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Abstract 

The excellent hip function and potential degeneration are closely linked with 

the unique structure of the joint cartilage that is principally composed of a 

solid phase and a fluid phase. Once damaged, the joint may need to be 

replaced by prosthesis in order to restore function in hip kinematics and 

kinetics. However, to what extent this can be achieved has yet to be 

quantified. On the other hand, the role of fluid pressurisation which plays in 

hip function has been poorly understood. The aim of this thesis was to 

address these issues.  

To evaluate the gait abnormality, particularly in terms of hip contact forces, a 

musculoskeletal model of lower extremity was constructed in a rigid-body 

dynamics frame, and the hip kinematics and kinetics were determined and 

cross-compared for a group of asymptomatic total hip replacement (THR) 

patients, THR patients with symptoms of symptomatic leg length inequality 

(LLI) and normal healthy people. Significant abnormal patterns in gait 

kinetics were observed for the asymptomatic THR patients, and this 

abnormality was greater for the LLI patients.  

To understand contact mechanics and the associated fluid pressurisation 

within the hip cartilage, a three dimensional finite element (FE) hip model 

with biphasic cartilage layers were developed. The protocol was compared 

to other solvers. A set of sensitivity studies were undertaken to evaluate the 

influence of model parameters, and then the model was evaluated under a 

range of loads with different activities. In all the cases, the fluid supported 

over 90% of the load for a prolonged period, potentially providing excellent 

hip function and lubrication. The musculoskeletal model and FE joint were 

combined to investigate the performance of the non-operated joint of the 

THR / LLI patients during gait which was found to function in a mechanically 

abnormal but not adverse environment. Lastly, the methodology of the 

biphasic hip modelling was validated using an experimental porcine hip of 

hemiarthroplasty. Good agreement was achieved between the FE 

predictions and the experimental measurement of the contact area.  
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Chapter 1  
Introduction and Literature Review 

 

1.1 Introduction 

The human hip joint has a ball and socket configuration connecting the 

femur to the pelvis, with articular cartilage covering the bones of the 

acetabulum and femoral head at the contact surfaces. The hip joint is one of 

the most heavily loaded joints in human body. In daily activities, the joint 

may support loads ranging from 250% BW during normal walking 

(Bergmann et al., 2001) to 900% BW when stumbling occurs (Bergmann et 

al., 1993). Although transmitting such large loads, the human hip joint can 

move in a nearly frictionless way, owing to the extremely low coefficient of 

friction of the contact surfaces ranging from 0.001 to 0.02 (Jin et al., 1997, 

Mow and Lai, 1980) and the unique structure of the articulate cartilage (Mow 

et al., 1980, Mow and Lai, 1980, Mow et al., 1984, Ateshian and Mow, 

2005). Although the natural hip joint can function normally during the lifespan 

of a person, it may be damaged due to mechanical factors such as wear, 

and abnormal loading conditions which are usually believed to be among the 

main reasons for osteoarthritis. Osteoarthritis is the most common joint 

disorders affecting millions of people in the UK (Felson, 1988, Peach et al., 

2005). Once affected by osteoarthritis, the natural hip joint may need to be 

replaced by an artificial one.  

Human hip joints have been studied extensively due to the high incidence of 

diseases. One important aspect in the investigation of the natural hip joint 

during motion is the biomechanics, which are directly related to the 

kinematic and kinetic behaviour. The application of biomechanics to natural 

hip joints mainly concerns the mechanism of the musculoskeletal system 

and the resulting joint forces and motions. Through the investigation of 

biomechanics, the kinetic performance of the hip joint can be obtained 

through the body kinematics. To better understand the function of healthy 
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hip joints and the pathology of hip joint diseases, it is necessary to 

investigate the local mechanical environment. In addition to biomechanical 

studies, a large number of investigations have focused on the tribology of 

the natural hip joint to understand the friction, wear and lubrication. One of 

the important considerations in tribology is contact mechanics, which deals 

with how load is transferred between two contacting surfaces. 

Most of the experimental studies of contact forces and contact mechanics of 

natural hip joints have been carried out either through implanting 

transducers on endo-prosthesis in vivo (Hodge et al., 1986, Bergmann et al., 

2001) or through placing transducers or pressure-sensitive film on cadaveric 

hip joints (Brown and Shaw, 1983, Afoke et al., 1987, Anderson et al., 2008). 

However, these techniques are invasive, costly, non-repeatable, and 

unsuitable to undertake extensive parametric evaluations. To help overcome 

this problem, analytical approaches and computational modelling techniques 

such as RBD and FE have been adopted. 

RBD is usually adopted in the investigation of biomechanics of natural hip 

joints because it is computationally efficient in dealing with the 

musculoskeletal system and able to provide body kinetics on a subject-

specific level (Anderson and Pandy, 2001, Pandy, 2001, Erdemir et al., 

2007). On the other hand, a number of studies on the contact mechanics 

and tribology of natural hip joints have been conducted using the FE method 

(Anderson et al., 2008, Anderson et al., 2010, Harris et al., 2012, Henak et 

al., 2011, Ferguson et al., 2000a, Ferguson et al., 2000b). However, most 

studies on contact mechanics of the natural joint adopted previous 

experimental joint forces that were derived from patients with artificial joints 

as model inputs, and furthermore, few studies have successfully predicted 

the time dependent behaviour of the natural hip cartilage in a three 

dimensional model under physiological loads, even though the time 

dependent behaviour of the cartilage plays an essential role in hip function. 

Consequently, it is important to take into account both biomechanical and 

the time dependent tribological factors in the investigation of natural hip 

joints. This thesis focuses on combining computational biomechanics and 

biotribological modelling of natural hip joints to predict the contact 
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mechanics. This chapter reviews in general the anatomy, biomechanics 

modelling, tribology and contact mechanics for natural hip joints.  

 

1.2 Hip joint 

The hip joint is a ball-and-socket joint which can rotate in all directions and 

belongs to the most moveable type of synovial joints. Unlike the shoulder 

which is another ball-and-socket joint, the hip provides not only mobility but 

also provides support for the body. Due to its deep socket, the acetabulum, 

strong joint capsule and surrounding ligaments and muscles, the hip joint is 

the strongest weight-bearing joint of the body.  

 

1.2.1 Bones  

The hip joint is formed where the roughly spherical head of the femur fits into 

the cup-like acetabulum serving as the connection between pelvis and femur 

as shown in Figure 1.1 and Figure 1.2.  

 

 

Figure 1.1 Anterior view of skeleton of the hip (Tank et al., 2009). 
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Figure 1.2 Posterior view of skeleton of the hip (Tank et al., 2009). 

 

The femur is the longest bone in the body, divided into three parts: the upper 

femur beginning from femoral head and neck to the lower limit of the lesser 

trochanter; the shaft beginning from the lesser trochanter to the distal 

portion; and the distal portion forming the lower end of the femur which 

articulates with the knee joint. The greater trochanter and lesser trochanter 

are two protrusions projecting from the upper and lower part of the base of 

the femoral neck respectively, serving as the attachment points of strong 

muscles (Valliappan et al., 1977). The femoral neck lies between the femoral 

head and the greater and lesser trochanter, connecting the femoral head 

with femoral shaft.  

The angle between the femoral neck axis and shaft axis, namely the neck-

shaft angle, is approximately 130 ± 7 degrees (mean ± standard deviation) 

(Reikeras et al., 1982). The femoral neck connects to the femoral head, 

which is the highest part of the femur and forms roughly two thirds of a 

sphere. The diameter of the femoral head ranges from 40 to 60 mm 

according to the size of the individual (Hoaglund and Low, 1980).  

Articulating with the femoral head, the acetabulum is a cup-shaped cavity 

where the three components of the pelvis (ilium, ischium, and pubis) meet 
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(Figure 1.3). The ilium is the superior bone of the pelvis. The ischium forms 

the inferior and posterior part of the pelvis. The pubis is the inferior and 

anterior part of the pelvis. These three bones constitute the pelvis which, 

together with the sacrum, transfer the weight of the upper body to the hip 

joint (Phillips et al., 2007).  

 

 

Figure 1.3 Lateral view of the right half of the pelvis illustrating the regions 
that form the acetabulum (Tank et al., 2009). 

 

1.2.2 Capsule, ligaments and muscles 

Around the interior surface of the hip joint lies a thin membrane called the 

synovial membrane which produces synovial fluid that lubricates the articular 

cartilage (Figure 1.4). Outside this membrane is the hip joint capsule 

enclosing the entire hip joint. This capsule is a dense fibrous tissue attached 

to the bone. It stabilizes the joint through movement limitation and, at the 

same time, facilitates the large range movement of the hip joint (Ralphs and 

Benjamin, 1994). The thickened part of the capsule forms the capsule 
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ligaments which help provide hip stability (Hewitt et al., 2001, Ito et al., 

2009). The major ligaments are shown in Figure 1.5. 

 

 

Figure 1.4 Coronal section through hip joint (Baura, 2012) 
 

 

Figure 1.5 Major ligaments of the hip joint (Kelly et al., 2003) 
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The hip joint muscles line outside the hip joint ligaments driving the motion of 

the bones as well as assisting the ligaments in providing stability. There are 

over 20 muscles around the hip joint, and the major muscles are shown in 

Figure 1.6.  

 

   

Figure 1.6 Anterior (left) and posterior (right) view of the pelvis, hip joint, and 
upper femur displaying the major muscles (Manning et al., 2008) 

 

1.2.3 Cartilage and labrum 

The hip joint cartilage is classified as articular cartilage. It covers the surface 

of the femoral head and the inside of the acetabulum, bearing the load and 

functioning as lubrication for the hip joint. Around the outer edge of the 

acetabulum is a meniscus rim of fibrocartilage called the labrum (Figure 
1.7). This is attached to the osseous margin of the acetabulum and deepens 

the acetabular socket, thus extending the coverage of femoral head 

(Ferguson et al., 2000a, Ferguson et al., 2000b).  
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Figure 1.7 The structure of the hip joint (Tank et al., 2009).  
 

The thickness of articular cartilage of human hip joint is not uniform across 

the whole joint area but its variations between different regions of the 

acetabulum and the femoral head are generally not significant (Shepherd 

and Seedhom, 1999). The thickness of the cartilage of the femoral head and 

acetabulum reported by different literatures varies but mainly ranges from 

1 to 3 mm (Athanasiou et al., 1994, Adam et al., 1998, Naish et al., 2006, 

Shepherd and Seedhom, 1999). The thickness of articular cartilage is 

related to gender, age and joint health, and also varies between individuals. 

Cartilage thinning was found in patients with osteoarthritis and in elderly 

women (Hudelmaier et al., 2001, Karvonen et al., 1994, Fenlin and Frieman, 

1998, Hunter et al., 2008). Also, males were reported to have higher 

thickness of cartilage than females (Jones, Glisson et al. 2000).  

The cartilage structure and continuum modelling will be mentioned in 

section 1.6.  
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1.3 Hip kinematics 

The hip joint is a ball-and-socket joint and has a large range of motion, 

second only to shoulder. Regarding the hip joint, kinematics describes the 

motion of bodies and systems without consideration of the related force. To 

describe the kinematics of the hip joint, three mutually perpendicular planes 

are generally adopted: the sagittal plane, the frontal plane and the 

transverse plane (Figure 1.8). The sagittal plane is the vertical plane which 

divides the body into the left and right sections. Perpendicular to the sagittal 

plane and the ground is the frontal plane which separates the anterior and 

posterior parts. The transverse plane is the horizontal plane bisecting the 

body into the superior and inferior halves. The motion of the hip joint has 

three degrees of freedom depicted as three pairs of principle directions: 

flexion and extension (moving the thigh forward and backward respectively 

within the sagittal plane), adduction and abduction (moving the thigh inward 

and outward respectively within the frontal plane), and internal rotation and 

external rotation (along the axis perpendicular to the transverse plane, 

causing the knee to turn inward and outward respectively).  

 

 

Figure 1.8 Sagittal, frontal, and transverse planes (Selinger, 2007). 
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The most common form of human activity is walking, the manner of which is 

called gait. The gait cycle is a single sequence of motion beginning and 

ending at heel strike of the same foot. Each gait cycle is divided into two 

phases: the stance phase and the swing phase. The stance phase describes 

the entire time interval when foot is on the ground and contributes to about 

60% of the gait cycle. The swing phase is the term which depicts the time 

interval when foot is lifted from the ground, and constitutes around 40% of 

the gait cycle. The hip joint moves in all of its three degrees of freedom 

during a gait cycle. The kinematic information during gait is shown in Figure 
1.9.  

 

 

Figure 1.9 Range of motion as a function of gait cycle during normal walking 
(Bergmann et al., 2001).   

 

Gait pattern measurements have been generally carried out non-invasively 

through attaching markers to the skin in relation to bony landmarks 

(Crowninshield et al., 1978). The motion of the skin makers can be then 

captured by photographic cameras, and the movement of joints in relation to 

time recorded. However, the skin movement and the location of skin makers 

could both affect the accuracy of this method (Baker, 2006). More recent 

attempts have been made to measure bones and joints directly in gait 
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patterns through MRI (Asakawa et al., 2003, Rebmann and Sheehan, 2003, 

Barrance et al., 2005) or fluoroscopy (Stagni et al., 2005).  

 

1.4 Hip kinetics  

Hip joint kinetics refers to the forces and moments generated in the joint 

during motion. It is closely related to the BW, motion and muscle forces and 

is assumed to play a significant role in the degeneration of the hip joint 

(Paul, 1967). During normal walking, the hip joint contact force typically 

involves two peaks which occur at heel-strike and toe-off (Figure 1.10). 

Studies on hip joint kinetics have been carried out using both experimental 

approaches and analytical/computational methods.  

 

 

Figure 1.10 Magnitude of hip joint force normalized by BW as a function of 
gait cycle during normal walking (Bergmann et al., 2001). The 
maximum hip joint force occurred at approximately 14% of the cycle. 

 

Analytical studies can predict joint kinetics non-invasively. Paul (1967) 

calculated the maximum contact force at the hip joint during walking to be 3 
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analytical model is a redundant system in which the unknowns outnumber 

their equations, unique solutions cannot be achieved and optimization is 

required. More recently, computational simulation has become popular in the 

determination of joint forces and muscle forces using musculoskeletal 

models based on anthropometry (Anderson and Pandy, 2001, Pandy, 2001, 

Erdemir et al., 2007) 

 

Table 1-1 Peak hip contact forces normalized by BW of 11 activities 
(Bergmann et al., 1993, Bergmann et al., 2001). The peak loads data of 
the first nine activities were averaged data from three patients 
(Bergmann et al., 2001). The data of the last two activities were based 
on individual measurements (Bergmann et al., 1993). 

Activity Peak contact force /BW 

Slow walking 2.42 

Normal walking 2.38 

Fast walking 2.50 

Up stairs 2.51 

Down stairs 2.60 

Standing up 1.90 

Standing down 1.56 

Standing on 2-1-2 legs 2.31 

Knee bend 1.43 

Jogging 5.84 

Stumbling 8.70 
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In the case of experimental studies, in vivo measurements have been 

usually carried out with instrumented prostheses to obtain contact forces 

(Rydell, 1966, Bergmann et al., 2001, Kotzar et al., 1991). In these studies, 

hip joints of patients with joint diseases were replaced by instrumented 

prostheses embedded with transducers to measure joint force. 

Measurements were conducted during a variety of daily activities. Table 1-1 

lists peak forces of during daily activities measured by Bergmann et al. 

(1993, 2001). However, such invasive techniques cannot be applied to 

measure the kinetics for healthy joints. 

 

1.5 Hip kinetics: musculoskeletal modelling 

Muscle forces and joint forces can be determined computationally using a 

musculoskeletal model which is derived from anthropometry. Such models 

are usually based on RBD for computational efficiency (Erdemir et al., 2007, 

Pandy, 2001, Paul, 1967, Crowninshield et al., 1978).  

 

1.5.1 Rigid-body dynamics musculoskeletal modelling 

The RBD model for the hip kinetics calculation usually involves the lower 

extremity of human body including the pelvis, thigh, shank, and foot of both 

legs (Erdemir et al., 2007, Wehner et al., 2009). Also for computational 

efficiency, the joints are assumed to be in simple forms. For example, the hip 

joints, knee joints and ankle joints were usually modelled respectively as 

spherical joints with three rotational degrees of freedom, hinge joints with 

one rotational degree of freedom, and cardan joints with two rotational 

degrees of freedom (Wehner et al., 2009). These bones and joints, together 

with the surrounding muscles, form the musculoskeletal model. The muscle 

forces and the resulting contact forces of the hip joint can be calculated 

based on the kinematics of the lower limb and the ground reaction force 

which can be measured non-invasively. 

Early attempts to simulate dynamic movement of the lower extremity were 

usually based on two dimensional musculoskeletal models; for example, 
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sagittal-plane models (Cole et al., 1996, Piazza and Delp, 1996). With the 

development of musculoskeletal analysis software such as OpenSim (Delp 

et al., 2007), SIMM (Musculographics, USA), LIFEMOD (LifeModeler, Inc., 

USA), and AnyBody (AnyBody Technology, Denmark), three dimensional 

musculoskeletal models with detailed anatomical muscle data can be 

established (Delp and Loan, 1995, Al Nazer et al., 2008, Damsgaard et al., 

2006).  

Based on Newton’s second law, the basic relationship between the force 

applied and motion of the body segments in a musculoskeletal model can be 

expressed in the matrix form (Equation ((1.1)) (Pandy, 2001)  

 

𝑀𝑀�𝑞𝑞� 𝑞̈𝑞 + 𝐶𝐶 �𝑞𝑞� 𝑞̇𝑞2 + 𝐺𝐺 �𝑞𝑞� + 𝑅𝑅 �𝑞𝑞�𝐹𝐹𝑀𝑀𝑀𝑀 + 𝐸𝐸 �𝑞𝑞, 𝑞̇𝑞� = 0 (1.1) 
 

Where 𝑞𝑞 is the vector of the coordinates for the segments. 𝑀𝑀�𝑞𝑞� is the 

system mass matrix. 𝐶𝐶 �𝑞𝑞� 𝑞̇𝑞2 is a vector of centrifugal and Coriolis forces 

and torques. 𝐺𝐺 �𝑞𝑞� is a vector of gravity forces and torques. 𝑅𝑅 �𝑞𝑞� is the 

matrix of muscle moment arms. 𝐹𝐹𝑀𝑀𝑀𝑀 is the vector of muscle forces. 

𝑅𝑅 �𝑞𝑞� 𝐹𝐹𝑀𝑀𝑀𝑀 is the vector of muscle torques. 𝐸𝐸 �𝑞𝑞, 𝑞̇𝑞� is the external forces and 

torques.  

 

1.5.2 Muscle modelling and recruitment type 

In musculoskeletal modelling, the simplest type of muscle model is an ideal 

force generator similar to a simple spring. Besides, the mechanical 

behaviour of muscles is often described by the famous Hill-type model 

(Figure 1.11) which accounts for the interaction of the force, length and 

velocity of the muscle, as well as the passive stiffness of the muscle and the 

elasticity of the tendon (Zajac, 1989, Winters and Stark, 1985).  
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Figure 1.11 Schematic representation of the Hill musculotendon actuation 
(Zajac, 1989). The force-length-velocity property of muscles was 
modelled by a Hill-type contractile element (CE). The muscle’s passive 
stiffness was represented by a passive element (PE). The stiffness of 
the tendon (T) was also incorporated. 

 

To evaluate the influence of force-length-velocity properties of muscle on the 

predicted muscle forces, Anderson and Pandy (2001) conducted inverse 

dynamics simulation in two sets where muscles were modelled respectively 

as ideal force generators and materials with force-length-velocity properties. 

For normal walking which involves relatively low speed and a small range of 

motion, there was little discrepancy between the results calculated from 

muscles with force-length-velocity properties and those based on muscles 

modelled as ideal force generators.  

In a musculoskeletal model, the number of muscles and ligaments crossing 

the hip joint is greater than the degrees of freedom for the motion of the hip 

joint. Therefore the hip joint forms a redundant system, which means that the 

muscle and ligaments forces cannot be determined uniquely (Fernandez and 

Pandy, 2006). Early attempts to solve this problem reduced the number of 

muscles and ligaments to equal the number of degrees of freedom by 

simplifying the muscles and ligaments into groups (Paul, 1967). More recent 

attempts have focused on optimization theories which are usually based on 

the following form:  
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Minimize the function 

 

𝐺𝐺(𝐹𝐹𝑀𝑀𝑀𝑀)  
 

Subject to 

 

𝑅𝑅 �𝑞𝑞� 𝐹𝐹𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑀𝑀𝑀𝑀 (1.2) 
  

 
0 ≤ 𝐹𝐹𝑀𝑀𝑀𝑀 ≤ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 (1.3) 
 

Where 𝑇𝑇𝑀𝑀𝑀𝑀 is the joint torques generated by external forces and inertia 

forces. 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum force a muscle can produce.  

The minimization of cost function 𝐺𝐺(𝐹𝐹𝑀𝑀𝑀𝑀) is based on the assumptions for 

underlying neuronal control system. For example, in the linear muscle 

recruitment which minimizes the sum of muscle forces or muscle stresses, 

all the joint muscles are assumed to co-operate to generate the least forces 

required. Besides linear muscle recruitment, there are many other factors 

that can be minimised such as the sum of muscle forces squared (Collins, 

1995, Glitsch and Baumann, 1997), muscle stresses squared (Glitsch and 

Baumann, 1997), muscle stresses cubed (Brand et al., 1986, Glitsch and 

Baumann, 1997, Pedersen et al., 1997), higher (>3) power of muscle 

stresses (Crowninshield and Brand, 1981), maximum single muscle stress 

(Rasmussen et al., 2001) as well as composite recruitment criteria which 

involve several single term recruitment types (Praagman et al., 2006).  

It remains debated within the literature as to which muscle recruitment 

criteria is the most accurate. Crowninshield and Brand (1981) found that 

minimizing sum of muscle stresses cubed predicted the closest result to 

experimental EMG patterns (this will be mentioned in the next section). 

However, Glitsch and Baumann (1997) argued that squared muscle stresses 

minimization produced the best consistency with EMG patterns. Regardless 

of the parameters used, it should be noted that musculoskeletal modelling 

tends to predict higher muscle forces and joint contact forces, potentially 

because of the lack of realistic wrapping of muscle paths around the joint or 
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due to the absence of soft tissue (e.g. muscle volume), both of which make 

moment arms smaller than the real value. By far, however, numerical 

techniques serve as the only approach to predict contact forces for healthy 

joints.  

 

1.5.3 Inverse solution and forward solution 

Once the musculoskeletal model has been formulated, the muscle forces 

and joint force can be determined by either inverse or forward dynamics. 

Inverse dynamics is usually referred to as static optimization in that it carries 

out a different optimization procedure at each moment of the movement 

when joint torques can be determined to optimize muscle forces (Pandy, 

2001). Although inverse dynamics is computationally efficient, it is thought to 

have two main drawbacks. First, inverse dynamics requires accurate 

recording of body kinematics which is not easy to achieve (Patriarco et al., 

1981). Second, the dynamic process cannot be properly characterized 

because of the time independent nature of inverse dynamics (Pandy, 2001).  

Forward dynamics, on the other side, avoids these problems by using an 

initial set of muscle activations as inputs to obtain the corresponding body 

motions. Then the muscle activations are optimized to best reproduce the 

experimentally measured kinematics. Consequently, forward dynamics is 

usually referred to as a dynamics optimization approach. However, this 

process of multiple integrations makes the forward dynamics optimization 

much more computationally involved, as compared with inverse dynamics 

(Erdemir et al., 2007).  

Although these two optimization methods adopt different approaches, the 

results of muscle forces and joint contact forces predicted by the two 

methods were found to be similar (Anderson and Pandy, 2001, Pandy, 

2001). A comparison of inverse and forward dynamics was conducted by 

Anderson and Pandy (2001). For the purpose of using the same set of body 

motions and joint torques, the joint moments calculated by the forward 

dynamics were adopted as the input for the inverse dynamics. Highly similar 

results were found between forward and inverse dynamics in predicting 
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muscle forces and joint contact forces. However, this method of comparison 

only demonstrated that the static approach and the dynamic approach 

numerically predicted similar results; the model sensitivity to measurement 

errors in kinematic inputs was not evaluated, because the inputs of the 

inverse dynamics approach were not taken from kinematics data directly.  

Generally speaking, both inverse dynamics and forward dynamics have two 

drawbacks. First, the right form of cost function which can represent the true 

mechanism of human muscles is unknown (Buchanan and Shreeve, 1996). 

Second, the optimization theories may not suit for patients who suffer from 

neurological impairments which make their muscle patterns different from 

those of normal people, or for patients with pain who may tend to avoid 

mechanical stress on the painful tissue (Erdemir et al., 2007). These 

problems in optimization methods can be overcome by an experimental 

approach called EMG which measures whether muscles are active or not 

through the electrical potential generated by activated muscle cells under the 

skin. Instead of solely optimizing muscle forces through cost functions, the 

muscle forces measured by EMG can be used as inputs to both forward 

dynamics (Koo and Mak, 2005, Piazza and Delp, 1996) and inverse 

dynamics (Amarantini and Martin, 2004, Lloyd and Besier, 2003). 

Nevertheless, EMG is not capable of measuring forces of deep muscles. 

Direct in vivo measurement of muscle forces can be carried out during a 

surgery in which a tendon is attached with a force transducer (Dennerlein et 

al., 1998, Schuind et al., 1992). However, such approaches are too invasive 

to be applied to clinical applications and may alter the muscle collaboration 

pattern.  

 

1.6 Cartilage structure and continuum modelling  

1.6.1 Structure  

In biomechanical terms, articular cartilage is considered to be composed of 

two principal phases: a solid phase which includes chondrocytes, collagen 

fibrils, proteoglycans and other glycoproteins, and a water-like fluid phase 

made up of water and electrolytes (Mow et al., 1984, Mow and Lai, 1980). 
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Other authors have considered the charge as an additional phase (Lai et al., 

1991).  

The fluid phase or interstitial fluid weighs about 60% to 85% of the cartilage 

(Mow et al., 1992). Collagen forms the largest portion of the organic solid 

phase weighing about half of the dry weight. The second major component 

of the matrix are proteoglycans which account for 20% - 30% of the dry 

weight (Mow and Guo, 2002). At the ultrastructure level, collagen has a high 

degree of depth dependence, forming four major zones or layers: a 

superficial tangential zone where collagen fibrils are densely packed and 

oriented parallel to the surface; a middle zone composed of randomly and 

sparsely arranged collagen fibrils; a deep zone in which collagen fibrils form 

larger bundles, cross the tidemark and insert perpendicularly into the final 

calcified zone which anchors the cartilage to the bony structure (Figure 
1.12) (Mow et al., 1984, Mow et al., 1992).  

 

 

Figure 1.12 The arrangement of collagen network of articular cartilage forms 
four major zones. (Mow et al., 1992) 
 

In addition to collagen, the fluid and proteoglycan content of articular 

cartilage show different densities with depth as well, with fluid content 

decreasing and proteoglycan percentage increasing from the articular 

surface to deeper regions (Mow et al., 1984).  
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The labrum is also believed to be composed of a fluid phase and a solid 

phase formed by collagen fibre bundles. However, the material and 

constitutive property of the labrum has been poorly reported (Ferguson et 

al., 2000b, Ferguson et al., 2000a).  

The collagen fibrils are strong in tension but weak in compression. However, 

the articular cartilage as a whole is not too weak to sustain a compression, 

because the collagen fibrils are intertwined to form a fibrous network in 

which the huge proteoglycans are trapped, forming a porous architecture 

which the fluid can flow through. The relative fluid flow through the porous 

structure generates a frictional drag which accounts for the time dependent 

viscoelastic response of the tissue. Apart from the solid-fluid interaction, the 

mechanical response of the tissue is also linked with the charge in the 

cartilage. The proteoglycans in the cartilage contain a high concentration of 

negatively charged groups, together with the high concentration of the 

electrolytes in the fluid, endowing the tissue a potential to swell and gain or 

lose water depending on the external ionic or mechanical environment (Mow 

et al., 1984).  

The excellent load bearing function of the cartilage is believed to be 

contributed to by the interstitial fluid. Generally, the interstitial fluid supports 

most of the load transmitted to the articulate cartilage for a long period due 

to the frictional drag, leaving only a small portion of load to the solid structure 

(Ateshian et al., 1994), and sustaining a nearly frictionless mechanical 

environment for the hip joint (McCann et al., 2009, Forster and Fisher, 

1996). On the other hand, the labrum has been shown to help in impeding 

the fluid exudation (or cartilage consolidation) process, due to its lower 

permeability as compared with the articular cartilage (Ferguson et al., 2000b, 

Ferguson et al., 2000a, Ferguson et al., 2003, Haemer et al., 2012). 

 

1.6.2 Cartilage continuum modelling  

Articular cartilage is a viscoelastic, non-linear, inhomogeneous, anisotropic 

and multiphasic biomaterial (Li et al., 2000, Mow et al., 1984). As the main 

contributors to load carrying are collagen fibrils and proteoglycans, the 

mechanical properties of articular cartilage are non-uniform with depth (Mow 
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and Guo, 2002, Roth and Mow, 1980). For example, the compressive 

aggregate modulus increases markedly with depth from the superficial to the 

deep layers of articular cartilage (Wang et al., 2001, Roth and Mow, 1980), 

while the permeability decreases with depth (Mow et al., 1984, Mow and 

Guo, 2002).  

Single phase assumptions which regard the cartilage as elastic or 

viscoelastic were widely adopted in early determinations of cartilage 

properties (Sokoloff, 1966, Kempson et al., 1971, Hayes and Mockros, 1971, 

Parsons and Black, 1977) as well as in recent models of whole articular 

joints (Anderson et al., 2008, Henak et al., 2011, Harris et al., 2012). 

However, these single phase assumptions are not able to account for 

interstitial fluid of articular cartilage and the effect of different phases (i.e. 

fluid phase and solid phase) on the mechanical behaviour of the tissue.  

As the fluid flow plays a vital role in the time dependent mechanical 

behaviour of articular cartilage, it is necessary to distinguish the interstitial 

fluid as a distinct phase and consider articular cartilage as at least a biphasic 

material (Mow et al., 1984). Biphasic theory assumes that articular cartilage 

is composed of a porous solid matrix phase and a fluid phase, both of which 

are intrinsically incompressible. The aggregate as a whole is compressible 

because fluid is able to flow through the micro-pores of the solid matrix. 

During compression, the hydrostatic pressure developed in the interstitial 

fluid initially plays the leading role in supporting the load. Then the cartilage 

begins to deform as the load squeezes away the interstitial fluid. Ultimately, 

the fluid flow ceases and the interstitial fluid pressure drops towards zero. At 

this stage, the solid cartilage matrix holds the entire load (Eckstein et al., 

1999). Owing to the low permeability of articular cartilage, the process of 

fluid flow and fluid exudation is greatly resisted thus a high fluid pressure is 

maintained during a prolonged period of time (Ateshian et al., 1994, Mow et 

al., 1980).  

In biphasic theory, the stress of the mixture 𝑇𝑇 is contributed by both the fluid 

pressure 𝑝𝑝 and the stress caused by the deformation of the solid matrix 𝑇𝑇𝑠𝑠. 

So the stress of the two phases can be coupled as: 

𝑇𝑇 = −𝑝𝑝𝑝𝑝 + 𝑇𝑇𝑠𝑠 (1.4) 
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On the other hand, the displacement of the two phases can be coupled by 

the conservation of mass which requires that: 

 

𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣𝑠𝑠 + 𝑤𝑤) = 0 (1.5) 
 

Where 𝑣𝑣𝑠𝑠 is the velocity of the solid matrix and 𝑤𝑤 is the fluid flux relative to 

the solid matrix. 

Because the fluid flux is related to both the gradient of fluid pressure as well 

as the porous structure of the tissue, the fluid pressure and fluid flux can be 

linked by: 

 

𝑤𝑤 = −𝐾𝐾 ∙ grad 𝑝𝑝 (1.6) 
 

Where 𝐾𝐾 is defined as the permeability of the cartilage representing the 

capacity of the porous solid matrix to allow fluid to flow through it. 

The simplest form of biphasic theory is linear biphasic theory which assumes 

a linearly elastic solid phase, infinitesimal strains, constant permeability and 

an inviscid fluid phase (Mow et al., 1980). To better represent the 

mechanical behaviour of articular cartilage, this theory was extended to 

allow nonlinearities including strain-dependent permeability (Lai and Mow, 

1980, Holmes, 1985, Accardi et al., 2011), tension-compression nonlinear 

solid phase (Soltz and Ateshian, 2000), solid matrix viscoelasticity (Mak, 

1986), and spatial fibril orientations (Schwartz et al., 1994). The values of 

the parameters in these biphasic theories were usually derived by 

optimization approaches based on the observed force-displacement 

relationship of cartilage samples when loaded (Athanasiou et al., 1994, Soltz 

and Ateshian, 2000, Pawaskar et al., 2011). Material properties of normal 

human cartilage vary among different joint, location on joint and specimen. 

For example, elastic modulus and permeability for human hip cartilage range 

from 0.6 MPa to 1.8 MPa and 0.00036 to 0.00143 mm4/Ns respectively 

(Athanasiou et al., 1994). Generally, human articular cartilage has an elastic 

modulus ranging from 0.5 MPa to 1.8 MPa, Poisson’s ratio ranging from 0 to 
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0.1, and permeability ranging from 0.00036 to 0.0017 mm4/Ns (Ateshian and 

Hung, 2006, Athanasiou et al., 1994, Mononen et al., 2012). It should be 

noted that the tissue properties derived from various assumptions may be 

different even for the same test on the same specimen (Cohen et al., 1993).  

Although biphasic theory can properly represent the viscoelastic behaviour 

and the interstitial fluid of articular cartilage, it does not account for the 

interaction between the fixed charged groups in the proteoglycans and the 

ions in the interstitial fluid. Hence, triphasic theory (Lai et al., 1991) with an 

individual phase for ions and quadriphasic theory with separate anionic and 

cationic phases was proposed (Huyghe and Janssen, 1997). These theories 

are able to account for the swelling effect of the cartilage as well as the 

response of the tissue to the external ionic environment. However, the 

biphasic theory already counts in the contribution of the charge to the 

mechanical response of the tissue. If there is little variation in the external 

ionic environment (e.g. in vivo circumstance) and the contribution of the 

charge is not of interest, biphasic theory is appropriate to accurately 

represent the fluid-solid interaction. 

 

1.7 Hip osteoarthritis and arthroplasty 

1.7.1 Osteoarthritis  

Osteoarthritis, which is the most prevalent disease leading to disability in an 

aging population, affects joint cartilage and subchondral bone, causing pain 

and joint dysfunction. It mainly involves progressive loss of articular 

cartilage, subchondral bone thickening, sclerosis and new bone formation 

(Peat et al., 2001, Felson, 1988). The exact etiology of osteoarthritis is as 

yet poorly understood, but the possible risk factors are age, overuse, 

obesity, trauma, malformation or deformity, muscle weakness or 

misalignment, joint laxity, congenital and other diseases (Vignon et al., 2006, 

Dagenais et al., 2009). Also, mechanical factors are generally regarded as 

one of the major reasons for the onset of osteoarthritis (Radin et al., 1972, 

Sharma et al., 2003, Davis, 1988). Diagnosis of osteoarthritis is widely 

carried out by x-ray because the occurrence of osteoarthritis and the loss of 
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cartilage leads to joint space narrowing which is detectable on radiographs 

(Felson, 1988, Nevitt et al., 1995, Dougados et al., 1996, Kellgren et al., 

1963).  

Besides structural changes, osteoarthritis-affected joint are often 

accompanied by increased water content and permeability of the cartilage 

(Brocklehurst et al., 1984, Alexopoulos et al., 2005, Armstrong and Mow, 

1982, Martin and Buckwalter, 2002, Martin and Buckwalter, 2001) and 

reduced cartilage aggregate modulus (Akizuki et al., 1986, Armstrong and 

Mow, 1982, Lane et al., 1979).  

 

1.7.2 Hemiarthroplasty and total hip replacement 

Patients with hip trauma or hip disease such as osteoarthritis usually suffer 

from great pain which affects their locomotion patterns. To relieve their pain 

and to restore a normal locomotion, THR or hemiarthroplasty is required. 

Hip hemiarthroplasty, in which only one of the articulating surfaces is 

replaced with artificial material, is manly used for femoral neck fractures 

(Gebhard et al., 1992, van der Meulen et al., 2002) or osteoarthritis 

treatment if only one of the two articular cartilage surfaces has deteriorated 

(Devas and Hinves, 1983).  

In THR, both the femoral head and the acetabulum are replaced with 

prosthesis. The modern THR was proposed by John Charnley (Charnley, 

1964, Charnley, 1972) who used a metallic femoral head against an ultra-

high molecular polyethylene. Since then, many types of hip replacements 

have been developed. Based on the adoption and combination of different 

materials for the acetabulum (cup) and the femoral head (ball), THR can be 

categorized into many types such as a polyethylene cup bearing against a 

metal ball, a metal ball and cup, and a ceramic ball and cup (Fisher, 2011).  

 

1.7.3 The influence of hip arthroplasty on gait 

Usually, the kinematics and kinetics of THR patients do not return to those of 

healthy people even years after THR surgery. For example, THR patients 
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(one year after surgery) were found to have reduced hip contact forces and 

adduction moments when ascending and descending stairs (Foucher et al., 

2008, Foucher et al., 2007).  

In the case of gait analysis, a reduced ground reaction force was detected 

for the THR patients, particularly for the affected limb (McCrory et al., 2001, 

Long et al., 1993). Besides, THR patients walk with a lower speed, a 

decreased hip mobility (Perron et al., 2000, Madsen et al., 2004) and 

different muscle activity patterns (Long et al., 1993). Moreover, hip 

arthroplasty affects not only the kinematics of the operated limb but also the 

non-operated limb (Beaulieu et al., 2010). The mobility of both the operated 

and the non-operated limb of THR patients was reduced as compared to 

their healthy counterparts (Beaulieu et al., 2010). The alterations in 

kinematics and kinetics of hip locomotion patterns may be a result of 

patients’ adaptations preoperatively or postoperatively to stimuli such as 

pain, instability or muscle weakness (Sicard-Rosenbaum et al., 2002).  

 

1.7.4 Leg length inequality 

Although THR has become one of the most successful orthopaedic 

interventions (Nilsdotter et al., 2003), patients commonly have a difference in 

their leg lengths after THR (McWilliams et al., 2011). If LLI is evident, THR 

patients will be symptomatic and may complain of “mechanical problems, 

pain and neurological deficit” (McWilliams et al., 2011). In the case of severe 

symptoms, a revision arthroplasty may be expected.  

LLI following THR may be due to several different reasons. For example, the 

limb can be lengthened if the femoral stem protrudes or the cup is placed too 

low. Sometimes the surgeon may increase limb length deliberately to offset 

the instability caused by component mal-positioning (McWilliams et al., 

2011). The mechanical symptoms of LLI include instability, dislocation and 

limp, thus potentially altering the mobility patterns, loads and wear of the hip 

(McWilliams et al., 2011, Bhave et al., 1999). LLI patients following THR 

were found to exhibit a decreased range of hip motion (Budenberg et al., 

2012). However, the influence of LLI on hip kinetics during gait has not been 

quantified yet.  
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1.8 Biphasic lubrication 

The hip joint is nearly frictionless during motion, because the coefficient of 

friction of cartilage is extremely low, ranging from 0.001 to 0.02 (Jin et al., 

1997, Mow and Lai, 1980). This mainly owns to the high fluid support ratio in 

the cartilage.  

As the total load transferred between the articulating surfaces (𝑊𝑊) is shared 

by both the fluid phase (𝑊𝑊𝑓𝑓) and solid phase (𝑊𝑊𝑠𝑠) (Equation (1.7)), the 

friction coefficient between articulating cartilage surfaces is principally 

determined by the solid-fluid phase interactions. 

 

𝑊𝑊 = 𝑊𝑊𝑓𝑓 + 𝑊𝑊𝑠𝑠 (1.7) 
 
As the friction contributed by the fluid phase is minimal compared with the 

solid phase, the friction force can be expressed as (Forster and Fisher, 

1996):  

 

𝐹𝐹𝑇𝑇 = 𝜇𝜇𝑆𝑆 × 𝑊𝑊𝑠𝑠 (1.8) 
 

Where 𝐹𝐹𝑇𝑇 is the total friction force; 𝜇𝜇𝑠𝑠 is the effective coefficient of friction 

attributed to the solid phase. If dividing the above equation by the total load, 

the total coefficient of friction for the aggregate (𝜇𝜇𝑇𝑇) can be derived as:  

 

𝜇𝜇𝑇𝑇 = 𝜇𝜇𝑠𝑠 ×
𝑊𝑊𝑠𝑠

𝑊𝑊
 (1.9) 

 

From the above equation, it can be inferred that 𝜇𝜇𝑠𝑠 equals to the “equilibrium 

coefficient of friction” which describes the situation of equilibrium stage when 

the solid phase supports the entire load.  

Generally, the fluid phase supports more than 90% of the load for the hip 

joint (Forster and Fisher, 1996, Forster and Fisher, 1999, Ateshian, 2009, 

Pawaskar et al., 2010, Haemer et al., 2012), leaving a low level of stress to 
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the solid phase and thus maintaining a low friction coefficient for the 

cartilage. As the cartilage becomes consolidated, less load is shared by the 

fluid phase, leaving more portion of load to the solid matrix, raising solid-

solid contact and thus increasing coefficient of friction. This phenomenon 

has been demonstrated experimentally by many researchers (Forster and 

Fisher, 1996, Forster and Fisher, 1999, Krishnan et al., 2004). 

 

1.9 Hip contact mechanics 

Contact mechanics of hip joint is generally concerned with the contact 

pressure, contact area, stresses and deformation which arise as the result of 

two bodies brought into contact. It plays a vital role in the pathological 

mechanism for osteoarthritis which is the most common hip joint disorder. It 

is well identified that local stress distribution plays a much more important 

role than global joint loading on osteoarthritis pathology and provides 

information for preoperative planning and postoperative rehabilitation of the 

hip (Genda et al., 2001, Yoshida et al., 2006). Studies on contact mechanics 

of hip joint have been carried out from either experimental or 

analytical/computational approaches.  

 

1.9.1 Experimental studies 

Contact pressure of the hip joint can be measured in several approaches. 

Brown and Shaw (1983) measured contact stress of human hip joint by 

insetting an array of compliant miniature transducers in the femoral head 

cartilage of cadaveric hip joints. However, these discrete locations of 

transducers cannot infer the pressure distribution over the whole of the 

cartilage surface. To overcome this limitation, pressure-sensitive film was 

employed to determine contact pressure of natural hip joint (Afoke et al., 

1987). This method is debated because the thickness (0.2 mm) and stiffness 

of such film may introduce measurement artefacts, considering the high 

congruence of the hip joint. Besides, these methods can only be applied to 

cadaveric human hip joints, due to their highly invasive nature. In vivo 
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measurements of contact mechanics of human hip joints can only be 

conducted on patients requiring femoral head or acetabulum replacement so 

that transducers can be embedded on the instrumented prosthesis (Krebs et 

al., 1991, Hodge et al., 1989, Hodge et al., 1986, Rushfeldt et al., 1981). 

Peak pressure of hip joints predicted by various experimental studies is 

listed in Table 1-2. Generally, the predictions using transducers embedded 

inside the cartilage are lower than those adopting pressure-sensitive film. 

This may be either because that the transducers might not be positioned at 

the cartilage region that bears the highest pressure, or due to the thickness 

of the film which affects the hip congruence.  

Fluid pressurization measurement was conducted by Ferguson et al. (2003) 

in a study on the influence of the labrum on the fluid pressurization in hip 

joints. One transducer was inserted into the hip joints to measure the fluid 

film pressurization, and the cartilage consolidation rate was recorded by the 

displacement of the testing machine. However, direct measurement of fluid 

pressure distribution inside the cartilage of the natural hip joint is currently 

difficult and has only been achieved for very simple configurations which 

deviate from the real situation inside the hip joint due to unrealistic boundary 

conditions, level of confinement, etc. (Soltz and Ateshian, 1998, Park et al., 

2003).  
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Table 1-2 Peak contact pressure of hip predicted by experimental studies  

Reference Peak pressure 
(MPa) 

Load 
(N) Activities Measurement 

method 

(Hodge et 
al., 1986) 

7.00 -- Ascending 
stairs 

Pressure-sensitive 
transducers on 
endoprostheses 

7.14 -- Rising from 
chair 

6.72 -- 
Single-leg 

stance 
during a gait 

(Hodge et 
al., 1989) 

4.0 -- Walking 

Pressure-sensitive 
transducers on 
endoprostheses 

4.5 -- Ascending 
stairs 

9.7 -- Rising from 
chair 

(Brown and 
Shaw, 
1983) 

8.80 2700 Walking 

Transducers 
inserted in the 

cartilage of 
cadaveric hip 

joints 

(Afoke et 
al., 1987) 

4.9 - 10.2 2000 - 
2500 

Static load 
from walking, 
270 flexion of 

femur 
Pressure-sensitive 
film on cadaveric 

hip joints 1.3 – 2.15 750 - 
1500 00 neutral 

6.0 – 10.4 2100 - 
2900 

180 
extension 

(von 
Eisenhart et 

al., 1999) 

7.7 ± 1.95 
(mean ± 
standard 
deviation) 

345% × 
BW Walking 

Pressure-sensitive 
film on cadaveric 

hip joints 

(Anderson 
et al., 2008) > 10 < 2000 Walking  

Pressure-sensitive 
film on cadaveric 

hip joints 
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1.9.2 Analytical studies 

Analytical/theoretical attempts on calculation of contact mechanics for the 

hip joint are easy to begin with, because the contact parameters can be 

derived directly from one or several equations (Eberhardt et al., 1990, Ipavec 

et al., 1999, Brinckmann et al., 1981). A comparison of results for different 

analytical studies on hip joints is listed in Table 1-3. Although these studies 

provide an initial understanding of the hip function, a great degree of 

assumptions were made including boundary conditions, material properties, 

model geometries, etc., and therefore, the accuracy of these studies were 

greatly limited. Besides, the analytical approach for the biphasic cartilage 

theory has not yet been applied to a hip joint model and has only been 

utilized for confined/unconfined models or indentation models (Ateshian et 

al., 1994, Ateshian and Wang, 1995, Ateshian et al., 1998, Soltz and 

Ateshian, 2000). To achieve more accurate predictions for the hip contact 

mechanics, other approaches (e.g. FE) are preferred. 

 

Table 1-3 Analytical predictions on peak contact pressure of natural hip 
joints  

Reference Peak hip contact 
pressure (MPa) Load (N) Activities 

(Brinckmann et 
al., 1981) 3.72 2494 Walking 

(Ipavec et al., 
1999) 3.00 2000 Walking 

(Daniel et al., 
2008) 

1.79 836 Walking 

2.04 836 Ascending stairs 

2.08 847 Descending stairs 
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1.9.3 Computational studies 

As an non-invasive approach, computational modelling can be applied to 

investigate the influence of model parameters, such as material properties 

(Wei et al., 2005) and geometry simplifications (Anderson et al., 2010). 

Besides, computational modelling is able to provide a wide range of model 

mechanics information including the distribution of stress, strain and fluid 

pressurization. These parameters are not experimentally measurable. 

Consequently, computational approaches enable a more systematic 

investigation on joints mechanics, as compared with experiments.  

The FE method has been widely used for predicting contact mechanics of 

the hip joint. Early attempts estimated contact stresses of hip joint using 

greatly simplified two dimensional FE models (Brown and DiGioia, 1984, 

Ferguson et al., 2000b, Wei et al., 2005). As the development of FE 

commercial software in recent years, more complicated models have been 

attempted to better understand hip function, such as three dimensional 

models (Bachtar et al., 2006), models with subject-specific geometry 

(Anderson et al., 2008) and biphasic hip models (Pawaskar et al., 2010, 

Pawaskar, 2010).  

Subject-specific FE models of the hip joint make allowance for the variation 

of hip geometry and material properties among patients (Anderson et al., 

2008, Harris et al., 2012, Henak et al., 2011). Solid models were generally 

created from CT / MRI scanned images. Although the construction of such 

models requires manual segmentation and smoothing from the original 

images, they are believed to provide more realistic joint geometric 

parameters (Anderson et al., 2010). As compared with models with ideal 

geometry (i.e. spherical hip joint and uniform thickness), Anderson et al. 

(2010) argued that subject-specific geometric parameters have a great 

influence on the contact mechanics of the hip joint. So far, subject-specific 

hip joint modelling has only been applied to cartilage models with simplified 

constitutive relationship (e.g. hyperelastic).  

Joint modelling with biphasic cartilage layers has been mostly conducted 

using two dimensional models (Ferguson et al., 2000b, Ferguson et al., 

2000a, Haemer et al., 2012). These studies have the potential to provide 
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brief parametric information such as the influence of labrum on cartilage 

consolidation. However, these two dimensional models contain little details 

on the geometric parameters of the model, and therefore, three dimensional 

modelling is needed to provide more accurate information. Several studies 

have incorporated biphasic cartilage into three dimensional models of hip 

hemiarthroplasty, where the femoral head of the natural hip joint is replaced 

by a rigid prosthesis (Pawaskar et al., 2010, Pawaskar et al., 2011). 

However, the application of such methodology to the natural hip joint 

modelling which involves biphasic cartilage-on-cartilage contact has not 

been successful, due to convergence issues. For other joint such as knee, 

biphasic whole joint modelling has also been attempted three dimensionally 

(Gu and Li, 2011, Mononen et al., 2012, Halonen et al., 2013, Mattei et al., 

2013). However, in the case of biphasic cartilage-on-cartilage contact, none 

of these studies applied a high physiological load for a prolonged period to 

reflect the time dependent behaviour of the joint cartilage. So far, it seems 

that no studies have successfully applied biphasic cartilage to three 

dimensional whole joint modelling that involves biphasic cartilage-on-

cartilage contact under physiological loads. 

An alternative method to calculate contact mechanics for the hip joint is DE 

analysis (Genda et al., 2001, Yoshida et al., 2006, Abraham et al., 2013). 

Within this method, the hip joint cartilage was divided into smooth fine mesh 

elements attached with compressive springs and shear springs to simulate 

compressive and shearing resistance in response to joint forces. In this way, 

stresses on the articular cartilage were proportional to the deformation of the 

springs after relative displacement occurs between the contact surfaces. 

Although DE analysis shows good computational efficiency, its simplified 

theory is not applicable to many complex situations such as biphasic 

modelling for the cartilage.  

The peak contact pressures within models of the natural hip joint calculated 

by various authors using FE and DE approaches are listed in Table 1-4. 

Contact areas were not listed because they were not reported in all of these 

studies and they are believed to be not as directly linked with joint damage. 

Large variations exist within the literatures, potentially due to different 

geometric assumptions, boundary conditions, material properties, etc.  
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Table 1-4 Computational predictions for peak contact pressure of natural hip 
joints during daily activities 

Reference Peak contact 
pressure (MPa) Load (N) Activity Solving 

method 

(Yoshida et 
al., 2006) 

2.87 -- Slow walking 

DE 

3.26 -- Normal walking 

3.28 -- Fast walking 

5.71 -- Ascending stairs 

3.77 -- Descending stairs 

8.97 -- Rising from chair 

9.36 -- Sitting on chair 

3.65 -- Knee bending 

(Anderson 
et al., 2008) 

10.78 1988 Normal walking 

FE 11.61 2127 Ascending stairs 

12.73 2203 Descending stairs 

(Bachtar et 
al., 2006) 

5.50 1988 Walking 

FE 5.34 1587 Rising from chair 

4.99 1212 Knee bending 

(Pawaskar 
et al., 2010) 

2.97 2050 Slow walking 

FE 

2.78 1988 Normal walking 

2.99 2118 Fast walking 

2.98 1587 Rising from chair 

2.57 1322 Sitting down 

4.63 2203 Descending stairs 

3.00 2127 Ascending stairs 

2.42 1212 Knee bending 

4.40 2125 Standing on 2-1-2 leg 
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To evaluate the accuracy of model predictions, both verification and 

validation are needed. Model verification, which is to check whether the 

equations are solved correctly, can be conducted by mesh convergence 

studies as well as by comparing different solvers on the same model. On the 

other hand, model validation is to check whether model simplifications, 

material properties or boundary conditions are reasonably set up, by 

comparing the computed results with the experimentally measured data. 

Depending on the parameters to validate, simplifications can still be made 

for other parameters. For example, Anderson et al. (2008) validated the 

material properties and geometric parameters of a hip model using assumed 

boundary conditions that may not precisely capture the in vivo situation. 

Generally, validation for hip joints is challenging, because current 

measurement devices may introduce measurement artefacts to the hip joint 

which is highly conforming, and similar boundary conditions are difficult to 

achieve between experiments and computational simulations. Besides, 

validation against in vivo circumstances is impossible for the healthy hip joint 

due to the invasive measurement techniques. 

 

1.10 Summary 

In summary, the investigation of biomechanics and biotribology of the hip 

joint is necessary to evaluate the mechanical factors that are related to hip 

function and degeneration as well as potential interventions, and provide 

pre-operative planning and post-operative rehabilitation strategies. Due to 

the invasive nature and potential inaccuracy of experimental measurements 

for the hip joint that is highly conforming, numerical approaches are 

generally preferred particularly in the investigation of hip kinetics which 

refers to biomechanics and contact mechanics which is an important 

parameter in biotribology. RBD musculoskeletal modelling has been widely 

adopted to predict joint kinetics due to its computational efficiency. On the 

other hand, FE method serves as an effective technique to calculate joint 

contact mechanics and is able to provide a wide range of predictions through 

the incorporation of advanced materials. 
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Although the interstitial fluid plays an important role in the load bearing and 

lubrication in the articular cartilage, no studies have successfully 

incorporated biphasic cartilage layers to the whole joint modelling under 

physiological loads. Besides, the performance of hip kinetics and contact 

mechanics of THR patients with LLI is unknown. Solving these problems 

provides an important step forward in the understanding of hip performance. 

Additionally, the combination of biomechanics and biotribology opens the 

opportunities to investigate the hip performance more systematically and 

comprehensively. 

This thesis focuses on establishing a musculoskeletal model to analyse and 

characterise the hip kinetics for different cohorts of people, developing a hip 

joint with biphasic cartilage layers to enable the investigation of its contact 

mechanics and associated fluid pressurisation and combining these two 

domains to quantify the differences in the contact mechanics and associated 

fluid pressurisation that arise from the variation in hip kinetics among 

different cohorts of people. 

 

1.11 Aims and objectives 

1.11.1 Aims 

The aim of this thesis is to develop a musculoskeletal model, quantify the hip 

kinetics for healthy people, asymptomatic THR patients and symptomatic LLI 

patients, develop a generic three dimensional FE human hip model with 

biphasic cartilage layers to investigate contact mechanics and the 

associated fluid pressurisation of the joint, validate the methodology using a 

porcine hip joint of hemiarthroplasty, apply the model to investigate the effect 

of different model parameters and daily activities, and combine the 

musculoskeletal model and the joint model to investigate whether unilateral 

THR or LLI patients have abnormal contact mechanics on their non-operated 

healthy hip.  
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1.11.2 Objectives 

1) To develop a RBD musculoskeletal model of human lower extremity to 

predict hip contact forces from the experimentally measured gait 

kinematics.  

2) To vary the model parameters to justify the simplifications in the 

measured files of gait kinematics and the model. 

3) To apply the developed musculoskeletal model to quantify the hip 

kinetics for healthy people, asymptomatic THR patients and symptomatic 

LLI patients. 

4) To verify the constitutive relationship of biphasic modelling through 

comparing the predictions in two different FE solvers. 

5) To develop a generic FE model of human hip with biphasic cartilage 

layers. 

6) To vary the model parameters in order to analyse their influences on the 

model predictions over a prolonged loading period. 

7) To apply physiological dynamic loads with spatial and temporal variations 

to the model in order to investigate the hip contact mechanics and the 

associated fluid pressurisation during daily activities.  

8) To apply the predictions of the musculoskeletal model to the FE model in 

order to analyse the influence of THR / LLI on the contact mechanics of 

the non-operated hips. 

9) To obtain CT scans of porcine acetabulum to create a subject-specific 

three dimensional solid model. 

10) To develop a FE model of a hemiarthroplasty with biphasic cartilage 

layers from the scanned solid model. 

11) To compare the simulated results to the experimentally measured data to 

validate the methodology of modelling the hip joint as biphasic.  



- 37 - 

Chapter 2  
Musculoskeletal Modelling: Methodology Development 

 

2.1 Introduction 

As a computationally efficient and non-invasive approach, RBD modelling of 

the musculoskeletal system has been widely applied to the determination of 

muscle forces and joint forces, largely due to the existing commercial 

software (e.g. SIMM (Musculographics, USA), LIFEMOD (LifeModeler, Inc., 

USA), and AnyBody (AnyBody Technology, Denmark)) which provide 

anatomical information on the human musculoskeletal model such as bone 

geometry, muscle strength and muscle attachment points. In this study, the 

inverse dynamics software AnyBody (version 5.0; AnyBody Technology, 

Denmark) was used to determine joint forces because it enables a wide 

range of muscle optimization techniques and allows the users to have a 

great control on the model parameters through its code-operated function. 

Within the musculoskeletal approach, the joint contact forces can be 

predicted from the body kinematics which can be collected non-invasively 

and easily. For this reason, it can be applied to cohort studies involving large 

numbers of subjects. However, measurement efficiency is usually preferred 

particularly for cohort studies, and thus simplifications may be assumed. For 

example, most of the gait files used in this and the next chapters contain the 

ground reaction force information for only one limb. On the other hand, there 

are several means to increase the computational efficiency, including the 

assumption of muscle modes of simple form, the symmetric scaling of 

segments, etc. Consequently, it is necessary to verify the adoption of such 

simplifications and assumptions by analysing their influences on the model 

predictions.  

This chapter covers a brief description of methodology regarding the 

construction of a musculoskeletal model, and the evaluation of several 

assumptions in the experimental measurement and computational 
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modelling. The outcomes from these preliminary tests were used to inform 

the methodologies employed in the main studies, which are presented in 

Chapter 3. 

 

2.2 Methods 

2.2.1 Model construction 

A musculoskeletal model was developed based on the LowerGaitExtremity 

model in AnyBody (version 5.0, AnyBody Technology, Aalborg, Denmark) 

and is shown in Figure 2.1. The musculoskeletal model of the lower 

extremity in AnyBody has been previously validated in the literature (Forster, 

2004, Manders et al., 2008) and comprises a human lower extremity model 

which includes 340 muscles and 11 rigid bodies representing talus, foot, 

shank, patella and thigh for both legs and the pelvis. The generic muscle 

and joint parameters of the lower extremity model in the AnyBody Repository 

are based on an anthropometric dataset provided by the University of 

Twente (Horsman and Dirk, 2007). The model was scaled based on marker 

positions to represent individual variations in the length of the bones.  
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Figure 2.1 The musculoskeletal model developed was composed of bones 
and muscles. The blue points denote the markers which were used as 
the initial drivers for the model. The ground reaction force was 
transferred to the model through the force plate.  

 

The human upper extremity is proposed to have little effect on the 

investigation of hip joint contact force, as the inverse dynamics are based on 

a “bottom-up” approach starting with the force plate data for ground 

reactions. Consequently, the arm segments were excluded for computational 

efficiency. However, the trunk segments were preserved for attaching the 

psoas major muscles, which may contribute to the hip joint kinetics. The 

trunk segments were constrained to the pelvis forming only one rigid body, 

because their kinematic information is unavailable in the measured gait 

kinematics.  

Within the musculoskeletal model, the hip was simplified as a spherical joint 

which has three rotational degrees of freedom: flexion/extension, 

abduction/adduction and internal/external rotation. The knee, patellofemoral 

Bone (yellow) 

Marker (blue) 

Muscle (pink) 

Force plate (grey) 
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and ankle joints were modelled as hinge joints for flexion/extension, and the 

subtalar joint was modelled as a hinge joint for inversion/eversion.  

The boundary conditions of the model were based on the data in the 

experimentally measured gait files (in C3D format) which contain the 

information on the trajectories of markers attached to the lower extremity, 

ground reaction force and size and position of force plates. The measured 

gait data for one of the unilateral THR patients with LLI from previous tests 

(Budenberg et al., 2012) was adopted for all the sensitivities studies in the 

following sections. 

 

2.2.2 Influence of different scaling approaches 

Based on the marker trajectories, the lengths of the segments were scaled 

and kinematics optimised, reflecting parameters for each participant. In order 

to investigate the influence of different scaling approaches, both symmetric 

and asymmetric leg length scaling were performed and the results 

compared.  

 

2.2.3 Influence of ground reaction force assumptions 

The ground reaction force was then applied to the foot segment of the 

scaled model to perform inverse dynamics for the musculoskeletal model 

which was driven by the optimized kinematics (joint angles) in the kinematics 

optimization step. It should be noted that if the foot steps on the edge of the 

force plate, the ground reaction force may be substantially underestimated. 

To exclude such circumstances, force plates were included as an 

environment so that the interaction between the foot and force plate 

becomes visible. For most of the available gait files, the ground reaction 

force was measured only for one foot. In order to identify whether there is a 

difference in the hip contact force of one leg if the ground reaction force of 

the other foot was kept or removed, the gait file simulated in this chapter 

contained information on the ground reaction forces for both limbs. 
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2.2.4 Influence of simple muscle forms 

To investigate the influence of the sophisticated Hill type muscle model on 

the results, muscles were treated as simple models (or ideal force 

generators) and Hill type respectively and the results were compared.  

 

2.2.5 Influence of different muscle recruitment types 

To evaluate the influence of different muscle optimization types on the hip 

kinetics, several recruitment types were evaluated by the polynomial and 

max/min optimization functions. The polynomial function is as follows:  

 

𝐺𝐺 = �(
𝑓𝑓𝑖𝑖
𝑁𝑁𝑖𝑖

)𝑝𝑝
𝑛𝑛

𝑖𝑖=1

 (2.1) 

 

Where 𝐺𝐺 is the optimization function; 𝑖𝑖 muscle number; 𝑛𝑛 number of 

muscles; 𝑁𝑁𝑖𝑖 strength of muscle 𝑖𝑖; 𝑓𝑓𝑖𝑖 force of muscle 𝑖𝑖; 𝑝𝑝 power of polynomial. 

The solution to the polynomial optimization problem with increasing 𝑝𝑝 

converges to the solution obtained by the min/max function (Rasmussen et 

al., 2001), given by:  

 

𝐺𝐺 = max �
𝑓𝑓𝑖𝑖
𝑁𝑁𝑖𝑖
� ,      𝑖𝑖 = 1, . . . , 𝑛𝑛 (2.2) 

 

In this chapter, the polynomial function with 𝑝𝑝 = 1, . . . , 5, and the min/max 

function were evaluated and compared.  

 

2.3 Results  

2.3.1 Influence of different scaling approaches 

For the symmetric and asymmetric scaling approach, the optimized length of 

model segments are listed in Table 2-1 and the resultant hip contact forces 

are shown in Figure 2.2. A slight difference (<5%) in segment length was 
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detected through the asymmetric scaling approach. The predicted hip 

contact forces are similar between the two scaling approaches. It should be 

noted that the gait file simulated is from a THR patient with LLI. For normal 

healthy people, the degrees of LLI should be smaller and the predictions by 

different scaling approaches are supposed to be more similar. 

Consequently, in terms of calculating hip kinetics, both scaling approaches 

are suitable for normal healthy people. However, the subject analysed may 

have a lower degree of LLI as compared with other THR or LLI patients. As 

a result, in the following chapter, the hip kinetics of the normal healthy 

people was calculated by the symmetric scaling approach which is more 

computationally efficient, whilst the asymmetric method was adopted for the 

asymptomatic THR patients and symptomatic LLI patients. 

 

Table 2-1 Optimized length of segments by symmetric and asymmetric 
scaling approaches for a THR patient with symptoms of LLI. Slight 
differences were detected in segment length between the two scaling 
methods.  

Segment length (mm) Thigh length 
(mm) 

Shank length 
(mm) 

Foot length 
(mm) 

Symmetric scaling 39.6 38.7 23.0 

Asymmetric 
scaling 

Left 40.1 39.4 22.8 

Right 39.2 38.1 23.1 
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Figure 2.2 Results of BW normalized hip contact force using symmetric and 
asymmetric length scaling. The hip contact forces were similar between 
the two scaling approaches.  

 

2.3.2 Influence of ground reaction force assumptions 

As shown in Figure 2.3, it was found that the exclusion of ground reaction 

force for one limb does not affect the predicted kinetics for the other limb, 

suggesting that it is appropriate to use the gait files which contain ground 

reaction force for only one limb.  
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Figure 2.3 Results of BW normalized hip contact force of the model on one 
or two force plates. Both situations predicted identical results (the two 
traces nearly overlapped). 

 

2.3.3 Influence of simple muscle forms 

Regarding the forms of muscle modelling, the simple muscle model 

predicted slightly lower hip contact force than the 3-elements Hill type 

muscle (Figure 2.4). This is partly in agreement with a previous study 

(Anderson and Pandy, 2001) in which it was numerically found that force-

length-velocity relationships of the Hill type muscle had little influence on the 

prediction of muscle forces and contact forces of hip joints during gait. 

Besides, the model with 3-elements muscles is substantially more 

computationally involved. As a result, the simple muscle model was adopted 

in the following chapter.  
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Figure 2.4 Results of BW normalized hip contact force using simple muscle 
models and the 3-elements Hill type model. The model with 3-elements 
muscles predicted about 10% higher joint force than the model with 
simple muscles.  

 

2.3.4 Influence of different muscle recruitment types 

As shown in Figure 2.5, it was found that there was a great variation in the 

results for hip models with different optimization functions of the muscle 

recruitment. Generally, a higher power of the polynomial function generated 

a higher hip contact force, and similar results were found for powers from 2 

to 5. For the human lower extremity, previous studies have shown that 

power = 2 (Glitsch and Baumann, 1997, Heintz and Gutierrez-Farewik, 

2007) or power = 3 (Crowninshield and Brand, 1981) predicted similar 

results to measured muscle forces. For the above reasons, the quadratic 

muscle recruitment type (power = 2) was adopted in the following chapter for 

the model applications. 
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Figure 2.5 Results of BW normalized hip contact force for different 
optimization functions. The min/max and power = 1 recruitment types 
predicted the highest and lowest contact force respectively. Similar 
results were found for the other types (power = 2 to 5).  

 

2.4 Conclusion 

The RBD musculoskeletal model was able to predict joint contact forces 

from the experimentally measured gait files with great computational 

efficiency (less than 30 min to simulate one gait file). Based on the results 

found from the sensitivity studies undertaken in this chapter, the following 

methodology was adopted for the studies presented in Chapter 3: 

1) The ground reaction force for only one foot was used.  

2) The simple muscle model was adopted. 

3) The quadratic muscle recruitment type was employed. 

4) The symmetric scaling was used for the normal healthy people, whist 

the asymmetric scaling was adopted for the THR or LLI patient. 
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Chapter 3  
Musculoskeletal Modelling: Application to Different Patient 

Cohorts 

 

3.1 Introduction  

As mentioned in Chapter 1, LLI, which refers to a discrepancy in leg lengths, 

is a common symptom for patients following THR and is believed to affect 

the rehabilitation performance of THR patients (McWilliams et al., 2011, 

Budenberg et al., 2012). Investigations into the levels of restoration to 

normal of activity patterns of THR patients with or without symptoms of LLI 

will help provide better patient care, pre-operative planning and rehabilitation 

strategies. Such evaluations have been poorly reported however, particularly 

in terms of hip contact force, a factor which is directly linked with joint 

damage (Wearing et al., 2006, Arokoski et al., 2000).  

On the other hand, highly standardised joint kinetics have been adopted by 

previous models and pre-clinical tests, using generic inputs without 

accounting for the potential gait variations for different cohort. For example, 

the kinetic data of several THR patients measured by Bergmann et al. 

(2001) have been widely used in numerical modelling for the natural hip joint 

(Yoshida et al., 2006, Anderson et al., 2008, Harris et al., 2012), whilst 

experimental and numerical simulations for artificial hip joints tend to be 

loaded with the ISO standard hip kinetics (ISO-14242-1, 2002) that were 

derived from healthy people (Barbour et al., 1999, Williams et al., 2006, Liu 

et al., 2008). The validity of such standardised adoptions with mismatched 

cohort has yet to be evaluated.  

Physiological hip contact forces can be only measured in vivo. However, 

such measurements are too invasive to be applied to healthy joints or cohort 

studies involving large numbers of subjects. Therefore, numerical methods 

serve as a valuable alternative approach. As demonstrated in Chapter 2, 

RBD musculoskeletal modelling enables efficient predictions of joint contact 
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forces. The aim of this study was to quantify the differences in hip kinematics 

and kinetics for asymptomatic unilateral THR patients, symptomatic 

unilateral LLI patients, as well as their normal healthy counterparts during 

gait using the methods determined in Chapter 2. Additionally, the predicted 

hip kinetics were compared to the ISO standard and previous measured 

data (Bergmann et al., 2001), in order to help provide guidelines for more 

realistic inputs of future modelling and testing.  

 

3.2 Methods  

The methods determined to be most appropriate from the initial studies in 

Chapter 2 were adopted here. 

 

3.2.1 Subjects  

Following ethical approval, the gait kinematics and ground reaction forces for 

different patient groups were measured in Leeds Chapel Allerton Hospital by 

Dr. Anthony Redmond and Mr. Martin Stone as part of an associated study.  

The cohorts studied were normal healthy individuals (‘Normal’), 

asymptomatic THR patients who exhibited no other co-morbidities (‘THR’), 

and THR patients with LLI that were symptomatic enough to require 

consideration for revision surgery (‘LLI’). The asymptomatic THR patients 

and symptomatic LLI patients were recruited at a minimum of 1 year post-

operatively at the time which they were largely recovered following surgery. 

The marker set was positioned by a single researcher, and joint kinematics 

were recorded using a clinical gait analysis system comprising of an eight 

camera passive marker system (Vicon MX ,T40 cameras,150hz, Oxford 

Metrics, UK) sampling at 180 fps and 2 megapixel resolution. The ground 

reaction force was measured by twin force plates (Bertec, Colombus, OH, 

USA) at 1000 Hz. Technical error for the cameras within a working volume of 

10 x 11 x 2.5 m was calculated as less than 0.2 mm for this experimental 

setup. Post-processing was undertaken in Vicon Nexus software (Oxford 

Metrics, Oxford, UK) and exported as C3D format for joint force modelling. 
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All of the subjects walked at a normal speed during the measurement. The 

demographic and anthropometric profiles of the three cohorts are shown in 

Table 3-1.  

 

Table 3-1 Demographic and anthropometric profile of cohorts, compared to 
literature (mean ± 95% CI). The THR and LLI cohorts and the THR 
patients of Bergmann had similar age and BMI, compared with which, 
the healthy individuals were generally younger and had smaller BMI.  

Cohorts 
Number 

of 
subjects 

Gender 
male 

/female 
Age (yrs) Height 

(m) 
Weight 

(kg) 
BMI 

(kg/m2) 

Normal 38 19 / 19 
44.97 

(40.92 to 
49.03) 

1.701 
(1.673 to 

1.729) 

71.96 
(68.02 to 

75.90) 

24.72 
(23.84 to 

25.61) 

THR 15 4 / 11 
64.27 

(58.59 to 
69.95) 

1.705 
(1.655 to 

1.755) 

89.69 
(79.73 to 

99.66) 

30.74 
(27.72 to 

33.77) 

LLI 23 5 / 18 
58.70 

(54.51 to 
62.88) 

1.615 
(1.583 to 

1.646) 

72.71 
(67.78 to 

77.63) 

27.86 
(26.26 to 

29.45 

Bergmann 
(Bergmann 

et al., 
2001) 

4 3/1 
62.17 

(50.70 to 
73.63) 

1.710 
(1.665 to 

1.755) 

85.26 
(73.63 to 

96.88) 

29.05 
(26.45 to 

31.65) 

 

 

3.2.2 Biomechanical analysis  

The construction of the musculoskeletal model was descried in Chapter 2. 

Hip contact forces were determined after simulations. For a systematic 

evaluation of hip kinematics and kinetics, data relating to ground reaction 

force and hip motion obtained from the C3D files were also listed in this 

chapter. To offset the effect of BW, the predicted hip contact forces were 

normalized by BW.  
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3.2.3 Statistical analysis  

Data are presented as mean values, along with the associated 95% CI for 

each cohort to present the variation within each cohort. The overall means 

(95% CI) for different cohorts and the results for the operated and non-

operated limbs of the THR / LLI patients were compared separately. The 

means of each cohort were obtained by averaging the mean result of the two 

limbs for each subject. Because some of the gait data were not normally 

distributed, non-parametric statistical tests were adopted. All analyses were 

performed using SPSS v 18.0 (SPSS Inc., Chicago, IL). A Mann-Whitney 

test was used to determine whether there were differences in kinematics and 

kinetics between cohorts, and the comparison between operated and non-

operated limbs was conducted through a Wilcoxon test. In the Mann-

Whitney and Wilcoxon tests, p value was calculated which denotes the result 

due to chance (e.g. p ≤ 0.05 means that there is less than 5% probability 

that the result is due to chance). Spearman correlations were calculated to 

explore the relationship between the hip contact force and the model inputs, 

and to investigate which input parameters were most closely related to the 

hip kinetics. In Spearman correlation, both p and coefficient of correlation R 

which describes how monotonic the relationship between two variables were 

determined. Additionally, correlations between the hip contact force and the 

anthropometric parameters (age, height, weight and BMI) were evaluated. 

Analyses were conducted to study the correlation for the three discrete data 

points represented by the middle trough (F2) and two peaks (F1 and F3) of 

the hip contact force time curves (Figure 3.1) for each of the healthy cohort 

and the asymptomatic THR patients. A significance level p ≤ 0.05 was 

regarded as significant throughout.  
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Figure 3.1 Hip contact force for one of the normal healthy people illustrating 
the middle trough and two peaks. 

 

3.2.4 Comparison with previous studies  

The predicted hip contact force for the operated side of the THR / LLI 

patients were compared with previous in vivo measured data (Bergmann et 

al., 2001) which provided comparative contact force derived from 

instrumented prostheses implanted in four THR patients on their operated 

limb. In addition, the difference between ISO data (ISO-14242-1, 2002) and 

the results of each cohort was evaluated. For clarification, due to the 

potential differences in coordinate systems used by different studies, all 

comparisons of joint reaction forces were represented by the magnitude of 

vectors. 

 

3.3 Results  

3.3.1 Velocity, cadence and stride length  

The velocity, cadence (measured in steps/min) and stride length for the THR 

and LLI cohort was significantly reduced, as compared to the healthy 

individuals (Table 3-2). In addition, the velocity and stride length of the LLI 
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cohort was significantly lower than the asymptomatic THR cohort, although 

the cadence of these two cohorts was comparable. A similar stride length 

was observed for the operated and non-operated limbs of the THR and LLI 

cohort.  

 

Table 3-2 Mean (95% CI) of gait velocity, cadence and stride length in the 
normal healthy cohort, THR and LLI cohorts for the operated (-O) and 
non-operated (-NO) side. The normal healthy cohort had significantly 
higher gait velocity, cadence and stride length than the THR / LLI 
patients. The THR cohort exhibited greater velocity and stride length 
than the LLI cohort. Similar stride length was found between the 
operated and non-operated hips of the THR / LLI patients.  

 Velocity (m/s) Cadence 
(steps/min) Stride length (m) 

Normal 1.44 (1.39 to 1.50) 121 (119 to 124) 1.43 (1.39 to 1.47) 

THR-O 
1.09 (1.01 to 1.18) 108 (104 to 112) 

1.22 (1.13 to 1.32) 

THR-NO 1.23 (1.13 to 1.32) 

LLI-O 
0.93 (0.83 to 1.03) 109 (104 to 114) 

1.02 (0.94 to 1.10) 

LLI-NO 1.02 (0.94 to 1.10) 

 

 

3.3.2 Hip range of motion  

As shown in Figure 3.2, the hip flexion/extension angle was significantly 

different among the cohorts, with the highest value for the normal healthy 

cohort and the lowest value for the LLI patients. The hip abduction/adduction 

angle of the LLI and THR patients was similar but significantly lower than the 

healthy cohort. The LLI patients displayed a significantly greater degree of 

hip internal/external rotation than the healthy people. Additionally, the 

variation in the hip range of motion for the THR / LLI patients was higher 

than the normal cohort.  
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Figure 3.2 Mean ± 95% CI of range of motion for the normal cohort, THR 
and LLI patients. Statistically significant differences are marked with a 
star.  

 

For both the THR and LLI patients, the hip flexion/extension angle on the 

operated limb was significantly lower than that of the non-operated limb 

(Figure 3.3). In addition, the LLI patients exhibited a higher level of 

asymmetry in the flexion/extension angle, as compared with the THR 

patients. For the abduction/adduction and internal/external rotation angles, 

no significant difference was observed between the operated limb and non-

operated limb for the THR / LLI cohort.  
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Figure 3.3 Comparison in hip range of motion between the operated and 
non-operated limbs of the THR / LLI patients. Data were presented by 
mean ± 95% CI. Statistically significant differences are marked with a 
star. 

 

3.3.3 Ground reaction force 

The magnitude of the ground reaction force in the asymptomatic THR 

patients was significantly lower than seen in the normal controls (Figure 
3.4). Such decrease was more evident for the LLI patients. In addition, the 

peak ground reaction force was significantly different between the operated 

and non-operated limb of the LLI patients. For the THR cohort, no significant 

difference in the peak ground reaction force was observed between the 

operated and non-operated limbs.  
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Figure 3.4 Comparison of the peak ground reaction force for the three 
cohorts of subjects as well as for the operated and non-operated limbs 
of the THR / LLI patients. Statistically significant differences are marked 
with a star.  

 

3.3.4 Hip contact force 

The mean hip contact force for the three cohorts is shown in Figure 3.5. The 

characteristic dynamic pattern from the 1st peak at heel-strike (~15% cycle) 

by the trough during mid-stance (~32% cycle), and then the 2nd peak at toe-

off (~50% cycle) followed in the hip contact force, was observed in the 

normal people and the THR patients, but not obvious in the LLI cohort. 

Compared with the normal people, the THR and LLI patients exhibited a 

significantly lower 1st peak, higher trough and reduced 2nd peak in the hip 

contact force. In addition, the 1st peak and trough force of the LLI patients 

was significantly different from the asymptomatic THR cohort. No significant 

difference was observed for the 2nd peak force between the THR and LLI 

patients. According to the 95% CI, the variation in hip contact force of the LLI 

patients was similar to the asymptomatic THR patients and higher than the 

normal individuals. 
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Figure 3.5 Mean contact force ± 95% CI for the normal individuals, THR and 
LLI patients. The three cohorts exhibited significantly different results 
on the 1st peak and trough force. The 2nd peak force of the THR / LLI 
patients was significantly lower than the normal cohort.  

 

For the THR patients, the hip contact force was similar for the operated and 

non-operated limb during the majority of the cycle. However, the operated 

limb exhibited a decreased hip contact force around the 2nd peak during toe-

off (~50% cycle), although the difference did not reach statistical significance 

(Figure 3.6).  

For the LLI cohort, however, the hip contact force of the operated limb was 

generally lower than that of the non-operated limb (Figure 3.7). Such 

decrease was significant around the 2nd peak during toe-off. 
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Figure 3.6 Mean contact force ± 95% CI for the THR patients on operated 
and non-operated limbs. No significant difference was observed in the 
comparison.  

 

 

 

Figure 3.7 Mean contact force ± 95% CI for the LLI patients on operated 
and non-operated limbs. The hip contact force for the operated side 
was generally slightly lower than the non-operated side. Such reduction 
was significant around 50% cycle.  
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The averaged peak value of the contact force for the groups compared is 

displayed in Figure 3.8. The peak hip contact force of the THR and LLI 

patients were not significantly different to each other, but significantly 

reduced in comparison with the normal cohort. In addition, no significant 

difference was found between the operated and non-operated limbs of the 

THR cohort. However, the LLI patients displayed a significantly decreased 

hip contact force on their operated limb.  

 

 

Figure 3.8 Comparison of the averaged value of the peak ground hip 
contact force for the three cohorts of subjects as well as for the 
operated and non-operated limbs of the THR / LLI patients. Statistically 
significant differences are marked with a star.  
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similar to the other two Bergmann patients (PF, IB) in which the dynamic 

loading pattern and especially the F3 peak was diminished.  

 

 

Figure 3.9 Comparison for the contact force of the operated limb of the THR 
/ LLI patients to the Bergmann patients. Hip force pattern of the THR 
cohort exhibited similar trend to patient HS and KW, while hip force 
pattern of the LLI cohort was more similar to patient PF and IB.  

 

The comparison of hip contact force for the normal cohort and the operated 

limb of the THR / LLI patients with the ISO data is presented in Figure 3.10. 

Good consistency was observed between the ISO data and the normal 

healthy cohort. The THR and LLI cohorts exhibited lower hip contact force 

for the F1 and F3 peaks however, with a less dynamic pattern than seen with 

the ISO data.  
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Figure 3.10 Comparison of the mean contact force for the normal cohort and 
the operated limb of the THR / LLI patients with the ISO data. The 
normal healthy cohort exhibited good consistency with the ISO data, 
whilst the THR and LLI cohorts had a lower peak hip contact force with 
a less dynamic pattern. 

 

3.3.6 Correlation between contact force and model inputs  

Results of the correlation tests between the hip contact force and the model 

inputs are shown alongside the scatterplots in Figure 3.11, Figure 3.12, 

Figure 3.13 and Figure 3.14. For both the normal cohort and the THR 

cohort, the trough and two peaks of the hip contact force were significantly 
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flexion/extension angle, whilst the trough of the hip contact force was 

significantly correlated to the abduction/adduction angle. There was no 

significance in correlations for the other sets. In addition, little correlation 

between the hip contact force and the anthropometric parameters (age, 

height, weight and BMI) was detected. 
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Figure 3.11 Significant correlations existed between the ground reaction 
force and the trough and two peaks of the contact force for the normal 
cohort and the THR patients. 
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Figure 3.12 The flexion/extension angle and the two peaks of the contact 
force were significantly correlated for the health people and the THR 
patients. No significant correlations were found between the 
flexion/extension angle and the trough force for these two cohorts. 
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Figure 3.13 No significant correlations were observed between the 
abduction/adduction angle and the two peaks of the contact force for 
the normal cohort and the THR patients. The abduction/adduction 
angle and the trough force were significantly correlated.  
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Figure 3.14 No significant correlations were observed between the 
internal/external rotation angle and the trough and two peaks of contact 
force for the normal cohort and the THR patients. 
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3.4 Discussion 

In this chapter, the hip kinematics and kinetics of the unilateral asymptomatic 

THR patients, unilateral symptomatic LLI patients and normal healthy 

individuals were determined and compared across groups. The novelty of 

this study is that the patients were clearly categorized, i.e. the asymptomatic 

THR cohort was carefully screened to have no other history of 

musculoskeletal disorders, and the LLI cohort were symptomatic enough to 

require consideration for revision surgery. Both cohorts represented typical 

outcomes of THR surgeries. Another advantage of the cohorts used in this 

chapter is that the relatively large number of subjects allowed inferential 

statistical analyses to be completed. This is different from previous kinematic 

studies which involved either a small number of subjects or unreported 

histories, thus leaving a level of ambiguity (e.g. (Stansfield and Nicol, 2002)). 

Compared with the normal healthy controls, the asymptomatic THR patients 

exhibited a less dynamic pattern in the hip contact force during walking at a 

self-determined normal speed, with a significantly lower magnitude of 

maximum force during heel-strike and toe-off, but a higher magnitude during 

stance phase, indicating a loss of dynamic function following THR. Such 

variations were more evident for the symptomatic LLI patients than for the 

asymptomatic THR patients. In addition, the hip mobility and ground reaction 

force of the THR / LLI patients during gait were reduced compared with the 

normal cohort, which is in agreement with the findings by a multitude of 

previous kinematic studies on THR patients (Loizeau et al., 1995, Bennett et 

al., 2008, Beaulieu et al., 2010, Madsen et al., 2004). Although the normal 

cohort and the THR / LLI cohort did not match closely for age, height, weight 

and BMI, additional correlation test showed that there is little correlation 

between the hip contact force and the anthropometric parameters, which 

excludes the hypothesis that the predictions may be influenced by the 

anthropometric variations among the cohorts.   

For the asymptomatic THR patients and the symptomatic LLI patients, the 

degree of asymmetry between the two limbs was also different. The contact 

forces for the operated and non-operated hip of the asymptomatic THR 

patients were similar, suggesting that the patients were well recovered and 
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potentially had “forgotten” their replaced joint as described recently by 

Behrend et al. (2012). For the LLI patients however, the hip contact force 

was reduced on the operated limb, which is suggestive of a higher degree of 

limp and a poorer function.  

The severity of abnormality in the pattern of the hip contact force for the THR 

/ LLI patients was significantly correlated to their alterations in the hip 

kinematics, suggesting that it is important to achieve normal hip kinematics 

in order to have any chance of restoring hip kinetics. These correlations can 

be theoretically explained. In the human musculoskeletal system, the hip 

contact force is contributed by the force transferred from the ground as well 

as by the forces generated by the muscles which act around the joint to 

balance the hip moment. As synovial joints are nearly frictionless (Mow and 

Lai, 1980, Jin et al., 1997), the hip moment is mainly determined by the 

ground reaction force, hip angle and the inertia effect of the moving body 

segments which is also determined by the angular acceleration of the joint. 

Therefore, the hip contact force is directly linked with the hip angle and the 

ground reaction force. During heel-strike and toe-off, the hip 

flexion/extension angle is substantially higher than the abduction/adduction 

and internal/external rotation angle, thus contributing more to the joint force. 

However, the abduction/adduction becomes dominant during the stance 

phase for the time at which the flexion/extension angle becomes minimal. 

These theoretical evaluations well supported the model predictions in which 

the hip contact force was significantly correlated to the ground reaction 

force, the hip flexion/extension angle during heel-strike and toe-off and the 

abduction/adduction angle during stance phase. 

Derived from the loading conditions of a healthy person by Paul (1967), the 

ISO standard recommends a maximum load of 3000 N, and is based on a 

75 kg patient which equates to a force of 4 times BW. The hip contact force 

of the normal cohort displayed similar shape to the ISO data, with a 

comparable magnitude of 3.89 times BW (mean BW = 72 kg). This similarity 

suggests that the modelling technique utilised provided comparable results 

to traditional inverse dynamics. However, the ISO data, which have been 

widely adopted in the pre-clinical testing, does not appear to represent the 

realistic loading situation for a THR patient, with the ISO standard requiring 
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substantially greater loads during heel-strike and toe-off than observed in 

our patients. Such alterations may affect the accuracy of prediction of the 

wear and durability of prosthesis by the pre-clinical testing relying on ISO 

data for simulator inputs. Given the recent emphasis on stratified 

approaches to heath care interventions, these findings support the argument 

for refinements to the ISO data to better represent the systematic variability 

of in vivo conditions, and a loading pattern of the operated limbs of the 

asymptomatic THR patients is recommended for the ISO refinement.  

The data published by Bergmann et al. (2001) include more additional 

patient details that may be used for further comparison. The age and BMI of 

the asymptomatic THR patients (64.27 yrs., 30.74) and the symptomatic LLI 

patients (58.70 yrs., 27.86) were comparable to the patients measured by 

Bergmann et al. (2001) (62.17 yrs., 29.05). In the Bergmann dataset, two 

patients (HS, KW) had a dynamic pattern of gait kinetics with two distinct 

peaks of loading, similar to our asymptomatic THR cohort, whilst the other 

two patients (PF, IB) had only a single peak suggesting poorer function 

which as observed in our symptomatic LLI patients. In comparison with the 

two patients with better function in the Bergmann data, the hip contact force 

of the asymptomatic THR patients was comparable during the majority of the 

gait cycle, but ~20% greater at heel-strike. On the other hand, the joint force 

of the symptomatic LLI patients lay in the middle of that of the other two 

patients of with poorer function in the Bergmann data. Besides the good 

agreement of our predictions to the traditional inverse dynamics (Paul, 1967) 

and the measured dataset with details of several subjects (Bergmann et al., 

2001), the findings in this chapter are consistent with other previous 

experimental measurements (Table 3-3). It should be noted, however, that 

direct comparison to the existing studies is difficult without the additional 

consideration of clinical data such as the involvement of multiple joints, 

bilateral THR or other functional compromises.  
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Table 3-3 Comparison of the calculated peak hip contact force to the 
previous in vivo measured gait data.  

Reference Peak Hip Joint 
Force (/ BW) 

Current study (THR-O) 3.33 

Current study (LLI-O) 2.86 

Davy et al. (1988)  2.8 

Kotzar et al. (1991) 2.7 

Bergmann et al. (1993) 4.1 

Brand et al. (1994) 3.3 

Bergmann et al. (2001) 2.4 

 

There are some limitations worth mentioning. Computational studies are 

generally known to overestimate the joint reaction forces by ~10%, due to 

the lack of a realistic muscle wrapping path around the hip joint within the 

model (Brand et al., 1994). The non-realistic path generally results in smaller 

muscle moment arms, leading to higher associated muscle forces to achieve 

the same hip stabilising moment and a higher resultant joint force. In 

addition, the ligament was not included in the model, because the detailed 

anatomical information of the hip ligaments has yet to be reported. In spite of 

these assumptions, the computational approach is able to predict similar 

trends and patterns to instrumented prosthesis studies and allow parametric 

studies to be conducted.  

During the acquisition of the kinematic measurements, the movement of 

peripheral soft tissues may cause inaccuracy in the trajectories of the 

markers attached to the skin. However, such skin artefacts were proved to 

have little influence on the hip flexion/extension angle which, compared with 

the other kinematic parameters, contributed the most to the hip contact force 
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(Lu and O’Connor, 1999). As a result, the predicted hip contact force may be 

relatively robust to such measurement errors.  

In this study, the model was scaled by a default human model, without 

accounting for the subject-specific parameters such as individual anatomical 

landmarks, joint centre and muscle path. This is justifiable because it is 

difficult to determine such detailed parameters for a cohort study involving a 

large number of subjects. Furthermore, previous studies demonstrated that 

the joint contact force was not greatly affected by these localised parameters 

(Carbone et al., 2012, Besier et al., 2003).  

Another limitation is that a uniform muscle recruitment pattern was adopted, 

and the potential alteration in the muscle recruitment pattern between 

individuals or cohorts was not considered. For example, the muscle 

recruitment pattern of THR patients may be altered by postoperative stimuli 

such as muscle weakness (Long et al., 1993, Bhave et al., 2005, Shih et al., 

1994). However, as demonstrated in Chapter 2, different muscle recruitment 

types do not have a great influence on the hip contact force, particularly in 

terms of the loading trend and pattern which are of most interest for the 

parametric nature in this chapter.  

In conclusion, RBD musculoskeletal modelling is efficient in the prediction of 

hip contact forces for the current cohort study. The approach taken appears 

to provide reliable results and is sufficient for the comparative study. The 

alteration in gait kinematics of the asymptomatic THR patients led to an 

abnormal hip contact force represented by a less dynamic pattern, a 

reduced magnitude during heel-strike and toe-off and a greater magnitude 

during stance phase. Such loss in function was more evident for the 

symptomatic LLI patients. In addition, the high degree of symmetry in hip 

kinetics between the operated and non-operated limbs indicates a well post-

operative recovery for the asymptomatic THR patients, whilst the obvious hip 

kinetic asymmetry for the LLI patients reflects a poorer function. The findings 

will help assist in providing better patient care, pre-operative planning and 

rehabilitation strategies. Loading conditions for future modelling and testing 

on a subject-specific or cohort-specific level are also recommended.  
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Chapter 4  
Finite Element Modelling: Methodology Development 

 

4.1 Introduction 

As mentioned Chapter 2 and Chapter 3, the kinetic performance of the hip 

joint can be obtained through the body kinematics. However, it is necessary 

to account for the local mechanical environment within the hip in order to 

allow further investigation in more detail. The following chapters will use the 

FE method to evaluate the biphasic performance of the natural hip joint. 

Due to the importance of the interstitial fluid in the functional and tribological 

behaviour of articular cartilage, it is necessary to incorporate biphasic 

cartilage layers into the whole joint model in order to better understand the 

hip function and pathology of hip degeneration. There have been several 

studies on biphasic modelling for the natural hip (Pawaskar, 2010) or knee 

joint (Gu and Li, 2011) using FE commercial software ABAQUS 

(DassaultSystemes, SuresnesCedex, France). However, none of these 

models have successfully simulated high physiological dynamic or static 

loads for a prolonged period. To solve this problem, an open-source non-

linear FE solver FEBio (mrl.sci.utah.edu/software/febio), which is particularly 

designed for the simulation of bio-materials, was adopted in this study. 

The aim of this chapter was to verify the biphasic simulation capability of 

FEBio by comparing its predictions to those in ABAQUS and to the results in 

a previous study (Pawaskar, 2010). Additionally, the contact-dependent fluid 

flow feature in FEBio was evaluated.  
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4.2 Methods  

4.2.1 Comparison of FEBio and ABAQUS for biphasic simulation 

Both linearly elastic and neo-Hookean materials were tested to represent the 

solid phase in FEBio and ABAQUS. The inputs for a neo-Hookean material 

in FEBio and ABAQUS are different. In ABAQUS, the input parameters for a 

neo-Hookean material are 𝐶𝐶10 and 𝐷𝐷1. These two parameters can be 

converted to Young’s modulus (𝐸𝐸) and Poisson’s ratio (𝜐𝜐) which are the input 

parameters in FEBio by the following equations:  

 

𝐺𝐺 = 2𝐶𝐶10 =
𝐸𝐸

2(1 + 𝜐𝜐)
 (4.1) 

 

𝐾𝐾 =
2
𝐷𝐷1

=
𝐸𝐸

3(1 − 2𝜐𝜐)
 (4.2) 

 

Where 𝐺𝐺 is the shear modulus; 𝐾𝐾 bulk modulus.  

Besides, the constitutive equation of neo-Hookean in FEBio (Equation (4.3) 
(Maas and Weiss, 2007)) and ABAQUS (Equation (4.4) (ABAQUS Theory 

Manual, 2011)) are different, with the following strain energy (𝑊𝑊) 

relationships: 

 

𝑊𝑊 =
𝜇𝜇
2

(𝐼𝐼1 − 3) − 𝜇𝜇ln𝐽𝐽 +
𝜆𝜆
2

(ln𝐽𝐽)2 (4.3) 
 

𝑊𝑊 =
𝜇𝜇
2

(𝐼𝐼1 − 3) + (
𝜆𝜆
2

+
𝜇𝜇
3

)(𝐽𝐽 − 1)2 (4.4) 
 

Where, 𝜇𝜇 and 𝜆𝜆 are the Lamé parameters; 𝐽𝐽 volume ratio; 𝐼𝐼1 first strain 

invariant of the deviatoric Cauchy-Green tensor 𝐶𝐶. For small strains and 

rotations (𝐽𝐽 ≈ 1), Equation (4.3) reduces to isotropic linear elastic 

relationship (Bonet, 1997).  

For computational efficiency, an initial comparison between FEBio (version 

1.5.0; mrl.sci.utah.edu/software/febio) and ABAQUS (version 6.11-1; 

Dassault Systemes, Suresnes Cedex, France) was conducted in an 
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axisymmetric situation represented by a three dimensional model with only 

one element through the thickness (Figure 4.1), because two dimensional or 

axisymmetric models are not supported in FEBio. The Young’s modulus and 

Poisson’s ratio of the aggregate were 0.5 MPa and 0 respectively. The 

permeability was 0.01 mm4/(Ns).  

 

 

Figure 4.1 Two dimensional indentation model representative of an 
axisymmetric situation. The indenter (green) is permeable and rigid. 

 

The bottom surface of the cartilage was fixed in all degrees of freedom. The 

surfaces highlighted in red in Figure 4.1 were free-draining where fluid flows 

out freely. The other three surfaces of the cartilage were symmetric to their 

normal vectors. The indenter was rigid and permeable, and only allowed to 

move vertically.  

A relaxation test and creep test were simulated respectively using the model. 

In the relaxation test, the indenter was moved 0.2 mm downward in 2 s and 

then immobilized for 2000 s. In the creep test, the indenter was loaded with 

a force of 1 N ramped over 2 s downward and held for 2000 s. The models 

were simulated using both FEBio and ABAQUS. The models analysed in 



- 73 - 

FEBio were pre-processed using PreView (version 1.7; 

mrl.sci.utah.edu/software.php) and post-processed using PostView (version 

1.4; mrl.sci.utah.edu/software.php).  

Contact was defined as facet-to-facet sliding in FEBio and as node to 

surface finite sliding in ABAQUS. The contact pressure contour displayed in 

PostView is not smooth, and hence represented by the third principle stress 

of the element layer on the articulating surface. Fluid pressure and contact 

stress were recorded. Additionally, reaction force and indenter displacement 

were tracked for the relaxation test and creep test respectively.  

The mesh densities were checked to be high enough to predict nearly 

identical results (<3%) when doubled (Figure 4.2). Parametric studies with 

varying model parameters (Table 4-1) were also carried out to analyse the 

prediction by the two FE solvers under more circumstances.  

 

 

Figure 4.2 Results of the model with different mesh densities under creep 
tests. The indenter displacement of the model with the adopted mesh 
density remained nearly constant when its mesh density was doubled 
in both FEBio and ABAQUS (the four traces nearly overlapped). 
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Table 4-1 The values of the parameters used in the parametric study. Only 
one parameter was altered from the original model in each test case. E: 
Young’s modulus of cartilage aggregate; ν: Poisson’s ratio; K: cartilage 
permeability; F: applied force to the indenter.  

 E (MPa) 𝜈𝜈 K 
(mm4/(Ns)) F (N) 

Values used in the 
parametric study 1, 1.5 0.1, 0.2 0.001, 0.1 0.05, 0.2 

 

 

4.2.2 Effect of contact-dependent fluid flow and methodology 
validation 

For the indentation test, if the indenter is impermeable, there should be no 

fluid flow out from surfaces of the acetabular cartilage that are in contact with 

the indenter. To better present the influence of contact-dependent fluid flow 

on the result, a three dimensional indentation model of a porcine cartilage 

pin was developed. For computational efficiency, the indentation model was 

represented by a quarter geometry (Figure 4.3), in which the surfaces of 

both the cartilage and the underlying bone perpendicular to x and z axes 

were constrained as symmetric to their normal vectors. The material 

properties (E = 0.455 MPa, ν = 0, K = 0.00107 mm4/(Ns)), geometric 

parameters and boundary conditions were taken from a previous study 

(Pawaskar, 2010) to enable validation. The indentor was only allowed to 

move vertically and loaded with a force of 0.2 N ramped within 2 s downward 

and held for 15000 s. The pin was immoblized by fixing the bottom surface 

of the bone in all degrees of freedom. The outer surface of the cartilage, 

shown in Figure 4.3, was free-draining. To evaluate the influence of contact-

dependent fluid flow on the results, three different boundary conditions were 

considered for the upper cartilage surface: free-draining, sealed and contact-

dependent fluid flow. All simulations were conducted in FEBio.  
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Figure 4.3 Indentation model of a creep test represented by a quater 
(indenter – red. cartilage – green. underlying bone – blue). The outer 
surfce of the cartilage is highlighted in yellow. Material properties and 
geometric parameters were taken from a previous study (Pawaskar, 
2010). 

 

To validate the predictions, the results of the model with contact-dependent 

fluid flow in FEBio was compared against the indenter used in the previous 

experiment (Pawaskar, 2010). Again, mesh densities were checked to be 

appropriate (Figure 4.4). The fluid flux vectors and indenter displacement 

were recorded.  

 

Free draining 
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Figure 4.4 Results of the model with different mesh densities under creep 
tests. The contact-dependent fluid flow was defined on the articulating 
surfaces. The indenter displacement of the model with the adopted 
mesh density remained nearly constant when its mesh density was 
doubled in both FEBio and ABAQUS (the four traces nearly 
overlapped). Results were presented for only 5000 s, because the 
model with a doubled mesh density could not achieve convergence for 
a longer period in ABAQUS.  

 

4.3 Results  

4.3.1 Comparison of FEBio and ABAQUS for biphasic simulation 

Fluid pressure distribution of the relaxation and creep test in FEBio are 

shown in Figure 4.5 and Figure 4.6 respectively. There was a significant 

variation in results at different stages, and obvious cartilage consolidation 

due to the interstitial fluid flow was detected in both tests.  
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2 s 500 s 

  

1000 s 2000 s 

Figure 4.5 Contours of fluid pressure (MPa) at different stages for the 
relaxation test in FEBio. Cartilage consolidation was obviously detected 
by the great variation in fluid pressure distribution over 2000 s. 
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2 s 500 s 

  

1000 s 2000 s 

Figure 4.6 Contours of fluid pressure (MPa) at different stages for the creep 
test in FEBio. Cartilage consolidation was obviously detected by the 
great variation in fluid pressure distribution over 2000 s. 

 

For the comparison of FEBio and ABAQUS, the results of the relaxation and 

creep test are shown in Figure 4.7 and Figure 4.8 respectively. In both 

tests, the neo-Hookean model in FEBio showed very similar results to the 

linearly elastic model in ABAQUS. The linearly elastic model in FEBio had 

different results as compared with the other models in the relaxation test and 

exhibited poor convergence ability in the creep test, possibly due to the 

difficulty of the non-linear solver in dealing with linear constitutive 

relationship. In ABAQUS, the neo-Hookean model behaved differently from 

the linearly elastic model in the creep test.  
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Figure 4.7 Predicted (a) reaction force, (b) peak contact stress and (c) peak 
fluid pressure against time under relaxation. All the four models 
converged over 2000 s. Very similar results were found for the neo-
Hookean model in FEBio, linearly elastic and neo-Hookean models in 
ABAQUS (these three traces nearly overlapped). The linearly elastic 
model in FEBio behaved differently from the other three models.  
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Figure 4.8 Predicted (a) displacement, (b) peak contact stress and (c) peak 
fluid pressure against time under creep. The model of linearly elastic 
cartilage could not get converged over 0.8 s. The neo-Hookean model 
in FEBio and the linearly elastic model in ABAQUS predicted very 
similar results (these two traces nearly overlapped) which were 
evidently different from the neo-Hookean model in ABAQUS. 
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As shown in Figure 4.8, the processing of the linearly elastic model in FEBio 

did not achieve convergence for 2000 s and stopped at only 0.8 s when 

there were overly distorted elements near the contact surface (Figure 4.9), 

suggesting that in terms of biphasic cartilage modelling, the linearly elastic 

solid phase does not perform well in the non-linear FEBio solver. 

 

 

Figure 4.9 In the model with linearly elastic cartilage in FEBio, the cartilage 
elements on the contact surface were over-distorted.  

 

For the strain levels in the parametric studies with varying model 

parameters, the neo-Hookean models in FEBio had very similar results to 

the linearly elastic models in ABAQUS.  

 

4.3.2 Effect of contact-dependent fluid flow and methodology 
validation 

As shown in Figure 4.10 and Figure 4.11, the boundary conditions for fluid 

flow on the contact surface had a great effect on the magnitude and direction 

of the fluid flux, as well as on the cartilage consolidation process. Therefore, 

for biphasic modelling of contact problems, it is necessary to accurately 

represent the fluid flow conditions on the contact surface. 

 

Distorted elements 
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Figure 4.10 Contour of fluid flux (mm/s) for the model with sealed (no 
draining) surface, free-draining surface and surface of contact-
dependent fluid flow at 2000 s. Grey vectors show the direction of fluid 
flux. The pattern of fluid flux differed markedly for the three cases.  

 

Contact-dependent fluid flow 

 

Free-draining surface 

 

Sealed surface 
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Figure 4.11 Predicted displacement of indenter for the model with sealed 
(no draining), free-draining and contact-dependent fluid flow assigned 
to the contact surface of the cartilage. The results were markedly 
dependent on this boundary condition. The model with free-draining 
surface had the fastest consolidation process and the model with 
sealed surface had the slowest consolidation process.  

 

The predicted results of indenter displacement by FEBio are shown in 

Figure 4.12, in comparison with previous experimental results and 

computational predictions which adopted a linearly elastic solid phase in 

ABAQUS (version 6.7-1; Dassault Systemes, Suresnes Cedex, France). 

Again, it was found that the constitutive behaviour of the neo-Hookean solid 

phase in FEBio predicted identical results to the linearly elastic constitutive 

behaviour, which is in agreement with the predictions from the axisymmetric 

model. The predicted results exhibited good similarity to the experimental 

data, further confirming the reliability of biphasic modelling in FEBio.  

However, within the first 1200 s, the calculated results deviated from the 

experimental data, because the solid phase was assumed to be isotropic in 

this study, which neglects the fact that the tensile modulus of the cartilage is 

substantially higher that its aggregate modulus (Soltz and Ateshian, 2000, 

Cohen et al., 1998). In the indentation test, the cartilage expanded 

horizontally when compressed vertically. Such expansion / tension was 

evident during the initial period when the fluid was mostly confined within the 
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tissue and the Poisson’s ratio of the cartilage as a whole is high. The 

underestimated tensile modulus by the isotropic assumption may increase 

such expansion / tension, and thus the displacement of the indenter may be 

overestimated. However, for the latter period, the predicted results 

corresponded well to the experimental data, because the Poisson’s ratio of 

the cartilage as a whole dropped towards zero when the cartilage 

consolidated and the tension effect of the cartilage in the indentation test 

became increasingly less obvious. 

 

 

Figure 4.12 Displacement of indenter predicted using neo-Hookean solid 
phase in FEBio, in comparison with the computational results using 
linearly elastic solid phase in ABAQUS and experimentally measured 
data by Pawaskar (2010). Results from 0 to 600 s were not listed in 
(Pawaskar, 2010).  

 

4.4 Discussion and conclusion  

In addition to the indentation model listed in this chapter, models of simple 

configurations involving biphasic-biphasic cartilage contact (e.g. 3D ball-on-

socket, ball-on-cubic contact models) were tested in FEBio and ABAQUS. 

However, such models were found to be substantially more difficult to 

achieve convergence in ABAQUS than in FEBio, for both linearly elastic and 
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neo-Hookean solid phase. Therefore the results of these studies are not 

presented here.  

After careful evaluation, it was found that the linearly elastic solid phase 

does not perform well in the non-linear FE solver FEBio. Although in theory, 

as mentioned in Section 4.2.2, the neo-Hookean material in FEBio predicts 

identical results to the linear elastic model only in the circumstance of small 

strains, the findings in this chapter shows that for all the strain levels tested 

(max deformation ~40%), the neo-Hookean material is still appropriate to 

approximate the response of a linear relationship. Larger strains were not 

investigated here due to the convergence difficulty but also because that the 

strain level in this chapter is already high enough for the joint models under 

physiological loads which will be mentioned in the following chapters. 

The boundary conditions of fluid flow on the articulating surfaces of the 

cartilage have a great influence on the model predictions, and thus need to 

be accurately presented in models involving contact of biphasic materials. 

The methodology was verified and validated against the computed results 

and experimental data in a previous study (Pawaskar, 2010), and was found 

to show good agreement. There were some differences in the initial period 

after loading when compared to the experimental data, most likely due to the 

simplified isotropic behaviour used for the cartilage. Based on the results of 

this chapter, the following methodology was adopted for the FE models used 

in Chapters 5, 6, 7 and 8: 

1) FEBio was used for all simulations. 

2) The cartilage was simulated using a neo-Hookean model. 

3) The contact-dependent fluid flow on the articulating cartilage surfaces 

was incorporated. 
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Chapter 5  
Natural Human Hip Joint: The Influence of Size, Clearance, 

Cartilage Properties, Thickness and Hemiarthroplasty on the 
Contact Mechanics 

 

5.1 Introduction  

As mentioned in Chapter 1, due to the important role that the pressurisation 

of interstitial fluid plays in the cartilage function and degradation, it is 

necessary to consider the biphasic nature of the cartilage within the joint 

system.  

According to the discussion in Chapter 4, experimental approaches have 

been greatly limited in the biphasic investigation of the hip joint, mainly due 

to their invasive techniques, inaccuracy caused by measurement artefacts 

and limited parameters that can be measured. Numerical analysis serves as 

an alternative approach. However, in the existing numerical studies, the 

biphasic material has not been successfully investigated to a three 

dimensional whole joint model that involves biphasic cartilage-on-cartilage 

contact, mainly due to convergence issues (Ferguson et al., 2000a, 

Ferguson et al., 2000b, Haemer et al., 2012, Pawaskar, 2010, Gu and Li, 

2011). As yet, there seems to have been no studies to incorporate the 

biphasic approach into a three dimensional natural hip joint to examine the 

contact mechanics over a prolonged period of a physiological load. 

It is widely realized that the congruence and size of the human hip joint and 

the material properties of the hip cartilage vary between individuals 

(Athanasiou et al., 1994, von Eisenhart et al., 1999, Shepherd and 

Seedhom, 1999, Xi et al., 2003). However, to what extent and how these 

parameters influence the contact mechanics of the natural hip joint is not 

fully understood. Besides, the influence of hemiarthroplasty (e.g. femoral 

head replaced with metallic prosthesis if only the femoral head cartilage 
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breaks down) on the hip function under prolonged periods of loads is 

unclear. Quantifying these influences can serve to better understand the hip 

function as well as to identify the conditions needed for the development of 

subject-specific computational models of the hip.  

The aim of this study was therefore to develop a FE model for a standard hip 

anatomy incorporating the biphasic cartilage layers and to use the model to 

investigate the influence of hip size, clearance, cartilage properties, 

thickness and hemiarthroplasty on the contact mechanics and the 

associated fluid pressurisation in the joint over a prolonged period if a 

physiological load.  

 

5.2 Methods  

The general methods determined to be most appropriate from the initial 

studies in Chapter 4 were adopted here. 

 

5.2.1 Model geometry 

The model utilized in the study was based on a standardized solid model of 

pelvis and femur from a corpse of a healthy human male (38 years old, 

180 mm height and 90 kg at the time of death (Spitzer et al., 1996)), 

available from the Internet through the BEL repository (Author: Vicceconti, 

from: www.tecno.ior.it/VRLAB/). The acetabulum and the femoral head 

surfaces were carefully trimmed spherically (Hammond and Charnley, 1967, 

Rushfeldt et al., 1981), and a layer of cartilage with uniform thickness was 

created over the spherical area. The resultant model approximated the 

native horseshoe shaped acetabular cartilage and the femoral head cartilage 

coverage (Figure 5.1). The geometric model and corresponding FE model 

were generated using NX I-DEAS (Version 6.1, Siemens PLM Software Inc., 

Plano, USA).  
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Figure 5.1 FE model creation. A – Entire model of hip joint. B – Lateral view 
of acetabulum. C – Oblique view of acetabular cartilage with 
hexahedral elements (3 elements of uniform distribution through 
thickness).  

 

Additional models with varied geometric parameters (i.e. size, clearance or 

cartilage thickness) were achieved by scaling the spherically trimmed femur 

and pelvis and subsequently recreating the cartilage layers. A 

hemiarthroplasty model was also generated which had identical geometric 

parameters to the original model, with the femoral head replaced by an 

impermeable sphere representing a metal femoral head prosthesis. 

 

5.2.2 Finite element mesh 

The bone components of the femur and pelvis were meshed with four-noded 

tetrahedral elements, and the cartilage layers were made up of eight-noded 

A B 

C 
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hexahedral elements. The bone was meshed based on the elements of the 

acetabular cartilage so that the surface of the subchondral bone shared the 

same nodes as the inner surface of the cartilage layer. Mesh sensitivity 

studies were conducted separately for the cartilage and bone by comparing 

the predictions of the models represented by varying number of elements. A 

combination of 128458 elements for the bone, 5676 elements for the femoral 

head cartilage and 8427 elements for the acetabular cartilage was found to 

be appropriate to generate similar results (<5%) when the numbers of 

elements were doubled (Figure 5.2 and Figure 5.3). With these element 

numbers, it was found that the models were able to solve and the solutions 

converge using the methods described in Chapter 4. 

 

 

Figure 5.2 Predictions of the cartilage in the original model represented by 
different numbers of elements. The bone was assumed to be rigid and 
thus not included. An instantaneous displacement of 0.5 mm, instead of 
force, was applied to the model, to achieve convergence and 
computational efficiency. In the parametric studies, 5676 and 8427 
elements were adopted for the femoral head cartilage and the 
acetabular cartilage respectively. Due to worse convergence abilities, 
models with coarser mesh densities were not adopted. 
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Figure 5.3 Predictions of the bone in the original model represented by 
different numbers of elements. The loading conditions of the parametric 
studies were adopted. Results were recorded at the end of 1 s. In the 
parametric studies, 128458 elements were adopted for the bone. Due 
to worse convergence abilities, models with coarser mesh densities 
were not adopted. 

 

5.2.3 Material properties  

Values of the material properties and geometric parameters were mentioned 

in Section 5.2.5. The cartilage was modelled as a biphasic solid and the 

solid phase was represented as neo-Hookean which approximates the 

linearly elastic constitutive relationship, as demonstrated in Chapter 4. The 

Poisson’s ratio of the aggregate was 0.045; this value has been shown to 

have little influence on the results when varied from 0 to 0.1 (Athanasiou et 

al., 1994). 

The bone was modelled as impermeable and linearly elastic with a Young’s 

modulus of 17000 MPa and Poisson’s ratio of 0.3 (Dalstra and Huiskes, 

1995). The cortical bone and trabecular bone were not modelled separately 

because it was found that the results of interest were within 5% if the 

Young’s modulus of the whole region was reduced from that representing all 

cortical bone (17000 MPa) to that representing all trabecular bone 

(800 MPa).  
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Figure 5.4 Boundary conditions of the model. Nodes at the sacroiliac and 
pubis symphysis joints were fixed in all degrees of freedom. The femur 
was constrained by the surface of the distal femur which was rigidly 
confined to a reference point to which the boundary conditions of the 
femur were applied.  

 

5.2.4 Boundary conditions and loads 

Nodes at the sacroiliac and pubis symphysis joints of the pelvis were fixed in 

all degrees of freedom (Figure 5.4). The distal surface of the femur, to which 

the load was applied, was rigidly constrained to a reference point, which was 

fixed in its rotational degrees of freedom. The contact between articulating 

surfaces was assumed to be frictionless. For the models of natural joints, the 

contact formulation allowed fluid to flow between contacting surfaces 

(pressure dependent) as well as from open surfaces of the cartilage. No fluid 

flow was allowed through the contact-against-rigid surfaces of the acetabular 

cartilage in the hemiarthroplasty model. A static load of approximately 2130 

N, based on the average joint reaction force for one leg stance (Bergmann et 

al., 2001), was applied to the reference point of the distal femur, which was 

also constrained in rotational degrees of freedom. The load was ramped 

over 0.6 s and then held constant for 3000 s. Both the constrains and load of 

the femur were applied to its distal cut-off surface because (1) the boundary 

conditions of the distal femur could be equivalently transferred to the femoral 

Fixed 

Distal femur surface 
(highlighted) rigidly 

constrained to a 
reference point  
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head centre, (2) the bone mechanics was not of interest and the bone had 

little influence on the contact mechanics and (3) concentrated load to a 

single node can be avoided.  

 

5.2.5 Parametric studies 

Parametric studies were conducted to evaluate the influence of model 

parameters on the predictions. The material properties and geometric 

parameters associated with the cartilage were initially taken from the 

literature and were then sequentially varied (Table 5-1). 

 

Table 5-1: The values of the parameters used in the original model and 
parametric tests. Only one parameter was altered from the original in 
each test case. E: Young’s modulus of cartilage aggregate; K: cartilage 
permeability; Cl: radial clearance; Size: acetabulum radius; Thick: 
cartilage thickness.  

 Original 
model 

Values used in 
parametric studies References 

E (MPa) 1.2 0.6, 1.8 
(Athanasiou et al., 

1994) 
K (mm4/(Ns)) 0.0009 0.00036, 0.00143 

Cl (mm) 0.5 0, 1 (von Eisenhart et 
al., 1999) 

Size (mm) 30 26, 28 (Xi et al., 2003) 

Thick (mm) 2 1, 3 (Shepherd and 
Seedhom, 1999) 
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5.2.6 Simulation method 

All analyses were conducted using the open-source nonlinear FE solver 

FEBio, as determined in Chapter 4. The models were pre-processed using 

PreView (version 1.7; mrl.sci.utah.edu/software.php), and post-processed 

using PostView (version 1.4; mrl.sci.utah.edu/software.php). The FE 

simulations were solved on a Linux server with 8 GB of RAM and 8 Intel 

X5560 cores at 2.8 GHz.  

 

5.2.7 Output measurements  

The contact area was calculated as a ratio with respect to the total surface 

area (3000 mm2 for the original model) of the acetabular cartilage available 

for articulation. The fluid support ratio was determined by calculating the 

load supported by the fluid pressure as a ratio of the total load. The contact 

stress, contact area, fluid pressure and fluid support ratio were recorded 

over the time period from 0 to 3000 s to evaluate the load transmission and 

tribological performance.  

 

5.3 Results 

5.3.1 Fluid pressure and contact stress 

The fluid pressure distribution and contact stress are presented in Figure 
5.5 and Figure 5.6 respectively. Over the acetabular cartilage surface, the 

contact stress and fluid pressure peaked around the centre of the cartilage 

and decreased gradually towards the edges. The contact stress and fluid 

pressure contours on both the femoral head and the acetabular cartilage 

surfaces were very similar. The peak fluid pressure was slightly lower than 

the peak contact stress over 3000 s for all the models. There was no marked 

difference in the fluid pressure across the thickness of the cartilage (Figure 
5.7).  
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Figure 5.5 Contours of fluid pressure (MPa) of the acetabular cartilage for all 
the models at 1 s and 3000 s. Obvious cartilage consolidation can be 
detected.  
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Figure 5.6 Contours of contact stress (MPa) of the acetabular cartilage for 
all the models at 1 s and 3000 s. Obvious cartilage consolidation can 
be detected. On the acetabular cartilage, the magnitudes and 
distributions of the contact stress was similar to those of the fluid 
pressure. 
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Figure 5.7 Cross-sectional view of fluid pressure (MPa) in the cartilage of 
the acetabulum (1) and femoral head (2) of the original model at 1 s. 
Fluid pressure distribution was similar for the femoral head cartilage 
and acetabular cartilage. There was no marked difference in the fluid 
pressure across the thickness of the cartilage. 

 

5.3.2 Effect of cartilage properties 

The results of models with different cartilage aggregate stiffness are shown 

in Figure 5.8. The models with stiffer cartilage aggregate had higher peak 

contact stress, higher peak fluid pressure and greater variations in the 

results over 3000 s. At the end of 1 s, the peak contact stress for the model 

with 1.8 MPa cartilage Young’s modulus was 18% higher than the model 

with 0.6 MPa cartilage Young’s modulus. Over 3000 s, the decrease in the 

peak contact stress and peak fluid pressure were 9% and 15% respectively 

for the model with 1.8 MPa cartilage Young’s modulus, while the peak 

contact stress and peak fluid pressure kept almost constant (<1%) for the 

model with 0.6 MPa cartilage Young’s modulus.  
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Figure 5.8 Results of models with different aggregate Young’s moduli 
(MPa). The models with stiffer cartilage aggregate had higher peak 
contact stress, higher peak fluid pressure and greater variations in the 
results over 3000 s. 
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Figure 5.9 Results of models with different permeabilities (mm4/(Ns)). The 
results of the models with different cartilage permeabilities were very 
similar for the period soon after loading but evidently different over 
3000 s. The models with higher cartilage permeability had greater 
variations in the results over 3000 s. 
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The results of models with different cartilage permeabilities are shown in 

Figure 5.9. The models with different permeabilities had similar results for 

the period soon after loading. The effect of permeability on the results only 

became evident over a prolonged loading period. Greater variations in the 

peak contact stress, peak fluid pressure and fluid support ratio were found 

for the models with higher cartilage permeability over 3000 s. For the model 

with cartilage permeability of 0.00036 mm4/(Ns), the variations in these 

results were less than 5%, whilst for the model with cartilage permeability of 

0.00143 mm4/(Ns), the variations in the peak contact stress, peak fluid 

pressure and fluid support ratio were 6%, 12% and 5% respectively.  

The influence of cartilage thickness on the model predictions is shown in 

Figure 5.10. The models with thinner cartilage had markedly higher peak 

contact stress, higher peak fluid pressure, higher fluid support ratio and 

greater variations in the results over 3000 s. At the end of 1 s, the model 

with 1 mm and 3 mm cartilage had a peak contact stress of 4.1 MPa and 

2.7 MPa respectively. Over 3000 s, the results for the model with 3 mm 

cartilage kept almost constant (<3%), while the peak fluid pressure and 

contact stress of the model with 1 mm cartilage decreased by 29% and 27% 

respectively.  
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Figure 5.10 Results of models with different cartilage thickness (mm). The 
models with thinner cartilage had higher peak contact stress, higher 
peak fluid pressure, higher fluid support ratio and greater variations in 
the results over 3000 s. 
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5.3.3 Effect of radial clearance and joint size 

The results of models with varied radial clearance are shown in Figure 5.11. 

The models with larger radial clearance had higher peak contact stress, 

higher peak fluid pressure and greater variations in the results over 3000 s. 

The fluid support ratio for models with different clearance was similar. Less 

than 3% variation in the results of interest was found for the model with no 

clearance over 3000 s. For the model with 1 mm clearance, however, the 

peak fluid pressure and peak contact stress decreased by 13% and 9% 

respectively.  

As shown in Figure 5.12, the models with smaller size had higher peak 

contact stress and higher peak fluid pressure. At the end of 1 s, the peak 

fluid pressure and peak contact stress for the model with 26 mm acetabular 

radius were respectively 22% and 24% higher than the original model which 

had an acetabular radius of 30 mm. The fluid support ratio for models of 

different size was 96% at the end of 1 s and decreased to 92% – 94% over 

3000 s.  
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Figure 5.11 Results of models with different radial clearance (mm). The 
models with larger radial clearance had higher peak contact stress, 
higher peak fluid pressure and greater variations in the results over 
3000 s. The fluid support ratio for models with different clearance was 
similar. 
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Figure 5.12 Results of models with different acetabulum radius (mm). The 
models with smaller size had higher peak contact stress and higher 
peak fluid pressure. The fluid support ratio for models with different 
sizes was similar. 
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Figure 5.13 Results of natural joint and hemiarthroplasty. The 
hemiarthroplasty model had higher peak contact stress, higher peak 
fluid pressure and greater variations in the results over 3000 s. The 
fluid support ratio was similar for the natural hip model and 
hemiarthroplasty model. 
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5.3.4 Comparison of the natural cartilage and hemiarthroplasty 
models 

The comparison between the predictions by the natural hip model and by the 

hemiarthroplasty model was shown in Figure 5.13. The hemiarthroplasty 

model had markedly higher peak contact stress, higher peak fluid pressure 

and greater variations in the results over 3000 s. At the end of 1 s, the peak 

contact stress and peak fluid pressure of the hemiarthropasty model were 

17% higher than the original model of natural joint. The fluid support ratio 

was similar for the natural hip model and hemiarthroplasty model over 

3000 s. 

 

5.3.5 Summary of parametric studies 

The overall results of the parametric studies are summarized in Figure 5.14. 

Generally, the predictions of the model during both short and long periods 

were more sensitive to the variation in geometric parameters (i.e. 

hemiarthroplasty, clearance and cartilage thickness) than material properties 

of the cartilage (i.e. Young’s modulus and permeability). As compared to the 

other parameters, changes in the fluid support ratio were most sensitive to 

the variation in cartilage permeability. The fluid support ratio for all the 

models was more than 90% and changed less than 5% over 3000 s.  
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Figure 5.14 Overall results of the parametric tests for all models at 1 s and 
3000 s. The model is more sensitive to the variation in geometric 
parameters than material properties. 
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5.4 Discussion 

The primary aim of this chapter was to develop the biphasic modelling 

methodology for simulating the natural hip over prolonged physiological 

periods. Whilst this was achieved, there were some limitations. In reality, as 

well as being biphasic, the cartilage layer is an inhomogeneous fiber-

reinforced structure (Mow et al., 1980, Soulhat et al., 1999, Ateshian et al., 

2009), and the homogeneous isotropic elastic model used here as a first 

approximation does not fully represent its behaviour. Although the 3000 s 

adopted in this study represents a relatively long physiological loading 

period, the cartilage behaviour is still relatively early in the transient phase 

and the results against time had not yet reached the equilibrium state that 

can be observed eventually in creep tests (Mow et al., 1980, Athanasiou et 

al., 1994). As mentioned in Chapter 4, in terms of capturing the early stage 

response of creep tests, a tension-compression non-linear model may be 

more appropriate than the linear isotropic biphasic model which neglects the 

fact that the tensile modulus of the cartilage is substantially higher than its 

aggregate modulus (Soltz and Ateshian, 2000, Cohen et al., 1993, Cohen et 

al., 1998). Consequently, the confinement effect due to the tensile stiffness 

may be reduced, and the peak fluid pressure, peak contact stress and fluid 

support ratio may be underestimated. The influence of cartilage thickness 

may also be amplified since here the confinement is provided more by the 

underlying bone geometry.  

The congruence, size and material properties of the hip joint vary between 

individuals. The parametric study was therefore undertaken as a precursor 

to subject-specific modelling to identify the sensitivity of the model to these 

parameters. The findings of this study show that the contact mechanics of 

the hip joint are dependent on its congruence, size, cartilage thickness and 

properties as well as the contact type (i.e. cartilage-on-cartilage and 

cartilage-on-solid). Over the ranges studied here, the thickness and 

clearance were found to have the greatest effect on the contact mechanics. 

This is in agreement with the sensitivity study of Anderson et al. (2010) in an 

elastic model, where it was found that the cartilage thickness and local 

surface morphology had a major effect on the contact stress and distribution. 
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For subject-specific investigations, it is clear that the individual variations in 

the morphology of the cartilage are important. Whilst the effect of the 

thickness may be overestimated by the simplified material model used, it is a 

parameter that needs to be taken into consideration in future sensitivity 

studies.  

The influence of the cartilage material properties was generally less than 

that of the morphology. In particular, the effect of the cartilage permeability 

on the contact mechanics of the hip joint was minimal during the early 

stages, but became evident after a period of load. The fluid support ratio was 

more sensitive to the cartilage thickness than other parameters at an early 

period because, as shown by the contact area in Figure 5.14, the hip 

congruence at this stage is highly related to the cartilage thickness as well 

as the clearance. For the model with thicker cartilage, the contact stress was 

spread more towards the area near the edge of the cartilage which is less 

confined than around the central region, leading to a lower fluid support 

ratio. This is because the fluid support ratio of the cartilage under unconfined 

compression is substantially lower than that under confined compression 

(Park et al., 2003, Ateshian and Hung, 2006). However, in reality, such 

differences may be reduced by the tension-compression nonlinearity of the 

cartilage. The hemiarthroplasty case showed higher peak stresses and a 

greater reduction in the fluid-load support over time than the cartilage-on-

cartilage case. This illustrates that it is necessary to model both layers of 

cartilage to represent the natural joint since their interaction plays an 

important role in the contact mechanics.  

For models with different parameters presented in this study, the predicted 

peak contact stress was found to range from 2.7MPa to 4.1 MPa. For similar 

loading conditions, the peak contact stress has been reported to lie between 

4 MPa and 7 MPa in a study using embedded transducers (Brown and 

Shaw, 1983, Hodge et al., 1989)) and between 5 MPa and 10 MPa in 

studies using pressure-sensitive films (Afoke et al., 1987, Anderson et al., 

2008). Besides the linear isotropic assumption of the cartilage, the higher 

values of such measurements could be because the film thickness and 

stiffness introduce measurement artefacts, but also because of the smooth 

surfaces and regular morphology assumptions in this study, which have 
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been shown to reduce the peak contact stress in an elastic FE model 

(Anderson et al., 2010). The peak stress predictions in this study are 

consistent with previous numerical studies where similar spherical 

assumptions have been made (i.e. 3 MPa to 4 MPa) (Mavčič et al., 2002, 

Yoshida et al., 2006, Pawaskar et al., 2010). For the purpose of the current 

study, the spherical assumption was necessary in order to undertake the 

initial parametric study and gain an understanding of the order of importance 

of the model input conditions.  

The labrum was excluded in this study due to the lack of extensive literature 

on its geometric parameters and material properties (Anderson et al., 2008), 

which is another potential limitation. Although the labrum plays a minimal 

role in load supporting for the normal hip (1-2% of total load) (Henak et al., 

2011), it is believed to help impede the fluid exudation, owing to its lower 

permeability compared with the cartilage (Ferguson et al., 2000a, Ferguson 

et al., 2000b, Ferguson et al., 2003, Haemer et al., 2012). After labrum 

removal, the edge surface of the acetabular cartilage remains free-draining, 

potentially leading to a faster process of fluid exudation compared with a hip 

with the labrum. The findings in this study illustrate that even under the 

extreme situation where the labrum is removed, the fluid supports most of 

the load over prolonged physiological loading periods, further demonstrating 

the excellent function of the hip joint.  

The primary advantage of the methodology in this study lies in its ability to 

investigate the solid phase and fluid phase separately, predict the joint 

tribological behaviour under both short-term and long-term loading periods, 

and interpret the influence of model parameters on the fluid-solid phases 

over prolonged physiological loading periods.  

In conclusion, in this chapter a new method for simulating the contact 

mechanics and associated fluid pressurisation for a biphasic natural hip joint 

under prolonged physiological loading was presented. The predicted 

behaviour of the natural hip joint model was found to be subject to hip size, 

clearance, cartilage aggregate modulus, thickness and hemiarthroplasty for 

the period soon after loading. The fluid in the cartilage supports over 90% of 

the load transmitted between the articulating surfaces of the hip joint for a 



- 110 - 

prolonged physiological loading period. The model with higher congruence 

or lower cartilage permeability has slower changes over this period. The 

methodology developed in this chapter can now be used to explore the 

behaviour of the joint over more realistic daily activities, as will be presented 

in Chapter 6. 
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Chapter 6  
Natural Human Hip Joint: Application to the Study of 

Different Activities  

 

6.1 Introduction  

The hip joint is subject to a range of loading directions and magnitudes 

during daily activities, which affect both its biphasic performance and the 

potential for degeneration. In Chapter 5, a whole hip model with biphasic 

cartilage layers under physiological static loads was successfully simulated 

for a prolonged period, and it was demonstrated that the interstitial fluid 

supports over 90% of the load transmitted between the articulating surfaces 

of the hip joint under a physiological static load. Such high ratio of load 

support by the fluid phase also contributes to the lubrication of articular 

cartilage (Ateshian et al., 1994, Mow et al., 1980, Mow et al., 1984), and is 

closed linked with cartilage function and degradation (e.g. osteoarthritis) 

(Forster and Fisher, 1996, McCann et al., 2009). However, biphasic 

materials have yet to be successfully applied to a three dimensional whole 

joint under high physiological dynamic loads which involve consecutively 

sudden spatial and temporal variations, although such an investigation has 

the potential to provide valuable information about hip function and the 

potential for damage associated with daily activities.  

The aim of this study was to investigate the cartilage contact mechanics and 

the associated fluid pressurisation in the hip joint during different daily 

activities. 
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6.2 Methods  

The model used in this study was similar to the one described in Chapter 5. 

The geometric parameters and material properties of the natural hip model 

were based on the original model in Chapter 5.  

The boundary conditions of the models were also as described in Chapter 5. 

In this study, previously measured in vivo hip contact forces for eight 

activities (Bergmann et al., 2001) were adopted and applied to the reference 

point on the distal femur. It was assumed that the rotation of the femur would 

not cause a difference in the contact mechanics of the model, because (1) 

the bone had little influence on the predictions, (2) the joint was assumed to 

be spherical and frictionless, and (3) the long term cartilage consolidation 

was not investigated in this study due to the lengthy simulation time 

required. Consequently, the femur was fixed along rotational degrees of 

freedom through the reference point. 

FE simulations were conducted for eight activities of daily living as shown in 

Table 6-1. The average dataset of the patient KW (Bergmann et al., 2001) 

was selected because the gait pattern of this patient exhibited good 

postoperative rehabilitation. The load was based on the coordinate system 

of the pelvis. The magnitude of vectors for all the activity loads is 

represented in Figure 6.1. 

 

Table 6-1 List of activities and their cycle time (s).  

Activity Fast 
walk 

Normal 
walk 

Slow 
walk 

Stand 
up 

Sit 
down 

Ascend 
stair 

Descend 
stair 

Knee 
bend 

Time 1.0 1.1 1.2 2.5 3.7 1.7 1.5 3.6 
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Figure 6.1 Hip contact forces during 8 different activities as model inputs 
(Bergmann et al., 2001). The magnitude of vectors is presented. 

 

Each cycle of activities was represented by 40 time steps. The directions 

and magnitudes of the loads were varied to represent time steps through the 

loading cycle. The lengths of time steps were checked to ensure that the 

results were insensitive to shorter steps. The load was ramped over 0.2 s for 

all the activities. For the walking activities, 10 cycles were simulated to 

investigate the time dependent behaviour of the hip cartilage under dynamic 

loads, whilst for the other activities, only the 1st cycle was simulated due to 

the lengthy computational time required. All analyses were conducted using 

FEBio (version 1.5.0; Musculoskeletal Research Laboratories, Salt Lake 

City, UT, USA; URL: mrl.sci.utah.edu/software/febio). Fluid pressure, contact 

stress and fluid support ratio were recorded.  
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6.3 Results  

The fluid pressure and contact stress distributions for all the eight activities 

for the time at which the peak value occurred are presented in in Figure 6.2 

and Figure 6.3 respectively. In all the loading cases, the magnitudes and 

distributions of fluid pressure and contact stress on the acetabular cartilage 

surface were very similar. At the occurrence of peak contact stress, the 

location of contact on the acetabular cartilage varied among activities, 

ranging from the central region for walking, ascending and descending stairs 

to the posterior region for standing up, sitting down and knee bending. 

 

   

 

Fast walk 
15% cycle 

Normal walk 
15% cycle 

Slow walk 
15% cycle 

Stand up 
40% cycle 

 

 

  

Sit down 
50% cycle 

Ascend stair 
15% cycle 

Descend stair 
90% cycle 

Knee bend 
60% cycle 

 

 

Figure 6.2 Contours of fluid pressure at % cycle when peak value occurred. 
For different activities, the locations of contact were different, ranging from 
the central region to the posterior region of the acetabular cartilage. 
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Fast walk 
15% cycle 

Normal walk 
15% cycle 

Slow walk 
15% cycle 

Stand up 
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Sit down 
50% cycle 

Ascend stair 
15% cycle 

Descend stair 
90% cycle 

Knee bend 
60% cycle 

 

 

Figure 6.3 Contours of contact stress at % cycle when peak value occurred. 
The magnitudes and distributions of contact stress for different 
activities were similar to those of the fluid pressure on the acetabular 
cartilage surface. 

 

The peak contact stress and fluid support ratio for each activity are 

presented in Figure 6.4. For all the activities, the peak contact stresses 

displayed similar trends to the load inputs (Figure 6.1), with the highest 

value of 3.5 MPa occurring during stair descend and the lowest value of 

1.8 MPa during knee bending. The fluid support ratio was maintained at 

above 90% for the majority of the cycle for all the activities, but dropped 

below 90% at certain phases of the walking, standing up and sitting down 

cycles. During these periods of lower fluid load support ratio, the peak 

contact stresses were no more than 1 MPa.  

 

0 MPa 3.48 MPa 
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 Figure 6.4 Peak contact stress and fluid support ratio of each cycle for all 
the activities. Results of 1st and 10th cycle of the walking activities 
were compared. For all the activities, the peak contact stress ranged 
from 1.8 MPa to 3.5 MPa. The fluid support ratio was over 90% for the 
majority of a cycle of each activity but decreased below 90% at certain 
phases for some activities. The time dependent behaviour of the joint 
cartilage over 10 cycles of gait was minimal. 
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5% cycle 10% cycle 15% cycle 20% cycle 

    
25% cycle 30% cycle 35% cycle 40% cycle 

    
45% cycle 50% cycle 55% cycle 60% cycle 

    
65% cycle 70% cycle 75% cycle 80% cycle 

    
85% cycle 90% cycle 95% cycle 100% cycle 

 

 

Figure 6.5 Contours of contact stress on the acetabular cartilage at different 
cycle phases of normal walk. Contact occurred around the central 
region during the majority of a cycle, and slid toward the interior edge 
area from around 70% to 90% cycle. 
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As an example to illustrate the relationship between the fluid support ratio 

and location of contact, the contact stress distribution at different phases of a 

cycle for normal walking is shown in Figure 6.5. The fluid support ratio was 

above 90% for the majority of a gait cycle when the contact region remained 

around the central area of the acetabular cartilage. However, it decreased 

markedly at around 85% of the cycle, when the minimum peak contact 

stress occurred and the contact region slid toward the interior edge of the 

acetabular cartilage. Similar patterns were found for other activities where 

the fluid support ratio decreased below 90% in that the contact occurred 

near the interior edge of the acetabular cartilage (Figure 6.6). 

 

    

Fast walk  

85% cycle 

Normal walk  

85% cycle 

Slow walk  

85% cycle 

Stand up  

5% cycle 

 

 

 

 

Sit down  

100% cycle  

Figure 6.6 Contours of contact stress for activities when fluid support 
decreased below 90%. In all of such circumstances, the contact region 
was around the interior edge of the acetabular cartilage, and the stress 
level was low. 
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6.4 Discussion 

This study is the first successful biphasic investigation of the whole hip joint 

under dynamic loads for different activities. The application of the biphasic 

cartilage properties enabled the investigation of the role that the interstitial 

fluid plays in the contact mechanic of the hip joint during daily activities. The 

predictions demonstrated that through pressurisation, fluid generally 

supported over 90% of the load transferred between the articulating surfaces 

of the hip joint for the daily activities investigated. Such high fluid support 

ratio would leave only a small portion load to the solid phase, warranting a 

low level of solid phase stress and friction coefficient that are essential for 

natural joint function (Forster and Fisher, 1996, McCann et al., 2009). 

However, at certain stages for several activities, the fluid support ratio 

decreased below 90% when the contact region slid toward the interior edge 

of the acetabular cartilage which is less confined than around the central 

region. This corresponds to previous studies which found that the fluid 

support ratio of the cartilage under unconfined compression is substantially 

lower than under confined compression (Park et al., 2003, Ateshian and 

Hung, 2006). It can be concluded that the stress level of the solid matrix in 

the hip cartilage is linked with not only the magnitude but also location the 

contact stress. For the activities investigated in this study, the decrease of 

fluid support ratio led to an increased proportion of stress for the solid phase 

around the interior edge region of the acetabular cartilage, but the absolute 

magnitudes of the contact stress were very low (< 1 MPa) at these stages, 

therefore potentially not harmful. 

Due to the high computational expense involved in the simulation of biphasic 

materials, only 10 cycles of gait were investigated to present an initial insight 

into the time dependent behaviour of the hip joint under dynamic loads. Over 

these 10 cycles, both the peak fluid pressure and contact stress remained 

nearly constant, suggesting that there was almost no variation in the fluid 

support ratio around the central region where peak fluid pressure / contact 

stress occurred. The fluid support ratio across the whole articulating surface 

decreased slightly, particularly when contact occurred around the interior 

edge of the acetabular cartilage. This is because the edge surface of the 
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acetabular cartilage was free-draining, facilitating a substantially faster 

process of fluid exudation for the region nearby as compared with the central 

region of the acetabular cartilage. The faster fluid exudation process of the 

edge region may also contribute to the variation in the fluid support ratio 

across the whole articulating surface. This is supported by the findings in this 

chapter where the variation in the fluid support ratio of the model was faster 

under the gait loads investigated here than under the static load in Chapter 
5, which confined the contact stress within the central region of the 

acetabular cartilage.  

Besides the challenge of applying high static loads over a prolonged period 

to the biphasic whole joint as mentioned in Chapter 5, it is also difficult to 

apply dynamic loads (e.g. daily activities) which involve consecutively 

sudden spatial and temporal variations to such models (Pawaskar, 2010). 

Although the natural joint model simulated in FEBio shows good 

convergence ability, as compared with elastic or hyperelastic whole joint 

models, greater effort on meshing is needed to ensure good element quality 

in order to enable the biphasic model to converge to a solution. 

Although the modelling technique presented here represents an important 

step forward for whole joint investigations, there are several limitations. 

Similar to Chapter 5, the solid matrix was assumed to be homogeneous 

isotropic elastic which may not fully represent the inhomogeneous fiber-

reinforced structure of the cartilage (Mow et al., 1980, Soulhat et al., 1999, 

Ateshian et al., 2009). Due to such assumption, the peak fluid pressure, 

peak contact stress and fluid support ratio may be potentially 

underestimated. In particular, the level of reduction in fluid support ratio for 

the edge region of the acetabular cartilage may be overestimated.  

As proposed in Chapter 5, another potential limitation is the idealized 

generic geometry of the model, which has been shown to reduce the peak 

contact stress in an elastic FE model (Anderson et al., 2010). In this study, 

the peak contact stress was 2.5 MPa to 3.5 MPa for a load of approximate 

2000 N, which is lower than previous experimental studies (Afoke et al., 

1987, Anderson et al., 2008, Brown and Shaw, 1983, von Eisenhart et al., 

1999). As discussed in Chapter 5, the higher values of such measurements 
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may be caused by the measurement artefacts that arise from the highly 

conforming surfaces, but also by the idealized morphology and isotropic 

material assumptions used in this study. For the purpose of this study, such 

assumptions were appropriate in order to compare hip performance among 

different activities and gain insight into the role of fluid pressurisation on the 

function of a generic hip joint.  

As mentioned in Chapter 5, labrum exclusion was assumed in the present 

model. The labrum is believed to have little assistance in load supporting 

(Henak et al., 2011), but help impede fluid exudation through its lower 

permeability than the cartilage (Ferguson et al., 2000a, Ferguson et al., 

2000b, Ferguson et al., 2003, Haemer et al., 2012). However, the lack of 

labrum may not significantly affect the predictions in this study, because a 

very short loading period was simulated and the time dependent behaviour 

of the hip cartilage was dominated by the interior edge region. 

The load applied to the model is based on the measured hip forces of 

patients who had THR surgeries and may exhibit different pattern from 

healthy people during daily activities according to the findings in Chapter 3. 

To the authors’ knowledge, there appear no studies on hip contact forces of 

different activities for a healthy person as yet. To alleviate this limitation, a 

THR patient was selected who had a more dynamic gait pattern which 

behaves more similar to that of healthy people, as compared with other THR 

patients in the database provided by Bergmann et al. (2001). In the following 

chapter, this aspect was further investigated by incorporating subject-

specific gait loadings. 

In conclusion, a generic human hip joint model was investigated in terms of 

its contact mechanics and associated fluid pressurisation during daily 

activities. The model exhibits good convergence ability dealing with high 

dynamic loads which involve consecutively sudden spatial and temporal 

variations. Although several assumptions were made, the predictions 

provide insight into how the fluid pressurisation assists in hip function during 

daily activities. For all the daily activities, the fluid supports most of the load 

transmitted between articulating surfaces of the hip joint, thus playing an 

essential role in the lifetime survival of natural hip joints. A decreased level in 
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fluid support ratio and a faster process of fluid exudation were observed for 

the interior edge region of the acetabular cartilage.  

The model developed in this chapter can be used to study a range of 

activities. In the following chapter, it will be employed to investigate subject-

specific gait. 
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Chapter 7  
Combination of Hip Biomechanics and Biotribology for 

Evaluation of Different Patient Cohorts 

 

7.1 Introduction  

The purpose of THR is to relieve pain of patients with hip trauma or disease 

and to restore normal postoperative activity patterns, the latter of which is 

difficult in practice. For example, the cohort studies in Chapter 3 have 

demonstrated that gait patterns of THR patients, even years after THR 

surgery, generally cannot return to a level equivalent to normal healthy 

individuals, and exhibit a decreased range of motion and contact forces in 

the hip. These alterations are more evident for THR patients with symptoms 

of LLI. In addition, gait adaptions were also noticeable for the non-operated 

joint of the unilateral THR / LLI patients. However, to what extent these 

adaptions alter the contact mechanics of the non-operated hip and whether 

the non-operated hip functions in a mechanically adverse environment 

remain, as yet, unknown. Solving these questions is important in providing 

better patient care, pre-operative planning and rehabilitation strategies to 

prevent the healthy hip of unilateral THR patients from degeneration.  

The aim of this study was to investigate the differences in contact 

mechanics, particularly focusing on the fluid pressurisation, for different 

patient groups. The cases studied were the non-operated hips of 

asymptomatic unilateral THR patients and symptomatic unilateral LLI 

patients, as well as the hip joints of their normal healthy counterparts, in 

order to evaluate whether the these differences have a mechanically 

adverse influence on the non-operated hip of THR / LLI patients. 
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7.2 Methods  

The FE model used in this study was similar to the one described in Chapter 
5. The geometric parameters and material properties of the natural hip 

model were based on the original model in Chapter 5. The mean hip contact 

forces calculated in Chapter 3 for the normal healthy cohort (‘Normal’), the 

non-operated limb of the asymptomatic unilateral THR patients (‘THR-NO’) 

and the non-operated limb of unilateral THR patients with symptoms of LLI 

(‘LLI-NO’) were normalized to a person of 75 kg by normalizing to BW and 

then scaling to an average human weight of 75 kg to offset the weight 

differences between the three cohorts. This data was then used as inputs for 

the generic human hip model (Figure 7.1). The coordinate system for the hip 

contact forces was based on the pelvis.  

 

 

Figure 7.1 Mean hip contact forces for the normal healthy people, 
asymptomatic THR patients and symptomatic LLI patients on their non-
operated limbs, as model inputs. The magnitude of vectors is 
presented. 
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The boundary conditions of the joint model and the way the dynamic loads 

were applied were described in Chapter 6. FE analyses were conducted for 

10 gait cycles of each cohort using FEBio (version 1.5.0; Musculoskeletal 

Research Laboratories, Salt Lake City, UT, USA; URL: 

mrl.sci.utah.edu/software/febio). Contact stress, fluid pressure and fluid 

support ratio were recorded and cross-compared to evaluate the differences 

in load transmission and tribological performance between the three cohorts. 

 

7.3 Results  

For all the cohorts, the fluid pressure and contact stress had a similar 

magnitude and distribution on the acetabular cartilage surface. The contact 

stress distribution at different stages of gait is shown in Figure 7.2. During 

most of a gait cycle from heel-strike to toe-off, the contact generally occurred 

within the central region of the acetabular cartilage surface for all the 

cohorts. The contact at the mid-swing of the gait cycle was minimal. The 

location of contact at each phase of the gait cycle was generally similar for 

all the three cohorts.  
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 Normal THR-NO LLI-NO 

Heel-strike 

   

Mid-stance 

   

Toe-off 

   

Mid-swing 

   

 

 

Figure 7.2 Contours of contact stress (MPa) at different phases of gait for 
the normal healthy cohort, the THR and LLI cohorts in terms of their 
non-operated hips. 
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The peak fluid pressure, peak contact stress and fluid support ratio for the 

three cohorts during the 1st gait cycle are displayed in Figure 7.3. The peak 

contact stress and peak fluid pressure were nearly identical with a similar 

pattern to the hip contact forces (Figure 7.1). Characteristic twin peaks of 

the maximum contact stress / fluid pressure were found for the healthy 

cohort and the non-operated limbs of the asymptomatic THR cohort. In 

terms of the peak contact stress of the three cohorts, the healthy group had 

the most dynamic pattern (from the 1st peak to the trough to the 2nd peak), 

while the least dynamic pattern was found for the non-operated limbs of the 

LLI patients.  

During most of the gait cycle, the fluid support ratio was similar for the three 

cohorts and was over 90%. However, during the swing phase at 75%-85% of 

a cycle, the fluid support ratio decreased below 90%. At this time, the peak 

contact stress was minimal (< 0.5 MPa) and slid toward the interior edge 

region of the acetabular cartilage (Figure 7.4). As compared with the other 

two cohorts, the fluid support ratio of the non-operated limbs of the 

asymptomatic THR patients decreased more markedly during swing phase.  
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Figure 7.3 Peak contact stress for the normal healthy cohort, non-operated 
side of the THR and LLI cohorts. The peak contact stress for the THR 
and LLI cohorts was lower and less dynamic than the normal healthy 
people. 
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Normal THR-NO LLI-NO 

 

 

Figure 7.4 Contours of contact stress at mid-swing phase of a gait cycle for 
the three cohorts when fluid support decreased below 90%. The 
contact occurred around the interior edge of the acetabular cartilage, 
and the level of stress was minimal.  

 

Over 10 cycles of gait, the variations in the peak fluid pressure, peak contact 

stress, and fluid support ratio for the three cohorts are shown in Figure 7.5, 

Figure 7.6 and Figure 7.7. For all the cohorts, there were almost no 

variations in the peak fluid pressure and peak contact stress. However, an 

obvious decrease in fluid support ratio was detected, particularly during 

swing phase for the latter 40% of each cycle. This decrease in the fluid 

support ratio during swing phase was most marked for the non-operated 

limbs of the asymptomatic THR patients, as compared with the other two 

cohorts.  
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Figure 7.5 Variations in the peak fluid pressure, peak contact stress and 
fluid support ratio over 10 cycles of gait for the normal healthy people. 
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Figure 7.6 Variations in the peak fluid pressure, peak contact stress and 
fluid support ratio over 10 cycles of gait for the non-operated hip of the 
asymptomatic THR patients. 

 

0
0.5

1
1.5

2
2.5

3
3.5

4

0 20 40 60 80 100

Pe
ak

 fl
ui

d 
pr

es
su

re
 (M

Pa
) 

Cycle (%) 

1st cycle
10th cycle

0
0.5

1
1.5

2
2.5

3
3.5

4

0 20 40 60 80 100

Pe
ak

 c
on

ta
ct

 s
tr

es
s 

(M
Pa

) 

Cycle (%) 

1st cycle
10th cycle

0

20

40

60

80

100

0 20 40 60 80 100

Fl
ui

d 
su

pp
or

t r
at

io
 (%

) 

Cycle (%) 

1st cycle
10th cycle



- 132 - 

 

Figure 7.7 Variations in the peak fluid pressure, peak contact stress and 
fluid support ratio over 10 cycles for the non-operated hip of the 
symptomatic LLI patients. 
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7.4 Discussion 

In Chapter 3, it was demonstrated that hip kinematics and kinetics of the 

asymptomatic THR patients and the THR patients with symptoms of LLI do 

not return to those of their normal healthy counterparts even years after THR 

surgery, and these alterations can also been found in their non-operated 

hips. To further evaluate whether these abnormalities in the hip contact 

forces lead to abnormal contact patterns within the non-operated hip joint of 

the THR / LLI patients, a combination of RBD musculoskeletal modelling and 

biphasic FE modelling were used in this study. Such a combination enables 

a systematic and non-invasive investigation of joint contact mechanics 

directly from gait kinematic measurement, and thus can be applied to 

evaluate a wide range of clinical issues. Furthermore, the incorporation of 

biphasic cartilage layers in the FE model allows the consideration of fluid 

pressurisation in the cartilage, providing more information that is closely 

linked with joint function and degeneration.  

Compared with the normal healthy individuals, the asymptomatic THR 

patients were found to have a markedly reduced and less dynamic peak 

contact stress and peak fluid pressure on their non-operated hips. These 

alterations were more evident for the LLI patients. For the three cohorts, the 

fluid support ratio within the hip was similar and above 90% when major 

contact occurred, which, along with the decreased peak contact stress for 

the THR / LLI patients, suggests that the level of stress transmitted to the 

solid matrix in the cartilage was reduced on the non-operated hips for the 

THR / LLI patients. Additionally, the lower levels of stress shared by the solid 

phase may potentially lead to a lower friction coefficient and shear stress 

between articulating surfaces in the non-operated hip for the THR / LLI 

patients during gait. Consequently, it can be inferred from these findings that 

the abnormal contact mechanics may not lead to a mechanically adverse 

environment for the non-operated hip of the asymptomatic THR patients and 

symptomatic LLI patients during gait.  

Similar to the findings for the walking activities in Chapter 6, the contact 

region slid toward the interior edge of the acetabular cartilage during swing 

phase for the three cohorts, and at this time, the fluid support ratio was 
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obviously reduced. Over 10 cycles of gait, the peak contact stress and peak 

fluid support ratio remained nearly constant, suggesting that there was also 

no variation in the fluid support ratio around the central region where the 

major contact occurred. Yet, the fluid support ratio decreased noticeably, 

particularly during swing phase. However, the decreased magnitude and 

faster reduction in the fluid support ratio around the interior edge of the 

acetabular cartilage during swing phase may not have an adverse influence 

on the cartilage function within the hip, due to the minimal peak contact 

stress at this period for all the three cohorts. This further demonstrates that 

the non-operated hips of the asymptomatic THR patients and symptomatic 

LLI patients may not function in a mechanically adverse environment during 

the whole cycle of gait.  

However, it should be emphasised that the findings of this study 

demonstrated a mechanically safe circumstance for the non-operated joint of 

unilateral THR / LLI patients only in the case of walking. For other activities, 

high levels of stresses may still exist for the non-operated joint of THR 

patients. It was not possible to investigate these activities here because only 

walking data was collected for the THR and LLI patients. Many studies 

argued that the properties and strength of cartilage tend to adapt to the 

regular level of stresses (Arokoski et al., 1999, Eggli et al., 1988, Kiviranta et 

al., 1987, Arokoski et al., 2000), and the cartilage degeneration usually 

occurs in areas of infrequent but excessive stresses (Swann and Seedhom, 

1993). In the light of these theories, the cartilage of the non-operated joint of 

THR / LLI patients may be adapted to their reduced stress level during gait 

which is the most common activity, and thus may be more vulnerable to high 

levels of stress possibly existing during other activities (e.g. stumbling). To 

better evaluate such risks, further investigations involving a comprehensive 

range of activities are necessary.  

Previous investigations on the contact mechanics of the healthy hip joint 

under activity loadings generally adopted in vivo measured kinetics of THR 

patients as the loading inputs (Yoshida et al., 2006, Pawaskar et al., 2010, 

Anderson et al., 2008, Harris et al., 2012). However, as demonstrated in this 

study, the contact mechanics varied markedly among different cohorts of 

people due to the alterations in their hip contact forces, suggesting that it is 
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necessary to adopt the loading conditions of the model on a subject-specific 

or cohort-specific level. 

Comparison between the results predicted by this study and previous 

studies is difficult because it appears that no previous studies have 

measured the in vivo contact mechanics for natural healthy hips or 

numerically adopted hip contact forces of natural healthy hips as model 

inputs. As evaluated in Chapter 3 and Chapter 6, although the predictions 

of both the musculoskeletal model and hip model were reliable, the accuracy 

of the predictions for each cohort investigated may be influenced by the 

model simplifications such as the muscle recruitment assumption, adoption 

of isotropic solid phase for the cartilage and simplified joint model geometry. 

However, for the purpose of this study, such simplifications were appropriate 

in order to compare hip performance among different cohorts and gain an 

understanding of the differences in contact mechanics and the associated 

fluid pressurisation in the non-operated hips of the THR / LLI patients as 

compared with their healthy counterparts. Again, for subject-specific studies, 

it is necessary to develop FE models with anatomical geometric parameters. 

In this study, the RBD musculoskeletal model and the FE model were 

combined in an uncoupled way without accounting for their interactions in 

which the time dependent deformation of the FE model may both alter and 

be affected by the kinetics predictions of the musculoskeletal model. 

However, due to the high stiffness of human bones and the thin layer of 

articular cartilage, the deformations of these two models should be too 

minimal in the scale of the whole length of human lower extremity to cause a 

marked difference in the results. More importantly, the computational cost for 

a FE simulation involving biphasic materials are too high to allow the 

numerical iterations that are required to account for the interactions between 

these two domains. Although it would be possible to realize the whole 

simulation that includes both the joint force predictions and cartilage contact 

mechanics solely through a FE model, the lack of a FE based 

musculoskeletal model with anatomical information, as well as the high 

computational costs for musculoskeletal model optimizations (e.g. muscle 

parameters and kinematics) still remain as major challenges.  
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To conclude, the combination of a RBD musculoskeletal model and a FE hip 

model with biphasic cartilage layers enabled the prediction of contact 

mechanics and the associated fluid pressurisation within the hip joints of the 

normal healthy people and the non-operated limb of the asymptomatic THR 

patients and symptomatic LLI patients. The abnormal gait kinetics of the 

THR / LLI patients was found to lead to a resultant reduction and less 

dynamic pattern in the peak contact stress and fluid pressure on their non-

operated hips. The fluid support ratio was similar and decreased very slowly 

for the three cohorts when the major contact occurred between the 

articulating surfaces of the hip. These findings demonstrated that the non-

operated limb of the THR / LLI patients may not function in a mechanically 

adverse environment during gait. The findings are important to assist and 

improve patient care and rehabilitation strategies.  
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Chapter 8  
Validation of a Porcine Hip of Hemiarthroplasty 

 

8.1 Introduction  

In Chapters 4, 5, 6, and 7, a new method of biphasic cartilage modelling 

was developed using FEBio (Musculoskeletal Research Laboratories, Salt 

Lake City, UT, USA; URL: mrl.sci.utah.edu/software/febio) in order to 

overcome convergence issues that are commonly reported in previous 

studies (Pawaskar et al., 2010, Pawaskar et al., 2011, Gu and Li, 2011). 

Using this method, the biphasic cartilage layer was successfully applied to a 

three dimensional generic human hip joint under both physiological dynamic 

loads and over a prolonged loading period. 

In Chapter 4, this methodology of biphasic cartilage simulation was verified 

and initially validated against the results in a previous study (Pawaskar, 

2010) using indentation models. Similar results were achieved, which 

demonstrated the accuracy of the methodology developed. However, for the 

application of such a biphasic modelling approach to the hip joint, which has 

a more complicated configuration than the indentation models, direct 

validation against experimental measurements is still needed to evaluate the 

accuracy of the biphasic joint modelling strategy. 

As found in Chapter 5, the cartilage thickness and hip congruence had a 

great influence on the predictions of the hip model, and therefore, it is 

necessary to take into account these geometric parameters on a subject-

specific level to direct validate the FE model against experiments. Besides, 

the role of the tension-compression nonlinear solid phase that plays in the 

model predictions was not quantified in the previous chapters, although the 

importance of such constitutive relationship was believed by several 

previous studies to be able to capture the mechanical performance of the 

tissue more realistically, as compared with the isotropic one (Soltz and 

Ateshian, 2000, Cohen et al., 1993, Cohen et al., 1998).  
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The primary aim of this study was therefore to develop a subject-specific 

biphasic FE model of a porcine hip with hemiarthroplasty and validate the 

predictions of the model against experimental measurements. The 

importance of the tension-compression nonlinear solid phase within the 

model was also evaluated.  

 

8.2 Methods  

8.2.1 Experimental measurement of CT images and contact area  

The experimental work of contact area measurement described in this 

section was undertaken by Dr Qianqian Wang as part of a parallel laboratory 

investigation. 

The acetabulum from a 3 year old pig was used in this study. All soft tissues 

except for the labrum and cartilage were removed. The acetabulum was 

hydrated and volumetrically scanned using a micro computed tomography 

(µCT) scanner (μCT 80, SCANCO Medical AG, Brüttisellen, Switzerland) at 

a cubic voxel size of 73.6 µm and energy of 70 kV, 114 µA. 

After the scanning, the contact area of the cartilage was measured. Briefly, 

the acetabulum was fixed in a cup holder with cement. The cup holder was 

constrained on an X-Y table so that it was fixed along vertical translation 

without rotation (Figure 8.1). The acetabulum was then compressed 

sequentially with two spherical impermeable prosthetic metal heads of 

diameters 37 mm and 40 mm. The metal head was only allowed to move 

along vertical translation. In both cases, a set of compressive loads of 50 N, 

100 N, 200 N and 400 N ramped up in 10 s were applied to the femoral 

head. Before each load, the metal head was painted using a fluid gel that 

would stain the cartilage on contact (101RF, Microset Products Ltd, UK). 

Two marks were made on both the cup holder and cement to ensure the 

same orientation for each measurement. After each measurement, the 

image was captured by a digital camera (Figure 8.2).  
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Figure 8.1 Experimental setups. The acetabulum was held in a cup holder 
which can move horizontally. The load was applied vertically to the 
head.  

 

 

Figure 8.2 Imaging after each measurement. The acetabulum with cement 
was positioned based on the marks to achieve the same orientation 
each time.  
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8.2.2 Solid model construction  

The FE model was constructed from the µCT scan using the steps outlined 

in Figure 8.3.  

 

 

Figure 8.3 Flowchart for constructing the FE model from the µCT scan.  
 

The volumetric CT data in DICOM format derived from the scanning were 

imported into an image processing and meshing software package (ScanIP 

version 5.1; Simpleware Ltd., Exeter UK) for segmentation and smoothing. 

The bone and the whole acetabulum including both the bone and soft 

tissues were identified sequentially by greyscale thresholding. The surface of 

the bone model and the whole acetabular model were meshed with 3-noded 

triangular elements, exported in STL format, and then loaded into another 

surface-generation software package (Geomagic Studio 11, Geomagic Inc., 

Research Triangle Park, NC, USA). Boolean algorithms were performed to 

exclude the bone model from the whole acetabular model that included both 

the bone and soft tissues in order to obtain a model representing just the soft 

tissue. Because regions of different soft tissues could not be distinguished 

automatically from the scanned image (Figure 8.4), all soft tissues with the 

Acetabulum µCT scanning 
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Smoothing and segmentation using ScanIP 
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IGS 
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exception of the cartilage were excluded manually based on the margin of 

the bone cavity of the acetabulum (Figure 8.5).  

 

 

Figure 8.4 A typical CT slice. The junction of the soft tissue and bone was 
obvious. The boundaries of the cartilage, labrum and other soft tissues 
had similar brightness and thus cannot be distinguished automatically.  

 

 

Figure 8.5 The three dimensional solid model constructed in Geomagic. Soft 
tissues with the exception of the cartilage were excluded.  
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8.2.3 Finite element mesh 

The cartilage surfaces were reconstructed from tens of thousands of 

triangles into several patches to form a solid model which was then imported 

into ABAQUS (version 6.11-1, Dassault Systemes, Suresnes Cedex, 

France) for meshing. The FE model of the cartilage was composed of 9906 

eight-noded hexahedral elements. The prosthesis heads used in the 

experiment were represented by two spheres with a diameter of 37 mm and 

40 mm respectively (Figure 8.6). The spherical head was composed of 7800 

eight-noded hexahedral elements. The bone was assumed to be rigid and 

therefore was not included in the FE model. Mesh sensitivity studies were 

performed to ensure that the predictions were insensitive to a higher mesh 

density (Figure 8.7).  

 

 

 

Figure 8.6 FE model creation. A – The cartilage represented by hexahedral 
elements. B and C – FE models of hemiarthroplasty with heads of two 
different dimensions. 
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Figure 8.7 Predictions of models with different mesh densities in the case of 
40 mm head diameter under different magnitudes of loads (the four 
traces nearly overlapped). The isotropic solid phase was adopted for 
the mesh sensitivity tests. The predictions of the cartilage model with 
9906 elements were found to be insensitive to higher mesh densities.  
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8.2.4 Boundary conditions and loads  

The meshed model was then imported into PreView (version 1.7; 

mrl.sci.utah.edu/software.php) for pre-procession. The acetabular cartilage 

was oriented and positioned according to the setup of the experimental 

measurement. The surface of the cartilage that was connected to the 

subcondral bone was rigidly constrained to a reference point which was fixed 

in all the degrees of freedom in order to represent the rigid bone. The 

spherical head was assumed to be impermeable. The contact was assumed 

to be frictionless, and the fluid flow on the articulating surface of the cartilage 

was considered as contact-dependent so that fluid could only flow out from 

the area of the articulating surface that was not in contact with the 

impermeable head. To replicate the constraints of the head relative to the 

acetabular cartilage, four sets of load were applied within 3 s to the rigid 

head which was fixed along rotational degrees of freedom. The shorter 

loading period of the FE models than the experiment was to enhance the 

computational efficiency but would not affect the model prediction, because 

as demonstrated in Chapter 4, the model predictions were insensitive to 

instantaneous loads. 

 

8.2.5 Material properties  

The metal head was assumed to be rigid, and the cartilage was treated as a 

biphasic solid. Both an isotropic solid phase and a tension-compression 

nonlinear solid phase were tested respectively to evaluate the effect of 

different constitutive relationships on model predictions. The solid phase of 

the isotropic models were represented by the neo-Hookean constitutive 

relationship with the properties adopted from a previous study (Table 8-1) 

(Pawaskar et al., 2011). Additionally, the isotropic model was run with twice 

the aggregate stiffness to investigate the sensitivity to this value. For the 

tension-compression nonlinear model, the aggregate modulus was the same 

to the isotropic model and the tensile modulus was set to 10 times higher 

(Soltz and Ateshian, 2000, Cohen et al., 1993).  
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Table 8-1 Material properties for the models with different solid phase 
properties. Isotropic: the model with isotropic solid phase; 2E: the 
isotropic model with doubled aggregate stiffness; T-C: the model with 
tension-compression nonlinear solid phase. 

 Isotropic 2E T-C 

Aggregate modulus (MPa)  0.562 1.124 0.562 

Tensile modulus (MPa)  N/A N/A 5.62 

Poisson’s ratio 0 0 0 

Permeability (mm4/(Ns)) 0.00157 0.00157 0.00157 

 

 

8.2.6 Simulation method and output measurements  

The FE simulations were conducted using FEBio (version 1.6.0; 

Musculoskeletal Research Laboratories, Salt Lake City, UT, USA; URL: 

mrl.sci.utah.edu/software/febio) on a Linux server with 8 GB of RAM and 8 

Intel X5560 cores at 2.8 GHz. Contact stress was recorded. Contact area 

was calculated by adding up the area of the articulating surface elements in 

which the contact stress was non-zero. The experimentally-measured and 

computed contact areas were compared.  
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8.3 Results  

The contour of contact stress of the FE models and the measured contact 

area in the case of the 37 mm head diameter is shown in Figure 8.8. 

Generally, the location and shape of the contact area for the models with 

different solid phase properties were similar. The model with isotropic solid 

phase had larger contact area and lower peak contact stress, as compared 

with the one with tension-compression nonlinear solid phase. However, 

comparable magnitude of contact stress and contact area was found 

between the tension-compression nonlinear model and the isotropic model 

with doubled stiffness.  

Good agreement in the location, shape and area of the contact was found 

between the FE models and the experimental measurement over the loads 

of different magnitudes. As compared with the isotropic solid phase model, 

the model with tension-compression nonlinear solid phase had a more 

comparable shape and area of contact to the experiment.  
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  Isotropic Isotropic 2E T-C Experiment 
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Figure 8.8 Contours of contact stress of the FE models (head diameter = 
37 mm) with different solid phase properties in comparison to the 
experimentally-measured contact area (gel mark in black colour). 
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The results of the models with the head of 40 mm diameter are shown in 

Figure 8.9. Again, the location and shape of the contact area for the models 

with different solid phase properties were similar. The model with the 

isotropic solid phase had a larger area and lower magnitude of contact 

stress than the one with tension-compression nonlinear solid phase. 

However, when the aggregate modulus of the isotropic model was doubled, 

the magnitude of contact stress and contact area were similar to the tension-

compression nonlinear model.  

The contact areas of the model with the 40 mm diameter heads were 

substantially larger than those with the 37 mm diameter heads. The location, 

shape and area of the contact predicted by the FE models corresponded 

well to the experimental measurement over the loads with different 

magnitudes. According to the experimental measurement, the contact 

occurred in two separate locations under loads from 10 N to 100 N, and 

merged into one region for the loads of 200 N and 400 N. This pattern was 

observed for the FE model with tension-compression nonlinear model and 

the isotropic model with doubled aggregate stiffness. However, in the 

isotropic model, the two separate contact locations joined together at loads 

of 100 N or greater. In terms of the shape and area of the contact, the 

tension-compression nonlinear model was more comparable to the 

experimental measurement than the isotropic model. 
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Figure 8.9 Contours of contact stress of the FE models (head diameter = 
40 mm) with different solid phase properties in comparison to the 
experimentally-measured contact area (gel mark in black colour). 
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The magnitudes of contact area for the heads of diameters 37 mm and 

40 mm are shown in Figure 8.10 and Figure 8.11 respectively. Under 

different magnitudes of loads, the contact area of the tension-compression 

nonlinear model was substantially lower than that of the isotropic model. 

Generally, the FE models with different solid phase properties provided 

higher magnitude but similar trend for the contact area versus load to the 

experimental measurement. This similarity in trend was greater for the 

tension-compression nonlinear model, as compared with the isotropic model. 

However, when the aggregate modulus of the isotropic model was doubled, 

its magnitude and trend for the contact area versus load were more 

comparable to the tension-compression nonlinear model as well as the 

experimental measurement. It is unclear why the experiment measurement 

of contact area did not increase for load increase of 200 N to 400 N for the 

37 mm head (Figure 8.10). It should be noted that in the stress contours of 

the FE models in Figure 8.8 and Figure 8.9, the region with contact stress 

less than 10% of the peak value is represented by dark blue, and thus the 

area displayed by other colours (>10% of the peak value) is smaller than the 

area of non-zero stress of the FE models in Figure 8.10 and Figure 8.11 

under each circumstance.  

 

 

Figure 8.10 Contact area of the FE models (head diameter = 37 mm) with 
different solid phase properties in comparison with the experimental 
measurements.  
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Figure 8.11 Contact area of the FE models (head diameter = 40 mm) with 
different solid phase properties in comparison with the experimental 
measurements.  

 

8.4 Discussion 

The aim of this study was to validate the FE hip model of a hemiarthroplasty 

which incorporated the biphasic modelling methodology by comparison with 

experimental measurements. As yet, there seem to have been only two 

studies that have reported direct validation of FE models of the hip contact 

conditions against experiments (Anderson et al., 2008, Pawaskar et al., 

2011). In these studies, contact pressure and contact area were measured 

using pressure-sensitive films. However, such measurement techniques are 

open to question, because the thickness (approximately 0.2 mm) and 

stiffness of such films may markedly alter the contact behaviour of the hip 

joint due to its highly congruent surfaces. To alleviate such artefacts, a 

staining fluid gel was used in this study to measure the contact area. 

However, other parameters such as contact pressure and fluid pressure 

cannot be predicted using this method.  

In this study, the hemiarthroplasty model was composed of porcine 

acetabular cartilage and a spherical prosthetic head. This was used as it 

was a technique developed in a separate study by Dr. Qianqian Wang. At 
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the time of writing the thesis, the experimental technique for the natural joint 

with two cartilage surfaces had not been developed. In order to validate the 

contact area as well as its trend under different circumstances, two types of 

head with diameters of 37 mm and 40 mm were tested and loads of different 

magnitudes were applied. In addition, different properties for the solid phase 

of the cartilage were considered to evaluate the importance of the tension-

compression nonlinear constitutive relationship within the model. Generally, 

the contact area predicted by both the isotropic and tension-compression 

nonlinear FE models corresponded well to the experimental measurement. 

Both the shape and the location of the contact contour for the FE models 

were comparable to the experiment. As compared with the experiment, the 

higher magnitude of contact area in the FE predictions was most likely due 

to the fact that the sensitivity of the experiment to the contact stress might 

not be as high as that of the FE models in which the contact area was 

calculated based on the area of the articulating surface with non-zero 

contact stress. For both the isotropic and tension-compression nonlinear 

models, similar trends in the magnitude of contact area to the experiment 

were observed over the loads investigated.  

In comparison to the measured area, a higher similarity in the shape and 

area of the contact contour was detected for the model with tension-

compression nonlinear solid phase than the isotropic model. However, better 

agreement was also found between the tension-compression nonlinear 

model and the isotropic model with doubled aggregate stiffness. This 

demonstrates the hypothesis in the discussion of Chapter 4, 5 and 6 that the 

stiffness of the cartilage was potentially underestimated by the isotropic 

assumption during the early loading period.  

Although good agreement between the FE predictions and the experimental 

data was achieved, there are some limitations that should be mentioned. 

Only one set of experiment was conducted and thus a certain level of 

measurement errors may exist. Besides, only the instantaneous contact 

areas were evaluated without accounting for the time dependent behaviour 

of the cartilage, because the variation in the contact area during the cartilage 

consolidation process within the hip is difficult to be accurately measured 

using the staining fluid gel. However, the high similarity in the instantaneous 
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results for a range of different input conditions provides some confidence in 

the model predictions.  

For the experiment and the modelling, ideally identical boundary conditions 

would have been applied, but this was difficult to achieve. In this study, the 

acetabular component in the FE model was oriented manually based on the 

bony landmarks. However, the great similarity in the location of contact 

between the FE models and the experimental measurement that was 

obtained using this technique suggests it was adequate to locate the 

component. Besides, in the experiment, the cartilage was attached to the 

underlying bone which was supported by the cement. Whilst in the FE 

model, the bone was assumed to be rigid. However, as found in Chapter 5, 

such assumption may have little influence on the model predictions.  

In the current study, the material properties of the cartilage were based on a 

previous curve fitted test for another porcine hip (Pawaskar et al., 2011), and 

the tensile modulus in the tension-compression nonlinear model was 

assumed to be 10 times higher than the aggregate modulus. Due to the 

potential variations in cartilage properties between different subjects, this 

simplification may potentially decrease the accuracy in the model 

predictions.  

Owing to the high resolution of the scanned images (Figure 8.4), the 

realistic geometric parameters of the tissue can be obtained to a great 

extent. However, minimal errors in model geometry may still exist due to the 

semi-automatic segmentation and smoothing techniques. According to the 

findings of the parametric studies in Chapter 5, the minimal variations in 

geometry may not greatly affect the accuracy of the models, yet the potential 

error should be evaluated more systematically. Another limitation is that the 

labrum was excluded in the FE models, given that its material properties 

were unknown in the literature and it is difficult to distinguish the labrum from 

other soft tissues (e.g. capsule). However, such assumption is appropriate in 

this study, because as shown in the measurement (Figure 8.8 and Figure 
8.9), no contact occurred around the region near the labrum. Although the 

labrum may affect the cartilage consolidation process (Ferguson et al., 

2000a, Ferguson et al., 2000b, Haemer et al., 2012, Ferguson et al., 2003), 
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the loading period in this study was too short to allow an obvious time 

dependent response of the tissue.  

In conclusion, in the comparison of the FE predictions and the experimental 

measurement, good agreement in the location and shape of contact was 

achieved, and a similar trend in the relationship between contact area and 

load was observed. As compared with the isotropic solid phase, a higher 

similarity in these results was obtained with the tension-compression 

nonlinear solid phase which, in terms of calculating the contact area, had 

similar effect to a stiffer isotropic model. The findings provide some 

confidence that the new biphasic methodology for modelling the cartilage is 

able to predict the contact mechanics of the hip joint.  
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Chapter 9  
Overall Discussion and Conclusions 

 

9.1 Overall discussion 

9.1.1 Musculoskeletal modelling in gait analysis   

The investigation on the hip kinematics and kinetics of THR patients is 

promising, because it assists in providing better patient care, pre-operative 

planning and rehabilitation strategies. As a result, such investigations have 

been conducted by a multitude of previous studies. However, gait kinematics 

and kinetics of patients with different levels of THR outcomes have been 

poorly reported, particularly in terms of hip contact force which is directly 

linked with joint damage (Wearing et al., 2006, Arokoski et al., 2000). For the 

prediction of joint contact force, RBD musculoskeletal modelling has been 

widely adopted, mainly due to its non-invasive nature and computational 

efficiency as well as the development of musculoskeletal analysis software 

that incorporates detailed anatomical information of human body and 

provides reasonable results. For the above reasons, a musculoskeletal 

model was constructed and applied to the gait kinetic analysis for different 

cohorts. 

A musculoskeletal model composed of the bones and muscles of the human 

lower extremity was developed in Chapter 2. The model enables the 

calculation of joint contact forces directly from the body kinematics that can 

be measured easily and non-invasively. Due to the large number of subjects 

investigated, measurement and simulation efficiency is of necessity and thus 

simplifications were made. The sensitivity of the model to the model and 

measurement simplifications was therefore evaluated, and the adoption of 

simple muscle model, ground reaction measurement for one foot and 

quadratic muscle recruitment along with the scaling approach were verified.  
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In Chapter 3, the method was then applied to quantify the differences in gait 

kinematics and kinetics for normal healthy individuals, asymptomatic THR 

patients and symptomatic LLI patients. Compared with the normal healthy 

people, the asymptomatic THR patients exhibited a less dynamic pattern in 

hip contact force with a significantly lower magnitude, reduced range of 

motion and decreased peak ground reaction force. These abnormalities 

were more evident for the symptomatic LLI patients. In addition, a higher 

degree of asymmetry in these gait parameters was found between the 

operated and non-operated limbs of the symptomatic LLI patients, as 

compared with the asymptomatic THR patients. Since the hip contact force 

was greatly correlated with hip flexion/extension angle as well as ground 

reaction force, improving these parameters during post-operative 

rehabilitation is important to restore a normal hip load. Besides, due to the 

large variations between the normal healthy people and THR patients in hip 

kinetics during gait, refinement to the hip loading of the ISO standard that 

was derived from joint forces of a healthy person is recommended in order to 

provide more realistic loading criteria for artificial joint tests. 

Apart from the verified parameters in Chapter 2, there were, however, 

several other simplifications in the model that need to be investigated to 

evaluate the accuracy of the predictions, which have been discussed in 

Section 3.4. For computational efficiency, the modelling was based on RBD, 

and the joint models were greatly simplified. These assumptions are 

justifiable to investigate the hip joint because the deformation of bones and 

the locomotion involved in joint contact are minimal in the scale of the whole 

lower extremity and may therefore have little influence on the hip contact 

force. Generally, in most of the current musculoskeletal studies, the 

computed peak joint contact force was overestimated by approximately 10% 

due to the lack of a realistic muscle wrapping path around the hip joint within 

the model (Brand et al., 1994). Although this weakness is difficult to 

overcome until more detailed anatomical information is provided, it is 

suitable for a comparative study focusing on the deviations among different 

cohorts. Another major limitation is that the model is not fully subject-

specific, as some parameters were generalized. For example, the muscle 

recruitment pattern of THR patients may differ from normal people, due to 
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pre-operative or post-operative stimuli such as the weakness of certain 

muscles. Future studies need to be undertaken to investigate the influence 

of the subject-specific parameters on model predictions and measurement 

efficiencies to determine whether it is necessary to incorporate these more 

subject-specific features. 

Due to the highly invasive techniques, direct validation of musculoskeletal 

models against in vivo measurements in terms of predicting joint contact 

forces is difficult to be conducted. Although the model can be alternatively 

validated by adopting the body kinematic information of previous studies on 

hip contact force measurements as model inputs, there seem to be no 

studies that provide both the hip contact force as well as the corresponding 

kinematic data detailed enough to drive the whole lower extremity model 

stably. As compared with previous experimental and numerical studies, our 

predictions were in similar patterns and magnitudes, which along with the 

model verification, demonstrates the reliability of the results to some extent. 

Additionally, the accuracy of the lower extremity musculoskeletal model in 

AnyBody (AnyBody Technology, Denmark) has been previously confirmed in 

the literature (Forster, 2004, Manders et al., 2008).  

In spite of these limitations, RBD musculoskeletal modelling is a non-

invasive, efficient and reliable tool to predict joint contact forces and suitable 

for cohort studies that involve large numbers of subjects. The findings may 

assist in providing better patient care, pre-operative planning and 

rehabilitation strategies. For example, the higher degree of gait abnormality 

observed for the LLI patients indicates that efforts should be attempted for 

surgeons to decrease LLI. Because the hip contact force is significantly 

correlated with the flexion/extension and abduction/adduction angle, it is 

important to ensure a wide range of mobility for the implanted prosthesis 

during surgery as a premise to retrieve a normal loading pattern after THR. 

Also, for the post-operative rehabilitation of THR patients, the level of 

dynamics in gait pattern should be emphasised. To improve the acceptance 

of the predictions in clinical community, direct validation with the 

consideration of more subject-specific parameters of the model should be 

incorporated in future studies.  
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9.1.2 FE modelling of hip joint with biphasic cartilage layers 

Due to the important role that the interstitial fluid plays in the cartilage 

function and degradation, it is necessary to consider the biphasic nature of 

the cartilage within the joint system. Whilst biphasic cartilage have been 

employed previously for simple geometry with two dimensions (Wu et al., 

1997, Ferguson et al., 2000a, Ferguson et al., 2000b, Haemer et al., 2012), 

it has yet to be successfully applied to a three dimensional whole joint either 

under high physiological dynamic loads which involve consecutively sudden 

spatial and temporal variations or over a prolonged period of loading, 

because the convergence is difficult to be achieved in the FE solvers 

adopted by previous studies. For example, Pawaskar (2010) employed 

Abaqus (DassaultSystemes, SuresnesCedex, France) to simulate both the 

natural hip joint and the hip joint with hemiarthroplasty incorporating biphasic 

cartilage properties. Whilst the hemiarthroplasty model, which involved a 

rigid body on biphasic cartilage contact, could be simulated for 600 s under a 

static load, the natural joint model, also with spherical articulating surfaces, 

could only be solved for 1 s under a ramped load, due to convergence 

difficulties. To address this problem, a recently developed FE solver FEBio 

(mrl.sci.utah.edu/software/febio) was adopted in this thesis. 

In Chapter 4, the results calculated in FEBio were compared to those solved 

in ABAQUS as well as to previous experimental data (Pawaskar, 2010), in 

order to test the convergence ability and the reliability of the predictions in 

FEBio for biphasic simulation. It was found that the linearly elastic solid 

phase does not perform well in the non-linear FE solver FEBio. However, 

neo-Hookean solid phase in FEBio can be used to approximate the linearly 

elastic constitutive property. In addition, good agreement was achieved 

between the calculated results in FEBio and the data in the previous study 

(Pawaskar, 2010). Based on the methods determined in Chapter 4, biphasic 

material was applied to the hip joint modelling in Chapters 5, 6, 7, and 8. 

In Chapter 5 and Chapter 6, a whole hip model with biphasic cartilage 

layers under both physiological static loads was successfully simulated both 

for high physiological dynamic loads and over a prolonged period of loading. 

The results illustrated how the cartilage geometry and structure aid in the 
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function of the natural hip joint. The soft and conforming contact surfaces 

ensured a large contact area and low peak contact stress, despite a high 

load being applied. Owing to the good congruence of the hip joint and the 

very low cartilage permeability, fluid exudation occurred slowly and the fluid 

supported most of the load even under extreme situations (e.g. 3000 s and 

high dynamic loads), leaving a small portion of load transferred to the solid 

phase of the cartilage and the solid-solid contact which would reduce the 

frictional coefficient and shear stress in reality (Krishnan et al., 2004). This 

would explain the survival potential of the hip joint for the life time of human. 

Due to the importance of interstitial fluid in cartilage function both over long-

term loading periods and during different daily activities, this modelling 

approach could allow further investigation of the functional and tribological 

behaviour of the joint and the pathology of joint degeneration.  

For the eight different daily activities investigated in Chapters 6, a 

decreased level in fluid support ratio and a faster process of fluid exudation 

was observed for the interior edge region of the acetabular cartilage, but 

when these occurred, the absolute level of the peak contact stress was 

minimal, therefore potentially not harmful. Further studies involving more 

comprehensive and larger number of cycles of activities, and potentially 

abnormal activities and anatomies are needed to better characterize the 

potential vulnerability of the interior edge region of the acetabular cartilage 

caused by its decreased fluid support ratio and faster fluid exudation process 

observed in this study. 

For the purpose of determining the order of importance of the model input 

conditions and gaining insight into the role of fluid pressurisation on the 

function of a generic hip joint, an idealized generic geometry was assumed 

for the human hip model with spherical articulating surfaces and uniform 

cartilage thickness. However, such assumption has been shown to reduce 

the peak contact stress in an elastic FE model (Anderson et al., 2010). 

Additionally, in Chapter 5, it was demonstrated that the predicted behaviour 

of the natural hip joint model was subject to hip size and clearance as well 

as cartilage thickness. For subject-specific investigations, it is clear the 

individual variations in the hip morphology are important. 
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Besides the idealized model configuration, the isotropic solid phase was 

assumed in the human hip models in this thesis which may not fully 

represent the tension-compression non-linear behaviour caused by the fiber-

reinforced structure of the cartilage. As demonstrated in Chapter 8, due to 

the isotropic assumption, the stiffness of the tissue may be potentially 

underestimated, leading to a lower peak contact stress and a larger contact 

area, particularly during the early loading period. Besides, the fluid pressure 

and fluid support ratio may be depreciated. In addition, the confinement 

effect due to the tensile stiffness may be reduced, which may result in an 

amplified influence of cartilage thickness as discussed in Chapter 5 and an 

overestimated reduction in fluid support ratio for the edge region of the 

acetabular cartilage observed in Chapter 6.  

Whilst there were some simplifications to the material model and geometry 

used in this human hip model, the methods presented provide a basic 

platform and initial understanding of the sensitivity of the model onto which 

more sophisticated material models and geometric parameters could be 

added, as well as insight into the role of fluid pressurisation on the function 

of a generic hip joint during daily activities. This computational approach has 

the potential to aid in understanding the mechanisms of hip function and the 

pathology of hip degeneration.  

In Chapter 8, the methodology was validated against experiment using a 

porcine hip for a hemiarthroplasty. Given the importance of the cartilage 

thickness to the model prediction as found in Chapter 5, subject-specific 

geometric parameters were taken into account. In addition, the tension-

compression solid phase was considered to evaluate its importance to the 

model predictions. The contact area was compared between the FE model 

and the measurement, and good agreement was achieved in terms of the 

shape and location of contact as well as the trend in contact area versus 

load. Using the tension-compression nonlinear solid phase, a higher degree 

of similarity to the experiment was obtained. Additionally, the shape of 

contact area was not as smooth as the spherical model in Chapter 5, 6 and 
7. These indicate that it is necessary to incorporate these more sophisticated 

constitutive relationship and individual geometric parameters in future 

subject-specific studies and clinical applications, as well as in future 
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validation studies. For the validation to be truly independent, the material 

properties also need to be defined more clearly.  

 

9.1.3 Combination of biomechanics and biotribology  

This thesis mainly focuses on two domains of hip modelling: biomechanics in 

terms of joint contact force and biotribology in terms of contact mechanics. 

These two aspects have been separately conducted in the previous studies. 

Previous predictions on joint contact force have not been further applied to 

evaluate the biphasic joint contact mechanics. On the other hand, highly 

standardised joint loading was adopted in the current studies on the hip 

contact mechanics as the inputs of their FE models or in vitro tests, which 

may not represent the realistic loading conditions for the subject 

investigated. The combination of biomechanics and biotribology opens the 

opportunities to investigate the hip performance more systematically and 

comprehensively. 

In Chapter 7, the hip contact mechanics and the associated fluid 

pressurisation were investigated for three different patient groups: normal 

healthy people, the non-operated hips of asymptomatic unilateral THR 

patients and symptomatic unilateral LLI patients. The calculated hip contact 

forces in Chapter 3 for these three cohorts were adopted as the loading 

inputs for the FE model of human hip developed in Chapter 5 and Chapter 
6. The abnormal gait kinetics of the THR / LLI patients was found to lead to a 

resultant reduction and less dynamic pattern in the peak contact stress and 

fluid pressure on their non-operated hips. However, the fluid support ratio 

was generally similar for the three cohorts, with a high (>90%) magnitude 

and slow decrease. Similar to the findings in Chapter 6, a decreased level in 

fluid support ratio and a faster process of fluid exudation was observed for 

the interior edge region of the acetabular cartilage, but this may not be 

harmful due to the minimal peak contact stress that occurred at this period 

for all the three cohorts. The reduced stress level and similar fluid support 

ratio demonstrated that the non-operated hips of the asymptomatic THR 

patients and symptomatic LLI patients may not function in a mechanically 

adverse environment during the whole cycle of gait. Further investigations 
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involving a comprehensive range of activities are necessary to better 

evaluate the risk of joint damage for the non-operated joint of THR / LLI 

patients. 

The magnitude and distribution of the contact stress and fluid pressure 

predicted in Chapter 7 were markedly different (~40% higher in magnitude) 

from those of the walking activities in Chapter 6, due to the variations in the 

hip contact force that was used as the loading inputs for the model. This, 

along with the findings of the differences in contact mechanics between 

different cohorts, demonstrates the importance of adopting the loading 

conditions of the model on a subject-specific or cohort-specific level. 

Although there are several limitations for both the musculoskeletal model 

and the FE model as have mentioned in Chapters 3, 5, and 6, they are 

justified for the comparative purpose of this study. Additionally, as discussed 

in Chapter 7, the uncoupled combination of the RBD musculoskeletal model 

and the FE model is necessary and appropriate when accounting for the 

substantially higher computational expenses and the potential minimally 

enhanced model accuracy for the coupled approach.  

Through the combination of the RBD musculoskeletal modelling for joint 

loading and FE modelling for contact mechanics, a high level of subject-

specific predictions can be achieved along with a wide range of parameters 

that can be calculated. As a result, this method can be applied appropriately 

to the clinic. For example, the performance of the joint after special 

interventions (e.g. tissue substitution) can be evaluated pre-operatively using 

this method to provide better surgical strategies in order to decrease the risk 

of post-operative failure. 
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9.2 Conclusion and Future work 

9.2.1 Musculoskeletal modelling in gait analysis   

Major conclusions:  

1) A musculoskeletal modelling technique that can predict joint contact 

force directly from measured kinematic data was developed. The 

model shows good computational efficiency and therefore is suitable 

for cohort studies. 

2) Compared with normal healthy people, significant differences in hip 

kinematics and kinetics during gait existed in asymptomatic THR 

patients and were substantially more evident in symptomatic LLI 

patients. The gait abnormalities of THR / LLI patients were reflected 

by the decreased magnitude and dynamic pattern in hip contact force, 

reduced range of motion, lower peak ground reaction force and 

greater asymmetry in these parameters.  

3) Due to such large variations, refinement of ISO standard is 

recommended to provide more realistic in vitro loading conditions. 

4) The pattern of hip contact force was greatly correlated with 

flexion/extension angle and ground reaction force, suggesting that 

improving these parameters is important in post-operative 

rehabilitation in order to restore a normal loading condition for the hip.  

 

Suggestions to future work: 

1) Evaluation of the influence of the following subject-specific 

parameters on model predictions to determine the necessities to 

incorporate these features: 

• Muscle recruitment pattern 

• Muscle wrapping path 

• Bony landmarks 

• Other soft tissues i.e. ligaments  

2) Application of the kinetic and kinematic predictions to wear models to 

investigate the influence of THR / LLI on wear. 
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3) Consideration of different activities in order to evaluate the potential 

outcome of THR and post-operative rehabilitation more 

comprehensively.  

 

 

9.2.2 FE modelling of hip joint with biphasic cartilage layers 

Major conclusions: 

1) FEBio exhibited substantially better convergence capability in dealing 

with biphasic cartilage-on-cartilage contact than ABAQUS. 

2) Neo-Hookean solid phase in FEBio can be used to approximate the 

linearly elastic constitutive property. 

3) Successful methodologies were developed for three dimensional 

biphasic hip joint modelling under physiological loads and for 

prolonged loading periods. 

4) The fluid supported most of the load (>90%) transferred between the 

articulating surfaces of the hip joint both under high dynamic 

physiological load and over a prolonged loading period.  

5) The model predictions for the period soon after loading were sensitive 

to the hip size, clearance, cartilage aggregate modulus, thickness and 

hemiarthroplasty, while the time dependent behaviour over a 

prolonged loading period was influenced by the hip congruence and 

cartilage permeability.  

6) It is necessary to model both layers of cartilage to represent the 

natural joint. 

7) The methodology of modelling the hip cartilage as biphasic was 

validated against experiment and good agreement was achieved.  

8) Tension-compression nonlinear solid phase and subject-specific 

geometric parameters were important to the model predictions, and 

therefore needs to be incorporated in future subject-specific studies 

and clinical applications.  

9) The developed methodology of biphasic hip modelling has the 

potential to aid in understanding the mechanisms of hip function and 

the pathology of hip degeneration.  
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Suggestions to future work: 

1) Investigation of a wider range of parameters, particularly the higher 

values of permeability.  

2) Validation of more parameters for the whole joint model with larger 

number of specimens, including validation of human specimen.  

3) Determination of subject-specific tension-compression constitutive 

relationship for cartilage (of different ages, species and locations). 

4) Application of the findings to investigate unique interventions in the 

hip joint.  

5) Implementation of the fiber-reinforced solid phase into the joint model 

in order to evaluate inhomogeneous nature of the tissue. 

6) Consideration of the role that the labrum plays in cartilage 

consolidation within the joint.  

7) Application of the method to clinical problems such as hips of 

dysplasia and femoroacetabular Impingement, and the treatment of 

such clinical situations.  
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9.2.3 Combination of biomechanics and biotribology  

Major conclusions and suggestions to future work: 

1) The combination of a musculoskeletal model and a FE model with 

biphasic cartilage layers enables the prediction of contact mechanics 

and the associated fluid pressurisation within the hip joints of different 

cohorts. 

2) The abnormal gait kinetics of the THR / LLI patients was found to lead 

to a resultant reduction and less dynamic pattern in the peak contact 

stress and fluid pressure on their non-operated hips. 

3) The fluid support ratio within the hip cartilage of the non-operated 

limbs of the THR / LLI patients was found to be normal. 

4) The reduced stress level and similar fluid support ratio demonstrated 

that the non-operated hips of the asymptomatic THR patients and 

symptomatic LLI patients may not function in a mechanically adverse 

environment during the whole cycle of gait. 

5) Future subject-specific investigations on a more comprehensive 

range of activities to better evaluate the risks the THR / LLI patients 

had on their non-operated hips. 

6) Combination of the musculoskeletal model and the FE model with 

subject-specific geometries and material properties in the future.  

 

 

This thesis has advanced a significant step forward in biphasic modelling 

capability in the hip. It provides a new simulation platform for an extensive 

range of future studies, beyond these described above, to advance our 

knowledge of disease progression and surgical interventions. 
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