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Abstract

This thesis describes a series of experiments designed to test audi-

tory display techniques for interactive image sonification on a tablet

computer. The aim of these experiments was to evaluate new sonic

methods developed for finding graphical features on a tablet computer

screen for both regular size, and extended (larger than physical screen

size) displays. A series of tests were designed to evaluate the tech-

niques, and determine the effectiveness of binaural information in a

series of goal-oriented searching tasks. The results show that, by us-

ing the techniques developed, users can locate graphical features on

regular and extended displays, using sound alone. Additionally, it was

found that users could improve their search times when using auditory

information to improve their ability to search extended displays.
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1 Introduction

As the displays we interact with daily become smaller and more content rich

due to the acceleration in computing power in recent times, it is evident

that screen real estate is becoming increasingly limited. This means that the

human-computer interaction community is constantly exploring new methods

of fitting more content on small displays. Several attempts from the field

of auditory display have recently been explored in an effort to expand the

screen’s visual content into the auditory domain [Meijer, 1992] [Sanchez,

2010] – effectively reinterpreting what we perceive from a visual display by

means of sound. The recent growth in audio processing and interaction modes

on portable devices means that spatial auditory display has the potential

to become a viable means of extending the visual domain [McGookin and

Brewster, 2001] [Heuten et al., 2006], especially in the context of smaller

screen devices.

Figure 1.1: ‘Spaces’ – a system for creating multiple desktops

An increase in computing power, and advances in the world of materials

technology have allowed for the power of desktop computers to be condensed

into small hand-held devices such as smartphones and tablet computers. This

introduces a new set of challenges. From an interaction standpoint, modern

tablet computers typically offer more than the mouse and keyboard setup –

elaborate touch-based gestures, voice activation, haptic feedback, and more.

However, it is evident that we are restricted by the decreasing size of devices,

and that we are constantly trying to design interfaces that virtually extend

the screen size – for example, a multiple desktop paradigm, such as Apple’s

‘Spaces’ (Figure 1.1).

1



1.1 The Primary Hypothesis

This thesis aims to explore the development of techniques that allow a user

to locate graphical features on a tablet-computer display by means of inter-

active auditory feedback. Additionally, these techniques can be applied to

extended displays (displays that are larger than that of the screen) for use

in aiding the visually engaged (looking elsewhere) or restricted (not being

able to see), or to improve the location of graphical features on large dis-

plays by means of adding to visual cues with sound so that the techniques

developed should offer a target-based approach in which the characteristics

of the required features can be described. Then the target’s location can be

represented by sound mapping, such that the user can find it without visual

cues by filtering out all information that does not match the initial descrip-

tion.

The approach described in this thesis is to first develop techniques, and then

test them on a series of progressively more complex images. To begin, a sim-

ple black dot on a white screen is considered. This allows for the techniques

to be assessed at a fundamental level, determining which work for users, and

which do not. Then, the following tests are made more complex by adding

more colours, larger images, and different types of image feature.

1.1 The Primary Hypothesis

A major focus of this work is the use of spatial audio in interactive soni-

fication – does it make a significant difference to our ability to locate the

image features? Or does it simply get in the way? The primary hypothesis

addresses this more explicitly by singling out this parameter:

It is possible to improve a user’s understanding of graphical data by

using spatial audio to provide interactive auditory feedback.
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1.2 Thesis Structure

The next sub-section describes the structured approach to tackling this re-

search question in the rest of this thesis.

1.2 Thesis Structure

Section 2, the ‘Theoretical Literature Review’, covers the technical aspects

behind the thesis. Different forms of auditory display are discussed, along

with other relevant topics to this thesis, such as spatial audio, image pro-

cessing, and some programming conventions.

Section 3, ‘Relevant Projects in the Area’, discusses appropriate literature

to give a background to the work that follows. The section covers the main

areas of this project; Interactive Sonification for Task Monitoring, the Soni-

fication of file pal Data, and Spatial Audio Sonification. The work here is

referred to extensively in the following sections, and the information gained

provides insight into the sonification techniques developed.

Section 4, ‘Research Agenda’, allows for the knowledge gained in the previous

two sections to be discussed, and for the hypothesis and research goals to be

refined in light of that information.

Section 5 (Preliminary Test) describes a short test undertaken to determine

our association between colour and sound. A series of subjective listening

tests was run on participants to determine if people have preconceived ideas

about how colour relates to sound. The results gained here inform sound

design decisions made in the upcoming design-based sections.

Section 6, ‘Design and Implementation’, discusses the ideas, philosophy, and

literature behind each technique developed, before giving a full description

of its implementation in software. The methods developed in this section are
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1.3 Reading this Thesis

then used to test the main hypothesis and several sub-hypotheses.

Section 7, Design and Methodology, describes the development of user tests

to judge the success of the auditory display techniques developed, and to test

the primary hypothesis. Each test’s design and technical set-up is discussed

in depth, along with the data to be gathered during the experiment.

Section 8, ‘Results’, presents and analyses the information gained from the

above user tests. The participants’ demographics are explained such that the

gist of the group can be gained. Then the results for each test are presented

and their implications discussed. The main patterns found in the results are

then analysed in more depth such that conclusions may be made.

Section 9, ‘Conclusions and Further Work’, makes deductions based on the

evidence gained from the results. The hypothesis is reviewed and compared

to the results. The thesis concludes by listing the potential applications of

the findings.

1.3 Reading this Thesis

Each section provides information for the following sections and so it is rec-

ommended to read in linear section order for a full understanding to be

gained. Throughout the thesis several audio examples, video examples, and

other resources (such as appendices) are referred to. Unless stated otherwise,

it is possible to access these within the thesis itself, or on the CD that comes

with the printed version of this thesis.
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2 Theoretical Literature Review

This section describes the key concepts in the project such as interactive

sonification, spatial audio and the programming languages and principles. It

is written with the assumption that the reader has some knowledge of audio,

programming, and signal processing. A theoretical background is provided

to aid support the rest of the report. It covers the following topics:

• Sonification – 2.1

• Interacting with a Sonification System – 2.2

• Mapping Data to Sound – 2.3

• Sonification Guidelines – 2.4

• Spatial Audio – 2.5

• Image Processing Conventions – 2.6

• iOS Programming Outline – 2.7

• Core Graphics – 2.8

• Alternative Audio Processing Environments for iOS – 2.9

2.1 Sonification

This section discusses sonification. Beginning with a definition, it covers the

topic’s constituent parts, along with some theoretical background on each

one.
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2.1 Sonification

Sonification is defined as:

“The use of non-speech audio to convey information. More specifically,

sonification is the transformation of data relations into perceived rela-

tions in an acoustic signal for the purposes of facilitating communica-

tion or interpretation.” [Hermann and Hunt, 2004, pg. 149]

or more recently:

“The data dependent generation of sound, if the transformation is sys-

tematic, objective and reproducible.” [Walker and Nees, 2011]

Figure 2.1: Interactive sonification topic Web – taken from [Hunt et al., 2011,
pg. 274]

Interactive Sonification is a rapidly developing field in which the topic of

Human-Computer Interaction (HCI) overlaps with that of Sonification. It al-

lows us to interactively explore data sonically and receive real-time feedback

from an operation. Figure 2.1 outlines the interactive sonification paradigm
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2.2 Interacting with a Sonification System

by means of a Venn diagram which shows how the area of Interactive Soni-

fication is formed by combining constituent parts of Auditory Display with

the concept of Human Interaction with the interface. There are several areas

of interactive sonification that can be studied. The key areas to focus on

are the data transformation technique, the algorithmic implementation and

the interaction itself. It is important that these features link in a logical and

intuitive manner [Hermann and Hunt, 2011].

The data transformation technique is the method used to translate the data

into its acoustic representation. Such techniques include Parameter Map-

ping Sonification, Audification and Model-Based Sonification. These can be

combined dependent on the data set being sonified [Hunt et al., 2011, pg.

4]. The algorithmic implementation concerns the operation, computation,

and performance, when rendering the data transformation as sound. This

means that the quality of the interactive sonification process depends on the

current hardware and technologies. The growing processing power of com-

puters means that there are increasingly fewer issues with transforming large

sets of data into sound, and also in being able to interact with that process

seamlessly in real time. This implies that algorithmic implementations can

become increasingly complicated, enhancing the process of sonification over

time.

2.2 Interacting with a Sonification System

“It is essential that the bindings between the physical interactions with

the interface tie into the acoustic relations in a logical and direct way.

Much like interacting with physical objects, the element of instant feed-

back is essential to realise a believable and effective sonification.” [Hunt

et al., 2011]

The interactive aspect of a sonification system largely relies on the human
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2.2 Interacting with a Sonification System

involved and the technologies of the time. The control of an auditory display

relies on many factors, including the user’s needs and responses, the modes

and means of control, and how the user and the auditory display form a

feedback loop [Hermann and Hunt, 2004]. Figure 2.2 describes the difference

between computer-driven conclusions (a) and the method implemented when

sensory feedback is provided to the user (b).

Figure 2.2: Interactive sonification paradigm - adapted from [Hunt et al., 2011,
pg. 276]

As the power of computers has increased we have become more dependent

on them to process data. In some fields it is apparent that there are simply

too many parameters for a computer to process and reach an appropriate

conclusion by itself. It is widely believed in the auditory display community

that patterns can be revealed by putting a human into the feedback loop

and allowing them to explore the data interactively [Pauletto and Hunt,

2009] [Hunt et al., 2011, pg. 276].
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2.3 Mapping Data to Sound

2.3 Mapping Data to Sound

The mapping technique used to transform data into sound can be customised

according to the type and format of information within the data. It is the

task of the system designer to choose appropriate sound mapping methods

such that the data is clearly represented in the auditory domain. This sec-

tion outlines some of the main mapping methods, along with some potential

applications.

2.3.1 Auditory Icons

“Auditory icons are a popular method of displaying information by

sound via the medium of using analogy to everyday sound-producing

events.” [Buxton et al., 1994]

A good example of such an analogy is the auditory icon on the Apple Mac-

intosh computer when a user puts a document into the recycling bin (Audio

Example 2.1). This acts as an auditory skeuomorph of someone throwing a

piece of paper into a bin. A rustling sound emulating paper being crumpled

up is then used to assure the user that the bin has been emptied (Audio

Example 2.2). Buxton notes that this method of feedback provides more in-

formation than visual stimuli alone, resulting in a more intuitive experience.

This is said to reduce cognitive strain and improve the immersion of the user

in the environment [Buxton et al., 1994]. Another example of the effective

use of auditory icons is the the use of a camera shutter sound (Audio Example

2.3) when a user takes a screenshot – it conveys the information better than

any visual cue could, by means of analogy.

2.3.2 Earcons

“Earcons are brief musical melodies consisting of a few notes whose

timbre, register, and tempo are manipulated systematically, to build up
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2.3 Mapping Data to Sound

a ‘family of sounds’ whose attributes reflect the structure of the hierar-

chy of information.” [Walker et al., 2006]

Earcons are typically composed of motifs, which are short rhythmic sequences

of pitches with variable intensity, timbre, and register. They can be used to

convey some change in an interface to a user. They are particularly useful

when they relate to the changes in a logical way. An example of this would be

an ascending motif when inserting a device into a computer (Audio Example

2.4), and a descending motif when removing the device (Audio Example

2.5). In the paper ‘Earcons and Icons: Their Structure and Common Design

Principles’ Blattner et al. outline some, almost grammatical, rules to be

used when creating earcons [Blattner et al., 1989]. This allows for us to

convey very specific messages about occurrences in a system via a series of

hierarchical motifs.

2.3.3 Spearcons

“Spearcons are created by speeding up a spoken phrase until it is not

recognised as speech.” [Walker et al., 2006]

Spearcons are used to convey textual information in a highly compact way

to a user. It is a good method for portraying information to those with a

visual impairment, or eyes that require attention on another task due to the

fact that it can convey information explicitly. Evidence from a 2006 paper

by Bruce Walker suggests that given some practice, spearcons can be more

effective than other methods of navigating auditory based interfaces, leading

to an overall improvement in performance and accuracy [Walker et al., 2006].

An advantage also noted by Walker is the fact that spearcons are able to

provide information more definitively than other methods, such as auditory

icons, or earcons. An example of this would be trying to convey more techni-
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2.3 Mapping Data to Sound

cal words such as ‘File’, Edit’ or ‘View’ [Walker and Nance, 2006]. An exam-

ple of spearcons being used to navigate a text-to-speech auditory menu can

be heard in Audio Example 2.6 (taken from [Hunt et al., 2011, pg. 24]).

2.3.4 Audification

“Audification is the most direct type of sonification technique. It plays

ordered data values directly by converting them into instantaneous sound

pressure levels.” [Dombois and Eckel, 2011]

Audification is the process of interpreting a data set as amplitude and playing

it back in the auditory domain. Dombois and Eckel consider it the simplest

form of sonification and state that it is normally neglected in the later de-

velopments of a sonification system [Dombois and Eckel, 2011]. Though

simple, audification presents the data in its truest form, and often provides

the most accurate representation of the signal. audification is most useful

when dealing with large amounts of data. If the data becomes too much for

to perceive, it is possible to use our finely tuned auditory systems to perceive

the patterns in the data. Dombois and Eckel note the fact that the human

auditory systems require some amount of training and experience to perceive

audification [Dombois and Eckel, 2011].

2.3.5 Parameter Mapping

“Parameter Mapping Sonification involves the association of informa-

tion with auditory parameters for the purpose of data display.” [Berger

and Grond, 2011]

As sound is inherently multidimensional, it is particularly well suited for dis-

playing multivariate data [McGee, 2009]. Parameter mapping takes advan-

tage of this by using characteristics of the data to control auditory descriptors
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2.3 Mapping Data to Sound

such as pitch, timbre, loudness or even how it is panned. The two types of

parameter mapping sonification are outlined below:

Discrete Parameter Mapping Sonification – the notion of creating a sound

event for each alteration in data. An example of this would be turning on

and off an oscillator dependent on events occurring [Hunt et al., 2011, pg. 16].

Continuous Parameter Mapping Sonification – changing the acoustic param-

eters of a continuous sound as a function of the data. An example of this

would be changing the frequency of an oscillator to track the change in an

external parameter [Hunt et al., 2011, pg. 17].

2.3.6 Model Based Sonification

“Model-Based Sonification is defined as the general term for all con-

crete sonification techniques that make use of dynamic models, which

mathematically describe the evolution of a system in time.” [Hermann,

2011, pg. 403]

A specific system gained with model-based sonification is called a sonification

model. They are generally physics-based models used to generate a reaction

based on a user’s actions [Hermann, 2011, pg. 404]. The concept is largely

about exploration – much like we explore a drum membrane with a stick, not-

ing the different pitches and timbres across it. We can also do this with data;

we can excite a virtual data object in model space and render it as sound.

Hermann outlines the primary applications: the aforementioned exploratory

data analysis, augmenting human computer interaction, and process moni-

toring [Hermann, 2011, pg. 405].
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2.4 Sonification Guidelines

2.4 Sonification Guidelines

This section outlines some key guidelines when designing an interactive audi-

tory display with regards to how we perceive sound, ergonomics, and human

hearing capabilities.

2.4.1 Subjective Auralization

We all perceive auditory information in a different way. As we are all differ-

ent the way we transform the input from our sensory organs into an intricate

array of neural impulses and perceive them as sound will always be slightly

different. Due to the complexity of our brains and auditory systems, we

have developed individual perceptions with regards to the auditory domain.

When sonifying a set of data, it is important that the features of the infor-

mation are audible; therefore, when designing a system it is important to not

exceed human hearing capabilities. To ensure that this does not occur, some

psychoacoustic principles must be adhered to.

Although the way in which we perceive sound is ultimately subjective, there

are some assumptions that can be made for the majority of people. The most

obvious factor when considering frequencies for sonification is the range of

the human hearing system. This is approximately 20Hz – 20 kHz for a human

with healthy young ears [Angus and Howard, 2006]. For example, imagine

that we want to examine a change in warmth by sonifying temperature data;

mapping degrees Celsius to frequency. The values given are between -4◦C

and 20◦C. It is evident from these values that they will not scale directly to

the auditory domain because the lowest frequency a human can hear is 20Hz.

It is then possible to use knowledge of the human hearing range and make

considerations for the human hearing range to design the algorithm to alter

the frequency accordingly. To solve this problem a simple algorithm can be

used to ensure the frequencies are audible:
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2.4 Sonification Guidelines

Step 1 – Ensure all frequencies are positive by adding 5 to all values (lowest

possible value = 1, highest possible value = 25). Step 2 – Ensure all frequen-

cies are audible by multiplying all values by 100 (lowest possible value = 100,

highest possible value = 2500) This small example now results in a 2400 Hz

range in pitch. Not only are all the frequencies audible, but it also means that

due to the large range, even small differences in temperature can be detected.

We must also consider why we react to certain sounds the way we do. As

animals we have evolved to survive [Darwin, 1859]. There are numerous by-

products of this, related to how we perceive sound, and it is important that

these are considered when designing auditory display systems. The subjec-

tive auralizations we have are driven by our survival instinct; it is known that

high pitched or loud sounds such as hissing or explosions are not comfort-

ing to humans, particularly infants and children [Valentine, 1930]. This is

merely a by-product of millions of years of evolutionary development. Nature

has favoured those who fear danger. It is the reason we find high frequen-

cies alarming, and therefore apply them to alerting people when considering

sound design.

As the systems should be designed for people of all ages it is important to

note the process of presbyacusis – the diminishing in the upper frequencies of

the hearing range as we age. Figure 2.3 details the typical hearing depletion

of an ageing individual.
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2.4 Sonification Guidelines

Figure 2.3: Presbyacusis in Men and Women – from [Fetoni et al., 2011, pg. 414]

2.4.2 Ergonomics

“It is advisable to respect the bindings between physical actions and

acoustic reactions that we have been familiar with since birth – or are

possibly even coded into our sensory organs and brains.” [Hunt et al.,

2011, pg. 295]

Hermann and Hunt outline some intuition and experience based conventions

that designers would be misguided to break when making auditory display

systems [Hunt et al., 2011, pg. 295]:

• The notion of a system being more reactive when a larger impulse is

input;

• A system sounding higher pitched when under more tension;

• The expectation of sounds to become quieter when less energy is applied

to them.
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2.4 Sonification Guidelines

Though basing sounds and interactions around subjective human responses

can lead to less numerically analytical outputs from systems, it is necessary

to think about how the data relates to humans as they are the main sensory

element in the interaction loop.

2.4.3 Human Learning Capabilities

“The effectiveness of any display will be influenced by the design of the

display itself but also the characteristics in the data being analysed.”

[Bly, 1984]

Though Bly’s statement is valid, it has been suggested by Eldridge that

important contributory factors are the abilities of the user, and the user’s

familiarity with the particular display [Eldridge, 2005]. Perceiving patterns

in data, through both auditory and visual stimuli, will differ from individual

to individual. Take for example a Geiger counter; this device outputs an

audible click representing a certain number of ionization events over some

time period [Patel, 2006]. This is an easy concept for the user to understand.

It is simple as it maps intuitively to our preconceptions of time and how the

frequency of an event would map to it.

Comprehending an audio representation of multivariate data is more com-

plicated and may require some learning. An individual may have to practise

extensively to comprehend more complicated data sets. This is similar to the

way we learn to understand graphical representations of data; the more com-

plicated they are, the longer the learning process. Understanding the way

humans comprehend information in sound is an important factor in produc-

ing a successful sonification. Walker and Kramer outlines the key features

that should be worked towards to allow humans to comprehend data sets

more effectively [Walker et al., 2006]:
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2.5 Spatial Audio

• Parallel listening – the ability to perceive multiple audio channels.

• Rapid detection – the speed at which we detect information.

• Ease of learning and engagement qualities.

• Ability to discern relationships and trends in data and data streams.

2.5 Spatial Audio

“Everyday life is full of three-dimensional sound experiences. The abil-

ity of humans to make sense of their environments and to interact with

them depends strongly on spatial awareness, and hearing plays a major

part in this process.” [Rumsey, 2001, pg. 1]

This section discusses what is meant by spatial audio, giving an explanation

of the key elements and outlining potential methods. It also describes each

method’s potential advantages and disadvantages.

It is normally assumed that the term ‘spatial audio’ suggests the processing

of signals such that they convey spatial content. Spatial audio theory is based

on the human perception of sound, and it is essential to know some basic au-

dio and physiological properties to understand the problems, and challenges,

of 3D auditory display. How we locate sound is dictated by several factors,

which are outlined below.

Interaural Time Difference – a sound not arriving from directly in front of,

or behind a listener, will result in the sound reaching each ear at a different

time. This is known as the interaural time difference, or ITD. The ITD for

a listener depends on the angle of the source, as this affects the additional

distance that the sound has to travel to the more distant ear. The maximum

delay between ears is typically around 0.65ms. [Rumsey, 2001, pg. 22]
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2.5 Spatial Audio

Level Differences and Spectral Cues – the head’s mass makes it a reasonable

barrier to sound at high frequencies, and to a lesser extent at low frequencies.

This imparts a level difference between the ears for off-axis sounds. More de-

fined spectral information is filtered by our pinna; the outer section of the

ear. This acts as a filter and provides complex spectral information to the

ear drums, enabling us localize sound more effectively. Sounds that emanate

from behind the head tend to give rise to a reduction in higher frequencies;

this is due to the slightly forward facing shape of the pinna. [Rumsey, 2001,

pg. 23] The physical system of hearing is outlined in Figure 2.4.

Figure 2.4: Physical process of hearing – adapted from [Krebber et al., 1999]

The interaural level and time differences allow us a localization accuracy of

approximately 10 degrees in the horizontal plane. Though worse in the ver-

tical plane, this can still accurately provide a large amount of information to

a person [Sandberg and H̊akansson, 2006] There are numerous methods of

displaying spatial audio to a user; some more effective, and some more conve-

nient. This section will evaluate the main methods of spatial audio reproduc-

tion, outlining the benefits, drawbacks, and limitations of each method.
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2.5.1 Loudspeaker Arrays

Multichannel audio is concerned with systems where there are more than 2

speakers; the systems are typically used when a large amount of auditory

information needs to be displayed, for example – cinema, or art installations.

The notion of projecting sound across several speakers is not a particularly

modern concept; multichannel audio has been becoming increasingly preva-

lent in cinemas since the 1940s, mostly with the aim of immersing the audi-

ence in the auditory field; making them more involved in the movie [Miller,

2004]. However, to accurately represent a sound in space, more precise meth-

ods are required. To create realistic imaging with loudspeakers, a virtual

source must be created. A virtual source is the perception of a sound source

that does not coincide with any physical position of origin. This can be done

using pairwise panning. Pairwise panning is the method of using pan control

to create an audio image between two or more speakers by means of alter-

ing the amplitude of each channel [Pulkki, 1999]. It is common knowledge

to most audio engineers, and it can be done in the horizontal or vertical plane.

Figure 2.5 depicts a simplified outline of the pairwise panning model, where

‘p’ is the panning direction of the virtual source, defined as a 2D unit vector,

and the equation that governs ‘p’ is described in Equation 2.1 where ‘gn’ and

‘gm’ are gains which control the angle of vector ‘p’, and ‘In’ and ‘Im’ are the

Cartesian vectors for the channels. This can be easily extended over multiple

speakers to implement Vector Base Amplitude Panning (VBAP).

p = gmIm+ gnIn (2.1)

VBAP is a general model for projecting a source anywhere around a user us-

ing pairwise panning in the x, y, and z planes. VBAP can project a phantom

source provided the angles of the speakers and the position of the listener

are provided. The more speakers used in the process, the more reliable the

phantom source positioning will be [Pulkki, 1997]. A significant benefit of
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Figure 2.5: Pairwise panning – from [Pulkki, 1997]

VBAP is that it will work on the vast majority of people. As most of us have

experienced 3D sound throughout our lives it means that we are already used

to the idea of sources appearing around us in a 3D space.

An issue with VBAP is the scale of the physical system. To effectively rep-

resent sound using this method, not only must multiple speakers be used,

but the user must also stand exactly in same place in the speaker arrange-

ment throughout the duration of the sound experience. This leads to a lot

of practical issues, primarily due to the fact that extensive speaker rigs are

costly and large. The next section explores a potential solution to the logis-

tical issues in the VBAP method, by trying to emulate this experience on

headphones.

20



2.5 Spatial Audio

2.5.2 Binaural Audio

“Binaural approaches to spatial sound reproduction are based on the

premise that the most accurate reproduction of natural spatial listening

cues will be achieved if the ears of the listener can be provided with the

same signals that they would have experienced in the source environ-

ment or during natural listening.” [Rumsey, 2001, pg. 65]

Binaural audio is normally produced for playback over headphones. This ap-

proach can reproduce most of the cues (interaural time difference, interaural

level difference and spectral cues) that make us perceive realistic 3D sound

over headphones. By ‘taking the place’ of our eardrums with microphones, it

is possible to create a Head Related Transfer Function, or HRTF, the effect

of which can be generated by using a dummy head, a real human, or mod-

elling the head-related transfer of a human computationally to emulate the

response of a human’s body.

A rudimentary approach for recording binaural audio is to place two mi-

crophones into the ear canals of a human. [Rumsey, 2001, pg. 65]. This

approach can yield some strong results as it provides the spectral cues for

this specific person, however, due to fact that placing a microphone inside a

human’s head is inconvenient, a dummy head can be used as a compromise.

The dummy head, or KEMAR (shown in Figure 2.6), is used to mimic the

frequency response of the human head (and often torso) as accurately as

possible. The KEMAR resembles the human head as closely as possible with

regards to density, size and therefore, its frequency response [Rumsey, 2001,

pg. 66]. The dummy head allows the microphone capsules to be placed inside

the head of the ‘listener’ – capturing the interaural time and level differences,

as well as the all important pinna cues.
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Figure 2.6: A KEMAR – from [Gra, 2007]

Audio Example 2.7 demonstrates a recording made using a KE-

MAR.

It is possible to emulate an HRTF computationally. By approximating the

sound incidence angle for an individual it is possible to synthesise signals with

the appropriate time delays and spectral characteristics. Extensive work has

tried to optimize head related transfer functions so that they work on a larger

proportion of users. An example of refining HRTFs is the work done by Brian

Katz and Gaetan Parseihian. This work involved creating a perceptually op-

timized HRTF by testing 45 individuals, and finding the best average HRTF

[Katz and Parseihian, 2011].

There are, however, some disadvantages with a binaural audio implementa-

tion. The main issue is the fact that people have different HRTFs. Though

a dummy head, or a computationally derived HRTF, can provide a good

‘average head’, many people have different psychoacoustic responses to the
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effect. It is not as reliable as some other implementations [Rumsey, 2001,

pg. 67]. It has also been noted that a disadvantage is the inability for a

user to move their head to resolve directional confusion. In the real world,

and most 3D listening environments, we can tilt our head to try and attain

the source of a sound, with binaural audio we cannot. Some attempts at

head tracking have proved successful, but ultimately this can lead to a more

complicated implementation, detracting from the simple setup of binaural

playback [Begault and Wenzel, 2000].

2.6 Image Processing Conventions

This section discusses the image conventions needed to understand the im-

plementation in this thesis. It explains the fundamentals of digital images

such as pixels, and colour models, describing how these are quantified and

what standards govern their processing.

2.6.1 Digital Images (Raster Images)

The smallest graphical element is a pixel – the most fundamental element

in most modern graphical displays. A pixel is a uniformly coloured element

and, typically, thousands, or even millions are used to create most modern

computer graphics. The majority of computer-based graphical images are

shown on a raster display. A raster is a rectangular two- dimensional array

of pixels that cumulatively make up an image [Shirley, 2002]. Each pixel is

assigned a coordinate, with the origin in the top left hand corner, as outlined

in Figure 2.7.

Computer graphics are generally defined in terms of the RGB (Red, Green,

Blue) colour system. The concept relies on the additive mixing of the three

primary light colours – red, green and blue. The resultant colour depends

on the weighting of these three hues in the mixture [Collomosse, 2008]. Each
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Figure 2.7: The pixel coordinate system – from [Collomosse, 2008]

channel of the RGB system has 256 shades; 0 being the lowest level (darkest)

and 255 being the highest (brightest). Additionally, an alpha channel can be

used. This channel governs transparency. When the value of this channel is

0, it is transparent, and when this value is 255, the channel is fully opaque.

A 3D RGB colour model is depicted in Figure 2.8.

Figure 2.8: RGB colour model – from [Collomosse, 2008]
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2.6.2 HSV – Hue Saturation Value

As not all colours can be represented by the RGB colour system – as shown

by the tri-stimulus experiment [Orr, 2012], other colour systems have been

defined with the additional aim to make them more accessible and intuitive.

The HSV (Hue Saturation Value) colour system, outlined in Figure 2.9 is

often preferred by artists as it is more intuitive – they are able to choose a

colour, and select its brightness, as opposed to trying to mix Red, Blue, and

Green to achieve the desired colour [Berk et al., 1982].

Figure 2.9: HSV colour model – taken from [Collomosse, 2008]

2.7 iOS Development Outline

With regards to the programming involved in this project, it is assumed

that the reader has some background in software development, and under-

stands most commonplace programming conventions. Although, this section

explains most conventions used in this project the technicalities of the code

will not will be described in depth. It is therefore suggested that the follow-

ing link can be used to clear up technical details:
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(a) iPad (b) iPhone

Figure 2.10: iOS Devices – from the Apple website: http://www.apple.com

https://developer.apple.com/devcenter/ios/index.action

iOS is a mobile operating system developed by Apple Inc. The operating

system, which runs on iPhone, iPad, iPod touch, and Apple TV, allows for

a multitude of features to make the user experience as intuitive and enjoy-

able as possible. These include accelerometers, multi-touch gestures, and

numerous other interactive techniques. Some of these devices are depicted in

Figure 2.10. There are two groups of devices to consider when developing for

portable iOS devices – small (iPod and iPhone), and large (iPad and iPad

mini). The smaller devices have the advantage of being wholly portable –

it is possible to carry them in the palm of one’s hand. However, the larger

devices have larger screens, and therefore fit more visual content. The spec-

ifications of the most recent examples of these devices are outlined below in

Table 2.1.

When making the choice between developing for large, or small devices, it is

essential that the task the user is to undertake is fully understood. An inter-

face that is too small can lead to a frustrating and fiddly interface, whereas

an interface that is too large can be cumbersome, especially in situations

where the user is active, for example, taking a jog.
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iPad 4 iPhone 5s
Height: 241.2 mm Height: 123.8mm
Width: 185.7 mm Width: 58.6 mm
Depth: 9.4 mm Depth: 7.6 mm
Weight: 662 g Weight: 112 g
Pixels per inch: 264 Pixels per inch: 326 cm
2048 by 1536 pixels 1136 by 640 pixels

Table 2.1: iPad and iPhone dimensions from the Apple website:
http://www.apple.com

2.8 Core Graphics

Core Graphics is a C-based API (Application Programming Interface), based

on the Quartz advanced drawing engine. Apple developed Core Graphics to

provide multiple image processing techniques, such as: 2D rendering, gradi-

ents, patterns, off-screen rendering and the creation of PDF documents.

2.8.1 Core Audio

“Core audio is the engine behind any sound played on a Mac or iPhone

OS” [Adamson and Avila, 2012]

Core audio is a low level audio processing API, developed by Apple, to gov-

ern how audio is processed in Mac OSX and iOS. It uses audio queues and

audio units to process audio into a desired result. Audio queues are reusable

buffers of audio that are passed to hardware. An audio queue typically does

the following:

• Connects to audio hardware;

• Manages memory;

• Employs codecs for compressed audio formats; and
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• Records and plays back audio.

Audio units are components such as mixers, distortions, or equalizers. They

take in audio, and produce an audio output with some effect or alteration

added to the input. iOS uses audio processing graphs linked together to

process audio sample by sample in order to create the desired effect [iZotope

inc., 2012]. Typically, to produce an audio unit that processes audio in

a significant way, extensive development is needed. Some developers wish

to cut out the audio units all together to avoid the low-level digital signal

processing algorithms. Recently, several new APIs have been developed with

the aim of overcoming this issue. The next section will outline the three most

predominant of these external processing tools, describing their benefits and

usability.

2.9 Alternative Audio Processing Environments for iOS

This section describes three alternatives developed to work around the com-

plexities of Core Audio. The three alternatives (libpd, Csound-iOS, and The

Amazing Audio Engine) each have their advantages. libpd and Csound-iOS

use audio engines that already exist (Pure Data and Csound respectively),

and The Amazing Audio Engine is a built-for-purpose audio engine that

works in tandem with Core Audio.

2.9.1 libpd

‘libpd’ is an audio engine for mobile applications that uses the graphical

programming language Pure Data (Pd) to deal with the sound aspect of an

application by providing the user with powerful inbuilt functions that can be

easily linked together via the graphical programming interface. It was writ-

ten by Peter Brinkmann, along with a book called ‘Making Musical Apps’

[Brinkmann, 2012]. In the book Brinkmann gives a quick introduction to Pd,
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before giving a thorough description of how to use libpd in an application.

Examples such as a guitar tuner are described, and a full walkthrough of

communication between iOS and Pd is given. libpd is available for download

from:

www.puredata.info/downloads/libpd

2.9.1.1 Pure Data Overview

The Pure Data community site (http://puredata.info/community) describes

Pd thus:

“Pure Data is a real-time graphical programming environment for au-

dio, video and graphical processing. It is the third major branch of

the family of patcher programming languages known as Max, origi-

nally developed by Miller Puckette and company at IRCAM. (Institut

de Recherche et Coordination Acoustique/Musique)”

Due to the simple and interactive nature of Pure Data, it makes a great

language for prototyping audio systems. It allows for those with little signal

processing knowledge to make simple effects, basic instruments, and most

things required to build the audio engine for a simple application. There

are two main releases: Pd vanilla, and Pd extended. The main difference

between the two is that Pd extended comes with a multitude of additional

libraries, adding much more functionality to the software. Pd vanilla, though

still useful, does not come with the more recent developments, built by third

party developers.
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2.9.1.2 Evaluation of libpd

libpd offers a way for those with little audio programming experience to

control an audio engine. It can allow a developer to accomplish a lot of

audio processing, with only a small amount of learning. It is evident that

with this simple, less equipped version of Pd, applications such as Circle

of Fifths [Brinkmann, 2012], and the numerous RjDj apps (available at

http://rjdj.me) have shown that some significant apps can be built with

libpd. However, numerous users of the library have reported issues process-

ing data in a timely manner; latency times of over 500ms have been reported

on a large number of devices [Kaufman, 2012].

It could be suggested that the most limiting factor of libpd is the inability

to use the extra libraries that the Pd-Extended package brings, because a

large part of the functionality available in Pd is from the libraries included

in Pd-Extended. Technically, it is possible to run the missing libraries from

Pd-Extended in libpd by building the binary files and packaging them for

libpd. However, the majority of users settle for the compromise of using the

compatible, but more simple ‘Pd vanilla’.

2.9.2 The Amazing Audio Engine

The Amazing Audio Engine is a framework designed for iOS by Michael

Tyson, and released in March 2013. Tyson’s main aim was to produce an

uncomplicated, functional framework that avoids the complexities of Core

Audio. Tyson claims that it is very simple to use, while offering sophisti-

cated audio processing. The amazing audio engine is closely linked to the

Audio Bus app [Tyson, 2012]; a piece of software developed for iOS that

allows users to route audio between several different apps. The amazing au-

dio engine, and accompanying documentation, is available from the following

link:
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http://theamazingaudioengine.com/

2.9.2.1 Evaluation of The Amazing Audio Engine

The Amazing Audio Engine represents the current trend in the iOS-Audio

field. Since its release the audio community have been developing applica-

tions with this engine as it provides more accessible audio programming to

the iOS community. It represents a change in the audio app development

world; moving away from the low-level programming typically associated

with iOS based audio, and simply delegating the responsibility of this to an

API. This seems logical; most app developers are not audio experts, and lack

the knowledge to design and implement the intricate audio algorithms they

need to achieve the results required.

2.9.3 iOS-Csound API

The iOS-Csound API was developed by Steven Li and Victor Lazzarini and

released in April 2012 [Lazzarini, 2012]. The API allows for the audio pro-

gramming language ‘Csound’ to run in the iOS environment, and for the

two to communicate. iOS-Csound works in a very similar way to libpd; iOS

and Csound can simply communicate data back and forth. This allows each

system to complement the other; Csound dealing with the complex audio

processing, and iOS dealing with the user interaction.The Csound-iOS API

is available for download from the following link:

http://sourceforge.net/projects/csound/files/csound5/iOS
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2.9.3.1 Csound Overview

“Csound is an incredibly powerful and versatile software synthesis program.

Drawing from a toolkit of over 450 signal processing modules, one can use

Csound to model virtually any commercial synthesizer or multi-effects pro-

cessor.” [Boulanger, 2001]

Csound is a text-based programming language, written in C. It was written

by Barry Vercoe in the late eighties, and has developed into one of the major

audio-based programming languages. It is able to use hundreds of inbuilt,

and third party functions called opcodes to produce a variety of sounds and

effects, making it a highly versatile audio processing environment. Though

Csound is not as interactive as many other audio based programming lan-

guages, such as Max and Pd, it allows for communication with numerous

external devices and software. Csound can be downloaded from:

http://www.csounds.com

2.9.3.2 Evaluation of Csound-iOS API

The Csound-iOS API is a highly promising alternative to using Core Audio.

An examples folder that comes with the API outlines its key features, show-

ing how it is possible to embed Csound as a highly efficient audio engine while

reaping the benefits of the iOS user interaction experience. Three significant

applications made using this API are outlined below:

• csGrain – A real-time audio processing tool for iPad, that can take

sound input and process it using granular synthesis. [Boulanger, 2012]

• Dandy – a simple sampler for iPhone. [Hepper, 2013]
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• Density Pulsaret – an extensive granular synthesis engine for iPhone

and iPad. [Petrolati, 2013]

These applications demonstrate the processing of the Csound audio engine

in the iOS environment. Though mostly focused on granular synthesis, these

applications suggest that Csound-iOS is capable of very high performance

audio processing with no noticeable latency.
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3 Relevant Projects in the Area

As there has been little prior work on this precise area of research it is im-

portant to break it down, and study its constituent parts. When combining

any number of techniques, or technologies, it is essential that every part is

well studied. This survey of the previous work has been done such that it is

possible to add to the work of others and expand the knowledge in the area,

but still ensure the project maintains some novelty. This chapter covers the

following areas:

• Interactive Sonification for Task Monitoring (3.1)

• Sonification of Graphical Data (3.2)

• Spatial Auditory Display (3.3)

The work done is then discussed with an aim of exploring what data may be

of use, and what information can be applied to this project.

3.1 Interactive Sonification for Task Monitoring

Interactive sonification is a wide varying field, which has led to a great diver-

sity in the projects and applications associated with it. Notably, it has been

used to provide real-time auditory feedback to allow for the improvement of

tasks. For example, it has been used to improve the analysis of EMG (Elec-

tromyography Data) [Pauletto and Hunt, 2009], the generation of games for

the blind [Papetti et al., 2008], and has provided insight into how a person

moves, in the context of physiotherapy [Vogt et al., 2009].

By providing an extra modality, interactive sonification can allow for the

user to monitor a task they are undertaking, and improve their performance,

34



3.1 Interactive Sonification for Task Monitoring

all while remaining eyes-free. An example of this is Schaffert et al’s [Schaf-

fert and Mattes, 2012] approach to using auditory feedback to keep visually

impaired, and non-visually impaired rowers in synchronisation using sound.

This was done by developing a system called ‘sofirow’ (Figure 3.1), which

transforms the propulsive acceleration of a boat into sound – mapping the

information directly to the tones on a MIDI-scale (between 0 and 127).

Figure 3.1: The sofirow system being used – from [Schaffert and Mattes, 2012]

In general, the users found the mapping aesthetically poor, stating that the

sound was “irritating and confusing”. Initially this put the users off, but

given some time to learn the system they found it less irritating, and that it

helped them improve their overall performance. It is clear that when design-

ing a sonification system, that the aesthetics of the proposed sounds should

be tested on users beforehand to ensure that they are not irritating with

extensive use.

However, it must be noted that the aesthetics of the sound should not be the

only focus of the sound design in an interactive sonification system. In [Vogt

et al., 2009] it is evident that the quality of the information provided was

compromised for aesthetics. Vogt et al. describe an approach for interactive

sonification for rehabilitation in which motion tracking was used to convey
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vital information about a user’s body shape – rewarding them with positive

auditory feedback for performing the correct motions, and giving them neg-

ative auditory feedback for deviating from them.

Vogt et al.’s system, depicted in Figure 3.2, uses sound mappings such as

‘rustling leaves’ or ‘animal sounds’. It is assumed that sounds such as these

were chosen for their aesthetic value – sampled sounds are generally less

harsh to listen to than the aforementioned MIDI scale [Schaffert and Mattes,

2012], and other more pure-tone based approaches such as [Pauletto and

Hunt, 2009] and [Meijer, 2013]. However, removing significant amounts of

information by ‘filtering’ the data into categories beforehand may not only

mean that some vital data may be lost in the process, but also that the sound

mappings may be unintuitive, for example, we may not necessarily associate

‘wind in trees’ with ‘up’, as proposed by Vogt et al. [Vogt et al., 2009]. It

is essential that there is a trade-off between providing all of the data, and

filtering it for aesthetics or ease of use. This is something that is particularly

relevant in the next section (Section 3.2)

Figure 3.2: Metaphor based sonification of arm movement – from [Vogt et al.,
2009]
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As well as monitoring tasks in the real world, some researchers have worked

towards giving users feedback about the way they are interacting in a com-

puter interface with sound. As mentioned in Section 2.3, auditory icons

[Buxton et al., 1994] and earcons [Blattner et al., 1989] can be used to pro-

vide some feedback to a user about their interaction with a computer. More

recently, work such as [Fernström et al., 2004] describe approaches to human-

computer interaction that use interactive sonification to allow users to com-

plete ‘eyes free’ tasks on an non-tactile interface. Fernström et al. describe

a method for allowing a user to perceive ‘pseudo-haptic’ buttons from sound

alone. This was done by trying to emulate the sound that friction would

make by mapping a user’s touch pressure, and velocity to a sound engine

that emulated the frequency characteristics of surfaces when touched. They

note the importance of low latency between interaction and feedback as our

auditory systems perceive temporal information significantly faster than our

visual systems [Fernström et al., 2004].

Figure 3.3: Haptic vs Pseudohaptic sketch accuracy – from [Fernström et al.,
2004]

By focusing on an exploratory approach [Gibson, 1961] to getting the gist of

an interface, Fernström et al. report some interesting findings. The results
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suggest that the users could determine where most of the interface elements

were, as well as their approximate size and shape from sound alone (as shown

in Figure 3.3). It is clear from the results in this paper that interactive

sonification, when applied to understanding a computer interface (or any

small visual field), is well suited by an exploratory search, in which the user

gets real-time feedback about their interactions, and is not simply presented

with a large quantity of data.

3.2 Sonification of Graphical Data

This section gives an overview of some major work done in the area of trans-

forming graphical data into sound. Relevant work is described and the key

techniques and concepts are discussed such that work may be built upon or

embellished. When exploring the literature for the sonification of graphical

data some trends emerged, and some key divergences in the methods used

for different types of data was clear.

One of the most significant issues when it comes to the sonification of graph-

ical data is the data itself. In terms of complexity it can range from a single

black dot on a small screen, right up to a live video feed. Therefore, it is

clear that different approaches should be explored for each case. It was found

that, generally, still images favour an approach where the graphical data is

filtered extensively, and the user explores the data in their own time (inter-

active sonification as opposed to audification).

The divide in this presentation of graphical data as sound is evident in several

projects undertaken by the University of York that focused on the sonifica-

tion of pre-cancerous cells, with an aim to reduce the cognitive strain of a

lab technician when searching large amounts of graphical data (cell slides)

for potentially dangerous cells. The first approach by Alyte Podvoiskis [Pod-

voiskis, 2004] focuses on filtering a specific colour range in the image that was
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typical of a potentially dangerous cell when stained with a dye in accordance

with the ‘Pap test’ [Trimble, 2009]. The user was then free to interact with

the image, exploring it with the mouse until they were able to classify the cell

clusters likelyhood of being dangerous from sound alone – when the user ran

the mouse over an area, the program deemed to be potentially dangerous the

frequency and amplitude of an oscillator increased to alert them – creating

an alarm-like sound. In general, the system was effective, and it was shown

that users could detect potentially dangerous cells with good accuracy (de-

spite some shortcomings when it came to ‘borderline’ cells) [Edwards et al.,

2010]. This target-based approach offered a reasonable compromise between

human processing, which is good for detecting patterns in such data (but

often gets sensory overload), and computer processing.

On the other hand, as part of the same sonification of pre-cancerous cells

project, Hines [Hines, 2007] and Lee [Lee, 2006] focused on a non-interactive

approach in which the cells were categorised by the computer using more

advanced image processing techniques than that of Podvoiskis. In this sys-

tem, feature detection was used to determine the likelihood of a cell being

dangerous, and a sound was used to classify them. It could be argued that

this method involved too much computer pre-processing, and not enough hu-

man processing – the system was not an interactive sonification system as it

took the user out of the loop. In this case it was evident that there appears

to be a fine line between the computer doing all of the processing, and the

human being in the loop. As humans can pick up on complex patterns in

data (especially auditory data) that computers can not [Hermann and Hunt,

2011, pg. 21], it could be argued that extensive pre-processing hinders the

effectiveness of the system.

When making considerations for the sonification of these cells Stammers

[Stammers, 2006] also attempted a non-interactive approach in which the

user was placed in a 3D sound field and the visual information was repre-

sented by playing sound samples around them. The user was not free to
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interact with the data, but were a passive party as the sounds (representing

the severity of the cells) were placed around them (as shown in Figure 3.4).

Stammers notes that this system was not hugely successful because of the

user’s inability to move around (in real time) the graphical data, and there-

fore the sound field – when transforming an image into sound, it is clear that

sometimes they are too complicated, or large to take in at once. Moreover,

Stammers’ final implementation used sample based auditory feedback based

on quite unintuitive sounds (such as a ‘frog croaking’ to represent some level

of severity), something that has proved relatively unsuccessful in other work

[Vogt et al., 2009].

Figure 3.4: ‘headcirc’ algorithm – taken from [Stammers, 2006]

A similar pattern emerged with other work – when transforming graphical

data on a screen into the auditory domain, it is clear that a more interactive

approach is beneficial [Sanchez, 2010] [van den Doel, 2003] [van den Doel

et al., 2004]. Less interactive approaches tended to falter, or required more

intensive work on behalf of the user [Hines, 2007]. However, when trans-

forming live video feeds it is not as clear cut, and depends more on the ap-
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plication of the system. The literature implies that, in general, target-based

approaches normally benefit from a filtered approach as with the aforemen-

tioned screen-based methods, but also with live video feeds, this is shown

by the success of Bologna et al.’s ‘See ColOr’ project [Bologna et al., 2008]

[Bologna et al., 2009] [Bologna et al., 2010] in which a system is devised to

enable visually impaired persons to navigate some physical environment by

means of transforming visual cues, such as a red path on the floor, into sound.

Bologna et al. first undertook an experiment [Bologna et al., 2007] in a vir-

tual environment using a touch sensitive tablet to provide tactile feedback.

In this work, they wanted to determine if it is possible for blindfolded persons

to associate colours with the sounds of musical instruments. This was based

on [Rossi et al., 2009], which involved an experiment based on how we can

associate certain musical instruments with colours.

This then led onto them designing a test to see if users could undertake

a real-world experiment [Bologna et al., 2008] – matching coloured socks

into pairs. The evidence suggests that they were largely successful in this

task, however, it could be argued that there are better mappings for colour

as we need to commit to memory how each instrument relates to each colour.

[Bologna et al., 2009] and [Bologna et al., 2010] discuss a more complex real-

world navigation task. They still opt for the filtered graphical pre-processing

to undertake the tasks, however, in [Bologna et al., 2010] depth is sonified –

so the users can determine with sound the distance of the target. In effect,

they try and render our stereoscopic perception of the world into sound. The

distance between the target and the user is measured with a pulse train – the

rhythmic frequency of the instrument was increased as the user got closer to

the target.
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A similar distance representation is used by Yoshida et al. [Yoshida et al.,

2011] when trying to communicate 2D shapes using auditory feedback. When

tasked with representing the distance to a specific feature, Yoshida et al. used

two sonification mappings in tandem – local area sonification to describe the

contour of the shape, and distance to edge sonification to allow the user to

determine the location of the feature. The distance to edge mapping was

similar to the pulse train used in [Bologna et al., 2010]. The fact that both

were successful in representing distance suggests that a pulse train is likely

to be a good way of representing distance.

A test was produced to demonstrate the difference in using and not using

local area sonification, in addition to distance to edge (pulse train) sonifica-

tion. It was evident that there was a noteworthy improvement between local

sonification being off, and on, when it came to determining the finer details

of the shape – suggesting that multiple mappings may be needed to represent

finer details of shapes. Figure 3.5 outlines the shapes the participants were

aiming to sketch through auditory display.

Figure 3.5: Shapes the participants were tasked with sketching – from [Yoshida
et al., 2011]

Sanchez et al. [Sanchez, 2010] opt for a different distance mapping – they

use the tuning of a radio as a metaphor for distance to aid a user in tracing a

car (as shown in Figure 3.6) – as they get closer there is less static, and once

they are on track they can hear the original sound clearly. This approach is

interesting, however, one could argue that mappings such as the radio map-

ping is not a logical choice – the metaphor of tuning a radio is something that

future generations won’t understand, and ultimately relies on some prereq-

uisite knowledge. Using sonification metaphors that rely on some knowledge
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that everyone may not have is always an area that must be approached with

caution. The mappings should be as intuitive to us as possible. Moreover,

the metaphor does not provide any directionality – the user will know how

far they are away from the shape, but will not know what direction to go in.

It is therefore advised that when trying to represent direction to a user in a

target-based auditory display that they are provided with not only a sense of

distance, but also a sense of direction. Approaches such as [Stammers, 2006],

that represent directionality by means of spatialised audio, would provide an

ideal mapping for distance in such a context, and will be discussed in the

next section (Section 3.3).

Figure 3.6: Traced features of car – from [Sanchez, 2010]

Contrary to these filtered approaches, a non-filtered approach was shown to

benefit Peter Meijer’s ‘The vOICe’ system [Meijer, 1992]. This system trans-

forms all of the visual information from a live video feed into the auditory

domain by mapping the frequency of an oscillator to the height of the pixel

in the display, and the brightness of the pixel mapped to its amplitude (Fig-

ure 3.7). It was shown, in neurological studies [Amedi et al., 2007] [Merabet

et al., 2008], and in real-life test cases [Meijer, 2013], to have a significant

effect after an initial intensive training course.

It is clear that some auditory displays will require some practice to learn.

But, due to the complexity of the audio output, approaches such as Meijer’s

[Meijer, 1992] require full courses of training. The training scheme Meijer
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Figure 3.7: Image to sound mapping for The vOICe – from [Meijer, 1992]

provides is similar to the way blind individuals such as Daniel Kish [Arnott

et al., 2013] are able to learn to determine their surroundings by means of

echolocation. The users are taught to decode the subtle changes in the audio

feed and interpret them as changes in their 3D environment. The current

form of the system (shown running on the Android platform in Figure 3.8)

and more information about this system is available from The vOICe’s web-

site 1.

A direct comparison [van den Doel et al., 2004] of The vOICe and an al-

ternative system (SoundView) shows that The vOICe does not perform as

effectively when sonifying still images. As in [Fernström et al., 2004], it is

shown that the sonification of still images (SoundView [van den Doel, 2003])

benefits a simplified exploratory approach where the user is allowed to in-

teract with the screen, as opposed to the holistic approach of sonification in

The vOICe [Meijer, 2013]. The approach SoundView takes is to allow the

users, much like in Podvoiskis’ approach [Podvoiskis, 2004], to interact with

1www.seeingwithsound.com
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Figure 3.8: The vOICe system running on an Android phone – taken from
[Meijer, 2013]

the still image (in this case with a stylus) and hear the auditory feedback to

gain a mental model of the image they are interacting with.

3.3 Spatial Auditory Display

This section describes the key work done into the use of spatial audio in

auditory display. As discussed in Section 2.5, the term ‘spatial audio’ en-

compasses a series of techniques to spatialise sound. This section focuses on

applications of these techniques as a parameter used in sonification.

Generally it was found that spatial audio is most commonly used to represent

a physical direction, and that it was a good parameter for doing so. It has

been used to portray a physical direction on a screen [Heuten et al., 2006],

and in a real life scenario [Michal Bujacz and Strumillo, 2012].

Heuten et al. propose a system that aims to allow visually impaired individ-

uals to gain a cognitive model of a new place before going to it [Heuten et al.,

2006]. To do this they created a virtual 3D sound room to convey directional
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information about geographical objects, such as lakes and parks (Figure 3.9).

These features were represented by placing multiple sound sources around the

user in a direct mapping, using binaural audio. For example, if a feature was

close and to the right it would be loud and the sound of the source would be

binaurally panned to the right.

Figure 3.9: A user’s perception (right) of the map data presented (left) – from
[Heuten et al., 2006]

A key feature of this work is the fact that the user is provided with the ability

to explore the space, therefore allowing them to gain a better cognitive model

than in work such as [Stammers, 2006]. Additionally, the authors note the

advantage of using physical devices such as digitizer tablets over a mouse, as

the user gets tactile feedback about their position – they can feel where they

are on a tablet by touching its borders and learning their relative position by

means of the same exploration. Yet again, bringing to light Gibson’s work on

the exploration of every day objects [Gibson, 1961]. But more interestingly,

adding to the work of [Podvoiskis, 2004] and [Fernström et al., 2004], as the

use of 3D audio allows the user not only to get an idea of what they are

interacting with, but also, it allows them to get an idea of what is around

them at the same time. This is because 3D audio allows for multiple sources

to be easily detected and differentiated.

This sort of exploratory interaction is even more relevant as tablet computers
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are becoming more ubiquitous – when we interact we can learn our relative

position on the screen in a way we cannot with a mouse and keyboard, which

has great implications in the field of assistive and eyes-free technology.

A similar approach [McGookin and Brewster, 2001], by McGookin and Brew-

ster, proposes a method that hybridises visual feedback and spatialised audio

to compensate for the decreasing screen size of modern electronic devices,

and to allow for ‘eyes free interaction’. They propose the ‘focus and context’

method – the ‘focus’ is the information that the user is most interested in,

and the ‘context’ is merely the non-important information on the periphery of

the user’s interests. They use a similar paradigm to Spence and Applerley’s

Bifocal Lens concept [Spence and Apperley, 2013], but with an additional

modality (audio).

The focus element is the device’s visual display. Outside of this focus is the

auditory domain; the context, which displays information by using 3D audio

to produce different auditory cues around the user – extending the inter-

face’s useable area. Approaches such as this, and Apple’s ‘Spaces’ paradigm

(discussed in the Introduction (Section 1)), highlight the need to be able

to present information off-screen. When condensing computers down to fit

in the palm of one’s hand, the WIMP (Windows, Icons, Menus, Pointers)

paradigm, that we are used to, often fails to display the information we re-

quire due to the physical constraints of having a small screen.

McGookin et al. suggest a notion of priority zones. This concept (shown in

Figure 3.10 involves filtering the data such that it is not cluttered (as done

in [Heuten et al., 2006], [Michal Bujacz and Strumillo, 2012], and [Sanchez,

2010]). For a sound to play, a feature must be within a priority zone that has

a priority less than, or equal to, the feature itself. For example: a priority

four ride would sound in zone three, but a priority three ride would not sound

in zone four. This form of selective filtering allows for uninteresting periph-

eral information to be negated, and for relevant information to be presented
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for the user’s attention.

Figure 3.10: Priority zones within the context – from [McGookin and Brewster,
2001]

Bujacz et al. take the presentation of 3D space for navigation to the next

level of detail [Michal Bujacz and Strumillo, 2012]. They discuss a significant

topic when it comes to the presentation of 3D environments – ‘how much data

do we sonify?’ This is an important question, that ultimately depends on

the end user, and the task at hand. This approach aimed to provide ‘the

best of both worlds’ to the users; ensuring that they make the complicated

data simpler, without removing important information.

To ensure a non-complex auditory interface that also provided all the re-

quired information, 3D sound was used to represent spatial information. To

prevent information overload for the user, an image-processing algorithm was

developed that reconstructed the room into a simplified form. This was then

transformed into sound – the distance to the obstacles was mapped to the

pitch and amplitude of some assigned auditory icon, and the duration of

the sound was relevant to the distance of the object and then its direction

mapped directly to a binaurally panned sound source.
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The most significant part of this paper is the realization that often a compro-

mise needs to be made when sonifying complex data, especially in 3D sound.

Is it wise to sonify all the data, and assume that the human brain can decode

it, in a similar manner to The vOICe [Meijer, 1992]?. Or is it wiser to opt

for a more selective version of the data sonified, much like FISHEARS [Mc-

Gookin and Brewster, 2001]? User-centered design allowed for this system to

be effective – removing all redundant information a complex 3D sound field,

in accordance with the user’s feedback, meant that they took less time to

learn the system, and ultimately could make better use of it [Michal Bujacz

and Strumillo, 2012].

Throughout the literature a common trend emerged – the mapping of 3D

sound to find a specific target, as a physical direction, was generally done

directly, i.e. if the target was on the left, the sound was panned to the left.

Moreover, of these implementations, the most successful were interactive,

where the users were free to move around the 3D sound world and the super-

fluous [McGookin and Brewster, 2001], or distant information was filtered

out [Heuten et al., 2006] [Michal Bujacz and Strumillo, 2012] . Approaches

that were non-interactive [Stammers, 2006] or did not use appropriate filter-

ing [Meijer, 2013] did not yield strong results when interacting with a screen,

as opposed to a physical environment.
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4 Research Agenda

This section restates and examines the hypothesis in light of the information

gathered in the ‘Theoretical Literature Review’ and ‘Relevant Projects in

the Area’ sections. As it is possible to interpret many of the terms from the

primary hypothesis in a number of ways, these will first be discussed. Then,

each term in the hypothesis is clarified, by using recommendations from the

previous chapters to refine the finer details of the hypothesis. The aims and

objectives are then redefined, influenced by the information gained in the

previous two sections, such that tests can be developed to support, or refute,

the primary hypothesis in the remainder of this thesis.

4.1 Hypothesis Discussion

As discussed in the introduction the primary hypothesis states:

It is possible to improve a user’s understanding of graphical data by

using spatial audio to provide interactive auditory feedback.

The primary hypothesis is purposefully general; therefore, it is important to

discuss some significant factors, and variables, that it encompasses. Each

term in the hypothesis will now be clarified so that the it is more specific

and can be quantified.

User – The term ‘user’ is generic, as different systems suit the needs of dif-

ferent operators. However, in the scope of this project, the hypothesis deals

with the most important factor for the perception of graphical data – whether

we can see it or not. This implies that there will be two clear types of user

– the visually able and the visually impaired.
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Understanding – Understanding, in the context of this hypothesis, could

mean that the user is able to understand the entire image, or smaller, more

specific features of the image.

Graphical Data – In perceptual terms, graphical data means ‘what we can

see with our eyes’. The complexity of the graphical data in question is ex-

tremely important to consider – if an individual were asked to locate a black

dot on a screen, it would be simple to do so by visual means alone. How-

ever, if one were tasked with locating the colour value (R = 153, G = 99, B

= 39) in the Mona Lisa portrait, this would be considerably more challenging.

Spatial Audio – This can refer to a number of techniques for altering the

perceived point of origin of a sound – VBAP, panning, ambisonics, etc. A

technique, influenced by the literature, will be used to spatialize auditory

information around a user such that they can better understand it.

Interactive – This term depends largely on the mode of interaction. Modern

technology provides us with a diverse range of options with regards to in-

teraction with computers – mouse, keyboard, tablet computer, speech, etc.

The interaction technique is important; a method that is highly instinctive

for the user must be chosen, such that the interaction experience is as simple

and enjoyable as possible.

Auditory feedback – This implies that there will be some auditory response

to the user interacting with the graphical data. As little work has been done

in the area of turning graphical data into sound, appropriate sound design is

essential. The reviewed literature,and some preliminary research could help

determine more effective sound design methods.

The next section discusses the key findings in the literature, such that the

hypothesis can be refined and the aims and objectives can be stated.
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4.2 Summary of ‘Relevant Projects in the Area’ Sec-

tion

A key finding when looking at interactive sonification for monitoring a task

(Section 3.1) was that the feedback needed to be as real-time as possible

[Fernström et al., 2004] [Schaffert and Mattes, 2012]. As well as this, there

should be a tradeoff between aesthetics, and content [Vogt et al., 2009]. One

of the most important findings was found in [Fernström et al., 2004] – the

notion of the free exploration of data to gain a mental model of it is some-

thing that will be highly relevant the sonification of graphical data in this

project.

When looking at work done on the sonification of graphical data (Section 3.2)

it became evident that there were two main approaches: filtered [Podvoiskis,

2004] [Sanchez, 2010] [van den Doel, 2003], and non-filtered [Meijer, 1992].

The general trend was that approaches that required the search of a small

area, or where the user was searching for a target, were improved by some

degree of graphical pre-processing [Podvoiskis, 2004], and that approaches

that involved complex visual information were improved by a non-filtered

approach [Meijer, 2013].

When making considerations for using 3D audio (Section 3.3) as a parame-

ter, it became clear that mapping directionality within a dataset to 3D sound

works well [Heuten et al., 2006] [Michal Bujacz and Strumillo, 2012]. More-

over, in an interactive sonification approach, it became evident that 3D audio

can allow us to understand our surroundings and our immediate position on

a screen, or environment, simultaneously [Heuten et al., 2006]. Additionally,

McGookin and Brewster suggest that this approach may be improved by

zone-based filtering [McGookin and Brewster, 2001].
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4.3 Refined Hypothesis

The hypothesis is now refined with the information gathered from the pre-

vious four sections. The hypothesis is deconstructed into more specific con-

stituent parts, inspired by the initial hypothesis, and the previous two sec-

tions.

The refined primary hypothesis now states:

It is possible to detect graphical features on a tablet display by means of

real-time, interactive, binaurally spatialized audio.

Each of these terms is now described in context of what will be tested in

this thesis. Each decision has been informed by the initial idea, trends in the

literature, and the capabilities of modern technology.

Detect – By ‘detect’ it is meant that the user will be able to find graphical

features on a display, without looking at the visual cues it provides. Methods

will be developed such that a user, when in physical contact with a display,

can discover the features aurally with the aim of finding the location of a

specific feature.

Graphical features – The graphical features will differ throughout the tests

and become gradually more complex. Initially, simple shapes and colours

will be used; these will become more complicated as the tests progress with

an aim to test different sonification methods.

Tablet Display – Something that occurred repeatedly in the literature review

was a lack of technological capabilities; often there were projects that could

not be fully realized due to the lack of computation, or interfacing. As dis-

cussed in the Theoretical Literature Review, using a tablet display (an iPad
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in this case) will allow for reasonable processing power, with the added bonus

of a highly sophisticated touch interface.

Real-time/Interactive – When undertaking data exploration by sound it was

noted in the literature review that one of the most important contributing

factors to a successful outcome was an interactive auditory display that works

in real-time. Real-time implies that there is minimal perceivable latency. La-

tency, in interactive interfaces, can be highly frustrating to the user. It is

therefore suggested that the interface should have minimal lag between in-

teraction and audio output.

Binaural Spatialized Audio – The decision has been made to focus on binaural

spatialized audio for numerous reasons; the initial project hypothesis aimed

to incorporate spatial audio, and from the Literature Review and Theoretical

Background it became evident that binaural audio offers a highly effective,

portable, and cheap solution to spatialized audio.

4.4 Aims and Objectives

This section describes the aims and objectives of this research. Which clearly

lay out the steps needed to verify the newly refined hypothesis such that

techniques can be developed, tested, and finally evaluated in the remainder

of this thesis.

4.4.1 Aims

1) To meaningfully represent graphical data, on standard and extended dis-

plays, using spatialized audio.

2) To develop interaction techniques that are real-time, responsive, and abide

by the interactive sonification human-computer loop paradigm.
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3) To gain insight into the success of the techniques and tools developed, and

make considerations for how they may be improved, or applied.

4.4.2 Objectives

1) Develop image processing techniques to allow for the detection of specific

graphical features.

a) Create an algorithm that can detect specific colours in an image.

b) Develop an algorithm that can find the average location of an image

feature such that its location may be determined.

2) Develop methods that allow a user to interact with the graphical informa-

tion in a meaningful real-time manner.

a) Use iOS touch detection methods to allow for the detection of fin-

gers, track their locations and determine when the user has removed

their fingers.

b) Calculate the vector between the touch co-ordinates and the image

features detected.

3) Develop an audio engine that responds to the information gathered from

the image and the information derived from it by the program.

a) Experiment with a series of audio engines to determine the best op-

tion for this work.
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b) Experiment with sonification methods to best represent the graphi-

cal information.

c) Make use of binaural audio to indicate graphical features to the user.

d) Conduct a subjective preliminary test into the best way to represent

certain graphical characteristics.

4) Devise a series of progressively more challenging tests to determine the

effectiveness of the implementations, and establish whether these methods

can be improved, or whether they can be applied in some areas.

a) Develop two test procedures, each with minor differences, to deter-

mine the effectiveness of the parameter mapping in the sonifications,

and the effectiveness of the interaction techniques.

b) Develop increasingly complex tests that challenge the test subjects

to find specific graphical features, with varying degrees of auditory as-

sistance, and with varying sizes of displays.

c) Conduct and document testing procedure in detail with modern tech-

niques such as video documentation and screen capture.

5) Analyse the video and screen capture of the tests described in objective 4

and draw conclusions with regards to the effectiveness of the interaction, and

auditory display techniques developed. These conclusions will allow for the

verification, or evaluation of the hypothesis in light of the new information

gathered.
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Before progressing to implement these tests, a preliminary experiment was

done. The following chapter describes an test devised to determine if peo-

ple associate specific colours with certain sound characteristics. This was

carried out before any system implementation such that the sound design

choices could be better informed.
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This chapter discusses an experiment to determine the best way to map

colour to sound in an auditory display. It gives an introduction to the topic,

outlining some significant work and some preconceptions about how we relate

sound, specifically frequency, to colour. A small-scale (15 person) experiment

is then described and discussed, providing insight into how colour should be

mapped to sound such that it the information can be used in the context of

sonification.

5.1 An Introduction

When transforming images into sound it is important to consider what dif-

ferent colours ‘sound’ like. Notable work done into the mapping of colour to

frequency has been carried out over centuries. Isaac Newton [Newton, 1730]

and Louis-Bertrand Castel [Hutchinson, 2012] explored the concept of how

we can relate colour to the pitches across the notes of a piano. Colour is to

light what pitch is to sound; the smaller the wavelengths of the signal, the

higher the resulting frequency. It is evident that a potential method of map-

ping colour to frequency directly is possible; red being the lower frequency;

purple the highest, as outlined in Figure 5.1.
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Figure 5.1: Frequency of Light– from [Hutchinson, 2012]

When mapping the piano to colour, Newton mapped frequency inversely to

colour; violet the lowest and red the highest. This is shown in Figure 5.2.

Figure 5.2: Piano with mapped to colour spectrum – from [Hutchinson, 2012]

Castel decided that the primary colours were related to the chord C major,

as he believed the most fundamental colours (blue, yellow and red) used by

artists could be related to the common chord C major. He considered blue

the darkest of the three, so he assigned this to middle C. He then assigned

E to the colour yellow, and G to the colour red based on their frequency

content inspired by Newton’s work. He then placed the colours he saw as

transitionary colours, i.e. the colours between the blue, yellow and red in the

spectrum, in-between the C, E and G [Hutchinson, 2012]. This is shown in
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5.2 The Experiments

Figure 5.3.

Figure 5.3: Castel’s interpretation of colour to sound mapping – from [Hutchin-
son, 2012]

5.2 The Experiments

It was decided that two experiments could be devised to provide informa-

tion with regards to the best way to map colour to frequency content – one

that tested a range of synthesis methods to determine the ‘pleasantness’ and

meaning of synthetic sounds. And one that tested the tones across an octave

of a piano to explore how pitches in a scale relate to colour. These tests were

accompanied by a short demographics questionnaire in which the participant

had to fill in some information about themselves. This was done to look for

extra patterns related to age, culture, musical training, and whether the user

has previous ideas about how colour and sound are related.

5.3 Initial Test Hypotheses

Test 1 was devised to assess which side of the spectrum the participants as-

sociated with high or low frequencies. An additional goal was to determine

if any of the considered sonification techniques were unpleasant to listen to.

This was to ensure that when designing an auditory display the users were

not annoyed by the sounds. The main questions to be answered were:
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• What side of the colour spectrum would people associate different

sounds with?

• What sounds do people like and dislike? And are these related to the

frequency content?

Test 2 was devised to test the relationship between pitch, and colour. As

discussed previously, Isaac Newton and Louis Bertrand Castel had theories

about representing colour on the notes of a piano. This test was designed to

determine if any patterns emerged from testing individuals listening to nine

random notes in a scale. The main areas of interest were:

• Is there any correlation between the colours and the pitches we hear?

• What colours do we associate with specific pitches? For example, is

red a high, or a low pitch?

To answer the questions associated with each test some testable hypotheses

were written. These are outlined, and discussed below.

5.3.1 Hypotheses – Test 1

For Test 1 of this study it was believed that participants would inversely

associate the colour spectrum with frequency – red colours would imply high

frequencies, and they would associate violet colours with low frequencies.

This hypothesis was drawn because we typically associate red colours with

danger, and therefore high frequency content, as outlined in Section 3.5.

Additionally, it was believed that participants would rate the high frequency

sounds as sounding worse than the low frequency sounds. This hypothesis

was based on the notion that we associate the colour red with danger, and

therefore unpleasant sounds.
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5.3.2 Hypotheses – Test 2

For Test 2 of this study it was believed that participants would associate red

with high pitches, and purple with low pitches, the reasoning being that if a

pitch is of high frequency it is more alerting than a lower frequency pitch.

Additionally it was thought that those with musical training would try and

relate the colours to notes in a scale; detecting intervals between specific

sounds and making judgments from this information. Those without musical

training would not have the skills to be able to contextualize the pitches’

relation to each other. Those with perfect pitch, or relative pitch, would be

able to associate colours with pitches better; they could fill in the gaps for

pitches they did not instantly associate with a colour.

It was thought that those with some degree of timbre-based synaesthesia

(associating certain timbres of instruments with certain colours) would as-

sociate all sounds examples with one or two colours, and those with some

degree of pitch-based synaesthesia will associate specific areas of frequency

with specific frequencies. Those with some degree of timbre-based synaes-

thesia would associate specific instruments, such as the piano (in this case),

with a certain colour. Those with pitch-based synaesthesia would associate

each pitch with a different colour.

5.4 Designing the Sound Examples

Some sound samples were designed for the tests. The sounds for Test 1 were

generated in Pure Data, and the sounds in Test 2 were generated using a

sampled piano. Each sound was played three times to ensure that the par-

ticipants were able to hear the sound enough times to make a decision.
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5.4.1 Designing Test 1

When designing this test, a series of sounds were generated in Pure Data.

An overview of the how each sound was generated is outlined in Table 5.1.

Each patch features a sound that is ramped up and down in amplitude using

Pd’s ‘vline ’ object. All samples were recorded in stereo and bounced down

as .wav files to ensure consistency.

Sound Description

1.1 This patch filters white noise with a high frequency band pass

filter. The centre of the band pass filter was chosen to be 1500

Hz, as this was representative of a relatively high frequency.

It produces a high-pitched wind like sound.

1.2 This patch filters white noise with a low frequency band pass

filter. The centre of the band pass filter was chosen to be

500Hz, as this was representative of a low frequency. It pro-

duces a low-pitched wind like sound.

1.3 This patch produces a burst of noise across all frequencies

using the ‘noise ’ object. It produces a harsh broadband noise

sound.

1.4 This patch produces a high pitched sinusoidal beep. The

frequency 1000 Hz was used as this was considered a high,

but still easily audible frequency.

1.5 This patch produces a low-pitched sinusoidal beep. The fre-

quency 300 Hz was used as this was considered a low fre-

quency, but high enough to be heard on most speakers.

1.6 This patch filters an 80Hz phasor with a band pass filter with

a high centre frequency. A value of 1500 Hz was chosen as

a fitting high frequency as it was easy to hear, but is still

noticeably high pitched. The phasor’s higher harmonics are

emphasized, but it is possible to hear its lower harmonics too.
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1.7 This patch filters an 80Hz phasor with a band pass filter with

a low centre frequency. A value of 400 Hz was chosen as a

fitting low frequency as it was easy to hear on all speakers,

but still noticeably low pitched. This sound features less of

the high frequency content mentioned in the description of

Audio Example 1.6.

Table 5.1: Table of Pure Data patches developed

The patches outlined in Table 5.1. have been combined into one patch for

easier navigation. This patch is available on the project CD associated

with this thesis and is labelled ‘Preliminary Test Patch’ in the ’Audio

Examples’ folder. Additionally, the sound examples made for this test

are available in the same folder.

5.4.2 Designing Test 2

For the second test some piano notes were generated. To do this, nine notes

between C3 and B3 were chosen and randomized. The notes used, along with

their respective sound example number, are outlined in Figure 5.4.

Figure 5.4: Notes of piano used in user testing
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The digital audio workstation Logic Pro 9 (more information about Logic

can be found here: https://www.apple.com/uk/logic-pro/) was used to

create the samples, its inbuilt sampling engine (the EXS24) was used as it

offered relatively consistent sampling across the note range. Each sound was

repeated three times to ensure that the participant was able to hear the pitch,

and any other nuances when listening. The samples were then bounced down

as stereo .wav files ready for use in Windows Media Player.

5.5 The Experimental Procedure

The experiment took place in the Genesis 6 Teaching Room, Audio Lab,

Department of Electronics, at the University of York. The room was chosen

because of its sound treatment and low people-traffic – it was unlikely that

anyone would disturb the experiment. For each participant it was impor-

tant that they were not provided with any information before the test, so

they were given the participant handout (see Appendix B) as they entered

the room. The participants were given the same set of instructions, and the

setup (outlined in Figure 5.5) did not differ between individuals.

Once the participants were familiar with the testing procedure, and had filled

out a short demographics form, they were asked to complete both of the tests

by playing the sounds in a Windows Media Player playlist. The subjects were

instructed to listen to all the sounds related to the test. This was done to en-

sure that they were informed of all the sounds before they began filling in the

questions. After doing this they were free to begin marking the colours they

believed to be related to the sounds in any order. The participant handout

informed them that they were allowed to go back and re-listen to the sounds,

so that they could make comparisons as they went along. This ensured that

they were not influenced by the sound that preceded it; reducing bias as

much as possible.
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Figure 5.5: The setup used for the preliminary test

The participants typically took between seven and ten minutes to complete

the experiment. During this time the interaction with the tester was minimal.

Occasional questions were asked to clarify technical issues, problems with the

media player, what way to put on the headphones, etc.

5.6 The Demographics

As this was a small preliminary test, a large number of participants was not

needed as the results were not required to be significant, but to merely give

an indication of some trends. Overall, 15 participants took part in the ex-

periment. They were mostly students from the Department of Electronics at

the University of York (10 people), however, there were two students from

other departments; Computer Science, and English and Related Literature.

Additionally, there were three non-students; these were audio lab staff or

technicians. The participants’ ages ranged from 22 – 40, with an average age

of 26.7. The participants represented several nationalities (British, Chinese,

American, Belgian, Greek, Dutch and Russian). Out of the 15 participants,
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10 were male, and five were female.

Due to the fact that the subjects were mostly students, and largely from

an audio-based research group, there were significantly more musicians than

an average group of people; all but one participant considered themselves

some level of musician. In the group, 4 people considered themselves to be

professional/ex-professional musicians. 13 out of 15 considered themselves to

have some degree of relative pitch, and two out of 15 considered themselves to

have perfect pitch. A third of the participants considered themselves to have

some degree of synthesisia, most stating that they related certain pitches, or

timbres, to specific colours. Notable comments included:

“I associate frequency with colour; if I’m recording some music, I label

the lower frequency instruments such as bass guitar and bass drums with

colours like purple, and as the frequency of the instruments increases I

begin to use colours like orange and red.”

“It’s difficult to describe with words, but for instance: I usually would

associated a saxophone playing jazz with some orange”

5.7 The Results

The collected results were put into an Excel spreadsheet so that they could

be analyzed. The results for each test is now explained and compared with

the hypotheses.

5.7.1 Test 1 – The Results

From Figure 5.6 it is possible to see that sounds with predominantly high

frequency content, such as 1.1, 1.3 and 1.4 are associated with the colour red

more than blue, with the exception of Sound 1.1, in which they are the same,
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and Sound 1.6, in which it is associated more with purple. Moreover, sounds

with low frequencies, such as 1.2, 1.5, 1.6 and 1.7 are strongly associated

with violet. Notably 13 out of 15 participants associated the high-pitched

pure tone with red. It was found that both sounds that involve a phasor

were strongly associated with the colour purple.

Figure 5.6: Colours the users associated with sounds

Those with synaesthesia showed similar results to the average; however, the

correlation seemed to be stronger. This is outlined in Figure 5.7.

With regards to sound preference; it was found that sounds that focused on

low frequencies, such as 1.2, 1.5, and 1.7 were the most enjoyed sounds by

the participants, and the sounds that used high frequencies were the least

enjoyed. The most disliked sound was the pure noise sample (Sound Example

1.3), with an overall score of 1.5. This is outlined in Figure 5.8.
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Figure 5.7: Colours the users associated with sounds for synesthesthetic listeners

Figure 5.8: User’s preference to sounds in Preliminary Test

5.7.2 Test 2 – The Results

The results for Test 2 were more clear than Test 1. Although there was

no strong correlation between the participants’ results (Figure 5.9), the pat-

69



5.7 The Results

tern partially resembled the hypothesised pattern (low-pitched sounds being

closer to purple, and high-pitched sounds being closer to red). in Section

5.3 – for example, the low pitches, such as C, C# and D all have high end

spectrum colours as their most frequently associated, and G#, A and B all

have low end spectrum colours as their most frequent. These results are also

outlined for each individual colour in Figure 5.10. From this, it is evident

that the users associated certain notes with certain colours more than others.

For example, just under half of the participants associated the note ‘D’ with

the colour blue.

Figure 5.9: Note to colour association in Preliminary Test

Those who considered themselves synaesthetic to some degree appeared to

show stronger correlation with the hypothesis. By excluding the participants

who considered themselves non-synaesthetic a slightly stronger trend (though

only four participants) appeared, as shown in Figure 5.11. Note colours such

as violet and purple occur slightly more often at the lower end of the scale,

however, although colours such as red appear more often at the higher end

of the scale, there are many inconsistencies.
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Figure 5.10: Note to colour association for individual colours

To investigate if a person being pitch perfect made a difference with regards

to the trend, those without perfect pitch were negated (13 out of 15 partici-

pants). It was evident that those with perfect pitch strongly associated the

higher notes with red, orange and yellow, and the lower notes with the colours

violet and blue, bar a few anomalies. This is outlined in Figure 5.12.
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Figure 5.11: Note to colour association for synaesthetic people

Figure 5.12: Note to colour association of pitch perfect people

Those who expressed some degree of relative pitch were then tested – this

was the majority of the participants and is shown in Figure 5.13. There

appears to be less correlation than in the perfect pitch participants with a

significant anomaly; red being the joint most frequent colour associated with

the lowest note.
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Figure 5.13: Note to colour association for those with relative pitch

To test if such strong correlation was only evident in those with perfect and

relative pitch, those with no sense of relative, or perfect pitch were negated

– leaving only two participants with no pitch training. The results showed

strong correlation between the colour and the pitch the two individuals as-

sociated it with, as shown in Figure 5.14.

5.8 Test Conclusions

This section discusses the results and compares them to the preliminary test

hypotheses. The implications of these results is also described regarding

how the results could be used to design an auditory display that transforms

graphical data into sound.

5.8.1 Test 1

It was hypothesised that people would inversely associate the colour spec-

trum with audio frequency, i.e. they would associate low frequency sounds
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Figure 5.14: Note to colour association for those with no musical training

with high pitched notes, and vice-versa. The results support this; it is ev-

ident that the sounds with higher frequency content were regarded as ‘red

sounding’, and sounds with lower frequency content were thought to be ‘vi-

olet sounding’. This information implies that when transforming graphical

data into sound, the most intuitive mapping for colour is to inversely map the

spectrum to auditory frequency – red being the highest auditory frequency,

and violet the lowest.

An additional hypothesis in this study was that people would rate high fre-

quency sounds as worse sounding than low frequency sounds – and again

the data seems to support this. It was evident that the most universally

disliked sound was broadband noise, followed by sounds that have high fre-

quency content; these also often coincided with the sounds that were marked

as ‘red sounding’. This implies that when designing an auditory display, high

pitched sounds should be associated with ‘bad’ occurrences – much like the

alarm sound devised by Alyte Podvoiskis (described in Section 3.2) when the

user moved the mouse over potentially dangerous cervical cells. It was found
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that the filtered phasor sounds were always associated with the colour purple.

There are two potential explanations for this: either that the complex tone

of a phasor is ‘purple sounding’, or that the users associate the low frequency

fundamental tone (80Hz) with purple, regardless of the filtering on the upper

harmonics.

5.8.2 Test 2

Prior to conducting the experiment it had been suggested that participants

would associate high piano notes with red, and low piano notes with violet.

There was not as much correlation in the results as Test 1, but there was still

some evidence to support this hypothesis. It was evident from observing the

results that some individuals did not associate the colours with pitches at

all; numerous participants associate the timbre of the piano with a specific

colour, causing the results to have less correlation than in Test 1.

The non-synaesthetic participants were negated to test if they supported the

hypothesis more than the overall group. After doing this a stronger pattern

emerged. These results appeared to show a slightly stronger correlation; with

the high end of the colour spectrum being predominant with the lower piano

notes, and the low end colours in the higher notes. The perfect pitch and

musically untrained participants’ results were then compared. Apart from

some inconsistencies both groups seemed to associate violet, blue and indigo

with the lower pitched notes, and yellow, orange and red with the higher

pitched notes.

While some people associated the pitch of the note with the colours, others

related colours to the timbre of the note. This is evident from some indi-

viduals choosing only two colours, as they associated the piano with these

colours. This was also outlined by some participants noting that they expe-

rienced synaesthesia, but only with timbres, instruments, and even genres of

music. Though there was some correlation in those with synaesthesia, some
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anomalous results were evident – for example, individuals choosing blue and

green as high frequency colours, and some associating red with the lowest

colour. It was thought that this was due to some participants associating the

timbre of the piano with a particular colour, and not the pitch.

It was noted that as well as red, yellow was a colour that was associated

with the high pitched sounds. It was also featured as the most common

colour chosen by individuals; being the most associated colour with the notes

F, G, G# (joint) and B. It could be suggested that this is to do with how

people associate specific colours with certain instruments – a bright sounding

instrument such as a piano could be associated with the colour yellow because

of its timbre. However, tests on more instruments would be needed to be done

to support or refute this.

5.9 Limitations of Pilot Test

This experiment could be expanded in several ways to verify its accuracy and

improve its results. These are outlined below:

Randomize the colour choices – in the experiment the participants were asked

to choose from a series of colours. These colours were always in the same

order. Perhaps this could have influenced the decisions they made. It is rec-

ommended that future experiments negate this possibility by randomizing

the order of the colours presented to the participant.

Use notes from multiple octaves – to see if the participants associate the

specific notes outside of this octave, a larger range could be used. It would

be interesting to find out if a participant associated the same notes from

different octaves with the same colour.
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Use a variety of instruments – some participants noted that they associated

the sound of a piano with specific colours. To attain a better understand-

ing of how we associate frequency and colour more instruments could be used.

The most useful finding in this experiment was that the participants as-

sociated the colour spectrum inversely with the auditory spectrum – they

believed that colours such as red and orange should be associated with high

pitched sounds, and that colours such as purple and blue should be associ-

ated with low frequency sounds. Though this experiment did not prove this

definitively, it provides enough information to inform the sound mapping de-

sign. The association of sound and colour can now be tested further, in the

context of interactive sonification.
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6 Design and Implementation

This section describes the thought processes, design, and implementation be-

hind the development of interactive sonification techniques on the iPad. The

implementations are described in depth with regards to the philosophical

choices behind the design, the design itself, and some initial feedback from

users. The implementation of the techniques is described such that others

may understand the test procedure associated with this thesis, and replicate

its results.

All the techniques developed in this section are included in the final tests,

discussed further in the next two sections. The tests are available in the

form of Xcode projects, written in Objective-C, on the CD accompanying

this project under ‘Xcode Projects’.

The techniques developed in this section should support users in finding im-

age features on the iPad screen with no visual cues. An additional aim was

to allow a non-visually restricted user to locate image features faster than

without auditory feedback. The methods developed support a goal-oriented

searching approach, where the user is searching for something specific, e.g.,

a black dot on a white background, or a specific shade of blue in a complex

set of colours. An overview of the procedure to locate graphical features, and

present them as audio is displayed in Figure 6.1. In the following sections,

each step is broken down and its development discussed and documented.

An outline of this section is described below:

Section 6.1 describes the initial image processing algorithms developed to

determine where the image features of interest are.

Section 6.2 outlines how the ‘extended display’ screen was developed.
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Figure 6.1: Overview of interactive sonification system to be developed

Section 6.3 describes how the touch interaction was implemented.

Section 6.4 discusses the calculations for determining the relationship be-

tween the touches and the image features.

Section 6.5 discusses the method of linking the audio engine (Csound) and

iOS.

Section 6.6 outlines how the mapping between the processing in iOS relates

to the sound. This section documents the development of the sonification

mapping strategies in depth.
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6.1 Location of Image Features

6.1 Location of Image Features

An algorithm was developed to locate the average point of a specific colour

in an image on the iPad. The philosophy behind the design is described,

along with the design itself. A full description of the implementation is then

given, accompanied by a section evaluating its success.

6.1.1 Philosophy

To locate a specific image feature we must know what characteristics are

desired, and find a way to negate the unwanted aspects of the image. In

the context of this system, the desired characteristic of the image is a spe-

cific pixel range. Much like the work of Podvoiskis [Podvoiskis, 2004] and

Stammers [Stammers, 2006] (as described in Section 3.2), by searching for

a specific colour it is possible to home in on what we are searching for, as

opposed to trying to ‘hear’ a specific colour out of a complex auditory field.

As discussed in Section 4.2, the more minimalistic filtering of the graphical

data before processing into sound seems to benefit still images, more so than

a complex auditory field.

Feature detection was considered for use in this project – a process which can

provide a highly ‘filtered’ approach to analysing the data. However, if scaled-

up to search for multiple features, it has been shown to be cumbersome in

the context of sonification [Hines, 2007].

6.1.2 Design

The system developed to detect specific colours should act as a filter – only

allowing pixels of some RGB range through when rastering the image. The

location of these pixels can then be registered, as shown in Figure 6.2 (next

page). Once the filtered pixels’ locations have been logged, it is possible to

find the average ‘x’, and ‘y’ co-ordinates of the image feature using Equation
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6.1, where ‘P’ is the filtered pixel’s coordinate, ‘d’ is the direction of the ras-

tering algorithm (‘x’ or ‘y’) and N is the number of pixels filtered in this axis.

∆d =

∑Nd

Pd=0
Pd

Nd

− td (6.1)

6.1.3 Initial Evaluation

Initial testing with simple images shows that the algorithm is able to find

the average location of simple coloured dots. By creating custom images in

which the values of the pixels are known, it is possible to make sure that the

algorithm is finding the specific features. By changing the statements on the

simple filter, it is possible to search for any colour, providing its RGB values

are known.

6.1.4 Final Implementation

The raster-based system outlined in the design section was implemented us-

ing the Core Graphics API. The code in the algorithm is now described and

depicted using a flow chart in Figure 6.2.

The ‘locateImageFeature’ method was written to implement this algorithm.

The following two lines load an image (in this case “example2.jpg”), which

is stored in the project file, and extracts its pixel data:

1 UIImage *myPicture = [UIImage imageNamed:@"example2.jpg"];

2 CFDataRef pixelData=CGDataProviderCopyData(CGImageGetDataProvider(

myPicture.CGImage));

The second line creates a CGImage (Core Graphics Image) and removes the

CFData’s information from it. CFData is a data object that allows access to

the values of the image. This stores the red, green, blue and alpha values of
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Figure 6.2: Rastering algorithm to store pixel data
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the entire image. The width and height of the image is then obtained using

the following code:

1 myWidth = CGImageGetWidth(myPicture.CGImage);

2 myHeight = CGImageGetHeight(myPicture.CGImage);

‘CGImageGetWidth’ and ‘CGImageGetHeight’ are methods that return the

dimensions of the image in pixels, which allows the algorithm to be used on

any given image size. A read-only pointer is then set up to return the values

from the CFData’s stored data:

1 const UInt8 *pixels = CFDataGetBytePtr(pixelData);

It is then possible to implement the rastering algorithm:

1 for( xCoordinate = 0; xCoordinate < myWidth; xCoordinate++)

2 for( yCoordinate = 0; yCoordinate < myHeight; yCoordinate++)

3 {

4 int pixelStartIndex = (xCoordinate+(yCoordinate*myWidth))*
bytesPerPixel_;

5 UInt8 redVal = pixels[pixelStartIndex]

6 UInt8 greenVal = pixels[pixelStartIndex + 1]

7 UInt8 blueVal = pixels[pixelStartIndex + 2]

The double ‘for’ loop (lines 1 and 2) allows for the rastering of the image.

Once the algorithm reaches a new pixel, its red, green, blue, and alpha val-

ues are extracted by using ‘CFDataGetBytePtr’; a method that returns the

information within the CFData object. The ‘pixelStartIndex’ is merely an

offset of 4 to skip every 4 values in the CFdata – the ‘redVal’, ‘greenVal’ and

‘blueVal’ are then extracted. Figure 6.3 describes a pixel’s value, and names

them in the context of this algorithm.
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Figure 6.3: Pixel values in CFData

Now that the colour values for each pixel have been accessed, an ‘if’ statement

can be used to filter the pixels. An example of searching for a green pixel is

shown below:

1 if(blueVal < blueThreshold && redVal < redThreshold && greenVal >

greenThreshold)

2 {

3 sumX += xCoordinate;

4 countX += 1;

5 sumY += yCoordinate;

6 countY += 1;

7 }

For every pixel located, the ‘x’ and ‘y’ co-ordinate is added to a sum and

the variable ‘countX’ is incremented. The average of the co-ordinates is then

calculated by dividing the sum of the co-ordinate values by the number found,

for both ‘x’ and ‘y’ respectively, as outlined in Equation 6.1. This is shown

below:

1 averageY = sumY/countY;

2 averageX = sumX/countX;

From this, a value, or series of values (dependent on the number of filters),

is determined as the average for a specific colour.
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6.1.5 Discussion

This algorithm allows any size of image to be loaded in and for the average

position of a specific colour to be found. It is ideal for simple images, allowing

for the average position of any shape to be located. However, in situations

where there are multiple shapes, and the code has not been adapted manually

to encompass this, the algorithm will falter. Therefore suggested further

work may include adding extra functionality such that a more ‘universal’

approach can be adopted. This would involve a method that determines how

many ‘image features’ there are, and then the existing algorithm would be

adapted to incorporate a more flexible method for the amount of features it

can intercept.

6.2 Extending the Display

As noted in sections 4.3 and 3.3, the notion of ‘extending’ the graphical

display with auditory information can allow a user to sense an off-screen

presence, which is ideal for large-scale images, or interfaces where there is

more than one screen. Figure 6.4 describes a potential scenario – a user,

represented by a face, is searching an image that is larger than the device’s

display. The user is looking for specific bits of information to analyze – some

of which are on-screen, some of which are not. Spatial sound can be used to

extend the visual domain and aid them in travelling towards certain features.

As the extended display will be larger than the iPad screen itself, the method

to move around it must be both intuitive, and effective.

6.2.1 Philosophy

When considering methods to navigate such an interface it is important to

separate the different modes of interaction. One mode involves operating

some functionality within our visual field; when we interact, we produce

some stimulus or action. This event is normally the end goal – for example,
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Figure 6.4: Extending the visual domain with auditory information

clicking an icon on a screen to open a program. Another mode of interaction

involves locating an object to interact with, which may currently be off-

screen. Swiping across a tablet display, typing text into a search-bar, or even

speaking into a device are all examples of this. When developing for tablet

display we are provided with a multitude of potential interaction modes. It

is important that these are easily differentiated, such that each interaction

mode the user learns works consistently.

6.2.2 Design

To create an extended display to navigate a large image, an interface must be

created that allows the user to move freely around the image using gestures

alone. The initial design used Apple’s gestures in an attempt to produce

intuitive interaction modes. It was decided that if a user wishes to navigate

the extended display, a ‘panning’ gesture should be used. The panning ges-

ture can be used to scroll around a display, or drag objects around a screen.
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A minimum of two fingers should be used to operate the panning gesture. If

single finger gestures are then used to gain auditory feedback the use of mul-

tiple finger gestures ensures differentiation when the user is trying to change

their location within the scroll-view.

Another choice to be made was the directionality of the scroll-view; inverted,

or non-inverted? When interacting with technology, specifically touch screen

devices, many of us have opinions on whether our control should be inverted

or non-inverted. As mentioned in Section 2.4.2, Hermann and Hunt note

that ergonomics are very important when designing auditory displays, and

that we must “respect the bindings between physical actions and acoustic re-

actions that we have been familiar with since birth” [Hermann, 2006]. So

when making the decision between non-inverted and inverted it is important

to consider ergonomics above all else.

It can be argued that inverted scrolling (or natural scrolling) should be used

because it is what we are used to in the real world when interacting with a

physical object to gain visual information from it – if one places a piece of

paper on a table and focuses on a particular point, to view the information

above this point they must move the paper down, and to view the information

below this point, they must move the paper up. It is this ergonomic principle

that fuelled the design choice to implement inverted scrolling in both the ‘x’

and ‘y’ directions.

6.2.3 Initial Evaluation

An informal initial evaluation suggested that the scrolling gestures were intu-

itive – the mapping was tried on three people, and all three found the inverted

scrolling more understandable than non-inverted scrolling. They also found

the differentiation between the two interaction modes instinctive. However,

it was noted by two participants that if they were visually restricted and

searching for information by sound alone, they would not know when they
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hit the edge of the image. It was suggested that a sound could be used to

indicate when a user hits a boundary. Suggestions included a ‘boing’ sound –

resembling a springing motion – as a way of communicating intuitively that

the user had gone too far. It was also noted that the scroll-view took too

long to decelerate – the users wanted to be able to stop the scroll-view, so

they could interact instantly with the information.

6.2.4 Final Implementation

The first step of the implementation of the scrollview in iOS was to drag a

UIScrollView from the library of UI objects and place it on the storyboard in

Xcode’s interface builder. As the size of the scrollview cannot be stretched

beyond the size of the iPad screen in the interface builder, it needs to be

enlarged programmatically. A UIScrollView, 9 (32) times the size of the

iPad screen (1024x768), was made using the following code:

1 [myScrollView setFrame:CGRectMake(0,0,3072,2304)];

The ‘setFrame’ method changes the frame of the UIScrollView, and the

CGRectMake makes it a rectangle. Parameters 1 and 2 specify the origin (in

terms of x and y coordinates), and parameters 3 and 4 specify the size of the

scroll-view. The size of the contents that can be scrolled must then be set

using the following code:

1 self.myScrollView.contentSize = CGSizeMake(3072, 2304);

The content size is set by setting the ‘contentSize’ property of the UIScrol-

lView instance to change the content size of the scroll-view to that of a

specified shape and size – in this case a rectangle nine times the size of the

iPad screen. Once the scroll-view had been created, a method of adding an

image to it was devised. A custom image-view class (discussed later) was cre-

ated to display an image. The following code creates an instance of the class,

tells the compiler to allocate memory for this, then initializes the view – a

rectangle with origins (0, 0) and dimensions the same as the scrollview.
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1 CustomImageView *myImageView = [[CustomImageView alloc]

initWithFrame:CGRectMake(0, 0, 3072, 2304)];

The ‘myImageView’ object’s ‘userInteractionEnabled’ property was then set

to ‘YES’. This was done as follows:

1 [myImageView setUserInteractionEnabled:YES];

The UIImageView was then set as a sub-view of the scrollview:

1 [myScrollView addSubview:myImageView];

It was then possible to change the image the UIImageView displays program-

matically:

1 myImageView.image = [UIImage imageNamed:@"test2.1.jpg"];

The image, in this case ‘test2.1.jpg’, must be stored in the main bundle. The

property ‘image’ of the class UIImage is, with this code, changed to allow

‘myImageView’ to access the image stored in the main bundle.

As discussed in Section 2, Apple’s gesture recognizers allow for gestures to

be registered, and then for the developer to implement code such that the

appropriate action takes place. The following code uses the UIGestureRec-

ognizer class to create a ‘gestureRecognizer’ object for the scrollview. The

‘UIPanGestureRecognizer’ is used to implement the scrolling functionality,

described in Section 2.7.

1 for (UIGestureRecognizer *gestureRecognizer in myScrollView.

gestureRecognizers)

2 {

3 if ([gestureRecognizer isKindOfClass:[

UIPanGestureRecognizer class]])

4 {

5 UIPanGestureRecognizer *panGestureRecognizer = (

UIPanGestureRecognizer *) gestureRecognizer;

6 panGestureRecognizer.minimumNumberOfTouches = 2;
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7 magnitude = 0;

8 }

9 }

The ‘minimumNumberOfTouches’ property ensures that the gesture recog-

nizer does not trigger when the user is simply trying to interact with the

device for auditory feedback – this is an important way to differentiate be-

tween the two aforementioned different modes of interaction. The variable

‘magnitude’ refers to the volume level of the audio engine – it was essential

that the audio engine stopped when the user was not trying to get auditory

feedback. The scroll-view’s deceleration rate was then altered in accordance

with the information gathered in the initial evaluation. A faster deceleration

rate was then attained using the following code:

1 myScrollView.decelerationRate = UIScrollViewDecelerationRateFast;

The ‘decelerationRate’ property of the UIScrollView class was used to change

the time it took for the scrollview to slow down. The variable ‘UIScrol-

lViewDecelerationRateFast’ is an iOS defined constant (float) that allows

for a reasonably fast deceleration rate. In order to access the touch dele-

gate methods of the UIImageView, a custom view had to be created. The

interface was created in the .h file using the following code:

1 @interface CustomImageView : UIImageView

2 {

3

4 }

5 @end

Then the touch delegate methods, discussed in more depth in the next sec-

tion, were coded within the implementation of the ‘CustomImageView’ class.

The methods outside of the ‘CustomImageView’ class were then accessed us-

ing the following (example) technique:

1 FBPViewController *callMethod;

2 callMethod = [[FBPViewController alloc] init];
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3 [callMethod someMethod];

6.2.5 Discussion

This implementation allows a user to navigate a large image in a smooth and

intuitive manner. An image of any size may be loaded, and with minimal

adjustments to the code, a user can scroll around the screen, and the func-

tionality remains the same. It should be noted that the iOS UIScrollView

class allows for additional functionality such as a touch stopping scrolling

smoothly, and ‘stretching’ beyond the bounds of the image, and it bouncing

back.

It was decided from user feedback that that there should be a ‘boing’ sound

when the user has scrolled too far. To this end, a method was implemented

that determined when a user had exceeded the bounds of the screen, and by

how much, such that an appropriate auditory response could be produced.

The following method was written to determine how far the user had exceeded

the bounds of the view:

1

2 -(void)scrollViewDidScroll: (UIScrollView*)scrollView

3 {

4 float scrollOffsetY = myScrollView.contentOffset.y;

5 float scrollOffsetX = myScrollView.contentOffset.x;

6

7 if (scrollOffsetY <= -3)

8 {

9 boingPitch = abs(scrollOffsetY);

10 boingTheta = 0;

11 }

12 else if...

The UIScrollView delegate method ‘scrollViewDidScroll’ was used to deter-

mine when the scroll-view was being moved by the user. Two float values
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were then set to the ‘x’ and ‘y’ ‘contentOffset’ property of the scrollview.

By doing this it was possible to gather how much the user had scrolled.

Then a series if/else statements were written to determine what happens if

a user exceeds a certain boundary – in this case beyond the bounds of the

screen. If the user goes beyond the bounds of the screen, the amount is then

calculated and used in the variable ‘boingPitch’ to be sent to an oscillator

to make sound. Additionally, binaural panning was added – when the user

exceeds the left boundary it pans left, when it exceeds the bottom barrier

it pans behind them, etc. If none of the boundaries are breached, the value

‘boingPitch’ is simply set to zero to ensure it makes no sound.

Video Example 6.1 shows interaction with the iPad simulator triggering

‘boing messages’

6.3 Touch Interaction

There are two main modes of interaction in this design. The method of

interaction for navigating the interface was discussed in the previous section,

and now it is important to discuss how the interaction for auditory feedback

was implemented.

6.3.1 Philosophy

For any interactive sonification system, it is essential that its operation is

seamless and intuitive. The design must allow a user to search the interface

and gain auditory feedback, therefore, as discussed in Section 2, it should

be real-time, reactive, and adhere to the interactive sonification paradigm.

As considered in the previous section, the two modes of interaction should

be fully distinguishable, yet complement each other when used simultane-

ously.
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6.3.2 Design

To enable an intuitive touch-screen experience it was decided that the system

should have the following functionality:

• The system should track the user’s touches when they interact with the

screen;

• The system should stop tracking touches when the user removes their

touches from the screen; and

• When the user moves their touch around the screen, the system should

update the user’s touches coordinates in real time.

6.3.3 Initial Evaluation

The initial evaluation of this design concluded that, as the two modes of

interaction were clearly distinguishable, the design held up to the require-

ments.

6.3.4 Implementation

To implement the system described in the design section, three main methods

are required; one that tracks the user’s touches when they interact with the

screen, one that tracks the user’s touches when they move them, and one

that is called when the user removes them. There are three touch-based

delegate methods in the ‘UIResponder’ class, provided with the iOS SDK,

which can handle the touches in the way required. These are outlined in

Table 6.1.

93



6.3 Touch Interaction

Method name Description
touchesBegan This method triggers when touches

begin – it allows the developer to
use the point touched as a set of
Cartesian coordinates.

touchesMoved This method is called when the
touches are moved. The Carte-
sian coordinates then update in real
time.

touchesEnded This is called when the touches are
removed.

Table 6.1: Touch delegate methods and their descriptions

The following code was used to implement the ‘touchesBegan’ method:

1

2 -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

3 {

4 UITouch *touch = [touches anyObject];

5 if(touch.view == myImageView)

6 {

7 CGPoint position = [[touches anyObject] locationInView:

self.view];

8 xTouch = position.x;

9 yTouch = position.y;

10 }

11 }

The method uses an instance of the ‘UITouch’ class to tell when a specific

area on the screen (myImageView) has been touched. If this area is touched,

a CGPoint (Core Graphics Cartesian coordinate system) value is assigned to

the object ‘position’. It is then possible to test this by printing the variables

to terminal, to verify that the touch point is being tracked. A similar method

can then be used to detect when the touches have been moved:
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1 -(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

2 {

3 UITouch *touch = [touches anyObject];

4 if (touch.view==myImageView)

5 {

6 CGPoint position = [[touches anyObject] locationInView:

self.view];

7 xTouch = position.x;

8 yTouch = position.y;

9 }

10 }

When the touches are moved, the coordinates update in real time. It is then

possible to use a similar technique to implement the ‘touchesEnded’ method,

as shown below. Anything can be included in the method body, and will be

run when the touches have been removed.

1 -(void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

2 {

3 UITouch *touch = [touches anyObject];

4 if(touch.view == myImageView)

5 {

6 //Perform actions

7 }

8 }

A video of the final implementation of this system running on an iPad

simulator can be found in Video 6.2.

6.3.5 Conclusions

The code written in this chapter allows for the tracking of the user’s touches

when operating the sound feedback. As mentioned in the initial evaluation

section, the design held up to the design requirements – there is a clear

differentiation between the user touching the screen, moving their touches,
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and the touches being removed. The touch information gathered can now

be used by other methods to perform the calculations to drive the audio

engine.

6.4 Touch to Feature Mapping

This section describes the development of algorithms to calculate the relative

position of the target graphical feature and the current touch position. The

calculations should then be used to communicate this information with the

audio engine such that an appropriate sound mapping can be used.

6.4.1 Philosophy

When designing a method of determining a relationship between touch po-

sitions and a graphical feature a vector is used. An angle and a magnitude

can be used to determine the direction, and the distance to an image feature.

There are, however, some important things to consider with regards to the

way the feature is mapped to the touch:

(a) Should the image feature be the central point, and therefore the

centre of the auditory field? (an exocentric approach) (Figure 6.5); or

(b) Should the point touched be the centre of the sound field? (an

egocentric approach) (Figure 6.6).

Of the two designs, design (a) allows for an approach where the user is

the centre of the sound field. They would be free to explore the auditory

world and sounds around them will relate to physical positions on, or off, the

screen. Design (b) would allow for an approach where the target is the centre

of the auditory world. The user would then try and aim for this point with

their touch. Design (b) has the following drawbacks: The inability to track
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Figure 6.5: Vector between point touched and image feature

Figure 6.6: Vector between image feature and point touched

multiple sources – if the central point of the auditory field is a target, then

it’s impossible to track multiple sources simultaneously. A non-user centred

design means that an exploratory approach would be less logical – the user

would need to work backwards to determine the point of their own finger,

not to determine the position of the source.
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6.4.2 Design

As discussed in the previous section, a user-centred design will benefit an

exploratory approach for searching images with sound. This means that all

calculations should be from the perspective of the user’s touch. To determine

a vector between the touch of a user, and the image feature, Equation 6.2 and

Equation 6.3 (Equation 6.1 written in terms of the ‘x’ and ‘y’ direction) can

be used to calculate the change in ‘X’ and ‘Y’ positions between the touch

and the image feature, where ‘t’ is the touch point – its respective direction

denoted by the subscript ‘x’, or ‘y’.

∆X =

∑Nx

Px=0
Px

Nx

− tx (6.2) ∆Y =

∑Ny

Py=0
Py

Ny

− ty (6.3)

It is then possible to use the following result to calculate the angle (Θ) of

the vector in degrees using Equation 6.4.

Θ =
180

π
arctan

(
∆x

∆y

)
− π

2
(6.4)

To complete the positional vector its magnitude (|M |) must be found. This

can be done by rearranging the Pythagorean Theorem as shown in Equation

6.5.

|M | =
√

∆x2 + ∆y2 (6.5)

Then it is possible to calculate the magnitude of the vector, as shown in

Figure 6.7.

6.4.3 Implementation

To implement the functionality described in the design section, the average

of filtered pixel coordinates for each dimension (‘averageX’ and ‘averageY’)
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Figure 6.7: Calculating the distance between touch and image feature

must be known. As the knowledge to calculate this was acquired in Section

6.1, we must find a way determine the direction of the image feature relative

to the user’s touch. From Equation 6.4 it is possible to develop the following

method to calculate the angle:

1 -(void)calculateAngle

2 {

3 deltaX = xTouch - averageX;

4 deltaY = yTouch - averageY;

5 theta = ((atan2(deltaY, deltaX) * (180/( M_PI)))-90);

6 }

Lines 3 and 4 calculate the difference between the touch point and the average

point of the image feature, then line 5 uses Equation 6.4 to calculate the angle

from the perspective of the touch. With this information, using Equation 6.5,

it is possible to calculate the magnitude using the following method:

1 -(void)calculateMagnitude

2 {

3 float dx = xTouch - averageX;

4 float dy = yTouch - averageY;

5 magnitude = sqrt(dx*dx + dy*dy);

6 magnitude = abs((magnitude/100) - 10;

7 }
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In this code, line 5 uses Equation 6.5 to calculate the difference in pixels

between the touch point and the image feature. Here it uses a system called

proximity zones to divide up the distance into smaller parts – this will be

discussed in more detail in Section 6.6.1.

The final system devised in this section can be shown working in Video

Example 6.3.

It was decided that if the user were to find the image feature, an alert sound

should be used. If the user’s touch is within the shape, a message can be

sent to the audio engine to trigger an appropriate sound; this was done in

iOS by using the following method:

1 -(void) soundAlertFrequency

2 {

3 if(alertValue < alertZoneSize)

4 {

5 alertFrequency = 600;

6 }

7 else

8 {

9 alertFrequency = 0;

10 }

11 }

This method checks if the variable ‘alertValue’ is within ‘alertZoneSize’ pix-

els of the center point of the image feature. ‘alertValue’ being the value in

pixels between the user’s touch, and the center of the image feature. It is

calculated in the same way as magnitude. The ‘alertZoneSize’ should be set

to be the radius of the desired image feature in pixels.

A video example of this working can on the iPad simulator can be seen

in Video Example 6.4.
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6.4.4 Conclusions

The methods developed find the vector between the user’s finger and the

shape in real time. The mapping appears to be intuitive. By providing this

vector to the audio engine (discussed in the next two sections) the algorithm

can now ‘place’ the user in the center of the auditory field representation of

the image, and allow them to interact in real time to explore it. An area

for improvement is the way the alert zone is triggered. Further work should

involve finding a way to detect what colour pixel the user is touching, then

checking to see if it corresponds to the colour the image feature detection

algorithm is searching for.

6.5 The Audio Engine (Csound)

Now that a series of positional vectors have been calculated to drive the sound

creation, the audio engine itself must be designed. It was decided, from the

information gathered in Section 2.9, that the iOS-Csound API offered the

best functionality for this project, as it allows for messages to be sent be-

tween iOS and Csound with ease. This means that the implementation can

use the superior touch interaction and processing of iOS in tandem with the

powerful Csound audio engine.

This section describes the code used to send data from iOS to Csound. How-

ever it will not describe how this API works, or how it can be used in a

project. An in-depth tutorial, that was written (along with two other stu-

dents) to facilitate this masters thesis, has been included in Appendix C.

Additionally, its latest version is available from the following link:

http://www-users.york.ac.uk/˜adh2/iOS-CsoundABeginnersGuide.pdf
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6.5 The Audio Engine (Csound)

The following two subsections explain the main methods and opcodes that

the iOS-Csound API uses to allow the two platforms to communicate. The

‘calculateAngle’ method is used as an example to demonstrate how the in-

formation is sent using the API.

6.5.1 Sending Data from iOS to Csound

The ‘setup’ method (iOS-Csound delegate method) is used to inform Csound

that it will receive a variable using the following code:

1 -(void) setup:(CsoundObj *)csoundObj

2 {

3 NSString *azimuthString = @"azVal";

4 azimuthChannelPtr = [csoundObj getInputChannelPtr:azimuthString];

5 }

Line 3 creates a string called ‘azVal’ (azimuth value) to give a name to the

communication channel via which iOS will send values to Csound. Line 4

then creates a channel pointer such that iOS can write information to it.

This is done using the ‘getInputChannelPtr’ method – a iOS-Csound API

method. This pointer is then updated by assigning the variable ‘theta’ to

the pointer’s memory address using the ‘updateValuesToCsound’ method.

This method then sends this value to Csound at intervals dependent on the

control rate. This is shown below:

1 -(void) updateValuesToCsound

2 {

3 *azimuthChannelPtr = theta;

4 }

It is then possible to repeat this process for all variables we wish to send

from iOS to Csound.
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6.5.2 Receiving Data from iOS in Csound

To receive the information in Csound the ‘chnget’ opcode is used to re-

trieve the information from a channel allocated by iOS. This is written in

the Csound .csd file as follows:

1 kAz chnget "azVal"

The Csound opcode ‘chnget’, or ‘channel get’, takes the value from the chan-

nel ‘azVal’ and assigns it to a k-type variable in Csound – a value that updates

in accordance with the control rate. Then it is possible to use this variable

within Csound to control parameters of opcodes.

6.6 Auditory Mappings

This section documents how the auditory mappings used in the tests were

developed. Each mapping’s theoretical design is discussed, and then its im-

plementation in Csound is described.

6.6.1 Pulse Train

A pulse train, also known as a pulse wave, is a regularly occurring pulse

in a signal. It can take the form of a number of types of wave – square,

saw-tooth, triangle, etc. [Howard, 2005, pg. 471]. Generally this is used

in digital electronics to regulate a timed process. However, it has also been

shown that pulse trains can be successfully applied to auditory displays (as

discussed in Section 3.2). Yoshida’s [Yoshida et al., 2011] method of increas-

ing a pulse-train as a user gets closer to an image feature has been shown to

be an intuitive method of helping a user locate the approximate region of a

shape.

Rather than using Yoshida’s method of increasing the mapping linearly, it

103



6.6 Auditory Mappings

was decided that a series of proximity zones should be devised so that the

change in the frequency of the pulse train was more discrete (see Figure

6.8). Each proximity zone (partially inspired by the work in [McGookin

and Brewster, 2001]), used a different speed of pulse train – the higher the

proximity zone, the faster the pulse train. On an image the same size as the

iPad screen, typically 9 proximity zones were used. For larger images, the

number of proximity zones was scaled up accordingly so that the mappings

remained consistent.

Figure 6.8: Proximity zone system used to represent distance

An initial evaluation concluded that small variations were hard to detect,

and that larger and more discrete changes gave a better indication of how

far away the feature was. After some experimentation it was found that

nine proximity zones per screen was a good compromise. It was decided

that using a pulse train to control the volume parameter of a white noise

generator would be a good place to start when considering a binaural pulse

train – white noise is an ideal source for inferring spatial cues to a user as

it contains all frequencies. It was concluded that a saw-tooth wave should

be used to drive the pulse train, as opposed to a square wave. A square-

wave offers sudden bursts of signal, whereas a saw-tooth quickly ramps up

the volume – offering a less harsh pulsing sound. Two waveforms describing

these signals are depicted in Figure 6.9.
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Figure 6.9: Depiction of a saw-tooth and a square-tooth wave – taken from
http://commons.wikimedia.org/wiki/File:Waveforms.png

A comparison of the two sounds, made in Csound, can be heard in Audio

Example 6.1 (saw-tooth) and Audio Example 6.2 (squarewave).

To make the pulse train in Csound an amplitude parameter was ramped from

0 to 1 using the following code:

1 kphs phasor kSpeed

2 asignoise noise kNoise * ( kphs > 0.1 ? 0 : 1 ), 0

‘asignoise’ is an audio sample variable that is used to output the process to

the next section in the Csound code. ‘noise’ is the opcode used to generate

the broadband noise, and its amplitude parameter uses the table index of a

phasor opcode to ramp the amplitude from 0 to 1. The value 0.1 is the time

(in seconds) that it takes for this to happen – this was set to a low value such

that the pulse train can get to a high speed without overlapping with other

pulses. The value kNoise is the amplitude value of the pulse train – if the

user is touching the screen this is automatically set to a value deemed a good

volume for the listener (assuming a medium volume level on the iPad). The

value ‘kSpeed’ is sent from iOS in accordance with the method described in

Section 6.5 – this value is controlled by the magnitude of the vector between

the user’s touch and the image feature, as described in Section 6.4.
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Video Example 6.5 shows this algorithm working with the previously de-

veloped image processing algorithms to depict the distance from a feature

on the iPad simulator.

6.6.2 Binaural Panning

As discussed in Section 6.4 , the angle of the vector is the value sent to Csound

to control the binaural panning parameter. This parameter is the angle

between the touch of the user’s finger and the graphical feature, assuming

the angle’s origin is directly in front of the user. To implement this binaural

panning functionality in Csound the following code was written:

1 aleft, aright hrtfmove2 asig, kAz, 0, "hrtf-44100-left.dat","

hrtf-44100-right.dat"

‘aleft’ and ‘aright’ are the outputs – one for each channel. The ‘hrtfmove2’

opcode is based on the Woodworth spherical head model [Woodworth and

Schlosberg, 1962, pg. 349 – 361] and was used as it has efficient and highly

effective interpolation – ideal for a binaural implementation on iPad. Table

6.2 describes each of the arguments used in the implementation, along with

their typical presentation in italics. By sending the angle of the vector from

iOS, it is possible to tell the opcode to update the azimuth value of the

opcode (kAz). By doing this it is possible to then output a binaurally panned

version of the pulse train dependent on the angle of the vector coming from

iOS.

Video Example 6.6 depicts the binaural panning working along with pulse

train to provide auditory feedback on an iPad simulator.
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Argument Explanation
asig The opcode’s input signal (asrc).
kAz The azimuth value (kAz), in this

case the angle variable sent from
iOS.

0 The elevation of the source (kElev).
In this case the source is only
around the azimuth.

“hrtf-44100-left.dat” The file (ifilel) that the opcode gets
its HRTF spectral data file from –
in this case, the left.

“hrtf-44100-right.dat” The file (ifiler) that the opcode gets
its HRTF spectral data file from –
in this case, the right.

Table 6.2: Table of parameters the opcode ‘hrtfmove2’ takes as arguments

6.6.3 Colour Sounds

From the preliminary test (Section 5) it was evident that when dealing with

simple colours, the sound should be mapped in a similar fashion to the

colour spectrum – blue/purple colours should be represented by low sounds,

green/yellow colours should be represented by medium sounds, and colours

such as red and orange should be represented by sounds with higher fre-

quency content. It was found that, in general, users preferred low frequency

sounds, and that their preferred high frequency sound was the filtered phasor.

Based on this information it was concluded that to represent different pitches

a filtered phasor should be used to represent the colours red, blue, and green.

Some experimentation was done into choosing the right type of filtered sound.

The final approach adopts a method similar to that of formant synthesis –

using bandpass filters to cut notches into the frequency spectrum. For the red

sound, a low pitched phasor with low pitch bandpass filters cutting notches

into its spectrum was used, for the green a higher pitched phasor with higher
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bandpass filters, and for the red an even higher pitched phasor was used,

with even higher bandpass filters. The implementation of the red synth, in

Csound, is shown below:

1 aredPhasor phasor kredPhasorVal * (kphs > 0.6 ? 0 : 1 ), 0

2 aredBandPass1 butterbp aredPhasor, 700, 80

3 aredBandPass2 butterbp aredPhasor, 2000, 50

4 aredBandPass3 butterbp aredPhasor, 4000, 80

5 asigRedBands = aredBandPass1 + aredBandPass2 + aredBandPass3

The first line uses a phasor as the source of the pulse train using the same

method as described in Section 6.6.1 – its fundamental frequency set by the

‘kredPhasorVal’. The next three lines filter this source using the ‘butterbp’

opcode. Values of 700, 2000, and 4000 were chosen for the center frequencies

of the bandpass filters after some experimentation. The same experimental

technique was used for the q-values – 80, 50, and 80. The outputs of the filters

are then summed into a single output signal ‘asigRedBands’. By looking at

the sound’s (Audio Example 6.3) visual representation (Figure 6.10), in the

time domain, it is possible to see the pulse train repeating, and the energy

at the fundamental (180Hz), at the first bandpass filter (700Hz), the second

bandpass filter (2000Hz), and the third (4000Hz).

Figure 6.10: Time and frequency domain representation of colour synth
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6.6.4 Volume

When the image-detecting algorithm seeks and detects more than one colour,

multiple synths can be used to represent each feature. This presents a new

challenge – how to best differentiate the sound sources. When multiple

sources are being tracked, and played together they tend to clash unless some

volume parameter is added. For this implementation the volume mapping

described in Equation 6.6 was used.

Outputvolume =

(
Originalsignal

Scalingfactor

)
Magnitude2 (6.6)

The volume is first divided by a scaling factor – to prevent clipping – and

it differs from synth to synth and should be independently calculated by a

different function for more complex sources. This value is then multiplied

by the magnitude squared – this was done such that the volume maps in a

parabolic fashion to the image feature. This was found to be a good way

of separating the sources as linear mapping did not separate close sources’

volume enough.

6.6.5 Alert Sound

The function of the alert sound is to make the user aware that they have

found something. Therefore, it should be attention-grabbing and easy to

differentiate from the other sounds. As mentioned in Section 2.4.1 , we gen-

erally associate high frequency content with danger, therefore alerting sounds

are generally designed to be high-pitched. It is therefore suggested that a

high-pitched sound should be used to alert the user. An oscillator was used

as it is a simple, recognizable, sound that can be easily distinguished from

the other sounds used in the auditory display.

To make the alert sound even more distinguishable from the other sounds in
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the auditory display, it was decided that it should have amplitude modulation

– much like a siren. It was therefore suggested that the sinusoidal oscillator

should have a carrier signal to alter its amplitude. The carrier signal was

changed in proportion to the alert signal, so that if a higher-pitched alert

sound is used, its amplitude modulation will increase. This was implemented

in Csound as follows:

1 aoscil oscil 0.3, kAlert , 1

2 kVibFreq = kAlert/40

3 kvib vibr 0.8, kVibFreq, 2

4 aalertOut = aoscil * kvib

The first line creates an oscillator for the alert sound. Its amplitude is set at

a regular level such that it can be altered for different purposes, allowing the

vibrato sound to be added independently. The vibrato rate was calculated

by dividing the alert sound (kAlert), taken from iOS, by a scaling factor –

in this case 40 (this could be altered dependent on the application). The

‘vibr’ opcode was then used to provide a carrier frequency, such that it could

control the amplitude of the oscillator in the final line, producing the output

‘aalertOut’.

Video Example 6.7 shows the alert sound mapping, along with the other

mappings developed in the previous sections.

6.6.6 ‘Boing’ sound

As discussed in Section 6.2 , the sound to represent a user scrolling beyond

the bounds of the display should be proportional to how far they have scrolled

past it. It was decided that an oscillator should be used to portray how far the

user has scrolled off the screen – its frequency mapping to the proportionate

size. This mapping was created using the following code in Csound:

1 aboing oscil 0.1, kboing, 3
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This line uses the oscillator opcode ‘oscil’ – its amplitude value set to a

fixed value (in this case 0.1), and its frequency controlled by the offset value

(discussed in Section 6.2) sent from iOS. This oscillator then reads from

an f-table – in this case f-table 3. This f-table contains the fundamental

frequency, and some harmonics to emphasize some higher frequency content.

This sound was then panned binaurally using the method outlined in Section

6.6.2 – and its azimuth angle sent from iOS dependent on what side of the

screen the user exceeds. The following code shows how this was implemented

in Csound:

1 aboingOutL, aboingOutR hrtfmove2 aboing, kboingAz, 0,"hrtf-44100-

left.dat","hrtf-44100-right.dat"

An example of a simple searching task on a screen 9 times the size of the

iPad is shown in Video Example 6.8. The ‘boing’ synth is demonstrated

at the end of the video.

6.6.7 Dealing with Interaction

As in Section 6.3, the system was designed to react to the user’s touch, and

this must now be reflected in the audio. When, the user’s touch is removed

in iOS, the variables that control the repeating sound are set to zero. This

functionality was implemented in Csound thus:

1 if(kSpeed > 0) then

2 kNoise = 0.2

3 else

4 kNoise = 0

5 endif

This takes the form of an ‘if’ statement – if the variable ‘kSpeed’ (sent from

iOS) is greater than zero, the volume of the pulse train synth is set to 0.2.

Otherwise, it is set to zero. This means that when a user removes their

touches, or leaves the proximity zones, the pulse train is silenced.
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This section describes the methods used to test the techniques developed in

the Design and Implementation section, along with the primary hypothesis

(outlined in Section 4). The test methodology is discussed – outlining what

is being tested, and why. Then the design for the test is defined – describing

the plan for an experiment with participants to test the hypothesis, and the

auditory display techniques developed. The actual testing procedure is then

discussed, describing the technical setup, and the testing conditions.

7.1 Test Methodology

To evaluate the effectiveness of the techniques developed, and the primary

hypothesis, there should be two groups; a ‘treatment’ group (Group A) and

a ‘control’ group (Group B). Group B should be provided with auditory dis-

play parameters to find a specific feature in the image. Group A should have

additional parameters, with the aim of testing the primary hypothesis, and

other questions that have arisen during the thesis. For example, Group A

were given binaural audio as an additional parameter. Then, to judge the

parameter’s effectiveness, we compare the variation in the results when using

the extra sound parameter in assisting a participant in achieving their goal

against the control group who do not have that parameter.

The number of participants should be dictated by the amount of time al-

located for the testing procedure – in essence, there should be as many as

possible, as this helps when it comes to statistically validating the data. Ad-

ditionally, each group should have the same number of participants – and a

method to randomly allocate the participants into a group must be devised

in accordance with this.
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7.2 Test Design

This section describes the design of each test and how it relates to the primary

hypothesis, and some additional questions that have risen during the work

in this thesis. Each test is discussed and the auditory mappings described

in simple tables. For each test, it is noted whether or not the participant is

visually restricted, i.e., prevented from seeing the iPad screen.

7.2.1 Test 1: regular screen size searching

Test 1 is a series of sub-tests that examine the primary hypothesis – whether

spatial auditory display can be used to increase the subject’s ability to locate

specific graphical features on the screen of a tablet computer. To do this,

there should be a control group, and a treatment group. Each group should

then undergo the same basic test; with the parameters we wish to test missing

from the control group.

7.2.1.1 Test 1.1: finding a black dot [with/without binaural]

A simple image feature is used in this test – a small black dot on a white

screen (shown in the folder ‘Test Images ’, along with all other images used

in this test, on the CD associated with this project). The only difference

between the two groups of participants should be that only the treatment

group has binaural auditory feedback – allowing us to test the primary hy-

pothesis. Participants had the parameters outlined in Table 7.1.

Visually Re-
stricted

Binaural
Audio

Pulse
Train

Alert
Sound

Mono Au-
dio

Group A Yes Yes Yes No
Group B No Yes Yes Yes

Table 7.1: Parameters used for each group in Test 1.1
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The user is then tasked with finding this black dot, and their attempt is

timed. The time difference between the mean of the two groups will indicate

the effect of the binaural audio. This allows us to directly test the primary

hypothesis in a simple, yet unambiguous manner.

7.2.1.2 Test 1.2: three coloured dots [Group B not told colour

mappings]

As discussed in Section 5, a preliminary test concluded that there is evidence

of a preference for how we associate sound, specifically frequency content, to

colours. Test 1.2 was designed with the aim of finding out whether partici-

pants have a particular preference in the context of interactive sonification.

Participants have to find, and describe, three coloured dots (red, green, and

blue) that use the same mappings as described in Section 6.6.3. However, to

establish whether participants have an inbuilt preference for specific colour-

to-sound mappings, Group B should not be told the parameters. Based on

the experiment in Section 5, the chosen colour mappings are shown in Table

7.2.

Colour Sound
Red High frequency (Audio Example

6.3)
Green Medium frequency (Audio Example

7.1)
Blue Low frequency (Audio Example 7.2)

Table 7.2: Colour to frequency mapping parameters for Test 1.2

This not only tests the users’ colour-to-sound association, but more impor-

tantly the system’s ability to portray a more complex graphical field, this

time involving coloured objects. To ensure that the participants knew what

they were looking for, both groups were played the sounds over headphones

before beginning the test. In accordance with the aforementioned test pro-

cedure, at this point Group B was not told which colour was represented by
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which sound, and Group A were. The parameters used are outlined in Table

7.3.

Visually
Restricted

Binaural
Audio

Pulse
Train

Alert
Sound

Mono
Audio

Told
Parame-
ters?

Group A Yes Yes Yes Yes Yes
Group B Yes Yes Yes Yes No

Table 7.3: Parameters used for each group in Test 1.2

As Table 7.3 shows, the mappings between the two groups are the same. The

only difference is the knowledge of the participants – Group A knows the

colour mappings and Group B does not. The additional ‘volume mapping’

parameter was added because it was decided in the Design and Implementa-

tion Section that when representing multiple sources they often clashed, and

were hard to differentiate. The volume parameter mapping reduces interfer-

ence between different sound sources – the further away the user is touching

from the dot, the quieter it is. This allows for the local dots to be more

prominent, and for dots that are further away not to interfere, but still be

heard.

7.2.1.3 Test 1.3: Picture Identification [both groups with same

mappings]

The next logical decision was to determine whether a user could, with their

ears alone, determine if they were touching a specific picture. To this end,

four simple ‘minimalist’ (Figure 7.1) pictures were created and then partic-

ipants chose the one they believed they were interacting with. The same

mappings were used as Test 1.2 (as outlined in Table 7.4), but this time

Group B were told the colour-sound mapping as well as group A.
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Figure 7.1: The four pictures the user had to choose between

Visually Re-
stricted

Binaural
Audio

Pulse
Train

Alert
Sound

Mono Au-
dio

Group A Yes Yes No Yes
Group B Yes Yes No Yes

Table 7.4: Parameters used for each group in Test 1.3

As shown in the Table 7.4, the mappings are the same as in Test 1.2, but

without the alert mapping. There is no comparison between the two groups

in this test – it is simply about determining if participants can accurately

detect a whole image from sound.

7.2.2 Test 2: searching extended displays

Test 2 is a series of tests that challenge the system’s ability to present graph-

ical features on an extended display by means of the techniques examined
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in Test 1. It features similar challenges to Test 1, however, the participants

are asked to locate features on images that are much larger than the display,

using variations of the techniques in Test 1, therefore often making it more

challenging. The techniques are again tested using the same two groups – A

and B.

7.2.2.1 Test 2.1: black dot in a large image [with/without binau-

ral]

Test 2.1’s subjects were simply asked to find a black dot on the screen. Much

like in Test 1, this gives a good impression of how well the techniques devel-

oped scale up to larger displays, and how big an impact the binaural audio

makes. When deciding on a reasonable sized image for the user to be asked

to navigate, it was concluded that nine times the size of the iPad screen (each

dimension multiplied by three) would be a good choice – as from some initial

user tests it was found that four was too simple, and 16 was a little excessive

for the first test. The mappings of the sounds are outlined in Table 7.5.

Visually
Restricted

Binaural
Audio

Pulse
Train

Alert
Sound

‘Boing’
Sound

Mono
Audio

Group A Yes Yes Yes Yes No
Group B No Yes Yes Yes Yes

Table 7.5: Parameters used for each group in Test 2.1

For the sound mappings, the same parameters as Test 1 were used, with the

exception of an additional ‘boing synth’, as discussed in Section 6.6.6, to tell

the user when they had exceeded the bounds of the scrollable view.
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7.2.2.2 Test 2.2: three coloured dots in a large image [with/with-

out binaural]

Test 2.2, much like Test 1.2, involves finding three dots of different colours in

a relatively complex auditory field, however, Test 2.2 involves finding these

dots on a scrollable image nine times the size of the iPad screen. As with Test

2.1 and Test 1.1, this examines the effectiveness of using binaural audio to

locate the graphical features, however, it was expected to be seriously chal-

lenging to the participants – especially those in Group B (the group without

the binaural audio) because of the larger virtual image. The auditory map-

pings used are outlined in Table 7.6.

Visually
Restricted

Binaural
Audio

Pulse
Train

Alert
Sound

‘Boing’
Sound

Mono
Audio

Group A Yes Yes Yes No Yes
Group B No Yes Yes Yes Yes

Table 7.6: Parameters used for each group in Test 2.2

7.2.2.3 Test 2.3, Test 2.4, and Test 2.5: black dot in a large image

[no visual restriction]

Tests 2.3, 2.4 and 2.5 compare how well users can detect simple graphical

features with visual and auditory cues, compared to visual alone. There-

fore, for the purpose of this experiment, one group (Group A) could see the

iPad, and use the auditory display techniques developed to locate specific

features, and the other group (Group B) was only given visual cues. To

test the effect of increasing the display size, the participants have to locate

features on scrollable images of progressively increasing size – the details of

which are outlined in Table 7.7. This is represented graphically in Figure 7.2.
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Test Image size
2.3 9 x iPad screen (3072x2304 pixels)
2.4 16 x iPad screen (4096x3072 pixels)
2.5 25 x iPad screen (5120x3840 pixels)

Table 7.7: Dimensions of tests 2.3, 2.4, and 2.5

Figure 7.2: Progressively larger displays for extended desktop tests

As the task is simply to find a black dot on the screen, the auditory parame-

ters are similar to Test 2.1. However, Group B was deprived of any auditory

feedback – they were asked to take off the headphones. The parameters for

tests 2.3, 2.4, and 2.5 are outlined in Table 7.8.

No Visual
Restriction

Binaural
Audio

PulseTrain Alert
Sound

Boing
Sound

Group A Yes Yes Yes Yes
Group B No No No No

Table 7.8: Parameters used for each group in tests 2.3, 2.4, and 2.5

7.3 Experimental Procedure

This experimental procedure was designed to be repeatable, fair, and for the

participants to enjoy the experiment. The experiments were designed to be
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a series of goal-oriented tasks that became increasingly challenging, but still

not so hard that the user could not do them. The following sections describe

the test procedure chronologically, such that the tests may be produced, and

reproduced. Additionally, decisions behind the test choices and creation of

test materials are discussed in depth. Now that each test has been discussed

individually, the experiment as a whole is described. An overall aim is to

ensure that each participant has as close to ‘the same experience’ as possible.

This will help to ensure non-biased results, and a consistent and complete

set of data for each participant.

7.3.1 Allocation of Groups

In the beginning of the experiment the user is asked to take a seat. At this

point, to ensure the participants are randomly allocated into a group the

subject is asked which group they want to be in – Group A, or Group B. This

is a simple way of ensuring that the selection of participant’s group is random,

since the participants know nothing about the details of the experiment. If

the participant does know something about the experiments, to be sure of

fairness, a coin can be flipped as an alternative. It must be noted that only

the test coordinator knows the contents of the experiments, and the test

coordinator should not undertake the experiment.

7.3.2 Demographics and Ability to Perceive Binaural

The user is then given the script from the group they have been allocated

and they are asked to read through the introduction to the experiment. The

script is written in simple English and explains any technical terms to en-

sure that no participant is at a disadvantage. It is also essential to give the

participant a consent form outlining the terms of their participation in this

experiment – making it clear what happens to their data, what is expected

from them during the experiment, and informing them that their partici-

pation is entirely voluntary. After reading through the introduction to the
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test, and completing the consent form, the participant is asked to fill out a

demographics form. It is important that some parameters are known about

the participants to look for potential anomalies. It is essential that users

are allowed to elaborate on any of their answers to these questions, therefore

some space is left in the questionnaire such that they can write about their

experiences.

A test is carried out to assess how well users perceive binaural imaging. A

binaural sound example (Audio Example 2.7) is played, and the participant

asked where the man speaking is in the room. Additionally, they should be

asked where they believe the rats are in the room. This will allow for any

anomalies (where people simply do not perceive the spatial content of the

binaural audio) to be ruled out in the post-test data analysis process.

7.3.3 Test Description and Practice Examples

For each test it is essential that participants know not only what they are

doing, but also why. They should not feel as if there is information they are

not being told. For each of the two main sections of the experiment (Test 1

and Test 2) there is a detailed description of what the following sub-tests will

involve. This is done with minimum jargon and technical language. To ac-

company this, the test co-ordinator can answer questions as the tests unfold,

provided that they do not give the participant any clues about the image

they are visually restricted from. If questions of this nature are asked the

test co-ordinator would simply remain silent, or say “Sorry, I cannot answer

that question”.

Due to the complexity of some of the tests, and the fact that the user would

not have experienced anything similar before, it was important that the par-

ticipants were given a practical example before they undertook the tests.

This allowed them to become accustomed to the various mappings in a more

relaxed environment. Additionally, without visual restrictions they can see

121



7.4 Technical Setup

how the auditory display parameters map directly to the image before them.

It also allows familiarity with the gestures required, for example, to operate

the scrolling views in Test 2 – something that is hard to conceptualize from

text alone. The test co-ordinator ensures that the participant is familiar with

all of the parameters prior to starting the test.

7.3.4 Undertaking and Recreating the Tests

Each test script aims to unambiguously state the test to the user and make it

evident that they can ask questions throughout. It is important that the par-

ticipant is not rushed through the test and that they understand what they

need to do. To recreate the tests, the Xcode projects of the tests have been

included in the disk with this thesis under ‘Code for Experiments’. These

tests should be run on an iPad and adhere to the protocols described in the

next section. Additionally, the following scripts, designed and described in

this section, should be used to administer the experiments. Digital versions

of these scripts can also be found on the disk under ‘Scripts for Experiments’.

Group A – Appendix D

Group B – Appendix E

Test Coordinator’s Script – Appendix F

7.4 Technical Setup

For the tests to be undertaken and documented properly there are a series

of technical challenges: how the participant is visually restricted; how the

actual tests are documented and carried out; and how they are programmed.

The actual auditory display methods are discussed in the Design and Im-

plementation section (Section 6). This section focuses on overcoming the

technical obstacles behind the test’s design.
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(a) Box with cloth down (b) Box with cloth up

Figure 7.3: The visual restriction device used during the tests

Visual Restriction – visual restriction by means of a blindfold can often be a

uncomfortable experience for participants in an experiment, and this would

be a detriment not only to the participants, but also to the experimental

procedure. It is evident that alternatives such as Fernström’s technique of

using a box would alleviate the issue [Fernström et al., 2004]. Therefore a

similar, robust method, was developed to allow the user to see freely, except

for the area inside a box where they interact with the device.

To implement this, a simple cardboard box with a hole cut in either end was

used – a hole for the participant’s hands, and another so that the interaction

may be recorded on camera. Then the iPad is placed inside, and holes cut

in the side so an audio feed can be taken from the iPad. However, it was

evident on initial inspection that the participants would be able to see parts

of the iPad. So the box was covered with cloth on one side so that the user

could not see in, and not covered on the other side, such that the test could

be recorded. The final version of the visual restriction device is shown in

Figure 7.3a and Figure 7.3b.

Documenting the tests – A fully numerical evaluation of the tests would in-

volve writing code to describe the user’s interactions with the device, then
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printing it to terminal, or storing it in memory. For example, “The user is 30

degrees off axis and 40 pixels away from the target”. This was initially done,

but was found not to give a good impression of the user’s performance – it

did not capture the more subtle aspects of the users’ performances. An alter-

native numerical method of determining how well a user is finding features

would simply to be time how long they take to complete the tasks. This is

good for comparing two groups, however, it does not give a good impression

of why a user took a certain amount of time, or what methods they used to

find the dot.

On the other hand, a more descriptive method could be used to analyse the

data. Simply explaining what is happening, and presenting it by means of

video can give us a good impression of the user’s performance. The down-

side of this is the fact that it is hard to quantify differences between tests.

Eventually a compromise was chosen that allows for the descriptive method,

alongside a numerical method (timing how long it takes to complete a given

task). To implement this, the following specifications were written such that

a design could be realized:

• The system must allow for the recording of the participant’s hands,

and their interaction with the device at all times.

• The system must allow for the audio feed to be recorded, as well as the

user to hear it simultaneously.

• The system must incorporate the previously discussed visual restriction

device.

From these specifications, the schematic shown in Figure 7.4 was devised.

This schematic was then realized using a headphone amplifier to route the

signal to the recording device (a laptop with an audio interface), and the
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Figure 7.4: Schematic to undertake and record testing procedure

participant’s headphones (a high quality set of studio headphones). This

then meant that the audio feed could be recorded on the laptop using the

freeware audio editor ‘Audacity’, linked below:

http://audacity.sourceforge.net/

The camera was positioned such that the user’s hands and the iPad could

be filmed. The lights in the room were adjusted to ensure the best recording

quality throughout the tests. For Tests 2.3, 2.4 and 2.5 it was decided that

the lights should be dimmed further such that the participant was not re-

flected in the iPad screen while undertaking the test. Additionally the screen

of the iPad was dimmed to ensure that the participant could not see through

the cloth of the visual restriction device. The technical setup is depicted
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in Figure 7.5. The seat at 12 o’clock in the photo is where the participant

sat, and seat at three o’clock is where the test coordinator sat. The Test

Coordinator had a copy of the participant’s hand-out, as well as a copy of

the Test Coordinator’s script.

Figure 7.5: Picture of test setup

7.5 Data to be Gathered

Certain information is required to determine any patterns in the data. This

section describes the additional data requirements for each test, and outlines

their significance, and what possible conclusions can be drawn from them.

This is done such that the results can later be evaluated, and conclusions can

be made in light of the experimental hypothesis. The data to be gathered

from each test is described in the following subsections.
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7.5.1 Tests 1.1, 2.1, 2.3, 2.4, and 2.5

Success rate of finding the black dot – it will be evident from the video footage

if the participant found the dot or not. The success rate of each group can

then be compared.

Time it takes to find the black dot – the time the user takes to find the dot

will be a good indicator of how effective the binaural audio is at helping them

find the dots, when compared to the time of the group without the binaural

audio. It will be possible, by looking at values such as the mean time in

a group, to compare the effect of providing the participants with binaural

audio.

7.5.2 Tests 1.2 and 2.2

Number of coloured dots successfully identified – the number of dots whose

colour is correctly identified by Group B, compared to Group A, should

signify if they had any preconceptions about what colour they associate with

what frequency in Test 2.1. In Test 2.2, it is a good way of judging the

overall success of the mapping on an extended display when the both groups

are informed about the colour mappings.

Time taken to identify all dots – the time each group takes to identify all dots

should give an impression of the effectiveness of the system. The difference

between Group A and Group B should signify the extra time Group B have

to try and figure out the colour-sound mappings.

7.5.3 Test 1.3

Amount of pictures guessed correctly – the amount of times the participants

guess the pictures correctly is indicative of how effective the mappings are at
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representing simple images.

Time taken – the average time taken by the group is of interest –it gives us

an impression of how quickly the participants are able to make a decision

when exploring the image.
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8 Results

This section presents the results from the experiments described in the pre-

vious section. The participant’s demographics are described, and the test

results are presented. The noteworthy results from each test are described

and discussed, then these results are then considered as a whole in a review

of the key patterns found in the chapter.

8.1 Participant Demographics

18 participants took the experiment – nine in Group A, and nine in Group

B. The participants had an average age of 25.8 (standard deviation = 4.35)

and consisted of British, Chinese, Dutch, Greek, American, Belgian, and

Russian nationals. Of the 18 participants the majority were male (12), and

six were female. Most of the participants recruited for the experiment were

from the Department of Electronics (13), predominantly the Audio Lab, and

the remaining five were from the Department of Computer Science. Most of

the participants were musicians (12 out of 18), due to the fact that a large

number of participants were from the Audio Lab.

Participants were asked questions related to the perception of sound and

colour, binaural audio, and the use of tablet devices. Three out of the 18

participants claimed to have some form of sound-to-colour synesthesia – re-

lating specific pitches/timbres to colours. Of the 18 participants, only one

had not experienced binaural audio before. When played a short binaural

sample and asked to identify where they believed the source of the sound

to be emanating from, 15 participants said that they knew where the sound

was coming from at all times, and the other three said they knew where it

was most of the time – it was clear that nobody in the group was unable to

perceive the spatial information from the sound. With regards to the partici-

pants’ technology backgrounds – 16 people owned some form of touch-screen
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device, and the other two had some form of experience with them.

8.2 Test Results

The results were gathered from the observation of the videos – each partic-

ipant was timed undertaking each task, and the time was rounded to the

nearest second. It is possible to view the videos of each participant in whole

at the following link:

Playlist of all 18 participant’s videos:

http://www.youtube.com/watch?v=zD9XiN6i3lY&feature=

share&list=PLjVqjt929nNSoOZUtMnwrDlEtc7nCRsCW

Deductions were made from the user’s time if the participant stopped search-

ing for a short period for reasons out of their control, for example – a technical

fault. The times were then entered into Microsoft Excel for analysis. Addi-

tionally, the results were statistically validated using Chi-Squared tests and

the t-test for two independent samples. The Chi-Squared test (χ2) is a test

often used for non-numerical, categorical data. It allows us to compare ob-

served frequencies with theoretically predicted frequencies. To statistically

validate the results, Equation 8.1 was used to ascertain the Chi-Squared

statistic of a data set. This was then compared to the Chi-Squared distribu-

tion table to judge the result’s significance level [Howell, 2011, pg. 502] where

‘E’ is the expected result – the result that would be attained by chance, and

‘O’ is the observed result.

χ2 =
∑ (O − E)2

E
(8.1)
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The t-test for two independent samples was used to determine if there was

a significant difference between the two groups – i.e. a difference that could

not have happened by chance. The ‘t’ statistic was attained using Equation

8.2. It was then possible to observe the significance level by comparing this

value to the required significance level in a ‘t distribution table’, which can

be found in Howell’s Fundamental Statistics for the Behavioural Sciences

[Howell, 2011, pg. 596], or most books/websites on descriptive statistics.

t =
Xa −Xb√
S2
p

(
1
na

+ 1
nb

) (8.2)

Where S2
p =

(na−1)S2
a+(nb−1)S2

b

na+nb−2
, Xa is the observed mean of the control group,

Xb is the mean of the treatment group, nb is the number of participants in

the control group, na is the number of participants in the treatment group,

and sa and sb are the variances of the groups, respectively. The results were

then verified using the statistical programming environment ‘R’. It allows for

statistical tests to be run, and for an exact ‘p value’ to be attained. More

information about the R programming language can be found here:

http://www.r-project.org/

8.2.1 Test 1.1: finding a black dot [with/without binaural]

In this test every participant managed to successfully complete the primary

objective – finding the black dot. In accordance with the primary hypothesis,

the alternative hypothesis was that the group with the binaural audio (Group

A) was expected to outperform the group without the binaural audio (Group

B). The null hypothesis was that Group A would perform the same as, or

worse than, Group B.
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Figure 8.1: Test 1.1 – box plot for groups A and B when searching for a black
dot

Group A, on average, found the dot in 15.62 seconds (blue line in Figure

8.1), with a Standard Deviation of 14.66. Group B completed the test with a

larger mean time of 18.38 (red line in Figure 8.1), and with a Standard Devi-

ation of 10.68. A t-test was run for the two independent samples, attaining a

p-value of 0.6745 – failing to reject the null hypothesis at all reasonable con-

fidence levels – suggesting that this could have happened by chance. These

results are summarised in Table 8.1

Group Mean Standard deviation
A (sound) 15.62 14.66
B (no sound) 18.38 10.68

Table 8.1: Results for Test 1.1
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Discussion

From this test it was evident that the binaural audio, on average, sped up

the participants in finding the dot – the mean time of Group A was 17.7%

faster than the mean time of Group B. However, it is important to note that

without a strong level of significance, this cannot be said for sure. The low

number of participants could be responsible for the low levels in significance,

as well as the great variation in techniques used to locate the shape – result-

ing in relatively high Standard Deviations.

Two participants were not fully ready when they undertook the tests – these

were classed as statistical outliers. However as they progressed through the

rest of the tests, their results were much closer to the average – making it

evident that the data was an anomaly, and that they were not generally

performing poorly. These anomalous results underline the need for proper

practice sessions before the test. Each anomalous participant undertook the

practice session, but it was noted that neither of them tried the example

while not using visual cues. This lack of training is likely to be the cause for

their irregularly slow location of the image feature.

8.2.2 Test 1.2: three coloured dots [Group B not told colour map-

pings]

In this test Group A were told the colour-sound mapping parameters. With

this knowledge they were able to get on average 2.44 out of three dots cor-

rect. Group B, by means of instinctive guessing were able to get 2.33 out

of three dots correct. The null hypothesis was that Group B would guess,

on average, one out of three dots. This is what they would guess by chance.

The alternative hypothesis was that Group B would guess more than one

out of three correct, because they had preconceptions about how the three

different sounds relate to the three different colours. A Chi-Squared test was

run to determine the chances of group B guessing 2.34 out of three dots by

chance. A confidence interval of p = 0.09687 was attained, therefore reject-
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ing the null hypothesis at α = 0.1. Of those who identified all three dots,

Group A took an average time of 75.83 seconds and Group B took an aver-

age time of 122.67, with standard deviations of 46.27 and 92.1 respectively.

The key results are outlined in Table 8.2, and Figure 8.2 is a box plot of the

participant’s times.

Group Amount cor-
rect

Time taken Standard de-
viation

A 2.44 75.83 46.27
B 2.33 122.67 92.1

Table 8.2: Results for Test 1.2
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Figure 8.2: Test 1.2 – box plot for groups A and B when searching for three
coloured dots
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Discussion

The fact that the participants were able to guess the colours of the dots better

than chance suggests that they believed that red sounds are best represented

by high-pitch sounds, green by medium-pitch sounds, and blue by low-pitch

sounds – supporting the work described in Section 5. The significance of this

(rejecting the null hypothesis at α = 0.1) implies a relatively low possibility

of chance, however, it is not a strong enough confidence level to say this

definitively.

Group A did not get a perfect score despite being told the mappings before-

hand. This is because some participants either did not find all of the dots,

or they got confused and forgot the mappings. It was clear that Group B

were slower because they took a lot longer to think about the mappings they

associated with each colour – often going back and forth between colours

once they had found them. This extra search time also explains the larger

standard deviation in Group B as some participants took the extra time to

think about the sound mappings, whereas others guessed quicker. Group A

generally tended to name them as they went along and made the decisions

with regards to what colour they were touching as they already knew the

mappings.

8.2.3 Test 1.3: picture identification [both groups with same map-

pings]

In this test the participants were tasked with guessing which one of the

pictures they were touching based on the auditory feedback alone. If the

auditory feedback did not help the participants find a picture they would get

it right, on average, one quarter of the time (as there were four pictures).

Therefore, the null hypothesis was that each picture would be chosen 4.5

times by the 18 participants. The alternative hypothesis was that, with the

assistance from the auditory feedback, they would guess Picture Three, the

correct answer, more than 4.5 times. The pictures they chose in the experi-
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ment are described in 8.3 where ‘Expected’ implies the expected amount of

times chosen (what would be expected by chance), and ‘Observed’ denotes

the observed number of times chosen.

Picture 1 2 3 4
Observed 0 1 17 0
Expected 4.5 4.5 4.5 4.5

Table 8.3: Number of times each picture was chosen by the participants

It is evident that picture three, the correct answer, was selected considerably

more than the other pictures by the participants. A Chi-Squared test was run

to test if this could happen by chance. A p value of 4.562e−10 was attained

– rejecting the null hypothesis at α = 0.05. With regards to time taken, the

participants took between 11 and 51 seconds to identify the picture, with an

average time of 27.34 seconds and a standard deviation of 12.85. The spread

of times in this test is depicted in Figure 8.3.

Discussion

It was clear from this test that the participants were able to detect a picture

from its sound representation without guessing – such a low p-value suggests

a very low chance of the subjects attaining this score by means of guessing

alone.

The large variation in times can be attributed to the searching techniques

of the individuals. When discussing the test with the participants after the

experiment it became evident that some participants looked at the pictures

beforehand and made a mental model of what they believed they were look-

ing for. Meanwhile, others investigated the screen, and then by process of

elimination chose their answer. The subjects with the faster times generally

had more logical searching patterns, and adhered to the first approach pre-

viously described. The video examples below shows the participant who got

the fastest times in this test.
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Figure 8.3: Test 1.3 – boxplot of time taken to complete inspection of picture

Participant with the fastest time on Test 1.3:

http://youtu.be/7rpAev5eYeM?t=1m14s

8.2.4 Test 2.1: black dot in a large image [with/without binau-

ral]

The participants were largely successful in finding the black dot in this test –

17 out of 18 were able to find it. The null hypothesis was that the additional

binaural parameter that A was given would not speed up their performance,

and the alternative hypothesis was that Group A would take less time to
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complete the task than Group B.

In the experiment it took Group A on average 108.25 seconds (blue line in

Figure 8.4), with a standard deviation of 68.16. Group B took longer – 131.50

seconds (red line in Figure 8.4), with a Standard Deviation of 71.66. A one

tailed t-test for two independent samples was used, attaining a p value of

0.5036. There was a large range of times in each group – ranging from 31,

up to 231 seconds in Group A, and from 48 up to 215 seconds in Group

B. It is clear from looking at the boxplot (Figure 8.4) that A had a large

distribution of results, but the interquartile range for Group B was larger.

The key results from this test are summarised in Table 8.5.

Group Time (seconds) Standard deviation
A (sound) 108.25 68.16
B (no sound) 131.50 71.66

Table 8.4: Results for Test 2.1

Discussion

It is clear from the times that Group A performed better than Group B –

they located the dot 21.5% faster. However, due to the relatively low level of

significance it is not possible to say this could not have happened by chance.

From observation of the standard deviations, it is clear that Group B had

slightly more disperse times than Group A. Upon watching the videos, it

becomes evident that, in general, Group B were far more sporadic in their

search. Group A tended to begin by touching the screen, and then moving

in the direction they believed the source to be. It normally took B longer to

get into the same area as the dot, and longer to locate it locally.

The large interquartile range suggests that even though Group B had a di-

verse set of times, there were not a lot of anomalous pieces of data – but a

good representation of the group’s performance. It is clear that with Group

A that this was not the case – the interquartile range appears small, but the
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Figure 8.4: Test 2.1 – box plot for groups A and B when searching extended
display

large whiskers suggest some participants scored very low, and others very

high times – suggesting some participants fully understood the mappings

and performed well, and others had a hard time with the mappings. It is

evident from observation of the videos that the slowest times from each group

were mostly people who got mixed up with the interaction system. Often

they were trying to scroll when they had already scrolled up against a wall –

it was evident that the ‘boing’ alert was not prominent enough to alert the

user to this fact when making smaller movements (as shown below).
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Video example of ‘boing’ sound being ineffective:

http://youtu.be/uYvJJDKPztU?t=20m53s

8.2.5 Test 2.2: three coloured dots in a large image [with/without

binaural]

In this test, seven out of the nine participants in Group A found all three

dots, and one participant located two dots. One participant, who was classed

as an exception due to giving up after 163 seconds found no dots. The group,

on average found 2.56 out of three dots. In Group B, four out of nine partic-

ipants found all three dots, two found two dots, two found one dot, and one

located no dots. The group, on average, found two out of three dots.

The fastest time to find all three dots successfully in Group A was 155 sec-

onds, and the slowest time was 309 seconds. In Group B, the fastest time

was 159 seconds, and the slowest was 691 seconds. The null hypothesis was

that Group A, with the binaural audio, would perform the same as Group B.

The alternative hypothesis was that Group A would be able to find the dots

quicker without the binaural audio. The average time to finish for all mem-

bers of Group A was 242.75 seconds (blue line in Figure 8.5), with a standard

deviation of 65.71, and for Group B, a slower time of 391.34 seconds (red line

in Figure 8.5) was observed, with a much larger standard deviation of 249.81.

A one tailed t-test for two independent samples produced a p value of 0.1244,

indicating a relatively high level of significance in the results.

Group Time (seconds) Standard deviation
A (sound) 242.75 65
B (no sound) 391.34 249.81

Table 8.5: Results for Test 2.2

The average time for those who found all three dots in Group A was 254.85
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Figure 8.5: Test 2.2 – box plot for groups A and B when searching extended
display with three colours

seconds, with a standard deviation of 60.58. In Group B this was higher at

312 seconds, with a standard deviation of 255.16 seconds. A one tailed t-test

for two independent samples produced a p value of 0.5867 – a low level of

significance.

Discussion

It is clear that, overall, Group B had a harder time locating and identifying

the dots – they scored worse than Group A when correctly identifying the

dots. This can be attributed to a number of factors – the extra concentration

they put into locating the dot when close to it often led to some confusion

– even if they knew they were on a dot, they were not able to spatially dif-
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ferentiate the sources in the manner Group A were able to. Additionally, a

potential explanation is that Group B did not have the informed practice of

interacting with a multi-colour auditory field that Group A had in Test 2.2

– this may have slightly altered the outcome of the test.

As with Test 1.1 and 2.1, Group A appears to have a faster overall finish

time, with a more statistically significant result. Group A were able to finish

the task, regardless of whether they correctly located all the dots, 61.21%

faster than Group B, and were generally more successful in finding the dots.

However, the difference between those who actually found all three dots is

not as great – only 22.42%, with a lower level of significance due to the lower

number of participants included when calculating this test statistic.

There was a very large standard deviation in Group B – 3.8 times that of

Group A when considering all results, and 1.99 times that of Group A when

considering only right answers for both groups. This is largely due to some

participants taking very long to complete the test, often because they had

decided to give up using the auditory display techniques. A good example

of this would be the participant that simply chose to raster the screen with

their finger until they heard the alert (as shown in the video example below).

It was evident that some of the group without the binaural audio found it

extremely challenging to complete the task using the audio.

Example of participant rastering the screen and not relying on the

sound to locate the feature at all:

http://youtu.be/JIfyPl041J4?t=15m
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8.2.6 Tests 2.3, 2.4 and 2.5: black dot in a large image [no visual

restriction]

In these tests all participants found the dots. This was expected as they were

searching with their eyes and eventually this was going to happen regardless.

In Test 2.3, Group A (with the auditory feedback) found the dot in 10.55

seconds (blue line in Figure 8.6) with a standard deviation of 10.56. Group

B (without the auditory feedback) took longer, with an average time of 14.33

seconds (red line in Figure 8.6) and standard deviation of 10.26. The fastest

participant in Group A took six seconds, and the slowest took 24 seconds. In

Group B the fastest participant also took six seconds, and the slowest took

36 seconds.
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Figure 8.6: Test 2.3 – box plot of Group A (audio and visual) and Group B
(visual alone) on a screen 9 times the iPad screen
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In Test 2.4, Group A (with the auditory feedback) found the dot, on average,

in 12.44 seconds (blue line in Figure 8.7) with a standard deviation of 5.98.

Group B (without the auditory feedback) took 15.22 seconds, on average

(red line in Figure 8.7), with a Standard Deviation of 11.13. The fastest

participant in Group A took three seconds, and the slowest, 22. In Group

B the fastest participant found the dot in just two seconds, and the slowest

took 39 seconds.

A B

10
20

30
40

Group

Ti
m

e 
(s

ec
on

ds
)

Figure 8.7: Test 2.4 – box plot of Group A (audio and visual) and Group B
(visual alone) on a screen 16 times the iPad screen

In Test 2.5, Group A (with the auditory feedback) found the dot, on average,

in 15.56 seconds (blue line in Figure 8.8), with a standard deviation of 5.6.

Group B (without the auditory feedback) took under half this time – 7.22

seconds (red line in Figure 8.8), with a standard deviation of 3.99. The fastest

participant in Group A took 9 seconds, and the slowest took 27 seconds. In
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Group B, the fastest participant found the dot in just four seconds, and the

slowest in 15 seconds.
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Figure 8.8: Test 2.5 – box plot of Group A (audio and visual) and Group B
(visual alone) on a screen 25 times the iPad screen

Discussion

In Tests 2.3 and 2.4 those with auditory assistance appear to outperform

those who use their eyes alone – the mean time taken to find the dot was

lower than that of the group who just used their eyes alone. Additionally,

the lower standard deviation suggests a more consistent performance. From

observing the video recordings it is possible to say that Group A seemed to

adhere to a highly logical searching pattern – first determining the direction

they need to travel in by listening to the sound, and then making minor ad-

justments toward the feature as they edged closer. Group B, however, opted
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for a more sporadic searching method – meaning that the times were highly

dispersed, and on average less reliable. Often the participants in Group B

would opt for a ‘rastering’ approach, where they would begin in a corner and

raster around the image until they found the dot. This approach generally

resulted in low times.

Test 2.5 appeared to exhibit anomalous results – the extreme inverse of what

had been happening in the previous two tests occurred – Group B (with-

out auditory feedback) outperformed Group A (with the auditory feedback)

significantly. A potential reason for this is an experimental error – when

creating the image for the application, an error was made in which the dot

was mistakenly made larger than expected, and the starting point for the

user was very close to the dot. This meant that Group B’s more sporadic

searching approach was more effective as the dot was large, and therefore

very easy to detect from visual inspection, and if they simply scrolled a little

to the left they found it instantly. Hence, it is possible to conclude that the

results from Test 2.5 may be erroneous, however further work should be done

to assess this. The results for tests 2.3, 2.4 and 2.5 are summarised in Table

8.6.

Test Group A (sound)
time

Group B (no sound)
time

2.3 (9x) 10.55 (SD = 10.56) 14.33 (SD = 10.26)
2.4 (16x) 12.44 (SD = 5.98) 15.22 (SD = 11.13)
2.5 (25x) 15.56 (SD = 5.6) 7.22 (SD = 3.99)

Table 8.6: Results for Test 2.3, 2.4 and 2.5

8.3 Results Conclusions

In this section the key findings from the results are discussed as a whole. The

key themes throughout the results section are explored – the use of binaural
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audio, the users’ ability to match colours to sounds, and the effect of auditory

feedback when used in tandem with visual cues.

8.3.1 Comparing Binaural and Monaural

The results indicate that the use of binaural audio aided the users in locating

image features. Moreover, additional patterns emerged – as the tasks became

more complicated, the percentage difference in time between the two groups

increased, as shown in Figure 8.9.
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Figure 8.9: Percentage difference in binaural and monaural location times for
different tests

In Test 1.1, Group A were able to locate the image feature 17.7% faster than

Group B, and in Test 2.1, in which the screen is 9 times larger, there was a

21.5% difference between the groups – those with binaural audio appear to

perform even better in comparison to the non-binaural group. The difference

between the groups in Test 2.2 becomes larger – an increase of 0.92% between

the two groups when an additional difficulty is added – implying that as the
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tasks become more complex, the binaural audio helps more. However, as

aforementioned the poor number of trials and participants shows resulted

in relatively poor confidence, therefore it is not possible to say this defini-

tively.

8.3.2 Comparing Audio and Visual to Visual Alone

Due to the fact that in Test 2.3 the searching pattern was far more logical (as

shown in the videos and by the lower standard deviations), it was expected

that there would be a positive correlation between the size of the screen and

the effectiveness of auditory feedback.

It is evident that in Test 2.3 those with binaural audio were able to find the

dots faster with the auditory assistance – Group A were 35.8% faster than

Group B. However, in Test 2.4 this difference dropped to 22.23%. These are

both noteworthy results, however, additional tests would need to be done

to determine why the group without the audio in Test 2.4 seem to perform

better, relative to Test 2.3.
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9 Conclusions and Further Work

This section provides an overview of the knowledge gained throughout this

thesis. The primary hypothesis is re-examined, and the major conclusions

and noteworthy results are outlined. Potential further work is then discussed

to suggest potential future avenues of exploration.

9.1 Review of Hypothesis

The original hypothesis of this project was as follows:

“It is possible to improve a user’s understanding of graphical data by

using spatial audio to provide interactive auditory feedback.”

However, after reviewing the current technological possibilities in Section 2,

and reviewing the work done in the area in Section 3, the hypothesis was

refined in Section 4, to:

“It is possible to detect graphical features on a tablet display by means

of real-time, interactive, binaurally spatialized audio.”

This hypothesis was then challenged through a series of user tests. The major

conclusions from the tests are discussed in the next section.

9.2 Major Conclusions from Studies

In the Research Agenda (Section 4) several conclusions were drawn with

regards to sonification strategies, interaction techniques, and test design

methodologies. These conclusions helped to drive the development of the
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auditory display techniques (Section 6) and their corresponding user tests

(Section 7). From the user tests, results were attained and analysed (Section

8).

The results acquired suggest that a binaural auditory display can aid users to

find image features faster, on a variety of display sizes, without visual cues.

On average, those with the assistance of binaural audio were able to locate

graphical features more accurately, and speedily, than those without the pa-

rameter. Additionally, the searching technique used by those with binaural

audio relied on the auditory feedback more – whereas the group without

the binaural parameter often relied on a more sporadic, non-auditory-based,

searching approach.

As outlined in Section 8.3.1, the participants with the binaural audio per-

formed increasingly better than those without, as the images became larger

and more complex. This suggests that the effect of binaural auditory feed-

back becomes more evident when the tasks are more complicated. As stated

in the conclusion of the results section it was clear that the difference be-

tween the two groups appeared to be most significant when the size of the

iPad display was increased.

As described in Section 8.2.6 it was evident that the participants with both

auditory display and visual cues were able to find graphical features faster

than those with visual cues alone. Those with auditory cues tended to log-

ically edge closer to the image feature, whereas those without the auditory

feedback often adopted a more sporadic searching approach. This suggests

that binaural auditory display, when used in tandem with visual cues, can

help us find graphical features faster than visual inspection alone. Addition-

ally, it was shown that the participants were able to identify simple pictures

from binaural auditory feedback with an insignificantly small possibility of

chance. This implies that using the techniques described in this thesis, users
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were able to identify simple pictures with a high success rate.

In the work that followed on from the Preliminary Test it was found that

the participants who were not told the colour-sound mappings were able to

find, and guess correctly, the colour of three dots on a screen better than

chance. This implies that we have preconceptions with regards to colour

to sound mappings in the context of sonification. This experiment and the

preliminary work (Section 5) suggests that we associate high-pitched sounds

with high frequency colours in the spectrum (red, orange, etc.), and low-

pitched sounds with the low frequency colours (purple, blue, etc.).

9.3 Recommendations for Further Work

This section discusses the potential avenues for further exploration by sug-

gesting areas of work that extend or refine the work in this project.

9.3.1 Additional Testing of Visual vs. AudioVisual Tests

It was apparent that the tests comparing the participant’s abilities to detect

graphical features by means of auditory and visual cues was partially marred

by the experimental error in the last test (see Section 8.2.6). It is therefore

suggested that this test should be revisited to some extent. Moreover, ad-

ditional tests can be devised to determine whether auditory feedback helps

visual searching when a more complex visual field is used – for example, ask-

ing the user to locate three colours instead of a black dot on an extended

display. It would be of interest to see if the complexity of the interface causes

the difference between the groups to become larger, much like in the visually

restricted tests. It must be noted that if the tests were run again the num-

ber of participants should be doubled. Two groups of nine did not allow for

sufficient statistical backing in the results.
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9.3.2 Investigate the Effect of Binaural Audio Using Other Tech-

niques

The effect of using a binaural parameter was tested by using it with other

techniques, then comparing it with another group who did not have binaural

parameter, but still had the other techniques. If, for example, a pulse train

was not used, but another mapping method, would the results be any dif-

ferent? This is something worth considering when making recommendations

for further experimentation.

9.4 Potential Applications

The potential applications of the interactive sonification techniques devel-

oped in this project extend that of interacting with images. This section

describes some viable applications of the techniques that could be imple-

mented with minimal adaptation to the auditory mapping techniques them-

selves.

9.4.1 Adapting Computer Interfaces for the Visually Impaired or

Visually Engaged

Interfaces such as Apple’s ‘VoiceOver’ utility (more information at http:

//www.apple.com/accessibility/osx/voiceover/) could be improved us-

ing techniques similar to those documented in this thesis. Currently, when

using VoiceOver, a blind user who wishes to interact with a Microsoft Word

document on the desktop of their computer. If they wish to find an icon

on the desktop they need to either use the ‘tab’ key to tab through every

item on the desktop, or search with the mouse until the mouse intercepts the

image by chance. The utility then announces in synthesized speech “You are

currently on a Microsoft Word document”.
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The following hypothetical scenario provides an example of applying the

techniques developed in this thesis to this problem. It is thought that by

allowing the user to search themselves, as opposed to tabbing through every

single item on the desktop, they would not only have more control, but in

time they could potentially become a more effective computer user.

The user places their mouse on the desktop and presses a keyboard

shortcut. This keyboard shortcut activates a mode where all files on the

desktop are read in the form of spearcons. The spatial audio then al-

lows the user to differentiate between the sources and move their mouse

over to the desired file – the pulse train and volume mapping parameter

aiding them in determining how far they are away, and the binaural

parameter helping them decipher its direction. Once the user hovers

their mouse over the file the utility announces “You are currently on a

Microsoft Word document”.

Techniques similar to this could also be used to assist those with their eyes

elsewhere on a specific task – for example a runner who wishes to access a spe-

cific track on their music player while out jogging. Pseudo-haptic interfaces,

as discussed in [Fernström et al., 2004], could be enhanced with binaural

parameter mapping such that users can locate specific features better, or

perhaps get a better gist of the interface from sound alone.

9.4.2 Allowing Users to Search Vast Images Such as Cervical Can-

cer Data

As discussed in Section 3.2 it was found that auditory display can be used to

find specific colour ranges in a section of a cervical cancer slide image. The

techniques described in this thesis could be applied to the same problem.

Specific areas of interest could be spatialized around the listener – provid-

ing them enough information to seek, with their eyes and ears, potentially

dangerous cells. The interaction techniques to extend the display would also
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allow the clinician to search vast images of cells with ease, using the au-

ditory display to alert them to off-screen cells and find potential areas of

interest.

9.4.3 Using Spatial Audio to Improve User-Experience

Most commonplace modern-day operating systems such as OS X, Android,

iOS and Windows use multiple desktops to some degree – an example of this

being Apple’s ‘Spaces’ paradigm, as shown in Video Example 9.1. When an

application on another screen requires the user’s attention, it often provides

a visual cue – in the case of a Windows machine its icon in the toolbar flashes

orange, and in the case of Macintosh computers, the icon bounces up and

down and occasionally a mono auditory icon/earcon is given. None of this

offers directionality – the user simply does not know what direction to scroll

to access the application.

The techniques developed during this project could be applied to this problem

by spatialising the auditory icon in the direction the user must scroll to find

the application that requires attention. A pulse train parameter could then

get faster as the user moves closer to the required desktop – getting faster

desktop by desktop. Once the user has reached the target desktop the sound

could resolve spatially (become central) and stop making sound once the

user had interacted. This simple feature could be used to increase interface

immersion and user satisfaction. Additionally it would save valuable screen

space by not presenting a visual cue – therefore making this paradigm ideal

for smaller devices.

9.5 Summary of Findings

From the information described in the previous 8 Sections it is possible to say

that the hypothesis has been supported by the findings in this thesis. The
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results from the user experiments that tested the auditory display techniques

allow us to make the following five conclusions:

• Using binaural audio as an interactive sonification mapping parameter

can aid users in the location of graphical features.

• The larger and the more complex the display, the more the users rely

on the auditory mapping parameters.

• Binaural auditory displays can be shown to improve a user’s perfor-

mance when used in tandem with visual cues to search a graphical

display, compared to the use of visual cues alone.

• Users can identify simple pictures by means of spatial auditory display

using the techniques developed.

• Users have preconceptions with regards to colour-to-sound mappings

in the context of sonification.

The work done in this project expands the current ideas used to represent

graphical information by means of auditory display. It is evident that using

binaural audio as a mapping parameter can not only improve our perception

of graphical data when we are unable to see it, but it can also increase our

ability to locate graphical features when used in combination with visual

cues. Therefore it is possible to conclude that binaural audio is indeed a

meaningful interactive sonification mapping parameter to extend the visual

domain.
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ABSTRACT

This paper describes a series of experiments de-
signed to test auditory display techniques for the
interactive sonification of graphical features on a
tablet computer. The aim of these experiments was
to evaluate new sonic methods for finding graph-
ical features on a tablet computer screen for both
regular size, and extended (larger than physical screen
size) displays. A series of tests was designed to
evaluate the techniques, and determine the effec-
tiveness of binaural information in a series of goal-
oriented searching tasks. The results show that the
use of binaural audio gives faster location times,
allows better searching techniques, and yields an
improvement in locational ability when using au-
ditory and visual information in tandem.

1. INTRODUCTION

In an era where displays are smaller, and screen
real-estate is limited, the Human-Computer Inter-
action community is continuously exploring new
approaches to tackle the challenge of fitting more
content on less screen space. In the field of soni-
fication, several approaches have been tested in an
effort to expand screen displays into the auditory
domain. With increased audio processing capabil-
ities and interaction modes on smaller and more
portable devices, the field of auditory display is be-
coming a forerunner in presenting additional infor-
mation by means of multimodality.

One approach used to extend the visual domain
is to place all non-essential information into a spa-
tialized auditory field, with different zones of pri-
ority [1]. Approaches such as these allow the user

to concentrate on information that is of high im-
portance first, and then deal with information that
is of less importance.

Other methodologies simply present all the vi-
sual information as it is, with a direct mapping into
a raw auditory form [2]. Techniques such as this
have been found to be highly successful in enabling
those with visual impairments to gain a better idea
of their surroundings, but tend to require extensive
training on behalf of the user [3]. An alternate
approach to this is to filter the data that we seek
in the visual domain, before transforming it into
the auditory domain [4]. This approach favours
a goal-oriented searching task, where the user al-
ready knows what they are looking for, but does
not fare well when representing raw image data.

This paper describes a goal-oriented approach
to enhancing visual representation by means of in-
teractive spatial auditory display. It is found that
the approach described can aid users in locating
graphical features on displays of different sizes with
minimal, or even no visual cues. The work’s nov-
elty is derived from binaurally sonifying the rela-
tionship between the interaction of the user and the
graphical features on a tablet computer, as well as
the techniques developed to handle this interaction.
As far as the authors know, this type of interaction
to feature mapping has not been implemented with
spatialized audio before.

This paper first covers the relevant background
work in each of the relevant topics of this paper.
It then goes on to discuss the implementation of
the auditory display and interaction techniques that
were developed. The next three sections then dis-
cuss the test’s setup, the methods of user testing,
and the results of the tests. This is done such that
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the testing procedure can be reproduced or scruti-
nised. A discussion section then outlines the re-
sults’ implications, and then to finalise the paper a
conclusions and further work section summarises
the paper and discusses potential further work in
the area.

2. BACKGROUND

This study brings together three main areas of re-
search in the auditory display community – the soni-
fication of graphical data, spatial audio sonifica-
tion, and new interfaces for auditory display. The
following three subsections give a background on
each of these areas.

2.1. The Sonification of Graphical Data

In recent years there have been several methods de-
vised for the transformation of graphical data into
the auditory domain. Generally, these take two ap-
proaches: transforming all of the graphical data
into a complex auditory field that envelops the lis-
tener holistically [2] [5], and a goal-driven exploratory
methodology where the graphical data is first fil-
tered – the user being left only with the specific
features required [4] [6] [7].

Meijer’s approach [2] involves scanning a video
feed, mapping frequency to the height of a pixel in
the display, and mapping the brightness of the pixel
to the amplitude of a sinusoidal oscillator. This re-
sults in a highly reactive, complex auditory field
that is best used to describe complex images or
videos. Approaches such as this require the user to
learn the mappings over extended periods of time.
On the other hand, Bologna’s work [8] endeavours
to filter specific colours and only transform them
into the auditory domain, resulting in a system that
is easier to use than Meijer’s, but can only provide
limited goal-oriented information.

2.2. Spatial Audio Sonification

Spatialized audio has been used numerous times
by those wishing to transform information mean-
ingfully into the auditory domain [6] [9] [7] [1].
It is a highly suitable method to use for represent-
ing a physical direction in Cartesian space because
of our innate ability to determine the location of a
spatialized source within 11.8 degrees [10, pg. 39].

Binaural audio, or the notion of portraying 3D
sound over headphones, has become an invaluable
tool in the auditory display community for repre-
senting spatiality [7] [6]. It allows for effective,

cheap, and portable 3D audio – meaning that we
can present complex auditory fields outside of the
lab environment.

2.3. Interfaces for Auditory Display

As technology has become more powerful, its de-
sign has become more suited to our interactions. In
the area of interactive sonification, we always try to
develop for the best platforms we can at the time.
From the first modern personal computers, up un-
til a few years ago, this has almost exclusively in-
volved interaction by mouse or similar PC periph-
eral. Touch interaction has not been sophisticated
enough to become a viable portable platform for
development until a little over 3 years ago, with
the rebirth of tablet computer – Apple’s iPad.

Now that we can use an extensive array of dif-
ferent interaction techniques to explore data, there
are fewer limits in the world of interactive sonifi-
cation – the human-computer interaction loop has
become stronger, and there is less cognitive strain
on behalf of the user – as they are free to think
about what they are interacting with, and concern
themselves less with how to operate the system.

3. PROPOSED SYSTEM

The system developed allows the user to experi-
ence an image in the auditory domain. When they
interact with the image on an iPad by touching the
screen they experience auditory feedback that in-
dicates features around their point of touch – their
colour represented by different sounds. They are
then able to locate these features by moving their
touch location around the screen and using the var-
ious auditory parameters:

• Binaural panning to describe its direction

• a pulse train to describe its distance; and

• an alert when they find it.

Additionally, other parameters have been de-
veloped to assist users when locating multiple fea-
tures, or when searching on extended displays. The
implementation of the experimental system can be
broken down into three main parts – the location of
the image feature, the user interaction, and the au-
ditory feedback. This system is depicted in Figure
1.

3.1. Touch to Image Feature Calculation

The image-processing algorithm used in this im-
plementation finds the average Cartesian point of a

ISon13-2



Proceedings of ISon 2013, 4th Interactive Sonification Workshop, Fraunhofer IIS, Erlangen, Germany, December 10, 2013

Figure 1: Interactive Graphical sonification system

specific colour by summing the positions of pixels’
‘x’ and ‘y’ coordinates within a specific threshold
set by the user. Using iOS touch delegate methods
it is then possible to track the user’s touch. Once
this has been tracked, it is possible to find the vec-
tor between the user’s touch, and the image feature,
as outlined in Figure 2 and Equation 1 , where ‘N’
is the number of pixels within the filter in the im-
age, ‘P’ is the filtered pixel’s coordinate in the re-
spective direction, and ‘t’ signifies a touch point by
the user. The letter ‘d’ denotes the dimension this
algorithm travels through – this will be either ‘x’
(left to right), or ‘y’ (top to bottom). The end result
of this algorithm is an integer for both dimensions
that represents the average Cartesian coordinate of
the pixels filtered.

∆d =

∑Nd
Pd=0

Pd

Nd
− td (1)

The angle (Θ) of the vector is then determined us-
ing Equation 2, and the magnitude (M) with Equa-
tion 3.

Θ =
180

π
arctan

(
∆x

∆y

)
− π

2
(2)

M =
√

∆x2 + ∆y2 (3)

As Equation 3 calculates the angle of the vector
from ‘12 o’clock’ for the user’s touch, this allows
for the audio processing system to project sources
around the listener, with their finger as the ‘central
point’. Equation 3 is used to determine the magni-
tude (M) of the vector. This system is described in
Figure 2.

Figure 2: Vector between touch-point and image
feature

3.2. Multi-touch Interaction

There needs to be a clear differentiation between
when users want to activate the sound mapping,
and when they need to move the virtual image around
the screen display. After some tests with a small
group of individuals it was established that one-
finger touches should be used to activate and up-
date the sound engine, and two fingers should be
used to move the virtual image around the display.
By doing this, it not only offers a clear differenti-
ation between the two techniques, but also allows
for simultaneous use of both techniques.

Additionally, a sound-mapping parameter was
used for when a user extends the bounds of an im-
age. It was decided that a ‘boing’ sound should be
used for this. A simple oscillator with harmonics
was panned binaurally, dependent on which side
the user had scrolled too much on – its frequency
used to represent how much they had scrolled in
excess of the scrollable screen.

3.3. Auditory Display Mappings

The vectors calculated are used to drive the audio
engine, which was written in Csound, and devel-
oped for iOS using the Csound-iOS API developed
by Steven Li and Victor Lazzarini [11]. This al-
lows the flexible audio processing capabilities of
Csound to be combined with the touch interaction
of the iOS platform. Several parameter mapping
sonification methods were developed in Csound to
provide interactive auditory feedback to the user.
These are described below:

Pulse train – Pulse trains have been used to
represent distance through sound with great suc-
cess [12]. The decision was made to increase the
pulsing as the users touch got closer to the im-
age feature as it complements the instant real-time
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feedback we are familiar with when interacting with
real-world systems – the closer the touch, the more
frequent the pulse, therefore the faster the feedback
to the user as they get closer. From this, it is pos-
sible for the user to make fine adjustments of po-
sition towards the shape faster, without having to
wait for the next pulse. Several proximity zones
were devised, as shown in Figure 3. Each prox-
imity zone used a different speed of pulse train –
the higher the proximity zone, the faster the pulse
train. On an image the same size as the iPad screen,
typically 9 proximity zones were used. For larger
images, the number of proximity zones was scaled
up accordingly so that the mappings remained con-
sistent.

The sound used for the pulse depends on the
colour of the visual object being represented. For
the purposes of the experiment, four main synthe-
sizers were built – a noise-based synth for BLACK,
and three subtractive synths tones differing in pitch
to represent the colours RED, BLUE, and GREEN.
It would be possible to scale this up to more syn-
thesizers for additional colour mappings.

Figure 3: Example of four proximity zones

Binaural Panning – The user was placed in
the auditory field by touching the interface. This
allowed them to them move through the auditory
field with the various image features appearing around
them, panned binaurally. The HRTFs, made by Bill
Gardner and Keith Martin at the MIT Media Lab
[13], were used as they are high quality measure-
ments made using a KEMAR (binaural dummy head)
designed according to the mean anatomical size of
the population, therefore resulting in a good aver-
age head [14]. The Csound opcode ‘hrtfmove2’[15]
was used to interpolate the source (pulse train) around
the listener as it offers good quality imaging, with
minimal processing.

Alert Sound – A simple alert sound was used

when the user ran their finger over specific areas to
indicate that they have found something. This alert
sound was ideal when the participants of the ex-
periment were undertaking goal-oriented tasks as
it provided them with some element of closure.

Volume – it was noted in the initial designs
that when there were multiple sources of sound
i.e., multiple image features detected, that the sounds
often clashed. Therefore, a volume parameter was
developed. This used the proximity zones described
previously, but instead of controlling the speed of
the pulse train, the volume parameter was used to
control the perceived amplitude of sound emanat-
ing from the image source, increasing as the user
travels closer to it.

4. EXPERIMENTAL SETUP

To evaluate the effectiveness of the techniques de-
veloped, the participants were divided into two groups;
a ‘control’ group – B, and a ‘treatment’ group – A.
Group B were provided with some auditory dis-
play parameters to find a specific feature in the im-
age. Group A, however, had additional parameters
– with the aim of testing whether the techniques de-
veloped affected the performance (determined by
speed of location) of the participants undertaking
the tasks.

For some of the experiments, the participants
needed to be visually restricted so that they could
not see the iPad screen, and instead only operated
by touch and sonic feedback. Typically, blindfolds
are used for this purpose. However, blindfolds can
often be considered unethical, and may cause dis-
tress in the user. Therefore a visual restrictive de-
vice, similar to the device used by Fernström [16],
was used. A simple visual restrictor (shown in Fig-
ure 4) was created out of a cardboard box and some
cloth to ensure that the user could not see through
it. The iPad could then be placed in the box and
the user could freely interact with it.

Each participant was given a small training ses-
sion at the beginning of Test 1 and Test 2. The
training allowed them to see an example of the tests
they were about to undertake such that they knew
the relevant auditory and interaction parameters to
complete the remaining tests. They were encour-
aged to practice until they felt that they could find
the required image features without visual cues.
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Figure 4: Makeshift visual restriction device

5. USER TESTING

Willing participants were asked to undertake a se-
ries of tests to examine the techniques developed.
There were two main types of test – Test 1 and Test
2:

• Test 1 focused on using auditory display tech-
niques to portray images the size of a stan-
dard iPad screen; and

• Test 2 involved extending the size of the
image – using large scrollable images dis-
played on an iPad.

The demographics are first discussed such that
an impression of the sample can be gained, then the
rest of this section describes how each individual
test was run, states its results, and discusses any
significant findings.

In total 18 participants undertook the experi-
ment – nine in each group, with an average age
of 25.8 (standard deviation = 4.3). The group in-
cluded people of British, Chinese, Dutch, Greek,
American, Belgian, and Russian nationalities. In
all, 12 were male, and six were female. The major-
ity of the participants (13 out of 18) were from the
Department of Electronics (University of York), pre-
dominantly in the Audio Lab, and the remaining
five were from the Department of Computer Sci-
ence. Due to the large number of people from the
Audio Lab, the subject set included a relatively
large number of musicians – 13 out of 18.

Some questions were asked specific to sound
perception, binaural audio, and familiarity with tablet
devices. It was found that three out of 18 par-
ticipants claimed to have some form of sound-to-
colour synaesthesia (the perception of one sense in
the form of another), and all but one of the partici-
pants had experienced binaural audio before. When

played a short binaural sample and asked to iden-
tify where they believed the source to be coming
from, 15 participants said they knew exactly where
it was at all times, and the remaining three said that
they knew where it was most of the time. With
regards to tablet computer/smartphone experience,
16 people owned devices, and the other two had
some experience with them.

5.1. Results

This section will describe the details of each test
and then go on to state the results.

5.1.1. Test 1.1: finding a black dot [with/without
binaural]

In this test the user was tasked with finding a black
dot on a screen by means of sound alone. Group A
was given the pulse train, alert sound, and the bin-
aural panning parameters. Group B were stripped
of the binaural panning parameter and were pro-
vided with only mono audio, and thus acted as a
control group so that the effect of the binaural pa-
rameter could be evaluated.

In this test all participants were able to find the
black dot using the auditory feedback. Group A
(who used the binaural mapping parameter) suc-
ceeded in finding the dot with a mean time of 15.6
seconds (blue line in Figure 5), with a standard
deviation of 14.7. Group B (who did not use the
binaural mapping parameter) were able to find the
dot with a mean time of 18.4 seconds (red line in
Figure 5), and a standard deviation of 10.7. The
null hypothesis for Test 1.1 was that there would
be no difference in times between Group A and
B when searching for the dot – the binaural audio
would make no difference. The alternative hypoth-
esis was that using binaural audio would speed up
the time they took to find the dot. The results were
tested using a t-test for two independent samples,
attaining a p value of 0.675 – suggesting low levels
of confidence in the results.

5.1.2. Test 1.2: three coloured dots [Group B
not told colour mappings]

For this test both Group A and Group B were asked
to locate three coloured dots on a screen using the
pulse train, alert sound, and binaural panning pa-
rameters. Group B, however, were not told the
colour mappings, which were as follows: Red =
high-pitched sound, Green = middle-pitched sound,
Blue = low-pitched sound. The main aim of this
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Figure 5: Boxplot for Test 1.1

test was to determine whether we have some pre-
conceptions about how colour relates to sound. In
addition we hoped to get qualitative information
about how subjects coped with more than one acous-
tic target.

In the test, Group A, who were told the colour-
sound mapping parameters, were able to get, on av-
erage, 2.45 out of the 3 dots correct. Group B, who
were not told the colour-sound mapping parame-
ters were able to get, on average, 2.34 dots correct.
The null hypothesis was that by guessing at ran-
dom, Group B would typically only be expected
to get 1 out of 3 dots correct, and the alternative
hypothesis was that they would guess more than 1
out of 3 of the dots correct. A Chi-Squared test was
run to determine the odds of Group B getting this
score by chance, and a confidence interval of p =
0.097 was attained – therefore showing relatively
high confidence in the results.

5.1.3. Test 1.3: picture identification [both groups
with same mappings]

For this test, users were asked to identify a sim-
ple picture (picture 3 in Figure 6) by interacting
with it, and listening to its auditory response. They
were asked to choose from four pictures (shown in
Figure 6) the image they believed they had been
interacting with. This test was designed to judge
the success of the auditory display mappings when
representing simple images.

For this test the null hypothesis was that both
groups would score the same as they would by guess-
ing – each picture getting, on average, 4.5 users
pick it. The alternative hypothesis was that the user

1 2

3 4

Figure 6: The four pictures the users were pre-
sented with (number 3 being the one they were ac-
tually interacting with)

would pick Picture 3, the correct answer, more than
4.5 times. In the test the participants chose Pictures
1 and 4 zero times, Picture 2 once, and Picture 3
(the correct picture) 17 times, in an average time of
27.34 seconds, and a standard deviation of 12.86.
A Chi-Squared test was run to test the odds of this
happening by chance – a confidence interval of p =
4.562e-10 was attained – therefore suggesting very
high confidence in the results.

5.1.4. Test 2.1: black dot in a large image [with/without
binaural]

This following tests challenged the participants in
tasking them with navigating a larger-than-display
image. Test 2.1 was similar to Test 1.1 – the test
where the users were tasked with finding a black
dot using sound alone. However, the image used in
this test was nine times larger than the iPad screen.
The aim of this test was to evaluate the auditory
display, and interaction techniques, when naviga-
tion around a larger image was involved.

For this test all but one (17/18) of the partic-
ipants were able to find the black dot. The null
hypothesis was that the additional binaural audio
feedback provided to Group A would not speed up
their performance, and that the mean times of the
two groups would be the same. The alternative hy-
pothesis was that Group A would be able to find the
dot faster than Group B. In the experiment, Group
A found the dot with an average time of 108.25
seconds (blue line in Figure 7) and a standard de-
viation of 68.16 and Group B 131.56 seconds (red
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line in Figure 7) and a standard deviation of 71.55.
A t-test for two independent samples was used, at-
taining a p value of 0.5036, therefore suggesting
relatively low confidence in the results.
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Figure 7: Boxplot for all participants in Test 2.1

5.1.5. Test 2.2: three coloured dots in a large
image [with/without binaural]

In this test users were asked to navigate a large dis-
play and were tasked with locating three coloured
dots. Again, the focus was on a comparison of bin-
aural audio verses mono audio.

In this test, seven out of nine participants in
Group A found all three dots, compared with four
out of nine for Group B. The null hypothesis was
that Group A, with the binaural audio, would per-
form the same as Group B, without the binaural
audio. The alternative hypothesis was that Group
A would be able to find the dots quicker, on aver-
age, than Group B. The average time to finish the
test for all members of Group A was 242.8 sec-
onds (blue line in Figure 8) with a standard devia-
tion of 65.7, and for Group B it was 391.3 seconds
(red line in Figure 8) with a standard deviation of
249.8. A t-test for two independent samples was
used, attaining a p-value of 0.124, therefore sug-
gesting some confidence in the results.

The average time for those who found all three
dots in Group A was 254.85 seconds, with a stan-
dard deviation of 60.58. In Group B this was higher
at 312 seconds, with a standard deviation of 255.16.
A one tailed t-test for two independent samples
produced a p value of 0.587 – suggesting relatively
low confidence in the results.
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Figure 8: Boxplot for those who finished Test 2.2

5.1.6. Test 2.3 & Test 2.4: black dot in a large
image [no visual restriction]

These tests involved a multimodal task using larger
scrollable images – Test 2.3 featuring an image nine
times the iPad screen, and Test 2.4 16 times the
size. For these tests Group A were tasked with
finding a black dot by means of using an auditory
display, and Group B were tasked with finding the
dot by means of visual cues alone. The aim of this
test was to judge if the sonification techniques af-
fected the performance of the user when searching.
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Figure 9: Boxplot for results of Test 2.3

In Test 2.3 the null hypothesis was that the
group who were able to see the iPad screen and had
auditory feedback (Group A) would perform the
same as the group with visual cues alone (Group
B). The alternative hypothesis was that Group A
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would be able to find the dot quicker. In the test,
all participants found the dot – Group A attaining
an average time of 10.6 seconds (blue line in Fig-
ure 9) and a standard deviation of 7, Group B at-
taining an average time of 14.3 seconds (red line in
Figure 9) and a standard deviation of 10.3. A t-test
for two independent samples was used, attaining a
p value of 0.373 – showing relatively low levels of
confidence.

In Test 2.4 the null hypothesis was the same as
in the previous test – that Group A, with the addi-
tional auditory feedback, would perform the same
as Group B, who had no auditory feedback. The al-
ternative hypothesis was that Group A would find
the dot in less time than Group. The results show
that Group A were able to find the dot with an av-
erage time of 12.4 seconds (blue line in Figure 10 )
and a standard deviation of 6, and Group B an av-
erage time of 15.2 seconds (red line in Figure 10)
with a standard deviation of 11.1. Upon running
a t-test for two independent samples, a p value of
0.519 was found – suggesting relatively low levels
of confidence in the results.
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Figure 10: Boxplot for results of Test 2.4

6. DISCUSSION

It was evident from the results of Tests 1.1 (lo-
cating a black dot), 2.1 (locating a black dot on
large screen), and 2.2 (locating three coloured dots
on large screen) that the binaural audio allowed
the participants to, on average, find the image fea-
tures faster than with the other mappings alone –
the pulse train, volume, ‘boing’ sound, and alert
sound.

The results suggest that as the images became
larger, and the tasks more complex Group A out-
performed Group B more and more. In Test 1.1
(locating the black dot) Group A were able to lo-
cate the image feature 17.7% faster than Group B,
and in Test 2.1 (locating a black dot within a large
scrollable image), in which the image is 9 times
larger, there was a 21.5% difference between the
groups those with binaural audio appear to per-
form even better in comparison to the non-binaural
group. The difference between the groups in Test
2.2 becomes larger – an (albeit small) increase of
0.92% between the two groups when an additional
difficulty is added – this may suggest that as the
tasks become more complex, the binaural audio
helps more. However, the significance levels were
not high enough for us to state this categorically.

Upon observation of the videos (all available
on the link provided in the supporting material folder
with this paper) it is possible to say, anecdotally,
that the participants with the binaural audio (Group
A) undertook more logical searching strategies, whereas
the group without the binaural audio (Group B)
normally undertook a more sporadic ‘brute force’
searching method, which would account for the larger
spread in times, and therefore higher standard de-
viation, for Group B. However, it must be noted
that even in Group A there was a large spread of
times. We believe that this large variation between
the participants, as well as the relatively low num-
ber of participants, has led to the lower levels of
significance found.

Test 1.3 (image identification using binaural
audio) indicated strongly that participants were able
to detect a picture from sound alone using the tech-
niques. The techniques excelled at allowing the
participants to gain a quick overview of the graph-
ical features on display with a very high success
rate, and an insignificantly low probability of at-
taining the same results through guessing. The large
variation in times can be attributed to the searching
techniques of the individuals. From discussing the
test with the participants after the experiment it be-
came evident that some participants looked at the
pictures beforehand and made a mental model of
what they believed they were looking for. Mean-
while, others investigated the auditory response,
and then by process of elimination chose their an-
swer. The subjects with the faster times generally
adhered to the first approach.

When comparing visual and audio cues, against
visual cues alone in Tests 2.3 and 2.4 (black dot
within progressively larger images with and with-
out visual cues) the difference in searching tech-
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niques became even more evident. The relatively
large standard deviations of Group B can be at-
tributed to the sporadic searching patterns the group
used. Sometimes a participant would randomly scroll
around very quickly and get lucky, whilst others
spent quite a while ‘raster scanning’ the image in
a logical search. Most participants in Group A
took a while to assess the local area, then gradu-
ally moved in a straight line towards the image fea-
ture, resulting in the higher mean times and smaller
standard deviations.

7. CONCLUSIONS AND FURTHER WORK

Several auditory display techniques were developed
to allow for images of varying sizes to be explored
by means of binaural interactive sonification. Gesture-
based interaction modes were created to facilitate
the exploration of these images on an iPad, whilst
listening to an auditory representation. Seven tests
were then carried out to deduce whether the tech-
niques were improved by use of binaural audio.

The results from the tests showed that binau-
ral audio could be used to improve our understand-
ing of simple images of varying sizes. It is evi-
dent that the experiments could benefit from addi-
tional participants – the number used (eight in each
group) was not enough to produce very significant
results. It is recommended that if this experiment
is replicated, additional participants should be re-
cruited. To reproduce the tests described in this
paper a folder including the test scripts, a docu-
ment describing the technical setup, videos of the
participant’s performances (provided pending ac-
ceptance), and the code needed to reproduce the
tests has been provided at the following Dropbox
link:

https://db.tt/eyVcfAFf

Further work in this area should involve in-
creasing the complexity of the images and the im-
age processing algorithm. Similar methods could
be used to explore more complex images where a
user wishes to search for a specific colour, such as
when scanning cervical cancer slides, or looking
for objects in Deep Field space photography. Ad-
ditionally, the binaural auditory display techniques
could be used for numerous applications, not just
the exploration of images. For example – improv-
ing immersion in computer interfaces or assisting
those who are visually impaired, or have their eyes
on other tasks, by extending the visual domain with

spatial audio.
This paper has demonstrated the potential of

binaural audio to provide real-time feedback to vi-
sually restricted or distracted users to improve the
location of objects in the data being represented
both on and off-screen.
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Appendix B Pilot Study Script



Pilot Study: An Investigation of Sound and 
Colour 

Timothy Neate 

 

 

Background 
The author is currently designing a series of auditory displays for 3D 
graphical sonification – turning visual information into spatial sound. The 
main aim of the project is to find out the best image processing methods, 
sonification algorithms, and interaction techniques, for allowing a user to 
find specific features on a display with minimal visual cues.   

Study Outline 

The aim of this study is to explore our pre-determined disposition to colour 
when using specific sonification techniques.  Since 18th century, scientists 
such as Isaac Newton and Louis Bertrand Castel have tried to find 
relationships between colour and frequency, this study aims to explore their 
hypotheses, and explore some new ideas with regards to how best to 
represent colour, in the context of sonification. 

The tests consist of three main sections:  

• Demographics Questionnaire 
• Test 1 – a test to determine the pleasantness and meaning of 

synthetic sounds 
• Test 2 – a test to explore how pitches in a scale related to colour 

 
 

Note: The aim of this experiment is to try and gather some subjective data. 
It must be expressed that there are no right answers, but all answers will 
provide insight into the sound design of auditory displays. 

 
 

 

 



Demographics questionnaire 

 

This is a small questionnaire to gauge the participant’s background to ensure 
a well encompassing data set. Your information will be anonymous, and any 
personal information will be destroyed after the overall results are analysed. 

 

1. What is your age? ______ 

2. What is your gender? ( Male / Female ) 

3. What is your nationality? _____________ 

4. Are you a student? ( Yes / No ) 

If answered ‘Yes’, please state the department are you based in? 
__________________ 

5. Do you have musical training or play an instrument? ( Yes / No )   

If so, elaborate: 
_____________________________________________
_____________________________________________
_____________________________________________
_________________________________ 

6. Do you associate certain timbres or pitches with colour (synaesthesia)? ( 
Yes/ No ) 

If so, elaborate: 

_____________________________________________
_____________________________________________
_____________________________________________
_________________________________ 

7. Would you consider yourself to have perfect pitch (the ability to 
recognize the pitch of a note)? ( Yes / No )  

8.  Would you consider yourself to have relative pitch (the ability to 
determine a pitch from some reference pitch)? ( Yes / No 

 



Test 1  

Listen to all the sound clips to take in all the information so that you can 
make an unbiased decision. Each sound will repeat three times before you 
can move on to the next sound. On the second listen you may mark down 
one colour, of the two shown, you believe the sound represents best. You 
may skip questions, and go back, compare sounds, and listen as much as 
you like to the sounds. 

Use the ‘Associated Colour’ column to choose from the options. The 
‘Sound Rating’ column shows the ‘pleasantness’ of a sound.  Please circle 
the colour that that best represents the sound you hear for each sound clip. 

 

 

Sound 
Clip 

Associated 
Colour Sound Rating 

1.1   Bad   [1] – [2] – [3] – [4] – [5]  Good 

1.2   Bad   [1] – [2] – [3] – [4] – [5]  Good 

1.3   Bad   [1] – [2] – [3] – [4] – [5]  Good 

1.4   Bad   [1] – [2] – [3] – [4] – [5]  Good 

1.5   Bad   [1] – [2] – [3] – [4] – [5]  Good 

1.6   Bad   [1] – [2] – [3] – [4] – [5]  Good 

1.7   Bad   [1] – [2] – [3] – [4] – [5]  Good 



Test 2  

Listen to all the sound clips to take in all the information so that you can 
make an unbiased decision. Each sound will repeat three times before you 
can move on to the next sound. On the second listen you may begin to mark 
down one colour you believe the sound represents.  You may skip 
questions, and go back, compare sounds, and listen as much as you like to 
the sounds.  Use the ‘Associated Colour’ column to choose from the 
options. Please circle the colour that that best represents the sound you hear 
for each sound clip. 

Sound 
Clip Associated Colour 
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Abstract  

This tutorial aims to help iOS developers with the implementation of the 
Mobile Csound Platform for iOS. Developers who are looking to incorporate 
audio into their apps, but do not want to deal with the complexities of Core 
Audio, will find this particularly useful.  

It provides some background information on the API and outlines how to 
integrate Csound and iOS, and allow them to communicate. The provided 
example project is then described - outlining the key features of the API. Some 
common problems that users are likely to encounter are then discussed to 
troubleshoot potential issues 
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1. Introduction  
The traditional way of working with audio on both Apple computers and 
mobile devices is through the use of Core Audio. Core Audio is a low-level API 
which Apple provides to developers for writing applications utilizing digital 
audio. The downside of Core Audio being low-level is that it is often 
considered to be rather cryptic and difficult to implement, making audio one of 
the more difficult aspects of writing an iOS app.  
 
In an apparent response to the difficulties of implementing Core Audio, there 
have been a number of tools released to make audio development on the iOS 
platform easier to work with. One of these is libpd, an open-source library 
released in 2010. libpd allows developers to run Pure Data on both iOS and 
Android mobile devices. Pure Data is a visual programming language whose 
primary application is sound processing. 
 
The recent release of the Mobile Csound Platform provides an alternative to the 
use of PD for mobile audio applications. Csound is a synthesis program which 
utilizes a toolkit of over 1200 signal processing modules, called opcodes. The 
release of the Mobile Csound Platform now allows Csound to run on mobile 
devices, providing new opportunities in audio programming for developers. 
Developers unfamiliar with Pure Data’s visual language paradigm may be more 
comfortable with Csound’s ‘C’-programming based environment.  
 
For those who are unfamiliar with Csound, or want to learn more, the FLOSS 
manuals are an excellent resource, and can be found here:  
 

http://flossmanuals.net/csound/ 
 
For more advanced topics in Csound programming, the Csound Book 
(Boulanger ed., 2000) will provide an in-depth coverage. 
 
In order to make use of the material in this tutorial, the reader is assumed to 
have basic knowledge of Objective-C and iOS development. Apple’s Xcode 
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4.6.1 IDE (integrated development environment) will be used for the provided 
example project. 
 
 
 
Although the Mobile Csound API is provided with an excellent example 
project, it was felt that this tutorial will be a helpful supplement in setting up a 
basic Csound for iOS project for the first time, by including screenshots from 
the project set-up, and a section on common errors the user may encounter 
when working with the API.  
 
The example project provided by the authors of the API includes a number of 
files illustrating various aspects of the API, including audio input/output, 
recording, interaction with GUI widgets, and multi-touch. More information on 
the example project can be found in the API manual, which is included in the 
example projects folder.  

1.1. The Csound for iOS API 

The Mobile Csound Platform allows programmers to embed the Csound audio 
engine inside of their iOS project. The API provides methods for sending static 
program information from iOS to the instance of Csound, as well as sending 
dynamic value changes based on user interaction with standard UI interface 
elements, including multi-touch interaction.  

1.2. Document Structure 

This document begins, in Section 2, by describing the example provided by the 
authors. Section 2 is divided into two further sections: Section 2.1 which 
describes the functionality of the example application and Section 2.2 which 
details line by line through the example code how this application 
works.  Section 3 provides a step by step guide to setting up an Xcode project 
for use with the Mobile Csound API.  This section describes how to download 
the API and include it into the project (Section 3.1) as well as the necessary 
components of the view controller (Section 3.2) and Csound file (Section 3.3).  
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Section 4 outlines some common problems, which have been found through the 
creation of this tutorial, and their solutions.  Section 5 is a reference of the 
methods which are available for use in the Mobile Csound API.  This section 
briefly details the functionality of these methods and their method calls. Section 
6 provides the authors’ conclusions about this tutorial. 

NOTE: This tutorial uses Csound 5, and has not been tested with Csound6.  
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2 Example Walkthrough 

This section discusses why the example was made, and what can be learned 
from it; giving an overview of its functionality, then going into a more detailed 
description of its code. A copy of the example project can be found at the 
following link.  

https://sourceforge.net/projects/csoundiosguide/ 
2.1 Running the Example Project 

Run the provided Xcode project, CsoundTutorial.xcodeproj, and the example 
app should launch (either on a simulator or a hardware device).  A screenshot of 
the app is shown in Figure 2.1 below. The app consists of two sliders, each 
controlling a parameter of a Csound oscillator. The top slider controls the 
amplitude, and the bottom slider controls the frequency. 
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Figure 2.1-App running on iPad simulator 

2.2 Oscillator Example Walkthrough 

This example outlines how to use the methods in the Csound-iOS API to send 
values from iOS into Csound. This example was made purposefully simple, 
with the intent of making its functionality as obvious as possible to the reader. 
This section begins by giving an overview of both the iOS and Csound 
implementation, and then describes how this achieved by breaking down the 
example code. The code to create this oscillator example was done in the 
ViewController.h and the ViewController.m files, which are discussed below in 
sections 2.2.3.1 and 2.2.3.2. The project is split into Objective-C code, 
Storyboards for the user interface elements, and a Csound file for the audio 
engine.  

2.2.1 iOS Example Outline 

 In the Xcode project user interface sliders are used to allow a user to control 
the Csound audio engine through iOS.  Communication begins with iOS 
requesting some memory within Csound; setting a pointer to this location. It 
updates this pointer with values from the user interface sliders. Csound 
references the same memory location by naming it with a string, this named 
communication link is called a channel. When sending this information, iOS 
uses methods within the iOS-Csound API to setup this channel name, and 
update it dependant on the control rate. 

2.2.2.  Csound Example Outline 

In this example, Csound is not aware of iOS. All it knows is that there is a piece 
of memory assigned for it, and it must retrieve information from here dependent 
on its control rate. Csound uses the chnget opcode to do this. chnget searches 
for some channel with a specific name and retrieves values from it. 

2.2.3.  The iOS File 

This example is implemented across two main files: 
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The .h file is used to include all the necessary classes, declare properties, and 
allow for user interaction by connecting the interface to the implementation.  
The .m file is used to implement communication between the interface methods 
declared in the .h file, and the Csound file.  These will now be discussed in 
more depth, with code examples. 
 
2.2.3.1.  The .h File 

The imports (discussed in detail in section 3.2.1) are declared: 
 

 
 
Apart from the standard UIKit.h (which gives access to iOS interface widgets) 
these ensure that the code written can access the information in the other files in 
the Csound API.   
Next comes the class definition: 
 

 
 
Every iOS class definition begins with the @interface keyword, followed by 
the name of the class. So our class is called ViewController, and the colon 
indicates that our class inherits all the functionality of the UIViewController.  
 
Following this are two Protocol definitions, which are listed between the 
triangular brackets <   >. In Objective-C a Protocol is a list of required 
functionality (i.e., methods) that a class needs to implement. In this case there 
are two Protocols that are defined by the Csound API, that we want our class to 
conform to: CsoundObjCompletionListener and CsoundValueCacheable. This 
will allow us to send data between iOS and Csound, and so is essential for what 
we are about to do. The required functions that we have to implement are 
described in the section following this one (2.2.3.2). 
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The Csound object needs to be declared as a property in the .h file, which is 
what this next line of code does:  
 

 
 
The next section of code allows for the interface objects (sliders) to 
communicate with the .m file: 
 

 
 
Just to the left of each of these IBAction methods, you should see a little circle. 
If the storyboard is open (MainStoryboard.storyboard) you will see the 
appropriate slider being highlighted if you hover over one of the little circles. 

2.2.3.2.  The .m File 

The .m file imports the .h file so that it can access the information within it, and 
the information that it accesses.  
 
At the beginning of the implementation of the ViewController, the csound 
variable which was declared in the .h file is instantiated with @synthesize thus: 
 

 
 

Note that the Csound object must be released later in the dealloc method as 
shown below: 
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For each parameter you have in iOS that you wish to send to Csound, you need 
to do the things outlined in this tutorial. In our simple example we have an iOS 
slider for Frequency, and one for Amplitude, both of which are values we want 
to send to Csound. 
 
Some global variables are then declared, as shown in Table 2.1, a holder for 
each iOS parameter’s current value, and a pointer for each which is going to 
point to a memory location within Csound.  
 
 
 

Variable Description 
float myFrequency; 

This value comes from the frequency 
slider in the interface.  It is a float, as 
the value to send from iOS to Csound 
needs to be a floating point number. Its 
range is 0 – 500. 

float myAmplitude; 

  

This value comes from the amplitude 
slider in the interface. Its range is 0 – 1 
because of the way the gain is 
controlled in the .csd file. 

float* freqChannelPtr; 

  

These variables are used in conjunction 
with the method getInputChannelPtr 
(described towards the end of this 
section) to send frequency and 
amplitude values to Csound.  float* ampChannelPtr; 

  

Table 2.1-Variables for the .m File 

 
The next significant part of the .m file is the viewDidAppear method. When the 
view loads, and appears in iOS, this iOS SDK method is called. In the example, 
the following code is used to locate the Csound file: 
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This code searches the main bundle for a file called aSimpleOscillator of the 
type csd (which you will be able to see in Xcode’s left-hand File List, under the 
folder Supporting Files). It then assigns it to an NSString named tempFile. The 
name of the string tempFile is then printed out to confirm which file is running. 
	
  	
  
The methods shown in Table 2.2 are then called:  

 
Method Call Description 

self.csound =  
[[CsoundObj alloc] init]; 

This instantiates the csound 
object, which will be our 
main contact between iOS 
and Csound. It allocates and 
initialises some memory to 
make an instance of the 
CsoundObj class. 

[self.csound 
addCompletionListener:self]; Sets our code (self – i.e. 

ViewController) to be a 
listener for the Csound 
object. 

[self.csound 
addValueCacheable:self]; Sets our code (self) to be able 

to send real-time values to 
the Csound object. 

[self.csound 
startCsound:tempFile]; The Csound object uses the 

method startCsound to run 
the file at the string tempFile. 
Remember how tempFile 
was set up to point to the 
Csound csd file (in our case 
aSimpleOscillator.csd). So, 
in other words, this line 
launches Csound with the csd 
file you have provided. 
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Table 2.2-Csound API Methods 

 
The methods that allow the value of the slider to be assigned to a variable are 
then implemented. This is done with both frequency, and amplitude. As shown 
below for the amplitude slider: 
 
 

 
 

 
This method is called by iOS every time the slider is moved (because it is 
denoted as an IBAction, i.e. an Interface Builder Action call). The code shows 
that the ampSlider variable is of type UISlider, and because of that the current 
(new) value of the slider is held in ampSlider.value. This is allocated to the 
variable myAmplitude.  Similar code exists for the frequency slider. 

The protocol methods are then implemented. The previous section showed how 
we set up our class (ViewController) to conform to two Protocols that the 
Csound API provides: CsoundObjCompletionListener and 
CsoundValueCacheable. 
 
Take a look at the place where these Protocols are defined, because a Protocol 
definition lists clearly what methods are required to be implemented to use their 
functionality. 
 
For CsoundValueCacheable you need to look in the file 
CsoundValueCacheable.h (in the folder valueCacheable). In that file it’s 
possible to see the protocol definition, as shown below, and its four required 
methods. 
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Every method needs at least an empty function shell. Some methods, such as 
updateValuesFromCsound are left empty, because – for the tutorial example – 
there is no need to get values from Csound. Other protocol methods have 
functionality added. These are discussed below. 
	
   
The setup method is used to prepare the updateValuesToCsound method for 
communication with Csound: 

	
  

 
The first line of the method body creates a string; freqString, to name the 
communication channel that Csound will be sending values to. The next line 
uses the getInputChannelPtr method to create the channel pointer for Csound to 
transfer information to.  Effectively, iOS has sent a message to Csound, asking 
it to open a communication channel with the name “freqVal”. The Csound 
object allocates memory that iOS can write to, and returns a pointer to that 
memory address. From this point onwards iOS could send data values to this 
address, and Csound can retrieve that data by quoting the channel name 
“freqVal”. This is described in more detail in the next section (2.2.4). 
 
The next two lines of the code do the same thing, for amplitude parameter. This 
process creates two named channels for Csound to communicate through. 
 
The protocol method updateValuesToCsound uses variables in the .m file and 
assigns them to the newly allocated memory address used for communication. 
This ensures that when Csound looks at this specific memory location, it will 
find the most up to date value of the variable. This is shown below: 
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The first line assigns the variable myFrequency (the value coming from the iOS 
slider for Frequency) to the channel freqChannelPtr which, as discussed earlier, 
is of type float*. The second line does a similar thing, but for amplitude. 
 
 
For the other Protocol CsoundObjCompletionListener it is possible to look for 
the file CsoundObj.h (which is found in Xcode’s left-hand file list, in the folder 
called classes). In there is definition of the protocol. 
 

 
 

In this example there is nothing special that needs to be done when Csound 
starts running, or when it completes, so the two methods (csoundObjDidStart: 
and csoundObjComplete:) are left as empty function shells. In the example, the 
protocol is left included, along with the empty methods, in case you wish to use 
them in your App. 

2.2.4  The Csound File 

This Csound file contains all the code to allow iOS to control its values and 
output a sinusoid at some frequency and amplitude taken from the on-screen 
sliders.  There are three main sections: The Options, the Instruments, and the 
Score. These are all discussed in more detail in section 4. Each of these 
constituent parts of the .csd file will now be broken down to determine how iOS 
and Csound work together. 
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2.2.4.1  The Options 

There’s only one feature in the options section of the .csd that needs to be 
considered here; the flags. Each flag and its properties are summarised in Table 
2.3. 
 

Flag Description 

-o dac Enables audio output to default device 

-+rtmidi=null 

  

Disables real-time MIDI Control 

-d Suppress all displays 
 

Table 2.3-Csound Flags 

2.2.4.2 The Instrument 

The first lines of code in the instrument set up some important values for the 
.csd to use when processing audio. These are described in Table 2.4, and are 
discussed in more detail in the Reference section of the Csound Manual 
 

Line Description 
sr = 44100 

  
This sets the sample rate of Csound to 44100 Hz. It is imperative 
that the sample rate of the Csound file corresponds with the 
sample rate of the sound card the code is running on. 

ksmps = 64  This defines the control rate. In the example this will determine 
the speed that the variables in Csound are read. ksmps is actually 
the number of audio samples that are processed before another 
control update occurs. The actual control rate equates to sample 
rate / ksmps (i.e. 44100 / 64 = 689.0625 Hz). 

nchnls = 2 This is the number of audio channels. 2 = standard stereo. 

0dbfs = 1 This is used to ensure that audio samples are within the 
apropriate range, between zero and one. Anything greater than 
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one will induce clipping to the waveform. 

 
Table 2.4-Csound .csd Options 

 

The instrument then takes values from Csound using the chnget  opcode: 
 
 

	
  
	
   
 
Here, the chnget command uses the “freqVal” and “ampVal” channels 
previously created in iOS to assign a new control variable. The variables kfreq 
and kamp are control-rate variables because they begin with the letter ‘k’. They 
will be updated 689.0625 times per second. This may be faster or slower than 
iOS updates the agreed memory addresses, but it doesn’t matter. Csound will 
just take the value that is there when it accesses the address via the named 
channel. 
These control-rate variables are used to control the amplitude and frequency 
fields of the opcode oscil; the Csound opcode for generating sinusoidal waves. 
This is then output in stereo using the next line. 
 

     
 
 

The third parameter of the oscil opcode in this case is 1. This means ‘use f-table 
1’. Section 3.3 explains f-tables in more depth. 
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2.2.4.3 The Score 

The score is used to store the f-tables the instrument is using to generate 
sounds, and it allows for the playing of an instrument. This instrument is then 
played, as shown below: 

 

 

This line plays instrument 1 from 0 seconds, to 10000 seconds. This means that 
the instrument continues to play until it is stopped, or a great amount of time 
passes.  

It is possible to send score events from iOS using the method sendScore. This is 
discussed in more depth in section. 6.1 
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3 Using the Mobile Csound API in an Xcode 
Project  

Section 3 provides an overview of how to set up your Xcode project to utilize 
the Mobile Csound API, as well as how to download the API and include it into 
your project.  

3.1 Setting up an Xcode Project with the Mobile 
Csound API  

This section describes the steps required to set up an Xcode project for use with 
the Mobile Csound API.  Explanations include where to find the Mobile 
Csound API, how to include it into an Xcode project and what settings are 
needed. 

3.1.2 Creating an Xcode Project 

This section briefly describes the settings which are needed to set up an Xcode 
project for use with the Mobile Csound API.  Choose the appropriate template 
to suit the needs of the project being created.  When choosing the options for 
the project, it is important that Use Automatic Reference Counting is not 
checked (Figure. 3.1).  It is also unnecessary to include unit tests. 
 
 
 

 
 

Figure 3.1-Project Set Up 
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Note: When including this API into a pre-existing project, it is possible to turn 
off ARC on specific files by entering the  compiler sources, and changing 
the compiler flag to: ‘-fno-objc-arc’ 
 

3.1.3 Adding the Mobile Csound API to an Xcode Project 

Once an Xcode project has been created, the API needs to be added to the 
Xcode project.  To add the Mobile Csound API to the project, right click on the 
Xcode project and select Add files to <myProject>.  This will bring up a 
navigation window to search for the files to be added to the project.  Navigate 
to the Csound-iOS folder, which is located as shown in Figure 3.2 below. 

 
 

 
 

Figure 3.2-Navigating to the API Folder 

	
  
Select the whole folder as shown and click add.  Once this has been done, 
Xcode will provide an options box as shown in Figure 3.3. Check Copy items 
into destination group’s folder (if needed). 
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Figure 3.3-Adding the API Folder 

 
 
The options in Figure 3.3 are selected so that the files which are necessary to 
run the project are copied into the project folder. This is done to make sure that 
there are no problems when the project folder is moved to another location - 
ensuring all the file-paths for the project files remain the same. 
 
Once this addition from this section has been made, the project structure 
displayed in Xcode should look similar to that in Figure 3.4. 
 
 

 

Figure 3.4 - The Main Bundle for the Project 
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3.1.4 Compiling Sources 

A list of compile sources is found by clicking on the blue project file in Xcode, 
navigating to the Build Phases tab and opening Compile Sources.  Check that 
the required sources for the project are present in the Compile Sources in 
Xcode.  All the files displayed in Figure 3.5 should be present, but not 
necessarily in the same order as shown. 
 

 
 
 
 

 

Figure 3.5-View of ‘Compile Sources’ Window 

 

3.1.5 Including the Necessary Frameworks 

There are some additional frameworks which are required to allow the project 
to run.  These frameworks are: 
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! AudioToolbox.framework 
! CoreGraphics.framework 
! CoreMotion.framework 
! CoreMIDI.framework 

 
To add these frameworks to the project, navigate to the ‘Link Binary With 
Libraries’ section of Xcode.  This is found by clicking on the blue project folder 
and navigating to the ‘Build Phases’ tab, followed by opening ‘Link Binary 
With Libraries’.  To add a framework, click on the plus sign and search for the 
framework required.  Once all the necessary frameworks are added, the ‘Link 
Binary With Libraries’ should look similar to Figure 3.6 below. 
 
 

 

Figure 3.6-Adding Necessary Frameworks 

 

3.1.6 The .csd File 

The project is now set up for use with the Mobile Csound API.  The final file 
which will be required by the project is a .csd file which will describe the 
Csound instruments to be used by the application.  A description of what the 
.csd file is and how to include one into the project is found in Section 3.3.  This 
file will additionally need to be referenced appropriately in the Xcode project.  
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A description of where and how this reference is made is available in Section 
2.2.3.2
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3.2 Setting up the View Controller 

This section describes how the ViewController.h and the ViewController.m 
should be set up to ensure that they are able to use the API. It will discuss what 
imports are needed; conforming to the protocols defined by the API; giving a 
brief overview. This section can be viewed in conjunction with the example 
project provided. 

3.2.1 Importing 

So that the code is able to access other code in the API, it is important to 
include the following imports, along with imports for any additional files 
required. The three imports shown in Table 3.1 are used in the header file of the 
view controller to access the necessary files to get Csound-iOS working: 
	
  	
  
 
 

Import Description 
#import “CsoundObj.h”   This is used so that the code is able to access all 

the key methods of the API. 
#import 
“CsoundValueCacheable.h” This must be used to access the methods 

‘updateValuesFromCsound’ and 
‘updateValuesToCsound’. These methods are used 
to communicate between Csound and iOS. 

	
   

Table 3.1-Header File Imports 

In our example you can see these at the top of ViewController.h 
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3.2.2 Conforming to Protocols 

It is imperative that the view controller conforms to the protocols outlined the 
CsoundObj.h file; the file in the API that allows for communication between 
iOS and Csound.  This must then be declared in the ViewController.h file: 
 

 
 
 
The API authors chose to use protocols so that there is a defined set of methods 
that must be used in the code. This ensures that a consistent design is adhered 
to. They are defined in the CsoundValueCacheable.h file thus: 
 
 

 
 

 
Each of these must then be implemented in the ViewController.m file. If it is 
unnecessary to implement one of these methods, it still must appear but the 
method body can be left blank, thus: 
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3.2.3 Overview of Protocols 

When writing the code which allows us to send values from iOS to Csound, it is 
important that the code conforms to the following protocol methods (Table 
3.2): 
 

Protocol methods Action 
-(void)setup:(CsoundObj*)CsoundObj Set up the necessary channels and 

pointers to communicate with 
Csound. 

-(void)updateValuesToCsound Update the values being sent from 
iOS to Csound. 

-(void)updateValuesFromCsound Collect any values from Csound. 
-(void)cleanup Reset any values used in 

communication and de-allocate any 
memory used. 

-(void)csoundObjDidStart:(CsoundObj*)csoundObj This method is called when a Csound 
object is created. This allows 
developers to notify the user that 
Csound is running on iOS.  

-(void)csoundObjComplete:( CsoundObj*)csoundObj Much like the way the 
‘csoundObjDidStart’method works, 
this allows developers to notify the 
user that Csound has stopped running 
in iOS. 

Table 3.2-Protocol methods which must be implemented in your 
ViewController
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3.3 Looking at the Csound ‘.csd’ File  

The following section provides an overview of the Csound editing environment, 
the structure of the .csd file, and how to include the .csd file into your Xcode 
project.   

3.3.1  Downloading Csound  

A Csound front-end editor, CsoundQt, can be used for editing the .csd file in 
the provided example project. It is advised to use CsoundQt with iOS because it 
is an ideal environment for developing and testing the Csound audio engine – 
error reports for debugging, the ability to run the Csound audio code on its own, 
and listen to its results. However, using CsoundQt is not essential to use 
Csound as an audio engine as Csound is a standalone language. CsoundQt is 
included in the Csound package download.  

In order to use Csound in iOS, the latest version of Csound (Version 5.19) will 
need to be installed. 

Csound 5.19 can be downloaded from the following link:  
 

http://sourceforge.net/projects/Csound/files/Csound5/Csound5.19/	
  
 
 
In order for Xcode to see the .csd file, it must be imported it into the Xcode 
project. This is done by right-clicking on the ‘Supporting Files’ folder in the 
project, and clicking on ‘Add files to (project name)’ (Figure 3.7).  
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Figure 3.7-Adding the .csd to iOS Project 

 
It is possible to edit the .csd file while also working in Xcode. This is done by 
right-clicking on the .csd file in Xcode, and clicking on ‘Open With External 
Editor’ (Figure 3.8).	
  	
  
 
 
 

 

Figure 3.8-Opening the .csd file with an external editor 
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However, it is important to remember to save any changes to the .csd file before 
the Xcode project is recompiled. 

3.3.2 The .csd File 

When setting up a Csound project, it is important that various audio and 
performance settings configured correctly in the header section of the .csd file. 
These settings are described in Table 3.3, and are discussed in more detail in 
the Csound Manual.  
 
 

Setting Description 
sr Sample rate 
kr Control rate 

ksmps Number of samples in control period 
(sr/kr) 

nchnls Number of channels of audio output 
0dbfs Sets value of 0 decibels using full scale 

amplitude 

Table 3.3-Csound .csd Settings 

 
It is important that the sample rate for the Csound project be set to the same 
sample rate as the hardware it will be run on. For this project, make sure the 
sample rate set to 44100, as depicted in Figure 3.9. This is done by opening the 
Audio MIDI Setup, which is easily found on all Mac computers by searching in 
Spotlight. 
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Figure 3.9-Configuring Audio Hardware Settings 

 

3.3.3 Instruments 

As mentioned previously, Csound instruments are defined in the orchestra 
section of the .csd file. The example project provided by the authors uses a 
simple oscillator that has two parameters: amplitude and frequency, both of 
which are controlled by UI sliders. 

Figure 3.10 on the following page shows a block diagram of the synthesizer we 
are using in the example project.  
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Figure 3.10-Block Diagram for .csd Instrument 

3.3.4  Score 

The score is the section of the .csd file which provides instruments with control 
instruction, for example pitch, volume, and duration. However, as the goal here 
is for users to be able to interact with the Csound audio engine in real-time, 
developers will most likely opt instead to send score information to Csound that 
is generated by UI elements in the Xcode project. Details of the instrument and 
score can be found in the comments of the aSimpleOscillator.csd file 
 
Csound uses GEN (f-table generator) routines for a variety of functions. This 
project uses GEN10, which create composite waveforms by adding partials.  At 
the start of the score section, a GEN routine is specified by function statements 
(also known as f-statements). The parameters are shown below in Table 3.4: 
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Parameter Description 
f1 Unique f-table identification number 
0 f-statement initialization time expressed in 

score beats 
16384 f-table size 
10 GEN routine called to create the f-table 
1 strength of ascending partials 

Table 3.4-Csound .csd F-Table Parameters 

 

In a Csound score, the first three parameter fields (also known as p-fields) are 
reserved for the instrument number, the start time, and duration amount. P-
fields 4 and 5 are conventionally reserved for amplitude and frequency, 
however, P-fields beyond 3 can be programmed as desired.  

The p-fields used in the example project are shown in Table 3.5. 

 

p-field 1 2 3 4 5 

Parameter Instrument Number Start Duration Amplitude Frequency 

Table 3.5-Csound .csd P-field Parameters 

 
In this project, the first three p-fields are used: the instrument number (i1), the 
start time (time = 0 seconds), and the duration (time = 1000 seconds). 
Amplitude and frequency are controlled by UI sliders in iOS.  
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4  Common Problems 

This section is designed to document some common problems faced during the 
creation of this tutorial. It is hoped that by outlining these common errors, 
readers can debug some common errors they are likely to come across when 
creating applications using this API.  It discusses each error, describes the cause 
and outlines a possible solution. 

4.1  UIKnob.h is Not Found 

This is a problem related to the API. The older versions of the API import a file 
in the examples that sketches a UIKnob in Core Graphics. This is not a part of 
the API, and should not be included in the project. 
  
The file in question is a part of the examples library provided with the SDK. It 
is used in the file ‘AudioIn test’ and is used to sketch a radial knob on the 
screen. It gives a good insight into how the user can generate an interface to 
interact with the API. 
  
Solution: Comment the line out, or download the latest version of the API. 

4.2  Feedback from Microphone 

This is generally caused by the sample rate of a .csd file being wrong.  
  
Solution: Ensure that the system’s sample rate is the same as in the .csd file. 
Going to the audio and MIDI set-up and checking the current output can find 
the computer’s sample rate. See section 3.3.2 for more information. 

4.3  Crackling Audio 

There are numerous possible issues here, but the main cause of this happening 
is a CPU overload. 
  



Csound for iOS API: A Beginner’s Guide  Chapter 4: Common Problems 

 

 

 
 
 
Solution: The best way to debug this problem is to look through the code and 
ensure that there are no memory intensive processes, especially in code that is 
getting used a lot. Problem areas include fast iterations (loops), and code where 
Csound is calling a variable. Functions such as updateValuesToCsound and 
updateValuesFromCsound are examples of frequently called functions. 
  
An example: an NSLog in the updateValuesToCsound method can cause a 
problem. Say, the ksmps in the .csd is set to 64. This means that the Csound is 
calling for iOS to run the method updateValuesToCsound every 64 samples. 
Assuming the sample rate is 44.1k this means that this CPU intensive NSLog is 
being called ~689 times a second; very computationally expensive.  

4.4 Crackling from amplitude slider 

When manipulating the amplitude slider in iOS, a small amount of clicking is 
noticeable. This is due to the fact that there is no envelope-smoothing function 
applied to the amplitude changes. While this would be an improvement on the 
current implementation, however; it was felt that the current implementation 
would be more conducive to learning for the novice Csound user. This would 
be implemented by using a port opcode.  
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5 Csound Library Methods  
This section will present and briefly describe the methods which are available 
in the Manual. 
 
 
Name Method Call Description 

startCsound 

-(void) 
startCsound: 
(NSString*)csdFilePath; 
 

Provides the location of 
the .csd file which is to be 
used with the Csound 
object. 

-(void)startCsound: 
(NSString *)csdFilePath 
recordToURL:(NSURL 
*)outputURL; 

Provides the location of 
the .csd file which is to be 
used with the Csound 
object and specifies a 
URL to which it will 
record. 

startCsoundToDis
k -(void)startCsoundToDisk: 

(NSString*)csdFilePath 
outputFile: 
(NSString*)outputFile; 

Provides the location of 
the .csd file which is to be 
used with the Csound 
object and specifies a file 
to which it will record. 
This does not occur in 
realtime, but as fast as 
possible to the disk. This 
method is useful for batch 
rendering.  

stopCsound -(void)stopCsound; This uses the Csound 
object’s method 
‘stopCsound’ to stop the 
instance of CsoundObj 
that it is called on.  

muteCsound -(void)muteCsound; Mutes all instances of 
Csound 

unmuteCsound -(void)unmuteCsound; Unmutes all instances of 
Csound 
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recordToURL -(void)recordToURL: 
(NSURL *)outputURL; 

Begins recording to a 
specified URL. This can 
be defined at a later point 
in the code, even after 
Csound has been started. 

stopRecording -(void)stopRecording; Stops recording to URL 

 

5.2 UI and Hardware Methods 

Table 5.2-UI and Hardware Methods 

Name Method Call Description 
addSwitch (id<CsoundValueCacheable>) 

addSwitch: 
(UISwitch*)uiSwitch 
forChannelName: 
(NSString*)channelName; 

Adds a switch to the Csound 
object.  The method requires 
a switch which already exists 
as part of the user interface 
and a name for the channel 
which will provide 
information about this switch 
to the .csd file. For more 
information about channels of 
information between Xcode 
and Csound see section 5. 

addSlider (id<CsoundValueCacheable>) 
addSlider: 
(UISlider*)uiSlider 
forChannelName:(NSString*) 
channelName; 

Adds a slider to the Csound 
Object.  The method requires 
a slider and a channel name.   

addButton (id<CsoundValueCacheable>) 
addButton: 
(UIButton*)uiButton 
forChannelName:(NSString*) 
channelName; 

Adds a button to the Csound 
Object.  The method requires 
a button and a channel name. 

enableAccelerometer (id<CsoundValueCacheable>) 
enableAccelerometer; 

Enables the accelerometer for 
use with the Csound object. 

enableGyroscope (id<CsoundValueCacheable>) 
enableGyroscope; 

Enables the gyroscope for use 
with the Csound object. 

enableAttitude (id<CsoundValueCacheable>) 
enableAttitude; 

Enables attitude to allow 
device motion to be usable 
with the Csound object. 

Table 5.1-Basic API Methods 
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5.3 Communicating between Xcode and Csound 

	
  	
  
	
  
	
  

Table 5.3-API Communication Methods 
 

 

Name Method Call Description 
addValueCachea
ble -(void)addValueCacheable: 

(id<CsoundValueCacheable>) 
valueCacheable; 

Adds to a list of  
watched objects so 
that they can update 
every cycle of ksmps.   

removeValueCac
heable -

(void)removeValueCaheable: 
(id<CsoundValueCacheable>) 
valueCacheable; 

Removes a cacheable 
value from the Csound 
Object. 

sendScore -
(void)sendScore:(NSString*
)score; 
 
Eg:  
[self.csound sendScore:[NS
String stringWithFormat:@"
i1  0 10 0.5 %d", 
myPitch,]]; 
 
(sends a score to instrument 1 that 
begins at 0 seconds, stops at 10 
seconds, with amplitude 0.5 and a 
pitch of the objective-C variable 
‘myPitch’).  
 

Sends a score as a 
string to the .csd file. 
See section 4 for 
formatting a Csound 
score line. 

addCompletionLi
stener -

(void)addCompletionListene
r: 
(id<CsoundObjCompletionLis
tener>) 
listener; 

Adds a listener for the 
Csound Object which 
waits for an action to 
be performed that the 
Csound object needs 
to react to. 
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5.4 Retrieve Csound-iOS Information 

 
Name Method Call Description 

getCsound -(CSOUND*)getCsound; Returns the C structure 
that that the CsoundObj 
uses. This allows 
developers to use the 
Csound C API in 
conjunction with the 
Objective-C CsoundObj 
API. 

getInputChannelPtr (float*)getInputChannelPtr: 
(NSString*)channelName; 

Returns the float of an 
input channel pointer. 

getOutputChannelPtr (float*)getOutputChannelPtr: 
(NSString*)channelName; 

Returns the float of an 
output channel pointer. 

getOutSamples -(NSData*)getOutSamples; Gets audio samples from 
Csound. 

getNumChannels -(int)getNumChannels; Returns the number of 
channels in operation. 

getKsmps -(int)getKsmps; Returns ksmps as defined 
in the .csd file. 

setMessageCallback -(void)setMessageCallback: 
(SEL)method 
withListener:(id)listener; 

Sets up a method to be the 
callback method and a 
listener id. 

performMessageCallback (void) 
performMessageCallback: 
(NSValue *)infoObj; 

Performs the message 
callback. 

	
   
Table 5.4-Retrieve Csound-iOS Information Methods
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6 Conclusions 

This tutorial provided an overview of the Csound-iOS API, outlining its 
benefits, and describing its functionality by means of an example project. It 
provided the basic tools for using the API, equipping iOS developers to explore 
the potential of this API in their own time. 
 
APIs such as this one, as well as others including libpd and The Amazing Audio 
Engine provide developers with the ability to integrate interactive audio into 
their apps, without having to deal with the low-level complexities of Core 
Audio. 

6.1 Additional Resources 

Upon completion of this tutorial, the authors suggest that the reader look at the 
original Csound for iOS example project, written by Steven Yi and Victor 
Lazzarini.  

This is available for download from:  

http://sourceforge.net/projects/csound/files/csound5/iOS/   
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Appendix D Test Script (Group A)



Study: An Investigation into the Spatial 
Auditory Display of Graphical Data 

Timothy Neate 

 

GROUP A 

 

Background 

The author has designed a series of tests to examine newly developed 
methods of turning graphical data into spatial audio. Some applications have 
been developed for the iPad that allow a user to interact with an image, and 
get its sound representation as an output. The main aim of the project is to 
find the best image processing methods, sonification algorithms, and 
interaction techniques for allowing a user to find specific features on a 
display, with minimal visual cues.   

Potential applications of the information gathered are as follows: 

• Developing more immersive auditory experiences for users. For 
example, an alerting sound on a tablet computer emanating from a 
specific location on, or off, and the screen - complementing 
extended displays. 
 

• Allowing for ‘eyes free’ technology, for those with their eyes on 
other tasks. For example, creating an interface for a tablet computer 
that provides auditory information to a construction worker who 
needs his eyes on the work at hand. 

 
 

• Improving computer-based experience for the visually impaired. For 
example, allowing for the blind to locate specific features on the 
screen - with the binaural audio providing them with important 
location-based cues. 

 

 

Study Outline 

The aim of this study is to determine the effectiveness of the auditory 
display techniques that have been developed to transform graphical data into 
sound. A series of challenges will be set involving the detection of specific 



features on the display of an iPad. You will be asked to interact with the 
iPad by touching the screen and trying to make sense of the sound.  

The study will consist of three main sections: 

• Demographics questionnaire   
 

• Test 1 – a test that focuses on determining the effectiveness of 
auditory display methods when interacting with an image the size of 
the iPad screen.  
 

• Test 2 – a test that focuses on determining how successful auditory 
display methods are when interacting with a bigger-than-display 
image that requires extra interaction to scroll around and navigate. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Consent Form – Informed Consent for Auditory 
Display Study 

 

Who is running this study? – This study is being run by Timothy Neate 
who is an MSc by research student in the Audio Lab, at the Department of 
Electronics, University of York. 

 

What will I have to do? – You will first have to complete a simple 
demographics form, then you will have to undertake a series of tests 
involving interacting with pictures on an iPad that produce an auditory 
output. The tests are not designed to assess you, but to test the system. The 
tests will be recorded, as they need to be evaluated at a later date.  

 

Who will see this data?  Though these tests are recorded, only your hands 
will be visible in the recording, by signing below you give permission for 
this footage to be used for analysis by the test co-ordinator, and by students 
who wish to continue the work in this project. Note that: your information, 
video, and performance will be anonymised to ensure your confidentiality. 
The forms used will not be distributed, and only the raw anonymised data 
will be accessible. 

 

Do I have to do this? Your participation is completely voluntary. You can 
therefore withdraw from the study, and if requested, your data can be 
destroyed. 

 

Can I ask a question?  Do ask the test administrator if you have any 
questions, however, at some points there may be no answer to ensure there 
is no bias in the tests. 

Please sign below if you agree to take part in the study under the conditions 
laid out above. This will indicate that you have read and understood the 
above and that we will be obliged to treat your data as described. 

Name: 

Signature: 

Date: 



Demographics questionnaire 

This is a small questionnaire to gauge the participants’ background to ensure 
a well encompassing data set. The information you provide here will be 
used to find further correlation in the data. All information gathered is 
anonymous and confidential. 

 

1. What is your age? ______ 

 

2. What is your gender? (Male / Female) 

 

3. What is your nationality? _____________ 

 

4. Are you a student? (Yes/No)  

If so, indicate your department or area of study: 

_____________________________________________
_____________________________________________
______________________ 

 

5. How would you describe your experience with portable touch screen 
devices (E.g. an iPad/iPhone, Android Device)? 

Tick your answer: 

[  ]   I own one  

[  ]   I have some experience using them but do not own one 

[  ]   I have a little experience using touch screen devices 

[  ]   I have never used a touch screen device 

 

6.  Are you a musician? (Yes/No)  

If ‘Yes’, elaborate: 



_____________________________________________
_____________________________________________
_____________________________________________
_________________________________ 

 

7. Do you associate certain timbres or pitches with colour (synaesthesia)?  

Circle your answer: (Yes/ No) 

If ‘Yes’, elaborate: 

_____________________________________________
_____________________________________________
_____________________________________________
_________________________________ 

 

8. How would you describe your experience of binaural audio (sound 
created with the intention of creating 3D audio over headphones)? 

 Tick your answer: 

[  ]   I have listened to lots of binaural audio and/or have good knowledge 
about it 

[  ]   I have listened to binaural audio  

[  ]   I have never listened to binaural audio 

 

9. You may now contact the test administrator, who will play you a short 
binaural extract over headphones. How effectively can you determine the 
actor’s position? 

Tick your answer: 

[  ]   I can tell where he is in the room at all times 

[  ]   I am unsure at some points, but for the most part I know where he is 

[  ]   I have no idea where he is – the binaural effects do not work. 

 



Test 1 

 

Test 1 will focus on determining how well the developed auditory display 
methods work – this will be done by seeing how participants perform when 
interacting with the display to find the location of simple shapes and 
colours. You will be asked to find features on the screen of the iPad, and 
you will be tasked with locating the features by means of feel and sound 
alone. 

As soon as you touch the screen you will have real-time auditory feedback, 
you must then use this auditory feedback to try and locate the specific 
features on the screen. The sound produced will differ from test to test; 
however, each test will use at least two of the following sound mappings: 

 

• Pulse Train – a pulsing sound is used to allow you to determine 
how far away from the image feature you are – the faster the pulsing 
of the sound, the closer to the image feature you are. The sound that 
pulses depends on the feature that you’re detecting. 
 

• Binaural Panning – the sound will be panned binaurally, this means 
that the sound you are listening for will appear to be coming from a 
particular direction, move your finger towards this point to locate the 
feature. 
 

• Volume – as you get closer to the sound, the sound will become 
louder. 
 

• Alert – when you have found the image feature, i.e. your finger is 
touching it; you will hear a high-pitched beeping sound. This means 
you have found the dot and you may indicate that you have found it 
to the test organizer. 
 
 
 
 
 

 

 

 

An example training application (Example 1) has been provided 
so that you may familiarize yourself with the mappings. For this, 
you will not be blindfolded and will be allowed to look at the 
screen to gauge an idea of the mappings. The experiment co-
ordinator will now talk you through each of the parameters, and 
how they relate to the features in the image. 

 



Test 1.1 

[Visual Restriction] 

For this test, the aim is to find a black dot on the screen by sound and feel 
alone.  The algorithm is currently only looking for the colour black, and as 
there is a purely white background, you will only hear the black dot. Your 
aim is to try and find its location. When you believe you have found its 
position, indicate so by saying ‘found’, ‘got it’, or similar. The sound used 
for the pulse train is a burst of white noise; the same as in the training 
example. 

 

Test 1.2 

[Visual Restriction] 

This experiment will be similar to Test 1.1; however, there will be three 
colours – red, green, and blue. The sound mappings are the same as before; 
however, there will be three sounds, each to signify a colour; a high pitched 
sound to indicate red, a medium pitched sound to indicate green, and a low 
pitched sound to indicate blue. The test administrator will now play an 
example of the red sound, the green sound, and the blue sound. Your task 
is to navigate towards these sounds using the various cues, and once you 
have found a colour (the beeping alert sound triggers), you must indicate to 
the test co-ordinator what colour you think you are touching – red, green, or 
blue? Once you have found one colour, go on to try and find the remaining 
colours in a similar fashion. 

 

Test 1.3 

[Visual Restriction] 

This test will examine the system’s ability to help users identify some 
minimalist pictures. You will be presented with an auditory representation 
of a picture and then choose the picture you believe to be its visual 
representation from a series of four pictures. You will have the opportunity 
to view the pictures beforehand, and afterwards to ensure you pick the one 
you believe it to be. The colours will only consist of the colours in Test 1.2, 
and will adhere to the same mappings; a high pitched sound to indicate red, 
a medium pitched sound to indicate green, and a low pitched sound to 
indicate blue. The pictures are on the next page. Please put a tick next to the 
one you believe to be the picture on the iPad screen. 



 



Test 2 

 

Test 2 will focus on determining how well the auditory display methods 
work when the image extends the iPad’s display. You will be tasked with 
finding image features that are outside of the iPad’s physical display, as 
shown below. 

 

To find the image features, place your finger down on the screen to hear the 
auditory feedback, then used two or more fingers to scroll in the direction of 
the sound you hear.  By doing this it is possible to search through a large 
image and stop scrolling when you believe you are close to the source of the 
sound. Then, it is possible to search the local area with the conventional one 
finger searching method, in a similar manner to Test 1.  

If you become disoriented in the tests where you are allowed visual cues, it 
is possible to determine your location on the screen by looking at the 
scrollbars on the sides of the screen. Alternatively, if you have no visual 
cues an additional parameter has been added to determine when a user has 
scrolled beyond the bounds of the image: 

Edge Hit ‘Boing’ – when the bounds of an image have been exceeded an 
oscillator will feedback that the user has exceeded the allocated scrollable 
size. 

 

 

 

 

An example training application (Example 2) has been provided so 
that you may familiarize yourself with the mappings. For this, you will 
not be blindfolded and will be allowed to look at the screen to gauge 
an idea of the mappings. The experiment co-ordinator will now talk 
you through each of the parameters, and how they relate to the features 
in the image, as well as explain the best technique for searching. 

 



Test 2.1 

[Visual Restriction] 

Test 2.1 will test the effectiveness of the system’s ability to portray large 
images with binaural feedback. The image you are tasked with exploring is 
three times the size of the iPad screen, and you must explore it by scrolling 
around it. Your task, much like in the example application, is to find the 
black dot. However, during this test you will not be able to see the display 
of the iPad. The image you are searching is three times the size of the iPad 
screen. 

 

Test 2.2 

[Visual Restriction] 

Test 2.2 is similar to Test 2.1; however, in this task you are searching for 
three coloured dots – red, green, and blue. The sound mappings are the same 
as in Test 1.2 - a high pitched sound to symbolize red, a medium pitched 
sound to symbolize green, and a low pitched sound to symbolize blue. The 
image you are searching is three times the size of the iPad’s display. 

 

Test 2.3 

[No Visual Restriction] 

The following tests (2.3, 2.4 and 2.5) involve searching progressively larger 
images with both your ears and your eyes.  In this test you are tasked with 
searching for a black dot, much like in Test 2.1. However, this time, you 
will be able to use your eyes – the visual restrictions will be removed. The 
image that you are searching is three times the size of the iPad display. 

 

Test 2.4 

[No Visual Restriction] 

Test 2.4 is the same as Test 2.3; you must find the black dot with no visual 
restrictions. However, in this test, the image you are searching will be four 
times the size of the iPad display. 

 

 



Test 2.5 

[No Visual Restriction] 

Test 2.5 is the same as Test 2.4; you must find the black dot with no visual 
restrictions. However, in this test, the image you are searching will be five 
times the size of the iPad’s display. 

 



Appendix E Test Script (Group B)



Study: An Investigation into the Spatial 
Auditory Display of Graphical Data 

Timothy Neate 

 

GROUP B 

 

Background 

The author has designed a series of tests to examine newly developed 
methods of turning graphical data into spatial audio. Some applications have 
been developed for the iPad that allow a user to interact with an image, and 
get its sound representation as an output. The main aim of the project is to 
find the best image processing methods, sonification algorithms, and 
interaction techniques for allowing a user to find specific features on a 
display, with minimal visual cues.   

Potential applications of the information gathered are as follows: 

• Developing more immersive auditory experiences for users. For 
example, an alerting sound on a tablet computer emanating from a 
specific location on, or off, and the screen - complementing 
extended displays. 
 

• Allowing for ‘eyes free’ technology, for those with their eyes on 
other tasks. For example, creating an interface for a tablet computer 
that provides auditory information to a construction worker who 
needs his eyes on the work at hand. 

 
• Improving computer-based experience for the visually impaired. For 

example, allowing for the blind to locate specific features on the 
screen - with the binaural audio providing them with important 
location-based cues. 

 

Study Outline 

The aim of this study is to determine the effectiveness of the auditory 
display techniques that have been developed to transform graphical data into 
sound. A series of challenges will be set involving the detection of specific 
features on the display of an iPad. You will be asked to interact with the 
iPad by touching the screen and trying to make sense of the sound.  



The study will consist of three main sections: 

• Demographics questionnaire   
 

• Test 1 – a test that focuses on determining the effectiveness of 
auditory display methods when interacting with an image the size of 
the iPad screen.  
 

• Test 2 – a test that focuses on determining how successful auditory 
display methods are when interacting with a bigger-than-display 
image that requires extra interaction to scroll around and navigate. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Consent Form – Informed Consent for Auditory 
Display Study 

 

Who is running this study? – This study is being run by Timothy Neate, 
who is an MSc by research student in the Audio Lab, Department of 
Electronics, University of York. 

 

What will I have to do? – You will first have to complete a simple 
demographics form, then you will have to undertake a series of tests 
involving interacting with pictures on an iPad that produce an auditory 
output. The tests are not designed to assess you, but to test the system. The 
tests will be recorded, as they need to be evaluated at a later date.  

 

Who will see this data?  Though these tests are recorded, only your hands 
will be visible in the recording, by signing below you give permission for 
this footage to be used for analysis by the test co-ordinator, and by students 
who wish to continue the work in this project. Note that: your information, 
video, and performance will be anonymised to ensure your confidentiality. 
The forms used will not be distributed, and only the raw anonymised data 
will be accessible. 

 

Do I have to do this? Your participation is completely voluntary. You can 
therefore withdraw from the study, and if requested, your data can be 
destroyed. 

 

Can I ask a question?  Do ask the test administrator if you have any 
questions, however, at some points there may be no answer to ensure there 
is no bias in the tests. 

Please sign below if you agree to take part in the study under the conditions 
laid out above. This will indicate that you have read and understood the 
above and that we will be obliged to treat your data as described. 

Name: 

Signature: 

Date: 



Demographics questionnaire 

 

This is a small questionnaire to gauge the participants’ background to ensure 
a well encompassing data set. The information you provide here will be 
used to find further correlation in the data. All information gathered is 
anonymous and confidential. 

 

1. What is your age? ______ 

 
2. What is your gender? (Male / Female) 

 

3. What is your nationality? _____________ 

 

4. Are you a student? (Yes/No)  

If so, indicate your department or area of study: 

_____________________________________________
_____________________________________________
______________________ 

 

5. How would you describe your experience with portable touch screen 
devices (E.g. an iPad/iPhone, Android Device)? 

Tick your answer: 

[  ]   I own one  

[  ]   I have some experience using them but do not own one 

[  ]   I have a little experience using touch screen devices 

[  ]   I have never used a touch screen device 

 

 



 

 

6.  Are you a musician? (Yes/No)  

If ‘Yes’, elaborate: 

_____________________________________________
_____________________________________________
_____________________________________________
_________________________________ 

 

7. Do you associate certain timbres or pitches with colour (synaesthesia)?  

Circle your answer: (Yes/ No) 

If ‘Yes’, elaborate: 

_____________________________________________
_____________________________________________
_____________________________________________
_________________________________ 

 

8. How would you describe your experience of binaural audio (sound 
created with the intention of creating 3D audio over headphones)? 

 Tick your answer: 

[  ]   I have listened to lots of binaural audio and/or have good knowledge 
about it 

[  ]   I have listened to binaural audio  

[  ]   I have never listened to binaural audio 

 

 

 



9. You may now contact the test administrator, who will play you a short 
binaural extract over headphones. How effectively can you determine the 
actor’s position? 

Tick your answer: 

[  ]   I can tell where he is in the room at all times 

[  ]   I am unsure at some points, but for the most part I know where he is 

[  ]   I have no idea where he is – the binaural effects do not work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Test 1 

Test 1 will focus on determining how well the developed auditory display 
methods work – this will be done by seeing how participants perform when 
interacting with the display to find the location of simple shapes and 
colours. You will be asked to find features on the screen on the iPad, and 
you will be tasked with locating the features by means of feel and sound 
alone. 

As soon as you touch the screen you will have real-time auditory feedback, 
you must then use this auditory feedback to try and locate the specific 
features on the screen. The sound produced will differ from test to test; 
however, each test will use at least two of the following four sound 
mappings: 

 

• Pulse Train – a pulsing sound is used to allow you to determine 
how far away from the image feature you are – the faster the pulsing 
of the sound, the closer to the image feature you are. The sound that 
pulses depends on the feature that you’re detecting. 
 

• Binaural Panning – the sound will be panned binaurally, this means 
that the sound you are listening for will appear to be coming from a 
particular direction, move your finger towards this point to locate the 
feature. 
 

• Volume – as you get closer to the sound, the sound will become 
louder. 
 

• Alert – when you have found the image feature, i.e. your finger is 
touching it; you will hear a high pitched beeping sound. This means 
you have found the dot and may indicate that you have found it to 
the test organizer. 
 
 
 
 
 

 

 

 

An example training application (Example 1) has been provided so 
that you may familiarize yourself with the mappings. For this, you will 
not be blindfolded and will be allowed to look at the screen to gauge an 
idea of the mappings. The experiment co-ordinator will now talk you 
through each of the parameters, and how they relate to the features in 
the image. 

 



Test 1.1 

[Visual Restriction] 

For this test, the aim is to find a black dot on the screen by sound and feel 
alone.  The algorithm is currently only looking for the colour black, and as 
there is a purely white background, therefore you will only hear the black 
dot. Your aim is to try and find its location. When you believe you have 
found its position, indicate so by saying ‘found’, ‘got it’, or similar.  

The sound used for the pulse train is a burst of white noise; the same as in 
the training example, and the closer you get to the dot the faster its rate. 
There is no binaural audio this test, so you will not have an impression of 
where the dot is, only an impression of how far you are away from it. 

 

Test 1.2 

[Visual Restriction] 

This experiment will be similar to Test 1.1; however, there will be three 
colours – red, green, and blue. The sound mappings are the same before; 
however, there will be three sounds pulsing, each to signify the colours red, 
green, and blue. Your task is to navigate towards these sounds using the 
various cues, and once you have found a colour (the beeping alert sound 
triggers), you must indicate to the test co-ordinator what colour you think 
you are touching from the sound alone – red, green, or blue. Then move on 
to identify the remaining colours. 

 

Test 1.3 

[Visual Restriction]  

This test will examine the system’s ability to help users identify some 
minimalist pictures. You will be presented with an auditory representation 
of a picture and then choose the picture you believe to be its visual 
representation from a series of four pictures.  You will have the opportunity 
to view the pictures beforehand, and afterwards to ensure you pick the one 
you believe it to be. The colours will only consist of the colours in Test 1.2, 
and will adhere to the same mappings. The test coordinator will now tell 
you the mappings, and play some sound examples. The pictures are on the 
next page. Please put a tick next to the one you believe to be the picture on 
the iPad screen. 



 



Test 2 

 

Test 2 will focus on determining how well the auditory display methods 
work when the image extends the iPad’s display. You will be tasked with 
finding image features that are outside of the iPad’s physical display, as 
shown below. 

 

To find the image features, place your finger down on the screen to hear the 
auditory feedback, then used two or more fingers to scroll in the direction of 
the sound you hear.  By doing this it is possible to search through a large 
image and stop scrolling when you believe you are close to the source of the 
sound. Then, it is possible to search the local area with the conventional one 
finger searching method, in a similar manner to Test 1.  

If you become disoriented in the tests where you are allowed visual cues, it 
is possible to determine your location on the screen by looking at the 
scrollbars on the sides of the screen. Alternatively, if you have no visual 
cues an additional parameter has been added to determine when a user has 
scrolled beyond the bounds of the image: 

Edge Hit ‘Boing’ – when the bounds of an image have been exceeded an 
oscillator will feedback that the user has exceeded the allocated scrollable 
size. 

 

 

 

 

An example training application (Example 2) has been provided so that 
you may familiarize yourself with the mappings. For this, you will not be 
blindfolded and will be allowed to look at the screen to gauge an idea of the 
mappings. The experiment co-ordinator will now talk you through each of 
the parameters, and how they relate to the features in the image, as well as 
explain the best technique for searching. 

 

 



Test 2.1 

[Visual Restriction] 

Test 2.1 will test the effectiveness of the system’s ability to portray large 
images without binaural feedback. The image you are tasked with exploring 
is three times the size of the iPad screen, and you must explore it by 
scrolling around it. Your task, much like in the example application, is to 
find the black dot. However, during this test you will not be able to see the 
display of the iPad. The image you are searching is three times the size of 
the iPad screen.  

 

Test 2.2 

[Visual Restriction] 

Test 2.2 is similar to Test 2.1; however, in this task you are searching for 
three coloured dots – red, green, and blue. Its aim is to determine how 
effective the system is without binaural feedback. The sound mappings are 
as follows - a high pitched sound to symbolize red, a medium pitched sound 
to symbolize green, and a low pitched sound to symbolize blue. The image 
you are searching is three times the size of the iPad’s display. 

 

Test 2.3 

[No Visual Restriction] [No Auditory Feedback] 

The following tests (2.3, 2.4 and 2.5) involve searching progressively larger 
images with both your ears and your eyes.  In this test you are tasked with 
searching for a black dot, much like in Test 2.1. However, this time, you can 
only use your eyes – the applications will no longer have auditory feedback. 
The image that you are searching is three times the size of the iPad display 

 

Test 2.4 

[No Visual Restriction] [No Auditory Feedback] 

Test 2.4 is the same as Test 2.3; you must find the black dot with no visual 
restrictions. However, in this test the image, you are searching will be four 
times the size of the iPad display. This application has no auditory feedback, 
so you must search with your eyes alone. 



 

Test 2.5 

[No Visual Restriction] [No Auditory Feedback] 

Test 2.5 is the same as Test 2.4; you must find the black dot with no visual 
restrictions. However, in this test the image, you are searching will be five 
times the size of the iPad’s display. This application uses no auditory 
feedback, so you must search with your eyes alone. 



Appendix F Test Coordinator’s Script



Study: An Investigation into the Spatial 
Auditory Display of Graphical Data 

Timothy Neate 

TEST CO-ORDINATOR SCRIPT 

 

Overview 

This is the test co-ordinator’s script. It will be used to ensure that the test 
procedure flows as smoothly and consistently as possible. 

 

Introducing the Participant 

• Sit down participant and ask them to read through the background, the 
study outline, and the consent form. 
 

• Let them know that if they have any questions during this part, or any 
other part of the test, feel free to ask. However, that the test co-
ordinator will not be able to answer all questions. Do not answer any 
questions that may give any participant an advantage, or a 
disadvantage. 
 

• Ask them to sign the consent form if they agree to its contents, and 
then ask them to fill out the questionnaire. Note that when they get to 
‘9’, let the test co-ordinator know so that a sound clip may be played 
over headphones. This will be played on the iPad through the 
participant’s headphones. 

 

Test 1 

 
• Ask them to read ‘Test 1’ up to the box, and then allow them to look 

at Example 1 freely – ensuring that they have understood the 
parameters. 
 

• Begin recording, and ask the participant to complete Test 1.1. 
 



• Ask the participant to read through Test 1.2. If they are in Group A 
play them the audio examples off the iPad, and tell them how they 
relate related to each colour. If they are in Group B, do not. 

 

• Ask the participant to complete Test 1.2, and then set up app for next 
test. 
 

• Ask them to read through and complete Test 1.3. 

 

Test 2 

 
• Ask the participant to read through Test 2, and stop when they reach 

the box. 
 

• Ask the participant to follow the instructions in the box – allowing 
them to see the device. 
 

• Then give a short demonstration of the technique associated with 
extended display scrolling. Also, note that they should search 
horizontally, then vertically to improve efficiency. 
 

• Ask them to read Test 2.1, and complete it. 
 

• Ask them to read Test 2.2, and complete it. 
 

• Remove the iPad from the black box such that they can see it fully. 
 

• Ask them to read and complete Test 2.3, 2.4, and 2.5, noting the 
long loading times. 
 

• Notify the participant that they have finished the test, and if they 
wish they may make any comments with regards to their 
performance. 
 

• Turn off recording equipment and distribute chocolate. 
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