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Abstract

The speed at which biological range expansions occur has important consequences for

species experiencing climate change, and for invasions by exotic organisms. There is

growing empirical and theoretical evidence that during range expansions there is selection

for increased dispersal, and that this can result in faster rates of spread. However, few

models consider whether increased dispersal comes at a cost.

In this thesis I investigated how two different trade-offs between dispersal and other traits

affected the rates of range expansions. The first modelled a direct trade-off between

dispersal and reproduction, and the second incorporated a trade-off so that adaptation

to an environmental gradient came at a cost to dispersal.

The first trade-off was investigated by modelling a population that consisted of two

dispersal phenotypes, one that has a higher population growth rate and one that has a

higher dispersal rate. Using a simple deterministic model it was found that when there

was a big trade-off between the morphs in terms of these traits, anomalous invasion speeds

were observed whereby a population consisting of both phenotypes invades at a speed

faster than either single phenotype. It was found that these anomalous invasion speeds

were robust to demographic stochasticty. Adding a shifting climate to the model revealed

that a trade-off between dispersal and establishment ability can help a species to keep up

with climate change.

The second trade-off was investigated using a quantitative trait model, which revealed

that a trade-off between dispersal and adaptation can result in the formation of range

margins. Introducing a shifting environment allowed a species to expand its range at a

speed determined by the steepness of the gradient and the size of the trade-off.

These models reveal that trade-offs can alter range shifting dynamics, the consequences

of which for predicting rates of range expansions were discussed.
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1. Introduction

1.1 Introduction: The importance of shifting range margins

Two of the most important threats to biodiversity are climate change and invasions by

exotic species. During the past century, mean global surface temperatures have increased

by 0.6◦C (IPCC, 2007). These temperatures are predicted to continue increasing, with a

1.8◦C best estimate of warming at the end of the 21st century under a low scenario, and

a best estimate of 4◦C for the high scenario (IPCC, 2007). A changing climate may lead

to what was formerly suitable habitat for a species becoming unsuitable. This poses a

challenge for many species; species will need to either adapt to the new conditions, or

shift with the conditions to which they are currently adapted.

1.1.1 Evidence of species shifting their ranges with climate change

There is lots of empirical evidence that species are shifting their ranges to higher latitudes

and/or altitudes in response to recent warming (Chen et al., 2011; Hickling et al., 2006;

Parmesan and Yohe, 2003; Root et al., 2003). It has been estimated using a meta-analysis

that the distributions of species have shifted to higher latitudes at a median rate of 16.9

km per decade, and to higher elevations at a median rate of 11.0 m per decade (Chen

et al., 2011). However, this response was found to vary greatly within taxonomic groups

and between individuals (Chen et al., 2011; Moritz and Agudo, 2013), and has also been

found to vary over time (Mair et al., 2012).

Not all species are able to respond to climate change by shifting their range, and even if

they can they may not be able to track it at the same rate as the shifting climate. Evidence

from British butterflies shows that many species are not keeping up with climate change

(Menendez et al., 2006; Warren et al., 2001). Also, even if species are able to expand their

range with climate change this does not necessarily mean that the species will increase

in abundance. For example, in response to recent climate warming, the northern range

margin of the small skipper butterfly, Thymelicus sylvestris, has shifted northwards, but

this has been accompanied by a decrease in distribution area and abundance (Mair et al.,

2012). There are numerous factors that affect whether a species is able to respond, many

of which will interact with one another. Some of the main factors are discussed below.



2

Dispersal ability

Higher dispersal ability will mean a species is more likely to be able to track climate

change, and so escape the adverse direct and indirect effects of increased temperatures

(Watkinson and Gill, 2002) . For example, it has been found that faster northern range

shifts are observed in more mobile butterflies living in forest edges in Finland (Pöyry

et al., 2009). In Britain, it has also been found that sedentary butterfly species tend to

lag behind climate more than mobile species (Warren et al., 2001; Wilson et al., 2009).

There is also growing evidence of evolutionary changes in dispersal in response to climate

change (see Le Galliard et al., 2012, for a review), which will be discussed in more detail

later in the Introduction.

Habitat fragmentation

Species may not be able to expand their ranges if they have to pass through areas of

unsuitable habitat (Thomas et al., 2001), and this may result in species being unable to

keep pace with climate change (Travis, 2003). For example, in Britain, the expansion rate

of the silver-spotted skipper butterfly, Hesperia comma, is being controlled by habitat

fragmentation (Wilson et al., 2009). There is also some evidence that species expanding

their range have been found to disproportionately expand into protected areas, where

habitat may be less fragmented (Thomas et al., 2012). This highlights the importance

of having suitable habitat available for species to be able to expand into in response to

climate change.

Species interactions

A single species may be limited or prevented from expanding its range as a result of

interactions with other species (Berg et al., 2010). If interacting species have different

dispersal rates the spatial association of two species may be interrupted (Callaway et al.,

2004). For example, Kinlan and Gaines (2003) have shown that plants disperse over

smaller distances than their herbivores; so although the herbivorous insects are able to

track shifts in temperature, the plant hosts lag behind constraining the insects’ expansion.

However, novel species interactions may help species to expand their ranges. For

example, the brown argus butterfly, Aricia agestis, has spread northwards in Britain 2.3

times faster than the average global expansion rate of species (Pateman et al., 2012). This
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rapid expansion has occurred as a result of warmer conditions enabling this butterfly to

use a new larval host plant in Britain (Pateman et al., 2012). This suggests that a change

in interactions between species may in some cases facilitate range expansions.

1.1.2 Evidence of species responding to climate change in situ

Species that are unable to shift with the climate will need to respond to the new conditions

in their current location in order to survive. Populations can do this either by adjusting to

the new conditions by means of phenotypic plasticity, or by adapting to the new conditions

by means of genetic changes through evolution (see Gienapp et al., 2008, for a review of

the current evidence for each response). There is lots of evidence of plastic responses to

climate change. For example, there is evidence that the timing of phenological events,

such as bird nesting, first flowering and frog breeding has become earlier in response to

increased temperatures (reviewed in Parmesan and Yohe, 2003). However, it is unlikely

that species facing continued directional climate change will be able to survive by plastic

responses alone in the long term (Gienapp et al., 2008).

There is limited evidence that some species have adapted by means of genetic changes

to the conditions that have arisen as a result of climate warming. One of the few studies

where genetic responses to increased temperatures have been observed is in the Canadian

red squirrel, Tamiasciurus hudsonicus. In this squirrel, advanced parturition dates as a

result of warmer springs have been shown to be a genetic response, resulting in earlier

breeding (Réale et al., 2003). Experimental evidence from yeast populations suggests that

rapid evolution can help populations to survive environmental change (Bell and Gonzalez,

2009). However, further studies using genetic data are needed to be able to predict

whether species will be able to survive climate change by adapting to new conditions.

1.1.3 Evidence of species extinctions as a result of climate change

If a species fails to adapt or to shift with the changing climate then it may become

extinct. Predictions about future extinctions as a result of climate change vary, with one

study estimating that between 18 and 35% of terrestrial species could become extinct

by 2050, depending on the level of warming (Thomas et al., 2004). It is uncertain

whether extinctions will ultimately reach this level, but there is evidence that species

are becoming locally extinct at their lower latitude range margins. Range contractions

have been observed in montane butterfly species as they have failed to adapt to increased
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temperatures at their lower elevation range margins (Franco et al., 2006; Wilson et al.,

2005).

There is also some evidence that species have already become extinct as a result of climate

change. For example, 67% of harlequin frogs in the tropics have gone missing and

presumed extinct in recent years as a result of increased night time temperatures spreading

fungal pathogens (Pounds et al., 2006). Indeed, in a review of how climate change causes

extinctions Cahill et al. (2012) found that changing species interactions as a result of

climate change are an important cause of extinctions.

1.1.4 Evidence of invasions by exotic species

Native species are also being threatened by the invasion of their ranges by exotic species.

Exotic species have been introduced accidentally or deliberately throughout the world,

and when these species spread and become pests (Ziska et al., 2011), this has economic

impacts and important consequences for biodiversity (Gurevitch and Padilla, 2004; Sakai

et al., 2001). For example, the introduction of the cane toad, Bufo marinus, into Australia

to control sugar cane pests was unsuccessful, and instead the cane toad has caused declines

in native species (Urban et al., 2008).

Climate change will also have an impact on invasive species (Hellmann et al., 2008).

One impact is that climate change is enabling exotic species to further expand their

ranges into areas in which they would not historically survive (Walther et al., 2009). For

example, warmer winter temperatures have enabled the spread of the introduced hemp

palm, Trachycarpus fortunei, into southern Switzerland (Walther et al., 2007). Invasive

species also often have high dispersal (Hellmann et al., 2008), and so in species where

population dynamics are affected by temperature, climate change could increase rates

of dispersal (Walther et al., 2009). For example, in an invasive thistle, Carduus nutans,

in North America, climate warming has been shown to result in increased plant height,

which means there are increased seed dispersal distances (Zhang et al., 2011). If climate

change results in increased dispersal in invasive species then this could result in increased

rates of spread, potentially threatening a greater number of native species.

From the evidence reviewed above, it can be seen that predicting whether species will be

able to shift with the changing climate, and whether they keep up with the rate of change,

will be important in helping to conserve species. Predicting the rate at which invasive
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species spread will also be important in helping to control the impact that exotic species

may have on native species. The focus of this introduction, therefore, will be to review

the scientific literature relating to what is currently known about shifting range margins.

In the following sections I will first briefly review different types of mathematical models

and methods that have been used in population ecology, in order to give some background

to the types of models used to make the predictions that will be discussed in the remaining

sections. Theoretical work investigating factors that create limits to species’ ranges will

then be discussed; it is important to understand why a species has a range margin as

this may influence its potential to expand its range. I will then give a detailed review of

theoretical and empirical work investigating the evolution of a species’ range. Particular

emphasis will be given to how dispersal affects species’ range shifting, as dispersal

directly influences a species’ ability to expand its range. Finally, I will discuss how

evolution of dispersal may trade-off with other life-history traits, which leads into an

outline of the questions that will be investigated in this thesis.

1.2 Mathematical models and methods

Mathematical models have a long history of use in ecology. They are used to analyse

and quantitatively describe biological systems and processes of interest. They have the

power to make predictions and can help in our understanding of why a phenomenon is

occurring. Models are important where it is difficult to obtain empirical data, in which

case they can help us to gain a general understanding. Below I will summarise some of

the different types of models used in theoretical ecology, with emphasis on differences

that are relevant to models that will be developed in this thesis. I will also introduce

mathematical methods that will be used in this thesis.

1.2.1 Deterministic versus stochastic models

The simplest types of models used in ecology are deterministic models. These make the

assumption that the future condition of a system can be predicted by its present condition

(Gurney and Nisbet, 1998). These models tend to be based on a small number of simple

assumptions, so are analytically tractable (Okubo, 2000), and are often used because they

are elegant and give simple predictions. However, this comes at the cost of biological

realism, as in these models infinite population sizes are assumed and random demographic

events and fluctuations in the environment are ignored. Instead it is assumed that on
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average a greater proportion of individuals in a population follow a deterministic path

(Okubo, 2000).

Stochastic models incorporate some randomness, so that probabilities are used to predict

the future condition of a system. Randomness can either be incorporated through

environmental or demographic stochasticity. Demographic stochasticity is introduced by

modelling population dynamics as random processes, and environmental stochasticity by

allowing variation in the environment. Stochastic models are based on more realistic

assumptions than deterministic models, and so tend to be more complex.

Deterministic models are population based and so do not explicitly model individuals.

Whilst stochastic models can also be population based, increasingly, individual based

models (IBMs) are used. These models use specific rules for the interactions between

individuals and with the environment (McKane and Newman, 2004), and so can take

into account differences between individuals. Despite the simplification of deterministic

models, these are useful as a starting point for understanding ecological processes upon

which more complex stochastic models with greater realism can be built.

1.2.2 Modelling population dynamics

Mathematical ecology is based on the study of population dynamics. Population change

over time is given by the numbers of births minus deaths plus migration. Population

models relate these numbers to the population size. If these rates are modelled as being

density-independent then the per capita growth rate is constant and populations experience

exponential growth. However, these rates are likely to depend on the current population

density. The simplest model that introduces density-dependent population dynamics is

the logistic equation (Verhulst, 1838). This assumes that the environment has a carrying

capacity K, which is determined by the availability of resources. This leads to the rate of

change of the population size N being given by

dN

dt
= rN

(
1− N

K

)
, (1.1)

where r is the per capita growth rate at low density. Solving this equation describes

whether populations will die out or approach carrying capacity given a particular starting

population density.

More complex models take into account interactions between populations, for example,

different species competing for resources, predator-prey interactions and populations of
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the same species linked by dispersal. The simplest two-species model is given by the

Lotka-Volterra model. This models the control of population growth by two species

competing for a resource, or by interactions between a predator and its prey. If populations

of a species live in patches with dispersal between them, then these may be described as

metapopulation models (Levins, 1970). Patches in the landscape can become extinct and

be recolonised by dispersal of individuals. These kinds of models have often been used to

understand the evolution of dispersal, which will be discussed later in this Introduction.

The models described so far are continuous in time and are represented by differential

equations. These assume that population dynamics occur continuously in time and space.

Models may also be discrete in time, for example, representing a species that has discrete

generations, so that in each time step population dynamics occur in discrete steps. If these

models are deterministic then they may be represented by difference equations.

Since these early models, many developments have been made to incorporate other

aspects of population dynamics, such as modelling age structured populations, more

complex interactions between different populations and introducing demographic

stochasticity.

1.2.3 Spatially-explicit models

The models discussed up to this point are not spatially explicit, however, biological

parameters may vary in space and individuals interact and disperse locally. This means

population density can vary in space, and so models with explicit space dependence are

needed. Space can be modelled as being either continuous or discrete. Continuous models

can incorporate environmental clines, whereas in discrete models there may be patches of

landscape.

The simplest method for modelling dispersal through a landscape is by random diffusion.

In continuous time deterministic models this leads to reaction-diffusion equations. In

these types of equations dispersal is modelled as an emigration rate, which only

encompasses one aspect of the dispersal process, which will be discussed in more detail

later in the Introduction.

More complex types of dispersal can be modelled using dispersal kernels. A dispersal

kernel describes the distribution of locations after dispersal relative to the starting point

using a probability density function, and can take many forms (review, see Nathan et al.,

2012). Dispersal kernels can take into account more complex dispersal, for example,
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allowing long and short distance dispersal events to occur which cannot be modelled using

a single rate. Models can also incorporate more realistic dispersal strategies, by modelling

dispersal as being density dependent or condition-dependent (Bowler and Benton, 2005).

1.2.4 Calculating wavespeeds of spatially-explicit models

The focus of this thesis will be on calculating range expansion speeds, and so I will

now introduce some methods used to calculate wavespeeds. The earliest work looking at

predicting the rate of range expansions was by Fisher (1937) and Skellam (1951), who

incorporated random dispersal into the logistic equation. This results in the following

equation
∂N

∂t
= D

∂2N

∂x2
+ rN

(
1− N

K

)
, (1.2)

where r andK are defined as in Eqn. (1.1) andD is the diffusion coefficient. The invasion

speed of this equation can be determined by looking for a travelling wave solution. A

travelling wave is defined as a wave that travels without changing its shape (Murray,

1993). The speed c of this travelling wave can then be calculated by introducing the new

variable z = x− ct, and looking for a wave moving to the right of the form

N(x, t) = U(x− ct) = U(z). (1.3)

The partial differential equation (Eqn. (1.2)) can then be transformed into an ordinary

differential equation

−cU ′ = DU ′′ + rU

(
1− U

K

)
,

where prime means differentiation with respect to z. This can be rewritten as

U ′ = V,

V ′ = −cV − rU
(

1− U

K

)
.

This system has two steady states for (U, V ), one at (K, 0) and the other at (0, 0). In order

for a travelling wave moving to the right to exist, it is required that

lim
z→−∞

(U, V )→ (K, 0),

lim
z→+∞

(U, V )→ (0, 0).
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Using a linear stability analysis (see Appendix 1 of Murray, 1993) the eigenvalues λ of

the steady states can then be found. The eigenvalues of (K, 0) are

λ± =
−c±

√
c2 + 4Dr

2
,

which means that (K, 0) is a saddle point; and the eigenvalues of (0, 0) are

λ± =
−c±

√
c2 − 4Dr

2
.

If c2 < 4Dr then (0, 0) is a stable spiral, and so around the origin U oscillates. If c2 >

4Dr then the origin is a stable node. For travelling wave solutions to occur between the

two steady states it is therefore required that c ≥ 2
√
Dr. Hence, the speed of invasion

has been shown to depend upon a species’ dispersal ability and population growth rate.

It is then fairly straightforward to prove that c ≥ 2
√
Dr is a necessary condition for a

travelling wave to exist, by looking for a heteroclinic connection between the two steady

states. However, for more complex systems of reaction-diffusion equations it is more

difficult to find heteroclinic connections, and hence show that there must be a travelling

wave solution. Therefore, in this thesis an alternative method, called the method of front

propagation (van Saarloos, 2003), will be used to calculate wavespeeds.

The front propagation method involves calculating the linear spreading velocity v∗, which

is the velocity at which arbitrarily small linear perturbations about the unstable state grow

and spread, according to the equations obtained by linearising the full model about the

unstable steady state (van Saarloos, 2003). This method can be used to determine the

long time behaviour of the front which propagates to the right into the unstable steady

state. It is therefore preferable to the method described above where an Ansatz of the

form N(x, t) = U(x − ct) is made, because that method gives a continuous family

of front solutions (van Saarloos, 2003). Fig. 1.1 shows an example of how a typical

initial condition grows and spreads in time according to the equations linearised about

the unstable steady state (for example, the linearised Fisher equation given in Eqn. (1.4)

below). The linear spreading speed is then defined as the asymptotic speed of the point

xC(t):

v∗ ≡ lim
t→∞

dxC(t)

dt

I will now use the example of Eqn. (1.2) to explain how the front propagation method

works (this is based on the explanation given in van Saarloos (2003)). Linearising
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Figure 1.1: Growth and spread of a population N according to Eqn. (1.4). The curves show the

initial condition N(x, t0) and how the population spreads at successive times. The asymptotic

spreading speed v∗ to the right is defined as the asymptotic speed of the positions xC(t), where

N(x, t) reaches the dashed line N = C (shown as the points on this graph). This figure is adapted

from Fig. 2 in van Saarloos (2003).



11

Eqn. (1.2) about the unstable steady state N = 0 gives

∂N

∂t
= D

∂2N

∂x2
+ rN. (1.4)

Linearising about the unstable state means that Fourier modes grow for a range of spatial

wavenumbers k. This means taking a spatial Fourier transform, so that

Ñ(k, t) =

∫ ∞
−∞

N(x, t)e−ikxdx,

and substituting in the Ansatz

Ñ(k, t) = N̄(k)e−iω(k)t,

gives the dispersion relation ω(k) of Fourier modes of Eqn. (1.4), where N̄(k) is the

Fourier transform of the initial condition N(x, t = 0).

It is then possible to write N(x, t) for t > 0 as the inverse Fourier transform

N(x, t) =
1

2π

∫ ∞
−∞

N̄(k)eikx−iω(k)tdk. (1.5)

Assuming that the asymptotic spreading speed v∗ is finite implies that to look in the frame

ζ = x − v∗t, the right flank is seen neither to grow nor decay exponentially. Then to

determine v∗, the inverse Fourier formula Eqn. (1.5), needs to be written in this frame

N(ζ, t) =
1

2π

∫ ∞
−∞

N̄(k)eikζ−i[ω(k)−kv∗]tdk. (1.6)

v∗ can then be determined by analysing when Eqn. (1.6) neither leads to exponential

growth nor decay in the limit where ζ is finite and t → ∞. It is not possible to just

evaluate the integral by closing the contour in the upper half of the k-plane, because

the large-k behaviour of the exponent is dominated by the large-k behaviour of ω(k).

However, the large time limit means that a saddle-point approximation can be performed,

where the k-contour can be deformed to go through the point in the complex k plane

where the term between square brackets in Eqn. (1.6) varies least with k. The integral

is then dominated by the contribution from the region near this point, and so the saddle

point k∗ is given by

d[ω(k)− v∗k]

dk

∣∣∣∣
k∗

= 0 ⇒ v∗ =
dω(k)

dk

∣∣∣∣
k∗
. (1.7)
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These equations have solutions in both the upper and lower half of the complex k-plane.

Here, I am interested in the right flank, and so look for solutions in the upper half of

the plane which correspond to the asymptotic decay towards large x in Eqn. (1.6). If the

k-contour is deformed into the complex plane to go through the saddle point in the upper

half plane, then the dominant term of the integral is the exponential factor in Eqn. (1.6)

evaluated at the saddle point, so ei[ω(k∗)−v∗k∗]t. The requirement that this term neither

grows nor decays exponentially gives that

=ω(k∗)− v∗=k∗ = 0 ⇒ v∗ =
=ω(k∗)

=k∗
, (1.8)

where = denotes the imaginary part.

Returning to the example of the Fisher equation, substituting into Eqn. (1.4) the Fourier

mode N0eikx−iω(k)t, where N0 is the initial condition, gives

−iω(k)N0eikx−iω(k)t = −Dk2N0eikx−iω(k)t + rN0eikx−iω(k)t.

The Fourier mode cancels throughout, giving ω(k) to be

ω(k) = i(r −Dk2).

v∗ can then be calculated using Eqns. (1.7) and (1.8). First k∗ needs to be calculated, this

can be done by letting k∗ = x + iy, where x and y are real numbers to be determined.

This gives that

ω(k∗) = i(r −Dx2 +Dy2 − 2iDxy),

and using Eqn. (1.7)

v∗ =
dω(k)

dk

∣∣∣∣
k∗

= −2iD(x+ iy).

Substituting these into Eqn. (1.8) gives

r −Dx2 −Dy2 + 2iDxy = 0.

Both the imaginary and real parts must equal zero, which gives that x = 0 and y =
√

r
D

.

This gives that k∗ = i
√

r
D

and that the linear spreading speed is given by v∗ = 2
√
rD.

For the Fisher equation, the speed at which perturbations about the unstable steady state

grow and spread is therefore found to be 2
√
rD.
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1.2.5 Statistical models

The models described above are mechanistic models and explicitly take into account

demographic processes. In predicting the response of species to climate change species

distribution models can also be used. These models look at the relationship between

a species’ current distribution and climate, and use this to predict a species’ future

distribution under different climate change scenarios. This approach has limitations,

although recent advances have begun to incorporate population dynamics and dispersal

(for a discussion of these see Travis and Dytham, 2012). However, as these types of

models will not be used in this thesis they will not be discussed further.

1.3 Limits to species’ ranges

All species globally exist in a limited area, known as a species’ ‘range’. In the short term

populations cannot become established beyond their range because they have negative

growth rates in these new habitats (Bridle and Vines, 2007). However, over long

timescales species have adapted to unfavourable conditions. For range margins to form it

must therefore be that something is preventing adaptation at the range edge. There are two

different explanations for why adaptation fails: (i) adaptation and hence range expansions

may be prevented because locally beneficial alleles at the range edge may be limited by

Allee effects, genetic drift and a low rate of mutation into these populations; and (ii)

continual immigration of locally deleterious alleles into populations at the range edge can

swamp locally adapted alleles and so prevent expansion, which is termed gene swamping

(reviewed in Bridle and Vines, 2007; Sexton et al., 2009). Examples of theoretical models

that have investigated these explanations for the prevention of adaptation at range margins

will be discussed below (see Table 1.1 for a summary).

Quantitative trait models have been used to investigate whether gene flow from central

to edge populations can result in populations failing to adapt (reviewed in Lenormand,

2002). These models incorporate population ecology and genetics by following changes

in the mean of a quantitative trait along a cline, and looking at how range margins are

formed along this gradient. The environment changes as a linear function of space and/or

time, and so there is an optimum value of the trait at each point along the gradient which

maximises survival and reproduction. Using these models it has been shown that at

the centre of a species’ range the equilibrium for a trait mean is close to its optimum,

but further out towards the range edge the mean increasingly departs from the optimum
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(Garcı́a-Ramos and Kirkpatrick, 1997). When gene flow from regions of high to low

density occurs, adaptation at the periphery is then hampered (Kirkpatrick and Barton,

1997).

In this case one of two scenarios may evolve. If the trait mean matches the optimum for

the entire range then the population is adapted everywhere, and so can expand without

limit. However, if the environmental gradient is steep then gene swamping of maladapted

phenotypes prevents the trait mean from matching the optimum, and so the species has a

limited range (Kirkpatrick and Barton, 1997). Competition with other species has been

found to increase this effect as competition reduces population densities at the range edge,

thus increasing gene swamping from central populations, which can sharpen range edges

(Case and Taper, 2000). Other biotic interactions, such as between predators and prey,

can also result in the formation of range margins. If predators are effective dispersers

then this can increase the effect of gene flow limiting the prey species’ range (Holt et al.,

2011).

The form of density dependence used in these models has been found to influence the

formation of range margins. If density dependence is strong at high densities then this

can reduce the effects of gene swamping (Filin et al., 2008), so that steeper gradients

are needed to prevent uniform adaptation than found by Kirkpatrick and Barton (1997)

who assume logistic density dependence. However, taking into account demographic

stochasticity suggests that the local carrying capacity can have an effect on adaptation at

range margins (Bridle et al., 2010), with smaller ranges predicted than those predicted

using deterministic models (Kirkpatrick and Barton, 1997).

In these models genetic variance is assumed to be fixed across the entire range, whereas in

reality mutation, migration and selection will mean it evolves (Bridle and Vines, 2007). If

genetic variance is allowed to evolve then gene flow to peripheral populations is predicted

to cause an increase in genetic variance, and so outweigh the effect of gene swamping

(Barton, 2001). This allows the species to adapt to a wider range, and so predicts a

contrasting effect, that gene flow can rescue peripheral populations. Genetic drift also

increases gene flow, which can lower differences in fitness across the range, and so result

in higher total fitness (Alleaume-Benharira et al., 2006). Positive effects of immigration

on local adaptation are also found if species experience Allee effects as a result of low

population densities at the range edge (Holt et al., 2004; Kanarek and Webb, 2010). These

models therefore suggest that gene flow can facilitate adaptation and not hinder it, with the

amount of genetic variance predicted to be important in determining whether adaptation
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Table 1.1: Summary of theoretical studies investigating limits to species’ ranges

Type of model Assumptions Main conclusion of study Reference

Deterministic Type of trait Spatial variation Genetic Population

/stochastic Habitat Environment variance growth

Deterministic Quantitative Continuous Cline Fixed Negative Trait mean close to optimum at centre [1]

Fixed in time density- of range, and departs from this as

dependence move to range edge.

Strong density dependence means [2]

steeper gradients are needed for

gene flow to prevent adaptation.

Gene flow from central populations [3]

can prevent adaptation at the

Varies in time periphery. [4]

Not fixed Gene flow to peripheral populations [4]

Fixed in time causes an increase in genetic [5]

variance, which allows adaptation

Stochastic Patches Fixed in time at range edges. [6]

Diploid Continuous Cline Not fixed Local carrying capacity affects [7]
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Type of model Assumptions Main conclusion of study Reference

Deterministic Type of trait Spatial variation Genetic Population

/stochastic Habitat Environment variance growth

bi-allelic Fixed in time adaptation at range margins.

loci

Deterministic Haploid Two Source and sink Allee effects Immigration to peripheral populations [8]

variation patches Fixed in time can increase adaptation if they

Quantitative Continuous Cline Fixed are experiencing Allee effects. [9]

Fixed in time Negative Competitive interactions increase the [10]

density- effects of gene flow sharpening

dependence range edges.

Predators can increase the effects of [11]

gene flow on limiting prey species’ range.

Not spatially Two niches Resource Competition for limited resources [12]

explicit fixed in time dependent results in stable range limits even

and space without gene flow.

References: [1] Garcı́a-Ramos and Kirkpatrick (1997); [2] Filin et al. (2008); [3] Kirkpatrick and Barton (1997); [4] Polechova et al. (2009);

[5] Barton (2001); [6] Alleaume-Benharira et al. (2006); [7] Bridle et al. (2010); [8] Holt et al. (2004); [9] Kanarek and Webb (2010);

[10] Case and Taper (2000); [11] Holt et al. (2011); [12] Price and Kirkpatrick (2009).
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occurs at range margins (Bridle et al., 2010; Kanarek and Webb, 2010).

Apart from a failure to adapt to unfavourable conditions, range margins may also be

formed as a result of obstacles preventing further dispersal, abrupt changes in the

environment or by interactions with other species (Gaston, 2003). Competition between

species is considered to be a common process that sets range limits (reviewed in Case

et al., 2005). If species compete for limited resources then it is predicted that range limits

can be evolutionarily stable in time, even if there is no gene flow disrupting adaptation

(Price and Kirkpatrick, 2009).

1.3.1 Empirical evidence of limits to species’ ranges

Many of the theories behind why species have range limits have also been investigated

empirically. Sexton et al. (2009) reviewed empirical evidence for the different causes

of range limits and determined how much support there is from current studies for each

cause. They found that 23 out of 26 studies provided support for the role of competition

in setting rage limits. This support has come from correlative approaches, mechanistic

models and experimental manipulations. For example, transplantation experiments have

shown that in the absence of competition from the barnacle Semibalanus balanoides

another barnacle Chthamalus fragilis can exist beyond its northern range limit (Wethey,

2002). This suggests that competition between these barnacles is setting the range limit

of C. fragilis.

There is less empirical evidence supporting the theory that a failure to adapt results

in species having range limits. However, recent technological and analytical advances

have meant that these theories are now easier to test, and so evidence is starting to

accumulate. For example, Bridle et al. (2009) have found that the effects of gene flow on

local adaptation in rainforest Drosopila can depend on the steepness of the environmental

gradient. The swamping effect of gene flow preventing evolution of cold tolerances was

found to occur along a steep altitudinal gradient. However, along a shallower gradient

gene flow may have facilitated local adaptation. This study provides evidence to show

that under some conditions gene swamping may prevent adaptation at range margins,

supporting the predictions of theoretical models (e.g. Bridle et al., 2010; Kirkpatrick and

Barton, 1997).
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1.4 Evolution of a species’ range

1.4.1 The speed of range expansions

If marginal conditions change, for example as a result of climate change, then species’

ranges may be able to evolve. Models have shown that the rate of climate change can have

an effect on whether species can respond by expanding their range. If the climate changes

at a slow enough rate, it is predicted that a species is able to persist and shift its range along

the climate gradient (Pease et al., 1989). However, if the rate of environmental change

is too fast then the species will become extinct. In a continuously changing environment

another model found that the mean phenotype evolves to lag behind the optimum, as the

optimum changes with climate. The magnitude of this lag determines whether or not a

species becomes extinct (Bürger and Lynch, 1995). There have been many developments

since these early models that also predict there will be a time lag between the climate

shifting and the population shifting (e.g. Mustin et al., 2009). However, if species have

larger amounts of genetic variation then they are predicted to survive greater rates of

environmental change (Duputié et al., 2012; Pease et al., 1989; Polechova et al., 2009)

Adaptation to the environment, as previously discussed, has an impact on range

expansions (reviewed in Shaw and Etterson, 2012). If range expansions are occurring

along environmental gradients then the steeper the gradient, the slower the rate of

expansion because there is more maladaptation in the advancing wave front (Garcı́a-

Ramos and Rodrı́guez, 2002). Climate change may lead to reductions in the steepness

of temperature gradients, as temperatures are increasing more towards the poles (Walther

et al., 2002). In this case there may be moderate increases in the speed of expansion as

faster invasion speeds are observed on shallower gradients (Garcı́a-Ramos and Rodrı́guez,

2002).

The size of a species’ range may also affect its ability to respond, as results from stochastic

simulations predict that species with broader ranges are more likely to be susceptible to

extinction as a result of climate change (Atkins and Travis, 2010). This is because if

individuals continue to persist in an area despite their optimum climatic conditions having

shifted, they can block locally adapted genotypes and prevent them from expanding their

range. If maladapted individuals have higher rates of mortality this weakens the blocking

effect (Atkins and Travis, 2010).

Interactions with both the environment and other species can have an effect on whether
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species are able to respond to climate change by expanding their range. Investigations

of different patterns of habitat loss on range expansions predict that even if a species

survives a period of climate change, the spatial structure of the landscape may mean that

it has a new smaller range (McInerny et al., 2007). This is because the arrangement of the

landscape in the new climate window may mean that available habitat is not accessible,

and so the species can only inhabit part of the landscape. The spatial arrangement of the

landscape that benefits static and dynamic range margins may also be different, as it has

been predicted that the spatial arrangement that maximises the speed of range expansions

is different from the arrangement that maximises species persistence in a static landscape

(Hodgson et al., 2012)

Range expansions into areas occupied by a competitor have been found to occur more

slowly (Burton et al., 2010), with the type of competition occurring between species

having an effect on the evolution of a species’ range. For example, if dispersal increases

with population density, a species experiencing contest competition is less likely to persist

than a species experiencing scramble competition (Best et al., 2007). Rates of climate

change can also have differing effects on species that are mutualists and competitors. A

slower rate of climate change favours the persistence of mutualists, whereas with higher

rates, competitors out-compete the mutualists and prevent their range from expanding

(Brooker et al., 2007). During climate change the nature of species interactions may also

be affected. For example, a lack of suitable host plants beyond herbivorous species’

current ranges may restrict range expansions, or the release of natural enemies may

promote range expansions as interacting species shift at different rates (Hellmann et al.,

2012).

1.4.2 Changing genetic compositions of expanding populations

During range expansions the genetic compositions of populations may change (review

see Excoffier et al., 2009), which may either facilitate or hinder range shifting. A low

rate of mutation into edge populations, which limits the presence of locally beneficial

alleles for adaptation, has been proposed as a mechanism for forming range margins.

During range expansions a theory emerging from the literature is that ‘mutation surfing’

can occur (Klopfstein et al., 2006). This is where mutations arising on the edge of a

range expansion can sometimes ‘surf’ on the wave of advance (Edmonds et al., 2004).

This occurs because occasionally new mutations increase in frequency and spread with

the invasion wave, potentially over long distances, and become fixed in the population.
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It is predicted that if neutral (Klopfstein et al., 2006) or beneficial (Hallatschek and

Nelson, 2010) mutations surf then beneficial alleles can become fixed at the invasion

front, which can increase the rate of evolutionary adaptation of an expanding population.

However, other studies have found that non-neutral mutations can also surf leading

to high frequencies of deleterious mutations at the range edge. This can mean that

instead of increased evolution there is increased mutational load during a range expansion

(Hallatschek and Nelson, 2010; Travis et al., 2007).

Other models also suggest that mutations can have an impact on range expansions. In a

spatially continuous environment it is predicted that individual mutations that successfully

establish often lead to substantial increases in range because they increase adaptation at

the range front (Behrman and Kirkpatrick, 2011). Mutations that become established in

shallow gradients were found to result in larger range expansions than those that become

established in steep gradients. However, if the environment is also changing in time, then

there is a limit to the rate of change that allows beneficial mutations to become established

(Kirkpatrick and Peischl, 2013). Only below this limit are beneficial mutations able to

aid adaptation to a changing environment. Beneficial mutations may therefore result in

increased range expansions if they can become established, but deleterious mutations may

prevent range expansions.

1.5 Evolution of dispersal

Dispersal is a key trait that will determine whether species’ ranges can evolve, and so will

be discussed in more detail now. First, the causes of dispersal evolution will briefly be

discussed, followed by a review of the current theoretical and empirical evidence for the

evolution of dispersal during range expansions.

Dispersal is any movement of individuals or propagules which has the potential to allow

gene flow across space (Ronce, 2007). This encompasses both natal and breeding

dispersal. There are three stages that make up dispersal movement: (i) emigration, (ii)

a transient stage and (iii) immigration. Dispersal is important because it enables species

to be able to persist and evolve (Clobert et al., 2001). Dispersal may evolve when the cost

of movement is smaller than the fitness benefit from moving to a new patch (Bowler and

Benton, 2005). The costs of dispersal can be either energetic, time, risk or opportunity

costs and can occur during any (or all) of the different stages of dispersal movement

(review see Bonte et al., 2012).
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1.5.1 Scenarios under which dispersal evolves

The scenarios under which dispersal evolves have been divided into three main categories

(Ronce et al., 2001):

• Spatial heterogeneity in habitat quality. If habitat quality differs in space then

dispersal enables individuals to arrive or depart from different locations. A species

can then choose to become established in a habitat where they may have a higher

fitness, a process referred to as habitat selection.

• Temporal heterogeneity in habitat quality. If habitat quality fluctuates over time

then dispersal can evolve to escape local extinctions, and may be viewed as a bet-

hedging strategy. This is because dispersal distributes offspring from the same

parents over different conditions, so increasing the variance in expected fitness.

• Local competition. By dispersing from its natal patch an individual can reduce the

strength of competition in the patch. If this occurs dispersal can be thought of as an

altruistic trait and its evolution understood using kin selection theory.

Spatial heterogeneity in habitat quality: Different models disagree in whether spatial

heterogeneity is required for evolution of dispersal. A simple two patch model predicts

that if there are differences in habitat quality, then dispersal will be selected for (McPeek

and Holt, 1992). However, inclusion of demographic stochasticity predicts that dispersal

can evolve even if there is no spatial variation (Cadet et al., 2003; Travis and Dytham,

1998). Demographic stochasticity has been found to select for intermediate rates of

dispersal (Travis and Dytham, 1998). High dispersal is selected against because after

dispersal high dispersers are more likely to be in a patch that is above its equilibrium

density. Low dispersal is also selected against because these dispersers are less efficient

at recolonising patches where they have become extinct.

Patterns of habitat availability affect the rate of dispersal that evolves. Reducing the

amount of available habitat results in lower rates of dispersal evolving (Travis and

Dytham, 1999). For example, in a fragmented landscape, dispersal propensity of the bog

fritillary butterfly, Boloria eunomia, was found to be one order of magnitude lower than in

a continuous landscape (Schtickzelle et al., 2006). However, if in a fragmented landscape

individuals can distinguish between suitable and unsuitable habitat patches, then a higher

rate of dispersal evolves (Heino and Hanski, 2001). There can also be differences in the

dispersal strategy that evolves at different points in a species’ range, with lower mean



22

dispersal distances often found at the range margin than at the range core (Gros et al.,

2006).

Temporal heterogeneity in habitat quality: Models predict that dispersal will be

favoured in habitats that are temporally heterogenous (Travis and Dytham, 1999), because

if a resource is moving species need to be able to track it. Metapopulation models that

investigate evolutionary stable strategies find that when local extinctions occur because

of environmental and demographic stochasticity, dispersal is selected for (Comins, 1982;

Comins et al., 1980; Levin et al., 1984; Olivieri et al., 1995). It has also been shown using

an experimental microcosm that dispersive mutants of Caenorhabditis elegans increase in

frequency when there are increased rates of patch destruction (Friedenberg, 2003). There

are, however, contrasting predictions as incorporation of within-patch dynamics into a

metapopulation model suggests that increasing extinction rates may not always lead to

the evolution of increased dispersal rates (Ronce et al., 2000).

Local competition: Competitive interactions between relatives have been found to favour

positive dispersal rates even if the environment is temporally and spatially constant

(Comins, 1982; Comins et al., 1980). It has been demonstrated that there is a threshold

population density for which staying and leaving are equally profitable, but above this

threshold everybody should leave (Metz and Gyllenberg, 2001; Poethke and Hovestadt,

2002). A generalisation of this model predicts that if there is enough variability in

patch types and enough temporal variation as a result of catastrophes, then evolutionary

branching of dispersal strategies will occur (Parvinen, 2002). It has been found that

offspring increase their dispersal rate in response to the presence of kin in some species.

For example, the decision to disperse in response to potential kin competition has been

found to occur in lizards (Le Galliard et al., 2003) and fig wasps (Moore et al., 2006).

However, models have not always found kin selection to lead to evolution of dispersal.

For example, dispersal rates may decrease rather than increase as a result of kin selection

occurring between dispersers that have originated from the same population (Gandon and

Michalakis, 1999). Also, if population sizes are small or there is a low deme size, dispersal

rate has been found to decrease (Gandon and Rousset, 1999; Travis and Dytham, 1998).

If populations experience Allee effects this may result in the dispersal rate evolving to be

too low for metapopulations to be able to persist (Rousset and Ronce, 2004). Also, one

study suggests that it may in fact be competition with unrelated individuals, rather than

the more generally accepted explanation of kin competition, that explains the evolution

of dispersal (Jansen and Vitalis, 2007). This has been found to be the case in feral horses,
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where although dispersal from the natal group is affected by kin competition, dispersal

from the natal area is affected by the size of non-kin groups (Kaseda et al., 1997).

1.5.2 Evolution of dispersal during range expansions

There is increasing empirical and theoretical evidence that during range expansions

evolution of dispersal occurs, as there is selection pressure for increased dispersal during

invasions and range expansions. It has been found that faster rates of spread can occur

if dispersal evolves during an invasion, with the cost of dispersal determining the rate of

expansion that evolves (Travis and Dytham, 2002). The extent to which dispersal evolves

during range expansions, and how this results in increased rates of spread, has been found

to depend on different factors. Increased levels of evolution have been found to occur

if there are no competitors present (Burton et al., 2010; Kubisch et al., 2013), if escape

from natural enemies occurs (Phillips et al., 2010b), if Allee effects are absent (Travis and

Dytham, 2002), if there is a greater quantity of habitat available (Hughes et al., 2007) and

if there are faster rates of climate change (Boeye et al., 2013).

Modelling different dispersal behaviours can also lead to species’ range expansions

occurring at different rates. Faster range expansions have been found to occur when

dispersal is density dependent (Travis et al., 2009), because dispersal evolves to occur

at lower population densities during a range expansion than if dispersal is density-

independent. Including more complexity in models so that there is evolution of a dispersal

kernel, rather than just of an emigration rate, also results in faster range expansions (Boeye

et al., 2013; Phillips et al., 2008; Travis et al., 2010), as does temporal variability of

dispersal (Ellner and Schreiber, 2012). This is because fluctuations in the mean dispersal

distance generate occasional long distance dispersal events, which result in faster speeds

than if the mean dispersal distance was constant over time.

Dispersal behaviour may also evolve during a range expansion. It has been shown that

selection favours individual disperser behaviour that increases the rate of range expansion

for the population, rather than selecting for behaviour that minimises disperser mortality

(Bartoń et al., 2012). Evolution of straighter dispersal trajectories has also been found

to result in faster range expansions (Bartoń et al., 2012; Phillips et al., 2008). There is

evidence that the increased rates of spread found to be occurring during the invasion of

cane toads in Australia (Phillips et al., 2006, 2010a) is partly a result of this change in

behaviour (Phillips et al., 2008). Lindström et al. (2013) have quantified this effect and

predict that displacement of toads at the invasion front can be twice as far as toads at the
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same site a few years later, which is a result of these toads spending longer time dispersing

and having longer, more directed movements when dispersing.

Increasing empirical evidence supports these predictions that evolutionary adaptations

related to dispersal ability are occurring in species that are expanding their ranges as a

result of climate change (review see Hill et al., 2011). For example, traits related to

increased flight ability have been found in more recently colonised sites of the speckled

wood butterfly, Pararge aegeria. These sites were found to have populations with larger

adults, greater thorax mass and broader thorax shape (Hill et al., 1999a; Hughes et al.,

2003, 2007). The cane toad has also been found to have evolution of traits related to

dispersal at the front of its range expansion. As well as the toads travelling in straighter

lines at the range front (Phillips et al., 2008), these toads have also been found to have

longer legs (Phillips et al., 2006) so disperse over longer distances.

1.5.3 Evolution of dispersal along environmental gradients

Most studies discussed so far have looked at range expansions in a homogenous

environment. However, most species’ ranges are structured across gradients (Bridges

et al., 2007). On a static gradient it has been shown that different dispersal strategies

evolve at different positions along a species’ range (Dytham, 2009). Increased dispersal

distances are found to evolve at the range margin if there is increased habitat turnover,

reduced birth rate and reduced habitat quality, whereas reduced dispersal distances

are found if there are increased costs to dispersal (Dytham, 2009). When a shifting

environment is introduced then for all types of gradient there is always increased dispersal

during range expansions (Kubisch et al., 2010).

Climate change is expected to result in increased environmental stochasticity, which along

gradients of dispersal mortality is predicted to result in evolution of increased dispersal

(Kubisch et al., 2011). In this case greater range expansions are found to occur if dispersal

is density dependent. However, sometimes evolution of increased dispersal can lead to the

range overshooting what will be its final position when the environmental conditions have

stabilised, which is a result of selection favouring lower dispersal at stable range margins

(Kubisch et al., 2010).

If a species expands its range for some time along a homogenous environment before

encountering an environmental gradient, then the evolution of increased dispersal can

slow adaptation to the gradient, which may hamper (and even stop) range shifting
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(Phillips, 2012). Increased dispersal means that there are more maladapted genes from

the homogenous conditions preventing adaptation to the environmental gradient. The

extent to which the gradient acts as a barrier depends upon when the environmental

gradient is encountered during the range expansion. The earlier during range shifting

the gradient is encountered, the less prone to stopping the expansion will be (Phillips,

2012). This is in contrast to the case where instead of encountering a gradient during a

range expansion, a species encounters an area of unsuitable habitat. In this case evolution

of increased dispersal at the range edge can help a species to overcome this barrier and

continue expansion (Travis et al., 2010). When encountering gaps in the landscape more

rapid climate change can result in greater dispersal distances evolving, which can again

aid range expansions (Boeye et al., 2013).

1.6 Trade-offs between dispersal and other traits

There is evidence, then, that during range expansions there is often selection for evolution

of increased dispersal and that this can lead to increased rates of spread. However, not

all theoretical studies that look at the evolution of dispersal consider whether increased

dispersal will lead to trade-offs in other traits despite lots of empirical evidence for their

existence (review see Bonte et al., 2012).

A common trade-off is that more dispersive individuals have reduced fecundity. For

example, extreme trade-offs occur in wing polymorphic insects, where one morph is

capable of flight and the other is flightless (review see Zera and Denno, 1997). In

these insects the morph capable of flight has large functional flight muscles, whereas

the flightless morph has small non-functional flight muscles but has much bigger ovaries

(Zera and Harshman, 2001). During range expansions it has been found that increased

frequencies of the long winged morphs of four species of wing-dimorphic bush crickets

were found in recently colonised sites at the range margin (Simmons and Thomas, 2004).

However, the impact that these extreme trade-offs between dispersal and reproduction

may have on the rate of range expansions is unknown, and so this is a question that I will

explore in this thesis.

There is also evidence that the evolution of increased dispersal during range expansions

can cause trade-offs. For example, populations at the expanding range margin of the

speckled wood butterfly were found to invest more in dispersal at the cost of reduced

investment in reproduction (Hughes et al., 2003). This trade-off between dispersal and



26

reproductive rate is the most common assumption made in theoretical models (Phillips

et al., 2010b). However, there are many other costs associated with increased dispersal

(Bonte et al., 2012).

One of the few theoretical studies that investigates trade-offs with other traits during

range expansions predicts that increased dispersal at the range front results in decreased

investment in competitive ability rather than reduced fecundity (Burton et al., 2010). It

has also been suggested that increased dispersal and reproduction may be able to trade-off

with other traits not related to fitness at the invasion front, such as defence against natural

enemies (Phillips et al., 2010b). Further research is therefore needed to understand how

evolution of increased dispersal ability during range expansions may result in trade-offs

with other traits. In particular, little is known about how trade-offs may affect range

expansions along environmental gradients, and so this will also be investigated in this

thesis.

1.7 Outline of thesis

This thesis uses both deterministic and stochastic population-based models to investigate

how interactions between dispersal evolution and other traits can influence the formation

of range margins and the rates of range expansions.

Chapter 2 uses a deterministic model to look at the invasion of a species that consists

of two morphs that exhibit dispersal polymorphism. This study shows that if there are

trade-offs in the establishment and dispersal abilities of the two morphs then the presence

of both phenotypes can result in faster range expansions than if a single phenotype

were present in the population, a phenomenon known as ‘anomalous invasion speeds’.

Surprisingly, these speeds were found to persist when the mutation rate between morphs

is vanishingly small.

Chapter 3 uses a stochastic model to determine whether the anomalous invasion speeds

found in Chapter 2 are observed in a model that incorporates demographic stochasticity.

Simulations of this model suggest that anomalous speeds are still found to occur in

stochastic models. In this case, anomalous speeds occur when the carrying capacity of

the population is high, the mutation rate between morphs is high or the individual morphs

have similar invasion speeds.

Chapter 4 is an extension of the model in Chapter 3 to explicitly model a shifting climate.

This model is used to investigate whether dispersal polymorphism helps or hinders a
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species’ ability to keep up with climate change. The results suggest that if there is a trade-

off between dispersal and establishment then this helps a species to keep up with climate

change, but if one morph is superior either in terms of establishment or dispersal then

being polymorphic can stop a species keeping up with the rate of climate change.

Chapter 5 uses a quantitative trait model to investigate whether a trade-off between

dispersal and adaptation to an environmental gradient can result in the formation of range

margins. The results suggest that this trade-off can lead to the formation of range margins

with the size of the range determined by the steepness of the environmental gradient, the

cost of the trade-off, the size of the phenotypic variance and the strength of stabilising

selection. When a shifting gradient was introduced into the model species were then able

to expand their ranges.

Chapter 6 is a summary of the results found in this thesis with a discussion of questions for

future research that the findings of this work have highlighted. The wider context of this

research is discussed with reference to the pressing questions that need to be answered in

predicting species’ responses to climate change.
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2. Dispersal polymorphism and the speed of

biological invasions

2.1 Introduction

There is evidence that species are expanding their range as a result of climate change

and due to accidental or deliberate introductions of exotic organisms (Hickling et al.,

2006; Parmesan and Yohe, 2003; Root et al., 2003; Sakai et al., 2001). The speed at

which a species is able to expand its range has important implications for conservation

management. Whether a species can shift its range at the same rate as the climate shifts,

or whether, and by how much, it lags behind will be important in determining how likely a

species is in surviving a period of climate change (Chen et al., 2011; Mustin et al., 2009).

The rate of spread of exotic species as a result of introductions can also be important,

especially if these species become pests (Ziska et al., 2011).

The speed of a species’ invasion depends upon its dispersal ability and population growth

rate, which are affected by a number of demographic and environmental parameters.

Many theoretical models have investigated species’ invasion speeds under different

conditions, beginning with the work of Fisher (1937). Developments since Fisher have

found that many factors including Allee effects, timing of reproduction and dispersal

in the life cycle, and environmental heterogeneity can influence the speed of invasion

(reviewed in Hastings et al., 2005). Adaptation to local conditions has also been found to

influence the rate of spread. Garcı́a-Ramos and Rodrı́guez (2002) found that in a spatially

heterogeneous environment the rate of local adaptation can be the key limiting factor

to spread, with faster range expansions occurring when the environmental gradient is

shallower.

During invasions there is a selection pressure for increased dispersal. The effect that

the evolution of dispersal rate has on the speed of invasion has been investigated using

an individual-based model (IBM) by Travis and Dytham (2002). They found that if

dispersal evolves during an invasion then there is a faster rate of spread, with the rate

that evolves determined by the cost of dispersal. Other studies have also revealed that

during range expansions there is evolution towards increased dispersal resulting in faster

rates of spread. The extent to which increased dispersal evolves can depend on different
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factors, with increased levels of evolution if there are no competitors present (Burton

et al., 2010), if Allee effects are absent (Travis and Dytham, 2002), and if there is a

greater quantity of habitat available (Hughes et al., 2007). It has also been shown that

the rate at which species expand their range can be affected by the way that dispersal is

modelled. Faster range expansions occur when density-dependent strategies are allowed

to evolve (Travis et al., 2009), when a dispersal kernel rather than just an emigration rate

is evolving (Travis et al., 2010), and when there is temporal variability in dispersal (Ellner

and Schreiber, 2012).

There is also increasing empirical evidence from species that are expanding their range

of evolutionary adaptations related to dispersal ability in individuals in more recently

colonised areas (review see Hill et al., 2011). For example, more recently colonised sites

of the speckled wood butterfly, Pararge aegeria, contain populations with larger adults,

greater thorax mass and broader thorax shape (Hill et al., 1999a; Hughes et al., 2003,

2007). All of these traits are related to flight ability, and so mean that these individuals

are more dispersive and hence may invade faster.

There is both increasing empirical and theoretical evidence that during range expansions

individual dispersal phenotypes can evolve, and that the speed of range expansions can

also evolve. It has been shown that during a range expansion selection favours individual

behaviour that increases the rate of expansion for the population, rather than selecting for

behaviour that minimises disperser mortality (Bartoń et al., 2012). Most other studies,

however, consider individual dispersal evolution and it is not known what the effect of

a population being polymorphic has for the speed of a range expansion. To investigate

this I use a simple spatially-explicit deterministic model which describes the invasion of

a species into a landscape previously unoccupied by the species. The species is modelled

using Lotka-Volterra dynamics, with mutation between two morphs of a species which

differ in their dispersal and establishment abilities. The parameters used in the model are

varied to investigate whether having two dispersal phenotypes in a population affects the

invasion speed.

2.2 Model

A spatially-explicit general Lotka-Volterra model is used, which assumes that individuals

disperse and reproduce randomly during the lifetime of the individual. Time is assumed

to be continuous and the landscape to be spatially and temporally homogenous. In this
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model there are two phenotypes that differ in their dispersal ability. There is:

• an establisher morph, e, that after establishment has a higher growth rate but is a

poorer disperser; and

• a disperser morph, d, that has a lower growth rate after establishment but is a better

disperser.

This model describes the spatio-temporal dynamics for the population density of each of

these morphs. Population density of the species is denoted by ni with subscript i ∈ {e, d}

representing density of each morph. Morph i has dispersal rate Di and growth rate ri. A

general set of Lotka-Volterra equations are used, so mee and mdd represent competition

between morphs of the same type, and med and mde competition between the different

morphs. There is mutation between morphs at birth so that a fraction of offspring of

each morph are of the other type. The morphs have different mutation rates, which are

represented by µe and µd respectively. Thus the equations are given by:

∂ne
∂t

= De
∂2ne
∂x2

+ rene(1−meene −mednd) + µdnd − µene, (2.1)

∂nd
∂t

= Dd
∂2nd
∂x2

+ rdnd(1−mdene −mddnd) + µene − µdnd. (2.2)

The first term on the right hand side of each equation describes the random dispersal of

each morph. The second term describes the population growth of each morph, and the

third and fourth term describe the mutation of morphs into each other, i.e. the fraction of

offspring of either phenotype that is of the other type.

I am interested in the case where there is a cost to being a better disperser. I have

investigated this by imposing the condition Dd > De and rd < re. This implies that d the

disperser morph is better at dispersing, but has a cost in terms of being a poorer establisher

and hence has a lower growth rate after establishment, and that e the establisher morph is a

poorer disperser but has a higher growth rate after establishment. The scenario where one

morph is both a better disperser and establisher was also investigated but as this morph is

then always dominant, and so less interesting biologically, this case will not be discussed

further.

This model was analysed using both analytical techniques and numerical simulations.

First the invasion of each morph present on its own in the landscape was investigated, and

then the case where mutation between morphs allows coexistence. I am interested in the
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biologically relevant case where the mutation rate is small, for which scenario analytical

solutions were found.

Analytical results for the underlying partial differential equations were obtained by

first finding the equilibrium population density of each morph and then using the

method of front propagation to calculate the invasion speed (van Saarloos, 2003). The

equations were then solved numerically by approximating the spatial derivatives by finite

differences, so that the partial differential equations become a set of coupled ordinary

equations, and then carrying out simulations in R (R Development Core Team, 2011)

using the deSolve function (Soetaert et al., 2010). These simulations produced a travelling

wave at the invasion front which rapidly approached a constant speed as the invasion

progressed. The invasion speed was estimated by calculating the distance that the density

profiles at different times need to be displaced in order to lie on top of each other.

2.3 Results

2.3.1 Calculation of invasion speed

First the case where each morph is present in the landscape on its own was investigated. In

this case the system of equations (2.1) and (2.2) reduces to ∂ni

∂t
= Di

∂2ni

∂x2
+ rini

(
1− ni

Ki

)
whereKi = 1

mii
is the carrying capacity of morph i. I looked for travelling wave solutions

and found that the invasion speed, vi, is determined by the species’ growth rate and

dispersal ability: vi = 2
√
riDi, so that the invasion is faster when either the growth

rate or dispersal ability is increased, as was originally found by Fisher (1937).

I then investigated the case where both morphs were present in the landscape and there is

mutation between them. In this case the front propagation method of van Saarloos (2003)

was used to calculate the invasion speed. An explanation for why this method was used

instead of the method of looking for travelling wave solutions is given in Appendix A. The

general system of Lotka-Volterra equations has two steady states, an unstable extinction

state (ne, nd) = (0, 0) and a stable coexistence state which I will denote by (n∗e, n
∗
d). The

front propagation method involves linearising the equations about the unstable steady

state, which gives:
∂ne
∂t

= De
∂2ne
∂x2

+ (re − µe)ne + µdnd, (2.3)

∂nd
∂t

= Dd
∂2nd
∂x2

+ (rd − µd)nd + µene. (2.4)
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Note that these equations only depend upon the morphs’ population growth rates,

dispersal abilities and mutation rates and not on the competition coefficients. Here it

is assumed that the speed calculated using the linear system (2.3) and (2.4) also applies to

the nonlinear system (2.1) and (2.2). This linear speed is known to be a lower bound of

the invasion speed but it is not always exact (Weinberger et al., 2002). In the numerical

simulations section I will therefore check that the results obtained based on this linear

conjecture are valid.

Using these linearised equations, then following van Saarloos (2003), I substitute ne

nd

 ∝ exp(−iω(k)t + ikx) where ω(k) is the dispersion relation of Fourier modes

of the linearised equations (2.3), (2.4) and k is the spatial wavenumbers. This gives the

equations:

[iω(k)− k2De + re − µe]ne + µdnd = 0, (2.5)

µene + [iω(k)− k2Dd + rd − µd]nd = 0. (2.6)

After algebraic manipulation this leads to an eigenvalue problem, with solutions

ω(k) =
i

2
[re + rd − µe − µd − k2(De +Dd)±R], (2.7)

where R2 = [k2(Dd −De) + re − rd − µe + µd]
2 + 4µeµd. This gives that

dω

dk
= −ik(De +Dd)±

ik(Dd −De)[k
2(Dd −De) + re − rd − µe + µd]

R
.

The wave speed can then be calculated by finding k∗, where k∗ is the linear spreading

point (van Saarloos, 2003), such that

dω(k∗)

dk∗
=
=ω(k∗)

=k∗
, (2.8)

where = denotes the imaginary part. These equations represent a biological invasion so

ne and nd cannot be negative, and so it can be deduced that k∗ is purely imaginary. I can

then make the assumption that k∗ = iq and substituting into (2.8) gives

R2[re+rd−µe−µd−q2(De+Dd)]
2 = [q4(Dd−De)

2−(re−rd−µe+µd)2−4µeµd]
2. (2.9)

The wavespeed is obtained by finding the real solution q to Eqn. (2.9) that corresponds to

the largest speed v = =ω(iq)
q

(van Saarloos, 2003). As Eqn. (2.9) is a quartic equation in
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q2, it can only easily be solved numerically. Simple analytical results can be obtained in

the biologically interesting limit of weak mutation between the morphs. Taking the limit

µe → 0 and µd → 0 in Eqn. (2.9) gives

[re − rd − q2(Dd −De)][re + rd − q2(De +Dd)] =

±[re − rd − q2(Dd −De)][re − rd + q2(Dd −De)]. (2.10)

This gives three values for q2: q2 = re−rd
Dd−De

, q2 = rd
Dd

and q2 = re
De

which after substitution

into Eqn. (2.8) in the limit that µe → 0 and µd → 0 gives three values for the wavespeed:

ve = 2
√
reDe, (2.11)

vd = 2
√
rdDd, (2.12)

vp =
|reDd − rdDe|√

(re − rd)(Dd −De)
. (2.13)

ve is the speed at which the establisher invades in isolation, vd is the speed of the disperser

and vp is a third wavespeed that is dependent on both morphs’ establishment and dispersal

abilities. For a finite but small mutation rate, it is expected that the invasion speed would

equal one of the above values plus a small correction proportional to some power of the

mutation rate.

The conditions under which each invasion speed is expected to occur were then

investigated. These conditions were determined by assuming that the mutation rates are

small but not necessarily the same, and so I substitute µe = eµ and µd = dµ, where e

and d are positive. I then substitute q2 = re−rd
Dd−De

+ ε into (2.9), where ε is small when the

mutation rate is small. Taking the the limit µ→ 0, gives that ε
µ
→ g, where

(
[g(Dd −De) + e− d]2 + 4ed

) (rdDd − reDe)
2

(Dd −De)2
= (re − rd)2 (g(Dd −De) + e− d)2 ,

⇒ 4ed

(g(Dd −De) + e− d)2 =
(re − rd)2(Dd −De)

2

(rdDd − reDe)
2 − 1.

Since e and d are both positive, g will be real if and only if

(re − rd)2(Dd −De)
2 ≥ (rdDd − reDe)

2 .

This condition is satisfied in the positive quadrant of
(
re
rd
, Dd

De

)
space that is bounded by
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the curves
Dd

De

= 2− rd
re
, (2.14)

and
De

Dd

= 2− re
rd
. (2.15)

Below the curve (2.14) the invasion proceeds at the speed of the monomorphic establisher

ve and above curve (2.15) the invasion proceeds at the monomorphic disperser speed vd.

The third speed vp occurs between each of these curves. As long as these conditions are

satisfied the speed vp is always faster than ve and vd. The parameter regions where each

of these speeds occurs can be seen in Fig. 2.1.

The faster invasion speed occurs when the difference of both traits between morphs is

roughly greater than a factor of two, and for the parameter regions shown can be up to

twice as fast as the single phenotypes invasion speeds (Fig. 2.1). Polymorphic invasion

speeds could be more than twice as fast as either monomorphic speed if the morphs’

parameters differ by a factor of more than ten, but this is unlikely to be the case for real

species.

2.3.2 Numerical simulations

Numerical simulations were carried out to check that the speeds predicted analytically

using the linear conjecture gave the same results as those observed experimentally for

the nonlinear system of equations (2.1) and (2.2). The simulations were carried out

by approximating the spatial derivatives by finite differences and then carrying out

simulations in R (R Development Core Team, 2011). This model was initially motivated

by a metapopulation model in which the morphs’ establishment abilities described the

colonisation of empty patches and subsequent population growth of each morph, and

patches became extinct at a constant rate. In metapopulation models interactions between

species are effectively neutral because the nonlinear terms in these models come from

the availability of patches. This initial motivation, and the fact that analysis revealed that

the invasion speed does not depend upon the competition coefficients, meant that I first

investigated the simple case where both morphs have the same carrying capacity and there

are neutral interactions (mee = med = mde = mdd = 1/K).

Initially simulations were carried out with no mutation between morphs. In this case both

coexist neutrally at equilibrium, however, during an invasion whichever morph has the

faster invasion speed in isolation will invade the empty landscape and reach its carrying
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Figure 2.1: Parameter regions where each invasion speed occurs. The area between each of the

curves (given by Eqns. (2.14) and (2.15)) and the axes is where the polymorphic invasion occurs

at approximately the same monomorphic speed as one of the phenotypes. The area above the

curves is where the polymorphic invasion occurs faster than either monomorphic invasion, with

the shading from white to grey representing the extent to which the polymorphic invasion is faster.

(a), (b) and (c) show the parameters used in Fig. 2.3. The area where the ratio of the net growth

rates and dispersal rates is less than one is not shown in this figure because that region of parameter

space violates my assumption of net growth rate of establisher > net growth rate of disperser and

dispersal rate of disperser > dispersal rate of establisher. If there were a trade-off in only one

of the traits, for example, if both morphs have the same net growth rate but different dispersal

rates then the ratio of growth rates would be 1, and so the invasion would follow the speed of the

disperser. Similarly if the morphs only differed in their net growth rate then the invasion would

follow the speed of the establisher.
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Figure 2.2: Invasion profile when there is no mutation between phenotypes. At the start of the

simulation half of the landscape was filled with both morphs, each at half of the carrying capacity,

and the other half of the landscape was unoccupied. This is an example of the case where the

establisher morph (solid line) has the fastest single invasion speed, and so this phenotype invades

through the landscape and the disperser morph (dotted line) remains in its initial location. (a)

represents t=0, (b) t=200, and (c) t=400. The parameter values used for this simulation were

K = 1, re = 0.8, rd = 0.2, Dd = 0.6, De = 0.4.

capacity (Fig. 2.2). The interface between coexistence of phenotypes and dominance of

the faster morph moves very slowly (Fig. 2.2).

I found that the addition of a small amount of mutation between phenotypes allows both

morphs to coexist during an invasion. Again, I initially looked at the simple case of

symmetrical mutation between morphs. Here the three different invasion speeds that were

found analytically are observed (Fig. 2.3). These three invasion speeds occur as a result of

differences in the dispersal and establishment abilities of the two phenotypes. When the

dispersal abilities of the disperser and establisher are similar but the population growth

rate of the establisher is much higher than that of the disperser, the invasion occurs at the

speed of the establisher (Fig. 2.3a). When the population growth rates of each morph are



37

similar but the dispersal rate of the disperser is much higher than the dispersal rate of the

establisher, the invasion occurs at the speed of the disperser (Fig. 2.3b). However, when

there is a big difference between the two phenotypes in terms of both their dispersal and

establishment abilities, the invasion occurs faster than either single morph (Fig. 2.3c).

The analysis predicts that the carrying capacity and mutation rate do not affect the

invasion speed. To check this, simulations were also carried out with different mutation

rates between morphs (Fig. 2.4i), non-neutral interactions (Fig. 2.4ii), and non-neutral

interactions with different mutation rates and different carrying capacities (Fig. 2.4iii). It

was found, as was predicted, that none of these parameters has an effect on the invasion

speed, although they could change the shape of the invasion profile. It is only the morphs’

population growth rates and dispersal abilities that were found to affect the species’

invasion speed.

2.3.3 Investigating the effect of the mutation rate on the invasion speed

The invasion speeds found from numerical simulations where µ = 0.001 are compared to

the analytical predictions in the limit µ→ 0 in Fig. 2.5. These two different measurements

of the invasion speed can be seen to agree, suggesting that the mutation rate does not have

a big effect on the speed observed. To quantify this effect I have analytically investigated

whether the speed changes with different µ, by expanding Eqn. (2.9) to the lowest non-

trivial order in µ. This is done to obtain a more accurate estimate of q2. To do this I have

let q2 = α, and have assumed, as I have previously, that the mutation rates are small but

not necessarily the same, and so have substituted µe = eµ and µd = dµ into Eqn. (2.9). I

then carry out a perturbation expansion, by substituting an expansion of the form

α = α0 + µα1 + µ2α2 + . . . ,

into Eqn. (2.9) up to order µ.

Equations are then generated by equating coefficients of powers of µ on the left and right
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Figure 2.3: Invasion profiles of the establisher morph (solid line) and disperser morph (dashed line)

when present in the landscape on their own (rows (i) and (ii)), and when mutation allows both to

be present (row (iii)). Row (iv) shows the same data as row (iii), but the invasion waves are shifted

by (speed) times (time) to illustrate that the wave maintains its shape as it travels. The simulations

were initiated with the first 100 cells occupied by each phenotype at its equilibrium population

density and the remaining cells unoccupied. The simulations were run on a lattice consisting of

8000 cells, using a space increment of 0.1. For all graphs each line represents the density profiles

at a different time point, shown by the different shades of grey, with each time point 500 units

apart. In column (a) the polymorphic invasion speed is the same as the monomorphic establisher

speed; in column (b) the polymorphic invasion speed is the same as the monomorphic disperser

speed, and in (c) the polymorphic invasion speed is faster than either monomorphic invasion. For

all simulations K=1, µ=0.001, and in (a) re=0.8, rd=0.2, Dd=0.6, De=0.4; (b) re=0.6, rd=0.4,

Dd=0.9, De=0.2; (c) re=1.1, rd=0.2, Dd=1.5, De=0.3.
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Figure 2.4: Invasion profiles showing that invasion speeds are the same when (i) morphs

have asymmetrical mutation rates, (ii) there is non-neutral competition and (iii) morphs have

asymmetrical mutation, non-neutral competition and different carrying capacities. The simulations

were initiated with the first 100 cells occupied by each phenotype at its equilibrium population

density and the remaining cells unoccupied. The simulations were run on a lattice consisting of

8000 cells, using a space increment of 0.1. For all graphs each line represents the density profiles

at a different time point, shown by the different shades of grey, with each time point 500 units

apart. In column (a) the polymorphic invasion speed is the same as the monomorphic establisher

speed; in column (b) the polymorphic invasion speed is the same as the monomorphic disperser

speed, and in (c) the polymorphic invasion speed is faster than either monomorphic invasion. For

all the simulations the parameters used are the same as in Fig. 2.3 apart from in (i) have that

µe=0.001 and µd=0.00025, in (ii) αde=0.8, αed=0.7, where α is the competition coefficient, and

in (iii) have both the parameters used in (i) and (ii) and additionally Ke=1.2 and Kd=1.
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hand sides of the equation. First coefficients of µ0 are found to be given by:

µ0 : (Dd −De)
2(Dd +De)

2α4
0 − 2(Dd −De)(Dd +De)

2(re − rd)α3
0

− 2(Dd −De)
2(Dd +De)(re + rd)α

3
0 + (Dd −De)

2(re + rd)
2α2

0

+ 4(Dd −De)(Dd +De)(re − rd)(re + rd)α
2
0 + (Dd +De)

2(re − rd)2α2
0

− 2(Dd −De)(re − rd)(re + rd)
2α0 − 2(Dd +De)(re − rd)2(re + rd)α0

+ (re − rd)2(re + rd)
2

= (Dd −De)
4α4

0 − 2(Dd −De)
2(re − rd)2α2

0 + (re − rd)4.

This can be factorised to give:

(
re − rd − α0(Dd −De)

)2(
re + rd − α0(Dd +De)

)2

=
((
re − rd − α0(Dd −De)

)(
re − rd + α0(Dd −De)

))2

.

Taking the square root of both sides of this equation gives Eqn. (2.10) with α0 = q2. This

therefore gives the same three values of q2 as when I took the limits µe → 0 and µd → 0.

Now equating terms of order µ on the left and right hand sides of the equation gives:

µ : α1

(
2(Dd −De)

2(Dd +De)
2α3

0 − 3(Dd −De)(Dd +De)
2(re − rd)α2

0

+ 3(Dd −De)
2(Dd +De)(re + rd)α

2
0 + (Dd −De)

2(re + rd)
2α0

+ 4(Dd −De)(Dd +De)(re + rd)(re − rd)α0 + (Dd +De)
2(re − rd)2α0

− (Dd −De)(re − rd)(re + rd)
2 − (Dd +De)(re − rd)2(re + rd)

)
+ (Dd −De)

2(Dd +De)(d+ e)α3
0 − (Dd −De)(Dd +De)

2(d− e)α3
0

+ 2(Dd −De)(Dd +De)(re − rd)(d+ e)α2
0 − (Dd −De)

2(re + rd)(d+ e)α2
0

+ 2(Dd −De)(Dd +De)(re + rd)(d− e)α2
0 + (Dd +De)

2(re − rd)(d− e)α2
0

+ 2(Dd −De)(re − rd)(re + rd)(d+ e)α0 − (Dd −De)(re + rd)
2(d− e)α0

− 2(Dd +De)(re − rd)(re + rd)(d− e)α0 + (Dd +De)(re − rd)2(d+ e)α0

− (re − rd)2(re + rd)(d+ e) + (re − rd)(re + rd)
2(d− e)

= 2(Dd −De)
4α3

0α1 − (Dd −De)
2(re − rd)(d− e)α2

0

− 2(Dd −De)
2(re − rd)2α0α1 + (re − rd)3(d− e).

To calculate α1, each α0 needs to be substituted into this equation. Substituting
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α0 = re−rd
Dd−De

into this equation, gives:

3(Dd +De)(re + rd)α1 + (re − rd)
2(Dd +De)(d+ e) + (Dd −De)(d− e)

Dd −De

= 0,

giving:

α1 = −(re − rd)(3dDd + dDe + eDd + 3eDe)

3(Dd −De)(Dd +De)(re + rd)
.

Since I am assuming that Dd > De and re > rd, this means that α1 will always be

negative. Therefore, assuming that q2 = α = α0 + µα1, means that the addition of µ will

always make q2 smaller, and hence the invasion speed v slower.

Substituting α0 = re
De

and α0 = rd
Dd

into this equation give long equations for α1, and so

to reduce the number of parameters I make the additional substitutions e = xd, re = rrd

and Dd = DDe, where x > 0, r > 1 and D > 1. Then for α0 = re
De

, I get:

α1 =
−d
2De

(
r3(3D2 + 2D − 2)− r2(3D2 + 2D + 4) + 9r − 3

r3(4D3 − 7D2 +D + 3) + r2(3D3 − 2D2 − 3D − 1) + r(4−D)− 1

+
x
(
r3(2D3 − 3D2 + 6D − 6) + r2(−3D2 + 2D + 4)− r(2D + 1) + 1

)
r3(4D3 − 7D2 +D + 3) + r2(3D3 − 2D2 − 3D − 1) + r(4−D)− 1

)
, (2.16)

and for α0 = rd
Dd

, I get:

α1 =
−d

2DDe

(
−D3r3 + r2(D3 + 2D2) + r(−4D3 − 2D2 + 3D) + 6D3 − 6D2 + 3D − 2

D3r3 + r2(−4D3 +D2) + r(D3 + 3D2 + 2D − 3)− 3D3 −D2 + 7D − 4

+
x
(
3D3r3 − 9D3r2 + r(4D3 + 2D2 + 3D) + 2D3 − 2D2 − 3D

)
D3r3 + r2(−4D3 +D2) + r(D3 + 3D2 + 2D − 3)− 3D3 −D2 + 7D − 4

)
.

(2.17)

It is not obvious just from looking at these two equations whether α1 will be negative or

positive, and so I numerically investigated the signs of these two equations by drawing

contour plots of the terms inside the brackets of each equation. This revealed that in the

region of parameter space that I am interested in, so below curve (2.15) for Eqn (2.16),

and below curve (2.14) for Eqn. (2.17), these equations for α1 will always be negative.

This shows that the addition of mutation between morphs will always result in slower

speeds than predicted using Eqns. (2.11-2.13).

I have also numerically solved Eqn. 2.9 for µ = 0.001 for the case where q2 = re−rd
Dd−De

,

which is shown in Fig. 2.5. It can be seen from this figure that even when the mutation rate

is 1
100

, which is larger than would be realistically expected in most organisms (Falconer,
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1989), the change in speeds when mutation between morphs is included is minuscule.

This suggests that using Eqns. (2.11-2.13) to calculate the invasion speeds give a very

good approximation.

2.4 Discussion

This study investigated the effect that the presence of two dispersal phenotypes has on

the invasion speed of a species. I found that if there were differences in both the morphs’

establishment and dispersal abilities then the invasion speed can be faster than the speed

of either morph on its own. This effect becomes significant when both traits differ by a

factor of two or more, and for reasonable parameter values the combined invasion speed

can be up to twice as fast as either monomorphic speed. It was found that this effect

persists when the mutation rate between the morphs tends to zero, which is surprising

because in this case each morph has a minuscule effect on the other morph in the leading

edge of the invasion front. This effect has been shown to be robust to the other parameters

in the system, such as non-neutral interactions and differences in mutation rates.

Mathematically, there is no reason to expect that the invasion speed of a community

of phenotypes should follow the speed of any particular phenotype. It has been shown

that in both cooperative and competitive two-species models there are conditions which

allow both species to invade at the same speed (Lewis et al., 2002; Weinberger et al.,

2002). Weinberger et al. (2007) have also observed that in strongly cooperative systems

anomalous spreading speeds can evolve. They found that in a model of a two-allele,

one-gene-locus diploid species, the presence of both homozygotes and heterozygotes

results in the homozygotes spreading at a faster speed than they do in the absence of

the heterozygotes, but which is also faster than the speed that the heterozygotes spread

at (Weinberger et al., 2007). However, this anomalous spreading speed was observed in

a system where there is strong cooperation between phenotypes. In this model I found

that anomalous speeds persist when mutation between morphs is vanishingly small, and

so have shown that faster speeds can be observed in competing systems where there is

effectively no cooperation.

In this study, the analytical method of van Saarloos (2003) gave values for the invasion

speed that agreed with the numerical predictions. This model is quite generic and so

it is expected that the phenomenon of anomalous invasion speeds will occur in a wide

variety of systems. This is because the method used to predict the invasion speed is
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Figure 2.5: Comparison of analytical and numerical predictions of the invasion speed when

polymorphism results in faster invasions than either single morph. The curve represents the

analytical predictions of the invasion speed in the limit µ → 0 given by Eqn. (2.13). The

crosses represent numerical predictions calculated numerically using Eqn. (2.9), and the circles

the numerically integrated predictions, when µ = 0.001 using a space increment of 0.1. Parameter

values used were rd = 0.3, Dd = 1, De = 0.2 and K = 1. For the analytical prediction re was

varied and for the numerical simulations the values of re used were 0.6, 1, 1.4, 1.8 and 2.2.
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appropriate for any model with ‘pulled’ wavefronts (van Saarloos, 2003), and its results

depend solely on the linearised behaviour of the partial differential equation close to the

unstable equilibrium. Clearly, there will be many different systems of reaction-diffusion

equations which have the same linearised form at low density, so it would be expected

that polymorphism should affect invasion speeds in a very wide class of problems.

For instance, in metapopulations the colonisation process is local but depends on the

availability of habitat (Jansen and Vitalis, 2007), which in a spatial model would lead to

a nonlinear diffusion term (Ovaskainen and Cornell, 2006). I have studied numerically

and analytically invasive waves for two competing morphs in a spatial metapopulation

system, and since the nonlinearity in the diffusion term is unimportant at low densities,

the same invasion speeds as in the population model described in this chapter were found.

Having observed the faster invasion speed I was interested in whether the invasion is

occurring at the speed of a morph that is both a better disperser and better establisher.

Comparing the polymorphic speed vp with vb, a ‘best of both worlds’ morph, where vb =

2
√
reDd, it was found that 1

2
vb < vp < vb. The polymorphic wave speed is therefore

always slower than the ‘best of both worlds’ case. When anomalous invasion speeds

occur the species does benefit from having both good dispersers and good establishers

present at the front of the wave. However, the faster speeds are observed in the limit

where mutation tends to zero, and so the faster speeds are not occurring as a result of

mutation of morphs into each other at the invasion front. Mutation is required for the

travelling wave of invasion to occur, however, another mechanism other than mutation

that allowed both morphs to travel at the same speed would give the same results. More

complex dynamics are therefore resulting in anomalous invasion speeds.

These results suggest that polymorphism is an important factor that needs to be considered

when investigating species’ invasions, and so speeds should not be predicted by only

looking at the fastest single morph. In terms of the invasion of exotic species this

may be of concern if introduced species spread faster than expected threatening native

species. However, for species shifting their range as a result of climate change this may

be encouraging as it may mean that more species than previously thought will be able to

keep up with the rate of change.

Species may experience these faster range expansions as a result of both morphological

and behavioural differences in phenotype. For example, many flowering plants exhibit

seed polymorphism where large seeds remain near the site of the parent plant and small

seeds are wind dispersed to sites further away (Sorensen, 1978). These morphological
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differences may allow faster range expansions to occur. Species may also have different

dispersal strategies, such as the western bluebird, Sialia mexicana, where aggressive

males are more dispersive than non-aggressive males. It has been found that these two

phenotypes are maintained in populations as each are advantageous in different stages of

range expansions (Duckworth, 2008).

In insects that have wing polymorphism, where one morph is capable of flight and the

other is not, trade-offs between dispersal ability and reproductive ability are observed

(reviewed in Zera and Denno, 1997). The anomalous invasion speeds reported in this

chapter require both traits to differ by a factor of two, and so anomalous invasion speeds

would be expected if the growth rate of the flightless morph is more than twice that of the

winged morph, but otherwise the invasion would follow the speed of the disperser morph.

I have modelled the invasion here of a species where dispersal ability trades-off with

population growth rate. Although in some species, such as the speckled wood butterfly,

individuals with increased dispersal ability are less fecund and hence will have slower

population growth rates (Hughes et al., 2003), this trade-off is not always observed.

It has been suggested that because dispersal and reproductive rate are complex traits

it is unlikely that they will directly trade-off against one another, and that either may

actually trade-off against other traits (Phillips et al., 2010b). For example, Burton et al.

(2010) showed that dispersal and reproduction can trade-off with competitive ability when

invading into a landscape occupied by another species. If a competitor is present in the

expanding range it may therefore be that the trade-off required for faster invasions may

not occur, as investing more in competitive ability is more important for a species to

be able to expand its range. The relationship between dispersal and reproduction has

been found in some species to be positive, with for example, more dispersive cane toads,

Bufo marinus, having faster growth rates (Phillips, 2009), and more dispersive Glanville

fritillary butterflies, Melitaea cinxia, investing more in reproduction (Hanski et al., 2006;

Saastamoinen, 2007). The result of faster range expansions found using this model may

not be transferable to species such as these where there is no trade-off between dispersal

and establishment.

A general theory emerging from the literature is that during range expansions there is

evolution towards increased dispersal (Burton et al., 2010; Hughes et al., 2007; Kubisch

et al., 2010; Travis et al., 2009, 2010). There is also a view that spatial sorting can lead

to increased dispersal at the range edge, through fast-dispersing individuals dispersing

further and then random mating at the range edge of these individuals (Shine et al., 2011).
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While these results agree that having good dispersers at the invasion front allows the

population to invade faster, if there is a trade-off in dispersal and establishment ability

it is also important to have good establishers present. Indeed under some parameter

conditions, for example see Fig. 2.3c(iii), these results suggest that for faster speeds to

occur the density of good establishers at the invasion front is higher than the density of

good dispersers. During range expansions, these results suggest that establishment ability

(i.e. local population growth rate) is just as important as dispersal ability, and that there

will be selection for both to evolve.

These conclusions were made based on the results of a simple deterministic model in

which the landscape was modelled as one-dimensional and continuous. These simplifying

assumptions were made to make the model analytically tractable but in doing so have

made the model less realistic. Modelling using a simple deterministic approach can

sometimes give results that are an artefact of the model. Carrying out simulations of a

stochastic version of the model will help to determine if these results are robust, and will

give predictions for when these results are expected to occur. Stochastic simulations may

also help to further explain why faster invasions occur when there are differences between

the two phenotypes, and so this will be my next step in this research.

Species expanding their range as a result of climate change are likely to invade into

landscapes where the habitat is not continuous, and where there may be patches that

are unevenly spaced and of different quality (Travis and Dytham, 2002). Future work

investigating what impact this may have on species’ invasions may help more accurate

predictions for the rate of range expansions as a result of climate change to be made. Also

explicitly modelling a shifting climate would improve understanding of the effect that the

loss of suitable habitat at the rear of a species’ range has on invasions.

The structure of the landscape in terms of availability of habitat and its spatial distribution

is also an important factor that needs to be considered for species expanding their ranges.

The evolution of dispersal distances and dispersal polymorphism have been found to be

affected by landscape structure (Bonte et al., 2010). It has been predicted that as a result

of species having dispersal polymorphism there may be geographic variation in range

expansion speeds (Bonte et al., 2010). The results found in this chapter implying that

dispersal polymorphism can lead to faster range expansions may lead to even further

geographic differences.

In this model I have assumed perfect heritability of the dispersal trait, however, there

is increasing evidence that species responses to climate change can be plastic (reviewed



47

by Gienapp et al., 2008). Indeed it has been shown that spatial and temporal variation

in the environment can result in selection of different dispersal strategies as a result of

phenotypic plasticity (McPeek and Holt, 1992). If plasticity could result in differences

in morphs’ establishment and dispersal abilities then this could aid the range expansion

of species that are not genetically polymorphic. This could result in increased invasion

speeds for more species than would be predicted by the present model.

I have shown that the presence of two phenotypes can lead to unexpected results

for the speed of biological invasions. Not only can invasion speeds adapt due to

evolutionary selection of more invasive phenotypes, but polymorphism itself plays a role

in determining invasion speeds. It is hoped that these results motivate further research into

understanding the importance of dispersal polymorphism in determining shifting species’

ranges.
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3. Are anomalous invasion speeds robust to

demographic stochasticity?

3.1 Introduction

The range expansion of species either as a result of climate change or from the

introduction of exotic species has important consequences for conservation management.

There is increasing evidence that species are shifting their distributions as a result of

climate change (Chen et al., 2011; Hickling et al., 2006; Parmesan and Yohe, 2003; Root

et al., 2003), but predicting whether these species can keep up with the rate of change,

or whether, and by how much, they lag behind is a challenge. The introduction of exotic

species that then spread (Sakai et al., 2001), and especially those that become pests (Ziska

et al., 2011), can have important consequences for biodiversity (Gurevitch and Padilla,

2004). Being able to predict the rate at which they spread is key for minimising the

impact these species have on ecosystems.

The rate of spread of species’ invasions has long been investigated using simple

deterministic models (Fisher, 1937; Skellam, 1951). Since these early models more

complex techniques have been developed and used to model the spread of species.

These include new analytical methods such as integrodifference equations, and more

computational methods such as individual-based models (IBMs) which often incorporate

a greater number of parameters and include stochasticity (see Hastings et al., 2005;

Jongejans et al., 2008, for reviews of these developments). Deterministic models are

often used because they are elegant and give simple predictions. However, they do not

explicitly model individuals or consider random demographic events, and so stochastic

models are expected to give more realistic results which can be more useful when making

decisions for conservation management.

Predicting the speed of invasions of polymorphic species using simple deterministic

models has revealed that anomalous speeds, where the population invades faster than

either single phenotype, may be observed (Elliott and Cornell, 2012; Weinberger et al.,

2007). In Chapter 2 it was found that if there are differences in the dispersal and

establishment abilities of two morphs in a population, and there is mutation between

morphs, then faster rates of spread can occur than if there is only one morph present.



49

Surprisingly it was found that this effect persists when the mutation rate between morphs

tends to zero (Elliott and Cornell, 2012). The reason behind this is unclear because the

invasion speed is determined by what happens at low density, and in this limit the number

of individuals of the minority morph tends to zero. The question therefore arises as to

whether anomalous speeds occur as an artefact of the model, or if they are still present in

more complex models where there is the possibility that at low density only one morph

can be present at the invasion front. In this chapter a stochastic version of the model will

be developed in the hope that it will shed some light on the answer to this question.

The use of deterministic and stochastic models for predicting the rate of spread of species

has highlighted some important differences. In density independent models demographic

stochasticity does not generally slow invasions (Kot et al., 2004). This was also found by

Mollison (1991), who showed that linear stochastic models often give the same result as

deterministic models, and that speeds predicted using these provide an upper bound for

the more realistic nonlinear stochastic case. Incorporating demographic stochasticity into

density dependent models has provided further insight into whether stochasticity affects

invasion speeds (Clark et al., 2001; Lewis, 2000; Lewis and Pacala, 2000; Snyder, 2003).

These models reach varying conclusions with Snyder (2003) finding that the addition

of demographic stochasticity results in marginally slower invasions, and Clark et al.

(2001) finding that adding stochasticity can turn accelerating invasions into constant speed

invasions. Kot et al. (2004) also demonstrated that in contrast to the density independent

case, the combined effect of stochasticity and density dependence can slow invasions.

Travis et al. (2011) have also highlighted the importance of using both deterministic

and stochastic modelling approaches when predicting invasion speeds. They found

that although both models produced similar trends, their analytical model predicted

significantly higher speeds than their stochastic IBM (Travis et al., 2011). They found that

the greater the amount of stochasticity incorporated into the model, through increasing the

number of age classes, the greater the difference in the speed predicted by the two models.

Their results revealed that looking at both stochastic and deterministic models can help to

more accurately predict the speed at which a species expands its range.

A general result appearing in the literature is that incorporating demographic stochasticity

into density dependent models leads to slower invasion speeds. Based on these results

(Kot et al., 2004; Snyder, 2003; Travis et al., 2011) it may be expected that a stochastic

version of the dispersal polymorphism model developed in Chapter 2 has slower invasion

speeds than the deterministic version. If this is the case then it may be that anomalous
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speeds do not arise in stochastic models. In this chapter I investigate whether anomalous

speeds are preserved in a model incorporating demographic stochasticity using a discrete

time and space stochastic model. The model follows Chapter 2 so that there is a

polymorphic population with morphs that differ in their dispersal abilities. Numerical

simulations of this model are carried out in order to determine the invasion speed of the

population and to find the conditions (if any) under which anomalous speeds are produced.

3.2 Model

3.2.1 Derivation of the model

The model used is based on the work in Chapter 2 which looks at the invasion of a species

that has two dispersal phenotypes. This model uses partial differential equations (PDEs)

which were used because they are elegant and give simple results. In this chapter the

spatially-explicit general Lotka-Volterra model is adapted so that it is now discrete in

time and space. This is done because the stochastic equivalent of PDEs are complex and

it is more straightforward to make a link between deterministic and stochastic models that

are discrete rather than continuous. I will therefore first develop a discrete time and space

deterministic model, and then compare the results of this model to a stochastic discrete

time and space version.

The model has the same two phenotypes with mutation between morphs as in the model

in Chapter 2. The phenotypes differ in their dispersal and establishment abilities in the

following way. There is:

• an establisher morph, e, that after establishment has a higher growth rate but is a

poorer disperser; and

• a disperser morph, d, that has a lower growth rate after establishment but is a better

disperser.

The model simulates the invasion of these two morphs with discrete generations.

Population density of the species is denoted by Ni with i ∈ {e, d} representing density

of each morph. Population dynamics and dispersal then occur in discrete steps, so that

in each time step the order of events occurs as follows. First a fraction b of each morph

reproduces and produces offspring, with a fraction µ of these offspring being of the other
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phenotype. This gives the number of individuals of morph i 6= j at time t and position x

after recruitment to be

Bi(t, x) = (1 + b)Ni(t, x) + µb(Nj(t, x)−Ni(t, x)). (3.1)

A fraction of each morph then dies. A Ricker-like density dependence is assumed, which

gives the survival probability of morph i to be

Pi = exp [−m0
i −m1

i (Bi(t, x) +Bj(t, x))]. (3.2)

The number of individuals of morph i after the mortality step is then given by

Mi(t, x) = PiBi(t, x). (3.3)

Density dependence was chosen to act on mortality rather than birth rate because it

makes the calculations simpler, and it is expected that qualitatively similar results would

be obtained if density dependence acted on birth. Finally a fraction Di of each morph

disperses, so that the number of individuals of morph i that disperse is given by

Ñi(t, x) = DiMi(t, x). (3.4)

In the 1D case each morph disperses with equal probability to the left and right, and in

the 2D case with equal probability to the 8 neighbouring cells. This gives two discrete

time and space equations that represent the population dynamics and dispersal of a

polymorphic population. In 1D the iteration equation for morph i is therefore

Ni(t+ 1, x) = Mi(t, x)− Ñi(t, x) +
1

2
Ñi(t, x+ 1) +

1

2
Ñi(t, x− 1). (3.5)

3.2.2 Reparameterisation of the model

I reparameterise this model so that the parameters can be related to the continuous time

model in Chapter 2. This is so that the results of the two models can be more easily

compared, and to reduce the number of parameters that need to be varied in the discrete

model. To do this I first look at the non-spatial single morph model which is given by:

Ni(t+ 1) = (1 + b)Ni(t) exp(−m0
i −m1

i (1 + b)Ni(t)).
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For the purpose of this model I want the carrying capacityK to be fixed by the equilibrium

population density, and so calculate the equilibrium density N∗i by setting Ni(t + 1) =

N(t). This gives the equilibrium to be N∗i =
log(1+b)−m0

i

m1
i (1+b)

and so I then set K = N∗i .

The nonspatial version of the continuous model in Chapter 2 is given by dNi

dt
=

riNi

(
1− Ni

K

)
. To relate the population growth rate term to the parameters in the discrete

model it is assumed that when Ni is small there is exponential growth in one time step. It

can therefore be assumed thatNi << K, which givesNt = N0e
rit, whereN0 is the initial

population size and t is time. In the discrete model assuming Ni << K gives Nt = RtN0

where R = (1 + b)e−m
0
i . The continuous and discrete models can therefore be related by

R = eri , which gives ri = log(1 + b)−m0
i .

This reparameterisation gives ri = log(1 + b) − m0
i and K =

log(1+b)−m0
i

m1
i (1+b)

where ri is

the population growth rate and K the carrying capacity. In the full spatial model the

parameterDi is defined in the same way as in Chapter 2, and so parameter values used for

the dispersal rate in the two models are directly comparable. Simulations are then carried

out with different values of ri and Di to determine the effect each morphs’ dispersal and

establishment abilities have on the invasion speed.

3.2.3 Assumptions of the stochastic model

The stochastic version of the model is an individual-based model that uses the same mean

birth, death and dispersal rates as in the deterministic model. However, there are now

random demographic processes, and the number of individuals Ni(t, x) of morph i at

site x and time t is an integer. In the recruitment step, I assume that each individual

independently produces a Poisson-distributed number of offspring with mean b. Offspring

are assumed to have the same phenotype as their parent with probability 1 − µ, and

the other phenotype with probability µ. It is then assumed that each individual survives

(statistically independently) with probability given by Pi in Eqn. (3.2). Each individual

then independently chooses to disperse with probability Di. If an individual disperses

it moves with equal probability to a randomly chosen neighbouring site, and if not

remains at the same site. Since the sum of Poisson-distributed random variables also

has a Poisson distribution, and the sum of Bernoulli random numbers has a binomial

distribution (Derman et al., 1973), these individual-based processes can be implemented

in the model by generating Poisson-distributed pseudorandom numbers with mean given

byBi(t, x)−Ni(t, x) in Eqn. (3.1) for the total number of births of each morph at each site,

and using binomial distributed pseudorandom variables to generate the total number of
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individuals of each morph surviving (using probability Pi from Eqn. (3.2)) and dispersing

(using probability Di) at each site. This is formally equivalent to an individual-based

model, but much more computationally efficient than generating separate pseudorandom

numbers for each individual.

In the stochastic model I am interested in the effect that the carrying capacity of the

population, K, has on the invasion speed. It is expected that the stochastic model will

be most similar to the deterministic model at high carrying capacities, and that when

the carrying capacity is small stochasticity will have a bigger effect on the invasion

speed. This is because the population density at the invasion front, which is where the

invasion speed is determined (Snyder, 2003), will be lowest in this case so demographic

fluctuations will have a bigger effect. Simulations were therefore run with the carrying

capacity K ranging from K = 100 to K = 1014 whilst keeping the other parameters

constant, as a way of looking at how stochasticity affects the invasion speed.

In the stochastic case I am also interested in the effect that the mutation rate, µ, has on

the invasion speed. This is because mutation between morphs allows both morphs to

be present at the invasion front, and so the size of the mutation rate will influence the

numbers of the minority morph present at the front. In Chapter 2 I found the surprising

result that when the mutation rate is small, changing it has no effect on the invasion

speed. I therefore vary the mutation rate in both models in the present chapter to see if

the same results are observed. I predict that in contrast to the previous model changing

the mutation rate will affect the speed, in particular that the smaller the mutation rate the

bigger the effect that stochasticity will have on determining the invasion speed. This is

because when the mutation rate is smaller there will be fewer individuals of the minority

morph present at the front, and so fluctuations in population density are likely to have a

bigger effect on whether both morphs will be present in the leading edge of the invasion

wave.

3.2.4 Analysis

This model was analysed using both semi-analytical and numerical techniques. The

method of front propagation (van Saarloos, 2003) was used to calculate the invasion

speed for the deterministic model, this led to equations that were solved numerically.

Simulations of the deterministic and stochastic models were then carried out in R (R

Development Core Team, 2011), by simulating the invasion of an introduced species

into a previously unoccupied landscape on a lattice that in the 1D case has dimensions
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15000× 1 and in the 2D case 15000× 10.

The simulations were initialised with half the landscape occupied by the population at

its stable equilibrium density and half the landscape unoccupied. Reflecting boundary

conditions were used at the end of the lattices. These were implemented by assuming that

if an individual disperses out of the landscape it is reflected back in, and remains in the

cell where it began before the dispersal step. These simulations produced travelling waves

which rapidly approached a constant speed as the invasion progressed. The simulations

were run for 10 000 time steps which was sufficient to show that constant speed travelling

waves were produced. The invasion speed was estimated by plotting the density profiles

at different times and adjusting by eye the distance that the profiles needed to be displaced

in order to lie on top of each other. To check that the simulations had reached a constant

invasion speed these calculations were carried out at several time points.

Invasions were modelled on both a one and two-dimensional landscape because in

contrast to the deterministic case where there is no difference between the results, the

number of dimensions does matter in the stochastic case. In particular there are more

fluctuations in 1D, and so if anomalous speeds are observed in this case the results can

be considered to be robust. In addition carrying out simulations in 1D is computationally

cheaper than in 2D, and so most of the results presented will be in 1D, with 2D simulations

carried out to check that the same results are observed. Examples of the R code used in

the simulations are given in Appendix B, an example of both morphs dispersing in a 1D

landscape is given in Appendix B.1 and an example of a single morph dispersing in a 2D

landscape is given in Appendix B.2.

3.3 Results: Deterministic model

Deterministic simulations were first carried out to investigate how the invasion speed

varied with different parameter values. These results were then compared to those found

for the PDE model in Chapter 2. These simulations were carried out by iterating equations

(3.1-3.4) in R (R Development Core Team, 2011). Simulations were first carried out with

each morph present in the landscape on its own and then with both morphs present. The

simulations were carried out on both a 1 and 2D landscape, and as the same speeds were

observed in both, only the results from the 1D simulations are presented here.

I observe the same phenomenon as was found in the PDE model in Chapter 2; i.e. that

there are three possible wavespeeds (Fig. 3.1). These three invasion speeds occur as a
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result of differences in the dispersal and establishment abilities of the two phenotypes.

When the dispersal abilities of the disperser and establisher are similar but the population

growth rate of the establisher is much higher than that of the disperser, the invasion occurs

at the speed of the establisher (Fig. 3.1a). When the population growth rates of each morph

are similar but the dispersal rate of the disperser is much higher than the dispersal rate of

the establisher, the invasion occurs at the speed of the disperser (Fig. 3.1b). However,

when there is a big difference between the two phenotypes in terms of both their dispersal

and establishment abilities, the invasion occurs faster than either single morph (Fig. 3.1c).

The main difference observed between the continuous and discrete time models is that

with comparable parameter values all of the invasion speeds are slightly slower in the

discrete version. In particular the difference between the anomalous speed and the fastest

single morph speed is not as big. For example, for the parameter values used in Fig. 3.1c,

when both morphs are present the invasion speed is 1.24 times faster than the fastest single

morph, however, in the PDE model for the same ratio of dispersal and establishment rates

between morphs, the invasion speed is 1.38 times faster. This means that a population

consisting of two morphs with big differences in their establishment and dispersal abilities

does not have as significant an effect on the invasion speed. Nevertheless the invasion does

still occur faster than would be predicted from a single morph’s invasion speed.

3.3.1 Calculation of invasion speed

The front propagation method of van Saarloos (2003) was used to calculate the invasion

speed of this polymorphic population. Here the results of this method are presented for

the case where both morphs are present; the invasion speed was also calculated using

this method for the single morph cases but these results are not presented as they are

similar to the more complex two morph case. The general system of spatially uniform

equations has two equilibria: an unstable extinction state where (Ne, Nd) = (0, 0), and a

stable coexistence state which I will denote by (N∗e , N
∗
d ). The front propagation method

involves linearising the equations about the unstable steady state, which gives:

Ne(t, x) =e−m
0
e [(1 + b− µb)[(1−De)Ne(t, x) +

1

2
De(Ne(t, x+ 1) +Ne(t, x− 1))]

+ µb[(1−De)Nd(t, x) +
1

2
De(Nd(t, x+ 1) +Nd(t, x− 1))]], (3.6)



56

0

20

40

60

80

100

D
en

si
ty

 d
is

pe
rs

er
 (

d)
D

en
si

ty
 d

is
pe

rs
er

 (
d)

(a) Establisher faster

(i)

(b) Disperser faster (c) Anomalous speeds

0

20

40

60

80

100

Distance

D
en

si
ty

 e
D

en
si

ty
 e

st
ab

lis
he

r 
(e

)

(ii)

0 5000 10000 15000

0

20

40

60

80

100

D
en

si
ty

 e
 a

nd
 d

D
en

si
ty

 e
 a

nd
 d

(iii)

0 5000 10000 15000 0 5000 10000 15000

Position in landscape

Figure 3.1: Invasion profiles of the disperser morph (dashed line) and establisher morph (solid

line) when present in the landscape on their own (rows (i) and (ii)) and when mutation allows

both to be present (row (iii)). The simulations were initiated with the first 100 cells occupied by

each phenotype at its equilibrium population density and the remaining cells unoccupied. The

simulations were run on a lattice consisting of 15000 cells. For all graphs each line represents

the density profiles at a different time point, with each time point 500 units apart. In column

(a) the polymorphic invasion speed is the same as the monomorphic establisher speed, in column

(b) the polymorphic invasion speed is the same as the monomorphic disperser speed, and in (c)

the polymorphic invasion speed is faster than either monomorphic invasion. For all simulations

K = 100, µ = 0.01, and in (a) re = 0.8, rd = 0.2, Dd = 0.6, De = 0.4; (b) re = 0.6, rd = 0.4,

Dd = 0.8, De = 0.2; (c) re = 0.8, rd = 0.14, Dd = 0.8, De = 0.1.
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Nd(t, x) =e−m
0
d [(1 + b− µb)[(1−Dd)Nd(t, x) +

1

2
Dd(Nd(t, x+ 1) +Nd(t, x− 1))]

+ µb[(1−Dd)Ne(t, x) +
1

2
Dd(Ne(t, x+ 1) +Ne(t, x− 1))]]. (3.7)

Here it is assumed that the speed calculated using the linear system (3.6) and (3.7) also

applies to the nonlinear system (3.1-3.4). This linear speed is known to be a lower bound

of the invasion speed but it is not always exact (Weinberger et al., 2002). These results

are therefore compared to those found from the numerical simulations to check that this

linear conjecture is valid.

Using these linearised equations, and following van Saarloos (2003), I substitute Ne

Nd

 ∝

 ne

nd

 exp(−iω(k)t + ikx), where ω(k) is the dispersion relation of

Fourier modes of the linearised equations (3.6), (3.7), and k is the spatial wavenumber.

This gives the equations:

[e−m
0
e [(1 + b−µb)(1−De +De cos k)]− e−iω(k)]ne + e−m

0
eµb(1−De +De cos k)nd = 0,

(3.8)

e−m
0
dµb(1−Dd+Dd cos k)ne+[e−m

0
d [(1+ b−µb)(1−Dd+Dd cos k)]−e−iω(k)]nd = 0.

(3.9)

This leads to an eigenvalue problem, with solutions

ω(k) = i[log[(1+b−µb)[e−m0
e(1−De+De cos k)+e−m

0
d(1−Dd+Dd cos k)]±R]−log 2],

(3.10)

whereR2 = [(1+b)2−2µb(1+b)][e−m
0
e(1−De+De cos k)−e−m0

d(1−Dd+Dd cos k)]2+

µ2b2[e−m
0
e(1−De +De cos k) + e−m

0
d(1−Dd +Dd cos k)]2. This implies

dω(k)

dk
= i

(
−(1 + b− µb)(e−m0

eDe sin k + e−m
0
dDd sin k)± dR

dk

(1 + b− µb)[e−m0
e(1−De +De cos k) + e−m

0
d(1−Dd +Dd cos k)]±R

)
.

(3.11)

The wave speed is then calculated by finding k∗, where k∗ is the linear spreading point

(van Saarloos, 2003), such that

dω(k∗)

dk∗
=
=ω(k∗)

=k∗
, (3.12)

where = denotes the imaginary part. These equations represent a biological invasion so

ne and nd cannot be negative, so I can deduce that k∗ is purely imaginary. I can then

assume k∗ = iq with q real, which I substitute into (3.12). The realised wavespeed is
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obtained by finding the real solution q that corresponds to the largest speed v = =ω(iq)
q

(van Saarloos, 2003). Substituting into Eqn. (3.12) gives an equation which cannot be

solved analytically. I therefore solve this numerically and then calculate the invasion

speed v using this value of q.

I find that this analytical method does give the same invasion speed that I found using the

numerical simulations, as can be seen in Fig. 3.2. This suggests that the linear conjecture

does give the correct wave speed for the full non-linear model and that the numerical

simulations give accurate predictions.

3.4 Results: Stochastic model

I next investigated what effect demographic stochasticity has on the invasion speed. A

version of the model that includes demographic stochasticity was set up in the way

described in the Model section. The model was then simulated in the same way as the

deterministic model, with simulations run on both a one and two dimensional landscape.

I ran 10 replicates of each simulation, which proved to be a sufficient number as there

was little variation between repeats, as can be seen by the small error bars in Fig. 3.3. For

the stochastic simulations the effect that the carrying capacity of the population has on

the invasion speed was investigated, as it is known that stochasticity has a bigger effect at

low population densities. I was therefore also interested in whether there was a threshold

population size for stochasticity to no longer have an effect on the invasion speed, and so

larger populations than would be realistically expected were investigated to show that the

stochastic model converged to the deterministic model.

It was found that for all parameter values having a small carrying capacity results in the

invasion occurring slower than the deterministic prediction. Demographic stochasticity

does therefore result in slower invasions as has previously been found (Snyder, 2003;

Travis et al., 2011). However, I found that as the carrying capacity of the population

increases, the invasion speed also increases approaching the deterministic speed (Fig. 3.3).

The stochastic model does therefore behave like the deterministic model when the

population is big enough.

The same pattern as in the deterministic model was found in that when the dispersal

abilities of the disperser and establisher are similar, but the population growth rate of

the establisher is much higher than that of the disperser, the invasion follows the speed

of the establisher (Fig. 3.3a). Also when the population growth rates of each morph are
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Figure 3.2: Comparison of analytical and numerical predictions of the invasion speed when

polymorphism results in faster invasions than either single morph. The circles represent numerical

predictions calculated from simulations, and the curve numerical predictions found using the van

Saarloos (2003) method. Parameter values used were rd = 0.1, Dd = 0.8, De = 0.15, K = 100,

µ = 0.01 and the values of re used for the numerical simulations were 0.5, 0.6, 0.7, 0.8 and 0.9.
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Figure 3.3: Comparison of stochastic and deterministic invasion speeds at different carrying

capacities. The filled symbols represent the deterministic prediction and the empty symbols the

stochastic predictions. The triangle represents the establisher morph’s speed, the crosses the

disperser morph’s speed and the circles the invasion speed when both morphs are present. The

error bars show 1 standard error of the mean. In (a) the polymorphic invasion speed is the same

as the monomorphic establisher speed, in (b) the polymorphic invasion speed is the same as the

monomorphic disperser speed, and in (c) the polymorphic invasion speed is faster than either

monomorphic invasion at high K. Parameter values used in (a) and (b) are the same as in Fig. 3.1

(a) and (b), and in (c) the parameter values used were re = 1, rd = 0.2, Dd = 0.9, De = 0.2 and

µ = 0.01 with K ranging from K = 100 to K = 1014.
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similar, but the dispersal rate of the disperser is much higher than the dispersal rate of the

establisher, the invasion follows the speed of the disperser (Fig. 3.3b). In the case where

there is a big difference between the two phenotypes in terms of both their dispersal and

establishment abilities, I find that at the lower carrying capacities the invasion follows

the speed of the faster morph. However, there is a threshold carrying capacity where

the invasion starts to be faster than the monomorphic speed, and as the carrying capacity

increases further this increases to approach the anomalous deterministic speed (Fig. 3.3c).

For simulations carried out in 2D it was found that the invasion speed evolved to follow

the same three possible scenarios (Fig. 3.4). In this case the stochastic speed approaches

the deterministic speed at lower carrying capacities than was found in 1D, and so behaves

like the deterministic model at lower population densities. As these results were found to

follow the same pattern as in 1D, the simulations for the remainder of this chapter were

performed in 1D.

I investigated how the mutation rate affects the threshold value for anomalous invasion

speeds to occur for the case observed in Fig. 3.3c. It was found that the higher the mutation

rate, the lower the threshold carrying capacity is for anomalous invasion speeds to occur

(Fig. 3.5). High mutation rates (µ = 0.05 and µ = 0.1) result in anomalous invasion

speeds even when the carrying capacity is very low (K = 100). Smaller mutation rates

(µ = 0.001 – µ = 0.01) do not result in anomalous invasion speeds until the carrying

capacity is much higher. This is in contrast to both the continuous and discrete

deterministic models where it was found that mutation rate had no effect on the invasion

speed. This suggests that a higher mutation rate allows the morphs to keep up with each

other better at the front of the invasion wave. A higher mutation rate therefore means that

there are more of the morph that is at lower density present at the invasion front, which

in this case is the disperser morph, and so there are more good dispersers along with the

good establishers present at the front which results in faster invasions particularly when

the carrying capacity is lower.

I then investigated whether the invasion speed changed if there was no longer a

symmetrical mutation rate between morphs. I was interested in whether having more

mutation into one morph than the other has an effect the invasion speed. For example, it

may be predicted that if the mutation rate from the establisher morph into the disperser

morph is higher, then there would be faster invasions as this would result in a higher

number of dispersers present at the invasion front. However, this was not found to be the

case, as Fig. 3.6 shows, the higher symmetrical mutation rate (µ = 0.01) gives the fastest
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Figure 3.4: Comparison of stochastic and deterministic invasion speeds for simulations carried

out in 2D. The filled symbols represent the deterministic prediction and the empty symbols the

stochastic predictions, where these were calculated by averaging the population density across the

rows of the lattice and then using the same method as in 1D. The triangle represents the establisher

morph’s speed, the crosses the disperser morph’s speed and the circles the invasion speed when

both morphs are present. In (a) the polymorphic invasion speed is the same as the monomorphic

establisher speed, in (b) the polymorphic invasion speed is the same as the monomorphic disperser

speed, and in (c) the polymorphic invasion speed is faster than either monomorphic invasion.

Parameter values used for re, rd, µ and K are the same as in Fig. 3.3(a-c), with in (a) de = 0.53,

dd = 0.8, in (b) de = 0.26, dd = 0.93 and in (c) de = 0.186, dd = 0.93.
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Figure 3.5: Comparison of invasion speeds with different values of µ. The parameter values are the

same as in Fig. 3.3(c) with the value of µ varied from µ = 0.001 (crosses), µ = 0.005 (diamonds),

µ = 0.01 (circles), µ = 0.05 (plus) and µ = 0.1 (triangles point down). The filled circle represents

the polymorphic deterministic speed which is the same for all mutation rates. The triangles point

up represent the fastest single morph’s speed, which here is the establisher, with the filled triangle

the deterministic speed.
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Figure 3.6: Comparison of invasion speeds with asymmetrical mutation rates between morphs.

The parameter values are the same as in Fig. 3.5 with the crosses representing the symmetrical

mutation rate µ = 0.001 and the plus the symmetrical rate µ = 0.01. Asymmetrical mutation

rates are given by the circles and triangles. The circles represent µe = 0.01 and µd = 0.001 so

more mutation from the establisher morph into the disperser morph, and the triangles represent

µe = 0.001 and µd = 0.01 so more mutation from the disperser morph into the establisher morph.

invasion speed, with the lower symmetrical mutation rate (µ = 0.001) giving the slowest

speed. The asymmetrical mutation rates were found to result in invasion speeds that

lay between the symmetrical lower and upper mutation rates used. The fastest invasion

speeds are therefore found with high symmetrical mutation rates, again suggesting that

it is important for there to be both good establishers and good dispersers present at the

invasion front for anomalous speeds to be observed.

I also investigated what happens if different parameter values are used so that the

trade-off between the morphs’ establishment and dispersal abilities means that the two

morphs’ monomorphic speeds are similar. Here I find that when both morphs are present

anomalous invasion speeds are observed from lower carrying capacities. For µ = 0.001

the lowest mutation rate investigated, I find that anomalous speeds can be observed from a
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Figure 3.7: Anomalous invasion speeds when individual morph speeds are similar. The triangles

represent the establisher morph’s speed, the crosses the disperser morph’s speed and the circles the

invasion speed when both morphs are present with µ = 0.001, the plus when µ = 0.005 and the

diamonds when µ = 0.01. The filled symbols represent the deterministic speeds. Parameter values

used were re = 0.56, rd = 0.13,Dd = 0.8,De = 0.15 andK ranges fromK = 100 toK = 1013.

carrying capacity ofK = 104 (Fig. 3.7), whereas for the parameter values used in Fig. 3.3

anomalous speeds were not observed at this mutation rate until K = 1011. For higher

mutation rates µ = 0.005 and µ = 0.01, anomalous speeds are observed from even lower

carrying capacities (K = 1000 and K = 100 respectively).

3.4.1 Density profiles at the invasion front

The conditions under which anomalous invasion speeds are observed were then

investigated by numerically exploring the density profiles. Typically it was found that

when anomalous speeds occur the establisher morph is at higher densities just behind the

invasion front, but in the leading edge the disperser morph is at higher density (Fig. 3.8).
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This is in contrast to the case where the invasion follows the speed of either the establisher

or disperser, as here whichever is the faster morph in isolation is at higher density in

the leading edge (Fig. 3.9). As can be seen in Fig 3.8, the qualitative pattern is that as

the carrying capacity gets higher, and so there are higher densities of both morphs at

the invasion front, anomalous speeds are observed. For anomalous speeds to occur it

is therefore important for both establishers and dispersers to be present at high enough

densities at the invasion front.

However this is not always the case, as Fig. 3.8a shows, there are some cases where as

the carrying capacity is increased, and so there is a higher density at the invasion front,

anomalous speeds are not observed until the carrying capacity becomes even bigger. For

example, for the parameter values used in Fig. 3.8a, anomalous speeds are not observed

until carrying capacities in the order of K = 1011, however, both morphs are at high

densities with the disperser at the highest density in the leading edge from a carrying

capacity of K = 108. It is therefore difficult to determine what exact conditions are

required for these speeds, and as yet I have been unable to do so. As can be seen though

the phenomenon described above, where there is a switch in the morph that is at higher

density at the invasion front, does seem to be a necessary condition for anomalous speeds

to occur although it does not always result in them.

3.5 Discussion

In this chapter I have investigated what effect the presence of two dispersal phenotypes

has on a species’ invasion speed, using both a deterministic and stochastic discrete time

and space model. It was found that if the morphs differ in both their dispersal ability and

growth rate, then the invasion speed can be faster than the speed of either morph on its

own. It has been shown that anomalous invasion speeds persist in a model incorporating

demographic stochasticity. Primarily anomalous invasion speeds were found to depend

upon a high mutation rate and high carrying capacity (see Fig. 3.5). However, if the

establisher and dispersers monomorphic speeds were similar, anomalous invasion speeds

were observed at lower mutation rates and carrying capacities (see Fig. 3.7).

This model agrees with previous models that adding demographic stochasticity results

in slower invasion speeds, with the deterministic speed predicting an upper bound for

the stochastic speed (Lewis, 2000; Mollison, 1991; Snyder, 2003). Travis et al. (2011)

showed that the greater the amount of stochasticity, the bigger the difference in the speeds
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Figure 3.8: Comparison of population densities at the invasion front for the case where anomalous

speeds occur. Loge(population density) for the front 50 cells occupied by the population at time

t = 8000 is plotted, where the solid line is the establisher morph and the dashed line the disperser

morph. In (a) µ=0.001 and here anomalous speeds were only found for carrying capacity (iv),

however the disperser is at a higher density from (iii) (see Fig. 3.5 for details of when anomalous

invasion speeds are observed). In (b) µ=0.01 and anomalous speeds occur from carrying capacity

(iii), which is the first time the disperser is at higher density at the invasion front. In (c) anomalous

speeds occur from (i) and the disperser morph is at higher density for all carrying capacities.

Parameter values used are the same as in Fig. 3.5.
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Figure 3.9: Comparison of population densities at the invasion front, where in (a) when both

morphs are present the invasion follows the speed of the establisher morph, and in (b) the invasion

follows the speed of the disperser morph. Loge(population density) for the front 50 cells occupied

by the population at time t = 8000 is plotted, where the solid line is the establisher morph and the

dashed line the disperser morph. In (a) the establisher morph is at higher density at the invasion

front for all carrying capacities and in (b) the disperser morph is at higher density for all carrying

capacities. Parameter values used are the same as in Fig. 3.3.
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predicted by their deterministic and stochastic models. These results also demonstrate

this as I have shown that as the carrying capacity of the population increases, and hence

the degree of stochasticity in the model decreases, the difference between the two speeds

is smaller, with the stochastic speed tending towards the deterministic one.

These results suggest that for anomalous invasion speeds to occur both morphs need to

be present in the leading edge at high enough densities. Higher mutation rates and higher

carrying capacities both mean that the rarer morph will be present at the invasion front in

higher densities. Numerically exploring the density profiles at the invasion front suggests

that this is the case (see Fig. 3.8). Anomalous invasion speeds were only observed when

there was a trade-off between the two morphs’ dispersal and establishment abilities, and

when both were present at high densities in the leading edge. However, in some cases

anomalous speeds were not found to occur when these conditions were all satisfied (e.g.

Fig. 3.8a). The emergent phenomena of anomalous invasion speeds observed here must

occur as a result of the establisher and disperser morphs being at high density in the

leading edge. However, so far a quantitative criterion to predict exactly when anomalous

invasion speeds are expected to be observed in the stochastic model has not been found.

At low mutation rates the carrying capacity required for the population to invade faster

than either single morph is typically high – higher than the carrying capacity of many

species. For example, despite some species exhibiting differences in their establishment

and dispersal abilities, such as the western bluebird, Sialia mexicana, which has morphs

with different dispersal behaviours (Duckworth, 2008), and flowering plants which exhibit

seed polymorphism (Sorensen, 1978), these examples will not have populations with large

enough carrying capacities to observe anomalous speeds. For low mutation rates the

carrying capacity needs to be in the order of 104 − 1011 for faster speeds to be observed.

Adding demographic stochasticity to the model does therefore rule out a large number of

species that may exhibit these anomalous invasion speeds.

There are, however, species that have very large populations, in particular populations

with carrying capacities in the order of 104 may realistically expect to be found, and

so it may be that anomalous invasion speeds are observed for species such as these.

For example, many insect species exhibit trade-offs in their establishment and dispersal

abilities through wing polymorphism (reviewed in Guerra, 2011; Zera and Denno, 1997),

and also have very large population densities. In particular anomalous invasion speeds

may be expected to be observed in insects such as crickets (Roff et al., 1999), planthoppers

(Langellotto et al., 2000) and aphids (Braendle et al., 2006) to name a few. Anomalous
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invasion speeds may also be observed in other taxa, for example, microorganisms can

have very large population sizes, and some species of protists have been found to have

trade-offs in their dispersal and establishment abilities (Fjerdingstad et al., 2007).

As was discussed in Chapter 2, an assumption of this model is that dispersal ability trades-

off with population growth rate. It is known that this assumption applies to some species,

such as the insects discussed previously and others such as the speckled wood butterfly,

Pararge aegeria, (Hughes et al., 2003). However other species such as Glanville fritillary

butterflies, Melitaea cinxia, (Hanski et al., 2006; Saastamoinen, 2007) and cane toads,

Bufo marinus, (Phillips, 2009) show positive relationships between dispersal and growth

rate. Anomalous invasion speeds are therefore unlikely to be observed in these species

where there is no trade-off between dispersal and establishment.

The stochastic model developed in this chapter highlights that bigger trade-offs are more

likely to result in anomalous invasion speeds, as these speeds are observed at lower

carrying capacities and at lower mutation rates when the individual morph’s invasion

speeds are similar (see Fig. 3.7). The individual morphs have similar speeds as a result of

there being a bigger difference between each morphs’ dispersal and establishment rates.

Species that have more extreme trade-offs, such as wing-polymorphic insects, where one

morph is capable of flight and the other is not (see Guerra, 2011; Zera and Denno, 1997),

may therefore be more likely to experience anomalous invasion speeds than other species

that have smaller trade-offs.

I have modelled the invasion of a polymorphic species on a homogenous landscape

which is not very realistic. Introducing spatial heterogeneity into the model would more

realistically reflect the natural environment, and so would be a natural extension to this

model. I am also interested in whether dispersal polymorphism resulting in anomalous

invasion speeds can help a species to keep up with the rate of climate change. The next

step in this research will therefore be to explicitly model a range expansion as a result of

a shifting climate.

I have shown that the presence of two phenotypes can lead to unexpected results for the

speed of biological invasions. These results reveal that demographic stochasticity can

slow invasions, however, this is dependent on the carrying capacity of the population and

the mutation rate between morphs. Anomalous invasion speeds were found to persist

in models including demographic stochasticity when carrying capacities or mutation

rates between morphs are high. It is hoped that these results motivate further research

into understanding the difference between deterministic and stochastic models, and the
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implications that anomalous speeds have for predicting the rate of range expansions.
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4. Dispersal polymorphism: helps or hinders a

species’ ability to keep up with the rate of

climate change?

4.1 Introduction

Over the past century mean global temperatures have increased by 0.6◦C (IPCC, 2007)

with future rapid increases in temperature predicted. To survive periods of climate change

species can respond in one of two different ways. Species can respond to the new climatic

conditions in their current location, either by adjusting to the new conditions by means

of phenotypic plasticity, or by adapting to the new conditions genetically; or they may

shift their ranges with the climate conditions they are already adapted to. If a species fails

to respond in either of these ways then it may become extinct. There is evidence that

different species are responding in all three of these ways as a result of the current threat

from climate change.

There are signs that some species have already become extinct as a result of recent climate

change. For example, increased night time temperatures in the tropics has led to the spread

of fungal pathogens in the harlequin frog, which has resulted in approximately 67% of

these frogs having gone missing presumed extinct in recent years (Pounds et al., 2006).

Predictions about future extinctions as a result of climate change also paint a depressing

picture, with one study estimating that between 18 and 35% of terrestrial species could

become extinct by 2050 depending on the level of warming (Thomas et al., 2004).

There is more encouraging evidence that species are responding positively to climate

change. It has been observed that some species are responding to new climates in their

current locations. For example, there is evidence that the timing of phenological events,

such as bird nesting, first flowering and frog breeding has become earlier in response

to increased temperatures (reviewed in Parmesan and Yohe, 2003). These changes in

timing are thought mostly to be plastic responses to climate change, however, genetic

responses to increased temperatures have also been observed. For example, in Canadian

red squirrels, Tamiasciurus hudsonicus, advanced parturition dates as a result of warmer

springs, have been shown to be a genetic response resulting in earlier breeding in this
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squirrel (Réale et al., 2003).

The most commonly observed response to climate change is species shifting their ranges

with the conditions they are currently adapted to. There is lots of evidence that species are

shifting their ranges polewards in response to recent warming (Chen et al., 2011; Hickling

et al., 2006; Parmesan and Yohe, 2003; Root et al., 2003). Using a meta-analysis, Chen

et al. (2011) have estimated that the distributions of species have shifted to higher latitudes

at a median rate of 16.9 km per decade, and to higher elevations at a median rate of

11.0 m per decade. However, they also concluded that responses to climate change varies

greatly within taxonomic groups and between individuals (Chen et al., 2011). With rates

of climate change also expected to vary between spatial locations (Loarie et al., 2009),

the number of species that will be able to keep up with the rate of change in the long term

is still unknown.

Evolution during range expansions may increase species’ chances of keeping up with

climate change. Dispersal ability is a key trait in determining whether a species can

keep up with the rate of change and indeed, evolution of increased dispersal has been

observed to help species survive periods of change (Hill et al., 2011). For example, in

recently colonised sites it has been observed that there are changes in flight morphology in

butterflies (Hill et al., 1999a), and bush crickets (Simmons and Thomas, 2004). Historical

data from the pollen record shows that survival of trees during the Quaternary period was

a result not only of range shifts, but also of adaptive evolutionary change, with species

adapting locally to new climates throughout their ranges (Davis and Shaw, 2001).

The question with modern climate change, which is predicted to be more rapid than

historical climate change is, will species be able to keep up with the rate of change?

Although during Quaternary climate change there is evidence that trees were able to

evolve and shift to survive, future climate change is predicted to be faster than species

may be able to evolve, in which case they may go extinct (Davis and Shaw, 2001). In

marine ecosystems species will also be affected as seas warm, for example, it is predicted

that 20% of Lessepsian migrants will not be able to spread fast enough to keep up with

climate change, which may lead to biodiversity loss (Hiddink et al., 2012).

I am interested in whether there are any other aspects of a species’ ecology that may

help it to keep up with rates of climate change. I have previously shown using both

a deterministic model in Chapter 2 (Elliott and Cornell, 2012) and a discrete time and

space stochastic model in Chapter 3 (Elliott and Cornell, 2013), that if a population is

polymorphic then a species’ invasion can be faster than if the population only consists of
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a single morph. This was found to be the case if a population consists of two morphs that

differ in their dispersal abilities, one having a higher dispersal rate and the other having a

higher establishment rate. These faster invasion speeds in polymorphic populations have

been defined as anomalous invasion speeds (Weinberger et al., 2007), and in Chapter 2 I

find that they occur when there is a big difference between the morphs in both of these

traits. In the stochastic version of the model these anomalous speeds occur only if the

carrying capacity is high, the mutation rate between morphs is high, or the individual

morph’s invasion speeds are similar (Chapter 3).

I am interested in whether these anomalous invasion speeds help a population to keep up

with a shifting climate when otherwise a single morph population may become extinct.

The stochastic dispersal polymorphism model that was developed in Chapter 3 is adapted

so that there is a finite domain in which the species can exist. This domain is then shifted

through the landscape simulating a shifting climate. The rate at which the climate is

shifted is varied to determine under what conditions a species can keep up.

4.2 Methods

The model that was developed in Chapter 3 is used and instead of allowing the population

to invade an infinite landscape I introduce a finite domain in which the species can exist.

The basis of the model is briefly described here, with parameters used given in Table 4.1,

but for full details see Chapter 3. I model the invasion of a species that consists of

two phenotypes: there is an establisher morph e that after establishment has a higher

population growth rate but a lower dispersal rate; and a disperser morph d that has a

lower growth rate after establishment but a higher dispersal rate. The model is discrete in

time and space, and so population dynamics and dispersal occur in discrete steps. First

reproduction occurs, where there can be mutation between morphs so that offspring of

one morph can be of the other type. Next there is a mortality step where each morph

has a survival probability, so that a certain number of each morph die. Finally there is a

dispersal step with each morph having a dispersal probability, so that a number of each

morph disperses. The range shifting dynamics were simulated in one dimension because

it is computationally cheaper than in two dimensions, and it was found in Chapter 3 that

the results were qualitatively the same in two dimensions. It is therefore assumed that

each morph has equal probability of dispersing to the left and the right.

Demographic stochasticity was introduced by modelling the birth rate, mutation rate,
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Table 4.1: Notation of parameters used in the model

notation parameter

Ni population density of morph i

ri population growth rate of morph i

Di dispersal rate of morph i

K carrying capacity of the population

µ mutation rate between morphs

survival probability and dispersal rate as stochastic processes. For details of how this

was carried out and for the full model equations see Chapter 3. In contrast to the previous

model where the population invaded an infinite landscape there is now a finite domain

within which the species can exist. For example, there is a domain that is 300 cells long

which is shifted through a bigger landscape to simulate a shifting climate. Every two time

steps I shift the landscape by one cell, so that a cell that the population can survive in

is added to the leading edge of the domain and a cell is removed from the trailing edge.

Every two time steps any individuals present in the trailing edge therefore die. I have

chosen parameter values so that to keep up with the shifting landscape the population

invades at or above the speed of 0.5.

First simulations with a single morph that has an invasion speed of 0.5 were carried out

to check that for this simple version of the model the population can keep up with the

shifting landscape. I then investigated what happens when both morphs are present. For

this, parameter values were chosen to match each of the three possible scenarios that the

invasion speed was found to evolve to in Chapters 2 and 3:

1. Establisher morph is faster – if both morphs had similar dispersal rates but the

establisher had a higher establishment rate than the disperser, then when both

morphs were present it was found that the invasion evolved to follow the speed of the

establisher. So for this case parameter values were used so that the establisher morph

has the speed of 0.5 lattice spacings per time step but the disperser is slower, and

investigated whether the polymorphic population could keep up with the shifting

landscape.

2. Disperser morph is faster – if both morphs had similar establishment rates but the

disperser morph had a higher dispersal rate than the establisher, when both morphs

were present the invasion was found to evolve to follow the speed of the disperser.
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So for this case parameter values were used so that the disperser morph has the speed

of 0.5 lattice spacings per time step but the establisher is slower, and investigated

whether the polymorphic population could keep up with the shifting landscape.

3. Anomalous invasion speeds – I found that if the morphs had both a big difference

in their establishment and dispersal rates then when both morphs were present the

invasion evolved to be faster than either morph’s individual invasion speed. So in

this case parameter values were chosen so that when present on their own both

morphs’ invasion speeds were slower than 0.5 lattice spacings per time step, and

investigated whether the polymorphic population could keep up with the shifting

landscape.

For the third case I investigated how much slower than the shifting landscape the single

morphs could be for the polymorphic population to still keep up with the shifting climate.

In previous work I found that the carrying capacity K of the population, and the mutation

rate between morphs µ, had an effect on the invasion speed (Chapter 3). It was found

that the higher the carrying capacity the faster the invasion speed, and that in the case

where anomalous speeds were observed, the higher the mutation rate for a given carrying

capacity the faster the invasion speed. I therefore investigated the effect that both the

carrying capacity and mutation rate have on whether a polymorphic population is able to

keep up with a shifting climate for the three scenarios described above. I also investigated

how the size of the finite domain in which the species exists affects whether the species

can keep up, as it has previously been observed that larger habitat availability means a

species is more likely to survive a period of climate change (Travis, 2003).

The simulations were carried out in R (R Development Core Team, 2011), and were run

on a lattice size of 50 000 cells and for up to 100 000 time steps. Simulations were run

starting with a carrying capacity of K = 1014, and then decreasing K by a factor of

10 each time until the smallest carrying capacity of K = 100. The parameters were

scaled so that the invasion speed of the population was 0.5 lattice spacings per time

step for the highest carrying capacity, and then looked at how decreasing the carrying

capacity affected whether the population kept up with the shifting landscape. Larger

carrying capacities than would be realistically expected were investigated to show that

the stochastic model converged to the deterministic model. Two different finite domain

sizes were investigated: n = 300 representing a small habitat availability, and n = 3000

representing a large habitat availability for the species. Simulations were carried out for
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each K and at each domain size for four different mutation rates µ = 0.01, µ = 0.001,

µ = 0.005 and µ = 0.0001. For the cases where it was found that the population could not

keep up with the shifting landscape the time to extinction of the population was recorded.

4.3 Results

Simulations were first carried out at the largest carrying capacity investigated, which

was K = 1014. For these simulations parameter values that represent each of the three

scenarios described in the Methods section were chosen. In the first case, where the

establisher’s invasion speed is the same as the rate at which the landscape is shifted and

the disperser is slower, as expected the establisher shifting on its own can keep up but the

disperser cannot. Then when both morphs are present in the landscape both morphs are

able to keep up with the shifting landscape (Fig. 4.1). Similarly in the second case when

the disperser’s invasion speed is the same as the rate at which the landscape is shifted and

the establisher is slower, again as expected the disperser shifting in the landscape on its

own can keep up but the establisher cannot. Then when both morphs are present mutation

between morphs allows both the establisher and disperser to keep up with the shifting

landscape (Fig. 4.2).

In the third case where in Chapter 3 anomalous invasion speeds were observed, the

simulations were carried out with the establisher and dispersers speeds both slower than

the rate at which the landscape was shifted. In this case, as predicted, the establisher and

disperser morphs when shifting in the landscape on their own are not able to keep up

and quickly become extinct. However, when both morphs are present mutation between

morphs once again produces faster invasion speeds, and so both morphs are able to keep

up with the shifting climate (Fig. 4.3). In this case having both morphs present in the

population greatly increases the chances of the population surviving a period of climate

change.

As it was found in the model in Chapter 3 that larger carrying capacities had faster

invasion speeds, I then looked at how the size of the carrying capacity affects whether

a species is able to keep up with the shifting landscape. It was found that as the size of the

carrying capacity decreased for all three scenarios the invasion speed became slower, and

the likelihood that the population kept up with the rate of climate change decreased. For

the cases where the population was unable to keep up with the rate of change, the time it

took for the population to become extinct was recorded. For all simulations it was found
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Figure 4.1: Range shifting of the population when the establisher is the faster morph. This is an

example of the case where the establisher morph is expected to keep up, the disperser’s invasion

speed is slower than the shifting landscape speed, and it was found that when both morphs were

present they were both able to keep up. In (a) the establisher morph is present on its own, in (b) the

disperser morph is on its own and in (c) both morphs are present. Each row represents a different

time point with each time point 1000 units apart. The shaded area represents the area in which

the population can survive, and the solid line shows the density in space of the establisher morph

and the dashed line the disperser morph. The parameter values used for these simulations were

re = 0.4, rd = 0.15, De = 0.32, Dd = 0.55, K = 1014 and µ = 0.001.
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Figure 4.2: Range shifting of the population when the disperser is the faster morph. This is an

example of the case where the disperser morph is expected to keep up, the establisher’s invasion

speed is slower than the shifting landscape speed, and it was found that when both morphs were

present they were both able to keep up. In (a) the establisher morph is present on its own, in (b) the

disperser morph is on its own and in (c) both morphs are present. Each row represents a different

time point with each time point 1000 units apart. The shaded area represents the area in which

the population can survive, and the solid line shows the density in space of the establisher morph

and the dashed line the disperser morph. The parameter values used for these simulations were

re = 0.25, rd = 0.17, De = 0.2, Dd = 0.8, K = 1014 and µ = 0.001.
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Figure 4.3: Range shifting of the population when the individual morphs are slower than the rate

of shifting, but when both morphs are present they keep up. In (a) the establisher morph is present

on its own, in (b) the disperser morph is on its own and in (c) both morphs are present. Each row

represents a different time point with each time point 1000 units apart. The shaded area represents

the area in which the population can survive, and the solid line shows the density in space of the

establisher morph and the dashed line the disperser morph. The parameter values used for these

simulations were re = 0.56, rd = 0.13, De = 0.15, Dd = 0.8, K = 1014 and µ = 0.001.
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that the fastest time to extinction of the population was at the lowest carrying capacity

(Fig. 4.4). Then as the carrying capacity increased the population was able to keep up

with the shifting landscape for longer, and so went extinct at a later time, until at the

largest carrying capacities the population was able to keep up with the shifting landscape

and could persist.

I then investigated what effect changing the mutation rate had on the time to extinction,

and found that high and low mutation rates have different effects depending on which

scenario is being investigated. For the first two scenarios (Fig. 4.4a and b), where one

morph is faster than the other, low mutation rates between morphs, µ = 0.0001 and

µ = 0.001, resulted in time to extinction of the polymorphic populations being very

similar to the individual morphs. However, as the mutation rate increased to µ = 0.005

and µ = 0.01, at the bigger carrying capacities there were quicker times to extinction for

the polymorphic population than the individual morphs. Higher mutation with a morph

that is slower than the shifting landscape therefore means that the polymorphic population

becomes extinct faster than a population that consists of only a single morph.

In the third case where anomalous speeds are observed it was found that higher mutation

rates had the opposite effect (Fig. 4.4c). Here, when mutation rates were low, µ = 0.0001,

the time to extinction of the polymorphic population was only marginally slower than

the individual morphs, and this was only when the carrying capacity of the population

was very high. However, as the mutation rate becomes bigger, the time it takes for the

polymorphic population to become extinct is much longer than for the individual morphs.

For example, at a carrying capacity of K = 107 and a mutation rate of µ = 0.01 it

takes approximately 10.5 times longer for the polymorphic population to become extinct

than a population that just consists of either the establisher or disperser morph. In this

case, where there is a trade-off between dispersal and establishment, having both morphs

present results in the population surviving longer, with the slowest extinction times for the

higher mutation rates. More mutation between morphs is therefore a benefit when there

is a trade-off between establishment and dispersal, but is costly when morphs are similar

in one trait but have large differences in their other trait.

For the case where anomalous speeds were observed I investigated how much slower

than the landscape individual morphs could be for the polymorphic population to still

keep up with the shifting climate. I was interested in how rapid a period of climate

change a polymorphic population could survive when a monomorphic population would

become extinct. It was found that the mutation rate and carrying capacity of the population
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Figure 4.4: Mean time to extinction of the population against log(carrying capacity). In each

graph the crosses represent the establisher morph shifting through the landscape on its own, the

triangles point down the disperser morph on its own, and the other symbols when both morphs are

present with different mutation rates between morphs. The diamonds represent µ = 0.01, the plus

µ = 0.005, the circles µ = 0.001 and the triangles point up µ = 0.0001. Each point represents

the mean of twenty replicates. Error bars are not included on these graphs because they obscure

the points. In (a) the establisher morph is the faster morph, in (b) the disperser is faster and in (c)

both morphs have similar speeds but are both slower than the speed of the shifting landscape. In

(a) the parameter values used are the same as in Fig. 4.1, in (b) as Fig. 4.2 and in (c) the same as

in Fig. 4.3 with K ranging from K = 100 to K = 1014.
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determine how much slower than the shifting landscape individual morphs can be, but

both morphs still keep up. For example, for the parameters used in Fig. 4.3, at the biggest

carrying capacityK = 1014 the establisher and disperser morph are approximately 0.89×

the speed of the landscape, and at the highest mutation rate µ = 0.01 both morphs keep

up with the shifting landscape, but at the lowest mutation rate µ = 0.0001 both morphs

become extinct. Different combinations of parameter values will therefore determine how

much slower than the shifting landscape individual morphs can be for both morphs to keep

up.

The final variable that I was interested in was the size of the shifting landscape. The

results presented so far are for a landscape consisting of 300 cells in which the species

could survive, which was the smaller of the two landscape sizes investigated. For the

bigger landscape size of 3000 cells, it was found as it has been previously (Travis, 2003),

that a population is more likely to keep up with the shifting climate, and that if it is unable

to it takes longer to become extinct (Fig. 4.5). For the two cases where one morph is faster

than the other, it was found that time to extinction decreases for all mutation rates when

comparing the same carrying capacities for the two different landscape sizes (compare

Fig. 4.4a and b with Fig. 4.5a and b). Having a larger area in which the population can

live therefore results in a species that consists of a superior morph being able to survive a

period of climate change for longer. For the third case where anomalous speeds mean that

both morphs can shift their range faster than a single morph, it was also found that a larger

landscape decreases the time to extinction (Fig. 4.5c). For even the lowest mutation rate

there is a greater improved chance of survival with this bigger shifting landscape. These

results suggest that the size of habitat that a species can survive in will have a big effect on

whether a species will survive periods of climate change, with a bigger habitat availability

improving the chances of survival for all three scenarios investigated here.

4.4 Discussion

Climate change is affecting the habitats in which species live, and to survive many

species will shift their ranges with their current habitats. These results suggest that

having a polymorphic population may either help or hinder a population’s ability to keep

up with a shifting climate. I found that if there is a trade-off between dispersal and

establishment between two morphs then having a polymorphic population is beneficial,

as this population is able to keep up with the shifting climate when a monomorphic
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Figure 4.5: Mean time to extinction of the population against loge(carrying capacity) for a larger

shifting landscape. The symbols and parameter values are the same as in Fig. 4.4 with the

exception that the size of the landscape that the population could exist in was bigger at 3000

cells.
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population is unable to. However, if one morph is superior, so if one morph is either

a much better disperser or much better establisher, then mutation between morphs slows

the population down, and so having a polymorphic population can result in the population

not being able to keep up with a shifting climate when the faster superior morph would

be able to.

These results agree with my previous work in Chapters 2 and 3, that large differences in

the morphs’ establishment and dispersal abilities results in anomalous invasion speeds,

which when there is a shifting climate means that the polymorphic population is able

to keep up with the rate of change, whereas the monomorphic populations are not able

to. In this case having a polymorphic population improves the chances of survival of the

species. Here it was found that the higher the mutation rate between morphs, the greater

the chance that the population will keep up with the shifting climate, and the longer it

will take for the population to become extinct if it does not. Higher mutation means

that there is more mutation into the disperser morph which is at lower density at the

invasion front. This results in more dispersers being present at the invasion front which

is beneficial because the establisher morph is a poorer disperser. There are therefore both

good establishers and good dispersers present at the invasion front, and so the population

has a faster invasion speed. This results in the population keeping up with the shifting

climate better, or persisting for longer, than a monomorphic population which just consists

of either good establishers or good dispersers is able to.

It was found that as long as the invasion speed of the population was the same or greater

than the speed of the shifting landscape, then the species will always keep up with the

rate of change. During a period of simulated climate change it was therefore found that

a population travels at the same speed as it would when invading an infinite landscape.

This suggests that if a species’ invasion speed and the rate at which the climate is shifting

are known, then it is possible to predict whether a species will be able to shift with the

climate.

These results are encouraging for species that exhibit dispersal polymorphism, as they

suggest that polymorphism may save them from becoming extinct as a result of climate

change. For example, many insect species exhibit wing polymorphism (Guerra, 2011;

Zera and Denno, 1997), and so it may be that these species are able to keep up with

climate change when other monomorphic insects may not be able to.

For the two cases where one morph is superior, either in terms of being a better establisher

or better disperser, it was found in Chapters 2 and 3 that during an invasion the population
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evolves to follow the speed of the faster morph. Here it was found that at low mutation

rates, as long as the faster morph is able to invade at the speed of the shifting landscape,

the polymorphic population will keep up with the shifting climate. However, at higher

mutation rates the polymorphic population can become slower than the shifting climate

and lag behind. In this case higher mutation means that more of the poorer morph is

present at the invasion front which slows the invasion down, and so the population is

less able to keep up with the shifting climate and becomes extinct faster. These results

are particularly worrying for species that have a superior disperser morph because these

results suggest they may not be able to keep pace with a shifting climate. For example,

there is evidence from several insect species, such as bush crickets (Simmons and Thomas,

2004) and butterflies (Hill et al., 1999a), that there is evolution of traits associated with

increased dispersal during range expansions. The results from this model suggest that if

there is still mutation with slower morphs then in the long run this could result in these

species not being able to keep up with the rate of climate change.

For all but the smallest carrying capacities, the size of the mutation rate between morphs

that is beneficial depends on the scenario that is being looking at. A high mutation rate is

advantageous in the case where there is a trade-off between the morphs’ establishment and

dispersal abilities, but is disadvantageous when one morph is superior. In nature mutation

rates are typically low, and so it is likely that the highest mutation rates investigated here

may not occur. This is good news for the two cases where one morph is superior, as

low mutation rates increase chances of survival. However, for the trade-off case low

mutation rates only increase chances of survival at high carrying capacities, so it may be

that at lower carrying capacities having a polymorphic population will not give as big an

advantage as the results from this model predict, if these mutation rates do not occur.

These results also illustrated that the size of habitat in which the species lives has an

effect on whether a species survives a period of climate change. It was found, as has

been shown previously by Travis (2003), that wide habitat ranges mean a species is more

likely to survive. This suggests that generalist species that can exploit a wider range of

habitats will be more likely to keep up with the rate of change than specialist species.

That generalist species are more likely to keep up with climate change has been found

to be the case in many British butterflies (Warren et al., 2001) and birds (Julliard et al.,

2004) to name a few.

The model that has been used in this chapter is a simple representation of a range

expansion of a species as a result of climate change. In particular I have made the
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simplification that the landscape is homogenous which is not realistic. Previous models

have shown that the combined effects of climate change and habitat fragmentation can

slow down range expansions (Anderson et al., 2009), and result in even faster rates of

extinction of species (Travis, 2003). It may therefore be that if habitat loss is included

in this model times to extinction could be faster. Future work could investigate what

the combined effects of climate change, habitat loss and dispersal polymorphism are on

whether a species is able to keep up with a shifting climate. In particular it would be

interesting to investigate whether anomalous invasion speeds would still help a species to

survive climate change if habitat loss is included.

The majority of research looking at the range expansion of species as a result of climate

change has focused on the expanding cooler range edge that is at higher latitudes and

altitudes, and there is less known about what is happening at the lower latitude range

edge (Chen et al., 2011; Parmesan and Yohe, 2003; Root et al., 2003). At lower latitude

range edges there are two extremes of what can occur; either the species’ range could

completely shift resulting in latitudinal displacement, or a fraction could persist with

range expansions at the higher latitude margin without complete contraction at the lower

latitude (Hampe and Petit, 2005). Here a range expansion that follows the first scenario

has been modelled whereby the new climate window is completely non-overlapping of

the window prior to climate change. History shows that these kinds of displacement have

occurred with, for example, the entire range of boreal species such as spruce in North

America having shifted as a result of a warming climate during the Quaternary period

leading to glacial retreat (Williams et al., 2004).

There is evidence that, as a result of modern day climate change, some European butterfly

species are shifting their ranges at both their high and low latitude range edges (Hill

et al., 1999b). Other montane butterfly species in both the UK (Franco et al., 2006) and

Spain (Wilson et al., 2005) have been found to have range contractions at their lower

latitude range margins, however, at least for the Spanish montane butterflies there is

no evidence that they are expanding their northern range margins (Wilson et al., 2005).

During Quaternary climate change the melting of vast ice sheets enabled large species’

range shifts. It may be that with modern climate change whether species have future

non-overlapping regions will be influenced by other factors, such as obstacles to dispersal

like oceans, or reaching the tops of mountains, that prevent them from expanding their

ranges further. The model developed here will not therefore be applicable to species such

as these, and for these species to survive climate change adaptation to the new climatic
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conditions or human intervention will be required.

If species’ low latitude ranges are not contracting as a result of climate change, or are

contracting at a rate slower than climate change, then it may be that species have a better

chance of surviving than this model would suggest. The speeds predicted from this model

would still influence the expanding range edge, but instead of going extinct the population

may just lag behind the shifting climate at a rate determined by the mutation rate and

carrying capacity of the population. For example, many butterfly species in Europe have

expanded their northern range margin but their southern range margin has not contracted

(Parmesan et al., 1999). Also where these range expansions are occurring they tend to be

lagging behind the shifting climate (Hill et al., 1999b; Menendez et al., 2006; Parmesan

et al., 1999). However, range contractions may be occurring in more species than has so

far been recognised as it has been suggested that it is harder to observe extinctions at the

rear of a species’ range than it is to observe range expansions (Franco et al., 2006). These

model predictions for time to extinction of populations give a worst case scenario if range

shifts cause latitudinal displacement. If range contractions happen at slower rates than

range expansions then it is likely that more species would be able to survive periods of

climate change than this model predicts.

These results highlight the importance of looking at the entire population of phenotypes

when predicting whether a species will be able to survive a period of climate change.

Having a polymorphic population can either help or hinder a species’ ability to keep up

with the rate of change. These results are particularly encouraging for species that have

trade-offs in their establishment and dispersal abilities as I predict that polymorphism can

significantly improve their chances of surviving. It is hoped that these results encourage

more research into how polymorphism affects range expansions and in particular inspire

empiricists to investigate whether these results can be observed in a real system either in

the laboratory or in the field.
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5. Species’ range margins: adaptation versus

dispersal evolution along an environmental

gradient

5.1 Introduction

The question as to why species have a limited range is one that has long been investigated

both theoretically and empirically (see reviews in Bridle and Vines, 2007; Gaston, 2003).

However, a clear understanding as to what causes range margins to be formed has been

difficult to come by (Gaston, 2009). In some cases range margins may be formed as a

result of obstacles preventing further dispersal, abrupt changes in the environment or by

interactions with other species (Gaston, 2003). However, often there are no such obvious

boundaries to prevent species further expanding their ranges and in these cases margins

may be formed as a result of failing to adapt to the environment. There are two classic

arguments as to why adaptation at range margins fails (reviewed in Bridle and Vines,

2007). The first argument is that gene swamping may occur as a result of gene flow from

central well-adapted populations to the range edge where these genes prevent adaptation

to the edge conditions. The second is that there is insufficient genetic variation at the

range edge to allow adaptation, which may either be as a result of Allee effects, genetic

drift or low rates of mutation.

Whether gene flow from central populations to edge populations results in populations

failing to adapt has been investigated using quantitative trait models (reviewed in

Lenormand, 2002). These models look at how the mean value of a quantitative trait,

for example body size, varies along an environmental gradient, such as temperature. In

these models population dynamics are related to how closely the trait mean matches the

optimum at each point on the gradient. When the population density reaches zero, the

trait mean is far from the optimum, and so a range margin is formed.

Kirkpatrick and Barton (1997) found that if the mean value of the trait is able to match

the optimum along the gradient, then the species’ range expands without limit, and the

population is at its carrying capacity across all space. However, if the environmental

conditions change too rapidly, i.e. the gradient is too steep, then the species can only
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exist in a limited region, and if the gradient is even more extreme then the population

becomes extinct. In this case gene swamping occurs as migration of genes from central

well-adapted populations prevent marginal populations from adapting. In this model

genetic variance was assumed to be constant, whereas in reality it can evolve as a result

of migration, mutation and selection (Bridle and Vines, 2007). Barton (2001) extended

the model so that genetic variance could evolve, and found that if this is the case then

populations can always adapt to the environmental gradient, and so the species expands

its range without limit. If the environmental optimum changes in both time and space

the same range margin scenarios were found. If genetic variance does not evolve then

for steep gradients the species has a limited range, whereas if genetic variance evolves or

there are shallower gradients then uniform adaptation occurs (Polechova et al., 2009).

These models would therefore suggest that if the environmental gradient is shallow, or

genetic variance evolves, then there are no limits to adaptation and a species should have

an unlimited range. However, species do have range margins and fail to adapt beyond

these, and so these models must be missing something that explains a species’ failure to

adapt. One limitation of these models is that they do not include stochastic effects, and so

for example, do not take into account increased extinction risk at low population densities

which in reality would be found.

Bridle et al. (2010) developed a stochastic model to see how the predictions for adaptation

at range margins compared to those of deterministic models. They found that at high

carrying capacities the same results are observed as in the deterministic models (Barton,

2001; Kirkpatrick and Barton, 1997). However, when population densities are smaller,

adaptation to the environment is predicted to occur for a smaller range of parameters than

predicted in the deterministic models. Whether the population could adapt to the gradient

depended on not only dispersal and steepness of the gradient, but also the local carrying

capacity (Bridle et al., 2010). Including demographic stochasticity meant that population

extinction occurred at shallower gradients than found using the deterministic models.

Another limitation of these models is that there is no cost to adapting to the environment,

however, it would be expected that if increased energy is used for adapting to different

conditions then there is less energy available for other life-history processes. There is lots

of evidence that life-history traits trade-off with one another (for reviews see, Roff and

Fairbairn, 2007; Zera and Harshman, 2001), as organisms only have a limited amount of

energy to invest and have to choose how to allocate this. One common trade-off observed

is between allocation of energy invested in traits related to increased fecundity, and traits
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related to increased dispersal ability. For example, in wing polymorphic insects, the flight-

capable morph has large functional flight muscles and high lipid stores, whereas the

flightless morph has reduced lipid stores and small non-functional flight muscles (Zera

and Harshman, 2001). However, the ability to fly comes at a cost as ovaries are much

bigger in the flightless morph (Zera and Harshman, 2001), and so this morph has higher

fecundity.

As discussed above trade-offs between traits are commonly observed. It is possible

therefore that adaptation to new environments comes at a cost to some other trait, and so

range margins may be formed as a result of the costs associated with adaptation. In this

chapter I will therefore investigate whether range margins along environmental gradients

are formed as a result of trade-offs between adaptation and another trait. In particular I am

interested in the trade-off between adaptation and dispersal, as dispersal directly affects a

species’ ability to expand its range.

There is evidence that adaptation to new environments does trade-off with dispersal.

A well studied species that exists along a latitudinal gradient is the Atlantic silverside,

Menidia menidia. Across the range of M. menidia the growing season declines by a

factor of 2.5 with increasing latitude (Conover and Present, 1990). To compensate for

the shorter growing season it has been found that fish from northern latitudes have faster

growth rates than fish from southern latitudes (Conover and Present, 1990). This increased

growth occurs as a result of approximately two times higher rates of food consumption by

northern fish (Present and Conover, 1992). These fish have therefore adapted to the shorter

growing season by increasing their rate of food consumption, and hence their growth rate.

Increased growth rate in northern fish does come at a cost though, as these fish have

diminished locomotory capacity (Billerbeck et al., 2001). Trade-offs between adaptation

to shorter growing seasons and dispersal ability have also been found to occur in other

organisms, for example in other fish species (Cano and Nicieza, 2006) and in amphibians

(Arendt, 2003; Ficetola and De Bernardi, 2006). This would suggest that these species

have an optimal body plan that maximises both survival and dispersal, and so adaptation

to different environmental conditions results in a compromise of this optimal body plan.

For these examples, this compromise comes in the form of faster growth occurring at a

cost to dispersal.

In this chapter, I will develop a quantitative trait model that investigates whether range

margins are formed as a result of trade-offs between dispersal and adaptation. The model

is based on the model by Kirkpatrick and Barton (1997) but is discrete in time and
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space. There is a quantitative trait where the optimum value for survival varies along

an environmental gradient, but the trait also affects dispersal ability. The trade-off is

modelled so that in the centre of the species’ range where the optimum value of the trait

is zero, dispersal is highest. Along the environmental gradient as the optimal value of

the trait for survival increases, dispersal is lower. Away from the centre of the range

there is therefore a cost to adapting to the environment in terms of reduced dispersal. I

am therefore assuming a trade-off such as the one described for the above examples, so

that the body plan of this species is optimised to one particular strategy. The trait then

describes how far the species has had to deviate from this plan to be able to adapt to

the environment. I will investigate how changing different parameter values affects the

formation of range margins. I will then allow the trait to vary in both time and space in a

similar way to Polechova et al. (2009), to investigate whether under climate change this

trade-off influences a species’ ability to expand its range.

5.2 Model

The model that I use in this chapter is based on the model of Kirkpatrick and

Barton (1997). They use partial-differential equations to jointly model the evolution

of population density and the mean value of a quantitative trait along an environment

that changes in space. I adapt this model so that it is discrete in time and space. This

was done because PDEs are an approximation to reality as they assume events happen

continuously in time and space. By using a discrete model it is assumed that there

are discrete generations, and that there are discrete patches in which a species lives,

making the results easier to interpret in terms of individuals. In this model the density of

individuals with trait z at time t and position x is given by n(z, x, t). Population dynamics

occur in discrete steps in the order of mortality, dispersal and then reproduction.

Following Kirkpatrick and Barton (1997) the following assumptions are made:

1. The phenotypic trait z is normally distributed with variance, v, which is assumed to

be constant (Falconer, 1989), so that

n(z, x, t) = N(x, t)
1√
2πv

exp

(
−(z − z̄(x, t))2

2v

)
,

where z̄(x, t) is the trait mean at point x and time t.

2. At each point x there is a value of the trait, θ(x), that maximises survival and
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reproduction. This optimum changes as a linear function of space θ(x) = bx, where

b is the steepness of the environmental gradient.

3. Individuals whose phenotype z differs from their local optimum have reduced

viability, and the probability of survival for a phenotype z at location x within a

generation is

exp

(
−(z − θ(x))2

2ω

)
,

where ω is the variance of the Gaussian fitness function.

In addition to these assumptions, I am making the further assumption that adaptation to

the environment trades-off with dispersal ability, and so dispersal also depends upon the

trait z. The dispersal function was chosen to be modelled as

δ(z) =
1

d
exp

(
−z2

2β

)
, (5.1)

where d is the fraction of individuals that disperse, and β is the variance of the dispersal

function. This shape of the dispersal function was chosen because this means that as the

value of θ increases, and so to be perfectly adapted to the environment z will also need to

increase; δ(z) will tend to zero, as can be seen in Fig. 5.1. This allows an explicit trade-off

between adaptation to the environment and dispersal to be modelled.

This leads to the population dynamics being modelled as follows. First mortality is given

by

nm(z, x, t) = n(z, x, t) exp

(
−m0 −m1N(x, t)− (z − θ(x))2

2ω

)
, (5.2)

where a Ricker-like density dependence is assumed. A fraction of the population then

disperses so that

nd(z, x, t) = (1− 2δ(z))nm(z, x, t) + δ(z)nm(z, x+ 1, t) + δ(z)nm(z, x− 1, t), (5.3)

where δ(z) is defined in Eqn. (5.1). Finally a fraction, r, of the population reproduces and

produces offspring, where there is mutation at rate µ of offspring away from their parents’

phenotype. This leads to the population density after one time step being given by

n(z, x, t+ 1) = r(1− µ)nd(z, x, t) + rµ

∫
M(z, z′)n(z′, x, t)dz′, (5.4)

where it is assumed that mutation behaves as a Gaussian function with variance u, which

acts on the phenotype, M(z, z′) = 1
2πu

exp
(
−(z−z′)2

2u

)
.
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Figure 5.1: Form of dispersal function given by Eqn. 5.1, with two different values of the variance

β. In both d = 4, and in (a) β = 2.5, representing a strong trade-off because as z increases δ(z)

tends to zero quickly; and in (b) β = 50, representing a weaker trade-off because δ(z) tends to

zero slower as z increases.

Then, following other authors, (Garcı́a-Ramos and Kirkpatrick, 1997; Kirkpatrick and

Barton, 1997) approximate iteration equations can be derived forN(x, t) =
∫
n(z, x, t)dz

and Y (x, t) =
∫
zn(z, x, t)dz. In doing this a first order Gaussian moment closure

with constant variance is performed. Carrying out these approximations means that the

dependence on µ drops out. This leads to two equations, the first describes the change

in population density, and the second describes the change of the trait mean in time and

space:

N(x, t+ 1) = αAN(x, t) exp

(
−m1N(x, t)− (z̄(x, t)− θ(x))2

2(ω + v)

)
+
α

d
B

[
N(x+ 1, t) exp

(
−m1N(x+ 1, t)− C

[
z̄(x+ 1, t)− βθ(x+ 1)

ω + β

]2

− θ(x+ 1)2

2(ω + β)

)

+N(x− 1, t) exp

(
−m1N(x− 1, t)− C

[
z̄(x− 1, t)− βθ(x− 1)

ω + β

]2

− θ(x− 1)2

2(ω + β)

)

−2N(x, t) exp

(
−m1N(x, t)− C

[
z̄(x, t)− βθ(x)

ω + β

]2

− θ(x)2

2(ω + β)

)]
, (5.5)
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Y (x, t+ 1) = αD[ωY (x, t) + vθ(x)N(x, t)] exp

(
−m1N(x, t)− (z̄(x, t)− θ(x))2

2(ω + v)

)
+
α

d
E

[
[ωY (x+ 1, t) + vθ(x+ 1)N(x+ 1, t)] exp

(
−m1N(x+ 1, t)

−C
[
z̄(x+ 1, t)− βθ(x+ 1)

ω + β

]2

− θ(x+ 1)2

2(ω + β)

)

+ [ωY (x− 1, t) + vθ(x− 1)N(x− 1, t)] exp

(
−m1N(x− 1, t)

−C
[
z̄(x− 1, t)− βθ(x− 1)

ω + β

]2

− θ(x− 1)2

2(ω + β)

)

− 2[ωY (x, t) + vθ(x)N(x, t)] exp

(
−m1N(x, t)

−C
[
z̄(x, t)− βθ(x)

ω + β

]2

− θ(x)2

2(ω + β)

)]
, (5.6)

where α = r exp (−m0) is density independent population growth, Y = z̄N and where

the following parameters have been redefined to simplify the equations: A =
√

ω
ω+v

,

B =
√

ωβ
βv+ωv+ωβ

, C = ω+β
2(βv+ωv+ωβ)

, D =
√

ω
(ω+v)3

and E =
√

ωβ3

(βv+ωv+ωβ)3
.

Solving these equations at stationarity shows that two equilibria always exist. The first

equilibrium is when the population density is at carrying capacity,

N =
1

m1

(
−m0 − log

(
1

r

√
w + v

w

))
,

and the trait is perfectly adapted, z̄ = bx. The second equilibrium occurs when the

population is extinct everywhere, N = 0. To investigate whether there were any other

equilibria whereby the species had a limited range, numerical simulations were carried

out. Simulations were run in R (R Development Core Team, 2011), on a one-dimensional

lattice of varying sizes. The simulations were initiated with the first 100 cells of the lattice

occupied by the population at its stable equilibrium density, and the trait perfectly adapted

to the environment. Reflecting boundary conditions were used at the end of the lattices.

The simulations were run until the population formed a range boundary. The parameters

b, β, ω and v were varied to see what effect the steepness of the environmental gradient

and the three different variance parameters had on the formation of range margins.

Having carried out these simulations and found where the populations had formed range

margins, I then allowed the optimal value, θ, of the trait z to change as a linear function
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of both space x and time t so that

θ(x, t) = b[x− ct], (5.7)

where as before b is the steepness of the environmental gradient, and c is the rate of

change of the optimum in time. This leads to the same two equations (Eqn. (5.5) and

(5.6)) with θ(x) replaced by θ(x, t). As before numerical simulations of this model were

carried out, with the speed, c, at which the environmental gradient shifts varied. This

simulated a shifting climate, and I used this to investigate whether dispersal evolution

helps a population to keep up with the rate of climate change.

5.3 Results

5.3.1 No environmental gradient

First the case b = 0 was investigated, so that the environmental gradient is constant across

all space. In this case equations (5.5) and (5.6) reduce to

N(x, t+ 1) = αAN(x, t) exp

(
−m1N(x, t)− z̄(x, t)2

2(ω + v)

)
+
α

d
B

[
N(x+ 1, t) exp [−m1N(x+ 1, t)− Cz̄(x+ 1, t)2]

+N(x− 1, t) exp [−m1N(x− 1, t)− Cz̄(x− 1, t)2]

− 2N(x, t) exp [−m1N(x, t)− Cz̄(x, t)]

]
, (5.8)

Y (x, t+ 1) = αDωY (x, t) exp

(
−m1N(x, t)− z̄(x, t)2

2(ω + v)

)
+
α

d
E

[
ωY (x+ 1, t) exp [−m1N(x+ 1, t)− Cz̄(x+ 1, t)2]

+ ωY (x− 1, t) exp [−m1N(x− 1, t)− Cz̄(x− 1, t)2]

− ωY (x, t) exp [−m1N(x, t)− Cz̄(x, t)]

]
. (5.9)

In this case where there is no environmental gradient, the value of the phenotypic trait

that maximises survival is zero, which is also the value of the phenotypic trait that

maximises dispersal, and so these conditions select for a species’ optimal body plan.

There is therefore no trade-off in this version of the model, and so it was expected that
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Figure 5.2: Travelling wave of invasion with no environmental gradient. For all simulations the

population density evolved to be at carrying capacity (top row), and the trait mean to zero (bottom

row), at all locations. Each column represents the invasion at a different time point. The parameter

values used for these simulations were r = 1.2, m0 = 0.01, m1 = 0.05, d = 4, ω = 500, β = 50,

v = 1. For these parameter conditions the invasion speed was found to be 0.3908.

this population would invade throughout space and be at carrying capacity at all locations.

This was verified by numerically simulating the invasion of this species, by iterating

equations (5.8) and (5.9) in R (R Development Core Team, 2011). It was found that these

simulations approached a travelling wave at the invasion front, which rapidly approached

a constant speed as the invasion progressed. The population density was found to be at

carrying capacity, and the mean value of the phenotypic trait zero, at all locations for all

parameters investigated (Fig. 5.2).

It was found that the speed of the invasion was affected by the three types of variance

included in the model. Faster speeds were observed when the variance v, of the

phenotypic trait is smaller, when the variance β, of the dispersal function is bigger and

when the variance ω, of the Gaussian fitness function is bigger. Smaller v means that

there are fewer phenotypes present in the population, and so more individuals will have

a phenotype that is at or close to zero, which both maximises survival and dispersal.

Bigger β means that the dispersal function tends to zero slower for bigger values of

the phenotypic trait z, and so there will be more dispersive phenotypes present in the

population. Finally bigger ω means that the cost of the phenotypic trait not being the

optimum value for survival is smaller, and so the population has higher mean fitness.
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Calculation of invasion speed

To check that the speeds observed numerically were correct, the front propagation method

of van Saarloos (2003) was used. In equations (5.8) and (5.9) the mean value of the trait

depends upon space and time which makes linearising these equations difficult. In the

simulations I investigated what happens when the mean value of the trait evolves, which

revealed that when the landscape is homogenous the mean value of the trait always evolves

to zero at all times across all space. It would be interesting to check whether the speed

observed corresponds to the maximum wavespeed across all values of z̄. This can be

checked by calculating what the invasion speed would be if z̄ is constant, and so if I set

the phenotypic trait to be a constant value, equations (5.8) and (5.9) become even simpler.

If the phenotypic trait is constant then the change in time and space of the trait mean is

zero, so Eqn. (5.9) = 0, and then Eqn. (5.8) reduces to

N(x, t+1) = (ρ−2γ)N(x, t)e−m1N(x,t)+γ[N(x+1, t)e−m1N(x+1,t)+N(x−1, t)e−m1N(x−1,t)],

(5.10)

where ρ = αA exp
(
−z̄2

2(w+v)

)
and γ = α

d
B exp (−Cz̄2). Eqn. (5.10) can then be easily

linearised around the unstable steady state N = 0, giving

N(t, x+ 1) = (ρ− 2γ)N(x, t) + γ[N(x+ 1, t) +N(x− 1, t)].

Using these linearised equations and following van Saarloos (2003), as I have in earlier

chapters, I substituteN ∝ n exp(−iω(k)t+ ikx), where ω(k) is the dispersion relation of

Fourier modes of the linearised equation (5.10), and k is the spatial wavenumbers. This

gives the equation:

e−iω = (ρ− 2γ) + γ(eik + e−ik).

This leads to an eigenvalue problem, with solutions

ω(k) = i log (ρ− 2γ + 2γ cos k). (5.11)

This implies
dω(k)

dk
=

−i2γ sin k

ρ− 2γ + 2γ cos k
. (5.12)

The wave speed is then calculated by finding k∗, where k∗ is the linear spreading point
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(van Saarloos, 2003), such that

dω(k∗)

dk∗
=
=ω(k∗)

=k∗
, (5.13)

where = denotes the imaginary part. This equation represents a biological invasion so n

cannot be negative, so I can deduce that k∗ is purely imaginary. I can then assume k∗ = iq

with q real, which I substitute into (5.13). The realised wavespeed is obtained by finding

the real solution q that corresponds to the largest speed v = =ω(iq)
q

(van Saarloos, 2003).

Substituting into Eqn. (5.13) gives an equation which cannot be solved analytically. I

therefore solve this numerically and then calculate the invasion speed, v, using this value

of q.

I found that this method gives the same invasion speed as was found from the numerical

simulations. As z̄ was found to evolve to zero during the simulations, invasion speeds for

other constant values of z̄ were calculated using Eqn. (5.13) to check that the population

was evolving to invade at the maximum speed across values of z̄. Indeed, Fig. 5.3 confirms

that the maximum invasion speeds occur for z̄ = 0, and that the speeds predicted using the

front propagation method agree with those from numerical simulations when z̄ evolves to

zero. Interestingly, it can be seen from this figure that when there is a bigger trade-off

between adaptation and dispersal (grey lines), a higher amount of phenotypic variance

(dashed line), results in faster speeds than a small amount of phenotypic variance for

bigger values of the mean phenotypic trait. This is because when the mean value of the

trait is far from the optimum, more variance means that there will be a greater number of

‘good’ phenotypes in the population, i.e. phenotypes that will have higher dispersal and

survival, than if there was less variance, and so the population has a faster invasion speed.

5.3.2 Environmental gradient varies across space

I then investigated the case where the optimum value of the trait for survival varies linearly

in space. In this case it was expected that range margins would be formed because as the

optimum value of the trait for survival increases, dispersal tends to zero, and so there will

become a point when the population cannot invade any further. To investigate if this was

the case numerical simulations were carried out by iterating equations (5.5) and (5.6) in

R (R Development Core Team, 2011). These simulations revealed that as predicted range

margins were formed, with the size of the range that arose determined by the different

parameters used.
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Figure 5.3: Invasion speed for different values of z̄. The points represent predictions of the

invasion speed from numerical simulations of Eqns. (5.8) and (5.9), when z̄ is allowed to evolve.

As was shown in Fig. 5.2 z̄ always evolved to zero, and so these points are plotted at z̄ = 0.

The curves represent numerical predictions of the invasion speed using the van Saarloos (2003)

method, when z̄ is set to be a fixed value in Eqn. (5.8). For all simulations the parameter values

used were r = 1.2, m0 = 0.01, m1 = 0.05 and ω = 500. The solid lines represent v = 0.1 and

the dashed v = 5, with β = 5 used for the grey lines and β = 50 for the black lines. The speeds

for negative z are the same as for positive so are not shown on this graph. It can be seen that the

numerical predictions of the invasion speed when z̄ evolves are the maximum speeds across all

fixed values of z̄ for each set of parameter values.
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Figure 5.4: Formation of range margins for three different values of the environmental gradient,

b. The dashed line shows the optimum value of the trait for survival. The parameters used in these

simulations were r = 1.2, m0 = 0.01, m1 = 0.05, ω = 50, β = 2.5, v = 5 and d = 4. In (a) the

environmental gradient has slope b = 0.1, in (b) b = 0.01, and in (c) b = 0.001.

As expected, the steepness of the environmental gradient greatly influenced the size of

range that evolved. Across all parameter space bigger ranges were observed for shallower

environmental gradients, as can be seen in Fig. 5.4. This is because a shallower gradient

means that the dispersal function evolves to zero further along the gradient, and so the

population can disperse further. A steeper gradient results in the optimum value of the

trait for survival reaching the value at which dispersal evolves to zero faster. Therefore

if the trait mean matches the optimum, then a steep gradient means the population will

not be able to invade very far before adaptation to the environment results in dispersal

evolving to zero.

In these simulations I defined a range margin as having been formed when over

consecutive time steps the position of the range front had not changed. This was

determined by plotting invasion profiles, such as those given in Fig. 5.4, at different time

points until the population density had not changed in space for a minimum of 104 time

steps. The range size was then defined as the number of cells in the landscape that had a

population density greater than half of what would be the equilibrium population density

in a homogenous environment. To check that the range size that formed was independent

of the initial conditions, simulations were carried out with different proportions of the
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Figure 5.5: Formation of range margins with different initial conditions. The lines represent

different initial conditions, from the first 100 cells of the lattice occupied by the population, to

the first 1200 cells, all of which were found to form range margins at the same position in the

landscape (cell 1311). The parameters used in these simulations were the same as in Fig. 5.4b.

landscape initially occupied. It was found that the same range size was formed with

different starting conditions, giving numerical evidence for the evolution of a range

margin (Fig. 5.5).

I next investigated how the size of the range that arose depended on the other parameters

that were varied in the model. To do this I calculated the range size for different parameter

values, and then multiplied these by the steepness of the environmental gradient that the

simulations were run on. The range size multiplied by the gradient gives the optimum

value of the trait for survival, θ, at which range margins are formed. I then plotted these

values against the log of the phenotypic variance (Fig. 5.6).

This figure reveals three patterns for the formation of range margins. The first is that

bigger ranges were formed when there was a smaller trade-off between dispersal and

adaptation (bigger values of β). The second is that bigger ranges were formed when

the amount of phenotypic variance, v, is small, and the third is that when there is

weaker stabilising selection towards the optimum phenotype (bigger ω), large amounts

of phenotypic variation result in the range being bigger in proportion to the gradient when

the gradient is steeper (see Fig 5.6ii).
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Figure 5.6: Range size scaled by the steepness of the environmental gradient as a function of

the phenotypic variance. In (i) there there is strong stabilising selection towards the optimum

phenotype (ω = 50), and in (ii) there is weak stabilising selection (ω = 500), with (a) and

(b) representing two different variances of the dispersal function. The crosses represent an

environmental gradient of b = 0.1, the diamonds b = 0.05, and the circles b = 0.01. The

parameters used in these simulations were r = 1.2, m0 = 0.01, m1 = 0.05 and d = 4, with in (a)

β = 2.5, and in (b) β = 5.
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The first pattern, that bigger ranges are observed when the variance, β, of the dispersal

function is larger, occurs because this means the dispersal rate tends to zero slower. There

is therefore a smaller trade-off between dispersal and adaptation, and so the population

can expand its range further before dispersal evolves to zero, resulting in bigger ranges

being formed.

The second pattern observed was that bigger ranges are formed when the amount of

phenotypic variance is small. When there is a smaller amount of phenotypic variance,

evolution of the phenotypic trait is slower, and so there are fewer phenotypes present in the

population. Offspring are therefore more likely to have phenotypes closer to their parents,

and so they will be better adapted locally. It also takes longer for the mean phenotype to

evolve to match the optimum value for survival, which means there will be more dispersal

and so the population can invade further. However, as can be seen in Fig. 5.6, very small

amounts of phenotypic variance do not result in the biggest ranges. This is because if

the amount of phenotypic variance is too small, evolution occurs very slowly, and so

the population takes longer to adapt to the environment, and so has lower fitness. The

population cannot therefore invade as far as a population that has a slightly higher amount

of variance, which means it can adapt a bit faster to the environment and consequently has

higher population fitness. The size of the variance that results in the biggest range sizes is

smaller, when there is stronger stabilising selection. This means there is stronger selection

towards the optimum phenotype, so despite evolution being slow more phenotypes will

be closer to the optimum value for survival, and so the population has higher fitness.

When there was strong stabilising selection towards the optimum phenotype, it was found

that the size of a species’ range is proportional to the steepness of the environmental

gradient (Fig 5.6i). The population therefore stops invading at the same value of θ, and

so the upper limit of θ where the population can still disperse and be adapted to the

environment is proportional to the steepness of the gradient. This was also found to

be the case when there was weak stabilising selection and small amounts of phenotypic

variance. However, the third pattern observed was that when there were larger amounts of

phenotypic variance, the population could extend further in proportion to the gradient

when the gradient was steeper (Fig 5.6ii). This suggests that when there is weak

stabilising selection phenotypes can be quite maladapted without causing a cost to the

fitness of the population. More phenotypic variance means that there will be a greater

number of phenotypes present in the population, some of which will be less well-adapted

but they will have higher dispersal ability. This results in the population expanding its
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range further. This effect is stronger when the environmental gradient is steeper because

the spatial scale is smaller, and so dispersal is occurring over smaller distances.

5.3.3 Environmental gradient varies across time and space

Having found where a population with this trade-off between dispersal and adaptation

forms range margins, I then investigated what happens if the environmental gradient also

varies in time. Simulations were performed where the optimum value of the trait θ now

depends not just on the spatial location x, but also the time t, as described in the Model

section. θ was defined so that if x − ct < 0, then I set θ = 0. This simulates the

gradient shifting forwards in space, with the environment becoming homogenous behind

the shifting gradient.

It was found that if the gradient shifts at a slow enough speed then the population can

invade at the speed at which the gradient is shifted. If this is the case then, the slower the

gradient is shifted, the further into the area where the optimum value of the trait is not

zero that the population remains. Very slow speeds result in the population maintaining

the same size range where θ 6= 0 as it did when the environmental gradient is static in

time. Faster shifting speeds result in a reduction of this range size.

Even faster speeds result in the population lagging behind the speed at which the

environment is shifted. It was found that the threshold speed for which the population

could invade at the speed of the shifting gradient, is the invasion speed of the population in

the absence of a gradient. For speeds faster than this, the population is then only invading

through the landscape where θ = 0, and so if the trait mean matches the optimum, then the

population has both optimal survival and the highest dispersal. It was found that the trait

mean did evolve to be zero to match the optimum, and travelling waves of invasion such

as those found in simulations with no environmental gradient (Fig. 5.2) were observed.

When the gradient was shifted at speeds slower than that at which the population could

invade in the absence of a gradient, it was found that a fluctuation in population density

was sometimes observed at the invasion front. A noticeable fluctuation was observed

when the environmental gradient was steep and there was a small amount of phenotypic

variance (Fig. 5.7a). When the gradient was shallower and variance higher, although from

Fig. 5.7b there does not appear to be a fluctuation, closer examination revealed that there

was a very small deviation from the equilibrium population density at the invasion front

(Fig. 5.8).
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Figure 5.7: Shape of the travelling wavefront when the gradient is shifting in time. In (a) the

environmental gradient is steep and there is a small amount of phenotypic variance, and here there

is a noticeable fluctuation in population density at the leading edge. In (b) the environmental

gradient is shallower and there is larger phenotypic variance, and no noticeable fluctuation in

population density. For both simulations the gradient was shifted at speed c = 0.1. The lines show

the shape of the travelling wavefront at one time point. The dashed line on the bottom two panels

represents the value of the trait that maximises population growth. The parameters used in these

simulations were r = 1.2, m0 = 0.01, m1 = 0.05, d = 4, ω = 50 and β = 5 with in (a) b = 0.1

and v = 0.1, and in (b) b = 0.01 and v = 1.
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Figure 5.8: Closer examination of the fluctuation in population density for shallower

environmental gradients. This figure shows a close-up of the front for the invasion wave in

Fig. 5.7b. It is now evident that there is a small fluctuation in population density along the

environmental gradient.
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This fluctuation in population density at the invasion front was found to begin at the

transition between where there is no gradient, and where there is a gradient (see Fig. 5.8

for a clear example of this). Where the mean phenotype matches the optimum value of

the trait for survival, population density is at equilibrium. However, because the trait

mean, z̄, is continuous, in the area where the optimum changes from being zero to being

greater than zero, the trait mean is unable to match the optimum. Higher dispersal of

phenotypes from the area where the optimum value of the trait is zero results in dispersal

of maladapted phenotypes along the gradient, preventing the trait mean from matching

the optimum. This maladaptation results in lower survival, and so there is a decrease in

population density. The trait mean then evolves to match the optimum at some point along

the gradient, and so again here the population density is higher. Further along the gradient

the trait mean is lower than the optimum to allow dispersal at the expanding range edge.

This is at the expense of higher fitness, and so the population density again decreases.

This maladaptation of the trait either side of where the trait mean matches the optimum

value for survival along the gradient results in the fluctuation in population density

observed. Bigger fluctuations are observed when the gradient is steeper because there

will be higher maladaptation around the optimum. When the phenotypic variance is small,

bigger fluctuations also occur because there are fewer phenotypes present, and so it will

take longer for the trait mean to evolve to match the optimum.

There are two possible strategies that a species with the body plan described in this

model can adopt. The species can either adapt to the environment at all points along

the environmental gradient with the consequence that it is unable to disperse at the range

front, or the species can disperse at the range front and so expand its range but at the cost

of being maladapted and hence have lower survival. In the case where the environmental

gradient was fixed in time, it was found that far along the environmental gradient the cost

of dispersing on survival became too high, and so range margins were always formed (see

Fig. 5.4). However, when the gradient shifts in time the species was found to expand

its range. In this case it can be seen from the lower two panels of Fig. 5.7 that at the

invasion front the trait mean rapidly decreases, so that the mean is much smaller than the

value of the trait that maximises population growth. It can also be seen from Fig. 5.1

that more dispersal occurs when the value of the trait z is smaller, and so in order for

dispersal to occur, and the population to invade at the range front, the trait mean needs to

be much lower than the optimum value for survival. This large degree of maladaptation

at the range front is greater than the degree of maladaptation observed in models that do
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not include a trade-off between dispersal and adaptation. For example, in the models of

both Kirkpatrick and Barton (1997) and Alleaume-Benharira et al. (2006), there is not a

steep decrease in the trait mean at the range edge. In these models, more dispersal means

more gene swamping of maladapted phenotypes from the centre of the range, preventing

the population from adapting at the range edge. However, in the model in this chapter,

because of the trade-off between dispersal and adaptation, range expansions along an

environmental gradient can only occur if there is some maladaptation at the range edge.

5.4 Discussion

The formation of range margins as a result of a failure to adapt to unfavourable

conditions beyond a species’ current range has long been investigated both theoretically

and empirically, and yet there is still not a clear understanding as to why evolution does

not allow adaptation to occur. The model developed in this chapter suggests that range

margins may be formed as a result of a trade-off between dispersal and adaptation. I have

found that along an environmental gradient if adaptation comes at the cost of reduced

dispersal, then at some point the species will always be unable to expand any further. The

largest ranges were found when the environmental gradient was shallower, the trade-off

between adaptation and dispersal was smaller, and the amount of phenotypic variance was

smaller.

The introduction of a trade-off between dispersal and adaptation has, therefore, resulted

in an interesting proposition: could it be that range margins are formed as a result of

adaptation to the environment at the range edge at the cost of dispersal, rather than

maladaptation at the range edge? Theoretical models to date have assumed that it is a

failure to adapt to the environment that results in the formation of range margins (e.g.

see Sexton et al., 2009, for a review). However, in this model, because adaptation to the

environment comes at the cost of reduced dispersal, it is adaptation to the environment

itself, that prevents a species from expanding its range.

In contrast to models where adaptation to the environment does not come at a cost (Bridle

et al., 2010; Kirkpatrick and Barton, 1997), I found that range margins are always formed.

In previous models unlimited adaptation was found to occur for shallower gradients, but

here it was found that because of the trade-off between dispersal and adaptation, range

margins were formed even when the gradient was shallow. The largest ranges were

found when the gradient was shallower because dispersal evolved to zero further along
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the gradient.

It was also found that the stronger the trade-off between dispersal and adaptation, the

smaller range a species had. This is because a bigger trade-off means that to adapt

to the environment there are bigger deviations from a species’ optimal body plan, and

so dispersal evolves to zero quicker. If species are found to have trade-offs between

adaptation and dispersal, then it may be that the size of their range is related to the strength

of this trade-off.

In this model small amounts of phenotypic variance resulted in the biggest ranges. This

result is different to that found when there is no trade-off, as then adaptation to any

steepness of gradient was found to occur because of the increased evolutionary potential

resulting from higher genetic variance (Barton, 2001). However, in this model, higher

amounts of variance means that the trait evolves to match the optimum value for survival

everywhere which is detrimental for dispersal. Dispersal therefore evolves to zero faster,

and so a smaller range is formed.

When there was weak stabilising selection towards the optimum phenotype, larger

amounts of phenotypic variance resulted in bigger ranges in proportion to the

environmental gradient, when the gradient was steeper. In this case the phenotypic trait,

z, varies more without causing a cost to fitness. Here, because there is weaker selection

towards the optimum phenotype, more variance means that there are more dispersive

phenotypes present in the population. The population is therefore able to invade further

in proportion to the gradient. For steep gradients the spatial scale is smaller and so

the observed effect is bigger. Small amounts of phenotypic variance still result in the

biggest ranges, but these results suggests that a larger amount of variance is better than

an intermediate amount, as even though there may be more maladapted phenotypes there

will also be more dispersive phenotypes present in the population.

There is empirical evidence of trade-offs between dispersal and adaptation in several fish

and amphibian species (e.g. Atlantic silversides (Billerbeck et al., 2001) and anuran toads

(Arendt, 2003) to name a few). In these species the evolution of faster growth rates at

higher latitudes, where the growing season is shorter, has been found to come at the cost

of dispersal. It may therefore be that these species have been prevented from further

expanding their ranges as a result of this trade-off. It would be interesting to investigate

whether the evolution of even faster growth rates in these species is prevented because

further deviations from their optimal body plan comes at too great a cost.
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In this model when the environmental gradient was shifted in time, it was found that a

species with this trade-off was then able to expand its range. If the environment shifted

slower than the speed at which the species could invade when there is no gradient, then

the species was found to keep up. However, if the speed was faster then the species lagged

behind. If this was the case then the species expanded its range at its invasion speed in

the absence of a gradient.

When the gradient was shifted in time, and so the species was able to expand its range,

it was observed that there was a large degree of maladaptation at the invasion front. This

was observed because for the species to be able to invade along an environmental gradient,

there must be dispersive phenotypes present at the range front. In this model, the body

plan of the species means that if it is dispersive it will not be adapted to the conditions at

the front, and so the mean value of the trait will be below the optimum value for survival.

In contrast to models without a trade-off (e.g. see Kirkpatrick and Barton, 1997), dispersal

of phenotypes from the centre of the species’ range to the range edge is beneficial, as this

increases the number of dispersive phenotypes present here, and so the population can

expand its range.

In models with no trade-off between adaptation and dispersal, species are predicted to

survive greater rates of change if they have larger amounts of genetic variance (Duputié

et al., 2012; Pease et al., 1989; Polechova et al., 2009). However, with a trade-off it was

found that faster speeds are observed with smaller amounts of phenotypic variance, and

so here more phenotypic variance does not help a species to invade. This is because more

phenotypic variance means that more phenotypes evolve to match the optimum value

for survival, which results in less dispersive phenotypes at the range front. This model

therefore predicts that species that have smaller amounts of phenotypic variance will be

able to keep up with the fastest rates of change.

These results suggest that species that have restricted ranges as a result of a trade-off

between adaptation and dispersal may be able to undergo range expansions with climate

change. This is because if climate change means that environmental gradients shift in

space, then there will always be a region where the species is able to disperse, and so

the species will be able to shift its range. For example, if climate change results in longer

growing seasons at higher latitudes, then for the species previously mentioned that exhibit

a trade-off between fast growth and dispersal, a longer growing season will mean that

growth does not need to be as fast. Individuals at higher latitudes may then be able to

grow slower, and so their body plan will not deviate so far from the optimal plan. This
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will mean that these individuals will be more dispersive and so can expand their range.

Indeed, there is some evidence to suggest that with climate change the Atlantic silverside

has expanded its range further north (Sargent et al., 2008).

In this model I have assumed that when the environment has shifted the landscape behind

it has become homogenous. When the environment shifts faster than a species can invade

at, the species was then still able to persist. If instead the trait became negative when

the gradient shifted, the species would then need to adapt to these new conditions. If the

gradient shifted too fast in this case, a species may no longer be able to persist, and the

speed at which it goes extinct may be not be the same as the speed at which it is able to

invade.

A major simplifying assumption made in this model is that the same trait that determines

adaptation to the environment also determines dispersal, where it is assumed that

adaptation to new environments evolves much more rapidly than dispersal does. This is

unlikely to be the case for real species. Instead it would be better to use a multi-trait model

where there is an interaction between the trait that determines adaptation and dispersal.

However, this would make the model a lot more complicated, and so this approach was

not used here. Multi-trait quantitative genetics models have been developed (e.g. see

Duputié et al., 2012), and so developments of this model could use a similar approach to

see if range margins are formed in the same way. Alternatively a model similar to the

approach used in this chapter, but where dispersal evolves more rapidly, could also more

realistically model this trade-off.

Another simplifying assumption made in this model is that genetic variance is constant.

When genetic variance evolves it is found that parameters that give limited adaptation

with constant variance (Kirkpatrick and Barton, 1997) result in unlimited adaptation

(Barton, 2001). It may be that if genetic variance evolves in this model then instead of

unlimited adaptation, maximum range sizes for each steepness of environmental gradient

and degree of trade-off are always able to evolve, and so investigating this would be a

natural extension to this model.

This model has revealed that range margins may be formed as a result of trade-offs

between adaptation to environmental gradients and dispersal. Larger ranges were found

when conditions meant that this trade-off was not as strong. If the gradient shifted in time

then this meant there was always a region into which the species could disperse, and so the

species expanded its range. Further research is needed into understanding whether trade-

offs between adaptation to different environments and other traits, in particular dispersal,
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can explain the formation of range margins.
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6. General discussion

One of the major threats to global biodiversity is modern day climate change, which

together with land cover changes such as habitat fragmentation and habitat destruction,

poses a challenge to the survival of many species. Being able to predict the rate at which

species spread is important for preserving biodiversity, as these rates will have an impact

on whether species will be able to shift with climate change. There is evidence that some

species are shifting their ranges in the direction predicted by climate change (e.g. Chen

et al., 2011), but also that other species are lagging behind (Menendez et al., 2006; Warren

et al., 2001) or are experiencing range contractions (Franco et al., 2006; Wilson et al.,

2005). There is also evidence that species have survived past periods of climate change,

but modern change is occurring faster than previously observed (Davis and Shaw, 2001),

and so the number of species able to keep up with rates of change in the long term is

unknown.

Invasions by exotic species are also increasingly occurring, as a result either directly or

indirectly of human activities (Sakai et al., 2001). These species can have big impacts on

ecological systems threatening local wildlife (Gurevitch and Padilla, 2004). Being able to

predict the rates at which species spread, and understanding population dynamics during

invasions will be important for trying to control these species.

Mathematical models have long been used to investigate what affects the rate of spread of

species, with a strong focus in recent years in predicting species’ responses to climate

change. Increasing evidence from these models is that dispersal can evolve during

range expansions (for reviews see, Le Galliard et al., 2012; Travis and Dytham, 2012).

However, few models look at whether, and how, dispersal trades-off with other traits

during invasions (but see Burton et al., 2010; Travis et al., 2012, 2010).

The purpose of this thesis was to investigate how trade-offs between dispersal and other

traits affect the rate of range expansions. In this discussion I will summarise the key

findings of this thesis, and then discuss them in the context of the wider literature

indicating implications for future research.
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6.1 Overview of the thesis

6.1.1 Trade-offs between dispersal and reproductive rate

The first three data chapters in this thesis model a trade-off between dispersal and

population growth rate. Chapters 2 and 3 look at the invasion of a species that exhibits

dispersal polymorphism, and Chapter 4 introduces a shifting climate into the model.

These models look at the invasion of a species where there is a trade-off between dispersal

and establishment ability, so may for example, represent a wing polymorphic insect,

where investment in flight come at the cost of reduced fecundity (Zera and Denno, 1997).

The key finding of Chapter 2 is that anomalous invasion speeds were observed when there

is a large trade-off between dispersal and establishment. These speeds had previously

been observed in strongly cooperative systems (Weinberger et al., 2007), but the model

used in this chapter revealed that these speeds also evolve when mutation between morphs

is vanishingly small, and so there is effectively no cooperation. The anomalous invasion

speeds were found to be up to twice as fast as a single morph’s invasion speed for realistic

parameter conditions, suggesting that if a species is polymorphic, trade-offs between traits

can result in faster invasion speeds than may be predicted from looking at a single morph.

It was surprising that anomalous invasion speeds were found to persist when the mutation

rate between morphs tends to zero because the invasion speed is determined by what

happens at low density, and in this limit the number of individuals of the minority morph

present at the invasion front tends to zero. It may be then that anomalous invasion speeds

occurred as an artefact of the fact that densities can be arbitrarily small in this model. To

investigate whether these speeds were still observed in more complex models, where at

low densities only one morph can be present at the invasion front, a stochastic version of

this model was developed in Chapter 3. This model showed that anomalous speeds persist

when there is demographic stochasticity, but for a smaller range of conditions than found

by the deterministic model. Anomalous speeds were found to occur when the population

had a high carrying capacity, when mutation between morphs was high, or when the

individual morph’s invasion speeds when invading on their own in the landscape were

similar.

Investigation of why these speeds arose showed that they only occur when there is a

trade-off between the morphs, and when both the establisher and disperser are at high

enough densities at the invasion front. High densities can occur as a result of any of
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the three factors that were found to result in anomalous invasion speeds. When densities

are lower, so the model is more stochastic, these speeds are less likely to be observed.

Demographic stochasticity does therefore mean that large trade-offs between dispersal

and establishment may not have as big an effect on invasion speeds as was predicted by

the deterministic model.

Together the results of these two chapters suggest that when predicting invasion speeds it

is important to take into account the whole community of phenotypes, and not just look

at a single morph’s invasion speed. For example, predicting the speed of invasion of a

wing polymorphic species just from the speed that the flight-capable morph can invade at

may give incorrect predictions. All phenotypes present in the population need to be taken

into account, as the presence of more than one morph may mean that anomalous invasion

speeds occur. This could have implications for controlling the spread of invasive species

because if the species is invading in high densities, and is polymorphic, it may spread

faster than expected.

Having established that anomalous speeds do still persist in stochastic models, I then

added a shifting climate to the model in Chapter 4 to investigate whether dispersal

polymorphism helps a species to keep up with the rate of change. It was found that

anomalous invasion speeds may help species to survive climate change. For the case

where there is a large trade-off in the morphs’ establishment and dispersal abilities it was

found that for some rates of change the presence of both morphs meant the population

could keep up, when the two morphs by themselves would become extinct. However, it

was found that if one morph is superior, either in terms of being a better establisher or

better disperser, and there is not a big difference in the other trait, then mutation between

morphs can slow invasion speeds, and may result in a species being unable to keep up

with the rate of change. It was found that if the climate was shifted slower than the speed

at which a species was predicted to invade at in Chapter 3, then it would be able to keep up

with the rate of change, but if the climate shifted faster than this, the species would always

become extinct. These results suggest that if a species’ invasion speed is known, then this

may help predict whether species will be able to survive periods of climate change by

shifting their range.

These models show that a trade-off between dispersal and reproductive rate can alter

range shifting dynamics, and can affect whether a species will be able to keep up with

rates of climate change. These results highlight the importance of taking into account all

phenotypes present in a population when predicting species’ responses to climate change.
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6.1.2 Trade-offs between dispersal and adaptation to an environmental

gradient

Chapter 5 investigates how a different trade-off with dispersal may affect species’

responses to climate change. Here, I investigated a trade-off between dispersal and

adaptation to an environmental gradient. In this model it was assumed that a species has

an optimal body plan that maximises both dispersal and survival, and that if adaptation

to another environment is required this comes at the cost of reduced dispersal. To model

this trade-off, a quantitative genetics model was used, this was because I was interested in

what happened if there were lots of different phenotypes present in the population so that

the species could adapt to different conditions. I therefore needed to model a continuous

spectrum of phenotypes, rather than use a model with two distinct phenotypes as I did in

Chapters 2-4.

Here it was found that if there was no environmental gradient then a species evolves

to follow the speed of the phenotype that maximises dispersal and survival, with faster

speeds observed when there was a smaller cost to dispersing. The invasion speed was

also found to be faster when there was a smaller amount of phenotypic variance. The

invasion speed here is not the same as if there is only a single phenotype present because

a mixture of phenotypes means there will be maladapted phenotypes in the population

which slows the invasion speed.

The introduction of an environmental gradient meant that range margins were formed.

This is because at some point along the gradient the trade-off between dispersal and

adaptation will be so great that dispersal is effectively zero, and so the species cannot

invade any further. If there are trade-offs between adaptation and dispersal then this may

explain why range margins are formed when other models that do not include trade-offs

suggest that a species will always be able to adapt to the environment (Bridle et al., 2010;

Kirkpatrick and Barton, 1997).

If the gradient then shifts in time, so that behind the shifting gradient the conditions are

optimal for the body plan of the species, then the species is able to expand its range. This

simulates an expansion of optimal conditions. The speed at which the environment shifts

determines whether the species is able to keep up with the rate of shifting. The threshold

speed for a species keeping up with the shifting environment was found to be the speed

at which the species is able to invade at in the absence of a gradient. If the environment

shifts slower than this, the species is always able to keep up.
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In the absence of a gradient, faster invasion speeds were observed when there was a

smaller amount of phenotypic variance. When the environmental gradient was shifted

in space, species with less phenotypic variance could therefore keep up with faster rates

of change, however, they were also more maladapted along the gradient, and so had

lowered survival resulting in bigger fluctuations in population density at the invasion

front. Models that do not incorporate trade-offs between adaptation and dispersal predict

that species will survive greater rates of change if they have larger amounts of genetic

variance (Duputié et al., 2012; Pease et al., 1989; Polechova et al., 2009). The results

from this model reveal that if there are trade-offs, although if there is more variance a

species may be better adapted to the environment, this does not help a species invade, and

so species are predicted to survive greater rates of change if they have smaller amounts of

phenotypic variance.

These results suggest that deviations from a species’ optimal body plan result in the

formation of range margins. Under a simulated shifting gradient, a species is better able to

keep up with the rate of change when there is a smaller trade-off between adaptation and

dispersal. A trade-off between adaptation and dispersal may therefore affect a species’

ability to respond to climate change. If adaptation to novel conditions comes at the cost

of dispersal, and if a shifting environment results in the reduction of the optimal conditions

for a species, then species may not be able to keep up with rates of change.

The results of this thesis suggest that trade-offs between dispersal and other traits can

affect the rates of range expansion of species, and so it is important to consider these

when predicting whether species will be able to keep up with rates of spread. The models

used in this thesis are simple and do not incorporate many factors that other models have

found to influence range shifting, and so these results will now be discussed in the context

of the wider literature.

6.2 Future directions and wider perspectives

6.2.1 Trade-offs between dispersal and other traits

Two different trade-offs between dispersal and other traits were investigated in this thesis:

the first was a direct trade-off between dispersal and reproductive ability, and in the second

adaptation to different environments was found to come at the cost of reduced dispersal,
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both of which suggest that trade-offs can affect the rate of species’ range expansions. A

trade-off between dispersal and reproduction is the most commonly modelled assumption

(Phillips et al., 2010b). There is evidence that dispersal does trade-off with fecundity

in expanding populations. For example, populations of the speckled wood butterfly in

more recently colonised sites were found to have increased dispersal ability but were less

fecund (Hughes et al., 2003), and so it is important to understand how this trade-off affects

range shifting dynamics.

However, other species that are undergoing range expansions do not seem to be

experiencing such trade-offs. For example, at the range front where cane toads have

evolved increased dispersal, they also have faster population growth rates (Phillips, 2009).

Instead it has been suggested that there may be trade-offs with other traits that are not

related to fitness at the invasion front, for example, if range expansions mean that species

escape their natural enemies, increased dispersal may evolve at the cost of defence against

natural enemies (Phillips et al., 2010b). In the case of the cane toads it appears that an

enhanced dispersal rate is associated with spinal injuries (Brown et al., 2007; Shilton

et al., 2008), and it has been found that toads at the front have reduced investment in

immune defence (Llewellyn et al., 2012). For this species it has been suggested that this

may provide a mechanism for controlling their spread (Brown et al., 2007). For species

that are expanding their range as a result of climate change, trade-offs between increased

dispersal and immune defence could be a concern in the long term. Modelling these

different observed trade-offs will be important in understanding what impact they will

have on species persistence.

Few theoretical studies to date have investigated the consequences of increased evolution

of dispersal during range expansions. One theoretical study that has investigated trade-

offs has shown that dispersal and reproductive ability can evolve at the expense of

competitive ability (Burton et al., 2010). When invading into an area with a competitor

this can reduce the rate of dispersal evolution. In this model simulations were either

performed with a species invading into an area in the absence of a competitor, or into an

area fully occupied by a competitor. The case where a species undergoes a period of range

expansion before encountering a competitor was not investigated. It may be in this case,

if a competitor is encountered at a time later in the expansion when dispersal has already

evolved at the cost of competitive ability, the species is now a poorer competitor and so

fails to establish and expand its range any further. Other models have found that evolution

of increased dispersal can act as a barrier to further dispersal, by preventing adaptation to
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new environments (Phillips, 2012). It would be interesting to investigate whether similarly

evolution of increased dispersal could act as a barrier to further dispersal as a result of

reduced competitive ability. More work investigating how trade-offs between dispersal

and competitive ability affects a species’ ability to expand its range is therefore required.

There are many other costs associated with dispersal (review, see Bonte et al., 2012) and

more work needs to be carried out to investigate how these may affect range shifting

dynamics. One recent advance has been in modelling a trade-off with increased dispersal

in plants. In this model the evolution of taller plants, so that seeds can be dispersed over

longer distances, comes at the cost of fewer seeds produced (Travis et al., 2010). This can

result in different range shifting dynamics depending on the strategy that evolves across

fragmented landscapes.

The results from the models in Chapters 2-4 of this thesis suggest that the presence of

both good dispersers and good establishers at the invasion front can result in faster range

expansions. In relation to the model of Travis et al. (2010), this would suggest that

faster range expansions would be observed if there were both plants that are taller, so

disperse over longer distances but produce fewer seeds, and shorter plants that produce

more seeds but don’t disperse as far. However, Travis et al. (2010) observe that typically

there is evolution of taller plants, so selecting for longer dispersal distances during range

expansions. It would be interesting to model the evolution of dispersal rate during the

range expansion of a polymorphic population such as that modelled in Chapters 2-4 to

see if similarly, evolution results in increased dispersal of all phenotypes, when results

of the models in this thesis where dispersal doesn’t evolve, suggest that populations

could experience faster range expansions if a community of phenotypes with large trade-

offs between morphs are present. There is therefore a need to understand how different

kinds of trade-offs with dispersal, and how these evolve, will impact on speeds of range

expansions.

6.2.2 More realistic modelling of dispersal

The models used in this thesis modelled dispersal using a simple emigration rate.

However, this only encompasses one aspect of the dispersal process, as was discussed

in the Introduction. Costs incurred during dispersal can be during any of these stages,

and there may be feedback between the different phases of dispersal (Bonte et al., 2012).

More complex modelling of dispersal that takes into account other aspects rather than just

an emigration rate, has been found to affect the rate of range expansions. For example,
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inclusion of density-dependent dispersal (Travis et al., 2009), evolution of a dispersal

kernel rather than just an emigration rate (Boeye et al., 2013; Travis et al., 2010), or

modelling temporally variable dispersal (Ellner and Schreiber, 2012) all result in faster

range expansions.

However, most of these models (except Travis et al., 2010) do not incorporate trade-

offs with other traits, which the results from the models in this thesis and others (e.g.

Burton et al., 2010) suggest will be important. The model developed by Travis et al.

(2010) provides a good starting point for the incorporation of more mechanistic modelling

of dispersal. Other mechanistic models which incorporate more realistic dispersal have

begun to be developed (e.g. Bartoń et al., 2012), and so incorporation of trade-offs with

other traits needs to be integrated into these.

Travis et al. (2012) have made a further development in the advancement of modelling

trade-offs with dispersal and other traits. They have developed a stochastic IBM, which

investigates the costs associated with different stages of the modelling process. They

model a trade-off between investment in safer movement ability and fecundity, and

found that the shape of this trade-off influences the joint evolution of the three dispersal

parameters modelled.

In the models used in this thesis, it is implicitly assumed that during a species’

development period, increased investment in movement ability, e.g. in Chapters 2-4 in

terms of investing in flight apparatus if the species is a wing polymorphic insect, means

that a species can move more efficiently during the movement phase. In the model

of Travis et al. (2012) explicitly modelling these stages results in different dispersal

strategies evolving depending on the shape of the trade-off. If investment in movement

ability to reduce the costs of transferring through inhospitable matrix has a low cost

to fecundity, then safe movement and high emigration rates evolve. If investment in

movement ability comes at a bigger cost to fecundity, low investment in movement

ability and low emigration rates evolve. In a patchy landscape it may therefore be that

the high emigration rates and low reproductive rates that I have assumed a morph can

have, do not evolve when different stages of dispersal are modelled and there are costs to

dispersing into unsuitable areas. In this case slower invasion speeds than predicted from

the models in this thesis may be observed. To predict if this is the case, and to understand

species’ responses to climate change, increasingly models such as the stochastic approach

developed by Travis et al. (2012) will be needed.
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6.2.3 Increasing spatial complexity

The models used in Chapters 2-4 investigate range shifting dynamics of a polymorphic

population in a homogenous environment. The evolution of polymorphism in dispersal

distance strategies has been found to be affected by landscape structure, with long and

short dispersal distances evolving with different properties of the landscape (Bonte et al.,

2010). It would be interesting to add a heterogenous landscape into the models that I

developed to investigate whether anomalous invasion speeds still arise, and whether they

are more beneficial in certain landscape structures.

The model developed in Chapter 5 suggests that taking into account trade-offs with

dispersal along environmental gradients is important. If adaptation to novel conditions

comes at the cost of dispersal then this may slow range expansions. However, if climate

change results in the environment shifting then this may mean that these species are able

to expand their range. In this model I again assumed a pre-emigration cost to dispersal,

where for example, faster growth occurs at the cost of development of structures that

aid dispersal. If trade-offs between adaptation and different stages of dispersal were

explicitly modelled, it would be expected that a trade-off with this stage would greatly

influence range shifting dynamics. Along an environmental gradient this will feedback on

the movement and settlement stages of dispersal, as reduced investment in structures that

aid dispersal will result in less efficient movement, and dispersal itself moves individuals

to sites where they may be maladapted. Modelling each of these stages may help to

explain how the costs of dispersal at each stage trade-off with adaptation, and how these

different costs affect a species’ ability to expand its range.

Other models investigating the range expansion of species along environmental gradients

have shown that the structure of the landscape can affect a species’ ability to expand

its range. For example, Phillips (2012) found that if a species underwent a period of

range expansion before an environmental gradient was encountered, then the evolution

of increased dispersal could prevent adaptation to the new environment, and so act as a

barrier to further dispersal. However, in a fragmented landscape the evolution of increased

dispersal can help a species to disperse beyond unsuitable patches and continue expanding

its range (Travis et al., 2010). In the model by Travis et al. (2012) the shape of the trade-off

between dispersal and fecundity in a patchy landscape was found to have an outcome on

the evolutionary potential of a species, highlighting the importance of incorporating trade-

offs in other models with heterogenous landscapes. Increasingly species will encounter
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different human influenced landscapes, and so understanding species’ responses through

these landscapes is important.

6.3 Concluding thoughts

As rates of climate change are set to increase and may be variable (Loarie et al., 2009),

understanding the rates at which species spread is important. The models developed in

this thesis and others (Burton et al., 2010; Travis et al., 2012, 2010) suggest that trade-

offs between dispersal and other life-history traits need to be considered when making

predictions. The models developed in this thesis are simple in their assumptions but are

useful in giving predictions about how trade-offs might influence range shifting dynamics.

There is a growing literature on how dispersal evolves during range expansions, and so

it is time to incorporate trade-offs into more complex models in order to predict species’

responses to climate change. Adding more detail into these models will increase their

complexity, however, now that we have a better understanding of the predictions gained

from simpler models, more complex models are needed if predictions are going to be

useful for conservation management. An understanding of the long-term consequences

of increased dispersal will be important in determining species persistence in a changing

world.
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Appendices

A Calculation of invasion speeds by looking for travelling wave

solutions

A common method used to calculate range expansion speeds is to look for travelling wave

solutions, as was described for the example of the Fisher equation in section 1.2.4 of the

Introduction. Here I will explain what can be obtained from using this method to solve

the PDEs of the dispersal polymorphism model described in Chapter 2. In the spatially

homogenous situation of Eqns. (2.1) and (2.2), it was shown in Chapter 2 that there are

two steady states, an unstable extinction state (ne, nd) = (0, 0) and a stable coexistence

state given by (ne, nd) = (n∗e, n
∗
d) =

(
mdd−med

meemdd−medmde
, mee−mde

meemdd−medmde

)
. I am therefore

looking for travelling wavefront solutions to Eqns. 2.1 and 2.2 for which 0 ≤ ne ≤ n∗e

and 0 ≤ nd ≤ n∗d.

If a travelling wave solution exists it can be written in the form ne = F (z), nd = G(z),

where z = x − ct and c is the wave speed. This travelling wave form can then be

substituted into Eqns. (2.1) and (2.2) in Chapter 2 to give:

−cF ′ = DeF
′′ + reF (1−meeF −medG) + µdG− µeF,

−cG′ = DdG
′′ + rdG(1−mdeF −mddG) + µeF − µdG,

where prime means differentiation with respect to z. These can then be written as a set of

first order differential equations:

F ′ = H,

G′ = J,

H ′ =
1

De

(
µeF − µdG− reF (1−meeF −medG)− cH

)
,

J ′ =
1

Dd

(
µdG− µeF − rdG(1−mdeF −mddG)− cJ

)
.

In (F,G,H, J) phase space the two steady states are (0, 0, 0, 0) and (F ∗, G∗, 0, 0), and

so there is the possiblity of a travelling wave from (0, 0, 0, 0) to (F ∗, G∗, 0, 0), where I

have defined F ∗ = mdd−med

meemdd−medmde
and G∗ = mee−mde

meemdd−medmde
. For a rightward moving
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travelling wave I therefore look for solutions to the set of 1st order differential equations

given above with the boundary conditions:

lim
z→−∞

(F,G,H, J)→ (F ∗, G∗, 0, 0),

lim
z→+∞

(F,G,H, J)→ (0, 0, 0, 0).

The Jacobian, or stability matrix A, is then found to be:

A =


0 0 1 0

0 0 0 1

µe−re(1−2meeF−medG)
De

remedF−µd
De

−c
De

0

rdmdeG−µe
Dd

µd−rd(1−mdeF−2mddG)
Dd

0 −c
Dd

 .

A can then be evaluated at the two steady states and the characteristic equations found.

The characteristic equation of the steady state (F ∗, G∗, 0, 0) is found to be∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 1 0

0 −λ 0 1

1
De

(
µe + remee(mdd−med)

meemdd−medmde

)
1
De

(
remed(mdd−med)
meemdd−medmde

− µd
)

−c
De
− λ 0

1
Dd

(
rdmde(mee−mde)
meemdd−medmde

− µe
)

1
Dd

(
µd + rdmdd(mee−mde)

meemdd−medmde

)
0 −c

Dd
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The eigenvalues are then given by

λ1,2 =
1

2De

(
−c±

√
c2 + 4De

(
remee(mdd −med)

meemdd −medmde

+ µe

))
,

λ3,4 =
1

2Dd

(
−c±

√
c2 + 4Dd

(
rdmdd(mee −mde)

meemdd −medmde

+ µd

))
.

There is coexistence of the two morphs, which means that there are stronger interactions

within than between morphs, and so meemdd > medmde and mdd > med, mee > mde.

This means that two eigenvalues are positive and two are negative, so (F ∗, G∗, 0, 0) is an

unstable saddle point.
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The characteristic equation of the steady state (0, 0, 0, 0) is then found to be

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 1 0

0 −λ 0 1

µe−re
De

−µe
De

−c
De
− λ 0

−µd
Dd

µd−rd
Dd

0 −c
Dd
− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0.

The eigenvalues are then given by

λ1,2 =
−c±

√
c2 − 4De(re − µe)

2De

,

λ3,4 =
−c±

√
c2 − 4Dd(rd − µd)

2Dd

.

I am assuming that µe and µd are small, which means that the terms in the brackets of

the eigenvalues are positive. Therefore if c2 < 4De(re − µe) and c2 < 4Dd(rd − µd)

then (0, 0, 0, 0) is a stable spiral, and so around the origin F and G oscillate. However, if

c2 > 4De(re − µe) and c2 > 4Dd(rd − µd) then the origin is a stable node. For travelling

wave solutions to occur between the two steady states it is therefore required that

c ≥ 2
√
De(re − µe),

c ≥ 2
√
Dd(rd − µd).

These two conditions correspond to two of the invasion speeds found in Chapter 2 (see

Eqns. (2.11) and (2.12)). However, this method does not give the conditions for the

third invasion speed found in Chapter 2, which corresponds to the anomalous invasion

speeds observed using both the front propagation method method (van Saarloos, 2003)

and numerical simulations.

This has shown that although in many cases, e.g. the Fisher equation, the method of

looking for travelling wave solutions does give the correct conditions for the wavespeed,

it does not always reveal all observed wavespeeds. In the case of the model developed

in Chapter 2 I have shown that this method does not give the conditions for the third set

of possible wavespeeds that were found using the alternative front propagation method

and, which I have shown from running numerical simulations can be observed. It is for

this reason that I have included the calculations of the invasion speed using the front

propagation method (van Saarloos, 2003) in Chapter 2, and used this method to calculate

range expansion speeds for the remainder of this thesis.
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Once the conditions for which which a travelling wave to exist have been found it then

needs to be proven that these are sufficient conditions for them to exist. This can be done

by looking for a heteroclinic connection between the two steady states. This is fairly

straightforward to do for equations in 2D phase space, e.g. see an example of this analysis

for the Fisher equation in Kot (2001). However, in higher-dimensional systems these are

generally more difficult to find (Guckenheimer and Holmes, 2002). For the equations I

am looking at in Chapter 2, this would mean looking for a heteroclinic condition in 4D

phase space. This has proven too difficult to do, and since I have shown by numerically

integrating the equations that travelling wave solutions do exist with the speeds predicted

analytically, this analysis will not be included in this thesis.
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B Stochastic dispersal polymorphism code

B.1 Example of code used for simulations in 1D

Below is an example of the code that was used to perform the stochastic simulations

of the discrete time and space dispersal polymorphism model in Chapter 3. This is an

example of an invasion of both morphs in one dimension, for a population with a carrying

capacity of a 100. In the code e represents the establisher morph and d the disperser

morph. I have annotated the code for the establisher morph to explain what each line

means, the code for the disperser morph is defined in the same way and so is not annotated.

#libraries required to shift a matrix

library(abind)

library(magic)

#parameters used in the simulations

b<-2 #birth rate

K<-100 #carrying capacity

mu<-0.001 #mutation rate between morphs

#population growth rates of each morph

re<-1

rd<-0.2

#survival parameters

m0e<-log(b+1)-re

m0d<-log(b+1)-rd

m1e<-(log(b+1)-m0e)/(K*(1+b))

m1d<-(log(b+1)-m0d)/(K*(1+b))

#dispersal rates of each morph

de<-0.2

dd<-0.9

n<-10000 #size of landscape on which simulations are run

e<-matrix(rep(0,n),nrow=1)

d<-matrix(rep(0,n),nrow=1)

#initial conditions - each morph is present at half the carrying capacity

e[1:100]<-K/2

d[1:100]<-K/2
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t<-0 #start time

tmax<-10000 #max time simulations run for

tnext<-100 #interval between times at which the data is saved

allz<-cbind(e,d) #matrix containing initial conditions

while(t<tmax){

while(t<tnext){

birthse<-rpois(e,b*e) #number of offspring that each establisher produces

birthsemutation<-rbinom(birthse,birthse,mu) #number of establisher’s

offspring that are dispersers

birthsd<-rpois(d,b*d)

birthsdmutation<-rbinom(birthsd,birthsd,mu)

e<-e+birthse-birthsemutation+birthsdmutation #total number of establishers

after recruitment

d<-d+birthsd-birthsdmutation+birthsemutation

N<-e+d #total population size

sprobe<-exp(-m0e-m1e*N) #survival probability of establishers

e<-matrix(rbinom(e,e,sprobe),nrow=1) #number of establishers that survive

sprobd<-exp(-m0d-m1d*N)

d<-matrix(rbinom(d,d,sprobd),nrow=1)

movee<-matrix(rbinom(e,e,de),nrow=1) #number of establishers that disperse

prighte<-rbinom(movee,movee,0.5) #number that disperse to the right

plefte<-movee-prighte #number that disperse to the left

#enforce reflective boundary conditions: establishers at edges reflect back

into cell 1 or n

plefte[1]<-0 #probability that disperse out of landscape is zero at edges

prighte[n]<-0

movee[1]<-prighte[1] #update number that disperse at edges to only be those

that disperse inside the landscape

movee[n]<-plefte[n]

#shift number that move to the left and right in each of these directions

lefte<-matrix(shift(plefte,-1),nrow=1)

righte<-matrix(shift(prighte,1),nrow=1)

e<-e-movee+lefte+righte #position of establishers in landscape after the

dispersal step
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moved<-matrix(rbinom(d,d,dd),nrow=1)

prightd<-rbinom(moved,moved,0.5)

pleftd<-moved-prightd

pleftd[1]<-0

prightd[n]<-0

moved[1]<-prightd[1]

moved[n]<-pleftd[n]

leftd<-matrix(shift(pleftd,-1),nrow=1)

rightd<-matrix(shift(prightd,1),nrow=1)

d<-d-moved+leftd+rightd

t<-t+1 #update time

}

e<-e

d<-d

newz<-cbind(e,d) #matrix containing e and d after tnext

allz<-rbind(allz,newz) #join matrices after each tnext

tnext<-t+100 #update tnext

}

B.2 Example of code used for simulations in 2D

Here is an example of the code for a simulation in two dimensions. As the code is longer,

I have just included the code for a simulation of a single morph, here the establisher

morph. Parameter values used are the same as in the code above, with the exception of

the dispersal rates so will not be repeated. I have only annotated the code where it differs

from the code for simulations in 1D.

de<-(4/3)*0.2 #dispersal rate multiplied by 4/3 so that there is the same

amount of dispersal to the left and right as in the 1D model

Nrow<-10 #width of landscape

Ncol<-10000 #length of landscape

n<-Nrow*Ncol #total area of landscape

e<-matrix(rep(0,n),nrow=Nrow)

e[1:Nrow,1:100]<-K #initial condition

t<-0

tmax<-10000
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tnext<-1000

allz<-e

while(t<tmax){

while(t<tnext){

birthse<-rpois(e,b*e)

e<-e+birthse

sprobe<-exp(-m0e-m1e*e)

e<-matrix(rbinom(e,e,sprobe),nrow=Nrow)

movee<-matrix(rbinom(e,e,de),nrow=Nrow) #number of establishers that

disperse

prighte<-matrix(rbinom(movee,movee,0.125),nrow=Nrow) #number that disperse

to the cell on the right

movee2<-movee-prighte #number of establishers that remain to disperse (this

is updated after the number that disperse in each direction is

calculated)

plefte<-matrix(rbinom(movee2,movee2,1/7),nrow=Nrow) #number that disperse

to the cell on the left

movee3<-movee2-plefte

pupe<-matrix(rbinom(movee3,movee3,1/6),nrow=Nrow) #number that disperse to

the cell above

movee4<-movee3-pupe

pdowne<-matrix(rbinom(movee4,movee4,1/5),nrow=Nrow) #number that disperse

to the cell below

movee5<-movee4-pdowne

puplefte<-matrix(rbinom(movee5,movee5,0.25),nrow=Nrow) #number that

disperse to the cell diagonally up to the left

movee6<-movee5-puplefte

puprighte<-matrix(rbinom(movee6,movee6,1/3),nrow=Nrow) #number that

disperse to the cell diagonally up to the right

movee7<-movee6-puprighte

pdownlefte<-matrix(rbinom(movee7,movee7,0.5),nrow=Nrow) #number that

disperse to the cell diagonally down to the left

pdownrighte<-matrix(movee7-pdownlefte,nrow=Nrow) #number that disperse to

the cell diagonally down to the right

#reflective boundary conditions - establishers at edge of the landscape do

not disperse out

plefte[1:Nrow,1]<-0

prighte[1:Nrow,Ncol]<-0
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pupe[1,1:Ncol]<-0

pdowne[Nrow,1:Ncol]<-0

puplefte[1,1:Ncol]<-0

puplefte[1:Nrow,1]<-0

puprighte[1,1:Ncol]<-0

puprighte[1:Nrow,Ncol]<-0

pdownlefte[Nrow,1:Ncol]<-0

pdownlefte[1:Nrow,1]<-0

pdownrighte[Nrow,1:Ncol]<-0

pdownrighte[1:Nrow,Ncol]<-0

#update number that disperse at the edges to only be those that disperse

inside the landscape

movee[2:(Nrow-1),1]<-prighte[2:(Nrow-1),1]+pupe[2:(Nrow-1),1]+pdowne[2:(

Nrow-1),1]+puprighte[2:(Nrow-1),1]+pdownrighte[2:(Nrow-1),1]

movee[2:(Nrow-1),Ncol]<-plefte[2:(Nrow-1),Ncol]+pupe[2:(Nrow-1),Ncol]+

pdowne[2:(Nrow-1),Ncol]+puplefte[2:(Nrow-1),Ncol]+pdownlefte[2:(Nrow-1)

,Ncol]

movee[1,2:(Ncol-1)]<-prighte[1,2:(Ncol-1)]+plefte[1,2:(Ncol-1)]+pdowne

[1,2:(Ncol-1)]+pdownrighte[1,2:(Ncol-1)]+pdownlefte[1,2:(Ncol-1)]

movee[Nrow,2:(Ncol-1)]<-prighte[Nrow,2:(Ncol-1)]+plefte[Nrow,2:(Ncol-1)]+

pupe[Nrow,2:(Ncol-1)]+puprighte[Nrow,2:(Ncol-1)]+puplefte[Nrow,2:(Ncol

-1)]

movee[1,1]<-prighte[1,1]+pdowne[1,1]+pdownrighte[1,1]

movee[1,Ncol]<-plefte[1,Ncol]+pdowne[1,Ncol]+pdownlefte[1,Ncol]

movee[Nrow,1]<-prighte[Nrow,1]+pupe[Nrow,1]+puprighte[Nrow,1]

movee[Nrow,Ncol]<-plefte[Nrow,Ncol]+pupe[Nrow,Ncol]+puplefte[Nrow,Ncol]

#shift number that disperse in the correct directions

lefte<-matrix(ashift(plefte,c(0,-1)),nrow=Nrow)

righte<-matrix(ashift(prighte,c(0,1)),nrow=Nrow)

upe<-matrix(ashift(pupe,c(-1,0)),nrow=Nrow)

downe<-matrix(ashift(pdowne,c(1,0)),nrow=Nrow)

uprighte<-matrix(ashift(puprighte,c(-1,1)),nrow=Nrow)

uplefte<-matrix(ashift(puplefte,c(-1,-1)),nrow=Nrow)

downrighte<-matrix(ashift(pdownrighte,c(1,1)),nrow=Nrow)

downlefte<-matrix(ashift(pdownlefte,c(1,-1)),nrow=Nrow)

#position of establishers in the landscape after dispersal

e<-e-movee+lefte+righte+upe+downe+uplefte+uprighte+downrighte+downlefte

t<-t+1

}

e<-e
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newz<-e

allz<-cbind(allz,newz)

tnext<-t+1000

}


