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Abstract

The purpose of this thesis is to outline the novel method of epitaxial regrowth

for fabrication of photonic crystal surface emitting lasers (PCSELs). Waveg-

uide modelling is conducted to demonstrate that strong coupling to the pho-

tonic crystal occurs, and that a decent mode overlap with the active region

is simultaneously achieved in an optimised structure. Details of the regrowth

process and the various fabrication techniques involved are discussed. Char-

acterisation of devices indicates that emission from these all-semiconductor

structures is comparable to void based PCSELs in terms of: wavelength de-

pendence on period, coupling constants as measured from band structures,

far-field profiles and beam divergences. The detuning of emission wavelength

as a function of temperature is examined, as well as the temperature depen-

dence of threshold currents, and the effects of external feedback from an output

coupler.
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1 Introduction

1.1 Historical perspective

The ability to modify and inhibit spontaneous emission from atoms has long

been known to be possible using fluctuations of the refractive index in the ma-

terial through which the light propagates [1,2]. Early work on photonic crystals

considered the inhibition of photons from occupying certain electromagnetic

modes within a three dimensional structure [1], and predicting the behaviour

of localised photons [2]. Both these and other early photonic crystal stud-

ies built on the success and knowledge of distributed feedback lasers (DFBs),

which rely on back-scattered light from one-dimensional periodic variations

in material composition, and hence refractive index, being coherent with the

initial emission [3]. DFBs use the periodicity of these fluctuations to produce

a single dominant mode within a classical Fabry-Perot cavity [3–5], and laser

emission typically occcurs from the edge of the device (figure 1.1).

As applications such as data storage, broadband communication links, and

biomedical imaging developed, demand for semiconductor lasers increased.

Also, the need for an efficient surface-emitting laser became evident. The

first vertical cavity surface emitting laser (VCSEL) was proposed in 1977, and

these devices now typically use highly reflective distributed Bragg reflectors
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(DBRs) to create a cavity with gain occuring in the vertical direction [6, 7].

Development of low threshold devices operating under continuous wave (CW)

conditions at 77K, and under pulsed conditions at room temperature [8], soon

followed in 1987. This resulted in a huge surge of research into improvements

of device characteristics.

Figure 1.1: Schematic of a simple ridge laser showing emission from the edge.

Whilst the work of Yablonovitch and John discussed the manipulation

of light in 1987, they also highlighted that the real problem was fabricating

a structure to give this control. Any such structure had to have periodic

fluctuations on the scale of the desired wavelength in the material. Theoretical

studies showed that a three-dimensional, face-centred cubic crystal structure

had potential to exhibit a strong influence on the properties of electromagnetic

radiation in the material [9]. This structure was created by drilling into metal

at specific angles (figure 1.2), showing the first clear evidence for photonic

crystals inhibiting electromagnetic propagation, in this case for microwave
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wavelengths [10]. The challenge became to reduce the structure size using

nanotechnology to target infra-red and optical wavelengths.

Figure 1.2: Schematic of how Yablonovitch et al. created a three dimensional
face-centred cubic structure by drilling each hole three times from 120◦ apart
on the azimuth and at 35◦ to the normal.

Over the next few years, little progress was evident on developing three-

dimensional structures due to the complexity of fabrication. However, pre-

dictions that two dimensional (2D) photonic crystals could partially control

the electromagnetic propagation through the structure, especially if a defect

was introduced, were realised [11–13]. These defects created micro-cavities

within the photonic crystal on the order of the wavelength. Surrounding the

cavity, the rest of the photonic crystal acted as highly reflective mirrors and

laser oscillation was achieved. Defect based structures such as linear waveg-

uides [14, 15] or guiding light around sharp corners [16] suddenly became of

7



interest within the photonic crystal field as they increased the possibility of

realising photonic integrated circuits.

In 1998-1999, early two-dimensional photonic crystal surface emitting lasers

(PCSELs), fabricated from organic polymers, revealed that light propagating

through these structures experienced strong manipulation by the photonic

crystal and that this caused lasing to occur in the vertical direction [17, 18].

These structures did not rely on a defect micro-cavity and caused a resur-

gence in research on 2D photonic crystal design and PCSEL fabrication. The

first electrically pumped PCSEL was demonstrated in 1999 [19], and room

temperature CW operation reported by 2004 [20].

In the first few years of the new millenium, research was conducted into

precisely how laser emission was influenced by the photonic crystal. Lasing was

shown to occur at photonic band edges, giving PCSELs potential to achieve

output powers that scale with device area [21]. Large scale devices (≥ 500 µm)

were also shown to be coherent [22], giving PCSELs potential in high power,

large area, single-mode, coherent applications. Of particular note, the far-field

patterns of PCSELs were shown to have extremely low beam divergence angles

(≤1◦) and that beam shape could be influenced by photonic crystal design

[23]. These unique properties give PCSELs significant possible advantages

over other surface emitting lasers such as VCSELs.
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1.2 Relevant photonic crystal theory

Photonic crystal surface emitting lasers utilise a two-dimensional photonic

crystal as an epitaxial layer within a semiconductor structure to achieve lasing

out of the plane of the device. The photonic crystal layer in a PCSEL creates

two significant properties; firstly, the photonic crystal creates a feedback effect

at a single wavelength, thus enforcing single mode laser oscillation. Secondly,

when this wavelength satisfies the Bragg condition there is diffraction in the

vertical direction, resulting in out-of-plane lasing. For light incident on a

grating, scattering occurs such as in figure 1.3.

Figure 1.3: Diffraction of two plane waves (red lines) by a two-dimensional
grating (black dots).
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The resulting diffraction pattern is created from the constructive interfer-

ence of the scattered waves that satisfy the Bragg condition (1.2.1).

mλ = 2dsinθ (1.2.1)

where m is an integer value.

Key definitions and the fundamental theory behind photonic crystals re-

quired to understand and characterise device performance are outlined in sec-

tions 1.2.1-1.2.4.

1.2.1 Key definitions

A photonic crystal is a structure where the refractive index is varied in a

periodic fashion by interchanging the constituent materials. This periodic

variation can occur in one, two or three dimensions and results in different

effects in each case. Figure 1.4 shows what a photonic crystal looks like in one,

two or three dimensions. A one-dimensional periodic crystal (figure 1.4a)) is

used in distributed feedback (DFB) lasers [3–5], whilst this thesis looks at using

a two-dimensional photonic crystal (figure 1.4b)) to form a surface emitting

laser, similar to [19,20,22]. Three-dimensional photonic crystals (figure 1.4c))

have additional characteristics that can be exploited but currently present a

challenge in terms of ease and reliability of fabrication [10,24,25].
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Figure 1.4: Photonic crystals with periodic changes in a) one-dimension, b)
two-dimensions, c) three-dimensions. Adapted from [26].

The design of the two-dimensional photonic crystal is key in determining

how light propagates through a structure such as a PCSEL. Important factors

to consider in photonic crystal design include: lattice structure, lattice pe-

riod, unit cell or ‘atom’ shape, fill factor and refractive indices of constituent

materials. Each of these is defined below, before explaining how they are all

relevant to PCSEL design.

The lattice of a photonic crystal refers to the layout of the periodic struc-

ture, with the name typically describing the appearance when the photonic

crystal plane is viewed from above. Previously, photonic crystals have com-

monly been formed in square lattices [20] and triangular lattices [11], whilst

honeycomb [27] and Kagome lattices [28] (figure 1.5) have also been proposed.
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Figure 1.5: Example lattice structures for a: a) Square lattice b) Triangular
lattice c) Honeycomb lattice d) Kagome lattice.

The period, a, is measured as the distance between two points in the struc-

ture after which the pattern repeats itself. Figure 1.6 indicates how the period

of a photonic crystal is measured in a two-dimensional square lattice photonic

crystal. The unit cell (smallest repeatable unit) can be used to define the

entire photonic crystal in conjunction with the number of repeats.
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Figure 1.6: Square lattice photonic crystal with period a, and circular atom
shape of diameter d. Crystallographic directions Γ-X and Γ-M shown in green.

Within the unit cell the different materials form distinct shapes and from

this the ’atom’ shape of the photonic crystal can be defined. For example, in

figure 1.5 each of the different lattices has the same circular atom shape (in

red). The first PCSELs focused on using circular atoms, such as in figures 1.5

and 1.6, as these are generated easily using electron beam lithography [19].

However, various other atom shapes such as triangular [29] or chevron have

been investigated in search of an optimal design [30] and these are discussed

in section 1.3.2.

The ratio of one material to the other in the photonic crystal is defined as

13



the fill factor. The fill factor can be expressed as a ratio of the materials along

a one-dimensional cross-section through the centre of the atom shape (1.2.2),

or as a ratio by area within the unit cell. In both case the fill factor is usually

expressed as a fraction of the period. From the definitions in figure 1.6 the fill

factor (ff) for a square lattice with a circular atom shape can be expressed

as:

ff =
d

a
(1.2.2)

if considering a cross-section taken through the centre of the circular atom, or:

ff =
π(d

2
)2

a2
(1.2.3)

if considering the ratio of area occupied by each material in the unit cell.

The definition of the fill factor is clearly dependent on the choice of lattice

and atom shape in the photonic crystal design. In this thesis the fill factor

definition in 1.2.2 is used as a simple square lattice and circular hole is used.

In a PCSEL the photonic crystal is made from two materials and in most of

the previous work (see section 1.3.3) this has consisted of semiconductor and

voids. These voids are assumed to have a refractive index of 1 (air). However,

in an all-semiconductor PCSEL the additional semiconductor material adds a
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degree of freedom to the device design. Photonic crystals with atom shapes

of lower refractive index than the surroundings are defined as type I (figure

1.7a)), and photonic crystals with atom shapes of higher refractive index than

the surroundings are defined as type II (figure 1.7b)).

Figure 1.7: Unit cell of a square lattice with circular atom shape for: a) type
I photonic crystal (n1 > n2) b) type II photonic crystal (n2 > n1).

1.2.2 Two-dimensional feedback and coupling coefficients

The parameters outlined above are key to photonic crystal design as each

influences the propagation of light throughout the structure. Although the

crystal symmetries result in identical propagation characteristics in a few spe-

cific directions, it is the lattice shape that governs these symmetric directions.

Feedback is achieved when the period matches the wavelength of light within

the material, and in the directions where this criteria is met standing waves
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form. Various lattice designs will therefore allow different propagation and

feedback characteristics. The lattice period and fill factor affect the wave-

length of light that achieves feedback within the crystal, whilst atom shape

and material refractive indices influence characteristics such as far-field profile

and coupling strength.

Figure 1.8: Reciprocal square lattice with reciprocal vectors G0,1, G1,0 and
G2,0 indicated by blue arrows. Incident wave (black arrow), scattered in-plane
waves (grey arrows) and diffracted out-of-plane waves (green and white circles)
indicate light propagation through the crystal.

The coupling strength of a photonic crystal such as in figure 1.6, is quanti-

fied by optical coupling coefficients κ1, κ2, and κ3 using two-dimensional cou-

pled wave theory [31]. This considers the coupling of an initial wave (wavevec-

tor k) travelling from one atom shape to the nearest neighbours that surround
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it. As a first approximation the four closest atom shapes were used to define

the coupling coefficients [32], however, this was found to be inadequate when

comparing theoretical and experimental coupling values. Analysis of the in-

teraction with the nearest eight neighbours in a square lattice gives a more

accurate description of the feedback within the photonic crystal. The theo-

retical coupling coefficients, κ1, κ2, and κ3, are calculated using 1.2.4 for the

relevant reciprocal lattice vectors (see 1.2.5-1.2.7) [31].

κ(G) =
π∆ε

an2
eff

f
2J1(|G|2

√
πf)

|G|2
√
πf

(1.2.4)

where ∆ε is the dielectric constant difference, a is the period, neff is the

effective refractive index, f is the fill factor and J1(x) is the Bessel function of

the first order (x = |G|2
√
πf in 1.2.4). Using the reciprocal lattice vector, β0

= 2π
a

, gives:

κ1 = κ(G)||G|=β0 (1.2.5)

κ2 = κ(G)||G|=√2β0 (1.2.6)

κ3 = κ(G)||G|=2β0 (1.2.7)
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Figure 1.8 plots the reciprocal space for a square lattice and indicates the

reciprocal lattice vectors G0,1, G1,0 and G2,0. The initial wave (black arrows)

can be scattered into other directions with wavevector k’. In-plane feedback

occurs (grey arrows) when the wavelength is equal to the period, thereby sat-

isfying the Bragg condition (see section 1.2.1). Out-of-plane scattering (green

circles) is possible by second order Bragg diffraction from the grating. Out-

of-plane scattering is linked to κ1 and in-plane feedback is determined by the

value of κ3. κ2 describes the coupling of orthogonal waves within the crystal

and these have an overlap integral of zero so disappear in 2-d coupled wave

analysis [31].

1.2.3 Photonic band structure and band gaps

Typically the photonic band structure is calculated from the lattice shape,

atom shape and refractive indices of the unit cell using either the plane wave

expansion method (PWEM) [33] or the finite difference time domain (FDTD)

method [34]. Both of these methods use Maxwell’s electromagnetic equations

(1.2.8-1.2.11) to model the propagation of light in the photonic crystal in

small iterative steps. The solutions are used to plot the allowed frequencies of

photonic states as a function of wavevector, creating a photonic band structure

(figure 1.9a)). The dispersion relation of photons in the band structure is
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determined by the shape and composition of the photonic crystal. To aid in

understanding this, the analogy can be made to the electronic band structure

and the effect of a crystal lattice on the electrons.

Equations 1.2.8-1.2.11 list the macroscopic versions of Maxwell’s equations

having used the following assumptions:

• Propagation occurs within a mixed dielectric medium as a function of

position r.

• There is no variation in the structure over time.

• There are no free charges or currents within the structure.

• Any frequency dependence of the dielectric constant is ignored, and the

relative permittivity (ε(r)) is assumed to be real and positive (i.e. for

transparent materials).

∇ ·H(r, t) = 0 (1.2.8)

∇ · [ε(r)E(r, t)] = 0 (1.2.9)

∇× E(r, t) + µ0
∂H(r, t)

∂t
= 0 (1.2.10)
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∇×H(r, t)− ε0ε(r)
∂E(r, t)

∂t
= 0 (1.2.11)

where H(r, t) is the magnetic field, E(r, t) is the electric field, µ0 is the

permeability of free space and ε0 is the permittivity of free space.

Electromagnetic modes propagating through a given medium can be found

by combining 1.2.10 and 1.2.11 to remove one of the variables. For example, by

taking 1.2.11, dividing by ε(r), and then taking the curl, an equation dependent

only on the H-field is produced (1.2.12). From the solutions of the H-field, the

E-field solutions can be recovered by substituting back into 1.2.10.

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2
H(r) (1.2.12)

The photonic band structure can be calculated for both transverse electric

(TE) and transverse magnetic (TM) modes, however, typically TE modes

are considered for PCSELs. Due to the high degree of symmetry in photonic

crystals the TE and TM band structures are often very similar on a large scale.

However, closer examination of the band structure can reveal differences such

as a partial band gap between TE bands 3 and 4 at the gamma point for the

square lattice modelled in figure 1.9b). Band gaps indicate there are certain

frequencies at which light will not propagate through the photonic crystal.
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The band edges near the band gap are of particular interest as these regions of

the band structure have zero gradient, which corresponds to zero dispersion.

Hence, photons in these states will have zero group velocity. When the group

velocity is zero the photons form standing waves within the crystal and enhance

feedback effects. Figure 1.9b) shows that there are four bands of interest close

to the band gap, two of which have local maxima or minima and two of which

have relatively flat bands extending in the Γ-X direction.

Band structures are plotted with frequencies in units of c/a to be scale

invariant, allowing experimental frequencies/wavelengths to be targeted by

varying the period of the photonic crystal lattice. For emission at 980 nm

from the lattice modelled in figure 1.9, a period of approximately 300 nm is

required (calculated from 1.2.14). Depending on which band edge lasing occurs

from, either band 2, 3, 4 or 5 - those close to the gap at the Γ point in figure

1.9b), the frequency value in 1.2.13 needs to be adjusted accordingly.

For the partial band gap at f = 0.3(c/a) in figure 1.9:

f =
c

λ0
= 0.3

c

a
(1.2.13)

Rearranging for a in terms of λ0 gives:

a = 0.3λ0 (1.2.14)
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Figure 1.9: a) Modelled photonic bandstructure for the first 8 TE bands in
a square lattice using PWEM. Inset: Square lattice indicating Γ, X, and M
points. b) Partial photonic band gap for frequencies close to 0.3(c/a) at the Γ
point.
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1.2.4 Leaky and non-leaky modes

Two types of mode at the band edge are possible in a photonic crystal, de-

scribed as either leaky or non-leaky. The symmetry of the in-plane electric

field with respect to the unit cell centre determines whether the mode at each

photonic band edge is leaky or not. Non-leaky modes occur when the electric

fields are asymmetric with respect to the unit cell centre, with the phase of the

diffracted light such that destructive interference occurs and no light is emitted

in the vertical direction. If the in-plane electric field distribution is symmetric

this destructive interference does not occur and the mode is considered leaky.

A certain amount of leakage can be introduced to non-leaky modes by altering

the vertical optical confinement through changes to the atom shape [30].

Band structure modelling using the PWEM or FDTD method also yields

information on the magnetic field vectors throughout the photonic crystal.

Figure 1.10 plots the magnetic field vectors (high intensity in red, low inten-

sity in blue) over the lattice structure (black circles) for the bands close to the

partial band gap in figure 1.9b). In figures 1.10a) and 1.10b) these are sym-

metric about either the x or y axes and so the lower frequency non-degenerate

bands are leaky. Whilst the higher frequency degenerate bands (figures 1.10c)

and 1.10d)) demonstrate the asymmetry typical for non-leaky modes.

23



The magnetic field vectors in figure 1.10 also enable prediction of the emis-

sion polarisation from each of the bands. From figure 1.10a) and 1.10b), emis-

sion from TE bands 2 and 3 will have a linear polarisation along either the

x, or y, axis of the photonic crystal. The modelling predicts, however, that

for TE bands 4 and 5 the polarisation will be more complex (figure 1.10c)

and 1.10d)), as there is a two dimensional variation in regions of high and low

magnetic field vectors.

Figure 1.10: Variations in the magnetic field vectors for the square lattice
photonic crystal modelled above for: a) TE band 2, b) TE band 3, c) TE band
4 and d) TE band 5. Regions of high intensity shown in red, low intensity in
blue and zero intensity in white. Black circles indicate atom shape location.
Courtesy of R. J. E. Taylor of the University of Sheffield.
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1.3 Summary of previous work

This section reviews the current state of design, fabrication and characteristics

of photonic crystal based devices reported in the literature. Firstly, band

structure modelling methods are discussed; then the effects of atom and lattice

shapes on emission; followed by a quick introduction to what a defect cavity

laser is; the reported fabrication methods and PCSEL structures are reviewed;

and finally a summary of device characteristics is included.

1.3.1 Band structures and modelling methods

There is a significant amount of work on photonic band structures and the

various modelling methods reported in the literature [33–37]. Band struc-

tures are of great use in creating photonic crystal based devices as they are

scale invariant, and thus only the period of the crystal has to be changed

to alter the desired emission wavelength. Here the two most commonly used

two-dimensional models in the literature are briefly outlined: the finite dif-

ference time domain (FDTD) method, and the plane wave expansion method

(PWEM).

According to [35] the FDTD method essentially calculates solutions to the

Maxwell curl equations (1.2.10,1.2.11) that are accurate to a second order

approximation. The solutions are calculated for sample space intervals which
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are small compared with the wavelengths considered. These samples are taken

at all space points in small successive increments of time. The method gets

its name from the small or ‘finite’ difference in both time and space used to

calculate the derivatives. Sources can be generated within the modelled space

by defining specific values for the electric and magnetic fields at specific points

in time and space. For modelling two-dimesional (2D) photonic crystals the

material is assumed to be constant in the z direction so that any derivatives of

this are zero. The solutions are generated across the whole crystal in a leapfrog

fashion, with the electric field and magnetic field solutions being calculated in

alternating steps at each point in space. Figure 1.11 plots the photonic band

structure for the TE modes of a square lattice as calculated using the FDTD

method in [34]. A complete band gap is highlighted by the grey region.

Figure 1.11: Photonic band structure for the TE modes of a square lattice
as calculated using the FDTD in [34]. Inset: Reciprocal square lattice with
crystal directions and lattice vectors shown.
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The plane wave expansion method calculates the solutions to Maxwell’s

equations in frequency space using the Fourier coefficients of the lattice and

Bloch waves. These Bloch waves are essentially plane waves with amplitudes

that are modulated by periodic functions, hence the name plane wave expan-

sion method. The resulting solutions to Maxwell’s equations can be expressed

in matrix form with eiqenvalue solutions expressed in frequency space. This

method is slow due to the large number of calculations, and eigenvalues are of-

ten determined in an iterative procedure that improves the initial approximate

solutions. Due to the symmetry of a photonic crystal reciprocal lattice, the

eigenvalues can be calculated for the smallest symmetrical space, i.e. the irre-

ducible Brilluoin zone (see figure 1.12), and then expanded out to encompass

the whole crystal.

The first Brilluoin zone is a primitive cell in reciprocal space that is defined

by the region within planes that bisect adjacent lattice points. Higher zones

are formed by finding bisecting planes for the next nearest neighbours and are

categorised by the number of plane boundaries that must be crossed to reach

the central point. Figure 1.12 plots the reciprocal square lattice and the first

Brilluoin zone (red square). The points X’ and M’ on the Brilluoin zone are

symmetrically equivalent to X and M allowing computational models to save

time by considering only the irreducible Brilluoin zone (blue triangle).
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Figure 1.12: Reciprocal square lattice (black dots) with first Brilluoin zone
(red square) and irreducible Brilluoin zone (blue triangle). Lattice vectors
from Γ to X and Γ to M shown by blue arrows.

Figure 1.13 shows the TE and TM band structure for a square lattice as

calculated using the PWEM in [33]. A complete band gap is highlighted in

grey and this lies at similar frequencies to that in figure 1.11.

Figure 1.13: Photonic band structure for the TM modes (solid lines) and TE
modes (dotted lines) of a square lattice as calculated using the PWEM in [33].
Inset: Reciprocal square lattice with crystal directions and lattice vectors
shown.
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The end result of both these models is an approximation of the photonic

band structure for the chosen crystal. Slight variations to experimental results

from a PCSEL are to be expected from both of these models as each of them

consider the crystal to be an infinitely thick layer. However, both models

predict similar results for the same crystal lattices. The FDTD method has

advantages in terms of computational time for large scale irregular structures,

such as defect cavities, as the requirements scale linearly with the crystal size

and the physical properties of each lattice point can easily be altered. The

PWEM is relatively quick for calculating band structures of two-dimensional

photonic crystals, however, this method has limitations for modelling three-

dimensional crystals as the number of plane waves (N) that must be used for

accuracy is high, and the computational time scales as N3.

1.3.2 Atom shapes and lattice designs

Various atom shapes and lattice designs have been considered, and these are

modelled extensively in the literature [27,28,30,33–37]. Initial designs focussed

on circular atom shapes as they are easier to model and require less computer

run-time due to the symmetrical nature of the shape. Devices typically incor-

porate these circles for this reason and because the main fabrication method

(electron beam lithography) can generate them easily [19–21,23,38].
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Square and triangular lattices (see figure 1.5a) and b)) are most commonly

used in PCSELs and other photonic crystal based devices [18,20,21,23,38,40,

41]. These lattices are chosen for their relatively simple band structures with

partial band gaps, allowing a choice of wavelengths to be targeted through

manipulation of the period (using 1.2.14). Plus, if the most common three-

dimensional photonic crystal designs (see figure 1.14a) and 1.14b) for the wood-

pile and face-centred cubic structures respectively [9,24]) are broken down into

a combination of two-dimensional planes, each plane has a two dimensional

crystal with either a square or triangular lattice.

Figure 1.14: a) The woodpile structure created by micro-machining silicon
wafers into strips and stacking them. Each layer is stacked perpendicular to
the previous (different shades of blue) and adjacent parallel layers are offset
by half a period. b) The face-centred cubic crystal structure employed by
Yablonovitch et al.

Atom design helps break the 2D symmetry of the crystal and can cause

disruptions in the electric and magnetic fields. This can then vary the opti-
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cal confinement in the vertical direction, with increases (or decreases) in the

confinement decreasing (or increasing) the amount of emitted light depending

on the precise atom shape. Output efficiency was first found to increase by

changing atom shape from circular to triangular [29]. Later models showed

that high degrees of asymmetry along one axis of the atom shape result in

enhanced emission [30].

Figure 1.15: a) Symmetric diamond atom shape b) Asymmetric diamond shape
c) Increased asymmetry of diamond shape d) Flattened left-hand side leaving
triangular atom shape e) Chevron atom shape.

Figure 1.15 indicates the atom shapes considered by Kurosaka et al., start-

ing with the symmetric diamond in 1.15a). The extent of the atom shape on

one side of the y-axis line of symmetry is reduced (1.15b)), and progressively

this part of the shape is removed (1.15c) and d)) until the asymmetric chevron

in 1.15e) is formed. In [30], allowed modes could be either leaky or non-leaky

depending on the symmetry of the in-plane electric field distribution, and for

non-leaky modes the vertical optical confinement is high enough to prevent

emission. As the shape of the atom changes to something more asymmetric,
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the confinement reduces and modes become more leaky.

Using these chevron atom shapes, additional attempts to reduce the sym-

metry of the crystal have been made by changing the unit cell of the pho-

tonic crystal. Figure 1.16 indicates the three types of chevron arrangement

attempted in [42]. In figure 1.16b) and c), a square lattice is used and the

chevrons are rotated relative to each other. The photonic crystal in figure

1.16b) has a unit cell (unit A) which is offset by half a period to increase

asymmetry within the lattice. The type 3 arrangement (figure 1.16c)) has two

different units cells side-by-side to break the symmetry. Unit A is the same as

in figure 1.16b) and unit B is equivalent to unit A rotated by 180◦.

Figure 1.16: a) Square lattice with chevron atom shapes b) Chevrons in a
square array but with unit A offset by half a period c) Square lattice with unit
cell formed from a combination of unit A and unit B. Adapted from [42].
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These different lattice and atom shapes result in more complex band struc-

tures (see figure 1.17), as the reduced symmetry increases the amount of lattice

points within the first Brilluoin zone (figure 1.12) and this creates an increased

amount of allowed modes.

Figure 1.17: Photonic band structures for: a) Type 1 b) Type 2 c) Type 3
photonic crystals in figure 1.16. Adapted from [42].

1.3.3 Defect cavity lasers

A large amount of research has been conducted into the second main type of

laser that includes a photonic crystal - the defect cavity laser. Defect cavity

or photonic crystal micro-cavity (PCµC) lasers, [43] utilise a defect within the

photonic crystal to create a nano-scale cavity. These devices have a large Q-

factor due to the small size of the cavity and display low threshold current

operation [44]. Single-mode operation is achieved by design of the photonic

band structure, creating a photonic band gap into which a cavity defect can

then introduce a donor or acceptor mode [45]. Light of this wavelength is then

able to treat the defect as a small cavity with the surrounding photonic crystal
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acting as effective mirrors on all sides. Increasing the size of the surrounding

crystal has been found to create an exponential growth of the device Q-factor

[46]. Defects can be formed by either removing a lattice point (figure 1.18a))

or enlarging one (figure 1.18b)). To optimise the cavity the position of the

nearest neighbour lattice points are often adjusted as well.

Figure 1.18: Square lattice photonic crystal with a defect cavity formed by a)
removing an atom at the centre and b) enlarging an atom at the centre.

As the photonic crystal forms such effective mirrors on the edge of the

defect cavity, complex device design is not essential, with fabrication as slab

waveguides [47] or on air bridges within other structures [48] being typical.

However, these type of devices only have the potential to achieve relatively

low powers due to the small size of the resonant cavity, and tend to have poor

beam emission properties.
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1.3.4 PCSEL structures and fabrication methods

Semiconductor based PCSEL structures have typically aimed for target wave-

lengths in the approximate range of 1 µm to 1.55 µm using either existing

InP or GaAs based technologies [20, 40]. In doing so they have the potential

to be incorporated into larger, more complex devices or photonic integrated

circuits. The photonic crystals within devices reported in the literature consist

of part semiconductor and part void. These voids are assumed to consist of

air, thus providing a high refractive index contrast with the semiconductor.

In early PCSELs they were created as a result of the wafer fusion fabrication

method outlined below. As PCSEL and semiconductor technologies have ma-

tured, research into gallium-nitride based devices (at shorter wavelengths) and

airhole-retained overgrowth methods have also been undertaken [38].

The wafer fusion technique can be explained in the most basic terms as

simply taking two wafers, one of which includes a patterned photonic crystal,

and fusing them together to form a new structure. This process is actually

more complicated than it sounds and involves designing two separate wafers

that come together to form a waveguide for the PCSEL. Figure 1.19 is a

schematic demonstrating this process as reported in [21,22,40]. Both wafer A

and wafer B usually have multiple epitaxial layers, including an active layer,

which form the final PCSEL structure. The fusing process involves heating
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both wafers in a liquid phase epitaxy furnace system to a temperature of 620◦

for 30 minutes within a hydrogen atmosphere [40].

Figure 1.19: Basic schematic of the wafer fusion technique reported in [21,22,
40].

The airhole-retained overgrowth (AROG) method involves a second epitax-

ial step [38]. This forms a planar layer above the patterned photonic crystal,

allowing growth of the rest of the structure. In this method, metal-organic

vapour phase epitaxy is used for overgrowth and the growth proceeds in a lat-

eral direction using this technique. A small amount of SiO2 is deposited at the

bottom of each etched hole in the photonic crystal to help prevent GaN growth

and thus leave a void in each. Until recently, a two-step growth method had

only been reported in these GaN based structures or for the GaAs structures

included in this thesis. However, presentations at the 10th conference on lasers

and electro-optics Pacific rim (CLEO-PR) in 2013 reported a two step growth
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process using an AlGaAs structure is also possible [49].

The third method of PCSEL fabrication reported in the literature corre-

sponds to those using an organic gain medium [17,18]. These typically involve

patterning and etching a SiO2 layer with a photonic crystal, before spin-coating

the solid-state organic material on top [18]. This forms a waveguide with outer

layers of SiO2 and air, and the organic medium forming the core (figure 1.20).

Figure 1.20: Schematic of a PCSEL waveguide utilising an organic gain
medium as in [18].

In all of these fabrication methods patterning is typically done by electron

beam lithography and reactive ion etching [50–52]. Alternative techniques

such as focused ion beam milling [53, 54] or nano-imprinting [55, 56] are used

less often due to either time limitations or financial restraints.

1.3.5 PCSEL characterisation

Characteristics of the first PCSELs demonstrated the huge potential of these

devices. Early results were recorded at room temperature operating under
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pulsed conditions, and these were quickly followed by CW results [20]. Figure

1.21 plots room temperature CW light-output versus current injection (LI)

and spectral characteristics reported in [20]. A single lasing peak is observed

in the spectra close to λ = 960 nm (figure 1.21a)).

Figure 1.21: Early room temperature a) LI and b) spectral results under CW
operation. Adapted from [20].

Basic LI curves and electroluminescence spectra reported in the literature

demonstrate these devices achieve reasonably high single-mode powers and rel-

atively low threshold currents (approximately 60 mA in figure 1.21b)). Spectra

also indicate that suitable waveguide and period design allowed operation at

various emission wavelengths including 406 nm, 960 nm, 1.285 µm and 1.55

µm [20, 22, 38, 40]. Figure 1.22 shows laser oscillation of the same wavelength
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measured at separate points that are a distance of over 500 µm apart [22]

suggesting that emission is coherent over large areas.

Figure 1.22: Coherent spectral emission from various points around the elec-
trode. Adapted from [22].

From measurements of the emission spectra at a variety of angles relative

to the photonic crystal the band structure has been mapped, and lasing has

been shown to occur at the photonic band edges [21].
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Figure 1.23: Experimentally mapped band structure indicating laser action
occurring at the band edge near the Γ point. Adapted from [21].

Figure 1.23 plots the band structure close to a partial TE mode band gap

at the Γ point, with the lasing peak indentified when magnifying this region.

In order to determine the coupling strength of the photonic crystal, Sakai et

al. calculated theoretical coupling coefficients of κ1 = 1700 cm−1 and κ3 = 800
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cm−1 using 1.2.4-1.2.7 (for a square lattice photonic crystal). They also used

emission wavelengths at the different band edges to determine experimental

coupling coefficients of κ1 = 4300 cm−1 and κ3 = 740 cm−1 (see 5.4.1-5.4.3 in

section 5.4).

Figure 1.24: Lattice shapes and corresponding far-field patterns for a) a square
lattice with circular atoms b) a square lattice with a line defect and circular
atoms c) a square lattice with two line defects separated by 29.2 µm d) square
lattice with two line defects crossing at the centre e) Four crossed line defects
in a square lattice separated by 29.2 µm f) a square lattice with triangular
atoms [23].
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Far-field patterns that are directly linked to the shape of the photonic

crystal lattice (see figure 1.24), and beam divergences as low as 1◦ [23] are also

reported in the literature. Of particular note is figure 1.24f), where triangular

atoms in a square lattice create a circular, single-lobed, far-field pattern.

1.4 Gaps in the knowledge

1.4.1 All-semiconductor photonic crystals

Early 3D photonic crystal models found complete photonic band gaps using

high refractive index contrast materials such as aluminium and air (a refractive

index contrast of 3.6:1, with n = 3.6 for aluminium at microwave frequencies

and air (n = 1) [10]). The similar refractive indices of semiconductors such as

GaAs and InP to aluminium suggested obvious possiblities for optical wave-

lengths, however, the period required in these 3D photonic crystals makes fab-

rication complicated. This led to a significant amount of research into finding

a two-dimensional solution, naturally incorporating voids within the structure

to keep this high refractive index contrast. The chosen lattice designs of PC-

SELs incorporating 2D photonic crystals create a partial band gap, and this

appears to be sufficient to achieve lasing. Photonic crystals or PCSELs using

materials of smaller index contrast, such as between two semiconductors, and

their device characteristics, do not appear to be reported in the literature.
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1.4.2 Regrown GaAs PCSELs

PCSELs with buried photonic crystals (or gratings) are typically created by

wafer fusion (discussed in section 1.3.4), however, the AROG method demon-

strates a second epitaxial step can be used to create a two dimensional buried

grating for GaN based devices. Previous work carried out at the University of

Sheffield also showed that a one-dimensional buried grating with emission at 1

µm can be formed through epitaxial regrowth [57]. There appears to be no re-

port in the literature of a 2D epitaxially regrown PCSEL using GaAs/AlGaAs

based materials to emit at wavelengths close to 1 µm, apart from work re-

ported in this thesis. To the best of my knowledge regrowth that infills a

two-dimensional photonic crystal to remove voids is not reported elsewhere.

1.4.3 Low temperature characterisation

The characteristics of PCSELs reported in the literature focus primarily on

achieving lasing at room temperature under CW operation and the unique

properties created by the photonic crystal. The operating characteristics and

far-field patterns at low temperatures do not appear to be reported. Other

types of devices (e.g. vertical cavity surface emitting lasers) have tunable wave-

length selection through temperature variations. Such detuning characteristics

for PCSELs do not appear to be reported in the literature.
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1.5 Thesis outline

This thesis covers the waveguide modelling and fabrication of an all-semiconductor

PCSEL by epitaxial regrowth to demonstrate that the relatively small refrac-

tive index contrast between two semiconductor materials is sufficient for lasing

to occur. Basic characteristics at low temperature are investigated, as well as

detuning of lasing wavelength with temperature. Characterisation of the cou-

pling strength of the photonic crystal and external feedback effects at room

temperature is also undertaken.

Waveguide modelling of a semiconductor structure incorporating a pho-

tonic crystal is discussed in chapter 2. Mode confinement within a waveguide

structure is introduced and a PCSEL design based on a λ = 980 nm distributed

feedback laser is outlined. The design considerations discussed in this chapter,

such as layer thicknesses and material compositions, are varied in an attempt

to maximise coupling to the photonic crystal whilst still maintaining decent

mode overlap with the active region.

The effect of design parameters is also considered for a replacement void-

semiconductor photonic crystal within the waveguide, drawing a surprising

conclusion on the coupling of high-index contrast photonic crystals in a semi-

conductor waveguide.

The fabrication of an all-semiconductor PCSEL by epitaxial regrowth is
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outlined in chapter 3. The proof-of-concept process is outlined first, and then

design considerations such as alternative patterning techniques and regrowth

development steps are discussed.

Chapter 4 is a review of the basic device characteristics operating at low

temperatures. In this section of the thesis, laser oscillation is demonstrated and

characteristics that indicate the photonic crystal is responsible are highlighted.

The dependence of the lasing wavelength on temperature and photonic crystal

period is discussed, and also the effect of detuning between the gain peak and

lasing wavelength on threshold current.

Room temperature characterisation is outlined in chapter 5, starting with

basic characteristics. Photonic band structure measurements follow and these

demonstrate the photonic crystal is influencing the device emission and quan-

tify the coupling strength. The effects of external feedback on threshold cur-

rent and output power are also discussed.

A brief summary of the thesis and details of suggested further work on this

topic for the future are covered in chapter 6.
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2 Waveguide Modelling

2.1 Introduction

The periodic refractive index contrast within a photonic crystal causes feed-

back at a specific wavelength as discussed in section 1.2.2. By fabricating a

photonic crystal within a planar waveguide a PCSEL can be created. However,

for a PCSEL to achieve sufficient feedback for lasing the waveguide requires

optimisation of mode overlap with the photonic crystal and gain regions. This

chapter describes single and multi-mode waveguiding; introduces a possible

waveguide structure for an all-semiconductor PCSEL; and looks at optimising

this structure in terms of achieving maximum coupling to the photonic crys-

tal, whilst still maintaining significant mode overlap with the active region.

Comparison of the waveguided mode for a structure containing either an all-

semiconductor, or a void-semiconductor photonic crystal, also demonstrates

how the effective refractive index of the photonic crystal layer is significant for

optimal mode overlap, indicating an advantage of using epitaxial regrowth to

eliminate voids.
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2.2 Background

Previous PCSELs which incorporate voids have often used InP waveguides

to target wavelengths of 1.3 - 1.5 µm [1–4]. These devices have applications

within the telecommunications industry, whilst other wavelengths worthy of

consideration for biomedical and data storage applications include those of 850

nm and 980 nm. The ability of a device structure to guide light of these wave-

lengths is dependent on many parameters. In particular, these parameters

include epitaxial material choices, as the band gap and absorption properties

of semiconductor materials are wavelength dependent. For wavelengths around

1 µm, previous waveguides have typically utilised an epitaxial structure con-

sisting of GaAs and AlGaAs layers [5, 6]. For shorter wavelengths the band

gap of GaAs presents a problem. However, this thesis focuses on achieving a

980 nm PCSEL, for which an AlGaAs-GaAs waveguide is suitable. In order

to achieve feedback and to tune the emission wavelength of a PCSEL, pho-

tonic crystal design is key. However, optimal confinement of an optical mode

within the structure is also essential, as this ensures that there is a sufficient

source of light, at the relevant wavelength, being injected into the photonic

crystal. Therefore, this chapter focuses on waveguide design for a λ = 980 nm

PCSEL, and considers the effects of varying structural parameters on mode

confinement and profiles.
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2.3 Theory

The propagation of light can be fully described by the wave equation (2.3.1)

and the modes of a dielectric waveguide at a (radian) frequency ω are solutions

of this.

∇2E(r) + k20n
2(r)E(r) = 0 (2.3.1)

where k20 = ω2µε0 = (2π/λ)2 and n is the index of refraction [7].

Therefore, to determine the modes of a waveguide the wave equation needs

to be solved for the relevant parameters of that structure. However, semi-

conductor waveguides often employ complex epitaxial structures with many

layers, which makes the mathematics more complicated. For a mode to exist

across the whole structure it must satisfy the wave equation in each of the lay-

ers. The form of the solution can be different in each layer, but must still be

continuous at the interface boundaries. To achieve this the solutions must be

continuous in terms of the tangential components of E and H at the interfaces.

The form of the solution to the electric field, E(r), in 2.3.1 is taken as:

E(r, t) = E(x, y)ei(ωt−βz) (2.3.2)
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so that 2.3.1 becomes:

(
δ2

δx2
+

δ2

δy2

)
E(x, y) + [k20n

2(r)− β2]E(x, y) = 0 (2.3.3)

From this, the behaviour of light within a waveguide can be determined

by assuming it is a dielectric slab with variation in refractive index in only

one of the dimensions. For the waveguide modelling conducted in this thesis,

the software package Fimmwave [8] was used to determine solutions for a slab

waveguide.

This calculates mode propogation through each of the layers in the struc-

ture with boundary conditions set by each of the adjacent layers. Figure 2.1

illustrates a simple 3-layer slab waveguide with light confined in the central

region. Each layer of the waveguide is numbered region I-III and has the re-

spective refractive indices n1, n2 and n3 indicated. In this case the structural

composition is simple and the number of boundary conditions is low, with light

confined to region II when n2 > n1 and n2 > n3.
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Figure 2.1: Waveguided light in a simple slab waveguide structure consisting
of 3 regions with refractive indices n1, n2 and n3.

For each layer in figure 2.1, 2.3.1 can be solved as a function of the prop-

agation constant β, at a fixed frequency ω. An outline of the mode can be

found by examining the function of the solution (2.3.2), whilst ensuring that

the electric field, E, and δ2E
δx2

, agree at the layer interfaces using 2.3.3. As-

suming that n2 > n3 > n1, figure 2.2 plots five different mode possibilities for

different values of the propagation constant β, whilst still ensuring boundary

conditions are met.
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Figure 2.2: Possible mode profiles at varying values of propagation constant
β for a simple 3 layer slab waveguide. Adapated from [7].

In figure 2.2, mode a) corresponds to a propagation constant, β > k0n2,

modes b) and c) satisfy k0n3 < β < k0n2, mode d) corresponds to k0n1 <

β < k0n3, and for mode e) 0 < β < k0n1. The electric field in mode a)

increases away from the centre of the waveguide so that the solution is not

bound and thus does not correspond to a real wave. Modelling situations

that yield solutions of this form shall subsequently be referred to as unbound

modes. For modes b) and c) a solution exists such that the field is confined
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or bound to the central layer of the simple structure in figure 2.1. For more

complicated structures, modes confined to the central layers with decaying

exponential solutions in the outermost layers shall be considered a bound mode

(provided they still satisfy the boundary conditions at each interface). Figure

2.2 also plots mode d), which has an exponential solution in region I and

sinusoidal solutions in regions II and III. Modes of this type are often referred

to as substrate radiation modes. Sinusoidal modes in all three regions, such

as mode e), are known as waveguide radiation modes. For solutions in the

regime k0n3 < β < k0n2, such as modes b) and c) in figure 2.2, only discrete

values of β will satisfy the boundary conditions. As the thickness of region II

(T in figure 2.1) is increased, the fundamental transverse electric (TE) mode

becomes bound (mode b). Further increases in the thickness of region II will

then allow additional bound modes to exist. The number of bound modes

within the waveguide in figure 2.1 is therefore dependent on the thickness of

region II, the frequency ω and the indices of refraction, n1, n2, n3.

The fraction of the mode within each layer of the waveguide, normalised

against the sum of the mode in every waveguide layer, is defined as the con-

finement factor for the purposes of this thesis. Software modelling packages

such as Fimmwave [8] can calculate this value to a high degree of precision for

complicated waveguides, provided layer thicknesses and refractive indices are
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accurately known. Fimmwave uses a fully-vectorial solver and the Film Mode

Matching Method [9, 10] to model a waveguide consisting of various layers in

the vertical direction. Each of these layers is constant in the horizontal direc-

tion and a two-dimensional mode is constructed from the one-dimensional TE

and TM modes ensuring boundary conditions are met throughout the struc-

ture.

Previous work has shown that this confinement factor, Γ, can be used

to determine the coupling coefficient, κ, for a distributed feedback (DFB)

grating [11,12] using 2.3.4.

κ =
2∆nΓ

λ
(2.3.4)

where ∆n = n2− n1 is the refractive index difference of the grating materials.

This process of modelling the DFB waveguide involved averaging the re-

fractive index of the grating layer based on the ratio of each material present

when taking a cross-section through the structure. This method also provides

an insight into the coupling to a photonic crystal layer with an averaged refrac-

tive index. Assumptions on the fill factor of the photonic crystal are made, and

as the crystal is two-dimensional, lattice structure should be taken into consid-

eration when calculating the average index. Test patterns formed by electron
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beam lithography provided an insight into the likely ratio between the two

materials forming the crystal and give n = 3.28 as an averaged value. For the

purposes of modelling void-incorporating photonic crystals in this chapter, the

refractive index of the void is taken to be that of air (n = 1).

2.4 Waveguide structure

Figure 2.3 lists the epitaxial structure and plots schematically the refrac-

tive index of a possible waveguide for an all-semiconductor PCSEL based on

that of a buried grating DFB laser previously fabricated at the University of

Sheffield [16]. A buried one-dimensional grating layer was generated through

a second epitaxial growth process on top of a shallow InGaP layer with an

etched grating. Here, an InGaP grating and an InGaP etch stop layer are

also used to avoid damage to the active region and oxidation of aluminium

containing layers when the photonic crystal features are etched. The develop-

ment of this regrowth process for deeper two-dimensional features is outlined

in section 3.4.1.
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Figure 2.3: Modelled waveguide structure including epitaxial layer thicknesses,
refractive indices, distance D between active (blue layers) and photonic crystal
(red layer), and a schematic indicating index profile.

The refractive index (determined from material compositions and refrac-

tive index tables [17]), and the thickness of the layers in the structure is shown

in figure 2.3. These parameters affect the ability of the waveguide to sustain

a bound mode, and govern the proportion of the bound mode that resides

in each layer (confinement factor). In addition, figure 2.3 indicates the vari-

able D, which corresponds to the minimum distance between the top active

element and the photonic crystal layer. The effect of D on photonic crystal
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coupling is investigated in this chapter. The schematic indicates the refractive

index (n) profile of the core of the structure. As the refractive index changes

with the composition of aluminium in the top and bottom cladding layers,

variable refractive indices are possible. The position of the line indicating the

AlxGa(1−x)As lower cladding refractive index in figure 2.3 corresponds to the

lowest value of n considered. The potential refractive indices for the considered

values of x in the AlxGa(1−x)As lower cladding are plotted in figure 2.4.

Figure 2.4: Variation of refractive index at λ = 980 nm with aluminium frac-
tion, x in the AlxGa(1−x)As lower cladding [17].
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As the photonic crystal is situated above the active elements (see figure

2.3), variations in the composition of the lower cladding are investigated in

the attempt to push the mode up into the top part of the waveguide structure.

Whilst variations in the upper cladding aluminium composition should also

distort the mode in favour of certain layers, the effects of this are not included

in this chapter. This is due to the complexity of the regrowth process and the

relatively easy growth of Al0.4Ga0.6As as the upper cladding, however, further

work may consider variations in this.

2.5 Structural optimisation - all-semiconductor photonic

crystal

As the coupling to the photonic crystal is directly proportional to the con-

finement of the mode in this layer (2.3.4), an increase in the thickness of the

photonic crystal layer should yield larger coupling values. However, figure 2.5

reveals that this relationship is not so simple as the increase in photonic crystal

thickness also changes the parameters of the waveguide. Initially, coupling val-

ues are increased as the photonic crystal is made thicker, but at approximately

300 nm the coupling levels off, before slowly decreasing.
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Figure 2.5: Coupling coefficient against thickness, T, of photonic crystal layer
in the waveguide. Coupling values for T = λ0

2n
(black) and T = 3λ0

2n
(red)

indicated, where λ0 is the vacuum wavelength of light and n is the refractive
index.

For optimal Bragg diffraction of light out of the photonic crystal plane,

this layer should have a thickness, T, so that:

T =
(2m− 1)

2

λ0
n

(2.5.1)

where λ0 is the wavelength of light in a vacuum, n is the refractive index and

m is a positive and real integer.
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Figure 2.5 indicates that there is a 141 cm−1 increase in coupling between

a thickness of T = 150 nm (m = 1), and T = 450 nm (m = 2). However, this

small increase is mitigated by the significantly increased difficulty of regrowth

on deeper features (see figure 3.11).

The optimisation of the waveguide outlined in figure 2.3 occurred in several

stages. First, the profile of the mode propagating through the structure was

examined to understand the effect of variations in refractive index in various

layers. Figure 2.6 indicates the mode profile within the model structure with

the location of the photonic crystal and the active elements (quantum wells)

shown. Each of the different modes (shown in blue) in figure 2.6 correspond

to a different waveguide structure using the respective refractive index of the

AlxGa(1−x)As lower cladding layer (as plotted in figure 2.4).

The upper cladding composition is kept constant at Al0.4Ga0.6As as good

epitaxial growth of this is known to be possible from an already established

recipe [16]. For lower cladding aluminium compositions less than x = 0.3, no

bound mode was found in this structure. In figures 2.6 and 2.7, the relative

mode intensities are normalised against the highest intensity for that mode, for

comparison between the different waveguides created by changing the cladding

composition. Figure 2.6 shows the majority of the mode is confined near the

centre of the structure where the photonic crystal and active elements are.
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Figure 2.6: Mode profiles for varying aluminium compositions of the lower
AlxGa(1−x)As cladding layer with the location of photonic crystal (green) and
quantum wells (red) indicated.

Closer examination of these regions indicates that there is a clear increase in

mode intensity (within the photonic crystal) as the lower cladding aluminium

composition is increased (see figure 2.7). Maximal mode intensity in the pho-

tonic crystal layer occurs at an aluminium composition of x = 0.8, however,

there appears to be a trade-off in the mode intensity within the quantum wells

at these high aluminium compositions. Layers with high aluminium compo-

sitions will also cause an undesirable increase in the resistance of the device
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due to low electron mobility [18, 19]. Hence, a compromise of the parameters

discussed in this chapter is required to ensure optimum device performance.

Figure 2.7: Mode profiles for varying aluminium compositions of the lower
AlxGa(1−x)As cladding layer in the regions surrounding the photonic crystal
(green) and quantum wells (red).

Figures 2.6 and 2.7 clearly show that the variation in aluminium composi-

tion (and hence refractive index) of the lower cladding is distorting the profile

of the mode in the structure. It is this redistribution of the mode that allows

for optimisation of the mode present in the active and photonic crystal layers.

Figure 2.7 also provides evidence that the mode profiles are distorted by
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the relatively high refractive index of the GaAs layer immediately above the

photonic crystal. In an optimal design the thickness of this layer would be

minimised to avoid mode distortion, however, to ensure successful infill during

regrowth an epitaxial layer of the order of 100 nm is required (see chapter

3). An 80 nm GaAs layer has been modelled immediately above the photonic

crystal as a minimum thickness that should still result in complete infill of the

photonic crystal features. Fine control of the thickness of epitaxial layers in a

semiconductor structure is possible through modern growth techniques such as

metal organic vapour phase epitaxy (MOVPE) [20,21]. However, the regrowth

process on features as deep as a 150 nm thick photonic crystal [22] makes

control of the layer above the photonic crystal difficult as some of the material

has been used to fill the features. Careful control of growth parameters can

ensure that these features are successfully filled, but growth occurs both in the

holes and on top of the crystal layer at the same time. As such, the overall

thickness of this regrown layer is hard to judge during the process and the

final result will influence the actual mode profile and the confinement factor

in the photonic crystal.
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Figure 2.8: Confinement factor in photonic crystal (PC) and quantum wells
(QW) as a function of GaAs regrowth layer thickness.

Figure 2.8 plots the change in confinement factor within the photonic crys-

tal (PC) and quantum well (QW) layers, as the GaAs layer above the photonic

crystal is increased in thickness. The results for a fixed lower cladding alu-

minium composition (x = 0.4 chosen as growth of this composition known to

be possible [16]) are plotted to clarify just the effects of the GaAs layer thick-

ness. There is a definite increase in mode confinement within the photonic

crystal up to a GaAs thickness of 150 nm, after which it decreases signifi-
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cantly. Perhaps more significantly, the confinement factor within the quantum

wells rapidly decreases towards zero, indicating that the increased GaAs layer

thickness is drawing the mode profile up into the photonic crystal and away

from the quantum wells. The combination of these two effects indicates there

is an optimum thickness for this layer depending on the precise structure and

composition of the rest of the waveguide. However, it is the optimisation of

the regrowth process that will define the optimum thickness of this layer so

that complete infill of the photonic crystal features occurs.

Early research showed that a coupling coefficient of 1000 cm−1 is sufficient

for a photonic crystal to achieve lasing [13]. Using 2.3.4 the mode confinement

within the photonic crystal layer is converted into a coupling measurement,

enabling comparison between possible waveguide structures and determining

whether lasing will occur at the same time. The refractive indices of GaAs, n

= 3.521 [14], and InGaP, n = 3.143 [15] (at λ = 980 nm), are used in equation

2.3.4 as the constituent materials of the photonic crystal.

Figure 2.9 is a plot of the coupling to the photonic crystal for various

aluminium compositions in the lower cladding as a function of the distance,

D, defined in figure 2.3.
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Figure 2.9: Modelled coupling as a function of D for various fractions of alu-
minium in the AlxGa(1−x)As lower cladding.

Starting from the minimal distance of D = 80 nm (for the inclusion of etch

stop and buffer layers) the coupling has been plotted out to D = 580 nm,

where low aluminium composition modes have low coupling values. At this

distance modes for higher aluminium composition still have relatively high

coupling, but as figure 2.10 shows, the confinement in the quantum wells is

significantly reduced. This means there is a trade-off between high photonic

crystal coupling values and quantum well confinement factors at both high and
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low values of D. At D = 80 nm, all modes apart from that with an aluminium

composition of 0.3 achieve a coupling greater than 1000 cm−1, which the lit-

erature indicates is sufficient. Whilst the coupling remains sufficiently high at

high values of D and for high aluminium fractions in figure 2.9, increasing D

sufficiently causes the coupling to drop to zero for all bound modes (but is not

plotted to ensure clarity). A minimal value for D appears critical for the final

waveguide to achieve high levels of coupling.

Figure 2.10: Confinement factor of the quantum wells as a function of D for
various fractions of aluminium in the AlxGa(1−x)As lower cladding.
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Figure 2.10 is a plot of the mode confinement within the quantum well

layers as a function of D for varying lower cladding aluminium compositions.

A lower cladding aluminium composition of x = 0.4, for low and intermediate

D values, or x = 0.5 for high D values, yields the highest confinement fac-

tor. As figure 2.9 indicates, for these aluminium compositions the coupling is

highest at low D. Therefore, the optimum balance between photonic crystal

coupling and quantum well confinement factor is achieved at minimal D and

an aluminium composition of x = 0.4. The variation in confinement factor as

D increases appears to fluctuate around a general trend; with low and interme-

diate aluminium fractions resulting in an overall increase; a composition of 0.8

oscillating around a constant value, and compositions higher than 0.8 resulting

in an overall decrease. These fluctuations vary for each fraction of aluminium

in the lower cladding, and are created as each mode is distorted by moving

the photonic crystal away from the active. As the value of D is increased, the

change to the refractive index of the layer structure causes the central peak of

the bound mode to pass successively through each of the quantum wells. High

points in the confinement factor occur when the mode peak is aligned with a

quantum well, and low points occur when the mode peak is mis-aligned with

a quantum well.
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2.6 Introduction of a photonic crystal with voids

Waveguide modelling in this chapter has attempted to maximise the coupling

to an all-semiconductor photonic crystal and provide mode overlap with the

active region. However, an all-semiconductor photonic crystal has a smaller

refractive index contrast than a void-semiconductor one so reduced feedback is

expected, making it harder to achieve lasing. To show that an all-semiconductor

photonic crystal is worth considering, this section considers the effects of re-

placing the infilled GaAs with voids (a lower cladding composition of 40%

aluminium is used in the following modelled structures).

Figure 2.11 plots the coupling coefficient for a void-InGaP photonic crystal

layer within the waveguide as a function of D. The averaged refractive index

here is significantly lower than the surrounding semiconductor layers (n =

2.39), leading to significant mode distortion away from the photonic crystal

layer. In comparison to the coupling coefficients in figure 2.9, the coupling of

the void containing photonic crystal is much lower for all aluminium composi-

tions and at all distances. This is due to the reduction in confinement factor

as the low refractive index distorts the mode away from the photonic crystal

layer. Figure 2.11 indicates the coupling for all bound modes, which for higher

aluminium compositions only occurs at high D, with the arrows indicating

when a mode becomes bound for that aluminium composition.
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Figure 2.11: Photonic crystal coupling coefficient as a function of D for a
void-incorporating photonic crystal, with varying aluminium compositions in
the lower cladding. Arrows indicate the values of D for which modes become
bound in each modelled structure.

As with an all-semiconductor photonic crystal the coupling drops towards

zero with increasing D, however, this occurs much more rapidly for the struc-

tures modelled in figure 2.11. The difference between the mode profile of a

void-InGaP PC layer and a GaAs-InGaP PC layer for this waveguide structure

is shown in figures 2.12 and 2.13.
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Figure 2.12: Mode profile comparison for a fixed waveguide structure including
a void-incorporating photonic crystal (light blue) and an all-semiconductor
photonic crystal (dark blue).

Figure 2.12 illustrates the difference between the overall mode profiles of

an all-semiconductor photonic crystal layer and a void-semiconductor layer.

The intensity of the mode profiles in the photonic crystal layer is significantly

different for the same lower cladding aluminium composition and D.
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Figure 2.13: Mode profile comparison for a fixed waveguide structure includ-
ing a void-incorporating photonic crystal (light blue) and all-semiconductor
photonic crystal (dark blue) focussing on regions close to the quantum well
(QW) and photonic crystal (PC) layers.

Close examination of the region surrounding the photonic crystal and quan-

tum well layers indicates that the mode profile of the void-InGaP photonic

crystal has been distorted (figure 2.13). In this case the peak of the mode pro-

file has shifted into the lower cladding, and although there is still reasonable

overlap with the quantum wells, the mode overlap with the photonic crystal

is poor.
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Figure 2.14: Comparison of coupling to photonic crystal achieved by an
all-semiconductor (blue) and void-semiconductor (red) photonic crystal layer
within the same waveguide structure.

A comparison of the coupling of the two types of photonic crystal layers

considered is outlined in figure 2.14. The all-semiconductor photonic crystal

achieves greater coupling at all D in this waveguide structure. Insufficient

coupling is achieved, at all D, for the void-semiconductor photonic crystal to

reach the limit of 1000 cm−1 suggested in [13]. Whilst the all-semiconductor

photonic crystal clearly surpasses this value at low D (for this structure).
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2.7 Conclusions

A waveguide containing an all-semiconductor photonic crystal layer will achieve

greater coupling than a void-incorporating layer due to the lower effective in-

dex, created by the voids, distorting the mode away from the photonic crystal

layer (assuming the voids have a refractive index of 1). Considering the ex-

tent of the research conducted into incorporating a void-semiconductor pho-

tonic crystal into a waveguide this result is initially surprising. However, in

the literature this lower coupling is offset by the high feedback levels created

by the high refractive index contrast between the voids and the semiconduc-

tor material of the photonic crystal. Once an all-semiconductor PCSEL is

demonstrated, additional work may lead to an optimal solution between the

waveguiding effects and the high refractive contrast of the void incorporating

photonic crystals.

This chapter also outlined the design of a waveguide for an all-semiconductor

photonic crystal, in addition to the variables that can influence coupling of

the mode to the photonic crystal layer. The effects of these variables are con-

sidered for two possible photonic crystal layers, either all-semiconductor or

void-semiconductor. At first glance the increase in photonic crystal thickness

produced an increase in coupling due to the increased proportion of the mode

in that layer. However, increasing the thickness further resulted in the coupling
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to the photonic crystal reaching a maximum and then decreasing. Adjustment

of the composition of the lower cladding results in distortion of the mode,

pushing the mode further up towards the photonic crystal and increasing the

confinement factor. High aluminium compositions reach a trade-off point be-

tween confinement in the quantum wells and the photonic crystal, however,

lower aluminium compositions are likely to yield lower resistance devices due

to electron mobility. Hence, an optimal structure is achieved at minimal D and

an aluminium composition of x = 0.4. The thickness of the GaAs layer above

the photonic crystal produces optimal coupling at 150 nm, however, reduction

in the overlap with the active region indicates a compromise is required. Ulti-

mately the optimal thickness of this layer will depend on the optimisation of

the regrowth process. Increasing the distance of the photonic crystal from the

active region results in reducing the coupling as the active region is near the

peak of the bound mode. At higher D the mode is decaying exponentially, so

less of the mode resides within the photonic crystal layer.
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3 Fabrication and Processing

3.1 Introduction

In this chapter the development of growth and fabrication of an all semiconduc-

tor photonic crystal surface emitting laser (PCSEL) is discussed. The growth

and fabrication of a PCSEL can be split into several stages: initial growth,

photonic crystal patterning, photonic crystal etching, epitaxial regrowth, and

device processing. First, relevant fabrication processes are explained, secondly,

the recipe for successfully generating an electrically pumped, all semiconduc-

tor PCSEL is outlined [1], and finally, additional details considered in the

development of various processing stages are discussed. In particular, laser

interference lithography as a patterning technique is considered. This is im-

portant in reducing the cost of each device, as the long write times and high

cost of ownership of electron beam lithography contribute significantly to over-

all cost.

The structure grown in this chapter is based on conclusions from the mod-

elling in chapter 2. The value of D is kept to a minimal value, and a lower

cladding of Al0.4Ga0.6As is used to achieve a balance between coupling and

mode overlap with the quantum wells. For a one-dimensional grating device

such as a DFB, the product of the coupling, κ, and the device length, L is
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of importance. For non-phase shifted gratings κL = 1, or for phase shifted

gratings κL = 2. From the coupling value for the structure in chapter 2 (1338

cm−1), this would suggest a device length of only 7.5 µm or 15µm is required.

However, this is a small mesa to fabricate and as these devices are intended

to be surface emitters an aperture is also required. For this reason the proof

of concept devices described in this chapter are slightly larger, with a 50 µm

diameter mesa and an aperture of 25 µm. To ensure that there is still sufficient

feedback in the photonic crystal and to avoid any unwanted boundary effects

the patterned area will be significantly larger than the mesa at 150 µm2.

Specific acknowledegments to those who contributed to the successful fabri-

cation techniques in this part of the thesis include: Naoki Ikeda and Yoshimasa

Sugimoto of the National Institute for Materials Science (NIMS) in Japan for

the photonic crystal definition by electron beam lithography; Kris Groom of

the University of Sheffield for HF acid etching; Ben Stevens of the University

of Sheffield for the MOVPE and regrowth development; and Qi Jiang of the

University of Sheffield for device processing.

3.2 Background

The regrowth process using metal organic vapour phase epitaxy (MOVPE) is

the critical step in the fabrication of this all-semiconductor photonic crystal
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surface emitting laser. A second epitaxial process which occurs after the pho-

tonic crystal patterning, regrowth utilises the fine control of V-III ratio and

growth rate in MOVPE to infill the high aspect ratio photonic crystal features.

MOVPE is then also used to complete the epitaxial structure. Key to the de-

sign of the λ = 980 nm structure outlined in this thesis is the use of AlGaAs

in the waveguide cladding layers. However, the exposure of these layers to air

will result in aluminium oxide layers that prevent good epitaxial growth and

introduce crystal defects which propagate throughout the structure. The re-

growth process ensures that only selective layers are exposed during patterning

and etching, thereby limiting oxide formation.

Figure 3.1: Schematic of key steps in chemical vapour deposition for epitaxial
growth. Adapted from [11].
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Figure 3.1 outlines the processes involved in chemical vapour deposition

- the key to how a MOVPE reactor is used to grow complex, mulitlayered

semiconductor structures, just one example of which is PCSELs. Precursor

gases of high purity levels are injected into the heated reactor chamber in a

laminar gas flow, where initial reactions occur. The precursors then diffuse

through a stagnant layer close to the substrate and form the desired atoms

on the substrate surface. Surface diffusion occurs so that deposited material

nucleates and forms regions of island growths where group III and V atoms

associate. Waste by-products are released from the surface as these growth

sites form. Figure 3.2 is an example of how InP is grown using MOVPE.

Precursor gas 1 is tri-methyl indium and precursor gas 2 is phosphine, resulting

in InP deposition and the waste by-product methane. For growth of other III-

V semiconductors different precursor gases are used which results in various

by-products.
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Figure 3.2: Schematic indicating key ingredients and features of MOVPE
growth of InP.

Figure 3.3 is a picture of the type of close-coupled shower head MOVPE

reactor chamber used for growth and regrowth processes described in this the-

sis. It outlines the main features of the reactor chamber, in particular, where

the precursor gases enter the chamber and the location of the silicon carbide

substrate holder. The 3-zone heater is used in combination with the water

cooling system surrounding the chamber, giving fine control of the growth

temperature.
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Figure 3.3: Close-coupled shower head MOVPE reactor chamber. Adapted
from [12].

Other important steps in the fabrication process of PCSELs includes plasma

enhanced chemical vapour deposition (PECVD), electron beam lithography

(EBL), reactive ion etching (RIE), and inductively coupled plasma (ICP) etch-

ing. PECVD is used for depositing silicon oxide and silicon nitride layers for

carrier confinement within semiconductor structures such as in this thesis.

EBL is an advanced lithography technique which uses electrons that are

focussed into a high-energy beam to expose specific resists such as poly(methyl

methacrylate) (PMMA). The ability of EBL to produce features with a reso-

lution smaller than the wavelength of light means it is often used to generate

patterns in resist on the nanometre scale [16,17]. Reactive ion etching is a type
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of etching typically used to generate features within semiconductor, oxide or

nitride layers. An electric potential is created across the chamber which con-

tains a plasma (consisting of various substances) that is then ionised. These

ions are chosen such that they are highly reactive with certain substances on

the structure surface, enabling them to etch away exposed areas. Reflectivity

measurements of an incident laser beam provides in-situ characterisation of

the etch depth through comparison with computer modelling (figure 3.4).

Figure 3.4: Top: Modelled trace of reflectivity against SiO2 layer thickness.
Bottom: In-situ reflectivity measurements whilst etching 300 nm of SiO2.
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Figure 3.4 is a plot of both the modelled trace (top) and the actual variation

(bottom) in reflectivity of the incident laser beam during an etch process. The

process modelled is for CHF3 reactive ion etching through 300 nm of SiO2 on

top of a GaAs substrate. There is a clear similarity between the curves, with

a few localised inconsistencies at the start and end of the measured curve.

Those at the start correspond to optimisation of the laser alignment on the

sample, and those at the end correspond to purging of the chamber prior to

unloading. ICP etching is similar to RIE, but a magnetic field is also created

within the etch chamber. This is used to force the reactive ions down towards

the sample surface with significant energy, promoting a faster etching rate in

the vertical direction. ICP etching is more versatile, with an additional degree

of control compared to RIE as both the plasma density and the accelerating

voltage are individually controlled.

3.3 Successful regrowth process

Figure 3.5 indicates the sample structure throughout each of the steps involved

in the regrowth process. Figure 3.5a) shows the initial growth, whilst figures

3.5b) and c) indicate the deposition of silicon oxide and resist ready for pattern

transfer into the sample (figures 3.5d)-f)). Figure 3.5g) shows the sample

immediately prior to regrowth and figure 3.5h) indicates the structure following
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successful regrowth. These steps are described in more detail in sections 3.3.1-

3.3.3.

Figure 3.5: Flowchart indicating the sample structure after: a) initial growth
b) oxide deposition c) resist deposition d) patterning e) oxide etching f) semi-
conductor etching g) HF acid clean h) successful regrowth.

3.3.1 Initial growth

Initial MOVPE growth occurred on a GaAs substrate, miscut 10◦ off towards

the (110) direction. Initial growth included (figure 3.6): a lower cladding

layer of 1.5 µm of n-Al0.4Ga0.6As; an active region of three, 8 nm In0.2Ga0.8As

quantum wells with 20 nm GaAs barriers between each; a 40 nm p-In0.48Ga0.52P

etch stop and a 20 nm p-GaAs buffer layer, ensuring etching of the photonic

crystal didnt penetrate the active region; a 150 nm layer of p-In0.48Ga0.52P, to

form part of the photonic crystal, and a 20 nm p-GaAs terminating layer.
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Figure 3.6: Schematic indicating the structure after the initial epitaxial
growth.

3.3.2 Photonic crystal definition

Following initial growth, deposition of 300 nm of SiO2 by PECVD occurs to

create a hard mask for pattern transference into the 150 nm p-In0.48Ga0.52P

layer. ZEP-520 high-resolution, positive resist is spun onto the oxide before

patterning photonic crystals using EBL. A square lattice with a circular atom

shape was chosen for ease of fabrication. In addition, this is a well researched

photonic crystal structure which provides easy comparison of the results in

chapters 4 and 5 with void-incorporating PCSELs in the literature.

98



Figure 3.7: Schematic indicating the structure immediately prior to regrowth.

Reactive ion etching of the resist, using CHF3 chemistry at room temper-

ature, produces a hard mask with the desired photonic crystal pattern. Dry

etching with an ICP mixture of argon and chlorine at 200 ◦C transfers the

pattern defined in the hard mask into the 150 nm p-In0.48Ga0.52P layer. At

this stage the sample is given a clean in 1% buffered hydrofluoric acid solution

to remove the oxide mask and any other contaminants that may be present.

Figure 3.7 outlines the structure following the HF acid clean and immediately

prior to regrowth.
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3.3.3 Regrowth step

Regrowth was conducted in a Thomas Swan, 6 x 2” close-coupled shower head,

MOVPE reactor (figure 3.3). The wafer is heated to 630 ◦C whilst under an

arsenic overpressure to remove any oxidised material. Subsequently the wafer

is cooled slightly, with growth occurring at a temperature of approximately 605

◦C. Growth occurs at this temperature to achieve a balance between surface

cleaning and the minimal interchange of arsenic and phosphorous. A high

surface mobility is required due to the nature of the photonic crystal features.

A photonic crystal with a small period, (265nm ≤ a ≤ 297nm) and a relatively

thick layer (a/2) is defined as in [1, 13–15]. Infill of the photonic crystal is

ensured by using a low V-III ratio in the regrowth process. The regrowth

sequence consists of: 150 nm p-GaAs to infill the etched features (GaAs growth

starting with a V-III ratio of 20); 1.5 µm p-Al0.4Ga0.6As (with a V-III ratio

of 120) which forms the upper cladding, and 200 nm p+GaAs. Successful

regrowth can be seen in figure 3.8, which is a transmission electron microscope

(TEM) image of the photonic crystal and quantum well regions of a device.

The p-GaAs used to infill the photonic crystal in the regrowth results in a

layer of approximately 80-100 nm of GaAs above it. This is visible in figure

3.8 and has a non-planar interface with the p-Al0.4Ga0.6As above it. Infill of

the photonic crystal features only requires part of the GaAs deposited, but
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the regrowth partially transfers the pattern in the p-In0.48Ga0.52P surface into

this layer. This does not prevent the p-Al0.4Ga0.6As from achieving a planar

surface at the top of the device.

Figure 3.8: Transmission electron microscope image showing void free regrowth
in the region of the photonic crystal.

3.3.4 Device processing

Figure 3.9 is a photograph of a partially processed device, formed over the

centre of the patterned and regrown regions of the wafer by etching a 50 µm

diameter mesa in the p+GaAs contact layer. A 50 µm annular gold contact

is formed on top of this by photolithography, with deposition occurring in an

evaporator and lift-off by acetone.
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Figure 3.9: Photograph of a partially processed device - a 50 µm diameter
mesa with annular gold contact located above the centre of the 150 µm square
photonic crystal.

A current confinement layer of SiN is then deposited by PECVD across

the whole wafer. A further photolithographic step is used to etch the SiN

layer only in the region of the device top contacts, thereby allowing current

injection. A 250 µm by 100 µm gold bond-pad is also deposited on top of the

SiN layer. At the centre of the mesa a 25 µm aperture remained free of gold for

light to escape. As reported in [1], the photonic crystal pattern in this design

(150 µm by 150 µm) is significantly larger than the electrically pumped area

(50 µm diameter mesa plus current spreading). This is also evident from figure

3.9 where the circular mesa occupies a small fraction of the square photonic

crystal.

102



Figure 3.10: Photograph of a device after processing.

Figure 3.10 is a photograph of a processed device under a microscope. The

mesa and aperture are visible on the left hand side of the device, with the

bond-pad extending over a much larger region to the right. The bond-pad

eases current injection by providing a significantly larger area than the mesa

contact, thereby allowing the easy application of a probe needle.

3.4 Design discussions and modifications

Each of the processes outlined above required a certain amount of develop-

ment and optimisation to achieve a successful regrown device. This section

describes some of the design considerations and modifications undertaken in

the processing of devices as described above, and reported in [1, 13–15]. The
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various processes discussed in this next section include; the regrowth condi-

tions; the photonic crystal patterning method, and the semiconductor etch

recipe.

3.4.1 Regrowth development

A successful regrowth process was developed in three key steps. Figure 3.11

is a collection of TEM images showing the region of the regrown photonic

crystal.

In figure 3.11a) the photonic crystal layer is 300 nm thick and inital growth

occurred on a GaAs substrate miscut 3◦ off the (110) crystal direction. This

dark-field TEM image clearly shows the presence of voids within the photonic

crystal layer as bright white elliptical regions. Closer inspection of the voids

reveals they are faceted and this sample is similar to those generated using the

AROG method in [9]. Figure 3.11b) is a bright-field TEM image of the second

development step, where initial growth occurred on a GaAs substrate miscut

10◦ off the (110) crystal direction. By increasing the V-III ratio the presence

of voids in the photonic crystal layer is diminished as gallium diffusion into

the features is promoted. In general, the voids are now located towards the

top of the photonic crystal layer in a teardrop shape.
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Figure 3.11: Transmission electron microscope images of three stages in re-
growth development. a) Initial attempt with faceted voids. b) Increased V-III
ratio with teardrop shaped voids. c) Successful void-free regrowth.
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Figure 3.11c) is a dark-field TEM image showing the successful regrowth

process described earlier in this chapter. In this case the initial growth also

occurred on a GaAs substrate 10◦ off (110) and the regrowth process is the

same as in figure 3.11b), but the thickness of the photonic crystal layer has been

reduced from 300 nm to 150 nm. In comparison to the previous regrowths in

figures 3.11a) and 3.11b), the lack of voids in figure 3.11c) indicates a successful

regrowth process. However, the GaAs layer immediately above the photonic

crystal pattern is clearly not planarised. Close inspection of figure 3.11b)

indicates that the GaAs regrowth layer (faint grey layer) is also non-planar.

This suggests that either the substrate mis-orientation or increased V-III ratio

is responsible for the formation of this non-planar layer. From these TEM

images it is not clear if this is a feature in both of the two dimensions of the

photonic crystal, but determination of these features is an example of necessary

future work in the ongoing development of this process.

3.4.2 Patterning alternatives

Whilst the literature suggests that EBL is the tried and tested method for

successfully patterning photonic crystals [2–6, 18–20], alternative possibilities

do exist [21–29]. The main limitation of EBL is the amount of time required

to pattern complicated structures such as photonic crystals on very expensive
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equipment. Additional problems include high set-up costs, maintenance diffi-

culties, and stitch errors [30]. Other techniques include nano-imprint lithog-

raphy [21–23], laser interference lithography [24,25], focussed ion beam (FIB)

milling [26,27], and auto-cloning techniques [28,29].

Nano-imprint technologies can be used to transfer patterns to large areas in

a relatively short time, however, they require the fabrication of a robust initial

mask that can be costly. FIB milling involves drilling the pattern directly into

the desired surface using a focused beam of ions in a slow and costly process.

Laser interference lithography (LIL) is a patterning method that can produce

relatively large areas (approximately 1 cm2) in a short time.

LIL utilises the interference pattern generated by two or more coherent

lasers beams when recombined on the sample surface. This interference pat-

tern, with relatively high and low intensity regions, can be used to transfer

various patterns into the required material depending on the initial beam in-

tensities and orientations. For control of the resultant interference pattern, a

LIL set-up must be able to control the parameters that 3.4.1 indicates influence

the electric field [31]. This describes the electric field vector (E) corresponding

to a superposition of N laser beams, where A is the amplitude, p is the unit

polarization vector, k is the wave number, n is the propagation direction unit

vector, r is the position vector, f is the frequency and φ is the phase constant.
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E =
N∑
m=1

Em =
N∑
m=1

Ampmcos(knmr ± 2πft+ φm) (3.4.1)

Collaborative research with the Centro de Estudios e Investigaciones Tec-

nicas (CEIT) on the use of LIL in photonic crystal patterning is discussed

here. Figure 3.12 illustrates the fundamentals of the experimental set-up at

CEIT used to generate patterns by LIL. A pulsed Nd:YAG laser is used as the

source laser with an output wavelength of 355 nm - the third harmonic of the

fundamental (λ = 1064 nm) of the laser. The third harmonic is utilised as the

laser source can generate reasonably large powers at this wavelength and to

enable the use of standard photoresists in sample patterning.

Figure 3.12: Schematic indicating the essential components of the laser inter-
ference lithography set-up at CEIT.
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The initial laser beam can be split into two, three or four separate beams

using beam-splitters (figure 3.12) before recombining from the respective num-

ber of mirrors. Careful selection of beam splitter locations and the optical path

of each beam allows for equal amplitudes of the beams at the point of inter-

ference. This reduces the number of parameters and allows enhanced control

of the final interference pattern. The interference mirrors are held in a plane

at a specific distance from the sample mount which can be moved using a

computer-controlled x-y-z stage. The angle of each mirror, and therefore the

distance of the sample at the point of beam interference, can be manually

adjusted to influence both the type of pattern and the size of the features

produced within it.

The size of the interference pattern is determined by the overlapping beam

waists of the interfering beams, which at CEIT corresponds to an area of ap-

proximately 1 cm2. By blocking the path of the laser to any of the interference

mirrors, the number of interfering beams can be varied. Adjustment of the

position of the arms holding the interfering mirrors also allows for variations

in the interference pattern. At CEIT these arms can be rotated around an axis

such that the interfering mirrors remain the same distance from the sample. A

description of the mechanics involved in controlling the arms of the interfering

mirrors is outlined in [31].
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Additional control of the interference pattern is achieved by utilising half-

wave plates to rotate the polarization direction of the linearly polarized beams.

Figure 3.13 shows a modelled pattern for a 3-beam configuration with inter-

fering mirrors i, ii and iv from figure 3.12 in use. In figure 3.13 the simulated

pattern is a triangular lattice photonic crystal (a = 300 nm) with elliptical

unit cells. In the LIL process, deposition of a 600 nm thick layer of AZ-

1505 photoresist is followed by spin coating and pre-baking. After which, the

photoresist is exposed with a single laser pulse and a subsequent post-bake.

Finally, the photoresist is developed in a 1:5 dissolution of AZ-315B developer

and hard-baked. A silicon wafer coated with photoresist as a test sample yields

a pattern of great similarity, as shown in figure 3.14.
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Figure 3.13: a) Modelled intensity distribution for a 3-beam interference pat-
tern with red and blue indicating high and low intensity respectively. b) In-
tensity cross-section along the line in a).

Whilst tests such as that in figure 3.14 show a good surface pattern, trans-

ferance of the process onto a GaAs substrate (with the initial epitaxial growth

described earlier) is not easily achieved, as the resist layer does not completely

develop. This is due to surface reflections caused by the higher refractive index

111



semiconductor, which in turn causes disturbances in the interference pattern

within the resist as reported in [25]. Efforts to reduce these disturbances with

varying resist thicknesses and anti-reflection coatings have so far proved un-

successful at patterning on GaAs.

Figure 3.14: Scanning electron microscope image of a 3-beam interference
pattern in resist on a silicon test wafer.

3.4.3 Etch optimisation

Once a surface pattern is achieved, the correct etch to transfer this into the rel-

evant semiconductor layer is necessary. In the structure described above, this

material is the 150 nm p-In0.48Ga0.52P layer. Previous work at the University

of Sheffield on buried DFB grating quantum cascade lasers with feature sizes

of 1.68 µm showed that successful ICP etch recipes for InGaP are possible at
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room temperature [32]. However, initial tests on the small features of a circu-

lar atom shape (diameter = 100 nm) in a photonic crystal with period a = 300

nm, and a relatively shallow depth of 150 nm, proved to be inconsistent. This

inconsistency arises from the size of the features, and in comparison to [32] the

additional dimension of the grating significantly reduces the area for etched

material to escape.

Figure 3.15: Etch profile as measured by atomic force microscopy.

Adapting the ICP etch recipe in [32], a relatively lengthy etch (10-15

nm/min) using argon and chlorine chemistry achieved the required depth,

but with feature sidewalls sloping considerably. Figure 3.15 shows an atomic

force microscope (AFM) image of the photonic crystal after a short (3 min-
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utes) room temperature ICP etch. The cross-section measured along the white

line indicates that the etch is shallow with the sidewalls quickly sloping into

the middle of the features. Increasing the etch temperature to 200 ◦C makes

the sidewalls significantly more vertical apart from at the very bottom of the

features. The required 150 nm is clearly reached in figure 3.8, and the etch

rate increased dramatically to approximately 150 nm/min at 200 ◦C.

3.5 Conclusions

This chapter considered the growth and fabrication of an all-semiconductor

photonic crystal, in addition to discussing alternative solutions to processing

techniques. The relevant fabrication technologies are briefly outlined before

the successful fabrication recipe for generating an all-semiconductor photonic

crystal is described.

A high V-III ratio and 10◦ substrate miscut was found to be necessary to

achieve complete infill of the photonic crystal. The critical role of MOVPE in

the regrowth process has been highlighted and the adjustment of the growth

recipe has resulted in void removal from the photonic crystal. The device

processing required for incorporating an all semiconductor photonic crystal

into an electrically pumped PCSEL is also outlined.

The use of laser interference lithography as a large area alternative pat-
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terning technique is introduced, however, problems with pattern transference

from the resist have so far prevented the use of this. Development of the

etch processes required for such high aspect ratio features is also discussed. A

high temperature ICP etch using argon and chlorine chemistry is found to be

successful in producing relatively vertical sidewalls.

3.6 Future work

Subsequent chapters show that the regrowth recipe and device processing out-

lined above is sufficient to realise a PCSEL. However, further work on the

fabrication process is still required.

Continuation of LIL experiments using alternative anti-reflective coatings,

or creating patterns in alternative materials as sacrificial masks, is essential to

realise an efficient large area patterning technique for reducing costs.

Optimisation of the device processing, in particular the optical lithography

and mesa etching steps would help increase PCSEL yield and the electrical

performance of devices.

Variation of both the mesa size and the photonic crystal size is required to

determine if there are any detrimental effects with regards to power scaling.

In addition, if the dimensions of these two are similar, any boundary affects

created by pumping the edge of the photonic crystal will be revealed.
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4 Low Temperature Characterisation

4.1 Introduction

In this chapter device characteristics of a sample of 30 all-semiconductor PC-

SELs (including each of the different periods fabricated) at low temperatures

are outlined. Data considered in this chapter comes from devices fabricated

using processes outlined in chapter 3 and some results have already been pub-

lished [1,2]. The data is used to; confirm that laser oscillation occurs in these

devices and, outline some of the unique characteristics that suggest the pho-

tonic crystal is responsible for the emission. First, the characterisation method

of the electroluminescence spectra, threshold currents and far-field patterns

for PCSELs operating at low temperature is described. Results, analysis and

comparison with previous values reported in the literature follows.

4.2 Background

Historically, device research typically requires multiple steps in developing to

the point of room-temperature continuous wave operation, however, PCSEL

publications suggest they are an exception to this. Initial research on a two-

dimensional thin-film distributed feedback laser in 1973 [3] failed to incite

interest in researching a two-dimensional semiconductor PCSEL. However, the
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literature indicates that there was a revival in interest in PCSEL research in

1998 and 1999 through the use of organic gain media [4,5]. Initial fabrication

of an electrically pumped semiconductor photonic crystal operating at room

temperature was first demonstrated in 1999 [6]. Despite only operating under

pulsed conditions, there appears to be no development or characteristics at

low temperatures reported. Furthermore, room-temperature continuous wave

operation of a PCSEL did not take long to follow [7]. This chapter investigates

the operation of PCSELs at low temperature in an attempt to bridge the gap

reported in the literature. The testing of devices at low temperature is a key

step in identifying the unique properties of a new type of device, with the

reduction of thermal effects allowing for clear characterisation.

For low temperature characterisation of any device a well-designed cryo-

stat set-up is essential. The set-up used to record the data in this chapter

was implemented previously for low temperature spectral and output power

measurements [8]. Figure 4.1 is a schematic of the system highlighting the key

optics and characterisation equipment required for the EL spectra and output

power tests conducted in this chapter.
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Figure 4.1: Experimental set-up schematic for low temperature spectral and
output power measurements.

Figure 4.1 indicates the location of the sample mount, where the device

under test (DUT) is bonded to a TO-5 header [9] to provide thermal and

electrical connections. The chamber is pumped down to a vacuum on the

order of 10−7 millibar before the cryostat is engaged [10]. The cryostat relies

on a water-cooled compressor to pressurise helium, which is then allowed into

the chamber through a small expansion hole. Helium expansion draws heat

from the surrounding metal which is connected to the sample mount, and can

reduce the temperature to as low as 10 K. Precise control of the temperature is

achieved using the temperature dependence of the turn-on voltage of a silicon

diode located just beneath the sample mount [11]. Suitable time was left for
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the DUT to adjust to temperature changes between data measurements.

Emission from the DUT is able to escape the chamber through the window.

The first lens (numerical aperture 0.5) collects as much light from the sample

as possible and collimates it (this lens is aspheric to avoid aberrations). The

second lens focuses this light down to the multimode fibre (MMF) which has

a numerical aperture of 0.14. Losses due to reflections from the lenses are re-

duced by up to 8% using antireflective coatings for near infra red wavelengths.

Alignment of the DUT, lenses and the MMF is controlled manually via x-y

and x-y-z stages. Analysis of the emission from the DUT is conducted using

an optical spectrum analyser (OSA) [12]. Output powers are recorded on the

powermeter [13] by removing the focussing lenses and positioning the InGaAs

powerhead sensor [14] as close to the chamber window as possible.

Also outlined in this chapter is characterisation of the far-field pattern at

low temperatures. A goniometric radiometer is utilised and replaces the optical

lenses in figure 4.1. Situated as close to the chamber window as possible, the

goniometer collects the emission through a narrow slit (approximately 1 cm

wide) orientated at various angles to the DUT.
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Figure 4.2: Experimental set-up schematic for low temperature far-field mea-
surements.

Figure 4.2 indicates the definition of the angle θ on the goniometer face

closest to the sample. A goniometric radiometer collects emission from various

angles, and in this chapter cross-sections in the 0◦ and 90◦ orientations are

considered [15]. These can be used to give a clear indication of the divergence

of the laser beam for comparison with other devices in the literature. The

goniometer is able to correct the far-field emission angles provided the distance

to the sample is known (approximately 19 mm in this experiment).

Small beam divergences are important for communication and remote-

sensing applications, as the laser beam can be efficiently coupled to waveg-

uides and fibres without requiring lenses or other costly and bulky optical

elements. As outlined in chapter 1, careful design of the photonic crystal in a
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PCSEL can influence the beam characteristics [16]. Using photonic crystals,

diffraction-limited beam divergences have been generated [17]. In PCSELs,

far-field patterns of less than 1◦ have been achieved when considering the full

width at half maximum (FWHM) of the emission intensity [18]. This gives

PCSELs an edge over other types of semiconductor lasers. For instance, ver-

tical cavity surface emitting lasers (VCSELs) typically have divergences of

10◦-15◦ [20, 21], whereas edge emitting ridge lasers have divergences over 30◦

due to the narrow stripe widths [22–25].

4.3 Basic characteristics

4.3.1 VI, LI curves and EL spectra

Figure 4.3 plots the forward voltage-current (VI) characteristics for a 286 nm

period PCSEL over a range of temperatures. The curves indicate the device

is operating as a diode with a turn-on voltage of 1.1 - 1.5 V depending on the

temperature. At most temperatures the curves are almost identical making it

difficult to distinguish between them, however, at 255K and 295K the voltage

is slightly reduced at all currents. Taking a fit to the VI curves in the linear

regime (I = 100 - 300 mA) and calculating the gradient gives the resistance

of the device in this current region. Calculating this for a range of devices of

different photonic crystal periods produces the data inset in figure 4.3.
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Figure 4.3: Forward drive voltage against current at various temperatures.
Inset: Resistance versus temperature from the linear regime in the VI curves.

There is a clear range of resistances, with three distinct regions at approxi-

mately 3, 5 and 7 Ω. At first glance it appears there is a trend with resistance

increasing as photonic crystal period is increased, however, there are excep-

tions to this trend. For example, the resistances of the 265 nm and 270 nm

devices fall into both the 3 Ω and 5 Ω regions. Examination of the location

of these devices on the processed wafer reveals that the variation in resistance

occurs due to the device location rather than the photonic crystal period. De-
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vices from regions close together fall into one of the three regions. For each

device the resistance in this linear current region appears roughly constant at

all temperatures.

The light output-injection current (LI) characteristics for a PCSEL with

photonic crystal period 281 nm operating under pulsed conditions (up to 200

mA) over a range of temperatures is shown in figure 4.4. In this case, the

device was electrically pumped with a pulse width of 5 µs and a duty cycle of

1% in order to reduce the effects of self-heating. Figure 4.4 indicates that there

is significantly greater output power achieved at lower temperatures (output

power response measured at λ = 980 nm). This occurs due to the increased

efficiency of the electron-hole recombination in the quantum wells at lower

temperatures, and hence a higher gain is reached.
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Figure 4.4: Light-output against current injection (LI) curves as a function of
temperature. (PCSEL period, a = 281 nm).

At 50K, 100K and 150K there is an obvious kink in the LI curves suggesting

that lasing occurs. Threshold currents of 31 mA, 27 mA and 51 mA are

measured at 50K, 100K and 150K respectively. A closer inspection of the

higher temperature LI curves reveals slight kinks exist, but that a much smaller

slope efficiency reduces the appearance of these in figure 4.4. The threshold

current has a local minima at 100K for the temperatures considered here.

Further investigation into the temperature dependence of the threshold current

follows in section 4.5. Despite these apparent thresholds in the LI curves it is

131



important to examine the electroluminescence spectra (figure 4.5) to determine

if lasing is truly occuring. At currents of 198 mA and 164 mA (temperatures of

100K and 150K respectively) the LI curve reaches a local maximum suggesting

thermal rollover.

The threshold current minimum at 100K occurs as there is increased gain

at this temperature, and also because of the alignment of the gain peak and the

wavelength that satisfies the Bragg condition of the photonic crystal within the

device. When there is good alignment the threshold current is reduced, whilst

poor alignment results in increased threshold. An example of the possible

detuning between the two peaks is clearly evident in figure 4.5 where there is

poor alignment. Detuning of the lasing and gain peaks is considered in more

detail in section 4.3.3.

Figure 4.5 shows the electroluminescence spectra at 100 K for a PCSEL

(photonic crystal period a = 265 nm) operating at a range of currents under

pulsed drive conditions. The relatively low output power of these devices and

the collection losses caused by the use of the MMF results in noisy spectra.

Note the use of a logarithmic scale on the y-axis to accentuate the key features

in the spectra.
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Figure 4.5: Logarithmic electroluminescence spectra as a function of current
for a device with period a = 265 nm at 100K. Inset : Linear spectra for the
same device at wavelengths close to the lasing peak (for clarity spectra have
been shifted by an arbitrary amount up the y-axis).

Whilst there is a significant amount of background noise at both high and

low wavelengths in these spectra, the broad peak due to spontaneous emission

from the quantum wells, and the sharp, narrow lasing peak due to the two

dimensional feedback effect of the photonic crystal are both evident. High

resolution measurements of the peak wavelengths are recorded using the 0.2

nm resolution bandwidth of the optical spectrum analyser (see figure 4.1 for
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experimental set-up). In figure 4.5 the peak of the spontaneous emission at

280 mA is λ = 924.1 nm and from the inset of figure 4.5 the lasing peak at the

same current is λ = 892.2 nm. The detuning of 31.9 nm between these peaks

is quite large and indicates that the photonic crystal design is far from optimal

for this device. This is the smallest of the periods fabricated, and the smaller

detunings achieved from other devices with larger periods can be observed in

figure 4.9.

The inset to figure 4.5 shows the EL spectra zoomed in around the region of

the lasing peak on a linear scale (for the same device). The spectra have been

shifted along the y-axis to clarify the features between each current value.

Below threshold no peak is visible, whilst above threshold the lasing peak

quickly increases in size. There is also a small shift in lasing wavelength as the

current increases.
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4.3.2 Lasing peak shift and linewidths

Figure 4.6: Shift of photonic crystal lasing peak wavelength as a function of
current for a different device of period a = 276 nm at 150K. Above threshold
linear trend indicated by black line.

Figure 4.6 plots the photonic crystal laser peak wavelength as a function of

current, for a device with a threshold current of 100 mA operating under

pulsed conditions at 150K. There is a steady, but shallow, linear increase in

peak wavelength as the current is increased above threshold. Over the current

range considered here the photonic crystal peak shifts by a maximum of 0.39
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nm, and this is likely due to the injected carriers altering the refractive index of

the waveguide as self-heating would give a dependence proportional to I2 [26].

The peak observed at 90 mA appears not to follow the trend (black line) as

this corresponds to a sub-threshold peak.

Figure 4.7: Spectral linewidths as a function of current for the same device of
period a = 276 nm at 150K. Above threshold linear trend indicated by black
line.

The linear increase in spectral linewidth with current is plotted in figure

4.7. The black line clearly indicates the linear correlation for currents above

threshold, with linewidth increasing from 0.29 nm to 0.58 nm over this current
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range. The cold cavity linewidth is usually taken as the linewidth well below

threshold where the number of carriers is close to zero (see figure 4.8), but due

to the low signal to noise ratio in the EL spectra (figure 4.5) this is difficult

to measure.

Figure 4.8: a) Normalised output power as a function of pump power (bot-
tom axis) and absorbed power (top axis). b) Linewidth dependence on pump
parameter. Adapted from [27].

Figure 4.8a) plots the output power response as a function of input power

(and absorbed power) for a defect cavity surface emitting laser in [27]. Fig-

ure 4.8b) plots the linewidth as a function of absorbed pump power (pump

parameter) and indicates the cold cavity linewidth. This is extrapolated up

to threshold pump parameters where the linewidth clearly reduces. A similar

drop in linewidth is observed in figure 4.7 from the one sub-threshold linewidth

plotted. The sub-threshold linewidth at the transparency point can be used
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as a first approximation to the cold linewidth of the device, with 90 mA or

0.9Ith in figure 4.7 being considered close to transparency in a similar fashion

to [28]. Figure 4.7 yields a cold cavity linewidth ∆λ = 0.55 nm similar to that

for band A in [28] (∆λ = 0.57 nm).

4.3.3 Detuning as a function of temperature

Figure 4.9: Lasing peak wavelength at 300 mA against temperature for a
range of PCSELs with various periods, a. Peak of spontaneous emission from
a typical device with a Varshni fit curve (black line) also plotted.
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Figure 4.9 plots the lasing peak wavelength against temperature for a group

of devices containing photonic crystals of varying periods (at a fixed injection

current of 300 mA). Here, the high resolution of the OSA means errors in

the wavelength are small so they are not visible under the plotted points. A

low yield from device processing results in working devices of only six of the

periods fabricated, hence there are no results for photonic crystals with period

a = 297 nm.

Also plotted in figure 4.9 is the peak in spontaneous emission for a typical

device, with a Varshni curve [29] fitted. This curve is an empirical fit based

on 4.3.1, with fit parameters E0 = 1.359 eV, α = 4.8*10−4 eV/K, β = 260 K.

Eg(T ) = E0 −
αT 2

T + β
(4.3.1)

These parameters give a purely empirical fit to the spontaneous emission

peak wavelengths in figure 4.9, however, for InGaAs quantum wells in other

structures in the literature, similar values are used (E0 = 1.312 eV, α = 4.8

* 10−4 eV/K and β = 140 K) [30]. Whilst the Varshni curve with these

parameters is a good fit at low temperatures, the fit is less accurate at high

temperatures. This is due to the failing of the Varshni equation to take into

account electron-phonon interactions, which become more influential at higher

temperatures [31].
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Previous work has shown that the semiconductor band-gap has a quadratic

variation at low temperatures, and that at higher temperatures this becomes

more linear [31,32]. In comparison, linear best fit lines for each of the different

photonic crystal periods indicate a clear strong correlation between lasing peak

wavelength and temperature. Examination of the best fit gradients indicates

that the photonic crystal peak detunes between 0.03 and 0.04 nm/K depend-

ing on the device. The small temperature dependence of the wavelength is

generated by the small variation in the period as the semiconductors forming

the photonic crystal shrink or expand.

The linear correlation between peak wavelength and temperature for all

photonic crystal periods in figure 4.9 allows for simple wavelength selectivity

of a PCSEL by either changing the operating temperature, or the period, of

the device. The detuning with temperature achieved by these PCSELs is small

compared to DFBs (approximately 0.1 nm/K [33,34]), and even has a slightly

smaller value than VCSELs (approximately 0.05-0.07 nm/K [35, 36]), making

them of use for stable wavelength emission applications in environments with

fluctuating temperatures.
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4.4 Low temperature far-field patterns and divergences

As mentioned earlier, previous PCSELs have been able to produce far-field

patterns with divergences significantly lower than for other types of semi-

conductor lasers. Just one of the unique capabilities of PCSELs, this is an

attribute created by the presence of the photonic crystal within the device. To

confirm that the lasing peak seen in the EL spectra is created by the photonic

crystal, this next section examines the far-field pattern and beam divergences.

Figure 4.10 is a plot of the cross-section of the far-field pattern in the θ = 0◦

orientation (defined in figure 4.2) for various injection currents at 150K. The

curves plotted here are normalised against the intensity of the high current

cross-sections. In the cross-sections, the emission angle is taken as the angle

to the normal of the plane of the device.
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Figure 4.10: Far-field cross-section in the θ = 0◦ orientation as a function of
current for a 276 nm period PCSEL at 150K. Inset : Full width half maxima
(FWHM) for certain currents.

Below threshold, spontaneous emission is detected over a large range of

emission angles (greater than 100◦). The detection of spontaneous emission

over a wide angle also occurs above threshold, and at 70 mA the emergence

of the lasing peak occurs from the centre of the pattern. A high intensity

peak at small emission angles in the cross-section like this is an indication of

a collimated laser beam.
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Compared with expected divergences from the literature [18], the full width

half maximum (FWHM) for the far-field cross-sections (see figure 4.10 inset)

yield a relatively high value for a PCSEL. However, this is still much lower than

for single-mode edge emitting lasers [22–25] and comparable with VCSELs

[20,21]. Error bars for the FWHM are small due to the high number of sample

points in the cross-section so they are not visible beneath the data points.

The combination of the contribution from spontaneous emission and the

relatively low output power is the cause for these high divergences. Points

measured to give the FWHM are closer to the shoulders of the central peak

than the half maxima. Examining the FWHM for the far-field at 80 mA gives

evidence for this, as it yields a value of over 100◦ due to the relatively low

intensity of the central peak. (Note this is not plotted in the inset to figure

4.10 so that the trend at higher currents is visible). In addition, the FWHM

value for 100 mA is also distorted by this affect, and this is why this point

appears not to follow the trend of the higher currents. At the currents plotted

a simple linear increase with current is observed, and this current dependence

is studied in more detail below.

Figure 4.11 plots the two perpendicular cross-sections of the far-field pat-

tern of a 276 nm period PCSEL at 280 mA and 150K. In each case the back-

ground spontaneous emission is emitted over a large angle (greater than 100◦).
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Figure 4.11: Normalised far-field cross-section in the θ = 0◦ orientation (black)
and θ = 90◦ (red) for a 276 nm period PCSEL at 150K.

In figure 4.11 the data has had the spontaneous emission subtracted before

renormalisation. This background is still plotted (as negative values) for com-

pleteness, but the normalisation results in the measurement of the full-width

half maximum of the lasing peak alone. This gives a better indication of the

true divergence of the laser beam of the PCSEL (figure 4.13).

The far-field profile in the 90◦ orientation (figure 4.12) yields some inter-

esting results. In this case the spontaneous emission is measured over a wide
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range of angles as before, however, the lasing peak is much narrower at low

currents. Low current FWHM measurements reveal divergences as low as 2.9◦

are achieved. As injection current is increased above 140 mA, the far-field

reveals a second peak appearing on the shoulder of the first. The new peak

increases much more rapidly than the first, relative to the background, until

they are of similar heights. At currents higher than this they increase at ap-

proximately the same rate. These two peaks cannot be individually resolved in

figure 4.12 but suggest one possible reason for the larger divergences measured

in the 0◦ orientation.

With two lasing peaks measured in the far-field, but only one in the elec-

troluminescence spectra, the PCSEL may be lasing from multiple areas of the

device. (Satisfaction of the Bragg condition ensures that lasing can only occur

at one wavelength and large scale coherence has previously been reported for

PCSELs [19]).
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Figure 4.12: Far-field cross-sections in the θ = 90◦ orientation as a function of
current for a 276 nm period PCSEL at 150K.

Near-field patterns could confirm if the device is lasing from multiple ar-

eas of the device, however, measurement of these at low temperatures is not

possible with this set-up. The need for the pressurised chamber to achieve low

temperature prevents close-proximity measurements with the device.
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Figure 4.13: Divergence as a function of current for the θ = 0◦ and θ = 90◦

orientations of the far-field cross-sections.

FWHM or divergence measurements from plotting all currents in a similar

fashion to figure 4.11 are shown in figure 4.13. The divergence of the lasing

peak in the 0◦ orientation is reasonably consistent, varying from 9.9◦ to 11.1◦

in the current range 100 to 400 mA. As indicated above, the divergence of the

90◦ orientation is much more current dependent, ranging from 2.9◦ to 9.5◦ over

this current injection regime.

Two possible explanations for the difference in the divergence of the two
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orientations and their dependence on current exist. The first is attributed to

the nature of the regrowth. Infill of the photonic crystal requires growth con-

ditions that result in the interface of the layer immediately above the photonic

crystal being non-planar. Examination of the TEM image in figure 3.11c) in-

dicates this. If this layer is not symmetrical in the orthogonal direction, the

photonic crystal coupling in one of these directions may be stronger than the

other. Further TEM measurements are required to determine if this is the

case.

The second explanation involves spatial hole burning, where spectral holes

in the gain profile may occur across the device due to varying levels of gain

saturation. Some regions of a device may be gain saturated for the wavelength

satisfying the Bragg condition, whilst other regions may still reach sufficient

gain at this wavelength to achieve lasing. Increasing the current could then

result in laser action from multiple regions of the device, all of which can

achieve sufficient gain at the wavelength satisfying the Bragg condition so

that only a single lasing wavelength is observed. This would explain the rise

of a second peak in the far-field without the appearance of a second lasing

peak in the spectra, however, further experiments are required to confirm if

this is the case.
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4.5 Threshold current temperature dependence

Consideration of the threshold current temperature dependence also helps in-

dicate the photonic crystal feedback is responsible for laser oscillation. The

threshold dependence on photonic crystal period over a range of temperatures

and for several devices, is shown in figure 4.14. At 50K low period devices have

reduced threshold current densities, and high period devices have increased

threshold current densities, with a local minima for a period of 276 nm. At

100K, the low period device has an increased threshold current density, whilst

the higher period devices have decreased theirs. Intermediate periods have

similar thresholds as at 50K, and still provide a local minima. At 150K inter-

mediate periods have almost doubled threshold values compared with 100K,

but still provide a local minima. At 200K the local minima now lies closer to

the higher period devices.

Examination of figure 4.14 suggests intermediate period devices are optimal

for reduced threshold current density. However, if figure 4.9 is also considered,

the detuning between the gain peak and lasing peak is the most likely cause

of this reduced threshold.
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Figure 4.14: Threshold current dependence on period for various devices at
50K, 100K, 150K and 200K.
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At low temperatures, a period of a = 276 nm has the smallest detuning and

also threshold current density. At 100K this is still true for detuning, however,

the threshold is now lowest for a = 281 nm. This can be accounted for by

considering inconsistencies in gain peak from one device to the next, and that

only spontaneous emission peak one device is plotted in figure 4.9. By 200K

the detuning is closest for a = 281 nm, and the threshold minima also occurs

at this period.

Figure 4.15: Threshold current density as a function of temperature for two
PCSELs, periods a = 276, and a = 286 nm.
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Figure 4.15 plots threshold current density against temperature for two

different period devices. The curves in figure 4.15 are governed by the detuning

of the gain and lasing peak. Examination of peak wavelengths in figure 4.9

indicates the detuning for similar period devices to those in figure 4.15. When

alignment is good the threshold current is low - for instance, at 200K for

the 286 nm period device in figure 4.15. At the same temperature the 276

nm period device has poor alignment and a significantly higher threshold.

For all temperatures in figure 4.15 a high threshold occurs when there is high

detuning. Similarly a low threshold coincides with a low detuning in figure 4.9.

These curves would take a different form if another mechanism were responsible

for laser action. For example, if Fabry-Perot feedback were responsible the

lasing peak would detune at the same rate as the gain peak. As such, they

provide clear evidence that the photonic crystal is producing laser action.

4.6 Conclusions

Low temperature operation of a selection of epitaxially regrown PCSEL devices

is discussed, with characterisation of basic operating and emission properties.

Laser oscillation is demonstrated and evidence presented that the photonic

crystal is responsible. Simple wavelength selectivity of a PCSEL is outlined

by changing the operating temperature and manipulating the period. Ther-
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mal detuning of gain and lasing peaks is discussed as the key contribution

in reducing the threshold current density. Far-field patterns and divergences

are presented and indicate values similar to void incorporating PCSELs are

possible with an all-semiconductor device. Further work is required to ensure

this is true at all currents. Additional work is required to determine the cause

of the far-field pattern asymmetry in the two orthogonal directions presented.
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5 Room Temperature Characterisation

5.1 Introduction

In this chapter basic room temperature characteristics, including polarisation

and far-field patterns, as well as more advanced characteristics of PCSELs are

outlined. These advanced characteristics include measurement of the photonic

band structure and external feedback effects. Comparison of the experimen-

tal band structure with theoretical models is discussed, and from the band

structure, the in-plane and out-of-plane coupling coefficients are calculated.

In addition, variation of output-coupler reflectivity is used to characterise the

effects on the threshold current and output power of a PCSEL operating under

external feedback. All measurements in this chapter are made whilst operating

under pulsed conditions unless stated otherwise.

5.2 Background

As lasing occurs at the band-edge in a PCSEL, the design of the photonic

band structure is key. Band structure engineering is possible through the

careful design of the photonic crystal lattice, atom shape and period, giving

PCSELs high versatility. As outlined in sections 1.3.1 and 1.3.2, there has

been extensive research into modelling the band structure of photonic crystals
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through various photonic crystal designs [1–7]. Whilst chapter 4 included re-

sults that indicated the emitted light was influenced by the photonic crystal,

it is the measurement of the band structure that is able to directly confirm the

photonic crystal is responsible. Based on the angularly-resolved photolumi-

nescence method of Astratov et al. [8], the coupling of light to the band edges

of a photonic crystal can be determined. Sakai et al. also used this method

to measure the band structure for a void incorporating PCSEL and calculate

the coupling coefficients κ1 and κ3 [9]. These give a quantitative description

of the feedback strength in the photonic crystal plane (κ3), and the coupling

out of the photonic crystal plane (κ1). The ability to quantitatively define and

describe the effects of the photonic crystal is crucial for development of devices

such as PCSELs. These characteristics for an all-semiconductor PCSEL oper-

ating at room temperature conditions are outlined below. Integration of these

devices into more complex applications will also inevitably require the use of

optical fibres, mirrors and lenses, all of which are likely to generate external

feedback into the PCSEL. Therefore, examination of the effects of feedback

on PCSEL characteristics such as output power, EL spectra and threshold

current is also required.
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5.3 Basic characteristics

5.3.1 Spectra and LI

Figure 5.1a) plots the electroluminescence (EL) spectra below threshold (100

mA or 0.6 Ith) and above threshold (250 mA or 1.4 Ith) for the lowest threshold

device at room temperature. Below threshold two small peaks are clearly

evident in the spectra as a result of enhanced emission at the photonic band

edges. Above threshold a single lasing peak appears as lasing occurs from only

one of the band edges, specifically, the band with the highest quality factor

as this is the region with the lowest loss [9]. The low output power of the

device is evident from the relative intensity of the noise in the EL spectra.

Analysis of the raw output-power against injection current (LI) characteristics

indicates that the majority of the power is due to spontaneous emission. The

narrow lasing peak has only a small integrated intensity compared to the

much broader spontaneous emission peak. Figure 5.1b) plots the spectral LI

characteristics. Here the power is measured as the integrated intensity between

two wavelengths either side of the photonic crystal peak (956.21 nm < λ <

964.61 nm). This reveals the true LI characteristics of the PCSEL allowing

measurement of the threshold current (175 mA).
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Figure 5.1: Basic room temperature characteristics of a PCSEL: a) Electrolu-
minescence spectra above (1.4 Ith) and below (0.6 Ith) threshold. b) Integrated
spectral output-power as a function of current.

As outlined in section 5.4 devices are mounted on gold tiles for band struc-

ture measurements. Figure 5.2 plots the EL spectra as a function of current

for a typical device (period = 276 nm) before mounting on the tile. The inset

to figure 5.2 plots the EL spectra as a function of current for the same device

after mounting onto a tile (in the region of the photonic crystal peak). The

appearance of the peak has been shifted to higher currents (∆I = 140 mA)

due to this extra processing step. The spectral linewidth of the lasing peak

for the same device is plotted as a function of current in figure 5.3.
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Figure 5.2: Electroluminescence spectra as a function of current. Inset: Elec-
troluminescence spectra close to the lasing peak as a function of current after
additional device processing.

Figure 5.3 plots the spectral linewidth above threshold as a function of

current. A clear linear trend (black line) is observed as the linewidth increases

from 0.23 nm to 0.41 nm in the 60 mA current region plotted (just above

threshold). A broadening of the lasing peak is observed at higher currents and

comparison with the low temperature linewidth in figure 4.7 over the equivalent

current range (I = Ith + 60 mA) yields similar results (0.29 nm to 0.41 nm).
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Linewidth broadening is therefore not attributed to thermal effects, but rather

that higher currents are allowing the device to access additional states in the

photonic band structure. This results in lasing from either: higher wavevector

states at the low group velocity band edges; or from multiple band edges at

the Γ point. The quality or q-factor of this PCSEL is calculated using 5.3.1,

and is plotted in figure 5.3 inset, as a function of current. Typical Q-factors for

sub-threshold void-incorporating PCSELs are band dependent, for example,

Qa = 1700, Qb = 1000, Qc,d = 500 in [9], where bands a, b, c and d correspond

to those labelled in figure 5.9. Using 5.3.1 an approximate above threshold

Q-factor of the lasing peak is calculated as 4800 for [9].

Q =
λ

∆λ
(5.3.1)

The data in figure 5.3 inset is produced from the linewidth values in fig-

ure 5.3 and the lasing peak wavelength. The Q-factor clearly decreases with

current as the linewidth broadens. Q-factor values for this all-semiconductor

PCSEL (just above threshold) are only slightly reduced in comparison to those

calculated for void incorporating devices. From low temperature EL spectra,

sub-threshold linewidths of 0.55 nm were obtained (figure 4.7), yielding Q-

factors of 1700 similar to the reported value of Qa. For similar devices op-

erating at room temperature, a range of cold linewidths of 1.7-2.3 nm were
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achieved (defined in section 4.3). This gives Q-factors of 430-580 for the dou-

bly degenerate high energy bands. These are similar to the degenerate high

energy bands of a void incorporating PCSEL (Qc,d = 500) at 0.9 Ith. The

high uncertainty in Q-factor arises from the low linewidth values being used

in 5.3.1.

Figure 5.3: Spectral linewidths as a function of current. Inset: Q-factor as a
function of current. Black lines indicating the general linear trends.
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5.3.2 Polarisation

The polarisation of a PCSEL is determined by the electric and magnetic field

vectors of the light propagating through the photonic crystal. The design of

the photonic crystal allows for tunability of the polarisation of the emission.

Modelled in figure 1.10a) and b), the magnetic field vectors indicate that

emission from TE bands 2 and 3 should have linear polarisation, whilst TE

bands 4 and 5 should have a more complex polarisation.

Figure 5.4 plots the variation in power (at a fixed current) as a function of

linear polariser angle relative to the (100) crystal direction (rotating in a clock-

wise direction). Power is transmitted when the polariser is aligned with the

Γ-X direction, with parallel magnetic field vectors to the (100) direction, and

is reduced to zero when rotated to 90◦. The power in figure 5.4 is normalised

so that minima in the raw output power are equal to zero and maxima are

equal to one. This is an attempt to remove the effect of background sponta-

neous emission, however, this is more accurate using the spectral polarisation

data (see figure 5.5 inset). The fluctuation in spectral peak intensity follows

a very similar trend to that in figure 5.4 indicating that this normalisation is

sufficiently accurate.
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Figure 5.4: Normalised output power as a function of polariser angle. Inset:
Raw output power as a function of polariser angle.

Figure 5.4 inset indicates the raw power variation as a function of polariser

angle, clearly indicating that not all the emission is linearly polarised. The

random polarisation of the spontaneous emission is responsible for the mea-

sured output power when the lasing peak is completely polarised. From these

power measurements, an extinction ratio of 23.5% (ratio of lowest trough to

highest peak) is determined. Typical room temperature measurements pro-

duced polarisation extinction ratios slightly less than this, varying from 16%
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to 23.5% from one device to another. Some variation is expected due to the

nature of the random polarisation of spontaneous emission.

The intensity variation of the EL spectra (near the lasing peak) as a func-

tion of polariser angle is plotted in figure 5.5. At the polariser angles where low

power is measured in figure 5.4, the lasing peak in figure 5.5 is clearly reduced

in intensity. Spectra for a selection of angles have been plotted to illustrate

the variation in intensity. To aid the eye, polariser angles with similar powers

(from figure 5.4) are also plotted using similar colours. Figure 5.5 inset plots

the EL intensity of the lasing peak against polariser angle, clearly indicating

the angles (90-95◦ and 270-275◦) where the photonic crystal peak is reduced

to zero intensity. Note that peak intensities have been included for spectra

not plotted in figure 5.5 to avoid overcrowding of the graph. Figure 5.5 inset

indicates the peak intensity at 0◦ is lower than at 180◦ and 360◦. The peak

intensity at 0◦ is close to that at 30◦ so the EL spectra of 0◦ is hidden behind

that of 30◦. This discrepancy is due to slight misalignment of the polariser

when adjusting by hand so that it is not parallel to the surface of the de-

vice. Similar levels of intensity are observed for the spontaneous emission at

wavelengths close to the lasing peak for all polariser angles. At angles of high

polarisation there is a large amount of noise but the lasing peak is just visible

using a logarithmic scale.
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Figure 5.5: Electroluminescence spectra at wavelengths close to the lasing
peak for varying degrees of polarisation. Inset: Variation in peak intensity
with polariser angle.

5.3.3 Far-field pattern

As discussed in chapter 4, low divergence angles possible in a PCSEL far-field

pattern are part of what makes them attractive for high brightness applica-

tions. Figure 5.6 plots a typical device room temperature far-field pattern as

a function of current. At room temperature the device is not mounted in the

cryostat chamber and the goniometer is able to take measurements from closer
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to the sample. Measurements plotted in this chapter are taken from a distance

of 5 mm from the sample surface.

Figure 5.6 plots the far-field pattern cross-section in the θ = 0◦ orientation

(defined in figure 4.2), with a single central peak observed at all currents.

Figure 5.6 inset plots the far-field peak at 380 mA, which has been normalised

once the spontaneous emission is removed.

Figure 5.6: Far-field cross-section in the θ = 0◦ orientation as a function of
current. Inset: Far-field at 380 mA with background spontaneous emission
removed and divergence as a function of current.
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Taking the full width half maximum (FWHM) of this peak at each current

gives the divergence of the lasing peak, also shown in figure 5.6 inset. The

scatter of divergences at the currents considered here makes it difficult to

determine if there is any real dependence on current.

Figure 5.7 plots the far-field cross-section in the 90◦ orientation. In this

case two peaks are observed but are not fully resolved at all currents. The

FWHM dependence on current is plotted inset in figure 5.6 and figure 5.7 for

the θ = 0◦ and θ = 90◦ orientations respectively. For θ = 90◦ the divergence

is harder to calculate as the two peaks are not resolved at the half maxima

value. Figure 5.7 inset indicates that at low currents the two peaks can be

resolved, and that both have similar divergences. These divergence values are

also similar to that in the θ = 0◦ orientation, however, there is a slightly larger

scatter. In both orientations there is no obvious dependence on current (at low

currents). At higher currents the θ = 90◦ divergence jumps up to over 10◦ when

the peaks are no longer resolvable. This behaviour is similar to that observed

in figure 4.13. In figure 4.13 one orientation started with low divergence, and

then increased as a second peak was observed at higher currents. However, in

figure 5.7 the two peaks appear simultaneously and continue to increase at the

same rate, making the jump from low to high divergences more distinct.
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Figure 5.7: Far-field cross-section in the θ = 90◦ orientation as a function of
current. Inset: Far-field at 380 mA with background spontaneous emission
removed and divergence as a function of current.

The cross-sections of the far-field pattern are taken in orthogonal directions

but both are parallel to one of the symmetric Γ-X photonic crystal directions.

The asymmetric nature of the far-field pattern is therefore likely to be an

attribute caused by fabrication of the photonic crystal within the device. From

figure 3.11c) it was clear that the infill of the photonic crystal required growth

conditions that caused difficulty in achieving planarisation of the upper GaAs-
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AlGaAs interface. The modulation in this layer is likely to be asymmetric in

the two orthogonal directions (which lie parallel to the Γ-X directions) due to

the inequivalence of the different (110) crystal directions, and this would likely

result in an asymmetric far-field pattern.

5.4 Band structure characterisation

Figure 5.8 is a schematic of the set-up used to measure the EL spectra of

a PCSEL from the various angles necessary to construct the band structure.

The device under test (DUT) is mounted on a gold tile which can be fixed to

a θ-φ rotating stage, and fine control of these two angles is achieved through

a computer controlled motor. From the initial starting point in figure 5.8,

rotation occurs in the θ direction to measure the band structure in the Γ-X

direction. Rotation of the DUT in the φ direction by 45◦, followed by similar

θ rotations, allows measurement in the Γ-M direction. Alternative lattices re-

quire measurement at different φ angles depending on the symmetrical crystal

vectors. The optical fibre (MMF) is fixed to an x-y-z stage for alignment with

the DUT and the optical spectrum analyser (OSA) records the EL spectra at

each angle.
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Figure 5.8: Schematic indicating the experimental set-up used to measure the
photonic band structure.

A contour plot of the sub-threshold spectra yields the variation of the

emission with frequency and angle, highlighting the shape of the band structure

(figure 5.9). Comparison with a plane wave expansion model of a square lattice

photonic crystal (overlaid in black in figure 5.9), indicates there is a strong

correlation between the two, and hence, that emission is controlled by the

photonic crystal within the device. The coupling coefficients κ1 and κ3 (see

section 1.2.2) are found from the angular frequencies of the photonic crystal

peaks at the Γ point using 5.4.1-5.4.3 [10].

ωa =
c

nave
(β0 − κ3)

(
1− 8κ1

2

β0
2 − κ32

)
(5.4.1)
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ωb =
c

nave
(β0 − κ3) (5.4.2)

ωc,d =
c

nave
(β0 + κ3)

(
1− 4κ1

2

β0
2 − κ32

)
(5.4.3)

where c is the speed of light, nave is the average refractive index of the waveg-

uide and β0 = 2π/a (a is the period of the photonic crystal).

Figure 5.9: Contour plot of sub-threshold, angularly-resolved spectra in the
Γ-X and Γ-M directions, with part of the modelled band structure overlaid to
indicate TE bands a, b, c, d. Inset: Integrated electroluminescence spectra
for Γ ± 3◦.
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Waveguide modelling yields a value for the average refractive index as nave

= 3.36. Using 5.4.1-5.4.3 and the frequencies of the peaks inset in figure 5.9,

coupling values of κ1 = 3920 ± 140 cm−1 and κ3 = 560 ± 20 cm−1 are de-

termined. Previously reported coupling values are higher than achieved here,

with κ1 = 4300 cm−1 and κ3 = 740 cm−1 for a void incorporating PCSEL [10].

This is to be expected due to the higher refractive index contrast between voids

(assumed to be air) and semiconductor, but the coupling is still sufficient for

our devices to achieve lasing. The value of κ3 is just under half that predicted

by the waveguide modelling in section 2.5, which assumed an averaged refrac-

tive index of the photonic crystal layer from test patterns and vertical etch

profiles.

The grating profile in one-dimensional structures such as DFB lasers is

known to affect the coupling coefficient [11], and this is expected to be no

different for a photonic crystal, but the analysis is much more complicated.

Figure 5.10a) is a contour plot of the coupling coefficient for a 2nd order,

one-dimensional trapezoidal grating such as in figure 5.10b) with waveguide

parameters outlined in [11]. Variations in coupling are shown depending on

the width of the base (WG/Λ) and top (WT/Λ) of the grating profile shown in

figure 5.10b). Whilst the coupling values shown on figure 5.10a) correspond to

a specific waveguide considered in [11], the shape of the contour plot reveals
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information on the dependance of the relative strength of the coupling on the

grating profile. Two regions of high coupling are observed for gratings with

(WG/Λ = 0.25, WT/Λ = 0.75) and (WG/Λ = 0.75, WT/Λ = 0.25). A region

of low coupling occurs for grating profiles with values of WG/Λ and WT/Λ

that are similar. Assuming the cross-section TEM images of the photonic

crystal layer in figure 3.11 can approximate a one-dimensional grating, the

corresponding coupling within these devices is marked by a red cross on figure

5.10a). The location of the cross indicates that the coupling coefficient should

be near maximal value for a grating profile such as in the TEM of figure 3.11c).

Two-dimensional photonic crystal modelling methods such as the plane

wave expansion method (PWEM) typically assume that the crystal has a con-

stant dielectric medium in the z-direction in order to simplify analysis. This

prevents consideration of the grating profile. However, the coupling equa-

tions above (5.4.1-5.4.3), can be used in conjunction with the theoretical band

structures to model the coupling coefficients for various crystal structures. By

varying the crystal structure, and plotting the theoretical band structure as a

function of the fill factor, the effect of grating profile on coupling coefficient can

be approximated. Figure 5.11 plots the coupling coefficient κ3, for a type II

square lattice photonic crystal, modelled with circular atom shapes of varying

radii [12].
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Figure 5.10: a) Contour plot of the coupling in a 2nd order DFB grating with
variation in width of the base and top of the trapezoidal profile. Red cross
indicates location of our PCSEL from TEM image cross-sections. b) Grating
profile of the DFB considered. Reproduced from [11].
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Figure 5.11: Modelled coupling coefficient (κ3) as a function of atom shape
radius. Courtesy of R. J. E. Taylor of the University of Sheffield.

In this case, equations 5.4.1 - 5.4.3 have been adapted to use the modelled

band frequencies (at the Γ point) to calculate the in-plane coupling coefficient

κ3 (this method can also be used to model κ1) [14]. The in-plane coupling

(κ3) has two local maxima at radii of 0.19a and 0.42a and this type of dual-

peak behaviour has also been modelled elsewhere [6, 13]. From the top of the

feature sizes in the TEM image in figure 3.11c) the circular atom shapes have

a radius of 0.17a, putting them close to the top of the smaller of the two
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peaks in κ3 with a coupling of approximately 750 cm−1. However, the bottom

of the features have a much smaller radius (0.1a), which gives a coupling of

approximately 400 cm−1. The band structure measurement of κ3 = 560 cm−1

is attributed to a result of the shape of the grating features and the disparity

of the modelled coupling values for each size feature.

5.5 External feedback characterisation

External feedback can be problematic for integration of lasers in certain ap-

plications, however, some devices such as vertical external cavity surface emit-

ting lasers (VECSELs) require external feedback to operate. VECSELs are

designed to use an output coupler to create sufficient feedback for lasing and

characterisation of the feedback levels involves varying the reflectivity of the

output coupler. The effect of variation in feedback levels on threshold current,

output power and single pass gain in a VECSEL have previously been inves-

tigated [15, 16]. Figure 5.12 plots the LI characteristics of a 100 µm diameter

electrically-pumped VECSEL for varying reflectivities. Low threshold currents

are achieved at high reflectivity, whilst higher slope efficiencies are measured

at intermediate reflectivities. Figure 5.12 inset shows the variation in maxi-

mum power at different reflectivities whilst under pulsed and continuous wave

operation.
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Figure 5.12: LI curves for various output coupler reflectivities in a VECSEL.
Inset: Maximum output power as a function of reflectivity [15].

Characterisation of such devices is important to ensure the optimum output

coupler reflectivity is chosen for the relevant application. VECSELs manip-

ulate distributed Bragg reflectors (DBRs) to generate a cavity in the verti-

cal direction and typically have a very high reflectivity on the lower DBR

(>99.99%). This ensures external feedback significantly contributes to the

round trip gain within the cavity. PCSELs do not always contain DBRs, mak-

ing use of the photonic crystal to achieve both lasing and diffraction into the
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vertical direction. In such PCSELs, half the emission is lost out the bottom

of the device, and any external feedback effect on the emission is immediately

reduced by at least half.

Figure 5.13 illustrates the set-up used to characterise the effects of external

feedback for the VECSELs in [15,16] and for the PCSELs discussed below. A

collimating lens guides emission to the plane mirror (or output coupler), which

is held in a mount that can be tilted in two directions to ensure emission is fed

back through the device aperture. Output power or EL spectra are measured

by interchanging the alignment of the powerhead or the decollimating lens and

multimode fibre (MMF) above the output coupler.

Output coupler reflectivities are determined by the thickness of dielectric

layers deposited on the surface, and the transmission response of the dielectric

is spectrally dependent. Manufacturer information for each output coupler is

used to determine the effective reflectivity at the emission wavelength deter-

mined by the Bragg condition for each device [17]. The output coupler will

have varying reflectivity for the spontaneous emission due to the broad peak

in the EL spectra. The narrow lasing peak has a small uncertainty in wave-

length and therefore the effective reflectivity can be considered constant at

this wavelength.
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Figure 5.13: Schematic of the external feedback test set-up.

For external feedback to contribute to the laser oscillation, the reflected

light must satisfy the Bragg condition in order to enhance the coupling of the

photonic crystal. Light at other wavelengths will not couple to the photonic

crystal and therefore will not significantly contribute to the feedback within

the device. As seen from the polarisation characteristics, the power from

the photonic crystal is relatively low (approximately 20% of the total output

power) and this is also evident from the narrow spectral peak - a relatively

small part of the EL spectra in figure 5.2. The strength of the external feedback

is governed by the intensity of the initial output power, the various losses in
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the external cavity and the coupling of reflected light back into the photonic

crystal. The out-of-plane coupling of the photonic crystal, κ1, determines the

effects of external feedback as light is coupled back into the photonic crystal.

Figure 5.14: Measured and theoretical output powers as a function of output
coupler reflectivity.

Figure 5.14 indicates the variation in output power (measured at a fixed

current) with output coupler reflectivity, and a simple linear reduction is ob-

served across the reflectivities considered. Only output powers measured at

69.2% and 79.2% show significant deviation from the theoretical transmission.

185



These slight fluctuations in the measured output power are accounted for by

considering the broad spectral spontaneous emission peak, and the variation

of spectral response between output couplers. Also, the loss in each output

coupler is not identical. The overall reduction in power is explained by the out-

put couplers acting as attenuators. Hence, if they are not creating an external

feedback affect on the PCSEL, there is reduced transmission (T ) through the

output coupler as the reflectivity (R) is increased. Taking the power measured

without an output coupler as the maximum power (Pmax) that can be trans-

mitted, theoretical output power (Ptheory) values are calculated as a fraction

of this maximum power using 5.5.1.

Ptheory = PmaxT = Pmax(1−R− α) (5.5.1)

where α = 0.01 is assumed to be an arbitrary fixed loss in each of the output

couplers. Theoretical values of the power transmitted through the output

coupler are also plotted in figure 5.14, and these have close correlation to the

measured powers. External feedback appears to have had little or no affect

on the output power of the device. However, inspection of the spectra was

required to determine threshold accurately in section 5.3.1 due to the relatively

low power of the lasing peak, and this should also be considered here.

Figure 5.15 plots the EL spectra close to the lasing peak as a function of
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reflectivity, with relative intensities normalised against the spectral peak when

no output coupler is present. Measured at a different time to the output powers

in figure 5.14, but using the same alignment process, an increase in the spec-

tral peak is clearly observed at reflectivities of 56.6%-69.2%. High reflectivity

measurements reveal little useful information about the spectral response due

to the low amount of transmission. At other reflectivities, however, the peak

intensity appears to drop in a similar fashion as the output powers in figure

5.14. The slight increase of output power and the more obvious increase in

spectral peak intensity at certain reflectivities suggests that external feedback

is increasing the in-plane feedback of the photonic crystal, but that alignment

is critical.

Figure 5.15 inset plots the variation in normalised peak intensity against

reflectivity, indicating the clear increase in peak intensity for reflectivities close

to 60% (reflectivities determined at the wavelength satisfying the Bragg con-

dition). The lasing peak appears to have doubled in size for certain feedback

conditions. The lack of response to feedback at other reflectivities is likely due

to poor alignment so that the return trip light is not fed directly back into the

device.
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Figure 5.15: Normalised EL spectra close to the lasing peak as a function of
reflectivity. Inset: Normalised spectral peak intensity as a function of output
coupler reflectivity.

Feedback affects on the threshold current are also difficult to determine due

to the low power of the devices at room temperature. Figure 5.16 indicates

that there is no clear correlation of output coupler reflectivity on threshold

current as measured from the raw output power LI curves.
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Figure 5.16: Threshold current as a function of output coupler reflectivity
Inset: Spectral threshold current against reflectivity for a different device.

At 87.0% reflectivity there is a 35.6% reduction in threshold current, but

at higher reflectivities thresholds are similar to without feedback. However,

the low LI slope efficiency for the device in figure 5.16 results in significant

extrapolation to measure the threshold current, as evident by comparison with

the value of the spectral LI threshold currents of another device (figure 5.16

inset). Such a large reduction in the value of the threshold current is due to the

high uncertainty from extrapolating the LI curve. This is also indicated by the
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large scatter of points on the graph. The spectral threshold current, however,

shows a shallow, linear reduction in value as the reflectivity is increased up until

92.3%. Above this, the low transmission through the output coupler results in

threshold values of similar or higher values as achieved without feedback. At a

reflectivity of 89.0% a 2.6% reduction in threshold current is achieved. Whilst

there appears to be a correlation between threshold current and feedback from

the spectral LI curves, the reduction is low, indicating the feedback affect is

weak.

5.6 Conclusions and future work

Basic room temperature characteristics have been illustrated, including EL

spectra, LI, and threshold currents. In addition, linear polarisation of the

emission, with an extinction ratio of approximately 20%, and far-field patterns

with divergences as low as 2◦ are demonstrated. All of these indicate the unique

properties of a PCSEL can be achieved using epitaxial regrowth to create an

all-semiconductor photonic crystal within the device. Polarisation occurs along

one of the Γ-X directions as predicted from the modelling of magnetic field

vectors in chapter 1. Divergences have no conclusive dependence on current,

but further work is required to confirm if the source of the second peak in the

θ = 90◦ orientation is due to asymmetric growth to or not.
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The sub-threshold angularly-resolved EL spectra showed the photonic crys-

tal is directly influencing the emission according to the modelled photonic

band structure. Coupling coefficients of κ1 = 3920 ± 140 cm−1 and κ3 = 560

± 20 cm−1 are measured directly from the peaks in the band structure. κ3

is lower than expected from the waveguide modelling discussed in chapter 2,

but is shown to be between the expected values for a two dimensional grating

with different fill factors at the top and bottom of the grating layer. Further

measurements of above threshold band structures should confirm whether the

observed linewidth broadening is occuring from higher wavevector states, or

whether additional bands are lasing at the Γ point.

External feedback provides no clear increase in raw power, but a significant

increase in spectral intensity at certain output coupler reflectivities is observed.

A small decrease in spectral threshold is also observed as feedback is increased.

Such effects suggest two things; first, that κ1 is sufficient to couple the reflected

light back into the photonic crystal and thereby reduce the threshold gain and

current; and second, that κ3 is also increased by the feedback as there is a small

increase in output power at certain reflectivities from the additional in-plane

coupling.

However, if external feedback truly produces a significant effect on the

emission of a PCSEL, the low power of devices tested here makes it difficult
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to clearly observe the increase. Future work to include a DBR underneath the

active region of the device would increase the power significantly. This would

create a reduction of the initial 50% loss from the active out the bottom of

the device, and introduce a vertical cavity around the photonic crystal that

will enhance any feedback effects and thereby increase the output power. The

resulting higher power devices will make it easier to ascertain the effect of

introducing external feedback. Increasing device and aperture sizes would

also aid in alignment to make the process of external feedback easier.
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6 Summary and Future Work

In this thesis the successful design, fabrication and characterisation of an epi-

taxially regrown photonic crystal surface emitting laser has been described.

Starting from the gaps in the knowledge outlined in section 1.4, a photonic

crystal with the small refractive index contrast between two semiconductor

materials was not known to be sufficient to create a partial band gap and

achieve lasing.

Through optimisation of the waveguide design in chapter 2, the coupling

between the active region and the photonic crystal is shown to be above the

threshold limit for lasing to occur (as suggested in [1]). Surprisingly from the

extent of research on PCSELs with voids in the literature, it was also shown

that a void incorporating photonic crystal would have a significantly smaller

mode overlap in such a structure.

Epitaxial regrowth of GaAs through MOVPE has been developed to pre-

vent voids from forming within a photonic crystal layer and create a buried

two-dimensional InGaP-GaAs grating. Attempts to generate large area pat-

terns in a cheap and quick method for PCSELs (laser interference lithography)

have so far proved unsuccessful.

The results outlined in chapters 4 and 5 have shown that an all-semiconductor

photonic crystal can provide sufficient feedback for lasing to occur, and quan-

197



tified the strength of the photonic crystal coupling. Chapter 4 showed the

detuning of the emission wavelength with temperature and demonstrated that

low threshold PCSELs were obtained when the gain peak coincided with the

wavelength that satisfied the Bragg condition. Laser oscillation is shown to

be due to the photonic crystal through measurement of the band structure in

chapter 5, and characteristics such as coupling strengths and beam divergences

were shown to be comparable with other void based PCSELs.

The use of all-semiconductor photonic crystals and the epitaxial regrowth

process described are shown to be suitable for generating 2D PCSELs. This

regrowth process could also form the stepping stone to generating an easy

fabrication technique for 3D photonic crystals designed for optical wavelengths.

6.1 Alternative materials in the photonic crystal

The work in this thesis has focussed on a photonic crystal consisting of InGaP

and GaAs within an AlGaAs-GaAs waveguide for operation at λ = 980 nm.

Waveguide modelling used these to determine if the coupling is sufficiently

high to achieve lasing. Further investigation using alternative semiconductor

alloys may yield a waveguide with a higher coupling strength. This possibility

has not been considered in this thesis due to the current limitations of the

epitaxial regrowth process relying on the specific semiconductors used.
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For generating alternative emission wavelengths such as λ = 850 nm or λ

= 1.5 µm, other semiconductor alloys are required. Whilst the period of the

photonic crystal can be easily adjusted to achieve these wavelengths, other

problems prevent emission. For example, any GaAs layers within a device

targeting λ = 850 nm will absorb the light. Redesign of the waveguide is clearly

required for alternative wavelengths, however, further waveguide modelling

could inform on the optimum semiconductor materials to achieve high coupling

between the active and photonic crystal in these structures.

Chapter 2 showed that a void incorporating photonic crystal layer had a

lower coupling than an all-semiconductor one, however, further modelling may

yield a solution that benefits the voids rather than all-semiconductor. For

example, a ballast layer of similar refractive index could be inserted beneath

the active region and this would form two regions of low refractive index within

the waveguide that are symmetrical around the active. This could prevent the

mode distortion by the low refractive index of any waveguide layer containing

voids. The effects of varying the aluminium composition of the upper AlGaAs

cladding layer should also be investigated thoroughly to ensure the waveguide

is optimal. In order to ensure the mode has decent overlaps with the quantum

wells and photonic crystal this may require the addition of ballast layers as

well.
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6.2 Device improvement

The low efficiency of the devices reported in this thesis is not ideal, with sig-

nificant further work required to optimise device processing. Further tests on

contact materials and annealing processes should improve the electrical char-

acteristics such as VI curves. Combining this with improvements in device

isolation through mesa etch optimisation should help limit non-radiative re-

combination losses within the device. More work on the photonic crystal etch

process to improve the verticality of the sidewall profile is required and this

could help decrease the scattering loss by the grating in directions other than

the normal.

The devices reported in this thesis have a relatively low output power as

at least half of the laser emission is lost out the bottom. The detected output

power being the component that is diffracted in the vertical direction out of

the device. It is equally as likely that this light is diffracted out the bottom

of the photonic crystal. By introducing a high reflectivity mirror at the start

of the initial growth, for example a distributed Bragg reflector (DBR), any

light escaping in this fashion should be reintroduced to the photonic crystal

or reflected straight up and out of the device.
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Figure 6.1: Schematic of a possible PCSEL structure with distributed Bragg
reflector (DBR) pairs beneath the active region.

Figure 6.1 is a schematic showing the introduction of a set of DBR pairs

underneath the structure reported in this thesis. Whilst this will reduce emis-

sion loss from the lower side of the device, it will also introduce the possibility

of new external feedback effects as the structure starts to resemble a VECSEL

with a photonic crystal layer included. Other devices which incorporate DBR

mirrors, for example VECSELs, typically use AlGaAs/GaAs DBR pairs to

target λ = 980 nm [2,3].
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6.3 Additional characterisation possibilities

Further characterisation of these all-semiconductor PCSELs should include

investigations to determine if the perturbations in the surface of the regrown

GaAs layer are the cause of the asymmetry in the far field patterns. This

will require taking TEM images from along different semiconductor crystal

directions and should also include additional fabrication runs with the photonic

crystal patterned misaligned with the semiconductor crystal directions.

Measurements of band structures above threshold should confirm whether

linewidth broadening is occuring from higher wavevector states being accessed,

or whether additional bands are lasing at the Γ point. If this broadening is due

to additional bands lasing then characterisation of the emission polarisation

should confirm which.

One of the most significant characteristics of PCSELs is their potential to

scale the output power with the device area as lasing occurs from the band

edges. Whilst this has been reported for void based PCSELs it should be

confirmed that this is also a feature of all-semiconductor PCSELs. This will

require additional fabrication runs to create devices of varying diameter sizes.
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