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Abstract 

 

The seedliŶg stage is aŶ iŵportaŶt part of a plaŶt’s life ĐyĐle. The seedliŶg deterŵiŶes 

whether or not the plant will establish and reach maturity, will grow tall and deep 

enough to out-compete enough of the surrounding vegetation to become a strong and 

healthy plant and survive the many stresses that may easily damage a young seedling 

that has not yet developed the protection and reserves found in mature plants. One 

particular focus of seedling Ecology is growth rates. This is currently a fast-moving 

topic, with the introduction of a new method of calculating growth rates. Therefore, 

this thesis investigates growth rates on an inter-specific scale, with particular interest 

in calculating growth, as: a log-linear formula based on biomass and time; the sum of 

its growth components and the non-linear size-corrected relative growth rate. Growth 

rates are investigated in relation to various mild and fatal stressors, such as nutrient 

and herbivory stress to see if the different methods of calculating growth can enhance 

our understanding of Ecology. 

 

This thesis found that seed mass is not a key factor explaining the differences in 

growth rates between growth forms (Chapter 2). It found that plant survival of 

stressful environments is based on a complex interaction of seed mass, growth rate 

and biomass (Chapter 3) and that biomass is very important in surviving a sub-optimal 

and then an extreme stressor (Chapter 4). The components of growth are potentially 

size-biased, creating a possible problem when attempting to compare the relative 

importance of each component across different environments (Chapter 5). 

Additionally, experimental standardisation (Chapter 2) and modelling single vs multiple 

traits (Chapter 3) are also questioned. 

 

Plant traits are important and useful determinants of plant growth. Understanding 

variance in plant growth can help us to understand functioning on a population and 

community level more effectively. 
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Chapter 1 

 

Introduction 

 

Many species have been labelled with a relative growth rate (RGR; Grime et al., 1988), 

which is currently the most frequently used method of calculating seedling growth. 

However, growth can vary considerably within a species and between different 

environments; therefore it is important to consider growth in relation to the 

environment currently inhabited. The introduction firstly briefly describes some 

methods of calculating growth, a parameter that is more difficult to accurately 

measure than may be initially suspected, and then variance in growth is introduced. 

This is followed by effects of the environment, particularly in relation to stress, before 

focusing more specifically on the research aims of the thesis, and providing a brief 

summary of the research chapters (Chapter 2-5). 

Current Situation 

The relative growth rate (RGR) is the measure of the increase in biomass of an 

organism, per unit of biomass and per time, and is sometimes referred to as the 

͚ĐlassiĐ’ approaĐh of ĐalĐulatiŶg growth. It is commonly used across ecology, either as a 

parameter to quantify the effect of a certain variable, or as a trait that can explain 

other variables. RGR is used as a parameter, for example, to quantify the effect of a 

treatment on pre-flowering plants, such as fertilisers and pathogens, and is used in the 

CSR theory, to group plants functionally. RGR is used as a trait, for example in the fast-

slow continuum (Franco & Silvertown, 1996), which states that slow-growing species 

are more likely to survive stress events than fast-growing species and is also used in 

studies of invasive species, where RGR is a predictor of whether an introduced species 

will become invasive. Despite the widespread use of growth rates, researchers have 

been attempting to find an accurate way to calculate growth for a long time. 
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The History of Growth Calculations 

Plant growth analysis has been developing since the work of Blackman (1919). One 

method of calculating growth is the absolute growth rate (AGR), calculated as: 

 

AGR =

dW

dt
       eqn. 1 

 

where W = biomass, t = time and d is the change between the different measurements. 

AGR, however, assumes that growth is linear over time, which is rarely observed, and 

therefore introduces inaccuracies to the results. This is partially addressed by RGR, 

which assumes that growth is log-linear over time: 

 

RGR =

d log(W )

dt
      eqn. 2 

 

A functional approach to measuring RGR calculates the product of the growth 

components. In this case, growth is typically separated into the following components:  

 

 Net assimilation rate (NAR), which is the increase in biomass per unit of 

leaf area over time, and is a proxy for photosynthesis; 

 Specific leaf area (SLA), which is the leaf area per unit of leaf biomass 

and 

 Leaf mass ratio (LMR), which is the ratio of leaf biomass to total plant 

biomass. 

 

Leaf area ratio (LAR) can also be used as a component, and is the product of SLA and 

LMR. RGR is usually calculated as the product of its components when the components 

are of interest in other aspects of the data analysis. See Chapter 5 for a further 

description and demonstration of this functional method. 

 

Whilst eqn 2 is currently the most commonly used method to calculate the growth 

rate, growth is not usually exponential, but decreases over time (Hunt & Lloyd, 1987). 
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There seems to be a lack of awareness of this limitation, and allowances are rarely 

made in the interpretation of the results. Typically, two biomass measurements are 

taken: the initial biomass, which is usually the seed mass, and the final biomass, which 

are then incorporated into eqn. 2, producing a log-linear association between the 

variables. However, when multiple measurements are taken across the growth period, 

the resulting association is often non-linear (Turnbull et al., 2008). This is problematic 

because the RGR formula cannot always distinguish between two plants that are on 

different growth curves, and two plants that are at different points on the same growth 

curve (Figure 1.1). Therefore, RGR cannot differentiate between plant growth and 

initial size, and thus cannot determine whether or not two plants have the same 

growth strategy. Attempts to account for changes in RGR with time and size include 

choosing seedlings that are similar in size (Norgren, 1996). 

 

One response at the modelling stage of calculating growth has been to use a 

polynomial approach, which can fit a curve to the data (Poorter & Lewis, 1986). 

However, this solution produces other problems, most noticeably the question of 

which degree of polynomial to use, which produces differing and subjective responses 

from researchers (see Poorter, 1989). A further respoŶse ǁas to Đreate a ͚ĐoŵďiŶed’ 

approaĐh, ǁhiĐh ĐoŶŶeĐted the ͚ĐlassiĐ’ aŶd the polynomial approaches of calculating 

growth (Poorter & Lewis, 1986). However, in a comparison of the polynomial, 

combined approach and a third method, the Richards function, it was concluded that 

the latter fitted growth data better and was recommended for use in future studies of 

plant growth (Poorter & Garnier, 1996). At the authors’ oǁŶ adŵissioŶ, the RiĐhards 

function, which produces a generalised logistic curve, is difficult to model, and the 

ŵethod has Ŷot ďeeŶ ǁidely aĐĐepted. Today, RGR reŵaiŶs the ͚ĐlassiĐ’ aŶd popular 

way to calculate seedling growth.  



4
 

 

Figure 1.1: Diagram of plant growth over time. The solid black line represents the actual growth curve of a plant. The coloured dots 

show the points where plant size was calculated for a classic RGR analysis. Plants A (red) and B (blue) are on the same growth 

curve, but plant A has a smaller initial size. Because the classic RGR analysis (modelled using the black dotted line) does not 

acknowledge the curve, it is wrongly concluded that plant A is an inherently faster-growing plant. 
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The newest proposed method for calculating growth rates is the size-corrected relative 

growth rate (SGR), which can account for the non-independence of size found in the 

classic RGR formula (Metcalf et al., 2006; Turnbull et al., 2008; Paine et al., 2012). 

Instead of the classic log-linear model, SGR is calculated using a non-linear mixed-

effects model, which can account for the shape of the growth curve. Importantly, this 

new method has produced different results to those seen when using the classic 

method.  

 

Turnbull et al. (2008) applied the new size-corrected formula, as well as the classic 

formula to the correlation between seed mass and RGR. In agreement with the 

majority of the literature (Shipley & Peters, 1990; Maranon & Grubb, 1993), when 

using the classic formula, they found that as seed mass increased, RGR decreased. 

However, when they applied the SGR method, the correlation was positive (i.e. 

seedlings with larger seed masses grew quicker). They concluded that size-correcting 

growth rates had a large influence over the experimental results. 

 

Since the publication of Turnbull et al.’s (2008) paper, other studies have also shown 

that size-correcting RGR significantly affects the outcome of research in this area of 

ecology. For example, the biological significance of size-correcting RGR was 

demonstrated in a study of the costs of fast plant growth (Rose et al., 2009). When 

using the conventional method of calculating RGR, no significant costs or benefits of 

fast-growth were observed. With SGR, however, a greater reproduction rate was 

observed in fast-growing plants. Once an environmental stressor was introduced 

(defoliation), the fast-growing plants suffered a greater loss of fitness than the slow-

growing plants, due to decreased survival and reproductive rate. The data provided by 

this size-corrected dataset also provides supporting evidence for the fast-slow 

continuum theory (Franco & Silvertown, 1996), although the RGR method found no 

evidence for the theory. Other examples where the results from using RGR and SGR 

differ include the effects of plant defence on growth (Paul-Victor et al., 2010) and a 

study on the growth components (Rees et al., 2010). It is currently unknown how many 

areas of ecology that currently utilise the classic RGR formula would be significantly 

affected by using a size-corrected RGR formula. 
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However, while using general mixed-effect modelling allows for flexibility to choose the 

groǁth Đurǀe that ďest fits the data, it shares a proďleŵ ǁith the RiĐhard’s fuŶĐtioŶ, iŶ 

that growth curves are more difficult to calculate than the classic RGR. As research 

outcomes are impacted by the use of non-linear growth models, the cost of the extra 

effort to calculate them relative to RGR may be outweighed by the benefits of having 

accurate results. 

Variance in Growth 

Some species intrinsically grow faster than others, however, within a species, there is 

variance in growth between individuals when grown in near-optimal conditions. 

Ricklefs and Peters (1981) stated,  

 

͞Aŵong indiǀiduals in natural populations, ǀariation is the rule .͟ 

 

Differences between species are even more extensive (Grime & Hunt, 1975), and can 

be caused by a variety of physiological and environmental factors. Entire books have 

been written about why different species have different growth rates (e.g. Lambers et 

al., 1998). Physiologically, variance in growth can be caused by a wide range of 

variables (Figure 1.2). Environmentally, variance in growth can be caused by responses 

to: light, nutrients, water, temperature, pH, rooting substrate, competition, herbivory, 

disturbance, microbes and disease. Understanding why and how growth varies can 

increase our understanding of seedling establishment; seedling survival; invasion; 

competition; conservation and responses to climate change. It therefore has wider 

significance in Biology. 

 

Whilst fast-growth, and therefore also high resource-capture and competitive ability, 

ĐaŶ iŵproǀe a seedliŶg’s likelihood of surǀiǀiŶg to reproduĐtiǀe ŵaturity, ŵaŶy speĐies 

are intrinsically slow-growing. This could be for an assortment of reasons. As slow-

growing species are often found in unproductive environments, one idea is that slow-

growth reduces the likelihood of over-exploiting the limited resources, while another 

suggests that slow-growth enables the storage of resources, in preparation for a later 

deficiency. The shortfalls of these ideas are discussed in Lambers and Poorter (1992). 
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There is also some plasticity in growth rates (Zou et al., 2009), although the extent of 

the plasticity and the associated costs are not yet clear. 

Environment 

 Seed mass is affected by factors ranging from the maternal plant (Castro, 1999) to 

latitude (Moles et al., 2007). Seed persistence and germination are strongly governed 

by the environment (Fenner & Thompson, 2005). Productivity is also one of many 

factors in the environment that can affect seeds and seedlings. Stress in the 

environment, such as low nutrients, low light, high competition, herbivory, fungal 

attack and human impact can affect seedling size, growth rate and survival. Stressors 

are particularly damaging to young seedlings, which may not yet have developed 

chemical resistance to herbivory or deep roots to protect against nutrient depletion, 

drought or high wind. It is becoming more important to understand these stressors as 

the environment changes, due to climate change and increased urbanisation. 

Thesis Summary 

The aim of this thesis is to study variance in growth. This is demonstrated in Figure 1.2, 

which shows the areas of biology and plant traits that may explain variance in growth. 

More than one of these variables are incorporated into each chapter. An additional aim 

through this work is to gain a better understanding of how beneficial the SGR method 

is. The thesis studies RGR in two directions – breaking it down into its components and 

building it up to look at the effects of size-correcting the RGR on a larger scale, to see if 

the new methodology can tell us more about different areas of ecology. 
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Figure 1.2: Spider diagram of physiological variables that can impact seedling growth. 

The thesis focuses around the central idea of understanding the causes of variance in 

seedling growth  
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Below are the main objectives and key questions asked throughout the thesis, along 

with the chapter where each question is tested: 

 

Objective 1: To understand more about the physiology of variance in seedling growth 

 

Questions:  

Is variance in growth between growth forms caused by differences in seed mass? 

(Chapter 2) 

Does growth or biomass explain more variance in survival rates? (Chapter 3) 

Do species responses to one environment prepare them for a change in environment? 

(Chapter 4) 

Does NAR account for most of the variance in growth once the size-bias in NAR has 

been accounted for? (Chapter 5) 

 

Objective 2:  Does growth affect survival of stressful conditions? 

 

Questions:  

Do fast- and slow-growing species respond differently to stressful environments? 

(Chapter 3 & 4) 

Do large and small seeded species respond differently to stressful environments? 

(Chapter 4) 

 

Objective 3:  To study the components of RGR (net assimilation rate, NAR and leaf 

area ratio, LAR), using size-independent methods, to reveal which components are the 

most important parameters in determining growth 

 

Questions:  

Is NAR the most important factor in determining the RGR in near-optimal conditions? 

Is NAR is more important when the variance in size increases (because the formulae for 

RGR and NAR are similar)? (Chapter 5) 

 

Growth can vary between different environments, so the first step in the thesis was to 
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assess whether decisions that are made when designing greenhouse experiments 

significantly affect growth rates (Chapter 2). This is useful to know when comparing 

results across different experiments, and is therefore of use to the rest of this thesis. 

This chapter primarily asks if the differing growth rate between growth forms is caused 

by seed mass. The question is important in relation to theories behind growth strategy 

(e.g. Grime, 1977; Tilman, 1988), which have previously ignored the effect of seed 

mass on growth differences between growth forms and growth strategies, even though 

seed mass varies with both growth form (Westoby et al., 1996; Moles et al., 2005) and 

growth rates (Shipley & Peters, 1990; Maranon & Grubb, 1993). 

 

The fast-slow continuum suggests that a low-RGR is an adaptation to high-stress 

environments (Franco & Silvertown, 1996). The independent effects of SGR and 

biomass on a species' probability of surviving an environmental stress event were 

investigated (Chapter 3). This was made possible by using SGR, as it enabled biomass 

and growth to be investigated as separate variable, which is not possible with the more 

size-dependent RGR. 

 

The results of that experiment lead to the question of what would happen with 2 levels 

of environmental treatment i.e. a less simple situation that is more representative of 

seedlings in the field. (Chapter 4) 

 

The final data chapter (Chapter 5) investigates whether or not variance in growth is 

largely due to variance in NAR. The explanatory power of NAR in describing growth 

may be a side-effect of the size-dependency of NAR and the size-bias of RGR. This was 

a good opportunity to utilise the SGR, but growth was still log-linear. It instead 

highlights the continued usefulness of RGR in some situations and marks the 

importance of understanding the growth pattern currently being studied, as they can 

vary greatly.  

 

The above objectives summarise the key questions and sub-questions contained within 

this thesis. Other important issues are also addressed throughout, such as 

standardising experimental designs (Chapter 2) and the use of additional explanatory 
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variables to those being directly studied to improve model reliability (Chapter 3). This 

thesis includes 451 different species, grown in near-optimal conditions and/ or under 

the stressors of: light, water, nutrients and simulated herbivory. The large range 

represents the need to understand general patterns that hold across multiple 

conditions and to understand when and why differences between the groups occur. 

 

Over the last decade, the accuracy of the conventional method of calculating the RGR 

has been questioned. However, it was only in 2008 that this miscalculation has been 

shown to lead to a misinterpretation of experimental results (Turnbull et al., 2008). The 

extent and implications of this new method of calculating RGR is unknown. Therefore, 

more research needs to be conducted in this area, ideally approaching the problem 

from a different perspective, which is what this thesis starts to address. RGR is used in 

many areas of ecology, conservation and agronomy. As a result, size-correction of RGR 

may also have implications for the application of experimental results in some aspects 

of these specialities. 
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Chapter Ϯ 

 

Does “eed Mass Driǀe the DiffereŶĐes iŶ 

RGR BetǁeeŶ Groǁth Forŵs? 

 

Introduction 

 

Relatiǀe groǁth rate ;RGRͿ ǀaries ǁidely ďetǁeeŶ speĐies [Poorter & Reŵkes, ϭϵϵϬ; 

HuŶt & CorŶelisseŶ, ϭϵϵϳͿ. IŶ a large sĐreeŶiŶg eǆperiŵeŶt, Griŵe aŶd HuŶt ;ϭϵϳϱͿ 

greǁ ϭϯϬ speĐies iŶ staŶdardised, ͚optiŵal’ ĐoŶditioŶs ;Ŷo ĐoŵpetitioŶ, pleŶtiful light 

aŶd ŶutrieŶtsͿ, aŶd fouŶd that eǀeŶ iŶ this eŶǀiroŶŵeŶt there ǁas a ϲ-fold ǀariatioŶ iŶ 

ŵaǆiŵuŵ RGR ďetǁeeŶ speĐies. As a result of this ǀariatioŶ, RGR is ĐoŶsidered to ďe a 

useful ŵetriĐ for separatiŶg speĐies iŶto fuŶĐtioŶal groups. For eǆaŵple, iŶ Griŵe’s C“R 

theory, RGR is a ĐeŶtral paraŵeter deterŵiŶiŶg a speĐies’ strategy, ǁith fast-groǁiŶg 

speĐies ďeiŶg Đlassified as ruderals or Đoŵpetitors, aŶd sloǁ-groǁiŶg speĐies as stress 

tolerators ;Griŵe, ϭϵϳϳ; Griŵe, ϮϬϬϮͿ. “iŵilarly, RGR is also a key trait iŶ TilŵaŶ’s 

theories ;TilŵaŶ, ϭϵϴϴͿ, aŶd he argued that differeŶĐes iŶ alloĐatioŶ deterŵiŶe RGR. 

Thus ďoth theories prediĐt a liŶk ďetǁeeŶ RGR aŶd groǁth forŵ, ǁith ǁoody speĐies 

haǀiŶg loǁer RGRs thaŶ herďaĐeous speĐies ;see also HuŶt & CorŶelisseŶ, ϭϵϵϳ; Wright 

& Westoďy, ϮϬϬϭͿ. The liŶk ďetǁeeŶ RGR aŶd groǁth forŵ is therefore ĐeŶtral to ŵaŶy 

of the ŵost iŶflueŶtial ideas iŶ plaŶt eĐology, aŶd has ďeeŶ fouŶd repeatedly iŶ 

eǆperiŵeŶtal studies ;HuŶt & CorŶelisseŶ, ϭϵϵϳ, Galŵes et al., ϮϬϬϱͿ.  

 

IŶ additioŶ to groǁth forŵ, RGR is assoĐiated ǁith seǀeral other traits. IŶ partiĐular, 

seed ŵass is ofteŶ Ŷegatiǀely Đorrelated ǁith RGR, so large seeded speĐies teŶd to 

haǀe loǁer RGRs ;MaraŶoŶ & Gruďď, ϭϵϵϯ; Agďoola, ϭϵϵϲ; Milďerg et al., ϭϵϵϴͿ. A 
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ŵeta-aŶalysis of siǆ studies ;“hipley & Peters, ϭϵϵϬͿ deŵoŶstrated the geŶerality of the 

Ŷegatiǀe relatioŶship ďetǁeeŶ RGR aŶd seed ŵass, suggestiŶg that it is roďust to 

differeŶĐes iŶ eǆperiŵeŶtal protoĐol aŶd the pool of speĐies used. Like RGR, seed ŵass 

is liŶked ǁith groǁth forŵ, ǁith herďaĐeous speĐies usually haǀiŶg sŵaller seed 

ŵasses thaŶ ǁoody speĐies ;LeishŵaŶ et al., ϮϬϬϬͿ. As a result of this, it is possiďle that 

the relatioŶship ďetǁeeŶ RGR aŶd groǁth forŵ is a ĐoŶseƋueŶĐe of ǀariatioŶ iŶ seed 

ŵass, rather thaŶ the differeŶĐes iŶ groǁth strategy. ReĐeŶtly TurŶďull et al. ;ϮϬϭϮͿ 

haǀe re-eǀaluated the seed ŵass: RGR relatioŶship ďy ĐalĐulatiŶg RGR at a ĐoŵŵoŶ 

seedliŶg ŵass so alloǁiŶg ĐoŵparisoŶ ďetǁeeŶ speĐies of differeŶt ŵasses. We ǁere 

uŶaďle to use this approaĐh ǁith puďlished estiŵates of RGR, aŶd so Đoŵpare groǁth 

forŵs at a ĐoŵŵoŶ seed ŵass. 

To do this, ǁe ďuilt a dataďase of puďlished studies that ĐoŶtaiŶed ŵeasures of RGR, 

aŶd augŵeŶted this ǁith additioŶal iŶforŵatioŶ oŶ life history, KöppeŶ-Geiger Đliŵate 

ĐlassifiĐatioŶ aŶd seed ŵass. CoŵpariŶg the results of differeŶt studies is proďleŵatiĐ, 

due to differeŶĐes iŶ eǆperiŵeŶtal protoĐols ;e.g. duratioŶ of the study aŶd the pot 

ǀoluŵeͿ aŶd other uŶŵeasured faĐtors. IŶ order to aĐĐouŶt for this, ǁe used a ŵiǆed 

ŵodelliŶg approaĐh iŶĐorporatiŶg study-speĐifiĐ Đoǀariates aŶd raŶdoŵ effeĐts. 

 

Methods 

 

 Data ĐolleĐtioŶ 

The 'Weď of KŶoǁledge' ;ThoŵsoŶ Reuters, ϮϬϭϮͿ aŶd ͚“Đopus’ ;Elseǀier, ϮϬϭϮͿ 

dataďases ǁere searĐhed for papers ĐoŶtaiŶiŶg the ǁords 'seed ŵass' or 'seed size' aŶd 

'relatiǀe groǁth rate' or 'groǁth rate' oŶ ϮϬth JaŶuary, ϮϬϭϮ. The folloǁiŶg ǀariaďles 

ǁere reĐorded per speĐies per study: 

 

ϭ. The relatiǀe groǁth rate. This ǁas either ĐalĐulated usiŶg liŶear regressioŶ or as:  

RGR = ;log Wt - log WϬͿ / t 

ǁhere WϬ is the iŶitial plaŶt ŵass, Wt is the fiŶal plaŶt ŵass aŶd t is the Ŷuŵďer of 

days ďetǁeeŶ the tǁo ŵeasureŵeŶts ;HuŶt, ϭϵϵϬͿ. All ŵeasureŵeŶts ǁere eǆpressed 
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as g g-ϭ day-ϭ. 

Ϯ. “eed ŵass, iŶ ŵg. Where the seed ŵass ǁas Ŷot preseŶted iŶ the origiŶal paper, the 

aǀerage seed ŵass for the speĐies ǁas oďtaiŶed froŵ either the EĐoflora dataďase 

;Fitter & Peat, ϭϵϵϰͿ, the KEW “eed IŶforŵatioŶ Dataďase ;KEW, ϮϬϬϴͿ or Griŵe et al. 

;ϭϵϴϴͿ. 

ϯ. The duratioŶ of the study ǁas ŵeasured as the Ŷuŵďer of days ďetǁeeŶ 

gerŵiŶatioŶ aŶd the fiŶal harǀest. 

ϰ. Pot ǀoluŵe ǁas reĐorded iŶ Đŵϯ. 

ϱ. The groǁth forŵs of eaĐh speĐies ;forď, graŵiŶoid, shruď or treeͿ ǁere reĐorded, 

usiŶg data froŵ: the origiŶal paper, Griŵe et al. ;ϭϵϴϴͿ or the PLANT“ Dataďase ;U“DA 

& NRC“, ϮϬϭϮͿ. 

ϲ. “tudies ǁere assigŶed to the KöppeŶ-Geiger Đliŵate ĐlassifiĐatioŶ ;ĐoŶtiŶeŶtal, dry, 

ŵoderate, or tropiĐalͿ ďased oŶ their loĐatioŶ ;Peel et al., ϮϬϬϳͿ. 

Where studies had ŵultiple treatŵeŶt groups ;e.g. ŵultiple light leǀelsͿ, oŶly the 

results froŵ the ĐoŶtrol treatŵeŶts ;i.e. pleŶtiful light, ŶutrieŶts aŶd ǁaterͿ ǁere 

reĐorded. The fiŶal dataset ĐoŶsisted of ϳϲϭ speĐies ;ϰϯϭ uŶiƋue speĐiiesͿ froŵ ϰϱ 

studies ;see AppeŶdiǆ ϭ for detailsͿ. 

StatistiĐs 

A liŶear ŵiǆed-effeĐts ŵodel for ǀariatioŶ iŶ RGR ǁas deǀeloped iŶ R ;R DeǀelopŵeŶt 

Core Teaŵ, ϮϬϭϭͿ usiŶg the lŵeϰ paĐkage ;Bates et al., ϮϬϭϭͿ. These ŵodels alloǁ the 

depeŶdeŶĐe oŶ Đoǀariates aŶd uŶŵeasured study-speĐifiĐ faĐtors to ďe eǆplored. 

“peĐifiĐally, iŶ this Đase, differeŶt studies ǁere perforŵed usiŶg differeŶt protoĐols aŶd 

uŶder differeŶt eŶǀiroŶŵeŶtal ĐoŶditioŶs, aŶd so study-speĐifiĐ raŶdoŵ effeĐts ǁere 

iŶĐluded iŶ the ŵodels. IŶ additioŶ to these, ǁe also iŶĐluded study-speĐifiĐ Đoǀariates 

;e.g. duratioŶ aŶd pot ǀoluŵeͿ. IŶforŵatioŶ oŶ pot ǀoluŵe ǁas Ŷot aǀailaďle for ≈Ϯϱ% 

of the speĐies, aŶd so ǁe iŶitially deǀeloped ŵodels igŶoriŶg pot ǀoluŵe. The 

ĐoŶĐlusioŶs froŵ ŵodels ǁith aŶd ǁithout pot ǀoluŵe ǁere, hoǁeǀer, siŵilar, aŶd so 

ǁe oŶly preseŶt aŶalyses igŶoriŶg pot ǀoluŵe; see AppeŶdiǆ Ϯ for ŵodels iŶĐludiŶg pot 

ǀoluŵe. All ĐoŶtiŶuous ǀariaďles ǁere log traŶsforŵed ;ďase ϭϬͿ. 

 

The statistiĐal sigŶifiĐaŶĐe of the relatioŶships ďetǁeeŶ RGR aŶd the study speĐifiĐ 
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Đoǀariates, aŶd ďetǁeeŶ the Đoǀariates ǁas assessed usiŶg a ŵiǆed ŵodel ǁith a 

study-speĐifiĐ raŶdoŵ iŶterĐept. We theŶ geŶerated a saŵple froŵ the posterior 

distriďutioŶ of the paraŵeters froŵ the fitted ŵodel usiŶg Markoǀ ChaiŶ MoŶte Carlo 

ŵethods ;ďased oŶ the ŵĐŵĐsaŵp fuŶĐtioŶ iŶ lŵeϰ aŶd pǀals.fŶĐ iŶ laŶguageRͿ. 

 

Results 

 

RelatioŶships ďetǁeeŶ ExperiŵeŶtal Variaďles 

IŶ agreeŵeŶt ǁith preǀious researĐh, ǁoody plaŶts do appear to haǀe loǁer RGRs thaŶ 

herďaĐeous speĐies ;Figure Ϯ.ϭaͿ. There ǁere also assoĐiatioŶs ǁith the study-speĐifiĐ 

Đoǀariates: study duratioŶ aŶd pot ǀoluŵe. RGR ǁas Ŷegatiǀely Đorrelated ǁith ďoth 

the duratioŶ of the study aŶd pot ǀoluŵe ;Figure Ϯ.ϭď & ĐͿ. “iŵilarly, seed ŵass ǁas 

also Đorrelated ǁith these Đoǀariates, ǁith studies of loŶger duratioŶ, iŶ larger pots, 

typiĐally usiŶg larger seeded speĐies ;FigureϮ. ϭd & eͿ. As eǆpeĐted, studies usiŶg larger 

pots ǁere usually of loŶger duratioŶ ;Figure Ϯ.ϭfͿ. IŶ tropiĐal studies RGR is loǁer, aŶd 

these studies typiĐally use larger seeded speĐies ;Figure Ϯ.Ϯa aŶd ďͿ. TropiĐal studies 

are also typiĐally perforŵed iŶ large pots aŶd are of loŶg duratioŶ ;Figure Ϯ.ϮĐ aŶd dͿ. 

CoŶsisteŶt ǁith eǆpeĐtatioŶs froŵ the literature ;Westoďy et al., ϭϵϵϲͿ, ǁoody speĐies 

;trees aŶd shruďsͿ had higher seed ŵasses thaŶ the herďaĐeous speĐies ;forďs aŶd 

graŵiŶoids, Figure Ϯ.ϯͿ, ǁhiĐh Đould poteŶtially ďias ĐoŵparisoŶs ďetǁeeŶ groǁth 

forŵs. 

Model SeleĐtioŶ 

A liŶear ŵiǆed-effeĐts ŵodel ǁas deǀeloped to eǆplaiŶ the effeĐts of groǁth forŵ aŶd 

seed ŵass oŶ RGR, usiŶg: seed ŵass, groǁth forŵ, duratioŶ of the study, KöppeŶ-

Geiger Đliŵate ĐlassifiĐatioŶ, aŶd study ;ǁhiĐh groups the data ďy their origiŶal paperͿ. 

The iŶitial ŵodel assuŵed that ǀariatioŶ iŶ RGR ǁas eǆplaiŶed ďy seed ŵass, groǁth 

forŵ, KöppeŶ-Geiger Đliŵate ĐlassifiĐatioŶ aŶd duratioŶ, ǁith study-speĐifiĐ Đorrelated 

iŶterĐepts aŶd seed ŵass slopes ;Taďle Ϯ.ϭ: Model ϭͿ. ReŵoǀiŶg the duratioŶ of the 

study froŵ the ŵodel iŵproǀed the fit ;Taďle Ϯ.ϭ: Model ϭ ǀs ϮͿ, possiďly ďeĐause the 

effeĐt of duratioŶ ǁas ĐoŶfouŶded ǁith the study raŶdoŵ effeĐt. Likeǁise reŵoǀal of 
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the KöppeŶ-Geiger Đliŵate ĐlassifiĐatioŶ iŵproǀed the fit of the ŵodels ;Taďle Ϯ.ϭ: 

Model Ϯ ǀs ϯͿ; therefore ďoth ǀariaďles ǁere reŵoǀed froŵ the ŵodel. IŶspeĐtioŶ of 

the fitted paraŵeters suggested there ǁas little differeŶĐe ďetǁeeŶ the forďs aŶd 

graŵiŶoids, aŶd ďetǁeeŶ the shruďs aŶd trees, aŶd so they ǁere ĐoŵďiŶed iŶto tǁo 

groups, the herďaĐeous aŶd ǁoody speĐies. This groupiŶg iŵproǀed ďoth the AIC aŶd 

BIC ;Taďle Ϯ.ϭ: Model ϯ ǀs ϰͿ. IŶĐludiŶg aŶ iŶteraĐtioŶ ďetǁeeŶ herďaĐeous aŶd ǁoody, 

aŶd seed ŵass did Ŷot iŵproǀe the fit of the ŵodel ;Taďle Ϯ.ϭ: Model ϰ ǀs ϱͿ, hoǁeǀer, 

ŵakiŶg the study-speĐifiĐ iŶterĐepts aŶd seed ŵass slopes iŶdepeŶdeŶt did ;Taďle Ϯ.ϭ: 

Model ϰ ǀs ϲͿ. 

 

IŶ the fiŶal ŵiǆed-effeĐts ŵodel, log;RGRͿ deĐliŶed liŶearly ǁith log;seed ŵassͿ, ďut 

the herďaĐeous aŶd ǁoody speĐies had differeŶt iŶterĐepts, so ǁoody speĐies had a 

ĐoŶsisteŶtly loǁer aǀerage RGR ;Figure Ϯ.ϰaͿ. There ǁas Ŷo eǀideŶĐe for aŶ iŶteraĐtioŶ 

ďetǁeeŶ seed ŵass aŶd groǁth forŵ ;Taďle Ϯ.ϭ: Model ϰ ǀs ϱͿ, suggestiŶg that RGR 

deĐliŶes ǁith seed ŵass at the saŵe rate iŶ ďoth groups. IŵportaŶtly, this ŵeaŶs that 

at aŶy ĐoŵŵoŶ seed ŵass, ǁoody speĐies do iŶdeed groǁ ŵore sloǁly thaŶ 

herďaĐeous speĐies. All study-speĐifiĐ slopes ǁere Ŷegatiǀe ;Figure Ϯ.ϰďͿ. 
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Taďle Ϯ.ϭ: Model seleĐtioŶ, for the liŶear ŵiǆed effeĐts ŵodel of RGR. RGR, seed ŵass 

aŶd duratioŶ ǁere all log traŶsforŵed ;ďase ϭϬͿ, KG = KöppeŶ-Geiger Đliŵate 

ĐlassifiĐatioŶ. 

No Model AIC BIC 

ϭ  RGR ~ seed ŵass + duratioŶ + groǁth forŵ 

+KG + ;seed ŵass | “tudyͿ 

-Ϯϳϱ.ϯ -Ϯϭϱ.ϲ 

Ϯ  RGR ~ seed ŵass + groǁth forŵ + KG + ;seed 

ŵass | “tudyͿ 

-Ϯϳϳ.Ϯ -ϮϮϮ.ϭ 

ϯ  

 

RGR ~ seed ŵass + groǁth forŵ + ;seed 

ŵass | “tudyͿ 

-Ϯϳϵ.ϰ 

 

-Ϯϯϴ.ϭ 

ϰ  RGR ~ seed ŵass + Herď or Woody + ;seed 

ŵass | “tudyͿ 

-Ϯϵϯ.ϰ -Ϯϲϭ.Ϯ 

ϱ  RGR ~ seed ŵass * Herď or Woody + ;seed 

ŵass | “tudyͿ 

-Ϯϴϴ.Ϭ -Ϯϱϭ.Ϯ 

ϲ  RGR ~ seed ŵass + Herď or WoodǇ + 

;ϭ|StudǇͿ + ;Ϭ + seed ŵass | StudǇͿ 

-Ϯϵϱ.Ϯ -Ϯϲϳ.ϳ 

The terŵs iŶ ďraĐkets iŶdiĐate study-speĐifiĐ raŶdoŵ effeĐts. The ;ϭ | “tudyͿ terŵ 

speĐifies study-speĐifiĐ iŶterĐepts, the ;seed ŵass | “tudyͿ terŵ speĐifies study-speĐifiĐ 

Đorrelated slopes aŶd iŶterĐepts, ǁhile ;Ϭ + seed ŵass | “tudyͿ speĐifies study-speĐifiĐ 

uŶĐorrelated slopes aŶd iŶterĐepts. AIC aŶd BIC are ďoth ŵeasures of ŵodel fit, ǁith 

differeŶt peŶalties oŶ ŵodel Đoŵpleǆity ;the Ŷuŵďer of paraŵeters estiŵatedͿ. 
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Taďle Ϯ.Ϯ: Paraŵeters of the fiŶal ŵiǆed-effeĐts ŵodel for ǀariatioŶ 

iŶ RGR ;Taďle Ϯ.ϭ; Model ϲͿ. 

Fiǆed effeĐts: Estiŵate “taŶdard Error t ǀalue 

Woody -ϭ.Ϯϭϭ Ϭ.Ϭϱϯ -Ϯϯ.ϬϱϮ 

Herď -ϭ.ϬϭϮ Ϭ.Ϭϱϰ -ϭϴ.ϳϯϮ 

“eed ŵass -Ϭ.ϭϬϳ Ϭ.Ϭϭϱ -ϳ.Ϭϴϰ 

    

RaŶdoŵ 

effeĐts: 

VariaŶĐe “taŶdard 

DeǀiatioŶ 

 

“tudy Ϭ.ϭϬϬ Ϭ.ϯϭϳ  

“eed ŵass Ϭ.ϬϬϰ Ϭ.ϬϲϬ  

Residual Ϭ.ϬϯϬ Ϭ.ϭϳϮ  
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Figure Ϯ.ϭ: The relatioŶships ďetǁeeŶ the eǆperiŵeŶtal ǀariaďles. aͿ RGR aŶd groǁth 
forŵ ;p<Ϭ.ϬϬϬϭͿ, ďͿ RGR aŶd duratioŶ ;p<Ϭ.ϬϬϬϭͿ, ĐͿ RGR aŶd pot ǀoluŵe ;p<Ϭ.ϬϬϬϭͿ, 
dͿ “eed ŵass aŶd duratioŶ ;p<Ϭ.ϬϬϭͿ, eͿ seed ŵass aŶd ǀoluŵe ;p<Ϭ.ϬϬϬϮͿ aŶd fͿ 
Voluŵe aŶd duratioŶ ;p<Ϭ.ϬϬϬϭͿ. All ǀariaďles eǆĐept groǁth forŵ are displayed oŶ the 
log sĐale. p-ǀalues geŶeratiŶg a saŵple froŵ the posterior distriďutioŶ of the 
paraŵeters of the fitted ŵodel usiŶg Markoǀ ChaiŶ MoŶte Carlo ŵethods; see teǆt for 
details. 
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Figure Ϯ.Ϯ: The relatioŶships ǁith Đliŵate ĐlassifiĐatioŶ for aͿ RGR, ďͿ seed ŵass, ĐͿ pot 
ǀoluŵe, aŶd dͿ duratioŶ. IŶ all Đases p<Ϭ.ϬϬϬϭ, usiŶg p-ǀalues geŶerated usiŶg Markoǀ 
ChaiŶ MoŶte Carlo ŵethods; see teǆt for details. 
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Figure Ϯ.ϯ: Histograŵ of seed ŵass, suďdiǀided iŶto forďs, graŵiŶoids, shruďs aŶd trees 
;p<Ϭ.ϬϬϬϭͿ; p-ǀalue geŶerated usiŶg Markoǀ ChaiŶ MoŶte Carlo ŵethods, see teǆt for 
details. 
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Figure Ϯ.ϰ: aͿ RelatioŶship ďetǁeeŶ RGR aŶd seed ŵass. Herď = ďlaĐk, ǁoody = grey. The solid liŶes use the fiǆed effeĐts froŵ 
the fiŶal ŵiǆed-effeĐts ŵodel ;Model ϲ, Taďle Ϯ.ϭͿ. ďͿ “tudy-speĐifiĐ slopes for the log;RGRͿ ǀs log;“eed ŵassͿ regressioŶs. 
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Discussion 

 

Seed ŵass aŶd RGR 

There ǁas a highly sigŶifiĐaŶt oǀerall Ŷegatiǀe relatioŶship ďetǁeeŶ RGR aŶd seed 

ŵass ;Taďle Ϯ.Ϯ, Figure Ϯ.ϰaͿ aŶd all the study-speĐifiĐ slopes ǁere Ŷegatiǀe ;Figure 

Ϯ.ϰďͿ, ǁhiĐh supports the ŵajority of the literature ;for eǆaŵple MaraŶoŶ & Gruďď, 

ϭϵϵϯ; Grotkopp et al., ϮϬϬϮͿ aŶd agrees ǁith the results of the oŶly other puďlished 

Đoŵparatiǀe aŶalysis oŶ the relatioŶship ďetǁeeŶ RGR aŶd seed ŵass ;“hipley & 

Peters, ϭϵϵϬͿ. 

 

HerďaĐeous speĐies had ĐoŶsisteŶtly higher aǀerage RGRs thaŶ ǁoody speĐies at all 

seed ŵasses aŶd groǁth forŵ does Ŷot alter the slope of the relatioŶship ďetǁeeŶ 

RGR aŶd seed ŵass. As a result, ĐoŶĐlusioŶs froŵ preǀious researĐh that haǀe 

Đoŵpared RGR aĐross groǁth forŵs, igŶoriŶg seed ŵass, ŵay Ŷot ďe Ƌualitatiǀely 

affeĐted ďy Ŷot aĐĐouŶtiŶg for seed ŵass. Hoǁeǀer, ďeĐause seed ŵass is Đorrelated 

ǁith RGR, aŶd seed ŵass ǀaries ďetǁeeŶ groǁth forŵs, failure to aĐĐouŶt for the 

effeĐts of seed ŵass ǁill ďias ĐoŵparisoŶs. 

Groǁth forŵs 

The RGRs of forďs aŶd graŵiŶoids ǁere siŵilar, as ǁere the RGRs of shruďs aŶd trees 

;Figure Ϯ.ϭaͿ. Hoǁeǀer, herďs had sigŶifiĐaŶtly higher RGRs thaŶ ǁoody speĐies ;Figure 

Ϯ.ϰaͿ, ĐoŶsisteŶt ǁith the ǁidely aĐĐepted ǀieǁ that differeŶt groǁth forŵs haǀe 

differeŶt RGRs ;Griŵe & HuŶt, ϭϵϳϱͿ. As this differeŶĐe holds eǀeŶ ǁheŶ speĐies are 

Đoŵpared at a ĐoŵŵoŶ seed ŵass, ǁe ŵust ĐoŶsider other Đauses of ǀariaŶĐe iŶ 

seedliŶg RGR ďetǁeeŶ groǁth forŵs.  

 

The differiŶg RGR ďetǁeeŶ groǁth forŵs has preǀiously ďeeŶ liŶked to groǁth 

ĐoŵpoŶeŶts, ǁhere RGR is deĐoŵposed iŶto: speĐifiĐ leaf area ;“LA; leaf area per uŶit 

of leaf ďioŵassͿ, leaf ŵass ratio ;LMR; ratio of leaf ďioŵass to total plaŶt ďioŵassͿ aŶd 

Ŷet assiŵilatioŶ rate ;NAR; iŶĐrease iŶ ďioŵass per uŶit of leaf area per tiŵeͿ. 

HerďaĐeous speĐies teŶd to haǀe higher “LAs thaŶ ǁoody speĐies ;Wright & Westoďy, 
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ϮϬϬϭ; Galŵes et al., ϮϬϬϱͿ, proǀidiŶg greater light aďsorptioŶ per uŶit of leaf ŵass, 

ǁhiĐh ŵay ĐoŶtriďute to their higher RGR. “LA is ofteŶ fouŶd to aĐĐouŶt for ŵost of 

the ǀariaŶĐe iŶ RGR iŶ studies of herďaĐeous speĐies ;Poorter & Reŵkes, ϭϵϵϬ; Poorter 

& VaŶ der Werf, ϭϵϵϴͿ. IŶ ǁoody speĐies, hoǁeǀer, ǁhile a ŵajor ĐoŶtriďutioŶ of “LA is 

supported ďy soŵe studies ;HuaŶte et al., ϭϵϵϱ; CorŶelisseŶ et al., ϭϵϵϴͿ, others fiŶd 

that NAR eǆplaiŶs ŵore of the ǀariaŶĐe iŶ RGR ;VeŶeklaas & Poorter, ϭϵϵϴͿ. The ŵeta-

aŶalysis ďy “hipley ;ϮϬϬϲͿ fouŶd that NAR ǁas geŶerally the ďest prediĐtor of RGR, ďut 

that as light iŶteŶsity deĐreased, the iŵportaŶĐe of NAR deĐliŶed aŶd the iŵportaŶĐe 

of “LA iŶĐreased, at least iŶ herďaĐeous speĐies. The relatioŶship ďetǁeeŶ LMR aŶd 

RGR is iŶĐoŶsisteŶt, ǁith ŵaŶy ŶoŶ-sigŶifiĐaŶt relatioŶships ;ReiĐh et al., ϭϵϵϴͿ. 

Therefore eǆplaŶatioŶs for the ǀariaŶĐe iŶ RGR ďetǁeeŶ groǁth forŵs usiŶg the 

ĐoŵpoŶeŶts of RGR are ĐurreŶtly ĐoŶtradiĐtory aŶd reƋuire further researĐh usiŶg 

approaĐhes that aĐĐouŶt for the effeĐts of plaŶt ŵass ;Rees et al., ϮϬϭϬͿ. 

EŶǀiroŶŵeŶtal Variaďles 

Although plaŶts iŶ loŶger studies had loǁer RGRs ;Figure Ϯ.ϭďͿ, duratioŶ did Ŷot 

iŵproǀe the ŵodel for RGR ;Taďle Ϯ.ϭͿ, likeǁise pot ǀoluŵe ǁas also reŵoǀed froŵ the 

ŵodel ;AppeŶdiǆ ϮͿ. There ǁas a Ŷegatiǀe relatioŶship ďetǁeeŶ pot ǀoluŵe aŶd RGR 

;Figure Ϯ.ϭĐͿ possiďly ďeĐause plaŶts iŶ large pots teŶd to ďe ǁoody speĐies iŶ loŶg-

terŵ eǆperiŵeŶts, ǁhiĐh haǀe a loǁer RGR ;Figure Ϯ.ϭaͿ. The effeĐts of pot ǀoluŵe are 

uŶlikely to ďe a ĐoŶseƋueŶĐe of plaŶts ďeĐoŵiŶg pot ďouŶd, as study duratioŶ is 

typiĐally too short for this to oĐĐur ;Poorter et al., ϮϬϭϮͿ. The laĐk of sigŶifiĐaŶt pot 

ǀoluŵe aŶd duratioŶ effeĐts is largely a ĐoŶseƋueŶĐe of these faĐtors ǀaryiŶg at the 

leǀel of the study. Where there is ǁithiŶ-study ǀariatioŶ iŶ pot ǀoluŵe, large effeĐts are 

ofteŶ fouŶd ;Poorter et al., ϮϬϭϮͿ. The regressioŶs ďetǁeeŶ pot ǀoluŵe, duratioŶ aŶd 

other Đoǀariates iŶdiĐate, uŶsurprisiŶgly, that they are Ŷot iŶdepeŶdeŶt, ŵakiŶg it 

diffiĐult to separate their effeĐts ;Figure Ϯ.ϭͿ. 

StudǇ 

RGR ǀaried ďetǁeeŶ studies, for reasoŶs ďeyoŶd differeŶĐes iŶ speĐies, seed ŵass aŶd 

groǁth forŵ. This suggests that details of the eǆperiŵeŶtal protoĐol are iŵportaŶt. 

Preǀious studies haǀe also shoǁŶ that other faĐtors that ǀary ďetǁeeŶ studies, for 
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eǆaŵple light ;Poorter, ϭϵϵϵͿ aŶd ŶutrieŶts ;BurŶs et al., ϭϵϵϳͿ, also affeĐt RGR, ďut 

that eǀeŶ after these ǀariaďles are aĐĐouŶted for ;as far as they ĐaŶ ďeͿ, suďstaŶtial 

ǀariatioŶ reŵaiŶs ;“hipley, ϮϬϬϲͿ. To fully uŶderstaŶd the physiologiĐal effeĐts of the 

ǀariaďles studied here aŶd the relatioŶs ďetǁeeŶ theŵ, the deǀelopŵeŶt of a 

staŶdardised eǆperiŵeŶtal desigŶ should ďe ĐoŶsidered. “taŶdardised groǁth 

ĐoŶditioŶs ǁould iŵproǀe the iŶtegrity of ĐoŵparisoŶs ďetǁeeŶ eǆperiŵeŶts aŶd 

produĐe a Đlearer outĐoŵe aĐross studies aŶd speĐies groups. This ǁould eŶaďle ŵore 

Đlear aŶd speĐifiĐ ĐoŶĐlusioŶs to ďe draǁŶ froŵ Đoŵparatiǀe aŶd ŵeta-aŶalyses. 

Hoǁeǀer, this ŵay proǀe diffiĐult oŶ the gloďal sĐale, as ĐoŶditioŶs that are optiŵal for 

oŶe speĐies ŵay ďe ǀery suď-optiŵal for others. EŶĐouragiŶg the eĐologiĐal ĐoŵŵuŶity 

to adopt the saŵe desigŶ, ǁhiĐh ŵay ďe diffiĐult or eǆpeŶsiǀe to iŵpleŵeŶt iŶ soŵe 

eŶǀiroŶŵeŶts, ŵay also proǀe to ďe aŶ iŶsurŵouŶtaďle ĐhalleŶge.  

 

Conclusion 

 

RGR ǀaried ďetǁeeŶ groǁth forŵs, eǀeŶ at a giǀeŶ seed ŵass, partiĐularly ďetǁeeŶ the 

herďaĐeous aŶd ǁoody speĐies. Hoǁeǀer, there ǁas little differeŶĐe ďetǁeeŶ the forďs 

aŶd graŵiŶoids, aŶd ďetǁeeŶ the shruďs aŶd trees. The slopes of the regressioŶs 

ďetǁeeŶ seed ŵass aŶd RGR ǁas the saŵe for ďoth herďaĐeous aŶd ǁoody groǁth 

forŵs, suggestiŶg a ĐoŶsisteŶt differeŶĐe ďetǁeeŶ the groups. Further ǁork is reƋuired 

to uŶderstaŶd ǁhy RGR has a ĐoŵŵoŶ sĐaliŶg iŶ these differeŶt groups, aŶd eǆplaiŶ 

the ŵagŶitude of the differeŶĐe ďetǁeeŶ theŵ. 
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Appendiǆ ϭ 

 

Data Sources 

 

Taďle “Ϯ.ϭ: A list of the studies used iŶ the aŶalysis 

Authors HerďWoody Groǁth Forŵ No 
spp 

Agaďoola, ϭϵϵϲ Woody Tree ϯ 

Alŵeida-Cortez et al., ϭϵϵϵ Herď Forď & 
GraŵiŶoid 

Ϯϴ 

AtkiŶ et al, ϭϵϵϴ Woody Tree ϭϬ 

Bursleŵ & Miller, ϮϬϬϭ Woody Tree Ϯ 

Caŵďrolle et al., ϮϬϭϭ Herď Forď ϭ 

Caŵpďell & RoĐhefort, ϮϬϬϯ Herď & 
Woody 

Forď, “hruď & 
Tree 

ϭϵ 

Castro et al., ϮϬϬϴ Woody Tree ϭ 

Castro-diez, et al., ϮϬϬϯ Woody “hruď & Tree ϮϮ 

Choe et al., ϭϵϴϴ Herď Forď ϭ 

Cordazzo, ϮϬϬϮ Herď GraŵiŶoid ϯ 

CorŶelisseŶ et al., ϭϵϵϲ Herď & 
Woody 

GraŵiŶoid, 
“hruď & Tree 

ϴϯ 

Griŵe & HuŶt, ϭϵϳϱ Herď & 
Woody 

Forď, GraŵiŶoid, 
“hruď & Tree 

ϭϮϲ 

Grotkopp et al., ϮϬϬϮ Woody Tree Ϯϵ 

Gyiŵah & Nakao, ϮϬϬϳ Woody Tree ϯ 

HuaŶte & RiŶĐoŶ., ϭϵϵϳ Woody Tree ϵ 

HuaŶte et al., ϭϵϵϱ Woody Tree ϯϯ 

HuŶt aŶd CorŶelisseŶ, ϭϵϵϳ Herď & 
Woody 

Forď, GraŵiŶoid 
& “hruď 

ϱϵ 

JoŶes & Reekie, ϮϬϬϳ Woody Tree Ϯ 

Kelly et al., ϮϬϬϵ Woody Tree ϯ 

KhuraŶa & “iŶgh, ϮϬϬϰ Woody Tree ϱ 

Kitajiŵa, ϭϵϵϰ Woody Tree ϭϯ 

Li et al., ϭϵϵϴ Herď Forď ϭ 

MaŶŶiŶg et al., ϮϬϬϵ Herď Forď ϱ 

MaraŶoŶ & Gruďď, ϭϵϵϯ Herď Forď Ϯϳ 

MĐKeŶŶa & Houle, ϮϬϬϮ Herď Forď ϭ 

MetĐalfe et al., ϮϬϬϮ Woody Tree ϲ 

Meyer & CarlsoŶ, ϮϬϬϭ Woody Tree ϭ 

Milďerg et al., ϭϵϵϴ Woody “hruď & Tree ϮϮ 

Miyazaǁa & LeĐhoǁiĐz, ϮϬϬϰ Woody Tree ϭ 

Moraes et al., ϮϬϭϬ Woody Tree ϭ 

NorgreŶ, ϭϵϵϲ Woody Tree Ϯ 

Padilla et al., ϮϬϬϳ Woody “hruď ϯ 

Poorter, ϭϵϵϵ Woody Tree ϭϰ 

Poorter & Reŵkes, ϭϵϵϬ Herď Forď Ϯϰ 
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Quero et al., ϮϬϬϱ Woody Tree ϰ 

ReiĐh et al., ϮϬϬϯ Woody Forď & 
GraŵiŶoid 

ϯϰ 

Roďerts et al., ϮϬϭϬ Herď Forď ϭ 

Ruiz-Roďleto & Villar, ϮϬϬϱ Woody “hruď & Tree ϭϬ 

“eiďert & PearĐe, ϭϵϵϯ Herď Forď ϲ 

“hipley & Keddy, ϭϵϴϴ Herď & 
Woody 

Forď, GraŵiŶoid 
& “hruď 

Ϯϴ 

“hipley & Peters, ϭϵϵϬ Herď Forď & 
GraŵiŶoid 

ϱϲ 

“hipley et al., ϭϵϴϵ Herď Forď & 
GraŵiŶoid 

Ϯϯ 

Villar et al., ϭϵϵϴ Herď GraŵiŶoid Ϯϭ 

Walters & ReiĐh, ϮϬϬϬ Woody Tree ϳ 

Walters et al., ϭϵϵϯ Woody Tree ϴ 

No speĐies represeŶts the Ŷuŵďer of speĐies froŵ eaĐh paper used iŶ the aŶalysis. This 
ŵay ďe feǁer thaŶ the Ŷuŵďer of speĐies iŶ the origiŶal studies due to uŶoďtaiŶaďle 
seed ŵass or RGR data. 
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Appendiǆ Ϯ 

 

Model selection including pot voluŵe 

 

IŶ this aŶalysis of the data, all eŶtries ǁithout pot ǀoluŵe data haǀe ďeeŶ 
reŵoǀed. The ŵodels iŶĐludiŶg pot ǀoluŵe ǁere Ŷot sigŶifiĐaŶtly ďetter thaŶ the 
ŵodels eǆĐludiŶg pot ǀoluŵe, so pot ǀoluŵe ǁas Ŷot iŶĐluded iŶ the fiŶal ŵodel. 
Model seleĐtioŶ ǁas ďased oŶ the AIC aŶd BIC. 
 

Taďle “Ϯ.Ϯ: Model seleĐtioŶ, for the liŶear ŵiǆed effeĐts ŵodel of RGR iŶĐludiŶg 
ǀoluŵe. RGR, seed ŵass, ǀoluŵe aŶd duratioŶ ǁere all log traŶsforŵed ;ďase ϭϬͿ, KG = 
KöppeŶ-Geiger Đliŵate ĐlassifiĐatioŶ. 
No Model AIC BIC 

ϭ RGR ~ seed ŵass + ǀoluŵe 
+ duratioŶ + groǁth forŵ + 
KG + ;seed ŵass| “tudyͿ 

-ϮϰϮ.ϰ -ϭϴϯ.ϯ 

Ϯ RGR ~ seed ŵass + ǀoluŵe 
+ groǁth forŵ + KG + 
;seed ŵass | “tudyͿ 

-Ϯϰϲ.ϳ -ϭϵϭ.ϵ 

ϯ RGR ~ seed ŵass + ǀoluŵe 
+ groǁth forŵ + ;seed 
ŵass| “tudyͿ 

-Ϯϱϲ.ϴ -Ϯϭϰ.ϲ 

ϰ  RGR ~ seed ŵass + groǁth 
forŵ + ;seed ŵass | “tudyͿ 

-Ϯϱϳ.ϱ -Ϯϭϵ.ϱ 

ϱ  RGR ~ seed ŵass + Herď or 
Woody + ;seed ŵass | 
“tudyͿ 

-Ϯϳϭ -Ϯϰϭ.ϱ 

ϲ  RGR ~ seed ŵass * Herď or 
Woody + ;seed ŵass | 
“tudyͿ 

-Ϯϲϳ -Ϯϯϯ.ϯ 

ϳ  RGR ~ seed ŵass + Herď 
or WoodǇ + ;ϭ|StudǇͿ + ;Ϭ 
+ seed ŵass | StudǇͿ 

-ϮϳϮ.ϵ -Ϯϰϳ.ϲ 

The terŵs iŶ ďraĐkets iŶdiĐate study-speĐifiĐ raŶdoŵ effeĐts. The ;ϭ | “tudyͿ terŵ 
speĐifies study-speĐifiĐ iŶterĐepts, the ;seed ŵass | “tudyͿ terŵ speĐifies study-speĐifiĐ 
Đorrelated slopes aŶd iŶterĐepts, ǁhile ;Ϭ + seed ŵass | “tudyͿ speĐifies study-speĐifiĐ 
uŶĐorrelated slopes aŶd iŶterĐepts. The ŵodel iŶ ďold ǁas ĐhoseŶ as the ŵodel ǁhiĐh 
ďest eǆplaiŶed the data. 
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Taďle “Ϯ.ϯ: Paraŵeters of the fiŶal ŵiǆed-effeĐts ŵodel for 
ǀariatioŶ iŶ RGR ;Taďle “Ϯ.Ϯ; Model ϳͿ. 
Fiǆed effeĐts: Estiŵate “taŶdard Error t ǀalue 

Woody -ϭ.Ϯϯϳ Ϭ.Ϭϲϱ -ϭϴ.ϴϴϮ 

Herď -ϭ.Ϭϰϳ Ϭ.Ϭϲϳ -ϭϱ.ϱϲϮ 

“eed ŵass -Ϭ.ϭϮϬ Ϭ.Ϭϭϴ -ϲ.ϲϬϰ 

    

RaŶdoŵ 
effeĐts: 

VariaŶĐe “taŶdard 
DeǀiatioŶ 

 

“tudy Ϭ.ϭϭϱ Ϭ.ϯϯϵ  

“eed ŵass Ϭ.ϬϬϰ Ϭ.Ϭϲϰ  

Residual Ϭ.ϬϮϱ Ϭ.ϭϱϴ  
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Chapter ϯ 

 

Groǁth aŶd Bioŵass affeĐt “eedliŶg 

“urǀiǀal of Drought aŶd DefoliatioŶ 

 

Introduction 

 

Larger orgaŶisŵs typiĐally haǀe a surǀiǀal adǀaŶtage oǀer sŵaller oŶes ;Cook, ϭϵϴϬͿ, 

although size effeĐts ĐaŶ ďeĐoŵe ŵore ĐoŵpliĐated iŶ relatioŶ to rates of predatioŶ 

;“ogard, ϭϵϵϳͿ. Bigger seedliŶgs ŵay eǆperieŶĐe higher surǀiǀal rates duriŶg stress 

eǀeŶts, ďeĐause they are ďetter estaďlished ;i.e. they haǀe ŵore eǆteŶsiǀe root 

systeŵs, as aďoǀe- aŶd ďeloǁ-grouŶd ďioŵass are usually Đorrelated, EŶƋuist aŶd 

Niklas, ϮϬϬϮͿ. Hoǁeǀer, ďioŵass is Ŷot the oŶly prediĐtor of surǀiǀal. “eǀeral authors 

haǀe argued that the proďaďility of surǀiǀal depeŶds oŶ groǁth rate, ǁith sloǁ-groǁiŶg 

orgaŶisŵs typiĐally eǆhiďitiŶg a surǀiǀal adǀaŶtage oǀer fast-groǁiŶg orgaŶisŵs ;FraŶĐo 

aŶd “ilǀertoǁŶ, ϭϵϵϲͿ. The fast-sloǁ ĐoŶtiŶuuŵ suggests that sloǁ-groǁiŶg plaŶts 

alloĐate ŵore resourĐes to defeŶĐe aŶd storage orgaŶs, so they ĐaŶ ďetter tolerate 

ǀarious stresses Đoŵpared ǁith fast-groǁiŶg plaŶts ;e.g. Rose et al., ϮϬϬϵͿ. This ŵeaŶs 

that although ďeiŶg ďig iŶĐreases surǀiǀal, the ŵeĐhaŶisŵ ďy ǁhiĐh it is aĐhieǀed, 

Ŷaŵely fast groǁth, has the opposite effeĐt, ŵakiŶg it iŵportaŶt to separate groǁth 

rate aŶd size effeĐts. 

 

It is ĐurreŶtly Ŷot kŶoǁŶ ǁhether groǁth rate or ďioŵass has a greater iŵpaĐt oŶ aŶ 

orgaŶisŵ's likelihood of surǀiǀal. The priŵary proďleŵ ǁheŶ studyiŶg size- aŶd groǁth-

depeŶdeŶt ŵortality is separatiŶg their effeĐts. Bioŵass aŶd groǁth are stroŶgly 
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depeŶdeŶt oŶ oŶe aŶother, as it is through groǁth that a plaŶt iŶĐreases iŶ ďioŵass, 

aŶd groǁth rates are ĐalĐulated ďy ŵeasuriŶg ĐhaŶges iŶ ďioŵass ;HuŶt, ϭϵϵϬͿ. 

Although relatiǀe groǁth rate ;RGRͿ ǁas desigŶed to estiŵate the rate of groǁth of aŶ 

orgaŶisŵ iŶdepeŶdeŶt of its ďioŵass, the ĐlassiĐal approaĐh ĐoŶfouŶds the effeĐts of 

size aŶd groǁth rate - a proďleŵ that has ďeeŶ realised for soŵe tiŵe iŶ ŵultiple fields 

of eĐology, e.g. direĐt studies of RGR ;NorgreŶ, ϭϵϵϲͿ; forestry ;“outh, ϭϵϵϱͿ aŶd 

researĐh oŶ ĐoŵpetitioŶ ;“ĐhǁiŶŶiŶg aŶd WeiŶer, ϭϵϵϴͿ. RGR assuŵes that groǁth is 

eǆpoŶeŶtial, ďut ǁheŶ this is Ŷot the Đase, ŵass ĐaŶ iŶflueŶĐe RGR ;TurŶďull et al., 

ϮϬϬϴͿ.  

 

MetĐalf et al. ;ϮϬϬϲͿ suggested ĐalĐulatiŶg RGR at a ĐoŵŵoŶ size iŶ order to Đoŵpare 

ďetǁeeŶ speĐies, aŶd this approaĐh has ďeeŶ ǁidely used siŶĐe ;PaiŶe et al., ϮϬϭϮ, 

Paul-ViĐtor et al., ϮϬϭϬ, Rees et al., ϮϬϭϬ, Rose et al., ϮϬϬϵ, Taylor et al., ϮϬϭϬͿ. These 

approaĐhes do Ŷot assuŵe that groǁth is eǆpoŶeŶtial, aŶd therefore alloǁ RGR to ďe 

size-iŶdepeŶdeŶt. RGR at a speĐifiĐ size, terŵed “GR, is typiĐally ĐalĐulated usiŶg a ŶoŶ-

liŶear ŵodel of ďioŵass oǀer tiŵe ;ǁhereas the ĐoŶǀeŶtioŶal RGR ŵethod uses a log-

liŶear ŵodelͿ. The ŶoŶ-liŶear approaĐh aĐĐouŶts for the deĐrease iŶ groǁth oǀer tiŵe, 

aŶd ĐaŶ therefore ĐharaĐterise groǁth ŵore preĐisely, ǁith less size-ďias thaŶ the log-

liŶear approaĐh. CoŶseƋueŶtly, “GR eŶaďles the effeĐts of size aŶd groǁth to ďe 

separated, alloǁiŶg us to eǆplore their relatiǀe roles iŶ deterŵiŶiŶg surǀiǀal. 

 

As the effeĐts of seedliŶg groǁth aŶd ďioŵass ĐaŶ Ŷoǁ ďe separated through the “GR, 

ǁe ĐaŶ eǆaŵiŶe ǁhiĐh trait ĐoŶtriďutes ŵore to seedliŶg surǀiǀal duriŶg stress eǀeŶts. 

“eedliŶgs froŵ three faŵilies ǁere eǆposed to a ďiotiĐ ;defoliatioŶͿ or aďiotiĐ ;droughtͿ 

stressor, ǁith the aiŵ of uŶderstaŶdiŶg geŶeral seedliŶg respoŶses to stressors. It is 

hypothesised that ďig seedliŶgs are ŵore likely to surǀiǀe a stress eǀeŶt thaŶ sŵall 

seedliŶgs aŶd that sloǁ-groǁiŶg seedliŶgs are ŵore likely to surǀiǀe a stress eǀeŶt thaŶ 

fast-groǁiŶg seedliŶgs. The data set is also used to iŶǀestigate the effeĐt of seed ŵass 

oŶ surǀiǀal, as it is ǁidely ďelieǀed that large-seeded speĐies haǀe a surǀiǀal adǀaŶtage 

;LeishŵaŶ aŶd Westoďy, ϭϵϵϰͿ. “tudies of ǀariaďles iŶ isolatioŶ are freƋueŶtly seeŶ iŶ 

the literature ;e.g. Daǀis et al., ϭϵϵϵͿ, although Walters & ReiĐh ;ϮϬϬϬͿ eǆplored the 

effeĐts of seed ŵass aŶd RGR oŶ tree seedliŶg surǀiǀal iŶ a raŶge of light aŶd ŶutrieŶt 
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treatŵeŶts, ǁhere seedliŶg surǀiǀal iŶĐreased ǁith seed ŵass ďut Ŷot ǁith RGR. Here, 

“GR, seedliŶg ďioŵass, seed ŵass aŶd plaŶt faŵily are iŶĐorporated iŶto the saŵe 

surǀiǀal aŶalysis to eǆplore their relatiǀe effeĐts. The results of this aŶalysis are theŶ 

Đoŵpared to ŵore siŵple aŶalyses of the effeĐts of eaĐh ǀariaďle iŶ turŶ.  

 

Methods 

 

SpeĐies 

“eedliŶgs froŵ ϭϲ speĐies aĐross three faŵilies ǁere studied ;AsteraĐeae, FaďaĐeae 

aŶd PoaĐeae, see AppeŶdiǆ ϭ for detailsͿ. The speĐies ǁere seleĐted to haǀe a ǁide 

raŶge of seed sizes ǁithiŶ eaĐh faŵily aŶd to haǀe ŶoŶ-dorŵaŶt seeds. The aǀerage 

seed ŵass ǁas ĐalĐulated usiŶg a saŵple of ϱϬ seeds froŵ eaĐh speĐies. 

Groǁth EŶǀiroŶŵeŶt 

The seedliŶgs ǁere groǁŶ uŶder ĐoŶtrolled ĐoŶditioŶs iŶ the Arthur Willis EŶǀiroŶŵeŶt 

CeŶtre, “heffield, UK. The daytiŵe teŵperature ǁas ϮϮ°C, ǁith a ŵiŶiŵuŵ light 

iŶteŶsity of ϮϬϬµŵol aŶd the teŵperature at Ŷight ǁas ϭϱ°C. The eǆperiŵeŶt ǁas 

repeated iŶ tǁo separate tiŵe periods, due to resourĐe liŵitatioŶs. The speĐies ǁere 

eƋually represeŶted aĐross eaĐh treatŵeŶt. 

 

“eeds ǁere gerŵiŶated iŶ petri dishes liŶed ǁith daŵp filter paper, tiŵed to 

staŶdardise the gerŵiŶatioŶ date aĐross all speĐies. The seedliŶgs ǁere theŶ 

traŶsferred iŶto iŶdiǀidual iŶserts iŶ seed trays ;l = ϯϴĐŵ, ǁ = ϮϰĐŵ, d = ϰ.ϴĐŵͿ, ǁith ϭϮ 

seedliŶgs iŶ eaĐh tray ;raŶdoŵly alloĐated ǁithiŶ eaĐh treatŵeŶtͿ. This ǁas ĐoŶduĐted 

iŶ tǁo sets, so that ǁheŶ the treatŵeŶts ǁere applied, seedliŶgs ǁere at tǁo ages: ϳ 

aŶd ϭϰ days post-pottiŶg. This iŶĐreased the raŶge of ďioŵasses for eaĐh speĐies oŶ 

the day the treatŵeŶt ǁas applied. The seedliŶgs ǁere groǁŶ iŶ LeǀiŶgtoŶ's Mϯ ;high-

ŶutrieŶtͿ Đoŵpost aŶd iŶitially ǁatered eǀery ϭ-Ϯ days as reƋuired. 

 

The loŶgest leaf leŶgth aŶd Ŷuŵďer of leaǀes ǁere ŵeasured for eaĐh iŶdiǀidual eǀery 

ϯ-ϰ days froŵ the day of pottiŶg uŶtil the treatŵeŶt day. The seedliŶgs ǁere alloĐated 
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to oŶe of three eǆperiŵeŶtal proĐedures, ϭϰ days after the older group of seedliŶgs 

ǁere plaŶted iŶto the Đoŵpost: drought, defoliatioŶ or the ĐoŶtrol. A fourth group of 

seedliŶgs ǁere groǁŶ for a series of destruĐtiǀe harǀests, iŶ order to estiŵate seedliŶg 

ďioŵass. 

MortalitǇ ExperiŵeŶt 

There ǁere ϭϰ iŶdiǀiduals per speĐies per age iŶ eaĐh treatŵeŶt aĐross the ǁhole 

eǆperiŵeŶt, giǀiŶg a total of ϭϯϰϰ plaŶts ;i.e. ϴϰ iŶdiǀiduals per speĐiesͿ. OŶ the day 

the treatŵeŶts ǁere iŶitiated, leaf height aŶd Ŷuŵďer ǁere ŵeasured per seedliŶg, 

ďefore: they ǁere defoliated ;Đut to ϱŵŵ aďoǀe soil leǀel for grasses aŶd steŵ-ďased 

speĐies, or Đut to ϱŵŵ loŶg froŵ the ĐeŶtre of the rosette for the other speĐiesͿ; a 

drought regiŵe ǁas iŶitiated ;ǁater ǁas Đoŵpletely ǁithheldͿ or they ǁere left as the 

ĐoŶtrol ;high light aŶd high ǁaterͿ. DefoliatioŶ ǁas repeated eǀery ϯ-ϰ days after the 

iŶitial treatŵeŶt. Mortality ǁas reĐorded daily. 

DestruĐtiǀe Harǀests 

The destruĐtiǀe harǀests ǁere ĐoŶduĐted to proǀide aŶ estiŵate of seedliŶg ďioŵass iŶ 

the ŵortality eǆperiŵeŶt. IŶ eaĐh repeat of the eǆperiŵeŶt, ϭϬ seedliŶgs per speĐies 

ǁere harǀested eǀery ϯ-ϰ days oǀer a period of ϭϰ days - froŵ the pottiŶg of the first 

set of seedliŶgs uŶtil treatŵeŶts ǁere applied to the eǆperiŵeŶtal seedliŶgs. This 

produĐed harǀests oǀer ϱ tiŵe iŶterǀals. Leaf height aŶd Ŷuŵďer ǁere reĐorded for 

eaĐh seedliŶg at eaĐh date. The harǀested seedliŶgs ǁere ĐleaŶed, dried iŶ aŶ oǀeŶ at 

ϲϴ°C for ϰϴ hours aŶd theŶ ǁeighed. The data set froŵ the destruĐtiǀe harǀests ǁas 

theŶ used to prediĐt the ďioŵass of the treatŵeŶt seedliŶgs.  

Statistics 

DestruĐtiǀe Harǀests 

The destruĐtiǀe harǀest data set ǁas used to produĐe a regressioŶ ŵodel of ďioŵass, 

ǁhiĐh ǁas theŶ used to prediĐt ďioŵass iŶ the treatŵeŶt seedliŶgs usiŶg the ͚prediĐt’ 

fuŶĐtioŶ iŶ R ;R DeǀelopŵeŶt Core Teaŵ, ϮϬϭϮͿ. 
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MortalitǇ ExperiŵeŶt 

“GR ǁas ĐalĐulated ďy fittiŶg a ŶoŶ-liŶear ŵiǆed-effeĐts ŵodel to the iŶdiǀidual groǁth 

Đurǀes ;PaiŶe et al., ϮϬϭϮ, Rose et al., ϮϬϬϵͿ usiŶg the self-startiŶg four paraŵeter 

logistiĐ ;““fplͿ ŵodel iŶ the ͚Ŷlŵe’ paĐkage ;PiŶheiro et al., ϮϬϭϮͿ. '“peĐies' ǁas added 

as a fiǆed effeĐt ;loǁeriŶg the AIC ďy ϳϭϰ.ϱϭϲ aŶd the BIC ďy ϱϲϴ.ϰϵϴ, Đoŵpared to the 

iŶitial ŵodel ǁithout speĐiesͿ. “GR ǁas ĐalĐulated at the sŵallest size ĐoŵŵoŶ to all 

speĐies to ŵiŶiŵise the effeĐts of resourĐe liŵitatioŶ. The other eǆplaŶatory ǀariaďles 

ǁere seedliŶg ŵass just ďefore the appliĐatioŶ of the treatŵeŶts, aŶd seed ŵass. 

 

A ͚Đoŵpleǆ’, ŵultiple ǀariaďle surǀiǀal aŶalysis ǁas theŶ perforŵed for the defoliatioŶ 

aŶd drought treatŵeŶt, usiŶg aŶ aĐĐelerated failure tiŵe surǀiǀal ŵodel ;AFTͿ iŶ the 

͚surǀiǀal’ paĐkage ;TherŶeau aŶd Luŵley, ϮϬϭϭͿ. The ĐoŶtrol had Ϭ% ŵortality after the 

appliĐatioŶ of treatŵeŶts to the other groups, so ǁas Ŷot iŶĐluded iŶ this aŶalysis. The 

ŵodel seleĐtioŶ proĐess ďegaŶ ǁith a ďasiĐ ŵodel, theŶ added eǆplaŶatory ǀariaďles 

aŶd iŶteraĐtioŶs ;see AppeŶdiǆ Ϯ for the ŵodel seleĐtioŶ proĐessͿ. To ǀisualise the 

effeĐts of the differeŶt eǆplaŶatory ǀariaďles ǁe plot the prediĐtioŶs of the ŵodel for 

eaĐh ǀariaďle, ǁith the other ǀariaďles set to their ŵeaŶ ǀalues. For eǆaŵple, the effeĐt 

of “GR oŶ surǀiǀal ǁas assessed ďy plottiŶg the ŵodel prediĐtioŶs agaiŶst “GR, haǀiŶg 

set seedliŶg aŶd seed ŵass to their aǀerage ǀalues. Due to the Đoŵpleǆ Ŷature of the 

ŵodel, staŶdard errors aŶd rugs ;to shoǁ the data distriďutioŶͿ ǁere plotted to alloǁ a 

ǀisual assessŵeŶt of the effeĐt of eaĐh ǀariaďle. 

To alloǁ a ĐoŵparisoŶ of the effeĐt of studyiŶg ŵultiple faĐtors iŶflueŶĐiŶg seedliŶg 

surǀiǀal, a seĐoŶd, ͚siŵple’, siŶgle ǀariaďle aŶalysis of the data set ǁas ĐoŶduĐted, usiŶg 

eaĐh of the eǆplaŶatory ǀariaďles iŶ turŶ ;see AppeŶdiǆ ϯ for the ŵodel seleĐtioŶ 

proĐessͿ.  

 

Results 

 

DestruĐtiǀe Harǀest 

The harǀest seedliŶgs ǁere groǁŶ to ŵodel the ďioŵass of the treatŵeŶt seedliŶgs. A 
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liŶear regressioŶ of ďioŵass, log traŶsforŵed, iŶĐludiŶg the folloǁiŶg ǀariaďles: loŶgest 

leaf leŶgth, leaf Ŷuŵďer, speĐies aŶd the day of ŵeasureŵeŶt, aĐĐouŶted for ϴϱ% of 

the ǀariaŶĐe iŶ ďioŵass ;liŶear regressioŶ: F = ϭϰϮ.ϯ, d.f. = ϭϵ, ϰϵϰ, p<Ϭ.ϬϬϭ, RϮ = Ϭ.ϴϱͿ. 

ExplaŶatorǇ Variaďles 

“GR raŶged froŵ Ϭ.Ϭϳϭ to Ϭ.ϮϬϵ g g-ϭ day-ϭ. There are sigŶifiĐaŶt positiǀe regressioŶs 

ďetǁeeŶ: “GR aŶd seed ŵass; seedliŶg aŶd seed ŵass aŶd ďetǁeeŶ “GR aŶd seedliŶg 

ďioŵass ;Figure ϯ.ϭͿ. Therefore, seedliŶgs ǁith a larger seed ŵass haǀe higher “GRs 

aŶd ďioŵasses thaŶ seedliŶgs ǁith a loǁ seed ŵass, aŶd as “GR iŶĐreases so does 

seedliŶg ďioŵass.  

 

The “GR aŶd ďioŵass data froŵ just ďefore the treatŵeŶts ǁere applied ǁere used iŶ 

aŶ AFT ;aĐĐelerated failure tiŵeͿ surǀiǀal ŵodel, aloŶg ǁith faŵily aŶd seed ŵass, to 

ƋuaŶtify the faĐtors iŵpaĐtiŶg surǀiǀal tiŵe. A surǀiǀal aŶalysis ǁas produĐed for eaĐh 

treatŵeŶt, iŶĐludiŶg all the eǆplaŶatory ǀariaďles. The fiŶal ŵodel for ďoth treatŵeŶts 

had iŶteraĐtioŶs ďetǁeeŶ ŵost or all of the eǆplaŶatory ǀariaďles ;“GR, ďioŵass aŶd 

seed ŵassͿ aŶd faŵily ;surǀiǀal after drought ǁas depeŶdeŶt oŶ: Faŵily * “GR * 

ďioŵass * seed ŵass ǁhereas surǀiǀal iŶ the defoliatioŶ treatŵeŶt ǁas depeŶdeŶt oŶ: 

faŵily * ;“GR + ďioŵassͿ * seed ŵassͿ. The results ǀaried ďetǁeeŶ faŵilies aŶd 

treatŵeŶts. GeŶerally, ǁithiŶ the defoliatioŶ treatŵeŶt, surǀiǀal iŶĐreased ǁith loǁer 

seed ŵasses, iŶĐreased ǁith ďioŵass or ǁas ŶoŶ-sigŶifiĐaŶt ;depeŶdiŶg oŶ the faŵilyͿ 

aŶd shoǁed eǀideŶĐe of ďoth iŶĐreasiŶg aŶd deĐreasiŶg ǁith “GR, depeŶdiŶg oŶ the 

faŵily ;Figure ϯ.ϮͿ. “iŵilarly, iŶ the drought treatŵeŶt, surǀiǀal ǁas typiĐally higher 

ǁith loǁ “GR, high ďioŵass aŶd loǁ seed ŵass ;Figure ϯ.ϯͿ. There ǁas oŶly oŶe 

aǀerage reĐorded seed ŵass aŶd “GR ǀalue per speĐies, so there ǁere less aǀailaďle 

data for the ŵodel thaŶ for ďioŵass. There ǁas a sigŶifiĐaŶt four-ǁay iŶteraĐtioŶ 

ďetǁeeŶ faŵily, “GR, ďioŵass aŶd seed ŵass iŶ the drought treatŵeŶt, ǁhiĐh suggests 

that surǀiǀal depeŶds oŶ Đoŵpleǆ iŶteraĐtioŶs.  

 

The siŵple siŶgle ǀariaďle surǀiǀal aŶalyses, ǁhiĐh ŵodelled eaĐh eǆplaŶatory ǀariaďle 

iŶ turŶ, yielded soŵe differiŶg results ;Figure ϯ.ϰͿ. IŶ the defoliatioŶ treatŵeŶt, there 

ǁas Ŷo effeĐt of aŶy of the ǀariaďles ;“GR, ďioŵass or seed ŵassͿ oŶ surǀiǀal, although 
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surǀiǀal ǀaried ǁith faŵily iŶ all Đases ;Figure ϯ.ϰͿ. IŶ the Đoŵpleǆ ŵodel, there ǁere 

also soŵe eǆaŵples of Ŷo iŶteraĐtioŶ ďetǁeeŶ the eǆplaŶatory ǀariaďle aŶd surǀiǀal. 

Hoǁeǀer, iŶ the Đoŵpleǆ ŵodel of defoliatioŶ, there ǁas aŶ oǀerall Ŷegatiǀe 

relatioŶship ďetǁeeŶ surǀiǀal aŶd seed ŵass aŶd the ǀaryiŶg effeĐts of “GR oďserǀed 

iŶ the Đoŵpleǆ ŵodel ;Figure ϯ.ϮͿ ǁere also Ŷot preseŶt iŶ the siŵple ŵodel. 

 

IŶ the siŵple drought treatŵeŶt ŵodels, there ǁas also Ŷo effeĐt of “GR oŶ surǀiǀal, 

ǁhile speĐies ǁith a high ďioŵass aŶd geŶerally speĐies ǁith a high seed ŵass surǀiǀed 

for loŶger thaŶ speĐies ǁith loǁ ďioŵasses aŶd seed ŵasses ;Figure ϯ.ϰͿ. The tǁo sets 

of drought ŵodels fiŶd the saŵe positiǀe effeĐt of ďioŵass oŶ surǀiǀal, ďut the results 

for “GR aŶd seed ŵass differ.  
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Figure ϯ:ϭ: RegressioŶs of the eǆplaŶatory ǀariaďles. aͿ the regressioŶ ďetǁeeŶ “GR aŶd seed ŵass ;liŶear regressioŶ: F = 
ϭϱϵϯϬ, d.f. = ϰ, ϭϭϬϬ, RϮ = Ϭ.ϵϴϯ, p < Ϭ.ϬϬϭͿ; ďͿ the regressioŶ ďetǁeeŶ ďioŵass aŶd seed ŵass ;liŶear regressioŶ: F = ϮϴϬϴϬ, 
d.f. = ϰ, ϭϭϬϬ, RϮ = Ϭ.ϵϵϬ, p < Ϭ.ϬϬϭͿ; aŶd ĐͿ the ĐorrelatioŶ ďetǁeeŶ “GR aŶd ďioŵass ;“pearŵaŶ’s raŶk ĐorrelatioŶ: “ = 
ϯϰϱϳϳϲϮϲϵ, rho = -Ϭ.ϱϰϮ, p < Ϭ.ϬϬϭͿ. Red poiŶts = AsteraĐeae, ďlue poiŶts = FaďaĐeae aŶd greeŶ poiŶts = PoaĐeae. All 
eǆplaŶatory ǀariaďles ;“GR, ďioŵass aŶd seed ŵassͿ haǀe ďeeŶ log-traŶsforŵed. 
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Figure ϯ.Ϯ: Modelled respoŶse froŵ the origiŶal ŵodel iŶĐorporatiŶg all the ǀariaďles of plaŶt surǀiǀal iŶ the 
defoliatioŶ treatŵeŶt. aͿ the effeĐt of “GR oŶ AsteraĐeae surǀiǀal, ďͿ the effeĐt of “GR oŶ FaďaĐeae surǀiǀal, ĐͿ the 
effeĐt of “GR oŶ PoaĐeae surǀiǀal, dͿ the effeĐt of ďioŵass oŶ AsteraĐeae surǀiǀal, eͿ the effeĐt of ďioŵass oŶ 
FaďaĐeae surǀiǀal, fͿ the effeĐt of ďioŵass oŶ PoaĐeae surǀiǀal, gͿ the effeĐt of seed ŵass oŶ AsteraĐeae surǀiǀal, hͿ 
the effeĐt of seed ŵass oŶ FaďaĐeae surǀiǀal aŶd hͿ the effeĐt of seed ŵass oŶ PoaĐeae surǀiǀal. Red liŶes = 
AsteraĐeae, ďlue liŶes = FaďaĐeae aŶd greeŶ liŶes = PoaĐeae. Dotted liŶes = staŶdard error. BlaĐk liŶes aloŶg the ǆ-aǆis 
shoǁ the data distriďutioŶ ;rugͿ. All eǆplaŶatory ǀariaďles ;“GR, ďioŵass aŶd seed ŵassͿ haǀe ďeeŶ log-traŶsforŵed. 
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Figure ϯ.ϯ: Modelled respoŶse froŵ the origiŶal ŵodel iŶĐorporatiŶg all the ǀariaďles of plaŶt surǀiǀal iŶ the drought 
treatŵeŶt. aͿ the effeĐt of “GR oŶ AsteraĐeae surǀiǀal, ďͿ the effeĐt of “GR oŶ FaďaĐeae surǀiǀal, ĐͿ the effeĐt of “GR 
oŶ PoaĐeae surǀiǀal, dͿ the effeĐt of ďioŵass oŶ AsteraĐeae surǀiǀal, eͿ the effeĐt of ďioŵass oŶ FaďaĐeae surǀiǀal, fͿ 
the effeĐt of ďioŵass oŶ PoaĐeae surǀiǀal, gͿ the effeĐt of seed ŵass oŶ AsteraĐeae surǀiǀal, hͿ the effeĐt of seed 
ŵass oŶ FaďaĐeae surǀiǀal aŶd hͿ the effeĐt of seed ŵass oŶ PoaĐeae surǀiǀal. Red liŶes = AsteraĐeae, ďlue liŶes = 
FaďaĐeae aŶd greeŶ liŶes = PoaĐeae. Dotted liŶes = staŶdard error. BlaĐk liŶes aloŶg the ǆ-aǆis shoǁ the data 
distriďutioŶ ;rugͿ. All eǆplaŶatory ǀariaďles ;“GR, ďioŵass aŶd seed ŵassͿ haǀe ďeeŶ log-traŶsforŵed. Note that the 
sĐale of the y-aǆis differs froŵ Figure Ϯ. 
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Figure ϯ.ϰ: Modelled respoŶse froŵ ŵodels ǁith isolated ǀariaďles of plaŶt surǀiǀal iŶ the treatŵeŶts aͿ the effeĐt of 
“GR oŶ surǀiǀal of defoliatioŶ, ďͿ the effeĐt of ďioŵass oŶ surǀiǀal of defoliatioŶ, ĐͿ the effeĐt of seed ŵass oŶ 
surǀiǀal of defoliatioŶ, dͿ the effeĐt of “GR oŶ drought surǀiǀal, eͿ the effeĐt of ďioŵass oŶ drought surǀiǀal aŶd fͿ the 
effeĐt of seed ŵass oŶ surǀiǀal of drought. Red liŶes = AsteraĐeae, ďlue liŶes = FaďaĐeae aŶd greeŶ liŶes = PoaĐeae. 
N“ = ŶoŶ-sigŶifiĐaŶt effeĐt of the ǀariaďle per faŵily iŶ the group of ŵodels aĐĐouŶtiŶg for eaĐh ǀariaďle iŶ turŶ, * = p 
< Ϭ.Ϭϱ, ** = p < Ϭ.Ϭϭ, *** = p < Ϭ.ϬϬϭ. All eǆplaŶatory ǀariaďles ;“GR, ďioŵass aŶd seed ŵassͿ haǀe ďeeŶ log-

traŶsforŵed. Note the graphs are draǁŶ to differeŶt sĐales. 
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Discussion 

 

“eedliŶgs froŵ sŵall seeds groǁ sloǁly aŶd so are sŵall ;Figure ϯ.ϭa & ďͿ. “loǁ groǁth 

aŶd large ďioŵass are assoĐiated ǁith high surǀiǀal, ǁhiĐh Đreates aŶ iŶĐoŶsisteŶĐy: 

seedliŶgs froŵ sŵall-seeded speĐies haǀe a surǀiǀal adǀaŶtage through sloǁ groǁth, 

ďut a disadǀaŶtage due to their sŵall size. Preǀious studies oŶ the effeĐt of seed ŵass 

oŶ seedliŶg surǀiǀal are iŶĐoŶsisteŶt, ǁith soŵe authors suggestiŶg that speĐies ǁith 

large seed ŵasses haǀe greater surǀiǀal ;Moles aŶd Westoďy, ϮϬϬϰď, LeishŵaŶ et al., 

ϮϬϬϬͿ, ǁhereas others fiŶd Ŷo effeĐt ;Moles et al., ϮϬϬϯ, Moles aŶd Westoďy, ϮϬϬϰa, 

Augspurger, ϭϵϴϰͿ. Hoǁeǀer, this preǀious ǁork has eǆplored the effeĐt of seed ŵass iŶ 

isolatioŶ, aŶd so its effeĐt oŶ seedliŶg surǀiǀal ǁill haǀe ďeeŶ ĐoŶfouŶded ǁith ĐhaŶges 

iŶ seedliŶg size aŶd groǁth rate.  

 

IŶ the siŵple, siŶgle ǀariaďle aŶalysis, surǀiǀal ǁas iŶdepeŶdeŶt of seedliŶg traits iŶ ϭϯ 

of the ϭϴ regressioŶs ;aĐross treatŵeŶts, faŵily aŶd eǆplaŶatory ǀariaďles, Figure ϯ.ϰͿ. 

This laĐk of effeĐt oŶ surǀiǀal iŶĐludes eǀery ǀariaďle iŶ the defoliatioŶ treatŵeŶt. The 

eǆĐeptioŶs ǁere aŶ iŶĐrease iŶ surǀiǀal iŶ the drought treatŵeŶt as ďioŵass aŶd seed 

ŵass iŶĐrease ;eǆĐept for seed ŵass iŶ FaďaĐeae, Figure ϯ.ϰͿ. Thus the siŵple, siŶgle 

ǀariaďle aŶalyses are iŶ agreeŵeŶt ǁith the literature, ǁhere the effeĐts of seed size oŶ 

seedliŶg surǀiǀal are iŶĐoŶsisteŶt, aŶd ofteŶ Ŷot sigŶifiĐaŶt ;ϰ out of ϲ faŵily – 

treatŵeŶt ĐoŵďiŶatioŶs, Figure ϯ.ϰĐ & fͿ. 

 

The results froŵ the Đoŵpleǆ, ŵultiple ǀariaďle aŶalyses suggest a ǀery differeŶt 

patterŶ, ǁith ϭϰ of the ϭϴ regressioŶs iŶdiĐatiŶg that the seed aŶd seedliŶg traits do 

haǀe aŶ iŵportaŶt effeĐt oŶ seedliŶg surǀiǀal ;Figure ϯ.Ϯ & ϯ.ϯͿ. The fiŶal surǀiǀal 

ŵodel for defoliatioŶ ĐoŶtaiŶed a three-ǁay iŶteraĐtioŶ ;faŵily ǆ ;“GR + ďioŵassͿ ǆ 

seed ŵassͿ, ǁhile drought ŵodel had a four-ǁay iŶteraĐtioŶ ;faŵily ǆ “GR ǆ ďioŵass ǆ 

seed ŵassͿ. This highlights the Đoŵpleǆ Ŷature of the relatioŶship ďetǁeeŶ seedliŶg 

surǀiǀal aŶd seed / seedliŶg traits. 

 

The effeĐts of the eǆplaŶatory ǀariaďles differed ďetǁeeŶ the tǁo aŶalyses. For 
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eǆaŵple, iŶ the siŵple aŶalysis, seed ŵass either had Ŷo effeĐt or iŵproǀed seedliŶg 

surǀiǀal, ǁhereas iŶ the Đoŵpleǆ aŶalysis, iŶ ϰ out of ϲ regressioŶs, sŵall seed ŵass 

ǁas ďeŶefiĐial for seedliŶg surǀiǀal ;ǁith oŶe of the others shoǁiŶg a positiǀe 

relatioŶship aŶd the other Ŷo assoĐiatioŶ ǁith surǀiǀal, Figure ϯ.Ϯ & ϯ.ϯͿ. This 

adǀaŶtage of haǀiŶg a sŵall seed Đould ďe a ĐoŶseƋueŶĐe of the seedliŶgs groǁiŶg 

sloǁly ;loǁ “GRͿ, as preǀious studies haǀe ideŶtified surǀiǀal Đosts of fast groǁth ;Rose 

et al., ϮϬϬϵͿ. 

 

IŶ the siŵple aŶalyses, large seedliŶgs surǀiǀe ďetter iŶ the drought treatŵeŶt, ďut 

there ǁas Ŷo effeĐt of seedliŶg size oŶ surǀiǀal after defoliatioŶ ;Figure ϯ.ϰď & eͿ. The 

ŵethod of defoliatioŶ ŵay partially eǆplaiŶ this, as a greater proportioŶ of ŵass ǁas 

reŵoǀed froŵ the large seedliŶgs. Therefore large seedliŶgs, aŶd heŶĐe large seeded 

speĐies ǁhiĐh produĐe large seedliŶgs, ǁere at a disadǀaŶtage. This ŵethod ǁas 

ĐhoseŶ ďeĐause a preliŵiŶary study deŵoŶstrated that all the speĐies ǁere highly 

resilieŶt to defoliatioŶ, aŶd reƋuired eǆteŶsiǀe daŵage to produĐe aŶy ŵortality. 

AdditioŶally, ĐuttiŶg the seedliŶgs to a staŶdard height ŵay also ďe ŵore 

represeŶtatiǀe of graziŶg oŶ seedliŶgs iŶ the field. IŶ this Đase the results of the 

Đoŵpleǆ aŶalysis ǁere siŵilar ;Figure ϯ.Ϯ & ϯ.ϯͿ. 

 

IŶ the siŵple aŶalyses, “GR had Ŷo effeĐt oŶ seedliŶg surǀiǀal iŶ either treatŵeŶt. IŶ 

the Đoŵpleǆ aŶalysis the results for “GR ǁere highly ǀariaďle. IŶ the drought treatŵeŶt, 

tǁo of the faŵilies eǆhiďit the eǆpeĐted deĐrease iŶ surǀiǀal as “GR iŶĐreases, aŶd the 

third faŵily ;FaďaĐeaeͿ shoǁs Ŷo effeĐt of “GR oŶ surǀiǀal ;Figure ϯ.ϯͿ. The results for 

defoliatioŶ treatŵeŶt ǁere siŵilar for the AsteraĐeae, ǁith surǀiǀal highest iŶ sloǁ-

groǁiŶg speĐies. The higher surǀiǀal iŶ sloǁ-groǁiŶg speĐies supports the theory of the 

fast-sloǁ ĐoŶtiŶuuŵ ;FraŶĐo aŶd “ilǀertoǁŶ, ϭϵϵϲͿ. IŶ the PoaĐeae hoǁeǀer, fast 

groǁth ǁas assoĐiated ǁith iŵproǀed surǀiǀal folloǁiŶg defoliatioŶ ;Figure ϯ.ϮĐͿ. This 

Đould agaiŶ ďe assoĐiated ǁith the ŵethod of defoliatioŶ, as fast-groǁiŶg speĐies ĐaŶ 

reĐoǀer ŵore ďetǁeeŶ periods of defoliatioŶ. 

 

There ǁere sigŶifiĐaŶt differeŶĐes iŶ the respoŶses to the treatŵeŶts ďetǁeeŶ the 

three faŵilies. The PoaĐeae ;grassesͿ had a ĐoŶsisteŶtly higher surǀiǀal rate thaŶ the 
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other faŵilies ;Figure ϯ.Ϯ – ϯ.ϰͿ. OŶe reasoŶ for this Đould ďe their physiĐal struĐtures. 

The thiŶ leaǀes of grasses ŵay reduĐe traŶspiratioŶ, aŶd therefore possiďly iŶĐrease 

surǀiǀal iŶ the drought treatŵeŶt. The eǀolutioŶary history of the grasses ;proǀidiŶg 

traits suĐh as ďasal ŵeristeŵs aŶd fast-groǁthͿ ŵay eǆplaiŶ their high surǀiǀal rates iŶ 

the defoliatioŶ treatŵeŶt ;CougheŶour, ϭϵϴϱͿ. Grasses haǀe adapted to ŵaŶy stressful 

ĐoŶditioŶs, aďiotiĐ ;for eǆaŵple ďuffelgrass iŶ arid deserts, Ward et al., ϮϬϬϲͿ aŶd ďiotiĐ 

;for eǆaŵple through high toleraŶĐe to graziŶg, Harper, ϭϵϳϴ, Đited iŶ Keŵp aŶd 

CulǀeŶor, ϭϵϵϰͿ, so they are aďle to respoŶd to stressful eŶǀiroŶŵeŶts. 

 

Conclusion 

 

Preǀious researĐh, shoǁiŶg iŶĐoŶsisteŶt effeĐts of seed aŶd seedliŶg traits oŶ seedliŶg 

surǀiǀal ǁe ďelieǀe ŵay ďe ŵisleadiŶg, as a ĐoŶseƋueŶĐe of ĐoǀariatioŶ ďetǁeeŶ seed 

ŵass, aŶd seedliŶg size aŶd groǁth rate ;“GRͿ. Large seedliŶg size is Đlearly 

adǀaŶtageous, ďut the ŵeĐhaŶisŵ ďy ǁhiĐh it is aĐhieǀed, Ŷaŵely fast groǁth, is Ŷot, 

ŵakiŶg it esseŶtial to separate their effeĐts. This suggests that the iŶteraĐtioŶs 

ďetǁeeŶ the traits Ŷeed to ďe aĐĐouŶted for iŶ order to oďserǀe their effeĐts oŶ 

surǀiǀal.  
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Appendiǆ ϭ 

 

List of SpeĐies 

 

Table S3.1: List of species used in the experiment, 

originating family and average seed mass 

Family Species Seed mass (mg) 

Asteraceae Achillea millefolium 0.088 

Asteraceae Centaurea nigra 2.450 

Asteraceae Centaurea scabiosa 6.528 

Asteraceae Cirsium vulgare 3.289 

Asteraceae Sonchus asper 0.164 

Fabaceae Medicago lupulina 1.323 

Fabaceae Melilotus altissima 3.969 

Fabaceae Trifolium dubium 0.227 

Fabaceae Trifolium pratense 1.636 

Fabaceae Trifolium repens 0.398 

Poaceae Agrostis stolonifera 0.061 

Poaceae Brachypodium pinnatum 2.694 

Poaceae Dactylis glomerata 0.803 

Poaceae Festuca ovina 0.817 

Poaceae Hordeum murinum 10.725 

Poaceae Poa trivialis 0.182 
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Appendiǆ Ϯ 

Surǀiǀal Model SeleĐtioŶ ProĐess for the Coŵplex Multiple Variaďle Models  

 

A. Defoliated Plants 

 

Taďle “ϯ.Ϯ: Model seleĐtioŶ proĐess of the surǀiǀal aŶalysis for the 
defoliated plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϭϬϳϯ.ϱϴϰ Ϯϭϰϵ.ϭϲϳ 

Faŵily -ϵϵϱ.ϲϰϲ ϭϵϵϳ.ϮϵϮ 

Faŵily + “GR -ϵϵϱ.ϱϲϭ ϭϵϵϵ.ϭϮϭ 

Faŵily + Bioŵass -ϵϵϱ.ϲϮϱ ϭϵϵϵ.Ϯϱ 

Faŵily + “eed ŵass -ϵϵϱ.ϲϭϵ ϭϵϵϵ.Ϯϯϴ 

Faŵily + “GR + Bioŵass + “eed ŵass -ϵϵϱ.ϮϱϮ ϮϬϬϮ.ϱϬϰ 

Faŵily * “GR + Bioŵass + “eed ŵass -ϵϵϬ.ϵϰϯ ϭϵϵϳ.ϴϴϱ 

FaŵilǇ * ;SGR + BioŵassͿ * Seed ŵass -ϵϳϲ.ϭϳϴ ϭϵϳϮ.ϯϱϱ 

Faŵily + “GR * Bioŵass * “eed ŵass -ϵϴϮ.ϵϲϭ ϭϵϵϭ.ϵϮϭ 

Faŵily * “GR * Bioŵass + “eed ŵass -ϵϴϭ.ϳϴϬ ϭϵϵϵ.ϱϱϵ 

Faŵily * “GR * Bioŵass * “eed ŵass -ϵϳϯ.ϰϳϮ ϭϵϵϰ.ϵϰϯ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the log-

likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. AIC ǁas ĐalĐulated 
as Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of paraŵeters. ANOVA ǁas also 
used to Đoŵpare siŵilar ŵodels. 
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B. Drought Plants 

 

Taďle “ϯ.ϯ: Model seleĐtioŶ proĐess of the surǀiǀal aŶalysis for the 
drought plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϴϭϴ.ϰϭϮ ϭϲϯϴ.ϴϮϯ 

Faŵily -ϲϳϴ.Ϭϴϯ ϭϯϲϮ.ϭϲϱ 

Faŵily + “GR -ϲϳϲ.ϰϳϲ ϭϯϲϬ.ϵϱϭ 

Faŵily + Bioŵass -ϲϰϲ.ϮϮϭ ϭϯϬϬ.ϰϰϭ 

Faŵily + “eed ŵass -ϲϲϴ.ϭϭϬ ϭϯϰϰ.Ϯϭϵ 

Faŵily + “GR + Bioŵass + “eed ŵass -ϲϯϬ.ϵϲϯ ϭϮϳϯ.ϵϮϲ 

Faŵily * “GR + Bioŵass + “eed ŵass -ϲϮϳ.Ϯϲϰ ϭϮϳϬ.ϱϮϳ 

Faŵily + “GR * Bioŵass * “eed ŵass -ϲϮϭ.ϴϮϬ ϭϮϲϯ.ϲϯϵ 

Faŵily * “GR * Bioŵass + “eed ŵass -ϲϭϬ.ϭϵϵ ϭϮϰϲ.ϯϵϴ 

Faŵily * ;“GR + BioŵassͿ * “eed ŵass -ϲϭϬ.ϯϲϭ ϭϮϱϲ.ϳϮϭ 

FaŵilǇ * SGR * Bioŵass * Seed ŵass  -ϱϵϲ.Ϯϱϵ ϭϮϰϬ.ϱϭϳ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the log-

likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. AIC ǁas ĐalĐulated 
as Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of paraŵeters. ANOVA ǁas also 
used to Đoŵpare siŵilar ŵodels aŶd there ǁas Ŷo sigŶifiĐaŶt 
differeŶĐe ďetǁeeŶ the fiŶal tǁo ŵodels ;p = Ϭ.ϭϰϮͿ, so the less 
Đoŵpleǆ ŵodel ǁas ĐhoseŶ. 
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Appendiǆ ϯ 

 

Surǀiǀal Model SeleĐtioŶ ProĐess for the Siŵple SiŶgle Variaďle Models  

 

Taďle “ϯ.ϰ: The surǀiǀal aŶalysis ŵodel seleĐtioŶ proĐess for 
“GR of the defoliated plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϭϬϳϯ.ϱϴϰ Ϯϭϰϵ.ϭϲϳ 

FaŵilǇ -ϵϵϱ.ϲϰϲ ϭϵϵϳ.ϮϵϮ 

Faŵily + “GR -ϵϵϱ.ϱϲϭ ϭϵϵϵ.ϭϮϭ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the 
log-likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. AIC 
ǁas ĐalĐulated as Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of 
paraŵeters. ANOVA ǁas also used to Đoŵpare siŵilar ŵodels 
aŶd there ǁas Ŷo sigŶifiĐaŶt differeŶĐe ďetǁeeŶ the faŵily 
aŶd faŵily * “GR ŵodel ;p = Ϭ.ϮϭϵͿ, so the less Đoŵpleǆ 
ŵodel ǁas ĐhoseŶ. 
 

 

Taďle “ϯ.ϱ: The surǀiǀal aŶalysis ŵodel seleĐtioŶ proĐess for 
ďioŵass of the defoliated plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϭϬϳϯ.ϱϴϰ Ϯϭϰϵ.ϭϲϳ 

FaŵilǇ -ϵϵϱ.ϲϰϲ ϭϵϵϳ.ϮϵϮ 

Faŵily + Bioŵass -ϵϵϱ.ϲϮϱ ϭϵϵϵ.Ϯϱ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the 
log-likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. AIC 
ǁas ĐalĐulated as Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of 
paraŵeters. ANOVA ǁas also used to Đoŵpare siŵilar 
ŵodels. 
 

 

Taďle “ϯ.ϲ: The surǀiǀal aŶalysis ŵodel seleĐtioŶ proĐess for 
seed ŵass of the defoliated plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϭϬϳϯ.ϱϴϰ Ϯϭϰϵ.ϭϲϳ 

FaŵilǇ -ϵϵϱ.ϲϰϲ ϭϵϵϳ.ϮϵϮ 

Faŵily + “eed ŵass -ϵϵϱ.ϲϰϲ ϭϵϵϵ.ϮϵϮ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the 
log-likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. AIC 
ǁas ĐalĐulated as Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of 
paraŵeters. ANOVA ǁas also used to Đoŵpare siŵilar ŵodels 
aŶd there ǁas Ŷo sigŶifiĐaŶt differeŶĐe ďetǁeeŶ the faŵily 
aŶd faŵily * seed ŵass ŵodel ;p = Ϭ.ϭϴϵͿ, so the less 
Đoŵpleǆ ŵodel ǁas ĐhoseŶ. 
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Taďle “ϯ.ϳ: The surǀiǀal aŶalysis ŵodel seleĐtioŶ proĐess for 
“GR of the drought plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϴϭϴ.ϰϭϮ ϭϲϯϴ.ϴϮϯ 

Faŵily -ϲϳϴ.Ϭϴϯ ϭϯϲϮ.ϭϲϱ 

FaŵilǇ + SGR -ϲϳϲ.ϰϳϲ ϭϯϲϬ.ϵϱϭ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the 
log-likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. AIC 
ǁas ĐalĐulated as Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of 
paraŵeters. ANOVA ǁas also used to Đoŵpare siŵilar ŵodels 
aŶd there ǁas oŶly a slightly sigŶifiĐaŶt differeŶĐe ďetǁeeŶ 
the faŵily + “GR aŶd faŵily * “GR ŵodel ;p = Ϭ.ϬϮϭͿ, so the 
less Đoŵpleǆ ŵodel ǁas ĐhoseŶ. 
 

 

Taďle “ϯ.ϴ: The surǀiǀal aŶalysis ŵodel seleĐtioŶ proĐess for 
ďioŵass of the drought plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϴϭϴ.ϰϭϮ ϭϲϯϴ.ϴϮϯ 

Faŵily -ϲϳϴ.Ϭϴϯ ϭϯϲϮ.ϭϲϱ 

FaŵilǇ + Bioŵass -ϲϰϲ.ϮϮϭ ϭϯϬϬ.ϰϰϭ 

Faŵily * Bioŵass -ϲϰϮ.ϰϬϭ ϭϮϵϲ.ϴϬϮ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the 
log-likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. All 
ŵodels use a log-Ŷorŵal distriďutioŶ. AIC ǁas ĐalĐulated as 
Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of paraŵeters. ANOVA ǁas 
also used to Đoŵpare siŵilar ŵodels aŶd there ǁas oŶly a 
slightly sigŶifiĐaŶt differeŶĐe ďetǁeeŶ the faŵily + ďioŵass 
aŶd faŵily * ďioŵass ŵodel ;p = Ϭ.ϬϮϮͿ, so the less Đoŵpleǆ 
ŵodel ǁas ĐhoseŶ. 
 

 

Taďle “ϯ.ϵ: The surǀiǀal aŶalysis ŵodel seleĐtioŶ proĐess for 
seed ŵass of the drought plaŶts 

Terŵs Log-lik AIC 

~ϭ -ϴϭϴ.ϰϭϮ ϭϲϯϴ.ϴϮϯ 

Faŵily -ϲϳϴ.Ϭϴϯ ϭϯϲϮ.ϭϲϱ 

Faŵily + “eed ŵass -ϲϲϴ.ϭϭϬ ϭϯϰϰ.Ϯϭϵ 

FaŵilǇ * Seed ŵass -ϲϲϮ.ϴϭϯ ϭϯϯϳ.ϲϮϲ 

Model iŶ ďold is the fiŶal ŵodel used. Log-lik represeŶts the 
log-likelihood. All ŵodels use a log-Ŷorŵal distriďutioŶ. AIC 
ǁas ĐalĐulated as Ϯk – Ϯ*log-lik, ǁhere k = Ŷuŵďer of 
paraŵeters. ANOVA ǁas also used to Đoŵpare siŵilar 
ŵodels. 
 



56 

 

Chapter 4 

 

Do “eedliŶg Traits aŶd the IŶitial 

Groǁth EŶǀiroŶŵeŶt AffeĐt “urǀiǀal? 

 

Introduction 

 

Growth rates vary between species, growth forms and environments. This variance 

occurs because different species growing in different conditions have different 

strategies and different requirements. These differences can be explained using the 

fast-slow growth continuum (Franco & Silvertown, 1996). It suggests that slow-growing 

species invest more resources in storage and preparation for stress events, while fast-

growing species direct more of their resources to growth, and aim to avoid stressors 

during their shorter lifespans. 

 

When a stress event occurs, slow-growing species typically have a higher survival rate 

than fast-growing species (Rose et al., 2009; This thesis, Chapter 3). Slow-growing 

species are typically found in unproductive environments, whereas fast growing 

species tend to grow in productive environments. When slow-growing species are 

placed in productive environments from the beginning of their life-cycle (due to 

dispersal or experimental set ups), they remain slow-growing (Mahmoud & Grime, 

1976). However, when fast-growing plants are grown in mild-moderately stressful 

conditions, their growth is reduced, and becomes more similar to that of slow-growing 

species (Mahmoud & Grime, 1976), indicating that plants have some ability to respond 

to the environment.  
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Seedling biomass also varies with environmental conditions. Where water or nutrients 

are limiting, a greater proportion of the biomass can be found in the roots, whereas a 

greater proportion of the biomass is found above-ground when light is the limiting 

factor (Poorter & Nagel, 2000). Total biomass is generally a response to the 

environment, with plants in more stressful conditions growing to a smaller biomass 

than plants grown in optimal conditions (Chapter 3). 

 

While there is some variation in results, large seed mass generally increases the 

likelihood of seedling survival (Moles & Westoby, 2004). This may be due to a large 

seed mass increasing seedling survival because there are more reserves in the seed, 

which the seedling can use to survive when the environment initially becomes more 

stressful.  

 

Plant characteristics in response to variable environments have previously been 

investigated, and it has been shown that there is some plasticity in growth between 

fertile and infertile environments (Vijver et al., 1993). In these cases, it is assumed that 

changes are due to adaptation and plasticity. In adapting to one environment, a 

seedling could either be increasing or decreasing its chance of surviving a change in the 

environment in the future. 

 

This experiment is unusual because of its 2 tiers of stressor. Most experiments 

consider the effect of 1 stressor on one plant, but in the wild, plants need to be 

adapted to face multiple stressors in the same season. Here, we grow seedlings from 5 

families in different levels of sub-optimal conditions (low light, low nutrients or a 

combination), which aimed to stress the plants, and then impose a drought until 

death, to investigate the effects of the treatments on survival. 
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Methods 

 

Species 

29 species from six families were used: Asteraceae, Fabaceae, Poaceae, Juncaceae, 

Lamiaceae and Caryophyllaceae (see Appendix 1 for more details).  

Germination 

Seeds were germinated in petri dishes lined with filter paper. Placement in the petri 

dishes was staggered to ensure that all the species germinated at the same time. 

Germination was also staggered so that plants were either 10 or 21 days post-

germination when the drought treatment began. This increased the variance in size 

within species at the point of treatment. Some species were scarified with sandpaper. 

Post-germination, seedlings were transferred into individual pots within a seed tray (l = 

38cm, w = 24cm, d = 4.8cm). The substrate was 50% sand and 50% vermiculite: sand 

was chosen as a low-nutrient alternative to soil, and supplemented with vermiculite to 

increase water and air retention. 

Treatments 

The plants within each species were randomly assigned to a treatment. The treatments 

were: 

 

 High light (minimum of 200 mols) and high nutrients (half-streŶgth RorisoŶ’s 

solution, Hewitt (1966), applied weekly while watering) 

 High light and low nutrients (no added nutrients) 

 Low light (grown under 60% shade netting) and high nutrients 

 Low light and low nutrients 

 

The sub-optimal treatments (from the latter three bullet points) were intended to 

provide a stressful environment, but not to produce plant mortality. After three weeks, 

half the plants in each treatment were subjected to a drought, where water was 

completely withheld (creating a total of eight treatment groups). Plant height (the 

length of the longest leaf for rosette based species) and the total number of leaves 
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were measured per plant every 3-4 days for the first three weeks (i.e. until the drought 

treatment was added) and once the drought began, mortality was recorded daily. 28 

individuals of 29 species were grown across the eight treatment groups, providing a 

total of 6496 plants (including plants that died during establishment). After the 

drought started individuals in the shade treatment continued in the shade, however 

no nutrients were applied to any plants as the nutrient treatment was applied in 

solution. 

 

Due to the large number of plants and the associated resource limitations, four 

greenhouse rooms were used and the experiment was repeated across two 

consecutive time-periods. Every room and experimental half contained all the species 

across all the environments, as a precaution against room and experimental half 

effects. Due to variable germination, a few species were not studied in both halves of 

the experiment. 

 

Destructive harvests 

A further set of plants were grown and destructively harvested to provide a proxy of 

the biomass of the main set of plants. 2016 plants were grown in both halves of the 

experiment in the treatment conditions, with plants being harvested throughout the 

first 3 weeks of the experiment (i.e. until the drought treatment began). As with the 

main experiment, plants were measured every 3-4 days. After measuring, three 

individuals per species per treatment were harvested. Their roots were cleaned and 

the plants were placed in a drying oven at 68°C for 48 hours. The leaf, stem and root 

biomass were then weighed. There were six harvests, with the final harvest occurring 

on the first day of the drought treatment. 

Statistics 

The destructive harvest data was used to predict the biomass of the treatment plants. 

The model used incorporated room, planting date, experimental half, height, leaf 

number, species, shade and nutrient effects and was selected using a stepwise 

procedure, and the ͚prediĐt’ fuŶĐtioŶ iŶ R (R Development Core Team, 2011) was then 

used to obtain individual plant biomass.  
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Over recent years, the importance of understanding the pattern of growth over time 

has been emphasised, with the size-corrected relative growth rate (SGR) 

recommended when growth is non-linear (Paine et al., 2012, Paul-Victor et al., 2010, 

Rees et al., 2010, Rose et al., 2009, Taylor et al., 2010). Analysis of the predicted 

biomasses suggested that individual plant growth could be described by a simple 

quadratic function, which was fitted using lmer (lme4, Bates et al., 2012). The model 

included an individual-specific random effect, the fitted model was:  

 

lmer(biomass ~ species + species/day + species/I(day^2) -1 + (1|indiv) 

 

where biomass is log10 biomass, day is time from planting and indiv is the individual-

specific random effect. As we were interested in comparing the effects of growing 

under different conditions (shade/nutrients) we fitted the model to each of the four 

treatment combinations separately.  

 

Separating the effects of different seed and seedling traits is difficult as there are 

problems with colinearity, for example seedling biomass just before the drought was 

applied can be written as: 

 

bioŵass ≈ seed mass * seedling RGR * age 

 

To deal with this problem we performed analyses on seedling biomass and its 

components separately. The components of seedling biomass analysed were seed 

mass, initial seedling relative growth rate (the linear coefficients from the lmer model), 

and age (either 10 or 21 days post-germination before the drought treatment began). 

 

Survival was modelled using a Cox-mixed-effects model (coxme, Therneau, 2012) and 

the effect of different variables (seedling biomass just before drought, growth rate, 

seed mass and age) were visualised using rank-hazard plots (Karvanen and Harrell 

2009). To produce a rank-hazard plot, we first ranked the covariate then calculated the 
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hazard (chance of dying) relative to the median of the covariate. The relative hazard 

for covariate y is given as: 

 

 eǆp;β * (y – median (y))) 

 

where β is the appropriate coefficient from the coxme model. 

 

Two models were developed to understand how:  

a) Initial shade/nutrient treatment and seedling biomass just before the drought 

started affect survival and 

b) Initial shade/nutrient treatment and the components of seedling biomass (growth 

rate, seed mass and age) affect survival of drought. In this model all three effects were 

fitted simultaneously. 

 

All models included room and experimental half effects, and a random effect for 

species nested within family. 

 

Results 

 

The Cox mixed effects models strongly suggested that the effect of seedling biomass 

interacted with both the shade and nutrient treatments (Figure 4.1, see Appendix 2). 

Across all seedlings, the likelihood of mortality varied approximately 20 fold compared 

with the median seedling mass (Figure 4.1). In both the shade and low nutrient 

treatments the effect of seedling mass was amplified, particularly in the shade 

treatment (Figure 4.1a). 

 

In the second model, which included all three components of seedling mass, we found 

interactions with shade for seed mass, seedling RGR and seedling age, and a nutrient 

by age interaction (Figure 4.2). There was a highly significant effect of seedling RGR in 

both the low and high light treatments, with slow growing plants experiencing higher 

mortality relative to the median. This effect was particularly pronounced in the shade 



62 

 

treatment (Figure 4.2a). Seed mass was only marginally significant in the shade 

treatment and did not effect survival in high light (Figure 4.2b). Older plants 

experienced reduced mortality rates particularly in the high light and low nutrient 

treatments (Figure 4.2c & d). 
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Figure 4.1: The effect of biomass on survival of the drought treatment in a) varying light levels and b) varying nutrient 

levels. The higher the relative hazard, the higher the likelihood of death. The grey line represents relative hazard = 1, and 

represeŶts aŶ eƋual ĐhaŶĐe of dyiŶg at all ďioŵasses. * = sigŶifiĐaŶt at p ≤ Ϭ.Ϭϱ, ** = sigŶifiĐaŶt at 

 p ≤ Ϭ.Ϭϭ aŶd *** = sigŶifiĐaŶt at p ≤ Ϭ.ϬϬϭ. 
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Figure 4.2: The effect of covariates on survival of the drought treatment in a) varying 

light levels and growth, b) varying light levels and seed mass, c) the 2 age groups and 

varying light levels and d) the 2 age groups and varying nutrient levels. The higher the 

relative hazard, the higher the likelihood of death. The grey line represents relative 

hazard = 1, and represents an equal chance of dying at all biomasses. * = significant at 

p ≤ Ϭ.Ϭϱ, ** = sigŶifiĐaŶt at p ≤ Ϭ.Ϭϭ aŶd *** = sigŶifiĐaŶt at p ≤ Ϭ.ϬϬϭ. 
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Discussion 

 

Seedling biomass and all its components affected survival across different initial 

treatments. In the seedling biomass model survival was higher when biomass was 

larger for all the initial environments (high and low light and nutrient levels). These 

effects are very substantial with mortality rates being 20 times greater for the smallest 

seedlings compared with the median. A larger biomass provides a more extensive root 

system, which is advantageous in drought, as it will enable more water to be taken up. 

The advantage that is gained from large seedling size is amplified in the shade pre-

treatment. This was probably a consequence of larger individuals being able to: 

1) Access water from a larger volume due to their larger root systems 

2) Reabsorb nutrient/water from a larger mass of tissues and 

3) Store more carbon 

In the low nutrient treatment the advantage of being a large seedling was also 

amplified, although the effect was smaller than the shade effect (Figure 4.2b) possibly 

because the plants stopped receiving nutrients after the beginning of the drought. 

 

 All three components of seedling size influenced the likelihood of survival and 

there were significant interactions with shade (Figure 4.2 a - c). Surprisingly, survival 

increased as seedlings grew slower, which would not be expected from the growth-

survival trade-off (Franco & Silvertown, 1996; Rose et al., 2009). However, there I 

another layer of complexity, as faster growth results in larger seedlings, which survive 

better in drought (Figure 4.1). It therefore seems that in this case, the costs of fast 

growth are outweighed by the increase in size, and so slow-growing seedlings 

experience greater mortality. Slow growth is particularly bad in the shade treatment, 

possibly because small seedlings that have been in the low light and drought 

treatment experience very high mortality rates. 

 

Seed mass, which has previously been the focus of much research, was only weakly 

associated with seedling survival and only in the shade treatment, with small-seeded 

species having higher mortality in the shade. The effect size was however rather small, 

despite seed mass varying by more than 250-fold mortality rates increased by less than 
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50% relative to the median, compared with a more than 20-fold effect of seedling 

mass. This contradicts the majority of the literature, which suggests that a large seed 

mass can significantly improve seedling survival (including the meta-analysis by Moles 

& Westoby, 2004). The results from Chapter 3 suggest that analysing multiple traits in 

the same model can account for some of the effects of colinearity and produce 

different results to models with only 1 trait. However, Chapter 3 found that in drought 

(with prior optimal growth conditions), low seed mass led to higher survival. These two 

chapters differ in one major aspect – the initial growth conditions. In Chapter 3, the 

seedlings were initially grown in a near-optimal environment, which may have put the 

seedling under little pressure, and growth strategies may have been different, 

therefore changing the interaction between seed mass and survival.  

 

As expected, ďeiŶg aŶ old seedliŶg iŶĐreased a seediŶg’s ĐhaŶĐes of surǀiǀal ;Figure 

4.2c & d). Being old (21-day vs 10-days at the start of the drought treatment) reduced 

mortality rates by a larger amount in the high light and low nutrient treatments. The 

smaller effect of age in the shade treatment was unexpected, but could be related to 

the differences in seedling size between the two age classes. In the shade treatment, 

21 day old seedlings were 2x larger than 10 day old seedlings, whereas in the 

unshaded treatment they were 2.7x larger (this difference being highly significant, 

contrast: t=174, p<0.0001). Because the effect of age on seedling mass is much larger 

in the high light treatment, age has a greater effect on seedling survival. 

 

There was an interaction between age and nutrients (Figure 4.2d), with the effect of 

age (21-day vs 10-day plants) on the chance of dying being greater in the low nutrient 

treatment. In contrast, the effects of age and nutrient addition on seedling mass were 

additive. Older seedlings were larger, as expected, as were seedlings in high nutrient 

treatment but there was no interaction (F=2.26, df=1,5659, p>0.1). As a consequence 

plants derived a greater benefit from being older in the low nutrient treatment. 

 

The low nutrient environment would have initially been a more stressful environment 

than the high nutrient environment, however, it may have encouraged the seedlings to 

adapt in a way that indirectly prepared them for survival of the drought. The balanced-
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growth hypothesis (see Shipley & Meziane, 2002), which suggests that in low nutrients, 

the seedling would have allocated most of its resources to the roots. The adaptation 

designed to increase nutrient absorption also increases water uptake in the drought 

environment and was therefore expected to increase survival. The effects of the low 

nutrient treatment were not as extreme as it had potential to be. None of the 

seedlings looked visibly deprived of nutrients. As the seedlings were still small and 

were likely to have remaining seed reserves, it is possible that the low nutrient 

environment was not as stressful as was initially intended. This would have led to less 

emphasis on root growth. 

 

It should be noted that the shade treatment may provide an additional survival 

advantage: Due to the low light and therefore low evaporation and transpiration rates, 

the soil mixture remained moist for longer than it did in the high light treatment. 

Therefore, the seedlings potentially eŶtered a ͚stressful’ eŶǀiroŶŵeŶt slightly later 

than the seedlings grown in high light.  

 

Conclusion 

 

This chapter demonstrates that a high biomass and an older seedling can increase the 

likelihood of surviving a stress event, a relationship which is impacted by the initial 

growth environment. Seed mass is only important in the shade treatment. This chapter 

also demonstrated an instance when a high RGR can increase survival. This also 

demonstrates some of the complexity of understanding a single seedling trait, as they 

are all inter-linked. 
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Appendix 1 

 

Species List 

 

Table S4.1: List of species used in the experiment, family and 

average seed mass 

Family Species Seed mass (mg) 

Asteraceae Achillea millefolium 0.0158 

Asteraceae Arctium minus 0.6138 

Asteraceae Centaurea nigra 0.2026 

Asteraceae Centaurea scabiosa 0.7189 

Asteraceae Cirsium vulgare 0.1715 

Asteraceae Lactuca serriola 0.0537 

Asteraceae Sonchus asper 0.0231 

Caryophyllaceae Cerastium fontanum 0.0051 

Caryophyllaceae Silene dioica 0.0700 

Caryophyllaceae Silene latifolia 0.0476 

Caryophyllaceae Stellaria media 0.0487 

Fabaceae Medicago lupulina 0.2052 

Fabaceae Melilotus altissima 0.3904 

Fabaceae Trifolium dubium 0.0240 

Fabaceae Trifolium pratense 0.1814 

Fabaceae Trifolium repens 0.0641 

Juncaceae Juncus articulatus 0.0028 

Juncaceae Juncus conglomeratus 0.0031 

Juncaceae Juncus effusus 0.0085 

Juncaceae Juncus squarrosus 0.0097 

Lamiaceae Lamium purpureum 0.0771 

Lamiaceae Prunella vulgaris 0.0648 

Lamiaceae Thymus polytrichus 0.0141 

Poaceae Agrostis stolonifera 0.0061 

Poaceae Brachypodium pinnatum 0.3504 

Poaceae Dactylis glomerata 0.0952 

Poaceae Deschampsia flexuosa 0.0290 

Poaceae Festuca ovina 0.0711 

Poaceae Poa trivialis 0.0210 
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Appendix 2 

 

Table S4.2: Model selection process for the Coxme survival model 

incorporating biomass. Biomass was log transformed (base 10) 

No Model AIC BIC 

1 ~ (1|Family) 76.82 70.90 

2 ~ (1|Family/Species) 183.87 172.03 

3 ~ (1|Species) 181.19 175.27 

4 ~ Room + (1|Family/Species) 323.32 293.73 

5 ~ Room + faExp half +(1| 

Family/Species) 
721.13 685.62 

6 ~ Room + Exp.half + Nutrients + (1| 

Family/Species) 
732.09 690.65 

7 ~ Room + Exp.half + Nutrients + Shade 

+ (1| Family/Species) 
770.60 723.24 

8 ~ Room + Exp.half + Nutrients + Shade 

+ Biomass + (1| Family/Species) 
968.23 914 

9 ~ Room + Exp.half + Nutrients * Shade 

+ Biomass + (1| Family/Species) 
968.43 909.23 

10 ~ Room + Exp.half + Nutrients + Shade 

* Biomass + (1| Family/Species) 
1021.78 962.58 

11 ~ Room + Exp.half + (Nutrients + 

Shade) * Biomass + (1| 

Family/Species) 

1030.82 965.7 

The (1|Family/species) term specifies the random effects. The model in 

bold was chosen as the model which best explained the data, based on the 

AIC. With Coxme models, a high AIC and BIC signifies a better model. 
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Appendix 3 

 

Table S4.3: Model selection process for the Coxme survival model with the 

components of biomass: growth rate, seed mass and seedling age. Growth 

rate and seed mass were log transformed (base 10) 

No Model AIC BIC 

1 ~ (1|Family) 76.82 70.90 

2 ~ (1|Family/Species) 183.87 172.03 

3 ~ (1|Species) 181.19 175.27 

4 ~ Room + (1| Family/Species) 323.32 293.73 

5 ~ Room + Exp.half +(1| 

Family/Species) 
721.13 685.62 

6 ~ Room + Exp.half + Nutrients + (1| 

Family/Species) 
732.09 690.65 

7 ~ Room + Exp.half + Nutrients + Shade 

+ (1| Family/Species) 
770.60 723.24 

8 ~ Room + Exp.half + Nutrients + Shade 

+ factor(Age) + (1| Family/Species) 
879.69 826.41 

9 ~ Room + Exp.half + Nutrients + Shade 

+ factor(Age) + Growth + (1| 

Family/Species) 

923.25 864.05 

10 ~ Room + Exp.half + Nutrients + Shade 

+ factor(Age) + Growth + Seed size + 

(1| Family/Species) 

921.32 856.21 

11 ~ Room + Exp.half + Nutrients * Shade 

+ factor(Age) + Growth + (1| 

Family/Species) 

921.73 856.62 

12 ~ Room + Exp.half + Nutrients + Shade 

* factor(Age) + Growth + (1| 

Family/Species) 

930.40 865.28 

13 ~ Room + Exp.half + (Nutrients + 

Shade) * factor(Age) + Growth + (1| 

Family/Species) 

934.79 863.75 

14 ~ Room + Exp.half + (Nutrients + 

Shade) * factor(Age) + Shade * 

Growth + (1| Family/Species) 

939.45 862.49 

15 ~ Room + Exp.half + (Nutrients + 

Shade) * factor(Age) + (Nutrients + 

Shade) * Growth + (1| Family/Species) 

938.74 855.87 

16 ~ Room + Exp.half + (Nutrients + 

Shade) * factor(Age) + Shade * 

Growth + Shade * Seed size + (1| 

Family/Species) 

973.20 884.40 
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17 ~ Room + Exp.half + (Nutrients + 

Shade) * factor(Age) + Shade * 

Growth + (Nutrients + Shade) * Seed 

size + (1| Family/Species) 

971.53 876.81 

The (1|Family/species) term specifies the random effects. The model in 

bold was chosen as the model which best explained the data, based on the 

AIC. With Coxme models, a high AIC and BIC signifies a better model. 
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Chapter ϱ 

 

CoŵpoŶeŶts of the relatiǀe groǁth rate 

uŶder ŵultiple eŶǀiroŶŵeŶtal 

ĐoŶditioŶs 

  

Introduction 

 

 

Groǁth rates ǀary ďoth ǁithiŶ aŶd ďetǁeeŶ speĐies ;Poorter & Reŵkes, ϭϵϵϬ; Li et al., 

ϭϵϵϴͿ aŶd plaŶts are Đapaďle of regulatiŶg their groǁth iŶ respoŶse to ďoth the ďiotiĐ 

aŶd aďiotiĐ eŶǀiroŶŵeŶt ;MĐŶaughtoŶ, ϭϵϴϯ; NeuŵaŶŶ, ϮϬϬϴͿ. “eedliŶg groǁth is 

ĐalĐulated ďy the relatiǀe groǁth rate ;RGRͿ, ǁhiĐh ŵeasures the iŶĐrease iŶ dry ŵass 

of aŶ orgaŶisŵ per uŶit of dry ŵass oǀer tiŵe ;aŶd assuŵes that groǁth is eǆpoŶeŶtial 

through tiŵe, eƋŶ. ϭ, TurŶďull et al., ϮϬϬϴͿ.  

 

RGR = ;lnWϭ - lnWϬͿ / ;tϭ - tϬͿ                 eƋŶ.ϭ 

 

ǁhere WϬ is the iŶitial dry plaŶt ǁeight, Wϭ is the fiŶal plaŶt ǁeight aŶd t is the tiŵe 

iŶterǀal oǀer ǁhiĐh groǁth is ŵeasured. 

 

This ŵethod is sloǁly ďeiŶg superseded ďy a size-ĐorreĐted RGR ĐalĐulatioŶ ;MetĐalf et 

al. ϮϬϬϲ; TurŶďull et al. ϮϬϬϴ; Rose et al. ϮϬϬϵ; Paul-ViĐtor et al. ϮϬϭϬ; Rees et al. ϮϬϭϬ; 

PaiŶe et al. ϮϬϭϮ; TurŶďull et al. ϮϬϭϮͿ, ǁhiĐh does Ŷot assuŵe that groǁth is 
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eǆpoŶeŶtial aŶd ĐalĐulates groǁth usiŶg ŶoŶ-liŶear ŵodels. RGR ĐaŶ also ďe studied ďy 

diǀidiŶg it iŶto ĐoŵpoŶeŶts.  

CoŵpoŶeŶts of the RGR 

RGR ĐaŶ ďe partitioŶed iŶto tǁo ĐoŵpoŶeŶts: the Ŷet assiŵilatioŶ rate ;NARͿ, ǁhiĐh 

ŵeasures the iŶĐrease iŶ ďioŵass per uŶit of leaf area oǀer tiŵe aŶd ĐaŶ ďe used as a 

proǆy for photosyŶthetiĐ rate ;as suggested ďy Poorter & VaŶ Der Werf, ϭϵϵϴͿ; aŶd the 

leaf area ratio ;LARͿ, ǁhiĐh ĐalĐulates the leaf area per uŶit of plaŶt ŵass ;eƋŶ. ϮͿ.  

 

RGR = NAR ǆ LAR             eƋŶ. Ϯ 

 

LAR ĐaŶ ďe further partitioŶed iŶto tǁo ŵore ĐoŵpoŶeŶts: the leaf ŵass ratio ;LMRͿ, 

ǁhiĐh is the ratio ďetǁeeŶ the total leaf ŵass aŶd the total plaŶt ŵass; aŶd the speĐifiĐ 

leaf area ;“LAͿ, ǁhiĐh is the leaf area per uŶit of leaf ;eƋŶ. ϯͿ. IŶ suŵŵary, NAR 

represeŶts physiology, “LA represeŶts leaf ĐoŶstruĐtioŶ aŶd LMR refleĐts alloĐatioŶ.  

 

RGR = NAR ǆ “LA ǆ LMR   eƋŶ. ϯ 

 

There has ďeeŶ eǆteŶsiǀe researĐh oŶ these groǁth ĐoŵpoŶeŶts aŶd hoǁ they ĐaŶ 

affeĐt RGR. A large proportioŶ of this researĐh has foĐussed oŶ ideŶtifyiŶg ǁhiĐh 

ĐoŵpoŶeŶt is the ŵost iŵportaŶt faĐtor iŶ groǁth ;Poorter & Reŵkes, ϭϵϵϬ; “hipley, 

ϮϬϬϮͿ, ǁith the ͚ŵost iŵportaŶt’ ĐoŵpoŶeŶt ďeiŶg the oŶe that aĐĐouŶts for the 

largest aŵouŶt of ǀariaŶĐe iŶ RGR. This ƋuestioŶ of iŵportaŶĐe has proǀided 

ĐoŶfliĐtiŶg aŶsǁers to the eǆteŶt that ŵultiple ŵeta-aŶalyses haǀe ďeeŶ uŶdertakeŶ iŶ 

aŶ atteŵpt to uŶderstaŶd the oǀerall patterŶ ;CorŶelisseŶ et al., ϭϵϵϴ; Poorter & VaŶ 

Der Werf, ϭϵϵϴ; VeŶeklaas & Poorter, ϭϵϵϴ; “hipley, ϮϬϬϲͿ. Hoǁeǀer, eǀeŶ these 

ĐoŶtradiĐt oŶe aŶother, ǁith either “LA or NAR ďeiŶg desĐriďed as the ŵost iŵportaŶt 

ǀariaďle iŶ desĐriďiŶg ĐhaŶges iŶ RGR. 

Light EŶǀiroŶŵeŶt 

The results are also ĐoŶtradiĐtory ǁheŶ the effeĐts of eŶǀiroŶŵeŶtal ĐoŶditioŶs are 

ĐoŶsidered aloŶgside the relatiǀe ĐoŶtriďutioŶs of eaĐh of the RGR ĐoŵpoŶeŶts. OŶe 
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ǀariaďle that has ďeeŶ freƋueŶtly studied for its effeĐt oŶ the partitioŶiŶg of NAR, “LA 

aŶd LMR is irradiaŶĐe. 

 

Three ŵeta-aŶalyses haǀe ďrought together datasets froŵ eǆperiŵeŶts ǁith ŵultiple 

light regiŵes. Poorter & VaŶ der Werf ;ϭϵϵϴͿ fouŶd that LAR ǁas the ŵost iŵportaŶt 

ĐoŵpoŶeŶt iŶ groǁth ;relatiǀe to the other ĐoŵpoŶeŶtsͿ, irrespeĐtiǀe of light leǀels 

;Taďle ϱ.ϭͿ. OŶ the other haŶd, VeŶeklaas & Poorter ;ϭϵϵϴͿ aŶd “hipley ;ϮϬϬϲͿ 

ĐoŶĐluded that NAR ǁas the ŵost iŵportaŶt ĐoŵpoŶeŶt iŶ high light, ďut Ŷot iŶ loǁ-

light ĐoŶditioŶs ;Taďle ϱ.ϭͿ. “hipley ;ϮϬϬϲͿ proposed that the differeŶĐes ďetǁeeŶ his 

study aŶd the other ŵeta-aŶalysis Đould ďe a result of his ŵore reĐeŶt ŵeta-aŶalysis 

ĐoŶsistiŶg of a larger dataset, ǁhiĐh also iŶĐorporated a larger raŶge of speĐies 

;herďaĐeous aŶd ǁoody, as opposed to solely herďaĐeous speĐies, as studied ďy 

Poorter & VaŶ der Werf ;ϭϵϵϴͿ. This theory is supported ďy the results of the ŵeta-

aŶalysis ďy VeŶeklaas & Poorter ;ϭϵϵϴͿ, ǁho aŶalysed solely ǁoody speĐies, aŶd fouŶd 

that NAR is the ŵost iŵportaŶt ĐoŵpoŶeŶt iŶ high light, ďut LAR is ŵore iŵportaŶt iŶ 

loǁ light ;Taďle ϱ.ϭͿ, siŵilarly to “hipley ;ϮϬϬϲͿ. 

 

The greater ĐoŶtriďutioŶ of NAR to RGR iŶ high light has preǀiously ďeeŶ eǆplaiŶed ďy 

the diŵiŶishiŶg iŵportaŶĐe of “LA ǁith iŶĐreasiŶg light leǀels ;“hipley, ϮϬϬϮͿ. This 

suggestioŶ steŵs froŵ the theory that it is ŵore iŵportaŶt for plaŶts iŶ loǁ-light 

eŶǀiroŶŵeŶts to haǀe a high “LA ;i.e. thiŶ leaǀes ǁith a large surfaĐe areaͿ to iŵproǀe 

light aďsorptioŶ, ǁhiĐh is a liŵitiŶg faĐtor to groǁth iŶ loǁ-light ĐoŶditioŶs. 

Water EŶǀiroŶŵeŶt 

There has ďeeŶ less researĐh iŶto the effeĐts of drought oŶ the ĐoŵpoŶeŶts of RGR 

thaŶ light, aŶd eǀeŶ less studyiŶg their relatiǀe ĐoŶtriďutioŶs. Poorter & Nagel ;ϮϬϬϬͿ 

Đoŵpiled seǀeŶ papers to Đoŵpare the relatiǀe effeĐt of drought oŶ NAR, “LA aŶd LMR 

ǁith that of a ǁell-ǁatered ĐoŶtrol. They fouŶd a deĐrease iŶ NAR ;there deŶoted as 

uŶit leaf rate, ULRͿ iŶ drought ĐoŶditioŶs, ďut the ĐhaŶge ǁas Ŷot as eǆtreŵe as that 

oďserǀed aĐross other eŶǀiroŶŵeŶtal gradieŶts ;irradiaŶĐe aŶd ŶutrieŶt 

ĐoŶĐeŶtratioŶͿ. 
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There is also ǀery little puďlished researĐh iŶto the effeĐt of eǆĐess ǁater oŶ RGR aŶd 

its ĐoŵpoŶeŶts, ǁith a partiĐular laĐk of researĐh oŶ the relatiǀe ĐoŶtriďutioŶ of eaĐh 

ĐoŵpoŶeŶt. This Đould possiďly ďe due to NAR aŶd LAR ďeiŶg studied iŶ areas ǁhere 

floodiŶg is Ŷot of iŵportaŶĐe, or a result of the diffiĐulties of produĐiŶg a ĐoŶsisteŶt 

aŶd roďust eǆperiŵeŶtal set-up for floodiŶg plaŶts. “iŵulated floodiŶg as aŶ 

eǆperiŵeŶtal groǁth ĐoŶditioŶ ŵay also ďe seeŶ as a ǁaste of Ŷatural resourĐes, 

partiĐularly iŶ drought-proŶe regioŶs. PlaŶts eǆperieŶĐiŶg aŶ oǀer-aďuŶdaŶĐe of ǁater 

geŶerally haǀe loǁer RGRs, due to loǁer NARs, ǁith Ŷo oďserǀed ĐorrelatioŶ ďetǁeeŶ 

RGR aŶd LAR ;Nash & Graǀes, ϭϵϵϯ; BlaŶĐh et al., ϭϵϵϵͿ. 

 

The geŶeral patterŶ that eŵerges aĐross the eŶǀiroŶŵeŶtal ĐoŶditioŶs is that NAR is 

the ŵaiŶ deterŵiŶaŶt of RGR iŶ optiŵal groǁth ĐoŶditioŶs, ďut Ŷot iŶ stressful 

ĐoŶditioŶs. 

The proďleŵ ǁith NAR 

The eƋuatioŶ for NAR ;eƋŶ. ϰͿ iŶĐorporates the aďsolute groǁth rate ;AGR; eƋŶ. ϱͿ, 

ǁhiĐh is therefore Đlosely related to the RGR ;see eƋŶ. ϭͿ. Hoǁeǀer, AGR is stroŶgly 

size-depeŶdeŶt ;Rees et al., ϮϬϭϬͿ. Therefore, there is reasoŶ to suggest that usiŶg NAR 

to eǆplaiŶ RGR ŵay Ŷot ďe as ďiologiĐally useful as preǀiously assuŵed. Rees et al. 

;ϮϬϭϬͿ suggest that NAR is stroŶgly iŶflueŶĐed ďy ǀariatioŶ iŶ plaŶt size, ǁhereas the 

other ĐoŵpoŶeŶts of RGR are Ŷot ;i.e. “LA aŶd LMRͿ. They fouŶd that as the ǀariaŶĐe 

iŶ size iŶĐreased, NAR aĐĐouŶted for ŵore of the ǀariaŶĐe iŶ RGR ;ǁhiĐh also 

eǆperieŶĐes soŵe size-ďias, TurŶďull et al., ϮϬϬϴͿ. 

 

NAR = ;ϭ / LaͿ ;Wϭ - WϬͿ / ;tϭ - tϬͿ  eƋŶ. ϰ 

AGR = ;Wϭ - WϬͿ / ;tϭ - tϬͿ   eƋŶ. ϱ 

 

ǁhere La = leaf area. 

 

This supports the theory that the aŵouŶt of ǀariatioŶ iŶ RGR that NAR aĐĐouŶts for is 

related to ǀariatioŶ iŶ size ǁithiŶ the populatioŶ. This ŵeaŶs that aŶy treatŵeŶt that 

ĐhaŶges the ǀariaŶĐe iŶ plaŶt size ǁithiŶ a populatioŶ ǁill iŶflueŶĐe the role NAR plays 
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iŶ deterŵiŶiŶg RGR. “tudies oŶ the relatiǀe ĐoŵpoŶeŶts of RGR aĐross differeŶt 

eŶǀiroŶŵeŶts typiĐally fiŶd that NAR is ŵore iŵportaŶt iŶ optiŵal groǁth ĐoŶditioŶs, 

i.e. high light, ŶutrieŶts aŶd good ǁater supply. Hoǁeǀer, the ǀariaŶĐe iŶ seedliŶg size 

is likely to ǀary ǁith eŶǀiroŶŵeŶtal ĐoŶditioŶs, aŶd so the iŵportaŶĐe of ǀariatioŶ iŶ 

NAR ǁill depeŶd oŶ the eŶǀiroŶŵeŶt. 

ExperiŵeŶt 

This eǆperiŵeŶt aiŵs to further eǆplore the theory that the size-depeŶdeŶĐe of NAR 

aŶd RGR Đauses the stroŶg assoĐiatioŶ ďetǁeeŶ NAR aŶd RGR, ďy iŶǀestigatiŶg the 

ĐoŵpoŶeŶts of RGR aĐross differeŶt eŶǀiroŶŵeŶtal ĐoŶditioŶs. This eŶaďles us to 

assess ǁhether or Ŷot size-depeŶdeŶĐe is ĐausiŶg the differeŶt relatiǀe ĐoŶtriďutioŶs of 

the ĐoŵpoŶeŶts aĐross eŶǀiroŶŵeŶts. “eedliŶgs ǁere groǁŶ iŶ loǁ or high ǁater or 

light treatŵeŶts. The ŵultiple ĐoŶditioŶs ǁill produĐe suď-sets of seedliŶgs ǁith a 

raŶge of ǀariaŶĐes iŶ size alloǁiŶg the theory to ďe tested aĐross a larger raŶge of 

groǁth rates thaŶ Rees et al. ;ϮϬϭϬͿ. It ǁas hypothesised that there ǁould ďe a positiǀe 

relatioŶship ďetǁeeŶ the ǀariaŶĐe iŶ seedliŶg size aŶd NAR. 
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Table 5.1: Meta-analyses on the components of RGR in varying light levels 

Study Species Most important 

in low light 

Most important 

in high light 

Pooter & Van der 

Werf, 1998 

Herbaceous LAR LAR 

Veneklaas & Poorter, 

1998 

Woody LAR NAR 

Shipley, 2006 Herbaceous & 

woody 

SLA NAR 
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Methods 

 

SpeĐies 

“eedliŶgs froŵ three faŵilies ǁere groǁŶ: PoaĐeae ;grassesͿ, FaďaĐeae ;leguŵesͿ aŶd 

AsteraĐeae ;the daisy faŵily, preǀiously CoŵpositaeͿ. ϯϬ speĐies, ǁhiĐh represeŶt a 

raŶge of seed ŵasses, ǁere seleĐted froŵ the UŶiǀersity of “heffield seed stores, of 

ǁhiĐh Ϯϳ gerŵiŶated ;see AppeŶdiǆ ϭ for a list of the speĐies used iŶ the studyͿ. The 

aǀerage ǁeight of ϱϬ seeds froŵ eaĐh speĐies ǁas ĐalĐulated to Ϭ.ϭŵg. 

Groǁth EŶǀiroŶŵeŶt  

The seedliŶgs ǁere groǁŶ iŶ the Arthur Willis EŶǀiroŶŵeŶt CeŶtre at the UŶiǀersity of 

“heffield, UK. The greeŶhouse had a teŵperature of ϮϮ°C duriŶg the day, ϭϱ°C at Ŷight 

aŶd had a ŵiŶiŵuŵ daytiŵe light iŶteŶsity of ϮϬϬµŵol. 

TreatŵeŶts 

“eedliŶgs ǁere groǁŶ uŶder differeŶt light iŶteŶsities aŶd ǁater regiŵes. The four 

treatŵeŶts ǁere: 

 

 CoŶtrol, ǁhere the seedliŶgs ǁere ǁatered eǀery ϭ-Ϯ days, as reƋuired, 

 WaterloggiŶg, ǁhiĐh ĐoŶsisted of a high-ǁater treatŵeŶt, ǁith Ŷoǁhere for the 

eǆĐess ǁater to draiŶ to ;the seed tray had Ŷo holes aŶd ǁas ĐoŶstaŶtly filled 

ǁith ǁater, ǁhiĐh kept the soil saturated – preliŵiŶary ǁork highlighted that 

seedliŶgs ofteŶ ďeĐoŵe dislodged froŵ the soil aŶd ďuried ǁheŶ oǀer-ǁatered 

froŵ aďoǀe, addiŶg aŶ additioŶal size-depeŶdeŶt faĐtorͿ, 

 Drought, iŶ ǁhiĐh seedliŶgs ǁere ǁatered oŶĐe a ǁeek aŶd  

 Deep shade, ǁhiĐh ĐoŶsisted of a ϱ% light eŶǀiroŶŵeŶt, Đreated ďy tǁo layers 

of ďlaĐk shade ŶettiŶg. 

ExperiŵeŶt 

Due to resourĐe liŵitatioŶs, the eǆperiŵeŶt ǁas ĐoŶduĐted aĐross tǁo tiŵe periods. 

The seeds ǁere gerŵiŶated iŶ petri dishes liŶed ǁith tǁo layers of filter paper for ϭ - ϯ 
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ǁeeks ;speĐies-depeŶdeŶtͿ, ǁith seed plaĐeŵeŶt iŶ the petri dishes staggered to 

staŶdardise the gerŵiŶatioŶ date. OŶĐe the seeds gerŵiŶated, they ǁere raŶdoŵly 

potted iŶ a seed tray ;l = ϯϴĐŵ, ǁ = ϮϰĐŵ, d = ϰ.ϴĐŵͿ ǁith Ϯϰ ĐoŵpartŵeŶts iŶ 

LeǀiŶgtoŶ's Mϯ Đoŵpost, aŶd left for tǁo days to adapt to their Ŷeǁ eŶǀiroŶŵeŶt. 

“eed trays ǁere theŶ alloĐated to oŶe of the four treatŵeŶts. 

 

The first harǀest ǁas ĐoŶduĐted oŶe ǁeek after pottiŶg ;i.e. fiǀe days after the 

treatŵeŶts ďegaŶͿ aŶd further harǀests ǁere Đarried out eǀery Ϯ - ϰ days, ǁith harǀests 

Đloser together at the ďegiŶŶiŶg of the eǆperiŵeŶt. There ǁas a total of siǆ harǀest 

dates ;at ϱ, ϳ, ϵ, ϭϮ, ϭϲ & ϭϵ days after the treatŵeŶts ďegaŶͿ. At eaĐh harǀest, three 

iŶdiǀiduals per speĐies per treatŵeŶt ;a total of ϭϮ seedliŶgs per speĐiesͿ ǁere 

reŵoǀed froŵ the soil. The roots ǁere ǁashed, the leaǀes ǁere sĐaŶŶed iŶto a 

Đoŵputer for the “LA aŶalysis aŶd the seedliŶg ǁas plaĐed iŶ a dryiŶg oǀeŶ at ϲϴ°C for 

tǁo days. The dry ďioŵass of the leaǀes, shoots aŶd roots of eaĐh seedliŶg ǁere 

reĐorded to Ϭ.ϭŵg. Mortality ǁas reĐorded. 

StatistiĐs 

The sĐaŶŶed leaǀes ǁere used to ĐalĐulate the leaf areas oŶ IŵageJ ;RasďaŶd, ϭϵϵϳ - 

ϮϬϭϮͿ. “LA ǁas theŶ ĐalĐulated usiŶg the leaf areas, folloǁiŶg the ĐoŶǀeŶtioŶ of HuŶt 

;ϭϵϵϬͿ. 

 

NAR, “LA aŶd LMR ǁere plotted agaiŶst ǀariaŶĐe iŶ size. AŶ eǆplaŶatioŶ of the 

assoĐiatioŶ ďetǁeeŶ ǀariaŶĐe iŶ size aŶd “LA aŶd LMR ǁas theŶ iŶǀestigated further, 

usiŶg the ŵatheŵatiĐal theory preseŶted ďy Rees et al ;ϮϬϭϬͿ. 

 

A size-staŶdardised groǁth rate ;“GRͿ ĐalĐulatioŶ ǁas plaŶŶed, usiŶg a ŶoŶ-liŶear 

ŵodel of the groǁth Đurǀes ;PaiŶe et al., ϮϬϭϮͿ, to aĐĐouŶt for the deĐrease iŶ groǁth 

oǀer tiŵe. Hoǁeǀer, the seedliŶgs ǁere still iŶ their eǆpoŶeŶtial groǁth phase at the 

eŶd of the eǆperiŵeŶt, so the slope of a liŶear regressioŶ ǁas used to ĐalĐulate RGR 

iŶstead ;ǁhiĐh utilises a siŵilar ŵatheŵatiĐal ďasis to eƋŶ.ϭ, hoǁeǀer it eŶaďles the 

data froŵ all the harǀests to ďe usedͿ. 

 



ϴϭ 

 

The ďioŵass data for ϭϮ days after the treatŵeŶts ďegaŶ ǁas loǁer thaŶ eǆpeĐted, 

proďaďly due to the use of aŶ iŶaĐĐurate ďalaŶĐe. Therefore, the data for that harǀest 

ǁas reŵoǀed froŵ the aŶalysis. 

 

Results 

 

The soil teŵperature iŶ the shade treatŵeŶt aŶd the ĐoŶtrol ǁere reĐorded at ŵultiple 

tiŵes oŶ differeŶt days, to assess additioŶal ĐhaŶges to the groǁth eŶǀiroŶŵeŶt 

Đaused ďy the shade ŶettiŶg. The soil iŶ the shade treatŵeŶt ǁas oŶ aǀerage Ϭ.ϴ°C 

ǁarŵer thaŶ the teŵperature of the ĐoŶtrol seedliŶgs. Therefore, the shade treatŵeŶt 

Đreated additioŶal eŶǀiroŶŵeŶtal effeĐts, ďut the disadǀaŶtage of the shade treatŵeŶt 

preǀeŶted the higher teŵperature ďeĐoŵiŶg a groǁth adǀaŶtage for those seedliŶgs. 

The seedliŶgs iŶ the shade treatŵeŶt also reƋuired less ǁateriŶg, as the shade 

iŶhiďited eǀaporatioŶ. These seedliŶgs ǁere ŵoŶitored aŶd ǁatered ǁheŶ ŶeĐessary, 

to ŵaiŶtaiŶ the soil at approǆiŵately the saŵe ŵoisture leǀel as the other treatŵeŶts 

;Ŷote: ŵoisture leǀels ǁere ǀisually approǆiŵatedͿ. 

 

The treatŵeŶts geŶerated a ǁide raŶge of plaŶt sizes ;Figure ϱ.ϭͿ, ǁith the largest 

plaŶts oĐĐurriŶg iŶ the ĐoŶtrol treatŵeŶt, the sŵallest iŶ the shade, aŶd ǁaterlogged 

aŶd drought plaŶts ďeiŶg iŶterŵediate. The ǀariaŶĐes iŶ plaŶt ŵass ;log traŶsforŵedͿ 

ǁere siŵilar iŶ the ĐoŶtrol aŶd ǁaterlogged treatŵeŶts ;Ϭ.ϯϳϰ, Ϭ.ϰϬϲ respeĐtiǀelyͿ, 

plaŶts ǁere least ǀariaďle iŶ size iŶ the shade treatŵeŶt ;σϮ= Ϭ.ϭϴϵͿ aŶd slightly ŵore 

ǀariaďle iŶ the drought ;σϮ = Ϭ.ϮϳϯͿ. 

 

As the ǀariaŶĐe iŶ size iŶĐreases, NAR also iŶĐreases ;Figure ϱ.ϮͿ, partiĐularly ǁithiŶ the 

ĐoŶtrol aŶd ǁaterloggiŶg treatŵeŶts. IŶ the drought treatŵeŶt, there is a lot of sĐatter. 

The graph ďegiŶs fairly flat aŶd NAR iŶĐreases as the ǀariaŶĐe iŶ size gets aďoǀe Ϭ.ϮϮ 

;seeŶ iŶ Figure ϱ.Ϯ as aďoǀe logϭϬ;-ϭ.ϱͿͿ. The iŶitial flat seĐtioŶ of the graph is Đaused 

ďy the plaŶts iŶ the shade treatŵeŶt. The positiǀe ĐorrelatioŶ is also preseŶt ǁheŶ the 

faŵilies are Đoŵpared separately ;Figure ϱ.ϯͿ. 
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The iŵportaŶĐe of NAR is ĐoŶsisteŶt aĐross all ŶoŶ-shade eŶǀiroŶŵeŶts ;aĐĐouŶtiŶg for 

ϯϬ% of the ǀariaŶĐe iŶ RGRͿ. IŶ the shade treatŵeŶt the iŵportaŶĐe of NAR drops to 

≈ϭϱ%, ǁhile the iŵportaŶĐe of “LA iŶĐreases froŵ ≈ϱϬ% iŶ ŶoŶ-shade to ≈ϳϱ% iŶ 

shade ;Taďle ϱ.ϮͿ. This supports the idea that a high leaf surfaĐe area to leaf ŵass ratio 

is iŵportaŶt iŶ loǁ light leǀels. 

 

Taďle ϱ.Ϯ: Aǀerage iŵportaŶĐe of the ĐoŵpoŶeŶts of groǁth aĐross the differeŶt eŶǀiroŶŵeŶts 

 CoŶtrol Waterlogged Drought “hade 

NAR Ϭ.ϯϬϴ Ϭ.ϯϬϮ Ϭ.ϯϭϮ Ϭ.ϭϰϴ 

“LA Ϭ.ϱϰϳ Ϭ.ϰϯϲ Ϭ.ϱϬϵ Ϭ.ϳϱϵ 

LMR Ϭ.ϭϰϱ Ϭ.ϮϲϮ Ϭ.ϭϳϵ Ϭ.Ϭϵϯ 

 

 

There is Ŷo ĐorrelatioŶ ďetǁeeŶ “LA or LMR aŶd ǀariaŶĐe iŶ size ;Figures ϱ.ϰ & ϱ.ϱͿ. 

This ǁas iŶǀestigated further to uŶderstaŶd ǁhether these ĐoŵpoŶeŶts Đould also help 

to eǆplaiŶ the ĐoŶtriďutioŶ of NAR to the ǀariaŶĐe iŶ size. The ǀariatioŶ iŶ “LA Đaused 

ďy ǀariatioŶ iŶ plaŶt size ǁas desĐriďed ďy Rees et al ;ϮϬϭϬͿ as: 

 

Var;“LAͿ = ;βϭ,aL – β ϭ,ŵLͿϮ Var;ŵpͿ 

 

Where ŵp is the total plaŶt ďioŵass ;log sĐaleͿ, aL is the leaf area, ŵL is the leaf ŵass 

aŶd βϭ is the fitted regressioŶ slope froŵ the regressioŶs ;aL – ǀersus ŵp aŶd ŵL-

ǀersus=ŵp – all ǀariaďles log traŶsforŵedͿ. 

 

Therefore ǀariatioŶ iŶ plaŶt size ǁill haǀe little effeĐt oŶ ǀariatioŶ iŶ “LA if leaf area aŶd 

leaf ŵass sĐale siŵilarly ǁith plaŶt ŵass. AĐross the eŶtire data set leaf ŵass is 

approǆiŵately isoŵetriĐ ǁith plaŶt ŵass ;β ϭ,ŵL= Ϭ.ϵϵϳ ±Ϭ.ϬϬϱͿ ǁhereas for leaf ŵass 

βϭ,aL= Ϭ.ϴϵϱ±Ϭ.ϬϭϬ ;see also Figure ϱ.ϲͿ. The differeŶĐe ďetǁeeŶ these tǁo terŵs 

sƋuared is ≈Ϭ.Ϭϭ, aŶd so ǀariaŶĐe iŶ plaŶt size ǁill haǀe little effeĐt oŶ the ǀariaŶĐe iŶ 

“LA. 

 

LMR ǁas studied iŶ a siŵilar ŵaŶŶer. Rees et al. ;ϮϬϭϬͿ produĐed the folloǁiŶg forŵula 
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to desĐriďe the effeĐts of size ǀariatioŶ oŶ LMR: 

 

Var;LMRͿ = ;ϭ - βϭ,ŵLͿϮ Var;ŵpͿ. 

 

AgaiŶ aĐross the eŶtire dataset β ϭ,ŵL= Ϭ.ϵϵϲ ±Ϭ.ϬϬϱ aŶd so ;ϭ - βϭ,ŵLͿϮ ≈Ϭ.ϬϬϬϬϬϭ 

ŵakiŶg the ǀariatioŶ iŶ LMR alŵost iŶdepeŶdeŶt of ǀariatioŶ iŶ plaŶt ŵass. 
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Figure ϱ.ϭ: DeŶsity plot of seedliŶg size Đross the treatŵeŶts. The Đolours represeŶt the 
treatŵeŶts; ĐoŶtrol = ďlue; drought = piŶk; shade = dark greeŶ aŶd ǁaterlogged = red. 
All ǀariaďles are oŶ the logϭϬ sĐale.  
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Figure 5.Ϯ: ChaŶges iŶ NAR ǁith ǀariaŶĐe iŶ size ;“pearŵaŶ’s raŶk ĐorrelatioŶ: t = ϲ.ϴϮϲ, df = ϵϮ, p <Ϭ.ϬϬϭ, Đor = Ϭ.ϱϴϬͿ. The Đolours 

represent the treatments; control = blue; drought = pink; shade = dark green and waterlogged = red. All variables are on the log10 scale. 
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Figure ϱ.ϯ: ChaŶges iŶ NAR ǁith ǀariaŶĐe iŶ size per faŵily. aͿ AsteraĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = ϯ.ϴϴϮ, df = ϰϰ, p <Ϭ.ϬϬϭ, Đor = Ϭ.ϱϬϱͿ, ďͿ FaďaĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = Ϯ.Ϭϳϴ, df = ϭϯ, p = Ϭ.Ϭϱϴ, Đor = Ϭ.ϰϵϵͿ, ĐͿ PoaĐeae ;“pearŵaŶ’s raŶk 
ĐorrelatioŶ: t = ϱ.ϱϵϰ, df = ϯϭ, p <Ϭ.ϬϬϭ, Đor = Ϭ.ϳϬϵͿ. The Đolours represeŶt the 
treatŵeŶts; ĐoŶtrol = ďlue; drought = piŶk; shade = dark greeŶ aŶd ǁaterlogged = red. 
All ǀariaďles are oŶ the logϭϬ sĐale. 
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Figure ϱ.ϰ: ChaŶges iŶ “LA ǁith ǀariaŶĐe iŶ size per faŵily. aͿ AsteraĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = -Ϭ.ϲϮϴ, df = ϰϰ, p = Ϭ.ϱϯϯ, Đor = Ϭ.ϬϵϰͿ, ďͿ FaďaĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = -Ϭ.ϯϵϱ, df = ϭϯ, p = Ϭ.ϲϵϵ, Đor = -Ϭ.ϭϬϵͿ, ĐͿ PoaĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = -Ϭ.ϰϴ, df = ϯϭ, p = Ϭ.ϲϯϱ, Đor = -Ϭ.ϬϴϲͿ. The Đolours represeŶt the 
treatŵeŶts; ĐoŶtrol = ďlue; drought = piŶk; shade = dark greeŶ aŶd ǁaterlogged = red. 
All ǀariaďles are oŶ the logϭϬ sĐale. 
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Figure ϰ.ϱ: ChaŶges iŶ LMR ǁith ǀariaŶĐe iŶ size per faŵily. aͿ AsteraĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = ϭ.Ϭϴϰϲ, df = ϰϰ, p = Ϭ.Ϯϴϰ, Đor = Ϭ.ϭϲϭͿ, ďͿ FaďaĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = -Ϭ.ϵϮϵ, df = ϭϯ, p = Ϭ.ϯϳϬ, Đor = -Ϭ.ϮϱϬͿ, ĐͿ PoaĐeae ;“pearŵaŶ’s 
raŶk ĐorrelatioŶ: t = ϭ.ϲϮϴ, df = ϯϭ, p = Ϭ.ϭϭϰ, Đor = Ϭ.ϮϴϭͿ. The Đolours represeŶt the 
treatŵeŶts; ĐoŶtrol = ďlue; drought = piŶk; shade = dark greeŶ aŶd ǁaterlogged = red. 
All ǀariaďles are oŶ the logϭϬ sĐale. 
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Figure ϱ.ϲ: The relatioŶship ďetǁeeŶ total ďioŵass aŶd aͿ leaf ŵass ;F = ϵϭϱϮ.Ϯ, df = 
ϱϯ, ϭϭϯϭ, p < Ϭ.ϬϬϭ, RϮ = Ϭ.ϵϴͿ aŶd ďͿ leaf area ;F = ϳϵϰϲ, df = ϭ, ϭϭϴϯ, p < Ϭ.ϬϬϭ, RϮ = 
Ϭ.ϴϳͿ. The Đolours represeŶt the plaŶt faŵilies; AsteraĐeae = ďlue; FaďaĐeae = piŶk aŶd 
PoaĐeae = dark greeŶ. All ǀariaďles are oŶ the logϭϬ sĐale. 
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Discussion 

 

Groǁth CoŵpoŶeŶts 

This paper set out priŵarily to iŶǀestigate NAR, ǁhiĐh is soŵetiŵes thought to ďe the 

ŵost iŵportaŶt faĐtor iŶ deterŵiŶiŶg RGR. The positiǀe relatioŶship ďetǁeeŶ NAR aŶd 

the ǀariaŶĐe iŶ size ;Figure ϱ.Ϯ & ϱ.ϯͿ supports the hypothesis that NAR ǁill eǆplaiŶ a 

high proportioŶ of the ǀariaŶĐe iŶ RGR ǁheŶ the ǀariaŶĐe iŶ size is high. As the 

ĐalĐulatioŶ for NAR iŶĐorporates the AGR ;aďsolute groǁth rate, ǁhiĐh oŶly differs 

froŵ RGR ďeĐause it is Ŷot oŶ the log sĐaleͿ, ǁhiĐh is stroŶgly size-depeŶdeŶt, NAR ǁill 

ďe Đlosely assoĐiated to RGR ǁheŶeǀer there is suďstaŶtial ǀariatioŶ iŶ plaŶt size. UsiŶg 

NAR aĐross seedliŶgs of differeŶt sizes, partiĐularly iŶ situatioŶs ǁhere NAR aŶd RGR 

are Đoŵpared, ŵay ďias results. This situatioŶ is partiĐularly likely to oĐĐur ǁheŶ the 

seedliŶgs haǀe ďeeŶ groǁŶ iŶ differeŶt treatŵeŶts; for eǆaŵple, iŶ this eǆperiŵeŶt the 

shade treatŵeŶt stroŶgly reduĐed ǀariaŶĐe iŶ seedliŶg size. 

 

The laĐk of a ĐorrelatioŶ ďetǁeeŶ ǀariaŶĐe iŶ size aŶd ďoth “LA aŶd LMR ǁas as 

eǆpeĐted. Both “LA ;leaf areaͿ aŶd LMR ;leaf ŵassͿ are largely ĐoŶsisteŶt ǁith seedliŶg 

size, aŶd so the ǀariatioŶ iŶ “LA is largely uŶaffeĐted ďy ǀariatioŶ iŶ plaŶt size ;Figure 

ϱ.ϲͿ. “LA aŶd LMR ǁere fairly ĐoŶsisteŶt aĐross the treatŵeŶts, eǆĐept iŶ shade, ǁhere 

“LA ǁas ǀery iŵportaŶt ;see the seĐtioŶ oŶ ͚TreatŵeŶts’, ďeloǁͿ.  

 

The seedliŶgs ǁere still iŶ their eǆpoŶeŶtial groǁth phase, iŶdiĐatiŶg that usiŶg the 

AGR ǁithiŶ the NAR forŵula Đreated size-depeŶdeŶĐy, hoǁeǀer, RGR ǁas Ŷot size-

depeŶdeŶt iŶ this Đase. 

TreatŵeŶts 

Oǀerall, the treatŵeŶts iŶĐreased the aŵouŶt of ǀariaŶĐe iŶ size. As eǆpeĐted, the 

seedliŶgs froŵ the shade treatŵeŶt eǆhiďited the least ǀariaŶĐe iŶ size. This ŵay ďe a 

result of all the speĐies usiŶg the saŵe surǀiǀal strategy of iŶhiďitiŶg groǁth ǁhilst 

ǁaitiŶg for aŶ iŶĐrease iŶ light leǀels. As suĐh, the seedliŶgs reŵaiŶed sŵall aŶd did Ŷot 

groǁ ŵore leaǀes after ďeiŶg plaĐed iŶ deep shade. As highlighted aďoǀe, the loǁ 
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ǀariaŶĐe iŶ size ǁill autoŵatiĐally produĐe a loǁ NAR, aŶd so ďoost the iŵportaŶĐe of 

“LA ;Taďle ϱ.ϮͿ. The alterŶatiǀe eǆplaŶatioŶ is that plaŶts groǁiŶg iŶ the shade are 

light-liŵited aŶd therefore Ŷeed to iŶĐrease their light Đapture – ďy iŶĐreasiŶg their leaf 

area relatiǀe to their ŵass. “LA is therefore eǆpeĐted to ďe aŶ iŵportaŶt groǁth faĐtor 

iŶ the shade. These results ĐoŶĐur ǁith those of the preǀious ŵeta-aŶalyses, ǁhiĐh 

agree that “LA/ LAR is the ŵost iŵportaŶt ĐoŵpoŶeŶt ĐoŶtriďutiŶg to the RGR iŶ loǁ 

light ;Taďle ϱ.ϭͿ. 

 

There ǁas a greater raŶge of seedliŶg groǁth respoŶses to the drought treatŵeŶt thaŶ 

the shade treatŵeŶt, so the seedliŶgs had slightly higher ǀariatioŶ iŶ size ;Figure ϱ.ϭͿ. 

“oŵe speĐies greǁ little, dried out aŶd died ǀery ƋuiĐkly ;for eǆaŵple, Inula conyza, 

Medicago lupulina, Poa triǀialisͿ, aŶd soŵe ďriefly surǀiǀed at a sŵall size ďefore dyiŶg 

;for eǆaŵple, Lactuca serriola, Melilotus altissiŵa aŶd Hordeuŵ ŵurinuŵͿ. OŶe 

Lactuca serriola seedliŶg greǁ relatiǀely ǀery large, reaĐhiŶg a total dry ďioŵass that 

ǁas ϯϭ% ďigger thaŶ the seĐoŶd largest iŶdiǀidual iŶ the drought treatŵeŶt ;Ŷote the 

ǁide raŶge iŶ seedliŶg sizes for the ǁaterlogged treatŵeŶt iŶ Figure ϱ.ϭͿ. Although 

ǁatered oŶĐe a ǁeek, the drought treatŵeŶt had the highest leǀels of ŵortality ;oŶly 

ϰϬ% of the seedliŶgs surǀiǀed ďetǁeeŶ day ϵ aŶd ϭϵ of the treatŵeŶtͿ. NAR ǁas 

siŵilar iŶ the ĐoŶtrol, ǁaterlogged aŶd drought treatŵeŶts, ǁhiĐh ĐoŶtrasts ǁith 

preǀious researĐh, ǁhiĐh shoǁed that NAR deĐreases ǁith drought ;BlaŶĐh et al., ϭϵϵϵ; 

Poorter & Nagel, ϮϬϬϬͿ. 

 

“eedliŶgs iŶ the ǁaterlogged treatŵeŶt displayed the largest ǀariaŶĐe iŶ size ďetǁeeŶ 

treatŵeŶts, ǁith the ĐoŶtrol ĐoŵiŶg iŶ seĐoŶd plaĐe ;although the ĐoŶtrol seedliŶgs 

had the largest aǀerage total ďioŵassͿ. The ĐoŶtrol seedliŶgs proďaďly greǁ to their 

optiŵuŵ size iŶ the tiŵe period perŵitted, aŶd aŶy oďserǀed ǀariatioŶ Đould proďaďly 

ďe attriďuted to iŶhereŶt ǀariatioŶ iŶ the ŵaǆiŵuŵ RGR. Hoǁeǀer, iŶ the ǁaterloggiŶg 

treatŵeŶt, soŵe seedliŶgs ǁere fast-groǁiŶg ;ǁith a feǁ Hordeuŵ ŵurinuŵ 

iŶdiǀiduals aĐtually groǁiŶg larger thaŶ iŶ the ĐoŶtrolͿ, ǁhereas other seedliŶgs 

struggled ǁith the ǁater stressor aŶd greǁ sloǁly or died ;e.g. Trifoliuŵ duďiuŵ, 

Tanacetuŵ ǀulgareͿ. The raŶge of respoŶses resulted iŶ large ǀariaŶĐe aĐross the 

treatŵeŶt. Most of the ǀariaŶĐe iŶ size ďetǁeeŶ treatŵeŶts aŶd aĐross the treatŵeŶt 
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aŶd faŵily ĐoŵďiŶatioŶ ǁas attriďuted to “LA. Preǀious studies haǀe shoǁŶ that NAR is 

reduĐed iŶ floodiŶg, Đoŵpared to a ĐoŶtrol ;BlaŶĐh et al., ϭϵϵϵͿ or to a ĐoŶtrol aŶd a 

drought treatŵeŶt ;Nash & Graǀes, ϭϵϵϯͿ. This ǁas Ŷot the Đase here, ďut it should ďe 

Ŷoted that there is a sigŶifiĐaŶt differeŶĐe ďetǁeeŶ a ǁaterloggiŶg aŶd a floodiŶg 

treatŵeŶt. IŶ a floodiŶg, rather thaŶ a ǁaterloggiŶg treatŵeŶt, ǁhere there is staŶdiŶg 

ǁater oŶ top of the soil, little groǁth ǁould ďe eǆpeĐted aŶd NAR ŵay ďe less 

iŵportaŶt, due to the high stress eŶǀiroŶŵeŶt.  

 

The fiŶdiŶgs of this study suggest that the iŶhereŶt size-depeŶdeŶĐe iŶ NAR Đould ďe 

ĐausiŶg or eǆaggeratiŶg the assoĐiatioŶ ďetǁeeŶ the Ƌuality of the eŶǀiroŶŵeŶtal 

ĐoŶditioŶs aŶd the proportioŶ of groǁth attriďuted to NAR. More researĐh Ŷeeds to ďe 

ĐoŶduĐted to uŶderstaŶd ǁhether this is a geŶeral treŶd. RepeatiŶg this study usiŶg 

seedliŶgs that haǀe fiŶished their eǆpoŶeŶtial groǁth phase ŵay also iŵpaĐt the 

results. The theory preseŶted here ŵay haǀe the poteŶtial to affeĐt the perĐeptioŶ of 

theories oŶ ďioŵass alloĐatioŶ, partiĐularly aĐross eŶǀiroŶŵeŶtal gradieŶts, so it is 

iŵportaŶt to uŶderstaŶd this. If NAR is size-depeŶdeŶt, further researĐh Đould 

iŶǀestigate the eǆteŶt of the iŵpaĐt oŶ eĐologiĐal researĐh, ǁhiĐh ŵakes assuŵptioŶs 

aďout the relatiǀe ĐoŶtriďutioŶ of the groǁth ĐoŵpoŶeŶts. 

 

Rees et al. ;ϮϬϭϬͿ highlighted a poteŶtial issue ǁheŶ NAR is used iŶ assoĐiatioŶ ǁith 

RGR, ǁhiĐh ŵay ďe ĐirĐuŵǀeŶted through ĐoŵpariŶg orgaŶisŵs at a ĐoŵŵoŶ size. It 

does reƋuire ŵore ŵeasureŵeŶts aŶd harǀests though. This study had plaŶts ǁith log-

liŶear groǁth aŶd therefore ĐaŶŶot ĐoŶĐlude ǁhether or Ŷot the eǆtra tiŵe, effort, 

spaĐe aŶd study orgaŶisŵs reƋuired to ĐalĐulate groǁth at a ĐoŵŵoŶ size is ŶeĐessary. 

Other areas of EĐology haǀe fouŶd it iŵportaŶt to Đoŵpare results at a ĐoŶstaŶt size to 

reduĐe size-depeŶdeŶĐe ;TurŶďull et al. ϮϬϬϴ; Rose et al. ϮϬϬϵ; Paul-ViĐtor et al. ϮϬϭϬ; 

TurŶďull et al. ϮϬϭϮͿ.  
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List of speĐies used iŶ the eǆperiŵeŶt 

 

Taďle “ϱ.ϭ: “peĐies used iŶ the eǆperiŵeŶt aŶd 
their assoĐiated faŵilies 

Faŵily “peĐies 

AsteraĐeae AĐhillea ŵillefoliuŵ 

AsteraĐeae CeŶtaurea Ŷigra 

AsteraĐeae CeŶtaurea sĐaďiosa 

AsteraĐeae Cirsiuŵ ǀulgare 

AsteraĐeae CoŶyza ĐaŶadeŶsis 

AsteraĐeae IŶula ĐoŶyza  
AsteraĐeae LaĐtuĐa serriola 

AsteraĐeae LapsaŶa ĐoŵŵuŶis 

AsteraĐeae LeoŶtodoŶ hispidus 

AsteraĐeae “eŶeĐio jaĐoďaea 

AsteraĐeae “oŶĐhus asper 

AsteraĐeae TaŶaĐetuŵ ǀulgare 

AsteraĐeae TaraǆaĐuŵ offiĐiŶale agg.  
FaďaĐeae Lathyrus prateŶsis 

FaďaĐeae Lotus ĐorŶiĐulatus 

FaďaĐeae MediĐago lupuliŶa 

FaďaĐeae Melilotus altissiŵa 

FaďaĐeae Trifoliuŵ prateŶse 

FaďaĐeae Trifoliuŵ repeŶs 

FaďaĐeae Trifoliuŵ duďiuŵ  
PoaĐeae AŶisaŶtha sterilis 

PoaĐeae BraĐhypodiuŵ piŶŶatuŵ 

PoaĐeae DaĐtylis gloŵerata 

PoaĐeae FestuĐa gigaŶtea 

PoaĐeae FestuĐa oǀiŶa  
PoaĐeae Hordeuŵ ŵuriŶuŵ  
PoaĐeae Poa aŶŶua  
PoaĐeae Poa triǀialis  
PoaĐeae Agrostis stoloŶifera  
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Chapter 6 

 

Discussion 

 

Growth Rates 

This thesis principally focussed on growth rates, and found that: 

 Chapter 2: Seed mass does not cause the variance in RGR between growth 

forms 

 Chapter 3: SGR is a predictor of seedling survival, and needs to be modelled 

alongside other variables, such as biomass and seed mass  

 Chapter 4: Both seedling traits and the initial growth environment affect 

survival  

 Chapter 5: As NAR varies with size, comparing the components of the RGR 

between experiments may create bias 

One recurring theme is that growth affects seedling survival (discussed in more detail 

iŶ the ͞VariaŶĐe iŶ Groǁth͟ aŶd ͞EŶǀiroŶŵeŶt͟ seĐtioŶs). The dependence of growth 

on other explanatory variables is also emphasized (Chapter 3 – 5), although variance in 

growth between growth forms is not dependent on seed mass. It is only once growth 

has been size-corrected that the co-dependent variables can be accurately modeled 

together. 

Growth rates are of particular interest, due to changes in attitudes towards the 

methodology, which is becoming more prevalent throughout ecology. In this thesis, 

three data chapters required data collection, of which one group of plants were 

growing exponentially (Chapter 5), one was non-linear (Chapter 3), and one was mostly 

non-linear (Chapter 4). Therefore, there is a need to view growth curves, to allow the 

most relevant method to be applied (linear or non-linear model) in each situation and 

growth rates often need to be size-corrected across ecology. We cannot assume that 

growth always fits a certain pattern, but as with other topics requiring statistics, the 

shape of the data needs to be viewed, in order to choose the best method of 

calculating growth. 

SGR is a valuable method of calculating plant growth. It can calculate growth 

independently of initial size (Turnbull et al., 2008), which provides a more accurate 
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recording of growth. However, more importantly, the differences in outcomes 

between using RGR and SGR can be significant (Turnbull et al. 2008; Rose et al. 2009; 

Rees et al. 2010; Turnbull et al. 2012), so the level of precision with which growth is 

calculated can impact the experimental results. As RGR is currently used across many 

areas of ecology, the question of how much SGR can change the ideas and theories in 

ecology potentially has a large-ranging response. Researchers currently using RGR in 

their fields of interest should take multiple harvests in future experiments and then 

apply the most relevant method of calculating growth, rather than assuming growth to 

be log-linear. In areas where SGR has not previously been studied, an approach similar 

to that of Turnbull et al. (2008; 2012) is recommended, where the both RGR and SGR 

are calculated, and any effect of the growth method can be recorded. 

SGR has previously only been used on studies of seedlings. This is because the seedling 

stage is the part of the life cycle where SGR is most beneficial, as growth is variable, 

decreasing over time, whereas established plants have a more constant growth rate. It 

is therefore possible that SGR may not impact mature plants to the same extent as 

seedlings. This would mean that the extensive work that has labeled many species with 

an average RGR, such as Grime et al. (1988), the CSR theory (Grime, 1977) and other 

well established theories based on RGR may still be relevant and accurate under SGR. 

We still need to investigate how far the effects of size-correction can cascade through 

the levels of organization (can it affect our understanding of plant populations and 

communities?). 

Variance in growth 

Growth is not static over time, within or between species, and changes in growth and 

differences between growth patterns can help us to understand plant physiology. This 

thesis found that variance in RGR between growth forms is not caused by seed mass, 

although no alternative explanations were found. As explained in Chapter 2, there 

Đould ďe assoĐiatioŶs ǁith TilŵaŶ’s theory (1988) aŶd Griŵe’s C“R theory (1977). 

Variance in growth between species could be related to survival strategies. Slow-

growing species survive longer in stressful environments than fast-growing species 

(whose fast-growth is an advantage in ambient conditions). This growth difference 

with survival was not always explicit when survival was simply modelled against 

growth, signifying again that growth is not a simple function, but is closely associated 

with other seed and seedling traits. Low growth, combined with a small seed mass and 

a large final size were beneficial for surviving stressful environments. However, small 

seeded species that grow slowly will produce relatively small seedlings. This suggests 

that there may be a trade-off to produce the most effective seedling for survival, and 

that other factors may be involved, particularly in the inter-linked trade-off between 

survival of stressful environments and increasing reproductive output in ambient 
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environments. The different seed and seedling traits vary in importance with the 

stressor as well (see below). 

Environment 

The environment affects plant strategy. A large biomass is more important for 

surviving drought than herbivory. Fast-growing species are good competitors and fast-

growing individuals can often reach the reproductive stage sooner than slow-growing 

ones. However, lowered survival of stressful conditions can be a cost of this fast-

growth. Chapter 4 unexpectedly found that there are occasions when fast-growth can 

be more beneficial for survival, which is presumed to be due to an even greater benefit 

of large biomass in that situation. 

Rees et al. (2010) found that the net assimilation rate (NAR) varies with plant size, 

which may impact the relative importance of the growth components across different 

environments. The results of Chapter 5 supported this, even though there was a much 

larger range of seedling sizes and RGR was used rather than SGR. Understanding the 

relative importance of the components of growth across different environments is 

useful for understanding plant physiology and seedling plasticity, as seedlings adapt to 

different environments. This would help us to understand the costs of different 

strategies, as higher plasticity reduces the costs of being in an environment that is not 

optimal for the preferred strategy. 

We understand more about seedling physiology now, particularly growth. This is useful 

for understanding survival (and therefore is of use to conservation research or studies 

of environmental change, such as climate change) and can potentially enable us to 

predict future changes. 

Methods 

Researchers frequently only investigate the variables of direct interest to them, such as 

the effect of seed mass or growth rate on survival. This is understandable from an 

efficiency perspective – calculating the growth of a large number of plants is a 

seemingly long and pointless task when simply interested in seed mass. However, seed 

mass, growth and other variables are co-dependent, therefore, studying them 

independently will falsely bias any results. Chapter 3 found that studying the variables 

singularly sometimes produced different results to those where co-dependent 

variables were modelled together, most notably with a higher occurrence of non-

significant results when variables were studied in isolation. To understand the true 

relationships between variables, all the co-dependent variables (even those which the 

investigator has no direct interest in) should be modelled together. The results may 

have more variation and therefore be less clear, but they will provide a more accurate 

representation of the true relationship between variables. 
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Comparative and meta-analyses are becoming more popular, with an increased focus 

on general trends. However, small experimental differences can have large impacts on 

results, particularly for a trait such as growth, which varies with subtle environmental 

changes. Standardising some aspects of greenhouse and growth chamber 

experimental set-ups may, in the long-term, lead to more useful combined analyses, 

with less noise in the data. A less radical alternative would require all authors to 

provide extensive details about the experimental set-up. This would provide the 

current freedom for researchers to produce an experiment that best suits their 

environment, plants and research aims. Additionally, the extra data would also provide 

a means of accounting for differences in experimental designs in future comparative 

and meta-analyses, rendering their results and implications more focussed, accurate 

and reliable. 

Greenhouse versus field experiments 

Whilst greenhouse experiments are thought to be more representative of nature than 

experiments conducted in growth chambers, the level of similarity has not been 

accurately quantified. The majority of experiments that develop our understanding of 

seedling growth have been conducted in growth chambers or greenhouses. Growth 

can vary considerably with the environment, so greenhouse experiments, where the 

number of variables can be limited, are appealing for studies investigating certain 

aspects of growth. It would be beneficial to replicate a growth experiment in growth 

chambers, greenhouses and in the field (see, for example, Paz & Martinez-Ramos, 

2003), to compare the effects of location on growth and to understand the extent of 

the similarity between experiments in artificial environments and responses in the 

field. 

Future directions 

As previously mentioned, most studies of RGR and SGR have been conducted in 

controlled environments. One useful direction to take this work is to investigate 

growth physiology in the field. SGR would be more difficult (but not impossible) to 

calculate in the field, due to the requirements for frequent harvests. 

Chapter 2 demonstrated that seed mass does not cause the difference in growth 

between growth forms. Further investigation into the cause of this difference is 

therefore required to understand the mechanisms of the fundamental differences 

between growth forms.  

The effects of seed and seedling traits on seedling survival have been investigated, but 

the larger-scale implications of this are currently unknown. The long-term effects of 

seedling survival could be investigated, particularly in terms of species assembly within 

a community in response to the introduction of a new long-term stressor. Using this 

information, the effect of traits on survival across environments could be used to 
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predict the presence and stability of plant populations in conjunction with other 

factors. 

There is still more to learn about the extent of the impact SGR may have on ecology, as 

ŵeŶtioŶed iŶ the seĐtioŶ titled ͞“GR͟. Further iŶǀestigatioŶs iŶto hoǁ “GR could 

impact other areas of ecology (e.g. studies of traits of invasive species/ asymmetric 

competition/ conservation) would be beneficial. 

 

Conclusion 

 

The research produced for this thesis demonstrates that seed mass does not impact 

the differences in growth rates between growth forms; seedling survival of stress is 

based on a complex interaction of growth rate, biomass, seed mass, seedling age and 

probably additional factors not studied here, and hints that the high importance of 

NAR to describe variance in growth in good conditions may be due to size-dependence 

within the growth and NAR formulae. Growth varies considerably between species and 

environments and is therefore an interesting trait to study. However, it should be 

studied in relation to other co-dependent variables, such as seed mass and biomass. As 

with other areas of pure ecology, it is hoped that the knowledge found here will be of 

benefit to understanding wider areas of ecology through to the larger applied scale. 
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