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Abstract 

This thesis studies intelligent spectrum and topology management through transfer 

learning in mobile broadband networks, to improve the capacity density and Quality 

of Service (QoS) as well as to reduce the cooperation overhead and energy 

consumption. The dense deployment of small cell base stations (BSs) is an effective 

approach to provide high capacity density access. In the meantime, multi-hop 

wireless backhaul networks enable highly flexible deployment and self-organization 

of small cell BSs. A heterogeneous small cell access and multi-hop backhaul 

network is studied in this thesis as mobile broadband system architecture.  

Transfer learning is applied to Radio Resource Management (RRM) as an intelligent 

algorithm to improve the performance of conventional reinforcement learning. In 

transfer learning, a BS trains its knowledge base relying on knowledge transferred 

from other related BSs, who are selected using an interference coordination strategy. 

In a network with static topology, cooperation management is developed to identify 

the maturity of the knowledge base and control the coordination overhead. It is 

demonstrated in a multi-hop backhaul network that transfer learning delivers a QoS 

level that is as high as achieved by a fully coordinated algorithm, but with a very low 

level of information exchange which is close to a fully distributed algorithm.  

Transfer learning is also studied in rapidly changeable network architectures to 

provide reliable communication. It is carried out during the changes of network 

topology, through mapping the learner’s knowledge base to a prioritized action space 

with Pareto efficiency. This process assists the BSs to quickly identify and adapt to 

environment changes, and makes effective decisions. Results show that transfer 

learning significantly reduces QoS fluctuation during traffic variation and topology 

changes in a highly dynamic network. Furthermore, a dynamic topology 

management algorithm is developed to intelligently control the working modes of 

BSs, based on traffic load and capacity in multiple cells. Topology management is 

demonstrated to reduce the number of activated BSs with adequate QoS performance 

provided. Dynamic capacity provision between multiple cells is achieved from 

transfer learning, which significantly improves QoS and reduces energy 

consumption. 



Table of Contents iii 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Table of Contents 

List of Figures vii 

List of Tables x 

Acknowledgements xi 

Declaration xii 

Chapter 1. Introduction 13 

1.1 Overview .................................................................................................... 13 

1.2 Hypothesis .................................................................................................. 15 

1.3 Outline ........................................................................................................ 15 

Chapter 2. Literature Review 18 

2.1 Introduction ................................................................................................ 18 

2.2 Next Generation Mobile Broadband Networks ......................................... 19 

2.2.1 High Capacity Density Wireless Networks ........................................... 19 

2.2.2 Dense Small Cell Access Networks ....................................................... 21 

2.2.3 Multi-hop Backhaul Networks ............................................................... 22 

2.2.4 Mobile Ad-hoc Networks ....................................................................... 24 

2.3 Radio Resource Management .................................................................... 26 

2.3.1 Multiple Access Techniques .................................................................. 26 

2.3.2 Frequency band Allocation .................................................................... 29 

2.3.3 Dynamic Spectrum Access .................................................................... 32 

2.4 Cognitive Radio Techniques ...................................................................... 36 

2.4.1 Cognitive Networking and Cognitive Radio .......................................... 36 

2.4.2 Reinforcement Learning......................................................................... 39 

2.4.3 Multi-agent Cooperation ........................................................................ 41 

2.4.4 Transfer Learning ................................................................................... 42 

2.5 Energy Efficient Wireless Networks .......................................................... 43 

2.6 Conclusion ................................................................................................. 46 

Chapter 3. System Modelling and Verification Methodologies 48 

3.1 Introduction ................................................................................................ 48 

3.2 Network Architecture ................................................................................. 49 



Table of Contents iv 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

3.2.1 Multi-hop Wireless Backhaul Network ................................................. 50 

3.2.2 Flexible Small Cell Access Network ..................................................... 51 

3.3 Simulation Techniques ............................................................................... 52 

3.4 Wireless Network Modelling ..................................................................... 53 

3.4.1 System Level Simulation ....................................................................... 53 

3.4.2 Physical Layer Models ........................................................................... 55 

3.4.3 File Transfer Traffic Model ................................................................... 59 

3.5 Performance Evaluation Techniques.......................................................... 62 

3.5.1 Quality of Service .................................................................................. 62 

3.5.2 Learning Efficiency ................................................................................ 65 

3.5.3 Cooperation Overhead and Energy Efficiency ...................................... 66 

3.6 Verification Methodologies ....................................................................... 67 

3.7 Conclusion ................................................................................................. 69 

Chapter 4. Distributed Learning and Interference Coordination 70 

4.1 Introduction ................................................................................................ 70 

4.2 Radio environment of multi-hop networks ................................................ 71 

4.2.1 Interference Issue ................................................................................... 72 

4.2.2 Bottleneck Issue ..................................................................................... 73 

4.3 Space-division Interference Coordination ................................................. 74 

4.3.1 Interference Coordination Mechanism ................................................... 74 

4.3.2 Spatial Reuse Methodology ................................................................... 75 

4.3.3 Simulation .............................................................................................. 77 

4.4 Distributed Reinforcement Learning.......................................................... 82 

4.4.1 Cognitive Models for Multi-hop Networks ........................................... 82 

4.4.2 Distributed Reinforcement Learning Algorithms .................................. 83 

4.4.3 Interference Weighted Decision Making Strategy ................................. 89 

4.4.4 Simulation .............................................................................................. 90 

4.5 Conclusion ................................................................................................. 96 

Chapter 5. Transfer Learning with Cooperation Management 98 

5.1 Introduction ................................................................................................ 98 

5.2 Transfer Learning: Value Training Method ............................................... 99 

5.3 Source Agent Selection ............................................................................ 101 



Table of Contents v 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

5.4 Target Agent Training .............................................................................. 103 

5.4.1 Value training function ........................................................................ 104 

5.4.2 Space-division Coordination ................................................................ 105 

5.5 Stable State Evaluation ............................................................................ 105 

5.6 Cooperation Management ........................................................................ 109 

5.6.1 CM on Value Training Function .......................................................... 109 

5.6.2 CM on Action-Value Function ............................................................ 111 

5.7 Simulation ................................................................................................ 113 

5.8 Conclusion ............................................................................................... 123 

Chapter 6. Transfer Learning for Dynamic Network Architectures 125 

6.1 Introduction .............................................................................................. 125 

6.2 Dynamic Network Environment .............................................................. 126 

6.2.1 Dynamic User Traffic .......................................................................... 126 

6.2.2 Dynamic Network Topology................................................................ 127 

6.3 Learning in Dynamic Environment .......................................................... 129 

6.4 Transfer Learning: Value Mapping Method ............................................ 131 

6.5 Dynamic Frequency Reuse Clustering ..................................................... 132 

6.6 Action Space Prioritization ...................................................................... 134 

6.6.1 Pareto Improvement Resource Prioritization ....................................... 134 

6.6.2 Algorithm ............................................................................................. 135 

6.7 Action-Value Mapping............................................................................. 137 

6.8 Simulation ................................................................................................ 138 

6.8.1 Start-up Performance ........................................................................... 139 

6.8.2 Traffic and Topology Transition .......................................................... 142 

6.8.3 Dynamic Traffic and Topology Fluctuation ........................................ 145 

6.9 Conclusion ............................................................................................... 148 

Chapter 7. Dynamic Capacity Provision and Topology Management 150 

7.1 Introduction .............................................................................................. 150 

7.2 Network Topology and Capacity in Cellular Systems ............................. 151 

7.3 Dynamic Capacity Provision ................................................................... 153 

7.3.1 Two Cell Single Cluster Model............................................................ 154 

7.3.2 Three Cell model .................................................................................. 159 



Table of Contents vi 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

7.4 Dynamic Topology Management ............................................................. 166 

7.5 Simulation ................................................................................................ 169 

7.6 Conclusion ............................................................................................... 172 

Chapter 8. Future Work 174 

8.1 Implementation of Machine Learning for RRM ...................................... 175 

8.2 Intelligent RRM for LTE Systems ........................................................... 176 

8.3 Intelligent RRM for Ad hoc Networks..................................................... 178 

8.4 Intelligent Topology Management ........................................................... 178 

8.5 Dynamic Link Selection ........................................................................... 179 

8.5.1 Load Balancing and Load Unbalancing ............................................... 180 

8.5.2 Handover and Admission Control ........................................................ 180 

8.5.3 Mobility of Aerial Base Stations .......................................................... 181 

8.6 Entropy in Transfer Learning ................................................................... 182 

Chapter 9. Summary and Conclusions 184 

9.1 Conclusions of Work ............................................................................... 184 

9.2 Summary of Original Contributions......................................................... 187 

9.3 List of Publications .................................................................................. 191 

9.4 Recommendations for Similar Research Scope ....................................... 192 

Definitions 194 

Glossary 196 

List of References 198 

 



List of Figures vii 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

List of Figures 

Figure 1.1. Thesis Structure ....................................................................................... 16 

Figure 2.1. Fractional Frequency Reuse .................................................................... 30 

Figure 2.2. Cognitive Cycle ....................................................................................... 37 

Figure 2.3. Learning process illustration [80] ............................................................ 43 

Figure 2.4. Traffic dynamics in time and spatial domains [11, 89] ........................... 45 

Figure 2.5. Traffic Aware Network Planning [11] ..................................................... 46 

Figure 3.1. High Capacity Density Network Architecture ......................................... 50 

Figure 3.2. Multi-hop Wireless Backhaul Network Model........................................ 50 

Figure 3.3. Flexible Small Cell Access Network Model ........................................... 51 

Figure 3.4. Simulator Structure .................................................................................. 54 

Figure 3.5. Aperture Antenna Model ......................................................................... 56 

Figure 3.6. Directional antenna developed by Cobham [12] ..................................... 57 

Figure 3.7. Multi-dimensional Queuing System ........................................................ 69 

Figure 4.1. Multi-hop network interference environment .......................................... 72 

Figure 4.2. Spatial reuse between multiple hops........................................................ 76 

Figure 4.3. Spatial reuse between multiple branches ................................................. 77 

Figure 4.4. Multi-hop backhaul network simulation topology .................................. 77 

Figure 4.5. Number of Dropped Links ....................................................................... 78 

Figure 4.6. Number of Blocked Links ....................................................................... 79 

Figure 4.7. HBS Spatial Reuse performance according to antenna beamwidth ........ 80 

Figure 4.8. Network Throughput ............................................................................... 81 

Figure 4.9. Network Delay ......................................................................................... 82 

Figure 4.10. Probability of Retransmission (Decision Making strategies) ................ 91 

Figure 4.11. Throughput and Delay (Decision Making strategies) ............................ 92 

Figure 4.12. Probability of Retransmissions .............................................................. 93 

Figure 4.13. Throughput and Delay ........................................................................... 94 

Figure 4.14. Temporal performance of QoS .............................................................. 95 

Figure 4.15. Probability of Channel Usage ................................................................ 96 

Figure 5.1. Transfer Learning: Value Training Method .......................................... 100 

Figure 5.2. Stable States and Retransmissions: Low Traffic Level ......................... 107 

Figure 5.3. Stable States and Retransmissions: High Traffic Level ........................ 108 

Figure 5.4. CM on Value Training Function ........................................................... 109 



List of Figures viii 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Figure 5.5. CM on Action-Value Function .............................................................. 112 

Figure 5.6. Learning Efficiency ............................................................................... 114 

Figure 5.7. Probability of Failed Decisions (Cooperation Management) ................ 115 

Figure 5.8. Probability of Information Exchanges (Cooperation Management) ..... 116 

Figure 5.9. Probability of Failed Decisions (Target Agent Training) ...................... 117 

Figure 5.10. Probability of Information Exchanges (Target Agent Training) ......... 118 

Figure 5.11. Probability of Retransmissions ............................................................ 119 

Figure 5.12. Mean Delay per File ............................................................................ 119 

Figure 5.13. Probability of Retransmissions (Dynamic Traffic).............................. 120 

Figure 5.14. Probability of Information Exchanges (Dynamic Traffic) .................. 122 

Figure 5.15. Probability of Retransmissions in Dynamic Architecture ................... 123 

Figure 6.1. Small Cell Network with Dynamic Topologies..................................... 128 

Figure 6.2. Transfer Learning: Value Mapping Method .......................................... 132 

Figure 6.3. Convergence Efficiency (Start-up Performance) .................................. 140 

Figure 6.4. Probability of Retransmissions (Start-up Performance) ........................ 141 

Figure 6.5. Mean Delay per File (Start-up Performance) ........................................ 142 

Figure 6.6. Traffic and Topology Transitions .......................................................... 143 

Figure 6.7. Probability of Retransmissions (Single Transition) ............................... 144 

Figure 6.8. Mean Delay per File (Single Transition) ............................................... 145 

Figure 6.9. Dynamic Traffic and Topology Fluctuations ........................................ 146 

Figure 6.10. Probability of Retransmissions (Dynamic Fluctuations) ..................... 147 

Figure 6.11. Mean Delay per File (Dynamic Fluctuations) ..................................... 148 

Figure 7.1. Three BS dynamic topology model ....................................................... 154 

Figure 7.2. Two Cell Single Cluster Markov model ................................................ 155 

Figure 7.3. State Probabilities of the Two Cell Markov Model ............................... 157 

Figure 7.4. Blocking Probability vs Traffic Load Proportion .................................. 158 

Figure 7.5. Three Cell Two Cluster Markov model ................................................. 160 

Figure 7.6. Three Cell Single Cluster Markov model .............................................. 162 

Figure 7.7. Blocking Probability (Topology Transition) ......................................... 164 

Figure 7.8. Blocking Probability (Spatial Traffic Variation) ................................... 165 

Figure 7.9. Framework of Topology Management with Transfer Learning ............ 168 

Figure 7.10. Energy Consumption Ratio ................................................................. 169 

Figure 7.11. Retransmission Probability .................................................................. 170 

Figure 7.12. Mean Delay per File ............................................................................ 171 



List of Figures ix 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Figure 7.13. Confidence Measurement .................................................................... 172 

Figure 8.1. Markov model for Link Selection ......................................................... 181 



List of Tables x 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

List of Tables 

Table 3.1. Confidence levels and corresponding z� ................................................... 64 

Table 4.1. Simulation Parameters .............................................................................. 78 

Table 4.2. Historical and Instantaneous Information ................................................. 86 

Table 4.3. Simulation Parameters .............................................................................. 91 

Table 5.1. Process of Source Agents Selection ........................................................ 102 

Table 5.2. Stable State Evaluation ........................................................................... 107 

Table 5.3. CM on Value Training Function (Initial) ................................................ 110 

Table 5.4. CM on Value Training Function (Adaptive)........................................... 111 

Table 5.5. CM on Action-Value Function ............................................................... 112 

Table 6.1. Pareto Improvement Priority Table ........................................................ 135 

Table 6.2. Transfer Learning: Value Mapping Method ........................................... 138 

Table 6.3. Simulation Parameters ............................................................................ 139 

Table 7.1. Topology Management Algorithm.......................................................... 168 

 



Acknowledgements xi 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Acknowledgements 

I would like to express my sincere gratitude to my supervisor, Dr David Grace. He 

has offered me great freedom on selecting research directions and provided me with 

various ideas on up to date research topics. This thesis would not be possible without 

his guidance and instructions. 

I would also like to thank Dr Paul Mitchell and Mr Tim Clarke for their valuable 

suggestions, assistance and criticisms on my research work.  

My thanks go to all colleagues in the Communication Research Group and visitors 

from other institutes as well, who have created a friendly environment for both 

academic discussions and social life.    

This thesis is dedicated to my parents, for their continuous and enormous support on 

my PhD study. 



Declaration xii 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Declaration 

Some of the work presented in this thesis has been published at or submitted to 

academic conferences or journals, which are listed at the end of this thesis. 

To the best knowledge of the author, all the work claimed as original in this thesis is 

so. References and acknowledgements to other researchers have been given as 

appropriate.   



Chapter 1. Introduction 13 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 
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1.1 Overview 

Traffic density in wireless communication systems has been growing significantly in 

recent decades. Future mobile broadband systems are targeted at delivering ultra 

high capacity density networks [1], which will support an increasing number of 

mobile subscribers and a growing demanding of high speed data rate services. 

Network capacity will be heavily constrained by spectrum availability in the near 

future, because of the high level throughput and Quality of Service (QoS) 

requirement from a growing number of users [2]. An effective approach to high 

capacity provision under limited spectrum resources is to densely deploy small 

cellular base stations [3]. By splitting a conventional macro/micro network into small 

cells, effective spectrum reuse can be carried out with improved link budgets. The 

Shannon model indicates that the data rate on individual links can then be 

significantly improved due to wider bandwidth availability and better received signal 

level [4].  

The small cell network architecture has a number of technical challenges. The major 

issues with respect to Radio Resource Management (RRM) can be categorized as 

follows: 

• Network Complexity 

The small cell architecture brings significantly more Base Stations (BSs) into a 

wireless network. A major issue in this type of network is the backhaul architecture. 

Traditionally wired fibre or microwave links connect Macro/Micro BSs to the Core 

Network (CN). However, this approach would incur substantial deployment costs in 
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a small cell network. Wireless backhaul architecture is an effective solution for 

flexible deployment and cost reduction [5]. Under this approach, a large number of 

small BSs can be deployed in the locations that have capacity enhancement 

demands. The wireless backhaul and access network constructs a heterogeneous 

architecture, which is the baseline of this work.  

Network management is another challenge in a small cell architecture. On the one 

hand, the heterogeneous architecture requires complex algorithms to control various 

network entities. On the other hand, the control information brings heavy overheads, 

which reduce network performance. A decentralized self-organizing network 

management strategy is potentially an effective approach to mitigate these challenges 

[6], which is an objective of this work. 

• Spectrum Management 

Spectrum bands are conventionally allocated to BSs and MSs by a centralized Radio 

Network Controller (RNC) [7]. In a small cell network this approach requires 

complex algorithms and architecture. Dynamic Spectrum Access (DSA) is a 

promising approach to simplify spectrum management and to improve spectrum 

utilization [8]. This paradigm has been widely explored by applying distributed 

intelligent algorithms [9]. However, a serious drawback of distributed algorithms is 

that a number of immature decisions should be carried out prior to achieving an 

improved solution, which cannot guarantee steady and reliable QoS. Moreover, such 

algorithms become increasingly ineffective in rapidly changeable dynamic 

environments. The issue of delivering reliable QoS as well as reducing cooperation 

overhead in a dynamic radio network is the main research topic of this thesis. 

• Energy Efficiency 

Green communication is becoming vitally important in the future wireless networks. 

Analysis of energy consumption in typical cellular systems shows that the BSs 

consume most of the energy [10, 11] in a wireless network. It can be anticipated that 

the energy issue will be even more serious in small cell networks, because a large 

number of BSs are densely deployed. An important approach to overcome this issue 

is to intelligently control the number of activated BSs based on the dynamics of user 

traffic, as well as maintaining adequate QoS and capacity.  
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1.2 Hypothesis 

The hypothesis of this thesis is that transfer learning can improve system QoS and 

throughput performance, and reduce cooperation overhead and energy consumption. 

Dense capacity wireless networks are proposed to have low level inter-entity control 

information exchange with sufficient and reliable QoS provision as well as low 

energy consumption. Conventional radio resource management mechanisms are 

designed in either a distributed or coordinated manner. The distributed learning 

strategies require a number of heuristic decisions to learn the radio environment. On 

the other hand, the inter-entity coordination algorithm provides reliable QoS but 

requires massive information exchange.  

Transfer learning introduces effective multi-agent cooperation into distributed 

reinforcement learning, which can significantly improve QoS and throughput as well 

as providing reliable and steady performance in both static and dynamic networks. 

Distributed cognitive agents can make effective decisions based on the knowledge 

base trained by information from other agents. A cooperation management algorithm 

can minimize the coordination overhead and while maintaining high level QoS. In 

the networks with dynamic traffic and topologies, transfer learning can mitigate 

environmental impact and provide a steady level of QoS. Furthermore, topology 

management can reduce energy consumption by effectively controlling the number 

of activated base stations. Transfer learning with topology management achieves 

dynamic capacity provision in cellular networks, which significantly improves 

energy efficiency and QoS.  

1.3 Outline 

This thesis is organized as follows. 

Chapter 2 provides a literature review on the background and established work 

related to this thesis. Overviews of beyond next generation mobile broadband 

networks are given, together with self-organization requirements for radio resource 

management. Particularly, we focus on the dense small cell access networks and 

wireless backhaul networks as the dense capacity architecture in future networks. 

Conventional RRM algorithms are reviewed, including those carried out on GSM, 
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WCDMA, LTE and WiFi systems. A comparison between centralized, distributed, 

coordinated and independent RRM algorithms is provided. Cognitive radio and 

dynamic spectrum access mechanisms are reviewed, with concentration on learning 

algorithms for the development of intelligent spectrum management. Furthermore, 

recent research work on energy efficient wireless cellular networks is given, with an 

introduction to dynamic network management.  

Chapter 3 introduces the wireless network architecture used in this work, including a 

multi-hop backhaul network and a small cell access network. Various simulation 

tools are discussed. The detailed modelling methodology is presented, followed by 

parameters used for performance evaluation. Furthermore, an introduction to Markov 

analysis used for a theoretical proof later in this thesis is given.   

The main contributions of this work are illustrated in Chapter 4 to Chapter 7. In 

accordance with the architectures of a high capacity density network [12], these 

chapters are categorized into two parts as illustrated in Figure 1.1. 

 

Figure 1.1. Thesis Structure 

The first part consists of Chapter 4 and Chapter 5, which focuses on the multi-hop 

backhaul network. The purpose of this part is to provide high level QoS on backhaul 

links, as well as reducing cooperation overheads between distributed base stations.  

Chapter 4 presents the early work of spectrum management strategies developed for 

a multi-hop backhaul network. A novel space-division interference coordination 

strategy for this architecture is presented, by employing channel information 
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exchange. Comparison and analysis of linear reinforcement learning and Q learning 

algorithms are given, together with improved strategies on a multi-hop backhaul 

network.  

Chapter 5 proposes a newly developed transfer learning paradigm. It is designed as 

an integration of distributed reinforcement learning and interference coordination, 

which benefits from distributed decision making as well as high QoS provision. 

More importantly, cooperation management algorithms are designed to control the 

amount of information exchanged in transfer learning. Transfer learning with 

cooperation management is aimed at delivering a high QoS together with a low level 

coordination overhead. 

The second part consists of Chapter 6 and Chapter 7, which focus on the small cell 

access network. The purpose of this part is to provide reliable communication in the 

network with dynamic topologies, and reduce energy consumption from dynamic 

network topology management. 

Chapter 6 introduces the concept of a flexible network architecture, which enables 

the base stations to switch between active and sleep modes. This operation is applied 

in the scenarios of opportunistic deployments and energy efficient networks. 

Transfer learning is designed to enhance the knowledge base with topology 

information during the transition of network architecture. The algorithm prioritizes 

the action space and maps it with corresponding knowledge base. The target is to 

provide a steady and reliable QoS level under highly dynamic user traffic and 

network topology.  

Chapter 7 analyses the dynamic capacity provision achieved from transfer learning, 

with comparisons to a conventional frequency band allocation strategy. A dynamic 

Topology Management (TM) algorithm is developed to intelligently change the 

operation mode of base stations, based on user traffic and network capacity. The 

objective is to effectively reduce energy consumption and provide adequate QoS. 

Furthermore, transfer leaning is applied to improve QoS and energy efficiency 

through dynamic capacity provision in multiple cells. 

Chapter 8 presents possible future work based on this thesis. Chapter 9 concludes 

this work and summarizes original contributions. 
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2.1 Introduction 

This chapter gives a review on published research work related to intelligent radio 

resource management for the next generation mobile broadband systems. High 

capacity density network is vitally important to provide broadband wireless access 

service in densely populated urban areas. It demands a self-organized and flexible 

architecture design. In this context, a dense small cell access network has been 

proposed to enhance system capacity in a distributed manner. In addition to this, 

wireless backhaul is a promising technique to support flexible deployment of small 

cell base stations (BSs). Radio Resource Management (RRM) is essential in these 

heterogeneous networks to make the spectrum resources effectively shared by high 

density wireless users. Multiple Access Schemes are used in RRM to allow multiple 

users to connect to the same network and share its capacity. Spectrum Management 

is vital in RRM to effectively divide a common spectrum into resource blocks and 

assign them to users. Frequency band Allocation (FA) schemes have been widely 

used to mitigate interference between wireless entities. Dynamic Spectrum Access 

(DSA) is a newly proposed technique to improve spectrum utilization. Cognitive 

radio has been studied in wireless network to intelligently control interference in 

DSA, which is primarily supported by various machine learning techniques. On the 

other hand, energy efficiency is a crucial aspect in future networks alongside 
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capacity provision. Power components in BSs consume most of the energy in a 

cellular network, thus dynamic network planning is vital for energy saving. 

An overview of high capacity density wireless systems is firstly given in Section 2.2, 

followed by a review of dense small cell access and wireless backhaul networks. In 

Section 2.3, a comprehensive review of Radio Resource Management (RRM) 

techniques in wireless networks is given, which includes multiple access schemes, 

conventional frequency band allocation strategies and novel dynamic spectrum 

access mechanisms. Cognitive radio techniques are presented in Section 2.4, which 

allows wireless nodes to learn the radio environment and make decisions for data 

transmission. This is followed by various machine learning algorithms. Section 2.5 

provides an overview of energy efficiency studies in wireless networks. 

2.2 Next Generation Mobile Broadband Networks 

2.2.1 High Capacity Density Wireless Networks 

The capacity demands of mobile communication systems have grown significantly 

over the past decades, because of the increasing data traffic from mobile subscribers. 

Mobile broadband access is becoming vitally important in many aspects of our 

society and people’s daily life. In current and future wireless network, there are a 

number of different mobile devices (i.e. smartphones, tablets, laptops) transmitting 

various types of data traffic (i.e. video, data, voice) [13]. It has been reported that 

mobile networks connect three times more users than wired networks. In addition, 

cloud networks have been widely investigated in recent years, aimed at connecting 

mobile devices to a data centre anytime, anywhere [14]. In this context, mobile 

broadband access is essential to deliver high data rate services in extensive coverage 

areas.  

Mobile user and traffic density vary significantly between rural and urban areas. The 

densely populated urban areas have ultra high capacity demands, which cannot be 

effectively supported by current cellular systems [12]. Wireless traffic and user 

density in metropolitan area have been growing significantly in recent years, because 

mobile internet changes lifestyle and plays a key role in business. A high capacity 

density wireless network is thus essential to support the increasing traffic and user 

density. 
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The next generation wireless systems are designed to significantly enhance network 

capacity and wireless link data rate. The IMT-Advanced standard specifies a nominal 

data rate of 100 Mb/s for high mobility users and 1 Gb/s for stationary users [15]. 

3GPP LTE-Advanced and IEEE WiMAX II are mainstream standards on the road to 

these targets. Furthermore, the FP7 BuNGee project proposes a 1 Gb/s/��� high 

capacity density network for the deployment of beyond 4G wireless system in typical 

European cities [16].   

Spectrum availability is one of the main constraints in a high capacity density 

network. The Shannon equation [4] indicates that link data rate is limited by channel 

bandwidth and Signal-to-Interference plus Noise Ratio (SINR). Ultra high user 

density in a network largely reduces the bandwidth of each channel assigned and 

increases interference between wireless links. In the physical layer, there are various 

techniques under research to improve spectrum efficiency of wireless channels, 

including OFDM, MIMO, Adaptive Modulation and Coding (AMC), Cooperative 

Communications, etc. [13] The main purpose is to effectively enhance capacity on an 

individual channel. However, system capacity is also determined by resource 

utilization and interference management, which is a major research area in RRM. 

Spectrum reuse is an essential method to enhance system capacity under limited 

resources. Spectral efficiency determines the number of users and the volume of 

traffic that a network can support in a given spectrum band. A maximized spectrum 

reuse strategy can accommodate more users and higher traffic in the system. 

However, this could result in excessive interference between multiple links, which in 

turn reduces channel capacity and system throughput. An effective spectrum reuse 

strategy should trade off reuse efficiency and co-channel interference.  

Channel capacity is also affected by signal strength other than bandwidth and 

interference, according to the Shannon model. Received signal strength is 

determined by transmit power, antenna gain and path loss. Power control and power 

management have been extensively studied for improving received signal gain on 

multiple users in a network [17], from a conventional water-filling algorithm [18] to 

intelligent algorithms such as reinforcement learning [19, 20] and game theory [21, 

22]. Power allocation is shown to effectively improve system capacity in a given 

network architecture and propagation environment.  
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Heterogeneous Networks (HetNet) represent a potentially highly effective method to 

enhance network capacity, which emerges from conventional cell splitting used in 

many cellular systems [4]. HetNet significantly improves spectrum reuse by 

increasing the number of cells. Moreover, signal strength can be largely enhanced 

with the same transmit power, because HetNet reduces path loss and improves the 

propagation environment between BSs and MSs.  

2.2.2 Dense Small Cell Access Networks  

A Small Cell Network (SCN) is an effective approach to deliver a dense capacity 

wireless system, because the smaller cells can afford more subscribers per unit area 

or higher data rate [3]. BSs in SCN comprise light weight equipments with low 

transmit power and small antennas. Moreover, they are cost effective in installation, 

operation and management. The location of SCN BSs can be highly flexible, i.e. on 

the walls, street lights, and trees. SCN is widely used in next generation mobile 

broadband systems, in conjunction with conventional Macro cells to construct a 

HetNet. In the 3GPP LTE standard, SCN is constructed by outdoor Pico cells or 

indoor Femto cells [23]. Micro cells are used in 2G and 3G systems to enhance 

system capacity by splitting Macro cells. However, overlapped coverage delivered 

by SCN provides better spectrum utilization and link selection for MSs. Furthermore, 

SCN BSs can be deployed in hotspot areas with smaller coverage, similar to a WiFi 

AP. 

Self-organization is a crucial requirement in SCNs. HetNet is a complex architecture 

that causes significant operational challenges. Frequency Planning (FP) in a SCN 

could be complicated because of its highly dynamic topology [6]. It is difficult to 

predict and control the interference between SCNs and Macro cellular network. 

Moreover, FP algorithms cannot provide effective spectrum reuse and utilization 

because the user traffic in SCN can be highly dynamic. Last but not least, FP is 

operated through centralized RRM, which requires BSs to communicate with a RNC 

for admission control, channel allocation, handover, load balancing, etc. This incurs 

excessive control information overhead in a HetNet architecture.  

Self-organization can reduce the cost of SCNs. This includes but not limited to the 

cost of BS equipment, network deployment, land rentals and power supply. It is thus 

important to maximize the capacity provision in a given network topology prior to 
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deploying new BSs. However, user traffic is highly dynamic in different cell 

coverage areas and different hours of a day. Self-organized RRM is essential to 

monitor traffic load variation in both time and spatial domains and improve network 

planning for capacity provision. Furthermore, RRM should dynamically adapt 

spectrum patterns to the dynamic network environment. 

There are three different deployment methodologies proposed for small cell 

networks [23], including multicarrier, carrier aggregation and co-channel 

deployment. Multicarrier deployment assigns separated spectrum bands to macro and 

small cells for interference avoidance. This solution requires an improved load 

balancing algorithm to transfer the user traffic between these two networks for 

congestion control. It could be highly inefficient as it creates undesirable bandwidth 

segmentation. Carrier aggregation is a solution that provides flexibility of spectrum 

sharing between macro and small cells. In this scheme, one carrier frequency is used 

for macrocell coverage and another is shared between macrocell and small cells. The 

interference between overlapped macro and small cells can be avoided as they 

operate on different spectrum bands. Moreover, the UEs out of small cell coverage 

can use the spectrum band assigned for small cell BSs, which improves spectrum 

utilization. Co-channel deployment is one of the most attractive and challenging 

solutions. In this scenario, all macro and small cell BSs are deployed in the same 

spectrum band, which avoids bandwidth segmentation and maximizes spectrum 

utilization. However, interference between adjacent and overlapped cells could be 

excessively high unless it can be effectively controlled by intelligent RRM 

algorithms. 

2.2.3 Multi-hop Backhaul Networks  

The backhaul network is a major challenge in a SCN architecture. Conventional fibre 

or microwave backhaul used in macro or micro cellular networks could be very 

expensive for connecting a large number of small cell BSs [24]. Moreover, the 

deployment of fibre backhaul is limited by the geographical environment, and the 

implementation of microwave backhaul is constrained by propagation environment. 

Small cell BSs are designed for flexible deployment anywhere anytime [3], thus the 

fibre and microwave backhaul are not economical and realistic solutions. 
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A LTE-A relay architecture has been proposed by 3GPP as a candidate HetNet 

solution for improving coverage and cell edge performance [25]. Relay eNBs are 

connected to Macro eNBs through wireless backhaul links [23]. The wireless 

backhaul network is implemented with directional antennas at the transceivers, in 

order to mitigate interference in the access network and enhance capacity. The 

topology of the backhaul network could be single or multi hop. The single-hop 

backhaul architecture has been proposed in [24-26] for the relay network and in [12] 

for the small cell network. In this architecture, the macrocell BS connects directly to 

the relay BSs. It has been illustrated in [25] that the role of the relay eNB in LTE-A 

is mainly to enhance throughput and extend coverage in each sector of a macro eNB. 

In this case, the backhaul network can be constructed as a simple star topology. In 

the meantime, [12] uses a similar architecture to construct the backhaul network for 

the access BSs. The advantage of the single-hop network is that the link has no relay 

burden, which reduces the amount of radio resources required for the relay traffic. 

Moreover, the simple topology makes it easy to carry out effective interference 

management, routing, congestion control, end-to-end reliable connection, etc. 

However, it becomes inefficient in the scenario where the small cell BSs are densely 

deployed. The interference at the backhaul hub is excessively high because of the 

link density. Furthermore, transmit power should be high enough to connect the relay 

eNBs that are deployed at the edge of macrocell. 

The multi-hop backhaul network is proposed in [27-30], which allows BSs acting as 

wireless relay nodes to forward traffic from other cells. This architecture provides 

highly flexible deployment of the SCN BSs, and significantly reduces the complexity 

of the ad hoc network. In this scenario, the locations of BSs are fixed, which do not 

need complicated distributed routing algorithms. The connection between a MS and 

a BS remains single-hop, which significantly reduces inter UE interference. 

Furthermore, the interference at the backhaul hub can be mitigated by reducing the 

link density. The multi-hop backhaul network also diminishes path loss, because the 

point to point communication between neighbor BSs reduces transmit power and 

enhances signal power. This network is particularly reliable on the highways and 

railways, because the highly fluctuating user traffic between multiple cells can be 

backhauled via a stable end-to-end connection.  



Chapter 2. Literature Review 24 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

The spectrum management strategy for a wireless backhaul network can be classified 

as: in-band backhaul and out-of-band backhaul. The in-band backhaul shares the 

same spectrum pool allocated to access network. In theory, optimal resource 

utilization can be achieved through this scheme. However, interference between 

access and backhaul links is excessively high because they are located in the same 

area. The spectrum allocation algorithm could be very complex [12]. 

The purpose of spectrum sharing is to overcome the issue of spectrum holes incurred 

by the dynamics of user traffic. The user traffic in a backhaul link is directly 

determined by that in the access network. In this context, spectrum sharing between 

the backhaul and access networks is not vital for the improvement of spectrum 

utilization. The out-of-band backhaul is potentially an effective strategy to provide 

sufficient bandwidth and avoid inter network interference. There are several 

solutions to achieve out-of-band backhaul. The operator could use part of the 

allocated spectrum, such as 800 MHz, 2.6 GHz (LTE) or 3.5 GHz (WiMAX), as 

dedicated for the backhaul network [30]. On the other hand, the unlicensed spectrum, 

such as 5 GHz band, can be freely used for backhaul links. There is also research on 

60 GHz mm-wave band for backhaul capacity [12]. In this scenario, significant 

capacity enhancement can be achieved because of the characteristic natural 

directivity and considerable propagation loss in mm-wave band. The interference 

from co-channel links can be reduced because signal attenuation is very high. 

However, a strict line-of-sight propagation environment is necessary to guarantee 

sufficient received signal power. In this case, the transceiver antennas of backhaul 

links should be deployed over a rooftop level.  

2.2.4 Mobile Ad-hoc Networks  

Mobile Ad-hoc Network (MANET) is another promising architecture for the dense 

capacity wireless system. The network topology in MANET is highly flexible that 

the nodes are moving and connect with each other. It can handle many-to-many 

connections and is capable of dynamically updating and optimizing these 

connections [31]. Routing protocol is especially vital in this network to deliver 

effective end-to-end QoS. 

MANET is highly efficient in providing communications anytime anywhere. It 

significantly reduces the number of hops that a data file has to be delivered from a 
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source to a destination. Such simplified network architecture reduces the relay 

burden and thus requires less radio resources to provide capacity. There are many 

use cases that employ MANET as an effective solution. For example, it allows the 

User Equipment (UE), such as mobile phone, tablet, camera, laptop, to directly share 

videos, photos, files with each other in parties, sports games, tourist attractions, 

shopping malls, etc. Furthermore, P2P services can be effectively implemented on 

MANET, which allows a UE to obtain data files directly from others in vicinity 

without causing additional traffic load on the cellular base stations. In some low 

traffic energy efficient wireless systems such as sensor networks or smart grids, 

fixed or mobile ad hoc network significantly improves the flexibility in deployment 

and reduces power consumption. MANET is also popular in future Vehicular Ad hoc 

Networks (VANETs), where the vehicular are allowed to connected to the traffic 

control centre for road information, weather, news, etc. Connectivity in VANET is 

has severe challenge due to the fast moving ad hoc nodes caused by the dynamics of 

road conditions, which has been studied in [32].  

Another example of partial MANET is the multi-hop cellular network proposed in 

[27], where the network connects a MS with others in the vicinity through multiple 

hops to the BS. In this scenario, the transmit power could be largely reduced and the 

cell coverage can be well extended. Such network can be supported by direct mode 

LTE communication (LTE D2D) [33] that connects multiple UEs in which there is 

no eNB coverage. The FP7 ABSOLUTE proposes UE clustering techniques, which 

allows a cluster head UE connect an Aerial eNB with several adjacent UEs [34]. The 

UE clustering architecture effectively reduces power consumption in the access 

network and extends the UEs’ battery life.  

Radio Resource Management in the mobile ad-hoc network has severe challenges. 

The UEs are usually implemented with omni-directional antennas, which cause 

excessive interference to each other and largely constraints the data rate. Moreover, 

the mobility of UEs results in a constantly changing interference environment, which 

makes the network highly unstable. In Chapter 4, RRM on a multi-hop backhaul 

network with “tree” topology has been investigated, which can be easily extended to 

a fully ad hoc/mesh network. This will be discussed in Section 8.3. 
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2.3 Radio Resource Management 

Radio resource management (RRM) is the system level control of co-channel 

interference and other radio transmission characteristics in wireless communication 

systems [35]. The objective is to effectively utilize the available spectrum resources 

for data transmissions. There are various components in RRM, such as handover, 

channel allocation, power control, etc. This thesis particularly focuses on the aspect 

of allocating radio resources (time slots, frequency channels, etc.) to wireless users 

as well as providing system capacity.  

RRM has been widely investigated for decades, with a number of algorithms 

developed [36]. A major target is to maximize the number of users and the volume of 

data traffic that a system can support. Multiple access techniques represent the 

baseline of RRM that allows multiple users to connect to the same network. 

Spectrum management is then carried out to divide and assign a shared spectrum 

band to multiple users for data transmission. In the following sections, the RRM 

algorithms are categorized as Frequency band Allocation (FP) and Dynamic 

Spectrum Access (DSA). 

2.3.1 Multiple Access Techniques 

Multiple access techniques allow multiple users to share the capacity provided by a 

spectrum band. It is based on a multiple access protocol and control mechanism, 

namely media access control (MAC). In this section, we categorize various multiple 

access techniques into channelization schemes and random access schemes. 

2.3.1.1 Channelization Schemes 

Channelization has been widely applied in wireless cellular systems. In this scheme, 

the entire spectrum pool is divided into multiple channels in various forms. Channels 

are assigned not only to multiple users but also to multiple links between 

transceivers (multiplexing). In a data packet network, a wireless link may have 

multiple channels assigned simultaneously, because there could be multiple data 

packets and relayed traffic in transmission simultaneously.  

There are four fundamental channelization techniques developed for multiple access 

or multiplexing [4]: 
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• Frequency Division: the available spectrum band is divided into several distinct 

frequency ranges to provide multiple channels. The users are allocated with 

several frequency channels for transmission. In this scheme, adjacent channel 

interference exists between neighbour sub-bands, where a guard band is used for 

channel separation.  

• Time Division: the resource pool is divided into several time slots for multiple 

access. A user can utilize a wider frequency band while time slots should be well 

synchronized between users. However, transmission delay can cause serious inter-

symbol interference. Guard bands are thus necessary between time slots to protect 

neighbour symbols.  

• Code Division: spreading codes are employed to divide signals for multiple users. 

In this scheme, a spread spectrum technique is used to allow any user to utilize 

the entire radio spectrum in both time and frequency domains. However, an 

effective power control algorithm is vital to provide sufficient SINR for users in 

different locations.  

• Space Division: directional antennas are employed to connect users in different 

locations. Interference is controlled by negative gains on antenna sidelobes. 

However, narrow beam antennas result in an increased antenna size, which is 

difficult to implement on MSs and small cell BSs. This scheme is thus usually 

applied on backhaul links between BSs.   

Many current and future communication systems use a mixture of these techniques. 

OFDMA is widely applied or proposed in 4G and WiFi systems, which defines  

Resource Blocks in both time and frequency domains [37]. The FP7 BuNGee project 

also implements directional antennas on the backhaul network, which use both space 

division and OFDMA techniques [12]. A comprehensive study of the space division 

scheme on the multi-hop backhaul network will be provided in Chapter 4. 

Channelization schemes deliver a contention-free system, where interference is a 

major issue on multiple users reusing the same channel in the domains of time, 

frequency, etc. Furthermore, spectrum utilization is a big issue when a user does not 

require continuous data transmission at all time but only need to use channels 

occasionally. 
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2.3.1.2 Random Access Schemes 

Random access schemes are widely used in many wireless networks to provide 

distributed multiple access and flexibility of utilizing the resource pool. ALOHA is a 

basic random access scheme that allows multiple users to transmit on a common 

channel. Collisions occur when users contend for the same time slot and random 

back off is carried out for retransmission. The simplicity of ALOHA makes it a 

promising technique for the networks that require minimum implementation 

overheads to save energy, such as Wireless Sensor Networks (WSNs). The 

intelligent ALOHA protocols with reinforcement learning have been studied in [38, 

39] as effective techniques for WSN. This enables a distributed node to learn to 

avoid collisions with others on the same slot, which thus improves QoS. 

Carrier sense multiple access (CSMA) is a more reliable random access scheme that 

introduces carrier detection before transmitting data packets [40]. The IEEE 802.11 

standard implements CSMA using RTS/CTS (Request to Send/Clear to Send) 

mechanism. A node wising to transmit data will firstly broadcast a RTS frame to the 

nodes in the vicinity. The destination node replies with a CTS frame. Any other 

nodes receiving RTS or CTS frames avoid sending data for a given time. The 

transmitter then starts to send data packets. The receiver replies with an ACK 

(Acknowledgement) frame when packets are delivered. A packet without an ACK 

reply in a given time will be considered a lost packet. Various retransmission 

schemes have been developed for resending the lost packets, including 1-persistent: 

the transmitter continuously detects the channel and sends data once it is free; P-

persistent: the transmitter send data on idle channels with a probability of p; and non-

persistent: the transmitter back off the lost packet and wait for a random time to 

resend [41]. The 1-persistent technique is effective at low traffic loads but may cause 

excessive collisions at high traffic load, where non-persistent is applied instead.  

The random access schemes provide effective ways for multiple access in a 

distributed manner. However, ALOHA and CSMA are both contention-based system 

which cannot guarantee reliable QoS. ALOHA schemes are constrained by the 

random arriving behaviour of data packets. The hidden and exposed node problems 

can hardly be detected in CSMA [40]. This thesis will mainly focus on cellular 
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communication systems, where channelization schemes are generally applied. In the 

next two sections we will describe the major methodologies of spectrum assignment.  

2.3.2 Frequency band Allocation 

The Frequency band Allocation (FA) mechanism is widely applied for spectrum 

management in most of the current cellular communication systems [42]. FA divides 

the radio spectrum into several distinct frequency bands. A base station is allocated 

with a frequency band that contains a set of channels to be assigned to radio links on 

the access or backhaul network. The FA strategy can be carried out in a centralized, 

coordinated, or distributed manner. However, the common feature of them is that a 

BS has a fixed size spectrum pool. In this scenario, the network capacity is more 

constrained by the bandwidth of allocated frequency bands rather than interference. 

In this section, we will firstly review different FA strategies categorized by 

frequency patterns, including cell, zone and antenna based schemes. The operating 

mode of FA is then presented. Finally the spectrum utilization issue is stated 

followed by a channel borrowing scheme. 

Frequency Planning and Cell Clustering 

Frequency planning (FP) is used in most of the FA strategies to mitigate inter-band 

interference. A typical FP strategy is the clustering algorithm used in the GSM 

system [42]. This algorithm defines a cluster as a set of adjacent cells that includes 

all frequencies. The cluster members (BSs) are allocated with different frequency 

bands in order to avoid inter-cell interference. The same frequency pattern is applied 

to all clusters in the network. Two cells in a neighbour cluster share the same band 

[4]. The shape of a cluster could be hexagonal, straight line, square, etc., depending 

on the location and coverage of the BSs.   

Cluster size, namely the number of BSs in a cluster, is a crucial parameter that 

determines the spectrum efficiency. A smaller cluster size means a larger number of 

clusters exist in the system. In this case, the bandwidth in each cell is wider because 

of better frequency reuse capability. However, interference in a small cluster 

network could be very high due to the short distance between multiple cells sharing 

the same band. The Shannon equation [4] indicates that link capacity is determined 
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by bandwidth and interference in a given transmitter power and propagation loss. As 

a result, the cluster size should be carefully designed to increase frequency reuse and 

to reduce interference. 

Fractional Frequency Reuse  

FA can also be carried out on fractional zones within a cell. 3GPP LTE proposes the 

enhanced Fractional Frequency Reuse (FFR) scheme for inter-cell interference 

coordination in a OFDMA HetNet [43]. It is designed as omni-directional and 

sectorized schemes based on antenna patterns of eNBs, which is shown in Figure 2.1. 

 

Figure 2.1. Fractional Frequency Reuse 

In a small cell with omni-directional antennas, FFR divides a cell into inner and 

outer zones with different frequency bands allocated to each. The users in the inner 

zones of adjacent cells can reuse the frequency band. The cell edge users in the outer 

zones receive interference from neighbour cells, where cluster based FA is applied. 

This scheme achieves higher system capacity than conventional cluster based FA, 

because the inner zone has fewer constraints from spectrum division. In LTE the 

omni-directional FFR scheme is proposed for Pico or Femto cells. 

A sectorized FFR scheme has been designed to include all frequencies in a cellular 

area. In this scheme, three sectorized antennas further divide the outer zone into 

three sector zones, with separate bands allocated to each. The inner zone can use all 

frequencies as proposed in omni-directional FFR. The total bandwidth of a cell is 
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maximized to the size of the spectrum pool. The sectorized FFR allows a macrocell 

to use the entire spectrum pool with mitigated inter-cell interference.  

Multi-beam Frequency Planning  

We have so far illustrated possible FA strategies on cells and zones. However, some 

new network architectures have been implemented with directional antennas to 

establish wireless links. A typical example is the heterogeneous mobile broadband 

network proposed in the FP7 BuNGee project [12]. The access network is 

constructed by four directional antennas on ABSs, covering different street areas. 

The backhaul network is constructed by multiple directional antennas on a HBS, 

connecting a number of ABSs in a square area. A special FA strategy has been 

designed based on antenna beams. In this scenario, four frequency bands are 

allocated to different antenna beams on ABS and HBS. In the access network, an 

ABS assigns four different frequency bands to four antenna beams covering different 

streets. Neighbour ABSs are coordinated to avoid the same band used by antennas 

covering the same street. In the backhaul network, four adjacent antennas are 

categorized in a group with different bands allocated to each. 

The cell-based, zone-based, and antenna-based FA strategies follow the same 

principle in which frequency bands are used to divide the spectrum. It is highly 

effective to avoid interference in scenarios where the network architecture is fixed 

and the FP scheme is carefully designed. For the dynamic network architecture 

scenarios introduced in Chapter 6 and Chapter 7, adaptive allocation of frequency 

bands is desired to control interference in different network topologies. A novel 

dynamic FA strategy is introduced in Chapter 7 to handle this problem. 

Protocol Architecture   

The architecture of a FA strategy can be centralized, coordinated and distributed. 

Conventional 2G systems use centralized FA, where the RNC is responsible for 

planning and allocating frequency bands to various cells through the S1 interface 

[36]. In LTE systems, the Inter-Cell Interference Coordination (ICIC) strategy is 

introduced [13], where an X2 interface is employed to exchange control information 

between eNBs [44]. The frequency band information can be exchanged through X2 

links to achieve band separation between neighbouring fractional zones. The degree 
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of information exchanged on X2 links in ICIC is less than that on S1 link in the 

centralized strategy. The coordination overhead issue occurs only when the network 

topology is rapidly changeable, where dynamic FA is essential. 

Spectrum Utilization and Channel Borrowing  

The main issue of the FA strategy is its efficiency of handling traffic dynamics in 

both time and spatial domains [36]. The number of channels provided by FA to a 

cell, zone or antenna is fixed to the band size, which constrains the maximum 

number of users that can be supported. Traffic density is highly dynamic in different 

time and locations [11]. The uniformly assigned frequency bands are not able to 

accommodate the dynamics of traffic, which causes users to be blocked in the system 

according to queuing theory [45]. Spectrum bands cannot be fully utilized in the 

whole network, where more cells are required to keep adequate QoS. This causes a 

significant waste of spectrum resources and energy. 

A channel borrowing scheme has been proposed in FA to accommodate a non-

uniform number of users in different cells. In this context, one cell can borrow free 

channels from neighbour or adjacent cells when its allocated band is fully utilized. 

There are two types of borrowing schemes: one is that all the channels in a band can 

be borrowed for temporary use in other cells; the other is that some channels in a 

band will be locked for use only in their allocated cell, and the rest of them can be 

lent out [42]. The channel borrowing schemes can reduce blocking probability in FA 

by dynamically scheduling radio resources to some extent. However, this may cause 

overlap between bands which destroys the original FP. It is thus difficult to handle 

interference in the channel borrowing scheme.  

2.3.3 Dynamic Spectrum Access 

Dynamic Spectrum Access (DSA) is a promising technique under research in the 

recent years. It is usually applied for RRM in a Cognitive Radio (CR) network [8]. 

There is a common belief that radio spectrum is suffering a high level of scarcity in 

recent years [46]. The high speed data rate systems and a dramatic growth in the 

number of users require significantly greater spectrum than before. Conventionally 

radio spectrum is assigned or auctioned to operators by regulatory authorities. 

However, the free unoccupied spectrum is insufficient for mobile broadband 
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networks. A typical example is the deployment of LTE network in many countries. 

The 800 MHz spectrum band provides comprehensive coverage in LTE, because the 

lower frequency has better resistance to propagation loss [47]. However, 800 MHz 

band is the UHF band allocated to analogue and digital TV transmission in many 

countries. In order to transfer this band to LTE system, Ofcom in the UK has to clear 

this band and reallocate other spectrum for digital TV stations [48]. Similar actions 

are carried out in other countries. Furthermore, LTE in 2.6 GHz band suffers serious 

adjacent channel interference from neighbouring bands, where additional guard 

bands are needed to provide sufficient separation. These examples indicate that 

frequency band allocation mechanism is inefficient in supporting high speed 

communication systems.  

Despite the scarcity of frequency bands, spectrum utilization is extremely low in 

current wireless systems. A study of spatial and temporal spectrum usage in [49] 

indicates that the spectrum is not used all the time and that the usage depends on 

location. The main reason for this is the capacity of frequency bands is highly 

inflexible, which cannot support dynamic user traffic. As a result, the concept of 

dynamic spectrum access is proposed to assign channels for opportunistic and 

occasional access. In this manner, the spectrum is expected to be well utilized and 

the system capacity can be maximized. 

Dynamic Spectrum Access Scenarios  

DSA is conventionally designed to allow opportunistic “secondary users” (SU) to 

access the licensed spectrum occupied by “primary users” (PU), namely 

Opportunistic Spectrum Access (OSA) [9]. The PUs are guaranteed to have reliable 

QoS and have priority in using the spectrum. The SUs can identify the spectrum 

holes that are not currently occupied by the PUs and transmit on related channels. 

Moreover, the SUs should release channels when requested by PUs. This mechanism 

requires few changes to existing wireless devices in licensed bands. However, it is 

unrealistic at the current stage for operators to release their licensed spectrum for 

other uses, because spectrum is one of the most important resources in attracting 

users and also in some countries there is tremendous cost in purchasing spectrum 

bands. Furthermore, the PUs are concerned with potential interference and greedy 
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usage from SUs. On the other hand, reliable QoS cannot be guaranteed for SUs, 

which could be less attractive in the market. 

A more realistic DSA can be carried out between multiple wireless entities in a 

single or heterogeneous network within the same spectrum band held by one 

operator. Channel allocation can be carried out by either BSs or MSs, though BS 

based DSA means few changes to existing MSs. In DSA, a common spectrum pool 

is opened to all BSs or MSs in the network, meaning that all channels can be 

dynamically assigned to links when traffic arrives and released when transmission 

finished [50]. The network capacity is constrained by co-channel interference rather 

than bandwidth, because the system is lacking preliminary FP. 

The following part of this section introduces conventional implementation methods 

of DSA, including Radio Environment Map, Spectrum Sensing and Inter-entity 

Coordination. 

Radio Environment Map   

A Radio Environment Map (REM) employs a dynamic database for spectrum 

management, which contains the information of BS locations and spectrum usage 

[51]. A BS wishing to assign channels will firstly search the database for empty 

channels, and update the database after occupying or releasing the selected channel. 

The database is maintained at a central server but updated dynamically by distributed 

BSs. This scheme provides up-to-date information of spectrum occupancy and 

effectively controls interference. However, control information exchanged between 

distributed BSs and database could be excessively high. Moreover, the database 

could be very large and difficult to manage, when there is a large number of users or 

a high volume of data traffic. Storage of such large databases remains an issue. 

Spectrum information in REM can also be updated through spectrum awareness. The 

FP7 FARAMIR project [52] has done comprehensive research in sensing 

technologies, database storage, resource management and system architectures. The 

information overhead of REM has been analysed in [51]. Further research will be 

carried out in the FP7 ABSOLUTE project [33] by using transfer learning 

technology to reduce cooperation overhead in the REM architecture. The REM with 

a spectrum database is a standardized technology in IEEE 802.22 Wireless Regional 
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Area Network (WRAN) [53] and ETSI draft [54] for TV White Space wireless 

access. Related consultations and research have been carried out by Ofcom in the 

UK. 

Spectrum Sensing   

Spectrum sensing has been widely investigated for DSA in cognitive radio networks 

[55]. The aim of spectrum sensing is to provide wireless users with information of 

unoccupied frequencies. Interference measurement is the fundamental technique 

used to evaluate channel quality prior to data transmission. The spectrum sensing 

module scans the frequency band by gathering the interference power level on each 

channel using energy detectors. An interference threshold is then set at the sensing 

entity, to decide whether a channel has sufficient SINR for data transmission [56]. 

Spectrum sensing can be carried out on either transmitters or receivers, though 

hidden node problem may occur in both schemes. Transmitter based sensing may not 

be able to identify potential interference node near the receiver, while receiver based 

sensing has the issue of selecting channels occupied by the users near the transmitter. 

Interruptions may occur on either local or neighbor links. Sensing a large number of 

channels causes long sensing delay and high power consumption. In Chapter 4 

reinforcement learning algorithms are developed to improve the system performance 

with a minimum level of spectrum sensing.  

Channel based Interference Coordination   

Distributed channel based interference coordination is another potential approach to 

DSA. This allows BSs to exchange information of channels rather than frequency 

bands used in conventional ICIC. In this scheme, a BS selects a channel based on the 

channel usage information from neighbors. Interference can be avoided between 

coordinated entities. This scheme significantly improves spectrum utilization 

compared to conventional ICIC. However, it may cause a high level of coordination 

overhead. Channel usage information should be exchanged over X2 link prior to 

every data transmission, whereas in ICIC scheme such process is only required when 

operating initial frequency planning. Interference coordination will be investigated in 

Chapter 4 together with spatial channel reuse on a multi-hop backhaul network. 

Furthermore, learning techniques will be developed to reduce coordination overhead. 
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2.4 Cognitive Radio Techniques 

2.4.1 Cognitive Networking and Cognitive Radio 

Cognitive Radio (CR) is a paradigm for wireless communication, which emerges 

from Software Define Radio (SDR), Dynamic Spectrum Access (DSA) and 

Distributed Artificial Intelligence (DAI). CR techniques enable a wireless node to 

intelligently change its radio parameters to adapt to the dynamic radio environment 

[57]. SDR is the baseline component in CR that supports dynamic adjustment of 

radio parameters, including transmit power, channel, AMC scheme, FEC scheme, 

etc. DSA is the target of CR that gives flexible utilization of radio spectrum. 

Furthermore, DAI is the most important part in CR, which provides decision making 

capability on CR agents. CR is not a technique in a specific protocol layer but a 

group of technologies that constructs an intelligent radio system. A CR agent, either 

BS or MS, has the capability of dynamically changing radio parameters (making 

decisions) and implementing them through SDR (taking actions).  

The terminologies of DSA, SDR and CR are synonyms in some definitions [58]. 

However, the key philosophy that differs CR from others is that a CR agent can 

observe the outside world, learn the decisions and obtain feedback from actions 

taken. The ability for intelligent decision making based on previous and current 

actions is the core research area in cognitive radio, which is not supported in other 

radio systems [59]. 

Cognitive radio can be extended to the system level scope as a cognitive network 

[58, 60], which introduce the intelligent decision capability to cross-layer designs. In 

the physical layer, cognitive network can be employed for effective spectrum sensing 

[55]. The MAC layer uses cognitive techniques to provide multiple access, 

interference management, etc, which will be the major research topic in this thesis. 

In the network layer, cognitive routing has been studied to provide reliable end-to-

end connection especially in ad-hoc and mesh networks [61], which will be 

discussed in Chapter 8. Transport layer protocols for cognitive network have been 

investigated in [62], which provides end-to-end QoS and throughput via effective 

utilization of link capacity. Cognitive techniques can be applied to multiple OSI 
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layers, which establish an intelligent radio system. In this thesis, we focus on the 

Radio Resource Management aspect of cognitive network.   

The target of RRM in CR is to achieve effective DSA, which is supported by DAI 

algorithms implemented in the learning engine. SDR is responsible for taking actions 

made by CR, which enable the transceivers to operate in different parts of the radio 

spectrums and communication protocols [57]. A typical cognitive radio follows the 

cognitive cycle shown in Figure 2.2 with four engines: observation, decision making, 

action taking and learning.  

 

Figure 2.2. Cognitive Cycle 

Observation is operated to obtain spectrum information from surrounding area, 

which takes place before data transmission. Typical techniques in observation are 

spectrum sensing, radio environment map, random exploration, etc. Observation 

provides instantaneous knowledge of the scenario, but is not essential in every 

cognitive cycle. In practical systems it is usually carried out occasionally to assist 

with the decision making process, because a continuous observation may destroy 

convergence. Moreover, observation techniques may cause large overheads, 

including delay and energy cost in spectrum sensing, coordination and database cost 

in REM. On the other hand, random exploration may cause harmful decisions. The 

learning engine in cognitive radio is aimed at reducing the level of observation. The 

impact of spectrum sensing and random exploration will be examined in Section 4.4.  
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In the decision making process, a cognitive agent selects channels for data 

transmission, namely channel selection. It is illustrated in Figure 2.2 that there are 

two ways to obtain information for decision making: from the knowledge base and 

from observation. A cognitive agent can either exploit historical learnt information 

from the knowledge base, or explore instantaneous information from observation 

[63]. Exploitation provides generalized, averaged and long term knowledge on the 

channel quality from previous actions. However, environment changes may not be 

identified quickly from exploitation, because it takes several iterations to train the 

knowledge base. In this case, exploration is designed to provide external knowledge 

to decision making and reinforce the knowledge base. A two stage cognitive cycle is 

proposed in [64], which starts with exploration that acquaints the agent with the 

radio environment. Exploitation is then operated on the second stage. This strategy is 

effective in a static scenario. However, the dynamics of user traffic and network 

topology require observations carried out during environment changes. The ε-Greedy 

method is developed to periodically operate exploration at a defined probability ε, in 

order to investigate potential environment changes [65]. Multi-agent cooperation is 

also a promising technique that assists with decision making, which will be 

discussed in later chapters.  

The action taking process refers to data transmission on a selected channel. The SDR 

module sets up the radio parameters based on information from decision making. 

The objective is to make the decisions converged on a fixed set of actions. The 

feedback of an action, including success or failed transmissions, will be transferred 

to the learning engine.  

The learning engine is the core module of cognitive radio that acts as the “brain” of a 

radio system [59]. The role of learning is to train the knowledge base that stores 

experiences of decision making, which is supported by DAI algorithms. There are a 

large number of learning strategies developed in the computer science society, which 

can be categorized as single and multi agent learning. A wireless network is a multi-

agent environment. The target of learning is to partition frequencies to multiple 

agents in a distributed manner. This topic will be extensively reviewed in the next 

few sections.  
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2.4.2 Reinforcement Learning  

Reinforcement learning is learning that maximizes a numerical reward signal. The 

methodology is to discover which actions yield the most reward by trying them. The 

characteristics of reinforcement learning are trail-and-error and delayed reward [66]. 

The implementation scenario of reinforcement learning is the Markov Decision 

Process (MDP), where a learning agent interacts with its environment to achieve a 

goal. The agent should observe the state of environment and take actions that affect 

that state. Moreover, a goal must be introduced relating to the state of the 

environment. 

Reinforcement learning is well suited to cognitive radio, where the action of data 

transmission interacts with the radio environment and the goal is spectrum 

separation. There are thus a number of studies on applying reinforcement learning to 

intelligent spectrum management [20, 64, 67, 68]. A reinforcement learning model 

has a set of possible states S, a set of actions A, and a set of numerical rewards R. 

The learning cycle is a state-action-reward process. On a learning iteration t, an 

agent takes an action a∈A that interacts with the environment. The agent goes into a 

state s(t)∈S and receives a reward r(s(t))∈R. The objective is to select actions a at 

each state s, based on maximized reward r. Given a selection policy �, this process is 

denoted as � = �(�). 
In the action-value function approach of reinforcement learning, a Q table is setup in 

every state with elements representing each action. The Q value determines the 

priority of an action to be selected. Under the policy �, the action-value of a state-

action pair (s, a) is defined by 

  (2.1) 

where R stands for random return which is associated with first taking action a in 

state s following policy �. The returned value is discounted by γ on each state. A 

Monte-carlo method is generally involved in averaging values over many random 

samples of actual returns. In a communication system, this could be a large number 
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of data packet transmissions. The accuracy of Q in a static environment depends on 

the number of iterations taken in pair (s, a). 

The goal of solving a reinforcement learning task is to find a policy that achieves a 

high reward over the long run. The action-value function (2.1) defines a partial 

ordering over policies. For finite MDPs, the improved policy can be defined based 

on high order Q values: 

   (2.2) 

In a channel assignment scenario, a channel with the highest Q value that is not 

currently occupied will be selected. 

There are many implementation algorithms of reinforcement learning. A typical 

example is Q learning developed to find an improved action-selection policy for 

finite MDPs. Initially Q returns arbitrary values 
(��, ��) chosen by the designer. 

Then each time the agent selects an action and receives a reward in a new state, the 

Q table is updated based on rewards from the previous state and the selected action. 

The action-value function is defined as [66] 

  (2.2) 

where � ∈ [0,1] is the discount factor that trades off the importance of current and 

previous states. � ∈ [0,1]  is the learning rate that balances the proportion of 

historical and instantaneous information, namely the speed of convergence.  

Q learning based dynamic channel assignment for a cellular network has been 

studied in [68] in a centralized manner. Distributed Q learning for interference 

avoidance has been investigated in [20], in the scenario of a self-organized femtocell 

network. [19] applies Q learning to power allocation in a wireless mesh network, 

which is aimed at reducing transmit power consumption. Furthermore, [69] uses Q 

learning to improve SINR through improving power allocation on distributed 

cognitive BSs. 

Conventional Q learning algorithms have multiple states defined in the system. 

However, it may be difficult to find states in some scenarios of wireless systems. 
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This issue occurs particularly in the distributed DSA scenario. Research in [70] 

proposes the concept of single state Q learning to be applied in the single state 

scenarios.  It uses the same action-value function of multi-state Q learning (2.2) by 

setting the discount factor γ to 0. The Q value is then updated solely on a single state. 

Convergence of single state Q learning will be proven in Chapter 4. 

2.4.3 Multi-agent Cooperation 

Distributed reinforcement learning relies on trial-and-error and delayed reward to 

establish the knowledge base. In the situation where an agent has limited knowledge 

of the radio environment, arbitrary decisions will be taken and cause harmful impact 

to others, which in turn reduces QoS. Meanwhile, the delayed reward feature of 

reinforcement learning results in a large number of iterations to find improved 

decisions, especially for complicated learning problems.  

Multi-agent cooperation has been proposed in many papers as an effective approach 

to improve distributed reinforcement learning, mainly in two aspects: improving 

selection policy and speeding up convergence [70]. This is because in a multi-agent 

environment, the actions taken by one agent interact with others. There are multiple 

nodes in a wireless network sharing a common set of radio resources. Competition 

between these nodes can be described through game models [21]. For example, 

power allocation can be modelled via game theory, because a signal radiated from 

one user interacts with others in a common interference environment [71]. The target 

of each individual user is to increase SINR through either selecting high quality 

channels or increasing transmit power. However, these two actions both increase the 

interference seen by other users in a finite resource pool, which reduces their SINR. 

The expected resource utilization policy is that every user has the highest SINR gain 

in an interactive environment [21, 71]. 

Multi-agent cooperation is designed to allow a distributed agent to learn behaviours 

from other agents [70]. The main idea is to exchange information between multiple 

agents, including location axis, radio parameters, knowledge base, etc. There are 

various forms of multi-agent cooperation, such as swarm reinforcement learning [72], 

cooperative game theory [21] and docition [73-77]. A study on the trade-off between 

independent and cooperative agents can be found in [78]. This work shares the 

observation results with learnt policies. Analysis and experimental results show that 
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information exchange is beneficial if it can be used effectively, which in turn speeds 

up learning at the cost of coordination overheads.  

Docition is an emerging paradigm in a cognitive radio network employing multi-

agent cooperation [73-77]. The philosophy of docition is to enable naïve agents to 

achieve expert knowledge from mature agents [74]. Conventional reinforcement 

learning is operated on individual agents. The knowledge base (Q table) is 

transferred from agents with better performance to those with worse performance. It 

is proposed in [74] that start-up docition is used to assist newly activated agents and 

adaptive docition is applied for further performance improvement. Docition has been 

developed for power allocation on a PU-SU based WRAN network. 

Docition is designed to transfer knowledge from mature to naïve agents. However, a 

practical network could be more complex than this. In the scenario where a new 

network is initially deployed, the agents may not be able to find anyone with mature 

knowledge. Moreover, the activation and deactivation of any agents in a network 

may have serious impact on others in vicinity. The knowledge transfer process 

should not be limited to teaching new agents.  

2.4.4 Transfer Learning 

Transfer learning is a machine learning technique that focuses on applying 

knowledge learnt from one problem to a different but related problem [79]. Many 

machine learning algorithms assume that the agents always stay in the same domain 

of interest and learn a single training task. However, there are many different tasks in 

a practical scenario. For example, a cognitive agent could have multiple objectives 

when moving between different networks or radio environments. When the task 

changes, most distributed learning algorithms need to rebuild the knowledge base 

from scratch using newly collected rewards from a trail-and-error process. In a 

rapidly changeable network, it is difficult for a distributed learning algorithm to 

quickly train the knowledge base and adapt to each specific environment. The agent 

has to makes random decisions that could be harmful to QoS. 

Transfer learning is developed to improve learning in the target task by transferring 

knowledge from related source tasks [79]. A learning agent firstly finds some source 

tasks that have potential impact to the target task. They could be the tasks learnt in 
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the past or on other agents. The knowledge base from multiple source tasks is then 

transferred to the learner’s target task. Finally the agent trains knowledge base with 

appropriate algorithms. Figure 2.3 [80] compares the process of traditional machine 

learning and transfer learning. 

  

Figure 2.3. Learning process illustration [80] 

It is illustrated that transfer learning is not designed to replace traditional learning 

algorithms, but acts as a supplement to the learning systems on different tasks. The 

application of transfer learning to reinforcement learning is investigated in [81]. 

Experiment results show that with transfer learning the agents learn significantly 

faster. It takes fewer episodes for transfer learning to achieve stable states than 

reinforcement learning. 

The idea of transfer learning is perfectly suitable for resource management in a 

wireless network. Knowledge transfer between tasks on multiple agents is studied in 

Chapter 5. Furthermore, the learning task is modelled at a network level in Chapter 

6, where knowledge transfer is applied to network changes.    

2.5 Energy Efficient Wireless Networks 

Energy consumption of wireless networks has become an important research topic in 

recent years, as CO� emissions are a serious environment issue, which may constrain 

economic development in future. Wireless networks require electricity to operate. 

However, current design of wireless BSs is particularly poor in terms of energy 

efficiency. An increasing number of  BSs in a high capacity density network could 

cause significantly more energy consumption [82]. 
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It has been reported that power amplifiers and air conditioners consumes two thirds 

of the total energy in a wireless network, whereas the data transmission unit 

consumes only less than 15% [82]. There are a number of research papers focusing 

on transmit power reduction for energy efficiency. However, this obviously does not 

reduce the main energy consumption of a wireless network. 

Deployment of low power base stations is thus very important in the future networks. 

The SCN has great advantages in reducing energy consumption as well as enhancing 

system capacity [83]. The small cells are supported by very light weight base stations 

that are constructed by low power components. Moreover, flexible and dense 

deployments of small cell BSs significantly reduce the transmission distance 

between BS and MS. In addition, the antenna height of the small cell BSs is very low, 

which significantly reduces shadowing effect on access links. The reduced 

transmission distance and path loss make low power transmitter possible for high 

capacity provision.  

Network capacity and energy are contradictions in wireless communication systems 

[84]. Despite BSs in SCNs are implemented with low power components, [82] shows 

that a large proportion of energy is used to keep the BSs active, such as the cooling 

systems and power amplifier [84]. There are some recent research papers on 

dynamic network planning based on traffic patterns [85-87]. The purpose of 

deploying a BS is to provide adequate capacity in its coverage area. However, user 

traffic in a cellular network is usually inconsistent and non-uniform. It fluctuates in 

both time and spatial domains. Figure 2.4 shows the traffic profile of 5 cells in a 

metropolitan area obtained from Ofcom [88]. 
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Figure 2.4. Traffic dynamics in time and spatial domains [11, 89] 

It can be observed that the average user traffic trends between daytime and evening 

time, or between weekdays and weekends, vary greatly. Furthermore, the traffic also 

varies to a large extent in different hours and cells. For example, the peak traffic 

levels are 50% to 90% higher than low traffic levels. The centre BS has twice the 

traffic load than others in the weekend. 

Dynamic network planning aims to effectively control the number of active base 

stations according to traffic variations. An excessive amount of energy can be saved 

by only activating a minimum number of base stations that provides sufficient 

system capacity. Figure 2.5 illustrates a dynamic network planning paradigm based 

on system traffic intensity. 

A key issue in energy efficient network planning is the time and energy required for 

switching on or off the base stations. However, there are not many statistical data in 

this area, mainly because this technique has not been widely applied in practical 

systems. On the other hand, the definition of “sleep mode” varies with different 

networks and operators’ requirement. Energy models of various types of LTE base 

stations have been studied by FP7 EARTH project in [90], where the time and power 

consumption of switching a BS to sleep mode is a further research. The design of 

dynamic network planning thus should consider this effect, by preventing a BS from 
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switching too frequently between active and sleep modes. This can be achieved by 

dynamic load management mechanism proposed in Chapter 8.   

 

Figure 2.5. Traffic Aware Network Planning [11] 

Effective radio resource management is an important aspect for traffic aware 

network planning. System capacity is determined by spectrum utilization in a finite 

spectrum pool as discussed before. Better capacity provision can be achieved 

through improved spectrum utilization without activating new BSs, which in turn 

saves energy. Capacity enhancement is thus a predominant aspect in network 

topology management, which will be investigated in Chapter 7. 

2.6 Conclusion 

This chapter has reviewed background information related to the topic of intelligent 

radio resource management in high capacity density wireless networks. Research 

work on dense small cell networks has been given, as a promising architecture to 

provide broadband wireless access. In this network, system capacity can be enhanced 

through improved signal power and capacity provision. Wireless backhaul network 

have been reviewed followed by discussions on single and multi-hop topologies, 

which provide flexible deployment capability in small cell base stations. 
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Spectrum management strategies of wireless cellular network have been extensively 

reviewed, from conventional frequency band allocation to novel dynamic spectrum 

access. Various typical multiple access and channel allocation schemes have been 

discussed from the perspectives of capacity provision, spectrum utilization, 

complexity, operating modes, control information overheads, etc. The RRM 

requirements in a high capacity density networks have been discussed. 

Cognitive radio technology has been illustrated as observation, decision making, 

action taking, learning engine and knowledge base. It has been proposed as an 

effective technique to achieve dynamic spectrum access. Conventional reinforcement 

learning models and algorithms have been reviewed with their application to 

resource management including channel and power allocation. Multi-agent learning 

algorithms have been proposed to improve both QoS performance and convergence 

in distributed reinforcement learning. Finally, research on transfer learning has been 

reviewed, which has been shown as an effective approach to balance the QoS 

performance and multi-agent cooperation, and to improve network reliability in 

dynamic radio environment.  

Furthermore, energy efficiency of wireless network has been discussed. The 

electricity components of base stations consume most of the energy in a network. 

Related work on dynamic network planning based on traffic patterns has been 

reviewed as a solution to this problem. The benefit of capacity enhancement on 

dynamic network planning has been discussed, which could be supported by 

effective resource management. 
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3.1 Introduction 

The purpose of this chapter is to introduce simulation and modelling methods for the 

dense capacity wireless networks, which are major techniques used for performance 

evaluation in this work. The model needs to be accurate enough to capture the 

relevant detail of a representative scenario. This chapter will present the assumptions 

and parameters used in the model, as well as the method of simulation. 

The dense capacity wireless network considered in this thesis is an integration of a 

Multi-hop Backhaul Network and a Dense Small Cell Access Network. These two 

networks are designed to operate in different spectrum bands, which will be studied 

separately. Section 3.2 introduces the entire network architecture, and illustrates the 

models for wireless backhaul and access network, respectively. The simulation tool 

selected in this thesis is presented in Section 3.3. Detailed models for various aspects 

of the wireless system are stated in Section 3.4. In Section 3.5, the output parameters 

used for performance validation are presented. Verification methods for theoretical 

analysis are demonstrated in Section 3.6. 
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3.2 Network Architecture 

In this thesis, the dense capacity wireless network is considered to be a construction 

of two networks: a Multi-hop Backhaul Network and a Dense Small Cell Access 

Network. These two networks are operated on individual spectrum bands to prevent 

interference. As a result, they will be investigated, modelled and analysed separately. 

The system is derived from the architecture proposed by the FP7 BuNGee project 

[12], which was aimed at providing 1 Gbit/s/km� capacity density in an urban area. 

It has been suggested in this project that such capacity density requirements can be 

provided by a dense deployment of small cell Access Base Stations (ABSs) 

providing an access network to high density mobile users, as shown in Figure 3.1. 

The ABSs are designed as portable, light-weight devices, which can be densely 

deployed and easily managed. The major role of ABSs is to provide extremely high 

data rate to Mobile Stations (MSs) on a street level (where indoor services are not 

considered). In this case, a below rooftop deployment of ABSs (e.g. on street lamps) 

is proposed in [12] to mitigate interference between streets, by using the shadowing 

effect from buildings.  

To achieve such a network cost-effectively, one option is to backhaul the offered 

traffic via multi-hop links connecting a line of ABSs to a Hub Base Station (HBS). 

Thus the role of the HBS is to provide backhaul connections to an operator’s core 

network, rather than connecting with mobile users directly. An important feature of 

this backhaul network is that the multi-hop links are provided by directional antennas 

on each ABS and HBS, which substantially reduces interference, and improves the 

link budget. Moreover, spatial resource reuse on directional antennas can 

significantly improve the network capacity, especially for a multi-hop network. 

Figure 3.1 illustrates the system architecture of the high capacity density network. 

The system is proposed to be highly self-organized, where the ABSs are entitled to 

establish and manage both the access and backhaul networks. The HBS here acts 

only as a backhaul hub without any management functions to the ABSs.   
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Figure 3.1. High Capacity Density Network Architecture 

3.2.1 Multi-hop Wireless Backhaul Network 

The multi-hop backhaul network is proposed in [67, 91, 92] as a potential solution to 

the BuNGee backhaul architecture. Multi-hop networks have a number of 

advantages in providing backhaul services compared to the single-hop network in 

BuNGee, which has been characterized in Section 2.2.2. The general network model 

is illustrated in Figure 3.2 below, which consists of a HBS in the centre and several 

ABSs around it. It can be observed that a HBS serves a set of x branches. On each 

branch there are a set of y hop ABSs, with elements numbered outwards from the 

central HBS. Each link has access to a common pool of frequency channels. 

 

Figure 3.2. Multi-hop Wireless Backhaul Network Model 

The traffic flow is generated from a source ABS and transmitted to the HBS on the 

uplinks, or from the HBS to a destination ABS on the downlinks, through an end-to-

end route established by multiple links. The link budget on an end-to-end route is 

constrained by an individual link with lowest link quality, namely the bottleneck. 
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Data transmission could be constrained by this bottleneck regardless of performance 

on other links. 

3.2.2 Flexible Small Cell Access Network 

The access network of BuNGee is constructed by a dense deployment of small cell 

ABSs at a below rooftop level of urban streets. In this thesis, the ABSs are deployed 

on the high streets around building area, which is dedicated to provide augmented 

capacity for high street users as shown in Figure 3.3. The coverage radius of each 

ABS is 90m to a maximum, with omni-directional antennas implemented. 

 

Figure 3.3. Flexible Small Cell Access Network Model 

The role of ABSs is to enhance the network capacity where the traditional macrocell 

BS (co-located with HBS) has no sufficient resource to support. In this case, the 

number of ABSs required largely depends on the traffic density in a specific area 

during a specific time. In the future applications of wireless communication, an ultra 

high capacity requirement could happen occasionally when a number of users gather 

on the streets. However, a dense deployment of ABSs could incur a significantly 

high amount of energy consumption if it is not effectively managed.  
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For the purpose of achieving a balance between capacity and energy issue, a flexible 

small cell access network is introduced in Figure 3.3. This includes two types of 

ABSs proposed: the fixed ABSs are always active; the dynamic ABSs are activated 

only when the user traffic cannot be supported by the fixed ABSs, and in which case 

the traffic will be transferred accordingly. The flexible network architecture will be 

controlled by the topology management strategies developed in Chapter 7. 

3.3 Simulation Techniques 

There are a wide range of simulation tools available to model wireless 

communication systems. However, different protocol layers have their preferred 

tools and modelling methodologies. 

Programming languages such as C and C++ can be directly used for modelling the 

wireless systems. It has been traditionally used for software simulations, especially 

during the early days where advanced simulation tools such as OPNET and NS were 

not available. C/C++ is one of the most commonly used programming languages, 

which is especially effective in compiling and executing. In simulation, it has a great 

advantage in iterative computations since the source code is compiled to binary code 

in advance and can be re-executed repeatedly, rather than using run-time 

interpretation in some other languages. Its flexibility in memory management can 

also avoid overflow when a large number of stochastic simulations are required. 

Moreover, object oriented programming with C++ can significantly reduce the 

complexity of code when the same protocols and algorithms are operated on a large 

number of nodes. Last but not least, C and C++ are standard languages for many 

practical implementations of communication systems, for example on many DSP and 

USRP broads and most of the TCP/IP protocols. The use of C and C++ in software 

simulation makes implementation easier. 

C/C++ in software simulation also has some disadvantages. The absence of GUI 

component makes it difficult for developers to debug the codes, or obtain temporal 

results. Experiences show that a normal C/C++ debugging error could have multiple 

reasons other than the code itself, such as the debugger, memory and operating 

system, which will increase the developing time.  
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Matlab developed by MATHWORKS Inc provides powerful matrix calculation and 

graphing routines as well as a number of mathematical and professional functions 

[93]. It provides convenience in programming and debugging, which makes the work 

easier and more visible. As a type of interpreted language Matlab programs can be 

debugged step by step without the requirement of compiling, which provides an easy 

way to find errors. Matlab is a preferred tool to build up the architecture of this work 

because a large number of matrixes are used for evaluating various parameters for 

multiple nodes. Moreover, Matlab provides effective ways to produce graphical 

results for performance evaluation. Furthermore, this work will consider a number of 

dynamic network behaviors, such as traffic, channel usage, network topology, etc. 

Matlab can significantly reduce the time for code development. In recent years, 

Matlab is commonly used in both academe and industry. A system level simulator in 

Matlab provides transportable codes for some other researchers. 

There are other network simulators that could potentially be used for this type of 

simulations, such as OPNET, NS2, NS3, etc. However, they are originally designed 

to model the detail of protocols and their interactions. In this work, system 

performance is one of the most crucial aspects considered whereas the protocol 

behavior is less important. As a result, Matlab is selected in this work as the major 

simulator, which provides the capability of modeling complex system architecture 

with visible performance validation. 

3.4 Wireless Network Modelling 

3.4.1 System Level Simulation 

System level simulation is widely used in following chapters to analyze performance 

and validate designed approaches. It is developed to model practical network 

architectures and capture related performance. This work mainly focuses on the 

RRM aspect of wireless cellular and backhaul networks, which requires link level 

and data traffic modeling. 

The simulator is developed to be applicable for different types of scenarios, which 

consists of multiple modules (functions) modeling different aspects of a network. 

The structure of this simulator is illustrated in Figure 3.4. 
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Figure 3.4. Simulator Structure 

 The architecture module is firstly developed to include the network topology 

(location of elements and possible connections) and system parameters (power, 

frequency, bandwidth, noise, etc.). This module provides most of the constant setups 

throughout the entire simulation process, which is designed as a black box with 

interfaces connected to other parts of the simulator. The network topology and 

system parameters depend on the scenarios, which will be detailed in the following 

related chapters. 

The physical layer module is developed to model the wireless link between 

transmitters and receivers. This includes the antenna model at the transceivers, the 

propagation model defining transmission loss, as well as the channel capacity model 

representing the modulation and coding schemes. The output of this module is the 

received signal power, interference level and the link data rate. Detailed models will 

be described in Section 3.4.2. 

The traffic module describes the traffic characteristic of the network, including the 

number of users and their related arrival and departure time. In traffic engineering, 

these characteristics are classified as events. Monte-Carlo method [94] is widely 
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used in event based simulation. The output of Monte-Carlo simulation is a long term 

averaged result of a large number of repeatedly sampled values from random 

distributions, which removes the interim fluctuation and achieve a statistical 

reliability. The Monte-Carlo method and event based simulation are widely used in 

the traffic module of this work, to obtain stabilized results and to capture temporal 

performance. 

The spectrum management module is mainly responsible for assigning channels to 

the network elements in different locations, to establish wireless link using the 

physical layer module. The assignment behaviour is controlled by algorithms 

designed, including learning strategies demonstrated in the following chapters. This 

module is one of the most important parts in this work, which is aimed at improving 

the network capacity through effective spectrum utilization. 

The topology management module is designed to dynamically control the network 

topology according to traffic level. This module manages the location of network 

elements and the connections between them. In a multi-hop backhaul network, it 

provides the routing table on each ABS for end-to-end connections. In a small cell 

access network, a novel dynamic topology management algorithm is proposed. The 

network energy consumption can be reduced by controlling the number of active 

base stations and related traffic. The detailed algorithm of this module will be 

presented in Chapter 7. 

In a system level simulation, these modules are connected with each other via related 

inputs and outputs. The Monte-Carlo events generated from the traffic model 

determine when these modules are used. The results could be obtained from multiple 

modules. In order to have reliable validation, the number of events should be high 

enough to remove interim randomness, and the result should be evaluated on a 

steady state within a finite number of iterations.  

3.4.2 Physical Layer Models 

The physical layer models are used to capture the physical characteristics of wireless 

links. Performance evaluation in RRM is mainly at a network level rather than on an 

individual link between transceivers. Thus these models simplify the simulation of 

physical layers but also provide essential characteristics of the practical systems.  
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3.4.2.1 Antenna and Propagation Model 

The antenna and propagation models provide the antenna gain and transmission loss 

between the transceivers, respectively [95]. In this thesis, various models have been 

used in different networks and scenarios. 

The network architecture presented in Section 3.2 indicates that directional antennas 

are implemented in the multi-hop backhaul network and omni-directional antennas 

are deployed in the small cell access network. The directional antenna model 

demonstrated here is thus for the backhaul links. 

In a backhaul network, the location of BSs is fixed and the architecture is static. The 

antenna mainlobe can be implemented in the direction of links. Multiple antennas are 

implemented on a base station, to transmit or receive signals in different directions. 

There are two models used in this thesis. In Chapter 4 a simplified aperture antenna 

model is used, which is originally designed in [96]. The model defines the mainlobe 

curve of antenna gain pattern, which describes antenna sidelobe as a fixed value of 

relative power, normally -30dB. The designed valid antenna beamwidth is less than 

90° and the full range of radiation angle is within ±90°. In order to adapt this model 

to our scenario, we have extended the sidelobe to ±180° by using the same sidelobe 

gain. The antenna pattern is demonstrated in Figure 3.5. It can be observed that the 

effective beamwidth of this antenna is less than 90° where the peak gain is positive.  

 

Figure 3.5. Aperture Antenna Model 
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The antenna gain is the intensity of an antenna at a given direction compared to the 

ideal hypothetical antenna, which is defined as [95] 

 �(�, ∅) = ��(�, ∅) (3.1) 

where � is antenna directivity and � is antenna efficiency. In this model, only the 

horizontal polar with degree factor � is considered. The directivity is calculated from 

 � = cos(�)" #�$%&�
�(�'(��%)	( +,-. ))- (3.2) 

where / is a power factor defined as 

 012� 3456� 7" = 0.5 (3.3) 

�#:; is the 3dB beamwidth where the radiation power drops down to half of its peak 

value, which is an important factor for changing the shape of antenna mainlobe. The 

characteristic of mainlobe will change the interference environment, which is one of 

the main considerations in designing spatial reuse strategies. 

Another newly designed antenna model proposed in [12] is used for other parts of 

this work. It is obtained from a practical product developed by Cobham. The antenna 

pattern is demonstrated in Figure 3.6. 

 

Figure 3.6. Directional antenna developed by Cobham [12] 
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It can be observed that its first sidelobe has a significant high power level, which 

rolls off smoothly to sidelobe power less than -15dB. The multi-hop backhaul 

topology significantly reduces the number of directional antennas required on an 

HBS (Figure 3.1), which in turn reduces interference level between adjacent links. 

The propagation model provides the path loss between transceivers on a wireless 

link. There are two propagation models used in this thesis. The COST-HATA model 

is used in Chapter 4, which is designed in [97] as a frequency range extension for 

Okuma-HATA model. The path loss is calculated by 

 L[dB] = 46.3 + 33.9logFG − 13.82logℎLM − � + (44.9 − 6.55logℎLM)logN[�] + OP 

 OP = Q0dB,																											for	Rural	and	Suburban	Area3dB,																																																						for	Urban	Area	 (3.4) 

where FG  is the carrier frequency, ℎLM  is antenna height and d is distance between 

transceivers.  

The other parts of this thesis use the WINNER II channel model B5a proposed in 

[98], which is designed for the small cell scenarios in metropolitan areas. The path 

loss between transceivers is calculated by 

 L[dB] = 23.5 log]� N[�] + 42.5 + 20 log]� _̂[`ab]c + d (3.5) 

where d is the log-normal shadow fading, with standard deviation e = 4. 

3.4.2.2 Channel Capacity Model 

Channel capacity is the rate of bits that can be delivered over a communication 

channel. According to the Shannon-Hartley theorem [4], channel capacity on a 

wireless link is determined by Signal-to-Noise Ratio (SNR) and channel bandwidth 

B, which can be obtained from 

 C = B log� 01 + f
g7 (3.6) 

This indicates the maximum data rate that can be achieved on a wireless link. 

However, in a practical system and channel capacity could be constrained in physical 

layer, including the modulation and coding schemes. A Truncated Shannon model 

has been developed in [99], which is a representative of rates that can be achieved in 
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practice given an Adaptive Modulation and Coding (AMC) codeset [100]. The 

achievable data rate for a specific user on a channel can be expressed as 

 O = h 0�ilog�(1 + �)�ilog�(1 + �jkl),  
� < �jng�jng ≤ � ≤ �jkl� > �jkl

 (3.7) 

where � ∈ [0,1]  is an attenuation factor representing the implementation loss 

compared to Shannon bound (3.6). � is the Signal-to-Interference plus Noise Ratio 

(SINR) achieved at the receiver, which can be obtained from 

 � = q_(r)qsqtu"v∑q_(r)qsxqtxu (3.8) 

where yG(z) denotes the channel gain, yL and y{ are antenna gains at the transmitter 

and receiver base stations, and those of y| are gains on interfering transceivers using 

the same channel. n is the thermal noise power and p is the transmit power. 

In (3.7), �jng and �jkl are introduced to represent the effective SINR range that can 

be used for the employed AMC codebook in a practical system. In order to adapt the 

3GPP parameters presented in [100], the Truncated Shannon model has been defined 

in [99] as: the minimum SINR for maintaining a communication link: �jng = 1.8dB; 

the SINR where a maximum capacity can be achieved in AMC codeset: �jkl =
21dB ; and the implementation loss: � = 0.65 . By applying these parameters in 

(3.7), the data rate curve matches the AMC codebook defined by 3GPP [100]. 

3.4.3 File Transfer Traffic Model 

The traffic model is designed to model the behaviour of data traffic across wireless 

network. Future wireless communication systems are designed to be fully packet-

switched. The channel bandwidth is shared by multiple users rather than persistently 

allocated to a dedicated user in a traditional circuit-switched telephone network [41]. 

This approach delivers more reliable end-to-end connections because failed data can 

be retransmitted rather than dropped. 

OSI and TCP/IP are typical conceptual models that characterize the functions of 

communication systems [41], by partitioning it into abstraction layers. Each layer 

has logical links connected with the same layer on other nodes when physical link is 
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established. The definition of data units varies on different layers. For example, bits 

on physical layer, frames on data link layer, packets on network layer, etc. 

Traditional network simulators are designed to model the above data units delivered 

in a network, which is essential to capture and analyse the performance of each layer. 

However, these data unit models could be very complex and inefficient in simulation 

when modelling a large scale network architecture with a huge amount of data traffic 

in transmission. 

The purpose of network simulation in this work is to investigate and validate the 

radio resource and network topology management methodologies, where the system 

performance is of most interest. These types of characteristics can be obtained when 

a sufficient amount of packets/frames are delivered in a network. For the purpose of 

capturing the system performance in a heterogeneous architecture as well as 

reducing the simulation complexity, a file transfer traffic model has been developed 

for this work to model data traffic behaviours. 

In the file transfer model, a file is defined as an entity grouping data payload in the 

application layer. It could be a succession of packets, frames or bits in lower layers 

[101]. Characteristics of files delivered in a practical UMTS network have been 

reviewed in [102]. Compared with a conventional packet based traffic model, the file 

transfer model investigates the data packet transmission at a larger time scale, 

whereas an individual packet has minor impact on the system performance. In 

addition, the network protocols are assumed to be well established in this model. 

The simulator randomly generates the file inter-arrival time (arrival rate) and the file 

size, which follow a defined statistical distribution. The offered traffic can be 

controlled by varying the inter-arrival time. The transmission time of a file is 

determined by the channel capacity (3.7) and the SINR level (3.8) in a given file size 

(defined in bits). A file can be backed off and retransmitted from an interruption 

point, because it contains a succession of data units. 

The long-tailed distribution is suitable for modelling the inter-arrival time of files 

delivered in a practical network [102]. In this model, the large files mainly contribute 

to the network burden, even though the probability of large files being generated is 

fairly low compared to the small files. For example, web browsing is the major 
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application on the Internet, which has a large number of short file transmissions. 

However, streaming media, where a long session is delivered, occupies the majority 

of bandwidth resource. 

The Pareto distribution is a typical implementation of long-tailed distributed network 

traffic, which has its CDF function defined as [103] 

 }(~) = 1 − 0���.� 7� , ~ > ~��" (3.9) 

Here α is the shape parameter and ~��" is the scale parameter. The number sequence 

in (3.9) should always be no smaller than ~��" . The mean value of the Pareto 

distribution is 

 �(d) = ����.��] , � > 1 (3.10) 

So α can be derived from (3.10) as 

 � = �(�)
�(�)����. (3.11) 

The variance of the Pareto distribution is 

 ���(d) = ���.-�(��])-(���) , � > 2 (3.12) 

In summary, the shape parameter α can be obtained from (3.11). However, it should 

follow the condition of � > 2, in order to obtain a valid distribution. 

The Inverse Transform Sampling is an effective method for generating pseudo-

random number of any distribution based on CDF [103]. The principle is that if X is 

a continuous random variable with CDF }(d), then the random variable � = }(d) 
has a uniform distribution on [0,1]. Following this, the sequence can be generated 

from the inverse function of CDF. The Pareto distributed inter-arrival time t can be 

generated from 

  � = L��.
�,�  (3.13) 

where x is a uniform distributed random sequence following ~ ∈ [0,1]. 
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The mean value in (3.10) is effectively �. To satisfy � > 2, ���" should follow 

 ���" > ]
� � (3.14) 

According to the Little’s Law [41] and the relationship between the mean arrival rate 

λ and inter-arrival time �, the offered traffic is defined as 

 � = �� = �
	L (3.15) 

where T is transmission time. 

In the network simulation, file size is randomly generated following a uniform 

distribution with a defined average value. The back off time for retransmission is 

uniformly distributed with mean value of �. A file can be consistently retransmitted 

until successfully delivered.    

3.5 Performance Evaluation Techniques 

System performance is measured by a number of parameters looking at different 

aspects. Conventional QoS is used to evaluate the network performance, which 

includes network throughput, delay, retransmissions, etc. Several parameters are 

defined to capture the learning behaviour. In addition, cooperation overhead and 

energy efficiency are measured from a percentile perspective. The results are 

produced in both average and temporal formats, in order to evaluate performance 

from different perspectives.  

3.5.1 Quality of Service 

Quality of Service is widely used in evaluating the performance of contemporary 

communication networks. This includes a number of parameters measuring the 

system in different aspects. Some of them are selected in this work to produce 

interested results in radio resource management. 

The number of blocked and dropped calls are conventional parameters used for 

measuring QoS on a call based network, which represent a call is prevented from 

accessing the network or interrupted during transmission [104]. A telephone user 
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usually has more tolerance on blocked calls than dropped calls. These two 

parameters are used in Section 4.3 for a link level performance evaluation.  

In a packet based network, retransmission is carried out on a file that is either 

blocked initially or interrupted during transmission. The probability of blocked and 

interrupted files have little difference in user experience, because they are applied 

with the same retransmission scheme. Moreover, for an interrupted file, the user only 

needs to retransmit the remaining part of the file that has not been delivered. In this 

context, the probability of retransmissions is used for QoS evaluation, which is 

defined at time t can as follows 

 �{(�) = �6(L)v��(L)��(L)  (3.16) 

where ��(�) is the number of total transmissions, �;(�) and ��(�) are the number of 

blocked and interrupted files. 

Throughput in a wireless network is defined as the average rate of successful data 

delivery. In system level research, throughput can be affected by both transmission 

and back off delay. The average throughput of the entire network is measured from 

 �(�) = ���s(L)L  (3.17) 

���L(�) is the number of bits delivered within time t, which is contributed by the files 

delivered by all the users in the network, including those still in transmission. 

The delay of a file consists of transmission delay and back off delay. Transmission 

delay is the time required to push all the bits of a file into the wireless link, which 

mainly depends on the channel capacity (3.7). The back off delay is the time 

consumed by a file waiting for retransmissions. Moreover, the propagation and 

signal processing delays are not considered in this work because they are relatively 

small compared to others. The queuing delay is assumed to be effectively handled by 

well defined transport layer protocols [41]. 

In summary, the average delay of a file is calculated by 
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This equation includes the time consumed to deliver files with  bits, as well as 

the time spent to back off  blocked files and N I
 interrupted files.  

Cumulative Distribution Function (CDF) is used in this work to provide the 

statistical behavior of a large amount of results measured by a Monte-Carlo 

simulation. The sampled results in simulation are a set of discrete random variables 

X, thus the CDF of x can be calculated from 

  (3.19) 

Error Bar 

Error bar is a graphical representation of the variability of data, which can be used to 

evaluate the accuracy of Monte-Carlo simulation results. It identifies the probability 

(confidence level) that a given set of results will be within a specified range 

(confidence interval) [105]. The longer a simulation run, the smaller confidence 

interval is for a specific confidence level, and vice versa.  

A technique used for obtaining confidence limits in this thesis is shown in (3.20) 

below [106].  

 � = μ ± �G �
√� (3.20) 

where µ is the sample mean, e is the standard deviation, N is the number of trials, 

and �G relates to the chosen confidence level. 

The values of �G are given in Table 3.1 for several common confidence levels, which 

is valid given the results fit a normal distribution.  

Table 3.1. Confidence levels and corresponding �  
Confidence Level 90% 95% 99% 99.9% 

�G 1.645 1.96 2.58 3.29 
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The resulting confidence limits can be plotted as error bar, which is demonstrated in 

Figure 7.13 in Section 7.5. It shows the system average delay, which is evaluated 

during a period of simulation on a large file transfer events, as specified in Table 6.3. 

The simulation configurations are consistent in this thesis, thus the confidence level 

of all the results can be represented by Figure 7.13.   

3.5.2 Learning Efficiency 

The application of machine learning to wireless communications is one of the major 

topics and original contributions in this thesis. It is thus important to directly 

investigate the efficiency of learning algorithms in a wireless environment. 

A cognition cycle has the steps of decision making, action taking, and learning [58]. 

A learning iteration is associated with a decision on which channel to select, as well 

as an action to establish link between transceivers on a selected channel. The 

outcome of decisions, either success or failure, indicates the quality of learning. It 

also shows the traffic level that the learning process leads to instability and 

ineffective configurations.  

The probability of failed decisions is used as a parameter to measure learning 

efficiency, which is obtained from 

 �̂ ¡�¢(�) = �£¤�¥(L)��s(L)  (3.21) 

where �̂ ¡�¢(�)  is the number of failed decisions and ��L(�)  is the number of 

iterations during time t. It should be noted that ��L(�)  includes the number of 

transmissions ��(�), plus the iterations where the transceivers try to establish a link 

on selected channels but fail. The relationship between these parameters follows 

 
��L(�) 	≥ ��(�) ≥ �§(�)�̂ ¡�¢(�) ≥ (�;(�) + ��(�)) (3.22) 

The learning performance of distributed reinforcement learning and transfer learning 

is demonstrated in Figure 5.6 in Section 5.7. 

Convergence is another important target of machine learning. An effective learning 

algorithm is not only to find a stable and reliable set of decisions but also to achieve 
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this stable state quickly, which is evaluated by convergence rate. Conventional 

measurement of convergence by the computer science community normally uses the 

number of episodes over the number of iterations. However, this method is based on 

a repeated simulation over a known target. In the wireless network scenario, the 

target of learning cannot be discovered before taking a sufficient number of actions. 

Moreover, the dynamics of the environment could continuously change the learning 

target. In this case, the learning efficiency cannot be measured by the iterations taken 

to achieve a targeted state. 

The stable state is defined as a learning agent staying on a fixed set of actions, which 

can be used to measure the convergence rate of learning. A high probability of stable 

states indicates that the learning agent achieves a targeted solution. In this work, a 

novel stable state evaluation method is developed and applied not only to measure 

the performance of learning but also to determine the time for information exchange 

in knowledge transfer. The detail of this method will be illustrated in Section 5.5, 

with examples demonstrated. 

The overall target of spectrum management is to partition the shared spectrum to 

individual users. Following this, the spectrum usage probability has been defined and 

used to evaluate such partitioning behaviour [64]. Effective spectrum usage 

corresponds to some channels being used at a significant higher probability than 

others. Detailed equations will be presented in Section 4.4. 

3.5.3 Cooperation Overhead and Energy Efficiency 

Cooperation Management and Topology Management are two major original 

contributions in this work other than Transfer Learning, which reduce coordination 

overhead and energy consumption in distributed wireless networks, respectively. 

Related parameters are defined to validate these strategies. 

The probability of information exchange is used to evaluate the amount of control 

information (i.e. channel usage indication) transmitted between multiple agents. In 

Chapter 4 this parameter is used to investigate the performance of cooperation 

management strategies. It is calculated from the number of information exchange 

�M(�) over the number of iterations taken in time t: 
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 ��(�) = �¨(L)��s(L) (3.23) 

Energy efficiency is a crucial parameter used to measure the performance of 

topology management strategies. An effective way to inspect energy consumption is 

to use a practical energy model for the entire system including the energy used for 

radio transmission, power amplifier, cooling system, etc. However, it is difficult to 

obtain a generalized model representing energy consumption in different systems. 

Instead of producing the result in actual energy units, a proportional energy 

consumption parameter will be used to indicate the energy saving from topology 

management. In the flexible small cell architecture presented in Figure 3.3, a set of 

dynamic ABSs is introduced as capacity enhancement to the baseline fixed ABSs. 

The activation of dynamic ABSs has direct impact on energy consumption of the 

overall architecture. In this scenario, a parameter of energy consumption ratio is 

defined for measuring the amount of extra energy required over the baseline 

architecture with fixed ABSs only, which is defined by 

 �(�) = �©ª(L)��6¤«¨�6¤«¨  (3.24) 

�;¡¬M is a baseline energy level calculated from the energy used by all fixed ABSs. 

�­�(�) is the energy consumed by all activated ABSs during time t in the network, 

including the dynamic ABSs.  

3.6 Verification Methodologies 

Verification is used to analyse the system performance through mathematical 

models. Theoretical results are produced to validate the designed strategies. In this 

thesis, queuing theory is used to analyze the small cell access network with dynamic 

architectures, to validate the resource and topology management strategies. 

Queuing Theory and Markov Models   

Queuing theory is an effective tool to analyse the QoS and capacity of wireless 

communication systems, which has been extensively studied in [45]. The traffic 

behaviours of users in a network can be modelled as a queuing system, including file 

generation, transmission and interruption. Queuing theory is a tool to investigate user 
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behaviour in a limited amount of resources. In the related theoretical models, a 

resource block is normally assumed to be assigned for a dedicated user, unless a 

reuse pattern should be defined to permanently fix the overall network capacity. 

A big challenge of modelling a cognitive radio network as a queuing system is the 

dynamics of spectrum reuse in the system. In such scenarios, the decision of 

spectrum selection is made by distributed users and varies from time to time, which 

frequently changes the network capacity. It is thus difficult to directly model the 

system during the learning process. However, the improved and converged solution 

achieved by learning can be modelled with analytical tools. 

In this thesis, a queuing system is used to model the dynamic small cell network. The 

dynamic spectrum access system is modelled in a stable state such that, a cluster of 

adjacent base stations assign different channels to their users without interference. 

The overall network capacity can then be calculated from the spectrum size. This is 

the theoretical optimized state of distributed learning. However, transfer learning has 

the potential to achieve such state effectively following the Pareto efficient 

prioritization algorithms. The detailed models and algorithms will be illustrated in 

Chapter 7. 

The classical M/G/k/1 queue is used to model the system, which follows the 

conditions that user arrives at a Poisson process; the service time has general 

distribution; k servers (channels) are provided in the system; the queue length is 1 

that the blocked users are considered to be lost in the system. The blocking 

probability indicates system throughput. 

The Markov model is an essential mathematical tool to analyze queuing systems. A 

Markov chain models all user behaviors (arrivals, departures, blockings) in different 

system states. In a communication network, a state is defined as the number of 

channels occupied in the system. The state transition probability is determined by the 

arrival and departure rates. Conventional Markov analyses are carried out in one 

dimension, which only models a single system. However, practical wireless 

networks are constructed from multiple base stations, with a number of channels 

(servers) allocated to each or shared by all. In this work, a novel Multi-dimensional 
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Markov model has been designed and used to analyse multi-cell performance. An 

example of a two dimensional queuing system is illustrated in Figure 3.7. 

 

Figure 3.7. Multi-dimensional Queuing System 

The system has two base stations ®]  and ®�  with channel set 1]  and 1�  assigned, 

respectively. By defining arrival rate of users in these cells as �] , ��  and the 

departure rate as d, the probability of the system having ¯] and ¯� channels occupied 

in each cell is 

 (�] + �� + (¯] + ¯�)N)�(¯], ¯�) = �]�(¯] − 1, ¯�) + ���(¯], ¯� − 1) +
(¯] + 1)N�(¯] + 1, ¯�) + (¯� + 1)N�(¯], ¯� + 1)					(¯] < 1], ¯� < 1�)  (3.25) 

The Markov chain and equilibrium equation varies for different systems, which will 

be discussed in Chapter 7. 

3.7 Conclusion 

This chapter has described the method of modelling, simulation and analysis 

methods used in this thesis. The generalized network models of multi-hop backhaul 

and flexible access network have been demonstrated. Matlab is selected as the 

software tool for network simulation. The simulator is constructed by several 

modules to cover different aspects of the system, including the architecture, physical 

layer, traffic, spectrum and topology management modules. Selected antenna, 

propagation and traffic models have been discussed. The output parameters 

including QoS, learning efficiency, cooperation and energy evaluation are presented 

to validate the developed strategies. Furthermore, queuing theory is demonstrated to 

analyse the flexible access network, with newly designed multi-dimensional Markov 

models. 
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4.1 Introduction 

The objective of cognitive resource management is to enable the cognitive agents 

(base stations or mobile stations) to dynamically select resource blocks (channels) to 

set up a communication link. It is designed to carry out resource management in a 

distributed manner without a centralized Radio Network Controller (RNC), which 

significantly reduces the complexity of the network architecture. However, the co-

channel interference becomes a serious issue in a cognitive radio network, because 

the cognitive agents could be randomly located and may have dynamic access to a 

common spectrum pool. In the cognitive radio scenarios where centralized planning 

and scheduling algorithms are not available, the cognitive agents are required to 

coordinate and learn the radio environment to avoid interference. 

For the purpose of operating distributed resource management, a cognitive agent is 

required to either communicate with others in vicinity or learn the surrounding 

environment. In this context, two strategies are proposed and investigated in this 

chapter: an Interference Coordination strategy and a Distributed Learning strategy. 

The Interference Coordination strategy is designed to directly exchange spectrum 

usage information between adjacent cognitive agents, in order to avoid the same 

channels being used simultaneously. On the contrary, the Distributed Learning 

strategy enables the cognitive agents to learn the spectrum usage and user activity. 
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This operation is designed to be fully independent, and not require information 

exchange. Under the exploration and exploitation of learning algorithms, the 

cognitive agent can converge to a preferred spectrum pool after a number of learning 

iterations. 

This chapter presents the earlier work on fully distributed and fully coordinated 

cognitive resource management approaches for the multi-hop backhaul network of 

the high capacity density network architecture. The radio environment of the multi-

hop network is firstly investigated, including the hidden/exposed terminal problems 

and the issue of bottlenecked traffic. In Section 4.3, a Space-division Interference 

Coordination strategy is proposed, which is based on the spatial resource reuse 

between antenna beams to provide fair resource utilization across multiple hops.   

The second part of this chapter investigates a distributed learning algorithm that is 

applicable to the multi-hop backhaul network. This includes a Linear Reinforcement 

Learning algorithm and a Single State Q-learning algorithm. Theoretical 

convergence is evaluated as a performance comparison of the two algorithms in 

different scenarios. Furthermore, improved decision making schemes with physical 

parameters are investigated, to improve the spectrum sensing efficiency.   

The purpose of this chapter is to investigate further improvements to the 

conventional distributed resource management approaches, which motivates the 

design of transfer learning in further chapters. 

4.2 Radio environment of multi-hop networks 

The architecture of a multi-hop backhaul network has been illustrated in Figure 3.2, 

which consists of a HBS in the centre and several ABSs around it. The HBS serves a 

set of x branches, where a set of y hop ABSs are connected on each. On a backhaul 

network, the downlink traffic is transmitted from the HBS to an ABS while the 

uplink traffic is vice versa. The traffic flow can be delivered only if an end-to-end 

link has been established, which contains multiple hops from source to destination. 

The role of cognitive resource management is to assign data channels to individual 

links (between two base stations), in order to establish an end-to-end link for 

communication. In the scenario of a multi-hop network, multiple channels may be 
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required on an individual link, to deliver both local and relayed traffic. As well as 

this, the backhaul architecture incurs higher relayed traffic load on the links near the 

hub, which require more resources to be assigned. 

4.2.1 Interference Issue 

The major target of resource management here is to mitigate interference between 

backhaul links. Interference is caused by the links using the same channels, which is 

determined by the location of transceivers, antenna profile, the transmit power, etc. 

The backhaul network has a more static interference environment than the access 

network, because the location of base stations is normally fixed and directional 

antennas are implemented on both ends of the link, as detailed in Section 3.2.1. 

Conventional Minimum Interference (MI) [56] and Maximum SINR [107] channel 

assignment schemes have the capability of identifying interfering terminals in the 

vicinity. However, the hidden terminal problem occurs when a transmitter cannot 

identify the potential interfering terminals near the receiver, because their 

interference power could appear low at the transmitter but high at the receiver. This 

normally happens when a receiver is near another transmitter. For instance, when an 

ABS has co-located transmitter (Tx) and receiver (Rx) antennas, the transmitter may 

choose the same channel of the receiver because the receiver antenna does not 

radiate signal power towards the new transmitter’s antenna. This issue can be 

illustrated in Figure 4.1 below, where three multi-hop links are connecting four hops 

of ABSs. The arrows denote the direction of antenna main lobes.  

 

Figure 4.1. Multi-hop network interference environment 

It can be seen from Figure 4.1 that in a multi-hop architecture, a relay node (ABS 2/3) 

may have co-located receivers (Rx) and transmitters (Tx). For the purpose of 

establishing an end-to-end link, these transmitters and receivers should relay traffic 

flows. However, while routing information (OSI layer 3) is routinely transferred 
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across multi-hop links, the exchange of channel usage information (OSI layer 2) is 

much more difficult, and is not practical with many existing and future protocols 

standardised today. The MAC (in contrast to routing) protocols conventionally work 

at the individual link level, meaning that it is difficult to implement a centralized 

assignment solution on a multi-hop network. As a result, the distributed channel 

assignment strategies, presented in Chapter 2, remain the most practical solution. In 

this manner, a transmitter can identify a receiver only if the interference level is 

above a threshold for establishing a communication link. 

The interference is radiated from the transmitter, whereas the quality of a link 

depends on the SINR at the receiver. This causes the hidden terminal problem, where 

a receiver is out of an interference detection range [40]. In a multi-hop backhaul 

network, the antenna directionality and the transceiver’s location make the 

interference environment different from an access network. In the example 

architecture of Figure 4.1, L1 is a link that has already been established. The second 

hop transmitter Tx2 operates spectrum sensing to establish L2. In this case, it may 

not detect excessive interference from Tx1 because: 1) its antenna is pointing in the 

reverse direction of L1; 2) it is located at a distance from Tx1. However, Tx2 may 

incur interference to Rx2 because they are co-located. 

A similar issue occurs when a receiver operates spectrum sensing. It can be 

illustrated from the same figure when the third hop establishes a link L3. Rx4 may 

not detect interference from Tx2 because it is out of the signal range. In this case 

Tx3 incurs interference to Rx3.  

In summary, the antenna directionality and spatial location of transceivers causes 

fully distributed channel assignment schemes to be inefficient in some scenario. The 

distributed transceivers should either exchange channel usage information or learn 

the radio environment, to avoid such negative impact.   

4.2.2 Bottleneck Issue 

The multi-hop backhaul architecture, as presented in Figure 3.2, has a HBS 

connecting a set of ABSs. Traffic generated from a source ABS should pass through 

multiple hops until arriving at the HBS, and vice versa from the HBS to a destination 

ABS. The system performance thus relies on the end-to-end QoS, which is 
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constrained by a single hop with lowest QoS. It can be observed from the network 

architecture Figure 3.2 that a traffic flow can be delivered only if all hops between 

source and destination are assigned channels. The number of channels required on 

hop ℎ�, including link z°±(�²,)°±� and z°±�°±(�²,) follows 

 O(	ℎ�) = max(ℎ) − ´ + 1 (4.1) 

This indicates that lower hops require more channels to deliver relayed traffic than 

higher hops. On the other hand, the backhaul architecture indicates that the HBS 

suffers from higher interference than the ABSs, because the hub connects all the 

multi-hop branches. 

In summary, a drawback of multi-hop network is that more resources are required to 

deliver relayed traffic compared to single-hop network. However, with directional 

antennas implemented, a multi-hop topology significantly reduces interference 

density on the HBS compared to single-hop topology. A better spatial resource reuse 

can be carried out to reduce the relay burden. 

4.3 Space-division Interference Coordination 

4.3.1 Interference Coordination Mechanism 

The interference coordination resource management mechanism has been applied 

recently to some distributed networks without a centralized RNC, as reviewed in 

Chapter 2. One typical application is in an LTE network, where the adjacent eNBs 

are allowed to exchange channel usage information to avoid the same sub-spectrum 

being used simultaneously, namely Inter-Cell Interference Coordination (ICIC) [23]. 

The motivation of interference coordination is to eliminate interference in a defined 

area through information exchange. 

Following the analysis of the interference environment on a multi-hop backhaul 

network in Section 4.2, a straight-forward coordination strategy is to define the 

interference range of a link covering neighbouring hops. The interfering links z��µ��  

of a communication link z°�°¶ are defined as 

 ∀z°�°¶, z��µ�� = ⋃(�~ ∨ �~ = �� ∨ �º) (4.2) 
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In the basic interference coordination strategy, the communication link z°�°¶  
exchanges channel usage information with the interfering links z��µ��  before every 

file transmission. Simulations in later sections prove that such a strategy effectively 

eliminates most of the dropped links caused by the hidden terminal problem. 

4.3.2 Spatial Reuse Methodology 

Spatial reuse is designed to improve the resource utilization in the spatial dimension. 

The directional antennas implemented on backhaul links effectively reduce 

interference radiated in unwanted directions, which potentially provides further 

resource reuse capability in the spatial domain. 

It has been illustrated in Figure 4.1 that neighbouring links along the same direction 

incur excessive interference. However, interference from those links in the reverse 

direction may be controlled by directional antennas, even though they are in the 

interference range. 

ABS Spatial Reuse   

Figure 4.2 illustrates the designed space-division resource allocation strategy. A two 

hops ABSs network is presented in the example architecture, with both downlinks 

and uplinks constructed. The downlink z°,°-  and uplink z°4°-  have receiver 

antennas on the same ABS A2, pointing in opposite directions. In this case 

interference between them could be fairly low, according to the directional antenna 

profile. Resources can be reused on these two neighbouring links without 

interference. Similarly z°-°, and z°-°4 have the same behaviour. In general, spatial 

reuse can be operated on links z��µ�µ  if 

 ∀z°�°¶, z��µ�µ = ⋃(�~ = �� ∨ �~ = �º) (4.3) 

Compared to (4.2), the number of channels required with spatial reuse is only a half 

of the original interference coordination strategy, which is contributed by the channel 

reuse between neighboring uplinks and downlinks. 
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Figure 4.2. Spatial reuse between multiple hops 

A crucial objective of spatial resource reuse is to reduce the relaying burden on 

multi-hop networks. Traditionally increasing a multi-hop link by one hop requires 

one more channel to be assigned for relayed traffic. However, the relay link could 

reuse channels selected by a neighbouring reverse link when spatial reuse is 

introduced. In this manner, no additional channels are required compared to a single-

hop topology with the same number of ABSs.  

This can be illustrated in the example architecture Figure 4.2, where the second hop 

fully reuses channels assigned on the first hop. It can be observed that the same 

number of channels is required when constructing this network using a single hop 

architecture, where individual links are established to connect each hop with A1. The 

same methodology applies to other hops, where the lower hop can always reuse 

channels assigned to the neighbour higher hop. In conclusion, the space-division 

resource allocation strategy effectively eliminates the relay burden caused by multi-

hop architecture. 

HBS Spatial Reuse   

The space-division interference coordination can be applied not only between 

neighbouring hops on ABSs but also between different branches on a HBS. Figure 

3.2 demonstrates that a HBS connects multiple branches in different directions. 

Directional antennas are implemented to isolate interference between the links in the 

same direction, where channels can be reused. In this case, spatial reuse can be 

operated within downlinks or uplinks. 

An important issue for spatial reuse on the HBS is that the directional antenna 

radiates a lower signal power on the sidelobes as well, which has the potential of 

interfering with adjacent links on the same direction. This can be illustrated from an 

example in Figure 4.3, where z°»°, and z°»°- have a small angle. The signal ranges 

of these two links overlap according to the antenna profile. As a result, spatial reuse 
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between these links may incur excessive interference. A similar issue occurs between 

uplinks z°,°» and z°-°». On the other hand, �# is out of the signal range of �] and 

��. Thus z°»°4  can reuse channels on z°»°,  and z°»°- , and vice versa on reverse 

links. 

 

Figure 4.3. Spatial reuse between multiple branches 

4.3.3 Simulation 

In this section, simulation results are presented to validate the Space-division 

Interference Coordination strategy, which is based on the general architecture 

presented in Figure 3.2. A network topology with 38 ABSs connected to a central 

HBS on 8 branches is used, based on the topology shown in Figure 4.4 below.  

 

Figure 4.4. Multi-hop backhaul network simulation topology 

The simulation parameters for this section are shown in Table 4.1. The Minimum 

Interference channel selection strategy [56] is used as a baseline comparison, which 

selects channels with minimum interference level at the transmitter. The interference 

coordination with no spatial reuse, ABS spatial reuse and HBS spatial reuse are 

evaluated as described in Section 4.3 before. 
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Table 4.1. Simulation Parameters 

Parameters Values 

Transmission Power -50 dBm 

Antenna Model Aperture antenna [96] 

Antenna beamwidth 30° 

Antenna height 5 m 

Propagation Model HATA PCS Extension (Urban) [108] 

Channel Bandwidth 12 MHz 

Thermal Noise
a
 -174 dBm/Hz 

SINR Threshold
b
 9.05 dB 

Distance between ABSs 30 m 

a. Noise power in a resistor at room temperature [109] 

b. QPSK and 7/8 coding rate at 10�¼ BER [17] 

 

The first part of simulation investigates the link level, by assigning each ABS with 1 

Erlang offered traffic. Figure 4.5 shows the number of dropped links with different 

numbers of available channels. 

 

Figure 4.5. Number of Dropped Links 

It can be observed that the conventional Minimum Interference scheme starts from a 

high number of dropped links, because it can hardly avoid the interference from 
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hidden terminals. On the other hand, the three Interference Coordination schemes are 

shown to effectively control the interference. Moreover, the spatial reuse schemes 

prevent dropped links as achieved by the no spatial reuse scheme, which validates 

the methodologies presented in Figure 4.2 and Figure 4.3.  

Figure 4.6 presents the number of blocked links, which is caused by insufficient 

available channels. It can be investigated that by introducing channel reuse between 

neighbour hops of ABSs in (4.3), the ABS spatial reuse scheme slightly improves the 

blocking performance compared to the no spatial reuse scheme. On the other hand, 

the spatial reuse scheme on both ABSs and HBS achieves much lower blocked links 

than the other two coordination schemes. The result illustrates that a significant  

traffic bottleneck occurs on the first hop of links connecting a HBS and multiple 

branches, which largely affects the system performance. The space-division 

interference coordination strategy is shown to effectively eliminate the bottleneck 

issue by introducing spatial reuse appropriately between neighbouring uplinks and 

downlinks. Moreover, the Minimum Interference scheme has no blocked links 

because it has no constraints in selecting a channel from the entire shared pool. 

However, a high volume of dropped links demonstrated in Figure 4.5 results in poor 

overall network performance.   

 

Figure 4.6. Number of Blocked Links 

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Number of Channels

N
u
m

b
e
r 
o
f 
B
lo

c
k
e
d
 L

in
k
s

 

 

Minimum Interference

No Spatial Reuse

ABS Spatial Reuse

ABS and HBS Spatial Reuse



Chapter 4. Distributed Learning and Interference Coordination 80 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

The impact of the antenna beamwidth has the potential to reduce the capability of 

spatial reuse between different branches, as illustrated in Figure 4.3. This could 

largely affect the network QoS. Figure 4.7 demonstrates the number of blocked, 

dropped and overall failed links for a range of different antenna beamwidths when 

the HBS spatial reuse scheme is applied. By comparing with the network topology in 

Figure 4.4, it can be seen that blocked and dropped links occur from 40° onwards, 

because the mainlobe of neighbour HBS antenna beams starts to have overlap with 

each other. Moreover, the number of dropped links reaches a peak level near 90° and 

180°, where the edge of a HBS antenna mainlobe covers the receiving ABSs on 

adjacent branches. On the other hand, the number of dropped links can be reduced 

when the beamwidth varies between these peak levels, because interference on the 

receiving ABSs is high enough to be detected. 

It can be concluded here that the designed spatial reuse strategy between different 

branches (Figure 4.3) could be applied only if the antenna beamwidth is smaller than 

the mainlobe’s angle with adjacent links.  

 

Figure 4.7. HBS Spatial Reuse performance according to antenna beamwidth 

In the second part of the simulation, the traffic level performance is investigated. To 

assist traffic modelling, a file transfer model is introduced, which is capable of 
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representing a succession of packets. The detailed modelling process has been stated 

in Section 3.4.3. The total number of channels is set to 30. 

Figure 4.8 presents the network throughput performance along with offered traffic. It 

is demonstrated that the network can deliver higher throughput when a more flexible 

spatial reuse is applied under 30° beamwidth. The ABS and HBS Spatial Reuse 

scheme can afford a much higher offered traffic than others, because network 

resources are reused at a maximized level between different hops and branches. 

Compared with this, the ABS Spatial Reuse scheme has much lower throughput, 

because it is constrained by the bottleneck relayed traffic on the HBS. The No 

Spatial Reuse and Minimum Interference schemes achieve similar performance. 

However, Minimum Interference incurs more dropped links as illustrated in Figure 

4.5, which is supposed to be more harmful than blocked links in a network [4].  

 

Figure 4.8. Network Throughput 

The total network delay is presented in Figure 4.9, which is the accumulated delay of 

all files delivered. A similar performance of all schemes is shown compared with 

throughput, where the HBS and ABS Spatial Reuse scheme contribute to a lower 

network delay before the network is saturated. The throughput and delay 

performance shows that by applying spatial reuse between the transmitters or the 
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receivers, the network capacity can be enhanced by reducing the number of 

retransmissions from fewer blocked and dropped links. 

 

Figure 4.9. Network Delay 

4.4 Distributed Reinforcement Learning 

This section demonstrates the application of distributed reinforcement learning to 

channel allocation on a multi-hop backhaul network. The objective of this technique 

is to operate the network in a fully distributed manner, without multi-agent 

coordination and information exchange. The application model of reinforcement 

learning to multi-hop networks will firstly be presented. Two typical distributed 

reinforcement algorithms will be proposed and discussed, followed by analysis on 

convergence performance. Moreover, an improved decision making strategy using 

interference information from spectrum sensing will be demonstrated. 

4.4.1 Cognitive Models for Multi-hop Networks 

The aim of distributed reinforcement learning in channel allocation is to partition 

channel sets for links in different geographical areas, which in turn reduces the 

interference between them. A cognitive radio cycle was originally defined in [58] as 

observation, making decisions, taking actions, and learning. In radio resource 

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

16
x 10

4

Throughput (Mb/s)

T
o
ta

l D
e
la

y
 (
s
)

 

 

Minimum Interference

No Spatial Reuse

ABS Spatial Reuse

HBS and ABS Spatial Reuse



Chapter 4. Distributed Learning and Interference Coordination 83 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

management, the action space � = {�], ��, … , �"} is an available spectrum pool with 

multiple channels (actions) �À. In the decision making process, an agent selects a 

channel according to �À = �(�) [66], where �  denotes a decision making policy. 

This is based upon a knowledge base constructed from a set of actions associated 

with Q values. The learning strategy updates the knowledge base, following the 

outcome of the selected action such as when a file is: (a) successfully delivered, (b) 

interrupted during transmission or (c) initially blocked. A successful outcome 

reinforces the policy by increasing the associated Q value whereas a failed outcome 

reduces the Q value and hence the probability that the action is employed next time. 

A successful action will have a higher accumulated Q value in the knowledge base. 

The motivation for applying distributed reinforcement learning to radio resource 

management is to improve QoS including throughput, delay, retransmissions, etc. On 

a selected channel these parameters are largely affected by the SINR level γ, as 

defined in (3.8). The reward function is designed to use the Q value to represent the 

outcome of decisions, which is designed as follows 

 �¡Á = Q1																							� ≥ �ÂÃÄ−1																				� < �ÂÃÄ (4.4) 

where �¡Á  is reward value on a selected channel �À, �ÂÃÄ is the minimum acceptable 

SINR threshold for establishing a communication link. The objective of learning is 

then to maximize Q values on successful transmissions and minimize those on 

interrupted or blocked transmissions. In the dynamic spectrum access scenario, the 

expected channel set for a distributed agent varies with the dynamic behaviour of 

other agents in both time and spatial domains. Therefore, it is difficult to define a 

target action space for reinforcement learning.  

In a multi-hop backhaul network, individual Q tables are created on each link in 

Figure 4.4, in order to perform learning in a distributed manner. The Q value is 

updated on a link-by-link basis in the situations where a connection is blocked, 

interrupted, or released. The learning behaviour on each hop is independent. 

4.4.2 Distributed Reinforcement Learning Algorithms 

The learning algorithm is designed to reinforce the knowledge base for future 

decisions, by applying the rewards (4.4) on every iteration. Under this operation, 
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both the historical and instantaneous information will be introduced into the 

knowledge base. The learning function has the responsibility in controlling the 

proportion of them in different learning stages. 

The objective of the learning algorithm is to find an improved action space for 

distributed cognitive agents, as well as converging speedily to this space. These two 

processes operate concurrently in a cognitive radio network. However, a targeted 

action space could be invisible and dynamic to cognitive agents during learning 

period. The action-value function is designed to intelligently find the improved 

action space as iterations are taken, and keep the decisions stable once this space is 

approached.   

4.4.2.1 Linear Reinforcement Learning 

Linear Reinforcement Learning was initially proposed in [64], which defines an 

action-value function which updates the knowledge base on every learning iteration: 

 
(�) = F
(� − 1) + � (4.5) 

where t is the number of learning iterations conducted, Q is an array of Q values 

assigned to each possible action, representing the knowledge of decisions made in 

the past. f is a weighting factor that controls the impact of rewards on Q value, as 

well as the convergence speed. 

The transition function contains both historical 
(� − 1)  and instantaneous � 

information. The weighting factor f determines the proportion of these two parts of 

information in building up the knowledge base for decision making. The reward 

function (4.4) represents two possible reward states: success and failure of 

transmissions. Clearly the character of the Q array is determined by the decision 

making history of an agent. Analysis of how the rewards affect Q value provides a 

valuable insight into mechanisms later described that aim to reduce disruption of 

service due to the learning process. 

We begin by considering the dynamics of Q when a protracted sequence of the same 

rewards occurs. We denote this reward state as ��. We will then look at the effect on 

Q of switching to a different reward state, ��v] (e.g. from a sequence of successful 
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actions to one of unsuccessful actions – although the treatment is equally valid in the 

reversed transition). 

So, according to (4.5) the Q value after t iteration in reward state �� is 

  (4.6.1) 

  (4.6.2) 

  (4.6.3) 

Here 
Å�(0), f and R are constant factors, only the iteration number t increases. The 

time derivative of 
¬�(�) is 

  (4.7) 

  (4.8) 

It can be concluded from (4.7) and (4.8) that the time rate of change of 
(�): (a) 

F ∈ (0, 1) : decreases exponentially; (b) F = 1 : stays constant; (c) 	F ∈ (1,∞) : 

increases exponentially. The gradient also indicates the proportion of historical and 

instantaneous information in the Q value. 

Now, consider a reward state transition occurring after /  iterations: R is now 

returned as a different value in (4.4). Resetting � = 0 , we have a reward state 

transition: 
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By defining I(.) as either the proportion of historical learnt or newly acquired reward 

information in the knowledge base, equation (4.6.2) indicates that  È(
Å�(/)) and 

È(�) in 
Å�Ç,(�) follow the distributions listed at Table I: 

Table 4.2. Historical and Instantaneous Information 

 È(
Å�(/)) È(�Å�Ç,) 
F∈(0,1) Exponential Decay Exponential Growth 

F=1 Constant Linear Growth 

F∈(1,∞) Exponential Growth Exponential Decay 

From Table I, it can be seen that historical information, the Q value contribution 

from previous reward states, decreases quickly and the acquired reward information 

increases dramatically when F∈(0,1). The converse behaviour occurs when F∈(1,∞). 

These ranges of f will result in either historical or newly acquired information being 

quickly lost. 

In [110] we chose 	F=1 for a strategy which adopts linearly increasing reward 

information following a reward state transition �� → ��v]. Since 
(0)=0 in this case, 

the knowledge base can be decomposed into: 

 
(�) = �ÅÇ�ÅÇ + �Å²�Å²  (4.10) 

where �v and �� are the sets of all actions that incur positive or negative rewards, 

respectively. The reinforcement learning process naturally partitions �v  and �� 

through the decision making policy: 

 �(�) ∈ argmax
¡Á (�) (4.11) 

The Q table is set up with arbitrary values in the start-up stage when a limited 

number of actions has been taken. Decisions are thus made on a random basis, which 

may cause harmful actions.  

4.4.2.2 Single State Q-Learning 

Single State Q-Learning was originally proposed in [70], as a Q learning solution to 

systems without defined multiple states. The distributed cognitive radio network, as 

illustrated in previous sections, is generally a stateless system where a learning target 
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is dynamically changing according to the radio environment. As a result, this single 

state Q learning is potentially suitable for the DSA scenario. 

The action-value function of Single State Q Learning is defined as 

 
(�) = (1 − �)
(� − 1) + ��, � ∈ (0,1) (4.12) 

where the convergence speed is controlled by the learning rate �. 

Compared with standard multi-state Q learning presented in Section 2.4.2, this 

algorithm takes the “discount factor” as 0. The component regarding to previous 

states in the equation is not included. 

Compared with linear reinforcement learning, it can be observed that the learning 

rate α and the weighting factor f on 
(� − 1) follow such relation: 

 � = 1 − F, if	F∈(0,1) (4.13) 

As a result, the relationship between historical 
(� − 1) information and the control 

parameter in Q learning is contrary to that in linear reinforcement learning, as 

illustrated in Table 4.2. Moreover, the reward component is also controlled by the 

learning rate. 

To better compare this algorithm with linear reinforcement learning, we begin the 

same analytical process which investigates the dynamics of Q under different reward 

states. According to (4.12) the Q value after t iterations in reward state �� is 

  (4.14.1) 

  (4.14.2) 

  (4.14.3) 

Here 
Å�(0), α and R are constant factors, only the iteration number t increases. The 

time derivative of 
¬�(�) is 
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  (4.15) 

  (4.16) 

It can be concluded from (4.16) that 
(�) stays consistent after several of iterations. 

According to (4.15), the convergence rate of 
(�) depends on α. Moreover, equation 

(4.14.3) indicates that historical information
(� − 1)is exponentially decreased and 

the instantaneous information	� is exponentially increased. Following (4.14.3), the 

converged Q value can be obtained from 

  (4.17) 

This indicates that Q learning converges to the reward value given by (4.4). It can 

also be deduced that when the same reward state transition function (4.9) is applied, 

Q learning will converge to the new reward value in that state. 

4.4.2.3 Convergence Comparison 

The analysis of the dynamic variation of Q values in these two distributed learning 

algorithms shows that they have significant different temporal behaviours in a 

cognitive radio scenario. The linear reinforcement learning provides more random 

exploration during the initial stage, with more steady decisions on a long-term basis. 

On a contrary, the single state Q learning converges quickly (managed by the 

learning rate) to the reward value. However, in the cognitive radio scenario, the 

rewards may be changing very quickly because of a highly dynamic radio 

environment. In this case, the Q values could be fluctuating very frequently and an 

expected action space can hardly be found. Furthermore, as the historical 

information in single state Q learning is exponentially decreased, a cognitive agent 

may quickly loose learnt information in previous reward states. 

The objective of distributed learning in a cognitive radio scenario is to partition the 

resource set to different agents. Following such motivation, a distributed agent 

should finally make steady decisions on a converged action space. The highly 

dynamic radio environment could result in highly fluctuating rewards on the 

converged action space. However, the learning algorithm should not be affected too 
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much by these rewards, because steady decision is of higher priority. In this case, the 

linear reinforcement learning keeps more information on the iterations learnt in the 

past reward states but the Q learning relies heavily on the most recent state. It can be 

concluded that linear reinforcement learning is more suitable to achieve a stable 

solution, because it is less sensitive to reward changes. 

4.4.3 Interference Weighted Decision Making Strategy 

Exploration and exploitation are two fundamental stages in the cognitive cycle 

shown in Figure 2.2, which enables the agent to explore the environment to gain new 

information, or exploit the information that it has learned [111]. In the start-up stage, 

exploitation provides fairly limited information because the Q table has highly 

arbitrary values. Conventional reinforcement learning algorithms make random 

decisions in the exploration process, and also in the exploitation process when a set 

of actions have the same Q value. However, such random decision could be very 

harmful to the learner and surrounding agents, particularly at the start-up stage. 

The traditional distributed dynamic channel assignment strategy with spectrum 

sensing [8] is effective in the DSA scenario. For instance in the Minimum 

Interference (MI) channel assignment scheme, the transmitter or the receiver sense 

the instantaneous interference level within the spectrum pool and assign channels 

with minimum interference in a random order. [8] presents a heuristic interference 

threshold based MI scheme in a cellular network where the user locations fit a 

uniform distribution. However, the interference level at a cognitive agent is an 

approximate determination of their distance to others. Hence it is difficult to set an 

interference threshold for all the base stations. Moreover, a channel with the 

minimum interference level at the transmitter may not be the best channel for the 

receiver, and on the contrary, a good channel at the receiver could interfere with the 

links near the transmitter. 

The physical information from channel sensing can be used as an estimation of the 

channel quality. Here we have designed an improved decision making policy: the 

Interference Weighted (IW) strategy. In this strategy, the probability of selecting a 

channel depends on its interference level. The idea is to give a smaller probability for 

the channels with higher interference level to be selected, in order to achieve low 
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interference at both ends of the link. In this scheme, channels are weighted by 

interference as 

 Ê¡� = ]
+�¤�Ç.

 (4.18) 

where I is the interference level, n is the thermal noise. The probability for channel 

�� to be selected is 

  (4.19) 

Here A denotes channels that have not been used between two base stations. With 

(4.18) and (4.19) the lower interference channels have higher probability to be 

selected, and vice versa. 

The ε-greedy method [66] is widely used in many exploration strategies to explore 

channels with a probability of ε. The problem with the original approach is that a 

large amount of random selections have been taken initially when the information in 

the Q table is fairly limited [65]. Some approaches make decisions on a Boltzmann 

distribution on the Q values from learning [65, 111] to reduce the inaccuracy of the 

Q values. The interference weighted decision making strategy is based on the 

instantaneous interference level, which provides more accurate information, thereby 

delivering more effective decisions especially in the early stages. 

4.4.4 Simulation 

In this section, several simulations are conducted to validate the distributed 

reinforcement learning algorithm on a multi-hop backhaul network. The simulation 

parameters are shown in Table 4.3. The ε-Greedy exploration probability is 0.2. 

Steady state performance is evaluated from 10s onwards. 

The random channel selection strategy is used as a baseline comparison, which 

selects channels based on a uniform distribution. This strategy is also integrated with 

reinforcement learning based channel selection. 

The interference weighted strategy is proposed to improve the decision making 

process of conventional minimum interference and random strategies. Figure 4.10 
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and Figure 4.11 demonstrate a comparison between these schemes, where the 

random selection scheme does not require spectrum sensing. 

Table 4.3. Simulation Parameters 

Parameters Values 

Number of Branches 6 

Number of Hops 3 

Carrier Frequency 3.5 GHz 

Transmit Power 7 dBW 

Bandwidth 40 MHz 

Number of Channels 30 

Thermal Noise -174 dBm/Hz 

Inter-arrival time Pareto distribution 

Mean File size 5 Mb 

Antenna Model Multi-beam model from [99] 

Propagation Model WINNER II B5a [98] 

Simulation Time 60 s 

 

Figure 4.10. Probability of Retransmission (Decision Making strategies) 
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Figure 4.11. Throughput and Delay (Decision Making strategies) 
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Spectrum sensing that provides interference information can be operated on either 

the transmitter or receiver end of a link. Previous research in [56] shows that in a 

single-hop cellular network, selecting channels by sensing interference at the 

transmitter can support greater traffic than that at the receiver. However, for a multi-

hop backhaul network, the interference at the receiver site from a neighbouring 

transmitter on the adjacent link may dominate the performance, which is because of 

the hidden terminal problem illustrated in Figure 4.1. 

200 220 240 260 280 300 320 340

1.2

1.4

1.6

1.8

2

2.2

2.4

Throughput (Mb/s)

D
e
la

y
 p

e
r 
F
ile

 (
s
)

 

 

Random

Minimum Interference Rx

Interference Weighted Rx



Chapter 4. Distributed Learning and Interference Coordination 93 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

To compare the decision making strategies and validate the improvement of learning, 

we have performed simulations for transmitter (Tx), receiver (Rx) based IW and 

random strategies. Figure 4.12 shows the probability of retransmissions at various 

offered traffic levels. 

 

Figure 4.12. Probability of Retransmissions 
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reinforcement learning, spectrum sensing based decision making strategies have less 

impact on the averaged performance. 

Figure 4.13 below shows the overall network performance described by throughput 

and delay. The transmitter based IW strategy can support only up to 350 Mb/s 

throughput and with linear reinforcement learning it has higher delay than others. 

The receiver based IW strategy with learning performs the best with 1.50 s lower 

delay and 20 Mb/s higher throughput than the random strategy. 

 

Figure 4.13. Throughput and Delay 
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Figure 4.14. Temporal performance of QoS 
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Figure 4.15. Probability of Channel Usage 
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coordination.  Spatial channel reuse on both HBS and ABSs reduces the number of 

channels required for relaying, which thus significantly mitigates the bottleneck 

issue on multi-hop networks. The network throughput and delay is largely improved 

with fewer retransmissions and blocked/dropped links. 

Distributed Reinforcement Learning is studied to allow base stations to learn the 

radio environment and carry out effective channel selection. The convergence 

behaviour analysis shows that linear reinforcement learning provides more 

information from the previous decision to the knowledge base than Q learning, 

which in turn provides more steady decisions in a dynamic radio environment.  

The linear reinforcement learning scheme keeps the base stations on preferred 

channels as more actions have been taken, which assists with the establishment of 

stable end-to-end links. It is demonstrated that by effectively partitioning a set of 

channels to the base stations, the learning scheme achieves up to 30% lower 

retransmissions and 150 ms lower mean delay than random selection, and delivers 

similar steady QoS as achieved by the spectrum sensing based schemes. A novel 

Interference Weighted decision making strategy has been developed, which selects 

channels based on a probability generated from the interference level. It is shown to 

provide higher QoS than a conventional minimum interference scheme and it speeds 

up the convergence for reinforcement learning.  

In general, this chapter provides analysis of the multi-hop backhaul network radio 

environment with novel interference coordination and distributed reinforcement 

learning strategies developed to deliver effective QoS and throughput. However, a 

fully coordinated strategy increases the complexity of protocol development while a 

fully distributed strategy requires long-term investigation to achieve stable 

performance. As a result, a potential better solution for cognitive network could be a 

partly distributed/coordinated strategy, which is supposed to achieve a balance 

between the coordination and QoS requirement.  
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5.1 Introduction 

In Chapter 4 two dynamic resource management strategies were presented for a 

cognitive multi-hop backhaul network: fully distributed learning and full interference 

coordination. It is demonstrated in Figure 4.12 and Figure 4.13 that distributed 

reinforcement learning provides effective QoS without spectrum sensing. Moreover, 

Figure 4.8 and Figure 4.9 illustrates that by applying multi-agent coordination for 

spatial reuse through channel usage information exchange, the network QoS has 

been significantly improved from interference mitigation compared to a sensing 

based Minimum Interference algorithm. However, the exchange of channel usage 

information between distributed agents incurs an excessive amount of control traffic, 

which is inefficient for self-organized networks. 

The balance between Quality of Service (QoS) and control information overhead 

across distributed self-organized networks has been a key research issue in recent 

years. Self-organization of the network architecture becomes a compelling solution 

for simplified and efficient RRM [8]. A centralized frequency planning strategy is 
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inflexible in supporting fluctuating offered traffic levels in different areas. 

Distributed interference coordination techniques impose high additional traffic loads 

on control links that exchange resource block occupancy information [36]. 

Therefore, a crucial objective of the next generation wireless networks is achieving 

efficient Quality of Service (QoS) in a distributed manner with low levels of 

information exchange. 

Next generation wireless systems introduce the idea of implementing a flat 

architecture, to reduce system complexity and entity coordination [13]. On the other 

hand, interference coordination is demonstrated to significantly improve distributed 

resource management. For the purpose of providing effective distributed operation, it 

is possible to integrate a minimum amount of information exchange between 

distributed agents. The system is then expected to benefit from both distributed 

learning and interference coordination.  

In this chapter, a brand new method for implementing distributed intelligent 

algorithm is introduced over a network based upon transfer learning [79]: the transfer 

of learning knowledge between multiple tasks. A learning task is modelled as the 

learning target on multiple agents. The use of transfer learning is demonstrated in 

this chapter where the exchange of appropriate information from surrounding agents 

that have an interference impact on the learner enables the learning process to 

converge more quickly to a better, more stable state. The intention is that by 

applying a cooperation management strategy in transfer learning, the information 

exchange between independent learning agents can be reduced to a minimum level 

whilst achieving learning performance close to that of a fully coordinated network. 

When compared to traditional, centralized or coordinated RRM mechanisms, transfer 

learning enables the degree of coordination to be significantly reduced.  So, the 

target of transfer learning is to achieve an effective balance between cooperation 

overhead and QoS on distributed networks.  

5.2 Transfer Learning: Value Training Method 

Reinforcement learning is a delayed reward process [66] where agents usually have 

relatively limited information to inform policy when they are initially activated. 
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During this initial stage, and in the case here, channels are selected on an almost 

random basis as there is no discriminatory information.  

In this chapter, a value training method is developed in the context of transfer 

learning, to enable the transfer of knowledge between multiple agents. It is designed 

to exploit prior learning by transferring a set of Q tables from related source agents 

to the local target agent. From the perspective of the network level, reinforcement 

learning is operated iteratively throughout multiple agents, depending on the source 

and destination of offered traffic. A cognitive agent could consequently either act as 

target agent when it is transmitting or receiving a file; or as a source agent when 

requested for information exchange from other source agents in vicinity. Knowledge 

can be transferred between all agents in the same interference environment, but not 

necessarily from an agent more knowledge to that with less.  

Cooperation management is one of the most important modules in transfer learning. 

It controls the degree of knowledge transferred between multiple agents. The role of 

cooperation management is to identify and transfer useful information provided by 

source agents, as well as to stop transfer learning once it has no positive impact for 

the target agent. With cooperation management, the cognitive agent is expected to 

achieved significant higher QoS than distributed learning and lower information 

overhead than interference coordination. 

The framework of transfer learning is illustrated in Figure 5.1. The cooperation 

management algorithm firstly decides whether a transfer learning is necessary. The 

source agent selection module is then operated to obtain Q tables from related agents 

in the vicinity. Finally the target agent training algorithm generates a new Q table 

under the information from multiple sources, for the next iteration. 

 

Figure 5.1. Transfer Learning: Value Training Method 
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The source agent selection, target agent training and cooperation management define 

where, what and when to transfer, respectively. The motivation of designing these 

algorithms is to utilize positive information and avoid negative information.  

5.3 Source Agent Selection 

The source agents in transfer learning are the agents that can provide useful 

information to the knowledge base on the target agent. In a wireless network 

scenario, the selection of source agents depends on the interference level incurred by 

the agents in the vicinity. 

The SINR level potentially provides the information of interference impact from a 

dedicated agent, provided that only one source agent is sharing the same channel 

with the target agent. Thus an effective approach for selecting source agents is to 

send a beacon signal on a common control channel; the adjacent active agents reply 

with the SINR indication back to the target agent, which is then used to evaluate 

their qualification to be source agents. In the multi-hop network scenario, a cognitive 

agent has a transmitter and a receiver. The receiver side can measure SINR directly 

while the transmitter side can only sense the interference level. The source agents 

should include both transmitters and receivers in the vicinity, to reduce the hidden 

and expose terminal problems. Table 5.1 illustrates the process of the source agent 

selection scheme on both transmitter and receiver ends. 

The SINR level γ can only be measured at the receiver end. �¬�q"¡¢ is the received 

signal power from its corresponding transmitter, and ��M¡GÍ" is the received beacon 

power from other agents. Transfer learning operated on a target agent is aimed at: 1) 

reducing the interference to receivers in vicinity; 2) avoiding interference from 

transmitters in vicinity. Thus the source agent selection strategy is different between 

transmitter and receiver ends of a target agent. Moreover, ���" denotes the minimum 

adequate SINR level for a communication link as defined in Section 3.4.2.2, which is 

an important criterion for selecting source agents. 
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Table 5.1. Process of Source Agents Selection  

Transmitter end of a target agent Receiver end of other active agents 

Send a beacon frame calling for Source 

Agents at the Receivers end 
 

 Send SINR � = Î«�Ï.¤¥Î�¨¤_Ð. to target agent 

Qualify source agent if � < ���"  

Receiver end of a target agent Transmitter end of other active agents 

Send a beacon frame calling for Source 

Agents at the Transmitters end 

 

 Send a beacon frame back to target agent 

Qualify source agent if 
Î«�Ï.¤¥Î�¨¤_Ð. < ���"  

The radio environment on a multi-hop backhaul network has been analysed in 

Section 4.2, followed by interference coordination algorithms designed in Section 

4.3. Transfer learning is designed as an algorithm integrating distributed learning and 

coordination, thus the source agent selection strategy is proposed to follow the 

interference coordination algorithm. Figure 3.2 and Figure 4.2 illustrated that under 

the spatial division from directional antennas, the receiver end of a target agent (e.g. 

��- of z°±,°±-) could be heavily interfered by a neighbour source agent that has its 

transmitter co-located (e.g. z°±-°±4 ). On the other hand, the transmitter end of a 

target agent (e.g. ��, of z°±,°±-) could cause high interference to a neighbour source 

agent that has its receiver co-located (e.g. z°±»°±,). However, the other neighbour 

agents on the reverse link direction (e.g. z°±4°±- and z°±,°±») can in practice share 

the same channel with the target agent. 

For a target agent z�° = z°±,Ñ,°±-Ñ- , the source agents zÅ° are selected according to 

a Source Agent Selection scheme: 
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 	∀~�|Ò�|, zÅ° = z°±,x Ñ,x °±,Ñ, ∪ z°±-Ñ-°±-x Ñ-x  (5.1) 

Following this approach, the relationship between potential good actions (�v) and 

bad actions (��) on source and target agents is 

 
z¡²(Ô'(&ÕÖ) = z¡Ç(f%×(�Õ)z¡Ç(Ô'(&ÕÖ) = z¡²(f%×(�Õ) (5.2) 

The source agent selection strategy identifies the agents that incur excessive 

interference. The knowledge transfer process, as illustrated in Figure 5.1, is operated 

in a single direction from multiple source agents to a single target agent.    

5.4 Target Agent Training 

The target agent training module defines an approach of transferring positive 

information from source agents’ knowledge base to the target agent. The knowledge 

base in distributed reinforcement learning is represented in the form of a Q table. 

The target agent training scheme is designed to combine the Q tables from multiple 

source agents, and reinforce the target agent’s knowledge base for decision making. 

The aim of this process is to maximize the positive impact and minimize the negative 

impact from source agents. There are two issues to be considered:  

1. The position of source agents. The interference impact received from multiple 

source agents depends on their path loss, mainly transmission distance, to the 

target agent. 

2. The action-value function of the distributed learning algorithm. The functions 

designed in transfer learning should accelerate the convergence process of 

distributed learning, and assist the distributed agents with identifying effective 

steady selections. 

There are two major approaches to utilize the information provided by source agents. 

A straight forward method is to apply the spatial constraints introduced in Section 

4.3. However, this only provides instantaneous information of the radio environment. 

Alternatively, the Q table learnt from distributed learning has the ability of assisting 

transfer learning, provided that a value training function is effectively developed to 

combine multiple Q tables from different agents. 
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5.4.1 Value training function 

In a linear reinforcement learning algorithm, the good actions have continuously 

increasing Q values and the bad actions have continuously decreasing Q values. The 

objective is to maximize positive Q values on good actions and minimize negative Q 

values on bad actions, because the actions with highest Q values are selected on each 

iteration. For the purpose of accelerating this process, the value training function is 

designed to append the Q table with transferred Q values. 

According to the source agent selection strategy, the objective is to assist the target 

agent to avoid channel reuse with the source agents. In this scenario, the source 

agents’ good channels could cause harmful interference to the target agent. On the 

contrary, the bad channels at source agents could be reused at the target agent. 

Consequently, the Q table from source agents could be added conversely to the target 

agent, which provides channel partitioning between them. According to the action-

value function (4.10) of linear reinforcement leaning in Section 4.4.2, the objective 

of transfer learning is to maximize Q value on good actions 
(�v) and minimize Q 

value on bad actions 
(��):  
 Ø
(�v) = maxÙ�ÅÇ�ÅÇÚ 	∧ 	min(�Å²�Å²)
(��) = minÙ�ÅÇ�ÅÇÚ 	∧ 	max(�Å²�Å²) (5.3) 

Furthermore, the value training function should also balance the information from 

source and target agents, in order to avoid the Q table from either distributed or 

transfer learning dominating the knowledge base. The Q tables 
(Å°) from source 

agents zÅ° is transferred to the target agent  
(�°) as follows: 

  (5.4) 

where |zÅ°| is the number of source agents. The value training function virtually 

exchanges �ÅÇ and �Å²  on �ÅÇ  and �Å²  when transferring zÅ°(
) to z�°(
). Equation 

(5.5) illustrates this process, which follows the targets expressed in (5.3). 

  (5.5) 
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This function adds opposite Q values from source agents 
¡Á(Å°) to the target agent 


¡Á(�°), which can improve linear reinforcement learning in two aspects: 1) a new 

agent can quickly find good channels from transferred positive values; 2) a mature 

agent can quickly recognize bad channels from transferred negative values. 

5.4.2 Space-division Coordination 

The space-division coordination introduced in Section 4.3 provides a straight 

forward method in spatial channel partitioning, which can be applied in transfer 

learning. The spatial constraints partially lock the available action space for decision 

making, which prevents the channels used on source agents to be selected by the 

target agent. Following the source agent selection strategy, the available channel set 

to a target agent O° provided from spatial constraints is 

  (5.6) 

where O� and OÅ are channels occupied by target and source agents, respectively. 

The space-division coordination provides interim channel usage information to the 

target agent, which is expected to be more precise than the value training function. 

However, since transfer learning is expected to reduce the coordination overhead in a 

distributed network, the target agent may lose all information from source agents 

once the knowledge transfer is stopped. On the contrary, based on the value training 

function, the knowledge base has the memory of channel usage information, which 

provides long-term improvement. 

5.5 Stable State Evaluation 

Stable state evaluation is designed to identify whether a learning target has been 

achieved. In transfer learning, it is employed in cooperation management (detailed in 

the following section) to control information exchange and knowledge transfer.  

An objective of learning algorithms is to achieve a stable state. In a cognitive 

resource management scenario, the decisions made from a cognitive agent on a 

stable state should converge to a fixed set of channels, which is also referred to as a 
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solution learnt from consecutive iterations. Nevertheless, a stable state does not 

necessarily indicate that high QoS is achieved, which could potentially cause two 

extreme case: 1) Positive State: resource partitioning is achieved and adjacent agents 

converge to different set of channels; 2) Negative State: all the agents converge to 

the same channel set, which incurs excessive interference. The source agent selection 

strategy in transfer learning effectively avoids the negative stable state, based on 

(5.5). 

In the computer science community, the stable state of a reinforcement learning 

scenario is normally well defined as a goal. The intelligent agents find the goal [72] 

based on the action-value function. However, it is difficult or unrealistic to define a 

stable state in a cognitive radio scenario, because the radio environment varies with 

offered traffic, spectrum size, location of adjacent agents, etc. In this case, the 

expected decisions may be dynamically changing as well. As a result, it is important 

to estimate various stable states in order to guarantee convergence. 

A Q table in reinforcement learning provides two parts of information. 1) The level 

of the Q values indicate the probability of corresponding actions being selected; 2) 

The ranking of actions by Q value indicates the priority of each action. Namely, the 

learning information in a Q table is represented by the relative Q value between 

actions rather than the absolute Q value on each. A channel usage probability method 

is proposed in [110] to measure the channel partitioning status in a stabilized 

scenario. However, this cannot provide a unified measurement, because the number 

of stable channels required by an agent is a dynamic value depending on the traffic 

level. Additionally, the channel usage method only provides a protracted snapshot 

measurement to the system behavior, while evaluation on a specific iteration cannot 

be provided. As a result, an action ranking method is developed here to evaluate a 

stable state. 

The decision making policy in reinforcement learning is based on the action with a 

high Q value. In a single action system, the stable state can be defined as the action 

with highest Q value which remains the same over iterations. However, in a wireless 

network, an agent may transmit files on multiple channels simultaneously, for either 

local and relay traffic. As the decision making process is based on the Q values from 

high to low, the selected action space is supposed to always have high Q values. 
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Therefore, a stable state is defined to exist when the rankings of the occupied 

channels Oµ  (sorted by their related Q value) stays consistent. The strategy is 

described as: 

Table 5.2. Stable State Evaluation 

 

The convergence of learning is achieved when a stable state exists. This tool can be 

used to evaluate the convergence of learning in cognitive radio networks. In a stable 

state, the learning agent is expected to achieve a stable QoS level. Figure 5.2 and 

Figure 5.3 illustrate the relationship between stable state and QoS with linear 

reinforcement learning and the Q learning algorithms. The simulation is based on the 

architecture from Figure 3.2 with parameters listed in Table 4.3. 

  

Figure 5.2. Stable States and Retransmissions: Low Traffic Level 
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Stable States: Q Learning

Stable States: Linear Reinforcement Learning

Retransmissions: Q Learning

Retransmissions: Linear Reinforcement Learning

On learning iteration t 

1: Record the number of visited actions �(�) 
2: Set �(�)&	�(� − 1) = min	(�(�), �(� − 1)) 
3: Oµ| = �2ß�(�), for ∀	�� ∈ �, ´ ≠ |�|, 
¡� ≥ 
¡�Ç,  

4: Set Oµ, where Oµ ∈ Oµ| 	&	|Oµ| = �(�) 
5: If  Oµ(�) = Oµ(� − 1) 
6: Stable state reached 

7: End 
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Figure 5.3. Stable States and Retransmissions: High Traffic Level 

Figure 5.2 demonstrates that the learning algorithms converge at 20s with 90% stable 

states achieved. The retransmission probability also converged to 10% at the same 

time. More stable states results in fewer retransmissions. It can be concluded that the 

stable state evaluation algorithm provides an effective approach in investigating the 

convergence of learning. 

In Figure 5.3, the linear reinforcement learning achieves a significantly higher stable 

state probability than Q learning, with a lower retransmission probability. It 

demonstrates that a higher QoS level can be achieved when distributed learning 

converges to a fixed channel set. The convergence analysis in Section 4.4.2 indicates 

that Q learning is more sensitive to the environment changes than linear 

reinforcement learning. Comparing their stable state probability in Figure 5.3, it can 

be concluded that Q learning is very ineffective in finding converged channel sets 

because of a highly dynamic user traffic, which in turn causes a low level of QoS. 

On a contrary, linear reinforcement learning is more effective in a high traffic 

scenario. In summary, the stable state evaluation method provides a definition of 

convergence in learning for radio resource management scenario, which also 

complies with the stability of temporal QoS. 
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5.6 Cooperation Management 

The Cooperation Management (CM) module is designed to start transfer learning 

when extra knowledge is needed on the target agents, and stop information exchange 

when a stable state is achieved from the knowledge base. Based on the target, 

cooperation management should have the ability to evaluate the information 

transferred from source agents, and to identify its impact on the target agent. 

The Q table in a transfer learning cycle, as demonstrated in Figure 5.1, is updated by 

the action-value function from linear reinforcement learning (4.5) and value training 

function from target agent training (5.4). Thus it is possible to carry out a stable state 

evaluation on the knowledge base learnt from either function.    

5.6.1 CM on Value Training Function 

The motivation of Cooperation Management in transfer learning is to stop the 

information exchange when the impact on the learning process of transferred 

knowledge is significantly diminished. One direct method of measuring such impact 

is to inspect the action ranking Oµ changes after applying the value training function 

(5.4). This method directly measures the impact of transfer learning on the target 

agent’s Q table. The structure of this scheme is described in Figure 5.4 below.  

 

Figure 5.4. CM on Value Training Function  

Figure 5.4 indicates that information exchange is carried out before evaluating stable 

states on knowledge base. However, the target of transfer learning is to reduce multi-

agent coordination. Additional control schemes are necessary in this algorithm to 

stop the evaluation process when stable knowledge base is identified appropriately. 

Here we develop initial and adaptive control schemes on knowledge transfer, by 

comparing channel rankings Oµ between a distributed reinforcement learning process 

∙ (�)âr and a transfer learning process ∙ (�)�r.     
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5.6.1.1 Initial Evaluation 

The motivation of initial evaluation in cooperation management is to improve the 

convergence performance when cognitive agents are initially activated. The 

algorithm is designed to assist the naïve agents to quickly build up their knowledge 

base. Figure 5.3 shows that in distributed learning, the QoS performance is improved 

as more stable states are achieved. As a result, one target of transfer learning is to 

speed up the initial convergence process. The stable state can be used as a criterion 

to terminate the information exchange operation. The algorithm is designed as 

follows. 

This algorithm stops transfer learning once it has no changes to Oµ(�) , which 

improves the performance before a stable state is achieved.  

Table 5.3. CM on Value Training Function (Initial) 

 

5.6.1.2 Adaptive Evaluation 

The initial evaluation strategy only exchanges information from the start until a 

stable state is reached, and then terminates. It will not respond to changing dynamics 

of the surrounding environment, i.e. the impact of the activation of new agents, the 

variation of offered traffic, the mobility of agents, etc. The converged selections 

learnt from previous knowledge transfer may not be a good solution to the new 

environment. For the purposes of exploring further environment changes after the 

initial termination of knowledge transfer, we propose a ε-Greedy exploration 

scheme, as described in Table 5.4, to extend transfer learning: 

 

8: Operate distributed learning, obtain 
(�)âr 
9: Evaluate Oµ(�)âr over 
(�)âr 
10: Operate information exchange with (5.1) 
11: Operate value training function with (5.4), obtain 
(�)�r 
12: Evaluate Oµ(�)�r over 
(�)�r 
13: If Oµ(�)�r = Oµ(�)âr 
14: Set 
(�) → 
(�)âr 
15: Terminate this algorithm 
16: Else 
17: Set 
(�) → 
(�)�r 

18: End 



Chapter 5. Transfer Learning with Cooperation Management 111 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Table 5.4. CM on Value Training Function (Adaptive) 

 

This algorithm activates transfer learning through random exploration after its initial 

termination, and then stops it until another stable state is achieved. The agent can 

then explore potential environment changes periodically. The accuracy of 

exploration and the information exchange cost depend on both Oµ(�) changes in the 

training function and an exploration probability ε. The learning agent could monitor 

the surrounding environment more frequently by setting a higher ε. However, this 

causes more information exchanges. 

Cooperation management on the value training function could be made to operate 

continuously without initial or adaptive information exchange control, as illustrated 

in Figure 5.4. It is expected to provide effective performance when operating the 

network in such a fully coordinated manner, although information exchange cannot 

be controlled in practice. Nevertheless, this mode of operation will be shown in 

Section 5.7 to establish a theoretical bound, for the comparison of QoS reduction in 

the initial and adaptive control schemes. 

5.6.2 CM on Action-Value Function  

Cooperation management on the value training function has the limitation that Oµ(�) 
is investigated after the transfer process, which makes it difficult to control the 

information exchange effectively. The action-value function also provides stable 

state information on the basis of action ranking, although it may take more trial-and-

error iterations for the changes to be investigated. However, by evaluating the action 

ranking over the local knowledge base before applying the value training function, 

the agent has no need to exchange information prior to measuring learning stability. 

The structure of cooperation management on action-value function is as follows: 

19: Operate 9 to 18 iteratively until 15 reached 
20: If ß�/N(. ) < ã 
21: Operate 19 
22: End 
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Figure 5.5. CM on Action-Value Function 

The action ranking is evaluated on a reinforcement learning iteration only, before 

information exchange. The reinforcement learning is responsible for identifying 

environment changes, to activate transfer learning. This algorithm continuously 

monitors the knowledge base in a fully distributed manner. It is entirely based on 

temporal learning information rather than heuristic greedy exploration and is, 

therefore, more efficient. 

This algorithm is presented in Table 5.5 below. 

Table 5.5. CM on Action-Value Function 

 

It has been illustrated before that the objective of transfer learning is to provide 

environment information through the knowledge base transferred from source agents 

to the target agent. Transfer learning is thus more sensitive in identifying 

environment changes than reinforcement learning. Cooperation management on the 

action-value function could be less effective than that on value training function 

when the target agent converges on an action space for a long time, because the 

historical information from the last reward state dominates the Q value, while the 

instantaneous information increases slowly. 
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23: Evaluate Oµ(� − 1) over 
(� − 1) 
24: Operate distributed reinforcement learning, obtain 
(�)âr 
25: Evaluate Oµ(�)âr over 
(�)âr 
26: If Oµ(�)âr = Oµ(� − 1) 
27: Operate information exchange with (5.1) 
28: Operate training function with (5.4), obtain 
(�)�r 
29: Set 
(�) → 
(�)�r 
30: Else 
31: Set 
(�) → 
(�)âr 
32: End 
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5.7 Simulation 

This section presents simulation results showing the benefits of applying cooperation 

management strategies to reduce information exchange during transfer learning, 

whilst maintaining high levels of QoS. The simulation is based on the architecture 

presented in Figure 3.2, using the key parameters listed in Table 4.3. 

The learning process is applied when a file is either successfully delivered or delayed 

for retransmission. An ε-Greedy selection is introduced to distributed reinforcement 

learning, for the purpose of providing a low level of random exploration to find 

potentially better decisions. Similarly, ε-Greedy exploration is also used in CM on 

value training function with adaptive control, to find potential environment changes. 

The ε value is set as 10% in distributed learning and 1% in cooperation management, 

respectively. The algorithms are examined on a long-term averaged basis at different 

traffic levels, and also on temporal basis at a traffic level of 470 Mb/s. Two 

conventional resource management schemes are used as performance comparison. In 

the first, a fully distributed reinforcement learning scheme enables agents learn 

independently of each other. In the second case, a full transfer learning scheme 

exchanges agents’ knowledge bases at every learning iteration. 

Figure 5.6 demonstrates the probability of failed decisions of the fully distributed 

reinforcement learning and full transfer learning schemes, which illustrates the 

degree of unsuccessful channel selections made by learning algorithm, as defined in 

equation (3.21) in Section 3.5.2. Reinforcement learning has higher failed decision 

probability than transfer learning throughout, with significant increase from 30% to 

90% when offered traffic is higher than 350 Mb/s. On the other hand, transfer 

learning is shown to make effective decisions when offered traffic is below 450 

Mb/s. It can be concluded that the transfer learning algorithm (5.5) significantly 

improve the decisions made by reinforcement learning (4.5), which supports the 

network at a higher traffic level.  
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Figure 5.6. Learning Efficiency 

Figure 5.7 and Figure 5.8 demonstrate the temporal performance of the different 

cooperation management algorithms proposed in Section 5.6. The value training 

function is applied. 

The probability of failed decisions is presented in Figure 5.7. Transfer learning 

achieves 20% to 40% lower failed decision probability than distributed learning. In 

particular, the performance of the fully coordinated transfer learning demonstrates 

that the value training method effectively provides expert knowledge to the 

distributed agents. 

In the same figure we see the performance of the three cooperation management 

algorithms presented earlier. The initial CM on the value training function has failed 

decisions gradually decreasing from 25% down to 15%, which illustrates that 

transfer learning at the start-up stage significantly improves decision making. 

Moreover, the result is shown from 5000 iterations. It can thus be concluded that the 

initial CM scheme has slow convergence because knowledge transfer is permanently 

stopped once a stable state is achieved. A cognitive agent in turn has to make 

decision fully based on reinforcement learning. Adaptive CM on value training 

function achieves a steady 15% failed decision probability from 5000 iterations 

onward, which benefits from periodic random explorations to activate transfer 
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learning after the first stable state. CM on action-value function achieves the same 

10% failed decision probability as full transfer learning. It becomes slightly worse in 

latter iterations because the control strategies terminate the information exchange. 

However, it still achieves lower failed decision probability than adaptive CM on 

value training function, because the CM decision is made on stable states evaluated 

from the learning function rather than random exploration after the initial 

termination of information exchange. 

 

Figure 5.7. Probability of Failed Decisions (Cooperation Management) 

Figure 5.8 shows that the cooperation management strategies largely reduce the 

information exchanged by more than 80% compared to full transfer learning. CM on 

the value training function achieves 3% information exchange at 5000 iteration. 

Transfer learning is stopped on all agents at 5500 iteration with initial CM, whilst is 

maintained at a 1% level with adaptive CM. Moreover, CM on the action-value 

function has a higher coordination overhead at 20%, with better QoS achieved in 

Figure 5.7. It can be concluded that cooperation management algorithms effectively 

control the amount information exchanged during the converging period of learning 

and achieve high level of QoS. 
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Figure 5.8. Probability of Information Exchanges (Cooperation Management) 

A comparison of different Target Agent Training strategies from Section 5.4 is 

demonstrated in Figure 5.9 and Figure 5.10. We use the cooperation management on 

the action-value function, because the interference coordination strategy does not 

have a value training function. The simulation is operated by applying the training 

strategies of the value training function, interference coordination and an integration 

of the two. 

It is illustrated in Figure 5.9 that three training schemes achieve significantly lower 

failed decision probability than the fully distributed learning algorithm. However, 

their convergence behavior has big difference. The value training strategy exhibits 

on almost constant failed decision probability of 10%. The performance of the 

interference coordination strategy starts from 6% and gradually increases to 8%. This 

is because instantaneous channel usage information effectively avoids interference as 

demonstrated in Chapter 4. However, interference coordination does not exchange 

learning information based on past experience, thus the failed decision probability 

increases when coordination is terminated by the cooperation management scheme. 
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exchange. Furthermore, it shows even better performance than the fully coordinated 

transfer learning, because negative information in knowledge transfer is effectively 

removed. 

 

Figure 5.9. Probability of Failed Decisions (Target Agent Training) 

Figure 5.10 illustrates the coordination overhead of these schemes. It can be 

observed that interference coordination incurs a high level of cooperation overhead. 

The value training function on the other hand significantly reduces the amount of 

cooperation down to 20% throughout. Moreover, the combined scheme achieves the 

same level. Compared to Figure 5.9, it can be concluded that the value training 

function is vital to reduce cooperation overhead whilst keeping adequate QoS. 
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Figure 5.10. Probability of Information Exchanges (Target Agent Training) 

In the second simulation, we evaluate a long term average performance on a stable 

network, and demonstrate QoS under cooperation management over a wider range of 
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selection during the initial stages. This issue has been addressed as negative transfer 

in [80] and thus an effective stable state evaluation strategy is crucial to decide when 

to transfer. 

 

Figure 5.11. Probability of Retransmissions 

  

Figure 5.12. Mean Delay per File 

150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offered Traffic (Mb/s)

P
ro

b
a
b
ili

ty
 o

f 
R

e
tr
a
n
s
m

is
s
io

n
s

 

 
Distributed Reinforcement Learning

CM: Value Training Function (Initial)

CM: Value Training Function (Adaptive)

CM: Action Value Function

Full Transfer Learning

Frequency Planning

150 200 250 300 350 400 450 500

1

1.5

2

2.5

3

3.5

4

4.5

5

Throughput (Mb/s)

D
e
la

y
 p

e
r 
F
ile

 (
s
)

 

 

Distributed Reinforcement Learning

CM on Transfer Learning Function (Initial)

CM on Transfer Learning Function (Adaptive)

CM on Reinforcement Learning Function

Full Transfer Learning

Frequency Planning



Chapter 5. Transfer Learning with Cooperation Management 120 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Figure 5.12 shows the mean delay and the throughput that the network can support in 

the offered traffic levels presented in Figure 5.11. In this scenario, the transfer 

learning strategies can support significantly higher throughput than the frequency 

planning and distributed reinforcement learning strategy. For the cooperation 

management strategies, the delay properties, seen in Figure 5.12, follow similar trend 

to those for the probability of retransmission, as seen in Figure 5.11. Adaptive CM 

on value training function shows slight improvement over the initial CM on value 

training function, while CM on action-value function delivers the highest throughput 

of them all. 

In the third simulation, we model a scenario where offered traffic gradually increases 

from 90Mb/s to 360Mb/s, stepping up by 90Mb/s every 40s, as shown in Figure 

5.13. In a practical distributed network, such a traffic increase would cause QoS to 

reduce quickly because further channel partitioning is required. Here we assess 

performance using a cumulative window from the start of simulation. 

 

Figure 5.13. Probability of Retransmissions (Dynamic Traffic) 
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In the same figure we see the effects of the four different cooperation management 

schemes presented earlier. First comparing the full transfer learning with CM on 

action-value function, both strategies achieve the same 2% level of retransmissions. 

We conclude that for a static network topology, stable state evaluation on the action-

value function provides effective information exchange control. 

Initial CM on value training function exhibits a lower probability of retransmissions 

than the distributed reinforcement learning. However it increases gradually with 

offered traffic. This is because transfer learning terminates when the agent reaches a 

stable state in the initial 90Mb/s phase, and environment changes cannot 

subsequently be identified. The ε-Greedy based adaptive CM method provides 

opportunities for agents to conduct transfer learning after the initial stable state. 

Therefore, a lower retransmission level is achieved than using the previous method. 

However, it still increases over the 180Mb/s phase, after the initial termination of 

transfer learning. These results demonstrate that cooperation management can 

effectively control information exchange by evaluating the stable states of the 

knowledge base on the action-value function rather than the value training function. 

The probability of information exchange is shown in Figure 5.14. It is measured over 

a sliding window of 40s. The cooperation management strategies reduce information 

exchange by more than 95% when compared with the full transfer learning. Adaptive 

CM on value training function exhibits a 1% probability of information exchange 

after the initial stable state reached. This is a result of ε-Greedy exploration. The 

information exchange probability of CM on action-value function fluctuates between 

1% and 3%. As Figure 5.13 showed, using this level of exchange, it achieves much 

better QoS than CM on value training function and a similar QoS level as full 

transfer learning. 
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Figure 5.14. Probability of Information Exchanges (Dynamic Traffic) 
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Figure 5.15. Probability of Retransmissions in Dynamic Architecture 
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The source agent selection scheme is developed from the spatial channel reuse 

scheme demonstrated in the previous chapter. Two target agent training strategies are 

investigated: the value training strategy is shown to provide effective QoS and the 

interference coordination strategy is demonstrated to provide further improvements. 

The Cooperation Management strategy provides an effective solution to balance the 

Quality of Service (QoS) and the cooperation overhead. A series of cooperation 

management strategies have been developed and demonstrated, which assess stable 

states from value training function and action-value function. Cooperation 

Management (CM) strategies are shown to reduce cooperation overheads between 

distributed agents by up to 90%. CM on value training function and action-value 

function effectively control negative transfer and achieve similar performance as 

theoretical full transfer. Adaptive CM on value training function controls 

information exchange and QoS more effectively than the initial scheme by using ε-

Greedy exploration on environment changes. CM on action-value function can be 

operated in a fully distributed way without exploration, and is shown to be the most 

efficient scheme in terms of QoS and information exchange probability. It has also 

been demonstrated that transfer learning provides efficient convergence in a network 

with both dynamic topology and offered traffic, reducing the harmful effect of agent 

activation and traffic increase.  
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6.1 Introduction 

In this chapter, flexible small cell access networks are studied to provide broadband 

radio access in dense populated urban areas. The scenario described in Section 2.2.2 

is used where the low power Access Base Stations (ABSs) are deployed at a below 

rooftop level of high streets. Omni-directional antennas are implemented on each 

ABS. The architecture is designed to utilize the building area between streets to 

reduce interference through the shadowing effect.  

The small cell access network with dynamic topology is examined in the following 

work. Flexible network architectures have a number of application scenarios 

including femto base stations, energy efficient topology and opportunistic networks, 

which will be described in Section 6.2. The conventional reinforcement learning 

algorithm suffers from serious QoS fluctuations with changes of traffic load or 

network topology. This is because the cognitive agents need sufficient iterations to 

learn the new radio environment, which will be analysed in Section 6.3. Transfer 
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learning is redesigned in Section 6.4, with a value mapping method used to 

effectively learn the topology transitions, in order to reduce QoS fluctuations and 

provide reliable communication. A dynamic frequency reuse clustering scheme is 

proposed in Section 6.5, which defines clusters for multi-agent coordination. A novel 

Pareto efficient action space prioritization algorithm is developed in Section 6.6, 

which is designed to eliminate interference between cells and maximize resource 

utilization in a cluster. This is followed by an action-value mapping strategy in 

Section 6.7, which associates the Q value learnt in the previous task with the 

prioritized action space for the new task. Simulation results and conclusions are 

discussed in Section 6.8 and Section 6.9, respectively. 

6.2 Dynamic Network Environment 

The interference environment of the access network is much more complex and 

dynamic than the backhaul network, because of the omni-directional antennas and 

the highly random user locations. In this context, the variations of user traffic and 

network topology have more impact on decision making and convergence in 

conventional reinforcement learning, which in turn affects network QoS and 

reliability. 

6.2.1 Dynamic User Traffic 

The offered traffic in a cellular network is typically fluctuating in both the time and 

spatial domains. It has been shown in Figure 2.4 that the average offered traffic 

between different hours in a day, different days in a week, or different cells varies 

significantly.  

Conventional reinforcement learning based resource management strategies are 

usually designed and examined with different static traffic levels, in order to 

converge quickly to a fixed set of action space [64]. However, the changes of offered 

traffic in practical networks require a number of “blind” iterations on the intelligent 

agent to reinforce the knowledge base, which causes a period of low QoS. It has 

been illustrated in Chapter 4 that when an agent needs to assign multiple channels, 

multiple reinforcement learning processes need to be carried out independently and 

simultaneously on an action space. An increasing offered traffic level obviously 

requires more channels to be learnt on a base station. In this context, the learning 
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agent needs to carry out learning on actions without Q value information, which may 

cause a number of random explorations. 

6.2.2 Dynamic Network Topology 

The dynamics of the network topology also has impact on distributed reinforcement 

learning. There are many practical scenarios where a dynamic topology applies. Here 

we provide some typical scenarios including femto BSs, energy efficient 

architectures and opportunistic networks. Challenges of reinforcement learning in 

these networks are illustrated. 

Femto Base Stations 

Future wireless networks are designed to be cost and energy efficient. A number of 

portable and light-weight base stations are expected to share the spectrum with a 

conventional cellular network, in order to enhance the capacity density. A typical 

example is the femtocell (HeNB) proposed in 3GPP LTE [100], which is managed 

by consumers and connected directly to the internet through DSL or a cable line. The 

purpose of implementing HeNB is to provide extra network capacity in hotspot 

areas, such as homes, offices, café shops, etc. The location and working time of these 

HeNBs could be very dynamic and unpredictable, because the consumers can easily 

switch them on or off according to the user requirements in a local area. Coexistence 

of HeNBs and macro eNBs in a common spectrum pool is a crucial issue in the LTE 

network. Conventional reinforcement learning has a big challenge in this scenario. 

On one hand, the newly activated HeNB requires a number of trial-and-error 

iterations to learn the surrounding environment. On the other hand, the converged 

action space on existing HeNBs and macro eNB may be destroyed by new HeNBs. 

Energy efficient network architecture 

Energy efficiency is an important target in future wireless networks, which has been 

reviewed in Chapter 2. Traffic aware network management is a hot topic proposed in 

many recent research papers as an effective paradigm to reduce energy consumption 

in cellular networks [11, 85, 86, 89]. It is expected that a dominant proportion of 

energy can be saved by switching the base stations between working and sleeping 

mode based on the local offered traffic level [112]. Figure 2.5 illustrates that in this 
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paradigm, the number of activated base stations varies with offered traffic in 

different hours of a day. In order to maintain QoS for the cells in sleep mode, the 

users in these cells should be covered by their neighbouring cells, which make 

changes to the network topology.  

Figure 6.1 shows a model of dynamic small cell network based on the architecture in 

Figure 3.3.  The MSs are connected to the nearest Fixed or Dynamic ABSs when 

they are all activated, as marked by dots and stars, respectively. The fixed ABSs can 

extend their coverage to the holes incurred by the deactivated dynamic ABSs, and 

take over corresponding user traffic.  

 

Figure 6.1. Small Cell Network with Dynamic Topologies 
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ABSs are activated, adjacent Fixed ABSs are separated by a dynamic ABS. In this 

case, the MSs connected to the same type of ABSs have the potential to reuse the 

same frequency. However, the fixed ABSs become neighbouring cells when the 

dynamic ABS is switched off. Conventional reinforcement leanring uses a single Q 

table for channel assignment. After switching off a dynamic ABS, the MSs 

transferred to the fixed ABS may suffer from excessive interfernece, because the two 

neighbouring fixed ABSs initially have the same preferred acton space. It may take a 

large number of iterations for them to learn a new policy, which causes plenty of 

failed decisions. On the other hand, it is difficult for a newly activated dynamic ABS 

to quickly find a preferred action space, because the spectrum may be fully utilized 

by fixed ABSs. Moreover, converged action space on fixed ABSs may be broken by 

the dynamic ABSs during their environment adaption process. 

Opportunistic network architecture 

Opportunistic networks are newly proposed architectures in the FP7 ABSOLUTE 

project for dealing with unexpected and temporary events [113]. In the unexpected 

event scenario, it is designed as a reliable communication infrastructure that provides 

critical services including emergency recovery operations, critical infrastructure 

restoration, post-disaster surveillance, etc. In the temporary event scenario, it is also 

used to support high data rate services and enhance network capacity. 

Disasters and temporary events require a reliable, rapidly deployable and cost-

effective communication architecture, which can be easily rolled out and rolled back 

at the beginning and the end of the events. The ABSOLUTE project proposes light-

weight Aerial eNodeBs (AeNB) and Terrestrial eNodeBs (TeNB) to provide 

augmented coverage and capacity. The network topology of this architecture can be 

highly dynamic based on different phases of the event. A fast convergence learning 

algorithm is desired on eNBs to quickly adapt the radio environments under different 

topologies. 

6.3 Learning in Dynamic Environment 

In conventional reinforcement learning, a cognitive agent updates the knowledge 

base according to the environment feedback from actions. A typical reward function 
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(4.4) applied in the resource assignment scenario uses positive and negative values to 

represent the success and failure of actions [110]. The convergence behaviour of 

linear reinforcement learning and Q learning has been analysed in Chapter 4, where 

the Q value is based on both historical and instantaneous information. In the dynamic 

traffic and topology scenarios, a newly activated agent should adapt to the 

surrounding radio environment. Moreover, the existing agents should identify the 

environment changes and learn a new policy. The environment adaption and 

identification process require a number of actions to be taken in reinforcement 

learning, in order to obtain sufficient rewards.  

The environment adaption process is essential when a cognitive agent is initially 

activated. The knowledge base in such cases contains arbitrary values without learnt 

information. A transfer learning approach has been proposed in Chapter 5 and [91, 

92] on the backhaul network to improve the start up performance. Similar ideas 

could be applied in the access network based on related spectrum pattern. The base 

station can then approach faster convergence having been provided preliminary with 

environmental knowledge. 

The environment identification process is more complicated. Reinforcement learning 

is designed to maximize Q values in the preferred action space. Thus the only 

situation when an agent could drop out from the converged action space is to reduce 

their corresponding Q values to a lower level than others in the spectrum pool. 

However, the only way to reduce Q value in conventional reinforcement learning is 

to take failed decisions. It has been analysed in Chapter 4 [92] that the speed of this 

process is determined by the number of iterations taken in the past, the reward 

values, and the learning rate. 

It has been illustrated in (4.10) that in linear reinforcement learning, the Q value is 

determined by the number of positive �ÅÇ and negative �Å² decisions and their related 

reward values (�ÅÇ  and �Å² ). Equation (4.7) indicates that rate of increase or 

decrease of the Q value is � when F = 1. In order to reduce an action’s Q value to a 

lower level than others, the number of negative decisions required is equal to the 

number of positive decisions taken previously. It can be concluded that learning 

could cause a number of harmful decisions during environment changes if the agent 

converges to an action space for a long time. 
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In single state Q learning, the Q value converges at the reward value	� in a stable 

state (4.17). The rate at which a Q value increases or decreases is a function 

determined by the learning rate α and the initial Q value in a reward state 
Å(0). The 

gradient of such rate variation follows exponential growth according to (4.15), which 

indicates that the new reward information R quickly dominates the Q value. Under 

this effect, the single state Q learning can quickly drop out from one action space and 

converge to another, as analysed in Section 4.4.2.3. However, this is not expected 

when the topology becomes static. The learning rate has no information on the 

dynamics of network environment.  

6.4 Transfer Learning: Value Mapping Method 

The motivation of Transfer Learning is to use the network topology information, i.e. 

base station location, coverage area, to improve the knowledge base at the start of 

learning in each network topology. This is particularly important in the dynamic 

networks discussed before. The agent then receives a lower impact from the 

environment changes, and thus a consistent and reliable QoS level can be provided. 

In order to achieve fast environment identification and adaption, a value mapping 

method is designed in the context of transfer learning to apply network topology 

information to the knowledge base. An agent can improve decisions by using 

location information from others. Transfer learning, as originally proposed in the 

computer science society [79, 80], is aimed at improving learning in the new Target 

Task by leveraging knowledge from the related Source Task that has been learnt. In 

the dynamic network scenario, the source and target tasks are defined as the learning 

target in the network before and after topology changes, namely when an ABS is 

switched on or off. Transfer learning is designed to associate the Q values learnt 

from the Source Task with a newly prioritized action space in the Target Task, which 

in turn generate a new Q table that has been adapted for use in the new network 

topology. The topology changes can be directly identified through control 

information from the adjacent ABS that is switched on or off.   

In the scenario where an agent is newly activated, a start-up value generation 

function is applied to provide initial knowledge of the network. The structure of 

value mapping method can be illustrated in Figure 6.2.  
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Figure 6.2. Transfer Learning: Value Mapping Method 

Here �(�) indicates the states of a network topology at time t. Transfer learning 

algorithm � is carried out on the Q table learnt in each state. 
(0) is the initial setup 

strategy of the Q table based on the network topology, in order to provide channel 

priorities when there is insufficient learning knowledge. The algorithm will be 

illustrated in the following sections. 

A key benefit of applying transfer learning to the knowledge base is that only a 

single Q table is needed throughout the whole process, which minimizes the memory 

requirement for storing the knowledge base. Moreover, the reinforcement learning 

algorithm carried out on each network state can further improve the Q table provided 

from the transfer learning function, and effectively reduce the potential negative 

transfer.  

6.5 Dynamic Frequency Reuse Clustering 

The topology information is the fundamental “expert knowledge” that can be utilized 

to improve the knowledge base in the transfer learning. Frequency reuse clustering is 

an effective approach to understand the interference environment and select source 

agents in a cellular network. In transfer learning, a similar idea is introduced but 

operated in a fully distributed manner. Moreover, inter cell coordination is carried 

out only when a new topology is established, with the purpose of prioritizing Q 

values.  

Clustering of cells is a classical approach for interference mitigation and frequency 

planning in most conventional spectrum management strategies [100]. It is used to 

manage the degree of frequency reuse between cells. A frequency reuse cluster is 

designed to be the smallest number of cells used to include all frequencies. Co-

channel interference can be avoided between any cells in a cluster. The cluster size 

(number of cluster members) determines the distance between any two co-channel 

cells in neighbouring clusters, which consequently controls the interference level. A 

network with small clusters normally benefits from effective spectrum utilization but 
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also suffers from excessive interference, and vice versa. The Shannon equation (3.6) 

indicates that under fixed transmit power, system capacity is constrained by 

bandwidth and interference. Thus the cluster size should be carefully designed to 

obtain a maximum gain from both aspects.   

Clustering of adjacent cells is potentially an effective way to apply network topology 

information for transfer learning in the dynamic small cell networks of Figure 6.1. 

The construction of clusters varies on the cellular lattice shapes and the size of 

clusters depends on the signal attenuation between base stations. The BuNGee [12] 

project defines a fixed transmit power on all ABSs. An ABS suffers interference 

mainly from those on the same line-of-sight street according to the scenario in Figure 

3.3. In this case, clustering the neighbouring cells potentially reduces a large 

proportion of interference. 

A dynamic clustering strategy is essential to apply dynamic topology information to 

frequency reuse. It can be observed from Figure 6.1 that the activation or 

deactivation of a dynamic ABS shrinks or extends the cells of neighbouring fixed 

ABSs. By keeping the number of cluster members fixed, there will still be the same 

number of cells that separate the nearest two ABSs using the same frequency. Thus 

the interference between neighbouring clusters can be kept at the same level in 

different network topologies, though the coverage of a cluster may vary in size. The 

activation of a dynamic ABS increases the number of clusters in the network, which 

provides better spectrum reuse and enhances system capacity. The ABSs should 

reconstruct the cluster when the network topology changes. Capacity enhancement 

through dynamic clustering will be further analysed in Chapter 7.      

The purpose of dynamic frequency reuse clustering in transfer learning is to define 

the level of multi-agent cooperation for information exchange, which is similar to 

“source agent selection” defined in Chapter 5. In this context, source agents are 

selected as other cluster members except from the target agent. The following 

section will illustrate the methods of information exchange in a cluster. 
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6.6 Action Space Prioritization 

6.6.1 Pareto Improvement Resource Prioritization 

In the dynamic spectrum access scenario, the cell capacity can be dynamically 

changed according to the traffic load level, rather than being constrained by an 

allocated spectrum band. This flexibility is particularly important in a dynamic 

environment where loading across cells can change rapidly. However, interference 

between adjacent cells becomes a crucial issue. A frequency reuse cluster is 

allocated the whole spectrum band. By avoiding interference between cluster 

members, dynamic spectrum access can provide maximized spectrum utilization in 

the whole network. The target of transfer learning is to achieve this in a fully 

distributed manner through channel prioritization. 

The Pareto Improvement process is a resource allocation strategy that allows any 

individual in a group to occupy more resources without causing interference with 

others [114]. The Pareto Efficiency is the upper bound of this process that defines 

the maximum number resources that can be allocated to all individuals. The cluster 

based dynamic spectrum management scenario can effectively use the Pareto 

improvement concept to avoid interference. It can be modelled as given a fixed 

spectrum pool, each BSs in a cluster can assign any number of channels to users 

without causing interference to others, unless the entire pool is occupied. By defining 

the shared channel pool set as C, a cluster of cells as K, the channel set selected in 

each cell as 1À, the Pareto improvement process can be illustrated as follows: 

 , if  (6.1) 

This indicates that the occupied channel set in any cell 1À is different from others, 

which prevents blocked or interrupted transmissions in a cluster. 

Table 6.1 is an example of Pareto improvement in a three cell cluster model. A total 

number of 12 channels are shared by 3 BSs in a cluster. The priorities indicate the 

order of channels selected in each cell. The priority set effectively demonstrates the 

channel prioritization process. The entire channel pool C can be divided into 4 sets 

when each BS occupies 4 channels. An individual BS with more than 4 channels 
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selected could reduce the number of channels available to others. However, this does 

not interfere with the channels in use, because the top prioritized channels for one 

agent are placed to the bottom in a reverse order for others. In this context, the entire 

cluster could always utilize a total of 16 channels without causing inter-cell 

interference, which is not affected by the number of channels occupied in each cell.  

Table 6.1. Pareto Improvement Priority Table 

 

Channel prioritization is essential to achieve Pareto improvement (6.1) in a 

distributed manner. The reinforcement learning algorithms use the Q value to 

discriminate the priority of channels. It is thus important to associate the Pareto 

improvement priority table with the Q table. The cluster members can then operate 

distributed assignment following Pareto improvement. The cluster capacity could be 

maintained to the entire spectrum pool regardless of traffic variation in the spatial 

and time domains.  

6.6.2 Algorithm 

This subsection demonstrates an action space prioritization algorithm designed to 

achieve Pareto improvement resource allocation. In distributed reinforcement 

learning algorithms, the Q value determines the priority of channels being assigned. 

In order to prioritize channels in a Pareto improvement manner, the first step is to 

obtain the original channel priority from the Q table. A channel ranking table can be 

obtained by sorting channels in a descending order as  

[å, æ] = �2ß�(
): 
u(�) ≥ 
u(�v]) & å(´) ≥ å(´ + 1), for ∀´ ∈ [1, |
| − 1] (6.2) 


 and å are the original and sorted Q tables, respectively. æ is the sorted channel 

table, similar to Table 6.1. The cognitive agent effectively assigns channels 

according to their position in æ. 

I II III IV V VI VII VIII IX X XI XII

BS 1 8 7 6 5 9 1 10 2 11 3 12 4

BS 2 4 3 2 1 9 5 10 6 11 7 12 8

BS 3 12 11 10 9 5 1 6 2 7 3 8 4

A B C D

Priorities

Channels

D C B APriority Sets
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After operating (6.2) throughout all the cluster members, it is then important to 

change æ to a Pareto improvement order. Table 6.1 indicates that the top 
|ç|
|è| channels 

on one agent should be set to the bottom in a reverse order on other agents, which 

could avoid interference between cluster members. A source priority set æ(¬) on an 

agent k is defined as 

  (6.3) 

which can be obtained from reversing their original channel order. æ(¬) effectively 

assists the other agents to avoid using the same channel priorities.  

The knowledge transfer process is then operated to combine æ(¬) obtained from all 

other agents in the cluster into a single priority table, namely the target priority set 

æ(L) . æ(L)  will be placed to the bottom of the priority table on the target agent, 

because they are top prioritized channels on source agents. The target priority set is 

built following the channel order on each æ�(¬): 

  (6.4) 

The top priority channels on the target agent are those not included in all the æ(¬), 
which can be obtained from extracting the complement set of æ(L) from the original æ. 

æ(L) is then placed to the bottom in the priority table for the target agent: 

  (6.5) 

The priority table here is a strict order set, thus (6.1) to (6.5) effectively change the 

element positions in set p. 

This prioritization process should be carried out iteratively in the cluster until every 

agent has been trained by all the others. It is particular important that the source 

agents should be those have been trained by other agents before, which guarantees 

the effectiveness of transferred knowledge. In this condition, the source agent set 
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é(¬) increases by the number of iterations from 0 to é. The number of iterations 

required to achieve Pareto improvement priority table under this approach is  

 �� = 2|é| − 2 (6.6) 

This is because for the first round of multi-agent coordination in the cluster, a base 

station obtains information from only part of the entire cluster because the source 

agent set é(¬) is being built up. On the second round, all base stations have source 

agents é(¬) = é − 1, and the coordination can be completed. Moreover, on the first 

round the first agent is acting as source agent only providing information to others 

and the last agent already has sufficient é(¬), thus the coordination can be stopped 2 

iterations before the second round is finished. 

6.7 Action-Value Mapping 

The action-value mapping strategy is designed to map the Q values learnt from 

reinforcement learning in the previous source task to the action space prioritized by 

transfer learning. The mapping function associates the sorted Q table in (6.2) with 

the priority table in (6.5), which effectively use the original Q value on different 

channels: 

 
Ùæ(´)Ú = å(´) (6.7) 

The output of Transfer Learning is a Q table that has been prioritized in a Pareto 

improvement manner. The base stations can then operate distributed assignment in 

later iterations with information learnt from frequency reuse clustering. Furthermore, 

the reinforcement learning algorithm can be operated on the Q table that contains 

output from transfer learning, which is effective for removing potential negative 

transfers. 

Start-up Q value generation 

The start-up stage is the time when a cognitive agent initially starts to learn the 

environment. It can be referred to the “first task” in transfer learning. This is a 

special case that no previous source task exists. However, the feedback from the 
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Pareto improvement prioritization still provides valuable start-up knowledge, which 

can be used to generate an initial knowledge base. 

A conventional reinforcement learning algorithm sets arbitrarily numbers (usually 0) 

to the channels. A “warm-up” strategy has been introduced to speed up the 

environment adaption process [64]. However, it may take a number of iterations for 

an agent to find the preferred channel set, because random exploration is conducted 

when few rewards are obtained from learning. 

In transfer learning, the initial Q table is generated with discriminating Q values. The 

ranking of their corresponding channels is based on the Pareto improvement priority 

table learnt from (6.2) to (6.5). This method provides Q tables with the same 

characteristics achieved from (6.7).  

We have so far introduced the framework of the proposed value mapping method in 

transfer learning, including dynamic frequency reuse clustering, action space 

prioritization and action-value mapping. The entire algorithm is presented as pseudo 

code in Table 6.2. 

Table 6.2. Transfer Learning: Value Mapping Method 

 

6.8 Simulation  

In this section, we examine the system in multiple aspects, to investigate and validate 

the value mapping algorithm of transfer learning in dynamic network environments. 

On environment state transition �(� − 1) → �(�) 
1: Reconstruct cluster member, maintaining |é(�)| = |é(� − 1)|; 
2: ∀é�, set source agent é�(¬) → ∅; 

3: Operate repeatedly in K: for a target agent é� 
4: Obtain priority table q and p based on (6.2); 

5: Notify source agents é�(¬), transfer æ → æ(¬) based on (6.3); 

6: Transfer æ(¬) → æ(L) from source agents é�(¬) based on (6.4); 

7: Transfer æ(L) → æ based on (6.5); 

8: Transfer 
(� − 1) u→
(�) based on (6.7); 

9: Set é�v](¬) = é�(¬)⋃é�; 
10: Terminate when ∀é�, é�(¬) = é − é� 
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The small cell access network architecture in Figure 6.1 is used. Simulation 

parameters are listed in Table 6.3 below. 

Table 6.3. Simulation Parameters 

Parameters Values 

Number of Fixed ABSs 12 

Number of Dynamic ABSs 8 

Number of MSs 600 

Frequency Reuse Clustering Neighbouring Cells 

Transmit Power -3 dBW 

Bandwidth 20 MHz 

Number of Channels 20 

Thermal Noise -174 dBm/Hz 

Inter-arrival time Pareto distribution 

Mean file size 0.5 Mb 

Antenna Omni-directional 

Propagation WINNER II B5a [98] 

Link Selection Best signal 

6.8.1 Start-up Performance 

This section examines the network performance when all 20 ABSs are newly 

activated. During the start-up stage, the ABSs have to build up the knowledge base 

by learning the environment from a number of trial-and-error actions. Convergence 

is a crucial issue in traditional reinforcement learning based cognitive radio networks 

[64, 68, 73], where the speed of an agent achieving a stable channel set is very slow. 

Transfer learning with start-up Q value generation provides the intelligent agent with 

preliminary knowledge of the surrounding radio environment. In the high traffic load 

scenario, initial prioritization is particularly important because the action space 

should be quickly partitioned.  

In this section, a set of temporal performance results will be assessed to demonstrate 

the convergence efficiency. The system is examined until all the ABSs have an 

offered traffic level of 270 Mb/s. A transfer learning algorithm is performed on 
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linear reinforcement learning and Q learning, with a comparison to these algorithms 

operated in a fully distributed manner without transfer learning. 

The convergence efficiency is demonstrated in Figure 6.3, which is assessed through 

the probability of stable states defined in Table 5.2. The performance is evaluated 

every 1000 learning iterations. 

 

Figure 6.3. Convergence Efficiency (Start-up Performance) 

It can be seen that the network with transfer learning benefits 40% to 50% more 

stable states than the distributed learning from the starting stage. Transfer learning 

keeps the stable state probability at 80% to 90% throughout. The network with 

distributed learning algorithms approaches convergence 3000 iterations later than 

with transfer learning. It then stays at a slightly lower level. We conclude that 

transfer learning significantly improves convergence on reinforcement leanring. 

Furthermore, it can be observed that the convergence efficiency of linear 

reinforcement learning strategy is 10% better than Q learning. This also validates the 

conclusions produced in Chapter 4. 

The QoS is demonstrated as a CDF of the retransmission probability and mean delay 

per file, respectively. The retransmission performance shown in Figure 6.4 
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effectively presents the probability of failed decisions in learning, which affects the 

back off delay of file transmission. 

 

Figure 6.4. Probability of Retransmissions (Start-up Performance) 

It can be seen that the network retransmission probability of transfer learning is 

between 15% and 20%, while the distributed learning algorithms are 4% higher. 

Compared with Figure 6.3, it can be concluded that transfer learning provides a 

higher QoS through faster convergence. Moreover, distributed learning converges to 

a set of poor channels, which causes significantly more retransmissions. Transfer 

learning algorithms effectively partition the channel set for each agent, which 

contributes to both good decisions and fast convergence. 

The CDF of mean delay per file through all the learning iterations is presented in 

Figure 6.5. A similar improvement when applying transfer learning is achieved to 

that of the retransmissions probabilities. It can be seen that 90% of the iterations 

have a delay lower than 0.6s with transfer learning, whereas with distributed learning 

only 50% achieve the same delay band. It can be concluded that transfer learning 

quickly constructs a low latency network in a newly established architecture. 
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Figure 6.5. Mean Delay per File (Start-up Performance) 

6.8.2 Traffic and Topology Transition 

This section examines transfer learning during changes to traffic load and the 

network topology. In a flexible network architecture scenario, dynamic base stations 

are deployed during periods of heavy user traffic loads. A steady QoS level is 

desired provided that more base stations are activated. However, this is usually hard 

to achieve in practice, because a distributed cognitive agent require a number of 

iterations to learn the changes in the traffic and topology environment. The transfer 

learning policy presented before is designed to solve this problem. 

Figure 6.6 presents a typical transition of traffic profile and network topology. A 

burst of user traffic occurs after 12000 data files generated in the network, lasting 

until 43000 files generated. The traffic level increases from 150Mb/s to 300Mb/s. 

The 8 dynamic ABSs are activated to provide capacity enhancement to the other 12 

fixed ABSs during this period, and are deactivated after the traffic burst. 
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Figure 6.6. Traffic and Topology Transitions 

The QoS performance is assessed by considering the retransmission probability and 

delay on a temporal basis, which clearly shows the network behaviour at different 

stages of the transition. Figure 6.7 demonstrates that the network with transfer 

learning achieves a steady and reliable retransmission probability throughout all the 

phases. The probability of retransmission with either linear reinforcement learning or 

Q learning is around 0.5% after the initial convergence of 50000 generated files. The 

network with distributed learning has a step change in retransmission probability up 

to 3% after the activation of dynamic ABSs, because it takes a number of iterations 

for them to learn the action space in the new environment. This learning period also 

interferes with the adjacent ABSs that have already converged to a set of channels. 

The distributed reinforcement learning algorithm stays at a high probability level, 

while the distributed Q learning brings retransmissions down to 1% as more 

iterations being learnt. This also validates the convergence analysis of reinforcement 

learning algorithms in Section 4.4.2.3, showing that Q learning is more adaptable to 

environment changes and linear reinforcement learning and provide more stable 

decisions.  

The network with transfer learning is not affected by the traffic variation and the 

changes of the dynamic ABSs. A reliable 0.5% retransmission rate is achieved with 
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very small fluctuations during the whole event. It can be concluded that the harmful 

impact of traffic and topology changes is largely mitigated by transfer learning. 

 

Figure 6.7. Probability of Retransmissions (Single Transition) 

The delay performance is presented in Figure 6.8, which has similar behaviour 

compared to the retransmission probability. A consistent 0.15s delay is achieved 

with the transfer learning algorithm, regardless of the changes in the architecture and 

traffic. The distributed learning algorithms experience a significant step change in 

the delay during the high traffic period, which increases to around 0.25s. Q learning 

reduces the delay significantly down to 0.18s in the later stages, which behaves the 

same as the retransmission probability. The retransmitted files largely contribute to 

the increase in delay, which is also caused by protracted rewards from the 

environment changes. 

It can be concluded that transfer learning reduces the negative impact of user traffic 

and network topology transitions down to a minimum, and provides a flexible 

operation of ABSs according to traffic level. A steady and reliable QoS level is 

provided to users regardless of the increasing number of ABSs and user traffic. The 

interference between dynamic cells is largely mitigated.  
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Figure 6.8. Mean Delay per File (Single Transition) 

6.8.3 Dynamic Traffic and Topology Fluctuation 

The traffic profile in an urban area is highly dynamic in both the time and spatial 

domains throughout different times of a day or a week, as illustrated in Figure 2.4. In 

this context, the dynamic ABSs can be switched on and off frequently to follow the 

variation of user traffic. The continuous and rapid changes of the network 

architecture could incur great challenges in controlling the interference between cells 

and managing the capacity allocated to each. 

In this section, a regular fluctuation of traffic profile and network architecture is 

examined as presented in Figure 6.9. The traffic load changes periodically between 

150Mb/s and 300Mb/s. The low traffic period lasts for 6000 generated files and the 

peak traffic period lasts for 30000 generated files. The dynamic ABSs are 

dynamically switched on and off based on the traffic level. This profile presents the 

same concept illustrated in Figure 2.4 where the regular peaks and low traffic periods 

represent the daytime and evening time in a week, respectively.   
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Figure 6.9. Dynamic Traffic and Topology Fluctuations 

In this scenario, a cognitive agent (base station) has the memory to store their 

knowledge base in both active and sleep modes. The Q table learnt from previous 

phases of traffic/topology is directly applied to the new phase. In reinforcement 

learning, this may provide past experience to the agents but it may not be applicable 

to the new environment. 

The probability of retransmission is demonstrated in Figure 6.10. It is clearly shown 

that the distributed learning algorithms are largely affected by the traffic and network 

variation. Linear reinforcement learning has three peak levels at 2.5% during the 

high traffic period. Q learning benefits from the previous learning experience in the 

high traffic period, where the second peak retransmission rate is 0.5% lower than the 

first. This can be illustrated from (6.1) and (6.2) where Q learning has a faster 

transition time because the Q value on the previous selected actions can be reduced 

exponentially. The learning rate assists an agent quickly converging to a different 

channel set in the new phase, which contributes to better QoS. In linear 

reinforcement learning, it is difficult for an agent to drop out from a converged 

action space where the Q value is relatively high. 

The transfer learning algorithm is shown to significantly improve linear 

reinforcement learning and Q learning algorithms. A stable retransmission 
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probability at around 0.3% is achieved, with a small variation of 0.2% during the 

periodical changes of traffic and network topology. The average retransmission 

probability is significant lower than that achieved in distributed learning algorithms. 

It can be concluded that transfer learning effectively supports dynamic topology 

operation in a rapidly changeable user traffic scenario. 

 

Figure 6.10. Probability of Retransmissions (Dynamic Fluctuations) 

The corresponding delay performance is presented in Figure 6.11. The distributed 

reinforcement learning has a large variation of delay between 0.16s and 0.24s. Q 

learning achieves lower delay than reinforcement learning, with a continuous 

improvement in the subsequent high traffic period. The transfer learning algorithm 

achieves a much smoother variation than distributed learning, reaching 0.02s. It 

achieves up to 0.09s lower delay in the high traffic period and 0.02s lower delay in 

the low traffic period. The delay performance of transfer learning shows a higher 

fluctuation than retransmission probability. This is because channel reuse in a high 

traffic period reduces the data rate. However, steady and reliable delay performance 
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is achieved through prioritization of Q tables at the start of each traffic and topology 

phase. 

 

Figure 6.11. Mean Delay per File (Dynamic Fluctuations) 

6.9 Conclusion 

This chapter proposes a value mapping method in the context of Transfer Learning 

to improve the distributed reinforcement learning in dynamic radio scenarios. The 

dynamics of offered traffic and network architecture have been examined, with 

linkage to three typical scenarios including femto cells, energy efficient architecture 

and opportunistic networks. The environment identification and adaption efficiency 

of conventional distributed learning algorithms has been analysed. 

A value mapping algorithm is designed under transfer learning, to train the 

knowledge base during environment state transitions. The dynamic frequency reuse 

clustering strategy is proposed based on keeping the cluster size fixed, to maintain 

the same frequency pattern and control the inter cell interference. A Pareto 

improvement resource prioritization method has been developed, which dynamically 

1 2 3 4 5 6 7 8 9 10 11 12

x 10
4

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of Data Files Generated in the Network

M
e
a
n
 D

e
la

y
 p

e
r 
F
ile

 (
s
)

 

 

Distributed Learning (Linear Reinforcement Learning)

Transfer Learning (Linear Reinforcement Learning)

Distributed Learning (Q Learning)

Transfer Learning (Q Learning)

Time (s)

7060 80 90 100 110 1205040302010



Chapter 6. Transfer Learning for Dynamic Network Architectures 149 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

share the capacity between cluster members. A action-value mapping strategy is 

proposed to associate Q values with prioritized action space. This enables individual 

agents to carry out fully distributed resource management after transfer learning. 

Furthermore, a Q value generation scheme is designed to provide discriminated 

information to the Q table at the start-up stage.  

Transfer learning is designed as a generic algorithm which is applicable to many 

reinforcement learning algorithms. This section has examined its application to 

linear reinforcement learning and single state Q learning in dynamic traffic and 

topology scenarios. In the start-up stage performance, transfer learning is shown to 

converge much faster than distributed learning, with better QoS achieved. A steady 

and reliable QoS level is achieved on transfer learning during the transition to 

different user traffic levels and network topologies. Furthermore, transfer learning 

effectively reduces the QoS fluctuations in a highly dynamic network environment.    
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7.1 Introduction 

In this chapter, dynamic topology management is developed to autonomously 

manage the architecture of the small cell access network. Chapter 6 introduces the 

flexible network architecture scenarios with transfer learning applied to provide 

reliable communication. However, the network topology was manually controlled by 

the service provider. This chapter investigates topology management strategies based 

on the dynamics of the traffic profile in both the time and spatial domains. Decisions 

of the time, location and number of ABSs deployed/removed can be made in a 

distributed and self-organized manner. 

Capacity provision is the fundamental requirement of resource and topology 

management in a wireless cellular network. The deployment of a base station 

enhances the network capacity by providing additional frequencies or better 

spectrum reuse in a local area. Resource management schemes have a direct impact 

on capacity provision, especially handling dynamic traffic variations.  

Section 7.2 defines topology management in cellular networks and studies its 

relationship with system capacity. Section 7.3 analyses capacity provision of 

frequency band allocation and transfer learning strategies through a Markov model. 
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The dynamic topology management algorithm is proposed in Section 7.4. Simulation 

results and conclusion are provided in Section 7.5 and Section 7.6. 

7.2 Network Topology and Capacity in Cellular Systems 

Network topology is a terminology used in a number of wireless scenarios with 

different applications. It is generally specified as the location of nodes and the 

connections between them. In a wireless ad-hoc network, topology management 

generally refers to routing algorithms in the network layer. The target is to establish 

an end-to-end connection through multi-hop links from a source node to a 

destination node. Thanks to the high flexibility of the wireless link selection in this 

type of network, a wide range of topology management techniques can be applied, 

such as clustering or evolutionary algorithms. 

Topology management in cellular networks is much simpler than in ad-hoc networks. 

In current and near future cellular communication systems, the single hop wireless 

link are generally used between mobile stations and access base stations [23]. The 

wireless backhaul network is managed by a hub base station with a highly controlled 

network topology [12]. This is because cellular communication is designed to 

provide highly reliable links with steady QoS, throughput, capacity, etc. A multi-hop 

architecture in the access network requires additional hardware functionality in 

mobile stations and makes network management excessively complex. Topology 

management in cellular network is thus generally considered to be the planning of 

base stations and their connection with mobile users, namely cell planning and 

access link selection. 

Dynamic topology management is vital to support the network in various scenarios. 

Energy efficient network management is a major scenario that requires topology 

management. It has been reviewed in Section 2.5 that 60% to 80% of the total energy 

consumption is contributed by the operation of base stations [115]. Dynamically 

switching on and off the base stations according to local traffic variations can thus 

reduce a significant amount of energy consumption. Topology management is 

designed to autonomously identify traffic intensity and provide a seamless map of 

base station deployment. The algorithm should guarantee an adequate level of 

throughput and QoS, which is not reduced by turning base stations into sleep mode. 
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On the other hand, it is aimed at reducing the number of active base stations down to 

a minimum in order to save energy.  

Opportunistic architectures represent a newly proposed communication network for 

unexpected and temporary events scenarios the ABSOLUTE [113] project. The 

network is aimed at providing coverage and capacity where conventional 

architecture is destroyed or cannot provide adequate QoS, during the period of 

disaster relief or unplanned events. The roll-out and roll-back of an opportunistic 

network requires a dynamic traffic aware network planning strategy to deploy and 

remove the base stations. A dynamic deployment map is desired to provide the 

number, location and time of different types of base stations in various phases. In 

this context, an autonomous topology management strategy is essential to deliver fast 

and adaptable network architecture. It also saves the energy on opportunistic base 

stations [113] where steady power supply is not always available. Furthermore, the 

cost of network deployment to the operators can be significantly reduced. 

Given the same objective of energy and cost saving in both scenarios, a generic 

topology management strategy can be designed to control the base station’s working 

modes.  

The major role of a cell in a wireless cellular network is to provide capacity. The 

target of dynamic network planning is to match the level of capacity with user traffic. 

Capacity provision is determined by different resource management schemes. It can 

be supplied by either extra spectrum resources or enhanced spectrum reuse. Chapter 

2 reviews two major categories of resource management strategies: Frequency band 

Allocation (FA) and Dynamic Spectrum Access (DSA). Capacity of FA is more 

constrained by the spectrum band and that of DSA is limited by interference. 

Transfer learning proposed in Chapter 6 achieves Pareto efficient resource utilization 

in a cluster of cells, where capacity of a cell can be automatically adjusted by the 

user behaviour. Interference can be eliminated in a group of cells before the whole 

spectrum is fully utilized.  
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7.3 Dynamic Capacity Provision 

Dynamic capacity provision between cell is essential to reduce the number of base 

stations required in a network, because it has the potential to improve resource 

utilization in a given network topology. This section analyses capacity provision 

from Frequency band Allocation and Transfer Learning strategies, through the use of 

Markov models. Dynamic capacity provision is validated on transfer learning under 

the Pareto efficient action space prioritization. The Erlang B queuing model is 

considered here, where traffic buffering is not available [4]. 

Frequency band allocation and transfer learning are operated on a multi-cell 

environment. A multi-dimension Markov model is thus essential to describe the 

system behaviour. [116] presents a two dimensional Markov model for the 

coexistence of two overlaid aerial cells, with fixed frequency bands allocated to each. 

The network scenario considered here has multiple neighbouring cells with no 

overlapped coverage, as the access network applies a shortest path routing strategy, 

where the users are connected to the nearest activated base station. However, the 

neighbouring base stations may cause excessive interference with each other. A 

connection may be interrupted if the same channel is shared between. The Markov 

model is built on a cluster basis, which is considered to be a group of cells with the 

entire spectrum pool allocated. 

An example three BS model is illustrated in Figure 7.1, where ®# is a base station 

that can be switched off in a low traffic period. The size of the entire cluster is fixed. 

The coverage area of ®] and ®� can be extended when ®# is off. In this context, the 

cluster {®], ®�}  can be split into {®], ®#}  and {®�, ®#}  after ®#  is switched on. 

Furthermore, the user arrival rate on ®] and ®�, denoted as �] and ��, is partly taken 

by ®# as well depending on their locations. 

The main purpose of topology management is to provide sufficient capacity through 

base station deployment in its corresponding coverage area. This energy efficient 

network architecture is aimed at supporting a high offered traffic with a minimum 

number of active base stations. The Markov analysis is firstly based on a two cell 
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single cluster model. A three cell two overlapped cluster model is then analysed 

when ®# is activated. 

 

Figure 7.1. Three BS dynamic topology model 

7.3.1 Two Cell Single Cluster Model 

Cluster {®], ®�} is constructed when ®#  is inactive, following the frequency reuse 

clustering scheme. A total number of n channels are available to the users in this 

cluster area, which are not permitted for reuse in order to avoid interference. The 

user arrival rate in each BS under equal cell sizes is �] and ��. The departure rate is 

µ. 

In order to compare the frequency band allocation and the transfer learning scheme, 

a heterogeneous Markov diagram is developed as shown in Figure 7.2. The whole 

triangle diagram represents the states under transfer learning, where Pareto efficient 

resource utilization is achieved in a cluster. The diagonal line denotes the states 

where all the n channels are occupied by users in the cluster. The system capacity 

will be full when approaching this line. The rectangular area denotes the states under 

frequency band allocation, where /] and /� are the size of frequency bands allocated 

to each cell. It can be observed that transfer learning provides more flexible states to 

the system, thus the probability of blocking can be reduced. 
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Figure 7.2. Two Cell Single Cluster Markov model 

Transfer Learning  

Under the Pareto efficient action space prioritization delivered by transfer learning, 

the global function of the transfer learning scenario can be expressed as a summation 

of states in the triangle area: 

  (7.1) 

The transition probability between states can be described in the equilibrium 

function. For a general state (¯], ¯�), ¯] ∈ [0, /], ¯� ∈ [0, / − ¯]], we have 

(�] + �� + ¯]ê + ¯�ê)æ(¯], ¯�)  

= �]æ(¯] − 1, ¯�) + ��æ(¯], ¯� − 1) + êæ(¯] + 1, ¯�) + êæ(¯], ¯� + 1) (7.2) 

No states exist when ∀¯], ¯� < 0, we have 

 æ(¯], −1) = æ(−1, ¯�) = 0 (7.3) 
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Similarly, no states exist beyond a boundary state ¯] + ¯� > /: 

 æ(¯], / − ¯] + 1) = æ(/ − ¯� + 1, ¯�) = 0 (7.4) 

The purpose of the Markov analysis is to obtain the system probability at each state. 

There are multiple ways to solve a multi-dimensional Markov chain. The numerical 

method provides a straightforward approach to the solution [117]. It defines a 

transition matrix P to include all transition probabilities between states, which can be 

derived from (7.2) to (7.4). The distribution over the states can be written as a 

stochastic row vector x with the relationship of 

 ë(") = ë("�])ì = ë("��)ì� = ⋯ = ë(�)ì" (7.5) 

where ë(�) is an initial probability. x is expected to converge to a stable vector after a 

sufficiently large number of iterations n, which is effectively the system probability 

at each state. MATLAB simplifies the process of solving such complex matrix 

operations. It is possible to get the probability over a group of states when the 

condition is well defined. The blocking probability in this scenario can be written as 

a summation of states with n channels: 

   (7.6) 

Frequency band Allocation 

The rectangular part of the diagram in Figure 7.2 with the defined band sizes /] and 

/� shows the frequency band allocation scenario. The global function is expressed as 

  (7.7) 

The equilibrium function for a general state is the same as (7.2) and (7.3). The 
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The state probabilities can be obtained based on the global and equilibrium 

functions, through numerical methods presented in (7.5). The blocking probability is 

expressed as 

  (7.9) 

Analytical Results 

The objective of this analysis is to investigate how transfer learning provides 

dynamic capacity to cluster members, as well as delivering adequate QoS at high 

traffic loads without switching on more base stations. 

Equation (7.5) is used to generate the analytical results. A total number of 20 

channels are allocated to the whole cluster area. In the first part of analysis, we set up 

an equal offered traffic to each cell, namely �] = �� = 7  (Erlang). Figure 7.3 

presents the system probabilities for each state, where channels are dynamically 

shared between the two cells. The diagonal line is the boundary of the system 

capacity where the summation of ®]  and ®�  coordinates is 20. The rectangular 

boundary indicates the border of the frequency band allocation scheme with 10 

channels assigned to each cell. The colour depth denotes the state probabilities. 

 

Figure 7.3. State Probabilities of the Two Cell Markov Model 
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It can be observed that the highest state probability occurs when 7 channels are 

occupied in each cell, which is due to the 7 Erlangs traffic load. On the other hand, 

the system may stay in some states beyond the 10 channel bound in each cell, 

because the user arrives according to a Poisson random distribution. This potentially 

causes transmissions to be blocked in the frequency band allocation scheme. In the 

scenario where the user traffic is unequal, the rectangular boundary should follow 

the state probability pattern, otherwise the system capacity is highly constrained. 

The blocking probability under a variation of offered traffic between two cells is 

presented in Figure 7.4, which is also based on the topology in Figure 7.1. The x axis 

indicates a variation of traffic load proportion between ®] and ®�, starting from an 

even traffic level shared at 1. The frequency band allocation scheme fixes 10 

channels to each BS, with blocking probability solved from (7.7) to (7.9). A channel 

borrowing scheme is modeled which changes the band size according to traffic load, 

as presented in Section 2.3.2. The Pareto efficient bound, solved from (7.1) to (7.6), 

indicates the situation where all channels can be utilized regardless of traffic 

variation, which can be achieved by transfer learning illustrated in Chapter 6. 

 

Figure 7.4. Blocking Probability vs Traffic Load Proportion 
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It can be seen that a consistent 3% blocking probability is achieved under Pareto 

efficient resource utilization. The channel borrowing scheme has a blocking 

probability that is twice as the Pareto efficient bound because in Figure 7.3, the states 

beyond the rectangular boundary may be visited by the system with some fail 

probability. The frequency band allocation strategy has a dramatic increase in 

blocking probability because of the fixed band size, particularly when the traffic 

ratio in two cells G1:G2 < 4. It can be concluded that transfer learning provides a 

consistent QoS with dynamic capacity provision. An effective channel borrowing 

scheme can significantly improve QoS under frequency band allocation. However, it 

is difficult to implement this scheme in a practical network due to interference 

between overlapped bands, as described in Section 2.3.2. 

7.3.2 Three Cell model 

7.3.2.1 Two Cluster Model with Frequency Reuse 

This section presents a three dimensional Markov model for the three cell scenario 

when ®#  is switched on. The system has two overlapping clusters: {®], ®#}  and 

{®�, ®#} and frequencies can then be reused between ®] and ®�. The Pareto efficient 

resource allocation may not be achieved in each cluster, because ®] and ®� can only 

assign channels not currently occupied by ®#. 

Figure 7.5 demonstrates a heterogeneous system model including both frequency 

band allocation and the transfer learning strategy. In transfer learning, the {®], ®#} 
and {®�, ®#} planes have a limit of n channels as in Figure 7.2. The {®], ®�} plane has 

the probability of assigning 2n channels, though it depends on the number of 

channels used in ®# . By defining the boundary state as �(¯], ¯�, ¯#) , 	¯] + ¯# = / 

applying to plane �(/, /, 0) − �(0,0, /) − �(0, /, 0) , and ¯� + ¯# = /  applying to 

plane �(/, /, 0) − �(0,0, /) − �(/, 0,0). Furthermore, the value of ¯] and ¯� varies 

inversely with ¯#. The frequency band allocation strategy assigns /], /�, /# channels 

to ®], ®�, ®#, respectively. Similarly, /] + /# = / and /� + /# = / also applies. 
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Figure 7.5. Three Cell Two Cluster Markov model 

Transfer Learning 

The global function of transfer learning in this scenario is a summation of states in 

the blue polyhedron, which can be written as 

  (7.10) 

For a general state �(¯], ¯�, ¯#), ¯] + ¯# ∈ [0, /] and ¯� + ¯# ∈ [0, /], we have 

(�] + �� + �# + ¯]ê + ¯�ê + ¯#ê)æ(¯], ¯�, ¯#)  (7.11) 

= �]æ(¯] − 1, ¯�, ¯#) + ��æ(¯], ¯� − 1, ¯#) + �#æ(¯], ¯�, ¯# − 1) +  

(¯] + 1)êæ(¯] + 1, ¯�, ¯#) + (¯� + 1)êæ(¯], ¯� + 1, ¯#) + (¯# + 1)êæ(¯], ¯�, ¯# + 1)  
There are no states exist when ∀¯], ¯�, ¯# < 0, we have 

 æ(−1, ¯�, ¯#) = æ(¯], −1, ¯#) = æ(¯], ¯�, −1) = 0 (7.12) 

),0,( 31 nnP

)0,,( nnP

),,0( 32 nnP

)0,,0( nP

)0,0,(nP

),0,0( nP

),,( 321 nnnP

),0,0( 3nP

1b

2b

3b

p( j1, j2, j3)
j2=0

n− j3

∑
j1=0

n− j3

∑ =1
j3=0

n

∑



Chapter 7. Dynamic Capacity Provision and Topology Management 161 

Qiyang Zhao, Ph.D. Thesis, Department of Electronics, University of York 

Similarly, there are no states existing beyond a boundary state ¯] + ¯# > /  and 

¯� + ¯# > /, so we have 

 æ(¯], / − ¯# + 1, ¯#) = æ(/ − ¯# + 1, ¯�, ¯#) = 0 (7.13) 

The blocking probability is then the states on two triangle border planes 

 (7.14) 

Frequency band Allocation 

The global function of frequency band allocation in this scenario is a summation of 

states in the red cube, which can be written as 

  (7.15) 

The general state expression is the same as (7.11) and (7.12). There are three 

boundary planes follows /], /�, /#, where /] + /# = / and /� + /# = /. 

 æ(/] + 1, ¯�, ¯#) = æ(¯], /� + 1, ¯#) = æ(¯], ¯�, /# + 1) = 0 (7.16) 

The blocking probability is a summation of states on three rectangle border planes 

 (7.17) 
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Figure 7.6. Three Cell Single Cluster Markov model 

The triangular plane is the only boundary for transfer learning where ¯] + ¯� + ¯# =
/. Similarly, the band sizes in frequency allocation follows /] + /� + /# = /. The 

global function for transfer learning is expressed as 
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For the frequency band allocation strategy, the global function is 

  (7.21) 

The equilibrium function is the same as (7.11) and (7.12). The boundary limit is 

 æ(/] + 1, ¯�, ¯#) = æ(¯], /� + 1, ¯#) = æ(¯], ¯�, /# + 1) = 0 (7.22) 

The blocking probability under frequency band allocation is 

 (7.23) 

7.3.2.3 Analytical Results 

The purpose of this analysis is to validate the dynamic capacity provision achieved 

by transfer learning, and also to examine the capacity enhancement from switching 

on ®# and frequency reuse. 

In the first part of analysis, the user density is uniformly distributed in the whole 

area. Namely, the offered traffic in each cell follows �] = ��(= �#) in the scenario 
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frequency band allocation scheme, an equal number of channels are assigned to each 

cell. Namely each cell is assigned with //2 channels in the frequency reuse scenario 

and //3 channels in the non-reuse scenario when ®# is activated. 

Figure 7.7 demonstrates the system blocking probability with various traffic levels 

under a dynamic working/sleeping mode of ®# . It also illustrates a comparison 

between two cluster frequency reuse and the single cluster no reuse scheme when ®# 

is switched on.  
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Figure 7.7. Blocking Probability (Topology Transition) 

By applying frequency reuse after activating ®#, transfer learning achieves a 30% 

lower retransmission probability than frequency band allocation on average. This 

benefits from the dynamic capacity provision between ®], ®#  or ®�, ®# , when user 

traffic is generated randomly among these cells. By comparing the topology impact 

from ®#, it can be seen that both transfer learning and frequency band allocation have 

a similar improvement in QoS. Their blocking probability difference gradually 

increases as the offered traffic increases, reaching 20% at 9 Erlangs. It can be 

concluded that switching on ®# with appropriate frequency reuse provides effective 

capacity enhancement to both schemes. Furthermore, under the same blocking 

probability level, transfer learning supports around 1.2 Erlang higher offered traffic 

than frequency band allocation in the same topology. This will save energy 

consumption by keeping the same topology when traffic load increases. 

The no reuse strategy indicates that switching on more BSs without frequency reuse 

provides no benefits to the system QoS. For the frequency band allocation scheme, 

the blocking probability of three cells is around 30% higher than two cells. This is 

because the entire spectrum is divided into more frequency bands, which further 

limits the flexibility of resource utilization in the area. Transfer learning achieves the 
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same level of QoS under dynamic topologies, because the same Pareto efficient 

resource allocation is achieved without frequency reuse. It can be concluded that for 

the dynamic spectrum management scenario, a reconstruction of the frequency reuse 

cluster is necessary to obtain a QoS improvement from topology management.   

The second part of the analysis demonstrates the benefit of transfer learning in 

handling a dynamic variation of offered traffic in the spatial domain. We investigate 

the scenario where ®# is switched on and frequency reuse is operated. Figure 7.8 

presents a comparison of different spatial traffic proportions between three cells. A 

cell with three times offered traffic than others is examined throughout the cluster.  

  

Figure 7.8. Blocking Probability (Spatial Traffic Variation) 

In the frequency band allocation scheme, a cell with 3 times offered traffic of the 

others brings a 30% increase in blocking probability compared to a uniformly 
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The transfer learning scheme achieves the same blocking probability level no matter 

where the hotspot traffic occurs in the spatial domain. The scenario with uniformly 

distributed traffic shows the lowest blocking probability and the scenario with a 

dominating traffic in ®]  and ®�  is around 10% higher. A gradual increase of the 

blocking probability occurs when ®# has a dominate traffic, reaching 30% more than 

uniformly distributed traffic at 9 Erlangs. This behavior indicates that transfer 

learning cannot achieve a Pareto efficient resource utilization when the traffic is not 

equalized in this scenario. Figure 7.5 illustrates that {®], ®#}  and {®�, ®#}  are 

overlapped clusters in the area, with the potential of Pareto efficiency in each under 

transfer learning. However, the traffic on ®# significantly constrains the remaining 

resources in neighbour BSs. Thus only one cluster can achieve Pareto efficiency 

when traffic is unequal between ®] and ®�, which causes slightly higher blocking 

probability. Furthermore, the system capacity reduces when the traffic load on ®# 

increases, because in Figure 7.5 the volume of the rectangular cuboids reduces when 

/#  increases from 0 to n. This causes a significantly high level of blocking 

probability when ®#  is dominating the offered traffic. It can be concluded that 

transfer learning provides QoS improvements to frequency band allocation in general. 

The Pareto efficiency of overlapped clusters is constrained by resource utilization in 

the overlapped cells. 

The Markov analysis in the three BSs dynamic topology scenario justifies the 

dynamic capacity provision from the Pareto efficient action space prioritization 

under transfer learning. The validated QoS levels under different topologies provide 

the design of traffic or QoS threshold for switching on and off BSs in topology 

management. Furthermore, a load balancing scheme can be designed for the 

overlapped cell to maximize Pareto efficiency in the overlapping clusters scenario.   

7.4 Dynamic Topology Management 

The purpose of topology management is to trade off the QoS and energy 

consumption. It should define the time and location of activating a base station, and 

its connection with users. Figure 6.1 and Figure 7.1 illustrate that the coverage areas 

of base stations have no overlap in this scenario, thus the connections between BSs 
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and MSs are always shortest path. The Pareto efficient resource utilization indicates 

that resources in a cluster can be dynamically shared based on interim traffic load.  

The scenario considered here is based on Figure 6.1, where the 12 Fixed ABSs are 

permanently activated and the 8 Dynamic ABSs in between can be switched on/off. 

The activation of an ABS splits the original cluster of two neighbouring ABS and 

provides frequency reuse to enhance capacity, as demonstrated in Figure 6.1. The 

model assumes line-of-sight propagation on the same street. 

It can be investigated from the cropped model in Figure 7.1 that the activation of an 

ABS affects the traffic level on neighbouring ABSs. The working mode of dynamic 

a ABS can be managed by the neighbouring fixed ABSs. Analytical results of the 

frequency reuse scenario demonstrate that up to //2 capacity can be provided to the 

cluster by switching on an ABS. 

Topology management is carried out between neighbouring Fixed ABSs, and also 

the dynamic ABS if it is activated. This gives consistent coverage under dynamic 

topologies, for the measurement of user traffic, QoS, etc. For example in the 

analytical scenario in Figure 7.1, topology management is carried out by {®], ®�} 
when ®# is off, and by {®], ®�, ®#} when ®# is on. 

In order to measure the interim traffic or QoS, a sliding time window �ï�" is defined. 

An ABS remains in its working or sleep model for at least �ï�"  period, which 

stabilizes the topology by avoiding switching on/off too frequently. Furthermore, 

interim QoS is set to zero after every topology transition, which resets the 

measurement in the new network topology.  

There are multiple rules for switching on/off a BS in the literature related to topology 

management. However, most of the previous research is based on a frequency band 

allocation strategy, where capacity usage is defined as a threshold for switching 

ABSs [118]. This is based on a fixed capacity provision scenario. In the dynamic 

spectrum management scenario, the capacity of a cell also depends on resource 

utilization in others. The Markov analysis shows that by applying transfer learning, a 

cell within overlapped clusters has a dominated impact on the capacity of the 

neighbouring cells. It is thus difficult to use capacity usage as a parameter for 

topology management in the dynamic spectrum access scenario. 
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The objective of switching on/off dynamic ABSs is to keep an adequate QoS for 

various traffic levels. It is thus possible to directly use QoS (from user requirements) 

as a threshold to determine the time of triggering an ABS, based on the measurement 

from the neighbouring ABSs. However, the switching off process cannot be 

achieved in similar way, because QoS is affected by the variation of topology. 

Traffic density is a parameter that is affected by the user behaviour rather than the 

network topology. The traffic load level at which the dynamic ABS is switched on 

can be used as a threshold for switching off the ABS. In summary, the topology 

management algorithm is described as follows. 

Table 7.1. Topology Management Algorithm 

 

The structure of topology management and transfer, reinforcement learning 

algorithm is demonstrated in Figure 7.9.  

 

Figure 7.9. Framework of Topology Management with Transfer Learning 

It is illustrated that transfer learning provides an interface between topology 

management and distributed reinforcement learning, which takes network topology 

information for resource management. 
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7.5 Simulation 

In this section, simulation results are presented for the topology management 

algorithms together with transfer learning, reinforcement learning and frequency 

band allocation, respectively. The objective is to validate dynamic capacity provision 

in transfer learning and its contribution to energy and QoS efficiency. Moreover, the 

topology management algorithm will be verified in terms of effective energy saving. 

The network scenario is based on Figure 6.1 with the parameters listed in Table 6.3. 

The QoS threshold for triggering a dynamic ABS is set as �Í" = 5%, following 

typical QoS requirements in wireless communications [4]. The measurement window 

is set as �ï�" = 10�. In frequency band allocation, the band sizes in each cell are 

equal. The performance is validated on a long term average basis after the system 

stabilizes. The 12 fixed ABSs are on initially and the 8 dynamic ABSs are switched 

on or off according to the topology management algorithm.   

The energy efficiency of the network is demonstrated in Figure 7.10, which is 

evaluated in the format of consumption ratio over the baseline energy level defined 

by (3.23) in Section 3.5.3. For example, the full deployment of 8 dynamic ABSs 

over 12 fixed ABSs results in two thirds more energy consumption.  

 

Figure 7.10. Energy Consumption Ratio 
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It is can be seen that the topology management algorithm effectively reduces energy 

consumption throughout compared to the full deployment scenario. The energy 

consumption in frequency band allocation significantly increases when the offered 

traffic achieves 180 Mb/s, reaching at around 2.3 times higher than the learning 

strategies. This is because the capacity boundary in each cell largely constrains the 

flexibility of resource utilization, which triggers significantly more ABSs than other 

schemes. 

The learning schemes achieve similar performance, with continuous lower energy 

consumption than frequency band allocation. This is because they are designed to 

select channels from an open spectrum pool. Their long term averaged performance 

is similar regardless of capacity constraints. However, transfer learning achieves 

Pareto efficiency much faster than reinforcement learning as illustrated in Chapter 6, 

which contributes to slightly lower energy consumption. It can be concluded that a 

significant amount of energy saving is achieved by applying learning technologies to 

resource and topology management. 

A principle of topology management is to maintain QoS at an adequate level. 

Compared to full deployment, topology management sacrifices a certain amount of 

QoS for energy saving. However, such reduction is expected to be in control. The 

probability of retransmission is shown in Figure 7.11. 

 

Figure 7.11. Retransmission Probability 
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Comparing the resource management schemes with and without topology 

management, it can be seen that a difference of less than 5% retransmission 

probability reduction is achieved. The QoS threshold �Í" = 5% effectively keeps the 

retransmission probability at an adequate level compared to full deployment. The 

system with frequency band allocation exhibits a dramatic increase in 

retransmissions at high traffic levels beyond 240 Mb/s, reaching at 4 times higher 

than transfer learning. Compared with its energy consumption in Figure 7.10, it can 

be concluded that fixed capacity provision largely constrains both QoS and energy 

efficiency in topology management.  

The transfer and reinforcement learning strategies achieve similar retransmission 

performance, because both of them provide flexibility in resource utilization. A 

slight improvement from transfer learning is shown similar to energy performance, 

which benefits from fast initial convergence as stated before. 

 

Figure 7.12. Mean Delay per File   
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almost steady delay levels between 0.2s and 0.25s. It can be concluded that by 

effectively utilizing spectrum resources and share capacity, the network supports 

much higher offered traffic with stable QoS. 

Figure 7.13 shows the confidence measurement based on the delay performance. The 

error bars in Figure 7.13 indicates that the file delays during simulation are in 

reasonable small confidence intervals, compared to the overall performance. The 

configurations of traffic simulations in this thesis are consistent. As a result, the 

Monte-Carlo events in the simulation are large enough for performance evaluation. 

 

Figure 7.13. Confidence Measurement 
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resource management strategies, which is shown to reduce the system energy 

consumption while keeping an adequate QoS level. 

The framework of topology management is based on QoS in a clustered area. 

Markov analysis shows that by applying transfer learning, a consistent QoS is 

achieved regardless of traffic variations in neighbouring cells. Moreover, appropriate 

frequency reuse is vital to provide capacity enhancement from topology management.  

The simulation results demonstrate that the QoS parameter used for switching on 

base stations effectively manages the QoS reduction from topology management to 

an acceptable level. A significant amount of energy saving is achieved compared to 

the full deployment. Learning based topology management is shown to improve the 

QoS and energy efficiency by dynamic capacity provisions between adjacent cells. 
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This chapter proposes some future work directions based on the work in this thesis.  

Dynamic Spectrum Access (DSA) plays an important role for ultra-high capacity 

network in the future 5G communication systems. The transfer learning algorithm 

proposed in this thesis is demonstrated as an effective approach to implement 

docition [77] in spectrum management scenario, which further enhances cognitive 

radio. In this context, transfer learning can also be applied to other aspects in 

communication systems that use distributed learning, (i.e. power management, 

topology management), to improve the system reliability, QoS/capacity, energy 

consumption, etc. Furthermore, the algorithm can be optimized in terms of flexibility, 

applicability, convergence efficiency, etc., to enable more general applications.  

Dynamic Topology Management can be applied not only to green communications 

but also for flexible network architectures in many scenarios, such as disaster relief 

and temporary events. Future communication systems tend to be hyper-dense 

networks with massive small cell base stations serving different types of traffic. 

Topology management can be used to effectively manage such complex architecture, 

in order to provide system capacity and reduce power consumption. 
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8.1 Implementation of Machine Learning for RRM 

This thesis is based on a theoretical research in the Radio Resource Management 

aspect of dense capacity wireless networks, with performance validation on system 

level simulations. Machine learning techniques including distributed reinforcement 

learning and transfer learning has been applied to operate RRM on a self-organized 

multi-hop backhaul and small cell access network. These techniques provide 

effective network deployment and management for the operators. 

The machine learning techniques introduced in this thesis provide the network with 

distributed decision making, which is especially important for the lack of planning 

scenarios. By using transfer learning to improve the convergence, the base stations 

can be effectively configured in a relatively short time after the deployment. By 

using reinforcement learning to improve the decisions with past experience, the 

network can deliver reliable QoS in the rapidly changing radio environment. 

Cooperation management significantly reduces level of control information overhead 

in current cellular systems. Furthermore, the integration of reinforcement learning 

and transfer learning can effectively identify the change of scenario, architecture, 

topology, etc., and configure the RRM parameters. Thus the reliability of the RRM 

function can be significantly improved.  

Transfer learning is a partially distributed or centralized technique, which introduces 

the philosophy of conventional frequency planning and interference coordination 

into the distributed learning algorithm. The cooperation management mechanism as 

introduced in Chapter 5 allows the operators effectively control the degree of transfer 

learning. Similar scheme is also proposed in topology management that, transfer 

learning is carried out when the operators decide to switch on/off the base stations. It 

should be noted that although the intelligent RRM algorithm proposed in this thesis 

deliver an effective self-organized solution, the network managers can still monitor 

the system parameters, such as QoS, spectrum usage, throughput, as demonstrated 

widely in this thesis. The operators can then control the degree of learning used in 

the system based on their performance requirement. A typical example is the 

cooperation management mechanism developed in this thesis which is based on 

monitoring the stability of learning. Other network control mechanisms can be 

developed in similar ways.       
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There are several steps that can be done to implement this academic work to the 

practical communication systems. 

The major functionality of RRM in wireless systems is to schedule the data packets 

on Resource Blocks with high QoS provision. In this context, the implementation of 

intelligent RRM algorithms can be based on the design of protocols. 3GPP specifies 

a Radio Resource Control layer in the control plane protocol stack of the LTE system, 

which is in control of radio resource usage [13]. It manages UE’s signalling and data 

connections. The distributed learning algorithm can be implemented in this layer’s 

protocol stack to improve the channel assignment process. Furthermore, the X2 

Application Protocol (X2AP) is responsible for overall maintenance of the relation 

between neighbouring eNBs. The signalling messages transfer on X2AP can be 

modified to include the learning information discussed in this thesis.   

The implementation of Dynamic Spectrum Access in the practical communication 

system has been a hot topic for a long period. The major challenge is the current 

spectrum allocation policies in most countries. However, DSA can still be operated 

in some emerging areas that require non-commercialized spectrum allocation, which 

include but not limited to, high speed WI-FI service through TV White Space, public 

safety networks, smart grid systems, machine-to-machine communications. In the 

future 5G systems, DSA is expected to play a key role in solving the spectrum issue 

for ultra-high data rate services. This has been investigated in a number of EU 

projects. In this context, the machine learning techniques enable effective 

interference avoidance in a distributed manner, which assist the operator to reduce 

the complexity of network architecture and management.    

8.2 Intelligent RRM for LTE Systems 

Radio Resource Management in LTE is carried out on the eNBs, with signalling 

information exchange on the control plane over X2 interface. It allows each 

individual eNB to use the entire frequency band. The Inter-Cell Interference 

Coordination (ICIC) protocol is designed to reduce interference between 

neighbouring cells and improve QoS on cell edge users. In ICIC, interference 

indicators are sent from a eNB that schedules UEs on Resource Blocks (RBs). The 

neighbouring eNBs that receive such indicators will avoid the occupied RBs when 
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scheduling their UEs [44]. The ICIC is designed in a static or semi-static manner. 

Static ICIC is based on a frequency planning, which large reduces signalling 

overhead on X2 interface. Semi-static ICIC carries out information exchange 

periodically, which is beneficial in dynamic traffic load.   

Transfer learning is designed as exchanging learning information between base 

stations that potentially cause interference to speed up the distributed learning 

process, which implements the idea of docition into RRM [92]. It has the benefits 

from both conventional frequency planning and distributed learning, as discussed in 

Chapter 6. As a result, transfer learning can be employed to effectively improve QoS 

provided by ICIC. It significantly reduces information exchange overhead on the 

control interface [92], and provides flexible utilization of the frequency band with 

effective interference management in a distributed manner [119]. This improves both 

static- and semi-static ICIC schemes in the LTE standard [44].    

Fractional Frequency Reuse (FFR) is an effective spectrum management scheme 

proposed for the LTE architecture. However, it is designed as a Frequency band 

Allocation strategy where each fractional zone is assigned a channel set to prevent 

interference, which is illustrated in Figure 2.1. In this context, FFR is inefficient in 

managing the dynamics of traffic load, because the capacity is constrained by the 

frequency size allocated in each fractional zone.   

The transfer learning model designed in Chapter 6 is ideally suited for this problem. 

The learning agent can be implemented in each fractional zone in Figure 2.1 rather 

than in the whole cell, which separates the MSs into different Q tables based on the 

local interference environment. In the second step, the action prioritization process is 

carried out between neighbouring zones, to initially provide an effective policy on 

each agent. Finally the value mapping scheme is conducted to associate the Q values 

learnt in the past with the newly prioritized action space. After transfer learning, the 

BSs start reinforcement learning from Q tables with transferred knowledge. The 

value training method can also be applied to further reinforce the Q table. Transfer 

learning enhances the system capacity by providing flexible utilization of radio 

spectrum in different zones, as well as mitigating inter zone interference by applying 

FFR information into the knowledge base. Furthermore, the information exchanged 

between cells on the X2 interface can be minimized. It is expected to be a highly 
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efficient resource management scheme for LTE which can be easily implemented on 

standardized protocol architectures. 

8.3 Intelligent RRM for Ad hoc Networks 

The machine learning techniques proposed in this thesis can also be applied for 

Radio Resource Management in a fixed or mobile ad-hoc network.  

In Chapter 4 and Chapter 5, reinforcement learning and transfer learning algorithms 

have been developed and investigated on the multi-hop backhaul network using tree 

architecture, as illustrated in Figure 3.2. This can be easily extended to a mesh 

architecture where the ABSs on different “branches” are allowed to directly connect 

with each other. In this context, an ABS has multiple transmitters and receivers, as 

implemented on the HBS. The spatial reuse scheme developed for multiple branches 

should be extended to the ABS, which considers the antenna directionality and 

beamwidth when exchanging channel usage information or learning Q tables. The 

transfer learning and cooperation management algorithms proposed in Chapter 5 are 

expected to improve QoS and reduce signalling overhead in such mesh network.  

The mobile ad hoc network introduced in Section 2.2.4 has more challenges in RRM. 

Firstly the neighbouring links cannot reuse the same time-frequency Resource 

Blocks (RBs) because of the omni interference range. Moreover, interference range 

on a moving UE is highly unpredictable, which may cause excessive interference to 

a number of other UEs. In this context, the learning engine could be applied on each 

individual UE. Transfer learning allows a UE to obtain learnt information from 

others in vicinity, and train its own knowledgebase to avoid interference. The 

philosophy of Q table transfer and cooperation management can be applied to the 

mobile ad hoc network, though the “source agent selection” and “target agent 

training” strategies proposed in Section 5.3 and 5.4 should be adjusted to the 

interference environment.  

8.4 Intelligent Topology Management 

The topology management algorithm designed in Chapter 7 uses the expected 

blocking probability as a threshold to activate the BSs. It is difficult to use their 

traffic load for such operation in a fully dynamic spectrum access scenario, because 
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the system capacity is mainly constrained by interference rather than spectrum size. 

However, Pareto improvement action space prioritization in transfer learning 

effectively eliminates interference between cells involved in knowledge transfer. As 

a result, Markov analysis has be done in Section 7.3 based on a group of cells. The 

Markov model can be extended to include the topology management operation, in 

order to improve the threshold for activating/deactivating BSs.  

Furthermore, a function that includes learning from the past TM experience can be 

designed to improve the threshold for switching on/off and the location of BSs, as 

well as the connection between BSs and MSs. The TM system can be modelled as a 

state-action-reward cycle, which is applicable for most of the classical reinforcement 

learning algorithms such as Q learning and SARSA. In this context, the states can be 

modelled as a set of traffic levels, such as low, medium and high; the actions can be 

modelled as the selections of BSs in an overlapped coverage area; the rewards can be 

modelled as loading, QoS and SINR on each BS. The learning algorithm is aimed at 

clustering MSs onto a minimum number of cluster heads (BSs) in the low traffic 

level, in order to switch off other BSs. On the other hand, learning is aimed at 

balancing traffic load on BSs at the high traffic level. 

The disadvantage of applying reinforcement learning to topology management is that 

a large number of actions are desired to achieve an effective network topology. It has 

been demonstrated in [120] that switching on/off a BS consumes certain amount of 

time and energy. Transfer learning is a promising technique to improve the 

convergence. Moreover, the changes in the deployment map can be carried out 

through handing over traffic between overlapped cells rather than literately switching 

on/off BSs. Handover for topology management is expected to effectively reduce the 

fluctuation of network topology and improves network reliability. 

8.5  Dynamic Link Selection 

The role of topology management in a wireless cellular network is to carry out 

dynamic network planning, but also to select the links between BSs and MSs. 

Dynamic link selection is proposed here as another major part of topology 

management. It can be used to assist dynamic network planning, such as the learning 

model for TM in previous section. In addition, QoS and capacity optimization under 
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dynamic topologies is a major target of link selection, which can be achieved from 

the following operations. 

8.5.1 Load Balancing and Load Unbalancing 

Load balancing and load unbalancing are two load management methods that handle 

traffic between neighbouring or overlapped cells. Load balancing is a widely 

investigated technique in the research papers. The conventional definition is to 

equalize the traffic load in each cell. However, this is not effective in a flexible self-

organized network where the amount of radio resources may be unequal between 

cells. In such scenarios, the ideal traffic load in each cell is to match the number of 

available resource blocks, where load balancing will be used. This methodology 

could maximize the capacity provision from activated BSs, and improves QoS on 

access links. Load balancing will also reduce the number of BSs required in the high 

traffic level, by improving resource utilization under existing topology. 

Load unbalancing on the other hand is designed to speed up the deactivation process. 

It is carried out in cells with low traffic levels, to transfer local MSs to neighbouring 

or overlaid cells. This technique is designed to clear the MSs connected to the BS 

that should be switched off. The objective of load unbalancing is to save energy by 

quickly switching off BSs, as well as maintaining sufficient QoS. 

8.5.2 Handover and Admission Control 

Link selection can be achieved through handover and admission control in a practical 

cellular network. These two techniques have been conventionally applied in a static 

network for user mobility and congestion control, respectively. In the context of 

topology management, they are used to transfer user traffic. Handover is a reactive 

technique that transfers ongoing connections from one BS to another, whereas 

admission control is a proactive technique that selects the BS before connection.  

Handover and admission control are implementations of load balancing and load 

control, with the same target of transferring traffic load between BSs. However, 

these two operations have a different impact on user experience and system 

performance. At the user level, handover may delay or even interrupt on-going 

connections, whereas admission control could delay connection setup or even block 

the connection. In this case, admission control has less impact on the user experience 
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than handover because the users are more tolerant to a blocked connection rather 

than an interruption. 

At the system level, handover can quickly transfer the traffic load during data 

transmission. On the other hand, admission control can be carried out only after the 

transmission has finished. The protracted feature of admission control is thus not as 

effective as handover in load management. However, it is easier to be implemented 

because there is no need of extra protocols to protect on-going connections. 

Figure 8.1 shows a Markov model for handover and admission control between two 

BSs. Admission control is operated by �] and ��, which indicates the proportion of 

traffic allowed in each BSs. Handover is operated by ℎ]�  and ℎ�] , which is the 

probability of a user being transferred between the two BSs.  

 

Figure 8.1. Markov model for Link Selection 
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is not steady, which largely depends on unpredictable air conditions. In this scenario, 

dynamic link selection is vitally important to guarantee reliable communication and 

stable QoS. 

The mobility and navigation of aerial BSs can be controlled in broadband access 

scenarios. For example in Project Loon, the balloons travel in the stratosphere where 

the wind varies in direction and magnitude. A number of balloons form a complete 

network by moving themselves with the wind in different directions. In this scenario, 

a stationary user will also be continuously handed over from one balloon to another. 

The link selection algorithm should guarantee a steady link quality. 

In the scenario for opportunistic communications, aerial platforms are supplements 

for coverage and capacity where conventional BSs are not available. The location of 

aerial BSs will be managed by dynamic network planning algorithms. Overlapped 

coverage is expected in this scenario. The link selection algorithm should also 

consider the traffic load and capacity on each BS to avoid congestion. 

8.6 Entropy in Transfer Learning 

In this thesis, transfer learning has been studied for resource management in static 

backhaul and dynamic access networks. Two types of knowledge transfer methods 

have been developed: value training and value mapping. The value training method 

continuously updates the learner’s Q table until reaching a stable state. The value 

mapping method associates the Q table with prioritized action space when topology 

changes are carried out. The major difference between them is that knowledge from 

source agents dominates the Q table in the value training method, but only initializes 

the Q table in the value mapping method. This indicates that a learning agent is able 

to get more reliable knowledge from source agents in a static network topology but 

less in a dynamic network topology. 

Entropy evaluation on knowledge transferred from source agents remains a crucial 

issue in transfer learning. It can be used to decide which algorithm to use and 

effectively control the amount of transferred knowledge applied on the target agent. 

For example, a discount function can be set on 
(Å°) in the value training function 

(5.4), which varies with the entropy of 
(Å°)  with respect to 
(�°) . Furthermore, 
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value training function can also be applied after mapping Q values to the prioritized 

action space, in order to provide more expert knowledge over late iterations. 

However, these dynamic knowledge transfer methods should be based on entropy 

evaluation, which needs substantial research in future. 

Source agent selection is the baseline component in transfer learning that determines 

the entropy of information exchanged and the efficiency of multi-agent cooperation. 

It should be based on the scenario where transfer learning is applied. The transfer 

learning methods developed in Chapter 5 for the backhaul network and in Chapter 6 

for the access network transfer the neighbor agents’ Q table equally to the target 

agent. However, the entropy of these agents could be different. As a result, a 

discount factor can be applied on each agent to control the transferred knowledge 

based on interference. Moreover, Q tables on other agents in vicinity can also be 

transferred with different strategies applied on the target agent. In this context, an 

intelligent algorithm is desired to learn the effective discount factors on different 

agents and various learning stages.   
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9.1 Conclusions of Work 

This thesis has studied the use of intelligent learning algorithms for radio resource 

management in dense capacity wireless networks. Transfer learning has been 

investigated to improve reinforcement learning by applying knowledge transferred 

from multi-agent cooperation. In multi-hop backhaul networks with a static topology, 

transfer learning has been demonstrated to largely improve QoS and reduce 

cooperation overhead. In small cell access networks with dynamic topologies, 

transfer learning has been shown to significantly reduce QoS fluctuations during 

environmental changes. In addition, dynamic topology management with transfer 

learning has been examined to effectively reduce energy consumption from base 

stations and enhance network capacity. 

The conclusions for the major chapters are listed as follows. 

Chapter 1 provided a general introduction to whole work. In Chapter 2, background 

information related to the area of mobile broadband networks, radio resource 

management, cognitive radio and machine learning, and energy efficiency of 

wireless network have been presented. The high capacity density broadband access 

can be achieved through a small cell access network. Meanwhile, wireless backhaul 

networks support flexible deployment of small cell base stations. Spectrum 

management strategies can be categorized into Frequency band Allocation (FA) and 

Dynamic Spectrum Access (DSA). FA provides effective interference avoidance but 

has bandwidth constraints regarding traffic dynamics. DSA supplies up to optimal 
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spectrum utilization but has challenges in interference management. Cognitive radio 

technology is designed to intelligently select radio resources for data transmission in 

a distributed manner. The learning engine is the core module of cognitive radio that 

applies historical experience for future decisions. Reinforcement learning makes a 

distributed agent converge to a part of the spectrum, thereby providing lower 

interference to others. Multi-agent cooperation can improve decisions made by 

reinforcement learning and speed up its convergence. Transfer learning has the 

potential to improve QoS reliability in a dynamic radio environment. Furthermore, 

dynamic network planning is an effective way to reduce energy consumption in a 

cellular network, by deactivating base stations that make little capacity contribution.  

The modelling, simulation and analysis methodologies used in this thesis have been 

presented in Chapter 3. The network is modelled with appropriate topology, antenna, 

propagation and traffic models. Matlab is selected to carry out Monte Carlo 

simulation in this work. The complete simulator is built upon the architecture, 

physical layer, traffic, spectrum and topology management modules. Results are 

evaluated in a long term averaged manner to obtain steady state performance, and on 

a temporal snapshot basis to trace intermediate performance. Furthermore, Markov 

modelling has been discussed as an effective tool to analyse system capacity and 

QoS in different spectrum and topology management algorithms.  

Chapter 4 presented a fully cooperative interference coordination and a fully 

distributed reinforcement learning strategy for resource management in the multi-

hop backhaul network. The novel space division channel assignment scheme has 

been developed, which provides effective channel reuse on multiple transmitter or 

receiver antennas on the same base station. This scheme has been demonstrated to 

significantly reduce relay burden and interference in the multi-hop backhaul network, 

which thus largely improve the throughput and QoS. 

Distributed reinforcement learning strategies have been demonstrated on the mutli-

hop backhaul network. Convergence analysis showed that linear reinforcement 

learning performs better than single state Q learning to achieve a stable solution. An 

improved decision making scheme that selects channels by the weight of interference 

is developed. The results showed that the interference weighted strategy improves 

QoS by effectively using information from spectrum sensing. Linear reinforcement 
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learning has been demonstrated to deliver efficient long term performance without 

interference measurement.  

In Chapter 5, a novel intelligent cognitive radio technology – transfer learning has 

been proposed, which is based on a combination of reinforcement learning and 

interference coordination schemes studied in the previous chapter. In the multi-hop 

backhaul network with a static topology, a learning task is modelled as the learning 

target on a cognitive agent. Transfer learning allows an agent to obtain Q tables 

learnt by others, with a value training function designed to reinforce the learner’s 

knowledge base. It has been demonstrated that knowledge transfer significantly 

improves QoS and throughput compared to distributed reinforcement learning. 

Furthermore, a novel stable state evaluation method has been designed to 

appropriately define the convergence of learning in dynamic radio environment. 

Cooperation management strategies have been developed to control transfer learning 

when stable states have been achieved by either value training function in transfer 

learning or action-value function in reinforcement learning. It has been demonstrated 

that cooperation management significantly reduces the amount of information 

exchanged between multiple agents, meanwhile delivering a high level of QoS as 

achieved in fully coordinated strategies.  

Transfer learning was also examined in a small cell access network with dynamic 

topologies in Chapter 6. In this context, a learning task has been modelled as the 

learning target in a network topology. Transfer learning is carried out during 

topology transitions, to utilize knowledge bases learnt in the past for new scenarios. 

Knowledge transfer is conducted by prioritizing action spaces among coordinated 

agents. The training process introduces a value mapping strategy, by associating Q 

values with a prioritized action space. Pareto efficient resource utilization can be 

achieved among coordinated cells, which effectively eliminates interference before 

the action space is fully occupied. The transfer learning algorithm can be carried out 

with various reinforcement learning algorithms, to improve learning reliability in 

dynamic network topologies. It has been demonstrated to significantly mitigate the 

QoS fluctuation incurred by the changes of network topology and user traffic. 

Chapter 7 validated the dynamic capacity provision feature in transfer learning 

through Markov analytical models, and presented the design of the corresponding 
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topology management algorithm to reduce energy consumption and maintain 

sufficient QoS. Multi-dimensional Markov chains have been used to analyse the 

achievable system capacity with different QoS levels. Transfer learning that delivers 

Pareto efficient resource utilization has been proven to significantly enhance the 

system capacity compared to the frequency band allocation strategy. Moreover, 

topology management has been designed to dynamically control the number of base 

stations in the network based on QoS and traffic level. It has been demonstrated that 

topology management achieves significant energy saving compared to the full 

deployment scenario. QoS reduction is also well controlled by the predefined 

thresholds. Furthermore, transfer learning achieves significantly higher energy and 

QoS efficiency through dynamic capacity provision.  

9.2 Summary of Original Contributions 

This thesis has provided an in-depth study of knowledge transfer in wireless 

networks with both static and dynamic topologies, in order to enhance system 

capacity, QoS and reduce cooperation overheads, energy consumption. There is 

relatively limited transfer learning research applied on wireless communication 

systems before this work. The closest work is docition [73] that applies multi-agent 

cooperation on reinforcement learning. However, docition is designed to allow a 

distributed agent to obtain expert knowledge from others, which is only part of 

transfer learning. This section highlights the original contributions provided in this 

thesis. Some of the work has been published at, submitted to, or in preparation for a 

number of conferences and journals, which are listed at the end of this thesis. 

Transfer Learning on a Muti-agents basis 

This thesis applies transfer learning for the first time to communication systems. In a 

multi-hop backhaul network with static topology, it is proposed to improve learning 

speed and draw better decisions. The value training method has been designed to 

transfer and train the knowledge base on multiple agents. 

In the context of transfer learning defined in the computer science domain [79, 80], 

learning tasks have been modelled as the learning targets on multiple agents. 

Transfer learning allows a target agent to obtain Q tables from adjacent source 
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agents that may incur excessive interference. The value training function is then 

carried out to reinforce the target agent’s Q table. A Q value on each action is then 

gradually “trained” over successive iterations. Effective decisions can be made after 

the Q table is trained to be mature.  

The value training method on multi-hop backhaul network has been published in 

[91]. It has been demonstrated to significantly improve QoS and achieve better 

convergence. Compared to the docition strategy investigated in [77], transfer 

learning benefits from information exchange regardless of the maturity of Q tables. 

The value training function introduces spatial spectrum reuse information to the 

learners’ knowledge base. 

Cooperation Management 

Cooperation management is a novel methodology that effectively controls the level 

of information exchanged between multiple agents in transfer learning. It is designed 

to minimize cooperation overhead and to maximize QoS and throughput. This 

strategy terminates transfer learning when stable states are achieved by different 

learning functions. Cooperation management on an action-value function has been 

demonstrated to effectively trade off QoS/throughput and cooperation overhead. It 

delivers a high level of performance as achieved in a fully coordinated network, by 

using a very small amount of information exchange. Transfer learning with 

cooperation management is proposed in [92] as an effective approach to improve 

QoS in distributed networks. 

Stable State Evaluation 

Stable state and its probability provide an important method to evaluate the 

convergence of learning algorithms in cognitive radio scenarios. It has been difficult 

to define convergence in a cognitive radio network, because the effective solution 

varies with a highly dynamic radio environment. However, the main target of 

learning in cognitive radio is to find a stable action space that provides effective 

decisions, which can be used to define a stable state for convergence evaluation. 

The stable state is defined in Chapter 5 and [92] that the ranking of actions (channels) 

in the Q table stabilizes over iterations, which in turn makes the decision policy 
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stable. Moreover, the Q values are initially generated with arbitrary numbers, thus 

the ranking evaluation is carried out only on the actions that have been taken and 

updated by the action-value function.   

In a dynamic radio environment, a cognitive agent may occasionally drop out from a 

stable action space. As a result, the probability of stable state is used in practice to 

illustrate the convergence behaviour. In this context, a cognitive agent converges 

when a consistently high stable state probability is achieved.  

Stable state evaluation is used not only to investigate convergence performance but 

also to control the level of information exchanged in transfer learning. 

Transfer Learning on a Multi-tasks basis 

Transfer learning has been proposed for improving network reliability in rapidly 

changeable network architectures in [119] and [34]. The dynamics of traffic and 

topology incur highly fluctuating system performance in conventional learning 

algorithms. Transfer learning models the learning tasks as effective policy in 

different network topologies. The knowledge base from previous source tasks is 

transferred to the new target task. The base stations are shown to quickly adapt to the 

new radio environment and deliver steady QoS. 

The Pareto efficient action space prioritization is used to support mufti-agent 

coordination. A value mapping strategy is proposed to associate the Q values learnt 

in previous tasks to the newly prioritized action space. In this manner, experience 

from past decisions can be retained in the Q table and the new environment 

information can be applied appropriately. Furthermore, it provides an interface 

between topology and spectrum management, which allows cognitive agent to learn 

after the establishment of network topology.  

Pareto Efficient Action Space Prioritization 

The Pareto efficiency is proposed for resource management, which allows a shared 

spectrum pool effectively utilized between a cluster of cells without interference. An 

action space prioritization algorithm has been developed, which provides a Pareto 

improvement resource allocation strategy.  
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The Pareto efficient action space prioritization algorithm effectively handles traffic 

dynamics in both time and spatial domains. An enhanced system capacity can be 

achieved in a cluster of cells by eliminating inter-cell interference and maximizing 

resource utilization. This algorithm also supports the design of distributed learning 

models in wireless cellular networks. 

Topology Management with Intelligent Resource Management 

Topology management is a novel dynamic network planning methodology in 

wireless cellular system. It has been studied mainly to reduce energy consumption 

from base stations, though it can also be used to improve network planning. Previous 

work in this context is mainly based on fixed capacity provision [118]. In this thesis, 

a novel strategy is proposed with intelligent resource management. 

Dynamic capacity provision from transfer learning effectively utilizes radio 

resources in a group of cells. Topology management thus evaluate the QoS level on a 

group of base stations. A new base station is switched on to enhance local capacity 

when approaching an adequate QoS threshold, and is switched off after traffic load 

reduces. This method is demonstrated to effectively control the QoS reduction in an 

adequate range by reducing energy consumption from base stations. Topology 

management with transfer learning based RRM has been proposed in [34]. 

Markov Analysis for Multi-Cells with Dynamic Spectrum Sharing 

A novel multi-dimensional Markov model has been proposed in Section 7.3 to 

validate dynamic capacity provision between multiple cells. This model is an 

extension to the two dimensional Markov model presented in [116], which 

effectively models dynamic spectrum sharing. 

Different models for fixed and dynamic resource management strategy have been 

developed, which validate capacity enhancement from base station deployments. The 

Pareto efficient state in transfer learning has been proven to achieve dynamic 

capacity provision, which provides effective QoS on unbalanced traffic load between 

cells. The analytical model and related results have been presented in [34]. 
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Spatial Reuse on Multi-hop Backhaul Network 

A space-division multiple access scheme has been developed for a multi-hop 

backhaul network. It allows the transmitter or receiver antennas on the same node to 

reuse radio resources. Moreover, this scheme is carried out via inter link interference 

coordination that allows fully dynamic access of the radio spectrum. Interference on 

multi-hop links can be effectively controlled. Furthermore, it significantly reduces 

relay burden on multi-hop network. The amount of radio resources required is 

reduced to the same level as the single-hop architecture.  

Convergence Analysis of Reinforcement Learning through Reward States 

The convergence behaviour of linear reinforcement learning [64] and single state Q 

learning [70] has been analysed in this thesis. These two algorithms have been 

applied to spectrum management in previous work but the decision and value 

updating behaviour remain unclear. This analysis employs reward states, defined as 

continuous actions with the same reward value, to investigate the Q value changes. 

By analysing the converged value of the two algorithms in each reward state, linear 

reinforcement learning is shown to achieve better convergence whilst Q learning is 

more sensitive to the environment changes. The reward state analysis provides a 

method to design the learning model in different scenarios, which has been proposed 

together with transfer learning in [92]. 
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9.4 Recommendations for Similar Research Scope 

This thesis investigates the topic of applying machine learning techniques in Radio 

Resource Management function of the communication systems, which is a cross 

discipline research on both wireless communications and artificial intelligence. 

The design of communication network is the basis of this research. This includes the 

use case, scenario and the network architecture. A good understanding of the use 

case, such as the type of service, can help to define the scenarios that provide 

information of the propagation environment, terrain, user mobility, etc. The network 

architecture, including the topology, transceivers, antennas, can then be designed to 

satisfy the scenario.  

The knowledge on protocol architecture is also an important aspect when starting 

this research work. It is essential to understand the data packet transmission in the 

wireless network. The conventional MAC protocols in various systems should be 

well studied, as reviewed in Chapter 2. The physical layer knowledge is also vital, 
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especially the antenna and propagation scenarios, modulation and coding techniques. 

Other knowledge in network and transport layers could benefit the research, such as 

routing protocols for topology management, congestion control algorithm for load 

management. Last but not least, the protocols in existing standards can effectively 

enhance the research work for practical implementation purposes. 

Machine learning algorithm is another major research area. Firstly it is important to 

analyse the issues and expected targets in the system, in order to select appropriate 

learning algorithms. The latency requirement should be considered for improving the 

convergence of learning. Furthermore, the level of centralized/distributed in the 

learning algorithm should comply with the protocol architecture.  

System level simulation is the essential method to validate the proposed mechanisms. 

This is based on a well understanding of communication systems described before, 

and an appropriate design of the learning assisted scheme. Comparison with existing 

research work is vital to prove the ideas. Theoretical analysis is an effective way to 

further enhance the developed schemes, although it is usually based on simplified 

models as demonstrated in Chapter 7. A comprehensive analytical model can 

significantly improve the work in academic aspects. 

Furthermore, the hardware implementation, which has not been investigated in this 

thesis, can largely help to apply the theoretical research work to practical systems. 

The RRM functions can be implemented on the demonstration platforms through 

protocol configurations, as discussed in Chapter 8.  
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Definitions 

Cognitive Agent 

a wireless entity which observes the radio environment, makes decisions on radio 

parameters, takes actions on data transmission, learns from current and previous 

experiences and trains a knowledge base for future decisions. It refers to a base 

station in this thesis. 

Action Space  

a set of actions for a cognitive agent to select and take. It refers to a channel set in 

this thesis. 

Q Value 

a value in the knowledge base which stands for the learning knowledge of an action. 

Action-Value Function 

a reinforcement learning function that updates the Q value based on the environment 

feedback from a particular action. 

Probability of Stable States 

the probability that a Q table has consistent action ranking in previous iterations. 

Target Agent/Task 

an agent that carries out distributed learning to solve an individual learning task.  

Source Agent/Task  

a cognitive agent/learning task that has potential impact on the target agent/task. 

Transfer Learning: Value Training Method 

a transfer learning strategy that employs multi-agent cooperation to train the agent’s 

knowledgebase. 

Value Training Function 

a function that trains the target agent’s Q values with those transferred from multiple 

source agents. 

Cooperation Management 

a strategy that controls the degree of information exchange and knowledge transfer. 
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Pareto Improvement 

a resource allocation strategy that allows any individual in a group to occupy 

resources without causing interference to others. 

Pareto Efficient 

an upper bound of Pareto improvement that the entire resource pool can be occupied 

by a group of individuals without interference, regardless of the resource occupancy 

status in each. 

Transfer Learning: Value Mapping Method 

a transfer learning strategy that maps Q values learnt in a source task to a prioritized 

action space in a target task. 

Action Space Prioritization 

a sorting algorithm carried out on action spaces to achieve a Pareto improvement in a 

cluster of agents.  

Action-Value Mapping 

a function that associate Q values with a prioritized action space.  
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Glossary 

 (A)BS (Access) Base Station 

AMC Adaptive Modulation and Coding 

CDF Cumulative Distribution Function 

CM Cooperation Management 

CN Core Network 

CR Cognitive Radio 

DAI Distributed Artificial Intelligence 

DSA Dynamic Spectrum Access 

eNB Evolved Node B 

FA Frequency band Allocation 

FFR Fractional Frequency Reuse 

FP Frequency Planning 

HAP High Altitude Platform 

(H)BS (Hub) Base Station 

HetNet  Heterogeneous Network 

(IC)IC (Inter Cell) Interference Coordination 

LTE Long Term Evolution 

MANET Mobile Ad hoc Network 

MDP Markov Decision Process 

MS Mobile Station 

OFDMA Orthogonal Frequency-Division Multiple Access 

QL  Q Learning 

QoS Quality of Service 

RL Reinforcement Learning 
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REM Radio Environment Map 

RRM  Radio Resource Management 

RNC Radio Network Controller 

SCN Small Cell Network 

SDR Software-defined Radio  

SINR Signal-to-Interference plus Noise Ratio 

TL  Transfer Learning 

TM Topology Management 

UE User Equipment 
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