3.Nash value  

The Nash value, as previously discussed, is indicative of model goodness-of-fit in high 

flows. According to the Sobol indices, the Nash values are controlled by Cq2 and the 

interactions between the linear and the non-linear storage in sub catchment 1 and 2. The 

influencing parameters also include parameters representing the soil moisture process 

such as Pdc (storage of the upper soil moisture storage) and Slope of the drying curve, 

which dictates how fast the soil dries out. The dominant role of Cq2 and Cq3, again, 

demonstrates that the Rother catchment is dominated by base flow, so that even in 

periods of high flows, the base flow still control the overall flows. However, the indices 

also reflect the more connecting interaction between the upper soil storage and the 
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underlying storages in such wet periods. In essence, the influence of Cq2 and Phi2, the 

unsaturated zone that receives percolation from the soil moisture store and direct 

rainfall, shows the direct contribution of rainfall events. The analysis also implies the 

need to obtain both acceptable Phi and Cq values, as well as a well-fitted Cq values 

across the contributing zones in order to correctly reflect the catchment processes in 

high flows. Figure 6.11 shows that while the Cq2 and Phi2 interaction has a strong 

influence on the Nash criterion, that influence is not monotonous. As can be seen, there 

are pockets of local minima and maxima. This further affirms the need to conduct a 

global sampling on the parameter sets, since acceptable parameter combinations can 

exist in various place in the sampling space.  
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.   

Figure 6.11 Contour plot of the influence of the interaction of Phi2 and Cq2 on the overall Nash value. Due to the experimental 

design, each pair of Phi2 and Cq2 contains several runs with same Phi2 and Cq2 values but with other parameters being varied. 

The first surface represents the mean Nash value of all those runs. The second surface represents the max value of all those runs. 

The black cross represents the actual parameter pairs. Overall, both the mean and max response surface of Phi2 and Cq2 are not 

monotonic to the Nash coefficient.  
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6.3.3.4.The influence of the initial conditions  

Regarding the influence of the initial conditions on the simulation, Table 6-3 Sobol 

sensitivity indices of the 10 most influential parameters or interactions on the 

corresponding criteria. does not indicate any initial condition parameters as an 

influencing factor. Upon a close inspection of the whole parameter list, the initial 

condition parameter D1, Q1 and R1 appear to have certain influence on the 7-day low 

flows but not on the criteria of log Nash and Nash. This can be explained by the 

difference between the two groups of criteria. In the case of log Nash and Nash, 

regardless of the initial conditions, there likely exists a parameter set that can 

compensate the dryness or wetness of the initial conditions and slowly mitigate the 

effect. Furthermore, the calibration period is from 1990 to 2004, while the model starts 

from 1959. Over  time, the effect of the initial conditions are likely to be dampened by 

the influence of other parameters; however if the calibration period has been closer to 

the starting time step, the influence of the initial conditions will grow. Meanwhile, the 

low flow period can occur in any time step of the simulation. Therefore, while the initial 

conditions are not the dominant factor, drier initial conditions once coupled with small 

catchment storage can lead to a lower 7-day flow than in the case of wetter initial 

conditions.  

 

6.3.4. Future Flows analysis on parameter influences 

6.3.4.1.Low flows  

In the FF climate product, the non-linear storage constant Cq of catchment 1 and 3, the 

slope of drying curve of catchment 1 and the linear storage constant Pdc of the 

catchments are among the ten most influential factors on low flow simulation (Table 

6-4).  
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Table 6-4 Sobol sensitivity indices of the 10 most influential CATCHMOD 

parameters or interactions on the low flow of the FF climate product. The low 

flow criterion is the lowest total 7-day flows in the simulation (therefore not 

related to the observed flow) not including the first simulation year. The * symbol 

indicates the interaction between the two parameters.  

Historic    2020s  2030s 2050s   

Parameters  Average 
Sobol 

Parameters  Average 
Sobol 

Parameters Average 
Sobol 

Parameters  Average 
Sobol 

Cq3  0.92  Cq1  0.78 Cq1 0.70 Cq1 0.60 

Slope1  0.87  Slope1  0.77 Cq3 0.68 Slope1 0.60 

Cq1  0.87  Cq3  0.75 Slope1 0.67 Cq3 0.59 

Pdc1  0.78  Pdc1  0.67 Pdc1 0.60 Pdc1 0.48 

Cq4  0.77  Pdc6  0.65 Pdc6 0.58 Pdc3 0.46 

Pdc6  0.77  Dp6  0.64 Pdc3 0.57 Pdc6 0.46 

Dp6  0.77  Cq5  0.63 Dp6 0.56 Cq6 0.46 

Phi2  0.77  Phi2  0.62 Phi2 0.55 Phi2 0.45 

Cq5  0.76  Phi3  0.62 Cq5 0.55 Slope6 0.44 

Phi3  0.76  Cq4  0.62 Phi3 0.55 Dp6 0.44 

 

Their ranking and sensitivity are subject to uncertainty, since the sensitivity indices 

were estimated based on the 200 samples. Yet, the dominance of parameters 

representing the lower storage zone demonstrates that under conditions projected by the 

FF climate product, base flow will still constitute a significant proportion in the river 

flows. Within the hydrological process, soil storage continues to play an important role 

in dictating flows in the dry period. There also exists a trend of declining Sobol 

sensitivity indices in these parameters. Such declining trend can either be the artefact of 

the sampling design, an indicator of the increasing importance of other parameters or 

due to the increasing influential role of rainfall and PET in restricting recharge. Since 

these are mean values of index estimation, there is not enough information for further 

assessment. Yet, this analysis indicates that recalibrating of these parameters and 

monitoring related changes in the corresponding catchment processes are needed to 
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ensure that CATCHMOD parameterisation still reflects the catchment behaviour in such 

conditions. 

 

6.3.4.2.High flows  

Table 6-5 demonstrates the results of Sobol analysis on the highest weekly flows. The 

highest flow week appear to be related to the starting conditions (Q1 denotes the initial 

input of the non-linear storage and the number after the underscore symbol is the sub 

catchment number). The combined interaction of the upper and lower soil storage still 

appears to be influential in the catchment in the future, although it was not so in the FF 

simulated 1961-1990 period. Yet, as the Sobol indices of the high flows are much lower 

than those of the low flows, they are subject to even more uncertainty and therefore not 

provide sufficient evidence for the influence of the parameters.  Nevertheless, it shows 

that the initial conditions still have certain effect on the simulation, despite the use of a 

‘warm-up’ year.  

Table 6-5 Sobol sensitivity indices of the 10 most influential CATCHMOD 

parameters or interactions on the high flows of the FF climate product. The high 

flow is the highest total 7-day flows in the simulation except for the first year. The 

* symbol indicates the interaction between the two parameters. The number after 

the name of each parameter indicates the contributing zone/catchment; for 

parameters such as Q1, the sub-catchment index will be separated by an 

underscore.  

Historic    2020s 2030s 2050s 

Parameters  Average 
Sobol 

Parameters Average 
Sobol 

Parameters Average 
Sobol 

Parameters Average 
Sobol 

Q1_3  0.41  Q1_3 0.32 Q1_3 0.31 Q1_3  0.29

Q1_2  0.34  Q1_2 0.26 Q1_2 0.25 Q1_2  0.22

Q1_5  0.27  Q1_5 0.16 Cq3*Q1_6 0.17 Q1_4*Q1_5 0.19

Q1_6  0.17  Phi2*Cq2 0.14 Phi2*Cq2 0.17 Phi2*Cq2  0.19

Q1_4  0.15  Q1_4*Q1_5 0.14 Q1_4*Q1_5 0.16 Q1_4*Q1_6 0.18

Q1_1  0.12  Cq3*Q1_6 0.13 Q1_1*Q1_5 0.16 Cq3*Q1_6 0.18
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Cq1  0.09  Q1_1*Q1_5  0.13 Q1_4*Q1_6 0.15 Q1_1*Q1_5  0.18 

Phi2  0.06  Cq2*Q1_4  0.12 Q1_5*Q1_6 0.15 Q1_5*Q1_6  0.17 

Pdc2  0.06  Q1_4*Q1_6  0.12 Cq2*Q1_4 0.14 Cq2*Q1_4  0.17 

Pdc3  0.05  Q1_5*Q1_6  0.11 Q1_5 0.13 Cq1*Q1_5  0.16 

 

6.4.CONCLUSION 

 

Overall, the chapter has assessed hydrological parameter uncertainty in relation to 

climate projections and climate product uncertainty discussed in Chapter 5. While 

several studies have shown that climate projection uncertainty is much larger than 

hydrological uncertainty, this study demonstrates that the uncertainty of using different 

climate products is even larger than the climate projection uncertainty. The analysis 

including equifinality hydrological uncertainty and climate projection uncertainty 

within different climate products shows a systematic bias amongst the flow projections 

of the products, in which RCM and FF consistently project lower flows than SCP and 

UKCP09 in all quantiles. The flow projections also show strong traces of climate 

inputs, in which the results of each climate product are relatively distinctive from those 

of others. As the hydrological parameter sets are the same for all products, these biases 

are likely to stem from the product itself. Yet, structural uncertainty is also a factor and 

as such, there is a need for future research to compare post-processing uncertainty and 

hydrological structural uncertainty.   

 

Furthermore, the study shows a correlation between meteorological drought index and 

hydrological flows, and via that correlation, the buffering role of soil storage. In 

particular, hydrological droughts are less severe than the meteorological index indicates, 

as the soil storage can still release water from previous rainfall events and mitigate the 

dryness. Subsequently, SPEI based on a longer period appears to be more responsive to 

the actual flows. Various analysis of SPEI and parameter sensitivity analysis 

demonstrates that the catchment is dominated by base flows, in that the CATCHMOD 
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parameter representing the base flow influences on both the low flow and high flow 

process. The Sobol sensitivity analysis of the historic data shows the dominant role of 

base flow not only in dry periods, when this is the main contribution of the river flows, 

but also in wetter periods when there are flows from the surface process and additional 

contribution of the upper storage. In the wetter period, the interaction of the connecting 

linear and non-linear storage also becomes important, as it represents the recharge from 

the storm. As such, in CATCHMOD hydrological modelling, the non-linear storage 

parameter Cq is important for model calibration in the low flow part and both Cq and 

Phi are important in the high flow part.  

 

The Sobol analysis on the FF simulated flows of the 1961-1990, the 2020s, the 2030s 

and the 2050s periods shows that the base flow is still a controlling factor of low flows 

in the future. Meanwhile the Sobol indices of high flows project a much weaker 

influencing power of these parameters, but indicate that initial conditions can influence 

the high flows. While this specific observation needs more research and assessment for 

a comprehensive conclusion, it shows that there is a need to analyse the converging and 

diverging pattern of acceptable model parameterisation, as well as the importance of the 

starting conditions in hydrological modelling. The converging models in the calibration 

period may diverge if models are used outside their calibration conditions; this can 

become another uncertainty in the uncertainty cascade. Chapter 7 will continue the 

cascade of uncertainty from hydrological onto the water resource scale. Since post-

processing uncertainty is still the dominant factor compared to hydrological uncertain 

and climate uncertainty, the focus will remain on this component, with the additional 

integration of water demand uncertainty and water resource model uncertainty. 
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Chapter 7. VULNERABILITY ANALYSIS USING WATER RESOURCE 

MODELS 

 

7.1.INTRODUCTION 

 

Under the pressure of population growth and climate change impacts, water resource 

vulnerability has manifested across scales and locations (Gan, 2000; Alcamo and 

Henrichs, 2002; Jain et al., 2002; Oki and Kanae, 2006). Vulnerability has been 

analysed using different indices to reflect the key aspects of the water system. At the 

global scale, Vörösmarty et al. (2000) has used the Water Balance Model (WBM) to 

show a pandemic increase of water scarcity under the 2020s projections of the Canadian 

Climate Centre general circulation model CGCM1 and Hadley Centre circulation model 

HadCM2. Vulnerability is represented by the ratio of water use/withdrawal to water 

discharge, with the 0.2-0.4 interval representing medium to high stress and the above-

0.4 open interval representing severe stress. Similarly, Arnell (1999a) used the same 

index with an additional category of 0.1-0.2 representing low vulnerability of global 

water resources. Using these indices, he showed an increasing risk of global water stress 

from the 2020s to the 2030s under both HadCM2 and HadCM3 climate projections. 

Yet, the results for the 2050s were inconsistent between the two models: water stress 

would be reduced under the HadCM2 projections but increase under the HadCM3 

projections (Arnell, 1999a). Other studies define vulnerability as the likely magnitude 

of failure, in essence followed the definition by Hashimoto et al. (1982b), to 

demonstrate the increasing vulnerability of water resources to droughts. Fowler et al. 

(2003) used the maximum supply-demand deficit as the criterion of failure to show that 

water resources in Yorkshire, England would likely be vulnerable to severe drought 

events by 2080. Lopez et al. (2009a), likewise, looked at the fraction of supply failures 
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within two climate ensembles to analyse climate change impacts on water resource 

management in south west England.   

 

Vulnerability analysis is vital in efficient adaptation, particularly under the deep 

uncertainty of climate change impacts. As briefly outlined in Chapter 1 and discussed in 

Chapter 3, vulnerability is a key concept in both the ‘top-down’ and ‘bottom-up’ 

approach in climate impact assessments. Its roles and definitions also highlight the 

ideological dichotomy between these approaches. To the ‘top-down’ cascade of climate 

impacts, vulnerability is the undesirable system states due to climate change impacts, 

and therefore is the end point of the assessment. On the contrary, ‘bottom-up’ 

vulnerability is the inherent system constraints that restrict climate adaptation, and 

subsequently the starting point of the assessment. Vulnerability is defined by Kelly and 

Adger (2000) as “the capacity of individuals and social groups to respond to, that is, to 

cope with, recover from or adapt to, any external stress”. As such, vulnerability is also 

closely aligned to the coping capacity and adaptation needs of a system. Yet, a final 

adaptation decision may also require trade-offs amongst vulnerability, reliability and 

resilience (Moy et al., 1986). Furthermore, such vulnerability and adaptation assessment 

should not stop at climate risks, as the final risks are influenced by other processes 

(Dessai et al., 2009), the decision context (Adger et al., 2007) and the modelling choices 

(Wilby, 2005). Even with accurate climate information, its cascade impacts on river 

flows and socio-economic responses will further generate deep uncertainty that requires 

robust decision making (Dessai et al., 2009).  

 

The previous chapters have considered uncertainty from post-processing of the climate 

products and alternative parameterisation of hydrological models. This chapter 

continues that cascade of uncertainty onto the water resource scale. The main 

uncertainty component to be considered in this chapter is water resource model and 

demand uncertainty. In particular, hydrological flows from the different climate product 

are fed into two water resource models to analyse the vulnerability of the study area 
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under alternative climate and socio-economic scenarios. The main aim of the chapter is 

to determine potential supply deficit in the study area if no adaptation is made. Section 

7.2 will describe the methodology used in the vulnerability assessment, including the 

incorporation of the uncertainty factors and the water resource models. Section 7.3 

presents the results and a discussion of the results. Section 7.4 then summarises the key 

vulnerabilities of the Sussex water resource system and the influence of the uncertainty 

factors on adaptation needs. 

 

7.2.METHODOLOGY 

 

7.2.1. The scenarios 

As a methodology for decision making under deep uncertainty, a key attribute of robust 

decision making is vulnerability assessment under a wide range of scenarios (Groves et 

al., 2008; Lempert and Groves, 2010). Scenarios are highly useful to inform decision 

making under uncertainty since they could provide multiple descriptions of potential 

future conditions under a wide range of socio-economic and biophysical factors (Parson 

et al., 2007; Weaver et al., 2013). The scenario approach includes the normative 

scenario approaches (back casting), which explore the drivers to alternative future 

states, and the exploratory scenario approaches, which construct alternative plausible 

representations of the future to test robust strategies (Berkhout et al., 2002). The 

terminologies concerning scenarios in the study follow the exploratory approaches, in 

particular that of Downing et al. (2003), which defines scenarios as “plausible, 

internally consistent descriptions on possible futures”. Scenarios can further be 

categorised into main uncertainty or influencing factors, such as climate scenarios and 

socio-economic scenarios. Downing et al. (2003) also used “climate scenarios” for 

probable future climatic conditions and “socio-economic scenarios” for social, 

economic and political futures. The scenarios for this study combine climate uncertainty 

from four different climate products over the time periods of 2020s, 2030s and 2050s. 

Furthermore, the study considers other potential water demand changes due to the 
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demographic and socio-economic trends. Therefore, the final scenarios considered in 

this study are integrated scenarios that consider risks from impacts of climate change 

and socio-economic shifts.  

 

7.2.2. Climate scenarios 

In this study, the climate scenarios use flow data from the four climate products 

described in Chapter 5. The flow data were generated from the hydrological model 

CATCHMOD using rainfall and PET inputs from the climate products. As Chapter 6 

has demonstrated that hydrological uncertainty is much smaller than the uncertainty 

generated by different climate products, this chapter uses flow data from one set of 

CATCHMOD parameterisations. This parameterisation was used by Atkins Ltd. in the 

2009 Water Resource Plan of Southern Water, the managing water company of the 

study area.  

  

7.2.3. Socio-economic scenarios 

Demand projection in the 2020s and the 2030s were based on Southern Water’s 

projection for the 2009 Water Resource Management Plan. In this Plan, Southern Water 

extrapolates average and peak demand from 2009-2034, thus covering part of the 2020s 

and 2030s periods (Southern Water, 2009). The average dry year demand in 2024 and 

2034 was selected to act as a representative demand for the 2020s and the 2030s, 

particularly during dry period. Demand projections were based on both historic data and 

projections provided by the water company and the Environment Agency for England 

and Wales.  

 

Aside from these demographic-based projections, the Foresight Scenarios by the 

Environment Agency (Berkhout and Hertin, 2002; Science and Technology Policy 

Research, 2002) also provide a more general assessment of societal trend, including 

water demand, in the future. These scenarios describe alternative socio-economic states 

of the future society based on the spectrum of consumers and policy-makers choices 
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(Figure 7.1). The early Foresight scenarios (Berkhout and Hertin, 2002) were termed 

the World Markets, Global Responsibility, Local Stewardship and National Enterprise. 

These scenarios describe the influences of individualistic versus socially responsible 

behaviour (horizontal axis) and inter-connected versus locally autonomous governance 

(vertical axis). Within the Foresight 2020s, the Snapshot 2010 provided some estimates 

on GDP growth, economic activity and primary energy consumption. However, in these 

early scenarios, there was no direct reference to water demand and consumption.  

 

Based on this initial scenario setting, the EA further published another report on levels 

and structure of water demand (Environment Agency, 2001). The Climate Change and 

Demand for Water (CCDEW) report (Downing et al., 2003) also used these Foresight 

Scenarios in combination with UKCP02 data to project water demand under different 

emission scenarios. The four original scenarios were then modified into the four 

demand scenarios: alpha, beta, gamma and delta, which correspond to Provincial 

(National) Enterprise, World Markets, Global Sustainability and Local Stewardship 

(Downing et al., 2003). These different socio-economic states will lead to different 

water consumption trends, with the per capita consumption jumping by approximate 

1.5% during the transition from 2020s to 2050s under an alpha and beta Medium-High 

emission scenario and by 0.5% under a gamma/delta Medium-High emission scenario. 

This report also suggested that climate change impacts will increase agriculture and 

horticulture water demand by around 25-50%. These are significant rises, considering 

that water demand is also influenced by population growth and demographic changes. 

For the region of the study area, that impact lies from 23% in the 2020s Low Emission 

Scenario, 25% in the 2020s Medium-High Scenario to 42% and 49% increase in the 

2050s Medium-High and the 2050s High Emission Scenario. 
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Figure 7.1 Four UK Future Scenarios for 2020s. Source: Science and Technology 
Policy Research (2002)  

 

These storylines were further revisited and modified in the EA Scenarios for the 2030s 

and the 2050s. While the consumer attitude spectrum was slightly modified to reflect 

more closely the varying degrees of sustainability awareness, the governance axis was 

phrased explicitly into sustainability versus short-term socio-economic concerns instead 

of local versus globalised governance such as in the previous version. These scenarios, 

however, did not come with any assessment on water demand trends, all four scenarios 

share the same assumption of average per-capita water consumption of 153 l/d/capita 

and the different water consumption patterns in each scenario were described 

qualitatively. Figure 7.2 presents this version of the four 2030s Future Scenarios in a 

similar position to the 2020s scenarios. The 2030s scenarios appear to partially correlate 

to the SRES and the Foresight set (Burdett et al., 2006), in particular A1.-

Jeopardy/Alchemy-World Markets; A2-Local Stewardship-Survivor; B1-

Restoration/Alchemy-Global Sustainability; and B2-Local Stewardship-

Survivor/Alchemy.  
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Figure 7.2 The 2030s four EA scenarios. Source: Burdett et al. (2006)  

Finally, the newer Environment Agency projects demonstrate demand shifts for the 

2050s under four scenarios, termed Sustainable Behaviour, Innovation, Local Resilience 

and Market Forces. Each of these scenarios reflects a different mode of governance and 

consumption (Environment Agency, 2008) (Figure 7.3). In essence, the projected 

change is as follows: 

 Innovation (I): Total Demand reduces by 4%, water per capita consumption 

(pcc) 125 l/d/capita. The responsibility to find adaptation strategies lies with the 

government and scientist; demand reduction is due to sustainability-led 

governance and technological innovation. 

 Market Forces (MF): Total Demand increases by 35%, pcc 165 l/d/capita. 

Water demand is driven by the market trend, focusing on cost optimisation and 

growth. 

 Local Resilience (LR): Total Demand increases by 8%; pcc is 140 l/d/capita. 

People realise the need for demand reduction and take actions towards it. Their 
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efforts, however, are moderate due to the low priority of demand saving and the 

lack of incentives from the government. 

 Sustainable Behaviour (SB): Total Demand declines by 15% due to pro-active 

demand reduction from individuals; pcc is 110 l/d/capita.   

          

  

 

Figure 7.3 The four demand scenarios of the Environment Agency in England and 
Wales, modified after Environment Agency (2008)  

 

Based on the EA 2050s projections, this study uses the projected annual demand by 

Southern Water to estimate the demand under the four 2050s socio-economic scenarios. 

Figure 7.4 depicts the baseline weekly demand profile and the headroom demand 

profile of the 2020s and Figure 7.5 shows the projections of mean weekly demand from 

the 2007 to the 2020s, the 2030s and different socio-economic scenarios of the 2050s. 

The projected annual demand in 2007-2034 was prepared by Southern Water based on 

several assumptions on future population growth, household number, metering 

proportion, metering effect and per capita water consumption. According to 
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Environment Agency (2008), the 2007 annual demand was used as a baseline to 

produce the four 2050s demand profiles under the corresponding socio-economic 

scenarios. In Southern Water resource management plan, the daily pattern of the 

demand profile was based on the estimated 1995 daily water demand. Water demand of 

subsequent years was linearly scaled by the ratio of the projected annual demand and 

the 1995 annual demand. Therefore, the same 1995 daily demand profile was linearly 

scaled to produce the 2020s, 2030s and four 2050s weekly demand profiles. For water 

supply, the peak season is often from late April to early September; on a weekly scale, 

this corresponds to week 17 to week 36. Water demand often rises within this period, as 

illustrated by Figure 7.4.  

 

 

Figure 7.4 Weekly Demand Profile of Sussex water resource system in the 2020s 
based on 1995 demand data from Southern Water 
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Figure 7.5 Weekly Demand of the Sussex water resource system from 2007 to 2050s 

 

 

7.2.4. Water resource models 

7.2.4.1.The reference model 

The reference model in this study is the water resource model used by the water 

company and their planning consultancy. It uses Aquator, a water resource software 

application by Oxford Scientific Software Ltd. This model was constructed by Atkins 

Ltd. for Southern Water’s Water Resource Management Plan 2009 and other 

forthcoming planning reports. The Aquator model represents the system in various 

demand and supply nodes, with the River Rother as a supply node and the Weirwood 

Reservoir as a reservoir node. Major supply sources include other groundwater nodes 

and a transfer agreement of 15 Ml/day from Portsmouth Water to Sussex North. The 

model displays the water planning system to a high resolution and has the transfer link 

from Sussex North to Sussex Worthing. In this model, Weirwood has to supply a fixed 
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amount to South East Water before it can input water into other sources. Network 

analysis also shows that Weirwood can only input water into two nodes, the rest of the 

region being supplied by other sources. The demand profile used in the Aquator model 

was constructed by Atkins based on the same 1995 regional demand profile; water 

demand at individual nodes can vary slightly but overall sum up to the total regional 

demand profile on a daily scale. For a schematic of the model, please refer to Appendix 

A. 

 

7.2.4.2.The VB.NET Simulation Model 

This model was coded in VB.NET based on an Excel-based model by Wade (2005). 

Model parameters include the supply and demand capacity/profile of each node, the 

transfer capacity of each link, reservoir storage, reservoir operational curve and 

reservoir pumping capacity. The model consists of the River Rother, Weirwood, 

Hardham groundwater, other groundwater sources and transfer to and from other water 

companies (South East Water and Portsmouth Water). The model can use time series 

for groundwater sources and demand profile. All the demand nodes in each water 

resource zone were congregated into one to two regional demand nodes (Figure 7.6). 

These regional demands were constructed by summing the relevant individual demand 

profiles of the AQUATOR. Like the AQUATOR model, the groundwater nodes are 

subject to daily and annual licenses. This model simplifies the AQUATOR model to the 

scale of water resource zones, with each zone consisting of major proxy nodes instead 

of individual AQUATOR nodes. In particular, the Sussex North supply still includes the 

supply nods of Portsmouth, Hardham Groundwater, River Rother and Weirwood 

Reservoir. The link constraint representing the treatment capacity of the Hardham 

Water Supply Work (WSW) is included in the model; other transfer constrains within 

smaller demand nodes, however, does not present since these nodes have been 

aggregated into a single node. The supply from the Weirwood Reservoir is restricted by 

its pumping capacity of 21.8 Ml/day. Overall the demand for the Sussex North area is 

represented by the Sussex Demand node, the transfer agreement from Weirwood 

Reservoir is represented by the South East Water Transfer node. Similarly, the 



Page 161 
 

 

 

Worthing and the Brighton area were constructed as single supply-single demand zones. 

For a brief description of the model, please refer to Appendix A.  

 

 

 

Figure 7.6 Schematic of the Sussex Simulation Model 

 

7.2.4.3.The GAMS Optimisation Model 

This model was coded in Generalised Algebraic Modelling Software (GAMS) based on 

a summary note on the Aquator model. The model simplifies the Aquator model but 

retains more details than the Simulation Model. Compared to the Simulation Model, the 

Optimisation Model has more detailed modelling of the water flows, including the 

transfer capacity in each link. The model can run in two modes: one based on the 

Aspiration–Reservation Based Decision Support (Makowski, 1994) and the hierarchical 

Ranked Optimisation (Rodrigues et al., 2002). The first one focuses on satisficing 

solutions that are within the acceptable zone of criteria values; the latter is sequential 

optimisation from the most important criteria to the least important criteria. After 
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consultation with Southern Water, the decision makers indicated that they would be 

interested in the latter methodology since Southern Water has a clear hierarchy of 

criteria. In essence they have to comply with the environmental flow requirements and 

thus minimising the environmental deficit is the first priority. Then the system has to 

accommodate the water demand in Sussex. Finally amongst the candidate solutions that 

can minimise environmental and supply demand deficit, the third priority is to select 

one with the least cost. 

 

As such, each scenario requires three model runs. For each scenario, the model first 

minimises total deficits in environmental flows; it then minimises the supply deficits 

while maintaining environmental deficit at that minimum level. Finally, for each Ml 

extracted from these sources, a corresponding cost will be added to the pumping cost 

(refer to Table 7-1). The model minimises the operational cost, which includes the 

pumping cost from sources and option-related capital and operation costs if any strategy 

is implemented. In this chapter, as there is no option implemented in the water system, 

the operational cost consists solely of the supplying cost. 

  

Table 7-1 Supply cost of source nodes in the Sussex Optimisation Model 

Source Nodes  Cost 

(£/ Ml) 

Groundwater  50 

HardhamGW     81 

Portsmouth transfer     250 

Rother  River        45 

Weirwood      80 

 

These costs were based on model specification of the Aquator model, with slight 

alteration to reflect the supplying priority of the source nodes. As can be seen in Figure 

7.7, compared to the Simulation Model, the Optimisation Model has a more detailed 

network configuration. In this model, the Sussex demand is represented by the nodes of 
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Upper Valley Demand, Sussex 2, Sussex 3, Turners Hill and Buchan Hill. In this model 

and the Aquator model, the Weirwood Reservoir can only supply for a part of the 

network instead of the whole Sussex Demand as in the Simulation Model. For model 

formulation and schematic, refer to Appendix A. 

 

 

 

 

 

Figure 7.7 Schematic of the Sussex Optimisation Model 

 

7.2.4.4.Comparison of the three models 

Table 7-2 presents the main differences of the three models. The Aquator model is the 

most complex model but also has long run time. On the other hand, the simulation 

model and the optimisation model have shorter run time due to their simplified network 

version and less visual interface of the Aquator model. In this chapter, the vulnerability 

of the study area to droughts was analysed via the simulation and the optimisation 
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models. The Aquator has a detailed network structure, with transferring constraints 

existing on many links, particularly in the Sussex Worthing and Sussex Brighton area. 

Meanwhile, the optimisation model and the simulation model implement transferring 

constraints at the regional level, such as on the link between Sussex North and Sussex 

Worthing. Additionally, the optimisation retains more details of the Sussex North and 

Sussex Brighton than the simulation model. Yet, the optimisation model runs on a 

weekly time step while the AQUATOR model and the simulation model use a daily 

time step. Model uncertainty due to different model structures and algorithms was 

analysed using an 1888-2005 reference input data. The input data for the future climate 

contain the full set (11 members) RCM, FF and SCP and a sampled set of UKCP09 

(100 for the optimisation model and 1000 for the simulation model) in each time period 

2020s, 2030s and 2050s. 

 

Table 7-2 Comparison of the three water resource models 

 Aquator Simulation Model Optimisation Model 

Software 
description 

i) Commercial software 
used by water companies 
and other consultancy 
companies in water 
resource planning; 
modelled by Atkins Ltd. 

ii) Has a Guided User 
Interface (GUI) 

i)VB.NET program 
coded by Lan Hoang 
based on Wade (2009) 

 

 

ii) Has a simple GUI, 
very little visualisation 

i) GAMS program coded 
by Lan Hoang based on 
the Aquator Sussex 
model 

ii) Can be used for other 
model network by 
changing input files 

iii) No GUI, linked to a 
Python visualisation tool 

Timescale Daily Daily Weekly 

Spatial scale Include North Sussex, 
Sussex Worthing and 
Sussex Brighton 

Include North Sussex, 
Sussex Worthing and 
Sussex Brighton 

Include North Sussex, 
Sussex Worthing and 
Sussex Brighton 

Spatial 
Resolution 

Individual supply and 
demand nodes within each 
region 

Regional demands Simplified nodes from 
Aquator network 

Calculation Mode Optimisation/Simulation Simulation Optimisation 

Annual 
Groundwater 
Licenses 

Yes-individual nodes Yes-regional nodes Yes-regional nodes but 
finer scale than those of 
the Simulation Model 

Reservoir Control 
Curve 

Yes-partially implemented No Year- can be partially or 
fully implemented 
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Demand Profile Modified 1995 Regional 
Demand Profile 
downscaled to the node 
level 

Modified 1995 Regional 
Demand Profile at the 
water resource zone level 

Modified 1995 Regional 
Demand Profile at the 
sub-water resource zone 
level 

Running time ~30 minutes per run ~15s per run ~2 minutes per run 

 

7.3.RESULTS AND DISCUSSION 

 

7.3.1. Comparison of the simulation and the optimisation model against the 

reference model 

This section compares the performance of the two models based on the Aquator 

simulation of the Weirwood Reservoir from 1888-2005. The simulation model performs 

reasonably well compared to the original Aquator model (using Weirwood as an 

indicator). Spearman coefficient of Weirwood storage between the updated model and 

Aquator is 0.89; Pearson coefficient is 0.84 (see Figure 7.8).  

 

Figure 7.8 Simulated Weirwood reservoir state from 1888 to 2005 

 

Both Aquator and the simulation model could reproduce the low reservoir state of the 

1921/1922 and the 1975/1976 droughts, the two most serious events in the study area. 

For other less severe events, the simulation model tends to empty the reservoir less than 
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the Aquator model. This feature is maybe due to the network resolution of the two 

models: Aquator has more transfer constraints and may have to rely on Weirwood to 

supply the Buchan Hill and Turner Hill nodes; meanwhile, the simulation model omits 

some link capacity hence in many cases can draw water from constrained River Rother 

and groundwater nodes to support these demand nodes. Overall, the simulation model 

indicated that the 1921/1922 drought was the most extreme event of the 1888-2005 time 

series and the 1975/1976 drought was the most severe event of the 1961-1990 sequence. 

 

Meanwhile, the optimisation model-under a no reservoir control limit mode-shows 

more utilization of Weirwood Reservoir than the Aquator model (Figure 7.9). While the 

reservoir was emptied to the dead storage capacity only once in Aquator (during the 

1921/1922 drought), Weirwood was emptied much more frequently for other minor 

droughts in the optimisation model. This is because the optimisation model optimises 

the reservoir state based on the whole 1888-2005 sequence, and thus in many cases does 

not use all the available inflows to fill the reservoir. It instead only route sufficient 

inflows to supply other nodes during the whole time period. Meanwhile, the Aquator 

model tends to fill the reservoir back to its capacity using all available inflows. 

 

Figure 7.9 Comparison plot of Aquator versus the Optimisation model without 

Weirwood Reservoir Control Curve 
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The model specification note of the Aquator model stated that this model uses a 

Reservoir Control Curve-a monthly limit on the lowest possible reservoir storage. This 

is termed the Assess Management Plan 4 (corresponding to the 2009 Water Resource 

Plan) Control Curve, as the new Drought Plan has specified other trigger curves- not to 

control the actual level of the reservoir but as a drought trigger. The model, however, 

does not directly implement this condition. It instead mimics hosepipe bans, which 

reduce water demand, every time the Rother flows are below the 90th percentile of the 

Rother curve (the mean daily flows during the 1961-1990 period), therefore reduces 

demand pressure on Weirwood. The Optimisation model meanwhile can directly state 

the minimum allowed level of the reservoir, and thus maintain the level above the 

control curve (Figure 7.10). It can be seen that under this condition, the model does not 

allow emptying of the reservoir, even in the severe situations of the 1921/1922 and the 

1975/1976 droughts. 

 

Figure 7.10 Aquator versus the Optimisation Model with an all-time implementation 

of the control curve 

 

Comparing the minimum stage of Weirwood reservoir with the stated Aquator control 

curve shows that reservoir stage does fall below the control curve level (Figure 7.11). 
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This indicates that the control curve was not implemented or lifted in certain flow 

conditions. 

 

 

Figure 7.11 Comparison of the stated Aquator AMP4 control curve versus the actual 

minimum reservoir state in the run 

 

However, if the control curve is only applied during the Rother flows are higher than 

the Recession curve, the Weirwood time series of the optimisation model become much 

closer to those of the Aquator model, in particular during the 1921/1922 drought. The 

optimisation model still exhibits a slight tendency to not take the full inflows; however 

this tendency is much less prominent compared to the previous cases (Figure 7.12). 
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Figure 7.12 Comparison of Aquator versus the optimisation model if the control 

curve is only applied during high flows 

 

Overall, the three models show structural uncertainty by using different algorithms and 

optimisation/simulation mode. These differences can contribute to the different supply 

deficit in each model (Table 7-3). A contributing factor is the network specification of 

each model, as Aquator is constrained on transfer capacity and has to rely on Weirwood 

in certain nodes; meanwhile, the simulation model and the optimisation model have a 

more relaxed constraint and therefore can be less dependent on Weirwood. The 

application of the control curve in each model also creates a slight discrepancy. 

Nevertheless, the control curve was left in the optimisation model as planning was done 

in prescriptive mode and the control curve would help preserve reservoir storage. 

 

Table 7-3 Contributing factors to the reduction and increase of supply deficit in each 
model 

 Simulation Model Optimisation Model 

Factors reducing deficits Assumption of total system 
connectivity 

No reservoir control curve so 
can empty out reservoir to 

abate supply deficits 

Optimisation mode 

Reservoir storage  and annual 
groundwater licenses can be 
optimised with regard to the 

inflows and demand time 
series 
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 Coarse time step 

Factors increasing deficits Simulation mode 

Daily time step-can be subject 
to severe shortage at a daily 

time scale 

Constraints on link capacity 

Reservoir control curve can 
prevent water release 

 

The optimisation and the simulation model were then used to further analyse the 

vulnerability under changing climate and water demand, according to the four climate 

products. The Aquator model was not used due to its time and computational 

requirements. Results from the optimisation and the simulation model were then 

compared to indicate any possible structure uncertainty and the range of climate and 

demand risks to the study area. 

 

7.3.2. Simulation model results 

The simulation model confirms that the water system is sensitive to drought conditions 

of the 1975-1976 and 1921-1922. If tested against the whole time series from 1888-

2005, the drought period that brought the worst supply deficit were the 1921-1922 

period. Otherwise, for a shortened time series of 1961 onwards, the 1975-1976 was the 

most serious drought. Model results using the four climate products again confirm the 

high level of uncertainty on possible impacts (Figure 7.13). In essence, the RCM and FF 

time series pose a higher risk of supply deficit than the SCP and the UKCP09 groups. 

While being significantly drier than the FF group in terms of rainfall (refer to Chapter 

5), the RCM time series create a similar risk level to FF. The UKCP09 product, due to 

its wide range Bayesian probabilistic scenarios, projects a wide range of possible deficit 

prospects but not to the risk level of the FF and the RCM groups.  
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Figure 7.13 Average annual supply deficit in Sussex North, Sussex Worthing and 

Sussex Brighton in the 2020s, 2030s and the 2050s time period according to different 

climate products. The dots represent the deficit in each ensemble member/scenario of 

each climate product. The box plots at the background were provided for reference of 

the median and other statistics.  

 

The alternative demand profiles representing different societal states, however, produce 

uncertainty of similar magnitude to climate post-processing uncertainty. Amongst these 

demand scenarios, only the most sustainability-oriented scenario could lower supply 

deficit from the 2020s/2030s level. The sustainability-led governance and 

individualistic consumption, Innovation, meanwhile appears to be a neutral scenario 

compared to the 2020s and 2030s period. Without sustainability-oriented governance, 

even if each individual exhibits environmental awareness and behaves responsibly, the 

water system still becomes less sustainable due to the overall demand increases (the 

Local Resilience scenario). Finally, the most extreme scenario in which both individual 

consumers and policy makers do not care for sustainability poses a significantly high 

risk of system failures. In this socio-demographic scenario, even under the mildest 

climate change prospect (projected by the SCP group), the system will experience high 

supply deficit. Once the society is at the Market Forces state, climate impacts appear to 

be much less influential compared to the demand impacts (which is a 35% demand 

increase from the 2007 baseline). This threshold of demand increase therefore is likely 
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to represent a demand failing threshold of the system, in which the current Sussex 

system fails regardless of the supplying capacity. 

 

Figure 7.14 further shows the spread in failure frequency (how many days of failure 

occurrence) and time span along the time periods (the number of years in which failure 

occurs- such as a scenario may have 200 failures concentrating in one severe drought 

year but another scenario may have 200 failures spreading over 10 years). Note that the 

points are frequently overlapped. Each point in this graph represents a member of the 

climate product, such as a run in the RCM ensembles or a scenario of the UKCP09 

group. Overall the RCM group demonstrates high risks of failure that spreads over the 

whole 30-year time period. The graph also shows a structural difference in risk 

projection between the time series projection-based RCM/FF group and the modified-

observation based SCP and UKCP09. In particular, the RCM and FF group project 

future time series that are unlike the observed 1961-1990 sequence; meanwhile, the 

UKCP09 and the SCP used the Change Factor method (refer to Chapter 5) to produce 

future projections from the observed 1961-1990. The drought type contained in the 

UKCP09 and SCP group is therefore modified drought risks of the Baseline period, in 

which the 1976 was the most significant drought. The results as such indicate that the 

water system was well insured against the 1976-drought type, which was probably due 

to the current practice of using the worst historic drought as the design event in water 

resource and drought planning. Yet, the results also indicate that the system is not 

immune to deficit risks due to demand growth, specifically under the Market Forces 

scenario. Again, if demand jumps by 25% from the 2007 level, supply deficit will be 

ubiquitous in the 2050s, presenting in every single year of the time series at a 60% daily 

occurrence risk level. 
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Figure 7.14 (Clockwise 
from top left) 

% failure frequency 

versus time span of 

supply deficit 

a) 2020s 

b) 2030s 

c) 2050s 

 

7.3.3. Optimisation Model Results 

Similar to the simulation model, the optimisation model demonstrates deep uncertainty 

of climate products and the socio-demographic scenarios, in that water supply deficits 

vary across the climate scenarios and climate products (Figure 7.15). Since the 

optimisation model could change reservoir supply and groundwater abstractions based 

on the different levels of water demand, the impacts of different demand uncertainty 

from the socio-economic scenarios are less noticeable than in the case of the simulation 

model. Aside from the Market Forces scenario, the Local Resilience scenario still poses 

a slightly higher deficit risk compared to the Innovation and the Sustainable Behaviour 

scenarios. The optimisation mode also shows that optimal operation based on the 

available supply can alleviate supply deficit. In practice, this is not achievable since 

RCM FF

SCP UKCP09

0

5

10

15

0

5

10

15

0 5 10 15 20 0 5 10 15 20
Time spread of Supply Decifit Occurence (Years)

%
 F

re
qu

e
n
cy

 o
f 

 S
u
p
p
ly

 D
e
fic

it 
O

cc
u
rr

en
ce

 in
 2

0
20

s RCM FF

SCP UKCP09

0

5

10

15

0

5

10

15

0 5 10 15 20 0 5 10 15 20
Time spread of Supply Decifit Occurence (Years)

%
 F

re
q

u
e

n
cy

 o
f 

 S
u

p
p

ly
 D

e
fic

it 
O

cc
u

rr
e

n
ce

 in
 2

0
3

0
s

RCM FF

SCP UKCP09

0

20

40

60

0

20

40

60

0 10 20 30 0 10 20 30
Time spread of Supply Decifit Occurence (Years)

%
 F

re
qu

e
nc

y 
of

 
 S

up
p
ly

 D
e
fic

it 
O

cc
u
rr

e
nc

e
 in

 2
05

0
s

Demand Profiles

Innovation

Market Forces

Local Resilience

Sustainable Behaviour

a) b)

c) 



Page 174 
 

 

 

such operation requires perfect information and prior knowledge of the future climate 

conditions. Nevertheless, the Market Forces scenario is still the failure threshold of the 

system, in which the system fails in every 2050s climate conditions. In terms of 

environmental flows in the River Rother (Figure 7.16a), except for the RCM group, the 

river flows may frequently fall below the current minimum environmental flows, 

reflecting drier river states and the reducing supply capacity of the Rother to the Sussex 

water supply system. The supplying cost (Figure 7.16b) is mainly driven by the supply 

cost of sources; despite the slight variation in cost of alternative sources, the overall cost 

is mostly influenced by the water demand level and remains relatively stable across the 

climate products. 

 

 

Figure 7.15 Sussex supply deficit over time periods 
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Figure 7.16 Sussex environmental deficits (7.16a) and pumping cost (7.16b) over 

time periods 

 

7.3.4. Vulnerable areas 

This section analyses the particular location of deficit occurrence according to the 

optimisation model. The simulation model only represents demand nodes at the 

resource zone level and therefore cannot indicate the specific location of the deficit. 

Overall, within the 2020s and the 2030s, deficit only occurs in the Sussex North area 

(Figure 7.17 and Figure 7.18). Asides from the inter-company transfer to South East 

Water and the environmental flow deficits in Rother and Weirwood, deficit in other 

nodes appear to be negligible. The graphs also show the heterogeneous distribution of 

risks on the network according to the different climate products. Overall, RCM and FF 

climate conditions will lead to more severe deficits while the SCP group rarely leads to 

any deficit or system failures. However, in Buchant Hills, Sussex2 and Sussex 3, the 

risks across the climate product are similar, while in Bury, the risk by RCM conditions 

is higher than the FF and UKCP09 conditions. Furthermore, while the RCM and the FF 

group only contain 11 ensemble members while the UKCP09 sample contain 100 

members, the RCM and the FF group project a wide range of deficit impacts that is 

comparable to that of the UKCP09 group.  
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Figure 7.17 Deficit locations in the 2020s 

Figure 7.18 Deficit locations in the 2030s 

 

The socio-demographic scenarios of the 2050s show further impacts to the study area 

under different demand profile (Figure 7.19 to Figure 7.22). Again the deficit mainly 

occurs in the Sussex North area, as the Sussex Worthing and Brighton area are more 

reliant on groundwater, and in this model, are less likely to be affected by changes in 

surface water supply from the River Rother and the River Medway (Weirwood 

reservoir).  
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Figure 7.19 Deficit locations in the 2050s Innovation scenario 

 

The Market Forces scenario, however, shows that with extreme water demand, the 
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Worthing area (represented by the WorthingDem node) could experience water deficit 

under all climate conditions. Network analysis further demonstrates that under such 

situation, the nodes with fewer accesses to alternative supplying sources are likely to 

fail. In the case of the Market Forces scenario, each region of the study area could also 

become highly localized in its supply, as there is little spare capacity to transfer water to 
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Worthing area will become less necessary.  
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Figure 7.20 Deficit locations in the 2050s Market Forces scenario 

Figure 7.21 Deficit locations in the 2050s Local Resilience scenario 
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Figure 7.22 Deficit locations in the 2050s Sustainable Behaviour scenario 

 

7.3.5. Most severe droughts in each climate product 

This section examines the main drought sequences that create significant deficits in 

each climate product. In essence, for each time period and demand profile, the worst 

drought year of each model ensemble/climate scenario is congregated into a list of 

unique drought years. For the RCM and FF group, these are the actual years in the time 

series sequence. For the UKCP09 and the SCP group, as the time series is the modified 
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RCM and the FF group include different drought years, while the SCP and the UKCP09 

product mostly test the supply system against variations of the 1976 and the 1988/1989 

droughts (for similar tables of Worthing and Brighton, refer to Appendix C). As such, 

since Sussex water resource system faces a less varying pattern of droughts under the 

UKCP09 and the SCP  products. This is explained by the data format of the climate 

products and also partially explains why despite containing a wider range of changes 

(100/1000 scenarios) than the RCM and the FF group, the Sussex system performs more 
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Therefore, varying time series like the RCM and the FF group appears to be useful to 
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test system performance under different types and sequences of droughts. It was further 

noted that while FF is a downscaled product of the RCM, it seems to retain the drought 

patterns of RCM, with the most severe drought years of the RCM group also largely 

constituting the severe drought list of the FF group. 

Table 7-4 Sussex drought year-Optimisation Model 

Period Demand 
Profile 

RCM FF SCP UKCP09 

2020s Southern 
Water 

Base case 

2010,2012,2013,2014, 
2015,2025,2027,2031 
 

2011,2012,2026,2031, 
2032,2034,2035,2036, 
2037 

1988 
 
 

1976,1988, 
1989,1990 
 

2030s Southern 
Water 

Base case 

2021,2022,2025,2028, 
2032,2033,2040,2044, 
2046 

2023,2026,2031,2032, 
2035,2036,2037,2045, 
2049 

1988 
 
 

1976,1988, 
1989 
 

2050s Innovation 2040,2041,2042,2044, 
2057,2060,2065,2068, 
2069 

2044,2051,2054,2055, 
2057,2058,2059,2066, 
2067 

1988,1989 
 
 

1976,1988, 
1989 
 

2050s Market 
Forces 

2041,2044,2047,2049, 
2057,2058,2067,2068, 
2069 

2044,2055,2056,2058, 
2065,2067,2068 
 

1976,1989 
 
 

1976 
 
 

 

2050s Local 
Resilience 

2040,2043,2044,2057, 
2060,2064,2065,2066, 
2068,2069 

2044,2051,2055,2057, 
2058,2059,2066,2067, 
2068 

1976,1988 
 
 

1968,1976, 
1987,1988, 
1989 

2050s Sustainable 
Behaviour 

2040,2041,2042,2051, 
2053,2057,2065,2067, 
2069 

2040,2044,2045,2051, 
2054,2055,2058,2059, 
2066,2067 

1988,1989 
 
 

1971,1973, 
1975,1988, 
1989 

 

Table 7-5 Sussex drought year-Simulation Model 

Period Demand 
Profile 

RCM FF SCP UKCP09 

2020s Southern 
Water 

Base case 

2012,2021,2026,2031, 

2033,2034 

2012,2018,2026,2031, 

2032,2035,2036,2037 

1976 1976 

2030s Southern 
Water 

Base case 

2025,2026,2031,2033, 

2034,2048 

2026,2031,2032,2035, 

2037,2040,2044,2045, 

2046,2049 

1976 1976 

2050s Innovation 2050,2055,2057,2058, 

2060,2062,2066,2067 

2044,2049,2052,2054, 

2058,2065,2066,2067 

1976 1976 

2050s Market 
Forces 

2040,2044,2045,2047, 

2057,2058,2061,2066 

2044,2045,2051,2055, 

2058,2066,2067,2068 

1976 1976,1989 

2050s Local 
Resilience 

2040,2041,2058,2062, 

2066,2067 

2044,2045,2051,2055, 

2056,2058,2066,2067 

1976 1976 
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2050s Sustainable 
Behaviour 

2042,2044,2045,2066 2044,2052,2054,2058, 

2065,2066,2067 

NA 1976 

 

The drought year tables further show that the Sussex North area is largely influenced by 

surface water droughts, in particularly the varying inflows of the River Rother. The 

Brighton and the Worthing area appear to be more insulated to the surface drought 

risks, due to their groundwater-dependence. It is not within the scope of this study to 

consider groundwater droughts; however, given the Chalk geology of the area, it is 

highly likely that the groundwater supply will also be affected by diminishing inflows. 

Therefore, the actual drought and supply deficit risks in Sussex Brighton and Sussex 

Worthing are likely to be higher than projected by the models. 

 

7.4.CONCLUSION 

 

In conclusion, this chapter has explored the uncertainty of alternative water resource 

model structure and socio-economic scenarios on top of climate uncertainty. It has 

demonstrated that climate uncertainty is still a significant influence; however water 

demand is quickly becoming a controlling factor once the 2007 demand level increases 

past the 35% threshold. The optimisation and the simulation models perform relatively 

well compared to the reference Aquator model of the managing water company. Both 

models demonstrate a gradual increasing risk of supply deficit in the 2020s and the 

2030s; the risks vary widely in the 2050s and are highly dependent on the socio-

economic scenarios.  

 

The model shows that in order to avoid frequent supply failures in the 2050s, it is 

essential to maintain the status quo or lower demand profile. The socio-economic 

scenarios indicate that such reservation can only occur under sustainability-led 

governance or socially responsible consumerism (such as the Innovation or Local 

Resilience scenarios). On the other hand, if governance is growth-led and consumerism 
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is individualistic, the system will face significantly high risks of water supply deficit to 

all the areas. The models do not consider groundwater drought risks, which may affect 

the groundwater-dependent Brighton and Worthing areas. Thus the future failure risks 

are mainly distributed within the Sussex North area, with the exception of the Market 

Forces scenario. However, given the Chalk geology of the area, it is likely that Brighton 

and Worthing will experience supply deficit during prolonged surface water droughts.  

 

Finally, the cross-climate product analysis shows that the Sussex system is relatively 

robust under different variations of the 1975/1976 and the 1988/1989 droughts, possibly 

due to the usage of these historic event as the design event of drought planning. The 

system, however, is less immune to other, potentially new, sequence of droughts as 

projected in the RCM and the FF group. While the FF group is a downscaled and bias-

corrected product of the RCM ensembles, its impacts on water deficits are quite similar 

to the RCM groups, which are much drier time series. The system is overall sensitive to 

the actual sequence of droughts and the low flow levels. It is therefore suggested that 

while UKCP09 contains the most wide ranging climatic conditions and possible 

changes, the actual historic-based application of the product limits its utility in testing 

system robustness. Therefore, aside from exploring alternative scenarios (as suggested 

in the Robust Decision Making framework), time series with diverse patterns are highly 

useful to test the system against surprise, particularly with regard to climate risks. 
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Chapter 8. WATER RESOURCE PLANNING UNDER UNCERTAINTY 

 

8.1.INTRODUCTION 

 

In the previous chapter, the vulnerability of the study area was explored under different 

demand and climate scenarios. Overall the area appears to be under various stresses, of 

which climate uncertainty and demand uncertainty are two influential ones. This chapter 

proceeds by analysing selected planning options of the area, and whether those options 

can accommodate the water demand of the area. It continues to follow the cascade of 

uncertainty as explored in previous chapters by using the four climate products as the 

inputs of a water resource planning system. Additionally, for the 2050s, it considers 

four alternative socio-economic scenarios leading to different levels of water demand. 

The chapter will mainly focus on the technical aspects of Decision Support System for 

decisions under uncertainty; further implications of the results on policy and 

adaptability of water resources planning to new patterns of risks will be discussed in 

detail in Chapter 9. First, Section 8.2 will describe the options and how they are 

analysed in the optimisation model. Second, Section 8.3 then presents and discusses the 

results, with in-depth analysis of the delivery network and the effectiveness of options 

in reducing supply vulnerability.  

 

Planning decisions under the deep uncertainty of climate change and demand 

uncertainty is highly difficult. Arnell and Delaney (2006) outlined this adaptation 

process by four key points: impact awareness and concern, adaptation strategy, option 

selection and the influence of changes in the organisation characteristics, the regulation 

and the market on these factors. In the context of the UK, as described in Chapter 4, it 

involves revising a 25-year water resource plan, revised every five years. The focus of 

the plan, as typical of planning problems, does not only revolve just around the climate 

impacts; rather, it has to deal with a combination of stressors including water demand 
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growth, supply reliability and the other socio-economic changes. Indeed, water demand 

management one of the core elements for water management to test the system 

robustness and reliability (Baumann et al., 1997; Butler and Memon, 2006). For water 

management in England and Wales, the headroom concept, the extra water supply 

capacity to accommodate unplanned demand, is often used in these plans to ensure 

system reliability and robustness. Based on these projected demand profiles, the water 

companies analyse their available options and select options to consider for the future. 

Apart from the UKCP02 and subsequently UKCP09 climate product, other products 

such as the Weather Generator, multi-model ensembles and Future Flows have also 

been used for risk analysis (Fowler et al., 2003; Christensen and Lettenmaier, 2006; 

Wilby and Harris, 2006; Fowler et al., 2007; Lopez et al., 2009b; Prudhomme and 

Davies, 2009). Many studies treat adaptation of the water planning system as a case of 

capacity expansion that accommodate the most likely projected demand (Jenkins et al., 

2004; O’Hara and Georgakakos, 2008). Others like Lempert and Schlesinger (2000) and 

Wilby and Dessai () criticised this ‘predict-then-act’ approach and advocated a robust 

adaptation approach which considers all possible uncertainty and imaginable futures. 

There have been various methods of constructing the scenarios and time series. Lempert 

and Groves (2010) have used qualitatively different scenarios to test the robustness of 

water planning options under deep uncertainty. Paton et al. (2013) employed stochastic 

rainfall time series constructed from historical records while Manning et al. (2009) used 

the Bayesian statistical approach to construct the probability distribution of local 

climate change which provide the Thames catchment rainfall-runoff model with inputs 

to simulate future water abstraction availability. Yet, while the probabilistic approach 

can facilitate a risk-based assessment framework, New et al. (2007) argued that climate 

risks will change over time; similarly, Hall et al. (2007) stated that probabilistic climate 

scenarios may misrepresent uncertainty.  

 

In terms of model choices, both optimization and simulation models have been used, 

such as AQUASIM (Huggenberger et al., 2013), IRAS (Matrosov et al., 2013), 

Watersim (Gober et al., 2010), Watercress (Paton et al., 2013). As discussed in Chapter 

3, water resource planning can be formulated as a decision analysis problem in which 
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the outcomes are selected on an optimisation or a satisficing basis. Alternatively, 

strategies can be selected via the use of simulation models, which follow operating rules 

specified by the users. These simulation models will then test the system and various 

strategies under the scenarios; via those tests, the users can analyse system performance 

based on their criteria and decide on the planning strategies. For adaptation under 

uncertainty, both the optimisation and the simulation approaches have been used to 

identify system vulnerability and robust strategies under varying conditions. The 

number of simulations tends to grow larger with the complexity of the model; on the 

other hand, the number of optimisation runs does not grow at the same order but the 

searching time may be prolonged due to the increasingly complexity of the response 

surface. Kasprzyk et al. (2012) further combined Sobol’s variance decomposition with 

multi-objective evolutionary algorithms to generate the testing scenario and analyse 

system robustness. Meanwhile Matrosov et al. (2011) used a simulation model to test 

the conjunctive use of the Thames water resource system and Matrosov et al. (2013) 

compared an optimised plan with a Robust Decision Making plan to highlight the 

differences of these two approaches. However, to date, option analysis in water 

management and planning in England and Wales is still often separated from water 

resource modelling. Instead, the options are selected in a separate investment model 

which considers the average contribution to supply, financial investment and 

operational cost as well as the implementation duration. An integrated investment-water 

resource model is necessary since the actual supply of the option or demand reduction 

effects are dependent on the water supply network, as well as the nature of the supply 

deficits.  

 

Based on that context, this chapter presents an example of using the optimisation model 

to select options based on the criteria of maintaining the minimum environmental flows 

and abating supply deficits with minimum operational cost. Firstly, Section 8.2 

describes how the planning options were implemented in the simulation and 

optimisation model described in Chapter 7. It then outlines the planning options 

considered in the study and criteria for planning success. Secondly, Section 8.3 presents 

the option selected by the optimisation model, their comparative performance by the 
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simulation model and the remaining vulnerability of the Sussex area under these plans. 

Section 8.4 then concludes with key points and results of the chapter.    

 

8.2.METHODOLOGY 

 

8.2.1. Problem formulation 

In order to construct a Decision Support System for the study area, the problem is 

formulated as planning for a water supply network under climate change impacts. Due 

to changes in surface inflows, the region has to invest on strategies that augment supply, 

reduce demand or enhance transferring capacity. The study uses the optimisation model, 

a mathematical model which minimizes three criteria: total deficit in demand nodes, 

total deficit in environmental flows and the total financial cost of maintaining the best-

possible water supply-demand balance. The problem is formulated as a mixed integer 

linear programming problem, with core decision variables of interest being binary 

variables that represents whether a strategy should be implemented or not.    

 

The model is divided into two parts: a core model that represents physical relations 

between variables and a preferential model that searches for solutions based on the 

criterion preferences.   

 

8.2.2. Core model specification 

A core model usually contains given parameters, state variables, decision variables and 

constraints. In this study, as the focus is on a water supply network, the core model 

takes the form of a flow network that delivers water from sources to sinks. The model is 

formulated as a linear programming of which decision variables are not related via 

multiplication or division. For specific equations of the model, please refer to Appendix 

A. 
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8.2.3. Strategy representation 

Planning strategies are represented as binary decision variable Xi (t) that will take the 

value of 1 if implemented during the time step t and 0 otherwise. Once implemented, 

the binary variable Use(Xi,t) presents whether the strategy is actually used, for instance 

in a time step if a desalination plant may have been implemented but does not supply 

water to the network, it will have XDesal=1 and Use(XDesal)=0. Effects of the strategy 

onto the network include supply augmentation, demand reduction and changes on 

transfer capacity. Furthermore, options can be mutually exclusive, such as the 

implementation of one option will exclude another option, or have interactive effects. 

Decision variables that can provide additional supply are modelled as a fictional source 

that is not connected to other sources if the strategy is not implemented. This setup also 

allows calculating the real usage of the option (e.g. the supply provided by the decision 

variable and the frequency of source usage). Based on Southern Water 2009 Water 

Resource Management Plan, nine potential strategies were included in the model (Table 

8-1). Strategies are characterized into non-permanent and permanent options: the former 

can be turned off once not needed (such as hosepipe ban measures) while the latter 

remains in place once implemented and incurs fixed operational cost even when they 

are not used.  Strategies are also grouped into groups of mutually exclusive options. 

Hosepipe bans are governed by the rainfall-based SPI12. In essence, the model can 

choose to implement hosepipe ban up to 10% of the whole time series in time steps with 

SPI12 < -1.8. This condition was based on the Drought Plan of the study area (Southern 

Water, 2013).   

 

Taking supply from supply nodes would incur a pumping cost, as described in Chapter 

7. The cost is different for each source, which reflects their priority of abstraction and 

the actual financial cost. To avoid double counting, the pumping cost is only accounted 

in the immediate links to the source. Overall, surface water from River Rother would be 

the first supply source, followed by other groundwater (except Hardham) sources. Note 

that this is not the accurate pumping price; it was constructed to be similar to the real 

cost, but also the pumping priority of the source nodes. With nodes and links that can be 

modified by the Decision Variables, the cost includes additional operational cost 
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(OPEX) of the implemented strategies. Once an option is implemented, the cost also 

includes a one-off capital investment cost (CAPEX). All the pumping cost, OPEX and 

CAPEX are adjusted using a discount rate based on the Treasury Green book (Her 

Majesty’s Treasury, 2013) of 5%. As such, the same amount of money in a later time 

step will have a lower cost than it is in an earlier time step. 

ܸܰܲ ൌ
ݐݏܥ

ሺ1  ሻ
 

Equation 8-1 

in which n is the year of the time series, NPV is the Net Present Value and p is the 

discount rate 

Therefore, the model will implement and activate strategies as later as possible, unless 

to mitigate deficits. 

 

As described in Chapter 4, the study area consists of Sussex North, Sussex Worthing 

and Sussex Brighton. It has two inter-company water transfers: Southern Water 

provides South East Water with 5.4 Ml/day from the Weirwood Reservoir for and can 

receive up to 15 Ml/d from Portsmouth Water to the Hardham WSW. The V6 

bidirectional link between Sussex North and Sussex Worthing can transfer up to 15 

Ml/d in either direction while the Rockroad link from Worthing to Brighton can 

distribute up to 7 Ml/d. Under situation of water shortages, the available supply 

therefore can be transferred between Worthing and Sussex North, as well as from either 

of these zones to Brighton. 
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Table 8-1 List of single options selected from Southern Water’s 2009 Water Resource Management Plan (Southern Water, 2009b) 
and used in the Optimisation Model 

Option 

ID 

Option Name Category Effect Limit of usages CAPEX 

(million 

GBP) 

Fixed OPEX 

(GBP/week) 

Variable 

OPEX 

(GBP/Ml) 

HP Hosepipe Bans Non-permanent Reduce demand by 10% 

with no demand 

metering, 5% with 

demand metering 

Maximum implementation 

time: 10% of the whole time 

period; cannot be 

implemented from January-

March 

0 0 0 

d1 Desalination Plan 

in the Brighton 

Area (CD1-20) 

Permanent Supply maximum 20 

Ml/d to Shoreham and a 

part of Brighton 

Mutually exclusive to d6 43 5,403 462 

d2 98% universal 

metering 

Permanent Reduce demand by 10% N/A 6 42,300 0 

d3 Remove the 

constraint of 62 

Ml/day transfer 

capacity from 

Hardham Water 

Treatment Plan 

Permanent Increase the transfer 

capacity from 62 Ml/day 

to 1062 Ml/day 

N/A 3 300 138 
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d4 Arun Abstraction 

below tidal limit 

Permanent Supply up to 10 Ml/d to 

Hardham Water 

Treatment Plan 

N/A 10 1,351 89 

d5 Hardham 

Minimum 

Residual Flow 

(MRF) Reduction 

Non-permanent Reduce the 

environmental flow 

requirement by 20% 

N/A 1 0 70 

d6  Desalination Plant 

in the Brighton 

Area (CD1-10) 

Permanent Supply up to 10 Ml/d to 

Shoreham and part of 

Brighton 

N/A 26 4,338 462 

d7 Ford Effluent Re-

Use with 

Biological Aerated 

Flooded Filter 

treatment 

Permanent Transfer 20 Ml/d of 

treated effluent to 

Hardham Water 

treatment plan  

N/A 34.560 3,547 122 

d8 Hardham 

Wellfield 

Optimisation 

Permanent Supply up to 4 Ml/d to 

Hardham Water 

treatment plan 

N/A 8.385 0 45 

d9 Aquifer Storage 

and Recovery 

Permanent Supply up to 8 Ml/d to 

the Worthing area 

Can only be used for up to16 

weeks per year 

13.885 870 100 
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Figure 8.1 depicts the schematic of the Sussex water resource system with available 

planning options and their locations. The Brighton area and the Worthing area are 

shown within the corresponding boxes, and the remained nodes belong to the Sussex 

North area. The water resource planning options can alleviate supply-demand deficit in 

the area by universally reducing water demand (Option d2) or locally increasing supply 

in Sussex North (d4, d7, d8), Sussex Brighton (d1 and d6) and Sussex Worthing (d9). In 

dealing with potential bottlenecks of the network, option d3 can augment the 

transferring capacity from the Hardham Water Treatment Plan into the Sussex North 

area. Many of the options can contribute supply into the Hardham Water Treatment 

Plan, which has a maximum capacity of 75 Ml/d. Additionally, the treatment capacity 

reduces to 40 Ml/d if Rother flows exceed 500 Ml/d, which is a constraint also 

implemented in the model. 

 

 

 

 

Figure 8.1 Schematic of the Sussex Optimisation Model with available water 
planning options 
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8.2.4. Criteria 

 

The set of criteria considered for minimisation in this study are 

 Summation of deficit occurring in demand nodes (set D ⊂ N) within one run 

Deϐicitሺn, tሻ ൌ Supplyሺ݊, ሻݐ െ Demandሺn, tሻ 

Equation 8-2 

 

 ൌ۲ܜܑ܋ܑ܍ሺܖ, ሻܜ

۲

ܜ

 

 

 

 

Equation 8-3 

 Sum deficit of environmental flows (set E ⊂ N) within one run 

 

ଶܥ   ൌDeϐicitሺ݊, ሻݐ


୲

 
 

Equation 8-4 

 Total operational cost (of existing sources and implemented strategies) 

Water supply to the system can either come from existing sources or from 

options implemented by the decision variables. As the focus of the study is on 

potential implementation of new decision variables, the fixed operational cost of 

existing sources are not considered in the calculation. Furthermore, when 

comparing across the scenarios, the operational cost of existing sources does not 

change and thus is not necessary to be included. 

 

Overall the objective of the model is to minimise these three criteria. As reducing water 

deficit and minimising pumping cost are conflicting objectives, multiple criteria 

analysis is used. The model can operate in two modes: i) Aspiration-Reservation based 

Multi-criteria analysis, in which the decision makers state their desirable criterion range 

and the model will select a feasible solution that is closest to the desirable values, and 
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ii) Ranked Optimisation, in which the model optimises from the most prioritised 

criterion to other criteria. As described in Chapter 7, expert judgement by relevant 

decision makers indicated a preference for the latter method. Therefore this chapter 

continued to use the second mode to select the preferred planning option for each 

scenario. In particular, the model first minimises possible environmental flow deficits, 

then reruns with that minimum value to search for the minimum possible demand 

deficits. It is thus a process of selecting from multiple options with the minimum 

environment flow deficits, then choosing amongst them for ones with the minimum 

demand deficit and then selecting the one with the least cost. Finally the model searches 

for a solution with minimum overall cost while maintaining that minimum deficits on 

environmental flows and demand. 

 

8.2.5. Scenarios 

The scenarios follow those of Chapter 7, which uses four different climate products and 

socio-economic scenarios from Southern Water and the EA. Additionally, for each 

scenario, the testing set will include a headroom demand uncertainty, in which non-

environmental demand is increased by 5%, and a headroom demand-groundwater 

outage uncertainty, in which the demand is at the headroom level and groundwater 

supply is reduced by 5% due to outages. 

 

8.2.6. Robust Decision Analysis using the Simulation Model 

Due to the time and computational constraints, the study could not use the Simulation 

Model to analyse the 512 possible sets of options. Therefore, the Optimisation Model 

was used to reduce the number of options. In this step, all options selected by the 

Optimisation Model in the 2020s, 2030s and 2050s for each demand scenario will be 

rerun by the Simulation Model. This produces a basis for comparison of sub-optimal 

options overall, to identify the other potentially robust packages of options that can 

satisfy the acceptable level of cost and supply deficit. Analysis of the whole packages 

rather than selecting the optimal option for the majority of scenarios will reduce the 
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risks of selecting non-robust options. This approach has been described in more detail in 

Chapter 3, in particular Section 3.2.  

 

8.3.RESULTS AND DISCUSSION 

 

8.3.1. Option Selection 

The results show that using the potential options under optimisation, the system can 

successfully cope with the demand increase. Since none of the options can augment the 

environmental flows, the values of the environmental flows remain the same as in 

Chapter 7 (refer to Figure 7.16a). In terms of deficit, Figure 8.2 depicts that under the 

Base case, supply deficit of even the most extreme 2050s socio-economic scenario- the 

Market Forces scenario-still remains similar to that of other 2050s demand scenarios. 

The major variation of average annual deficit occurs across different climate products, 

and as such depicts that climate post-processing is the major uncertainty factor in the 

uncertainty cascade under the Base Case socio-economic scenario. 
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Figure 8.2 Supply deficit without options, in the Base Case scenarios, with 

headroom Demand (5% increase from the Base Case demand), and with headroom 

Demand and 5% groundwater reduction due to outages 

 

However, the system is vulnerable to additional pressure from demand and groundwater 

outages. In essence, with 5% of extra demand (the Headroom Demand scenario), the 

system under the Market Forces scenarios again swings to ubiquitous supply failures 

and even more so if the groundwater sources diminish by 5% (the scenario of 

Headroom Demand coupled by Groundwater outages). 

 

In terms of financial cost to maintain the system, higher demand profiles also lead to the 

need for strategy implementation, thus raising the overall cost due to the additional 

pumping cost from the current sources and from investments in the new strategies. For 
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instance, the average annual cost (including discounted option implementation cost) for 

the current water resource system, which is yet without any strategy implementation, is 

much lower than when the options are implemented to cope with the base case demand, 

the headroom demand and the additional pressure from groundwater outages (Figure 

8.3). 

 

Figure 8.3 Average annual cost of maintain low supply deficits in the water resource 

system in Sussex 

 

The number of selected options tends to increase with increasing demand. Overall, the 

model selected in total 39 unique option combinations, as presented in Table 8-2.  
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Table 8-2 Unique combinations of the options. 0 denotes not selecting any option. 

Period NodeProf Test Scenarios RCM FF SCP UKCP09 

2020s 
 

SW 
Projections 

 

Base Case 0,d4,d4-d8,d8 
0,d2-d4-d8,d4,d4-

d8,d7,d8 0 0,d8 
Headroom 
Demand 

0,d2,d2-d4-d8,d2-
d8,d4,d8 

0,d2-d4-d8,d4,d4-
d8,d7,d8 0 0,d2,d4,d8 

Headroom 
Demand GW 

outages 

0,d2,d2-d4-d7,d2-d4-
d7-d8,d2-d8,d4,d4-

d8 
0,d4,d4-d7,d4-d7-
d8,d4-d8,d7,d7-d8 0 0,d2,d4,d8 

2030s 
 

SW 
Projections 

 

Base Case 0,d2,d2-d4-d8,d4,d8 0,d2-d4-d8,d4,d7,d8 0 0,d2,d4,d4-d8,d8 
Headroom 
Demand 

0,d2-d7,d2-d8,d4,d4-
d8,d8 

0,d4,d4-d7,d4-
d8,d7,d7-d8 0 0,d2,d4,d8 

Headroom 
Demand GW 

outages 
0,d2-d4,d2-d4-d7-

d8,d2-d7,d4,d4-d8,d8 0,d4,d4-d8,d7,d7-d8 0 0,d2,d4,d4-d8,d8 

2050s 
 

Innovation Base Case 0,d2-d4,d4-d8,d8 0,d4,d4-d8,d8 0 0,d8 

Market 
Forces Base Case 

d1-d2-d4-d7-d8-
d9,d1-d2-d4-d7-

d9,d1-d2-d4-d8,d1-
d2-d4-d8-d9,d1-d2-

d7-d9,d1-d2-d8-
d9,d1-d2-d9 

d1-d2-d4-d7-d8-
d9,d1-d2-d4-d7-
d9,d1-d2-d7-d8-

d9,d1-d2-d9 

d1-d2-d4,d1-d2-d4-
d7,d1-d2-d4-d7-

d9,d1-d2-d4-d8,d1-
d2-d4-d9,d1-d2-d8 

d1-d2,d1-d2-d4,d1-
d2-d4-d7,d1-d2-d4-

d7-d8,d1-d2-d4-
d8,d1-d2-d4-d8-

d9,d1-d2-d4-d9,d1-
d2-d7,d1-d2-d7-

d8,d1-d2-d8 

Local 
Resilience Base Case 

0,d2,d2-d4-d8,d2-
d7,d2-d7-d8,d4-

d7,d4-d8,d8,d8-d9,d9 

0,d2-d4,d2-d4-d8,d2-
d4-d8-d9,d2-d7-
d8,d4-d8-d9,d7-

d8,d7-d8-d9 0,d2 

0,d2,d2-d4,d2-
d8,d4,d4-d8,d4-d8-

d9,d8 
Sustainable 
Behaviour Base Case 0,d2,d4-d8,d8 0,d8 0 0 

Innovation 
Headroom 
Demand 0,d2-d4,d4,d7 

0,d2-d4-d8,d4,d4-
d8,d7 0 0,d4,d8 

Market 
Forces 

Headroom 
Demand 

d1-d2-d4-d7-d8-
d9,d1-d2-d4-d7-
d9,d1-d2-d4-d8-

d1-d2-d4,d1-d2-d4-
d7-d8-d9,d1-d2-d4-

d7-d9,d1-d2-d9 

d1-d2-d4,d1-d2-d4-
d8,d1-d2-d4-d8-

d9,d1-d2-d7,d1-d2-

d1-d2-d4-d7-d8-
d9,d1-d2-d4-d7-
d9,d1-d2-d4-d8-
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d9,d1-d2-d7-d8-
d9,d1-d2-d7-d9,d1-

d2-d9 

d7-d8 d9,d1-d2-d4-d9,d1-
d2-d7-d8-d9,d1-d2-
d7-d9,d1-d2-d8-d9 

Local 
Resilience 

Headroom 
Demand 

d2,d2-d4,d2-d4-d6-
d7-d8,d2-d7,d2-d7-

d8 
d2,d2-d4,d2-d4-

d7,d2-d7,d2-d7-d8 d2 d2,d2-d4,d2-d8 
Sustainable 
Behaviour 

Headroom 
Demand 0,d4 0,d4,d8 0 0 

Innovation 

Headroom 
Demand GW 

outages 
0,d2,d2-d4,d2-d4-
d8,d2-d7,d4-d8,d7 

0,d2-d4,d2-d4-
d8,d4,d4-d7,d4-d8,d7 0,d8 0,d2,d4,d4-d8,d8 

Market 
Forces 

Headroom 
Demand GW 

outages 

d1-d2-d3-d4-d7-d8-
d9,d1-d2-d4-d7-d8-

d9,d1-d2-d4-d7-
d9,d1-d2-d4-d8-

d9,d1-d2-d7-d8-d9 
d1-d2-d4-d7-d8-
d9,d1-d2-d8-d9 

d1-d2-d4-d7-d9,d1-
d2-d4-d8-d9,d1-d2-
d7-d8-d9,d1-d2-d7-

d9 

d1-d2-d3-d4-d7-d8-
d9,d1-d2-d4-d7-d8-

d9,d1-d2-d4-d7-
d9,d1-d2-d4-d8-

d9,d1-d2-d4-d9,d1-
d2-d7-d8-d9,d1-d2-

d7-d9 

Local 
Resilience 

Headroom 
Demand GW 

outages 

d2,d2-d4,d2-d4-d7-
d8,d2-d4-d8,d2-d7-

d8,d2-d8 
d2,d2-d4-d7,d2-d4-
d8,d2-d7,d2-d7-d8 d2,d2-d8 

d1-d2-d3-d4-d7-d8-
d9,d2,d2-d4,d2-d4-

d8,d2-d8 

Sustainable 
Behaviour 

Headroom 
Demand GW 

outages 0,d4,d8 0,d4,d8 0 0,d8 
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The table shows that using different climate products can lead to different option 

selection, even under the same socio-economic scenario and within the same time 

period. In particular, due to the relatively less severe climate conditions of the SCP 

product, the water resource system does not often need additional planning options. For 

2020s, Figure 8.4 shows the frequency of the portfolio being selected in the scenarios 

and Figure 8.5 shows how often on average an option is actually used if it is 

implemented by the optimisation model. The figures further show how option selection 

for a robust system varies under the uncertainty projected by different climate products 

and socio-economic scenarios. In particular, the RCM product will lead to early 

implementation of either the d4 (Arun Abstraction) option or d8 (Wellfield 

Optimisation) or a combination of both. In order to supply for the headroom demand, 

which is 5% higher than the baseline, the addition of the d2 option (universal metering) 

becomes necessary. If groundwater sources become unreliable at a rate of 5% outage, 

the system will either need higher utilisation of the options, or the addition of d7 (Ford 

Effluent Reuse).  
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Figure 8.4 Selection frequency graph of the option portfolio in 2020s. Each point 

represents the frequency of the option being selected in 11 scenarios for the RCM, 

FF and SCP products and in 100 scenarios for the UKCP09 product. 0 represents no 

selected option.  

 

Overall, the Arun Abstraction option appears to be the most frequently selected option, 

followed by universal metering and Wellfield Optimisation. Meanwhile, if the FF 

product is used as the information source, the set of options selected include universal 

metering and effluent reuse even under the baseline demand. These option sets remain 

quite stable under the headroom demand and the extra pressure of groundwater outages. 

However, under the prospect of groundwater outages, the selected options do not 

include universal metering anymore and instead switch to additional supply from 

effluent reuse (d7). The SCP product, on the other hand, projects little water deficit in 

the 2020s, and as a result, does not need any strategies to adapt. Similarly, the UKCP09 

scenarios mostly does not require any option implementation, although certain scenarios 

amongst the set do indicate the need of implementing a single adaptation strategy, either 

from universal metering, Arun abstraction or effluent reuse. 
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Figure 8.5 Frequency of usage of each option overall in 2020s. The box plots at the 

background show the 25th, 50th and 75th percentiles of the usage frequency of each 

option and the points present the actual usage frequency under each scenario.  

 

Since none of the activated options can modify environmental deficit, that 

environmental deficit remains the same in each scenario. Furthermore, maintaining 

environmental flows is the top priority in the optimisation process and therefore is not 

compensated for any competing water demand. Therefore the environmental deficit 

criterion becomes an index that can indicate how dry the climate scenario is. In essence, 

if environmental deficit is large, this indicates frequent low values of surface flows and 

hence little surface water left to top up the reservoir and provide water for other demand 

nodes. When environmental deficit is plotted against the pumping cost and the supply 

deficit, there seems to be a preferential structure of how the Optimisation Model 

selected the options. For instance, for the 2020s climate conditions projected by the 

UKCP09 product, the Optimisation Model has indicated either maintaining the current 

water resource system without any changes (0), 98% universal metering (d2), Arun 

abstraction (d4), and Hardham Wellfield Optimisation (d8).  

 

Figure 8.6 shows the relationship of the model selection with the dryness of the 

scenario, as indicated by environmental deficit. In the scenarios of sufficient surface 

flows, the Optimisation Model indicated inaction is the best plan; yet once water 

shortages occurs, the model starts to select Wellfield Optimisation (d8-the cheapest 

option to implement), Arun Abstraction (d4)  and subsequently universal metering (d2). 

While the preferential order of option selection remains quite consistent across the 

scenario of Base case, Headroom Demand and additional Groundwater Outages, the 

climate conditions that prompt the switch in plan, which Brown et al. (2012) referred as 

the decision sensitive conditions, do shift in response to the pressure of additional 

demand and reduced groundwater supply.   
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Figure 8.6 Three-dimensional plot of Environmental Deficit versus Pumping Cost and Supply-Demand Deficit in 2020s for the 
UKCP09 product 
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In the 2030s, the different climate products still lead to different option selections, 

partly due to the dryness and the decision sensitive conditions they project. The option 

sets still mainly contain the portfolio of the 2020s. Again, the SCP product appears to 

be the least severe climate projection and does not indicate the need to adapt. Similarly, 

the majority of the UKCP09 scenarios do not require any additional investment, with 

very few needs to rely on d2, d4 or d8. On the contrary, the RCM and the FF product 

continue to project testing conditions for the system to adapt. However, while the RCM 

conditions make the system more dependent on d4, the FF conditions seem to prefer the 

d7 option. 

 

Figure 8.7 Frequency graph of the option portfolio in 2030s 
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Figure 8.8 Overall frequency of usage for the selected option in 2030s 

 

A comparison between the option preference under the FF and the RCM products 

(Figure 8.9) depicts that the option selection is determined by the level of environmental 

deficit in the scenario, but also dependent on the climate product. While the RCM 

conditions are considerably drier than those of FF, under RCM, the optimised Sussex  

water operation has a slightly different response structure than under FF. For instance, 

under the Headroom Demand-Groundwater outages, d7-d8, the combined portfolio of 

Arun Abstraction and Wellfield Optimisation, appeared in the selected portfolio for the 

FF product but not for the RCM product.   
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Figure 8.9 Comparison of option preference under the climate conditions of the 

RCM and the FF product for the 2030s 
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Moving on to the 2050s, the picture becomes more complex as there are additionally 

four socio-economic scenarios. There are improvements in the water demand level 

under Innovation and Sustainable Behaviour. Therefore for the Innovation, Local 

Resilience and Sustainable Behaviour scenario, the composition of selected option 

portfolio remains similar or with slightly less options compared to that of the 2020s and 

2030s, the Market Forces scenario requires a significant amount of strategies to adapt.  

 

 

Figure 8.10 Frequency graph of the option portfolio in 2050s under the Innovation 

socio-economic scenario 
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Figure 8.11 Option usage frequency under 2050s Innovation 

 

Under this demand scenario, the different option selection amongst climate products 

becomes smaller and the option portfolios often include two to more options. 

Additionally, under the risk of groundwater outages, option selection of the RCM and 

UKCP09 conditions further include d3, the transfer augmentation option, as most of the 

additional supply sources are around the Hardham area and have to pass by the d3 link 

before being delivered to other zones. This socio-economic demand profile also 

indicates the increased vulnerability of Worthing and Brighton, when d1 (option for the 

Brighton area) and d9 (option for the Worthing area) are selected. In the Brighton area, 

d1 and d6 are both desalination options, with d1 having higher supply capacity. Due to 

them being implemented on the same site, these two options are mutually exclusive. 

Yet, the model indicates that d1 is preferred over d6, therefore demonstrates the high 

need of additional supply on this area. 
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Figure 8.12 Frequency graph of the option portfolio in 2050s under the Market 

Forces scenario 

 

Figure 8.13 further shows the usage of each option in the area. Under all scenarios, 

universal metering becomes an essential strategy with 100% usage rate, followed by the 

desalination plant in Brighton. d4 (Arun Abstraction), d7 (Ford Effluent Reuse) and d8 

(Wellfield Optimisation) also appear to be vital to increase the coping capacity.  
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Figure 8.13 Option usage frequency under 2050s Market Forces 

 

 

Figure 8.14 Frequency graph of the option portfolio in 2050s under the Local 
Resilience scenario 
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Figure 8.15 Option usage frequency under 2050s Local Resilience 

 

Figure 8.16 Frequency graph of the option portfolio in 2050s under the Sustainable 
Behaviour scenario  
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Figure 8.17 Option usage frequency under 2050s Sustainable Behaviour 

 

Regarding the decision sensitive conditions from the 2020s to the 2050s, they appear to 

be consistent within each climate product Figure 8.18 and 8.19 compares the 

preferential structure of option selections for the 2030s and the 2050s Market Forces 

scenarios. As can be seen, since the Market Forces scenarios is much more severe than 

the 2020s and the 2030s scenarios, option selection moves toward options of more 

capacity but with higher cost. Nevertheless, this trade-off between cost and performance 

could not help bring supply deficit back to the level of the 2020s or the 2030s. While 

operational costs of the 2030s are generally within the region of 4 to 5 million GBP per 

year, those of the 2050s Market Forces jumped to the region of 5 to 15 million GBP per 

year and with supply deficit from 0 to 1100 Ml/year. 
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Figure 8.18 3D plot of Environmental Deficit versus Pumping Cost and Supply-Demand Deficit in 2030s for the UKCP09 product 

 

Basecase

4.85 4.90 4.95 5.00 5.05 5.10

 0
10

20
30

40
50

60
70

 0
 5

10
15

20
25

30
35

Pumping cost (million GBP/year)

D
ef

ic
it 

(M
l/y

ea
r)

E
nv

iro
nm

en
ta

l D
ef

ic
it 

(M
l/y

ea
r)

Options

0
d2
d4
d4-d8
d8

headroom Demand

5.05 5.10 5.15 5.20 5.25 5.30 5.35

 0
10

20
30

40
50

60
70

 0
 5

10
15

20
25

30
35

Pumping cost (million GBP/year)

D
ef

ic
it 

(M
l/y

ea
r)

E
nv

iro
nm

en
ta

l D
ef

ic
it 

(M
l/y

ea
r)

Options

0
d2
d4
d8

headroom Demand 
 GW outages

5.0 5.1 5.2 5.3 5.4 5.5

 0
10

20
30

40
50

60
70

 0
 5

10
15

20
25

30
35

Pumping cost (million GBP/year)

D
ef

ic
it 

(M
l/y

ea
r)

E
nv

iro
nm

en
ta

l D
ef

ic
it 

(M
l/y

ea
r)

Options

0
d2
d4
d4-d8
d8



Page 213 
 

 

 

Figure 8.19 3D plot of Environmental Deficit versus Pumping Cost and Supply-Demand Deficit in 2050s Market Forces for the 

UKCP09 product 
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8.3.2. Deficit Analysis 

As the 2050s scenarios demonstrate a wide range of option portfolios, these 

portfolios are driven by both demand and the climate scenarios. Overall, the most 

severe demand and the extra risks of groundwater outage often necessitate the 

implementation of additional supply sources. However, when demand grows by 

35% from the 2007 demand, universal metering becomes a key option. The analysis 

therefore shows that the higher the demand level is, the more essential metering and 

demand management become. In practice, this is also likely to be a vital factor, as 

metering can provide additional information on the demand pattern and any 

potential interactions with climate conditions. In general, the available management 

strategies of the water resources system assist the system with adaptation to changes 

in climate and water demand. This section further analyses the location of the 

remaining deficits and network attributes to identify the remaining vulnerability of 

the area. Figure 8.20 to Figure 8.25 demonstrate that except for the 2050s Market 

Forces scenario, most of the deficits in other time slices and demand scenarios occur 

in South East Water (SEW) transfer and the environmental flows.  

 

The persistence of the deficits in these locations can be explained by the distribution 

of the planning options and network distribution. Firstly, MRF Weirwood and 

Rother are the environmental residual flows of the Medway and the Rother. 

Therefore, except for the d5 (which was not implemented since it does not help 

increase the system coping capacity; it instead only reduces the requirement of the 

environmental flows), no other option can alter the deficits in these nodes. On the 

other hand, the deficit in SEW is due to network attribute and option location. As 

can be seen in Figure 8.1, the cluster of SEW, Weirwood Reservoir and the 

environmental node Minimal Residual Flow for Weirwood (MRFWW) feeds water 

into the Buchan Hills and Turner Hills node but do not receive supply from the rest 

of the Sussex network. Yet, most supply options are located around the River Rother 

and Hardham, which feed water into the Sussex nodes and at maximum 105 Ml/d to 

the Worthing area. Therefore, none of these options can reduce the deficit in SEW, 

which often occurs when the reservoir experiences a long succession of low flows 

which cause deficits in the environmental flows and restrict Weirwood capacity to 

supply water for the transfer to South East Water.  
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While this deficit does not pose risks to the Sussex area, the risk of transfer failure 

under climate change should be considered between South East Water and Southern 

Water. Furthermore, it poses a question on the reliability of inter-company transfer, 

such as the link from Portsmouth Water to Southern Water’s Sussex North. In the 

optimisation model, this source has been assumed to be perfectly reliable. However, 

in practice, the inter-regional supply capacity often depends on the temporal and 

spatial spread of droughts. As Rahiz and New (2013) has shown, droughts in the 

South East could spread across the whole southeast England area. Water shortage 

risk therefore needs to be further considered in other regional study.  

 

Figure 8.20 Deficit locations in 2020s 
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Figure 8.21 Deficit locations in 2030s 

 

 

Figure 8.22 Deficit locations in 2050s Innovation 

Basecase Headroom Demand
Headroom Demand 

 GW outages

0.1

1

10

100

1000

0.1

1

10

100

1000

0.1

1

10

100

1000

0.1

1

10

100

1000

0.1

1

10

100

1000

B
ury

S
E

W
S

ussex3
M

R
F

R
other

M
R

F
W

W

RCM FF SCP UKCP09 RCM FF SCP UKCP09 RCM FF SCP UKCP09

Product

A
ve

ra
ge

 a
nn

ua
l d

ef
ic

it 
(M

l)

Basecase Headroom Demand
Headroom Demand 

 GW outages

1

10

100

1000

1

10

100

1000

1

10

100

1000

S
E

W
M

R
F

R
other

M
R

F
W

W

RCM FF SCP UKCP09 RCM FF SCP UKCP09 RCM FF SCP UKCP09

Product

A
ve

ra
ge

 a
nn

ua
l d

ef
ic

it 
(M

l)



Page 217 
 

 

 

 

Figure 8.23 Deficit locations in 2050s Market Forces 
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Figure 8.24 Deficit locations in 2050s Local Resilience 

 

Figure 8.25 Deficit locations in 2050s Sustainable Behaviour 
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8.3.3. Robust Options Analysis 

The previous section has shown the groups of optimal strategies under optimization. 

Without this pre-selection process, the number of all option portfolios to be 

considered would be 29=512; using the optimization model reduces the potential 

candidates to 39 distinct sets. However, as the Optimisation model only displays one 

Pareto optimal strategy for each scenario, it could not compare the performance of 

that optimal strategy against other sub-optimal strategies. For instance, Option A is 

optimal for Scenario 1 and Option B is optimal for Scenario 2; however, the 

Optimisation model does not give any comparison of Option A versus Option B in 

both Scenario 1 and 2. To overcome this limitation and achieve a robust option that 

works well under all scenarios, this section used the simulation model to analyse the 

performance of all the options that the Optimisation Model has selected. Moreover, 

this analysis will further test option performance under imperfect information, as 

supply operation is now rule-based instead of being optimized based on perfect 

knowledge of climate and demand information. 

 

Under imperfect information and rule-based operation, the Sussex system is much 

less robust to climate and demand risks. In particular, the Optimisation Model could 

successfully cope with the 2020s water demand without the need of any additional 

option (Figure 8.26). Meanwhile the Simulation Model indicates the need of extra 

measures. Amongst the portfolios, d4 (Arun Abstraction), d7 (Ford Effluent Reuse), 

d4-d8 (combination of Arun Abstraction and Wellfield Optimisation), or d2-d4-d8 

(set d4-d8 and demand management via universally metering) are the most effective 

strategies to reduce supply deficit. While the operational cost of d4, d7 or d4-d8 is 

similar, the cost of the d2-d4-d8 is significantly higher due to the implementation of 

demand meters (Figure 8.27).  

 

The results further show that the performance rank of the strategies remains quite 

consistent under different climate products. This is the case even for the unbias-

corrected RCM projections. Thus while the absolute supply deficit vary across 

scenarios, the decision makers can expect that the combined strategy of d2-d4-d8 or 

the single option d7 will be amongst the most effective measures.  
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Figure 8.26 Average annual supply deficit in the 2020s. The % Frequency colour 

gradient shows how often the option was selected in the Optimisation Model, 

such that the option in red was the dominant option of the Optimisation Model.  

 

 

Figure 8.27 Average annual supply cost in the 2020s. The % Frequency colour 

gradient shows how often the option was selected in the Optimisation Model, 

such that the option in red was the dominant option of the Optimisation Model. 
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In other words, the post-processing uncertainty in climate projections is a significant 

uncertainty factor in determining the climate change impacts; however, in terms of 

decision making, this uncertainty do not play a major role and the preferential 

ranking of the options is still preserved. While both have similar mean effect, effect 

variation (represented by the span of the box plot) of the former is smaller than that 

of the latter; yet, d2-d4-d8 is significantly more expensive to implement and operate 

than d7.  

 

Overall, the Simulation Model indicates that all the measures could restrict supply 

deficit to under 150 Ml/year; however the particular selection will be dependent on 

the financial budget and the risk averseness level of the decision maker. The results 

also highlight the impacts of scenario variation to option selection. Under the time 

series-based RCM and FF products, the selected optimal options vary in response to 

the decision sensitive conditions and the dryness of the scenario. Meanwhile, the 

Change Factor-based SCP and UKCP09 have a strong dominant option for 2020s 

and 2030s. However, the dominance of the inaction strategy (0) under the SCP and 

UKCP09 product could also be due to their relatively less severe climate conditions, 

compared to the RCM and FF products.  

 

Considering the 2030s, the situation and the options remain similar to those of the 

2020s. d7 and the portfolio d2-d4-d8 are still the best performing and least varying 

strategies (Figure 8.28). Again, the adaptation choice depends on the decision 

maker’s preference on the operational and investment cost, as well as the supply 

safety margin of the option. However, the need to adapt is not yet pressing, and in 

various scenarios, the system can still supply sufficiently deficit using the existing 

sources. 
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Figure 8.28 Average annual supply deficit in the 2030s. The % Frequency colour 

gradient shows how often the option was selected in the Optimisation Model, 

such that the option in red was the dominant option of the Optimisation Model. 

 

Moving to the 2050s, the adaptation strategies become much more difficult as beside 

the climate factor, demand uncertainty also becomes a major controlling factor. 

Under the mild demand change scenarios of Innovation (Figure 8.29) and 

Sustainable Behaviour (Figure 9.30), there is no need to implement more than the 

strategies identified for the 2020s and the 2030s. The system is highly dependent on 

groundwater supply and therefore extremely sensitive to groundwater outages. 

Supply deficit does not change significantly under the headroom demand, which is 

5% higher than the baseline demand. This phenomenon thus shows that the system 

has sufficient capacity to cope with this demand deviation. However, when demand 

growth is coupled with groundwater unreliability, annual supply deficit risks shift 

upward by approximately 500 Ml in the Innovation scenario. (Figure 8.28) while 

remaining unchanged in the Sustainable Behaviour (Figure 8.29). As such, while 

both of these socio-economic scenarios are of water shortage risk, the Sustainable 

Behaviour scenario is more resilient and robust to additional pressure from 

groundwater outages. 
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Figure 8.29 Average annual supply deficit in the 2050s under the Innovation 

socio-economic scenario. The % Frequency colour gradient shows how often the 

option was selected in the Optimisation Model, such that the option in red was 

the dominant option of the Optimisation Model.  

 

 

Figure 8.30 Average annual supply deficit in the 2050s under the Sustainable 

Behaviour socio-economic scenario. The % Frequency colour gradient shows 

how often the option was selected in the Optimisation Model, such that the option 

in red was the dominant option of the Optimisation Model. 
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Under the more severe 2050s Local Resilience scenario, supply deficit further 

increases Figure 8.31). As demand growth becomes a more dominant uncertainty 

factor, the differences due to using different climate products diminish. In essence, 

RCM, FF, SCP and UKCP09 all show similar supply deficit levels under the 

baseline demand, headroom demand and additional groundwater outage risks. Yet 

the supply deficit is quite high (4000 Ml/year ~11 Ml/day shortage) and thus shows 

that all the available options are not sufficient to reduce the water supply deficit. As 

Section 8.3.2 has demonstrated that these deficits mainly occur in the South East 

Water transfer, there exists a need to identify options that can reduce the deficit, 

such as changing the reservoir control curve, transferring water from the other part 

of the network to this area, build new supply sources or renegotiate with South East 

Water regarding the transfer agreement. 

 

Figure 8.31 Average annual supply deficit in the 2050s under the Local 

Resilience socio-economic scenario. The % Frequency colour gradient shows 

how often the option was selected in the Optimisation Model, such that the option 

in red was the dominant option of the Optimisation Model.  

 

The socio-economic trend of Market Forces will pose significant risks of failures to 

the Sussex system. As the Optimisation Model has demonstrated, heavy investment-
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metering in the whole area become necessary. Under the 2050 Market Forces 

scenarios, the single options are not adequate to abate supply shortages; 

consequently all the selected sets contain at least two options (Figure 8.32). While 

offering more coping capacity to drought risks, the combined options are often 

expensive and the operation cost of the system increases with the addition of each 

option (Figure 8.33). Under a 5% increase from the baseline demand, the overall 

supply deficit increases; however when groundwater supply reduces, the system 

suffers less deficit shortages overall; however analysis on each water resource area 

shows that this reduction is due to a smaller overall deficit in Worthing and 

Brighton; however, the failure frequencies increase in all of these areas. 

Furthermore, while total deficit reduces in Worthing and Brighton, groundwater 

outages lead to higher supply deficit and supply failure frequency in Sussex North. 

While there is a close link between magnitude and frequency of failures, these 

changes show that groundwater outage risks affect not only the magnitude of 

failures but also their frequency; furthermore, they show that the level of risks can 

change differently in each resource area in response to the same risk factor. Under 

the same socio-economic scenario, optimised planning options selected for the RCM 

and the FF products often have higher supply capacity, added by demand reduction 

via metering. This is because the RCM and the FF products project a higher level of 

water shortage due to the diminishing of surface flows in River Rother and River 

Medway (which feeds the Weirwood Reservoir). 
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Figure 8.32 Average annual supply deficit in the 2050s under the Market Forces 

socio-economic scenario. The % Frequency colour gradient shows how often the 

option was selected in the Optimisation Model, such that the option in red was 

the dominant option of the Optimisation Model.  
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Figure 8.33 Average annual supply cost in the 2050s under the Market Forces 

socio-economic scenario. The % Frequency colour gradient shows how often the 

option was selected in the Optimisation Model, such that the option in red was 

the dominant option of the Optimisation Model.  

 

8.4.CONCLUSION 

 

In conclusion, this chapter has further analysed the options available to the study 
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different climate products can lead to different optimal adaptation needs and plans. 

In essence, under the mild SCP climate projections, the area does not need any 

adaptation strategies until 2050s when adaptation strategies will be driven by the 

actual demand growth. On the other hand, the RCM and FF projections indicate an 

early need of adaptation since the 2020s and an increasingly need for utilising the 

options in 2050s. The UKCP09 product, which has been post-processed to include a 

wider range of uncertainty, does not indicate a significantly higher need of 
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adaptation. Indeed, the system appears to be robust under the SCP and UKCP09 

conditions and with little need of additional supply or demand measure. Yet, the 

system is much less robust under FF and RCM and needs the assistance of at least 

universal demand metering, Arun abstraction or Ford effluent reuse. The 2020s and 

2030s are still dominated by climate uncertainty, with options selected mainly due to 

the different climate sources and the projected climate condition in that specific 

scenario. In the 2050s, such influence interacts and is influenced by demand 

uncertainty, with demand and climate uncertainty being two major controlling 

factors in the Innovation, Local Resilience and Sustainable Behaviour scenarios. 

However, once demand grows past the 35% threshold from the 2007 baseline 

demand, it becomes the most important factor on system vulnerability and which 

adaptation strategies to be selected. The extreme demand profile leads to the key 

role of universal metering, desalination plant in Brighton and the combination of 

Arun Abstraction, Ford effluent reuse and Wellfield optimisation in the Sussex 

North area. For certain ensembles of the RCM and FF products, as well as certain 

scenarios of the UKCP09 product, additional measures such as transfer 

augmentation and aquifer storage and recovery in Worthing are also indicated.  

 

Yet, the simulation model depicts a much more fragile and responsive water 

resource system. In order to reduce supply deficit, the decision maker will need to 

consider Arun Abstraction, Ford Effluent Reuse or a combination of Arun 

Abstraction, Wellfield Optimisation and optimal demand metering. As these choices 

perform quite similarly in the 2020s and the 2030s, the choice depends on the 

preference of the decision makers, such as the preferred safety margin and the 

financial budget. Nevertheless, the performance ranks of the options do not change 

even if different climate products are used. Even with the un-bias corrected RCM 

projections, the ranking is quite similar to the much more processed UKCP09. It 

thus shows that while climate uncertainty dominates the uncertainty space, an 

effective adaptation decision may largely reflect the local vulnerability rather than 

explicitly relying on the climate products. Yet, the more robust decisions are, the 

higher the operation and investment cost. Since the climate product is essential to 

determine the level of supply deficit, it is essential for selecting which level of 

robustness the decision makers should aim for.  
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Overall, the sets of options are sufficient to reduce the area’s vulnerability under 

optimization but not under simulation. The remaining deficits in transferring to 

South East Water and in fulfilling the environmental flow requirements are inherent 

to the Sussex delivery network attributes. In particular, there is no option that can 

influence environmental flows, and the location of the transferring SEW node does 

not allow for receiving water supply from other parts of the network. While this 

SEW deficit does not pose direct risks to the Sussex network, it indicates that 

Southern Water and South East Water need to revise their transfer agreement in 

view of future climate risks. Besides, it also demonstrates that inter-regional 

transfers may not be as robust as assumed. In this study, the Portsmouth transfer was 

assumed to be perfectly reliable; however, its reliability in practice is dependent on 

the drought extent and the supplying capacity of Portsmouth water under droughts. 

Therefore, the study indicates a need for future research on inter-regional drought 

risks and water operation.  
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Chapter 9. ROBUST ADAPTATION PATHWAY ANALYSIS- A 

DISCUSSION 

 

9.1.REVISITING ROBUSTNESS IN THE SUSSEX CONTEXT 

 

9.1.1. Comparison of the robustness frameworks 

The previous chapters have demonstrated the cascade of uncertainty from climate 

change information to the water resource planning stage. Overall, climate post-

processing and demand scenarios are two controlling uncertainty factors of the water 

supply deficit level; however, the location and the level of system vulnerability are 

determined by the attributes of the water delivery network and the available options. 

This section revisits the concepts and frameworks of robustness as discussed in 

Chapter 2; based on the results of the previous chapters, it analyses these aspects of 

robustness in the context of the Sussex water resource system. It focuses on option 

robustness and system robustness, which emphasise the coping range of an option 

versus the overall system.  

 

As reviewed in Chapter 2, robustness approaches in water resource planning 

includes robust optimisation, real option analysis, info-gap decision theory and 

robust decision making. Overall, they deviate from the traditional model of relying 

on a single scenario or distribution of outcomes. Furthermore, they emphasize the 

multi-source and multi-impact nature of uncertainty. Classical engineering and 

statistical robustness aims to maximize the possibility of the chosen option being the 

optimal strategy under imperfect information. Another robustness measure, the crisp 

set approach (Rosenhead et al., 1972), meanwhile considers the number of pathways 

before and after implementing a decision. As such, an option that strengthen the 

supplying capacity of the system but rules out the implementation of other strategies 

is considered robust by the engineering approach but not so by the crisp set 

approach.  
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Both of these aspects are relevant to adaptation decisions as such decisions should 

cope with the present risks but also accommodate potential system transitions in the 

face of uncertainty and future risks. As a combined extension of these approaches, 

the Real Option approach considers the whole adaptation process as a decision tree 

from which decision makers can consider trade-offs between the least-cost pathways 

versus the flexibility to adapt. Meanwhile, the Info-gap Decision Theory and the 

Robust Decision Making approaches focus on the uncertainty element. The former 

looks at possible levels of deviation from the ‘best estimates’, in this case the 

projections of climate conditions and water demand level, and gauge the option 

performance against its working uncertainty zone (Korteling et al., 2013). For 

instance under perfect information, option A is the optimal least-cost option; 

however its performance quickly deteriorates if demand increases by 5%; 

meanwhile a suboptimal option B could continue maintaining its performance up to 

a demand grow by 10%. Under the Info-gap approach, option B would be identified 

as a robust option instead of the option A.  

 

Finally, the Robust Decision Making approach is distinctive compared to other 

approaches due to its emphasis on vulnerability assessment. Similar to the Info-Gap 

Decision Theory Approach, it considers the effectiveness of options under deep 

uncertainty in the form of different scenarios. In particular, the decision makers can 

state a performance threshold level above which the system is considered to be 

vulnerable and the options ineffective. Additional options or alternatives are then 

identified and assessed toward the goal of obtaining a satisfactory level of system 

performance. For example, the decision makers may want their water system to have 

no system failure under 80% of the scenarios; nevertheless under the current system, 

30% of the scenarios experience system failure. The analysis then focuses on these 

30% of scenarios and identifies strategies that can reduce failures to a 20% level. 

 

Within the context of the Sussex case study, certain aspects of these robustness 

approaches have been implemented in the analysis. The study combines the Robust 

Optimisation approach and the Robust Decision Making approach to identify both 

the optimal and the satisficing options. Moreover such a hybrid approach would help 

reduce the number of option combinations (29 =512) to be considered in the Robust 
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Decision Making step. The Optimisation process (Chapter 8) has produced a set of 

39 option portfolios for Robust Decision Analysis. Also, instead of iteratively 

consulting the decision makers on their criterion threshold, the model proceeded to 

compute different criterion values using different option portfolio. As such, the 

decision makers can be aware of the full range of the option performance, as well as 

the associated cost. With the classical Robust Decision Making approach, the 

decision maker focuses on their current preference, with this improvised approach, 

they can consider changing their preference level.  

 

In terms of constructing the demand and supply scenarios, the approach also enables 

a partial application of Info-Gap Decision Analysis. Specifically for the 2050s 

period, the baseline and the headroom Demand (5% increase compared to the 

baseline) in the four scaling levels of the 2007 demand (namely -4%, 35%, 8% and -

15%) can represent deviations from the 2007 demand state and possible option 

portfolios that work well under these ranges of deviation. Finally, by considering the 

common options amongst the time periods of 2020s, 2030s and 2050s, the decision 

makers can consider potential implementation pathways that balance between 

drought risk reduction and system flexibility. The analysis is thus not restricted by 

any pre-determined preference of robustness level and can accommodate the 

decision makers’ changes in risk averseness. 

 

9.1.2. Adaptation Robustness Analysis 

9.1.2.1.Robustness to climate uncertainty and water resource uncertainty 

The challenge of a changing climate is one of the key tests for adaptation decisions. 

Under deep uncertainty of climate change impacts, the Sussex water resource system 

has to address potential risks from drier summers and more variability in water 

supplies. Overall, the Sussex system is relatively robust to the past drought patterns 

but performs poorly under new drought sequences as projected by the FF ensembles. 

As such, there is also an uncertainty due to climate products, in this case the 

different post-processed products of the HadRM3 runs. The impacts projected by 

various climate models and their ensemble members are quite diverse as illustrated 

in Chapter 5. Four climate products have been considered: the original HadRM3, the 

bias-corrected and downscaled RCMs from the Future Flows (FF) project, the 
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Spatial Coherent Projections and the original UKCP09 change factors from the Land 

Projections. They all originated from the HadRM3 projections and have undergone 

different types and level of processing, and thus include different additional 

uncertainty factors. Three of these products, the FF group, the SCP and the UKCP09 

product, have been used in various climate impact studies for droughts and floods in 

the UK. The original RCMs, meanwhile, are less used in its original form without 

further bias correction in the projections or subsequent impact results. These four 

different products point towards a general climate trend: compared to the 1961-1990 

baseline, the period of April to September will become drier while the remaining 

months will become wetter. This change in seasonal pattern is more pronounced if 

the increasing trend of PET is included in the analysis. These climatic changes 

subsequently affect the stream flows, in particularly the River Rother-the main 

surface water source of the Sussex area. Analysis on the low flows of the River 

Rother and the correlation between the observed flows and the drought indicator 

SPEI shows that under dry conditions, the summer flows become strongly dependent 

on the winter rainfall (refer back to Figure 6.2). As such, the Sussex water resource 

system needs to plan for the diminishing summer supply. The risk from diminishing 

summer supply can be abated to a certain extent by the increase in winter flows; 

nevertheless the risks remain since the annual water balance is generally lower than 

that of the 1961-1990 baseline period.  

 

Aside from the climate uncertainty that these products represent, there also exists 

post-processing uncertainty from different sources of information, even within the 

1961-1990 baseline period. This bias was partially accounted for by comparing the 

projections of each product against the baseline of the same product. Amongst the 

climate products, the 10,000 realisations of the UKCP09 product demonstrate a 

wider range of drought frequencies than the other 11-member products. The SCP 

product, despite being described as the closest to the UKCP09 product, projects a 

smaller span of drought frequencies and depending on the drought types, is within a 

comparable range to the frequency ranges of the RCM and FF group. Yet, when this 

post-processing uncertainty trickles down the uncertainty cascade, the UKCP09 

product does not necessarily represent the most challenging conditions to the Sussex 

water resource system. The vulnerability analysis in Chapter 7 shows that amongst 
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the products, the Future Flows conditions exert a higher risk of supply and 

environmental flow deficits compared to the UKCP09 conditions. This result was 

cross-validated by both the Simulation Model and Optimisation Model of the area. 

In particular, the Sussex water system appears to be robust to variations of the 

droughts in the 1961-1990 periods, such as those projected by the SCP and the 

UKCP09 group. While the UKCP09 and the SCP products represent climate change 

impacts, they still revolve around the pattern of past droughts, in particularly the 

droughts within the 1961-1990 baseline because they only provide monthly tri-

decadal changes. Both the Optimisation Model and the Simulation model 

demonstrate that the most severe droughts within the SCP and the UKCP09 products 

are the 1975-1976 and the 1988-1989 droughts. These are also the most serious 

droughts within the 1961-1990 observed period in the Sussex area. The worst 

historic event in 1921-1922 did not fall within the baseline. This robustness to past 

droughts was achieved due to the current drought planning practice of the water 

companies in England and Wales. In many cases, the drought plan and adaptation 

decisions have been based on the worst historic droughts. Yet, when operating under 

a different sequence of droughts as projected by the FF time series, the Sussex water 

system is much less robust. The post-processing uncertainty also dominates 

hydrological flows: even with various hydrological model parameterisations, the 

flow projections are still markedly different amongst the climate products. While 

these climate products do not change the ranks of performance of the adaptation 

strategies in simulated results, they might lead to different preferential pathways 

under optimisation. The climate products can greatly affect the level of adaptation 

needs. Under the mild changes that the SCP product project, decision makers can 

opt for low cost, low impact and a gradual adaptation pathway. On the other hand, 

responses to higher drought risks of the FF information will require compound 

supply and demand options that also incur high investment cost. As such, the post-

processing uncertainty is a major uncertainty factor in determining the adaptation 

plan and pathways.  

 

The post-processing uncertainty is also visible at the water resource model level. 

The Optimisation Model considers system operation under perfect information, 

while the Simulation Model demonstrates the actual risks under partial or uncertain 
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information. For instance, the Optimisation Model calculates the storage of the 

Weirwood Reservoir and uses groundwater licenses according to the impending 

demand and supply. Therefore it can proactively plan the amount of water to be 

stored in the Reservoir, as well as reserve groundwater in views of a drought. 

Meanwhile the Simulation Model is rule-based and extracts the supply sources 

based on the demand. Due to the difference between optimisation and simulation, 

adaptation results under simulation are sensitive to the level of risks, in this case 

diminishing supply due to the changes in surface flows. Therefore adaptation 

planning using simulation is sensitive to climate uncertainty. Meanwhile, 

optimisation can better accommodate changes in water shortage risks, but as a 

consequent of these changes opts for different preferred adaptation plans. 

Consequently, adaptation planning using optimisation is sensitive to both climate 

uncertainty and post-processing uncertainty. Consequently, the Sussex system 

appears much less robust under simulation than optimisation. In practice, as climate 

uncertainty constitutes a major factor in adaptation decisions, the perfect 

information state such as projected in the Optimisation Model cannot be achieved. 

The system in practice is likely to be a combination of both the Optimisation Model 

and the Simulation Model, as the operation of the water system could be modified 

rather than fully rule-based.  

 

9.1.2.2.Robustness to inflow changes 

Overall, the Sussex system still shows a dependence on the River Rother flows and 

the supply capacity is still affected by low flows. Figure 9.1 shows the 90th 

percentile of daily flows (also termed Q90) (as assessed in Chapter 6) of each 

scenario versus its corresponding supply deficit and operational (reported in Chapter 

7 and 8). It can be seen that a scenario with a low Q90 flows tends to have higher 

supply deficit than a scenario with higher Q90. This correlation is evident in the 

UKCP09 group which due to its large number of 1000 realisations could highlight 

the relationship between low flows and supply deficits. Chapter 8 has demonstrated 

that except for the Market Forces scenario, the deficits mainly occur in the Sussex 

North area, particularly in the transfer from Weirwood Reservoir to South East 

Water. This deficit in the transfer cannot be alleviated by the adaptation strategies 

since they are located around the Rother area and do not contribute towards the 
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South East Water transfer. Therefore, this vulnerability can only be targeted by 

changing the operation of Weirwood or re-negotiate the transfer agreement with 

South East Water. Besides, demand management options can also be employed to 

reduce the water shortage risks, particularly in dry scenarios and drought periods. 

While the adaptation options can modify this relationship, the system remains 

vulnerable under the dry scenarios. In essence, scenarios with Q90 being less than 

100 Ml/day are likely to experience on average an annual supply deficit of 100 Ml 

or more. These deficits originate from three vulnerability factors: the strong reliance 

of the Sussex supply system on the River Rother, bottle-necks in the system due to 

transfer capacity constraints, and the spatial distribution of the current options. 

 

Comparison based on Figure 9.1 and 9.2 also show that the operational cost remains 

fairly stable for each portfolio, therefore the chosen adaptation plan might determine 

the future operational cost. They further highlight the comparative performance of 

the portfolio, for instance for the 2030s, option d2 and d2-d4-d8 are expensive 

options that could significantly reduce the supply deficit. However, they are of 

significantly higher cost compared to other potential options. In essence, for the 

2030s Base case, the d4 options could achieve a similar level of supply deficit at a 

much lower cost. 
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Figure 9.1 Graph of Q90-Operational Cost-Supply Deficit of the Sussex water resource system under different climate products and headroom 

uncertainty for the 2020s 
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Figure 9.2 Graph of Q90-Operational Cost-Supply Deficit of the Sussex water resource system under UKCP09 for the 2020s, 2030s and 2050s 

Market Forces 
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9.1.2.3.Robustness to Demand Changes 

The Sussex system could cope with climate risks and natural variability under the 

2020s and the 2030s demand projections. However in the 2050s demand changes 

become a controlling factor on system robustness and adaptation needs. In essence, 

under the Innovation, Local Resilience and Sustainable Behaviour socio-economic 

scenarios, the adaptation plans produced by the Simulation and the Optimisation 

Model remain similar to those of the 2020s and the 2030s. However, to cope with 

the 35% growth from the 2007 demand baseline, the system will need to rely on a 

new desalination plant in the Brighton area and demand management measures via 

universal metering. The additional risks from demand growths at the headroom level 

and the additional groundwater outages could further test the system supply 

capacity. As such demand changes are an important factor in determining the 

adaptation needs and pace. Therefore, demand changes should be monitored and 

used as an indicator for potential option switch and/or retrofit. Such approach could 

be implemented into the 5-year planning cycle so that water management plans are 

designed to cope with the current risk level, but also to strategically build a robust 

system in view of future risks. Yet, the real socio-economic situation of the Sussex 

area in the 2050s is unlikely to be characterised by a single scenario; rather it will be 

a combination of all, with certain proportion of the population and governance gears 

toward sustainability while the remaining still attach to consumerism (Environment 

Agency, 2008). The demand growths of the four EA scenarios therefore act as a 

reference rather than an absolute value for potential demand growth and its 

uncertainty.  

 

When different demand growth levels for the 2050s are displayed as deviations from 

the 2007 annual demand, it can be seen that on average the multiple option 

portfolios can accommodate the demand changes better than the single ones (Figure 

9.3). At the same level of demand growth, the former help the Sussex system to 

contain the supply deficits at a lower level than the latter. At each level of demand 

deviation, the performance of each option also varies across the scenarios (Figure 

9.4). For instance, the portfolio of Arun Abstraction, Hardham Wellfield 

Optimisation, and Aquifer Storage and Recovery has a more ranging performance, 
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represented by the span of the annual supply deficit criterion, than the portfolio of 

Brighton Desalination Plan, 98% universal metering, Arun Abstraction and 

Hardham Wellfield Optimisation. Therefore the former portfolio can be considered 

more robust than the latter portfolio in terms of maintaining low supply-demand 

deficit under demand uncertainty. However, the portfolios with better and more 

reliable performance are often more expensive to invest and to run. Therefore the 

final decision rests with the decision makers on what investment budget and water 

shortage level that they can accept. It should be noted that these demand changes do 

not include specific interactions between climate change and demand growth, such 

as those that the CCDEW report (Downing et al., 2003) has demonstrated. To a 

certain extent, this growth is included in the headroom demand level; however, 

climate change effects on demand are likely to be seasonal and weather-dependent. 

Therefore it could be an additional risk in making the demand growth the controlling 

factor of system robustness.  

 

 

Figure 9.3 Graph of the changing overall average annual supply deficit as water 

demand deviates from the 2007 level 

0

20

40

0 500 1000 1500 2000
Annual Supply Deficit (Ml)

a
lp

ha
- 

%
 d

ev
ia

tio
n

 fr
om

 th
e

 2
0

0
7 

w
at

e
r 

de
m

a
nd

 le
ve

l 

Option

d1-d2-d3-d4-d7-d8-d9

d1-d2-d4

d1-d2-d4-d7

d1-d2-d4-d7-d8

d1-d2-d4-d7-d8-d9

d1-d2-d4-d7-d9

d1-d2-d4-d8

d1-d2-d4-d8-d9

d1-d2-d4-d9

d2-d4

d2-d4-d6-d7-d8

d2-d4-d7

d2-d4-d7-d8

d2-d4-d8

d2-d4-d8-d9

d4

d4-d7

d4-d8

d4-d8-d9



Page 243 
 

 

 

Figure 9.4 The ranging performance of each portfolio under different level of 

alpha 

 

9.1.2.4.Robustness to different supply reliability   

The study has considered supply reliability in surface supply under the climate 

change impacts and in groundwater supply in the additional scenarios of 5% 

reduction of groundwater supply. This reduction represents the outage risks, such as 

when the groundwater source becomes unavailable due to pumping faults or 

floodings. In its original definition outage events are temporary loss of up to 90 

days; any durations longer than that are considered as out of service period. By 

being uniformly applied to the whole time series, to a certain extent this 5% supply 

reduction takes into account other potential climate change effect or supply 

reduction due to changes in licenses and legislation (e.g. the effect of the Habitat 

Directive- which is often termed sustainability reduction). In essence, this 5% 

reduction can include the long-term 3% loss of supply of the underlying Chalk 

aquifer in Sussex (Table 9.1). However, it does not implement the seasonal changes, 

which manifest as winter increase and summer reduction. Therefore there are still 

additional risks of dwindling groundwater sources in the 2050s.  
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Table 9-1 Potential impact of climate change on groundwater by 2025. Source: 
Environment Agency (2009)  

 
 

Overall, the modelling results in Chapter 7 and 8 show that groundwater outages do 

not pose a significant risk to the Sussex area at the 2020s and 2030s water demand 

level. Nevertheless it becomes a major constraint in the Market Forces 2050s since 

both the Sussex Worthing and Sussex Brighton are highly dependent on 

groundwater, the source of approximately 70% of their current water supply. Under 

the 2020s and the 2030s situations, these groundwater sources can accommodate the 

water demand, but the 2050s Market Forces level requires the need of additional 

supplies from desalination. Under high demand level and groundwater outages, the 

constraints on transfer capacity between Sussex North and Sussex Worthing as well 

as between Sussex Worthing and Sussex Brighton can also lead to system collapse. 

As most of the adaptation strategies rely on the Rother area, transferring water from 

this area towards other resource zones will become a key need for future adaptation 

plan. Moreover their total supply inputs are restricted by the treatment capacity of 

the Hardham Water Treatment plan, which can sufficiently be reduced during 

floods. Therefore, the system is at risks not only during prolonged droughts, but also 

during floods. Asides from the d3 option, which enhance the transfer from the 

Rother area to the Weirwood and Worthing area, the system might need further 

transfer enhancement to abate the risk of demand growth and groundwater outages. 

Consequently, in order to be robust to the varying reliability level of supply sources, 

the system needs to implement other options than the nine options being considered 

in this study, so that it can successfully cope with outages in the Worthing and 

Brighton area. In this study, the transfer between Portsmouth Water and Sussex 

North was assumed to be perfectly reliable. Nevertheless, water transfer amongst 

water companies could still be under the threats of prolonged regional droughts. In 
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the Sussex area, the transfer from Weirwood Reservoir to South East Water has been 

shown to be highly susceptible to drought risks. The potential risks of transfer 

failures thus should be considered in adaptation plans and further analysed in a 

wider regional context.  

 

9.1.2.5.Robustness to adaptation plan switching 

Due to the richness of options, the Sussex supply system can be gradually enhanced 

in its coping capacity; therefore it can accommodate the flexibility aspect of the 

robustness concept. The options identified in Chapter 8 enable several adaptation 

pathways. These pathways are dependent on the budget and risk averseness of the 

decision makers, as well as the climate product that the plan is based on. In the 

2020s, single-option plan such as universal metering (d2), smart operation of an 

existing supply source (d8-Wellfield Optimisation), Arun Abstraction (d4), Ford 

Effluent Reuse (d7) or a combination of d2-d4-d8 or d4-d7-d8 could enhance the 

robustness of the Sussex resource system.  

 

In practice, since the publication of the 2009 Water Resource Management Plan 

(Southern Water, 2009b), the company has implemented option d4, thus orientates 

the adaptation plan towards option portfolios involving the Arun Abstraction. 

Therefore the company can choose to rely on d4 or additionally implement universal 

metering, Wellfield Optimisation or Ford Effluent Reuse. As the adaptation needs in 

the 2030s do not differ substantively to the 2020s, the decision makers can choose to 

enhance their 2020s options or extend from the single or double option into a 

portfolio of three options. In the 2050s, the adaptation pathways would  depend on 

the level of demand growth. Under the Innovation and Sustainable Behaviour 

scenario, the Sussex system can still rely on its 2020s and 2030s composition. As the 

Sustainable Behaviour scenario projects a lower demand level than the 2020s and 

2030s, the system can even revert back to just using Wellfield Optimisation or Arun 

Abstraction.  

 

On the other hand, under the Local Resilience scenario, the system is likely in need 

of additional options that have not been selected in the 2030s. To accommodate this 
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8% demand growth, depending on the climate scenario, the Sussex system relies on 

universal metering to reduce demand, Arun Abstraction, Ford Effluent Reuse and 

additionally the Aquifer Storage Recharge in Worthing (d9). While this d9 option is 

not selected in all the scenarios of UKCP09 or FF, its occurrence indicates potential 

risks of shortages in Worthing that have activated the option. Overall the common 

portfolios in the Local Resilience scenario should contain two or more options. 

Universal metering starts to appear as a key option under this socio-economic 

scenario. In contrast to other socio-economic scenarios, the Market Forces scenario 

projects a steep increase in water demand and prompts the implementation of all 

available adaptation options. In particular, under this scenario, universal metering 

and desalination become the core strategy that occurs in every adaptation plan. 

Aside from these two options, the system also needs addition implementation of d4, 

d7 and d8. D4 and d7 tend to not overlap in the medium impact portfolio; these 

plans often include either d4 or d7. Under headroom demand and groundwater 

outage risks, the whole option set is often selected. Out of the two desalination 

options for Brighton (d1 and d6), the higher capacity design were selected by the 

Optimisation Model due to the severity of water shortages. As d1 and d6 are 

mutually exclusive, the d6 option was not featured in the adaptation plan for the 

Market Force 2050 scenarios. Overall, the potential adaptation plans across the 

2020s, 2030s and 2050s period show that the Sussex system can accommodate 

flexibility in their planning.  

 

As an example, Figure 9.5 and Figure 9.6 demonstrate the potential adaptation 

pathways under climate risks projected by the FF product under different demand 

profiles, namely baseline demand, headroom demand and headroom demand with 

groundwater outage risks. In particular, Figure 9.5 shows the most robust options, 

selected as the options with the smallest worst-case scenario deficit. If there is more 

than one option that can achieve that level, the selected option is the option with the 

lowest investment cost. On the other hand, Figure 9.6 shows other available options 

that could keep the maximum water deficit under 150 Ml/year. A comparison 

between the two figures show that the most robust option is not always needed to 

obtain this level of performance. Under baseline demand, while the combo of d2-d4-

d8 is the best available option for the 2020s, it is not strictly needed for the deficit 



Page 247 
 

 

target of under 150 Ml/year. Figure 9.6 demonstrates that this target could be 

reached using either d8, d4, d4-d8 or d7. Similarly, d2-d4-d8 is still the best 

available option with least cost, but the set of d4-d8 is sufficient for the target. Yet, 

moving to the 2050s, under Market Forces and Local Resilience, even the most 

robust set of options could not keep water deficit under 150 Ml/year. The decision 

makers therefore need to consider other options or be prepared to cope with deficit 

risks of more than 150 Ml/year.  

 

Figure 9.5 and 9.6 also demonstrates the need of additional options under increased 

risks. Under baseline demand, the best available least cost option for the 2020s and 

2030s is the d2-d4-d8 set; however, under the headroom demand, this set starts to 

show limitations in supply capacity, and as a result, performs less well than the d2-

d4-d8-d7 set. Moving to the 2050, d1 appears to be an essential additional to the 

most robust set under the Innovation socio-economic scenario. A similar 

phenomenon was observed in Figure 9.6. Under the baseline demand, the single 

option d8 is the least cost acceptable option. However, under headroom demand, d8 

is not sufficient and the least cost acceptable option is now the d2 option. 

Meanwhile, under the Innovation scenario in the 2050s, d7 is an acceptable option 

for baseline demand, but not so under headroom demand. Under headroom demand, 

it needs to be coupled with either d4, d8 or d2 to achieve the target deficit threshold.  

 

As such, demand uncertainty dominates the 2050s, as the specific demand profile 

and socio-economic scenarios could determine adaptation outcomes. In the Market 

Forces and Local Resilience scenario, there is a limit to adaptation since even the 

most robust set of options cannot restrict water deficits to under 150 Ml/year. As 

such, additional iterations which reconsider other potential options and the interval 

of acceptable performances (refer to Figure 3.4) might be beneficial. In particular, 

these additional options should address the vulnerabilities identified in Chapter 7, 

such as the transfer bottle-neck between Hardham and the Weirwood area, and 

enhance the Weirwood part of the supply network. On the other hand, changing the 

acceptable risk level could also be a useful exercise to explore other potential coping 

schemes, which should also tackle the cascading effects of such risk level.  
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Figure 9.5 The most robust adaptation pathways to cope with drought risks 

projected by FF.  The interchange sign indicates when an option joins the portfolio. 
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Figure 9.6 Available adaptation pathways to maintain water supply-demand deficit 

to under 150 Ml/year in all scenarios. The interchange sign indicates when an option 

joins the portfolio.   
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9.2.FACTORS TO ADAPTATION SUCCESS- A WIDER CONTEXT 

 

The last section has presented robust decision analysis for the Sussex area in a 

modelling context. This section subsequently aims to discuss the adaptation 

decisions in a wider context, including the underlying assumptions in the modelling 

process. Via an integrated assessment of the uncertainty cascade, the study has 

demonstrated that the Sussex water resource system can become robust via a flexible 

and sequential implementation of options. However it still remains susceptible to 

potential risks from post-processing uncertainty, demand uncertainty and source 

reliability uncertainty. A key feature of the current Sussex system as well as of the 

future plans is the high dependency on the Rother area. Nevertheless all the supply 

options in the Hardham area has to route via the Hardham Water Treatment plan, 

which is still restricted by the 75 Ml/d treatment capacity. This vulnerability factor 

has not yet been addressed in the current adaptation plan. Moreover the spatial 

concentration of the options around this area can place additional strains on the links 

and network in the Rother area. Under such strains, the link failure and leakages can 

be a key impediment to adaptation success. Finally, while being presented as distinct 

options in the plan, these options are still likely to connect hydrologically. In a wider 

context, the area shares the Chalk aquifer with other water companies, who are also 

extracting water from the rivers and the aquifer. The River Rother is quite well 

connected to the underlying aquifer, and therefore its base flow can potentially be 

affected by activities in its proximity or within the same aquifer. As such, the 

adaptation plan should also consider other options that are located elsewhere and can 

diversify the supply to the system. 

 

Aside from the supply augmentation option, the system can also rely on demand 

management to reduce the dependency on the supply side. In this study demand 

management has been considered in the form of universal metering that is assumed 

to reduce the demand level by 10%. However, the prospect of that reduction level is 

far from clear. Until 2003, the metering statistic was only 28% and most of the 

demand data was based on supply and leakage estimation. As both demand data and 

leakages were estimated, they are highly unreliable. As the current metering 

proportion stands at 50-70%, the new demand data have been rapidly accumulated. 
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However the lack of long demand records still impedes research on the demand 

pattern associating with different household demography, weather signals and 

demand management measures. Deep uncertainty still plagues demand projections. 

An OFWAT report in 2007 cited a UK Water Industry Research (UKWIR) study 

stating that socio-economic and climate factors determine 60% of the variation in 

pcc and the remaining 40% could not be explained. It was speculated to be due to 

other factors, including the different pcc accounting methodologies used by 

companies and data error of the demographic variable.  

 

The current level of per capita water consumption in the Sussex area is 

approximately 150 l/p/d on average and via metering is hoped to reduce to the 136 

l/p/d level. The basis of the universal metering option has relied on the assumption 

of reducing consumption if the users are metered and charged. Additionally 

metering data will help water companies to identify the leakage locations and further 

eliminate this loss. In comparison to the 2050s socio-economic scenarios, the 

Innovation scenario assumes a pcc of 125 l/p/d, the Market Forces 165 l/p/d, Local 

Resilience 140 l/p/d and the Sustainable Behaviour 110 l/p/d. If these assumptions 

hold, universal metering could help shape the 2050s toward the Innovation or the 

Local Resilience scenario. However a robust adaptation plan should not assume and 

rely on automatic demand reduction via metering. There is uncertainty surrounding 

whether that phenomenon of demand reduction is wide spread or can sustain over 

time. In reviewing past changes, Sharp (2006) has shown literature supporting this 

assumption (Baker and Toft, 2003; Jeffrey and Gearey, 2006) but also warned that 

the effect varies with different groups of water users and can result in different 

response pattern; domestic customers are also less likely to change their 

consumption amount than commercial customers (Achttienribbe (1998) in Sharp, 

2007).  

 

An EA report on household water metering has also found price elasticity, the 

changes in consumption due to 1% changes in price, of -0.14% in South East 

England. The assessment by Herrington (2005) estimated a higher reduction of -0.20 

to -0.25 over the summer. Based on these figures, the 10% demand reduction in the 

d2 option will require a 4%-9% increase in price. While this change is comparable 
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to the past price trend, its effects should be considered in a wider context of how the 

consumers of different cohort will respond. According to the Consumer Council for 

Water (2010), in 2009 a household in the South East spent on average £5.94 per 

week and for 11.9% households, that constituted more than 3% of their expense. 

Another survey by the Family Resource Survey, a survey on 25000 samples in the 

UK, estimates that the average spending on water accounted for 1.8% with and 2% 

without water meters of net household income. Therefore the changes in water price 

and tariff should be considered with regard to its socio-economic effects. As pcc is 

determined by consumption behaviour, changes in consumption at the micro level 

should also be considered and accommodated. The Family Resource Survey also 

shows that the household size and composition can also affect the water bills and 

water pcc. With similar demographic structure, a larger household tends to have 

higher water bills than a smaller household; however the average pcc of the larger 

household is often less than that of the smaller one. As future household size, 

demographic structure and household numbers will also affect the pcc and the 

overall metered water demand, there is a need to further incorporate demand 

uncertainty into future assessments. 

 

Finally a robust adaptation decision should go beyond least-cost planning and is not 

restricted by the analysis boundary. As demonstrated in Chapter 8 and Section 9.1, 

both Arun Abstraction and Ford Effluent Reuse are two strong candidates for the 

adaptation plan. The Arun Abstraction option was more often selected due to their 

smaller investment and operational cost. Yet, in a wider context, the Ford Effluent 

Reuse can offer additional benefit since it treats and recycles the effluents. It does 

not extract additional water from the supply and instead increase efficiency of water 

usage. It also reduces the need of large-scale infrastructures. As many water 

companies now manage both water supply and effluences, the overall benefit can 

outweigh the financial cost. Such added benefits however were not considered in 

this study due to its focus on water supply. The adaptation pathways in this study are 

likely to represent interests to cope with water supply shortages due to drought risks. 

This scope while helps focus the study, may potentially affect the adaptation 

capacity to other elements such as floods, water quality and the ecosystems. 

Therefore robust adaptation decision making should take a holistic approach that 
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integrate aspects of risks and vulnerability to the system, in order to find an 

adaptation pathway that considers and accommodates all the key risks.
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Chapter 10. CONCLUSIONS AND RECOMMENDATIONS FOR 

RESEARCH 

 

At the onset of the study, the research has specified two research questions regarding 

the roles of climate uncertainty in drought planning decisions and whether the 

different aspects of robust decision analysis can be implemented in such assessment. 

This chapter outlines the key findings, implications and recommendations arising 

from the research with reference to the research aims and objectives in Chapter 1. It 

summarises the results of the integrated uncertainty assessment in this study, 

implications for robust adaptation decision making within the scope of the study and 

beyond, as well as discussing the limitation of the research and recommendations for 

future research. 

 

10.1.REVIEW OF RESEARCH AIMS AND SUPPORTING FINDINGS 

 

As specified in Chapter 1, the study aims to explore the components in the 

uncertainty cascade from climate projections, hydrological modelling, water 

resource modelling and option identification. The scope is strategy assessment of a 

drought planning case study in Sussex, southeast England. The focus is uncertainty 

in climate change impacts on surface water quantity and how it interacts with 

hydrological modelling and socio-economic uncertainty. The research follows three 

specific objectives that will be reviewed and assessed in Section 10.1.1 to 10.1.3. 

 

10.1.1. Review different definitions and approaches of the concept of robustness 

in water resource planning:  

Chapter 2 has discussed the option robustness and the system robustness definition 

and the approaches each group contains. In terms of characterising robustness, there 

are the statistical approach, which focuses on options with the highest possibility of 

being the optimal given the uncertainty; the crisp set-based approach, which 

considers the number of available options before and after the decision; and the 
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fuzzy set approach, which compares the system failure risks before and after a 

decision. Robustness approaches in water resource planning include methodologies 

as follow 

 Robust optimisation often treats adaptation as capacity expansion under 

uncertainty, so that the system has sufficient supply capacity for projected 

demand given the projected climate change impacts on water resources. 

 Real Option Analysis focuses on the sequential decision making given the 

future options and uncertainty. The methodology emphasizes the opportunity 

cost of option implementation at different decision points. For instance, it 

examines the comparative Net Present Value of implementing option A at 

year 1 versus year 5, and whether that decision will exclude other adaptation 

pathways. 

 Info-gap Decision Theory explores the deterioration of strategy 

performance if the climate conditions and water demand deviate from the 

base case design. A robust info-gap strategy would be able to maintain its 

performance to the largest bound of deviation compared to other options. 

 Robust Decision Making focuses on characterizing vulnerabilities of the 

system under a large ensembles of scenarios and interacts with the decision 

makers to identify and assess options for vulnerability reduction 

These four approaches have been applied to planning problems in water resource 

management. Yet, they are often applied separately. Chapter 2 has subsequently 

proposed a framework that allows switching amongst the methodology depending 

on the decision objectives and level of uncertainty. Chapter 7, 8 and 9 then further 

engaged aspects of these approaches, by employing robust optimization and robust 

decision making to identify packages of options and vulnerabilities of the Sussex 

water resource system.  

 

10.1.2. Conduct a case study in south-east England that incorporates the main 

aspects of the robustness concept:  

Chapter 4 to 9 have presented a case study of robust adaptation in planning practice. 

The study area is the Sussex area and the scope is robust adaptation for the 2020s, 

2030s and 2050s. Each of these periods was considered as a 30-year period, namely 

2010-1039, 2020-2049, and 2040-2059. Aside from climate uncertainty, the study 
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has integrated uncertainty from hydrological modelling, socio-economic scenarios 

and water resource modelling. The climate uncertainty was represented by scenarios 

and projections from different products of the Regional Climate Model HadRM3, 

namely the original ensembles, the downscaled and bias-corrected ensemble from 

the Future Flows project, the Spatial Coherent Projections and 1000 Latin 

Hypercube samples of the UK Climate Projections UKCP09 10000 realisation. The 

socio-economic scenarios for the 2050s were produced by the Environment Agency 

in England and Wales and contained four scenarios, namely the Innovation, Market 

Forces, Local Resilience and Sustainable Behaviour scenarios.  

 

Overall the Sussex water supply system is susceptible to water shortage. The risks 

are mild in the 2020s and 2030s, but can be significantly high under the Market 

Forces scenario in the 2050s. The vulnerability mainly comes from the delivery 

network attributes such as the location of major supply sources and transfer 

constraints and the lack of alternative supply in certain demand nodes. Chapter 9 has 

further shown that the vulnerability is strongly dependent on demand scenarios and 

flow conditions. In particular, without adaptation, a 35% demand increase from the 

2007 baseline will pose extreme challenges to the system and threaten a complete 

supply collapse. Meanwhile Q90 low flows in the River Rother, Sussex’s major 

supply source, of approximately 100 Ml/d could start to trigger water shortages in 

the scenario or ensemble. Yet, the adaptation process in Sussex water management 

could accommodate both aspects of the robustness concept, as well as 

complementary implement different robust decision approaches.  

 

In this study, the Robust Optimisation method was employed to identify the optimal 

option set in 133 scenarios in each time slice (100 UKCP09 scenarios, 11 RCM 

ensemble members, 11 FF ensemble members and 11 SCP scenarios). A Sussex 

simulation model is then used to test these options under all scenarios, in essence 

testing the performance of optimal options in single scenarios on the full set. 

Therefore, the analysis could analyse potential ‘satisficing’ factor when an option is 

not optimal in all scenarios but performs acceptably well in the sub-optimal cases to 

become the robust strategy. The optimisation process was done with the objectives 

being minimising environmental flow deficit, minimizing water supply deficit and 

minimising the system operation and investment cost.  
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The study did not indicate a specific robust measure as the recommended adaptation 

plan for Sussex; instead, it presents the options along with their performance and 

costs for the decision makers to select. In general, the compound options are often 

more effective than single options in abating supply deficit; however, they also 

entail a higher cost, which requires careful sequential planning based on system 

vulnerability in the 2020s, 2030s and 2050s. Robust decision analysis in the study 

indicates that the Sussex supply system can sufficiently provide water for the Sussex 

North, Sussex Worthing and Sussex Brighton area in the 2020s and 2030s. The risk 

of water shortage is low and can be remediated by single options of Arun 

Abstraction, Ford Effluent Reuse, universal metering and Wellfield Optimisation. In 

the 2050s, the Innovation and Sustainable Behaviour socio-economic scenarios still 

maintain the low risks and the Sussex system can retain the composition of the 

2020s and 2030s. Nevertheless, under the 8% and 35% demand growth of the Local 

Resilience and Market Forces, the system will be likely under risks and need 

additional strategy. Depending on the acceptable shortage risks, the system might 

need to include any optimal option that it has not implemented in the 2020s and 

2030s. Flexibility, or planning robustness, could be achieved since adaptation 

strategies could be incrementally built over the time periods, by moving from single 

option to option portfolios. Yet, the study has also shown that the current options are 

not sufficiently robust under the Local Resilience and Market Forces socio-

economic scenarios. Therefore, new options aside from the current options and new 

potential acceptable risk levels should be further explored.  

  

10.1.3. Use robust decision making to demonstrate how the uncertainty 

components could affect the performance of adaptation options:  

Amongst the uncertainty factors investigated, demand uncertainty, climate 

uncertainty and post-processing uncertainty appear to be the controlling factor. The 

2020s and 2030s is dominated by climate uncertainty and climate post-processing 

uncertainty. In essence, climate uncertainty in each climate product leads to the 

varying performance of adaptation options. This uncertainty dominates hydrological 

uncertainty of the hydrological model CATCHMOD. However, post-processing 

uncertainty is also a major uncertainty element and overall could change the 

preferential adaptation pathways. Under the SCP product, there is little need for the 
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system to adapt to climate change impacts. Meanwhile, the FF and UKCP09 both 

require incremental adaptation plans in the 2020s, 2030s and 2050s. Since the RCM 

projects much drier conditions, it leads to more extreme plans and require more 

strategies than other climate products; however, RCM is often not used without bias-

correction in impact studies and therefore was included only for reference in this 

study. The RCM product, however, could indicate the preferential order of 

adaptation options, and therefore can be used instead of other climate products if the 

objective is option comparison. Moving to the 2050s, demand uncertainty becomes 

the major controlling factor of adaptation options. While information and climate 

uncertainty are still exhibited in the scenarios, the level of demand is the key 

influence of the overall adaptation plan. Moreover, it can also affect the adaptation 

pathways from the 2020s to the 2050s. In particular, under the Innovation and 

Sustainable Behaviour scenarios, the adaptation pathways will mainly be single or 

double options and the decision makers can rely on short-term planning or reactive 

adaptation. Meanwhile, under the significant risk and requirements to adapt in the 

Local Resilience and Market Forces, adaptation pathways will need to be planned 

well in advance, adaptively adjusted. Under these cases, decision makers will need 

to focus on system vulnerability and system renovation. Monitoring key indicators 

of climate change impacts and demand growth, such as the Q90 flows and the level 

of annual water demand, could also help identify potential intervention points of 

option switching.  

 

10.1.4. Key findings 

The key findings of this study include 

 A new methodology of robust decision analysis that combines Robust 

Optimisation and Robust Decision Making to include dynamic risk 

preferences and the comparative option performances under certainty and 

uncertainty 

 A case study that integrates a cascade analysis of the climate uncertainty, 

climate post-processing uncertainty, hydrological uncertainty, water resource 

model uncertainty and demand uncertainty on water resource planning 

 The recognition that climate post-processing uncertainty, in addition to other 

uncertainty mentioned in the literature, can also affect the adaptation plan: 
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This uncertainty has been shown to dominate other types of uncertainty for 

this particular case study 

 An analysis that shows that vulnerability is dependent on the local conditions 

and the planning option: in the Sussex case study, despite the climate post-

processing uncertainty of different climate products, main vulnerability of 

the system remains similar. The vulnerability is due to the high dependence 

of the system on the water sources around the Hardham area and the limited 

access of these sources from other areas. Since the options are also mostly 

located around this area, the Sussex water resource system remains 

vulnerable in terms of maintaining the transfer agreement between Southern 

Water and South East Water 

 A demonstration of different decision sensitive conditions that prompt option 

selection under different level of water shortage: These sensitive conditions 

can potentially help the decision makers to construct their adaptation plans 

and pathways 

 

10.1.5. Limitations 

The study has to a great extent achieved its aims and objectives. Yet there are 

several limitations remaining. Firstly, the study has not integrated hydrological 

uncertainty into the final adaptation decision analysis. While climate uncertainty 

dominates hydrological uncertainty overall, there is still a need to further integrate 

hydrological uncertainty in future research. Secondly, the study could also further be 

improved by reducing the difference in network configuration in the optimization 

and the simulation model. In essence if the simulation model can accommodate a 

higher resolution of the Sussex network, further comparative results on 

vulnerability, particularly the vulnerability hotspot in the network, could be 

conducted. Thirdly, the study has not explicitly included climate change uncertainty 

in groundwater supply and demand patterns. Finally, the options considered in this 

study mainly are mainly constituted of supply option. The study therefore would 

benefit from an expansion of available options, in particular demand options that 

engage water efficiency and rainwater harvesting. 
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10.2.IMPLICATIONS FOR ADAPTATION POLICY AND PRACTICE 

 

The study has several implications for adaptation policy and practice. Firstly, it 

demonstrates that various aspects of the robustness paradigm could be implemented 

in practice. The options considered in this study are management options considered 

by Southern Water in their option appraisal. The study has therefore identified 

robust and transformable options and pathways for the Sussex system that along 

with the current planning practice, can contribute toward low vulnerability and 

robust adaptation of the Sussex water resource system. Furthermore, it has 

demonstrated key vulnerabilities and vulnerability threshold of the area that can help 

decision makers to monitor potential need to adapt and address the issues. Overall 

the study has indicated Arun Abstraction, Ford Effluent Reuse and universal 

metering as core options for the adaptation plans and pathways to accumulate from. 

It has also demonstrated that vulnerability is largely determined at the local level, in 

this case due to the network attribute of the supply system.  

 

In terms of practice, the study has indicated the needs to further implement demand 

management and revisit assumptions regarding these measures. In terms of 

methodology, the study has proposed an integrated modelling framework of robust 

decision making for a large set of options. In practice, water companies often have 

to consider various strategies in parallel and the original Robust Decision Making 

requires a significant of model runs under such circumstance. For instance, the nine 

management options of this study would have constitute 29 sets of options without a 

pre-selection process; once coupled with the 1000 climate scenarios, 4 demand 

profiles and 3 headroom uncertainty (the base case demand, the headroom demand 

of 5% increase and the headroom demand associating with 5% groundwater 

reduction), the high number of scenarios is exceedingly time and computationally 

expensive. By using robust optimization to reduce the set to 39 feasible cases, the 

approach shortened the simulation and analysis time to an acceptable scale to water 

companies. This approach in essence will reduce the model runtime to nearly a day, 

and thus, can be employed in real water planning practice. Furthermore, the study 

has shown a combination of analysis originating from real option, info-gap and 
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robust decision making. It therefore demonstrates their complementary application 

despite their seemingly parallel ideologies. 

 

Yet, the challenge of decision making under deep uncertainty remains. While the 

study could integrate the different uncertainty components in a research study, a 

similar analysis in practice is significantly time demanding, particularly when the 

number of planning options explodes. Such analysis faces the challenges of 

converting different climate data formats and resolutions into data that is relevant to 

a water resource scale, constructing or adjusting the relevant hydrological and water 

resource model, analysing the amount of data and interpreting the different 

dimensions of uncertainty interactions. Therefore, in order to encourage robust 

adaptation in practice, changes should be made to make data from the different 

climate products readily available in an accessible and consistent format. There is 

also a need for decision support tools that could integrate the uncertainty and present 

the outcomes in informative visualisation and presentation. 

 

Finally, the study has presented decision making in a holistic context, where climate 

uncertainty is only one of the controlling factors of adaptation. Yet, it has shown that 

with the current available climate products, adaptation pathways and decisions can 

be strongly influenced by the uncertainty due to different levels of post-processing 

from the same climate model results. This implies that water managers still face high 

uncertainty in practice regarding which climate products to use. As demonstrated, 

the UKCP09 group, while includes the highest factors of uncertainty, appears 

moderately inadequate to test the system. In essence, the change factor method that 

both the UKCP09 and SCP product use to project changes make the testing time 

scenarios become variations of the 1961-1990 historic time series. Since hitherto 

water companies still use that historic period and beyond (some even to the late 

1880s), the UKCP09 and SCP essentially test water planning against the same 

sequence and patterns of droughts. Meanwhile, the time series-based FF and RCM 

project a wide variation of drought events and therefore present more adaptation 

challenges to the system. As such, even the choice of climate product could 

potentially influence the overall robustness of the system.  
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10.3.RECOMMENDATION FOR FURTHER RESEARCH 

 

As discussed before, the study still includes several limitations that can be addressed 

in future research. There is a further need for holistic robust analysis approach that 

incorporates climate change impacts on water demand and groundwater. That 

holism should not be restricted to the modelling paradigm, but also to a bigger 

picture. Various uncertainty factors such as changing behaviour and water 

consumption pattern due to changes in water availability and cultural/social value 

are not quantifiable and need to be considered in parallel to the modelling process. 

Therefore, the study could be coupled with a qualitative assessment of vulnerability 

from the perspective of relevant stakeholders for a combined modelling-social 

science assessment. Such assessment will also be able to engage a wide group of 

perspectives and opinions and expand the adaptation objectives beyond flows and 

operational cost. Examples of additional objectives could be ecosystem services, 

integrated management, risk distribution amongst the stakeholders and catchment 

restoration.  

 

Another direction of further research is the further integration of the simulation and 

optimization process to reduce structure uncertainty. The model could be 

constructed with internal simulation and optimization mode for a consistent network 

and constraint configuration. Regarding the integrated approach of different robust 

decision methods, the model can further extend the number of scenarios, such as a 

bigger sample of UKCP09, to enable real option analysis along with info-gap and 

RDM. Demand uncertainty and climate uncertainty could also be stochastically 

generated in the simulation for a bigger set of scenarios. 

 

Finally, future projects can investigate the nexus of resilience, robustness and 

vulnerability under uncertainty. They can expand the scope to the factors 

constituting adaptation success, as discussed in Chapter 1, and further identify how 

uncertainty could affect these attributes and their roles.  
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Appendix A-Model Descriptions 

 

 

A.1. THE OPTIMISATION MODEL 

 

The model consists of two parts: a core model which illustrates physical relations 

between variables and a preferential model which assists decision makers in 

interactively defining their aspiration and reservation level.   

A.1.1. CORE MODEL SPECIFICATION 

A core model usually contains given parameters, state variables, decision variables 

and constraints. As the focus of this study is on a water supply network, the core 

model takes the form of a flow network that delivers water from sources to sinks. 

A.1.1.1.  Network representation 

The network is presented as a network of nodes and arcs. A node can receive 

external input I(n,t) from a stream or a groundwater borehole, and/or outputs O(n,t) 

to satisfy water demand of a residential area. In each weekly time step t, water 

supplied to node n is denoted s(n,t) and water consumed is d(n,t). If the node 

represents a reservoir, it will also have a storage capacity ResCap(n) and real time 

storage state ResState(n,t) that may change with time. 

 

Nodes are connected by arc which has a transfer capacity LC(n,m). Flow from 

node n to node m may vary with time and is denoted f(n,m,t); likewise, f(m,n,t) 

represents flow from node m to node n at time t.  

A.1.1.2. Strategy representation 

A binary decision variable Xi (t) will represent the strategy considered. The 

variable will take the value of 1 if implemented and 0 otherwise. For instance, if 

decision X1 is not built during time step 0-2, X1(0:2)=0; if it is built and operated at 

subsequent time steps, it will take the value of 1 then on.  

 The variables can adjust external input into node n such that 
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,ሺ݊ܫ  ሻݐ ൌ ,ሺ݊ܫ ሻݐ  ሺ݊ሻܫ∆ ∗ ܺሺݐሻ Eq.[1]  

In which I0(n) is the original external input into node n if no decision is implemented 

 ሺ݊ሻ being the effect of implementing strategy Xi on available input at node nܫ

 Alternatively, the variable can change the required external output (in effect 

mimics demand reduction due to strategy implementation) 

 ܱሺ݊, ሻݐ ൌ ܱሺ݊, ሻݐ ∗ ሾ1  ߂ ܱሺ݊ሻ ∗ ܺሺݐሻሿ Eq.[2]  

In which O0(n) is the original required output from node n if no decision is implemented 

ܱሺ݊ሻ being the effect of implementing strategy Xi on required output at node n 

  

 Finally, the variable can augment transfer capacity of an arc 

,݉,ሺ݊ܥܮ  ሻݐ ൌ ሺ݊,݉ሻܥܮ  ሺ݊,݉ሻܥܮ߂ ∗ ܺሺݐሻ Eq.[3]  

If the strategy is not implemented, decision variables that can provide additional 

supply are modelled as a fictional source which is not connected to other sources 

(Figure 1). This setup also allows calculating the real usage of the option (e.g. the 

supply provided by the decision variable and the frequency of source usage). 

  

 

 

 

Figure 1. Schematic of how supply decision variable is implemented: a) When the strategy is not 

implemented, the node is not connected to the network; b) once it is connected, the link connecting 

the node and the network is active 

 

A.1.1.3. Model equations and constraints 

The model is governed by water balance equations. Nodes are connected by flows 

along the arcs. At each time step, the node can have an internal supply, internal 

demand as well as additional inflows and outflows from its connecting arcs. As 

such, 

Total inflows into node n is denoted  

Link Capacity= 0 Ml/week 

Node A: 140 Ml/w 

Unlimited Link Capacity 

Node A: 140 Ml/w 

a) b) 
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,ሺ݊ݏݓ݈݂݊ܫ ሻݐ ൌ݂ሺ݉, ݊, ሻݐ

ெ



 
Eq.[4] 

Total outflows from node n is  

 
,ሺ݊ݏݓ݈݂ݐݑܱ ሻݐ ൌ݂ሺ݊, ݇, ሻݐ





 
Eq.[5] 

 At each non-reservoir node, the following flows conservation equation 

applies 

,ሺ݊ݏݓ݈݂݊ܫ  ሻݐ  ,ሺ݊ݏ ሻݐ ൌ ,ሺ݊ݓ݈݂ݐݑܱ ሻݐ  ݀ሺ݊,  ሻݐ

 

Eq.[6]  

 

Deficit, if any, is calculated as 

,ሺ݊ݐ݂݅ܿ݅݁ܦ  ሻݐ ൌ ܱሺ݊, ሻݐ െ ݀ሺ݊,  ሻݐ

 

Eq.[7]  

 A node cannot supply more than what is available, nor should it get more 

water than its need. Moreover, flows are restricted by available transfer 

capacities of the arcs. Subsequently, supply, demand and flows at node n is 

subject to constraints as follows 

,ሺ݊ݏ   ሻݐ  ,ሺ݊ܫ  ሻ Eq.[8]ݐ

 ݀ሺ݊, ሻݐ  ܱሺ݊,  ሻ Eq.[9]ݐ

,݉,ሺ݊ݔ   ሻݐ  ,݉,ሺ݊ܥܮ ሻ Eq.[10]ݐ

 

 At a reservoir node, the node has additional storage capacity and the 

ResState variable reflects that changing in storage as follows. 

,ሺ݊݁ݐܽݐܵݏܴ݁  0ሻ ൌ  ሺ݊ሻ݁ݐܽݐܵݏܴ݁

 

Eq.[11]
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,ሺ݊݁ݐܽݐܵݏܴ݁  ሻݐ

ൌ ,ሺ݊݁ݐܽݐܵݏܴ݁ ݐ െ 1ሻ  ,ሺ݊ݏݓ݈݂݊ܫ ሻݐ

 ,ሺ݊ݏ ሻݐ െ ,ሺ݊ݏݓ݈݂ݐݑܱ 	ሻݐ

 

Eq.[12] 

The node is subject to constraints as follow 

,ሺ݊݁ݐܽݐܵݏܴ݁  ሻݐ

 ሺ݊ሻܽܥݏܴ݁

∗
,ሺ݈݊݁ݒ݁ܮ݊݅݉ ሻݐ

100
 

 

Eq.[13] 

In which minLevel(n,t) is the minimum reservoir fill (%) as required by the reservoir control 

curve 

The reservoir cannot store more than its capacity (which is the reservoir 

total capacity minus its dead volume) 

,ሺ݊݁ݐܽݐܵݏܴ݁  ሻݐ   ሺ݊ሻܽܥݏܴ݁

 

Eq.[14] 

A.1.1.4. Constraints on decision variables 

Once implemented, the permanent decision cannot be reverted 

 ܺሺݐሻ  ܺሺݐ െ 1ሻ Eq.[15] 

  

A.1.2. PREFERENTIAL MODEL AND MULTICRITERIA ANALYSIS 

UNDER UNCERTAINTY 

A.1.2.1. Technical background 

The core model is capable of generating one or many feasible solutions, which 

satisfy all specified constraints. Often, decision makers need to select one solution 

out of the feasible solution set X. This selection is based on the user’s criteria set 

Rn with n being the number of criteria. Hence, each feasible solution will have an 

associating vector q(x) that contains the corresponding values of each criterion. A 

solution is weakly Pareto-optimal if no other feasible solution has better values of 

all criteria. Mathematically, for our minimization problem (deficit in environmental 
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flows, operating cost and supply-demand deficit), a solution ݔො is weakly Pareto-

optimal if  

ݔ∀  ് ݇∃		:ොݔ ∈ ሾ1, ݊ሿ .ݏ .ݐ ොሻݔሺݍ ൏ ሻ   Eq.[16]ݔሺݍ

Consequently, a Pareto-optimal solution, or an efficient solution, is defined as 

ොሻݔሺݍ  ݅	∀	ሻݔሺݍ ൌ 1. . ݊ 

∃݅ ∈ ሾ1, ݊ሿ		ݏ. .ݐ ොሻݔሺݍ	 ൏  ሻݔሺݍ

  Eq.[17]

The aspiration-reservation based decision support method is mainly based on the 

set of Pareto optimal points P (or the Pareto frontier). In essence, the method 

defines a utopia point qU that contains the best values of each criterion (e.g. 

ݍ
 ൌ maxሾݍሺݔ|ݔ ∈ ܲሻሿ ) and a nadir point qN that contains the worst values of 

each criterion (e.g. ݍ
ே ൌ minሾݍሺݔ|ݔ ∈ ܲሻሿ ). The users can also specify their 

preference by identifying an aspiration point ݍത, the desired value set of criteria, 

and a reservation point ݍ, the lower bound of acceptable criterion values. [For a 

problem of three minimized criteria, the Pareto front becomes a surface. Include 

illustrative figure here]. In this way, the decision makers can specify a range of 

criteria values that they are satisfied with. Aspiration-led decision support strives to 

find a Pareto-optimal point that is at the specified aspiration level, if attainable, and 

closest to the aspiration level if otherwise. In addition, the user can interactively 

change their aspiration level to further explore the Pareto-optimal solution under 

that specific setting. With each change in aspiration level, the model obtains a new 

Pareto-optimal solution by minimizing an achievement scalarising function 

,ݍሺݏ ,ݍ  .ሻݓ

 
,ݍሺݏ ,ݍ ሻݓ ൌ maxሾݓሺݍ െ ሻሿݍ  ߳ݓሺݍ െ ሻݍ



ୀଵ

 

 

Eq.[18]

With ݍሺݔሻ ∈ ܴ being a criteria vector 

ݍ ∈ ܴ being an aspiration point 

ݓ  0 being scaling coeffiecients 

߳ being a given small positive number, set to 10-4 



Page 284 
 

 

 

The methodology employed in this study utilizes a modified version of this 

achievement scalarising function, as used in Makowski (1994). In essence, strictly 

monotone functions ui(.), termed component achievement functions, are introduced 

into the achievement scalarising function as follows 

 
ܵ ቀݍ, ,ݍ ቁݍ ൌ min	ሼݑ ቀݍ, ,ݍ ቁݍ  ߳ݑሺݍ, ,ݍ ሻݍ



ୀଵ

 
Eq.[19] 

For minimization problem, Wierzbicki(1986) defines the function ui as 

 

ݑ ቀݍ, ,ݍ ቁݍ ൌ ൞

ݍሺݓߙ െ ሻݍ  1, ݂݅ ݍ ൏ ݍ
ݍሺݓ െ ሻݍ  1, ݂݅ ݍ  ݍ  ݍ

ݍሺݓߚ െ ,ሻݍ ݍ	݂݅  ݍ

 

 

Eq.[20] 

With ݓ ൌ
ଵ

ି
 

,ߙ   being given parametersߚ

(Makowski, 1994)Makowski (1994) uses a piece-wise linear, strictly monotone 

function that is interactively defined by the user via their specification of the 

aspiration and reservation levels (ݍ	ܽ݊݀	ݍሻ, ui of which are assigned a value of 1 

and 0, respectively. If only the aspiration and reservation are indicated, the 

corresponding weight for criterion i to be used in Eq.21 is 

 
ݓ ൌ

1

ቚݍ െ ቚݍ
 

 

Eq.[21] 

The user may also give additional information on their preference by indicating 

extra ui value for other values of criterion i.  Therefore, if the component 

achievement function of the i-th criterion has pi segments, the function defining ui 

in segment ݆ ∈ ሾ1,  ሿ will take the form

ݑ  ൌ ݍߙ  ,ߚ ݄ݐ݅ݓ ݍ  ݍ   ାଵ,ݍ

 

Eq.[22] 

given that 
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αjiൌ
uj1,i‐uji
qj1,i‐qji

  s.t. ݇  ݈; ݇, ݈ ∈ ሾ1, :ሿ ߙ   ߙ

ߚ ൌ ݑ െ  ݍߙ

 

A.2. THE SIMULATION MODEL 

 

The simulation model was coded in VB.NET based on an Excel model by (Wade, 

2005). It is a procedural code that calculates water supply from the River Rother, 

groundwater sources, the Weirwood Reservoir, and other available options to 

accommodate demand. The model has a simple GUI as shown in Figure A.1. 

 

Figure A.1. GUI of the simulation model  

The model loads parameters and demand time series from the csv text files and 

then can calculate either in batch mode or normal mode for Deployable Output 

(iterative search mode) and drought failures (simple simulation mode). It considers 

the water balance in North Sussex and then Sussex Worthing and Brighton.  

 

A.3. SCHEMATIC OF THE AQUATOR MODEL 
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Figure A.1. Schematic of the Aquator model 
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Table B.1. List of link capacity in the Optimisation Model 

Parameter Lcap(m,n)/ 

$ondelim 

HardhamWSW        UpperValley     63 

HardhamWSW        Sussex2 175 

HardhamWSW       Sussex4 434 

HardhamWSW       Bury    18.9 

Portsmouth       HardhamWSW      99999 

UpperValleyGW    UpperValley     99999 

HardhamGW         Sres53  99999 

Sres53     HardhamWSW      514.5 

Rother     Sres53  99999 

Sussex4    BuchanHill      224 

Sussex4           TenantsHill   105 

TenantsHill       Sussex4       105 

Sussex2           Sussex3 35 

Sussex3          Sussex2 35 

Sussex4           Sussex3 98 

BuchanHill        TurnersHill     119 

TurnersHill       BuchanHill      63 

SEW               TurnersHill     99999 

Weirwood          SEW     152.6 

Weirwood         MRFWW   99999 

Rother            MRFRother       99999 

TenantsHill       BrightonDem1   49 

BrightonGW1       BrightonDem1   99999 

ShorehamGW       Shoreham       99999 

ShorehamGW       BrightonDem1   99999 

BrightonDem2      BrightonDem1   99999 

BrightonGW2       BrightonDem2   99999 

DesalNode1        ShorehamGW     99999 

DesalNode2        ShorehamGW     99999 

Arun              Sres53         99999 

HardhamWSW1      HardhamWSW     99999 

HardhamWSW       HardhamWSW1    99999 

Appendix B-Model Parameters
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HardhamWSW1      Sussex4        0.0000001 

Wellfield         Sres53         99999 

ASR              TenantsHill    99999 

Ford             Sres53         99999 

WorthingGW2    TenantsHill   99999 

TenantsHill    WorthingDem   99999 

WorthingGW1    WorthingDem   99999 

$offdelim 

/; 

Table B.2. Cost Supply in the Optimisation and the Simulation Model 

Parameter costSupply(n) / 
$ondelim 
BrightonGW1     50 
BrightonGW2     50 
ShorehamGW      50 
HardhamGW       81 
Portsmouth     250 
Rother          45 
UpperValleyGW   50 
Weirwood        80 
WorthingGW1     50 
WorthingGW2     50 
$offdelim 
/; 
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Appendix C-The worst droughts according to each climate product in Brighton and 

Worthing 

 

Table C.1 Worthing drought year-Optimisation Model 

Period Demand 
Profiles 

RCM FF SCP UKCP09 

2050s Market 
Forces 

2040,2054,2056, 

2058,2061,2062, 

2066,2069 

 

2040,2043,2045, 

2048,2050,2052, 

2053,2056,2063, 

2066 

1970,1976, 

1977,1978, 

1984,1985, 

1988 

1961,1969,1975, 

1976,1977,1984, 

1988,1989,1990 

2050s Local 
Resilience 

2040,2057, 

2058,2060, 

2062,2066, 

2067 

2042,2046,2054, 

2057,2058,2062, 

2064,2066 

NA NA 

 

Table C.2 Worthing drought year-Simulation Model 

Period Demand 
Profiles 

RCM FF SCP UKCP09 

2050s Market Forces 2040,2041,2042 2040,2041,2042 1962 1961,1962,1963,1967 

 

Table C.3 Brighton drought year-Optimisation Model 

Period Demand 
Profiles 

RCM FF SCP UKCP09 

2050s Market 
Forces 

2040,2043, 

2051,2053, 

2055,2061, 

2063,2065, 

2067 

2040,2041, 

2044,2046, 

2051,2054, 

2056,2058, 

2060,2061 

1963,1967, 

1975,1976, 

1978,1983, 

1988,1989, 

1990 

1961,1962,1963,1964, 

1965,1966,1967,1968, 

1969,1973,1974,1975, 

1976,1977,1978,1979, 

1980,1981,1982,1983, 

1984,1985,1986,1987, 

1988,1989,1990 

2050s Local 
Resilience 

2040,2041, 

2044,2057, 

2040,2041, 

2047,2054, 

1961,1976 1961,1976, 

1989 
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2060,2066, 

2067 

2057,2058, 

2065,2067, 

2068 

 

Table C.4 Brighton drought year-Simulation Model 

Period Demand 
Profiles 

RCM FF SCP UKCP09 

2050s Market 
Forces 

2040 2040 1962 1962 

2050s Local 
Resilience 

2040 2040 1961 1961 

 



Page 291 
 

 

Glossary 

 

Adaptability The ability, competency or capacity of a system to adapt to (to 

alter to better suit) climatic stimuli 

Adaptation Adjustments in human systems to changes in climatic stimuli 

Adaptive Capacity The potential or capability of a system to adapt to (to alter to 

better suit) climatic stimuli. An adaptation characteristic 

Anticipatory adaptation Actions before observed impacts of changes or proactive 

adaptation 

Aquator A water resource model that can simulate and optimise the water 

supply-demand balance at a daily time step 

Autonomous adaptation Passive and spontaneous adaptation to existing changes 

 

‘Bottom-up’ approach The approach constructs based on the available adaptive capacity 

and resources- the limiting factors of possible adaptation actions 

CATCHMOD A lumped hydrological model used by the Environment Agency 

and several water companies. The model uses rainfall and 

evapotranspiration (PET) inputs to simulate surface, subsurface 

flows and groundwater level  

Classical Robustness The classical robustness emphasises trade-offs between cost and 

system performance, and at the same time requires low-regret for 

the selected decision 

Climate Post-processing The process of converting climate model outputs into products 

and information of suitable format, variables and temporal/spatial 

scales to the users' need 

Coping Capacity Degree to which a system can successfully grapple with a 

stimulus (similar to adaptability, but includes more than adaptive 

means of “grappling”) 

Decision-Scaling A methodology by Brown (2010) to explore the climate 

sensitivities of a system or decision and then tailor climate 
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information to assist decision making 

Deep uncertainty A situation in which analysts do not know or cannot agree on (1) 

models that relate key forces that shape the future, (2) probability 

distributions of key variables and parameters in these models, 

and/or (3) the value of alternative outcomes 

Demand management  Measures in which the company uses short and long-term 

strategies to increase water use efficiency and reduce water 

consumption 

Deployable Outputs  The demand that can be met without violating constraints and  

causing the system to fail 

Ecological adaptation The reactive responses and genetic evolution of a species 

Effectiveness The capacity of an adaptation action to achieve its expressed 

objectives 

Efficiency Consideration of the distribution of the costs and benefits of the 

actions; the costs and benefits of changes in those goods that 

cannot be expressed in market values; and the timing on 

adaptation actions 

Equifinality The notion that different model structures and parameterisation 

can produce an acceptable model performance 

Equity Identifying who gains and who loses from any impact or 

adaptation policy decision. An adaptation characteristic 

Flexibility Degree to which a system is pliable or compliant (similar to 

adaptability, but more absolute than relative). An adaptation 

characteristic 

Fuzzy Robustness This is an extension of classical set-based robustness, with the 

improvements being the usage of likelihood/membership 

function and a more flexible definition of system failures. It 

compares the risk of system failure after and before a decision by 

examining the overlapping region between the operating system 

state (e.g. water supplies) and the failure region (or region of high 

risks) 

Generalised Likelihood 

Uncertainty Estimation 

A framework by Beven and Binley (1992) that explores possible 

outcomes via a group of behavioural models instead of a single 
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(GLUE) calibrated and validated model. 

HadRM3 climate model A regional climate model of the Hadley Centre, at the UK 

Meteorological Office 

Headroom The planned extra water supply capacity to accommodate 

demand uncertainty 

Impact Potential Degree to which a system is sensitive or susceptible to climate 

stimuli 

Info-gap Decision 

Theory 

A methodology that explores the deterioration of strategy 

performance as system parameters or descriptions deviate from 

“best estimates”, provided by expert judgment or nominal 

description  

Innovation (I) A socio-economic scenario in which total water demand reduces 

by 4%, water per capita consumption (pcc) 125 l/d/capita. The 

responsibility to find adaptation strategies lies with the 

government and scientist; demand reduction is due to 

sustainability-led governance and technological innovation. 

Legitimacy The extent to which decisions are acceptable to participants and 

non-participants that are affected by those decisions 

Local Resilience (LR) A socio-economic scenario in which total water demand 

increases by 8%; pcc is 140 l/d/capita. People realise the need for 

demand reduction and take actions towards it. Their efforts, 

however, are moderate due to the low priority of demand saving 

and the lack of incentives from the government. 

Market Forces (MF) A socio-economic scenario in which total water demand 

increases by 35%, pcc 165 l/d/capita. Water demand is driven by 

the market trend, focusing on cost optimisation and growth. 

Palmer Drought 

Severity Index (PDSI) 

A soil moisture/water balance model that cumulatively measures 

surface water balance, thus capable of indicating meteorological 

and hydrological droughts 

Real options analysis A decision technique that focuses explicitly on the sequential 

nature of decision making, concerns future options and actively 

plans for the prospect of new options 

Resilience Degree to which a system rebounds, recoups or recovers from a 
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stimulus/ the capacity to regain system functions after 

disturbance 

Resistance Degree to which a system opposes or prevents an effect of a 

stimulus 

Responsiveness  Degree to which a system reacts to stimuli (broader than coping 

ability because responses need not be “successful”) 

Robust Decision Making 

(RDM) 

The approach that uses sets of scenarios to explore plausible 

futures, emphasise adaptability as a central attribute, and search 

iteratively for conditions. It focuses on characterising 

vulnerabilities of the system under a large ensembles of scenarios 

and interacts with the decision makers to identify and assess 

options for vulnerability reduction. 

Robustness The system capacity to resist disturbances while maintaining 

planning flexibility amidst uncertainty 

Sensitivity Degree to which a system is affected by, or responsive to, climate 

stimuli  

Stability Degree to which a system is not easily moved or modified. An 

adaptation characteristic 

Standardised 

Precipitation Index 

The index that presents droughts as precipitation deficit over 

multiple timescales. It a modified version of the SPI, using a 

simplified moisture balance of rainfall and PET 

Statistical Robustness The possibility of an option being optimal over all other options 

Supply management  Decisions in which the water company seeks extra supply sources 

via new constructions of water storage/abstraction infrastructure 

or other transfer contracts with neighbouring water companies. 

Susceptibility Degree to which a system is open, liable or sensitive to climate 

stimuli (similar to sensitivity, with some connotations toward 

damage) 

Sustainable Behaviour 

(SB) 

A socio-economic scenario in which the total water demand 

declines by 15% due to pro-active demand reduction from 

individuals; pcc is 110 l/d/capita.   

‘Top-down’ approach The approach that designs adaptation policy to alleviate the 

vulnerabilities exposed by climate uncertainty 
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Unsatisfactory State The state occurs when the system displays characteristics outside 

of the decision makers’ desired range 

Vulnerability Degree to which a system is susceptible to injury, damage, or 

harm 

Water Resource 

Management Plan 

The 5-yearly water resource management plan on a 25-year 

horizon produced by water companies in England and Wales 

 


